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Abstract We present a new approach to search for a subsurface ocean within Ganymede through
observations and modeling of the dynamics of its auroral ovals. The locations of the auroral ovals oscillate
due to Jupiter’s time-varying magnetospheric field seen in the rest frame of Ganymede. If an electrically
conductive ocean is present, the external time-varying magnetic field is reduced due to induction within
the ocean and the oscillation amplitude of the ovals decreases. Hubble Space Telescope (HST) observations
show that the locations of the ovals oscillate on average by 2.0◦ ± 1.3◦. Our model calculations predict a
significantly stronger oscillation by 5.8◦ ± 1.3◦ without ocean compared to 2.2◦ ± 1.3◦ if an ocean is present.
Because the ocean and the no-ocean hypotheses cannot be separated by simple visual inspection of
individual HST images, we apply a statistical analysis including a Monte Carlo test to also address the
uncertainty caused by the patchiness of observed emissions. The observations require a minimum
electrical conductivity of 0.09 S/m for an ocean assumed to be located between 150 km and 250 km depth
or alternatively a maximum depth of the top of the ocean at 330 km. Our analysis implies that Ganymede’s
dynamo possesses an outstandingly low quadrupole-to-dipole moment ratio. The new technique applied
here is suited to probe the interior of other planetary bodies by monitoring their auroral response to
time-varying magnetic fields.

1. Introduction

Jupiter’s moon Ganymede, the largest satellite in our solar system, is a fully differentiated body and the
only known satellite with an internal dynamo field [Kivelson et al., 1996]. It possesses an iron core, the
source region of the dynamo, a silicate mantle, and an ice mantle as the outer layer [Anderson et al., 1996].
Magnetic field measurements taken by the Galileo spacecraft suggest the existence of a layer of liquid
water sandwiched between an ice shell at the surface and a deep layer of a high-pressure polymorph of ice,
but these interpretations of the magnetometer data are not conclusive [Kivelson et al., 2002] as we detail
further below.

Ganymede also exhibits auroral emission, first observed by Hall et al. [1998] with the Goddard High
Resolution Spectrograph (GHRS) on board of the Hubble Space Telescope (HST). These observations
constrained the fluxes and spectral shapes of the OI 1356 Å and OI 1304 Å emission lines, which imply
a molecular oxygen atmosphere with a column density in the range of (1–10) × 1014 cm−2 [Hall et al.,
1998]. The line shape of the OI 1356 Å emission is consistent with the radiation being emitted from two
circumpolar auroral ovals situated in the north and south polar regions of Ganymede. Subsequent spatially
and spectrally resolved HST observations with the Space Telescope Imaging Spectrograph (STIS) clearly
demonstrate the existence of two auroral ovals around Ganymede’s magnetic north and south poles as
shown in the work of Feldman et al. [2000] and McGrath et al. [2013]. In the latter work four sets of HST
observations of Ganymede’s UV aurora acquired during a time span from 1998 to 2007 are used to analyze
the time-averaged locations of Ganymede’s auroral ovals. McGrath et al. [2013] show that the auroral ovals
are located at high latitudes on the upstream (i.e., orbital trailing) hemisphere of Ganymede and much closer
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to Ganymede’s equator on the downstream (i.e., orbital leading) hemisphere. Due to the relative strength of
Ganymede’s internal dynamo field (∼750 nT at the equator) and Jupiter’s magnetospheric field at the orbital
distance of Ganymede (∼100 nT), Ganymede possesses a closed field line region above its surface and a
mini-magnetosphere within Jupiter’s giant magnetosphere. The magnetosphere of Ganymede is unique
in the solar system as it is sub-Alfvénic, and thus, no bow shock forms upstream of Ganymede, but Alfvén
wings connecting Ganymede to Jupiter’s ionosphere are generated (for further discussion, see, e.g., Kivelson
et al. [1998] and Neubauer [1998]). The upstream-downstream emission pattern and asymmetries reported
in McGrath et al. [2013] are strongly governed by this sub-Alfvénic interaction of Jupiter’s magnetospheric
plasma with Ganymede’s mini-magnetosphere [Neubauer, 1998; Jia et al., 2009]. In contrast to Ganymede’s
sub-Alfvénic interaction, the interaction of the Earth’s magnetosphere with the solar wind plasma is only
very exceptionally sub-Alfvénic [Chané et al., 2012]. Ganymede, as a magnetized planetary body embedded
in a sub-Alfvénic plasma flow, is considered a textbook example of the expected plasma environment
around close-in extrasolar planets [e.g., Ip et al., 2004; Saur et al., 2013]. Extrasolar planets at radial distances
of less than approximately 0.1 AU are typically estimated to be exposed to stellar winds with sub-Alfvénic
velocities [Saur et al., 2013]. Even though intrinsic magnetic fields of extrasolar planets have not yet been
directly observed, they have been indirectly inferred [Kislyakova et al., 2014] and are generally expected to
be present [Christensen et al., 2009].

The locations of the auroral ovals, similar to any other aurorae in our solar system, are strongly controlled by
the magnetic field environment around the planetary body. Determining the locations of the auroral ovals
thus provides constraints on the magnetic field environment. Ganymede’s magnetic field environment is
complex. It consists of internal contributions from Ganymede’s deeply rooted dynamo magnetic field and
possibly due to electrodynamic induction if a saline subsurface ocean is present [e.g., Kivelson et al., 2002;
Seufert et al., 2011]. Additionally, there are external contributions due to Jupiter’s magnetospheric field at
the location of Ganymede and due to the plasma interaction of Ganymede with the plasma of Jupiter’s
magnetosphere [Neubauer, 1998; Jia et al., 2009]. The magnetic field environment of Ganymede has
been probed with in situ magnetometer measurements [Kivelson et al., 1996, 1998; Volwerk et al., 1999;
Kivelson et al., 2002] and studied with numerical simulations on various levels of detail [Kopp and Ip, 2002;
Ip and Kopp, 2002; Paty and Winglee, 2004, 2006; Paty et al., 2008; Jia et al., 2008, 2009; Jia et al., 2010;
Duling et al., 2014].

As demonstrated by Eviatar et al. [2001], the electrons of Jupiter’s magnetosphere do not have sufficient
energy to excite the auroral emissions, in contrast to the aurorae generated at Io and Europa [e.g., Saur et al.,
1998, 2000; Retherford et al., 2000; Roth et al., 2011, 2014]. At Ganymede, local particle acceleration is
necessary to explain the observed UV fluxes. According to Eviatar et al. [2001], the two possible energization
mechanisms include stochastic acceleration by collective plasma effects and acceleration by electric fields
associated with field-aligned Birkeland currents. Despite this work, it needs to be noted that due to the
lack of systematic observations and associated studies, the kinetic processes leading to Ganymede’s aurora
are generally considered as not completely understood.

A key question about Ganymede is whether it possesses a subsurface water ocean under its icy crust.
Even though several theoretical models of Ganymede’s interior suggest the possibility of a subsurface
ocean [e.g., Sohl et al., 2002; Hussmann et al., 2006; Rambaux et al., 2011; Vance et al., 2014], the so far only
observational evidence for the existence of a subsurface ocean comes from magnetic field measurements
by the Galileo spacecraft taken during several Ganymede flybys [Kivelson et al., 2002]. The time-variable
magnetic field of Jupiter’s magnetosphere seen in the rest frame of Ganymede is periodically changing
with Jupiter’s synodic rotation period of 10.5 h. This time-variable magnetic field component will induce
secondary magnetic fields within an electrically conductive subsurface ocean. The radial component of
Jupiter’s magnetospheric field is the dominant time-variable component and changes from toward (+80 nT)
to away from Jupiter (−80 nT) with Jupiter’s synodic rotation [Kivelson et al., 2002; Seufert et al., 2011]. The
time-averaged magnitude of Jupiter’s magnetospheric field at the radial distance of Ganymede’s orbit is
around 100 nT [Kivelson et al., 2004]. The variability of the radial component dominates the variability of
the azimuthal component due to the current sheet effects in Jupiter’s magnetosphere [Kivelson et al., 2002;
Seufert et al., 2011].

The magnetic field measurements near Ganymede reported by Kivelson et al. [2002] are equally consistent
with two models for Ganymede’s internal magnetic field contributions: A dynamo dipole field plus
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Figure 1. Sketch of selected magnetic field lines and locations of auroral ovals when Ganymede is above (dashed lines)
and below the current sheet (solid lines), respectively. The ovals are located where the open-closed field line boundary
(OCFB) intersects Ganymede’s surface. Induction in an ocean partly compensates Jupiter’s time-variable field and thus
reduces the oscillation of the ovals (red: with ocean; blue: without ocean). The magnetic field environment in this sketch
has been simplified for clarity by including internal dipole moments, the time-variable external field, induction in an
ocean, and as proxy for the plasma magnetic field a constant field contribution within the OCFB generated by surface
currents on the OCFB.

quadrupole moments (whose contributions are small but necessary for the fit to the Galileo magnetometer
data) or a dynamo dipole field plus a field induced by the locally time-variable component of Jupiter’s
magnetic field within a saline, electrically conductive subsurface ocean. The basic reason for this ambiguity
is that with measurements acquired during single flybys, which do not occur on exactly the same trajectory,
it is impossible to distinguish between spatial variations (i.e., higher order moments) and temporal
variations (i.e., induction). Kivelson et al. [2002] gave preference to the model with an induced field, because
it allowed to fit the observations with fewer free parameters than in the model with an internal quadrupole.
However, we note that only two of the five quadrupole coefficients turned out to make a significant
contribution. Although there is no obvious a priori reason for neglecting the others, in principle it is possible
to fit the measurements with a similar number of free parameters as in the model with an induced field. The
evidence for the existence of an ocean, based on the magnetometer data alone, is therefore inconclusive.

