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1. Introduction
For a large class of polynomials orthogonal on I = [—1, 1] with respect to
a non-negative integrable weight function, the zeros have the same
limiting distribution. In fact, it has been shown ([1]) that, if p(x) is a
non-negative integrable function defined on I and p(z) > 0 except for
a set of measure zero, and {B,(x)} (n=0,1,...) are the associated
orthogonal polynomials, then if —1 <o < B <1

. V¥ e,B) 1[F  dx

e~ Ty (D

where v} (a, 8) is the number of zeros of P, (x) on the interval [«,8]. (The
reference to measure in the previous sentence and in what follows means
linear Lebesgue measure, unless otherwise stated. Also measE or
meas(E\E'), for example, will be used to denote the measure of the set £
and of E\E', respectively.) We shall call this limiting behaviour of the
zeros regular behaviour and the associated weight function a regular
weight function. In this paper we explore several questions, some suggested
by this theorem. We now continue the introduction in a more formal way,
beginning with a brief recapitulation. Where references are not given,
proofs of the lemmas and theorems will be found in §§ 3-6 according to a
plan given in §2. Section 7 discusses some unsolved problems.

DermvitioN 1.1. Let I denote the interval [—1,1]. Let M(I) be the
class of measurable subsets of I having positive measure. For E € M(I),
let P(E) be the class of non-negative integrable functions having the
property that, if p(x) € P(¥), then S(p(x)), the support of p(z) (defined
as {x: z € I, p(x) > 0}), satisfies S(p(x)) = E. We finally let

P= U PE).
EeM(I)

Lemma 1.1 ([8] p. 24). For p(x) € P, there is a unique set of polynomials
{P,(x)}, also written {P,(x|p)}, Pz} =a"+... (n =0,1,...), and a unique
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set of positive constants {N,(p)} (n = 0,1, ...) satisfying the conditions

[ PoP@p@) s = 8@ (mn=0,1,.0),  (L2)

where 8, is the Kronecker delta. We call {P,(x)} the set of orthogonal
polynomials associated with p(x) and we call N,(p) the norm of P,(x). The
zeros of P,(x) (n = 1,...) are simple and lie on the interval I.

DerFintTION 1.2. For p(z) € P and «, B satisfying —1 S a<B =1, let
v¥(c, B) be the number of zeros of P, (z]p) lying in [, 8]. If (1.1) is satisfied
we say that the zeros of {P,(x|p)} have regular behaviour and that p(z)
is a regular weight function.

DEeriniTION 1.3. Let N(I) be the subclass of M(I) characterized by the
property that, if & € N(I), then, for all o, 8 such that -1 Sa< B <1,

meas({z: z € En[a,B]}) > 0.

Lemma 1.2. A necessary condition for p(x) € P to be regular is that
S(p(x)) € N(I).

DermniTioN 1.4. A set E € N(I) is called a determining set if all
p(x) € P(E) are regular weight functions.
We can now recast the theorem of the opening paragraph as follows.

TaeoreM 1.1 ([1]). If E € M(I) and measE = 2, then E is a determining
set.

We note that if measE = 2, then E € N(I), so that the necessary
condition for determining sets of Lemma 1.2 is satisfied.

DErmniTION 1.5. For any set £ < 1, by C(E), the capacity of E, we shall
mean the inner logarithmic capacity (see Definition 3.1). For B € M (1),

by L(E), the lower capacity of E, we mean inf C(Z'), where we consider all
measurable sets £’, for which £’ = F and meas(E\E') = 0. We refer to
such a set B’ as an equimeasurable subset of E. If L(E) = C(E) we say that
the capacity of & is stable, and that B has stable capacity C(E).

Let £ € M(I). By Theorem 3.1 C(I) = 1/2, and by Definition 3.1 if
E;e M(I) (2 = 1,2), and, if B, < E,, then C(E,) £ C(#,). It thus follows
that L(E) < C(E) £ C(I)=1/2. Thus, if L(E)=1/2, E has stable
capacity 1/2.

THEOREM 1.2. Let E € N(I). A necessary and sufficient condition that E

be a determining set is that E have stable capacity 1/2. When E € N(I) has
stable capacity 1/2, for any p(x) € P(E) we have lim (N, (p))V/* = 1/2.
n-00
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Lemma 1.3. (a) The set I has stable capacity 1/2. (b) For any ¢ > 0,
there is a set B, E € N(I), with measE < ¢ and L(E) = 1/2. (c) There are
sets B € N(I) with L(E) < 1/2.

In the above lemma, (a) shows that Theorem 1.2 contains Theorem 1.1,
(b) shows that the sufficient condition stated by Theorem 1.1 is not a
necessary condition for regularity, and (c) shows that not all sets in
N(I) are determining sets.

We now continue our introduction with theorems which describe the
possible behaviour of the zeros of orthogonal polynomials and their
norms for p(z) € P and S(p(x)) € N(I), but where S(p(z)) need not be a
determining set.

Dermvition 1.6. For any compact set K, K < R, R denoting the real
axis, let Q(K) be the class of unit measures u defined on the Borel
measurable subsets of R with carrier ¢(u) contained in K, where

c(p) = {z: p((x—e,x+¢)) > 0, for all ¢ > 0}. Denote Q(I) simply as Q.
For p e Q, let U(z,u) = U(n) = [log(1/|z—1¢]|)du. The integral is defined
as a Lebesgue integral with respect to the measure p and is known as the
potential of u.

THEOREM 1.3. There is a unique measure p € Q such that U(zx, u) = log 2
for all x € I, with the possible exception of a Borel set of capacity zero. We
denote this measure by p;, and note that

1 dz
pr(B) = ;fB;/_(lsz—) (1.3)
Jor all Borel sets B, B < I.

LemMA 1.4. Let p(x) € P and let {P,(x)} be the set of associated orthogonal
polynomials. For fixed n =1, let x;, (t=1,...,n) denote the zeros of
P,(x).

Let v, be the measure, defined on the Borel subsets of I, determined by
defining vy (x;,) = 1/n (@ = 1,...,n) and v,(E) = 0 when P,(x) #0 on E.
Then p(x) is a regular weight function if and only if

limv, = p. (1.4)

n-0

The convergence of measures is defined in Definition 4.1.

