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ABSTRACT

Modern information technology has enabled collecting data of unprecedented size and

complexity, but it also presents significant challenges to learn from these data. This the-

sis seeks to close some apparent gaps between the growing size of emerging datasets and

the capabilities of existing approaches to statistical modeling and computing. Specifically,

we focus on three problems that arise in learning from high-dimensional data and are of

great use in practice. The first problem is to estimate high-dimensional covariance matrix

for financial assets via the Barra model, which is one of the most widely used risk models

in financial industry. We first study theoretical properties of the Barra model, which have

not been investigated in the literature. A surprising conclusion is that as the sample size

increases, the Barra approach is in fact not asymptotically consistent. To improve the esti-

mation of the Barra approach, we re-interpret the Barra model via the framework of the ran-

dom effects model and propose an EM-like method for estimating the Barra model, which

is consistent and performs well when the number of assets is large. With the estimated

covariance matrix for financial assets, the second problem we investigate is on selecting

stable and sparse portfolios. The `1-norm regularized mean-variance portfolio analysis has

the advantage of simultaneously controlling the estimation error and performing automatic

portfolio selection. We propose an efficient algorithm that combines coordinate descent

and augmented Lagrangian methods to solve the optimization problem. To further reduce

the computational cost, we also propose a novel screening method for solving the `1-norm

regularized optimization problem with an equality constraint. The innovated screening

method is able to save substantial computational cost by quickly identifying and removing

x



the assets that are guaranteed to be zero weighted in the solution. The third problem we

consider is to recover the underlying structure of corrupted low rank matrices. Specifically,

we assume the observed data matrix is the summation of a low rank matrix, a sparse ma-

trix and noise. We propose a series of spectral regularization algorithms, which are easy

to implement and have less computational complexity comparing with existing algorithms.

Convergence properties of the proposed algorithms have also been shown under certain

conditions.
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CHAPTER 1

Introduction

In recent decades, massive amounts of high-dimensional data with complex structures are
produced from various domains, including biology, medicine, engineering, etc. The task
of understanding and extracting useful knowledge from these massive data presents signif-
icant challenges for statistics and machine learning. For example, in the portfolio selection
and allocation problem, investors need to estimate the covariance matrix of returns for
thousands of assets in order to construct an optimal portfolio. In such a case, the data is
high-dimensional but the number of useful samples is usually limited, as longer time series
(larger n) increases modeling bias. Consider corrupted image data as another example. The
goal here is to recover the underlying structure from the corrupted data. A variety of statis-
tical models and optimization techniques have been proposed and developed to address the
high-dimensional issue of these data. Among them, two most widely used ideas are factor-
ization and regularization. In this thesis, we make use of these ideas to develop both flexible
and computationally efficient methods to better understand and explore high dimensional
and complex real datasets. Three problems are discussed in the following chapters.

In Chapter 2, we investigate the problem of estimating high-dimensional covariance
matrix for financial assets using the Barra model. The Barra model is one of the most pop-
ular risk models in financial industry, and the Barra one-step and two-step approaches are
widely used to implement the estimation. In Chapter 2, we first examine theoretical prop-
erties of the Barra model, which have not been studied in the literature. In particular, we
investigate the impact of the sample size (i.e., the number of trading days) and the number
of financial assets on the performance of the Barra model. We show that as the sample size
increases, the Barra approach is in fact not asymptotically consistent. This result is a little
surprising and has never been reported. On the other hand, when the sample size is fixed
and the number of financial assets increases, which is more realistic in practice, we show
that the Barra approach outperforms the sample covariance. To further improve the estima-
tion of Barra approaches, we re-interpret the Barra model via the framework of the random
effects model and propose an EM-like method to estimate the covariance. We show that
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under certain conditions, the new method is asymptotically consistent when the sample size
increases, and when the sample size is fixed while the number of financial assets increases,
the new method performs as well as the traditional Barra approach. Extensive simulation
studies are used to support the theoretical results and compare the Barra approach, the new
method and the sample covariance.

With the estimated covariance matrix for financial assets, the next problem we inves-
tigate in Chapter 3 is on selecting stable and sparse portfolios. Portfolio allocation with
a gross-exposure constraint is an effective way to increase the efficiency and stability of
portfolio selection among a vast pool of assets (Fan, Zhang and Yu, 2012). This prob-
lem can be formulated as a `1-norm regularized mean-variance portfolio criterion and it
has the advantage of simultaneously controlling the estimation error, and performing au-
tomatic portfolio selection. We propose an efficient algorithm that combines coordinate
descent with augmented Lagrangian methods to solve the optimization problem. To further
reduce the computational cost, we also propose a novel screening algorithm for solving the
`1-norm regularized mean-variance analysis via constraining its dual feasible set. The inno-
vated screening method is able to quickly identify the assets that are guaranteed to be zero
weighted in the solution, so that the assets can be safely removed from the optimization.
To the best of our knowledge, this is the first safe screening algorithm that accommodates
equality constraints in sparse learning problems. We demonstrate the effectiveness of the
proposed algorithms using extensive simulation and empirical studies.

In Chapter 4, we consider the situation that outliers or corruptions exist in the observed
high dimensional data. Specifically, we consider the scenario where the data matrix is the
summation of a low rank matrix, a sparse matrix and noise. To recover the low rank matrix,
various convex-optimization-based algorithms, including the well-recognized robust prin-
ciple component analysis, have been proposed for the situation where noise is not assumed.
However, there is a lack of systematic algorithms for the scenario where perturbations/noise
are present. In Chapter 4, we propose a series of spectral regularization algorithms for de-
noising corrupted low rank matrices. Comparing with existing algorithms, the proposed
algorithms are easy to implement and have less computational complexity. Convergence
properties for the proposed algorithms have also been shown under certain conditions. Nu-
merical results support the applicability of the proposed algorithms in practice.
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CHAPTER 2

High Dimensional Covariance Matrix
Estimation via the Barra Model

2.1 Introduction

2.1.1 Background

Covariance matrices and their inverses play a key role in portfolio allocation and risk man-
agement. For example, when determining a proper asset allocation, one aims at maximizing
the expected return and at the same time minimizing the risk, which depends on the covari-
ance matrix of the financial assets. The most classic estimate for the covariance matrix is
the sample covariance

Σ̂sam =
1

n− 1

n∑
i=1

(ri − r̄)(ri − r̄)′, (2.1)

where ri, i = 1, . . . , n are n asset returns. More recently, Ledoit and Wolf (2004) intro-
duced a shrinkage sample covariance estimate, which is an asymptotically optimal convex
linear combination of the sample covariance matrix and the identity matrix. Optimality
is in the sense with respect to a quadratic loss function. A main benefit of the shrinkage
estimate is that it is invertible when the number of assets is larger than the sample size
n, and the inversion does not amplify estimation error. Specifically, the shrinkage sample
covariance can be expressed as

Σ̂shk = ρ1Ip + ρ2Σ̂sam, (2.2)

where Ip is the identity matrix, ρ1 and ρ2 are chosen such that Σ̂shr minimizes a quadratic
loss. In the context of financial risk management, both the sample covariance and the
shrinkage sample covariance only use the returns of the assets, while not using other avail-
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able information such as the risk attributes.
To address this issue, multi-factor models have been proposed to describe asset re-

turns and their covariance matrix as functions of a limited number of risk attributes. Sharp
(1963), Lintner (1965) and Mossin (1966) introduced the Capital Asset Pricing Model
(CAPM) independently, which uses the stock beta to determine a theoretically appropri-
ate required rate of return of an asset. This model only involves one relevant risk measure,
which does not adequately explain the variation in stock returns. To further improve the
CAPM, Ross (1976) posited the Arbitrage Pricing Theory (APT), which is a more gen-
eral multi-factor structure for the return generating processes. This theory has been widely
used. A specific example is Fama and French (1992), which identified the price to book
value ratio and the market capitalization (in addition to the stock beta) to evaluate stock
returns.

Another advantage of the multi-factor model arises when we deal with high dimensional
assets. In practice, longer time series (larger n) increase modeling bias; thus, the number
of stocks p is usually of the same order or even higher order compared to the sample size
n. Under the multi-factor model, the high dimensional assets will be projected to low
dimensional factors, resulting in a significant reduction on the number of parameters that
we need to estimate.

In general, multi-factor models posit that the period returns of different assets are ex-
plained by common factors in a linear model. The asset returns are relevant to the factors
according to the sensitivities of a specific asset to them. In addition, they are relevant to
another component, the so-called specific returns, which are assumed to be independent of
the factor returns. Specifically, a multi-factor model for a relevant asset can be expressed
as

Rj = bj1F1 + · · ·+ bjKFK + εj, j = 1, . . . , p, (2.3)

where Rj is the return of the jth asset; p is the number of financial assets; bjk is the sensi-
tivity of asset j to factor k, which is also called factor loading; F1, . . . , FK are K factors;
and εj is the specific return of the asset j, which plays the same role as noise in the linear
model.

With some blurring at the boundaries, multi-factor models of asset returns can be di-
vided into three types: the macroeconomic factor models, the statistical factor models and
the fundamental factor models.

The macroeconomic factor models are the simplest and most intuitive type among
multi-factor models. They use observable economic time series as measures of factors
in asset returns. Simply speaking, the factors F1, . . . , FK can be observed at each time
point, but the factor loadings are not observed. This kind of factor model has been studied
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in the literature for a long time. Sharp (1963) first analyzed the single factor model; Chen,
Roll and Ross (1986) provided a description of commonly used macroeconomic factors for
equity. A series of papers, such as Fan and Li (2006), Fan, Fan and Lv (2008), Fan and
Lv (2010), and Fan, Liao and Mincheva (2011), which discussed the properties of the esti-
mators of covariance matrix with a diverging number of parameters, are also based on this
kind of macroeconomic factor models. In particular, Fan, Fan and Lv (2008) established
asymptotic properties for both the estimator of the macroeconomic factor model and the
traditional sample covariance estimator. However, a necessary assumption for the macroe-
conomic factor models is that the observations or measurements of factors are known,
which is not always easy in practice.

The second common method for estimating factor models is the statistical factor analy-
sis. In this type of approach, both the loadings and the factors are estimated simultaneously.
Various maximum-likelihood and principal-components-based factor analysis procedures
on cross-sectional/time-series samples of asset returns to identify the factors have been
proposed to analyze the statistical factor models. See Anderson (1963), Priestley, Rao and
Tong (1974), Brillinger (1981), Peña and Box (1987), Chamberlain and Rothschild (1983),
Johnson and Wichern (2002), Bai (2003), Forni et al. (2000, 2004, 2005), Pan and Yao
(2008) and Lam and Yao (2011), for references. This approach can on one hand, “opti-
mally” explain the past, but on the other hand, can hardly be interpreted in finance.

The third kind of multi-factor models is the fundamental factor analysis. This kind
of factor models rely on the empirical findings including company attributes such as firm
size, dividend yield, book-to-market ratio, and industry classification which explain a sub-
stantial proportion of common returns. In contrast with macroeconomic factor models,
all bij can be observed from the empirical data, but the F1, . . . , FK can be regarded as a
kind of unobservable returns. The two most popular fundamental factor models are the
Barra model and Fama-French model. The Barra model was proposed by Barr Rosenberg
(Rosenberg, 1974), founder of Barra Inc., and the estimation procedure was named as the
Barra approach by Grinold and Kahn (2000). Barra products, one of the star products of
MSCI Barra, Inc., are powered by the Barra model. On the other hand, the Fama-French
model has been studied more in the literature. The main idea of Fama-French model is
that the factor realization Fk for a given fundamental is obtained by constructing some
hedge portfolio based on observed fundamentals. This model is estimated by a two-stage
cross-sectional regression method. Fama and MacBeth (1973) suggested conducting cross-
sectional regression for each stage and then treating the estimates as independent samples
of the estimated parameters. Jagannathan and Wang (1998) derived the asymptotic distri-
bution of the estimators for the Fama-French model.
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Connor (1995) and Sheikh (1996) made a comparison between the three kinds of multi-
factor models. Connor (1995) pointed out that the fundamental factor model slightly out-
performs the statistical factor model, and substantially outperforms the macroeconomic
factor model in the sense of explanatory power. Sheikh (1996) showed that Barra’s pre-
dicted betas are clearly better predictors of future betas compared to the rest of the models.
However, a little surprising to us, there is not much literature directly discussing the prop-
erties of the Barra model, especially theoretical properties, which deserve attention.

Besides the multi-factor models we mentioned above, a variety of regularization meth-
ods, including banding, tapering, thresholding and penalization, have been introduced for
estimating several classes of covariance and precision matrices with different structures.
See, for example, Bickel and Levina (2008a), Bickel and Levina (2008b), Cai and Liu
(2011), Cai et al. (2013), Lam and Fan (2009) and Ravikumar et al. (2011), among many
others.

In this chapter, we focus on studying the Barra model. We re-interpret the Barra model
in the framework of the linear random effects model, develop a new algorithm for estimat-
ing the Barra model, and also develop theoretical properties of the Barra estimates.

2.1.2 The Barra factor model

Let p be the number of financial assets, and F1, . . . , FK be the K factors. We rewrite the
factor model in matrix form as

r = Bf + ε, (2.4)

where r = (R1, . . . , Rp)
′, B = (b1, . . . ,bp)

′ with bj = (bj1, . . . , bjK)′, j = 1, . . . , p,
f = (F1, . . . , FK)′, and ε = (ε1, . . . , εp)

′. In the Barra model, we assume B is observed
from the empirical findings regarding the company attributes, whereas factors F1, . . . , FK

are not observed. We assume both f and ε are random variables. Throughout we assume
that E(ε|f) = 0 and cov(ε|f) = Σε is diagonal but not necessarily homogeneous. In
this work, we are interested in estimating the covariance matrix of returns, denoted by Σ.
Simple calculation shows that

Σ = cov(r) = Bcov(f)B′ + Σε. (2.5)

A natural idea for estimating Σ is to first estimate fj and εj , j = 1, . . . , p using least
squares regression, then estimate cov(f) and Σε using sample covariance. Therefore, we
have a plugged-in estimate Σ̂ = Bĉov(f)B′ + Σ̂ε.

Suppose we have observations r1, . . . , rn on n days. Let (f1, ε1), . . . , (fn, εn) be inde-
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pendent and identically distributed (i.i.d.) samples of (f , ε) and denote

F = (f1, . . . , fn), E = (ε1, . . . , εn) and R = (r1, . . . , rn).

There are two methods to estimate the factors and specific returns. One simpler way is
to use the ordinary least squares (OLS) estimation. While the covariance matrix of ε is not
homogeneous, one might suggest to apply the weighted least squares (WLS) to estimate the
factors instead of OLS. Note that in the second method, OLS is also a necessary step. We
refer the OLS method as the Barra one-step approach, and the WLS method as the Barra
two-step approach. Specifically, the Barra one-step approach proceeds as follows

F̂o = (B′B)−1B′R, (2.6)

Êo = R−BF̂o, (2.7)

ĉov(f)o =
1

n− 1
(F̂oF̂

′
o −

1

n
F̂o11′F̂′o), (2.8)

Σ̂ε,o = diag(
1

n
ÊoÊ

′
o), (2.9)

Σ̂o = Bĉov(f)oB
′ + Σ̂ε,o, (2.10)

where the subscript o is used to denote the OLS estimate.
Given Σ̂ε,o, the Barra two-step approach estimates F in a slightly different way,

F̂w = (B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,oR, (2.11)

Êw = R−BF̂w, (2.12)

ĉov(f)w =
1

n− 1
(F̂wF̂′w −

1

n
F̂w11′F̂′w), (2.13)

Σ̂ε,w = diag(
1

n
ÊwÊ′w), (2.14)

Σ̂w = Bĉov(f)wB′ + Σ̂ε,w, (2.15)

where the subscript w is used to denote the WLS estimate.
Note that in practice, B may not be the same for different i, especially when a number

of factors are involved. The estimates in the case with different Bi’s are similar to the
above. The details are given in the Appendix.
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2.1.3 Random effects model

In this subsection, we point out a connection between the Barra model and the random
effects model. Harville (1977) proposed the random effects model,

y = Xα + Zb + e, (2.16)

where y is a p × 1 vector, X and Z are p × r and p × s matrices respectively, α is a
r × 1 vector of unobservable parameters, which are referred as fixed effects, b is a s × 1

vector of unobservable random effects, and e is a p × 1 vector of unobservable random
errors. The model assumes E(b) = 0, E(e) = 0, and cov(b, e) = 0. Let V = var(y),
then V = ZDZ′ + E, where D = var(b), and E = var(e). We see that if X = 0, this
model is similar to the Barra model. The main difference is the assumption for the error
term. In the random effects model, E = σ2I is often assumed, while in the Barra model,
the diagonal elements of Σε are not necessary the same. In terms of estimating the random
effects model, the maximum likelihood approach and the restricted maximum likelihood
approach are among the most popular ones, which have been discussed extensively in the
literature such as Harville (1976, 1977), Dempster, Rubin and Tsutakawa (1981).

2.1.4 Major results

We first prove theoretical properties of the Barra approaches with diverging sample size
and asset size for the purpose of covariance matrix estimation. Inspired by the connection
between the Barra model and the random effects model, we then propose an EM approach
to estimate the covariance matrix. The performances of the Barra approaches, the EM
approach and the sample covariance estimation are compared, which lead to the following
major results:

• The sample covariance estimate is consistent under the Barra model as the sample
size tends to infinity, while both the Barra one-step estimator Σ̂o and two-step esti-
mator Σ̂w are not consistent.

• The inverse of the covariance matrix estimator based on the Barra approaches cannot
be consistent. However, this does not necessarily mean that the Barra model is not
useful. When the number of assets p is close to the sample size n or of higher order
than n, the performances of the Barra estimators are much better than the sample
covariance estimator or the shrinkage sample covariance estimator.
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• Under some regularity conditions, we show that the MLE of the Barra model is con-
sistent. Hence, when an EM-like algorithm is used to approximate the MLE, we
obtain a consistent estimator Σ̂EM . The new estimator performs well in both n is
greater than p and p is greater than n scenarios.

2.1.5 Outline of the Chapter

In Section 2.2, we state the basic assumptions and present the theoretical properties of Σ̂o,
Σ̂w and Σ̂sam. Construction and properties of the MLE of the Barra model and the EM
approach are discussed in Section 2.3. In Section 2.4, simulation studies are presented,
which support the theoretical results. We conclude the results in Section 2.5. All proofs are
given in the Appendix.

2.2 Theoretical results for the Barra approaches

Throughout the chapter, we use the Frobenius norm as our major measure for matrix norms,
which is given by

||A|| = {tr(AA′)}1/2, (2.17)

for any matrix A = (aij). In particular, if A is a q × q symmetric matrix, ||A|| =

{
∑q

i=1 λi(A)2}1/2, where λ1(A), . . . , λq(A) are the q eigenvalues of A in decreasing or-
der. The Frobenius norm as well as many other matrix norms (Horn and Johnson, 1985)
are intrinsically related to the eigenvalues or singular values of matrices.

2.2.1 Basic assumptions

Let b = E||R||2, c = max1≤k≤KE(F 4
k ), and d = max1≤j≤pE(ε4j).

(A) f1, . . . , fn are n i.i.d. samples of factors f , E(ε|f) = 0 and cov(ε|f) = Σε is diag-
onal, and for simplicity, we assume normality for ε, i.e. ε ∼ N(0,Σε). Also, the
distribution of f is continuous and K ≤ p.

The first and second parts are usual assumptions, and the normality of ε is also com-
mon. The assumption that f has a continuous distribution is made to ensure the
matrix FF′ is invertible with probability one when p ≥ K.

(B) b = O(p) and c and d are bounded.
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E||R||2 =
∑p

j=1Er
2
j , so b = O(p) is a reasonable assumption. In addition, the

assumptions of the boundedness of the fourth moments of f and ε help facilitate the
study of cov(f) and Σε.

(C) The number of assets p is of a polynomial order of the sample size n.

This assumption is fair because p is hard to exceed the polynomial order of n in
practice, though p can be much larger than n.

(D) There exists a constant σ1 > 0 such that λK(cov(f)) > σ1.

(E) There exists a constant σ2 > 0 such that λp(Σε) > σ2.

(F) If we consider multi-factor models with constant B, there exists a constant δ > 0

such that |λK(B′B)| > δ.

The above three assumptions are helpful to the study of the inverse of the covariance
matrix, which are also commonly used in literature.

2.2.2 Main results

Theorem 2.2.1 (Lower bounds of covariance estimators for factors). Under conditions

(A)-(F), asymptotically, we have

||ĉov(f)o − cov(f)||F ≥ c1u, (2.18)

||ĉov(f)w − cov(f)||F ≥ c2u, (2.19)

where c1 and c2 are positive constants and u = ||(B′B)−1B′ΣεB(B′B)−1||F .

Theorem 2.2.2 (Lower bounds of covariance estimators for specific returns). Under con-

ditions (A)-(F), asymptotically, we have

||Σ̂ε,o −Σε||F ≥ c3v, (2.20)

||Σ̂ε,w −Σε||F ≥ c4v, (2.21)

where c3 and c4 are positive constants, and v = ||diag(HΣεH)− diag(HΣε + ΣεH)||F .

Theorem 2.2.3 (Lower bounds of covariance estimators for returns). Under conditions

(A)-(F), we have

||Σ̂o −Σ||F ≥ c5w, (2.22)

||Σ̂w −Σ||F ≥ c6w, (2.23)
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where c5 and c6 are positive constants, and w = ||HΣεH + diag(HΣεH)− diag(HΣε +

ΣεH)||F .

Theorem 2.2.1 and Theorem 2.2.2 indicate that the Frobenius errors of the covariance
estimators for factors and specific returns based on the Barra one-step and two-step ap-
proaches are lower bounded. In general, u and v are greater than 0. To see it, we consider
a simple example. Suppose B represents indicators for exclusive company attributes, that
is, each row of B has only one 1, but all the rest are 0s. Denote b1, · · · , bK as the numbers
of companies associated to the attributes. Further suppose Σε is the identity matrix. Then
we can compute u and v, i.e. u = (

∑K
k=1 1/b2

i )
1/2 and v = (

∑K
k=1 1/bi)

1/2. This shows the
inconsistency of the covariance estimators for factors and specific returns, and the lower
bounds are determined by the factor loading B and Σε. Furthermore, since the way we
estimate Σ is by plugging in ĉov(f) and Σ̂ε, the Barra one-step and two-step estimators
for Σ cannot be consistent either, which is shown in Theorem 2.2.3. Note that w can be
also computed in the illustrative example above, which is greater than 0. It seems that this
fact has never been reported, and it implies that when the sample size n is large, the Barra
approaches may not be a good choice to estimate the covariance matrix.

Theorem 2.2.4 (Rates of covariance estimators for factors). Under conditions (A)-(F), we

have

||ĉov(f)o − cov(f)||F = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2), (2.24)

||ĉov(f)w − cov(f)||F = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2). (2.25)

Theorem 2.2.5 (Rates of covariance estimators for specific returns). Under conditions (A)-

(F), we have

||Σ̂ε,o −Σε||F = Op(n
−1/2p1/2) +Op(p

1/2K1/2), (2.26)

||Σ̂ε,w −Σε||F = Op(n
−1/2p1/2) +Op(p

1/2K1/2). (2.27)

The above two theorems indicate the upper bounds on the Frobenius norm error of
covariance estimators for factors and specific returns based on the Barra one-step and two-
step approaches. Note that all bounds contain one convergent term and one extra term
Op(p

1/2K1/2), and the inconsistency is bounded by Op(p
1/2K1/2).

Theorem 2.2.6 (Rates of covariance estimators for returns). Under conditions (A)-(F), we
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have

||Σ̂o −Σ||F = Op(n
−1/2pK) +Op(p

1/2K1/2), (2.28)

||Σ̂w −Σ||F = Op(n
−1/2pK) +Op(p

1/2K1/2), (2.29)

||Σ̂sam −Σ||F = Op(n
−1/2pK). (2.30)

Based on Theorems 2.2.1-2.2.5, it is not difficult to show Theorem 2.2.6. As discussed
above, the Barra one-step and two-step estimators for covariance of returns are not consis-
tent; further, the inconsistency is bounded by a term unrelated with n, i.e. Op(p

1/2K1/2).
On the other hand, the sample covariance estimator is bounded by a convergent term, so
that when n tends to infinity, the difference between the sample covariance estimator and
the true covariance goes to zero. Therefore, in the sense of asymptotic properties of co-
variance matrix estimators, the sample covariance estimator is likely to be better than the
Barra estimators. Note that the highest order of p in the above bounds are the same for
all three estimators, which implies with fixed n, it is not necessary that the sample covari-
ance estimator is better than the others. We will show more comparisons in the simulation
section.

Theorem 2.2.7 (Rates of inverse-covariance estimators for returns). Under conditions (A)-

(F), we have

||Σ̂
−1

o −Σ−1||F = Op(n
−1/2p5/4K5/4) +Op(pK), (2.31)

||Σ̂
−1

w −Σ−1||F = Op(n
−1/2p5/4K5/4) +Op(pK), (2.32)

||Σ̂
−1

sam −Σ−1||F = Op(n
−1/2p2K). (2.33)

Besides, the inverse of the covariance matrix is also quite important in financial risk
management. One classic application is in determination of portfolio allocation. The in-
consistency of the Barra estimators for the inverse of the covariance matrix inherits from
that for the covariance matrix, whereas the inverse of sample covariance matrix estimator
is again consistent. From this perspective, Barra estimators are not as good as the sample
covariance matrix when n is large. On the other hand, if we do not require that n tends to
infinity, but consider the case with increasing p, the order of p will dominate the perfor-
mance of different estimators. In that case, Σ̂

−1

o and Σ̂
−1

w perform much better than Σ̂
−1

sam,
benefiting from the order of p. Since this is the more common situation in practice, the
Barra approaches have an advantage over the sample covariance in real life, especially for
estimating the inverse of the covariance matrix.

We have also conducted theoretical analysis in the case with changing Bi’s. Similar

12



conclusions can be drawn, and the details are given in the Appendix.

2.3 New estimation method based on the random effects
model

2.3.1 The MLE of the random effects model

Because of the connection between the Barra model and the random effects models, we
leverage theoretical results for the random effects models and apply them to the Barra
model. Discussion on the random effects model in the literature often make use of the
maximum likelihood estimation, and it is well-known that the MLE enjoys good theoreti-
cal properties such as consistency with fixed dimension p, but it is not obvious for the case
with diverging p. Here, we study the properties of the MLE for the Barra model, with in-
creasing n and p. We assume that the factors fi’s are from a multivariate normal distribution
N(0,Σf ), then the likelihood function of the Barra model can be written as

Ln(Σf ,Σε|ri) =
n∏
i=1

(2π)−p/2|BΣfB
′ + Σε|−1/2exp{−1

2
r′i(BΣfB

′ + Σε)
−1ri}. (2.34)

The next theorem illustrates the convergence rates of the maximum likelihood estimators.

