
Expression and cellular localization of the transcription factor
NeuroD1 in the developing and adult rat pineal gland

Abstract: Circadian rhythms govern many aspects of mammalian physiology.

The daily pattern of melatonin synthesis and secretion is one of the classic

examples of circadian oscillations. It is mediated by a class of neuroendocrine

cells known as pinealocytes which are not yet fully defined. An established

method to evaluate functional and cytological characters is through the

expression of lineage-specific transcriptional regulators. NeuroD1 is a basic

helix-loop-helix transcription factor involved in the specification and

maintenance of both endocrine and neuronal phenotypes. We have previously

described developmental and adult regulation of NeuroD1 mRNA in the

rodent pineal gland. However, the transcript levels were not influenced by the

elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1

might be found downstream of transcription. Here, we describe NeuroD1

protein expression and cellular localization in the rat pineal gland during

development and the daily cycle. In embryonic and perinatal stages, protein

expression follows the mRNA pattern and is predominantly nuclear.

Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of

the night and in cytoplasm during the day, a rhythm maintained into

adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after

sympathetic disruption, an effect mimicked by the in vivo administration of

a- and b-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser274

and Ser336, associates with nuclear localization in pinealocytes. These data

suggest that NeuroD1 influences pineal phenotype both during development

and adulthood, in an autonomic and phosphorylation-dependent manner.
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Introduction

The pineal gland is a conserved component of the circa-
dian timing system in vertebrates [1, 2]. It converts photo-
periodic information into a circadian rhythm of melatonin

synthesis and secretion. The pineal gland develops from an
evagination of the dorsal diencephalic roof that begins in
rat around embryonic day 15 (E15). From there, prolifera-

tion, differentiation, and maturation processes convert the
pineal primordium into a structure composed mainly of
pinealocytes.
In recent years, several transcription factors responsible

for the establishment and maintenance of the pineal phe-
notype have been identified. The network dynamics and
the cellular and molecular mechanisms involved, however,

have not yet been fully elucidated. Among these transcrip-
tional regulators, those encoded by homeobox genes are
thought to work in an orchestrated manner in the develop-

ing and adult rodent pineal gland [3]. Some members of
the paired box (Pax), orthodenticle (Otx), and LIM
homeobox (Lhx) gene families are essential for normal
pineal development, including Pax6, Otx2, and Lhx9 [4–
11]. Other homeobox genes like Crx (cone-rod homeobox)

were found to be nonessential for pineal phenotype,
although they might mediate tissue-specific gene expres-

sion [12–15]. Crx might modulate pineal homeostasis in a
compensational manner with other transcriptional regula-
tors such as Otx2 [16].

Members of the basic helix-loop-helix (bHLH) tran-
scription factor family have also been identified in the
rodent pineal gland [17–21]. This is of special interest due

to the role of bHLH molecules in generating and main-
taining circadian oscillations [22–25]. Our understanding
of the precise molecular mechanisms within the cellular
circadian clock has advanced significantly in the last dec-

ades; little is known, however, about the ontogenetic func-
tions of clock molecules and, conversely, the influence of
phenotype determinants in the circadian clock machinery.

The neurogenic differentiation factor 1 (NeuroD1), also
known as beta-cell E-box trans-activator 2 (BETA2), has
emerged as a potential bHLH link between the ontoge-

netic and circadian pathways. NeuroD1 was first reported
as a converter of Xenopus ectoderm into neurons and as a
key transactivator of the insulin gene [26, 27]. It is widely
accepted that NeuroD1 modulates terminal differentiation

and function of defined endocrine and neuronal cell types
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via heterodimerization with promiscuous E proteins such
as E12/E47 and binding to E-boxes present in the
regulatory regions of genes expressed in a tissue-specific
manner [27–33].
Retina and pineal gland, two organs thought to evolve

from a common photodetecting ancestor, express Neu-
roD1 [1, 34–40]. While NeuroD1 is essential for differenti-

ation and survival of mouse retinal photoreceptors,
pinealocytes survive in the absence of this bHLH but with
an affected transcriptome [39, 40]. Global gene expression

analyses of two knockout (KO) mouse models revealed
potential NeuroD1 target genes in both tissues; these genes
are linked to transcription, phototransduction, calcium

signaling, and protein folding, among other mechanisms.
The clock gene Per3 was one of the down-regulated genes
identified in pineal glands from the Cre/loxP NeuroD1
conditional KO mouse, suggesting a regulatory role of

NeuroD1 in the clock machinery [40]. On the other hand,
studies of the neurogenic potential of adult rat neural
stem/progenitor cells (NSPCs) from the lateral subventric-

ular zone (SVZ) suggested that NeuroD1 is downstream
of the clock molecules CLOCK and BMAL1 [41]. In addi-
tion, in mice and sheep hypophyseal pars tuberalis, Neu-

roD1 was identified as part of the transcriptional cascades
triggered by melatonin via specific membrane receptors,
and downstream of the clock gene Cry1 [42, 43].
To gain further insight into the function of NeuroD1 in

the rodent pineal gland, we characterized NeuroD1 pro-
tein dynamics. Here, we report for first time the ontoge-
netic and daily patterns of NeuroD1 protein, the influence

of the sympathetic innervation in NeuroD1 subcellular
localization, and NeuroD1 phosphorylation state in the
rat pineal gland.