TarorREM 1.4. Let K € N(I). Then L(E)> 0. If a measure pe Q
exists such that U(u) = log(1/L(E)) for x € E, except possibly for a set of
measure zero, then it ©s unique. When the measure exists, then equality must
hold on B, an equimeasurable subset of E that ts a Borel set for which
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C(B) = L(E). We denote the measure, when it exists, by uk. Then pf = p;
if and only if L(E) = 1/2.

Equality of measures is defined in Definition 4.1.

THEOREM 1.5. Let B € N(I) and let p(x) € P(E). Then
L(E) £ lim (N, ()™ £ Hm (N,(p))V™ < 1/2. (1.5)

nN-0 n-00
THEOREM 1.6. (a) For E € N(I) there are p(x) € P(E) and an increasing
sequence of integers (k) such that
L(B) = lim (N, (p))/*. (1.6)
(b) Let E € N(I). For any p(x) for which there is an increasing sequence
of integers (k,,) for which (1.6) holds, we have
lim Vk,. = ,,L;ka, (1.7)
n-0

where the measures {v,} are defined in Lemma 1.4 and the measure p¥ is
defined in Theorem 1.4.

At this point we remark that Theorem 1.2 can be deduced from
Theorems 1.4, 1.5, and 1.6. These theorems contain extra information,
however, concerning zero and norm behaviour for orthogonal polynomials
associated with p(z) € P when S(p(z)) is not a determining set. Still
further information valid for all sets £ € N(I), whether they are deter-
mining sets or not, is contained in the following theorem.

TEEOREM 1.7. For any E € N(I) there is a p(x) € P(E) which is a
regular weight function.

What has been described in Theorems 1.2, 1.5, 1.6, and 1.7, we say,
belongs to the theory of the first-order asymptotic behaviour of orthogonal
polynomials. This terminology is used to distinguish these results from
other results, to be summarized in Theorem 1.8 ([2]), concerning another
form for describing asymptotic behaviour of orthogonal ploynomials.
This latter form has implications for the first-order theory, but does not
subsume it, and will be referred to as belonging to the theory of the
second-order asymptotic behaviour of orthogonal polynomials.

Lemma 1.5. Let f(z) = $(z+ /(22 — 1)) with domain
Co={z:|2—1]|+|z+1]| > 2},

where the branch of /(22— 1) in C| is chosen so that /(2> —1)/z tends to 1 as z
tends to imfinity. For p(x) € P, the associated orthogonal polynomials
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{P,(2)} have regular behaviour if and only if, for all z € C,
lim | B, (2) ' = |f(2) . (1.8)
n->c0

TaEoREM 1.8 ([2]). Let pweQ and denote its absolutely continuous
component by p,. Let p(x) be the Radon-Nikodym derivative of p, with
respect to linear Lebesque measure. Assume that c(u) is an infinite point set.
There is then a unique set of polynomials {P,(x)} = {B,(x|p)}, B,(x) = 2™+ ...
(n=0,1,...) and a unique set of positive constants {N,(u)}(n =0,1,...)
satisfying the conditions

| Bl Bu@)dp = 8, (mm = 0,1, ). (1.9)

We call {P,(x)} the set of orthogonal polynomials associated with p and
we call N,(u) the norm of P, (x).
The following statements are equivalent:

! logp(@) ,
z > — 00, 1.10
Lt (1.10)
lim | E, (z)| exists and s not zero for all z € Cy, (1.11)
Nn-00 lf
for somee >0, 2°N (u)2e>0 (n=1,...). (1.12)

The function f(z) in (1.11) is the one introduced in Lemma 1.5.

The implications for first-order theory are as follows. First of all, if
p(z) € P and (1.10) is satisfied, then we can deduce from (1.11) and
Lemma 1.5 that p(x) is regular. It follows from Theorem 1.1, however,
that (1.10) is not a necessary condition for regularity.

A further important implication requires a definition.

DrriNtTIoN 1.7. Let e Q and let ¢(u) be an infinite set. If the
polynomials {,(x|u)} of Theorem 1.8 satisfy (1.8), or if their zeros satisfy
(1.1), we say that p is a reqular measure. If (1.11) is satisfied, we say that u
is a very regular measure. Likewise, if p(x) € P satisfies (1.10), we say that
it is a very regular weight function.

By Theorem 1.8, we see that whether u is very regular or not depends
on its absolutely continuous component, in particular on whether or not
(1.10) is satisfied. The situation is different for first-order asymptotics.

THEOREM 1.9. There is a measure p € Q, with c(u) an infinite set, which is
a regular measure and is singular with respect to linear Lebesgue measure.

The measure introduced in this theorem is regular, yet the Radon-
Nikodym derivative of its absolutely continuous component is identically
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zero, and so does not determine a set of orthogonal polynomials and
cannot be classified as a regular weight function.

Thus, in first-order theory, the problems of characterizing regular
weight functions and regular measures bear a different relationship to
each other from that between the corresponding problems for very regular
weight functions and very regular measures in the second-order theory.

We conclude this section with a theorem concerning regular measures.

TaEOREM 1.10 ([2]). Let u € Q. Then u is a regular measure if

lim w(1/202)V7 = 1, (1.13)
N-00
where
w(8) = inf u((x— 3,2 +3)). (1.14)
zel

2. Plan of proofs

Each of §§ 3-6 contains the development of some central technique, and
in addition the proofs of the material presented in the introduction that is
related to it. In §7 both general problems and more technical questions
that are as yet unsettled are discussed.

Section 3 contains a development of the notions of capacity and stable
capacity and the proof of Lemma 1.3. In §4 the central theme is measures
associated with sets, and the section contains the proofs of Theorems 1.3
and 1.4 and Lemmas 1.4 and 1.5. Section 5 is concerned with the
connection between norm behaviour and zero distribution and contains
proofs for Theorems 1.1, 1.2, 1.5, and 1.6 as well as Lemma 1.2. A
sufficient condition that a measure be regular is proved in §6 as
Theorem 1.10 and the proofs of Theorems 1.7 and 1.9 then follow as
applications.

3. Capacity and stable capacity
We select the energy approach in defining capacity as the most suitable
for our applications ([4] p. 280).