The idea of this work is to search for an ocean within Ganymede by monitoring the time variability of
the locations of the auroral ovals. Based on numerical modeling we demonstrate how an electrically
conductive subsurface ocean affects the variability of the locations of Ganymede’s auroral ovals in response
to the time-variable magnetic field of Jupiter’s magnetosphere seen in the rest frame of Ganymede.
Ganymede’s auroral ovals are expected to be located where the open-closed field line boundary of its
mini-magnetosphere intersects with Ganymede’s surface [Eviatar et al., 2000, 2001; Jia et al., 2009, 2010;
McGrath et al., 2013]. The open-closed field line boundary is the area/surface that separates magnetic field
lines starting and ending on Ganymede from field lines connecting to Jupiter. Because the locations of the
auroral ovals are controlled by the magnetic field environment, we expect the auroral ovals to change their
locations, i.e., to oscillate up and down in concert with the radial component of Jupiter’s magnetospheric
field. The resultant locations of the ovals are sketched as blue lines in Figure 1. When a saline, electrically
conductive subsurface ocean is present, the time-variable magnetic field component will be compensated
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Table 1. Exposure Details of HST Campaign ID 12244a

Visit Orbit Exp Date Start Exp Time Sub Obs Sub Obs Sys III Magnet

# # # UTC UTC (s) Long (◦) Lat (◦) Long (◦) Lat (◦) Used

1 1 1 2010-11-19 20:11:18 798.182 97.7 1.92 176.9 8.68 1
1 1 2 2010-11-19 20:28:04 798.196 98.3 1.92 186.4 9.20 1
1 2 3 2010-11-19 21:25:54 1179.197 100.4 1.92 221.2 8.90 1
1 2 4 2010-11-19 21:52:46 1179.191 101.4 1.92 236.5 7.72 1
1 3 5 2010-11-19 23:01:45 1179.198 103.8 1.92 275.8 2.46 0
1 3 6 2010-11-19 23:28:37 1179.197 104.7 1.92 291.1 −0.05 0
1 4 7 2010-11-20 00:37:37 1179.199 107.1 1.92 330.4 −6.06 0
1 4 8 2010-11-20 01:04:29 1179.192 108.1 1.92 345.7 −7.77 1
1 5 9 2010-11-20 02:13:28 1179.199 110.5 1.92 25.0 −9.47 1
1 5 10 2010-11-20 02:40:20 1179.198 111.4 1.92 40.3 −8.95 1
2 1 1 2011-10-01 09:38:24 813.190 90.8 3.38 167.5 7.95 1
2 1 2 2011-10-01 09:55:25 813.200 91.4 3.38 177.2 8.71 1
2 2 3 2011-10-01 10:55:46 1194.198 93.7 3.38 213.4 9.27 1
2 2 4 2011-10-01 11:22:53 1194.199 94.6 3.38 228.9 8.38 1
2 3 5 2011-10-01 12:47:53 813.196 97.5 3.38 275.5 2.51 0
2 3 6 2011-10-01 13:04:54 813.198 98.1 3.38 285.2 0.93 0
2 4 7 2011-10-01 14:07:24 1194.196 100.4 3.38 332.6 −5.01 0
2 4 8 2011-10-01 14:34:31 1194.198 101.3 3.38 338.1 −6.98 1
2 5 9 2011-10-01 15:43:53 1209.195 103.8 3.38 17.6 −9.49 1
2 5 10 2011-10-01 16:07:30 1209.195 104.6 3.38 31.1 −9.35 1

aThe columns from left to right provide visit, orbit, and exposure numbers, respectively, start time and duration of
each exposure, subobserver longitude and latitude, system III longitude and magnetic latitude, and a qualifier if the
observations are used for measuring the rocking of the ovals.

by fields induced due to Faraday’s law of induction within the ocean. Thus, the time-variable external field
component as well as the amplitude of the oscillation of the ovals decrease as shown as red lines in Figure 1.

In order to observationally constrain the amplitudes of the oscillations of the ovals, we analyze
time-dependent spatially resolved HST observations, which we particularly designed and scheduled to
search for a subsurface ocean. The two-dimensional and explicitly time-dependent nature of the HST
observations enable us to separate spatial and temporal variations. They are therefore not subject to the
ambiguity of the in situ magnetic field observations of single flybys [Kivelson et al., 2002]. We combine these
observations with three-dimensional MHD modeling for a quantitative analysis of the auroral responses.
We note that observations of auroral phenomena have been used in the past to constrain planetary
magnetic fields. For example, Connerney et al. [1998] and Hess et al. [2011] used observations of the Io’s
auroral footprint to derive an improved model of Jupiter’s magnetic field.

The remainder of this work is structured as follows: In section 2 we introduce the two sets of HST data
used in our analysis and explain how the data are processed. We also describe how the amplitudes of the
oscillations of ovals are extracted from the data. In section 3 we introduce the magnetohydrodynamic
(MHD) models developed by Duling et al. [2014], which we use to both demonstrate the effects of an ocean
on the auroral responses in general and to quantitatively interpret the HST observations. The results of the
observations are presented in section 4. Using the independent MHD model from Jia et al. [2009], we also
present a detailed study of the robustness of the modeled differences of the auroral locations with and
without ocean. We also discuss constraints and implications for the subsurface ocean and Ganymede’s
dynamo magnetic field. In section 5 we summarize and discuss our results. In Appendix A we investigate
the effects of possible ways to process and analyze the data (such as, e.g., smoothing). In Appendix B we
introduce a formal procedure to estimate the errors of the amplitudes of the auroral oscillations, and in
Appendix C we present a Monte Carlo test as a more realistic means to estimate these uncertainties.

2. Observations and Data Processing

In this section we describe the observations, the raw data processing, and how we extract the amplitude of
the oscillations of the ovals from the data.
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Figure 2. Distance from plasma sheet, i.e., magnetic Jovian
latitude for both HST visits as a function of exposure number.
Marked exposures are used for the measuring of the rocking
angle 𝛼 (see also Table 1).

2.1. Scheduling Information and Raw
Data Processing
In this work we analyze observations acquired
during HST campaign ID 12244, where two visits
with five consecutive HST orbits each were
dedicated to observing Ganymede at eastern
elongation. Thus, HST observed Ganymede’s
orbitally leading hemisphere, which is the
downstream hemisphere with respect to
the unperturbed flow of magnetospheric
plasma past Ganymede. Visit 1 occurred on
19 November 2010, and visit 2 occurred on
1 October 2011. Details of both visits are
summarized in Table 1. With durations of
approximately 7 h each, both visits cover
more than half of Jupiter’s synodic rotation
period. The time windows of both visits were
designed such that the Jovian magnetic latitudes
of Ganymede span the entire possible range, i.e.,
Ganymede is exposed to the maximum variability
of Jupiter’s magnetospheric field during each visit.
Figure 2 shows that Ganymede’s magnetic latitude
coverage was very similar for both visits. The
magnetic latitudes ΘM are calculated according to
ΘM = 9.5◦ cos(𝜆III − 200.8◦), where 𝜆III describes
the system III longitude of Ganymede [Dessler,
1983; Connerney et al., 1998]. When Ganymede is at
maximum positive latitude, the radial component
of Jupiter’s magnetospheric field Br assumes
its positive maximum. When Ganymede is at

maximum negative latitude, Br assumes its negative maximum. For the analysis of the rocking of the
aurora we use exposures where Ganymede is located near-maximum magnetic latitudes, i.e., |ΘM|≳7◦, to
measure the maximum amplitude of the oscillation of the auroral ovals. The resultant exposures are marked
in Table 1 and in Figure 2 with diamonds and crosses.

The observations were performed with the Space Telescope Imaging Spectrograph (HST/STIS) using grating
G140L and pseudo aperture 52x2D1. This aperture relocates the position of Ganymede’s spectral image
away from the region where the Multi-Anode Micro-channel Array (MAMA) detector suffers from large dark
currents (i.e., away from the “blotch”). We find the location of the disk of Ganymede on the detector by
convolving the Lyman α emission with a theoretical disk of the same size as Ganymede. We assumed that
the theoretical disk is uniform due to the lack of appropriate Lyman α maps of Ganymede. The location of
the theoretical disk where the integrated convolved flux attains the maximum corresponds to the center
of the Lyman α disk. We also use the long-wavelength trace of the image to independently confirm the
vertical location of the disk of Ganymede. The dispersion is predominantly in the horizontal direction on the
detector. However, the spectral trace slightly shifts in vertical direction on the detector as a function of its
horizontal position in the flat fielded raw data, which we use in this analysis. Here we refer to the vertical
direction as the direction parallel to the slit. The horizontal direction is perpendicular to the slit and
approximately along the direction of dispersion. We use calibration measurements of the stellar object
WD2126+734 to determine the vertical drift of the dispersion when the pseudo aperture 52x2D1 is used in
combination with G140L (PI: C. Proffitt, ID: 10040, filename: o8tg02020_flt.fits). In this analysis we investigate
the spatial and temporal structure of the oxygen OI 1356 Å emissions due to their superior brightness and
low component of solar reflected light compared to other atmospheric emission lines at FUV wavelengths.
For comparison, the total averaged flux from Ganymede’s atmosphere at 1304 Å is on average weaker by
a factor of 1.8 than the fluxes at 1356 Å [Feldman et al., 2000]. About half of the emission at 1304 Å is due
to solar radiation reflected from the surface. The solar flux at 1356 Å is less than 10% that of the 1304 Å
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multiplet, and thus, reflected light contributes only very weakly to the observed emission at 1356 Å. The
1304 Å emission additionally has contributions due to solar resonant scattering, which is negligible for the
1356 Å emission [Hall et al., 1998; Feldman et al., 2000]. For these reasons only the 1356 Å emission is used in
this work. The resultant location of the center of the 1356 Å disk calculated from the location of the Lyman
α disk and the long-wavelength trace is given by detector pixel ix = 404 and iy = 102 for both visits, i.e., in
horizontal and vertical direction, respectively.