Materials and methods

Animals

All animal experiments and treatments were performed in
accordance with the National Institutes of Health’s Guide

for Care and Use of Laboratory Animals and the Animal
Research: Reporting in Vivo Experiments (ARRIVE)
Guidelines. All the animal procedures presented here were

also approved by the Institutional Animal Care and Use
Committee, School of Medicine, National University of
Cuyo, Mendoza, Argentina. Wistar rats were housed

under a 12:12 light–dark (L:D) cycle with lights turned on
at Zeitgeber time (ZT) 0, and food and water ad libitum.
Male rats were used except for the embryonic series for
which both male and female embryos from timed pregnant

mothers were processed. Animals were sacrificed by decap-
itation after ketamine/xylazine (50 and 5 mg/kg of body
weight, respectively) anesthesia or hypothermia by immer-

sion in wet ice according to age. Daytime tissues were col-
lected at ZT6 at the following developmental ages:
embryonic day (E) 15, 16, 17, 18, and 19, and postnatal

day (P) 3, 10, and 90; at night, samples from P3, P10, and
P90 rats were obtained under dim red light at ZT14 (early
night), ZT18 (middle of the night), and ZT22 (late night).

Samples were immediately processed for immunohisto-
chemistry (IHC) or kept frozen at �80°C until their use

for Western blot (WB). Removal of superior cervical gan-
glia (SCGx) was performed according to the procedure
described in detail by Savastano et al. [44]. Control ani-
mals underwent placebo (sham) surgery. In both groups,

samples were collected 3 wk after surgery at ZT6 and
ZT14.

In vivo administration of a- and b-adrenoceptor
antagonists

As an independent method of sympathetic disruption,
male adult rats were injected intraperitoneally (i.p.) with
prazosin and/or propranolol (Sigma, St. Louis, MO,

USA), and antagonists of a1- and b-adrenergic receptors,
respectively [45]. The goal of this procedure was to study
the potential involvement of specific receptors in the effect
of the nocturnal endogenous norepinephrine on the

nuclear–cytoplasmic partitioning of NeuroD1 protein.
Doses of 1 mg/kg of body weight of each antagonist or a
1:1 mixture were applied at ZT11, to give the drugs time

to reach their target before the lights were turned off at
ZT12. A control group was injected with vehicle alone.
Animals were sacrificed as described above at ZT14 (3 hr

after injection). Pineal glands were collected and processed
for immunohistochemical analysis.

Immunohistochemistry

Samples for immunostaining were fixed in 4% paraformal-
dehyde (PFA) in phosphate-buffered saline (PBS) at 4°C.
Entire E15 embryos, whole E16 heads, and adult pineal
glands were fixed by immersion; whole brains including
pineal glands and cerebella from late embryos and neona-

tal rats were dissected after transcardial perfusion with the
same fixative mixture. After fixation, the organs were
washed three times in PBS, dehydrated in increasing con-

centrations of ethanol (50%, 70%, 80%, 96%, and
100%), washed twice in xylene, and included in Histoplast
(Biopack, Bs. As., Argentina). Incubation times in the dif-
ferent solutions varied with tissue size. Three- to ten-

micrometer sections from fixed samples were cut using a
Microm HM-325 microtome (Thermo Fisher Scientific
Inc., Waltham, MA, USA). All the immunohistochemical

procedures were performed as previously described [44,
46]. Sections were stained with the following primary anti-
sera: rabbit polyclonal anti-NeuroD1 (ND1), DCK6300,

N-terminal epitope: 13 aa: MTKSYSESGLMGE (Neu-
roD1 protein: 357 aa, NP_062091.1), provided by Dr.
D.C. Klein (NIH, USA), dilution 1:50; goat anti-Neu-
roD1, sc-1084 (N19, N-terminus), Santa Cruz Biotechnol-

ogy Inc. (Dallas, TX, USA), dilution 1:25; mouse
monoclonal antivimentin (VIM), V6630, Sigma, dilution
1:200; and mouse anti-phosphoSer10-histone H3 (pSer10-

H3), ab14955, Abcam (Cambridge, MA, USA), dilution
1:100. The secondary antisera included anti-rabbit conju-
gated with Alexa Fluor 488 and anti-mouse labeled with

the Cy3 fluorophore, and biotinylated antibodies, Jackson
ImmunoResearch Laboratories Inc. (West Grove, PA,
USA) and Vector Laboratories Inc. (Burlingame, CA,

USA), dilution 1:300. When it was required, fluorescein-
and horseradish peroxidase (HRP)-conjugated streptavidins
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were used, Vector Laboratories Inc., dilution 1:300. The
enzyme HRP was detected using 3,30-diaminobenzidine
(DAB; Sigma) as substrate. After immunolabeling, sec-
tions were counterstained with hematoxylin (H) or

mounted in the presence of propidium iodide (PI; Sigma)
diluted in a mix of propyl gallate/PBS/glycerol. The sec-
tions were examined using an Olympus FluoView FV-1000

confocal microscope (Olympus America Inc., Center Val-
ley, PA, USA) and Nikon 80I microscope (Nikon Instru-
ments Inc., Melville, NY, USA); images were processed

with MacBiophotonic ImageJ and edited with Adobe
Photoshop 7.0 (Adobe Systems Inc., San Jose, CA, USA).