DreriniTioN 3.1. For any measure p defined on the measure space
(R, F), where R denotes the real line, and F the o-algebra of Borel sets
of R, let

Ip) = [log —Zrd(uxp), (3.1)

where p x u is the complete product measure defined on B x R. This is
called the energy of p. For K a compact set, K < R, we let

VE) = inf I(u), (3.2)
peQK)
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where Q(K) is defined in Definition 1.6, and call this quantity the
equilibrium energy associated with K. We then define the capacity of K
as C(K) = exp(— V(K)). For any set E < R, we define the inner capacity

of B as supC(K), where K denotes a compact set. We use the symbol
ECE

C(E) for inner capacity, and no ambiguity will arise in this paper in
referring to C(E) as the capacity of E. It is clear that, if E, < K,
C(E,) < C(B,). This is referred to as the monotonicity of capacity.

THEOREM 3.1 ([4] p. 282). (a) Let K = R be a compact set of positive
capacity. There is a unique measure pg, where pg < Q(K) and is such that
I(pg) = V(K). Werefer to pg asthe Frostman measure of K. The potential
U(z,ng) (see Definition 1.6) satisfies U(z, ug) < V(K), where equality can
hold only on K, and may fail to hold there only on a Borel set of type F, of
capacity zero.

(b) When K = I, u; as defined in this theorem agrees with the measure p;
defined in (1.3): so there is no conflict of notation. Computation yields
Ux,pu;) =log 2 forx e I, V(I) =log2 and C(I) = 1/2. For E < R, and o
real and non-zero, let ol = {x: za ' € B}, and E+o = {x: x—a € E}, the
latter holding even if a = 0. Then C(aE) = «C(E), and C(E +a) = C(E).
Thus, if L < R 1s an interval of length 1, C(L) = 1/4 and V(L) = log(4/1).

Lemma 3.1. (a) ([9] p. 87). If B, < R(n=1,...) and E,, is a Borel set
of capacity zero, then UX_, B, has capacity zero.
(b) If E, < R (n=1,2), and E, is a Borel set, and E, has capacity zero,
then
C(E v E;) = C(E\E,) = C(E)).

Lemma 3.2. Let B < I be a Borel set of type F, and let B =2, K,
where {K,} consists of compact sets and K,< K, ,(n=1,...). Then
C(B) = lim C(K,).

n->0

Proof of Lemma 3.2. If B is compact, it may be that, for some integer

N>0,K,=K,,, forn 2 N. In this case B = Ky and

C(B) = C(Ky) = O(Ky41) = ...t

so the result is immediate. If there are infinitely many different sets
among the {K,} we proceed as follows. By the monotonicity of capacity
C(K,) £ 0(K,,;) (n=1,...). Hence lim(C(K,) exists, and, again by

n-0

monotonicity, lim C(K,) < C(B). If for every compact set K = B
n=->00
C(K) < lim C(K,,), (3.3)



126 J. L. ULLMAN
It would then follow that C(B) £ lim C(K,), which would complete the

n-0

proof. We thus turn to the proof of (3.3).

If C(B) =0, for a compact set K < B, we have C(K) =0 by the
monotonicity of capacity. Then both sides of the inequality (3.3) are
zero, and the inequality is satisfied.

If C(B) >0, it is necessary by Lemma 3.1 that we should have
C(K,) > 0 when n > N for some positive integer N. Since we can begin
enumeration of {K,} at any point, there is no loss in generality in assuming
that C(K,) >0 (n=1,...).

Let K < B be a compact set. Since (3 3) is satisfied if C(K) = 0, we
assume that C(K) > 0. Let Kn(K,\K,_,) = L,. Thesets{L,} (n=1,...),
where K, =@, the empty set, are pairwise disjoint Borel sets and

® L, = K. The Frostman measure ux satisfies

1_fdﬂx— Z d#K

Thus, if X7, 7, px = m,, limm, = 1. Thus there is an integer N > 0
n->wo

such that, for n > N, m, > 0. For n > N, let u% be the restriction of ux
to K,. Then

(4 1
S IEE) = — I(un .

V(KnK,) < I(m) L) (3.4)
where

) = [ log—=rdlpxx )

EnXEn lz t|

Since K x K = J2_,(K, x K,)\(K,,_, x K,,_;), using our convention for K,
countable additivity of the integral on the product space yields

lim I(u) = (). (3.5)

N-0

Since I(ug) = V(K), it follows from (3.4) and (3.5) that
m V(KnK,) < V(K),

which is equivalent to
lim C(KnKkK,) =2 C(K). (3.6)

n=w0
Finally, by the monotonicity of capacity,
lim C(K,) 2 lim C(K nK,),

n-0 n—mo

so that using (3.6) we obtain (3.3), and the proof is complete.
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Lemma 3.3. Let E € M(I).
(a) There is an equimeasurable subset of E, say E, such that
C(E,) = L(B).
(b) The lower capacity of E, L(E), is positive.
Proof of Lemma 3.3. (a) Since L(E) = inf C(X’), where E’ represents an
B

equimeasurable subset of E, there exists a sequence {E,} (n=1,...) of
equimeasurable subsets of E such that
L(E) = lim C(E,). (3.7)
n-0
Now if By = N®_, E,, E, is again an equimeasurable subset of K, so that
C(E,) 2 L(E). On the other hand, C(E,) < C(&,) (»=1,...), by the
monotonicity of capacity, so that by (3.7) C(E,) < L(E). Thus
C(E,) = L(E).

(b) By Definition 1.1, meast = « > 0. Every equimeasurable subset
E’ of E will contain a compact subset K’ of measure = 4a. By the
monotonicity of capacity, C(E') 2 C(K') and C(K') 2 $o.2 = 4o by
(9] p. 84. Thus L(K) is positive.

TrEOREM 3.2. (a) If K < I is a compact set of positive capacity and pr,
its Frostman measure, is absolutely continuous with respect to linear Lebesgue
measure, then K has stable capacity.

(b) If E < I is a Borel set of type F, with representation J2_, K,,, where
K, <K, ,(n=1,..)and the sets K,, are compact and have stable capacity,
then E has stable capacity.