Theorem 2.3.1 (Rates of convergence of MLE). Under regularity conditions Assumption

1 to Assumption 3, there exists a local maximizer of (2.34), such that

||Σ̂f −Σ∗f ||F = Op(n
−1/2K(logK)1/2) and ||Σ̂ε −Σ∗ε ||F = Op(n

−1/2(plogp)1/2).

Furthermore,

||Σ̂−Σ∗||F = Op(n
−1/2pK(logK)1/2), (2.35)

||Σ̂
−1
−Σ∗−1||F = Op(n

−1/2plogpK1/2) +Op(n
−1/2p1/2K3/2(logK)1/2), (2.36)

where Σ∗f , Σ∗ε and Σ∗ are the true values.

Theorem 2.3.1 implies that the MLE approach provides consistent estimators for Σf

and Σε, and as a result, for Σ as well. Note that first, Σ̂ works better than Σ̂o and Σ̂w

when n is large because of the consistency. Second, Σ̂
−1

enjoys a lower order of p than
Σ̂
−1

o and Σ̂
−1

w . This implies that the MLE out-performs the Barra estimators in both cases
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when sample size is large and when asset size is growing with the sample size. Compared
to Σ̂sam, the convergence rate of covariance estimators are the same, in terms of n and
p, but as for inverse-covariance estimators, Σ̂

−1
performs much better than Σ̂

−1

sam when p
increases. Overall, to some extent, the MLE overcomes the drawbacks of both the Barra
estimators and the sample covariance.

2.3.2 EM approach

Much research have been done on exploring the MLE of the random effects model. For
example, Laird and Ware (1982) discussed a unified approach based on a combination
of empirical Bayes and maximum likelihood estimation of model parameters using the
EM algorithm. Inspired by the EM algorithm, we construct a new estimation approach to
approximate the maximum likelihood estimator.

Because of the normality and the transformation(
fi

ri

)
=

(
I 0

B I

)(
fi

εi

)
,

(
εi

ri

)
=

(
0 I

B I

)(
fi

εi

)
,

we obtain the joint distributions(
fi

ri

)
∼ N

((
0

0

)
,

(
Σf ΣfB

′

BΣf BΣfB
′ + Σε

))
,

and (
εi

ri

)
∼ N

((
0

0

)
,

(
Σε Σε

Σε BΣfB
′ + Σε

))
.

Then the conditional distributions are given by

fi|ri ∼ N(ΣfB
′(BΣfB

′ + Σε)
−1ri,Σf −ΣfB

′(BΣfB
′ + Σε)

−1BΣf ),

εi|ri ∼ N(Σε(BΣfB
′ + Σε)

−1ri,Σε −Σε(BΣfB
′ + Σε)

−1Σε).
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By Sherman-Morrison formula

(BΣfB
′ + Σε)

−1 = Σ−1
ε −Σ−1

ε B(B′Σ−1
ε B + Σ−1

f )−1B′Σ−1
ε ,

we can simplify the above formulas as

E(fi|ri) = (B′Σ−1
ε B + Σ−1

f )−1B′Σ−1
ε ri,

Var(fi|ri) = (B′Σ−1
ε B + Σ−1

f )−1,

E(εi|ri) =
[
I−B(B′Σ−1

ε B + Σ−1
f )−1B′Σ−1

ε

]
ri,

Var(εi|ri) = B(B′Σ−1
ε B + Σ−1

f )−1B′.

Based on the conditional mean and conditional variance, the estimators for covariance
matrices can be constructed through

Σ̂f = V̂ar(E(fi|ri)) + Ê(Var(fi|ri)),

Σ̂ε = V̂ar(E(εi|ri)) + Ê(Var(εi|ri)).

Therefore, by plugging in the conditional expectation and conditional variance, we propose
another way to estimate the covariance matrix. The nested structure demands an iterative
procedure as follows,

f̂i = Ê(fi|ri) = (B′Σ̂
−1

ε B + Σ̂
−1

f )−1B′Σ̂
−1

ε ri, (2.37)

ε̂i = Ê(εi|ri) =
[
I−B(B′Σ̂

−1

ε B + Σ̂
−1

f )−1B′Σ̂
−1

ε

]
ri, (2.38)

Σ̂f = V̂ar(E(fi|ri)) + Ê(Var(fi|ri)) =
1

n

n∑
i=1

f̂if̂
′
i + (B′Σ̂

−1

ε B + Σ̂
−1

f )−1, (2.39)

Σ̂ε = V̂ar(E(εi|ri)) + Ê(Var(εi|ri)) = diag

[
1

n

n∑
i=1

ε̂iε̂
′
i + B(B′Σ̂

−1

ε B + Σ̂
−1

f )−1B′

]
.

(2.40)

We stop the iteration when the following two criteria are satisfied

||Σ̂
(t+1)

f − Σ̂
(t)

f ||2F < δ (2.41)

||Σ̂
(t+1)

ε − Σ̂
(t)

ε ||2F < δ, (2.42)

where t is the iteration index, and δ is a pre-specified small number.
Note that this iterative approach is intrinsically an EM-like algorithm. Specifically, let
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Θ denote the unknown parameter, which includes (σ2
1, σ

2
2, . . . , σ

2
p,Σf ). If we observed

fi and εi in addition to ri, we could easily find simple closed-form maximum likelihood
estimates of the components of Θ, given by

σ̂2
j =

[
1

n

n∑
i=1

εiε
′
i

]
jj

, (2.43)

and

Σ̂f =
1

n

n∑
i=1

fif
′
i . (2.44)

We denote t1 = diag( 1
n

∑n
i=1 εiε

′
i) and t2 = 1

n

∑n
i=1 fif

′
i . Hence, t1 and t2 are “sufficient

statistics” for Θ. The maximum likelihood estimation based on observed sufficient statistics
leads to the M-step of the EM algorithm.

If an estimate of Θ is available, we can use it to calculate “estimates” of the miss-
ing “sufficient statistics”, by setting them equal to their expectations, conditional on the
observed data vector R. Let Θ̂ denote the estimate of Θ, Σ̂ε(Θ) and Σ̂f (Θ) the corre-
sponding estimates of Σε and Σf , and t̂1 and t̂2 the “estimated sufficient statistics”. Then,
we have

t̂1 = E

[
diag(

1

n

n∑
i=1

εiε
′
i)|ri, Θ̂

]
= diag

[
1

n

n∑
i=1

ε̂iε̂
′
i + B(B′Σ̂ε(Θ)−1B + Σ̂f (Θ)−1)−1B′

]
,

(2.45)

and

t̂2 = E

[
1

n

n∑
i=1

fif
′
i |ri, Θ̂

]
=

1

n

n∑
i=1

f̂if̂
′
i + (B′Σ̂ε(Θ)−1B + Σ̂f (Θ)−1)−1. (2.46)

This is the E-step of the EM algorithm.
Note that we iterate between equation (2.43)-(2.44) and (2.45)-(2.46), it is equivalent

to iterate between equation (2.37)-(2.38) and (2.39)-(2.40). Thus, we call our method the
EM approach.

2.4 Simulation studies

In this section, we use simulation studies to illustrate our theoretical results and also to
demonstrate finite-sample performance of the estimators for Σ as well as Σ−1.
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We set the number of factors K = 5 in our simulation studies, leading to the model

Rj = bj1F1 + bj2F2 + bj3F3 + bj4F4 + bj5F5 + εj, j = 1, . . . , p. (2.47)

To make the simulation mimic real life, we generate the parameters based on a real dataset.
Specifically, we collect the S&P 500 monthly data from 2000 to 2012. We set B to contain
the companies’ industry classification, and keep those companies that form the 5 largest
industries. Then we fit the Barra model to obtain cov(f) and Σε. The estimated cov(f) in
Table 2.1. The median of the estimated variance of specific returns is 0.00693.

Table 2.1: cov(f)× 104

9.827 3.406 -3.938 2.001 5.378
3.406 19.507 -0.860 2.510 -8.940
-3.938 -0.860 12.673 -2.151 -5.713
2.001 2.510 -2.151 6.073 -3.355
5.378 -8.940 -5.713 -3.355 46.348

The case with n increasing, while p and K being fixed

First, we explore the influence of the sample size n on different estimators. Fixing the
number of assets p at 100, we increase n from 1000 to 2 × 105. We randomly choose 100
companies affiliated to 5 industries, and record the respective B and Σε. Then for each
replication, we do the following:

• Generate a random sample of f = (F1, F2, F3, F4, F5)′ with size n from the 5-variate
normal distribution N(0, cov(f)).

• Generate a random sample of ε = (ε1, . . . , εp)
′ with size n from the p-variate normal

distribution N(0,Σε).

• Using equation (2.47), we get a sample of r = (R1, . . . , Rp)
′ with size n.

• Using the Barra one-step approach and two-step approach, the EM approach, and sample
covariance, we compute the estimates for the covariance matrix and the inverse of the co-
variance matrix, denoted by Σ̂o, Σ̂

−1

o , Σ̂w, Σ̂
−1

w , Σ̂EM , Σ̂
−1

EM , Σ̂sam, and Σ̂
−1

sam respectively.
Then we compute the difference between the estimate and the true covariance matrix with
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respect to the Frobenius norm.
We repeat the above simulation 50 times for each n and report the mean of the Frobenius

error in Figure 2.1 (for covariance) and Figure 2.2 (for the inverse of the covarince).
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Figure 2.1: The number of assets p is fixed at 100. Left panel: The average error for
estimating Σ over 50 replications. Right panel: The average error under logarithmic scale.
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Figure 2.2: The number of assets p is fixed at 100. Left panel: The average error for
estimating Σ−1 over 50 replications. Right panel: The average error under logarithmic
scale.

We can see the errors of the two Barra estimates level off as n increases, indicating they
are not consistent. This agrees with the result in Theorem 2.2.6. On the other hand, the
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errors of the EM estimate and the sample covariance decrease as n increases. The right
panel at Figure 2.1 indicates that the slope for Σ̂EM is similar to that for Σ̂sam, verifying
the rate of the convergence results of Theorem 2.3.1.

Figure 2.2 demonstrates similar patterns, but now for estimates of the inverse of the
covariance.

The case with p increasing, while n and K being fixed

In this section, we explore the influence of the number of assets p on different estimators.
We consider two scenarios. In the first scenario, we study the case when p is less than n.
Fixing the sample size n at 1000, we increase p from 100 to 900. In the second scenario,
we study the case when p is larger than n, where we fix n at 100 and increase p from 100
to 1000. Note that when p is larger than n, the sample covariance is not invertible, and we
use the shrinkage sample covariance Σ̂shk (Ledoit and Wolf, 2004) instead. The simulation
procedure is similar to the previous one, but we need to generate different B and Σε for
different p, where we use sample with replacement. Again, we repeat the process 50 times
for each p, and report the mean of the Frobenius norm error in Figure 2.3 (for covariance)
and Figure 2.4 (for the inverse of the covariance).
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Figure 2.3: Left panel: The average error for estimating Σ with n = 1000. Right panel:
The average error for estimating Σ with n = 100.

Figure 2.3 shows that when n is fixed and p increases, the performances of different
estimates all degrade, with the sample covariance performing the worst and all estimates
estimates degrading at about the same rate. The EM estimate performs the best, though the
difference from the two Barra estimates is not large, and the gap gets smaller as p increases.
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Figure 2.4: Left panel: The average error for estimating Σ−1 with n = 1000. Right panel:
The average error for estimating Σ−1 with n = 100.

In Figure 2.4, the patterns for the inverse covariance estimates are similar, except that
the sample covariance (when n > p) degrades the most quickly. The EM estimate still
performs the best, though again the difference from the two Barra estimates is not large.

2.5 Conclusion

This chapter studies different approaches for estimating the covariance matrix of financial
assets via the Barra model. Both the covariance matrix and the inverse of the covariance
are fundamental in financial risk management. The Barra estimates are widely used in
industry, but it turns out they are not consistent. We re-interpret the Barra model via the
framework of random effects model, and propose an EM approach to estimate the Barra
model. The EM estimate inherits good properties of the MLE of the random effects model,
is consistent.

In practice, however, the sample size n is often not very large, whereas the number of
financial assets p is usually close to n or even larger than n. In this scenario, in partic-
ular for estimating the inverse covariance matrix, our simulation studies indicate that the
Barra estimates and the EM estimate are better than the sample covariance. Our theoret-
ical properties also indicate that the EM estimate performs slightly better than the Barra
estimates.
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CHAPTER 3

A Screening Method for Sparse and Stable
Portfolio Selection

3.1 Introduction

Modern portfolio theory (MPT) addresses the issue on how risk-averse investors can con-
struct portfolios to optimize or maximize the expected return based on a given level of risk.
It is also called the mean-variance analysis, and has been a fundamental problem in fi-
nance ever since Markowitz (1952, 1959) laid down the groundbreaking work. Markowitz
(Markowitz, 1952) posed the mean-variance analysis as solving a quadratic linear problem,
i.e.

minimize
γ

2
wTΣw − µTw,

subject to wT1 = 1,
(3.1)

where w ∈ Rp is the portfolio allocation vector, Σ ∈ Rp×p is the covariance matrix of the
returns on the assets in the portfolio, µ ∈ Rp is a vector of expected asset returns, and γ is a
coefficient for relative risk aversion. The optimization involves minimizing the risk wTΣw

and maximizing the expected return µTw on the portfolio. The work by Markowitz (1959)
in the theory of financial economics leads to the celebrated capital asset pricing model
(CAPM), developed by Sharpe (1964), Lintner (1965), and Black (1972). Thus, it is often
referred as a milestone of modern finance.

On the other hand, there are also documented facts that the Markowitz portfolio is sen-
sitive to errors in the estimates of the inputs, namely the expected return and the covariance
matrix. The problem gets more severe when the portfolio size is large. To address this
sensitivity problem, two kinds of efforts have been made. First, methods have been pro-
posed to reduce the variation of estimates for the Markowitz portfolio input parameters.
For example, Jorion (1986), Chopra and Ziemba (1993) proposed a Bayes-Stein estimate
and James-Stein estimate for the expected return respectively. In terms of the covariance
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matrix, Ledoit and Wolf (2004) proposed to shrink the sample covariance matrix to achieve
a more stable covariance estimate. Fan, Fan and Lv (2008) also developed the covariance
matrix estimate based on macroeconomic factor model.

The other type of approaches try to modify the Markowitz mean-variance optimization
problem, by imposing additional constraints on the portfolio weights, such that the resulting
allocation depends less sensitively on the input parameters. For example, Jagannathan and
Ma (2003) studied the no-short-sale constraint and found that such constraints improve the
empirical performance of portfolios. Fan, Zhang and Yu (2012) proposed a gross-exposure
constraint on the portfolio weights, i.e. ||w||1 ≤ c. They showed that the estimation error is
bounded by a quadratic function of the `1 norm of portfolio weights, and thus constraining
the portfolio norm can effectively constrain the estimation error. In solving the optimization
problem, they developed an approximate solution path to the risk minimization problem
taking advantage of the LARS-LASSO algorithm. However, the solution is not exact, and
the quality of the approximation is not clear.

In this chapter, we follow the approach taken by Fan, Zhang and Yu (2012) and consider
the following `1-norm regularized mean-variance analysis:

minimize
γ

2
wTΣw − µTw + λ||w||1,

subject to wT1 = 1.
(3.2)

Note that because of the regularization on the norm of w, the gross exposure of the port-
folio is controlled, such that extreme long and short positions can be avoided, and thus the
portfolio allocation can be stabilized. Further, due to the `1 norm of w, many elements of
the solution to (3.2) will be exactly zero. This leads to automatic asset selection and has
practical advantages for portfolio management. We make two contributions in this chapter.
First, we propose an efficient algorithm that solves (3.2) exactly. Further, we develop a
screening method that can identify zero elements of the solution before solving the opti-
mization problem, and thus solving (3.2) in a much reduced space is even more efficient in
terms of both computing time and memory storage.

The rest of this chapter is organized as follows. We develop an efficient algorithm for
solving (3.2) in Section 3.2. In Section 3.3, we propose a screening method that effectively
reduced the dimension of w by quickly identifying zero elements of the solution. The
performance of proposed algorithms are illustrated by simulation studies in Section 3.4
and by real data in Section 3.5. In Section 3.6, we provide concluding remarks.
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3.2 Regularized Mean-Variance Analysis and its Solution

The mean-variance analysis with the gross-exposure constraint (||w||1 ≤ c) was introduced
by Fan, Zhang and Yu (2012) for selecting optimal portfolio allocation. It has been proved
that it helps with controlling the discrepancy between the empirical risk and the actual risk.
Fan, Zhang and Yu (2012) proposed to approximate the solution by replacing ||w||1 ≤ c

with |w1| + . . . |wp−1| ≤ d and ignoring the equality constraint, i.e. wT1 = 1, such that
the optimization problem can be connected to the lasso regression and efficient LARS-
LASSO algorithms can be used. However, there is no guarantee that the approximate
solution is close to the exact solution. We consider the Lagrange format of the constrained
optimization, i.e. (3.2). These two formulations are equivalent; in the sense that for a
given λ > 0, there exists a c > 0 such that the two problems share the same solution and
vice versa. Note that due to the equality constraint, coordinate decent methods for solving
`1 regularized least-squares problems (Friedman et al., 2007) are not directly applicable.
In this section, we propose to combine the coordinate descent method, which is efficient
for solving `1-regularized problems, and augmented Lagrange method (Bertsekas, 2014),
which is powerful for dealing with constraints for convex problems, and develop an efficient
algorithm for solving (3.2). We refer our algorithm as the coordinate descent method with
multipliers (CDM).

We first form the augmented Lagrangian for (3.2):

Lβ(w, α) =
γ

2
wTΣw − µTw + λ||w||1 + α(1−

p∑
j=1

wj) +
β

2
(1−

p∑
j=1

wj)
2, (3.3)

where α is the Lagrange multiplier and β > 0 is a penalty parameter. The augmented
Lagrangian method for (3.2) consists of the following iterations:

wk+1 ← min Lβ(w, αk), (3.4)

αk+1 ← αk + β(1−
p∑
j=1

wk+1
j ). (3.5)

To solve (3.4), we can separate the parameters and apply the coordinate descent method.
Note that taking derivative with respective to wj , we have

γ

p∑
i=1

Σjiwk − µj + λvj − α− β(1−
p∑
i=1

wi) = 0, (3.6)

where vj is the derivative of |wj|. With other components held fixed, the jth component of
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w is updated by

wk+1
j ← 1

γΣjj + β
Sλ(α

k + β(1−
∑
i 6=j

wki ) + µj − γ
∑
i 6=j

Σjiw
k
i ), (3.7)

where Sλ(t) = sign(t)(|t| − λ) is the soft thresholding operator.
Combining (3.4), (3.5) and (3.7) yields Algorithm 1 for solving problem (3.2).

Algorithm 1 Coordinate descent method with multipliers (CDM)
Input: µ, Σ, λ > 0, β > 0

1: Initialize: w0 with 0 or a warm start, α0 = 0, and k = 0.
2: while not converged do
3: Update wkj by (3.7) until convergence
4: Update αk by (3.5)
5: k = k+1
6: end while

Output: ŵ = wk.

Note that the minimization of (3.4) need not be exact; it often suffices to adopt a stop-
ping criterion such that the minimization is asymptotically exact in terms of the iterations.
Convergence of Algorithm 1 and this relaxation can be proved by verifying the conditions
in Theorem 4 of Rockafellar (1976).

In Section 3.4, we will compare the exact solution we propose here with the approxi-
mate one by Fan, Zhang and Yu (2012).

3.3 A screening method for regularized mean-variance anal-
ysis

Note that λ controls the number of nonzero weight assets in the optimal portfolio; thus
it is often desirable to solve (3.2) for a series of λ values. In order to efficiently solve a
series of `1-norm regularized optimization problems, the idea of screening has been shown
to be useful. Screening aims at quickly identifying zero components in the solution and
then removes them from the optimization problem. Thus, the number of parameters of the
optimization problem is reduced, which often leads to substantial savings in both compu-
tational cost and memory usage.

Existing screening methods can be roughly divided into two categories: safe screening
and heuristic screening. Safe screening methods guarantee that discarded features have
zero coefficients in the solution. Ghaoui et al. (2012) laid the groundwork on safe screen-
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ing methods. Wang et al. (2013) and Liu et al. (2013) improved the performance of safe
screening by tools of convex optimization and extended the idea to more general `1-norm
regularized sparse problems. Heuristic screening methods, on the other hand, may mistak-
enly discard features that have nonzero coefficients in the solution. Efficient methods in this
category include the strong rule (Tibshirani et al., 2012) and sure independence screening
(Fan and Lv, 2008).

Our goal here is to develop a safe screening rule for the `1-norm regularized mean-
variance analysis. Note that (3.2) involves an equality constraint, i.e. the portfolio weights
sum to one, which makes none of the existing screening methods applicable to this prob-
lem. In the following subsections, we develop a safe screening method that accommo-
dates the equality constraint. Specifically, given a series of regularization parameters
λ1 > λ2 > . . . > λm, we wish the rule can be effective at identifying the zero weighted
assets corresponding to each of the regularization parameter value and thus reduce the di-
mension of the corresponding optimization problem.

3.3.1 Overview of the proposed method

The main goal of the proposed safe screening for equality constrained optimization (SASECO),
also most other existing screening methods, is to eliminate the inactive features in the solu-
tion before solving the optimization problem. To achieve that, it is often convenient to work
with the dual problem. For example, consider the lasso problem: 1

2
||y −Xβ||2 + λ||β||1,

Karush-Kuhn-Tucker (KKT) conditions indicate 〈xj,θ∗〉 < 1 =⇒ β∗j = 0, where θ∗ de-
notes the dual solution and β∗ denotes the primal solution. The common idea of screening
methods is to construct a feasible set for the dual solution and estimate an upper bound on
the function of the dual solution in connection to the primal solution. The construction of
a tight feasible set for the dual solution is the key to the success of screening techniques.
Some prior knowledge is often required to accomplish the construction. For example, in
our case, solving (3.2) with λ1 > λ2 > . . . > λm are of interests. Having computed the
solution w∗(k−1) at λk−1, the feasible set of dual solution corresponding to λk can be con-
structed by using variational inequalities, which provide sufficient and necessary optimality
conditions for the dual problems with λ = λk−1 and λk. Therefore, in the following sec-
tions, we first introduce the dual problem for the constrained mean-variance problem, then
a feasible set is constructed for the dual optimal solution, and an upper bound connected to
the primal optimal solution over the feasible set is estimated; we present the main part of
SASECO in Theorem 3.3.2.
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3.3.2 The dual problem

To derive the dual problem of (3.2), let X =
√
γΣ

1
2 and y = 1√

γ
Σ−

1
2µ. Then (3.2) can be

re-written as
minimize

1

2
||y −Xw||2 + λ||w||1,

subject to wT1 = 1.
(3.8)

By introducing Z = y −Xw, the dual variables η ∈ Rp, δ ∈ R, we obtain the Lagrangian
function of (3.8):

L(w,Z,η, δ) =
1

2
||Z||2 + λ||w||1 + ηT (y −Xw − Z) + δ(1−wT1). (3.9)

Then the dual problem can be derived as follows

min
w,Z

max
η,δ

L(w,Z,η, δ) (3.10)

= max
η,δ

min
w

(−ηTXw + λ||w||1 − δwT1) + min
Z

(
1

2
||Z||2 − ηTZ) + ηTy + δ. (3.11)

Denote the first part of the optimization problem as

f1(w) = −ηTXw + λ||w||1 − δwT1. (3.12)

Consider its subgradient,

∂f1(w) = −ηTX + λv − δ1, (3.13)

in which ||v||∞ ≤ 1 and vTw = ||w||1, i.e. v is the subgradient of ||w||1. The necessary
condition for f1 to attain an optimum is

∃w′, such that 0 ∈ −ηTX + λv′ − δ1, (3.14)

where v′ ∈ ∂||w′||1. Thus, we have

v′ =
ηTX + δ1

λ
and ||ηTX + δ1||∞ ≤ λ. (3.15)

Note that when plugging in v′, f1(w′) = min f1(w) = 0.
Next, we consider the second part in (3.11). Denoting it as f2(Z). It is not difficult to
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see that

min f2(Z) = f2(η) = −1

2
||η||2. (3.16)

Combining the two parts, the dual problem yields

max
η,δ

− 1

2
||η||2 + ηTy + δ,

subject to ||ηTX + δ1||∞ ≤ λ.

(3.17)

By a simple re-scaling of the dual variables η, δ, i.e., denote ξ = η
λ

and ζ = δ
λ

, (3.17)
becomes

min
ξ,ζ

λ

2
||ξ||2 − ξTy − ζ,

subject to ||ξTX + ζ1||∞ ≤ 1.

(3.18)

Note that (3.8) is convex and the constraints are all affine. By Slater’s condition, we
will have strong duality as long as (3.8) is feasible. Let w∗,Z∗, ξ∗, ζ∗ be the optimal primal
and dual variables. We have the following relationship between the primal variables and
the dual variables:

y −Xw∗ = Z∗ = λξ∗ (3.19)

xTj ξ
∗ + ζ∗ ∈

sign(w∗j ) if w∗j 6= 0,

[−1, 1] if w∗j = 0.
(3.20)

Note (3.20) implies that if |xTj ξ∗ + ζ∗| < 1, then w∗j must be 0. This property provides us
with the direction to construct the screening rule.