Cell counting

For quantification of total and NeuroD1-positive pinealo-
cyte nuclei, sections from sham and SCGx pineal glands

collected at ZT6 and ZT14 were processed for IHC using
DCK6300 as primary antibody and fluorescein and PI as
specific and general nuclear dyes, respectively. Images were

captured with the Olympus FluoView FV-1000 confocal
microscope using a 609 objective and digitalized with
MacBiophotonic ImageJ. Three pineal glands per group

and nine images per animal were used. After a 29 magnifi-
cation of each 609 image, the numbers of total and Neu-
roD1-positive pinealocyte nuclei were counted in an area
of 4 9 10�3 mm2. Pinealocytes were easily distinguished

from interstitial cells because of the nuclear size, chroma-
tin aspect, and presence of multiple nucleoli. A pinealocyte
nucleus was considered positive for NeuroD1 when the

immunoreactivity was homogeneously distributed in the
nuclear area, and the fluorescence levels were higher than
those in the cytoplasm.

Western blot analysis

Total proteins from frozen adult pineal gland pools (10–15
glands per pool), cerebella, and pancreas were partitioned
into nuclear and cytoplasmic fractions using the CelLytic
NuCLEAR Extraction Kit (Sigma) according to the man-

ufacturer’s protocol. Lysis and extraction buffers were
supplemented with the reducing agent dithiothreitol (DTT;
final concentration: 1 mM), protease inhibitor cocktail

[diluted from 1009 stock solution stored at �20°C, com-
position: 4-(2-aminoethyl) benzenesulfonyl fluoride (AE-
BSF), pepstatin A, bestatin, leupeptin, aprotinin, and

trans-epoxysuccinyl-L-leucyl-amido(4-guanidino)-butane
(E-64)], and the phosphatase inhibitor sodium fluoride
(NaF; final concentration: 10 mM) [46]. Total protein
concentrations were estimated with Bradford reagent

(Bio-Rad Laboratories Inc., Hercules, CA, USA) using
bovine serum albumin (Sigma) as the standard protein.
Nuclear and cytoplasmic samples from sham and SCGx

pineal gland pools were collected at ZT14, and positive
control tissues were used to study NeuroD1 and its post-
translational modifications. Proteins (80 lg per lane for

total NeuroD1, 40 lg per lane for NeuroD1 phosphory-
lated forms) were resolved by 10% SDS–polyacrylamide
gel electrophoresis, transferred to PVDF membranes by

electroblotting and incubated with blocking solution (10%
w/v low-fat milk powder in wash buffer: PBS with 0.05%

Tween-20) for 1 hr at RT. Subsequently, the membranes
were rinsed three times with wash buffer for 10 min each
and incubated overnight at 4°C with the primary antise-
rum diluted in blocking solution (sc-1084, dilution 1:5000;

DCK6300, dilution 1:3000) or in wash buffer [rabbit
polyclonal anti-phosphoSer274-NeuroD1 (pSer274-ND1),
ab78900, Abcam, dilution 1:5000; rabbit polyclonal anti-

phosphoSer336-NeuroD1 (pSer336-ND1) provided by Dr.
A. Bonni (Harvard Medical School, USA) [47], dilution
1:5000; rabbit polyclonal anti-actin, A 2066, Sigma,

dilution 1:5000; rabbit polyclonal anti-histone H3 (H3),
07-690, Upstate (EMD Millipore, Billerica, MA, USA),
dilution 1:10,000]. The membranes were incubated consec-

utively with the corresponding biotinylated secondary
antiserum and with HRP–streptavidin (Vector Laborato-
ries Inc.) for 1 hr at RT each, both diluted in wash buffer
(1:50,000). Protein bands were visualized with the LAS-

4000 system (Fujifilm) after a chemiluminescent reaction
using a 1:1 mixture of solution 1 (20 mM Tris-HCl pH 8.5;
2.5 mM luminol, Sigma; 0.4 mM coumaric acid, Sigma)

and solution 2 (10 mM Tris-HCl pH 8.5; 0.02% H2O2,
Sigma). Histone H3 and actin were used as loading con-
trols for nuclear and cytoplasmic extracts, respectively

[46]. Optical density (OD) of target protein bands from
three independent experiments was determined from the
LAS-4000 files using MacBiophotonic ImageJ software.
Final values were expressed as the ratio of NeuroD1/his-

tone H3 in the nuclear fraction and NeuroD1/actin in the
cytoplasmic fraction.

Statistical analysis

Data, expressed as mean � S.E.M., were analyzed using

PRISM 5 (GraphPad Software Inc., La Jolla, CA, USA).
Statistical differences were determined by two-tailed Stu-
dent’s t-test. P < 0.05 was considered significant.

Results

To validate the specificity of DCK6300 via IHC, we used

developing cerebella from P3 and P10 rats that contain
NeuroD1-positive neurons. Preabsorption of the serum
with the corresponding antigenic peptide and omission of

the primary antibody were included as negative controls.
In the cerebellar cortex, NeuroD1 expression is known to
correlate well with the genesis and maintenance of gluta-

matergic granular layer interneurons [39, 46]. We observed
that DCK6300 was able to recognize not only progenitor
cells in the external germinative/granular layer (EGL) but
also migrating cells with spindle-shaped nuclei in the

molecular layer (ML) and more mature interneurons in
their final destination, the internal granular layer (IGL)
(Fig. S1A–I). As expected for a discriminatory antibody,