Proof of Theorem 3.2. (a) We have to show that, if K’ is an equi-
measurable subset of K, then C(K') = C(K). Since C(K') £ C(X) by the
monotonicity of capacity, it remains to show that

C(K') z C(K). (3.8)
Now K’ contains an equimeasurable subset K" that is a Borel set of
type F,, having the representation K" = J*_, K,,, where the K, are

n=1-""n

compact sets and K, < K, (n =1,...). By Lemma 3.2
C(K") = lim C(K,,). (3.9)
n->0

Now pg(B) = [zr(x)dz, where B < I is a Borel set and r(z) is the Radon-
Nikodym derivative of u, with respect to linear Lebesgue measure. Also

1= fKr(x) dz = f ”r(x) dz = lim | r(z)dz,

n-woJ Ky

the last step using the countable additivity of the integral. Thus if

My, = [g,7(x)dz, limm, = 1. Thus there is a positive integer N such that,
n—->0
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forn > N, m, > 0. If p% is the restriction of ux to K,, then, forn > N,

pr) - 1 1
VK, =1 (mn) =t K"XK”loglz_t[r(z) r(t) dzdt. (3.10)
From (3.10) we obtain

— 1

lim V(K,) < f log r(z) r(t) dzdt

n-00 K*XK* , z—t I

= logLr(z) r(t)dzdt = V(K),
Kxk |2—t|
using the countable additivity of the integral on the product space in the
first inequality, and the equimeasurability of the subset K"x K" of
K x K, using Lebesgue measure in the product space, for the second
inequality. Thus

lim C(K,) z C(K),

and so, using (3.9),
C(K") = lim C(K,) z C(K). (3.11)
n-00
By the monotonicity of capacity C(K') = C(K"), and this fact together
with (3.11) yields (3.8).
(b) We note that the sets {K,} are now those introduced in part (b) of
the theorem. By Lemma 3.2,
C(E) = lim C(K,); (3.12)
and we must also show that C(E') = C(E) for each E’ which is an equi-

measurable subset of E. Since C(E') < C(E) by the monotonicity of
capacity, we must show that

OB = C(E). (3.13)

If we let K, = K, nE’, then K| is an equimeasurable subset of K, and
Ue., K, = E’. Thus

n=1

O(F') 2 C(K,) = C(K,), (3.14)

using first the monotonicity of capacity, and then the stability of the
capacity of K. Taking the limit with respect to n in (3.14) and using
(3.12), we obtain (3.13), which completes the proof.

Lemma 3.4 ([12] p. 141). Let K < R be the union of a finite number of
pasrwise disjoint compact intervals. Then pg is absolutely continuous with
respect to linear Lebesgue measure.
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Up to this point we have developed properties of stable capacity. It is
now our objective to show the existence, in a constructive manner, of
sets £ € N(I) of small measure and stable capacity 1/2.

Lemma 3.5. (a) The function cosnf (n a mon-negative integer) is @
polynomial of degree n in cos@, which we denote by t,(x), x = cos. The
polynomial T, (x) = t,(x)/2* 1 is monic. The zeros of t,(x) are given by

Zp , = COS m (k=1,...,n), (3.15
kn
and satisfy _
Hm (V{2 ..., Ty )1 = 1/2, (3.16)
n-c0
where
n
V- yn) = II 1y —y;l. (3.17)
ig:fl
(b) If
A'i,j',n = lxi,n_xj,nl +0{,J’,nn—3: (3'18)
[0ijnl €1 (n=1,...;%5=1,..,n,% #j),
then
. n 1/ {nl{n—1)}
n-w\1,j=1
1]

Proof of Lemma 3.5. (a) Since cosnf = Re(cosf+:sind)?, in the
expansion of the right-hand side, sin 8 enters only to even powers, so that
cosnf can be written as a polynomial in cosf. The degree of the poly-
nomial in cosd, and the leading coefficient are readily seen to be n and
27-1 from this representation. Since the » numbers (3.15) are distinct,

and
2k—1 2k—1
tn(cos( o 77)) = cos(n o 17) =0 (k=1,...,n),

they account for all the zeros of ¢,(x). We next note that

cos(n arcos x)

T () = —on1 >’

so that
;.. sin(narcosz) 1
Tale) = =g =y
and
Vn(xl,n: ey xn,n) = | T;L(xl,n) . T;z(xn,n) |
1 1

B 27n=1'gin(mr/2n)sin(37/2n)....sin((2n — 1)7/2n)

5388.3.24 E
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The relations

29 <sinf<1, ogogg, sin(m—6) = sin, (3.20)

T

lead to the inequality

1 <V < n"
2n(n—1) = (xl,n’ "‘7xn,n) = 2n(n—-1) >

from which (3.16) follows by root extraction.
(b) We will need the estimate, valid for fixed n, and ¢ # j:

(21 2j—1
cos|—5—m| = cos{ G —m
= 2{sin t4y—1 sinﬂ
- on o

again making use of (3.20).
It follows from (3.18) that, for ¢ # j,

..
Agin = |Tin—2; (1+$)_
u | e ],nl ’nslxi,n'—xj,nl
Using (3.21), we then obtain
1) _ 3 ]
lxi’n_xj-"'l 1_81?, = Ai,i,'n = lxi,n_xj,nl 1+'8—n' .

With the use of (3.16), (3.19) is now readily obtained, completing the proof
of the lemma.

|2

in— Tin | =

8

ot (3.21)

v

We now prove our first result from §1.

Proof of Lemma 1.3. (a) The Frostman measure p; is given by (1.3),
and since it is absolutely continuous with respect to linear Lebesgue
measure, I has stable capacity by Theorem 3.2(a). By Theorem 3.1(b),
A(l) =1/2.