For a quantitive analysis of the observed auroral fluxes, we first remove the background emission due to
dark noise and other sources. For this purpose we average the fluxes in rows above and below the OI 1356
Å image to determine the background fluxes and then remove this flux from the OI 1356 Å image. We use
solar spectra measured by the Solar Extreme-Ultraviolet Experiment (SEE) on the Thermosphere Ionosphere
Mesosphere Energetics and Dynamics (TIMED) mission [Woods et al., 2005] for the particular days of the
observations in order to model the solar reflected light from the surface of Ganymede. For determining the
albedo, the long-wavelength image of the observations (𝜆 = 1413 Å to 1586 Å) is used. We find a geometric
albedo of 0.017 ± 0.003 for visit 1 and 0.019 ± 0.003 for visit 2 on the leading side. The albedo values of this
study are similar to values for the albedo on the trailing side of 0.023 ± 0.002 derived from fluxes near 1400
Å by Feldman et al. [2000] from HST/STIS observations and an albedo of 0.026 ± 0.003 derived by Hall et al.
[1998] from HST/GHRS measurements of the reflected C II 1335 Å multiplet. Due to a lack of knowledge of
the spatial structure of the FUV albedo, we assumed similar to previous studies that the albedo is spatially
constant. We note that modifications of the albedo values have a negligible effect on the derived rocking
angles of this analysis.

The modeled reflected flux is then convolved with the point spread function (PSF), which we obtained with
the 𝑇 𝑖𝑛𝑦𝑇 𝑖𝑚 simulation software package from the website tinytim.stsci.edu [Krist et al., 2011]. The
PSF has a Gaussian structure near the central pixel and power law wings at larger distances from the central
pixel similar to the kappa-PSF(𝜅, 𝛾) [Saur et al., 2011], which is identical to a Lorentzian profile for 𝜅=𝛾=2.
The fluxes of the reflected light are then finally removed from the observed OI 1356 Å flux, and the images
are rotated with Jupiter’s north pointing upward. The direction from south to north will also be referred
to as the y direction. The x direction is perpendicular to it, which is approximately toward Jupiter. After these
data processing steps the remaining fluxes are purely due to emission from Ganymede’s atmosphere aside
from statistical noise.

The resultant images are grainy, i.e., the pixel brightness is somewhat erratic due to the Poisson distributed
fluxes. This effect can be reduced by a smoothing filter. We use a filter of the form

fs(ix , iy) =
1
8

(
4f (ix , iy) + f (ix − 1, iy) + f (ix + 1, iy) + f (ix , iy − 1) + f (ix , iy + 1)

)
(1)

applied 4 times. The filter is referred to as star filter with ix and iy referring to pixel coordinates in the rotated
images. The effects of the star filter in comparison with other filter applications are discussed in Appendix A.

The resultant images for visit 1 where all exposures are superposed when Ganymede was at sufficiently large
latitudes above the current sheet (ΘM ≳ 7◦) and below the current sheet (ΘM ≲ −7◦) are shown in Figure 3,
respectively. Similar images are shown for the second visit taken roughly one year later in Figure 4.

The apparent emissions above the right limb stem from the weaker emission line (OI 1358.5 Å) of the
observed oxygen doublet, whose position is shifted by 5 pixels to the right and up in the rotated images.
Since we only use pixels with brightness of 80% and more of the brightest pixels along the ovals, the effect
on identifying the auroral ovals is expected to be small.

The pixel size on the STIS FUV-MAMA detector corresponds to 0.0246 arcsec. The spectral resolution (full
width at half maximum) for a point source at 1500 Å is 1.5 pixels for all slits [Hernandez et al., 2014]. We use
the 2 arcsec slit to obtain spectral images of Ganymede. Ganymede subtends ∼1.75 arcsec in diameter at the
time of observations which corresponds to ∼70 pixels, but only 70/1.5 = 47 resolution elements across on a
monochromatic image at 1500 Å assuming monochromatic lines. One pixel corresponds to approximately
0.03 RG (with the Ganymede radius RG = 2631 km). For Nyquist sampling, we have 70/2 = 35 resolution
elements, which corresponds to a spatial resolution of 0.05 arcsec. The resolution of 0.05 arcsec is less than
the average width of the oval of 0.18 RG, which corresponds to 0.16 arcsec or 6.5 pixels. Thus, the ovals
are resolved approximately by a factor (0.16 arcsec)/(0.05 arcsec) = 3.2. Note that the applied smoothing
procedure broadens the auroral ovals by approximately 1.5 pixels.
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Figure 3. Visit 1: Observed auroral brightness in Rayleigh at OI 1356 Å when Ganymede is (left) above and (right) below
the current sheet. Contours are for 110 and 170 Rayleigh. North is up and Jupiter to the right. Green lines display fits to
the observation, red and blue lines display model locations with and without ocean, respectively.

2.2. Location of the Ovals
The location of the ovals for each column, i.e., for each ix , is determined by

y(ix) =

∑
iy

iy(f (ix , iy) − fmin(ix))∑
iy
(f (ix , iy) − fmin(ix))

, (2)

where the summation is over all iy for which f (ix , iy) > fmin(ix). The minimum is chosen such that fmin(ix)
corresponds to 80% of the brightest pixel in each column ix . The brightest pixels are searched in each hemi-
sphere within 5◦ and 60◦ north and within 5◦ and 60◦ south consistent with oval locations from previous
observations [McGrath et al., 2013]. The method to define the locations of the ovals in (2) considers the fluxes
in the y direction exceeding a cutoff level of 80% of the brightest pixel (in each column ix , respectively). The
method thus considers the emissions in the vicinity of the peak emissions of the ovals, but it discards the
effects of other atmospheric UV emissions from Ganymede, i.e., polar excited emissions due to energetic
electrons in Jupiter’s magnetosphere or equatorial emissions excited from energetic electrons within
Ganymede’s mini-magnetosphere. The 80% value for the cutoff was deliberately chosen relatively high
to clearly separate the emission from the oval compared to other more polar and equatorial emissions.
Due to the brightness variation in x direction of the ovals, we choose fmin(x) to vary in x direction. We also
investigated other methods to determine the locations of the ovals, which are described and compared
against each other in Appendix A.
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Figure 4. Visit 2: Observed auroral brightness in Rayleigh at OI 1356 Å when Ganymede is (left) above and (right) below
the current sheet. Other properties are similar as in Figure 3.
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Figure 5. Visit 1: Difference of the ovals d=ya −yb, when
Ganymede is above and below the current sheet for obser-
vation and models. Associated rocking angles are indicated.
The positions ixE

and ixW
used to calculate the rocking angles

are the left and right ends of the polynomial fits, respectively.
Formal error ranges (Appendix B) are shown as green dotted
lines, and realistic error ranges according to the Monte Carlo
model (Appendix C) are shown as thin green lines.

The auroral images in Figures 3 and 4 show,
both, systematic and stochastic variability.
The stochastic variability is most likely due to
a combination of intermittent reconnection
occurring at the open-closed field line
boundary [Jia et al., 2010; Eviatar et al., 2001]
and statistical effects due to the weakness of
the auroral signal. Therefore, the locations of
the oval y(ix) are not a smooth line, and we
fit the locations with a polynomial of second
degree of the form

yoval(ix) = a0 + a1ix + a2i2
x (3)

to more easily monitor the systematic temporal
evolution of the ovals. Based on the structure of
the observed and modeled ovals we find that
a polynomial fit of second degree represents
the ovals adequately with only a small number
of fit parameters. In the polynomial fit the
sum of the squared differences between the
polynomial and the observation divided by
the associated effective width for each ix is
minimized. The effective width is a quantity
defined in Appendix B. In Figures 3 and 4, the
fitted ovals are shown as dashed and solid
green lines when Ganymede was above and
below the current sheet, respectively.

To quantitatively determine the change in the
locations of the ovals, we introduce the
difference

d(ix) = ya(ix) − yb(ix), (4)

Figure 6. Visit 2: Difference of the ovals d=ya −yb, when
Ganymede is above and below the current sheet for observation
and models. Other properties are similar as in Figure 5.

where ya and yb represent the y coordinates
(north-south direction) of the polynomial
fit when Ganymede is above and below the
current sheet, respectively. The differences d(ix)
for visit 1 and visit 2 are shown in Figures 5 and
6, respectively.