3.3.3 Feasible set construction

Let ξ∗1 and ζ∗1 denote the solution at λ1 and ξ∗2 and ζ∗2 denote the solution at λ2, where
λ1 > λ2. Note that it is impossible to achieve the exact value of |xTj ξ∗ + ζ∗| without
solving the optimization problem, however, we are able to estimate an upper bound of
|xTj ξ∗2 + ζ∗2 | at λ2 taking advantage of ξ∗1 and ζ∗1 , which can be obtained from the primal
optimal solution w∗(1) at λ1. In the following, we will make use of the variational inequality
as in Lemma (3.3.1) to construct a feasible set for the dual optimal solution (ξ∗2, ζ

∗
2 ).
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Lemma 3.3.1. [Nesterov (2007)] For the constrained convex optimization problem:

min
G

f(x), (3.21)

with G being convex and closed and f(·) being convex and differentiable, x∗ ∈ G is an

optimal solution of (3.21) if and only if

〈f ′(x∗),x− x∗〉 ≥ 0, ∀x ∈ G. (3.22)

Since (ξ∗1, ζ
∗
1 ) and (ξ∗2, ζ

∗
2 ) are optimal solutions to (3.18) at λ1 and λ2 respectively, we

can apply Lemma (3.3.1) to (3.18) and obtain

〈(
λ1ξ

∗
1 − y

−1

)
,

(
ξ − ξ∗1

ζ − ζ∗1

)〉
≥ 0, ∀(ξ, ζ) : ||ξTX + ζ1||∞ ≤ 1, (3.23)

〈(
λ2ξ

∗
2 − y

−1

)
,

(
ξ − ξ∗2

ζ − ζ∗2

)〉
≥ 0, ∀(ξ, ζ) : ||ξTX + ζ1||∞ ≤ 1. (3.24)

Plugging (ξ∗2, ζ
∗
2 ) and (ξ∗1, ζ

∗
1 ) into (3.23) and (3.24) respectively, we have

〈λ1ξ
∗
1 − y, ξ∗2 − ξ∗1〉 ≥ ζ∗2 − ζ∗1 , (3.25)

〈λ2ξ
∗
2 − y, ξ∗1 − ξ∗2〉 ≥ ζ∗1 − ζ∗2 . (3.26)

As a result, (3.25) and (3.26) provide us with the following feasible set for (ξ∗2, ζ
∗
2 ):

Ω(ξ∗2, ζ
∗
2 ) = {(ξ, ζ) :〈λ1ξ

∗
1 − y, ξ − ξ∗1〉 ≥ ζ − ζ∗1 , 〈λ2ξ − y, ξ∗1 − ξ〉 ≥ ζ∗1 − ζ}. (3.27)

3.3.4 Upper bound estimation

Given the feasible set Ω(ξ∗2, ζ
∗
2 ), we seek to obtain an the upper bound of |xTj ξ∗2 + ζ∗2 | via

the optimization problem

max
Ω(ξ∗2,ζ

∗
2 )
|xTj ξ + ζ|. (3.28)

With the upper bound, KKT condition (3.20) yields

max
Ω(ξ∗2,ζ

∗
2 )
|xTj ξ + ζ| < 1 =⇒ w∗j = 0. (3.29)
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In the following of this subsection, we show how to solve (3.28). For convenience, we
introduce the following variables:

a =
y

λ1

− ξ∗1 =
Xw∗1
λ1

, (3.30)

b =
y

λ2

− ξ∗1 = a + (
y

λ2

− y

λ1

), (3.31)

r = 2ξ − (ξ∗1 +
y

λ2

), (3.32)

d = ζ∗1 − ζ. (3.33)

where a denotes the “prediction” based on w∗1 scaled by 1
λ1

, and b differs a by a term
capturing the change of inputs to the dual problem from λ1 and λ2, and d measures the
difference between optimal ζ∗1 and ζ .

With the above variables, the inequalities in Ω(ξ∗2, ζ
∗
2 ) can be reformulated as follows:

〈 y

λ1

− ξ∗1, 2ξ − 2ξ∗1〉 = 〈a, r + b〉 ≤ 2

λ1

d, (3.34)

〈2ξ − 2
y

λ2

, 2ξ − 2ξ∗1〉 = 〈r− b, r + b〉 ≤ − 4

λ2

d. (3.35)

Furthermore, the objective function in (3.28) can be written as

|xTj ξ + ζ| = 1

2
|〈xj, ξ∗1 +

y

λ2

〉+ 2ζ∗1 + 〈xj, r〉 − 2d|. (3.36)

To solve (3.28), we only need to compute the unknown part max |〈xj, r〉 − 2d| over the
feasible set. Note that the maximization problem can be transformed to minimizing the
inverse, i.e. minr,d

(
〈xj, r〉−2d,−〈xj, r〉+2d

)
. We focus on the first part of the objective

function in the following discussion, and the second part will be similar. It follows the
reformulated optimization problem that

min
r,d

〈xj, r〉 − 2d,

subject to 〈a, r + b〉 ≤ 2

λ1

d, ||r||2 − ||b||2 ≤ − 4

λ2

d.
(3.37)

Since the problem is convex and the Slater’s condition holds, we have strong duality that the
optimal primal value and the optimal dual value are the same. By introducing the Lagrange
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multipliers µ1 and µ2, the dual problem of the first part of (3.37) can be derived as:

min
r,d

max
µ1≥0,µ2≥0

〈xj, r〉 − 2d+ µ1(〈a, r + b〉 − 2

λ1

d)+

µ2

2
(||r||2 − ||b||2 +

4

λ2

d), (3.38)

= max
µ1≥0,µ2≥0

min
r

(〈xj, r〉+ µ1〈a, r〉+
µ2

2
||r||2)+

min
d

(
2µ2

λ2

− 2µ1

λ1

− 2)d+ µ1〈a,b〉 −
µ2

2
||b||2. (3.39)

Note the optimal primal and dual solutions r∗, d∗, µ∗1 and µ∗2 satisfy the following equa-
tions by KKT conditions:

xj + µ∗1a + µ∗2r
∗ = 0, (3.40)

(
µ∗2
λ2

− µ∗1
λ1

− 1)d∗ = 0. (3.41)

In order for (3.41) to be satisfied, there are two possibilities:

µ2

λ2

− µ1

λ1

− 1 = 0 (3.42)

or

d = 0. (3.43)

In the first case, (3.42) offers a relationship between µ1 and µ2. Thus, µ2 = max(λ2(µ1
λ1

+

1), 0) can be plugged in (3.39). On the other hand, taking derivative of (3.39) with respec-
tive to r leads us to a relationship between r and µ1, µ2, which can be also applied to (3.39).
Through simple algebra, we can obtain the optimal µ1 in (3.39):

µ1 = max(
||xj − y + λ1ξ

∗
1||2

λ2||( 1
λ1
− 1

λ2
)ξ∗1||2

− λ1, 0), (3.44)

and the corresponding optimal µ2 and r:

µ2 = max(
||xj − y + λ1ξ

∗
1||2

λ1||( 1
λ1
− 1

λ2
)ξ∗1||2

, λ2), (3.45)

r =
−xj − µ1a

µ2

. (3.46)
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Recall the constraints in (3.37). Then the following inequalities should be satisfied

λ1

2
〈a, r + b〉 ≤ d ≤ −λ2

4
(||r||2 − ||b||2). (3.47)

If λ1
2
〈a, r + b〉 ≤ −λ2

4
(||r||2 − ||b||2), the optimal d to (3.37) exists; by plugging in (3.46)

and (3.47), the optimal value of (3.37) can be obtained. Otherwise, the KKT condition
(3.41) cannot be achieved by (3.42).

On the other hand, suppose (3.43) holds. We see that (3.37) can be simplified to the
following:

min
r,d

〈xj, r〉,

subject to 〈a, r + b〉 ≤ 0, ||r||2 − ||b||2 ≤ 0,
(3.48)

which can be solved in a similar fashion (details skipped).
Overall, (3.37) can be solved using above discussions. Similar calculations can be done

when changing the objective function of (3.37) to minr,d(−〈xj, r〉 + 2d), thus finishing
computing the unknown part of (3.36).

Next, we present an upper bound of |xTj ξ∗2 + ζ∗2 | in the following theorem.

Theorem 3.3.2. Let y 6= 0, and ||XTy||∞ ≥ λ1 > λ2 > 0. Denote

u+
j (λ2) = max

Ω(ξ∗2,ζ
∗
2 )

xTj ξ + ζ, (3.49)

u−j (λ2) = max
Ω(ξ∗2,ζ

∗
2 )
−xTj ξ − ζ. (3.50)

Then u+
j (λ2) and u−j (λ2) can be computed using the following steps.

Case 1: a 6= 0, we compute

Step 1:

1. If λ1
2
〈a, r + b〉 ≤ −λ2

4
(||r||2 − ||b||2), we compute

u+
j (λ2)(1) = 〈xj, ξ∗1〉+

1

2
〈xj − λ1a, r

+ + b〉+ ζ∗1 , (3.51)

where r+ =
xj−µ+1 a

µ+2
, µ+

1 =
||xj−y+λ1ξ

∗
1||2

λ2||( 1
λ1

+ 1
λ1

)ξ∗1||2
− λ1, and µ+

2 =
||xj−y+λ1ξ

∗
1||2

λ1||( 1
λ1

)ξ∗1||2
.

u−j (λ2)(1) = −〈xj, ξ∗1〉 −
1

2
〈xj +

λ2

2
(r− − b), r− + b〉 − ζ∗1 , (3.52)

where r− =
−xj−µ−1 a

µ−2
, µ−1 = max(

||xj−y+λ1ξ
∗
1||2

λ2||( 1
λ1
− 1
λ2

)ξ∗1||2
−λ1, 0), and µ−2 = max(

||xj−y+λ1ξ
∗
1||2

λ1||( 1
λ1
− 1
λ2

)ξ∗1||2
, λ2).
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2. If λ1
2
〈a, r + b〉 > −λ2

4
(||r||2 − ||b||2), then u+

j (λ2)(1) = −∞ and u−j (λ2)(1) = −∞.

Step 2:

1. If 〈b,a〉
||b||2||a||2 >

|〈xj ,a〉|
||xj ||2||a||2 , we compute

u+
j (λ2)(2) = 〈xj, ξ∗1〉+

1
λ2
− 1

λ1

2
[||x⊥j ||2||y⊥||2 + 〈x⊥j ,y⊥〉] + ζ∗1 , (3.53)

u−j (λ2)(2) = −〈xj, ξ∗1〉+
1
λ2
− 1

λ1

2
[||x⊥j ||2||y⊥||2 − 〈x⊥j ,y⊥〉]− ζ∗1 , (3.54)

where x⊥j = xj − a〈xj, a〉/||a||22 and y⊥ = y − a〈y, a〉/||a||22.

2. If 〈xj, a〉 > 0 and 〈b,a〉
||b||2||a||2 ≤

|〈xj ,a〉|
||xj ||2||a||2 , then u+

j (λ2)(2) satisfies (3.53), and

u−j (λ2)(2) = −〈xj, ξ∗1〉+
1

2
[||xj||2||b||2 − 〈xj,b〉]. (3.55)

3. If 〈xj, a〉 < 0 and 〈b,a〉
||b||2||a||2 ≤

|〈−xj ,a〉|
||xj ||2||a||2 , then u−j (λ2)(2) satisfies (3.54), and

u+
j (λ2)(2) = 〈xj, ξ∗1〉+

1

2
[||xj||2||b||2 + 〈xj,b〉]. (3.56)

Step 3:

u+
j (λ2) = max(u+

j (λ2)(1), u+
j (λ2)(2)), (3.57)

u−j (λ2) = max(u−j (λ2)(1), u−j (λ2)(2)). (3.58)

Case 2: a = 0, we compute

u+
j (λ2) = 〈xj, ξ∗1〉+

1

2
[||xj||2||b||2 + 〈xj,b〉], (3.59)

u−j (λ2) = −〈xj, ξ∗1〉+
1

2
[||xj||2||b||2 − 〈xj,b〉]. (3.60)

Note that it follows from (3.29), if max(u+
j (λ2), u−j (λ2)) < 1, then the jth asset can be

safely eliminated for the computation of w∗(2).

3.3.5 Choice of λ1

Note that when λ is large enough, combining with the constraint wT1 = 1, the `1-norm
regularization leads to ||w||1 = 1, and the solution corresponds to the optimal no-short-
sale portfolio. One can solve the no-short-sale portfolio solution using either a quadratic
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programming or a variation of our CDM algorithm. In terms of the start point of the regu-
larization parameter λ1, a natural choice is thus the smallest λ0 corresponding to ||w||1 = 1.

Denote the optimal no-short-sale portfolio as w∗(0). It follows from the KKT conditions
(3.19) and (3.20) that

λ0x
T
j (y −Xw∗(0)) + ζ∗(0) ∈

1 if w∗(0)j 6= 0,

[−1, 1] if w∗(0)j = 0.
(3.61)

Note there are two unknown variables λ0 and ζ∗(0), but only one equality when w∗(0)j 6= 0

and a series of inequalities λ0x
T
j (y −Xw∗(0)) + ζ∗(0) ≥ −1. The exact λ0 cannot be solved

by (3.61), but a range of λ0 can be obtained by simple calculations. We choose the lower
bound of the range as λ1, and in our numerical studies, we found λ1 and λ0 are almost the
same.

3.4 Simulation studies

In this section, we evaluate the performance of our proposed coordinate descent method
with multipliers (CDM) and safe screening for equality constrained optimization (SASECO)
using simulation studies. Specifically, we first demonstrate that the optimal portfolio ob-
tained by CDM performs substantially better than the approximate solution proposed in
Fan, Zhang and Yu (2012) (referred as LARS). Second, we show that SASECO can signif-
icantly save the computational cost of CDM.

3.4.1 Multi-factor model

Let Rj be the excessive return over the risk-free interest rate of the jth asset. A K-
dimensional multi-factor model for a relevant asset can be expressed as

Rj = bj1F1 + · · ·+ bjKFK + εj, j = 1, . . . , p, (3.62)

where bjk is the factor loading on the jth stock on the factor Fk; and εj is the specific
return of the asset j, which plays the same role as noise in a linear model. Many popu-
lar risk models in financial industry, such as the Barra (Rosenberg, 1974) model and the
Fama and French (Fama and French, 1992) model, can be classified as multi-factor models.
Throughout the simulation, we assume that E(ε|f) = 0 and cov(ε|f) = Σε is diagonal but
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not necessarily homogeneous. We rewrite the multi-factor model in a matrix form as

R = Bf + ε. (3.63)

Then (3.63) implies that R has mean and variance as follows

µ = B · E(f), (3.64)

Σ = Bcov(f)BT + Σε = Bcov(f)BT + diag(σ2
1, . . . , σ

2
p). (3.65)

We evaluate the proposed algorithms in two sets of simulations. To generate µ and
Σ, our first attempt is to generate the data matrix of interests from Normal or Uniform
distribution, and the second attempt is to generate the parameters from a fit of the Barra
model based on a real dataset. We illustrate the procedure of the simulations in the next
two subsections.

3.4.2 Simulation based on artificial settings

Entries of the factor loading B and the mean vector of the factors E(f) are generated from
N(0, 1); variances of the specific returns σ2

1, . . . , σ
2
p are generated from a uniform distri-

bution with minimum 0.5. We set the diagonals of cov(f) to be 1 and off diagonals to be
0.2. We consider two scenarios for the number of factor k = 3 and k = 30 and also two
possibilities for the number of assets p = 1000 and p = 3000. The variances of the specific
returns are adjusted with the signals.

In each setting, we first apply the CDM algorithm (without screening) on a pre-specified
grid of 100 λ values, where λ1 > λ2 > . . . > λ100. Specifically, λ1 is chosen using the
strategy described in section 3.3.5, and 20 equally-spaced λ values are chosen such that
λ/λ1 ranges from 0.5 to 1, and 80 equally-spaced λ values are chosen such that λ/λ1

ranges from 0.05 to 0.5. The reason we use a coarser grid when λ is large and a finer
grid when λ is small is because when λ is large, the number of selected assets changes
slowly, while when λ is small, the number of selected assets changes more rapidly. In each
setting, we also apply the LARS approximation proposed in Fan, Zhang and Yu (2012).
The results are shown in the left column of Fig. 3.1 and Fig. 3.2. Note the vertical axis
is the value of the mean-variance objective function, and the horizontal axis is the `1-norm
of w, i.e. c. First, we note that the value of the objective function based on the exact
(CDM) solution is much lower than that of based on the approximate solution, indicating
that the discrepancy between the exact solution and the approximate solution can be large.
Second, we note that as c increases, the value of the objective function based on the exact
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Figure 3.1: Left panels compare the value of the objective function based on the exact solu-
tion with that based on the approximate solution, as a function of the exposure parameter c.
Middle panels compare the computational cost of the CDM algorithm without screening to
that with screening. Right panels illustrate the number of remaining assets after screening
and the number of assets in the final exact solution.

solution decreases, which is expected, while the value of the objective function based on
the approximate solution first decreases then increases, which indicates that the quality of
the approximate solution becomes worse when c either very small or very large.

Then in each setting, we apply the screening algorithm SASECO to first remove those
assets that we are able to identify as having zero weights in the final solution, and then
apply the CDM algorithm to the remaining assets to obtain the final exact solutions. The
results are shown in the second and third columns of Fig. 3.1 and Fig. 3.2. As we can see,
through the second column of Fig. 3.1 and Fig. 3.2, the computational cost of CDM without
screening is much higher than that with screening. Further, we can also see, through the
third columns of Fig. 3.1 and Fig. 3.2, that SASECO is very effective at removing zero-
weighted assets especially when λ is relatively large, i.e. the number of remaining assets
after screening is very close to the number of assets in the final exact solution. As λ
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Figure 3.2: Left panels compare the value of the objective function based on the exact solu-
tion with that based on the approximate solution, as a function of the exposure parameter c.
Middle panels compare the computational cost of the CDM algorithm without screening to
that with screening. Right panels illustrate the number of remaining assets after screening
and the number of assets in the final exact solution.

decreases, the effectiveness of screening degrades, but still, it is able to remove a significant
amount of zero-weighted assets.

3.4.3 Simulation based on real data

In this section, we set µ and Σ based on real data. Specifically, we collect S&P 500 monthly
data from 2000 to 2012, and apply the Barra model (see Chapter 2) to obtain estimates for
E(f), cov(f) and Σε. Then we generate n-period returns of p assets as follows. We generate
the factors returns over n-periods from the normal distribution N(E(f), cov(f)). See Table
(3.1) for E(f) and cov(f). Further, we generate the entries of the factor loadings matrix
B from the uniform distribution U(0, 1). The specific returns are generated from a gamma
distribution with the shape parameter 1.6322 and the scale parameter 0.006663, conditioned
on the noise level of at least 0.001.
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Table 3.1: Parameters for factor returns
E(f)× 104 cov(f)× 104

-39.950 9.827 3.406 -3.938 2.001 5.3780
317.758 3.406 19.507 -0.860 2.510 -8.940
-468.772 -3.938 -0.860 12.673 -2.151 -5.713
-344.863 2.001 2.510 -2.151 6.073 -3.355
1091.531 5.378 -8.940 -5.713 -3.355 46.348

Input µ and Σ
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Figure 3.3: Left panels compare the value of the objective function based on the exact solu-
tion with that based on the approximate solution, as a function of the exposure parameter c.
Middle panels compare the computational cost of the CDM algorithm without screening to
that with screening. Right panels illustrate the number of remaining assets after screening
and the number of assets in the final exact solution.

We set n = 252 and p = 1000 in the simulation. Given the simulated data, we first apply
the Barra model (see Chapter 2) to obtain estimates for µ, Σ, denoted as µ̂ and Σ̂, and then
use them as inputs for (3.2) and apply both CDM and SASECO + CDM algorithms. As a
comparison, we also use µ and Σ, obtained via fitting the original S&P 500 data, as inputs
for (3.2) and apply both CDM and SASECO + CDM algorithms. The results are shown in
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Fig. 3.3. The patterns are similar to those found in Fig. 3.1 and Fig. 3.2.

3.5 Empirical study
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Figure 3.4: The left panels show the boxplots of time costs for obtaining the optimal port-
folios by plain CDM and CDM with SASECO. The right panels describe the accumulative
returns of the no-short-sale portfolios and the optimal portfolios with size around 150 and
200 (first row and second row) as a function of regularization parameters.

In this section, we apply our algorithms to the Chinese stock market. The dataset con-
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sists of daily stock returns for over 1600 companies and their associated industry classifica-
tions from Jan 4, 2011 to Dec 31, 2014. The daily returns have been adjusted by dividend,
right of exclusion and other events. Daily HS300 returns as market returns are also avail-
able. Companies that have been suspended for an extended period of time or have too many
missing values have been removed, and in the end 1140 assets are kept.

We fit the Barra model to the 1140 assets every two weeks. The factor loading ma-
trix consists of 29 industry categories; the covariance of the factors and the covariance of
specific returns are estimated using returns on the past 120 days with exponential decay
(half-life of the decay is set to 60 days); the mean of the factors is estimated using returns
on the past 30 days, again with exponential decay (half-life of the decay is set to 10 days).
We then plug in the estimated return and covariance in (3.2) to construct the optimal port-
folio. The λ value is chosen such that about 150 (or 200) assets are selected in the final
solution. Once again, the optimal portfolio gets updated every two weeks.

We record the computational time and also the cumulative return of constructed port-
folios. The results are shown in Fig. 3.4. From the left panels, we can see, similar to what
we observe in Fig. 3.1 - 3.3, the computational cost of SASECO + CDM is much lower
than that of CDM without screening. The outliers in the boxplots for SASECO + CDM
correspond to the computational cost incurred at the starting value of λ, i.e. λ1, or the no-
short-sale solution. In the right panels of Fig. 3.4, we compare the cumulative returns of
the optimal portfolio with that of the no-short-sale portfolio. We can see that the optimal
portfolio, allowing negative weights, tends to perform better than the no-short-sale portfo-
lio. The optimal portfolio that consists of 200 assets also seems to perform slightly better
than that consisting of 150 assets.

3.6 Conclusion

The `1 regularized mean-variance analysis is an efficient tool to select and allocate stable
and sparse portfolios, especially when the number of assets is large. To solve the cor-
responding optimization problem exactly and efficiently, we have developed a coordinate
descent with multipliers (CDM) algorithm. We have demonstrated that the exact solution
can be much better than the approximate solution in the literature. Further, we have also
developed a screening rule (SASECO) that can effectively identify the zero-weighted assets
before solving the optimization problem. To our knowledge, SASECO is the first screening
rule that accommodates equality constraint in sparse learning algorithms. Our simulation
studies indicate that it can significantly reduce the computational cost comparing to without
screening.
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CHAPTER 4

Spectral Regularization Algorithms for Learning
Corrupted Low-Rank Matrices

4.1 Introduction

4.1.1 Motivation

In this chapter, we consider the problem of recovering a low rank matrix from an observed
data matrix. The principle component analysis (PCA) is a classical example, and one of the
best known techniques in multivariate analysis. However, it is also well known that PCA
is sensitive to outliers or corrupted observations. To address this problem, Wright et al.
(2009) and Candès and Recht (2009) proposed the Robust PCA. They assume that a data
matrix M ∈ Rn1×n2 can be decomposed as M = L0 + S0, where L0 is a low rank matrix
and S0 is a sparse matrix.

Note that in the above formulation, besides S0, no other noise component is considered.
However, in real-world applications, small noise and outliers often exist together. For ex-
ample, in the image denoising problem, the grouped patches usually have almost identical
structural content, which leads to low-rank structure. Since the quality of the image de-
pends on many factors such as capturing technology, lighting conditions, and transmission
errors, small perturbations are un-avoidable. Furthermore, it is also likely that a few pixels
are largely corrupted by movement, change of conditions and so on. Therefore, it is more
reasonable to decompose the observed data into a low rank component, a sparse component
and a noise component, rather than just a low rank component and a sparse component.

Another example can be drawn from applications in finance. Suppose we have price
data of hundreds of companies over a period of time, and usually a few principle compo-
nents, corresponding to the overall economic status and industry trend, can explain well
the variance in the data. However, it is also likely that there are a few companies whose
prices do not follow the overall economic trend, thus making themselves outliers for the
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PCA analysis. In this case, unlike in the image denoising problem where only a few pixels
are corrupted, entire data points (companies) are corrupted. Still, one may assume that the
observed data matrix can be decomposed into a low rank matrix that explains most of the
variance in the data, a sparse matrix that represents outliers, and a noise matrix.

4.1.2 Background and related work

Specifically, we consider the following problem: suppose we are given a data matrix M,
where rows correspond to data points and columns correspond to variables, and it can be
decomposed as

M = L0 + S0 + N0, (4.1)

where L0 is a low rank matrix, S0 is a sparse matrix with either randomly distributed non-
zero entries or non-zero rows, and N0 is a noise matrix.

4.1.2.1 The element-wise sparse case

We first focus on the case when S0 is a randomly distributed sparse matrix. If N0 = 0, the
problem can be addressed by robust PCA, i.e.

minimize ||L||∗ + λ||S||1,

subject to L + S = M,
(4.2)

where ||L||∗ is the nuclear norm, or the sum of the singular values of L, and ||S||1 is the
`1-norm of S with S seen as a long vector. Many theoretical results, including Candès
and Recht (2009) and Candès et al. (2011) have been derived for identifying the low rank
matrix and the sparse matrix based on (4.2). They showed that under certain assumptions,
the true underlying low rank matrix can be recovered with high accuracy.

Methods for solving the optimization problem have also been extensively discussed.
The two most popular ones are the proximal gradient algorithm (PGA) (Lin et al., 2009)
and the augmented Lagrange multiplier (ALM) algorithm (Lin, Chen and Ma, 2010). Ex-
periments show the ALM algorithm is one of the most efficient algorithms for robust PCA.
Details of the algorithm were presented by Lin, Chen and Ma (2010). Specifically, they
considered on the augmented Lagrange multiplier:

f(L,S,Y, µ) = ||L||∗ + λ||S||1+ < Y,M− L− S > +
µ

2
||M− L− S||2F, (4.3)

and iteratively updated L,S,Y to reach convergence.
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Note that in (4.2) the noise component N0 is assumed 0. This is often not reasonable in
practice. Zhou et al. (2010) considered a relaxation of (4.2) to allow the noise component,
i.e.

minimize ||L||∗ + λ||S||1,

subject to ||M− L− S||F ≤ δ,
(4.4)

where δ controls the deviation of L + S from the observed data matrix M. Further, Zhou
et al. (2010) derived an upper bound for the error of estimation on L and S under similar
conditions as in the robust PCA.

Algorithms for solving (4.4) are not discussed as extensively as those for (4.2). In
scope of the ALM, Tao and Yuan (2011) developed the alternative splitting argumented
Lagrange method (ASALM) and its variant (VASALM). It turns out that in order to achieve
convergence, the ASALM, though a direct modification of ALM, needs to satisfy certain
conditions that are complicated and difficult to check; while the VASALM algorithm is
more complicated.

4.1.2.2 The row sparse case

The second case we consider is when entire data points are corrupted. This corresponds
to the case when a small fraction of rows (rather than a few elements) of S are non-zero.
A major change here is suppose that the data matrix M can be decomposed by a low rank
matrix L0 and a row sparse matrix S0 with nonzero rows indexed by I. Then if L0,I does
not lie in the spaceL generated by the rows of L0,Ic , the existence of S0 makes the detection
of L0,I impossible. On the other hand, if L0,I does lie in the space L, then L0,I could be
0, be several rows from L0,Ic , or be any matrix lying in L, and the nonzero entries of the
corresponding S0 can be (M−L0−N0)I . Thus more constraints are needed for identifying
L0,I and S0,I .