(b) For each positive integer » and real number 8 (0 <8 £ 1), we
define the set K¢ as follows. The set K is the union of » closed intervals
12,, each of length |l | = §/n® and each centred at a different one of the
points «;, (¢ =1,...,n) introduced in Lemma 3.5. By (3.21) these
intervals are pairwise disjoint and are contained in I. Thus
measK? = n(§/n%) = §/n2

Let wf be the measure (1/n) X%, puf,, where pf is the Frostman
measure associated with I .. By Theorem 3.1

4 4n8
§ ) = _ ) = -
I(pd,) = log(l lﬁ,nl) log( 5 ) (3.22)
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If w and v are measures defined on the measure space (R,F)
(Definition 3.1), let

v) = f logﬁd(px W, (3.23)

where u x v is the complete product measure defined on R x R. For ¢ # j,

we then obtain
I(p?,, pd,) < log(1/43;,), (3.24)

AL = |y — T | — 8/ (3.25)

Now « is a unit measure with ¢(wf) < K¢, and so

where

V(K%) = I(wf;,) == ZI(/“'in)+_ E I(V’zn’“’jn)

1959

< —log(4n) L Sl0g, (3.26)
| Wagg A
where we have used (3.22) and (3.24).
We thus obtain
O(K?) = (i)ﬂ"( 11 42 )W (3.27)
»= \4n? o dhnf ‘

By (3.25) and the fact that 0 <& < 1, we can apply Lemma 3.5(b) to
(3.27), and also use the fact that C(K¢) <1/2, so as to obtain
th Ké)=1/2. If By;=U®,KS, then mea,sBa <8¥% ,1/n% and

C‘(B6 = 1/2. Thus, for &, = min{6¢/=?, 1}, where ¢ > 0, measB; < ¢ and
C(B;) = 1/2.

If we let R} = Up, Kft, then By = Up., Rirand R} < Ry, (n=1,...).
By Lemma 3.4 and Theorem 3.2(a) the set RS, which is a ﬁmte union of
pairwise disjoint compact intervals, has stable capacity. Thus by
Theorem 3.2(b), B; has stable capacity. We finally observe that the
points x;, (n = 1,...,: ¢ =1,...,n) are dense in I, from which it follows
that By, < N(I). Thus, for a given ¢ > 0, the set B, satisfies all the
requirements of the set £ in the statement of Lemma 1.3(b), and the
proof is complete.

(c) If BEy=U®_,E,, where {E,}(n=1,...) are Borel sets on the
interval [ —1/2, 1/2], then ([9] p. 63),

1 ® 1
= .
V(Bo) = w21 V(E,)
Take for E, an interval of length | E, | = (})*, where {k,} is an increasing
sequence of integers to be determined. Place these intervals on

(3.28)
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[-1/2,1/2] so that U2_, B, is dense. We then have
Lo 1 R
V(E,) = nailog(4/|B,|)  ncilog 4t

(3.29)

Ek +1’

where we have used Theorem 3.1(b) in the second term. Thus, if the
series in the last term of (3.29) has sum less than 1, we have C(&,) < 1/4.
The set 2E, = F, when we use the notation and results of Theorem 3.1(b),
then satisfies F € N(I) and C(E) = 2C(E,) < 1/2. We observe that
L(E) £ C(E) < 1/2, and so the proofs of (c¢) and of the lemma are
complete.

4. Measures associated with sets

The measure p; defined in (1.3) is uniquely associated with the interval
I by means of conditions stated in Theorem 1.3 and also by means of
conditions stated in Theorem 3.1. What we show in this section is that
conditions analogous to those of Theorem 1.3 enable us to associate
unique measures with Borel sets B of type F,, B < I (Theorem 4.2), and
on using in addition the notion of lower capacity, a unique measure is
associated with sets £ € M(I) (Theorem 1.4). These measures play a role
in the study of the zero distribution of orthogonal polynomials.

TaEOREM 4.1. Given a Borel set B of type F,, B< I, C(B) = 0, there
exists a measure u, with C(u) < I such that the set of plus infinities of U(u)
contains B.

Proof of Theorem 4.1. Let B = J&_, K,,, where {K} consists of compact
sets, K, = I and C(K,) =0 (n =1,...). Let p, be a unit measure ([9] 76)
such that U(y,) is plus infinity on K, and ¢(u,) < K, (» = 1,...). The set
function p = ¥®_,(1/2")u,, is again a measure ([6] p. 230). For anyz e \I,
there is a neighbourhood of z, say N(z), such that N(z) =\I. Since
pa(N(2)) =0, u(N(2)) =0, and so c(u) <I. Let v, = 22_,(1/2%),. If
zelandtel,log(l/|z—t|) = 0. Hence

2
n_mflogl v, < flog—-—lz_tldy

since the left-hand expression is non-decreasing for fixed z. Thus the
right-hand side is plus infinity if z € B, since the left-hand side is such,
and the same is then true for U(n). This completes the proof.

DermviTion 4.1, Let (p,:p,€,n=1,...) be a sequence
of measures. We say that (u,) converges to p,€Q and write
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lim p,, = p, if

n-0

lim | £(0)duy = [ (0

for all real-valued functions f(t) continuous on I. We say, for u, v € Q,
that u = v if u(B) = v(B) for all Borel subsets B of I.

Lrmma 4.1 ([7] p. xiii). (a) Every infinite sequence of measures (u,:
P € Q,n = 1,...), contains a convergent subsequence.

(b) If an infinite sequence of measures (pu,: p, € Q,n =1,...), has the
property that every infinite subsequence has a further subsequence converging
to uy € Q, then the original sequence converges to .

Lemma 4.2 ([9] p. 34). Ifp,€Q (n=0,1,...) and lim pu, = p,, then, for
N0

any Borel set B < 1, for which the boundary of B, 0B, satisfies uy(0B) = 0,
we have lim p,(B) = py(B).

Proof of Lemma 1.4. Consider numbers «,8, where —1 2 a<fB = 1.
We first note that v,([«,B]) = v(«,B)/n, where v, is the measure intro-
duced in the statement of the lemma, and v¥(«, 8) is defined immediately
following (1.1). Now 9([«, B]) = {«, B} and p;({«, B}) = 0 according to (1.3).
Thus, by Lemma 4.2 and (1.3), if (1.4) holds, then

dz

tm v 1) = p(os D) = | Ty

so that (1.1) follows. This completes the proof of sufficiency.

We sketch the proof of necessity. We start with the hypothesis that,
when —1 £« < B £ 1, limv,([o, B]) = ps([, B]). This can be written
n-0

lim [ f(2)dv, = f f(@)dp, (*)

Nn-00

where f(x) is the characteristic function of [«, 8]. We then can extend (*)
to the case where f(z) is the characteristic function of a half-open or open
interval, since p; is a continuous measure. The extension to the case
where f(z) is a step function follows since a step function is a finite linear
combination of characteristic functions of closed, half-open, or open
intervals. The final extension of (*) to continuous functions f(x) follows
since I is compact, so that continuous functions can be uniformly
approximated by step functions. This completes the proof of necessity.