The main objective of the data analysis is to
determine how strongly the ovals oscillate
up and down when Ganymede is above and
below the current sheet. The amplitude of the
oscillation can be quantitatively determined
with a rocking angle 𝛼 defined by

tan(𝛼) =
d(xW ) − d(xE)

xW − xE
. (5)

The positions xE and xW represent the most
eastern and western positions on the disk.
The northern and southern ovals of visit 1 and
visit 2 shown in Figures 3 and 4 represent four
independent measurements of the rocking
angle 𝛼.
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3. Models of the Magnetic Field Environment

To assess the observed temporal change of the locations, we use a MHD model of the interaction of
Ganymede with the plasma of Jupiter’s magnetosphere [Duling et al., 2014]. The model includes the
time-variable component of Jupiter’s magnetospheric field as seen in the rest frame of Ganymede [Khurana,
1997; Connerney et al., 1998; Seufert et al., 2011]. Ganymede’s internal dynamo field is described with the
Gauss coefficients derived in Kivelson et al. [2002]. We use either all derived Gauss coefficients from Kivelson
et al. [2002] in the absence of induced magnetic fields or only dipole moments when induction is included.
Induction is calculated with expressions from Zimmer et al. [2000] and Saur et al. [2010] for an ocean with
an assumed electrical conductivity of 0.5 S/m and a thickness of a 100 km. The ocean is assumed to be
located at depth between 150 km and 250 km, similar to Kivelson et al. [2002]. Earth’s oceans in comparison
possess a typical electrical conductivity of approximately 5 S/m and a related salinity of 35 grams per
kilogram of seawater with the two most abundant cations Na+ and Mg2+ and anions Cl− and SO2−

4 [Telford,
1993; Garrison, 2006]. The most abundant salt in Ganymede’s ocean is expected to be MgSO4 with possible
concentrations between 0 gram and 100 grams per kilogram of water [Vance et al., 2014]. Using the
conductivity versus concentration curve for MgSO4 for Europa from Hand and Chyba [2007], our model
conductivity of 0.5 S/m would correspond to 5 grams MgSO4 per kilogram of ocean water. The plasma
interaction of Ganymede with Jupiter’s magnetosphere includes the following processes: A constant
photoionization frequency within Ganymede’s oxygen atmosphere, recombination of molecular oxygen
ions and electrons, momentum exchanging collisions of the magnetospheric plasma with Ganymede’s
atmosphere, a prescribed electrical conductivity in Ganymede’s ionosphere, an anomalous resistivity near
the magnetopause [Jia et al., 2010], and a new consistent description for the magnetic boundary condition
at Ganymede’s surface. The boundary condition considers the electrically insulating nature of Ganymede’s
ice crust [Duling et al., 2014]. Note that induction is included in our model within the quasi-stationary
assumption similar to the work in Schilling et al. [2007, 2008], Jia et al. [2009], and Duling et al. [2014]. The
basis of this assumption is that induction occurs on time scales of 10.5 h and the plasma interaction on
scales of approximately 10 min. We first calculate the induced magnetic field signal fully time dependent
in response to the external time-variable field including a phase lag caused by an ocean with a finite
conductivity. Because the plasma interaction occurs on time scales much shorter compared to the induction
time scales, the inductive response is then assumed to be time constant within each individual plasma
simulation. A detailed discussion of this approach can be found, e.g., in Saur et al. [2010].

We account for four scenarios: Ganymede is above or below the current sheet and possesses a dynamo field
with dipole and quadrupole moments or a dynamo dipole field plus induction in an ocean, respectively.
From the resultant modeled magnetic fields we calculate the locations of the open-closed field line
boundaries mapped onto the disk of Ganymede with the same viewing geometry as in the observations.
The four model runs used in this analysis are thus characterized by whether Ganymede possesses an ocean
or not and whether Ganymede is above or below the current sheet with magnetospheric background fields
B0 = (0, −86, −79) nT and (0, +86, −79) nT, respectively. Here the x component of the vector field points
in the orbital direction of Ganymede, y points toward Jupiter, and z completes a right-handed coordinate
system. The upstream plasma velocity with respect to Ganymede is v0 = 140 km s−1 and in the x direction.
The upstream plasma density 𝜌0 and energy density e0 contain both systematic (i.e., as a function of
magnetic latitude) and stochastic variability (i.e., due to random variability in Jupiter’s magnetosphere). Note
that no upstream plasma measurements are available for the times when the HST observations were taken.
In order to attain a reasonable fit to the observed auroral locations, we chose the following values for visit 1
above the current sheet: 𝜌0 = 28 amu cm−3 and e0 = 2.85 nPa; for visit 1 below the current sheet: 𝜌0 = 56 amu
cm−3 and e0 = 5.7 nPa; and for visit 2 above and below the current sheet: 𝜌0 = 56 amu cm−3 and e0 = 11.4
nPa, respectively. Such variability of the upstream conditions during half a rotation period or during the two
visits is within observed ranges [Bagenal and Delamere, 2011; Frank and Paterson, 2000]. All other properties
are identical to the properties given in Duling et al. [2014].

We use the locations of the open-closed field line boundary (OCFB) on the surface of Ganymede as a model
reference for the locations of the ovals [McGrath et al., 2013; Jia et al., 2010]. Therefore, we assume that the
auroral emission predominantly stems from an atmospheric molecular oxygen layer directly located near
the surface, and we thus neglected the finite vertical extent of the emission. This is a reasonable assumption
because the near-surface scale height of an atmosphere in thermal equilibrium with the surface at a
temperature of about 100 K is about 20 km. Such a near-surface scale height for Ganymede’s oxygen
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Table 2. Rocking Angles and Associated Properties for the Four Individual Ovals and All Ovals Combineda

North South North South
Visit 1 Visit 1 Visit 2 Visit 2 All Combined

𝛼: observation −0.1 6.5 −4.1 3.5 2.0b

𝜎𝛼 : Appendix B, upper limit 12.7 11.6 14.3 12.6 6.3c

𝛼: model ocean 0.7 6.3 0.7 5.9 3.4d

𝛼: model no ocean 5.8 11.2 6.0 11.2 8.6d

𝛼MC: model with ocean plus patchiness with MC 0.5 3.4 0.3 4.3 2.2e

𝛼MC: model no ocean plus patchiness with MC 4.3 6.8 4.3 7.6 5.8e

𝜎MC: model ocean plus patchiness with MC 2.6 2.6 2.5 2.4 1.3f

𝜎MC: model no ocean plus patchiness with MC 2.7 2.6 2.6 2.4 1.3f

aAll values are given in units of degree. MC stands for calculated with the Monte Carlo method.
bCalculated with (B6).
cCalculated with (B7).
dCalculated as arithmetic average.
eCalculated with (B6) and expectation values from individual 𝛼MC and 𝜎MC.
fCalculated with (B7) and expectation values from individual 𝜎MC.

atmosphere has also been modeled by Marconi [2007]. With this scale height, 97% of the atmosphere lie
within an altitude of ∼70 km which corresponds to the size of a pixel on the detector. At altitudes larger
than approximately 200–300 km the scale height significantly increases, but atmospheric oxygen densities
at these altitudes are already 4 orders of magnitude smaller compared to those at the surface [Marconi,
2007]. Because the dilute oxygen atmosphere is “optically thin” for auroral electrons and also optically thin
for photons at 1356 Å [Hall et al., 1995, 1998], nearly all the auroral emission indeed stems from very close to
the surface, and thus, the vertical extent of the aurora can be neglected in our analysis.

To calculate the location of the OCFB in the MHD models, we follow the magnetic field lines by starting near
the surface of Ganymede at a certain planetary longitude for various latitudes. The latitudes of the oval are
given by the transitional points between field lines that close on Ganymede and field lines that connect to
Jupiter. The numerical resolution of the MHD model is 1.5◦ in latitudinal and longitudinal directions. The
field line tracking is performed with interpolated field values within the grid cells. Due to the strong dipolar
component of the field and the resultant smooth fields near the surface, the model OCFB on Ganymede
can well be determined down to grid resolution when tracing individual field lines. The average locations
of the ovals from the model and the resulting rocking angles, however, can be constrained to much better
precision than 1.5◦ due to statistical reasons, as discussed in section 4.2.

4. Results and Discussion

In this section we first present the results of our analysis of the rocking angles and then discuss the
robustness of the rocking angles derived from numerical modeling. We also discuss implications for the
subsurface ocean and Ganymede’s dynamo.

4.1. Results of the Rocking Analysis
Figures 3 and 4 show the auroral ovals above and below the current sheet for visit 1 and visit 2, respectively.
The figures also include the polynomial fit of second degree to the observations shown as green lines. For
comparison we show modeled locations of the auroral ovals with the MHD model from Duling et al. [2014]
when an ocean is included (red lines) and when no ocean is present (blue lines). It should be emphasized
that the finite width of the observed ovals is larger than the differences in the locations of the modeled ovals
with and without ocean in each individual image. Therefore, it is impossible by simple visual inspection of
individual images to separate the ocean from the no-ocean hypothesis. However, we will subsequently show
that both hypotheses can still be well separated with the statistical analysis techniques discussed in the
remainder of this work. The statistical analyses are based on the collective number of resolution elements
within each observed image and the availability of measurements of the northern and southern ovals from
two different sets of HST data.

To visualize the displacement of the ovals when Ganymede was above and below the current sheet, we
show in Figures 5 and 6 the differences d(ix) from equation (4). The modeled temporal change of the
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Figure 7. Examples for synthetic auroral emissions in Rayleigh calculated with a Monte Carlo model when an ocean is
assumed and Ganymede is (left) above and (right) below current sheet. North is up, and Jupiter is to the right. Green
lines display the polynomial fits of second degree to the data, blue lines display modeled locations when no ocean is
present, and red lines display model locations when an ocean is present.

locations is stronger in models without an ocean than in models with an ocean (slopes of blues lines are
steeper than slopes of red lines in Figures 5 and 6, respectively). The oscillations of the observed locations
of the ovals (green lines) are small and comparable to the expected reduced oscillation of the ovals with an
ocean present.

The oscillation can quantitatively be assessed with a rocking angle 𝛼 defined in (5). Four measurements of
the rocking angles are obtained from the observations of the northern and southern ovals during the two
visits. The values of these measurements are shown in Table 2. The table also includes formal uncertainties
of the rocking angles, which are derived in Appendix B. Note that the individual rocking angles from the
four independent measurements are expected to be only approximately similar but not identical mostly
due to viewing geometry. All four measurements can be considered independent because emission from
the northern hemisphere does not influence the emission from the southern hemisphere and vice versa.
Equally the emissions from both visits do not influence each other. As an overall measure for the oscillation
properties of Ganymede’s aurora we introduce an average rocking angle �̄� and an average uncertainty �̄�𝛼

defined by expressions (B6) and (B7), respectively. From a statistical point of view, each individual rocking
angle can be considered a random variable with a certain expectation value and variance. Even though each
individual rocking angle does not have exactly the same expectation value, the average rocking angle can
be formally introduced as a new random variable with its own statistical properties (such as expectation
value and variance). We introduce the average rocking angle for two reasons: (1) It is a single value quantity
well suited to test the observations against the ocean and the no-ocean hypotheses and (2) it has an
approximately 4 times smaller variance compared to the individual rocking angles. For the average rocking
angle we find �̄� = 2.0◦ with a formal uncertainty of ±6.3◦. The expected rocking angles are 3.4◦ with ocean
and 8.6◦ without ocean derived from the MHD model using the same polynomial fits as in the observations
(but prior to the consideration of stochastic effects, which will be discussed next).

