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1. Introduction

Motivated by the general philosophy underlying applications of the Hardy±
Littlewood method, it is conjectured that whenever s and k are positive integers
with s > k � 1, and n is a large natural number satisfying the necessary local
conditions, then n should be represented as the sum of s k th powers of prime
numbers. In order to be somewhat explicit concerning the local conditions,
suppose that k is a natural number and p is a prime number. We denote by

v � v�k; p� the integer with pv j k and pv�1 - k, and then de®ne g � g�k; p� by

g�k; p� � v� 2; when p � 2 and v > 0;

v� 1; otherwise.

�
�1:1�

Finally, we put

K�k� �
Y

� pÿ1� j k

pg:

In particular, therefore, one has K�4� � 240 and K�5� � 2. Following Hua [8]
(see, in particular, p. 108), we denote by H�k� the least integer s such that every
suf®ciently large positive integer congruent to s modulo K�k� may be written as a
sum of s k th powers of prime numbers. Note that when � pÿ 1� j k and
� p; a� � 1, one has p v� pÿ 1� j k, whence ak � 1 �mod pg�. Thus it follows that
whenever n is the sum of s k th powers of primes exceeding k � 1, then necessarily n
is congruent to s modulo K�k�. However, further congruence conditions may arise
from primes p with � pÿ 1� - k (see, for example, Kawada [10]).

By the middle of this century, work of I. M. Vinogradov [20, 21], Hua (see [7]
and [8]) and Davenport [4] had shown that

H�1�< 3; H�2�< 5; H�3�< 9; H�4�< 15;

H�5�< 25; H�6�< 37; H�7�< 55; H�8�< 75:

For k < 4, the above bounds for H�k� remain the sharpest hitherto available. When
k > 5, however, the new techniques developed in the mid-1980s by Thanigasalam
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[11±14] and Vaughan [17] yield superior bounds. In particular, the former author
has obtained the upper bounds

H�5�< 23; H�6�< 33; H�7�< 47; H�8�< 63:

The purpose of this paper is to establish new bounds for H�k� when k � 4 and 5.
We remark that the methods employed in the proof of these new bounds are
somewhat novel in their use of estimates stemming directly from exponential
sums over prime numbers in combination with the linear sieve, rather than the
conventional methods which would rather `waste' a variable or two by throwing
minor arc estimates down to an auxiliary mean value estimate based on variables
not restricted to be prime numbers. We express the hope that this more
sophisticated treatment may inspire further work in this area.

Theorem 1. One has H�4�< 14. In particular, every suf®ciently large integer
congruent to 14 modulo 240 may be written as the sum of 14 fourth powers of
prime numbers.

The argument used to establish Theorem 1 may also be applied to establish the
following conclusions, though we provide no details herein.

(i) For each positive number A , all but at most O�N�log N�ÿA� of the integers
n� 7 �mod 240� with 1 < n < N are represented as the sum of 7 fourth powers of
prime numbers.

(ii) One has H�5�< 22. In particular, every suf®ciently large even integer is
the sum of 22 ®fth powers of prime numbers.

(iii) For each positive number A, all but at most O�N�log N �ÿA� of the odd
numbers n with 1 < n < N are represented as the sum of 11 ®fth powers of
prime numbers.

We note that a formal application of the Hardy±Littlewood method leads one to
expect that H�4� � 5 and H�5� � 7, based on a consideration of congruence
conditions modulo 13 and 11, respectively.

The method we apply to prove Theorem 1 narrowly fails to establish the
sharper upper bound H�5�< 21. However, by appealing to Iwaniec's linear sieve
in combination with the switching principle, we are able to surmount the
dif®culties associated with the proof of such a bound.

Theorem 2. One has H�5�< 21. In particular, every suf®ciently large odd
integer may be written as the sum of 21 ®fth powers of prime numbers.

We establish Theorems 1 and 2 by means of the Hardy±Littlewood method, and
this entails making use of various estimates for exponential sums. In § 2 we
discuss the Hardy±Littlewood dissection utilized in our subsequent argument,
together with a number of estimates primarily of use in our analysis of the major
arcs in the latter dissection. In order to provide appropriate upper bounds for
exponential sums involving prime numbers, and allied sums pertinent to the
sieving procedure described in §§ 7 and 9, it is necessary to consider estimates for
bilinear and trilinear exponential sums. Such matters are discussed in § 3. We
derive mean value estimates for exponential sums over fourth powers from work of
Vaughan [17] and Thanigasalam [14] in § 4, and complete our proof of Theorem 1
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in § 5 by making use of the technical estimates of §§ 2 and 3 within the medium
of the circle method.

The proof of Theorem 2, which we describe in §§ 6±9, is complicated by our
inability to consider directly sums of 21 ®fth powers of prime numbers. Instead,
we are forced to apply a sieving procedure in combination with the circle method
to detect representations of a given integer N in such a manner. A related device
was employed by Heath-Brown [5] in the course of investigations concerning
4-term arithmetic progressions consisting of primes and almost-primes, and more
recently in work of BruÈdern [1, 2, 3], and Kawada [10] on the Waring±Goldbach
problem. Thus, in § 6 we establish the mean value estimates required in our
application of the circle method for sums of ®fth powers of primes. We aim to
exclude almost-primes in order to detect only the representations of the desired
integer N as a sum of 21 ®fth powers of prime numbers, and thus in § 7 we
estimate the contribution of the offensive almost-primes to the number of
proposed representations. In order to achieve this end we employ a form of
Iwaniec's linear sieve with the `switching principle', such matters being
deferred to § 9. The proof of Theorem 2 is then completed on providing a
comparison between the two singular series arising from our applications of the
Hardy±Littlewood method, this being crucial to the sieving procedure.

As is usual, we abbreviate e2piz to e�z�, and write �x� for the largest integer not
exceeding x. The letter p, with or without a subscript, always denotes a prime
number. We use « to denote a suf®ciently small positive number, and take P to
be the main parameter, a real number suf®ciently large in terms of « and k. We
use p and q to denote Vinogradov's well-known notation, and write A } B as
shorthand for the statement A p B p A. Implicit constants in the notations of
Vinogradov and Landau may depend at most on « and k, unless otherwise
indicated. Finally, we adopt the convention throughout that whenever « occurs in
a statement, then the statement holds for each positive number «.

2. Preliminaries

Before embarking on the substantive parts of the proofs of Theorems 1 and 2,
we ®rst present a number of technical estimates of which we make use in
subsequent sections. When k > 2, we write

Sk�q; a� �
Xq

r�1

e�ar k=q�; �2:1�

and de®ne also the multiplicative function wk�q� by taking

wk� puk�v� � kpÿuÿ1=2; when u > 0 and v � 1,

pÿu ÿ1; when u > 0 and 2 < v < k.

(
Then according to Lemma 3 of [17], whenever a 2 Z and q 2N satisfy �a; q� � 1,
one has

qÿ1=2 < wk�q�p qÿ1= k; �2:2�
and

qÿ1Sk�q; a�p wk�q�: �2:3�
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It is convenient to combine the conclusions of Lemmata 2.4, 6.1 and 6.2 of
Vaughan [19] in the shape of the following lemma.

Lemma 2.1. Let k be a natural number with k > 3, let X be a real number
with X > 2, and suppose that I is an interval contained in �X; 2X �. Suppose also
that C1 and C2 are ®xed positive numbers. When a is a real number satisfying
the condition that there exist a 2 Z and q 2N with

�a; q� � 1; 1 < q < C1X k 2 1ÿ k

and jqaÿ aj< C2 X k�2 1ÿ kÿ1�; �2:4�
one has X

x2 I

e�axk�p wk�q�X
1� X kjaÿ a=qj ; �2:5�

and otherwise X
x2 I

e�axk�p X 1ÿ2 1ÿ k�«: �2:6�

Similarly, when a satis®es the condition (2.4) one hasX
x2 I

�log x�e�axk�p wk�q�X log X

1� X kjaÿ a=qj ; �2:7�

and otherwise X
x2 I

�log x�e�axk�p X 1ÿ2 1ÿ k�«: �2:8�

Proof. By Dirichlet's approximation theorem there exist a 2 Z and q 2N with

�a; q� � 1; 1 < q < 2 kkX kÿ1 and jqaÿ aj< �2 kkX kÿ1�ÿ1:

When q > X , it follows from Weyl's inequality (see [19, Lemma 2.4]) thatX
x2 I

e�axk�p X 1ÿ2 1ÿ k�«: �2:9�

If q < X, meanwhile, we may combine Lemmata 6.1 and 6.2 of [19] with (2.3)
to obtain X

x2 I

e�axk�p wk�q�X
1� X kjaÿ a=qj � q1=2�«: �2:10�

But in circumstances where

C1 X k 2 1ÿ k

< q < X or jqaÿ aj > C2 X k�2 1ÿ kÿ1�;

one deduces from (2.2) and (2.10) thatX
x2 I

e�axk�p X

�q� X k jqaÿ aj�1 = k
� X 1=2�« p X 1ÿ2 1ÿ k

: �2:11�

On the other hand, when

1 < q < C1 X k 2 1ÿ k

and jqaÿ a j< C2 X k�2 1ÿ kÿ1�;

then the ®rst term on the right-hand side of (2.10) dominates the second term.
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Indeed, on recalling (2.2) we ®nd that

wk�q�X
1� X k jaÿ a=qj> q1=2 X

q� X k jqaÿ a jq q1=2 X 1ÿ k 2 1ÿ k

;

and the desired conclusion follows on noting that k21ÿ k < 1 for k > 3. Thus we
deduce that (2.5) holds when a satis®es the conditions (2.4), and from (2.9)
and (2.11) we conclude that when a does not satisfy (2.4), then the estimate
(2.6) holds.

The proof of the lemma is completed on observing that the estimates (2.7) and
(2.8) follow immediately from (2.5) and (2.6) via partial summation.

Next we prepare a few results concerning wk�q�. In this context, it is useful to
write vk�q� for the multiplicative function of q de®ned by taking

vk� pu k�v� � pu�1;

for u > 0 and 1 < v < k.

Lemma 2.2. Let k be a natural number with k > 3. Then for each q 2N, one hasX
d jq

wk�q=d �vk�d �ÿ1 p q«wk�q�:

Proof. Put

A�q� �
X
d jq

wk�q=d �vk�d �ÿ1:

Since A�q� is plainly a multiplicative function of q, the proof of the lemma will
be completed by showing that for each prime p and natural number l, one has

A� pl�p lwk� pl�: �2:12�
But in view of the de®nition of wk�q�, one has

wk� plÿ k� � pwk� pl� for l > k;

and

wk� plÿh�< kpwk� pl� for l > h and 0 < h < k ÿ 1:

Consequently, whenever l > h > 0, it follows that

wk� plÿh�< kvk� ph�wk� pl�;
whence for l > 1 we arrive at the upper bound

A� pl� �
Xl

h� 0

wk� plÿh�vk� ph�ÿ1 <
Xl

h�0

kwk� pl�p lwk� pl�;

which is the desired estimate (2.12). This completes the proof of the lemma.

Lemma 2.3. Suppose that N is a real number with N > 2 , and q 2N. ThenX
1 < n < N

wk�q=�q; nk��nÿ1 p q« wk�q� log N:
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Proof. On recalling the de®nition of vk�q� and making use of multiplicativity,
we ®nd that nk � 0 �mod d � if and only if n� 0 �mod vk�d ��. Consequently,X

1 < n < N

wk�q=�q; nk��nÿ1 <
X
d jq

wk�q=d �
X

1 < n < N
n k � 0 �mod d �

nÿ1

p
X
d jq

wk�q=d �vk�d �ÿ1 log N:

The proof of the lemma is completed on application of the conclusion of
Lemma 2.2.

Lemma 2.4. Let k be a natural number with k > 3, and suppose that h and y
are real numbers satisfying h > 0, y > 2h� 2 and y > kh� 1. Then whenever
Q > 2, one has X

1 < q < Q

qhwk�q�y p
1; when y > kh� 1;

log Q; when y � kh� 1;

�
where the implied constant depends at most on k, h and y.

Proof. In view of the multiplicative property of wk�q�, one hasX
1 < q < Q

qhwk�q�y <
Y

p < Q

�
1�

X1
l�1

ph lwk� pl�y
�
: �2:13�

But from the de®nition of wk�q� we deduce thatX1
l�1

ph lwk� pl�y �
X1
u�0

�
ph�ku�1��kpÿuÿ1=2�y �

Xk

v�2

ph�ku�v�� pÿuÿ1�y
�
;

whence X1
l�1

ph lwk� pl�y ÿ
X1
u�0

pÿ�yÿ kh��u�1�

p
X1
u�0

�
pÿ�yÿ k h�uÿ�yÿ2h�=2 � pÿ�yÿ k h��u�1�ÿh

�
:

Thus we obtain the estimateX1
l�1

ph lwk� pl�y ÿ pÿ�yÿ k h�p pÿ2�yÿ k h� � pÿ�yÿ2h�=2 � pÿ�yÿ k h�ÿh: �2:14�

In view of our hypotheses concerning y and h, it follows that there is a positive
number n for which the right-hand side of (2.14) is O� pÿ1ÿ n�. Thus, when
y > kh� 1 one deduces from (2.13) thatX

1 < q < Q

qhwk�q�y <
Y

p < Q

�1� pÿ�yÿ k h� � O� pÿ1ÿ n��p 1;

and when y � kh� 1, a well-known prime number estimate reveals in like
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manner that X
1 < q < Q

qhwk�q�y <
Y

p < Q

�1� pÿ1 � O� pÿ1ÿ n��p log Q :

This completes the proof of the lemma.

We make use of various Farey dissections of the unit interval in the sequel, and
so at this point it is convenient to ®x a uniform notation. When X > 1 and
Y > 2X 2, we de®ne the major arcs M�X; Y � to be the union of the intervals

M�q; a; X ; Y � � fa 2 �0; 1�: jqaÿ a j< X Y ÿ1g; �2:15�
with 0 < a < q < X and �a; q� � 1. We then de®ne

m�X; Y � � �0; 1�nM�X; Y �: �2:16�
Note that when 1 < q, q 0 < X, �a; q� � �a 0; q 0 � � 1 and a=q 6� a 0=q 0, then our
hypotheses on X and Y imply that���� aqÿ a 0

q 0

����>
1

qq 0
>

2X 2

qq 0Y
>
�q� q 0 �X

qq 0Y
� X

qY
� X

q 0Y
;

whence the intervals M�q; a; X; Y � comprising M�X; Y � are pairwise disjoint.
We close this section by establishing a variant of Lemma 4 of BruÈdern [3].