Lemma 4.3 ([5] p. 85). If p, € Q(n=0,1,...) and limp, = p,, then
n-0

U(Z, I-‘o) s lﬁ U(z: F"n):

Nn-0
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where inequality holds, if at all, only on a subset B of I that is a Borel set
of type F, and of capacity zero.

This useful result is known as the lower envelope theorem for potentials.

Lemma 4.4 ([9] p. 53). (a) Let pe Q. Then U(z,pn) vs lower semi-
continuous and superharmonic in the finite complex plane.

(b) ([9] pp. 34, 50). Ifn; €Q (¢ = 1,2), and U(z, u,) = Uz, o) for z e\l,
then puy = po.

THEOREM 4.2. Given a Borel set B of type F,, B < I, C(B) > 0, (a) there
exists a measure u € Q such that U(u) < log(1/C(B)) for x € B, where
inequality holds on B, if at all, only for a Borel set B, of type F, and of
capacity zero.

(b) There is a unique measure u € Q for which U(u) = log(1/C(B)) for
x € B, with the possible exception of a Borel set of type F, and capacity 0. In
particular, therefore, there is a unique measure satisfying the requirements

of (a).

Proof of Theorem 4.2. (a) If B is compact, then the Frostman measure
tp of Theorem 3.1(a) satisfies the requirements. Assume, therefore, that
B is not compact, and let B = UY2_, K,,, K, < K, ., where {K,} (n = 1, ...)
consists of compact sets. We can assume that C(K,) > 0 without loss of
generality (see proof of Lemma 3.2). Also, by Lemma 3.2,

lim C(K,) = C(B).
N->0

Let p,, = pg, be the Frostman measure associated with K,,. Let {k,} be
an increasing sequence of integers for which {u, } converges, say to the
limit u,. The existence of such a sequence is a consequence of Lemma 4.1.

By Lemma 4.3

Ulz, o) £ ql;l% Ulz, I-"k,,): (4.1)
where equality holds except for a Borel set B,, B, < I, of type F, and
capacity zero. We next establish that the right side of (4.1) has the value
log(1/C(B)) for z € B, except for a set B, that is a Borel set of type F, and
capacity zero. Thus on B, except for the set B, = Bn(B,u By), again a
Borel set of type F, and capacity zero,

We have used in this argument Lemma 3.1(a) to show that B,u B; has
capacity zero, and now must establish the existence of the set B; with the
desired properties.
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By Theorem 3.1(a) U(x, py,) = log(1/C(K,)) for x € K, , except for the
set B¥s, a Borel set of type F, and capacity zero. Thus, if By = J®_, Bk,
then B, is again an F, set and, by Lemma 3.1, has capacity zero. Since
lim C(K;, ) = C(B), limU(x, ;) = log(1/C(B)) if x € B\B;, and so the
n->0 N0

proof of (a) is complete.

(b) Let v € Q be a measure for which U(x,v) = log(1/C(B)) for z € B,
except for a Borel set B, of type F, and capacity zero. Our object is to
prove that v = p,, the measure introduced in (a), thus proving uniqueness.

Let p* be a measure, which exists by Theorem 4.1, such that
U(z, u*) = oo for x € B,. Setting aside the case where B is compact for the
time being, we can represent B as U2, K., where {k,} is the sequence
introduced in (a) for which lim y; = p,. For any ¢ > 0 and fixed n > 0,
form the function

v5,(2) = Ulz,v) = Ulz, p,) + (U (2, p*) = U2, 14,)).- (4.2)
This function is superharmonic in A, = (\K, )u{cwo}, if we define
v¢(00) = 0. This is because the first and third terms on the right are
superharmonic in the finite plane by Lemma 4.4, the second and fourth
terms is harmonic in \ K, and the combination of the four terms on the
right is harmonic in a deleted neighbourhood of infinity and has the limit
zero as z tends to infinity. Thus co can be removed as a singularity by
letting v%(c0) = 0. It then follows ([3] 75) that, if, for all { € K, and for
all sequences (z;: 2, € A,), limz, = {, we have
k-»0
lim v5,(2,) 2 45,
k-
then, forz € A,
v, (2) 2 45, (4.3)
Our task now is to find a suitable value for A43,.

To begin with, by Theorem 3.1(a), U(z, ;) < log(1/C(K,.)) for all finite

2, so that
v5.(2) 2 Ulz,v) —log(1/C(K,,)) +&(U(z, u*) —log(1/C(K,,))).
If (2,) is any sequence with limit { € K}, then

Yim of,(2) 2 lim Uz, v) - log(1/C(Ky,) + G(ﬁlﬂ Uz, p*) —log(1/ O(Kk”)))
—00 k-0

k-0
2 U({,v)—log(1/C(K,,)) + e(U(L, p*) —1og(1/C(K,))), (4.4)
where the lower semi-continuity of potentials (Lemma 4.4) is used to
obtain the second inequality. For any u € Q and z € I, we have

1
Uz, p) = flogmdy. 2 logi.
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Thus, for { € B,, the last collection of terms in (4.4) is plus infinity and a
lower bound of this collection of terms for { € K, \B, can be chosen as
Az, namely

4y, = log(1/C(B))~log(1/C(K,,)) +e(log § —log(1/C(K,. ).
Thus, from (4.3), we obtain

Ulz,v) - Ulz, py,) 2 — (U2, p*) = Uz, ) + 45

For z e\I, U(z,pu*) and U(z, ;) are finite, so we must have, on letting
=0,

Ue,v) - Ul ) 2 log(1/C(B))—log(1/C(K,))- (4.5)

Since lim w;, = p, and log(1/|z~¢|) is continuous in ¢ for ¢ € I and z € \I,
by Leg;a 4.2 we obtain, on letting n tend to infinity in (4.5),

U(z,v)—Ulz,po) 2 0. (4.6)

The left side is harmonic in \I and can be made harmonic in \Z u{co} by

assigning the value zero at infinity, which is the limiting value. But for

this extended function, the value at infinity is equal to the lower bound
of values on \I, so that

Uz,v)—Ul(z,pe) =0 (z€\),
and, by Lemma 4.4, v = u,. Thus we have reached our objective for the
case where B is not compact.
When B is compact, we replace p; in (4.2) by pp. The argument

proceeds as before, pp replacing u, This completes the proof of the
theorem.