The above analysis does not address the effects of the stochastic patchiness of the auroral morphology
on the rocking angles. The related formal error analysis also strongly overestimates the uncertainty of the
observed rocking angles. One reason is that the formal error analysis includes fluxes on a large area of the
disk in the calculation of the effective width < w̃oval > of the ovals, i.e., within 5◦ and 60◦ latitude (see also
Appendix B). The effective width includes, in addition to emission directly from the ovals, a global emission
contribution, which is excited by globally abundant ‘no-auroral’ electrons. Both are difficult to separate
unambiguously. Another reason why the formal error analysis in Appendix B strongly overestimates the
real error is that it assumes the emissions along the ovals are fully correlated. The formal error calculation
assumes an averaged uncertainty < w̃oval > of the ovals positions, i.e., that < w̃(ix) > are fully correlated
for each ix . If the uncertainties along an oval were uncorrelated for each ix , the total uncertainty would be
reduced by approximately the square root of the number of pixels N along the oval in ix direction, relative
to the uncertainty at an individual pixel ix . This certainly represents a too extreme assumption. Neighboring
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Figure 8. Distribution function of modeled rocking angles �̄�(js) with
and without ocean, respectively, including the effects of stochastic
patchiness on the measurements. The vertical green line indicates
rocking angle derived from observations. The vertical red and blue
lines indicate expectation values E[�̄�], and shaded area displays the
1 sigma area around the expectation values.

pixels are correlated to some extent as
apparent in the patchy nature of the
emissions due to physical correlations and
contributions from the data processing such
as smoothing and the point spread function.
The correlations, however, seem to exist
only along a limited fraction of the oval
arc. Formally one could calculate the full
correlation tensor between each pixel of
each exposure and include it in the error
analysis. These calculations, however,
would get exceedingly complex and will
additionally lose transparency.

In cases where the error analysis becomes
too complex, a straightforward way to
estimate the uncertainty is through a Monte
Carlo (MC) method where the errors are
estimated from an ensemble of synthetic
observations. In the MC test we generate
2048 sets of synthetic HST images based
on model runs with and without oceans,
respectively, but with randomly generated
patchiness and measurement noise
comparable to the real observations.
Details about how the synthetic images are
generated are given in Appendix C. Two

examples of synthetic images are shown in Figure 7. These images were created with the MHD model
assuming an ocean being present. The underlying model ovals are shown in red. The random patchiness is
calculated around these model ovals. For comparison we also show the expected location of the ovals when
no ocean was assumed. In Figure 7 we also show the polynomial fits to the patchy synthetic images as green
lines. They are calculated in exactly the same way as for the real data.

Subsequently we also apply the same procedure that we apply to the real data to the synthetic images in
order to determine the rocking angle �̄� and uncertainty �̄�. The resultant distribution function for �̄� is shown
in Figure 8. The expectation values E[�̄�] are reduced to 2.2◦ with ocean and 5.8◦ without ocean compared
to the model results without patchiness given above (see also Table 2). The probability distribution
functions of the averaged rocking angles �̄� with and without ocean only weakly overlap, which implies that
both hypotheses can generally be separated. The associated variances for both the ocean and no ocean
models are V[�̄�] = �̄�2

MC = (1.3◦)2. The resultant �̄�2
MC can be considered a measure for the uncertainty of

the observed rocking angle. They are smaller than the formal errors calculated with the error propagation
method described in Appendix B. The observed 𝛼 = 2.0◦ ± 1.3◦ is consistent with the presence of an ocean,
whereas its absence is highly unlikely with a probability smaller than 1%.

As a result of randomly distributed spots along the ovals, the derived rocking angles from the MC test
varies for each numerical realization. In some cases the rocking angle can even turn negative depending
on how the random patches are distributed (see Table 2). Note that the probability distribution functions
of the rocking angles for the individual ovals are roughly twice as wide as the distribution function for the
averaged rocking angle from all four ovals shown in Figure 8. This increases the likelihood of an individual
𝛼 to turn negative.

As stated before, the finite width of the observed ovals is larger than the differences in the locations of the
modeled ovals with and without ocean in each individual image. This precludes a simple visual inspection
of individual images to separate the ocean from the no-ocean hypothesis. Both hypotheses, however, still
can be separated for two reasons. (1) Four independent measurements of northern and southern ovals from
two visits are available. This reduces the error approximately by a factor of 1∕

√
4. (2) Additionally, the pixels

along the ovals are not fully correlated, and thus, each vertical column of pixels along the ovals represents
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Figure 9. Modeled locations of the ovals with and without ocean
(red and blue curves, respectively) from two different models when
Ganymede was above and below the current sheet (dashed and solid,
respectively): (a) Calculated ovals with the model by Duling et al.
[2014]. Model calculations are from runs with upstream thermal and
kinetic plasma pressures 5.7 nPa and 1.8 nPa, respectively. (b) Locations
calculated with a model from Jia et al. [2009] for an upstream thermal
pressure of 1.9 nPa and ram pressure of 0.9 nPa. Both panels show that
the presence of an ocean reduces the oscillations of the ovals compared
to the case when no ocean is present. Panels include observations from
McGrath et al. [2013] (green) for comparison of the general structure
only. They were taken at times when Ganymede was at different orbital
positions and at different positions with respect to the current sheet
compared to the observations and models analyzed in this paper.

partially independent measure-
ments as well. This effect additionally
reduces the uncertainty by a factor of
1.3◦/6.3◦ = 1/4.8, based on the ratio of
uncertainties from the formal error
calculation and the MC test (values of
both uncertainties are given in Table 2).

4.2. Model Robustness
An important question of our analysis
is whether the amplitude differences of
the auroral oscillation with and without
ocean are model dependent. Therefore,
we investigate both the impact of
different upstream conditions of
Jupiter’s magnetosphere and the
impact of different MHD models. For the
latter we compare the locations of the
open-closed field line boundary (OCFB)
calculated with the models by Duling
et al. [2014] and with those calculated
from the independent model by Jia
et al. [2009], introduced in detail
further below.

Two examples of the locations of the
OCFB are shown in Figure 9 in normal
cylindrical projections. Figure 9a shows
the OCFB calculated with the model
by Duling et al. [2014] with upstream
thermal and kinetic plasma pressures
5.7 nPa and 1.8 nPa, respectively. The
latitudinal and longitudinal numerical
resolution is 1.5◦. The jitter/variability of
the locations of the ovals is on average
even smaller. The uncertainty in
tracking the OCFB can be approximated
by the numerical resolution of the
models used. Figure 9b shows the OCFB
from an entirely independent MHD
model of Ganymede’s magnetic field
environment by Jia et al. [2009]. Many
physical properties of this model are
similar to the ones developed in Duling

et al. [2014]. Both models include the internal dynamo field [Kivelson et al., 2002] and can take into account
induction in a subsurface ocean. They both reproduce the in situ magnetic field measurements by the
Galileo spacecraft remarkably well. The Jia model does not explicitly include an atmosphere and ionosphere.
In order to account for the electrically nonconductive nature of Ganymede’s surface, the induction equation
is solved within Ganymede in the Jia model. For numerical reasons the conductivity jump across the surface
of Ganymede needs to be smoothed in the Jia model. The resultant current close to the surface of
Ganymede is argued to represent ionospheric currents in the Jia model. In contrast, the ionospheric currents
are explicitly included in the Duling model. The upstream magnetic field and velocity values are similar in all
model runs used here. The plasma conditions in the Jia model runs used in this work are from Jia et al. [2009]
with values of 𝜌0 =28 amu cm−3 and p = 1.9 nPa, i.e., smaller values compared to the other runs shown in
this paper (see also Figure 10).
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Figure 10. (top) Minimum latitude of ovals and (bottom) average amplitudes of oscillation with and without ocean
for different values of upstream pressure and two different MHD models. The blue symbols for the smallest upstream
pressure are from runs with the model by Jia et al. [2009]. The black symbols are from runs with the model by Duling
et al. [2014]. Turquoise symbols are from the runs used for direct comparison with the HST data where the upstream
conditions have been allowed to be different. Red symbols represent examples of other selected mixed models,
i.e., when different upstream conditions have been chosen for cases when Ganymede was above and below the
current sheet.

The location of the ovals obtained from the Jia model shows scatter on the order of 2◦, similar to the
resolution applied to calculate the OCFB with this model. In addition, there is variability due to the
nonsmooth magnetic field structure near the reconnection point. However, the amplitude differences in
the locations of the ovals with and without ocean is up to 3◦–5◦ in both models and larger than the scatter
in the modeled ovals (see Figure 9: runs with ocean as red curves, runs without ocean as blue curves,
and Ganymede above and below the current sheet as solid and dashed lines, respectively). An important
conclusion from the results shown in Figure 9 is that both models predict measurably less oscillation
when an ocean is present compared to when no ocean is present. It thus demonstrates that the predicted
differences do not depend on the underlying MHD model.

It needs to be stressed that the differentiation of the models with and without ocean is based on the
entire length of the oval’s imprint on each hemisphere through a polynomial fit and not single oval data
points. Therefore, the ovals only need to be separated on average. To investigate the separability of both
hypotheses, we apply the MC test, where we add significantly more patchiness to the data than the jitter in
modeled ovals, adjusting the patchiness of model images to the observed level.