Lemma 2.5. Let k be a natural number with k > 4, and let Q and P be real
numbers with 1 < Q < P. Write

g�a� �
X

Q< p < 2 Q

e� pka�;

and when h is a positive number, let Wh�a� be the function de®ned on M�Q; P k�
by taking

Wh�a� � qhwk�q��1� P k jaÿ a=q j�ÿ1

for a 2M�q; a; Q; P k� Í M�Q; P k�. Then whenever 0 < h < �4k�ÿ1, one hasZ
M�Q; P k �

Wh�a�3jg�a�j2 da p Q 2Pÿ k:

Proof. We haveZ
M�Q; P k �

Wh�a�3 jg�a�j2 da p
X

1 < q < Q

q3hwk�q�3I�Q; q�; �2:17�

where

I�Q; q� �
Xq

a�1
�a; q�� 1

Z QPÿ k

0
�1� P kb�ÿ3jg�b� a=q�j2 db: �2:18�
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But Xq

a�1
�a; q�� 1

jg�b� a=q�j2 <
Xq

a�1

���� X
Q < p < 2 Q

e� pk�b� a=q��
����2

< q
X

Q< p1 ; p 2 < 2 Q

p k
1 � p k

2 �mod q�

1:

For each pair p1; p2 occurring in the latter summation, whenever q < Q one
plainly has �q; p1 p2� � 1. But when �h; q� � 1, the number of solutions x modulo
q of the congruence xk � h �mod q� is O�q«�, and thus

Xq

a�1
�a; q�� 1

jg�b� a=q�j2 p q1�«Q�Qqÿ1 � 1�p q«Q2:

We therefore deduce from (2.18) that

I�Q; q�p q«Q 2

Z 1

0
�1� P kb�ÿ3 db p q«Q2Pÿ k;

whence by (2.17) and Lemma 2.4 it follows thatZ
M�Q; P k �

Wh�a�3 jg�a�j2 da p Q 2Pÿ k
X

1 < q < Q

q1= k wk�q�3 p Q2Pÿ k:

This completes the proof of the lemma.

3. Weyl sums and multilinear exponential sums

The purpose of this section is to provide estimates for both Weyl sums over
prime numbers, and also certain multilinear exponential sums, of use in our
application of the Hardy±Littlewood method. We begin by estimating a bilinear
exponential sum. Here and throughout we write t�m� for the divisor function.

Lemma 3.1. Let k be a natural number with k > 4, and let P, P 0, M, M 0, U
and U 0 be positive real numbers with

P 1=2 < M < P; P < P 0 < 2P and M < M 0 < 2M:

Suppose that �am� and �bn� are sequences of complex numbers satisfying
the inequalities

jamj< t�m� � log m and jbnj< log n

for each m and n. Suppose further that a is a real number, and that there exist
a 2 Z and q 2N with

�a; q� � 1; 1 < q < P k =2 and jqaÿ a j< Pÿ k =2: �3:1�
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Then one hasX
M < m < M 0

am

X
P=m< n < P 0=m

U < n < U 0

bn e��mn�ka�

p PM «ÿ2ÿ k � �PM �1=2�« � q«wk�q�1=2P�log P�4
�1� P k jaÿ a=q j�1=2

:

Proof. Our proof is motivated by Vaughan's arguments appearing in [18, § 3].
The ®rst task is to exploit the bilinearity of the exponential sum through an
application of Cauchy's inequality. Noting ®rst that our hypotheses on �am�
ensure that X

M < m < 2 M

jamj2 p M�log M �3;

an application of Cauchy's inequality reveals that���� X
M < m < M 0

am

X
P=m< n < P 0=m

U < n < U 0

bn e��mn�k a�
����2

p M�log M �3S0 ; �3:2�

where

S0 �
X

M < m < 2 M

���� X
P=m < n < P 0=m

U < n < U 0

bn e��mn� k a�
����2

:

Write N � P=�2M � and

I�n1; n2� � �M; 2M �Ç �P= minfn1; n2g; P 0= maxfn1; n2g�:
Then by expanding the square and interchanging the order of summation, we
®nd that

S0 p
X

N < n1; n 2 < 4 N

jbn1
bn 2
j
���� X

m2 I �n1; n 2�
e��nk

1 ÿ nk
2�mka�

����:
Write

S1 �
X

N < n1 < n 2 < 4 N

���� X
m2 I �n1; n 2�

e��nk
2 ÿ nk

1�mka�
����:

Then on recalling our hypotheses on �bn� and isolating the terms with n1 � n2 ,
we deduce that

S0 p �log P�2�NM � S1�p �log P�2�P� S1�: �3:3�
Denote by N the set of ordered pairs �n1; n2�, with N < n1 < n2 < 4N, for

which there exist b 2 Z and r 2N with

�b; r� � 1; 1 < r < 2ÿ2 kM k 2 1ÿ k

;

jr�nk
2 ÿ nk

1�aÿ bj< 1
2

M k�2 1ÿ kÿ1�:
�3:4�

Then by Lemma 2.1 we have

S1 p S2 � N 2M 1ÿ2 1ÿ k�«; �3:5�
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where

S2 �
X

�n1 ; n 2� 2N

wk�r�M
1�M kj�nk

2 ÿ nk
1�aÿ b=r j ; �3:6�

and here b and r are the integers de®ned in (3.4) (which may, of course, depend
on n1 and n2). When �n1; n2� 2N, we put

n0 � �n1; n2�; n � n1 =n0 and l � �n2 ÿ n1�=n0:

De®ne also D � D�n; l� by

D � ��n� l�k ÿ nk�= l;

and note that kn kÿ1 < D < k�4N �kÿ1. Then on substituting these expressions into
(3.6), we ®nd that

S2 p
X

1 < n 0 < 4 N

X
1 < l < 4 N =n 0

X
N =n 0 < n < 4 N =n 0

�n; l �� 1
�n n 0 ; �n� l �n 0 � 2N

wk�r�M
1�M kjnk

0 lDaÿ b=rj : �3:7�

For each pair �n0 ; l� occurring in the summations of (3.7), we apply Dirichlet's
approximation theorem to deduce the existence of c 2 Z and s 2N with

�c; s� � 1; 1 < s < M k�1ÿ2 1ÿ k � and jsnk
0 laÿ c j< M k�2 1ÿ kÿ1�:

In view of (3.4), one has

jcrDÿ bsj< rDM k�2 1ÿ kÿ1� � 1
2

sM k�21ÿ kÿ1�

< 1
2
� 2ÿ2 k kM k�2 2ÿ kÿ1��4N �kÿ1:

On recalling that N � P=�2M � and M > P 1=2, and noting that for k > 4 one has

k�2ÿ 22ÿ k� ÿ 1 > 2�k ÿ 1�, we therefore deduce that

jcrDÿ bsj < 1
2
� k2ÿ kÿ1P kÿ1M 1ÿ k�2ÿ2 2ÿ k � < 1:

Thus we have
b

rD
� c

s
; r � s

�s; D� ;

and, on writing N0 � N =n0 , we obtain

jnk
0 lDaÿ b=r j � D jnk

0 laÿ c=s jq N kÿ1
0 jnk

0 laÿ c=s j:
Hence we conclude from (3.7) that

S2 p
X

1 < n 0 < 4 N

X
1 < l < 4 N = n 0

M

1�M kN kÿ1
0 jnk

0 laÿ c=s j

´
X

1 < n < 4 N =n 0

�n; l �� 1

wk�s=�s; D��: �3:8�

We now investigate the innermost sum in (3.8), starting from the inequalityX
1 < n < 4 N =n 0

�n; l �� 1

wk�s=�s; D��<
X
s0 j s

wk�s=s0�
X

1 < n < 4 N =n 0

�n; l �� 1
D� 0 �mod s0�

1: �3:9�
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Note ®rst that whenever n occurs in the innermost sum of (3.9), then �n; l� � 1 and

D � ��n� l� k ÿ nk�= l� 0 �mod s0�; �3:10�
whence �n; s0� � 1. Write

s1 � �l; s0�; s2 � s0 =s1; l0 � l=s1;

and let n be an integer satisfying the congruence nn� 1 �mod s0�. Then it follows
from (3.10) that

�1� l0 s1 n�k � 1 �mod s0�:
But the congruence yk � 1 �mod s0� has at most O�s«

0� solutions modulo s0 , say
y1; . . . ; yn for some integer n with 1 < n p s«

0 . Then 1� l0 s1 n� yj �mod s0� for

some j with 1 < j < n, and hence y j � 1 �mod s1� and l0 n� � yj ÿ 1�=s1 �mod s2�.
Since �l0 ; s2� � 1, the latter congruence implies that n belongs to one of
O�s«

0 � residue classes modulo s2 , and hence n likewise belongs to one of O�s«
0�

residue classes modulo s2 . On the other hand, since knkÿ1 � D� 0 �mod s1� and
�n; s1� � 1, one has s1 j k. Thus s2 � s0 =s1 q s0 , and so by (3.9) and (2.2),X

1 < n < 4 N =n 0

�n; l �� 1

wk�s=�s; D��p
X
s 0 j s

wk�s=s0�s«
0�N�n0 s0�ÿ1 � 1�

p s«Nnÿ1
0

X
s 0 j s

sÿ1
0 wk�s=s0� � s«

X
s 0 j s

1:

Consequently, recalling that vk�d �< d, we deduce from Lemma 2.2 thatX
1 < n < 4 N = n 0

�n; l �� 1

wk�s=�s; D��p s«wk�s�Nnÿ1
0 � s«: �3:11�

Next write P0 � P=n0 and

T�n0 ; l� � s«wk�s�Pnÿ1
0

1� P kÿ1
0 M jnk

0 laÿ c=s j :

Then on combining (3.8) and (3.11), we obtain

S2 p
X

1 < n 0 < 4 N

X
1 < l < 4 N =n 0

�T�n0 ; l� � s«M �

p
X

1 < n 0 < 4 N

X
1 < l < 4 N =n 0

T�n0 ; l� � P 1�«: �3:12�

In view of (2.2), one has

T�n0 ; l�p s«Pnÿ1
0

�s� P kÿ1
0 M jsnk

0 laÿ c j�1= k
;

whence

T�n0 ; l�p PM «ÿ2 1ÿ k

;

except possibly when

1 < s < M k 2 1ÿ k

and jsnk
0 laÿ c j< 1

2
M k 2 1ÿ kÿ1P 1ÿ k: �3:13�
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For each integer n0 satisfying 1 < n0 < 4N, we denote by L the set of natural
numbers l with 1 < l < 4N =n0 for which the conditions (3.13) are satis®ed. Then
on writing

S3 �
X

1 < n 0 < 4 N

X
l2L

T�n0 ; l�; �3:14�

we deduce from (3.5) and (3.12) that

S1 p S3 � P 1�« � P 2M «ÿ1ÿ2 1ÿ k

: �3:15�
For each integer n0 satisfying 1 < n0 < 4N, it follows from Dirichlet's

approximation theorem that there exist d 2 Z and t 2N with

�d ; t� � 1; 1 < t < P kÿ1M 1ÿ k 2 1ÿ k

and j t nk
0aÿ d j< M k 2 1ÿ kÿ1P 1ÿ k:

Then for l 2L, we ®nd from (3.13) that

jsld ÿ tcj< slM k 2 1ÿ kÿ1P 1ÿ k � 1
2

tM k 2 1ÿ kÿ1P 1ÿ k

< 1
2
� 4P 2ÿ kM 2�k 2 1ÿ kÿ1� < 1:

Thus we deduce that c=�sl� � d= t and s � t=�t; l�. Therefore, on writing

Z � P kÿ1
0 M jnk

0 aÿ d= t j;
we arrive at the estimateX

l2L
T�n0 ; l�p

X
l2L

t «wk�t=�t; l��Pnÿ1
0

1� Zl

p
P

n0

t «
X
t 0 j t

wk�t= t0�
X

1 < l 0< 4 N = �n 0 t 0 �
�1� Zt0 l 0 �ÿ1:

The innermost sum in the last expression satis®es the inequalityX
1 < l 0< 4 N = �n 0 t 0�

�1� Zt0 l 0 �ÿ1 p minfN�n0 t0�ÿ1; �Zt0�ÿ1 log Pg

p N�log P��n0 t0�ÿ1�1� ZN =n0�ÿ1:

Thus, on applying Lemma 2.2 via the upper bound vk�d �< d again, we obtain
the estimate X

l2L
T �n0 ; l�p T1�n0�; �3:16�

where

T1�n0� �
t «wk�t�Pnÿ2

0 N log P

1� P k
0 jnk

0aÿ d= t j : �3:17�

On one hand we have the trivial estimate

T1�n0�p P 1�«Nnÿ2
0 :

But in view of (2.2), one has also the bound

T1�n0�p
P 1�«Nnÿ2

0

�t � P k
0 j tnk

0aÿ d j�1= k
:
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Then

T1�n0�p P 2�«Mÿ1ÿ2 1ÿ k

nÿ1
0 ;

except possibly when

1 < t < M k 2 1ÿ k

and j tnk
0aÿ d j< M k 2 1ÿ k

Pÿ k: �3:18�
Accordingly, we de®ne N0 to be the set of natural numbers n0 , with

1 < n0 < M 2 1ÿ k

, such that the conditions (3.18) are satis®ed. Then by (3.14) and
(3.16) we obtain

S3 p
X

n 0 2N0

T1�n0� �
X

n 0 >M 2 1ÿ k

P 1�«Nnÿ2
0 �

X
1 < n 0 < 4 N

P 2�«Mÿ1ÿ2 1ÿ k

nÿ1
0 ;

whence by (3.15),

S1 p
X

n 0 2N0

T1�n0� � P 1�« � P 2�«Mÿ1ÿ2 1ÿ k

: �3:19�

Suppose next that n0 2N0. When a 2 Z and q 2N satisfy (3.1), it follows
from (3.18) that

jnk
0 taÿ dq j< nk

0 tPÿ k =2 � qM k 2 1ÿ k

Pÿ k

< M k 2 2ÿ k

Pÿ k =2 �M k2 1ÿ k

Pÿ k =2 < 1:

Thus we have d=�tnk
0� � a=q and t � q=�q; nk

0�, and hence by (3.17) one hasX
n 0 2N0

T1�n0�p
X

n 0 2N0

q«wk�q=�q; nk
0��Pnÿ2

0 N log P

1� P k jaÿ a=q j

p
q«PN log P

1� P k jaÿ a=q j
X

1 < n 0 < M 2 1ÿ k

wk�q=�q; nk
0��nÿ2

0 :

But on applying Lemma 2.3 in order to estimate the latter sum, we conclude thatX
n 0 2N0

T1�n0�p
q«wk�q�PN�log P�2
1� P k jaÿ a=q j : �3:20�

We now collect together (3.2), (3.3), (3.19) and (3.20), concluding that���� X
M < m < M 0

am

X
P=m< n < P 0=m

U < n < U 0

bn e��mn�ka�
����2

p P 1�«M � P 2M «ÿ2 1ÿ k � q«wk�q�P 2�log P�7
1� P k jaÿ a=q j ;

whence the conclusion of the lemma follows immediately.