Proof of Lemma 1.5. Using the notation introduced in Lemma 1.4, we
take the negative of the logarithm on both sides of (1.8) and must prove
that

11‘1_1;10 U(z,v,) = IOgm%l

implies (1.4). We next identify log(1/|f(z)]) with U(z, ;) for 2z € C; as

follows. Their difference D(z) is harmonic in C; and, if extended to

infinity by assigning the limit, which is zero, the difference is harmonic

in A=Cju{w}. For (el, z,eA(n=1,..), limz, =, we have
n-»c0

lim|f(z,)|=1/2 and limU(z,,pu;) =log2: thus limD(z,) =0. The
n-0 n-»c0 N0

(zeC) (4.7)

harmonic property of D(z) in A then gives D(z) = 0 for z € C;; but since
D(c0) = 0, it follows that D(z) = 0 for z € C;. Thus (4.7) becomes

im U(z,v,) = U(z,p;) (2 €Cy). (4.8)

nN-H0
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By Lemma 4.1 (a) every infinite subsequence of (v,) has a convergent
subsequence, say (v,) with limit pu,. If we can show that u, = u;, then,
by Lemma 4.1 (b), (1.4) follows. If z € C}, log(1/|2—t]|) is a continuous
function of ¢ when ¢ € I. Hence, by Definition 4.1 and (4.8),

}11_{?0 Uz, Vk,.) = Ul(z, o) = Ulz, 1)
if z € C;. Thus, by Lemma 4.4 (b), uo = p;, thus completing the proof of
sufficiency.

We sketch the proof of necessity. If the polynomials in the set {P, ()}
have regular behaviour, then, by Lemma 1.3, the measures v, converge to
pr- Hence relationship (4.8) holds and this implies (4.7), which is equivalent
to (1.8), completing the proof of necessity.

Proof of Theorem 1.3. By Theorem 4.2 (b) there is a unique measure v
such that U(z,v) Z log 2 for x € I, with the possible exception of a Borel
set of capacity zero. By Theorem 3.1 (b), U(z, u;) = log 2 for x € I. Thus
v = pg, which completes the proof.

Proof of Theorem 1.4. We first note that by Lemma 3.3 (b), L(%) > 0.
Suppose that p is a measure such that U(z,p) = log(1/L(E)) for x € E,,
an equimeasurable subset of Z. By Lemma 3.3 (a) there is an equi-
measurable subset of B, say E,, with C(#,) = L(E). We now note that
E, = E,nE, is an equimeasurable subset of £ of stable capacity L(E) on
which U(z,p) = log(1/L(E)). Let B, be an equimeasurable subset of Z,
which is a Borel set of type F,. Then C(B,) = L(£) and hence
U(z,u) 2 log(1/C(B,)) for z e B,. Thus p is the measure uniquely
associated with B, by Theorem 4.2.

Let v be any measure such that U(z,v) = log(1/L(E)) on E,, an equi-
measurable subset of £. Our object is to show that v = u, thus proving
uniqueness. The set ¥y = E,nE, has stable capacity L(¥) and contains
an equimeasurable subset B, which is a Borel set of type F, with
C(B,) = L(E). Thus U(z,v) = log(1/C(B,)) for x € B, and so v is the
unique measure associated with B, by Theorem 4.2. Now the set
By = B,n B, is a Borel set of type F, and an equimeasurable subset of £,
with C(B,) = L(E). Also both U(z,v) and U(z,u) are not less than
log(1/C(B,)) for € B,. Hence, by Theorem 4.2, v = p, since they are both
the unique measure associated with B; by Theorem 4.2. This proves
uniqueness. When the measure exists, we denote it by uk.

If the measure u} exists, it is the unique measure associated with B,.
Then, by Theorem 4.2 (a), U(x,u}) =log(1l/L(E)) for x € B,, except
possibly for a Borel set B, of capacity zero. Thus equality holds on
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B =B\B,, which is a Borel set which satisfies C(B)= L(E) by
Lemma 3.1 (b).

If L(E) < 1/2, we have just seen that U(z,p}) = log(1/L(E)) > log 2
on a Borel set B, B < I, with C(B) = L(E). U(x,pu;), on the other hand,
by Theorem 3.1 (a) equals log2 for xz € I. This could not happen if
pr =g 50 pr# ph If L(E) = 1/2, then U(w,u;) = log2 = log(1/L(E))
for x € I, hence for x € . By what has been shown, there is a unique
measure with the property, so p¥ = p;. This completes the proof of the
theorem.

5. Norm behaviour and zero distribution
Lemma 5.1 ([9] p. 72). Let K =1 be a compact set. For each integer
n, n 2 0, there is a unique monic polynomial of degree n, T, (x| K), such that

sup | Tp(z| K)| < sup|@,(z)],
ze K zre K

where Q,,(x) is any other monic polynomial of degree n. If

M,(K) = sup | T (x| K)],

then

lim | M, (K)[/» = C(K).

n=-00
All the zeros of T, (x| K) lie in I. The polynomial T, (x|I) is the same as the
polynomial T, (x) introduced in Lemma 3.5.

LemMA 5.2 ([8] p. 38). For p(x) € P and any integer n > 0,

[1Pe19) (o) do < [1@u(a) Po(z) de, (5.1)

where @, () 1s any monic polynomial of degree n other than P,(x|p), the
orthogonal polynomial of degree n associated with the weight function p(x).
For p € Q with ¢(u) an infinite set (Theorem 1.8), we have

[1B@1wPdu < [1Quz) R, (5.2)

where Q,(x) is any monic polynomial of degree m other than P,(x|u), the
orthogonal polynomial of degree n associated with .