DCK6300 did not react with Purkinje cells and other cere-
bellar NeuroD1-negative cells. Similar results were
obtained with the anti-NeuroD1 antibody N19 (data not

shown) [46]. In addition, a band of around 50 kDa was
detected by DCK6300 via WB, mainly in the nuclear pro-
tein fraction from rat cerebellum (Fig. S1J). We previously

reported that NeuroD1 mRNA is highly abundant
throughout rat pineal gland development from embryonic
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stages to adulthood, that its levels do not appear to be
influenced by sympathetic neural input, and that in the
absence of NeuroD1, the mouse pineal gland transcrip-
tome is affected [39, 40]. To gain a better understanding of

NeuroD1 function, and taking advantage of the specificity
of the novel DCK6300 antibody, we characterized for the
first time NeuroD1 protein dynamics during the entire

ontogeny of the rat pineal gland. In rat embryos, Neu-
roD1 was found mainly in the nuclei of pinealocyte pre-
cursor cells. NeuroD1 expression together with the

presence of the intermediate filament protein vimentin
allowed us to follow the organogenesis of the pineal gland
from the dorsal diencephalic evagination to the mature
globular structure. Staining for both proteins in the

embryonic period revealed normal precursor cell rear-
rangements from the radial distribution at earlier stages
(Fig. 1A–H) to a rosette-like pattern in late gestation

(Fig. 1I–P). The high levels of nuclear NeuroD1 in the
prenatal period when most of the pinealocyte precursors
divide for the last time before differentiation [48]

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

(M) (N) (O) (P)

Fig. 1. NeuroD1 protein is expressed in the embryonic rat pineal gland. (A, B, E, F, I, J, M, N) Immunolabeling for the bHLH transcrip-
tion factor NeuroD1 (ND1, green, Alexa Fluor 488) at embryonic days (E) 15, 16, 18, and 19, using the anti-NeuroD1 antibody
DCK6300. Both male and female rat embryos were used. (C, G, K, O) Immunoreactivity for the intermediate filament protein vimentin
(VIM, red, Cy3). (D, H, L, P) Combined ND1 and VIM immunolabeling. ND1 is nuclear in pinealocyte precursor cells. ND1 and VIM
co-expression (white arrows) reveals features of the pineal gland (PG) organogenesis from a dorsal diencephalic evagination (E15) to a
globular structure (E19) passing consecutively throughout tubular elongation (E16) and rosette-like formation (E18) stages. Black arrow-
head with white borders points to ND1- and VIM-positive daughters cells. IIIV: Third ventricle. (A, E, I, M) 209; scale bar: 100 lm. (B,
C, F, G, J, K, N, O) 609; scale bar: 30 lm. (D, H, L, P) Digital zooms of the insets shown at 609. bHLH, basic helix-loop-helix.
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motivated us to question the relationship of this bHLH
with the cell cycle in the developing pineal gland. It has
not been fully clarified whether NeuroD1 expression in
proliferating cells is mostly postmitotic [31]. We addressed

this controversy by performing double immunostaining
for NeuroD1 and the mitotic marker histone H3 phos-
phorylated at serine 10, pSer10-H3 (Fig. 2) [49]. This strat-

egy confirmed previous results about the abundance of
mitotic cells in the prenatal pineal gland [48]. In earlier
embryonic phases, highly pSer10-H3-positive cells were

located in the apical side of the stratified neuroepithelium
lining the diencephalic evagination from which pineal
gland is derived. In later prenatal developmental stages,

the proliferating cells resulted randomly distributed. Neu-
roD1 levels varied among dividing cells; mitotic cells with
a bHLH expression higher than basal predominated in the
different stages studied. The ability of the rat pineal gland

to synthesize and secrete melatonin in a rhythmic fashion
develops during the postnatal period in parallel with the
acquisition and maturation of the required enzymatic

machinery and responsiveness to adrenergic input, among
other regulatory mechanisms [50]. Consequently, we evalu-
ated NeuroD1 distribution in P3 and P10 rats at different

Zeitgeber times (ZTs). In 3-day-old pups, NeuroD1 pro-
tein was detected primarily in the nuclear compartment of
pinealoblasts throughout the L:D cycle (Fig. 3A–D; data
at ZT6 are shown), a pattern that resembles the one found

in the prenatal period. Double immunolabeling for Neu-
roD1 and vimentin identified embryonic precursor-like
cells present in the neonatal pineal gland. At P10, a clear

daily pattern in the subcellular localization of NeuroD1
protein was observed with nuclear presence mainly at the
beginning of the dark phase (ZT14) (Fig. 3E–L; data at

ZT6 and ZT14 are shown). This rhythm was also present

in adult pineal glands; however, certain heterogeneity in
the nuclear–cytoplasmic partitioning among mature pine-
alocytes was seen, especially in the light phase (Fig. 4).
Norepinephrine released in the pineal parenchyma at night

from the nerve endings of sympathetic neurons located in
the superior cervical ganglia (SCG) constitutes one of the
major regulators of the rhythmic pineal physiology [51].