Next we turn our attention to the estimation of a trilinear exponential sum.
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Lemma 3.2. Let k be a natural number with k > 4, and let P, P 0, M and N be
real numbers with M > 1, N > 1, 2 < P < P 0 < 2P,

M 1ÿ2 2ÿ k

N 2ÿ2 2ÿ k

< P 1ÿ2 2ÿ k

and M 2ÿ2 2ÿ k

N ÿ2 2ÿ k

< P 1ÿ2 2ÿ k

: �3:21�
Suppose that �am�, �bn� and �cl� are sequences of complex numbers satisfying

jamj< 1� log m and jbnj< 1

for each m and n, and with cl � 1 for all l, or cl � log l for all l. Suppose further
that a is a real number, and that there exist a 2 Z and q 2N satisfying (3.1).
Then one has X

1 < m < M

am

X
1 < n < N

bn

X
P= �mn� < l < P 0= �mn�

cl e��lmn�ka�

p P 1ÿ2 1ÿ k�«�MN�2 1ÿ k � q«wk�q�P�log P�4
1� P k jaÿ a=qj :

Proof. For each integer m with 1 < m < M, denote by N the set of natural
numbers n with 1 < n < N for which there exist b 2 Z and r 2N with

�b; r� � 1; 1 < r < 1
3
�P=�mn��k 2 1ÿ k

;

jr�mn�kaÿ bj< 1
2
�P=�mn��k�2 1ÿ kÿ1�:

�3:22�

Then in view of Lemma 2.1, one hasX
1 < m < M

am

X
1 < n < N

bn

X
P= �mn�< l < P 0= �mn�

cl e��lmn� ka�p E0 � E1; �3:23�

where

E0 �
X

1 < m < M

X
1 < n < N

jam bn j�P=�mn��1ÿ2 1ÿ k�«

and

E1 �
X

1 < m < M

X
n2N

jam bn j
wk�r�P�mn�ÿ1 log P

1� �P=�mn�� k j�mn�k aÿ b=r j :

In view of our hypotheses concerning �am� and �bn�, one plainly has

E0 p P 1ÿ2 1ÿ k�«�MN�2 1ÿ k

: �3:24�
Also, it is evident that

E1 p P�log P�2E2 ; �3:25�
where

E2 �
X

1 < m < M

X
n2N

wk�r��mn�ÿ1

1� �P=�mn�� k j �mn� kaÿ b=r j : �3:26�

We now follow a similar path to that taken in the proof of the previous lemma.
For each integer m with 1 < m < M, we apply Dirichlet's approximation theorem
to deduce the existence of c 2 Z and s 2N with

�c; s� � 1; 1 < s < �P=�mN ��k�1ÿ2 1ÿ k �;

jsmkaÿ c j< �P=�mN �� k�2 1ÿ kÿ1�:
�3:27�
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By combining (3.22) and (3.27), we obtain

jrnkcÿ sb j< rnk�P=�mN ��k�2 1ÿ kÿ1� � 1
2

s�P=�mn��k�2 1ÿ kÿ1�

< 1
2
� 1

3
�P=m�k�2 2ÿ kÿ1��nN �k�1ÿ2 1ÿ k �;

whence by (3.21) it follows that

jrnkcÿ sb j < 1:

Thus we have

b

rnk
� c

s
; r � s

�s; nk� ;
and so by (3.26),

E2 �
X

1 < m < M

mÿ1�1� �P=m�k jmkaÿ c=s j�ÿ1
X

n2N
wk�s=�s; nk��nÿ1:

The innermost sum may be evaluated by means of Lemma 2.3, and thus we obtain

E2 p
X

1 < m < M

s« wk�s� log P

m�1� �P=m�k jmkaÿ c=s j� : �3:28�

We next de®ne M to be the set of natural numbers m with 1 < m < M such
that the integers c and s de®ned in (3.27) satisfy

1 < s < 1
3
�P=�MN��k 2 1ÿ k

;

jsmkaÿ c j< 1
3
�P=�MN��k 2 1ÿ k�P=m�ÿ k:

�3:29�

In view of (2.2) and (3.28), we ®nd that

E2 p
X

m2M

s«wk�s� log P

m�1� �P=m�k jmkaÿ c=s j� � P «ÿ2 1ÿ k�MN �2 1ÿ k

: �3:30�

When a and q satisfy (3.1) and m 2M, it follows from (3.29) that

jsmkaÿ qc j< smk Pÿ k =2 � 1
3

q�P=�MN ��k 2 1ÿ k�P=m�ÿ k

< 2
3

P
1
2

k�2 2ÿ kÿ1�M k�1ÿ2 1ÿ k �N ÿ k 2 1ÿ k

;

whence by the second condition of (3.21) we obtain

jsmkaÿ qc j < 1:

Consequently,
c

smk
� a

q
and s � q

�q; mk� ;

and thus by Lemma 2.3, we deduce thatX
m2M

s« wk�s� log P

m�1� �P=m�k jmkaÿ c=s j�<
q« log P

1� P k jaÿ a=q j
X

1 < m < M

wk�q=�q; mk��
m

p
q« wk�q��log P�2
1� P k jaÿ a=qj : �3:31�
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The proof of the lemma is completed by collecting together (3.23), (3.24),
(3.25), (3.30) and (3.31).

Finally, we provide an estimate for an exponential sum over prime numbers.

Lemma 3.3. Let k be a natural number with k > 4, and let P be a real
number with P > 2. Suppose that a is a real number, and that there exist a 2 Z
and q 2N satisfying (3.1). Then one hasX

P< p < 2 P

e� pka�p P 1ÿ2ÿ kÿ 1�« � q« wk�q�1=2P�log P�4
�1� P k jaÿ a=qj�1=2

:

Proof. We begin by observing that it is suf®cient to estimate a weighted
exponential sum. For on writing

S�t� �
X

P< p < t

�log p�e� pka�;

one ®nds by partial summation thatX
P< p < 2 P

e� pka� � S�2P�
log�2P� �

Z 2 P

P

S�t�
t�log t�2 dt:

In order to establish the lemma, therefore, it suf®ces to show that for each real
number P 0 with P < P 0 < 2P, one has

S�P 0 �p P1ÿ2ÿ kÿ 1�« � F; �3:32�
where

F � q« wk�q�1=2P�log P�5
�1� P k jaÿ a=q j�1=2

: �3:33�

Let m�n� denote the MoÈbius function. Also, let L�n� denote the von Mangoldt
function, de®ned to be log p whenever n is the prime power ph , and zero
otherwise. Then plainly, whenever P < P 0 < 2P, one has

S�P 0 � �
X

P< n < P 0
L�n�e�nka� � O�P 1=2�:

We next appeal to Vaughan's identity (see, for example, Vaughan [16]), with

U � P 1=4 and V � P 1=2, to show that whenever P < n < 2P, one has

L�n� �
X

dm� n
1 < d < V

m�d � log mÿ
X

dlm� n
1 < d < V
1 < m < U

m�d �L�m� ÿ
X

dlm� n
1 < d < V

m >U
dl >V

m�d �L�m�:

Thus we deduce that

S�P 0 � � S1 ÿ S2 ÿ S3 � O�P 1=2�; �3:34�
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where

S1 �
X

1 < d < V

m�d �
X

P= d < m < P 0=d

�log m�e��dm�ka�; �3:35�

S2 �
X

1 < v < UV

l0�v�
X

P=v < l < P 0=v

e��vl�ka�; �3:36�

S3 �
X

V < u < P 0=U

l1�u�
X

P=u< m < P 0=u
m >U

L�m�e��um�ka�; �3:37�

and here we write

l0�v� �
X

dm� v
1 < d < V
1 < m < U

m�d �L�m� and l1�u� �
X
d ju

1 < d < V

m�d �:

Notice in particular that

jl1�u�j< t�u� and jl0�v�j<
X
m jv

L�m� � log v: �3:38�

The exponential sum S3 may be estimated simply by means of Lemma 3.1,
owing to the conditions (3.38). Thus, by dividing the summation over u in (3.37)
into dyadic intervals, we deduce that

S3 p �log P� max
V < M < P 0=U

�PM «ÿ2ÿ k � �PM�1= 2�« � �log P�ÿ1F�;

where F is de®ned in (3.33). In view of our choices for U and V , therefore, one
®nds that

S3 p P 1ÿ2ÿ kÿ 1�« � F: �3:39�
Next we estimate S2 . Write

S4�Y ; Z � �
X

Y < v < Z

l0�v�
X

P=v < l < P 0=v

e��vl�ka�:

Then by (3.36) we plainly have

S2 � S4�0; U � � S4�U; V � � S4�V ; UV �: �3:40�
In view of the conditions (3.38), we may again divide the summation over v into
dyadic intervals to deduce from Lemma 3.1 that

S4�V ; U V �p P 1ÿ2ÿ kÿ 1�« � F: �3:41�
Moreover, one may rearrange the summation in S4�U; V � to obtain

S4�U; V � �
X

P=V < l < P 0=U

X
P= l< v < P 0= l

U < v < V

l0�v�e��lv�ka�;

whence a dyadic dissection of the summation over l now yields, again by
Lemma 3.1,

S4�U; V �p P 1ÿ2ÿ kÿ 1�« � F: �3:42�
In order to estimate S4�0; U �, we note that U 2ÿ2 2ÿ k

< P 1ÿ2 2ÿ k

, so that an
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application of Lemma 3.2 with N � 1 and b1 � 1 yields

S4�0; U �p P 1ÿ2 1ÿ k�« U 2 1ÿ k � F p P 1ÿ2ÿ k�« � F: �3:43�
On collecting together (3.40)±(3.43), we obtain

S2 p P 1ÿ2ÿ kÿ 1�« � F: �3:44�
Finally, in order to estimate S1, we write

S5�Y ; Z � �
X

Y < d < Z

m�d �
X

P= d < m < P 0=d

�log m�e��dm�ka�;

and then observe that by (3.35) we have

S1 � S5�0; U� � S5�U; V �: �3:45�
But again rearranging the summation in S5�U; V �, we obtain

S5�U; V � �
X

P=V < m < P 0=U

�log m�
X

P=m< d < P 0=m
U < d < V

m�d �e��md �ka�;

whence a dyadic dissection of the summation over m now yields, by Lemma 3.1,

S5�U; V �p P 1ÿ2ÿ kÿ 1�« � F: �3:46�
Also, noting again that U 2ÿ2 2ÿ k

< P 1ÿ2 2ÿ k

, an application of Lemma 3.2 with
N � 1 and b1 � 1 reveals that

S5�0; U�p P 1ÿ2 1ÿ k�«U 2 1ÿ k � F p P 1ÿ2ÿ k�« � F: �3:47�
Then from (3.45)±(3.47) we have

S1 p P 1ÿ2ÿ kÿ 1�« � F: �3:48�
The proof of the lemma is completed on combining (3.34), (3.39), (3.44) and

(3.48), and recalling our discussion surrounding (3.32).

4. Mean value estimates for exponential sums, I

In advance of our application of the Hardy±Littlewood method for sums of
powers of prime numbers, we require estimates for the mean values of suitable
exponential sums. In this section we concentrate on providing such bounds for
exponential sums over fourth powers, though certain of these estimates remain
relevant to our later investigations concerning ®fth powers.

We begin by recalling a result from Vaughan [17].

Lemma 4.1. Suppose that

k > 4; s � � 1
2
�k � 3��;

m1 � 1; 1 > m2 > 1ÿ 1=k; m2 > m j >
1
2
�2 < j < s�;

Pj � P m j ; n � km2 ÿ k � 1; C � C�k; «�> 2 k:
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Let R�m� be a non-negative arithmetical function, and de®ne

f0�a� �
X

0 < m < CP k
2

R�m�e�ma�;

fj�a� �
X

Pj < x < 2 Pj

e�axk� �1 < j < s�;

Fj�a� � fj�a� fj�1�a� . . . fs�a� f0�a� � j � 1; 2�:
ThenZ 1

0
jF1�a�j2 da p �P� P 1� nÿ2 2ÿ k�«�

Z 1

0
jF2�a�j2 da� F1�0�2Pÿ k�log P�2:

Proof. On consideration of the underlying diophantine equations, the conclu-
sion of the lemma is essentially immediate from Theorem 3 of Vaughan [17], save
that therein, the factor �log P�2 appearing above is replaced by P «. In order to
replace Vaughan's conclusion with the slightly sharper one above, a careful
examination of the proof of [17, Theorem 3] reveals that one must modify
Vaughan's treatment of the underlying major arc contribution. Adopting the
notation of [17] for the sake of conciseness, one observes that the argument
culminating at the top of p. 450 of [17] yields

G�a� � q«ÿ1= �kÿ2� X
1 < h < H

� �q; h�P
1� jb jhP kÿ1

� q�q; h�1= �kÿ1�
�

p q«ÿ1= �kÿ2�P 1� n�log P��1� jb jP n� kÿ1�ÿ1 � P nq �kÿ2�= �kÿ1��«; �4:1�
saving a factor of P « over the corresponding estimate recorded in Lemma 2 of
[17]. On substituting the estimate (4.1) within the argument presented on pages
450±452 of [17], one ®nds that the mean value K de®ned in (2.21) of [17] satis®es

K p �log P�2Pÿ k

�X
m

R1�m�
�2

; �4:2�

the additional logarithmic factor arising in the evaluation of the mean valueZ
N�q;a�

G1�a�jF�a�j2 da

at the top of p. 452 of [17]. The estimate (4.2) suf®ces to establish the lemma in
its stated form.