In Figure 9 we also compare our modeled locations with the observed average locations of Ganymede’s
oval from an analysis by McGrath et al. [2013] when Ganymede was at different orbital positions and at
different positions with respect to Jupiter’s plasma sheet compared to the model runs of this analysis. We
nevertheless include the data comparison to demonstrate that our model reproduces key features of the
aurora; i.e., the ovals are significantly closer to Ganymede’s magnetic equator on the downstream side
(around 90◦ west longitude) compared to the upstream side (around 270◦). A detailed comparison of the
locations from the Jia model and the previous HST observations is presented in McGrath et al. [2013]. Note
that because of the selected position of Ganymede with respect to the plasma sheet, the observations
presented in McGrath et al. [2013] are not suited to address the ocean question. The error bars in the
extracted locations of the ovals in McGrath et al. [2013] are significant, similar to the finite width of the ovals
of the current observations. In this context, it is important to stress again that based on one single set of
ovals where the errors bars along the ovals are assumed to be fully correlated, the ocean models cannot be
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Figure 11. Rocking angle �̄� as a function of ocean conductivity for an
ocean located between 150 km and 250 km depth. The green curve
displays the rocking angle extracted from the observations. The black
curve shows the rocking angle calculated with the MHD model of Duling
et al. [2014]. The red curve and shaded area represent the rocking
angle and the related uncertainties from the Monte Carlo modeling,
respectively. Most of the latter values are derived from the MHD
modeling by a scaling law (see main text). Black vertical line shows
the lower limit for ocean conductivity such that the modeled rocking
angles are still in agreement with the observations.

separated from the no-ocean models.
It is the combination of having four
independent measurements of the
movements of the ovals and the partial
decorrelation of the uncertainties
along the ovals which enables the
separations presented here (see also
detailed discussion in Appendix C).

In order to investigate the sensitivity
of the amplitude differences of the
oscillations with and without ocean
for different models and model
parameters, we performed a series
of model runs, where we varied the
upstream plasma pressure. During
the times of the HST observations no
independent measurements of the
plasma pressure were available. In our
study we investigate the effects of the
total upstream pressure defined as
sum of ram and thermal pressure. In
Figure 10 (top) we show the minimum
latitudes of the ovals when no ocean
is assumed. The minimum latitudes of
the ovals decrease from nearly 25◦ to

approximately 15◦, as expected, as a function of increasing upstream plasma pressure. This effect is similar
to the variability of Earth’s auroral ovals under increasing solar wind pressure. The blue symbols are from the
independent model by Jia et al. [2009]. In Figure 10 (bottom) we show the extracted oscillations of the ovals
when Ganymede is above and below the current sheet. For all upstream plasma pressures, the expected
amplitudes of the oscillation are between 8◦ and 10◦ when no ocean is present. With an ocean present
the amplitudes of the oscillations are reduced to approximately 4◦ for all upstream plasma conditions.
This holds also for the independent model of Jia et al. [2009]. The plasma pressure controls the absolute
latitudinal positions of the ovals, but it has very little effect on the oscillations of the ovals with and without
ocean. Thus, both properties of the ovals are independent, and the amplitudes of the oscillations of the
ovals in response to externally changing fields are indeed diagnostic of the internal conductivity structure
of Ganymede.

As argued by several authors [McGrath et al., 2013; Jia et al., 2009, 2010; Eviatar et al., 2001], the locations
where the OCFB intersect with the surface/atmosphere of Ganymede correspond to the location of the
auroral ovals. For example, MHD modeling by Jia et al. [2010] shows that shear flow near the OCFB drives
strong and localized electric currents along the OCFB, which are likely the root cause for the auroral emission
similar to the discrete aurora at Earth. However, if the OCFB only approximately represents the locations
of the ovals, then a resultant distance Δy between the latter and the oval exists. If we reasonably assume
that Δy is similar when Ganymede is above the current sheet and below the current sheet, the difference
d(x) introduced to measure the oscillation of the ovals can still be obtained from the OCFB with good
approximation.

We also applied simpler semianalytical models, where the magnetic field contributions from the
plasma interaction have been calculated using a wire model. In the wire model, line currents along the
magnetopause (similar to Chapman-Ferraro currents) and line currents continued along the Alfvén wings
have been assumed, where the total currents in the wire loops have been calculated with expressions from
Neubauer [1998] and Saur [2004]. All other contributors to Ganymede’s magnetic field environment have
been described similar to the full MHD model of Duling et al. [2014] applied here. These simpler semianalytic
models lead to very similar dependences as derived with the fully consistent MHD models: With increasing
strength of the plasma interaction, i.e., increasing total electric current, the locations of the ovals move
toward the equator on the downstream side and away from the equator on the upstream side. The

SAUR ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1729



Journal of Geophysical Research: Space Physics 10.1002/2014JA020778

amplitudes of the oscillations with and without ocean are, however, barely affected by the interaction
strength.

We note that Ganymede’s atmosphere likely contains deviations from radial symmetry as modeled, for
example, by Marconi [2007] and Plainaki et al. [2015]. The atmosphere and its structure influences the
plasma interaction. However, even though we did not perform runs with nonsymmetric atmospheres, we
generally expect its effects on the properties of the oscillation amplitudes to be small because we generally
only see a weak influence of the plasma interaction on the oscillation differences with and without ocean (as
discussed earlier in this subsection).

4.3. Properties of the Ocean
The model rocking angle increases when the ocean conductivity is reduced. In our modeling we find that a
conductivity 𝜎 of 0.09 S/m for an ocean assumed to be located between 150 km and 250 km depth provides
a lower limit for the model ovals still being consistent with the observations within the uncertainties from
the MC test (see Figure 11). This lower limit has been derived from a series of MHD model runs also shown
in Figure 11 with variable ocean conductivities 𝜎 within 1 × 10−3 S/m to 1 S/m. The resultant rocking angle
�̄� is shown as thin black line marked with crosses. Because the evaluations of the rocking angles from the
MC test is numerically expensive, we scaled the rocking angles from the MHD model 𝛼MHD to obtain the
rocking angles 𝛼MC according to the MC test based on the rocking angles at zero conductivity (i.e, no ocean)
and 0.5 S/m. Values for the rocking angles for these two conductivities are given in Table 2. We applied the
linear scaling

𝛼MC(𝜎) = 𝛼MC(0 S) +
𝛼MC(0 S) − 𝛼MC(0.5 S)

𝛼MHD(0 S) − 𝛼MHD(0.5 S)
(𝛼MHD(𝜎) − 𝛼MHD(0 S)) , (6)

leading to the rocking angle for the MC test for varying conductivities 𝜎 (shown as the red curve in Figure
11). The resultant uncertainty is assumed to be 1.3◦ for every 𝜎 similar to the uncertainties of 1.3◦ derived
for 0 S/m and 0.5 S/m (see Table 2). The uncertainty is displayed as red-shaded region in Figure 11. The
modeled rocking angles from the MC test within the 1 sigma uncertainty are in agreement with the rocking
angle derived from the observations shown as green horizontal line for conductivities larger than 0.09 S/m.
These values represent thus a lower limit for the ocean conductivity. For lower conductivities the green
curve (observations) no longer overlaps with model expectations (red area). Using the conductivity versus
concentration curve for MgSO4 for Europa from Hand and Chyba [2007], a minimum conductivity of 0.09 S/m
would correspond to a minimum salt concentration of 0.9 gram MgSO4 per kilogram of ocean water.

Note that to a good approximation for small ocean thicknesses H compared to Ganymede’s radius RG and
the same average ocean location within Ganymede all modeling runs with the same depth-integrated
conductivity Σ = 𝜎H are equivalent. Thus, any combination of 𝜎 and H (under the H∕R≪1 assumption and
realistic 𝜎) with values larger than 100 km × 0.09 S/m is consistent with the HST observations (assuming
that the average location of the ocean is at a depth of 200 km). Deviations from this law occur when the
thickness and the conductivity of the ocean are large. Such deviations are, for example, visible in Figures 11
and 12 of Seufert et al. [2011] near regions where the isolines of Ganymede’s induction amplitude are not
linear anymore.

The lower limit for the conductivity can be alternatively used to calculate a maximum depth of the ocean.
An ocean at depth between 150 km and 250 km with conductivity 0.09 S/m generates an induction
amplitude of A = 0.8 (calculated with expressions in Saur et al. [2010]). A similar amplitude would be
generated by a perfectly conductive ocean at a depth of 330 km. Any less conductive ocean needs to be
located closer to the surface of Ganymede. Note that in this simple equivalence estimate, the effect of the
phase shift has been neglected. We also note that our estimation of the maximum depth to the ocean is
consistent with theoretical expectations. At depths greater than approximately 150 km in Ganymede, the
low-pressure form of ice (ice Ih) is expected to be replaced by high-pressure polymorphs, whose melting
temperature increases with pressure, whereas for ice Ih it decreases with pressure. Therefore, the top of an
ocean, if it exists, is expected to be most likely at a depth of 150 km or less [e.g., Vance et al., 2014].

4.4. Implication for the Dynamo Field
In the absence of an induced magnetic field a small intrinsic quadrupole component is needed to explain
the Galileo magnetic field measurements, yet this component is not required if a conducting ocean is
present [Kivelson et al., 2002]. We may therefore consider the ratio of power [Langel and Estes, 1982] of the
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quadrupole to that of the dipole R2/R1 = 0.0025 of the oceanless field model as the upper limit for the actual
intrinsic field of Ganymede, given that our results demonstrate that an induced component is present. At
the top of Ganymede’s iron core, whose radius is probably at least 650 km [Sohl et al., 2002], the ratio of
quadrupole to dipole power turns out to be < 0.04. This is the lowest ratio of all known dynamo fields at the
surface of the dynamo region, with the possible exception of Saturn’s magnetic field.