Xu, Caramanis and Sanghavi (2010) are he first that studied the row corruption problem
and they proposed the following criteria:

(1) For the noiseless case:

minimize ||L||∗ + λ||S||1,2
subject to L + S = M

(4.5)

(2) For the noisy case:
minimize ||L||∗ + λ||S||1,2
subject to ||M− L− S||F ≤ δ

(4.6)
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where ||S||1,2 is the sum of the `2 norm of rows in S. They also pointed out that exact
recovery of L and S does not make sense in this setting. Instead, they proved that in the
noiseless case, under certain conditions, the solution to problem (4.5) will exactly recover
the row space of L0 and exactly identify the indices of rows corresponding to outliers; in
the noisy case, under similar conditions, there exists L̃ and S̃ such that M0 = L̃ + S̃,
such that L̃ contains the correct row space and S̃ contains the correct row support, and the
difference between the solution to (4.6) and L̃ and S̃ is upper bounded. It turns out both
theory and algorithms are scarce in dealing with the noisy case. See Agarwal, Negahban
and Wainwright (2012) for another piece of theoretical work for the noisy case. In terms
of methods for solving (4.5) and (4.6), we were only able to find two algorithms for (4.5)
(Chen et al., 2011, Xu, Caramanis and Sanghavi, 2010), but none for (4.6).

For the rest of the chapter, we will focus on the noisy case, considering both element-
wise sparse and row sparse scenarios, with the goal of developing efficient and well-
performed algorithms, for recovering the underlying low rank matrices.

The rest of the chapter is organized as follows. In Section 4.2, we propose our crite-
ria for the noisy case and present theoretical properties. In Section 4.3, we develop two
natural algorithms for optimizing the proposed criteria. In Section 4.4, we develop two
alternative algorithms for optimizing the proposed criteria, and we also establish their con-
vergence properties. In Section 4.5, we extend the results to the matrix completion problem.
Simulation studies and real data applications are presented in Section 4.6 and Section 4.7
respectively. In Section 4.8, we conclude the chapter.

4.2 Proposed criteria and theoretical properties

Different from previous work, we propose the following criteria.

(1) For the element-wise corruption case, we consider

minimize fλ,τ (L,S) =
1

2
||M− L− S||2F + λ||L||∗ + τ ||S||1, (4.7)

where λ and τ are tuning parameters and ||S||1 is the `1 norm of S.

(2) For data point corruption case, we consider

minimize fλ,τ (L,S) =
1

2
||M− L− S||2F + λ||L||∗ + τ ||S||1,2, (4.8)

where λ, τ are again tuning parameters, and ||S||1,2 is the sum of `2 norm of rows of
S.
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Interpretations of (4.7) and (4.8) are straightforward. The first parts of both (4.7) and (4.8)
measure the loss between observations and estimations; the second parts control the nuclear
norm of L, a relaxation of the rank of L; the third parts control the sparsity of S.

Next, we show theoretical properties of the solution to the proposed criteria. For nota-
tional simplicity, we let n1 = n2 = n in the following results.

Theorem 4.2.1. Suppose we observe M = L
(1)
0 + S

(1)
0 + N

(1)
0 , where L

(1)
0 and S

(1)
0 satisfy

identifiability conditions in Candès et al. (2011) with sufficiently small numerical constants,

with high probability (over the choice of the support of S
(1)
0 ), the solution (L̂(1), Ŝ(1)) to

(4.7) with τ/λ in a specific range satisfies

||L̂(1) − L
(1)
0 ||2F + ||Ŝ(1) − S

(1)
0 ||2F ≤

C1

τ 2
(λ
√
n+ τn+ δ1)4, (4.9)

where δ1 = ||N(1)
0 ||F, and C1 is a numerical constant.

The above theorem provides an upper error bound for recovering the low rank matrix
and sparse matrix in the presence of noise. Note that δ1 is generally of order O(n). When
τ is O(1), the upper bound is basically of order O(δ2

1n
2), which is the most common case.

In Zhou et al. (2010), they provided an upper error bound for convex program (4.4), that
is ||L̂(1) − L

(1)
0 ||2F + ||Ŝ(1) − S

(1)
0 ||2F ≤ Cδ2n2. However, their δ is not the exact Frobenius

norm of noise matrix, but a pre-determined upper bound. One can imagine that if every
entry-wise noise is over estimated by a numerical constant, δ can be O(n) and larger than
δ1. With the true δ1, our result is more precise to some extent.

A similar property can also be shown for the row sparse case.

Theorem 4.2.2. Suppose we observe M = L
(2)
0 + S

(2)
0 + N

(2)
0 , where L

(2)
0 and S

(2)
0 satisfy

identifiability conditions in Xu, Caramanis and Sanghavi (2010) with sufficiently small

numerical constants. Let the solution to (4.8) be (L̂(2), Ŝ(2)). Then with τ/λ in a specific

range, there exists (L̃(2), S̃(2)) such that M
(2)
0 = L̃(2) + S̃(2), L̃(2) has the correct row space,

and S̃(2) has the correct row support, and

||L̂(2) − L̃(2)||F + ||Ŝ(2) − S̃(2)||F ≤
C2

τ
(τ
√
n+ δ2)2, (4.10)

where δ2 = ||N(2)
0 ||F, and C2 is a numerical constant.

As we mentioned in introduction, without additional structure, the problem to recover
the true low rank matrix and corrupted data point is not identifiable. Thus, we are inter-
ested in recovering the row space and the outlier support. From the proof, we find that
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for the un-corrupted part, L̃(2) is exactly L
(2)
0 , while for the corrupted part, L̃(2) is mixed

with corrupted data. Since exact recovery is not demanded, it makes sense the error bound
in Theorem 4.2.2 is smaller than that in Theorem 4.2.1. The upper error bound in Theo-
rem 4.2.2 mainly depends on the order of τ and δ2. In practice, τ is controlling the `2 norm
of a row vector, contributing to order of

√
n, and δ2 is of order O(n). Hence, the order

of upper error bound will probably be δ2

√
n. On the other hand, the upper error bound of

convex program (4.6) is provided by Xu, Caramanis and Sanghavi (2010), which is Cδ
√
n.

Again, δ can be much larger than δ2, resulting that the bound is possibly not as tight as the
one in Theorem 4.2.2.

4.3 Two natural algorithms

In this section, we propose two algorithm for solving (4.7) and (4.8) respectively. We first
introduce some lemma that are useful for the proposed algorithms.

Lemma 4.3.1. Suppose the rank of matrix M ∈ Rn1×n2 is r, and the singular value de-

composition (SVD) of M is given by M = UDVT with D = diag[d1, . . . , dr]. Then the

solution to the optimization problem

minimize f(L) =
1

2
||M− L||2F + λ||L||∗, (4.11)

is given by L̂ = Dλ(M), where Dλ(M) = UDλV
T with Dλ = diag[(d1 − λ)+, . . . , (dr −

λ)+], and t+ = max(t, 0).

Lemma 4.3.2. Suppose the matrix M ∈ Rn1×n2 . Then the solution to the optimization

problem

minimize g(S) =
1

2
||M− S||2F + τ ||S||1, (4.12)

is given by Ŝi,j = Hτ (Mi,j) where Hτ (Mi,j) = sign(Mi,j)(|Mi,j| − τ)+.

Lemma 4.3.3. Suppose the matrix M ∈ Rn1×n2 . Then the solution to the optimization

problem

minimize gr(S) =
1

2
||M− S||2F + τ ||S||1,2, (4.13)

is given by Ŝi,j = Hr
τ (Mi,j) where Hr

τ (Mi,j) = sign(Mi,j)(|Mi,j| − τ × |Mi,j |
||Mi,·||2 )+.

Lemma 4.3.1 is a crucial result for the nuclear norm regularization, which was proved
by Cai, Candès and Shen (2010) and Keshavan et al. (2009) using various techniques.
Lemma 4.3.2 and Lemma 4.3.3 play similar important roles in the `1 norm regularization
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and in the `1,2 norm regularization respectively. The proofs are straightforward; we omit
them here.

4.3.1 Algorithms

To solve for (4.7) and (4.8), we use a block-wise coordinate descent approach. Consider
(4.7) first. Note that if S is given, the solution for L can be calculated by Lemma 4.3.1, and
if L is given, the solution for S has a closed form by Lemma 4.3.2. We iterate between the
two steps until convergence. See Algorithm 2 for details.

The rationale for solving (4.8) is similar. Given L, the solution for S can be obtained
by Lemma 4.3.3. See Algorithm 3 for details.

The stopping criterion can be set in many ways. We use the relative change in the value
of the objective function and the Frobenius norm of the low rank matrix as the stopping
criterion, that is,

max
( |fλ,τ (Lk+1,Sk+1)− fλ,τ (Lk,Sk)|

|fλ,τ (Lk,Sk)|
,
||Lk+1 − Lk||2F
||Lk||2F

)
≤ ε. (4.14)

Algorithm 2
Input: M ∈ Rn1×n2 , λ, τ

1: Initialize: L0 = 0,S0 = 0, k = 0
2: while the stopping criterion is not satisfied do
3: Lk+1 = Dλ(M− Sk),
4: Sk+1 = Hτ (M− Lk+1)
5: k ← k + 1
6: end while

Output: Lk and Sk

Algorithm 3
Input: M ∈ Rn1×n2 , λ, τ

1: Initialize: L0 = 0,S0 = 0, k = 0
2: while the stopping criterion is not satisfied do
3: Lk+1 = Dλ(M− Sk),
4: Sk+1 = Hr

τ (M− Lk+1)
5: k ← k + 1
6: end while

Output: Lk and Sk
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4.3.2 Convergence analysis

In this section, we study convergence properties of the proposed algorithms. Since the
two algorithms are similar, we only investigate convergence properties of Algorithm 2. All
properties we state below are also applicable to Algorithm 3.

First, it is straightforward to see that the objective function never increases its value
over the iterations.

Lemma 4.3.4. Let {Lk,Sk} be the iterates generated by Algorithm 2. Then the value of

the objective function is monotonically decreasing, i.e.

fλ,τ (L
k,Sk) ≥ fλ,τ (L

k+1,Sk) ≥ fλ,τ (L
k+1,Sk+1). (4.15)

Since fλ,τ (Lk,Sk) is nonnegative, Lemma 4.3.4 implies convergence of the value of
objective function. Note that our objective function is convex, and the nondifferentiable
part is separable in terms of coordinate blocks. Tseng (2001) established the convergence
theorem of the parameters Lk and Sk.

Note that though the natural algorithms are easy to implement, SVD computation is
needed in every iteration, which can be very time consuming. This is also a drawback for
all the other previous algorithms to recover the low rank matrices, including PGA, ALM
and their extensions.

4.4 Two alternative algorithms

In this section, we develop two alternative algorithms for solving (4.7) and (4.8), where
SVD computation is not required in every iteration. The idea relies on a remarkable con-
nection between the nuclear norm of a matrix and the sum of two Frobenius norms arising
from a decomposition of the matrix.

Lemma 4.4.1. Let L ∈ Rn1×n2 , A ∈ Rn1×r, B ∈ Rn2×r, with 0 < r ≤ min (n1, n2). Then

||L||∗ = min
A,B:L=ABT

1

2
(||A||2F + ||B||2F). (4.16)

Based on this fact, one can derive the following result.

Lemma 4.4.2. Let M ∈ Rn1×n2 . Then for any given r such that 0 < r ≤ min (n1, n2), the

solution to the optimization problem

minimizeL:rank(L)≤r f(L) =
1

2
||M− L||2F + λ||L||∗, (4.17)
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is given by L̂ = Dλ(Mr), where Dλ(Mr) = UrDr,λV
T
r with UrDrV

T
r is the rank-r SVD

of M, and Dr,λ = diag[(d1 − λ)+, . . . , (dr − λ)+].

Let A ∈ Rn1×r and B ∈ Rn1×r. Then for the same r, the solution to the optimization

problem

minimize Fλ(A,B) =
1

2
||M−ABT ||2F +

λ

2
(||A||2F + ||B||2F), (4.18)

is given by Â = Ur(Dr,λ)
1
2 and B̂ = Vr(Dr,λ)

1
2 , and all solutions satisfy ÂB̂T = L̂,

where L̂ is as given in (4.17).

Motivated by this result, we now consider the following criterion:

(1) For the element-wise sparse case

minimize Fλ,τ (A,B,S) =
1

2
||M−ABT − S||2F +

λ

2
(||A||2F + ||B||2F) + τ ||S||1

(4.19)

(2) For the row sparse case

minimize Fλ,τ (A,B,S) =
1

2
||M−ABT − S||2F +

λ

2
(||A||2F + ||B||2F) + τ ||S||1,2

(4.20)

where the dimension of A is n1 × r and the dimension of B is n2 × r.

4.4.1 Algorithms

To solve (4.19) and (4.20), we can again use the idea of block descent. When B and S are
fixed, it is easy to see that this optimization decouples into n1 separate ridge regressions.
Similarly, when A and S are fixed, solving for B is equivalently to n2 separate ridge re-
gressions. When A and B are fixed, we can solve for S using Lemma 4.3.2 and Lemma
4.3.3. See Algorithm 4 and Algorithm 5 for details. In terms of the stopping criterion, we
use something comparable to (4.14), i.e.

max(
|Fλ,τ (Ak+1,Bk+1,Sk+1)− Fλ,τ (Ak,Bk,Sk)|

|Fλ,τ (Ak,Bk,Sk)|
,
||Ak+1(Bk+1)T −Ak(Bk)T ||2F

||Ak(Bk)T ||2F
) ≤ ε.

(4.21)
Remarks:
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1 Note that all previous algorithms, including PGA, ALM, and Algorithms 2 and 3,
need to compute SVD in every iteration, and this can be time consuming. However,
in Algorithm 4 and 5, SVD is only needed in initialization. Instead, matrix inversion
is needed in the new algorithms, but the dimension of the matrix that needs to be
inverted is only r × r, where r is often much smaller than n1 and n2.

2 In theory, r should be chosen such that it is larger than the rank of L0. In practice,
the choice of r can be guided by the SVD of M.

3 Since the alternating ridge regression might not exactly reveal the rank of the solu-
tion, we add an eigenvalue thresholding step at the end of the algorithm, that is, to
estimate L by Dλ(ABT ).

Algorithm 4
Input: M ∈ Rn1×n2 , λ, τ , r

1: Initialize: A = UD,B = VD and S = 0

2: while the stopping criterion is not satisfied do
3: Given B and S, solve for A: minA ||M−ABT − S||2F + λ

2
||A||2F

=⇒ A = (M− S)B(BTB + λI)−1

4: Given A and S, solve for B: minB ||M−ABT − S||2F + λ
2
||B||2F

=⇒ B = (M− S)TA(ATA + λI)−1

5: Given A and B, S = Hτ (M−ABT )

6: end while
Output: A,B and S

Algorithm 5
Input: M ∈ Rn1×n2 , λ, τ , r

1: Initialize: A = UD,B = VD and S = 0

2: while the stopping criterion is not satisfied do
3: Given B and S, solve for A: minA ||M−ABT − S||2F + λ

2
||A||2F

=⇒ A = (M− S)B(BTB + λI)−1

4: Given A and S, solve for B: minB ||M−ABT − S||2F + λ
2
||B||2F

=⇒ B = (M− S)TA(ATA + λI)−1

5: Given A and B, S = Hr
τ (M−ABT )

6: end while
Output: A,B and S
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4.4.2 Convergence analysis

In this section, we investigate convergence properties of the Algorithm 4 and 5 in the con-
text of (4.19)-(4.20) and (4.7)-(4.8). First, we show the value of objective function is mono-
tone decreasing.

Theorem 4.4.3. Let {(Ak,Bk,Sk)} be the iterates generated by Algorithm 4. The values

of the objective function (4.19) are monotone decreasing, i.e.

Fλ,τ (A
k,Bk,Sk) ≥ Fλ,τ (A

k+1,Bk,Sk) ≥ Fλ,τ (A
k+1,Bk+1,Sk) ≥ Fλ,τ (A

k+1,Bk+1,Sk+1).

A similar result holds for (4.20). Again, since Fλ,τ (A,B,S) is positive, convergence
of the value of the objective function is guaranteed.

4.4.2.1 Properties of convergent sequences

In addition to the convergence of the value of the objective function, properties of the limit
points of the sequence {(Ak,Bk,Sk)} are also of interests. Since both (4.19) and (4.20)
are non-convex, it is difficult to guarantee a unique limit point for either problem. Instead,
we will discuss stationary points of the sequence {(Ak,Bk,Sk)}. The stationary point here
is in the sense of first order stationarity, that is,

∂AFλ,τ (A
∗,B∗,S∗) = 0, ∂BFλ,τ (A

∗,B∗,S∗) = 0, ∂SFλ,τ (A
∗,B∗,S∗) = 0,

where ∂xf(x, y) is partial derivative of f(x, y) with respect to x. Thus, (A∗,B∗,S∗) will
be a fixed point of the updates.

Before we show the results on stationary points, we first introduce the following lemma.

Lemma 4.4.4. Let {(Ak,Bk,Sk)} be the estimates at iterate the kth iteration. Then the

following inequality holds:

Fλ,τ (A
k,Bk,Sk)− Fλ,τ (Ak+1,Bk+1,Sk+1) ≥ 1

2
(||(Ak −Ak+1)(Bk)T ||2F + ||Ak+1(Bk −Bk+1)T ||2F)

+
λ

2
(||Ak −Ak+1||2F + ||Bk −Bk+1||2F)

+ (Fλ,τ (A
k+1,Bk+1,Sk)− Fλ,τ (Ak+1,Bk+1,Sk+1))

.
= ηk. (4.22)
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Further, we have

Ak −Ak+1 → 0, Bk −Bk+1 → 0, Sk − Sk+1 → 0, as k →∞. (4.23)

The above lemma shows that the difference between successive iterates goes to zero.
This is a necessary condition for the following theorem.

Theorem 4.4.5. Let {(Ak,Bk,Sk)} be the iterates generated by Algorithm 4 (or Algorithm

5). Then for any λ > 0 and τ > 0, we have:

(a) every limit point of {(Ak,Bk,Sk)} is a stationary point;

(b) the associated (sub)sequence {(Ank ,Bnk ,Snk)} have the same convergence. That is

to say, if a sequence Ank converges to a limit point A∗, then the sequences Bnk and

Snk also converge. Similarly, if Bnk is known to converge to B∗, the sequences Ank

and Snk also converge.

Theorem 4.4.5 implies that if we observe a convergent subsequence of {Ak} or {Bk},
the corresponding subsequence of {(Ak,Bk,Sk)} converges to a stationary point. In the
next theorem, we explore the rate at which Algorithm 4 (and Algorithm 5) reaches to a
stationary point.

Theorem 4.4.6. Let {(Ak,Bk,Sk)} be the iterates generated by Algorithm 4 (or Algorithm

5) and f∞ be the limit point of Fλ,τ (Ak,Bk,Sk). We have ηk → 0, and finite convergence

rate

min
1≤k≤K

ηk ≤ Fλ,τ (A
1,B1,S1)− f∞

K
, ∀K > 0. (4.24)

Further, the difference between successive iterates will satisfy

min
1≤k≤K

(||Ak −Ak+1||2F + ||Bk −Bk+1||2F) ≤ 2

λ

(Fλ,τ (A1,B1,S1)− f∞

K

)
. (4.25)

Theorem 4.4.6 implies that for any ε > 0, we need at most K = O(1/ε) steps to reach
a point (Ak∗ ,Bk∗ ,Sk

∗
), such that ηk∗ ≤ ε, where 1 ≤ k∗ ≤ K. The sum of successive

differences for Ak∗ and Bk∗ will be smaller than 2ε/λ. A O(1/K) convergence rates for
Algorithm 4 and Algorithm 5 are thus established.

4.4.2.2 Connections to the two formulations

In this section, we study the connections between (4.19)-(4.20) and (4.7)-(4.8). We first
focus on the value of the objective functions. Note that the objective functions in (4.7) and
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(4.8) can be written as

f(ABT ,S) =
1

2
||M−ABT − S||2F + λ||ABT ||∗ + τ ||S||1, (4.26)

f(ABT ,S) =
1

2
||M−ABT − S||2F + λ||ABT ||∗ + τ ||S||1,2. (4.27)

Without confusion, we omit the subscript λ and τ in objective functions. Using the fact
||ABT ||∗ ≤ 1

2
(||A||2F + ||B||2F), we have f(Ak(Bk)T ,Sk) ≤ F (Ak,Bk,Sk) for both

element-wise sparse and row sparse penalization. We also note that if Ak and Bk are
stored in the “SVD format”, that is, Ak = Uk(Dk)1/2 and Bk = Vk(Dk)1/2, it follows
that f(Ak(Bk)T ,Sk) = F (Ak,Bk,Sk) by Lemma 4.4.1. Remind that F (Ak,Bk,Sk) con-
verges to f∞. Under the assumption that Ak and Bk are stored in the “SVD format”,
f(Ak(Bk)T ,Sk) is a decreasing sequence, and the sequence also converges to f∞. How-
ever, f∞ is not necessary the minimum of f(ABT ,S).

Next, we focus on comparing the stationary points of (4.19)-(4.20) to (4.7)-(4.8). First
we consider the element-wise sparse senario, i.e. (4.19) and (4.7). For (L∗,S∗) to be a
stationary point of (4.7), the first order sub-gradient condition should be satisfied, i.e.

∂Lf(L∗,S∗) = (L∗ + S∗ −M) + λ∂||L∗||∗ = 0 =⇒ (L∗ + S∗ −M) + λU∗∂(D∗)V∗T = 0,

(4.28)

∂Sf(L∗,S∗) = (L∗ + S∗ −M) + τ∂||S∗||1 = 0 =⇒ (L∗ + S∗ −M) + τsgn(S∗) = 0,

(4.29)

where U∗D∗V∗ is the SVD of L∗, ∂(D∗) is a subgradient of the nuclear norm ||D∗||, and
sgn(S∗) is sign function of S∗. On the other hand, the conditions for (A∗,B∗,S∗) to be a
stationary point of (4.19) are as follows:

∂AF (A∗,B∗,S∗) = (A∗B∗T + S∗ −M)B∗ + λA∗ = 0 =⇒ (A∗B∗T + S∗ −M)V ∗ + λU∗ = 0,

(4.30)

∂BF (A∗,B∗,S∗) = (A∗B∗T + S∗ −M)TA∗ + λB∗ = 0 =⇒ U∗T (A∗B∗T + S∗ −M) + λV∗T = 0,

(4.31)

∂SF (A∗,B∗,S∗) = (A∗B∗T + S∗ −M) + τ∂||S∗||1 = 0 =⇒ (A∗B∗T + S∗ −M) + τsgn(S∗) = 0.

(4.32)

We can see two things from the above conditions. First, a stationary point of the con-
vex problem about f(L,S) corresponds to a stationary point of the optimization problem
F (A,B,S). Second, a stationary point of the optimization problem about F (A,B,S)
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is not necessary a stationary point of the convex problem about f(L,S). The first state-
ment can be verified by left multiplying a matrix U∗T and right multiplying a matrix
V∗ to (4.28). In this case, one representative is U∗F = U∗f∂(D∗f ), V∗F = V∗f∂(D∗f ),
(D∗F )ii = [(D∗f )ii/(∂(D∗f )ii)

2] and S∗F = S∗f , where the subscript represents the function it
belongs to. In terms of the second statement, it makes sense the non-convex problem about
F (A,B,S) needs extra conditions to match the stationary points with the convex problem
about f(L,S). Recall Lemma 4.4.2 that the rank of A∗ and B∗ should be greater than
the rank of L∗. Under this condition, if there exists a minimizer for function F (A,B,S),
the minimizer will correspond to the solution of the convex problem about f(L,S) with
L∗f = A∗FB∗TF and S∗f = S∗F by Lemma 4.4.2.

Analyses for row sparse scenario are similar. Overall, we have the following conclu-
sions.

Theorem 4.4.7. Let Ak ∈ Rn1×r, Bk ∈ Rn2×r, Sk ∈ Rn1×n2 be the sequence generated

by Algorithm 4 (or Algorithm 5) and let (A∗,B∗,S∗) denote a limit point of the sequence.

Suppose the problem min f(L,S) has a minimizer L∗ with rank at most r. If (A∗,B∗,S∗)

is the global minimizer of F (A,B,S), then L∗ = A∗B∗T and S∗ is a solution to the convex

problem of min f(L,S).

4.5 Extension to the matrix completion problem

In general, the matrix completion problem is underdetermined without additional informa-
tion, since filling in the missing entries with any values will complete the matrix. In many
instances, however, the target matrix is known to be structured in the sense that it is low-
rank or approximately low-rank. Many practical cases fall in this general category. One
popular example is the Netflix problem. Each row of the matrix consists of a user, each
column corresponds to a movie, and each entry in the matrix is the rating that a user gives
to a movie. The missing entries of this matrix are ratings that users have not yet rated and
the goal is to predict these missing values in order to provide movie recommendations to
the users. In this case, the low-rank or approximately low-rank structure of the matrix is
assumed, as it is commonly believed that only a few factors contribute to a user’s tastes or
preferences.

Similar to the fully observed matrix, small noise and outliers or corrupted entries may
exist in the incomplete matrix. Under similar assumptions, we extend our methods to
estimate the low rank matrix and corrupted entries to the matrix completion problem. We
also consider two scenarios, the element-wise sparse case and the row sparse case. Let
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M be the observed matrix (containing missing values), Sigma be the set of indices of
the observed entries. Let PΩ(M) denote the projection of the incomplete matrix to the
observed entries, i.e.

PΩ(M)i,j =

{
Mi,j if (i, j) ∈ Ω

0 if (i, j) /∈ Ω.
(4.33)

Taking advantage of the projection notation, we consider the following criteria for matrix
completion:

minimize fλ,τ (L, S) =
1

2
||PΩ(M− L− S)||2F + λ||L||∗ + τ ||S||1 (4.34)

minimize fλ,τ (L, S) =
1

2
||PΩ(M− L− S)||2F + λ||L||∗ + τ ||S||1,2 (4.35)

Note that Algorithm 2 and 3 can be modified to accommodate the incomplete matrix. See
Algorithm 6 for details. The only difference is in updating the low rank matrix. Instead of
only using the observed entries of the matrix, we also use information on the incomplete
part from the most recent iteration. We found through empirical studies that this approach
works well in terms of both convergence efficiently and estimation accuracy.

Algorithm 6
Input: M ∈ Rn1×n2 , λ, τ

1: Initialize: L0 = 0,S0 = 0, k = 0
2: while not converged do
3: Lk+1 = Dλ(PΩ(M− Sk) + PΩ⊥(Lk)),
4: Sk+1 = Hτ (M− Lk+1) (for the elment-wise sparse case)

or Sk+1 = Hr
τ (M− Lk+1) (for the row sparse case)

5: k ← k + 1
6: end while

Output: Lk and Sk

Similarly, Algorithms 4 and 5 can also be modified to accommodate the incomplete
matrix. See Algorithm 7 for details.