We prepare for later use a straightforward estimate of considerable utility.

Lemma 4.2. Let k be a natural number with k > 4, and write t � � 1
2

k�. Let mj

�1 < j < t� be real numbers with m1 � 1 and 1
2
< mj < 1 �2 < j < t�. Also, let Pj

and fj�a� be as de®ned in the statement of Lemma 4.1, and let g�a� be a
complex-valued function, periodic with period 1, and having the property
jg�a�j< g�0� for a 2 R. Finally, write

F�a� � f1�a� f2�a� . . . ft�a�g�a�:
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Then Z 1

0
j f1�a�F�a�j2 da p P 2ÿ2 2ÿ k�«

Z 1

0
jF�a�j2 da� F�0�2P 2ÿ k log P:

Proof. We apply the Hardy±Littlewood method. Write Q � P k 2 1ÿ k

, and
recalling the notation de®ned in (2.15) and (2.16), write

M�q; a� �M�q; a; Q; P k�; M �M�Q; P k� and m � m�Q; P k�:
By Lemma 2.1, we have

sup
a2m
j f1�a�jp P 1ÿ2 1ÿ k�«;

and when a 2M�q; a� Í M, we have

f1�a�p wk�q�P�1� P k jaÿ a=q j�ÿ1:

Consequently,Z 1

0
j f1�a�F�a�j2 da p P 2ÿ2 2ÿ k�«

Z 1

0
jF�a�j2 da� S; �4:3�

where

S � g�0�2
X

1 < q < Q

Xq

a�1
�a; q�� 1

Z
M�q; a�

wk�q�4P 4

�1� P k jaÿ a=q j�4 j f2�a� . . . ft�a�j2 da:

But since Q < P 1=2 and mj >
1
2
�1 < j < t�, we may apply Lemmata 6.1 and 6.2

of [19] in combination with (2.2) and (2.3) to conclude that for a 2M�q; a� Í M ,
one has

fj�a�p wk�q�Pj � q1=2�« p wk�q�Pj :

Thus we deduce that

S p P 4P 2
2 . . . P 2

t g�0�2
X

1 < q < Q

qwk�q�2 t�2

Z 1

0
�1� P kb�ÿ4 db

p F�0�2P 2ÿ k
X

1 < q < Q

qwk�q�k�1: �4:4�

The proof of the lemma is completed by making use of Lemma 2.4 to estimate the
sum on the right-hand side of (4.4), and then substituting the conclusion into (4.3).

For the remainder of this section, and the next, we restrict attention to the case
k � 4, and ®x notation as follows. We put

l1 � 1; l2 � 13
16
; l3 � � 13

16
�2; l4 � � 13

16
�2 91

111
; l5 � � 13

16
�2 78

111
; �4:5�

Pj � P l j ; fj�a� �
X

Pj < x < 2 Pj

e�ax4� �1 < j < 5�; �4:6�

Fj�a� � f5�a�2
Y4

i� j

fi�a� �1 < j < 4�: �4:7�

20 koichi kawada and trevor d. wooley



We remark that the exponents l j recorded in (4.5) have been chosen in accordance
with Theorem 3 of Thanigasalam [14], which we record as the following lemma.

Lemma 4.3. For 1 < j < 4, one hasZ 1

0
jFj�a�j2 da p P «Fj�0�:

We complete this section by establishing some auxiliary mean value estimates
of use in certain pruning procedures.

Lemma 4.4. When j is an integer with 1 < j < 5, write

Ij �
Z 1

0
j fj�a�F1�a�j2 da:

Then for 1 < j < 5, one has

Ij pF1�0�2P 2
j Pÿ4�log P�2:

Proof. The lemma follows simply by applying Lemmata 4.1±4.3. Before
proceeding further, it is useful to make some preliminary evaluations of pertinent
parameters. We de®ne the numbers nj , for 2 < j < 5, by P

n j

jÿ1 � P 4
j Pÿ3

jÿ1. Thus

n2 � n3 � 1
4
; n4 � 31

111
and n5 � 3

7
:

Write

Xj � Pÿ1=4
j �1 < j < 3�; X4 � P

n 4ÿ1= 4
3 Pÿ1=4

4 ; X5 � P
n 4ÿ1=4
3 P

n 5ÿ1=4
4 Pÿ1=2

5 :

Then since n4 > 1
4

and P 1=2
5 � P 3=7

4 � P
n 5

4 , we see at once that

X1 < X2 < X3 < X4 � X5:

Moreover, in view of (4.5)±(4.7), a modest calculation reveals that

F1�0�} P 56003=14208 > P 4ÿ0:05835; �4:8�
and also P 4F1�0�ÿ1X4 < Pÿ0:0576, whence

P 4�«F1�0�ÿ1Xj < 1 �1 < j < 5�: �4:9�
Next put

Y2 � P 3Pÿ4
2 ; Y3 � P 3Pÿ1

2 Pÿ4
3 ;

and

Y4 � P 3Pÿ1
2 P

n 4ÿ5=4
3 Pÿ4

4 :

We observe that by the de®nition of the nj , one has Yj � �P1 . . . Pjÿ1�ÿ1=4 for
2 < j < 4, whence

Yj P
« < 1 �2 < j < 4�: �4:10�

We now initiate our main argument, establishing the lemma for each j in turn.
Applying Lemma 4.2 to I1, and then appealing to Lemma 4.3, we obtain

I1 p P 2ÿ1=4�«F1�0� �F1�0�2Pÿ2 log P

pF1�0�2Pÿ2�log P��P 4�«F1�0�ÿ1X1 � 1�:
Then in view of (4.9), the conclusion of the lemma holds when j � 1.
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Next applying Lemma 4.1 to estimate I2 , and then employing Lemmata 4.2 and
4.3 in order, we obtain

I2 �
Z 1

0
j f1�a� f2�a�F2�a�j2 da

p P 1�«�P 2ÿ1=4�«
2 F2�0� �F2�0�2Pÿ2

2 log P� �F1�0�2P 2
2 Pÿ4�log P�2

pF1�0�2P 2
2 Pÿ4�P 4�«F1�0�ÿ1X2 � Y2 P « � �log P�2�:

Then by (4.9) and (4.10), the conclusion of the lemma holds also when j � 2.
Similarly, we utilise Lemma 4.1 twice, and then apply Lemmata 4.2 and 4.3 to

reveal that

I3 �
Z 1

0
j f1�a� f2�a� f3�a�F3�a�j2 da

p PP2 P 2ÿ1=4�«
3 F3�0� �F1�0�2P 2

3 Pÿ4��Y3 � Y2�P « � �log P�2�
pF1�0�2P 2

3 Pÿ4�P 4�«F1�0�ÿ1X3 � �Y3 � Y2�P « � �log P�2�:
The desired bound for j � 3 therefore follows again from (4.9) and (4.10).

Repeating the application of Lemma 4.1 thrice, and then applying Lemmata 4.2
and 4.3 again, we now obtain

I4 �
Z 1

0
j f1�a� f2�a� f3�a� f4�a�F4�a�j2 da

p PP2 P
1� n 4ÿ1=4
3 P 2ÿ1=4�«

4 F4�0�
�F1�0�2P 2

4 Pÿ4��Y4 � Y3 � Y2�P « � �log P�2�
pF1�0�2P 2

4 Pÿ4�P 4�«F1�0�ÿ1X4 � �Y4 � Y3 � Y2�P « � �log P�2�:
The desired bound for j � 4 consequently follows again from (4.9) and (4.10).

Finally we turn to the estimation of I5 . Applying now Lemma 4.1 four times,
we have

I5 �
Z 1

0
j f1�a� f2�a� f3�a� f4�a� f5�a�3j2 da

p PP2 P
1� n 4ÿ1=4
3 P

1� n 5ÿ1=4�«
4

Z 1

0
j f5�a�j6 da

�F1�0�2P 2
5 Pÿ4��Y4 � Y3 � Y2�P « � �log P�2�: �4:11�

But by Hua's inequality (see Lemma 2.5 of [19]) and Schwarz's inequality,Z 1

0
j f5�a�j6 da p

�Z 1

0
j f5�a�j4 da

�1=2�Z 1

0
j f5�a�j8 da

�1=2

p P 7=2�«
5 :

Thus, by (4.9)±(4.11) we deduce that

I5 pF1�0�2P 2
5 Pÿ4�P 4�«F1�0�ÿ1X5 � �Y4 � Y3 � Y2�P « � �log P�2�

pF1�0�2P 2
5 Pÿ4�log P�2;

and so the desired bound follows for j � 5.
This completes the proof of the lemma.
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5. The Waring±Goldbach problem for fourth powers

We now complete the proof of Theorem 1, retaining the notation introduced in
the previous section. Let s be a natural number with s > 14, and let n be a

suf®ciently large integer with n� s �mod 240�. Since n1 � nÿ �sÿ 14� ´ 74

satis®es n1 � 14 �mod 240�, we ®nd that n is represented as the sum of s fourth
powers of prime numbers whenever n1 is the sum of 14 fourth powers of prime
numbers. Thus, in order to establish that H�4�< 14, it suf®ces to show that all
suf®ciently large natural numbers m, with m� 14 �mod 240�, are the sum of 14
fourth powers of prime numbers.

Consider then a suf®ciently large natural number n with n� 14 �mod 240�,
and write

P � 1
2

n1=4:

Let R�n� denote the number of representations of n in the form

n � p4
1 � p4

2 � . . .� p4
14 ;

with

P < pj < 2P �1 < j < 4�; Pi < p2i�1; p2 i�2 < 2Pi �2 < i < 4�;

P5 < pl < 2P5 �11 < l < 14�:
We aim to apply the Hardy±Littlewood method to establish that R�n� > 0, whence
Theorem 1 follows according to the above discussion. To this end we introduce
the exponential sums

gj�a� �
X

Pj < p < 2 Pj

e� p4a� �1 < j < 5�;

and write

G1�a� � g1�a�g2�a�g3�a�g4�a�g5�a�2:
When B Í �0; 1�, de®ne

R�n; B� �
Z

B
g1�a�2G1�a�2e�ÿna� da: �5:1�

Then by orthogonality, we have R�n� � R�n; �0; 1��:
Next we de®ne the Hardy±Littlewood dissections fundamental to our applica-

tion of the circle method. We take L � �log P�2000, and de®ne N to be the union
of the intervals

N�q; a� � fa 2 �0; 1�: jaÿ a=q j< LPÿ4g
with 0 < a < q < L and �a; q� � 1. Notice that the arcs N�q; a� comprising N are
pairwise disjoint. We write also n � �0; 1� nN, and note that

R�n� � R�n; N� � R�n; n�: �5:2�
We analyse the minor arcs n by means of a further dissection, and in this context
we recall the notation de®ned in (2.15) and (2.16), and write

M�q; a� �M�q; a; P 1=4; P 4�; M �M�P 1=4; P 4�; m � m�P 1=4; P 4�:
We remark that m Í n.
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We de®ne the function W�a� for a 2M by taking

W�a� � q dw4�q��1� P 4 jaÿ a=q j�ÿ1;

for a 2M�q; a� Í M , where we write d � 10ÿ2. In particular, it follows from
(2.2) that when a 2M�q; a� Í M and a 2 n, then one has

W�a�p �q� P 4 jqaÿ a j�dÿ1=4 p Lÿ1=5:

Consequently, by Lemma 3.3, when a 2M Ç n one has

g1�a�p P 1ÿ1=32�« � P�log P�4 W�a�1=2

p P 1ÿ1=32�« � P�log P�4Lÿ1=20W�a�1 =4: �5:3�
Meanwhile, when a 2m, we may apply Dirichlet's approximation theorem to
deduce the existence of a 2 Z and q 2N satisfying the conditions (3.1), and
necessarily one has either

q > P1= 4 or jqaÿ a j > Pÿ15 =4:

In this situation it therefore follows from (2.2) that

w4�q�1=2P

�1� P 4jaÿ a=q j�1=2
p

P

�q� P 4 jqaÿ a j�1=8
p P 1ÿ1=32;

whence by Lemma 3.3,

sup
a2m
jg1�a�jp P 1ÿ1=32�«: �5:4�

On substituting (5.3) and (5.4) into (5.1), we deduce that

jR�n; n�j<
Z

n
jg1�a�G1�a�j2 da p K1 � K2 ; �5:5�

where

K1 � P 2ÿ1=16�«

Z 1

0
jG1�a�j2 da �5:6�

and

K2 � P 2�log P�ÿ150

Z
M Ç n

W�a�1=2jG1�a�j2 da: �5:7�

But on considering the underlying diophantine equations, we see from Lemma
4.3 that Z 1

0
jG1�a�j2 da <

Z 1

0
jF1�a�j2 da p P «F1�0�:

A comparison between the de®nitions of F1�a� and G1�a� reveals that

G1�0�} F1�0��log P�ÿ6; �5:8�
and thus we deduce from (4.8) and (5.6) that

K1 p G1�0�2�F1�0�ÿ1P 2ÿ1=16�«�p G1�0�2Pÿ2:004: �5:9�
We turn our attention next to the estimation of K2 . By applying HoÈlder's
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inequality within (5.7), we obtainZ
M Ç n

W�a�1=2jG1�a�j2 da p

�Z
M

W�a�3 jg5�a�j2 da

�1=6 Y5

j�1

J 1=6
j ; �5:10�

where

Jj �
Z 1

0
jgj�a�G1�a�j2 da �1 < j < 5�:

But on recalling the de®nition of Ij from the statement of Lemma 4.4, and
considering the underlying diophantine equations, it follows from the latter
lemma that

Jj < Ij pF1�0�2P 2
j Pÿ4�log P�2 �1 < j < 5�:

Moreover, since P 1= 4< P5, we ®nd from Lemma 2.5 thatZ
M

W�a�3 jg5�a�j2 da <

Z
M�P5 ; P 4 �

W�a�3jg5�a�j2 da p P 2
5 Pÿ4:

Thus we deduce from (5.10) thatZ
M Ç n

W�a�1= 2jG1�a�j2 da p �P 2
5 Pÿ4�1= 6

Y5

j�1

�F1�0�2P 2
j Pÿ4�log P�2�1=6

pF1�0�2Pÿ4�log P�2:
Consequently, on recalling (5.8) and substituting into (5.7), we arrive at the estimate

K2 p �P 2�log P�ÿ150��G1�0�2Pÿ4�log P�14�p G1�0�2Pÿ2�log P�ÿ100: �5:11�
Finally, on collecting together (5.5), (5.9) and (5.11), we may conclude that

R�n; n�p G1�0�2Pÿ2�log P�ÿ100: �5:12�
Next we investigate the contribution to R�n� arising from the major arcs N . It

transpires that this is essentially a routine exercise using the methods of Chapters
7 and 8 of Hua [8]. Write

S ��q; a� �
Xq

r� 1
�r ; q�� 1

e�ar 4=q� and uj�b� �
Z 2 Pj

Pj

e�bt 4�
log t

dt �1 < j < 5�:

Also, let J�q� denote Euler's totient function. Then, as a consequence of the
Siegel±Wal®sz theorem, one may show that for a 2N�q; a� Í N , one has

gj�a� � J�q�ÿ1S ��q; a�uj�aÿ a=q� � O�Pj L
ÿ5� �1 < j < 5�

(this is essentially Lemma 7.15 of Hua [8]). Since the measure of N is plainly
O�L3Pÿ4�, on substituting the above estimate into (5.1), a simple calculation
reveals that

R�n; N� � S�n; L�J�n; LPÿ4� � O�G1�0�2Pÿ2Lÿ1�; �5:13�
where

S�n; L� �
X

1 < q < L

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��14e�ÿan=q� �5:14�

25the waring±goldbach problem



and

J�n; W � �
Z W

ÿW
u1�b�4u2�b�2u3�b�2u4�b�2u5�b�4e�ÿnb� db: �5:15�

In order to dispose of the singular series S�n; L�, we ®rst note that by Lemma
8.5 of [8] (see also [6]), whenever �a; q� � 1 one has

S ��q; a�p q1=2�«;

whenceX
q > L

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��14e�ÿan=q�p
X
q > L

J�q�ÿ13q7�« p Lÿ4:

Then on writing

S�n� �
X1
q�1

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��14e�ÿan=q�;

we deduce that the series S�n� is absolutely convergent, and we ®nd from
(5.14) that

S�n� ÿS�n; L�p
X
q > L

J�q�ÿ13q7�« p Lÿ4;

whence

S�n; L� � S�n� � O�Lÿ4�: �5:16�
Moreover, Theorem 12 of [8] assures us that

S�n�q 1 �5:17�
for all integers n with n� 14 �mod 240�.

We begin our investigation of the singular integral J�n; LPÿ4� by noting that a
combination of a trivial estimate, together with a partial integration, yields

uj�b�p Pj�log Pj�ÿ1�1� P 4
j jb j�ÿ1 �1 < j < 5�:

Then on writing

J�n� �
Z 1

ÿ1
u1�b�4u2�b�2u3�b�2u4�b�2u5�b�4e�ÿnb� db;

we ®nd that

J�n�p �P= log P�2G1�0�2
Z 1

0

db

�1� P 4b�4 p Pÿ2G1�0�2�log P�ÿ2; �5:18�

and from (5.15) we obtain

J�n� ÿ J�n; LPÿ4�p P 2G1�0�2
Z 1

L Pÿ 4

db

�1� P 4b�4 p Pÿ2G1�0�2Lÿ3: �5:19�

Since, by a change of variable,

uj�b� �
Z �2 Pj�4

P 4
j

tÿ3=4e�bt�
log t

dt;
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an application of Fourier's integral formula reveals that

J�n� �
Z
D

�ent2 t3 . . . t14�ÿ3=4

�logen��log t2��log t3� . . . �log t14�
dt2 dt3 . . . dt14 ; �5:20�

where we write en � nÿ t2 ÿ t3 ÿ . . .ÿ t14 , and where the region D of integration
is the set of points �t2 ; . . . ; t14� 2 R13 such that

P 4 < en; t2 ; t3 ; t4 < �2P�4;
P 4

j < t2 j�1; t2 j�2 < �2Pj�4 �2 < j < 4�;
P 4

5 < ti < �2P5�4 �11 < i < 14�:
�5:21�

Let D0 be the set of points �t2 ; . . . ; t14� 2 R13 such that

P 4 < t2 ; t3 ; t4 < 2P 4;

and the conditions (5.21) hold. On noting that whenever �t2 ; . . . ; t14� 2D0 , one
has P 4 < en < �2P�4, we ®nd that D0 Í D. Consequently, we deduce from (5.20) that

J�n�q ��PF1�0��8�ÿ3=4�log P�ÿ14

Z
D 0

dt2 dt3 . . . dt14

q �PF1�0��ÿ6�log P�ÿ14P 4F1�0�8:
On recalling (5.8), (5.18) and (5.19), we therefore conclude that

J�n; LPÿ4�} G1�0�2Pÿ2�log P�ÿ2: �5:22�
We now reach the crescendo of our argument for sums of fourth powers. On

combining (5.13), (5.16), (5.17) and (5.22), we conclude that for every large
integer n with n� 14 �mod 240�, one has

R�n; N� � S�n�J�n; LPÿ4� � O�G1�0�2Pÿ2Lÿ1�q G1�0�2Pÿ2�log P�ÿ2:

Consequently, for each such n it follows from (5.2) and (5.12) that

R�n� � R�n; N� � R�n; n�q G1�0�2Pÿ2�log P�ÿ2;

whence R�n� > 0. This completes the proof of Theorem 1.

6. Mean value estimates for exponential sums, II

The remainder of this paper is devoted to the proof of Theorem 2, and so
henceforth we restrict attention to the case k � 5. In this section we augment the
mean value estimates of § 4 with additional estimates required in the course of our
deliberations. We ®x notation as follows:

l j � � 33
40
� jÿ1 �1 < j < 6�; �6:1�

l7 � � 33
40
�5 ´ 136

163
; l8 � � 33

40
�5 ´ 576

815
; l9 � � 33

40
�5 ´ 512

815
; �6:2�

Pj � P l j ; fj�a� �
X

Pj < x < 2 Pj

e�ax5� �1 < j < 9�; �6:3�

Fj�a� � f9�a�2
Y8

i� j

fi�a� �1 < j < 8�: �6:4�
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The exponents l j result from applying the algorithm described in (3.10)±(3.12)
and (3.28) of Vaughan [17] together with the theorem of Thanigasalam [15]. Thus,
initiating the process with v9 � 8

9
and a8 � 5

9
, we de®ne a j , nj and vj recursively

as j decreases by

nj �
4ÿ 4aj

7� aj

; when j � 8; 7;

1
8
; when 6 > j > 2;

8><>:
vj � 1

5
�4� nj�; a jÿ1 � 1

5
� vj aj :

We remark here that, with a modicum of computation, one ®nds that

a1 �
83151270787

83456000000
> 1ÿ 0:0036514: �6:5�

The values of l j recorded in (6.1) and (6.2) are then obtained recursively by
means of the relation l j � vj l jÿ1 �2 < j < 9�, starting from the initial value
l1 � 1. This de®nition of the l j leads us to the following conclusion, in view of
the work of Thanigasalam [15] and Vaughan [17].

Lemma 6.1. We haveZ 1

0
jFj�a�j2 da p P «Fj�0� �1 < j < 8�:

Proof. When j � 8, the conclusion of the lemma is immediate from the
theorem of Thanigasalam [15]. When 1 < j < 7, meanwhile, one may apply the
method of the proof of (3.31) of Vaughan [17] (see, in particular, the line
preceding (3.20) of [17]) in order to establish recursively the desired conclusion
as j decreases from 7 to 1.

We note that a conclusion slightly sharper than that presented may be
established by applying the methods of Thanigasalam [14]. However, such
estimates do not enhance or simplify the deliberations of this paper.

As in our discussion of fourth powers, we require some auxiliary mean
value estimates.

Lemma 6.2. When j is an integer with 1 < j < 9, write

Ij �
Z 1

0
j fj�a�F1�a�j2 da:

Then for 1 < j < 9, one has

Ij pF1�0�2P 2
j Pÿ5�log P�2:

Proof. We begin by recording some simple estimates, and associated notation,
that facilitate our subsequent discussion. Note ®rst that, with a1 de®ned as in
(6.5), we ®nd from (6.3) and (6.4) that

F1�0�} P 5a1 : �6:6�
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Thus we ®nd that

P 5F1�0�ÿ1Pÿ1=8
9 < Pÿ0:0117;

whence

P 5�«F1�0�ÿ1Pÿ1=8
j < 1 �1 < j < 9�: �6:7�

Next we write

Yj � P 5Pÿ5
j Fj�0�F1�0�ÿ1 �2 < j < 6�;

and we observe that for 2 < j < 6, one has

Yj }
Yjÿ1

i�1

�P 4
i Pÿ5

i�1� �
Yjÿ1

i�1

Pÿ1=8
i : �6:8�

For later convenience, we also de®ne Z0 � 0, and when 1 < j < 6 we put

Zj � �log P�2 � P «
Xj

i�2

Yj :

In view of (6.8), of course, we have

Zj p �log P�2 �0 < j < 6�: �6:9�
We establish the lemma for 1 < j < 6 following the strategy adopted in the

proof of Lemma 4.4. A � jÿ 1�-fold application of Lemma 4.1 to estimate Ij

reveals that for 1 < j < 6, one has

Ij p �F1�0�=Fj�0��1�«

Z 1

0
j fj�a�Fj�a�j2 da�F1�0�2P 2

j Pÿ5Zjÿ1: �6:10�

On applying Lemma 4.2 in combination with Lemma 6.1 to estimate the integral
on the right-hand side of (6.10), we obtain for 1 < j < 6 the upper bound

Ij p �F1�0�=Fj�0��P 2ÿ1=8�«
j Fj�0� �F1�0�2P 2

j Pÿ5Zj

pF1�0�2P 2
j Pÿ5�P 5�«F1�0�ÿ1Pÿ1=8

j � Zj�:
In view of (6.7) and (6.9), therefore, we may conclude that

Ij pF1�0�2P 2
j Pÿ5�log P�2 �1 < j < 6�;

which suf®ces to establish the conclusion of the lemma in these cases.
When 7 < j < 9, we apply Lemma 4.1 ®ve times to obtain

Ij p �F1�0�=F6�0��1�«

Z 1

0
j fj�a�F6�a�j2 da�F1�0�2P 2

j Pÿ5 Z5 : �6:11�

We ®rst consider the situation in which j � 7. Here, on applying Lemma 4.2 to
the integral on the right-hand side of (6.11), taking g�a� � f6�a� f9�a�2, we obtainZ 1

0
j f7�a�F6�a�j2 da �

Z 1

0
j f7�a�2f8�a�g�a�j2 da

p P 2ÿ1=8�«
7

Z 1

0
jF6�a�j2 da�F6�0�2P «ÿ3

7 :
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Applying Lemma 6.1 to the integral on the right-hand side of the last inequality,
and substituting into (6.11), we deduce that

I7 pF1�0�2P 2
7 Pÿ5�P 5�«F1�0�ÿ1Pÿ1=8

7 � P 5�«Pÿ5
7 F6�0�F1�0�ÿ1 � Z5�;

and hence, on recalling (6.7) and (6.9), we ®nd that the desired bound for j � 7 is
con®rmed by observing that

P 5Pÿ5
7 F6�0�F1�0�ÿ1 � P 4�P2 P3 P4 P5�ÿ1Pÿ5

7 < Pÿ0:12: �6:12�
We dispose of the situations in which j � 8 and 9 through yet another

application of the Hardy±Littlewood method, and in this context we must de®ne
further Hardy±Littlewood dissections. When j � 8 and 9, put Q j � P 5=16

j , and
recalling the notation de®ned in (2.15) and (2.16), write

M j�q; a� �M�q; a; Qj ; P 5
j �; M j �M�Qj ; P 5

j �; m j � m�Qj ; P 5
j �:

According to Lemma 2.1, we have

sup
a2m j

j fj�a�jp P 1ÿ1=16�«
j ; �6:13�

and also, when a 2M j�q; a� Í M j , one has

fj�a�p w5�q�Pj : �6:14�
In particular, therefore, on combining (6.13) with the conclusion of Lemma 6.1,
we ®nd that Z

m j

j fj�a�F6�a�j2 da p P 2ÿ1=8�«
j F6�0�: �6:15�

Next suppose temporarily that a 2M j�q; a� Í M j . Observe that P9 � P 8=9
8 ,

and that

1 < q < Qj < P 5=16
8 ; jqaÿ a j< Qj P

ÿ5
j < Pÿ75=16

9 � Pÿ25=6
8 :

Then on recalling (2.2) we ®nd that

w5�q�P8

1� P 5
8 jaÿ a=q j> q1=2 P8

q� P 5
8 jqaÿ a jq q1=2�«;

whence by Lemmata 6.1 and 6.2 of [19], one has

f8�a�p
w5�q�P8

1� P 5
8 jaÿ a=q j � q1 =2�« p

w5�q�P8

1� P 5
8 jaÿ a=q j : �6:16�

By a similar argument, we obtain

f9�a�p w5�q�P9 � q1=2�« p w5�q�P9: �6:17�
Furthermore, again applying Lemmata 6.1 and 6.2 of Vaughan [19] in the sharper
form permitted by the proof of Theorem 4.1 of [19], we have

f7�a�p
w5�q�P7

1� P 5
7 jaÿ a=q j � q1=2�«�1� P 5

7 jaÿ a=q j�1=2

p
w5�q�P7

1� P 5
7 jaÿ a=q j � q1=2�«�1� P 5

8 jaÿ a=q j�1=2�P7 =P8�5=2: �6:18�
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Combining the bounds (6.14) and (6.16)±(6.18), together with the trivial bound
f6�a� � O�P6�, we deduce thatZ

M j

j fj�a�F6�a�j2 da p I 0j � I 00j ; �6:19�

where

I 0j � P 2
j F6�0�2

X
1 < q < Q j

qw5�q�10

Z 1

0

db

�1� P 5
7 b�2 ; �6:20�

and

I 00j � P 2
j P 2

6 P 2
8 P 4

9 �P7 =P8�5
X

1 < q < Q j

q2�«w5�q�8
Z 1

0

db

1� P 5
8 b

: �6:21�

Applying Lemma 2.4 within (6.20), we ®nd that

I 0j p P 2
j F6�0�2Pÿ5

7 : �6:22�
Meanwhile, also by Lemma 2.4,X

1 < q < Q j

q2�«w5�q�8 p Q3= 5�«
j

X
1 < q < Q j

q7=5w5�q�8 p P 3=16�«
8 ;

whence by (6.21), on noting also that P8 � P 72 =85
7 , we have

I 00j p P 2
j F6�0�2P 3

7 P «ÿ10�3=16
8 p P 2

j F6�0�2Pÿ5
7 : �6:23�

On combining (6.15), (6.19), (6.22) and (6.23), we arrive at the upper boundZ 1

0
j fj�a�F6�a�j2 da �

Z
m j

j fj�a�F6�a�j2 da�
Z

M j

j fj�a�F6�a�j2 da

p P 2ÿ1=8�«
j F6�0� � P 2

j F6�0�2Pÿ5
7 ;

valid for j � 8 and 9. But on recalling (6.11), we see that the latter bound
implies that

Ij pF1�0�2P 2
j Pÿ5�P 5�«F1�0�ÿ1Pÿ1=8

j � P 5�«Pÿ5
7 F6�0�F1�0�ÿ1 � Z5�:

Hence the desired bounds for j � 8 and 9 follow by virtue of the inequalities
(6.7), (6.9) and (6.12).