Based on the observation that NeuroD1 protein was
nuclear in the dark phase, adult rats were subjected to
chronic bilateral SCGx or sham surgery [44]. As expected

for an adrenergic-dependent phenomenon, NeuroD1
nuclear–cytoplasmic partitioning in adult pinealocytes was
affected by ganglionectomy (Fig. 5). In SCGx pineal

glands collected at ZT14, NeuroD1 was cytoplasmic in the
majority of the cells with a perinuclear disposition, a pat-
tern that mimics the one seen in pineal glands from non-
operated rats sacrificed at ZT6 (Fig. 4A–E). The number

of pinealocytes with NeuroD1-positive nuclei was counted
in sham and SCGx animals (Fig. 6A,B). The latter showed
a significant reduction in immunoreactive pinealocyte

nuclei at ZT14 (P < 0.001 versus sham) with numbers
comparable with those observed in sham pineal glands at
ZT6. The total number of pinealocytes did not vary

among the groups (Fig. 6C); therefore, the decrease in
NeuroD1-positive nuclei triggered by SCGx was not likely
due to cell death. Ganglionectomy effects on NeuroD1
protein dynamics were also analyzed via WB using nuclear

and cytoplasmic extracts from sham and SCGx pineal
glands (Fig. 7A). Nuclear NeuroD1 levels at ZT14 were
diminished after removal of the ganglia, concomitantly

with a significant increase in the cytoplasmic fraction
(P < 0.05 versus sham) (Fig. 7B). Nocturnal norepineph-
rine activates b1- and a1-adrenergic receptors in the pineal

gland [52, 53]. To estimate the contribution of these

(A) (B) (C) (D)

(E) (F) (G) (H)

(D′)

(D′′)

(H′)

(H′′)

Fig. 2. NeuroD1 is expressed in dividing pinealocyte precursor cells. Combined immunolabeling for NeuroD1 (ND1, green, Alexa Fluor
488) and the mitotic marker phosphoSer10-histone H3 (pSer10-H3, red, Cy3). (A–D″) ND1 and/or pSer10-H3 in the developing pineal
gland (PG) at embryonic stage 17 (E17). Mitotic cells are located mainly in the luminal side of the stratified neuroepithelium lining the
tubular structure. (E–H″) ND1 and/or pSer10-H3 in the globular pineal gland at E19 with proliferating cells randomly distributed. Most
of the dividing cells are positive for both ND1 and pSer10-H3 (D0 and H0, yellow). Mitotic cells with very low levels of ND1 are shown in
D″ and H″. (A, E) 209; scale bar: 100 lm. (B–D, F–H) 609; scale bar: 30 lm. (D0–D″, H0–H″) Enlargements of the insets shown in D
and H, respectively.
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receptors and the concomitant activation of specific intra-
cellular signaling cascades on the subcellular partitioning
of NeuroD1 protein, we acutely administrated the antago-
nists prazosin and/or propranolol in vivo as a1- and

b-adrenoceptor blockers, respectively. The i.p. injections
were performed at ZT11, 1 hr before the lights were
turned off at ZT12. Samples were collected at ZT14 when

NeuroD1 protein levels would be expected to reach their
highest levels in the nuclear compartment of pinealocytes.
Both individual and combined treatments caused a reduc-

tion in NeuroD1-positive pinealocyte nuclei densities and
in nuclear immunoreactivity intensities (Fig. 8; data with
each blocker are shown). While in the pineal glands from

vehicle-injected animals NeuroD1 was primarily nuclear at
the beginning of the night, the experimental groups
showed diffusely immunoreactive nuclei and cytoplasmic
levels higher than the ones in controls. NeuroD1 protein

has been considered a highly modifiable molecule; post-
translational modifications such as phosphorylation have
been related to the timing of its nuclear localization and

transcriptional functions in a species- and cell type-specific
manner [30, 54–56]. The addition of phosphate groups

represents a key regulatory event in the rhythmic pineal
physiology [51]. We therefore studied the phosphorylation
state of NeuroD1 in the adult pineal gland at ZT14 via
WB and using specific primary antibodies directed against

two serine (Ser) residues at positions 274 and 336. A band
of around 50 kDa was identified with both antisera
(Fig. 9). While phosphoSer274- and phosphoSer336-Neu-

roD1 (pSer274-ND1 and pSer336-ND1, respectively) were
almost undetectable in the cytoplasmic compartment, the
nuclear fractions from pools of pineal glands collected at

the beginning of the night resulted enriched in both phos-
phorylated forms. Pancreas and cerebellum were included
as positive controls. The former showed similar levels of

both isoforms in the cytoplasmic and nuclear compart-
ments. In cerebellum, the nuclear fraction resulted
enriched at least in pSer336-ND1.

Discussion

In this work, we describe the expression pattern of

NeuroD1 protein in the developing and adult rat pineal
gland. The levels of protein expression correlate well with

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Fig. 3. NeuroD1 protein dynamics in the neonatal rat pineal gland. Immunoreactivity for NeuroD1 (ND1, green, Alexa Fluor 488) and/
or vimentin (VIM, red, Cy3) in pineal glands (PG) from 3- and 10-day-old male rats (P3 and P10, respectively). For the later age group,
data generated at ZT6 (middle of the light phase) and ZT14 (early night; 2 hr after the lights were turned off) are shown. (A–D) ND1 is
nuclear in P3 pinealoblasts at ZT6. (E–L) In P10 pineal glands, ND1 protein exhibits a daily rhythm in subcellular localization. The pro-
tein is mainly cytoplasmic during the light phase (ZT6) and nuclear in the early night (ZT14). VIM is still expressed in the neonatal pineal
gland; embryonic precursor-like cells enriched in ND1 and VIM are indicated by white arrows at both postnatal ages. (A, E, I) 609; scale
bar: 30 lm. (B–D, F–H, J–L) 29 digital zooms of the insets shown at 609; scale bar: 10 lm.
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the previously published mRNA profile from the ontoge-
netic point of view, but its subcellular localization is sensi-
tive to sympathetic neural influence [39]. With the novel
anti-NeuroD1 antibody DCK6300, we were able to iden-

tify NeuroD1 protein as early as embryonic day 15 (E15),
and during all subsequent pineal gland developmental
stages. Interestingly, NeuroD1 was primarily nuclear from

the time pineal gland formation begins until the sympa-
thetic innervation becomes fully functional around the

second week after birth (Figs 1, 2 and 3A–D) [50, 57].
Thereafter, NeuroD1 protein exhibited a daily rhythm in
subcellular localization, being present in the pinealocyte
nuclei early at night (ZT14) (Figs 3E–L and 4). These

results support the hypothesis that NeuroD1 might modu-
late not only the establishment of the pineal phenotype,
but also its maintenance from the juvenile stage onward,

and that this late-term influence appears to be rhythmic
(Fig. 10).