This suggests that a unique dynamo is at work. Possible reasons could be that Ganymede’s dynamo might
operate close to the critical Rayleigh number for dynamo onset due to its small size, that it operates in
Jupiter’s field [Levy, 1979; Gómez-Pérez and Wicht, 2010] or that it is driven by “iron snow” forming below
the core-mantle boundary Hauck et al. [2006]. In particular, the iron snow scenario appears promising. If
Ganymede’s core contains more than a few percent of sulfur, crystallization of iron would start at the top
of the core [Williams, 2009], with iron snow sinking and dissolving at greater depth where the associated
iron enrichment of the core alloy drives composition convection. The snow-forming top layer develops a
gradient in sulfur concentration and becomes stably stratified. Numerical dynamo simulations show that
the presence of the stable layer above the dynamo can strongly reduce the quadrupole-to-dipole ratio
[Christensen, 2015].

5. Summary and Discussion

In this work we present a new means to search for a saline electrically conductive ocean within Ganymede
based on observations and modeling of the locations of Ganymede’s auroral ovals. We analyze HST
observations of Ganymede’s auroral ovals to measure how the locations of its ovals respond to Jupiter’s
time-periodic magnetic field. For this investigation, two dedicated HST visits of approximately 7 h each were
executed to observe Ganymede experiencing the maximum time variability of Jupiter’s magnetospheric
field. We find that the ovals only weakly oscillate in response to the external time-periodic field with an
average amplitude of 2.0◦. We also performed three-dimensional simulations of Ganymede’s magnetic
field environment for various upstream plasma conditions and with two entirely independent MHD models
from Duling et al. [2014] and Jia et al. [2009] to investigate the effects of a saline, electrically conductive
subsurface ocean on the time variability of the oval’s locations. With these models, we consistently find
that the time-variable external magnetic fields generate secondary magnetic fields in a conductive ocean
that reduce the oscillation of the ovals to approximately 4◦. If no ocean is present, the models predict an
oscillation of approximately 8◦ to 10◦.

In addition to the systematic variability, the observed ovals contain also a stochastic variability most likely
caused by intermittent reconnection [Jia et al., 2010]. We model the stochastic variability as a random
process and generate synthetic images with patchiness comparable to those of the real observations. With a
large set of randomly generated synthetic images we perform a Monte Carlo test to investigate if the ocean
and the no-ocean hypotheses can statistically be separated based on the current set of observations. The
MC test shows that the distribution function of the rocking angles from both hypotheses barely overlap and
that the two hypotheses can thus in the great majority of cases be well separated. The patchiness smears
out the slope of the ovals and thus leads to a reduction of the rocking angles compared to the MHD simu-
lations. The expectation value from the MC test for the rocking angle with ocean is 2.2◦ while the rocking
angle without ocean is 5.8◦ with an uncertainty derived from the MC test of 1.3◦. The observed rocking
angle of 2.0◦ thus is well consistent with the ocean model and is inconsistent with the absence of an ocean
keeping in mind the assumptions and uncertainties that went into the analysis. In addition to the in situ
measurements from the Galileo spacecraft [Kivelson et al., 2002], our observations provide further evidence
for the existence of a subsurface ocean. The current method uses two-dimensional explicit time-dependent
telescope observations, which are not subject to the nonuniqueness issue of spacecraft measurements
along single trajectories taken at separate times.

The modeled ovals are most consistent with a conductivity equal to or greater than 0.5 S/m but require at
least a minimum conductivity of 0.09 S/m for an ocean between 150 km and 250 km depth (cf. Figure 11).
Alternatively, if the ocean is assumed to be perfectly conductive, the observations require a maximum depth
of the top of a perfectly conducting ocean of 330 km. According to Hand and Chyba [2007], the conductiv-
ities 0.5 S/m and 0.09 S/m correspond to a salt concentration of 5 grams and 0.9 gram MgSO4 per kilogram
of ocean water, respectively. The existence of an induced magnetic field signal within Ganymede also
suggests that the uniquely low quadrupole to dipole moment ratio derived by Kivelson et al. [2002] must be
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considered an upper limit. Ganymede therefore possesses a unique dynamo, possibly driven by iron snow
near the core-mantle boundary as suggested by Christensen [2015].

The observations contain stochastic variability which deserves to be investigated in further studies. This
should lead to a better understanding of the processes near the open-closed field line boundary and the
kinetic processes which cause the acceleration of the electrons exciting the auroral emissions. Such studies
are, however, beyond the scope of this work. The uncertainties of the results presented in this study can be
improved with future HST observations or observations by the ultraviolet spectrograph instrument onboard
of the Jupiter Icy Moons Explorer (JUICE) mission designed to orbit Ganymede. Magnetometer measure-
ments during the Ganymede orbiting phase of JUICE will also establish the precise amplitude of the induced
field component and its phase shift, as well as the intrinsic quadrupole moment of Ganymede.

The method introduced here can also be applied to other planetary moons and planets to study their
electrical conductivity structure. If these bodies are exposed to time-variable magnetic fields and exhibit
auroral emissions, then their auroral patterns will be modified by any electrically conductive layers.
Observations of the auroral emission responses combined with appropriate models for the responses
will provide valuable information about these conductive layers, such as subsurface oceans. The method
might one day even be applicable to exoplanets (and exomoons); once appropriate objects and associated
magnetic fields are observationally confirmed.

Appendix A: Aspects of the Data Analysis

In this appendix we discuss an alternative version to smooth the data and two alternative versions to
determine the locations of the ovals. Based on a comparison of their performance, we then justify the
usage of the finally applied versions. We also discuss various ways to compare the observed ovals to the
modeled ovals.

A1. Data Smoothing
Alternatively to the star filter introduced in section 2.1, we applied a boxcar filter of the form

fB(ix , iy) =
1
9

(
f (ix + 1, iy + 1) + f (ix , iy + 1) + f (ix − 1, iy + 1) + f (ix + 1, iy) + f (ix , iy) + f (ix − 1, iy)

+f (ix + 1, iy − 1) + f (ix , iy − 1) + f (ix − 1, iy − 1)
)

(A1)

to smooth the data.

A2. Location of the Ovals
Three methods to determine the locations of the auroral ovals have been tested: (a) Usage of the
weighted flux method within 80% of the maximum emission as described in section 2, (b) usage of the
brightest pixel in y direction for each ix , and (c) usage of the average flux-weighted position given by
y(ix) =

∑
iy
(iyf (ix , iy))∕

∑
iy

f (ix , iy) within 5◦–60◦ northern and southern latitude.

The advantage of method (b) is that it is simple and straightforward; however, it discards all other
information of the fluxes related to the ovals. Method (c) considers all fluxes of a large area of the disk, but it
is not suited in our case. The reason is that the auroral emission from Ganymede not only includes emission
from the auroral ovals but also emission from everywhere in Ganymede’s atmosphere. This emission is
due to electron impact excited emission not directly related to the auroral acceleration processes, e.g., due
to electrons from Jupiter’s magnetosphere. Note that resonance scattering of solar OI 1356 Å photons is
negligible [e.g., Hall et al., 1998]. The nonoval-related emission will artificially reduce the rocking of the ovals.
A simple example, which illustrates this effect, is the following: Assume an oval with brightness 𝛾 lies on a
diagonal of a square with length one and the square is filled with homogeneous atmospheric emission with
brightness 𝛽 ; i.e., the flux is given by f (x, y) = 𝛾𝛿(x−y)+𝛽 , where 𝛿 is the delta function. Applying method (c)
and replacing the sum by an integral leads to the position of the oval given by y(x) = (𝛾 x+𝛽∕2)∕(𝛾+𝛽). The
extracted slope of the ovals is therefore m = 𝛾∕(𝛾 + 𝛽). If the background 𝛽 is very small, a slope with value
m = 1 would be recovered, but if the background 𝛽 gets large, the slope turns flat (m < 1); i.e., the rocking
amplitude is artificially reduced due to inclusion of the background. Therefore, we discard this method.

Method (a) combines the advantages of methods (b) and (c). It considers the fluxes in the y direction
exceeding a cutoff level of 80% of the brightest pixel for each iy and thus considers the emission in the
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Table A1. Rocking Angle in Degree for Different Methods to Determine the Location of the Ovals and
Smoothing Proceduresa

Brightest Pixel Brightest Pixel Weighted Flux Method Weighted Flux Method
Smoothing Method (a) Method (a) Method (b) Method (b)
Cycle Star Smooth Box Smooth Star Smooth Box Smooth

0 1.4 1.4 1.5 1.5
1 2.1 1.2 1.6 1.8
2 2.3 1.9 1.6 1.8
3 2.4 2.5 2.0 2.1
4 2.3 2.0*
5 2.4 2.0
6 2.1 2.0

aThe combination indicated by an asterisk is chosen in this paper.

vicinity of the peak emissions of the ovals, but it discards the effects of the background. The 80% value for
the cutoff was deliberately chosen high to clearly separate the emission from the oval compared to other
emissions.

The choice of the different smoothing filters and the different methods to determine the locations of
the ovals have been investigated on the observations, and their results on the rocking angle have been
measured. The resultant values for the average rocking angle are displayed in Table A1.

The brightest pixel method (b) converges less strongly to a stable value for the rocking angle as a function
of the smoothing iterations. The smoothing with the star filter leads to slightly better converging properties
compared to the boxcar filter, which combines fluxes within 3 × 3 bins. Note that the relative weight of the
coefficients in the boxcar filter has much stronger smoothing power compared to the star filter. Therefore,
less smoothing cycles are required for the boxcar filter compared to the star filter to achieve similar levels of
smoothing. Based on the results of our test we applied method (a) to images which have been smoothed 4
times by the star filter. This leads to an average rocking angle of 2.0◦.