This completes the proof of the lemma.

We may now prepare the key minor arc estimate, but before announcing this
result we require some notation. We de®ne

gj�a� �
X

Pj < p < 2 Pj

e� p5a� �1 < j < 9�; �6:24�

and then write

G2�a� � g9�a�2
Y8

i�2

gi�a�: �6:25�
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We de®ne our primary Hardy±Littlewood dissection as follows. We write
L � �log P�10000, and de®ne N to be the union of the arcs

N�q; a� � fa 2 �0; 1�: jaÿ a=q j< LPÿ5g;
with 0 < a < q < L and �a; q� � 1. We then put n � �0; 1�nN.

Lemma 6.3. Let H�a� be a complex-valued function of a, periodic with
period 1. Suppose that H�a� has the property that whenever a is a real number,
and a 2 Z and q 2N satisfy

�a; q� � 1; 1 < q < P 5=2 and jqaÿ a j< Pÿ5=2; �6:26�
then one has

H�a�p P 1ÿ c�« � q«w5�q�1=2P�log P�5
�1� P 5jaÿ a=q j�1=2

;

with c � 0:0183. Suppose also that H Í �P; 2P�Ç Z , and write

h�a� �
X
x2H

e�ax5�:

Then we haveZ
n
jH�a�h�a�g1�a�G2�a�2 j da p G2�0�2Pÿ2�log P�ÿ100:

We remark that the conclusion of the lemma remains valid for any c satisfying
c > 5ÿ 5a1, where a1 is given by (6.5).

The proof of Lemma 6.3. We apply a pruning procedure, and hence require a
further Hardy±Littlewood dissection. Recalling the notation de®ned in (2.15) and
(2.16), we write

M�q; a� �M�q; a; P 10c; P 5�; M �M�P 10c; P 5�; m � m�P 10c; P 5�:
Plainly, one has m Í n.

We de®ne the function W�a� for a 2M by taking

W�a� � q dw5�q��1� P 5jaÿ a=q j�ÿ1;

when a 2M�q; a� Í M, where we write d � 10ÿ2. In view of (2.2), whenever
a 2M�q; a� Í M and a 2 n, one has

W�a�p �q� P 5jqaÿ a j�dÿ1=5 p Lÿ1=10;

and thus our hypotheses concerning the function H�a� ensure that for a 2M Ç n ,
one has

H�a�p P 1ÿ c�« � P�log P�5W�a�1=2

p P 1ÿ c�« � P�log P�5 Lÿ1=50W�a�3=10: �6:27�
Meanwhile, when a 2m, we may apply Dirichlet's approximation theorem to
deduce the existence of a 2 Z and q 2N satisfying the conditions (6.26), and
necessarily one has either

q > P 10 c or jqaÿ a j > P 10 cÿ5:
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In this situation it follows from (2.2) that

w5�q�1 =2P

�1� P 5jaÿ a=q j�1=2
p

P

�q� P 5 jqaÿ a j�1=10
p P 1ÿ c;

and so our hypotheses on H�a� ensure that

sup
a2m
jH�a�jp P 1ÿ c�«: �6:28�

On exploiting the estimates (6.27) and (6.28) within the mean value under
consideration, we deduce thatZ

n
jH�a�h�a�g1�a�G2�a�2j da p K1 � K2 ; �6:29�

where

K1 � P 1ÿ c�«

Z 1

0
jh�a�g1�a�G2�a�2j da �6:30�

and

K2 � P�log P�ÿ150

Z
M Ç n

W�a�3=10jh�a�g1�a�G2�a�2 j da: �6:31�

We ®rst estimate K1, noting that by considering the underlying diophantine
equations, it follows from Lemma 6.1 thatZ 1

0
jh�a�G2�a�j2 da p

Z 1

0
jF1�a�j2 da p P «F1�0�:

Similarly, one has alsoZ 1

0
jg1�a�G2�a�j2 da p

Z 1

0
jF1�a�j2 da p P «F1�0�;

and thus an application of Schwarz's inequality yields the upper boundZ 1

0
jh�a�g1�a�G2�a�2 j da p

�Z 1

0
jh�a�G2�a�j2 da

�1=2

´
�Z 1

0
jg1�a�G2�a�j2 da

�1=2

p P «F1�0�:
But a comparison of (6.3), (6.4) and (6.24), (6.25) reveals that

G2�0�} F1�0�Pÿ1�log P�ÿ9: �6:32�
Then on recalling (6.5) and (6.6), we deduce from (6.30) that

K1 p G2�0�2P «ÿ2�P 5ÿ cF1�0�ÿ1�p G2�0�2Pÿ2:00004: �6:33�
Now we turn our attention to the estimation of K2. By HoÈlder's inequality,

one has Z
M

W�a�3=10jh�a�g1�a�G2�a�2 j da p K 1 =10
3

Y9

j�1

J 1=10
j ; �6:34�
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where

K3 �
Z

M
W�a�3 jg9�a�j2 da;

and for 1 < j < 5,

Jj �
Z 1

0
jgj�a�h�a�G2�a�j2 da;

while for 6 < j < 9,

Jj �
Z 1

0
jgj�a�g1�a�G2�a�j2 da:

But by considering the underlying diophantine equations, we deduce from Lemma
6.2 that

Jj < Ij pF1�0�2P 2
j Pÿ5�log P�2 �1 < j < 9�:

Meanwhile, since P 10 c < P9 , we ®nd that Lemma 2.5 supplies the boundZ
M

W�a�3 jg9�a�j2 da p P 2
9 Pÿ5:

Thus we may conclude from (6.32) and (6.34) thatZ
M

W�a�3=10 jh�a�g1�a�G2�a�2j da pF1�0�2Pÿ5�log P�2

p G2�0�2Pÿ3�log P�20;

whence by (6.31) we arrive at the estimate

K2 p G2�0�2Pÿ2�log P�ÿ100: �6:35�
The conclusion of the lemma is established by combining (6.29), (6.33)

and (6.35).

7. The Waring±Goldbach problem for ®fth powers

In this section we complete the bulk of the work associated with the proof of
Theorem 2, retaining the notation introduced in the previous section. We note ®rst
that in order to establish that H�5�< 21, it suf®ces to show that all suf®ciently
large odd numbers are the sum of 21 ®fth powers of prime numbers. For when s
is a natural number with s > 21, and n is a suf®ciently large integer with n� s
�mod 2�, then n1 � nÿ �sÿ 21� ´ 35 satis®es n1 � 1 �mod 2�. Consequently, n is
represented as the sum of s ®fth powers of prime numbers whenever n1 is the
sum of 21 ®fth powers of prime numbers. Suppose temporarily that all suf®ciently
large odd numbers are indeed the sum of 21 ®fth powers of prime numbers. Then
it follows that whenever s > 22 , then all suf®ciently large integers are the sum of
s ®fth powers of prime numbers. For when s > 22 and n is a suf®ciently large
natural number, then one of nÿ �sÿ 21� ´ 35 and nÿ �sÿ 22� ´ 35 ÿ 25 is odd,
and hence equal to the sum of 21 ®fth powers of prime numbers.

Consider then a suf®ciently large odd natural number n , and write

P � 1
2

n1=5:

When X Í �P; 2P�Ç Z , we denote by R�n; X� the number of representations of
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the natural number n in the form

n � x5 � p5
1 � p5

2 � . . .� p5
20 ; �7:1�

with

x 2 X; Pj < p2 jÿ1; p2 j < 2Pj �1 < j < 8�;
P9 < pi < 2P9 �17 < i < 20�:

�7:2�

Write X 0 for the set of prime numbers p with P < p < 2P. Our aim is to establish
Theorem 2 by showing that R�n; X 0� > 0.

Next put

z � �2P�1=3 and z1 � �2P�1ÿ32 c; �7:3�
where c � 0:0183 is the constant arising in the statement of Lemma 6.3.
De®ne also

P�z� �
Y
p < z

p:

We introduce the sets of integers

X1 � fP < x < 2P: �x; P�z�� � 1g;

X 2 � fP < x < 2P: x � Ã1Ã2 and z < Ã1 < z1g;

X 3 � fP < x < 2P: x � Ã1Ã2 and z1 < Ã1 < Ã2g;
where here, and hereafter, we employ the letter Ã with subscripts to denote a
prime number. On noting that no natural number smaller than 2P can be a
product of more than two primes greater than or equal to z, it is apparent that

X1 � X 0 È X 2 È X 3 :

Since X 0 , X 2 and X 3 are pairwise disjoint, we conclude that

R�n; X 0� � R�n; X1� ÿ R�n; X 2� ÿ R�n; X 3�: �7:4�
We ®rst investigate R�n; X 2�. Write

h1�a� �
X

x2X 2

e�ax5�;

and when B Í �0; 1�, de®ne

R�n; X 2; B� �
Z

B
h1�a�g1�a�2G2�a�2e�ÿna� da:

Then by orthogonality,

R�n; X 2� � R�n; X 2; �0; 1�� � R�n; X 2; N� � R�n; X 2; n�: �7:5�
We are able to dispose of the contribution to R�n; X 2� arising from n almost
immediately. Suppose that a is a real number, and that a 2 Z and q 2N satisfy
(6.26). Then by means of a familiar dyadic dissection argument, it follows from
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Lemma 3.1 that

h1�a� �
X

P= z1 < Ã 2 < 2 P= z

X
P=Ã 2 < Ã1 < 2 P= Ã 2

z < Ã1 < z1

e��Ã1Ã2�5a�

p �log P� sup
P= z1 < M < P= z

�
PM «ÿ1=32 � �PM�1=2�« � q«w5�q�1 =2P�log P�4

�1� P5jaÿ a=q j�1=2

�

p P1ÿ c�« � q«w5�q�1=2P�log P�5
�1� P 5 jaÿ a=q j�1=2

:

It follows that h1�a� satis®es the hypotheses imposed on the function H�a� in the
statement of Lemma 6.3, and consequently we deduce from that lemma that

R�n; X 2; n�<

Z
n
jh1�a�g1�a�2G2�a�2 j da p G2�0�2Pÿ2�log P�ÿ100: �7:6�

The estimation of the contribution of the major arcs N to R�n; X 2�, while
routine, requires some preparation and associated notation. Write

S ��q; a� �
Xq

r�1
�r ; q�� 1

e�ar 5=q� and uj�b� �
Z 2 Pj

P j

e�bt 5�
log t

dt �1 < j < 9�: �7:7�

Then as a consequence of the Siegel±Wal®sz theorem (see Lemma 7.15 of Hua
[8]), one has, for a 2N�q; a� Í N ,

gj�a� � J�q�ÿ1S ��q; a�uj�aÿ a=q� � O�Pj L
ÿ5� �1 < j < 9�: �7:8�

The estimation of h1�a� for a 2N is best accommodated within a technical lemma.

Lemma 7.1. Suppose that h1 and h2 are real numbers with 0 < h1 < h2 < 1
2
:

Write vj � �2P�h j � j � 1; 2�, and de®ne

u�b; h1; h2� �
Z 2 P

P
Y�t; h1; h2�

e�bt 5�
log t

dt;

where

Y�t; h1; h2� �
X

v1 < Ã1 < v 2

Ã1 <
��
t
p

log t

Ã1 log�t=Ã1�
:

Suppose further that a is a real number with a � b� a=q, where �a; q� � 1,
1 < q < L and jb j< LPÿ5. Then one hasX

v1 < Ã1 < v 2

X
P=Ã1 < Ã 2 < 2 P=Ã1

Ã 2 > Ã1

e��Ã1Ã2�5a�

� J�q�ÿ1S ��q; a�u�b; h1; h2� � O�PLÿ5�: �7:9�
Moreover, with u1�b� de®ned as in (7.7), one has

u�b; h1; h2� � log

�
hÿ1

1 ÿ 1

hÿ1
2 ÿ 1

�
u1�b� � O�P�log P�ÿ2�: �7:10�
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Proof. For a pair of primes �Ã1; Ã2� occurring in the summation of (7.9), our
hypotheses on v1 and v2 ensure that Ã1 <

������
2P
p

, whence Ã2 >
���������
P=2
p

. Thus, with
an argument similar to that leading to (7.8), we deduce thatX

P=Ã1 <Ã 2 < 2 P=Ã1
Ã 2 > Ã1

e��Ã1 Ã2�5a� � T � O�PÃÿ1
1 Lÿ6�; �7:11�

where

T � J�q�ÿ1S ��q; aÃ5
1�
Z 2 P=Ã1

maxfP=Ã1 ;Ã1g
e�u5Ã5

1b�
log u

du: �7:12�

On noting that q < L < v1 < Ã1, we ®nd that �q; Ã1� � 1, and thus a multi-
plicative change of variables reveals that S ��q; aÃ5

1� � S ��q; a�. Employing next
the change of variables t � Ã1u within the integral on the right-hand side of
(7.12), we ®nd that

T � J�q�ÿ1S ��q; a�
Z 2 P

maxfP;Ã 2
1
g

e�bt 5�
Ã1 log�t=Ã1�

dt: �7:13�

The formula (7.9) follows directly from (7.11) and (7.13) by summing over Ã1 .
In order to con®rm the estimate (7.10), we exploit well-known prime number

estimates via partial summation to obtain

Y�t; h1; h2� �
Z minfv 2 ;

��
t
p g

v1

1

u log u
´

log t

log t ÿ log u
du� O��log t�ÿ1�; �7:14�

valid for P < t < 2P. But the change of variable v � �log t�=�log u� leads to
the formula Z minfv 2 ;

��
t
p g

v1

1

u log u
´

log t

log t ÿ log u
du �

Z t

j

dv

vÿ 1
;

where

j � max

�
log t

log v2

; 2

�
and t � log t

log v1

:

Thus we deduce from (7.14) that for P < t < 2P, whenever h2 < 1
2

one has

Y�t; h1 ; h2� � log

�
hÿ1

1 ÿ 1

hÿ1
2 ÿ 1

�
� O��log P�ÿ1�:

The desired conclusion now follows immediately from (7.7) and the de®nition of
u�b; h1; h2�, and this completes the proof of the lemma.