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

Fig. 4. Daily rhythm in NeuroD1 subcellular localization in adult rat pinealocytes. (A–J) Immunoreactivity for NeuroD1 (ND1, green,
fluorescein) and/or nuclear staining with propidium iodide (PI, red) in adult male rat pineal glands (PG) collected at ZT6 and ZT14.
While the levels of ND1 in the pinealocyte nuclei are high and relatively homogenous at night, certain heterogeneity among cells is
observed at ZT6 being the bHLH mainly cytoplasmic during the light phase. (E, J) Graphical representations of ND1- and PI-stained
nuclei densities in D and I, and the range of fluorescence intensities expressed in an arbitrary color scale from 0 to 150 indicated on the
right. Each peak represents an individual nucleus. White arrowheads: NeuroD1-negative and PI-positive nuclei as a validation of the dis-
criminatory ability of the antibody DCK6300. (A, F) 609; scale bar: 30 lm. (B–D, G–I) 29 digital zooms of the insets shown in A and
F, respectively; scale bar: 10 lm. bHLH, basic helix-loop-helix.

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

Fig. 5. Influence of the sympathetic innervation in the nuclear–cytoplasmic partitioning of NeuroD1 protein in adult rat pinealocytes.
(A–J) Fluorescence immunolabeling for NeuroD1 (ND1, green, fluorescein) and/or nuclear staining with propidium iodide (PI, red) in
pineal glands (PG) from adult male rats subjected to chronic bilateral superior cervical ganglionectomy (SCGx) or fake surgery (sham).
Samples were collected at ZT14. ND1 localization in sham pineal glands is primarily nuclear. SCGx pinealocytes show cytoplasmic ND1
with preference for the perinuclear region although certain heterogeneity in the subcellular partitioning is observed in this group. (E, J)
Graphical representations of ND1- and PI-stained nuclei densities in D and I, and the range of fluorescence intensities expressed in an
arbitrary color scale from 0 to 150 indicated on the right. (A, F) 609; scale bar: 30 lm. (B–D, G–I) 29 magnifications of the insets shown
in A and F, respectively; scale bar: 10 lm.
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While Pax6, Otx2, and Lhx9 are essential for rodent
pineal gland organogenesis, Crx and NeuroD1 are not [6,
8, 9, 11–15, 39, 40]. Two NeuroD1 KO mice, one global

and one Cre/loxP-mediated conditional, exhibited pineal
gland formation with a relatively normal macrostructure;
however, several mRNAs related to transcription, photo-

transduction, and other signaling cascades were affected
[39, 40]. In addition, the daily variations of some tran-
scripts were found to be disrupted in the retina and pineal

gland from the conditional KO mouse during adulthood,
suggesting an oscillatory role for NeuroD1 in both organs
[40]. Based on these data, we can speculate that the modu-

latory functions of NeuroD1 in the pineal gland might be
at least partially compensated by other phenotype determi-
nants when the gene is absent. Compensatory and cooper-
ative mechanisms among bHLH members have been

proposed within the retina where the specification and sur-
vival of neuronal subtypes are intricately and tightly regu-
lated [58–61]. Cross talk between essential homeobox

transcriptional regulators and NeuroD1 in the rodent
pineal gland ontogeny can not be excluded. During endo-
crine pancreas differentiation, for example, Pax6 was iden-

tified as both a regulator and a target of NeuroD1, while
Pax4, to the best of our knowledge, has only been
reported downstream of this bHLH [62, 63]. Based on our

observations of early nuclear NeuroD1 presence (Fig. 1)
and the precedent of developmentally regulated Pax6 and
Pax4 expression in the rodent pineal gland [3, 64, 65], we
can propose a similar role for NeuroD1 in this melatonin-

producing organ. Our data also revealed that in the
neonatal pineal gland, nuclear NeuroD1 is present in a
subpopulation of cells (Fig. 3) that resemble those positive

for both NeuroD1 and vimentin in the embryonic period
(Fig. 1). It would be interesting therefore to investigate
whether or not the apparently normal macrostructure of

the NeuroD1 KO pineal glands hides altered proportions
of cell types as in the mutant retina and whether the
nuclear–cytoplasmic distribution of NeuroD1 in the dou-
bly immunolabeled cells is rhythmic as in pinealocytes.