Note that all previous convergence analysis can be carried over and done in a similar
fashion for Algorithm 6 and 7. We omit the details here. Further, one can combine Algo-
rithm 6 and 7 with cross-validation to select tuning parameter λ and τ in (4.7)-(4.8) and
(4.19)-(4.20).
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Algorithm 7
Input: M ∈ Rn1×n2 , λ, τ

1: Initialize: A0 = UD,B0 = VD and S0 = 0, k = 0
2: while not converged do
3: Given Bk,Sk, solve for Ak+1: minA ||PΩ(M−Ak(Bk)T − Sk)||2F + λ

2
||Ak||2F

=⇒ Ak+1 = M∗Bk((Bk)TBk + λI)−1,
where M∗ = PΩ(M−Ak(Bk)T − Sk) + Ak(Bk)T

4: Given Ak+1,Sk, solve for Bk+1: minB ||PΩ(M−Ak+1(Bk)T − Sk||2F + λ
2
||Bk||2F

=⇒ Bk+1 = M∗TAk+1((Ak+1)TAk+1 + λI)−1,
where M∗ = PΩ(M−Ak+1(Bk)T − Sk) + Ak+1(Bk)T

5: Given Ak+1,Bk+1, Sk+1 = Hτ (PΩ(M−Ak+1(Bk+1)T ))
(for the element-wise sparse case)
or Sk+1 = Hr

τ (PΩ(M−Ak+1(Bk+1)T ) (for the row sparse case)
6: k ← k + 1
7: end while

Output: Ak,Bk and Sk

4.6 Simulation studies

In this section, we evaluate the performances of Algorithm 2-5. Following (4.1), we use
the model Mn1×n2 = Un1×r0V

T
r0×n2

+ S0 + σN0, where n1 and n2 are fixed at 400, U and
V are random matrices with Normal(0, 2) entries, and the entries of N0 are i.i.d. from
Normal(0, 1).

First, we consider the case where the low rank matrix is corrupted by an element-wise
sparse matrix. Specifically, we randomly assign 5% entries to S0 to be non-zero, and these
non-zero entries are generated i.i.d. from Uniform(1, 5). We change the rank r0 from
5 to 30 and also range the noise level σ from 0.01 to 0.5. In Algorithm 4, we set the
rank parameter r to 50 so that r ≥ r0 is always satisfied. We compare Algorithm 2 and
Algorithm 4 with the ASALM algorithm of Tao and Yuan (2011), one of the most efficient
and accurate algorithms in the literature that assumes the same model as our algorithms.
To evaluate the performance, we use the relative error of the low rank matrix, i.e.

Relative Error =
||L̂−UVT ||2F
||UVT ||2F

.

Table 4.1 shows the results. As one can see, as the rank r0 increases, the performance of
each algorithm is pretty stable. Algorithm 4 works the best, Algorithm 2 performs slightly
worse than Algorithm 4, but both work better than ASALM. On the other hand, as the
noise level increases, performances of all three algorithms degrade. When the noise level is
low, the difference between the three algorithms is not obvious, while when the noise level
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Table 4.1: Mean(standard deviation) ×103 of relative error over 10 replicants in the
element-wise corruption case

σ = 0.1
r0 5 10 20 30

ASALM 3.75(0.0707) 3.73(0.0422) 3.37(0.125) 3.31(0.0316)
Algorithm 2 3.18(0.0632) 3.16(0.0843) 3.14(0.0843) 3.12(0.0422)
Algorithm 4 2.95(0.0707) 2.93(0.0675) 2.84(0.0843) 2.66(0.0843)

r0 = 20
σ 0.01 0.05 0.1 0.5

ASALM 0.032(0.0632) 1.18(0.0789) 3.37(0.125) 17.14(0.190)
Algorithm 2 0.064(0.0516) 1.62(0.0422) 3.14(0.0843) 15.83(0.356)
Algorithm 4 0.052(0.0632) 1.42(0.0422) 2.84(0.0843) 15.23(0.283)

is large, the advantage of Algorithm 2 and 4 over ASALM becomes more obvious. This
might be due to the reason that in ASALM, one needs to pre-specify the noise level, and if
the noise level is not set appropriately, the algorithm may not work well.

Table 4.2: CPU time per iteration in the element-wise corruption case
σ = 0.1

r0 5 10 20 30
ASALM 1.34 2.14 1.79 1.55

Algorithm 2 16.2 17.3 18.9 21.7
Algorithm 4 0.21 0.22 0.22 0.22

r0 = 20
σ 0.01 0.05 0.1 0.5

ASALM 1.82 1.78 1.79 1.93
Algorithm 2 20.9 20.3 18.9 18.9
Algorithm 4 0.21 0.22 0.22 0.22

Table 4.2 records the computational cost per iteration for each algorithm. Note that
Algorithm 4 is significantly more efficient than the other two algorithms, because unlike
the other two algorithms, it does not compute the SVD in every iteration. On the other
hand, Algorithm 2 is the least efficient algorithm; this is probably due to the fact that it
needs to estimate the parameter iteratively in every step of the algorithm.

We also consider the case where the low rank matrix is corrupted by a row sparse
matrix. Keeping all other setting the same as before, we randomly assign 5% of the rows of
S0 as non-zero rows, and their entries are generated i.i.d. from Uniform(1, 5). We are not
aware of any algorithms in the literature that deal specifically with this case. Thus, we only
compare Algorithm 3 and Algorithm 5. Due to the identifiability issue, we use a slightly
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different measure to evaluate the performance,

Relative Error =
||L̂Ic0 − (UVT )Ic0 ||

2
F + ||PUVT⊥(L̂I0)||2F

||UVT ||2F
,

where I0 is the indices of the corrupted rows, PUVT⊥(X) is the projection of X on the
orthogonal space generated by UVT .

Table 4.3: Mean(standard deviation) ×103 of relative error over 10 replicants in the row
corruption case

σ = 0.1
r0 5 10 20 30

Algorithm 3 3.83(0.0675) 4.13(0.0483) 4.50(0.115) 4.65(0.135)
Algorithm 5 3.41(0.0568) 3.51(0.0738) 3.64(0.0699) 3.78(0.0919)

r0 = 20
σ 0.01 0.05 0.1 0.5

Algorithm 3 1.49(0.11) 2.63(0.11) 4.50(0.115) 18.63(0.309)
Algorithm 5 0.42(0.0632) 1.79(0.0738) 3.64(0.0699) 16.16(0.381)

Table 4.4: CPU time per iteration in the row corruption case
σ = 0.1

r0 5 10 20 30
Algorithm 3 1.28 1.31 1.40 1.77
Algorithm 5 0.28 0.28 0.28 0.28

r0 = 20
σ 0.01 0.05 0.1 0.5

Algorithm 3 1.34 1.41 1.40 4.57
Algorithm 5 0.28 0.28 0.28 0.66

The results are shown in Table 4.3 and 4.4. The patterns are similar to those in the
element-wise corruption case. Algorithm 5 works better than Algorithm 3 in terms of both
estimation accuracy and computational cost.

4.7 Data applications

In this section, we apply the proposed methods to two data examples.
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4.7.1 Background modeling from surveillance video

Detecting the background variations in a scene is one of the basic tasks in video surveil-
lance. Because of the correlation between frames, it could be regarded as a low-rank mod-
eling problem. Candès et al. (2011) applied robust principal component analysis to solve
the problem. They model the background variations as low rank, and foreground objects
as sparse errors. However, we investigated the differences between frames, finding that not
only the foreground objects are different, but also the parts that look the same have small
differences. In this case, treating the frames as the combination of a low rank component,
an element-wise sparse component and small noise component is a more reasonable choice.

We consider the first example in Candès et al. (2011). The video is a sequence of 200
grayscale frames taken at an airport. The resolution for each frame is 176 × 144, and
all frames can be stacked to be rows of a matrix. Thus, the dimension of data matrix M

is 200 × 25, 344. Note that the video has a relatively static background, but significant
foreground variations. It is thus natural to assume that the rank of the low rank matrix is 1.
We apply Algorithm 4 here with r = 1, λ being 0.01×λmax(M), and τ being 5 times of the
noise magnitude. The left column of Figure 4.1 shows three frames taken from the original
video, while the middle column and the right column show the recovered low-rank and
sparse components, respectively. Note that the low-rank component correctly identifies the
background with the person appearing throughout the video, while the sparse component
correctly identifies the moving pedestrians.

Algorithm 4 enjoys several advantages to the Principal Component Pursuit (PCP) in
Candès et al. (2011). First, the background model could be measured more accurately by
imposing a rank in Algorithm 4. Note that r = 1 restricts all low-rank images to be the
same, whereas it is hard to tell the difference in the low rank images through PCP. Second,
Algorithm 4 can choose to strengthen or weaken the sparse component by adjusting the
tuning parameter τ . For example, if one wishes see most of the anomaly in the frames,
such as the characters seen in the top right subfigure of Figure 4.1, τ can be relatively
small, while if only large objects are of interests, τ can be adjusted to be large. PCP, on
the other hand, can only obtain one kind of sparse component, treating large corruption
and small noise as the same. The third benefit of Algorithm 4 is in computational cost. On
a desktop PC with a 2.13 GHz Core4 Duo processor, it takes Algorithm 4 76 iterations,
roughly 1 minute to converge, while for PCP, it takes 806 iterations and 43 minutes.
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Figure 4.1: The panels describe background modeling from a 200 frame sequence video
taken in an airport. The first column shows three original frames. The second and third
columns display low-rank L̂ and sparse Ŝ obtained by Algorithm 4.

4.7.2 Face recognition

Face recognition is another domain that has been investigated using low-rank models. It is
commonly assumed that images taken under distant illumination lie in a low dimensional
linear subspace, Candès et al. (2011) for instance. Various methods have been proposed
to remove shadows and peculiarities from the face images. We consider a more compli-
cated situation here: images are contaminated. In other words, not only the shadows and
peculiarities but also the corrupted images would disturb the recovery of low-rank model.

We take a sequence of face images from the Yale B face database as an example. There
are 64 grayscale images of the same subject; the resolution of each image is 480 × 640.
Stacking each image as a row, we obtain our data matrix M ∈ R64×307,200. Of the 64
images, one has been contaminated by random noise generated from Uniform(1, 100)
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Figure 4.2: The panels describe face recognition problem with a person’s face images from
Yale B face dataset. There are 64 images under different illuminations. In the first column,
the top two are original images, and the bottom one is a contaminated image. The second
and third columns display low-rank L̂1 and sparse Ŝ1, which are estimated by Algorithm 5.
The fourth and fifth columns are low-rank L̂2 and sparse Ŝ2, estimated by Algorithm 4.

on each pixel. We apply Algorithm 5 here. We set r = 4, λ = 0.01 × λmax(M) and
τ = 16000 so that the face and light direction information will be kept while the shadow
will be removed. The first column of Figure 4.2 shows three original images with the third
one being the contaminated image. The second and third columns show the estimated low-
rank and sparse components by Algorithm 5, respectively. As a comparison, we also apply
Algorithm 4 here assuming shadow and corruption as element-wise sparse component.
The fourth and fifth columns in Figure 4.2 show the corresponding recovered low-rank and
sparse components, respectively.

As one can see, Algorithm 5 is very effective at recovering the low rank component of
these images. Both the shadow and contamination have been largely removed. The sparse
component in the third column of Figure 4.2 clearly illustrate which image is contaminated.
The results given by Algorithm 4 are inferior. The low rank components in the fourth
column are not as clear as the corresponding changes in the second column, for example,
the right face in the second image and the chin in the third image. Further, the third image
in the fourth column indicates that the contamination was not fully removed.
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4.8 Conclusion

This chapter considers two low rank recovery problems, one for the element-wise corrupted
and noisy low-rank matrix, and the other for the row corrupted and noisy low-rank matrix.
We proposed new criteria to address the problems and we show upper error bounds for
the recovered low-rank and sparse components through our criteria. The obtained upper
bounds are comparable to related literature. More importantly, we developed a series of
spectral regularization algorithms that are easy to implement and efficient in solving the
optimization problems. In particular, we have demonstrated that Algorithm 4 and Algo-
rithm 5 have advantages in both computational efficiency and estimation accuracy.
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CHAPTER 5

Future Work

Problems of high-dimensional data analysis continue to challenge statisticians. The size
of the data keeps growing and the scope of the analyses is no longer limited to finding
significant relations, but also to develop efficient algorithms. In this thesis, we propose an
EM-like method to estimate the covariance matrix for financial assets via the Barra model
(Chapter 2), the coordinate descent with multipliers (CDM) algorithm and a screening rule
(SASECO) to select stable and sparse portfolios (Chapter 3), and a series of spectral reg-
ularization algorithms to recover the low rank component from corrupted data matrices
(Chapter 4). Good properties of these methods have been demonstrated both theoretically
and numerically.

Looking into future, we list some of potential directions that one may be continue to
pursue. In Chapter 2, we assume the factors and the specific returns are independent and
identically distributed, but it does not necessarily hold in practice. A time series effects on
factors or on specific returns across days may be taken into consideration. In this case, we
can also apply the idea of EM algorithm to deal with the dependence, but the derivation
of the theoretical properties of the MLE will be more challenging. On the other hand, a
relaxation of the assumption for the covariance matrix of specific returns Σε is also possi-
ble. For example, Σε could be a sparse matrix instead of a diagonal matrix. Extra structure
or information is probably needed, as well as optimization techniques such as adaptive
thresholding.

In Chapter 3, the portfolio selection problem may involve more constraints on individ-
ual assets in real life. A possible extension of our methods would be to take into account
extra constraints, for example, constraints related to percentage of allocations on each sec-
tor or industry, in the form of more linear equality constraints. Both the CDM and the
SASECO can be extented to other linear equality constraints, as well as certain linear in-
equality constraints. Such an extension is likely to be beneficial to a variety of personalized
investment strategies.
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In Chapter 4, we have studied to recover the low rank matrix from both element-wise
corrupted data matrices and row corrupted data matrices. It is possible that these two kinds
of corruption exist simultaneously in noisy high-dimensional data. In this case, one more
regularization term needs to be added to the objective function, which makes both theoret-
ical property derivation, as well as algorithm development more challenging. Further, the
format of our objective function can be adopted to broader domains. For example, replac-
ing the Frobenius loss with the loss or the likelihood of regression with matrix covariates
will lead to the so-called regularized matrix regression. Our algorithms can be modified to
accommodate this scenario.
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APPENDIX A

Proofs of the Main Results in Chapter 2

A.1 Proof of Theorem 2.2.1

Proof. (1) First, we prove the lower bound for the Barra one-step estimator ĉov(f)o under
Frobenius norm. We see that

ĉov(f)o − cov(f) =
1

n− 1
(F̂oF̂

′
o −

1

n
F̂o11′F̂′o)− cov(f). (A.1)

On the other hand, we can decompose F̂o with respect to F, that is

F̂o = F + (B′B)−1B′E.

Plugging it in (A.1) and arranging the order, we get

ĉov(f)o − cov(f) =
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)

+ (B′B)−1B′[
1

n− 1
(EF′ − 1

n
E11′F′)]

+ [
1

n− 1
(FE′ − 1

n
F11′E′)]B(B′B)−1

+ (B′B)−1B′[
1

n− 1
(EE′ − 1

n
E11′E′)]B(B′B)−1. (A.2)

This shows that the difference is a four-term perturbation of the population covariance
matrix, and this presentation is our key technical tool. Now we analyze the four terms one
by one.

Before going further, let us bound ||B||. From assumption (C), we know that cov(f) ≥
σ1IK . Here, the inequality A1 ≥ A2 means A1 − A2 is positive semidefinite, for any
symmetric positive semidefnite matricesA1 andA2. Then, we get σ1BB′ = B(σ1IK)B′ ≤
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Bcov(f)B′ ≤ Σ. With assumption (B), it follows that

||B||2 = tr(BB′) ≤ tr(Σ)/σ1 ≤ b/σ1 = O(p),

i.e.
||B|| = O(p1/2). (A.3)

Now we consider the first term 1
n−1

(FF′ − 1
n
F11′F′) − cov(f). From c = O(1) in

assumption (B), we see that the fourth moments of f are bounded across n, thus a routine
calculation shows that

E(|| 1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)||2) = O(n−1K2),

which implies || 1
n−1

(FF′ − 1
n
F11′F′)− cov(f)||2 = Op(n

−1K2).
As for the second term, we can decompose it into two parts

E||(B′B)−1B′[
1

n− 1
(EF′ − 1

n
E11′F′)]||2

≤2(E|| 1

n− 1
(B′B)−1B′EF′||2 + E|| 1

n(n− 1)
(B′B)−1B′E11′F′||2).

We see that

E|| 1

n− 1
(B′B)−1B′EF′||2

=
1

(n− 1)2
Etr[(B′B)−1B′EF′FE′B(B′B)−1]

=
1

(n− 1)2
Etr(F′FE′B(B′B)−1(B′B)−1B′E)

=
1

(n− 1)2
Etr[F′FE(E′B(B′B)−1(B′B)−1B′E|F)]

=
1

(n− 1)2
Etr(F′F)tr[(B′B)−1B′ΣεB(B′B)−1]

=
1

n
E(ff ′)tr[(B′B)−1B′ΣεB(B′B)−1]

≤ 1

n
E(ff ′)||B(B′B)−1(B′B)−1B′|| · ||Σε||

=
1

n
E(ff ′)[tr(B′B)−2])1/2[tr(Σ2

ε)]
1/2

=O(n−1p1/2K3/2). (A.4)
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The last equation is because of our assumption (B), (E) and (F). On the other hand,

E|| 1

n(n− 1)
(B′B)−1B′E11′F′||2

=
1

n2(n− 1)2
Etr[(B′B)−1B′E11′F′F11′E′B(B′B)−1]

=
1

n2(n− 1)2
Etr(F′F)E(11′E′B(B′B)−1(B′B)−1B′E11′|F)

≤ 1

n2(n− 1)2
Etr(F′F)||11′11′||E(E′B(B′B)−1(B′B)−1B′E|F)

=O(n−1p1/2K3/2). (A.5)

The last equation can be easily followed by (A.4).
So summing up (A.4) and (A.5), we get the order for second term in (A.2)

E||(B′B)−1B′[
1

n− 1
(EF′ − 1

n
E11′F′)]||2 = O(n−1p1/2K3/2), (A.6)

which results in ||(B′B)−1B′[ 1
n−1

(EF′ − 1
n
E11′F′)]||2 = Op(n

−1p1/2K3/2).
The third term is just the transpose of the second term, so they have the same result.
At last, we analyze the last term in (A.2). By large sample theory, we know that

1

n− 1
(EE′ − 1

n
E11′E′) = Σε +O(n−1/2)1p×p,

So

||(B′B)−1B′[
1

n− 1
(EE′ − 1

n
E11′E′)]B(B′B)−1||

=||(B′B)−1B′(Σε +O(n−1/2)1p×p)B(B′B)−1||. (A.7)

Hence, going back to ĉov(f)o − cov(f), we see that when n goes to infinity, only one
term won’t vanish, that is (B′B)−1B′ΣεB(B′B)−1. Thus, we have the lower bound of the
difference,

||ĉov(f)o − cov(f)|| ≥ c1||(B′B)−1B′ΣεB(B′B)−1||, (A.8)

which is the first part in Theorem 2.2.1.
We further consider the order of the left term. First, if all diagonal elements of Σε are
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identical, say σ2, then

||(B′B)−1B′ΣεB(B′B)−1||

=||σ2(B′B)−1|| = σ2(
k∑
i=1

1

λi(B′B)2
)1/2. (A.9)

By assumption (F), we know all λi(B′B) are bounded. As a result, σ2(
∑k

i=1 1/λi(B
′B)2)1/2

can be denoted as c∗1K
1/2, where c1 is a positive constant. For general case, i.e. the diagonal

elements of Σε are not necessarily identical. Then we can bound Σε as follows

Σε ≥ σ2
(1)I,

where σ2
(1) is the smallest element in diagonal Σε. This inequality is in the sense of positive

definite. So we can further have

||(B′B)−1B′ΣεB(B′B)−1|| ≥ ||(B′B)−1B′ · σ2
(1)I ·B(B′B)−1|| = c∗1K

1/2. (A.10)

According to the above analysis, the lower bound in Theorem 2.2.1 must be greater
than 0.

(2) Second, we prove the lower bound for the Barra two-step estimator ĉov(f)w under
Frobenius norm.

Note that ĉov(f)w is quite similar to ĉov(f)o, so we can also decompose ĉov(f)w −
cov(f) into four parts. Replacing F̂o, Êo by

F̂w = F + (B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,oE,

Êw = [I−B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o ]E,
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similarly to (A.2), we have

ĉov(f)w − cov(f) =
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)

+ (B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o [
1

n− 1
(EF′ − 1

n
E11′F′)]

+ [
1

n− 1
(FE′ − 1

n
F11′E′)]Σ̂

−1

ε,oB(B′Σ̂
−1

ε,oB)−1

+ (B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o [
1

n− 1
(EE′ − 1

n
E11′E′)]Σ̂

−1

ε,oB(B′Σ̂
−1

ε,oB)−1.

(A.11)

The first term is the same as that in part (1). When we bound the rest of the three
terms as in part (1), similar deduction can be done. So the difference here is to replace
B(B′B)−2B′ with Σ̂

−1

ε,oB(B′Σ̂
−1

ε,oB)−2B′Σ̂
−1

ε,o . When we obtain the OLS estimator for Σ̂ε,o,
we get p diagonal elements σ̂2

i,o, i = 1, . . . , p. Arranging them from the smallest to the
largest, we get σ̂2

(1),o, . . . , σ̂
2
(p),o. Then, following calculation can be done:

σ̂2
(1),oI ≤ Σ̂ε,o ≤ σ̂2

(p),oI,

σ̂−2
(p),oI ≤ Σ̂

−1

ε,o ≤ σ̂−2
(1),oI,

σ̂−2
(p),oB

′B ≤ B′Σ̂
−1

ε,oB ≤ σ̂−2
(1),oB

′B,

(σ̂−2
(1),oB

′B)−1 ≤ (B′Σ̂
−1

ε,oB)−1 ≤ (σ̂−2
(p),oB

′B)−1,

σ̂4
(1),oB(B′B)−2B′ ≤ B(B′Σ̂

−1

ε,oB)−2B′ ≤ σ̂4
(p),oB(B′B)−2B′,

σ̂4
(1),o

σ̂4
(p),o

B(B′B)−2B′ ≤ Σ̂
−1

ε,oB(B′Σ̂
−1

ε,oB)−2B′Σ̂
−1

ε,o ≤
σ̂4

(p),o

σ̂4
(1),o

B(B′B)−2B′.

By Lemma 1, we see that σ̂2
(1),o and σ̂2

(p),o are bounded away from 0 in probability one.
So the last three terms in (A.11) can be bounded by corresponding terms in (A.2). Hence,
we will get the same result as part (1). We denote a new positive constant C2, and achieve
the second part in Theorem 2.2.1, ||ĉov(f)w − cov(f)|| ≥ c2||(B′B)−1B′ΣεB(B′B)−1||.
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A.2 Proof of Theorem 2.2.2

Proof. (1) First, we prove the lower bound for the Barra one-step estimator Σ̂ε,o under
Frobenius norm. We see that

Σ̂ε,o −Σε = diag(
1

n
ÊoÊ

′
o)−Σε

= diag(
1

n
[I−B(B′B)−1B′]EE′[I−B(B′B)−1B′])−Σε

≡ diag(
1

n
[(I−H)EE′(I−H)])−Σε where H = B(B′B)−1B′

= diag(
1

n
EE′)−Σε − diag[

1

n
(HEE′ + EE′H)] + diag(

1

n
HEE′H) (A.12)

Considering the difference under Frobenius norm, we have

||Σ̂ε,o −Σε|| ≥ ||diag(
1

n
HEE′H)− diag[

1

n
(HEE′ + EE′H)]|| − ||diag(

1

n
EE′)−Σε||

(A.13)

By large sample theorem, it is easy to see

||diag(
1

n
EE′)−Σε|| = Op(n

−1/2p1/2). (A.14)

So the last term in (A.13) will vanish when n goes to infinity. At the same time, we can
write 1

n
EE′ in (A.13) as Σε +O(n−1/2)1p×p. So asymptotically, we will get

||Σ̂ε,o −Σε|| ≥ c3||diag(HΣεH)− diag(HΣε + ΣεH)||,

which is the first part in Theorem 2.2.2.

(2) Second, we prove the lower bound for the Barra two-step estimator Σ̂ε,w under
Frobenius norm.

Replacing Êo by Êw = [I−B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o ]E in (A.12), we get

Σ̂ε,w −Σε = diag(
1

n
EE′)−Σε

− diag[
1

n
(B(B′Σ̂

−1

ε,oB)−1B′Σ̂
−1

ε,oEE′ + EE′Σ̂
−1

ε,oB(B′Σ̂
−1

ε,oB)−1B′)]

+ diag[
1

n
B(B′Σ̂

−1

ε,oB)−1B′Σ̂
−1

ε,oEE′Σ̂
−1

ε,oB(B′Σ̂
−1

ε,oB)−1B′]. (A.15)

To get the asymptotic lower bound for it, we use our boundedness strategy again. Similar
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calculation can be done to get

tr[(
σ̂2

(1),o

σ̂2
(p),o

)2HΣεH] ≤ diag[B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,oΣεΣ̂
−1

ε,oB(B′Σ̂
−1

ε,oB)−1B′] ≤ tr[(
σ̂2

(p),o

σ̂2
(1),o

)2HΣεH]

Since the boundedness of σ̂2
(1),o and σ̂2

(p),o by Lemma 1, we conclude that c||Σ̂ε,o −
Σε|| ≤ ||Σ̂ε,w−Σε|| ≤ c′||Σ̂ε,o−Σε||with probability one, where c and c′ are some positive
constants. Hence, ||Σ̂ε,w−Σε|| ≥ c4||diag(HΣεH)−diag(HΣε+ΣεH)|| asymptotically.

A.3 Proof of Theorem 2.2.3

Proof. Since ||Σ̂o − Σ|| = ||B[ĉov(f)o − cov(f)]B′ + Σ̂ε,o − Σε||, we can easily get the
lower bound by plugging in the two separate parts’ lower bounds, and similar to the Barra
two-step estimator.

A.4 Proof of Theorem 2.2.4

Proof. (1) First, we show the upper bound for the Barra one-step estimator ĉov(f)o under
Frobenius norm.