A3. Strategy for Comparison of Observed Ovals to Model Ovals
We fit the observed auroral structure to a polynomial of second degree (see equation (3)). We use the
polynomial for its simplicity to compare the positions of the observed ovals to the position of the model
ovals. This comparison could in principle be done in various ways. The observations are available on a disk,
and the model predictions are provided on the surface of Ganymede, i.e., on a sphere. Thus, the comparison
can be done either on the disk by mapping the modeled locations onto the disk or on the sphere by
mapping the observation onto this sphere. Projection of the observations onto a sphere suffers from
large uncertainties near the edge of the disk, while the projection from the sphere onto the disk does not
generate large mapping uncertainties. Therefore, we compare observations and model on the disk.

Another question is what is a reasonable fit function to characterize an oval and its associated oscillation.
A useful fit function on the sphere might be a small circle with three fit parameters (radius and center
coordinates of small circle). To characterize the observations with the fit function, the fit function needs to
be projected onto the disk where it can be constrained with a least mean squares fit to the observations.
The projection of the fit function from the sphere onto the disk can generate curves which fit the data nearly
equally; e.g., in case of a small circle, a larger radius can be partly compensated by a shifted position of its
center. To avoid this possible nonuniqueness effect, we fit the data to one of the most simple and robust
fitting functions, a polynomial of second degree on the disk. This function does not describe possible bends
near the edge of the disk as well as other fit functions might do. This effect is not necessarily a disadvantage
because near the edge of the disk projection effects generally increase the uncertainty of the fitting
significantly. At the edge of the disk the polynomial fit is not very sensitive and thus rather robust against
projection uncertainties.

An alternative way to compare observations to model data would be to entirely avoid a fit function. Instead,
the MHD simulations could be directly projected onto the disk and compared to the observations with a
least mean squares fit. This would minimize projection effects as well. However, it has the disadvantage that
the comparison is additionally sensitive to the absolute latitudinal positions of the ovals. This method would
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thus mix effects due to oscillation with effects due to latitudinal position. As we have shown in section 4.2,
the absolute position of the ovals and the oscillation of the ovals are largely independent. Finally, the
introduction of a fit function has another advantage. It allows to define a rocking angle in a straight forward
fashion, which is the quantity used in this analysis to discriminate the ocean and the no-ocean hypotheses
and which is further used to constrain properties of the ocean.

Appendix B: Formal Error Analysis

Formal estimates of the uncertainties of the rocking angles are calculated with the following procedure:
We denote the processed photon flux per pixel by f (ix , iy), after removal of the background and surface-
reflected solar light. Each pixel is characterized by integral numbers denoting the positions ix and iy . The y
location for an individual oval is chosen using the weighted flux method described in section 2.2. The width
of an oval in y direction as a function of ix is calculated by

w(ix) =

(∑
iy
(y(ix) − iy)2 f (ix , iy)∑

iy
f (ix , iy)

)1∕2

. (B1)

The width of the oval w(ix) at a certain longitudinal position ix has an additional uncertainty due to the
finite count rate in each pixel. The signal-to-noise ratio for a pixel is given by s∕n = (S − B)∕(S + B)1∕2

with the total counts S, the counts B of the background flux including the counts of the reflected light
and those due to the dark count rate. The statistical uncertainty for the flux in each pixel therefore reads
𝜎f (ix , iy) = f (ix , iy)∕(s∕n). The resultant uncertainty of the width w(ix) of the oval defined in equation (B1) can
be calculated by standard error propagations [e.g., Bevington and Robinson, 2003]

𝜎2
w(ix) =

∑
iy

𝜎2
f (ix , iy)

(
𝜕w

𝜕f (ix , iy)

)2

. (B2)

Inserting the derivatives of equation (B1) into (B2) leads to

𝜎w(ix) =
⎡⎢⎢⎣
∑

iy

𝜎2
f (ix , iy)

(
1

2w
1∑

i′y
f (ix , i′y)

{
(y − iy)2 − w2

})2⎤⎥⎥⎦
1∕2

. (B3)

The total uncertainty in the location of the ovals, i.e., the effective width w̃ of the ovals can be calculated
from the measured width w and the uncertainty due to the finite signal-to-noise ratio in each pixel 𝜎w

assuming that both are independent by

w̃(ix) =
(

w2(ix) + 𝜎2
w(ix)

)1∕2
. (B4)

The effective width represents the uncertainty of the location of the ovals, which introduces an uncertainty
of the rocking angle 𝛼. The rocking angle 𝛼 is determined from the polynomial fit, in which the observed
fluxes at all ix in the auroral band are used instead of using the individual locations y(ix) at the most eastern
and western locations ixE

and ixW
, respectively. Thus, all values, i.e., approximately 60–70, along the oval

contribute to the angle 𝛼. Similarly, we also use the averaged uncertainty < w̃oval >=
∑ix=ixW

ix=ixE
w̃(ix)∕(ixW

− ixE
)

averaged all along an oval instead of the uncertainty at the most eastern and western positions ixE
and ixW

only. Using error propagation in (5), we can calculate the uncertainty of the angle 𝛼 defined by

𝜎2
𝛼
= 2

(
1

1 + tan2 𝛼

)2
(

1
ixW

− ixE

)2 [⟨
w̃a

oval

⟩2 +
⟨

w̃b
oval

⟩2
]
, (B5)

where < w̃a
oval > and < w̃b

oval > are the average uncertainty of the location of the ovals ya
oval and yb

oval,
respectively.

We have four measurements j = 1, …, 4 of the rocking angle 𝛼j with their associated uncertainties 𝜎𝛼,j
originating from the independent measurements of the northern and southern ovals during visit 1 and visit

SAUR ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1734



Journal of Geophysical Research: Space Physics 10.1002/2014JA020778

2, respectively. The average rocking angle derived from all four measurements is

�̄� =
∑

j 𝛼j∕(𝜎𝛼,j)2∑
j 1∕(𝜎𝛼,j)2

(B6)

with an associated average uncertainty

�̄�𝛼 = 1√∑
j 1∕(𝜎𝛼,j)2

. (B7)

Appendix C: Monte Carlo Test and Generation of Synthetic Data

For the MC test we generate 2048 sets of synthetic HST images js. We add randomly generated patchiness
and measurement noise comparable to that in the real observations to the locations of the ovals obtained
from the MHD model with and without ocean. Each set js is generated for the same conditions, i.e.,
apparent size of Ganymede and phase angle as the real observations, and represents a particular realization
of possible auroral emission measurement. The patchy structure of the auroral morphology as well as the
observed disturbed magnetic field signatures in the vicinity of Ganymede’s open-closed field region as
discussed in Jia et al. [2010] suggests that the substructure of the aurora can be approximated as a random
process. We include the patchiness of the ovals in synthetic images with the following procedure: A
random generator picks spots along the expected theoretical locations of the ovals to represent the
observed stochastic patchiness. The emission pattern of each individual spot is assumed to be of the form
∝exp(−(d∕Hspot)2), where d is the distance from the center of the spot measured in pixel and
Hspot = 2.5 pixel is a length scale characterizing the size of a spot. The diameter of Ganymede corresponds
to ∼70 pixels. The radius of Ganymede is RG = 2631 km. Thus, each pixel spans ∼75 km on the surface
of Ganymede without considerations of projection effects. The spot size when mapped to the regions
where the Galileo spacecraft passed the OCFB is roughly comparable to the size of the large magnetic field
substructures in this area and is on the same order as the size of the flux transfer events associated with
auroral emissions as discussed by Jia et al. [2010] for the G8 flyby. We assume that the spots do not exactly lie
on the theoretically expected auroral line but that they follow a Gaussian distribution around the expected
oval line with a standard deviation of 4 pixels. The associated width mapped to the regions where Galileo
spacecraft flybys crossed the OCFB approximately corresponds to a width of 2000 km. Over such length
scales Galileo measured highly disturbed spiky magnetic field fluctuations likely associated with flux transfer
events or electric current filaments connecting to Ganymede’s ionosphere. The number of randomly chosen
spots along each oval is approximately 30 in our simulation. This number is consistent with a recurrence rate
of flux transfer events [Jia et al., 2010] of 30 s, which when translated to a spatial scale would correspond to
600 km with an assumed spacecraft velocity of 20 km s−1. Assuming a roughly estimated azimuthal length
of the upstream magnetopause of 1/2 (2𝜋RG ), the recurrence scale would lead to approximately 30 flux
transfer events. With these values the resultant synthetic images resemble the real observations (e.g.,
Figure 7). In particular, the resultant average width of the ovals and resultant uncertainty of the rocking
angle 𝜎𝛼 are quantitatively similar to the real observations. The distribution functions of the averaged
uncertainty �̄�(js) calculated from 2048 repetitions of randomly generated sets of synthetic images have
an expectation value E[�̄�] = 6.9◦. This value is consistent with the average observed uncertainty (see
Appendix B) of �̄� ± 6.3◦, which confirms the applicability of the MC test.

Because the observations show a systematic tendency that the Jovian-facing side of Ganymede is brighter
than the anti-Jovian side possibly due to the Hall-effect, we multiply the spot brightness by a weighting
function of the form 1+(ix −RG)∕(2RG). We only include spots whose centers lie within the disk of
Ganymede. A random background noise is added to the data with an amplitude similar to the observed
background.

In the MC tests as well as in some other parts of the analysis we assumed that the orientation of Jupiter’s
magnetospheric field does not change during an exposure. During approximately 1000 s the orientation of
the magnetic field around maximum magnetic latitudes changes by less than 1% compared to its maximum
variability assuming a sinusoidal variation. For all exposures with magnetic latitudes larger than 7◦ the
orientation of the magnetic field changes by only ∼10% compared to its maximum variability assuming
again a sinusoidal variation. Note, however, that near-maximum magnetic latitudes the Jovian background
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magnetic field even changes less strongly than sinusoidal due to the current sheet effects which results in
less variability of the magnetic field [e.g., Kivelson et al., 1999; Seufert et al., 2011].
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