We now return to the task of evaluating R�n; X 2; N�. When a 2N�q; a� Í N,
an application of Lemma 7.1 reveals that

h1�a� � J�q�ÿ1S ��q; a�u�aÿ a=q; 1
3
; 1ÿ 32c� � O�PLÿ5�: �7:15�

Since the measure of N is plainly O�L3Pÿ5�, we deduce from (7.8) and (7.15) that

R�n; X 2; N� �
Z

N
h1�a�g1�a�2G2�a�2e�ÿna� da

� S�n; L�J1�n; LPÿ5� � O�G2�0�2Pÿ2Lÿ1�; �7:16�
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where

S�n; L� �
X

1 < q < L

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��21e�ÿan=q� �7:17�

and

J1�n; W � �
Z W

ÿW
u�b; 1

3
; 1ÿ 32c�u1�b�2U2�b�2e�ÿnb� db; �7:18�

in which we have written

U2�b� � u9�b�2
Y8

i�2

ui�b�: �7:19�

The singular series S�n; L� is easily computed by noting that Lemma 8.5 of
Hua [8] shows that when �a; q� � 1, one has the bound

S ��q; a�p q1=2�«; �7:20�
whenceX

q > L

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��21e�ÿan=q�p
X
q > L

J�q�ÿ20q21 =2�« p Lÿ8:

On writing

S�n� �
X1
q�1

Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��21e�ÿan=q�; �7:21�

we therefore deduce that the series S�n� is absolutely convergent, and from (7.17)
we ®nd that

S�n; L� � S�n� � O�Lÿ8�: �7:22�
Moreover, Theorem 12 of [8] guarantees that

S�n�q 1 �7:23�
for all odd integers n.

Turning our attention now to the evaluation of the singular integral, we de®ne

J�n� �
Z 1

ÿ1
u1�b�3U2�b�2e�ÿnb� db: �7:24�

The estimate

uj�b�p Pj�log Pj�ÿ1�1� P 5
j jbj�ÿ1 �1 < j < 9� �7:25�

is readily obtained through partial integration, and thereby we deduce that

J�n� ÿ
Z L Pÿ 5

ÿL Pÿ 5
u1�b�3U2�b�2e�ÿnb� db

p P 3�log P�ÿ3U2�0�2
Z 1

L Pÿ 5
�1� P 5b�ÿ3 db

p Pÿ2�log P�ÿ3U2�0�2Lÿ2 �7:26�
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and Z L Pÿ 5

ÿL Pÿ 5
ju1�b�U2�b�j2 db p P 2�log P�ÿ2U2�0�2

Z 1

0
�1� P 5b�ÿ2 db

p Pÿ3�log P�ÿ2U2�0�2: �7:27�
On recalling the conclusion of Lemma 7.1, we deduce from (7.18) that

J1�n; LPÿ5� � log

�
1ÿ 32c

16c

�Z L Pÿ 5

ÿL Pÿ 5
u1�b�3U2�b�2e�ÿnb� db

� O

�
P�log P�ÿ2

Z L Pÿ 5

ÿL Pÿ 5
ju1�b�U2�b�j2 db

�
;

whence by (7.26) and (7.27),

J1�n; LPÿ5� � log

�
1ÿ 32c

16c

�
�J�n� � O�Pÿ2�log P�ÿ3U2�0�2Lÿ2��

� O�Pÿ2�log P�ÿ4U2�0�2�:
Thus we conclude that

J1�n; LPÿ5� � log

�
1ÿ 32c

16c

�
J�n� � O�G2�0�2Pÿ2�log P�ÿ4�: �7:28�

Moreover, as in the argument leading to (5.22) above, an application of Fourier's
integral formula demonstrates that

J�n�} G2�0�2Pÿ2�log P�ÿ3: �7:29�
We summarise our deliberations thus far in the shape of the following lemma.

Lemma 7.2. For each large odd integer n, one has

R�n; X 2� � S�n�J�n�
�

log

�
1ÿ 32c

16c

�
� O��log P�ÿ1�

�
;

where J�n� and S�n� satisfy the lower bounds

J�n�q G2�0�2Pÿ2�log P�ÿ3 and S�n�q 1:

Proof. The lemma is immediate on collecting together (7.5), (7.6), (7.16),
(7.22), (7.28) with (7.23) and (7.29).

The estimation of R�n; X 1� and R�n; X 3� is accomplished by means of Iwaniec's
linear sieve. We announce our conclusions in the imminent lemma, but defer
discussion of the proof to § 9.

Lemma 7.3. For each large odd integer n, one has

R�n; X1� > S�n�J�n�
�

4

3ÿ 66c
log� 7

2
ÿ 99c� � O��log log P�ÿ1=50�

�
;

and

R�n; X 3� < S�n�J�n�
�

4

3ÿ 66c
log

�
32c

1ÿ 32c

�
� O��log log P�ÿ1=50�

�
:
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Temporarily taking as granted the conclusion of Lemma 7.3, we may
complete the proof of Theorem 2. We merely observe that by combining (7.4)
and the conclusions of Lemmata 7.2 and 7.3, we obtain for each odd integer n the
lower bound

R�n; X 0� > S�n�J�n��C � O��log log P�ÿ1=50��;
where

C � 4

3ÿ 66c
log

� �7ÿ 198c��1ÿ 32c�
64c

�
ÿ log

�
1ÿ 32c

16c

�
:

Since c � 0:0183, we ®nd that C > 0:049, whence the number of representations
of an odd natural number n as the sum of 21 ®fth powers of prime numbers is at
least as large as

R�n; X 0�q S�n�J�n�:
But by the second conclusion of Lemma 7.2, it follows that R�n; X 0� > 0 for
suf®ciently large odd natural numbers n. Thus the proof of Theorem 2 will be
completed on establishing Lemma 7.3.

8. A singular series deriving from the sieve

In order to apply the linear sieve to establish Lemma 7.3, we must discuss the
consequences of the presence of sifting variables in the representation problem
central to our argument. In particular, we must discuss the relevant singular series in
some detail. We begin by introducing the notation necessary for the later discussion.

First recall the de®nition of S ��q; a� from (7.7), and write S�q; a� for S5�q; a� ,
where S5�q; a� is de®ned as in (2.1). We then de®ne

Ad �q; n� �
Xq

a�1
�a; q�� 1

�qÿ1S�q; ad 5���J�q�ÿ1S ��q; a��20e�ÿan=q� �8:1�

and

Sd �n� �
X1
q�1

Ad �q; n�: �8:2�

On combining the estimate (7.20) with the trivial estimate jS�q; ad 5�j< q, we
®nd that

Ad �q; n�p q«ÿ9; �8:3�
and hence we deduce that the singular series Sd �n� converges absolutely.
Next de®ne

Bd � p; n� �
X1
l�0

Ad � pl; n�:

Also, we de®ne g � g� p� by

g� p� � 2; when p � 5;

1; when p 6� 5;

�
in accordance with the de®nition (1.1). Then by Lemma 8.3 of Hua [8], whenever
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�a; p� � 1 and l > g� p�, one has S �� pl; a� � 0, and hence

Bd � p; n� �
Xg

l�0

Ad � pl; n�: �8:4�

Further, by (8.3) one has

Bd � p; n� � 1� O� pÿ8�; �8:5�
and hence the in®nite product

Q
p Bd � p; n� is absolutely convergent. A multi-

plicative change of variables, moreover, reveals that Bd � p; n� is equal to either
Bp� p; n� or B1� p; n�, according to whether p j d or p - d . Furthermore, on
referring to Lemma 8.1 of [8] and Lemmata 2.10 and 2.11 of [19], it is apparent
that Ad �q; n� is a multiplicative function of q, and thus we deduce that

Sd �n� �
Y

p

Bd � p; n� �
�Y

p - d
B1� p; n�

��Y
p jd

Bp� p; n�
�
: �8:6�

Next, denote by M�n; q; s� the number of solutions of the congruence

n� x5
1 � x5

2 � . . .� x5
s �mod q�; �8:7�

with 1 < xj < q and �xj ; q� � 1 �1 < j < s�. Also, denote by N�n; q; s� the
corresponding number of solutions subject to the weaker constraint �xj ; q� � 1
�2 < j < s�. Thus we have, in particular,

N�n; pg; 21� �
Xp g

x� 1

M�nÿ x5; pg; 20�

�
Xp g

x� 1
�x; p�� 1

M�nÿ x5; pg; 20� �
Xp gÿ 1

y� 1

M�nÿ � py�5; pg; 20�

� M�n; pg; 21� � pgÿ1M�n; pg; 20�: �8:8�
But as in Lemma 8.6 of [8] and Lemma 2.12 of [19], one has

B1� p; n� �
Xp g

a�1

� pÿgS� pg; a���J� pg�ÿ1S �� pg; a��20e�ÿan=pg�

� J� pg�ÿ20N�n; pg; 21�; �8:9�
and

Bp� p; n� �
Xp g

a�1

�J� pg�ÿ1S �� pg; a��20e�ÿan=pg�

� pgJ� pg�ÿ20M�n; pg; 20�: �8:10�
But Lemmata 8.8 and 8.9 of [8] assert that for all primes p, one has
M�m; pg; 20� > 0 for each even integer m . Thus, for all primes p, one has
N�n; pg; 21� > 0 for each integer n . On recalling (8.5), (8.6) and (8.9), we
therefore arrive at the lower bound

S1�n�q 1: �8:11�
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In view of the lower bound (8.11), it makes sense to de®ne the function

qn�d � � Sd �n�=S1�n�: �8:12�
We now aim to con®rm that qn�d � satis®es the conditions relevant to the
application of the linear sieve.

Lemma 8.1. The function qn�d � is a multiplicative function of d, and satis®es

qn� p� � 1� O� pÿ8� and qn� pl � � qn� p�;
for all primes p and natural numbers l. When n is odd, moreover, we have
0 < qn� p� < p for all prime numbers p.

Proof. It follows from (8.6) and (8.12) that

qn�d � �
Y
p jd

�Bp� p; n�=B1� p; n��: �8:13�

Thus qn�d � is plainly a multiplicative function of d , and on recalling (8.5) it is
also immediate that qn� p� � 1� O� pÿ 8�. Furthermore, the formula (8.13) shows
that for each prime p and natural number l ,

qn� pl� � Bp� p; n�
B1� p; n� � qn� p�:

It remains only to establish the ®nal assertion of the lemma, and for this we
substitute from (8.9) and (8.10) into (8.13) to obtain

qn� p� �
pgM�n; pg; 20�

N�n; pg; 21� :

Consequently, on recalling (8.8), we deduce that

qn� p� �
pgM�n; pg; 20�

M�n; pg; 21� � pgÿ1M�n; pg; 20� : �8:14�

But M�n; pg; 21� > 0 for all prime numbers p when n is odd, as a consequence of
Lemmata 8.8 and 8.9 of [8], and hence we obtain the desired bound 0 < qn� p� < p.

We conclude this section by investigating the relationship between the singular
series S�n� de®ned in (7.21), and the singular series S1�n� de®ned in (8.2).

Lemma 8.2. When z is a real number with z > 2, de®ne

Wn�z� �
Y
p< z

�1ÿ qn� p�=p�: �8:15�

Then one has

S1�n�Wn�z� � S�n� eÿg 0

log z
�1� O��log z�ÿ1��;

where g0 denotes Euler's constant.

Proof. Write

A�q; n� �
Xq

a�1
�a; q�� 1

�J�q�ÿ1S ��q; a��21e�ÿan=q�
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and

B� p; n� �
Xg

l�0

A� pl; n�;

and note that the de®nition (7.21) is equivalent to

S�n� �
X1
q�1

A�q; n�:

Then by an argument similar to that leading to (8.6), we have

S�n� �
Y

p

B� p; n�; �8:16�

and further,

B� p; n� � pgJ� pg�ÿ21M�n; pg; 21�: �8:17�
But by (8.8) and (8.14), we have

1ÿ qn� p�
p
� M�n; pg; 21�

M�n; pg; 21� � pgÿ1M�n; pg; 20� �
M�n; pg; 21�
N�n; pg; 21� :

Thus we deduce from (8.9) and (8.17) that

B1� p; n� � B� p; n�
�

1ÿ 1

p

�
N�n; pg; 21�
M�n; pg; 21�

� B� p; n�
�

1ÿ 1

p

��
1ÿ qn� p�

p

�ÿ1

;

so that in view of the Euler products (8.6) and (8.16), we have

S1�n�Wn�z� � S�n�
�Y

p< z

�
1ÿ 1

p

��� Y
p > z

�
1ÿ 1

p

��
1ÿ qn� p�

p

�ÿ1�
: �8:18�

However, Lemma 8.1 shows thatY
p > z

�
1ÿ 1

p

��
1ÿ qn� p�

p

�ÿ1

�
Y
p > z

�1� O� pÿ9�� � 1� O�zÿ8�; �8:19�

and by Merten's formula one hasY
p< z

�
1ÿ 1

p

�
� eÿg 0�log z�ÿ1�1� O��log z�ÿ1��: �8:20�

The proof of the lemma is completed by substituting (8.19) and (8.20) into (8.18).