Similar to Theorem 2.2.1, we decompose ĉov(f)o − cov(f) into four parts, see (A.2).
Further, by Cauchy-Schwarz inequality,

||ĉov(f)o − cov(f)||2 ≤ 4(|| 1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)||2

+ ||(B′B)−1B′[
1

n− 1
(EF′ − 1

n
E11′F′)]||2

+ ||[ 1

n− 1
(FE′ − 1

n
F11′E′)]B(B′B)−1||2

+ ||(B′B)−1B′[
1

n− 1
(EE′ − 1

n
E11′E′)]B(B′B)−1||2). (A.16)

We have analyzed the first three terms in the proof of Theorem 2.2.1. So what we need
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to focus on is the order of the last term. We see that

E||(B′B)−1B′[
1

n− 1
(EE′ − 1

n
E11′E′)]B(B′B)−1||2

≤||B(B′B)−2B′||2E|| 1

n− 1
(EE′ − 1

n
E11′E′)||2

≤O(K)Etr[(εi − ε̄)(εi − ε̄)′(εi − ε̄)(εi − ε̄)′]

=O(pK). (A.17)

The last equation is based on d is bounded from assumption (B). The above calculation
leads to ||(B′B)−1B′[ 1

n−1
(EE′ − 1

n
E11′E′)]B(B′B)−1||2 = Op(pK).

Combining (A.4), (A.6) and (A.17), we obtain part (1) of Theorem 2.2.3,

||ĉov(f)o − cov(f)|| = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2).

(2) As for the Barra two-step estimator ĉov(f)w, the upper bound is the same as Barra
one-step estimator. Because similarly to what we have shown in the proof of part (2) of
Theorem 2.2.1, we see that the difference between Barra two-step estimator and the true
value can be bounded by the difference between Barra one-step estimator and the true
value. It implies that the upper bound of ||ĉov(f)w − cov(f)|| is also bounded by the upper
bound of ||ĉov(f)o − cov(f)||. So the second part of Theorem 2.2.3 is followed

||ĉov(f)w − cov(f)|| = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2).

A.5 Proof of Theorem 2.2.5

Proof. (1) First, we show the upper bound for the Barra one-step estimator Σ̂ε,o under
Frobenius norm.

Similar to Theorem 2.2.2, we decompose Σ̂ε,o −Σε into three parts,

||Σ̂ε,o −Σε||2

=|| 1
n

diag(EE′)−Σε +
1

n
diag(HEE′H)− [

1

n
diag(EE′H + HEE′)]||2

≤3(|| 1
n

diag(EE′)−Σε||2 + || 1
n

diag(HEE′H)||2 + || 1
n

diag(EE′H + HEE′)||2).

(A.18)
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(A.14) reveals the order of the first term, now we analyze the second and third term.
For the second term, we can relieve the diagonal condition so that

|| 1
n

diag(HEE′H)||2 ≤ || 1
n

HEE′H||2 ≤ ||H||2|| 1
n

EE′||2 = Op(pK). (A.19)

The last equation is because E|| 1
n
EE′||2 = E[tr(εε′εε′)] = O(p) under assumption d is

bounded.
For the third term, similarly to the second one, we have

|| 1
n

diag(EE′H + HEE′)||2 ≤ 2|| 1
n

diag(EE′H)||2 ≤ 2||H||2|| 1
n

EE′||2 = Op(pK).

(A.20)

So applying above results into (A.18), we get the first part of Theorem 2.2.4, that is,

||Σ̂ε,o −Σε|| = Op(n
−1/2p1/2) +Op(p

1/2K1/2).

(2) Turn to the Barra two-step estimator Σ̂ε,w. Similar to the proof of part (2) in The-
orem 2.2.2, we can bound ||Σ̂ε,w − Σε|| by ||Σ̂ε,o − Σε||, so that the upper bound for
||Σ̂ε,w −Σε|| will inherit the upper bound of ||Σ̂ε,o −Σε||. So it follows the second part of
Theorem 2.2.4,

||Σ̂ε,w −Σε|| = Op(n
−1/2p1/2) +Op(p

1/2K1/2).

A.6 Proof of Theorem 2.2.6

Proof. (1) First, we prove the asymptotic result for the Barra one-step estimator Σ̂o under
Frobenius norm. We see that

Σ̂o −Σ = B[ĉov(f)o − cov(f)]B′ + Σ̂ε,o −Σε (A.21)

= B[
1

n− 1
(F̂oF̂

′
o −

1

n
F̂o11′F̂′o)− cov(f)]B′ + diag(

1

n
ÊoÊ

′
o)−Σε.

On the other hand, we can decompose F̂o and Êo with respect to F and E, that is,

F̂o = F + (B′B)−1B′E,

Êo = [I−B(B′B)−1B′]E ≡ (I−H)E,
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where we define projection matrix H = B(B′B)−1B′. Plugging them in (A.21) and ar-
range the order, we get

Σ̂o −Σ = B[
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)]B′

+ H[
1

n− 1
(EF′ − 1

n
E11′F′)]B′

+ B[
1

n− 1
(FE′ − 1

n
F11′E′)]H

+ H[
1

n− 1
(EE′ − 1

n
E11′E′)]H

+ diag((I−H)
1

n
EE′(I−H))−Σε. (A.22)

This shows that the difference is a four-term perturbation of the population covariance
matrix, and this presentation is our key technical tool. By the Cauchy-Schwarz inequality,
it follows from (A.22) that

||Σ̂o −Σ||2 ≤ 4{||B[
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)]B′||2

+ ||H[
1

n− 1
(EF′ − 1

n
E11′F′)]B′ + B[

1

n− 1
(FE′ − 1

n
F11′E′)]H||2

+ ||H[
1

n− 1
(EE′ − 1

n
E11′E′)]H||2

+ ||diag((I−H)
1

n
EE′(I−H))−Σε||2} (A.23)

≡ 4(L1 + L2 + L3 + L4). (A.24)

First, we consider the term L1. Combining (A.3) and (A.4), we can get

L1 = tr{B[
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)]B′}2

≤ ||B′B||2(|| 1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)||2)

= Op(n
−1p2K2). (A.25)

Then let us consider the second term L2. It shows that

L2 = || 1

n− 1
[(HEF′B′ + BFE′H)− 1

n
(HE11′F′B′ + BF11′E′H)]||2

≤ 8

(n− 1)2
(||HEF′B′||2 +

1

n2
||HE11′F′B′||2). (A.26)
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Similarly to (A.4) and (A.5), the two terms in (A.26) conditioning on F results in

E||HEF′B′||2 ≤ ||H||2E||EF′B′||2 = K · E[tr(EF′B′BFE′)]

= K · E[tr(F′B′BFE(E′E|F))] = K · E[tr(F′B′BF)] · tr(Σε)

= nKtr(Σε) · tr[B′BE(ff ′)] ≤ nKtr(Σε)||B′B||||E(ff ′)||

= O(np2K2), (A.27)

and similarly,

E||HE11′F′B′||2 ≤ ||H||2E||E11′F′B′||2 = K · E[tr(E11′F′B′BF11′E′)]

= K · E[F′B′BF11′E(E′E|F)11′)] = K · tr(Σε)E[F′B′BF11′11′)]

≤ nKtr(Σε)||B′B||||E(ff ′)||||11′11′|| = n3K2tr(Σε)||B′B||

= O(n3p2K2). (A.28)

(A.27) and (A.28) conclude the result for (A.26), that is

L2 = Op(n
−1p2K2). (A.29)

As for the term L3, similarly to (A.17), we have

L3 ≤ ||H||2||
1

n− 1
(EE′ − 1

n
E11′E′)||2

= K · || 1

n− 1

n∑
i=1

(εi − ε̄)(εi − ε̄)′||2

≤ K · tr(εi − ε̄)(εi − ε̄)′(εi − ε̄)(εi − ε̄)′ = Op(pK). (A.30)

The finial result O(pK) does not contain n, that is because the last inequality cancelled out
the effects of 1/n, which can not be released. So L3 becomes a key term in the proof.

Last, from the proof of Theorem 2.2.4, we see

L4 = Op(n
−1p) +Op(pK). (A.31)

Therefore, combining the above results for L1, L2, L3, and L4 together gives Σ̂o,

||Σ̂o −Σ||2 = Op(n
−1p2K2) +Op(pK),

which is the result for the Barra one-step estimator.

84



(2) Second, we prove the asymptotic result for the Barra two-step estimator Σ̂w. Notice
that Σ̂w is quite similar to Σ̂o, so we can also decompose Σ̂w−Σ into four parts. Replacing
F̂o, Êo by

F̂w = F + (B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,oE,

Êw = [I−B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o ]E,

and with some simple calculation as (A.21) and (A.22), we can get the decomposition for
Σ̂w, denoting

||Σ̂w −Σ||2 ≤ 4(A1 +A2 +A3 +A4), (A.32)

where

A1 = ||B[
1

n− 1
(FF′ − 1

n
F11′F′)− cov(f)]B′||2,

A2 = ||S[
1

n− 1
(EF′ − 1

n
E11′F′)]B′ + B[

1

n− 1
(FE′ − 1

n
F11′E′)]S′||2,

A3 = ||S[
1

n− 1
(EE′ − 1

n
E11′E′)]S′||2,

A4 = ||diag((I− S)
1

n
EE′(I− S′))−Σε||2, (A.33)

with S = B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−1

ε,o . So we see that the difference between Σ̂w and Σ̂o is just
replacing H with S. What we intend to do next is to connect the two terms to get the
properties for Σ̂w.

Before going further, let us consider B(B′Σ̂
−1

ε,oB)−1B′ first. Similar to part (2) of The-
orem 2.2.1,

σ̂2
(1),oI ≤ Σ̂ε,o ≤ σ̂2

(p),oI,

σ̂−2
(p),oI ≤ Σ̂

−1

ε,o ≤ σ̂−2
(1),oI,

σ̂−2
(p),oB

′B ≤ B′Σ̂
−1

ε,oB ≤ σ̂−2
(1),oB

′B,

(σ̂−2
(1),oB

′B)−1 ≤ (B′Σ̂
−1

ε,oB)−1 ≤ (σ̂−2
(p),oB

′B)−1,

σ̂2
(1),oH ≤ B(B′Σ̂

−1

ε,oB)−1B′ ≤ σ̂2
(p),oH.

Since ||S||2 = tr[B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−2

ε,oB(B′Σ̂
−1

ε,oB)−1B′], we can bound it with

tr[(σ̂2
(1),o)

2HΣ̂
−2

ε,oH] ≤ tr[B(B′Σ̂
−1

ε,oB)−1B′Σ̂
−2

ε,oB(B′Σ̂
−1

ε,oB)−1B′] ≤ tr[(σ̂2
(p),o)

2HΣ̂
−2

ε,oH],
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then we have

tr[(
σ̂2

(1),o

σ̂2
(p),o

)2H] ≤ ||S||2 ≤ tr[(
σ̂2

(p),o

σ̂2
(1),o

)2H].

By assumption (C) and Lemma, we know that ||S||2 = O(1)tr(H) = O(K).
Moreover, we will need ||S′S||2 later. The bound can be written as

tr[(
σ̂2

(1),o

σ̂2
(p),o

)4H] ≤ ||S′S||2 ≤ tr[(
σ̂2

(p),o

σ̂2
(1),o

)4H],

and similar result can be gotten that ||S′S||2 = O(1)tr(H) = O(K).
Now let us go back to (A.32). Term A1 has been discussed in the proof of part (1).

Then as for term A2, it can be similarly decomposed as

A2 ≤
8

(n− 1)2
(||SEF′B′||2 +

1

n2
||SE11′F′B′||2). (A.34)

Similarly to (A.27) and (A.28), it follows that

||SEF′B′||2 ≤ ||S||2||EF′B′||2 = O(K)||EF′B′||2 = Op(np
2K2),

||SE11′F′B′||2 ≤ ||S||2||E11′F′B′||2 = O(K)||E11′F′B′||2 = Op(n
3p2K2),

which leads to the same result as L2, that is A2 = Op(n
−1p2K2).

Next, it turns to analyze term A3. Based on the calculation for L3 and the result for
||S′S||2, we see that

A3 ≤ ||S′S||2||
1

n− 1
(EE′ − 1

n
E11′E′)||2 = Op(pK). (A.35)

At last, the same argument as L4 can be done for A4. We can show that

A4 = Op(n
−1p) +Op(pK). (A.36)

Therefore, it follows from (A.32), (A.33), (A.25), and (A.34)-(A.36) that Barra two-
step estimator has the same result as Barra one-step estimator,

||Σ̂w −Σ||2 = Op(n
−1p2K2) +Op(pK).
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(3) Finally, we discuss the asymptotic properties for Σ̂sam. We see that

Σ̂sam =
1

n− 1
(RR′ − 1

n
R11′R′)

=
1

n− 1
[(BF + E)(BF + E)′ − 1

n
(BF + E)11′(BF + E)′]

= B[
1

n− 1
(FF′ − 1

n
F11′F′)]B′ +

1

n− 1
[(BFE′ + EF′B′)

− 1

n
(BF11′E′ + E11′F′B′)] +

1

n− 1
(EE′ − 1

n
E11′E′). (A.37)

This shows that Σ̂sam is also a four-term perturbation of the population covariance matrix.
By the Cauchy-Schwarz inequality, it follows that

||Σ̂sam −Σ||2 ≤ 4[||B[
1

n− 1
(FF′ − 1

n
F11′F′)]B′ − cov(f))||2

+
2

(n− 1)2
||BFE′||2 +

2

n2(n− 1)2
||BF11′E′||2

+ || 1

n− 1
(EE′ − 1

n
E11′E′)−Σε||2]. (A.38)

We have shown that

||B[
1

n− 1
(FF′ − 1

n
F11′F′)]B′ − cov(f))||2 = Op(n

−1p2K2),

||BFE′||2 = Op(np
2K),

||BF11′E′||2 = Op(n
3p2K),

|| 1

n− 1
(EE′ − 1

n
E11′E′)−Σε||2 = Op(n

−1p2K2). (A.39)

So applying the above results to (A.38) yields

||Σ̂sam −Σ||2 = Op(n
−1p2K2).

A.7 Proof of Theorem 2.2.7

Proof. (1) First, we show the asymptotic result for the Barra one-step estimator Σ̂
−1

o under
Frobenius norm. From the structure of Barra approach, we know that Σ̂o = Bĉov(f)oB

′ +

87



Σ̂ε,o, which along with the Sherman-Morrison-Woodbury formula shows that

Σ̂
−1

o = Σ̂
−1

ε,o − Σ̂
−1

ε,oB[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1

ε,o . (A.40)

Inverse of the true covariance matrix Σ−1 has this format as well, that is

Σ−1 = Σ−1
ε −Σ−1

ε B[cov(f)−1 + B′Σ−1
ε B]−1B′Σ−1

ε . (A.41)

Taking the difference and decomposing the term, we get

||Σ̂
−1

o −Σ−1||2 ≤ ||Σ̂
−1

ε,o −Σ−1
ε ||2 + ||(Σ̂

−1

ε,o −Σ−1
ε )B[ĉov(f)−1

o + B′Σ̂
−1

ε,oB]−1B′Σ̂
−1

ε,o ||2

+ ||Σ−1
ε B[ĉov(f)−1

o + B′Σ̂
−1

ε,oB]−1B′(Σ̂
−1

ε,o −Σ−1
ε )||2

+ ||Σ−1
ε B{[ĉov(f)−1

o + B′Σ̂
−1

ε,oB]−1 − [cov(f)−1 + B′Σ−1
ε B]−1}B′Σ−1

ε ||2

≡ K1 +K2 +K3 +K4. (A.42)

To study ||Σ̂
−1

o − Σ−1||2, we need to examine each of the above four terms K1, . . . ,K4

separately. First, note that from the proof of Theorem 2.2.1 and Theorem 2.2.2, we know
that ĉov(f)o and Σ̂ε,o are not consistent to cov(f) and Σε. So it is hard to say ĉov(f)−1

o

and Σ̂
−1

ε,o are consistent. Then, what we can do is to separate the consistent part and the
inconsistent part. Let

c̃ov(f)o = ĉov(f)o − (B′B)−1B′ΣεB(B′B)−1 ≡ ĉov(f)o −CΣεC
′ (A.43)

Σ̃ε = Σ̂ε − diag(HΣεH)− diag(HΣε + ΣεH) ≡ Σ̂ε −D (A.44)

Based on a basic fact in matrix theory, we have

||c̃ov(f)−1
o − cov(f)−1

o || ≤
||cov(f)−1

o ||2||c̃ov(f)o − cov(f)o||
1− ||cov(f)−1

o ||||c̃ov(f)o − cov(f)o||
,

whenever ||cov(f)−1
o ||||c̃ov(f)o − cov(f)o|| < 1. From Theorem 2.2.4, we know that

||c̃ov(f)o − cov(f)o|| = Op(n
−1/2p1/4K3/4).

And by Assumption (D), we have ||cov(f)−1
o || = O(K1/2). Thus,

||c̃ov(f)−1
o − cov(f)−1

o || = Op(n
−1/2p1/4K7/4). (A.45)
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On the other hand, since Σ̃ε and Σε are diagonal, and each entry of them are bounded with
probability one, we get the following by Theorem 2.2.5,

||Σ̃
−1

ε −Σ−1
ε || ≤ c(0)||Σ̃ε −Σε|| = Op(n

−1/2p1/2), (A.46)

where c(0) is a constant.
Now we will analyze the four decomposition terms one by one. For the first term,

K1 = ||[Σ̃ε + D]−1 −Σ−1||2 ≤ c(1)||Σ̃ε + D−Σ||2

≤2c(1)(||Σ̃ε −Σ||2 + ||D||2) = Op(n
−1p) +Op(p), (A.47)

where c(1) is a constant.
Next, we consider the second term K2. By the properties for Frobenius norm, we have

K2 ≤ ||(Σ̂
−1

ε,o −Σ−1
ε )Σ̂

1/2

ε,o ||2||Σ̂
−1/2

ε,o B[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o ||2||Σ̂
−1/2

ε,o ||2,
(A.48)

so we need to explore the above three terms. Since both Σ̂ε,o and Σε are diagonal, and the
expectation of diagonal entries are bounded, we can show that with a constant c(2),

||(Σ̂
−1

ε,o −Σ−1
ε )Σ̂

1/2

ε,o ||2 ≤ c(2)||Σ̂
−1

ε,o −Σ−1
ε ||2 = Op(n

−1p) +Op(p), (A.49)

and

||Σ̂
−1/2

ε,o ||2 = Op(p). (A.50)

Moreover, we notice that Σ̂
−1/2

ε,o B[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o is symmetric positive

semidefinite with rank at most K and Σ̂
1/2

ε,o Σ̂
−1

ε,oΣ̂
1/2

ε,o ≥ 0. Thus it follows from (A.40) that

Σ̂
−1/2

ε,o B[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o = Ip − Σ̂
1/2

ε,o Σ̂
−1

ε,oΣ̂
1/2

ε,o ≤ Ip,

which implies that Σ̂
−1/2

ε,o B[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o has at most K positive eigen-

values and all of them are bounded by one. SoE||Σ̂
−1/2

ε,o B[ĉov(f)−1
o +B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o ||2 =

O(K), which along with (A.49) and (A.50) gives

K2 = Op(n
−1p2K) +Op(p

2K). (A.51)
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Similarly, we can show that

K3 ≤ ||Σ−1
ε Σ̂

1/2

ε,o ||2||Σ̂
−1/2

ε,o B[ĉov(f)−1
o + B′Σ̂

−1

ε,oB]−1B′Σ̂
−1/2

ε,o ||2||Σ̂
1/2

ε,o (Σ̂−1
ε −Σ−1

ε )||2

= Op(p) ·Op(K) · [OP (n−1p) +Op(p)] = Op(n
−1p2K) +Op(p

2K). (A.52)

Finally, we consider term K4.

||Σ−1
ε B{[ĉov(f)−1

o + B′Σ̂
−1

ε,oB]−1 − [cov(f)−1 + B′Σ−1
ε B]−1}B′Σ−1

ε ||2

= ||Σ−1
ε B{[(c̃ov(f)o + CΣεC

′)−1 + B′(Σ̃ε,o + D)−1B]−1 − [cov(f)−1 + B′Σ−1
ε B]−1}B′Σ−1

ε ||2

= ||Σ−1
ε B{[c̃ov(f)−1

o − c̃ov(f)−1
o C(Σ−1

ε + C′c̃ov(f)−1
o C)−1C′c̃ov(f)−1

o

+ B′[Σ̃
−1

ε,o − Σ̃
−1

ε,o(D
−1 + Σ̃

−1

ε,o)Σ̃
−1

ε,o]
−1B]−1 − [cov(f)−1 + B′Σ−1

ε B]−1}B′Σ−1
ε ||2

= ||Σ−1
ε B{[c̃ov(f)−1

o + B′Σ̃
−1

ε,oB−X]−1 − [cov(f)−1 + B′Σ−1
ε B]−1}B′Σ−1

ε ||2

where X = c̃ov(f)−1
o C(Σ−1

ε + C′c̃ov(f)−1
o C)−1C′c̃ov(f)−1

o + B′Σ̃
−1

ε,o(D
−1 + Σ̃

−1

ε,o)
−1Σ̃

−1

ε,oB

= ||Σ−1
ε B{(c̃ov(f)−1

o + B′Σ̃
−1

ε,oB)−1 − (c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1[(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1

−X−1]−1(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1 − [cov(f)−1 + B′Σ−1
ε B]−1}B′Σ−1

ε ||2

≤ 2||Σ−1
ε B[(c̃ov(f)−1

o + B′Σ̃
−1

ε,oB)−1 − (cov(f)−1 + B′Σ−1
ε B)−1]B′Σ−1

ε ||2 + 2||Σ−1
ε B(c̃ov(f)−1

o

+ B′Σ̃
−1

ε,oB)−1[(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1 −X−1]−1(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1B′Σ−1
ε ||2

≡ 2K4,1 + 2K4,2 (A.53)

So we split term K4 into 2 parts, the convergent part and the non-convergent part. For the
convergent part, we can use the basic fact in matrix theory.
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K4,1 ≤ ||Σ−1
ε B(cov(f)−1 + B′Σ−1

ε B)−1[−cov(f)−1(c̃ov(f)o − cov(f))cov(f)−1

−B′Σ−1
ε (Σ̃ε,o −Σε)Σ

−1
ε B](cov(f)−1 + B′Σ−1

ε B)−1B′Σ−1
ε ||2

≤ 2||Σ−1
ε B(cov(f)−1 + B′Σ−1

ε B)−1cov(f)−1(c̃ov(f)o − cov(f))cov(f)−1·

(cov(f)−1 + B′Σ−1
ε B)−1B′Σ−1

ε ||2

+ 2||Σ−
1
2

ε B(cov(f)−1 + B′Σ−1
ε B)−1B′Σ

− 1
2

ε Σ
− 1

2
ε (Σ̃ε,o −Σε)Σ

− 1
2

ε Σ
− 1

2
ε ·

B(cov(f)−1 + B′Σ−1
ε B)−1B′Σ

− 1
2

ε ||2||Σ−1
ε ||2

≤ ||c̃ov(f)o − cov(f)||2||cov(f)−1(cov(f)−1 + B′Σ−1
ε B)−2cov(f)−1||2||B′Σ−2

ε B||

+ ||Σ−
1
2

ε (Σ̃ε,o −Σε)Σ
− 1

2
ε ||2||[Σ

− 1
2

ε B(cov(f)−1 + B′Σ−1
ε B)−1B′Σ

− 1
2

ε ]2||2||Σ−1
ε ||2

= Op(n
−1p1/2K3/2) ·Op(K) ·Op(p

2) +Op(n
−1p) ·Op(K) ·Op(p)

= Op(n
−1p5/2K5/2). (A.54)

In the above proof, we have used the property of Frobenius norm that if A ≤ B in the sense
of positive definite, then ||A|| ≤ ||B||.

On the other hand, for the non-convergent part K4,2, we see that

K4,2 ≤ ||B′Σ−2
ε B||2||(c̃ov(f)−1

o + B′Σ̃
−1

ε,oB)−1[(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1 −X−1]−1

(c̃ov(f)−1
o + B′Σ̃

−1

ε,oB)−1||2

≤ ||B′Σ−2
ε B||2||(c̃ov(f)−1

o + B′Σ̃
−1

ε,oB)−1||2

= Op(p
2K2). (A.55)

Combining equation (A.54) and equation (A.55), we will get the rate of equation A.53,
which is Op(n

−1p5/2K5/2) +Op(p
2K2).

Therefore, it follows from (A.47), (A.48), (A.52) and (A.53) that

||Σ̂
−1

o −Σ−1||2 = Op(n
−1p5/2K9/2) +Op(p

2K2), (A.56)

which is the asymptotic result for the Barra one-step estimator for the inverse of the covari-
ance matrix.

(2) Now we briefly describe the proof for the Barra two-step estimator. From the proof
in last part, we notice that the key point is the boundedness of diagonal entries of Σε and
Σ̂ε,o. So here we need to demonstrate the boundedness of diagonal entries of Σ̂ε,w. From
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(12), we have Σ̂ε,w = diag((I − S) 1
n
EE′(I − S′)), and from Lemma 1, we can show that

with probability one, every entry of Σ̂ε,o is bounded. Then, it is easy to show that every
diagonal entry of (I− S)Σε(I− S′) is bounded. So same strategies can be applied to Σ̂ε,w

as in part (1). Therefore, it follows the asymptotic result for Barra two-step estimator for
the inverse of covariance matrix that

||Σ̂
−1

w −Σ−1||2 = Op(n
−1p5/2K9/2) +Op(p

2K2). (A.57)

(3) At last, we prove the asymptotic result for inverse of the sample covariance matrix Σ̂
−1

sam

under Frobenius norm. Here we define D = Σ̂sam −Σ for simplicity. It is a basic fact in
matrix theory that

||Σ̂
−1

sam −Σ−1|| ≤ ||Σ−1|| ||Σ
−1D||

1− ||Σ−1D||
≤ ||Σ−1||2||D||

1− ||Σ−1||||D||
, (A.58)

whenever ||Σ−1||||D|| < 1. From Theorem 2.2.1, we know that

||D|| = Op(n
−1/2pK).

And it is easy to get that ||Σ−1|| = O(p1/2). Therefore, it follows that

||Σ̂
−1

sam −Σ−1|| = Op(n
−1/2p2K).

A.8 Proof of Theorem 2.3.1

The following technical regularity conditions are assumed throughout the proofs:
Assumption 1 Denote ui = B′Σ−1ri, ũi = Σ−1ri, Wi,ab = (ui)a(ui)b− (B′Σ−1B)ab and
W̃i,ab = (ũi)a(ũi)b − (Σ−1)ab. The random variables Wi,ab and W̃i,ab for i = 1, . . . , n

and a, b = 1, . . . , K, satisfy the uniformly sub-Gaussian condition:

maxi=1,...,nL
2{Eexp(|Wi,ab|2/L2 − 1)} < C2, maxi=1,...,nL

2{Eexp(|W̃i,ab|2/L2 − 1)} < C2,

for any a and b, where L and C are finite constants.
Assumption 2 The eigenvalues of B′Σ−1B ⊗ B′Σ−1B and Σ−1 ⊗ Σ−1 are positive and
bounded with probability one. Furthermore, each element of Σ−1B is bounded.
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Assumption 3 For any ||δ|| ≤ O(n−1/2K
√

logK), assume that

1

n

n∑
i=1

Var(δ′B′Σ−1B⊗B′Σ−1rir
′
iΣ
−1Bδ) <∞.