Strikingly, we observed elevated levels of nuclear Neu-
roD1 in vimentin-positive precursor cells in the highly pro-
liferative prenatal period [48], including in those with a

radial rearrangement (Fig. 1). Dividing cells enriched in
both NeuroD1 and the mitotic marker pSer10-H3 were
clearly identified with a distribution that correlated well

with the developmental stages studied (Fig. 2). These
results contribute information relevant to the controversy
regarding the mitotic and/or postmitotic roles of Neu-

roD1, which appear to vary across species, developmental
phases, and cell types [26, 30, 31, 66–68]. As in the murine
cerebellum and hippocampal dentate gyrus, our data sug-
gest that NeuroD1 may regulate not only cellular differen-

tiation but also proliferation within the rat pineal gland
where tissue-specific mechanisms might be involved.
The 24-hr dynamics of adult pineal gland biology,

including the multistep melatonin biosynthesis, mainly
involve adrenergic–cyclic AMP signaling [51]. NeuroD1
mRNA, however, was not found to be influenced by this

regulatory pathway [39]. To investigate whether the daily
pattern in subcellular localization of the NeuroD1 protein
in pinealocytes is under sympathetic neural control, we
disrupted the photoneuroendocrine system by chronic

bilateral SCG removal (SCGx) (Figs 5–7) and, indepen-
dently, by acute in vivo administration of adrenoceptor
antagonists (Fig. 8). Interestingly, under both treatments,

NeuroD1 was retained in the cytoplasm of the vast major-
ity of the pinealocytes at ZT14. These results suggest that
norepinephrine released from sympathetic nerve endings

during the dark phase influences the nuclear–cytoplasmic
partitioning of NeuroD1 via signaling cascades that
involve specific membrane receptors (Fig. 10).

NeuroD1 subcellular localization, and therefore its tran-
scriptional activity, was also found to be closely related to

(A)

(B)

(C)

Fig. 6. SCGx effect on the number of NeuroD1-positive pinealo-
cyte nuclei. (A) Representative images of pinealocyte nuclei con-
sidered positive for NeuroD1 (ND1, green, fluorescein, white
arrows) at ZT6 and ZT14 from sham and SCGx animals. A rela-
tively homogenous nuclear distribution of the immunoreactivity
with exception of nucleolar areas and fluorescence levels superior
to those in the cytoplasm were taken into account. (B) Quantifica-
tions of ND1-positive nuclei. SCGx group shows a significant
decrease in the number of immunoreactive nuclei at ZT14; the
values are comparable with those in the sham group at ZT6. (C)
Total pinealocytes did not vary among the groups. Data are
expressed as mean � S.E.M. in an area of 4 9 10�3 mm2. Statis-
tics: two-tailed Student’s t-test; ***P < 0.001. SCGx, superior cer-
vical ganglionectomy.

446

Castro et al.



cell type-specific physiological functions in other organs
such as pancreas and cerebellum. Stimulating MIN6 mouse
insulinoma cells with glucose induced insulin gene transac-
tivation, at least in part by facilitating NeuroD1 transloca-

tion into the nuclei [54, 69]. Furthermore, neuronal activity
promotes nuclear NeuroD1 localization and subsequent

dendrite morphogenesis in cerebellar granule cells [47]. The
rhythmic nature of nuclear NeuroD1 levels in pinealocytes
may explain the altered differential day/night expressions
of certain genes in the adult conditional KO mouse [40].

NeuroD1 is not the only pineal phenotype determinant
with an oscillatory profile; Otx2, Pax4, Crx, and Lhx4 also

(A) (B)

Fig. 7. Nuclear and cytoplasmic NeuroD1 protein levels in SCGx and sham pineal glands. Extract proteins from sham and SCGx pineal
glands (PG) collected at ZT14 and cerebellum (Cer) and pancreas (Pan) as positive controls were analyzed for NeuroD1 (ND1), histone
H3 (H3) and actin via Western blot (WB). (A) Representative blot of three independent experiments using different pineal gland pools
from both groups showing a ND1 band of around 50 kDa (black arrow) with the primary antibody N19. The bands for the loading con-
trols are shown in the bottom. CF, cytoplasmic fraction; MW, molecular weight; NF, nuclear fraction. (B) Quantifications expressed as
the mean of the optical density (OD) of ND1 relative to histone H3 in the nuclear fraction or actin in the cytoplasmic fraction, �S.E.M.
Statistics: two-tailed Student’s t-test; *P < 0.05. SCGx, superior cervical ganglionectomy.

(A) (B) (C) (D) (E)

(F) (G) (H) (I) (J)

(K) (L) (M) (N) (O)

Fig. 8. Influence of a- and b-adrenergic receptors on NeuroD1 nuclear–cytoplasmic partitioning in adult rat pinealocytes. NeuroD1
immunoreactivity (ND1, green, fluorescein) and/or nuclear staining with propidium iodide (PI, red) in pineal glands (PG) from adult male
rats treated with vehicle (CON, A–E), the a1-adrenoceptor antagonist prazosin (PRAZ, 1 mg/kg of body weight, F–J), and the b-adreno-
ceptor blocker propranolol (PROP, 1 mg/kg of body weight, K–O). (E, J, O) Graphical representations of ND1- and PI-stained nuclei
densities in D, I, and N, and the range of fluorescence intensities expressed in an arbitrary color scale from 0 to 150 indicated on the right.
Both parameters were affected by antagonist administration; signal intensities were not higher than 70 in the treated PGs. (A, F, K) 609;
scale bar: 30 lm. (B–D, G–I, L–N) 29 enlargements of the insets shown at 609; scale bar: 10 lm.
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(A) (B)

Fig. 9. NeuroD1 is phosphorylated on Ser274 and Ser336 in the adult rat pineal gland. (A) Immunodetection of phosphoSer274-NeuroD1
(pSer274-ND1) via WB and using nuclear (NF) and cytoplasmic (CF) fractions from sham and SCGx pineal glands (PG) at ZT14, and
cerebellum (Cer) and pancreas (Pan) as positive controls. (B) Western blotting for phosphoSer336-NeuroD1 (pSer336-ND1). A specific
band of around 50 kDa is indicated by a black arrow on each blot. Pineal nuclear fractions are enriched in both phosphorylated isoforms.
In pancreas, the distribution of the forms is equal in both compartments. In cerebellum, pSer336-ND1 seems to predominate in the nuclear
fraction. MW, molecular weight; SCGx, superior cervical ganglionectomy.