9. Application of Iwaniec's linear sieve

We now bring all of our forces to bear on the problem of applying Iwaniec's linear
sieve to establish Lemma 7.3. We appeal to the linear sieve in the following form.

Lemma 9.1. De®ne the functions

f0�u� �
2eg 0

u
log�uÿ 1� and f1�u� �

2eg 0

u
; �9:1�
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for 2 < u < 3. Suppose that q�d � is a multiplicative function of d satisfying
the conditions

0 < q� p� < p and q� pl� � 1� O� pÿ1�;
for each prime number p and natural number l . Let X be a real number with
X > 3, let r�x� be a non-negative arithmetical function, and write

Ed �
X

P< x < 2 P
x� 0 �mod d �

r�x� ÿ q�d �
d

X:

Let z , U and V be positive real parameters satisfying the inequality

2 <
log�UV �

log z
< 3:

Suppose further that for any sequences �am� and �bk� with

jamj< 1 and jbkj< 1; �9:2�
one has X

1 < m < U

am

X
1 < k < V

bk Em k p X�log X �ÿ2:

Then, on writing

W�z� �
Y
p< z

�1ÿ q� p�=p�;

one has the lower boundX
P< x < 2 P
�x;P�z��� 1

r�x� > XW�z�
�

f0

�
log�UV �

log z

�
� O��log log X �ÿ1=50�

�
;

and also the upper boundX
P< x < 2 P
�x;P�z��� 1

r�x� < XW�z�
�

f1

�
log�UV �

log z

�
� O��log log X�ÿ1= 50�

�
:

Proof. On following the argument of the proof of Theorem 1 of Iwaniec [9],
one ®nds that the introduction of the non-negative weights r�x� is easily
accommodated within the latter theorem, and the conclusion claimed in Lemma
9.1 thus follows with little additional effort.

Our initial strategy is to apply Iwaniec's linear sieve to estimate R�n; X1�. In
order to achieve this objective, we introduce the set of integers

Yd � fP < x < 2P: x� 0 �mod d �g;
and investigate R�n; Yd � (here and in what follows, we retain the notation of
§§ 6±8). With this end in mind, we de®ne

fd �a� �
X

P=d < y< 2 P=d

e��dy�5a�;
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and when B Í �0; 1�, we write

R�n; Yd ; B� �
Z

B
fd �a�g1�a�2G2�a�2e�ÿna� da:

Then by orthogonality we have

R�n; Yd � � R�n; Yd ; �0; 1�� � R�n; Yd ; N� � R�n; Yd ; n�: �9:3�
Recalling (2.1), we abbreviate S5�q; a� to S�q; a�, and de®ne also

v�b� �
Z 2 P

P
e�bt 5� dt: �9:4�

Then by Theorem 4.1 of Vaughan [19], whenever a 2N�q; a� Í N and
1 < d < PLÿ3, we have

fd �a� � qÿ1S�q; ad 5�
Z 2 P=d

P=d
e��aÿ a=q�d 5t 5� dt � O�L�;

so that by a change of variable we obtain

fd �a� � �dq�ÿ1S�q; ad 5�v�aÿ a=q� � O�L�: �9:5�
Thus, since the measure of N is O�L3Pÿ5�, we deduce from (7.8) and (9.5) that
for 1 < d < PLÿ6 , one has

R�n; Yd ; N� � dÿ1Sd �n; L�J2�n; LPÿ5� � O�dÿ1G2�0�2Pÿ2Lÿ2�; �9:6�
where

Sd �n; L� �
X

1 < q < L

Ad �q; n�; �9:7�

with Ad �q; n� de®ned by (8.1), and

J2�n; W � �
Z W

ÿW
v�b�u1�b�2U2�b�2e�ÿnb� db: �9:8�

Our next step is to complete the singular series and singular integral. First, on
recalling (8.2) and (8.3), we ®nd from (9.7) that

Sd �n� ÿSd �n; L�p
X
q > L

q«ÿ9 p Lÿ7: �9:9�

Next we observe that by (9.4) and (7.7) one has

v�b� �
Z 2 P

P

log P� O�1�
log t

e�bt 5� dt � u1�b� log P� O�P�log P�ÿ1�: �9:10�

Consequently, by applying trivial estimates in combination with (7.25), we deduce
from (7.24) and (9.8) that

J2�n; LPÿ5� ÿ J�n� log P p P 3�log P�ÿ2U2�0�2
Z 1

L Pÿ 5
�1� P 5b�ÿ2 db

� P 3�log P�ÿ3U2�0�2
Z 1

0
�1� P 5b�ÿ2 db

p Pÿ2�log P�ÿ3U2�0�2:
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In view of (7.29), therefore, we may conclude that

J2�n; LPÿ5� � J�n��log P� O�1��: �9:11�
We now turn our attention to the bilinear expressions occurring in the sieve. Let

U � P 1=2ÿ c and V � P 1ÿ32c; �9:12�
in which c � 0:0183, and write

Ed � R�n; Yd � ÿ dÿ1Sd �n�J2�n; LPÿ5�:
On recalling (8.12), we ®nd that this de®nition is equivalent to

Ed � R�n; Yd � ÿ
qn�d �

d
S1�n�J2�n; LPÿ5�:

Also, by (9.3), (9.6), (9.9) together with (9.11) and (7.29), we have

Ed � R�n; Yd ; n� � O�dÿ1G2�0�2Pÿ2Lÿ2�:
Thus we deduce that for any sequences �am� and �bk� satisfying (9.2), one hasX

1 < m < U

am

X
1 < k < V

bk Em k

�
Z

n
H�a�g1�a�2G2�a�2e�ÿna� da� O�G2�0�2Pÿ2Lÿ1�; �9:13�

where H�a� � H�a; a; b� is the exponential sum de®ned by

H�a� �
X

1 < m < U

am

X
1 < k < V

bk fm k�a�: �9:14�

Suppose that a is a real number, and suppose also that a 2 Z and q 2N satisfy
the conditions (6.26). We estimate the exponential sum H�a� by dividing up the

summations in order to apply Lemmata 3.1 and 3.2. We put V0 � P 1=2ÿ15c, and
observe that

U 7=8V 15=8
0 < P 7=8 and U 15=8 V ÿ1= 8

0 � P 7=8:

Thus we may apply Lemma 3.2 with cl � 1 to obtain the estimateX
1 < m < U

am

X
1 < k < V0

bk fm k�a�

p P 1ÿ1=16�«�UV0�1=16 � q«w5�q�P�log P�4
1� P 5jaÿ a=q j : �9:15�

By writingX
1 < m < U

am

X
V0 < k < V

bk fm k�a�

�
X

P=V < l < 2 P=V0

� X
m j l

1 < m < U

am

� X
P= l< k < 2 P= l

V0 < k < V

bk e��kl�5a�;
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and noting that P=V > P1=2, we ®nd that a dyadic dissection argument in
combination with Lemma 3.1 reveals the bilinear sum on the left-hand side to be

p�log P� sup
P=V < M < P=V0

�
PM «ÿ1=32 � �PM �1=2�« � q« w5�q�1=2P�log P�4

�1� P 5 jaÿ a=q j�1=2

�
:

�9:16�
Combining the conclusions of (9.15) and (9.16), we ®nd that

H�a�p P 1ÿ c�« � q« w5�q�1=2P�log P�5
�1� P 5 jaÿ a=q j�1=2

: �9:17�

We now apply Lemma 6.3, which in view of (9.17) yields the estimateZ
n

H�a�g1�a�2G2�a�2e�ÿna� da p G2�0�2Pÿ2�log P�ÿ100;

whence by (9.13), for any sequences �am� and �bk� satisfying (9.2),X
1 < m < U

am

X
1 < k < V

bk Em k p G2�0�2Pÿ2�log P�ÿ100:

On recalling the estimates (8.11), (7.29) and (9.11), we therefore conclude thatX
1 < m < U

am

X
1 < k < V

bk Em k p S1�n�J2�n; LPÿ5��log P�ÿ98: �9:18�

We are ®nally equipped to establish the lower bound for R�n; X1� presented in
Lemma 7.3. With n a ®xed odd natural number, we take the arithmetical function
r�x� equal to the number of solutions of the equation (7.1) with pl satisfying the
conditions (7.2) for 1 < l < 20. On recalling (7.3), we have z � �2P�1= 3, and so a
smidgen of computation veri®es that indeed

2 <
log�UV �

log z
< 3;

so that on taking

X � S1�n�J2�n; LPÿ5�;
we ®nd that the hypotheses necessary for the application of Lemma 9.1 are
satis®ed, by virtue of (9.18) and Lemma 8.1. Consequently, employing a
transparent modi®cation of the notation of the statement of Lemma 9.1, we
arrive at the lower bound

R�n; X1� > S1�n�J2�n; LPÿ5�Wn�z�
�

f0

�
log�UV �

log z

�
� O��log log P�ÿ1= 50�

�
:

Further, with an application of Lemma 8.2 together with (9.1), (9.11) and (9.12),
one obtains

R�n; X1� > S�n�J�n�
�

log P

log z

��
2

k
log�kÿ 1� � O��log log P�ÿ1=50�

�
; �9:19�

where

k � log�UV �
log z

� 3� 3
2
ÿ 33c� � O��log P�ÿ1�: �9:20�

The ®rst conclusion of Lemma 7.3 is therefore immediate from (9.19).
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We now turn our hand against the proof of the upper bound for R�n; X 3�
presented in Lemma 7.3. It is here that we apply the reversal of roÃles technique in
combination with Lemma 9.1. When X Í �P; 2P�Ç Z , we now denote by
R 0�n; X� the number of representations of the natural number n in the form

n � x5 � y5 � p5
2 � p5

3 � . . .� p5
20 ; �9:21�

with x 2 X 3, y 2 X, and with pl satisfying (7.2) for 2 < l < 20. Since X 0 Í X1, it
is apparent that

R�n; X 3� � R 0�n; X 0�< R 0�n; X1�: �9:22�
De®ne

h2�a� �
X

x2X 3

e�ax5�;

and when B Í �0; 1�, write

R 0�n; Yd ; B� �
Z

B
fd �a�h2�a�g1�a�G2�a�2e�ÿna� da:

By orthogonality, therefore, one has

R 0�n; Yd � � R 0�n; Yd ; �0; 1�� � R 0�n; Yd ; N� � R 0�n; Yd ; n�: �9:23�
We estimate h2�a� by means of Lemma 7.1, thereby obtaining for a 2N�q; a� Í N
the relation

h2�a� � J�q�ÿ1S ��q; a�u�aÿ a=q; 1ÿ 32c; 1
2
� � O�PLÿ5�:

In a by now familiar fashion (compare the argument leading to (9.6)), the latter
estimate, in combination with (9.5), (7.8), (7.20) and (9.9), readily yields for
1 < d < PLÿ6 the estimate

R 0�n; Yd ; N� � dÿ1Sd �n�J3�n; LPÿ5� � O�dÿ1G2�0�2Pÿ2Lÿ2�; �9:24�
where

J3�n; W � �
Z W

ÿW
v�b�u�b; 1ÿ 32c; 1

2
�u1�b�U2�b�2e�ÿnb� db:

But by applying trivial estimates in combination with (7.25) and (9.10), we ®nd that

J3�n; LPÿ5� ÿ �log P�
Z L Pÿ 5

ÿL Pÿ 5
u1�b�2 u�b; 1ÿ 32c; 1

2
�U2�b�2e�ÿnb� db

p P 3�log P�ÿ3U2�0�2
Z L Pÿ 5

0
�1� P 5b�ÿ1 db

p Pÿ2�log P�ÿ3U2�0�2 log L :

Then by exploiting (7.24), (7.25), (7.29), (9.10) and Lemma 7.1, we deduce by an
argument paralleling the deduction of (7.28) from (7.18) that

J3�n; LPÿ5� � J�n�
�

log

�
32c

1ÿ 32c

�
log P� O�log L�

�
� O�G2�0�2Pÿ2�log P�ÿ3�

� J�n�
�

log

�
32c

1ÿ 32c

�
log P� O�log L�

�
: �9:25�
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We now put

E 0d � R 0�n; Yd � ÿ dÿ1Sd �n�J3�n; LPÿ5�;
so that in view of (8.12), we have

E 0d � R 0�n; Yd� ÿ
qn�d �

d
S1�n�J3�n; LPÿ5�:

Then by (9.23) and (9.24), for any sequences �am� and �bk� satisfying (9.2), it
follows from (9.14) thatX

1 < m < U

am

X
1 < k < V

bk E 0m k �
Z

n
H�a�h2�a�g1�a�G2�a�2e�ÿna� da

� O�G2�0�2Pÿ2Lÿ1�:
Then on recalling (9.17), we may apply Lemma 6.3 to conclude that under the
same conditions, X

1 < m < U

am

X
1 < k < V

bk E 0m k p G2�0�2Pÿ2�log P�ÿ100;

whence by (8.11), (7.29) and (9.25),X
1 < m < U

am

X
1 < k < V

bk E 0m k p S1�n�J3�n; LPÿ5��log P�ÿ98: �9:26�

We are ®nally again equipped for our application of Lemma 9.1. With n a ®xed
odd natural number, we take the arithmetical function r� y� equal to the number
of solutions of the equation (9.21) with x 2 X 3 and pl satisfying the conditions
(7.2) for 2 < l < 20. As in our previous application of Lemma 9.1, we ®nd that
on taking

X � S1�n�J3�n; LPÿ5�;
the hypotheses necessary for the application of Lemma 9.1 are satis®ed, on
account of the upper bound (9.26) together with Lemma 8.1. Consequently,
employing a natural modi®cation of the notation of the statement of Lemma 9.1,
we grasp the upper bound

R 0�n; X1� < S1�n�J3�n; LPÿ5�Wn�z�
�

f1

�
log�UV �

log z

�
� O��log log P�ÿ1=50�

�
:

Thus an application of Lemma 8.2 in combination with (9.1), (9.12), (9.25) and
(9.22) yields

R�n; X 3� < S�n�J�n�
�

log P

log z

�
log

�
32c

1ÿ 32c

��
2

k
� O��log log P�ÿ1=50�

�
;

where k is the number de®ned in (9.20). The second conclusion of Lemma 7.3
follows immediately.

Given the discussion concluding § 7, the proof of Theorem 2 is at last complete.
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