And for any ||δ̃|| ≤ O(n−1/2p1/2), assume that

1

n

n∑
i=1

Var(δ̃
′
Σ−1 ⊗Σ−1rir

′
iΣ
−1δ̃) <∞.

Proof. The main idea of the proof follows Li et al. (2013). First, we define−2log[Ln(Σf ,Σε|ri)]
as our target function Ln, that is,

Ln(Σf ,Σε) = −2log(Ln) =
1

n

n∑
i=1

r′i(BΣfB
′ + Σε)

−1ri + log(|BΣfB
′ + Σε|) + plog(2π).

We will divide the proof in three parts. In the first part, we prove Ln(Σf ,Σ
∗
ε) ≥ Ln(Σf

∗,Σ∗ε)

for ||Σf −Σf
∗||F ≥ Op(n

−1/2K
√

logK). In the second part we show that Ln(Σf ,Σε) ≥
Ln(Σf ,Σ

∗
ε) for ||Σε − Σ∗ε ||F ≥ Op(n

−1/2(plogp)1/2). Combining the two parts, we can
draw conclusions on the convergence rate of the covariance estimator. In the third part, we
show the convergence rate of Σ̂

−1
.

Let us consider Ln(Σf ,Σ
∗
ε) first. We see

Ln(Σf ,Σ
∗
ε)− Ln(Σf

∗,Σ∗ε)

=
1

n

n∑
i=1

r′i[BΣ∗f B
′ + Σ∗ε + B(Σf −Σ∗f )B

′]−1ri −
1

n

n∑
i=1

r′i(BΣ∗f B
′)−1ri

+ log(|BΣ∗f B
′ + Σ∗ε + B(Σf −Σ∗f )B

′|)− log(|BΣ∗f B
′|).

Using Taylor expansion of log and determinant functions, we have Ln(Σf ,Σ
∗
ε)−Ln(Σf

∗,Σ∗ε) =

K1 +K2 + op(1), where

K1 = tr{[B′Σ−1B−B′Σ−1(
1

n

n∑
i=1

rir
′
i)Σ

−1B]∆f},

K2 = tr{B′Σ−1B∆f [B
′Σ−1(

1

n

n∑
i=1

rir
′
i)Σ

−1B− 1

2
B′Σ−1B]∆f},

with Σ = B′Σf
∗B + Σ∗ε and ∆f = Σf −Σf

∗.
If the sub-Gaussian condition for Wi,ab(i = 1, . . . , n) in Assumption 1 is satisfied,
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similar to Lemma A.2 and Lemma A.3 in Bickel and Levina (2008a), we have

maxa,b|[B′Σ−1B−B′Σ−1(
1

n

n∑
i=1

rir
′
i)Σ

−1B]ab| ≤ Op((logK/n)1/2).

Consequently, we have

|K1| = maxa,b|[B′Σ−1B−B′Σ−1(
1

n

n∑
i=1

rir
′
i)Σ

−1B]ab| · |vec(∆f )|1

≤ Op((logK/n)1/2) ·
√
K2||vec(∆f )||F = Op((K

2logK/n)1/2)||vec(∆f )||F .
(A.59)

As for K2, by the property of the Kronecker product, we know that

K2 = vec(∆f )
′{(B′Σ−1B)⊗ [B′Σ−1(

1

n

n∑
i=1

rir
′
i)Σ

−1B− 1

2
B′Σ−1B]}vec(∆f ).

By Assumption 3 and Kolmogorov’s three series theorem, we have

K2 = vec(∆f )
′(B′Σ−1B)⊗ (B′Σ−1B)vec(∆f ) + o(1)

≥ λ2
1||vec(∆f )||2F , (A.60)

where λ2
1 is the smallest eigenvalue of 1

2
(B′Σ−1B) ⊗ (B′Σ−1B) and by Assumption 2,

λ2
1 > 0. Note that if K1 + K2 + op(1) ≥ K2 − |K1| + op(1) ≥ op(1), we can obtain

Ln(Σf ,Σ
∗
ε) ≥ Ln(Σf

∗,Σ∗ε). The condition can be derived from equation (A.59) and
equation (A.60), which implies ||vec(∆f )||F ≥ Op((K

2logK/n)1/2). Thus, we complete
the first part of the proof.

Now we start to show the second part of the proof. Similarly to the first part, we
take advantage of the taylor expansions and make transformations. We see Ln(Σf ,Σε) −
Ln(Σf ,Σ

∗
ε) = K̃1 + K̃2 + o(1), where

K̃1 = tr{[Σ̃
−1
− Σ̃

−1
(
1

n

n∑
i=1

rir
′
i)Σ̃

−1
]∆ε}, (A.61)

K̃2 = tr{Σ̃
−1

∆ε[Σ̃
−1

(
1

n

n∑
i=1

rir
′
i)Σ̃

−1
− 1

2
Σ̃
−1

]∆ε}, (A.62)

with Σ̃ = BΣfB
′ + Σ∗ε , and ∆ε = Σε −Σ∗ε .
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Taking K̃1 into consideration, we need to analyze Σ̃ first. We notice that

Σ̃
−1

= (Σ∗ + B∆fB
′)−1 = Σ∗−1 −Σ∗−1B(∆−1

f + B′Σ∗−1B)−1B′Σ∗−1.

Consequently, we have

Σ̃
−1
− Σ̃

−1
(
1

n

n∑
i=1

rir
′
i)Σ̃

−1

=Σ∗−1 −Σ∗−1(
1

n

n∑
i=1

rir
′
i)Σ

∗−1 −Σ∗−1B(∆−1
f + B′Σ∗−1B)−1B′Σ∗−1

+ Σ∗−1B(∆−1
f + B′Σ∗−1B)−1B′Σ∗−1(

1

n

n∑
i=1

rir
′
i)Σ

∗−1

+ Σ∗−1(
1

n

n∑
i=1

rir
′
i)Σ

∗−1B(∆−1
f + B′Σ∗−1B)−1B′Σ∗−1

−Σ∗−1B(∆−1
f + B′Σ∗−1B)−1B′Σ∗−1(

1

n

n∑
i=1

rir
′
i)Σ

∗−1B(∆−1
f + B′Σ∗−1B)−1B′Σ∗−1.

Since (∆−1
f + B′Σ∗−1B)−1 ≤ ∆f , we know that Σ∗−1B(∆−1

f + B′Σ∗−1B)−1B′Σ∗−1 ≤
Σ∗−1B∆fB

′Σ∗−1 with each element is o(p−1). From Assumption 1 and similar argument
in the first part, we have

maxa,b|[Σ∗−1 −Σ∗−1(
1

n

n∑
i=1

rir
′
i)Σ

∗−1]ab| ≤ Op((logp/n)1/2)

Thus,

|K̃1| ≤ [Op((logp/n)1/2) + o(p−1)] · |vec(∆ε)|1 ≤ [Op((logp/n)1/2) + o(p−1)] · √p||vec(∆ε)||F
= Op(n

−1/2(plogp)1/2)||vec(∆ε)||F . (A.63)

In terms of K̃2, combine the technique for K2 and in dealing with Σ̃
−1

, we see

K̃2 = vec(∆ε)
′{Σ̃

−1
⊗ [Σ̃

−1
(
1

n

n∑
i=1

rir
′
i)Σ̃

−1
− 1

2
Σ̃
−1

]}vec(∆ε)

= vec(∆ε)
′(Σ∗−1 ⊗ 1

2
Σ∗−1)vec(∆ε)

′ + o(1)

≥ λ̃2
1||vec(∆ε)||2F , (A.64)

where λ̃2
1 is the smallest eigenvalue of Σ∗−1 ⊗ Σ∗−1/2 and by Assumption 2, λ̃2

1 > 0.
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Similarly to part one, within ||vec(∆ε)||F ≥ Op(n
−1/2(plogp)1/2), K̃1 is dominated by K̃2,

we can achieve Ln(Σf ,Σε) ≥ Ln(Σf ,Σ
∗
ε). Therefore, we complete the second part of the

proof.
Combining the above two parts, we know if we obtain a local maximizer Σ̂f and Σ̂ε of

the likelihood function, they must satisfy the convergence rates. As a result, the MLE Σ̂

must satisfy ||Σ̂−Σ∗||F = Op(n
−1/2pK(logK)1/2).

In the last part, we will discuss the properties of Σ̂
−1

. Similar techniques to the proof
of Theorem 2.2.7 can be applied, so we will split Σ̂

−1
−Σ∗−1 into four parts and analyze

them one by one.

||Σ̂
−1
−Σ∗−1||2 ≤ ||Σ̂

−1

ε −Σ∗−1
ε ||2 + ||(Σ̂

−1

ε −Σ∗−1
ε )B(Σ̂

−1

f + B′Σ̂
−1

ε B)−1B′Σ̂
−1

ε ||2

+ ||Σ∗−1
ε B(Σ̂

−1

f + B′Σ̂
−1

ε B)−1B′(Σ̂
−1

ε −Σ∗−1
ε )||2

+ ||Σ∗−1
ε B[(Σ̂

−1

f + B′Σ̂
−1

ε B)−1 − (Σf
∗−1 + B′Σ∗−1

ε B)−1]B′Σ∗−1
ε ||2

≡ J1 + J2 + J3 + J4 (A.65)

Since Σ̂ε and Σ∗ε are diagonal matrices and all the diagonal elements are bounded, denoting
the lower bound as c(1). It is easy to get

J1 ≤
1

c(1)
||Σ̂ε −Σ∗ε ||2 = Op(n

−1plogp), (A.66)

Next, for the second term, we have

J2 ≤ ||(Σ̂
−1

ε −Σ∗−1
ε )Σ̂

1/2

ε ||2||Σ̂
−1/2

ε B(Σ̂
−1

f + B′Σ̂
−1

ε B)−1B′Σ̂
−1/2

ε ||2||Σ̂
−1/2

ε ||2

= Op(n
−1plogp) ·Op(K) ·Op(plogp) = Op(n

−1(plogp)2K) (A.67)

Similarly, J3 = Op(n
−1(plogp)2K). Taylor expansion can be took advantage of in the
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fourth term.

J4 ≤ ||Σ∗−1
ε B(Σf

∗−1 + B′Σ∗−1
ε B)−1Z(Σf

∗−1 + B′Σ∗−1
ε B)−1B′Σ∗−1

ε ||2

where Z = −Σf
∗−1∆fΣf

∗−1 −B′Σ∗−1
ε ∆εΣ

∗−1
ε B

≤ 2||Σ∗−1
ε B(Σf

∗−1 + B′Σ∗−1
ε B)−1Σf

∗−1∆fΣf
∗−1(Σf

∗−1 + B′Σ∗−1
ε B)−1B′Σ∗−1

ε ||2

+ 2||Σ∗−
1
2

ε B(Σf
∗−1 + B′Σ∗−1

ε B)−1Σ
∗− 1

2
ε Σ

∗− 1
2

ε ∆εΣ
∗− 1

2
ε Σ

∗− 1
2

ε ·

(Σf
∗−1 + B′Σ∗−1

ε B)−1B′Σ
∗− 1

2
ε ||2||Σ∗−1

ε ||2

≤ 2||∆f ||2||Σf
∗−1(Σf

∗−1 + B′Σ∗−1
ε B)−2Σf

∗−1||2||B′Σ∗−2
ε B||2

+ 2||Σ∗−
1
2

ε ∆εΣ
∗− 1

2
ε ||2||[Σ∗−

1
2

ε B(Σf
∗−1 + B′Σ∗−1

ε B)−1B′Σ
∗− 1

2
ε ]2||||Σ∗−1

ε ||2

= Op(K
2logK/n) ·Op(K) ·Op(p) +Op(n

−1plogp) ·Op(K) ·Op(p)

= Op(n
−1pK3logK) +Op(n

−1p2logpK) (A.68)

Since p is usually much greater than K, it follows from (A.66), (A.67) and (A.68) that

||Σ̂
−1
−Σ∗−1||2 = Op(n

−1(plogp)2K) +Op(n
−1pK3logK). (A.69)

A.9 Consider cases with changing Bi’s across n

If we consider the models with different Bi’s across n, we need to add further assumption
to Assumption (F).

There exist constants δi’s such that |λK(B′iBi)| > δi for all n. Besides,

maxi||t′(B′iBi)
−1B′i||22∑n

i=1 ||t′(B′iBi)−1B′i||22
→ 0,

for all t ∈ RK , but t 6= 0.
This assumption puts some constrains on Bi’s, which implies that every element in Bi’s

should not differ much. Intuitively, if Bi’s differ a lot, the distributions of ri’s will be quite
different, so it makes no sense to pursue the covariance.

Theorem A.9.1 (Rates on the bias of covariance estimators for factors under Frobenius
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norm). Under conditions (A)-(F), we have

||ĉov(f)o − cov(f)||F = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2), (A.70)

||ĉov(f)w − cov(f)||F = Op(n
−1/2p1/4K3/4) +Op(p

1/2K1/2). (A.71)

Theorem A.9.2 (Rates on the bias of covariance estimators for errors under Frobenius
norm). Under conditions (A)-(F), we have

||Σ̂ε,o −Σε||F = Op(n
−1/2p1/2) +Op(p

1/2K1/2), (A.72)

||Σ̂ε,w −Σε||F = Op(n
−1/2p1/2) +Op(p

1/2K1/2). (A.73)

Theorem A.9.3 (Rates on the bias of inverse of covariance estimators for returns under
Frobenius norm). Under conditions (A)-(F), we have

||Σ̂
−1

o −Σ−1||F = Op(pK), (A.74)

||Σ̂
−1

w −Σ−1||F = Op(pK). (A.75)

We see that all of the above theorems have the same results as the case with constant
B, so that similar conclusions can be drawn for this setting of Barra model. But because it
is hard to measure the exact difference of B and previous Bi’s, we can only get very loose
bound for the rates on the bias of covariance matrix estimators. Here, we do not illustrate
theorems for them. In the following analysis, we restrict B as constant.

Proof of Theorem A.9.1

Proof. Here, we just show the asymptotic result for the Barra one-step estimator ĉov(f)o

for different Bi’s across n under Frobenius norm. As for the result for the Barra two-step
estimator ĉov(f)w, it can be bounded by ĉov(f)o as before, so we omit the proof here. We
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can rewrite ĉov(f)o as

ĉov(f)o =
1

n− 1

n∑
i=1

(fi − f̄)(fi − f̄)′

+
1

n− 1

n∑
i=1

[(B′iBi)
−1B′iεi −

1

n

n∑
i=1

(B′iBi)
−1B′iεi](fi − f̄)′

+
1

n− 1

n∑
i=1

(fi − f̄)[(B′iBi)
−1B′iεi −

1

n

n∑
i=1

(B′iBi)
−1B′iεi]

′

+
1

n− 1
[(B′iBi)

−1B′iεi −
1

n

n∑
i=1

(B′iBi)
−1B′iεi][(B

′
iBi)

−1B′iεi −
1

n

n∑
i=1

(B′iBi)
−1B′iεi]

′.

(A.76)

To simplify the notation, we define Wi = (B′iBi)
−1B′i. Before going further, we discuss

the normality of 1
n−1

∑n
i=1(Wiεi− 1

n

∑n
i=1 Wiεi). By Cramér-Wold device, it is equivalent

to consider for any t ∈ RK , the normality of t′ 1
n−1

∑n
i=1(Wiεi− 1

n

∑n
i=1 Wiεi). We know

that

var(t′
1

n− 1

n∑
i=1

(Wiεi −
1

n

n∑
i=1

Wiεi)) =
1

n

n∑
i=1

t′WiΣεW
′
it.

Hence, if it satisfies that maxi||t′(B′iBi)
−1B′i||22∑n

i=1 t′(B′iBi)−1B′iΣεBi(B′iBi)−1t
→ 0, for all t ∈ RK , but t 6= 0, then

we will obtain
√
nt′ 1

n−1

∑n
i=1(Wiεi − 1

n

∑n
i=1 Wiεi)√

1
n

∑n
i=1 t′WiΣεW′

it
⇒ N(0, 1),

which implies the normality of 1
n−1

∑n
i=1(Wiεi − 1

n

∑n
i=1 Wiεi), that is

(
n∑
i=1

WiΣεW
′
i)
−1/2 1

n− 1

n∑
i=1

(Wiεi −
1

n

n∑
i=1

Wiεi)⇒ N(0, Ip).

This is guaranteed by assumption (F).
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We then consider the difference ĉov(f)o − cov(f). It follows from (A.76) that

||ĉov(f)o − cov(f)||2 ≤ 4[|| 1

n− 1

n∑
i=1

(fi − f̄)(fi − f̄)′ − cov(f)||2

+ || 1

n− 1

n∑
i=1

[Wiεi −
1

n

n∑
i=1

Wiεi](fi − f̄)′||2

+ || 1

n− 1

n∑
i=1

(fi − f̄)[Wiεi −
1

n

n∑
i=1

Wiεi]
′||2

+ || 1

n− 1

n∑
i=1

[Wiεi −
1

n

n∑
i=1

Wiεi][Wiεi −
1

n

n∑
i=1

Wiεi]
′||2].

(A.77)

The decomposition is similar to that in Theorem 2.2.3. Here, we just analyze || 1
n−1

∑n
i=1 Wiεif

′
i ||2

and || 1
n−1

∑n
i=1(Wiεi)(Wiεi)

′||2, since they are the dominated part in second term and
fourth term. The rest of the proof is the same as that in Theorem 2.2.3. We denote
S = (W1ε1, . . . ,Wnεn), and as before F = (f1, . . . , fn), then

∑n
i=1 Wiεif

′
i = SF′. So if

we take expectation, it follows

E||SF′||2 = E[tr(SF′FS′)] = E[tr(F′FS′S)]

= E[tr(F′FE(S′S|F))] = E[f ′1f1tr(W1ΣεW
′
1) + · · ·+ f ′nfntr(WnΣεW

′
n)]

= [tr(W1ΣεW
′
1) + · · ·+ tr(WnΣεW

′
n)]E(f ′f).

We see that

tr(W1ΣεW
′
1) = tr[(B′1B1)−1B′1ΣεB1(B′1B1)−1] ≤ ||B1(B′1B1)−1(B′1B1)−1B′1||||Σε||

= (tr[(B′1B1)−2])1/2[tr(Σ2
ε)]

1/2 = O(p1/2K1/2).

And according to assumption (F), it should be valid for i = 1, . . . , n. So || 1
n−1

SF′||2 =

Op(n
−1p1/2K3/2), the same order as the second term in Theorem 2.2.3. Furthermore, we
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see

E|| 1

n− 1

n∑
i=1

(Wiεi)(Wiεi)
′||2 ≤maxi{E||(Wiεi)(Wiεi)

′||2}

= maxiEtr(Wiεiε
′
iW

′
iWiεiε

′
iW

′
i)

≤maxiE||εiε′iW′
iWiεiε

′
i||||W′

iWi||

≤maxiE||εiε′iεiε′i||||W′
iWi||2 ≤maxiE||εiε′i||2||W′

iWi||2

= maxiE||εiε′i||2||Bi(B
′
iBi)

−2B′i||2 = O(pK).

The last equation is because of assumption |λK(B′iBi)| ≥ δi for i = 1, . . . , n, in assump-
tion (F). Based on this result, we conclude that the order of the fourth term of (A.77) is also
the same as that in Theorem 2.2.3. Hence, same result will be followed as

||ĉov(f)o − cov(f)||2 = Op(n
−1p1/2K3/2) +Op(pK).

Proof of Theorem A.9.2

Proof. We omit the proof for the Barra two-step estimator Σ̂ε,w here, because similar to the
proof in Theorem 2.2.4, we can bound its result by corresponding Σ̂ε,o. So we only show
the proof for asymptotic result of Σ̂ε,o with different Bi’s across n under Frobenius norm.
Note that similar to (A.12), the difference between Σ̂ε,o and Σε can be written as

||Σ̂ε,o −Σε||2 ≤ 4[||diag(
1

n

n∑
i=1

εiε
′
i)−Σε||2 + ||diag(

1

n

n∑
i=1

Hiεiε
′
i)||2

+ ||diag(
1

n

n∑
i=1

εiε
′
iHi)||2 + ||diag(

1

n

n∑
i=1

Hiεiε
′
iHi)||2], (A.78)

where Hi = Bi(B
′
iBi)

−1B′i. Now we analyze the second term and the fourth term in
(A.78). The main idea is to bound the mean by its largest term. We see that

||diag(
1

n

n∑
i=1

Hiεiε
′
i)||2 ≤ ||

1

n

n∑
i=1

Hiεiε
′
i||2 ≤ maxi||Hiεiε

′
i||2

≤ maxi||εiε′iεiε′i||||Hi|| = Op(pK
1/2),
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and

||diag(
1

n

n∑
i=1

Hiεiε
′
iHi)||2 ≤ ||

1

n

n∑
i=1

Hiεiε
′
iHi||2 ≤ maxi||Hiεiε

′
iHi||2

≤ maxi||εiε′i||2||Hi||2 = Op(pK).

So the four terms in (A.78) again have the same order as those in Theorem 2.2.4. So we
conclude that ||Σ̂ε,o −Σε||2 = Op(n

−1p) +Op(pK).

Proof of Theorem A.9.3

Proof. This theorem is similar to Theorem 2.2.6. As it is shown in part (2), Σ̂ε,w can be
bounded by Σ̂ε,o, so similarly we can get the same rate for the difference between Σ̂ε,w and
true Σε as the difference between Σ̂ε,o and true Σε. Here we just discuss the asymptotic
result for Barra one-step estimator Σ̂ε,o with different Bi’s across n.

Compared with the proof of Theorem 2.2.6, we know that the main difference in this
theorem is Σ̂ε,o. As long as the order of each entry of Σ̂ε,o and Σ̂

−1

ε,o are the same as the
ones with constant B, we can use the same proof as Theorem 2.2.6. So our main task here
is to show the boundedness of the diagonal entries of Σ̂

−1

ε,o as well as the boundedness of
the largest diagonal entry λp(Σ̂ε,o).

Since Σ̂ε,o = diag[ 1
n

∑n
i=1(I −Hi)εiε

′
i(I −Hi)], it is better to analyze Σ̂ε,o entry by

entry. From assumption (D) about the normality of ε, we have

(I−Hi)εi ∼ N(0, (I−Hi)Σε(I−Hi)).

So for the jth diagonal entry, we can get

[(I−Hi)εi]j

[(I−Hi)Σε(I−Hi)]
1/2
jj

∼ N(0, 1),

furthermore,
[(I−Hi)εiε

′
i(I−Hi)]jj

[(I−Hi)Σε(I−Hi)]jj
∼ χ2

1.

When we sum i from 1 to n, we have

n∑
i=1

[(I−Hi)εiε
′
i(I−Hi)]jj

[(I−Hi)Σε(I−Hi)]jj
∼ χ2

n,

denoting it as Rj . Since we know that R−1
j follows inverse-chi-square distribution, which
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implies that E(R−2
j ) = 1

(n−2)(n−4)
, we can bound the first diagonal entry by

E[(σ̂2
j )
−2] ≤

n2E(R−2
j )

(mini[(I−Hi)Σε(I−Hi)]jj)2
,

which is bounded accordingly. The above equation can be applied to j from 1 to n. So all
the diagonal entries of E(Σ̂

−1

ε,o )2 are bounded.
On the other hand, to show the boundedness of all diagonal entries of Σ̂ε,o, we can

follow the proof of Lemma. Note that

σ̂2
j,o =

1

n

n∑
i=1

[(I−Hi)εiε
′
i(I−Hi)]jj,

and after defining Uj,n = 1
n

∑n
i=1

[(I−Hi)εiε
′
i(I−Hi)]jj

[(I−Hi)Σε(I−Hi)]jj
,

Uj,n ∼
1

n
χ2
n.

To bound σ̂2
j,o byUj,n, we see mini[(I−Hi)Σε(I−Hi)]jjUj,n ≤ σ̂2

j,o ≤ maxi[(I−Hi)Σε(I−
Hi)]jjUj,n. We know the boundedness of Uj,n from Lemma, as a result, the boundedness
of σ̂2

j,o can be obtained.

In sum, the boundedness of Σ̂ε,o and Σ̂
−1

ε,o is the same as that in Theorem 2.2.6. Then,
following the same proof process, we get the result

||Σ̂−1
o − Σ−1||2 = Op(p

2K2).

A.10 Lemma

Lemma 1. When p is in polynomial order of n, all diagonal entries of Σ̂ε,o, i.e. σ̂2
1,o, . . . , σ̂

2
p,o

are bounded away from 0 in probability.

Proof. Since Σ̂ε,o = diag[ 1
n
(I−H)EE′(I−H)], for each diagonal entry, we have

σ̂2
i,o =

1

n
[(I−H)EE′(I−H)]ii.
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Based on assumption (A), we have [(I−H)EE′(I−H)]ii
[(I−H)Σε(I−H)]ii

∼ χ2
n, which implies that

σ̂2
i,o

[(I−H)Σε(I−H)]ii
∼ 1

n
χ2
n.

We define Xi,n =
σ̂2
i,o

[(I−H)Σε(I−H)]ii
for convenience. By law of large numbers, we know that

Xi,n
p→ 1.

Moreover, by Markov’s inequality, we have for every ε,

P (|Xi,n − 1| > ε) ≤ 1

εk
E(|Xi,n − 1|k).

If we assign k = 4, it is not hard to get that E(|Xi,n − 1|4) = c/n2, where c is a constant.
Thus, it follows that

P (|Xi,n − 1| > ε) ≤ c

ε4n2
. (A.79)

Now we consider the boundedness of all Xi,n, i = 1, . . . , p. We know that

P (|Xi,n − 1| ≥ ε,∃i) ≤ p · c

ε4n2
, (A.80)

so the complement entails

P (|Xi,n − 1| ≤ ε,∀i) ≥ 1− cp

ε4n2
. (A.81)

Since the boundedness of Xi,n implies the boundedness of σ̂2
i,o for all i = 1, . . . , p, we

conclude that with probability greater than 1 − cp/ε4n2, all diagonal entries of Σ̂ε,o are
bounded.