Fig. 10. Schematic model of the evolving modulatory roles of NeuroD1 in the establishment and maintenance of pinealocyte phenotype.
NeuroD1 is present during the entire ontogeny of the rat pineal gland. During embryonic and early postnatal stages, when the precursor
cells commit to the pinealocyte lineage, the protein has a predominantly nuclear localization that is stable over the light–dark cycle. As
the pinealoblast develops into the immature pinealocyte, a daily rhythm in nuclear–cytoplasmic partitioning appears with the protein in
the cytoplasm during the light phase (above) and moving into the nucleus in the dark phase (below). This daily oscillation in subcellular
localization responds to sympathetic influence. Both the rhythmic partitioning and the autonomic regulation are maintained into adult-
hood. The absence of NeuroD1 in two different KO mouse models caused alterations in the pineal gland transcriptome [39, 40]. Although
NeuroD1 has been shown not to be essential like Pax6, Otx2, and Lhx9, it may be speculated that it interacts in a compensatory or coop-
erative manner with other bHLH and/or homeobox transcription factors to modulate pineal gland development and homeostasis. AdR,
membrane adrenergic receptors; bHLH: basic helix-loop-helix; C, cytoplasm; KO, knockout; N, nucleus; NE, nocturnal norepinephrine;
Nu, nucleolus; ZT, Zeitgeber time.
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show rhythmic variations at the messenger and/or protein
levels [11, 15, 64, 65]. It is likewise reasonable to suspect
that different combinations of these factors could orches-
trate daily rhythms of pineal-specific genes in addition to

their roles in the establishment of pineal phenotype.
NeuroD1 nuclear translocation in insulinoma cells and

cerebellar granular neurons was found to be elicited by its

post-translational modification, specifically, serine phos-
phorylation [47, 54]. However, the effect of specific amino
acid alterations on the NeuroD1 protein varies across spe-

cies and cell types, and opposing outcomes have been
described [56]. Efficient NeuroD1 nuclear import might
also be achieved by synergic heterodimerization with its

partner, transcription factor E [70]. In the context of the
pineal gland, phosphorylation and dephosphorylation are
necessary to maintain an oscillatory physiology. For
example, phosphorylation of the transcription factor

CREB and the rate-controlling enzyme AA-NAT are
required for the nocturnal rise of melatonin; the loss of
these phosphate groups contributes at least partially to the

decline in hormone synthesis late in the dark phase [71,
72]. We therefore investigated the phosphorylation of
pineal NeuroD1 early at night, when it is mainly nuclear.

We observed that NeuroD1 protein is phosphorylated on
at least two different serine residues, Ser274 and Ser336

(Fig. 9).
The effect of each individual modification on multiple

NeuroD1 characteristics – stability, partnering ability,
nuclear–cytoplasmic trafficking, DNA binding, and forma-
tion of transcriptionally active complexes – in the pineal

environment remains to be investigated. It would also be
interesting to examine potential interactions between
adrenergic receptor-activated pathways and those involv-

ing NeuroD1-modifying enzymes. NeuroD1 Ser274 is part
of an ERK1/2 site and also of an overlapping GSK3b con-
sensus sequence, enzymes that could mediate stimulatory

versus inhibitory effects of NeuroD1 by phosphorylating
the same site in different contexts [30, 54–56]. It is likely
that members of the mitogen-activated protein kinase
(MAPK) family also modify NeuroD1 Ser274 in the rodent

pineal gland. This kinase family was found to be closely
connected to cellular pathways activated by adrenergic
receptors in pinealocytes and therefore has been proposed

to be involved in the rhythmic biology of the pineal gland
[73]. Phosphorylation of Ser336 is another important physi-
ological modification of NeuroD1 that has been attributed

to neuronal activity-induced CaMKIIa activity in the cere-
bellum [30, 47]. We are currently investigating the poten-
tial involvement of kinases of the Ca2+/calmodulin-
dependent protein kinase superfamily [74] in pineal

NeuroD1 Ser336 modification. Other post-translational
modifications and target sites have been described for Neu-
roD1, each of them with a context-dependent influence [30,

31, 69]. Together these findings suggest that NeuroD1 is
highly modifiable by different pathways. The rhythmic
influence of NeuroD1 in pineal gland physiology may also

be indirect via temporal interactions with the dominant
negative HLH inhibitor of differentiation (Id) factors,
which dissemble the transcriptionally active complex Neu-

roD1-E from its target genes. At least Id1 was found to
have an oscillatory nature in the rodent pineal gland [75].

In summary, we describe for the first time the ontoge-
netic and daily pattern of NeuroD1 protein in the rat
pineal gland, the influence of sympathetic innervation in
its nuclear–cytoplasmic partitioning, and post-transla-

tional modifications that could finally modulate NeuroD1
transcriptional activity.
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