If we choose a different k, similar deduction will lead to a corresponding probability
1 − cp/εknk/2. So when p is in polynomial order of n, we can choose k so that cp/εknk/2

goes to zero, which implies all the entries of Σ̂ε,o are bounded away from 0 asymptotically.
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APPENDIX B

Proofs of the Main Results in Chapter 4

B.1 Proof of Theorem 4.2.1

Proof. Recall that

(L̂(1), Ŝ(1)) = argminL,S
1

2
||M− L− S||2F + λ||L||∗ + τ ||S||1, (B.1)

where M = M
(1)
0 + N

(1)
0 , and with high probability Candès et al. (2011),

(L
(1)
0 ,S

(1)
0 ) = argminL,S||L||∗ +

τ

λ
||S||1, s.t. L + S = M. (B.2)

Our proof mainly uses the properties of the above two equations and some analysis tools
from Zhou et. al. (2010). Firstly, we introduce some notations measuring the differences
of the two pairs. Let H

(1)
L = L̂(1) − L

(1)
0 , H

(1)
S = Ŝ(1) − S

(1)
0 , and H = (H

(1)
L ,H

(1)
S ).

From equation (B.1) and equation (B.2), we have that

1

2
||M− L̂(1) − Ŝ(1)||2F + λ||L̂(1)||∗ + τ ||Ŝ(1)||1

≤1

2
||M− L

(1)
0 − S

(1)
0 ||2F + λ||L(1)

0 ||∗ + τ ||S(1)
0 ||1

≤1

2
||M− L

(1)
0 − S

(1)
0 ||2F + λ(||L̂(1) −H

(1)
L −H

(1)
S ||∗ +

τ

λ
||Ŝ(1)||1).

The second inequality is because L̂(1) −H
(1)
L −H

(1)
S + Ŝ(1) = M0. Then, it follows that

1

2
||M− L̂(1) − Ŝ(1)||2F −

1

2
||M− L

(1)
0 − S

(1)
0 ||2F ≤ λ||H(1)

L + H
(1)
S ||∗.
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Furthermore, the inequality between nuclear norm and Frobenius norm leads us that

1

2
||M− L

(1)
0 − S

(1)
0 ||2F − 〈M− L

(1)
0 − S

(1)
0 ,H

(1)
L + H

(1)
S 〉+

1

2
||H(1)

L + H
(1)
S ||

2
F −

1

2
||M− L

(1)
0 − S

(1)
0 ||2F

≤
√
nλ||H(1)

L + H
(1)
S ||F.

Thus, we get

1

2
||H(1)

L + H
(1)
S ||

2
F ≤ λ

√
n||H(1)

L + H
(1)
S ||F + 〈M− L

(1)
0 − S

(1)
0 ,H

(1)
L + H

(1)
S 〉

≤ (λ
√
n+ δ1)||H(1)

L + H
(1)
S ||F.

A key fact follows that

||H(1)
L + H

(1)
S ||F ≤ 2(λ

√
n+ δ1), (B.3)

which reveals the upper bound for the sum of the differences H
(1)
L and H

(1)
S .

We need to borrow two important lemmas in Zhou et al. (2010) for further analysis.
Before we make use of the lemmas, we briefly restate the notation in their paper. Let Ω

denote the support of S
(1)
0 , and let PΩ be the projection operator onto the space of matrices

supported on Ω. Let T denote the subspace generated by matrices with the same column
space or row space as L

(1)
0 , and let PT be the projection operator onto this subspace. For

any pair X = (L,S), let ||X||F = (||L||2F + ||S||2F)1/2, and define the projection operator
PΩ × PT : (L,S) → (PT (L),PΩ(S)). Define the subspace Γ = {Q,Q|Q ∈ Rn×n}
and Γ⊥ = {Q,−Q|Q ∈ Rn×n}, and let PΓ and PΓ⊥ denote their respective projection
operators. Define ||X||� = ||L||∗ + τ

λ
||S||1, and X

(1)
0 = (L

(1)
0 ,S

(1)
0 ). Lemma 5 in Zhou et.

al. (2010) proved that, for any H(1) = (H
(1)
L ,H

(1)
S ) obeying H

(1)
L + H

(1)
S = 0, assuming

||PΩPT || ≤ 1
2

and τ
λ
≤ 1

2
,

||X(1)
0 + H(1)||� ≤ ||X(1)

0 ||� + (
3

4
− ||PT⊥(Λ)||)||PT⊥(H

(1)
L )||∗ + (

3τ

4λ
− ||PΩ⊥(Λ)||∞)||PΩ⊥(H

(1)
S )||1,

(B.4)

where Λ = UVT +W, and W is the dual certificate. Candès et al. (2011) showd W exists
with high probability. Furthermore, Lemma 6 in Zhou et al. (2010) stated that, assuming
||PTPΩ|| ≤ 1

2
, for any pair X = (L,S),

||PΓ(PT × PΩ)(X))||2F ≤
1

4
||(PT × PΩ)(X)||2F. (B.5)
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Consider ||H(1)||F now. Write H(1)Γ = PΓ(H(1)) =
(

H
(1)
L +H

(1)
S

2
,

H
(1)
L +H

(1)
S

2

)
, and H(1)Γ⊥ =

PΓ⊥(H(1)) =
(

H
(1)
L −H

(1)
S

2
,

H
(1)
S −H

(1)
L

2

)
. It follows that

||H(1)||2F = ||H(1)Γ||2F + ||H(1)Γ⊥||2F
= ||H(1)Γ||2F + ||(PT × PΩ)(H(1)Γ⊥)||2F + ||(PT⊥ × PΩ⊥)(H(1)Γ⊥)||2F
≡ I2 + II2 + III2. (B.6)

We need to find the upper bound for (B.6). Considering the first part I2, we have I2 ≤
4(
√
nλ+ δ)2 by (B.3). Then we turn to the third part III2. Notice that

1

2
||M− L̂(1) − Ŝ(1)||2F + λ||X(1)

0 + H(1)||� ≤
1

2
||M− L

(1)
0 − S

(1)
0 ||2F + λ||X(1)

0 ||� (B.7)

and

1

2
||M− L̂(1) − Ŝ(1)||2F + λ||X(1)

0 + H(1)||�

≥1

2
||M− L̂(1) − Ŝ(1)||2F + λ||X(1)

0 + H(1)Γ⊥||� − λ||H(1)Γ||�

≥1

2
||M− L̂(1) − Ŝ(1)||2F + λ

(
||X(1)

0 ||� +
1

4
||PT⊥(H

(1)Γ⊥

L )||∗ +
τ

4λ
||PΩ⊥(H

(1)Γ⊥

S )||1
)
− λ||H(1)Γ||�,

(B.8)

where the second inequality comes from (B.4). Combining (B.7) and (B.8), we can get

1

2
||M− L

(1)
0 − S

(1)
0 ||2F −

1

2
||M− L̂(1) − Ŝ(1)||2F + λ||H(1)Γ||�

≥λ
4
||PT⊥(H

(1)Γ⊥

L )||∗ +
τ

4
||PΩ⊥(H

(1)Γ⊥

S )||1. (B.9)

On the other hand, based on the inequalities between different norms, we know that

III ≤ ||PT⊥(H
(1)Γ⊥

L )||F + ||PΩ⊥(H
(1)Γ⊥

S )||F ≤ ||PT⊥(H
(1)Γ⊥

L )||∗ + ||PΩ⊥(H
(1)Γ⊥

S )||1.
(B.10)
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With the assumption τ ≤ λ, we use the inequality in (B.9) to get

III ≤ 1

τ
(λ||PT⊥(H

(1)Γ⊥

L )||∗ + τ ||PΩ⊥(H
(1)Γ⊥

S )||1)

≤ 4

τ
(
1

2
||M− L

(1)
0 − S

(1)
0 ||2F −

1

2
||M− L̂(1) − Ŝ(1)||2F + λ||H(1)Γ||�)

≤ 2

τ
(−||H(1)

L + H
(1)
S ||

2
F + 2〈M− L

(1)
0 − S

(1)
0 ,H

(1)
L + H

(1)
S 〉+ 2λ||H(1)Γ||�). (B.11)

The only unknown part in (B.11) is ||H(1)Γ||� at this moment. Note that

||H(1)Γ||� = ||H(1)Γ
L ||∗ +

τ

λ
||H(1)Γ

S ||1 ≤
√
n||H(1)Γ

L ||F +
τn

λ
||H(1)Γ

S ||F

≤ (
√
n+

τn

λ
)||H(1)

L + H
(1)
S ||F. (B.12)

We can have an upper bound for III, when combining (B.11), (B.12) and (B.3)

III ≤ 2

τ
[(2λ
√
n+ 2τn)||H(1)

L + H
(1)
S ||F + 2δ1||H(1)

L + H
(1)
S ||F − ||H

(1)
L + H

(1)
S ||

2
F]

≤ 2

τ
(λ
√
n+ τn+ δ1)2 (B.13)

In terms of the second part II in (B.6), we have II ≤ 2 × III from Zhou et al. (2010).
Therefore, (B.13) together with the properties of I and II, gives us the desired result,

||H(1)||2F ≤
C1

τ 2
(λ
√
n+ τn+ δ1)4. (B.14)

B.2 Proof of Theorem 4.2.2

Proof. Let (L̂(2), Ŝ(2)) be an optimal solution of (4.8). Then, define H
(2)
L = L̂(2)−L

(2)
0 and

H
(2)
S = Ŝ(2) − S

(2)
0 . We would use some results in Xu, Caramanis and Sanghavi (2010) to

prove the theorem. Notice that their conclusions are for the column corruption case, but all
the results should also apply for the row corruption case, by simply transferring the target
matrix.

Before we display the details of our proof, we first restate some useful definitions in
Xu, Caramanis and Sanghavi (2010). For any (L′(2),S′(2)) satisfying L′(2) + S′(2) = M,
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PV0(L′(2)) = L′(2), and PI0(S′(2)) = S′(2), define

N (L′(2)) ≡ U′(2)V′(2)T ;

B(S′(2)) ≡ {H ∈ Rn1×n2|PIc0(H) = 0; ∀i ∈ I ′ : Hi =
S
′(2)
i

||S′(2)
i ||2

; ∀i ∈ I0 ∩ (I ′)c : ||Hi||2 ≤ 1},

where the SVD of L′(2) is L′(2) = U′(2)D′(2)V′(2)T , and the row support of S′(2) is I ′.
Furthermore, define the operator PT (L′)(·): Rn1×n2 → Rn1×n2 as

PT (L′)(X) = PU ′(2)(X) + PV ′(2)(X)− PU′(2)PV′(2)(X).

By Theorem 2 and Theorem 5 in Xu, Caramanis and Sanghavi (2010), if certain condi-
tions are satisfied, there exists a Q such that

PT (L′)(Q) ∈ N (L′(2)); ||PT (L′)⊥(Q)|| ≤ 1

2
; PI0(Q)/(

τ

λ
) ∈ B(S′(2)); ||PIc0(Q)||∞,2 ≤

τ

2λ
.

Furthermore, in the proof of Theorem 3 in Xu, Caramanis and Sanghavi (2010), they
showed if the above Q exists, for any fixed 4 6= 0, (L′(2) + 4,S′(2) − 4) is strictly
worse than (L′(2),S′(2)) unless4 ∈ PV0 ∩ PI0 , we can find a W and a F such that

||W|| = 1, 〈W,PT (L′)⊥(4)〉 = ||PT (L′)⊥(4)||∗, PT (L′)⊥(W) = 0,

and

Fi =


−4i
||4i||2 if i /∈ I0 and4i 6= 0

0 otherwise.

Then, PT (L′)(Q) + W is a subgradient of ||L′(2)||∗, and PI0(Q)/( τ
λ
) + F is a subgradient

of ||S′(2)||1,2.
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Choosing the above W and F, our target function has the following properties

1

2
||M− L

(2)
0 − S

(2)
0 ||2F + λ||L(2)

0 ||∗ + τ ||S(2)
0 ||1,2

≥1

2
||M− L̂(2) − Ŝ(2)||2F + λ||L̂(2)||∗ + τ ||Ŝ(2)||1,2

≥1

2
||M− L

(2)
0 − S

(2)
0 ||2F − 〈M− L

(2)
0 − S

(2)
0 , L̂(2) − L

(2)
0 + Ŝ(2) − S

(2)
0 〉+

1

2
||L̂(2) − L

(2)
0 + Ŝ(2) − S

(2)
0 ||2F

+ λ||L(2)
0 ||∗ + λ〈PT (L0)(Q) + W, L̂(2) − L

(2)
0 〉+ τ ||S(2)

0 ||1,2 + τ〈PI0(Q)/(
τ

λ
) + F, Ŝ(2) − S

(2)
0 〉

=
1

2
||M− L

(2)
0 − S

(2)
0 ||2F − 〈N

(2)
0 ,H

(2)
L + H

(2)
S 〉+

1

2
||H(2)

L + H
(2)
S ||

2
F + λ||L(2)

0 ||∗ + τ ||S(2)
0 ||1,2

+ λ〈PT (L0)(Q) + W,H
(2)
L 〉+ τ〈PI0(Q)/(

τ

λ
) + F,H

(2)
S 〉

=
1

2
||M− L

(2)
0 − S

(2)
0 ||2F + λ||L(2)

0 ||∗ + τ ||S(2)
0 ||1,2 − 〈N

(2)
0 ,H

(2)
L + H

(2)
S 〉+

1

2
||H(2)

L + H
(2)
S ||

2
F

+ λ||PT (L0)⊥(H
(2)
L )||∗ + λ〈Q− PT (L0)⊥(Q),H

(2)
L 〉+ τ ||PIc0(H

(2)
S )||1,2 + λ〈Q− PIc0(Q),H

(2)
S 〉

≥1

2
||M− L

(2)
0 − S

(2)
0 ||2F + λ||L(2)

0 ||∗ + τ ||S(2)
0 ||1,2 + λ(1− ||PT (L0)⊥(Q)||)||PT (L0)⊥(H

(2)
L )||∗

+ (τ − λ||PIc0(Q)||∞,2)||PIc0(H
(2)
S )||1,2 +

1

2
||H(2)

L + H
(2)
S ||

2
F + 〈λQ−N

(2)
0 ,H

(2)
L + H

(2)
S 〉

Since ||Q||∞,2 ≤ τ
λ

, we have ||Q||F ≤ τ
λ

√
n. Thus, it follows that

λ(1− ||PT (L0)⊥(Q))||)||PT (L0)⊥(H
(2)
L )||∗ + (τ − λ||PIc0(Q)||∞,2)||PIc0(H

(2)
S )||1,2

≤〈N(2)
0 − λQ,H

(2)
L + H

(2)
S 〉 −

1

2
||H(2)

L + H
(2)
S ||

2
F

≤(||N(2)
0 ||F + λ||Q||F)||H(2)

L + H
(2)
S ||F −

1

2
||H(2)

L + H
(2)
S ||

2
F

≤(δ2 + τ
√
n)||H(2)

L + H
(2)
S ||F −

1

2
||H(2)

L + H
(2)
S ||

2
F.

Therefore, we can see

||PT (L0)⊥(H
(2)
L )||F ≤ ||PT (L0)⊥(H

(2)
L )||∗ ≤

2

λ
[(δ2 + τ

√
n)||H(2)

L + H
(2)
S ||F −

1

2
||H(2)

L + H
(2)
S ||

2
F],

(B.15)

||PIc0(H
(2)
S )||F ≤ ||PIc0(H

(2)
S )||1,2 ≤

2

τ
[(δ2 + τ

√
n)||H(2)

L + H
(2)
S ||F −

1

2
||H(2)

L + H
(2)
S ||

2
F].

(B.16)

Note that an upper bound for ||H(2)
L + H

(2)
S ||F could be achieved by similar procedure as in
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proof of Theorem 4.2.1. We only list the key step here:

1

2
||M− L̂(2) − Ŝ(2)||2F −

1

2
||M− L

(2)
0 − S

(2)
0 ||2F ≤ τ ||H(2)

L + H
(2)
S ||1,2 ≤ τ

√
n||H(2)

L + H
(2)
S ||F.

Then, we get

||H(2)
L + H

(2)
S ||F ≤ 2(τ

√
n+ δ2). (B.17)

Next, inspired by Xu, Caramanis and Sanghavi (2010), we introduce several new terms.
Let H

(2)+
L = H

(2)
L −PI0PV0(H

(2)
L ) and H

(2)+
S = H

(2)
S −PI0PV0(H

(2)
S ). Intuitively, the rows

of H
(2)+
L and H

(2)+
S within I0 are orthogonal to V0. In the proof of Theorem 5 in Xu,

Caramanis and Sanghavi (2010) showed that

||PI0(H
(2)+
S )||F ≤ ||H(2)

L + H
(2)
S ||F + ||PT (L0)⊥(H

(2)
L )||F + ||PIc0(H

(2)
S )||F + ϕ||PI0(H

(2)+
S )||F,

(B.18)

where ϕ < 1/4. Now using the fact that τ ≤ λ (Xu, Caramanis and Sanghavi, 2010) and
the inequalities (B.15), (B.16) and (B.17), we have

||PI0(H
(2)+
S )||F ≤ [

2

τ
(τ
√
n+ δ2)2 + 2(τ

√
n+ δ2)]/(1− ϕ) ≤ 16

3τ
(τ
√
n+ δ2)2.

Furthermore, we can get

||H(2)+
S ||F ≤ ||PIc0(H

(2)
S ) + PI0(H

(2)+
S )||F ≤ ||PIc0(H

(2)
S )||F + ||PI0(H

(2)+
S )||F ≤

19

3τ
(τ
√
n+ δ2)2

Note that H
(2)+
S = (I−PI0PV0)(Ŝ(2)−S

(2)
0 ) = Ŝ(2)− [S

(2)
0 +PI0PV0(Ŝ(2)−S

(2)
0 )]. Letting

S̃(2) = S
(2)
0 +PI0PV0(Ŝ(2)−S

(2)
0 ), we have S̃(2) ∈ PI0 and ||Ŝ(2)−S̃(2)||F ≤ 19

3τ
(τ
√
n+δ2)2.

On the other hand, we let L̃(2) = L
(2)
0 − PI0PV0(Ŝ(2) − S

(2)
0 ), leading to

||L̂(2) − L̃(2)||F ≤ ||H(2)
L + H

(2)
S ||F + ||Ŝ(2) − S̃(2)||F ≤

25

3τ
(τ
√
n+ δ2)2.

Theorem 4.2.2 is thus established.
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B.3 Proof of Lemma 4.3.4

Proof. We consider (Lk,Sk) to get (Lk+1,Sk+1). The two steps in iteration to achieve Lk+1

and Sk+1 implies that

fλ,τ (L
k,Sk) =

1

2
||M − Lk − Sk||2F + λ||Lk||∗ + τ ||Sk||1

≥ min
L

1

2
||M− L− Sk||2F + λ||L||∗ + τ ||Sk||1

=
1

2
||M− Lk+1 − Sk||2F + λ||Lk+1||∗ + τ ||Sk||1 = fλ,τ (L

k+1,Sk)

≥ min
S

1

2
||M− Lk+1 − S||2F + λ||Lk+1||∗ + τ ||S||1

=
1

2
||M− Lk+1 − Sk+1||2F + λ||Lk+1||∗ + τ ||Sk+1||1 = fλ,τ (L

k+1,Sk+1).

Therefore, the inequalities in lemma have been deduced.

B.4 Proof of Lemma 4.4.3

Proof. It is simply based on the arguments we mentioned about the surrogate functions and
it is similar to the proof of Lemma (4.3.4), so we omit it here.

B.5 Proof of Lemma 4.4.4

Proof. In the proof, we omit the subscribe λ and τ if no confusion causes. Firstly, note that

F (Ak,Bk,Sk)− F (Ak+1,Bk+1,Sk+1) ≥ F (Ak,Bk,Sk)− F (Ak+1,Bk,Sk)

+ F (Ak+1,Bk,Sk)− F (Ak+1,Bk+1,Sk)

+ F (Ak+1,Bk+1,Sk)− F (Ak+1,Bk+1,Sk+1).

(B.19)

We observe that

F (Ak,Bk,Sk) ≥ F (Ak+1,Bk,Sk).

To further study the difference of the two terms in (??), we notice a fact that the ridge
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regression problem

H(β) =
1

2
||y −Xβ||22 +

λ

2
||β||22

has the following property

H(β)−H(β∗) =
1

2
(β − β∗)T (XTX + λI)(β − β∗) =

1

2
||X(β − β∗)||22 +

λ

2
||β − β∗||22,

(B.20)

where β∗ ∈ argminH(β). Therefore, we have

F (Ak,Bk,Sk)− F (Ak+1,Bk,Sk) ≥ 1

2
||(Ak −Ak+1)(Bk)T ||2F +

λ

2
||Ak −Ak+1||2F.

(B.21)

Combining (??) and (B.21), we have

F (Ak,Bk,Sk)− F (Ak+1,Bk,Sk) ≥ 1

2
||(Ak −Ak+1)(Bk)T ||2F +

λ

2
||Ak −Ak+1||2F.

(B.22)

Similarly, the second part of (B.19) has the inequality

F (Ak+1,Bk,Sk)− F (Ak+1,Bk+1,Sk) ≥ 1

2
||Ak+1(Bk −Bk+1)T ||2F +

λ

2
||Bk −Bk+1||2F.

(B.23)

Therefore, (B.22) and (B.23) give us (4.22).
On the other hand, because the function values F (Ak,Bk,Sk) are monotonically de-

creasing and lower bounded by 0, the left hand side of (4.22) goes to 0 as k →∞. Then, it
follows that

λ

2
||Ak −Ak+1||2F ≤ ηk → 0,

λ

2
||Bk −Bk+1||2F ≤ ηk → 0,

1

2
||(Ak −Ak+1)(Bk)T ||2F ≤ ηk → 0,

1

2
||Ak+1(Bk −Bk+1)T ||2F ≤ ηk → 0.
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Thus, we have

Ak −Ak+1 → 0, Bk −Bk+1 → 0, (Ak −Ak+1)(Bk)T → 0, Ak+1(Bk −Bk+1)T → 0.

In the meanwhile, adding the last two equations above will result in Ak(Bk)T−Ak+1(Bk+1)T →
0. Remind that the Sk can be written as functions of AkBk, that is,

Sk = Hτ (M−Ak(Bk)T ), if element-wise sparse case is considered;

Sk = Hr
τ (M−Ak(Bk)T ), if row sparse case is considered.

Hence, Sk−Sk+1 = Hτ (M−Ak(Bk)T )−Hτ (M−Ak+1(Bk+1)T ) or Sk−Sk+1 = Hr
τ (M−

Ak(Bk)T ) − Hr
τ (M − Ak+1(Bk+1)T ). It can be easily proved that both function Hτ (X)

and function Hr
τ (X) are continuous functions. Therefore, we also have Sk − Sk+1 → 0 as

k →∞, completing the proof of the lemma.

B.6 Proof of Theorem 4.4.5

Proof. Part (a): Note that if λ > 0, the sequence {(Ak,Bk,Sk)} is bounded and thus has
a limit point. Let (A∗,B∗,S∗) be any limit point of the sequence {(Ak,Bk,Sk)}. There
exists a subsequence {nk} ⊂ {1, 2, . . .} such that Ank → A∗,Bnk → B∗,Snk → S∗ as
k →∞.

The properties of surrogate functions lead us to

∂AQ
A(Ank |Ank−1,Bnk−1,Snk−1) 3 0,

∂BQ
A(Bnk |Ank ,Bnk−1,Snk−1) 3 0,

∂SR
S(Snk |Ank ,Bnk) 3 0.

Notice that all the above subgradient functions are continuous functions. Furthermore, we
have

Ank −Ank−1 → 0, Bnk −Bnk−1 → 0, Snk − Snk−1 → 0, as k →∞,
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following from Lemma 4.4.4. Then, it concludes that

∂AQ
A(A∗|A∗,B∗,S∗) 3 0,

∂BQ
A(B∗|A∗,B∗,S∗) 3 0,

∂SR
S(S∗|A∗,B∗) 3 0,

indicating (A∗,B∗,S∗) a first order stationary point.
Part (b): Suppose Ank → A∗, the statement is to show Bnk and Snk has a unique limit
point. To prove it, we firstly suppose there are two limit points for Bnk , i.e. Bnk1 → B1,
Bnk2 → B2, and B1 6= B2.

The derivation of inequality (B.23) tells us

F (Ak+1,B,Sk)− F (Ak+1,Bk+1,Sk) ≥ λ

2
||B−Bk+1||2F.

Then, we have

F (Ank2+1,Bnk2 ,Snk2)− F (Ank1 ,Bnk1 ,Snk1−1)

=F (Ank2+1,Bnk2 ,Snk2)− F (Ank1 ,Bnk2 ,Snk1−1) + F (Ank1 ,Bnk2 ,Snk1−1)− F (Ank1 ,Bnk1 ,Snk1−1)

≥F (Ank2+1,Bnk2 ,Snk2)− F (Ank1 ,Bnk2 ,Snk1−1) +
λ

2
||Bnk2 −Bnk1||2F. (B.24)

Since F (Ak,Bk,Sk)→ f∞, and F (Ak,Bk,Sk)−F (Ak,Bk−1,Sk−1)→ 0, it follows that

F (Ank2+1,Bnk2 ,Snk2)− F (Ank1 ,Bnk1−1,Snk1−1)→ f∞ − f∞ = 0.

Whereas, the right hand side of inequality (B.24) has limiting properties

F (Ank2+1,Bnk2 ,Snk2)→ F (A∗,B2, Hτ (M−A∗(B2)T )),

F (Ank1 ,Bnk2 ,Snk1−1)→ F (A∗,B2, Hτ (M−A∗(B2)T )),

||Bnk2 −Bnk1 ||2F → ||B2 −B1||2F,

giving rise to F (Ank2+1,Bnk2 ,Snk2) − F (Ank1 ,Bnk2 ,Snk1−1) + λ
2
||Bnk2 − Bnk1||2F 6→ 0.

The same results will apply when replacing Hτ (X) to Hr
τ (X) for row sparse case. This

contradiction implies Bnk has only one limit point. As a result, Snk has one corresponding
limit point.

Exactly the same argument holds true for the sequence Bk, leading to the conclusion of
the other part of Part (b).
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B.7 Proof of Theorem 4.4.6

Proof. We make use of (4.22) and add both sides of the inequality over k = 1, . . . , K,
which leads to:

K∑
k=1

(Fλ,τ (A
k,Bk,Sk)− Fλ,τ (Ak+1,Bk+1,Sk+1)) ≥

K∑
k=1

ηk ≥ K( min
1≤k≤K

ηk). (B.25)

Since Fλ,τ (Ak,Bk,Sk) is a decreasing sequence and converge to f∞, we then get

K∑
k=1

(Fλ,τ (A
k,Bk,Sk)− Fλ,τ (Ak+1,Bk+1,Sk+1)) ≤ Fλ,τ (A

1,B1,S1)− f∞. (B.26)

Combining (B.25) and (B.26), we obtain (4.24).
Concluding the second part can be owe to the fact from (4.22) that

||Ak −Ak+1||2F + ||Bk −Bk+1||2F ≤
2

λ
ηk.
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