Proof of Lemma 1.2. If p(x) € P, p ¢ N(I), there is a pair of real numbers
o,B,such that —1 < « < 8 £ 1and [p(x)dx = 0. We will show that then
P,(z|p) can have at most one zero in («, B) (n = 1,...). On the other hand,
it follows from (1.1) that, if p(x) is regular, then v¥(«, 8) tends to infinity.
Thus p(z) cannot be regular.
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If, for any n > 0, P,(x|p) has two zeros in (w,fB), say x,,%, Wwhere

-1 =2 a<a <2< B =1, we consider the modified polynomial

%, —¢))(x — (25 +¢))

(x—2)(x—2x5)

b

P¥(z) = B,(w|p) =

where ¢ > 0 is chosen so that « < x;,—e <z, +e < 8.
Now

(x—x1+s)(x—x2——e)=(1+ € )(1 € )

(% —2,) (T —25) T—2, ~x—x2

oy T, — %y _ &2
_1+8((x—x1)(x—x2)) (@ —zy)(x —y) (6:3)

and, for (x—-z;)(x—z,) > 0, the last group of terms in (5.3) is less than 1.
Thus | P}(z)| < | B, (x)| in I\[«, 8], and so

f | P (@) P p(x) da = f | P () [ p(x) do
I I\[e,f]
<[ |R@IppE)de
I\[w,p)

= [|1B@ip Pp@) .
which contradicts (5.1).

Levma 5.3. Let (f.(x):n=1,...), be a sequence of non-negative, Borel
measurable functions defined on I, and let (k,) be an increasing sequence of
integers. If

Tim ( Lf,%(x) dx)m‘" <1, (5.3)

Nn->00
then there is an infinite subsequence (t,,) of (k,), and a Borel set B of measure
zero such that
B (f, (@) < 1, (5.4)

Nn->0

for x e I\B.

Proof of Lemma 5.3. There is a sequence (g, ), with ¢, > 0 (n =1,...)

and lim g, = 0, such that
n—->o0

1/ky,
(ffk,,(x)dx) Sltg, (m=1,..).
I
Thus
[ ful@)d s (146
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and
| o1 < 1/, (5.5)
I
where
Jin(®)
Ir, (%) = m (5.6)

It follows from (5.5) ([6] p. 91) that there is a s{lbsequence of (k,), say
(t,), and a set B of measure zero, such that

limg, (x) = 0

for x € I\B. Since g, (v) is Borel measurable, the function [im g, () is
N0

Borel measurable, and thus

B= =x: Iim g, (z) > 0}

n->0
is a Borel set. Also, for € I\ B, there is an integer n(x) such that
__Ju®
=i o) <1
for n > n(x). Thus, for n > n(z),
ft,.(x) = tn(l +51,,)l”,

so that we obtain (5.4) by root extraction. This completes the proof of
the lemma. '

gt,,(x)

Lemma 5.4. Let K; < I be compact sets (¢ =0,1), with K,nK, = @,
and C(K,) > 0 (¢t =0,1). Then

C(K,) < C(Kyu K;). (5.7)

Proof of Lemma 5.4. Let n, represent the Frostman measure of K
(¢ = 0,1). We will show that

V(Kyu K;) < V(K,), (5.8)

from which (5.7) follows. If 0 < e <1, let p, = (1—¢)uy+ep,. Since
¢(p,) < Kyu K, we have

V(K LK) £ I(ge,)
= (1—&)*L(po) + &I (1) + 2(e)(1 — &)L (g, 1), (5.9)

the last term being defined in (3.23). By Fubini’s theorem, we can write

I(pgs pq) = J Ulo) dpsy.



REGULAR BEHAVIOUR OF ORTHOGONAL POLYNOMIALS 141
Now Uf(u,) is continuous on K,, and maxU(u,) =a < V(K,) by

ze K,

Theorem 3.1 (). Thus, from (5.9), we have
V(KyuK,) £ (1—-¢)2V(K,) + 2V (K)) +2¢(1 — &)a
= V(Ky) — 2¢(V(K,) — ) + eX(V (Kp) + V(K,) — 2a).
Thus for sufficiently small ¢ we obtain (5.8).

Proof of Theorem 1.5. To prove the third inequality of (1.5) consider
O(p)* = [ | B@Ip@)dx < [ | T, ) Pp(e) de

< (1/20 [ ple) e,
I

in which we have used Lemma 5.2 and Lemma 3.5 (a). We then obtain
the result by root extraction.

We next suppose that the first inequality of (1.5) is violated, and deduce
a contradiction. By our assumption, there is an increasing sequence of
integers, (k,), and there is a real «, such that

lim (N, (p))Vk» £ o < L(E). (5.10)

Since L(Z) > 0 by Lemma 3.3, we can assume that o > 0. We can also
assume that p(x) is a Borel measurable function without loss of generality.
Thus

A

i ([ Zle12) 12p(x>)1/<2k») N

oZkn

n-00
Thus, by Lemma 5.3, there is a subsequence of (2k,), say (2t,), and a
Borel set B of measure zero, such that for z € I\B

(Il’zn(xlazzl)nlzp(w))”‘”"’ 1.

lim
nN->0

Since S(p(x)) = E, for x € E\B it then follows that
Iim | B, (z|p)Y= £ o (5.11)
We next let v, be the measures associated with F, (x|p) by Lemma 1.4.
Let (s,) be a subsequence of (¢,), which exists by Lemma 4.1 (a), for which

(vg,) converges, say with limit u,. By Lemma 4.3 we have

1A

1
Ulo) < lim U(z,v,) = limlog ————
(ko) = TR Vv = L8R Gl

where equality holds in the first inequality except for B, < I, a Borel set
of capacity zero. Thus on E\(BuB,), we have

Uluo) 2 log(1/e) > log(1/L(E)). (5.12)
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Since B, has capacity zero, it has measure zero ([9] p. 59), and hence Bu B,
has measure zero. If we let ' = E\(BuB,), then L(E') = L(E) and
E' = N(I). Thus U(u,) > log(l/L(E")) for € E’. By Theorem 1.4,
U(uo) = log(1/L(E')) would have to hold on a subset of £’, say B,, that is a
Borel set and of the same measure as E’. Since E’ has positive measure,
B, cannot be the null set, and so we have a contradiction, and the proof
is complete.

Proof of Theorem 1.6 (b). We start with the sequence (k,) for which
(1.6) holds. What we will show is that, for any subsequence (¢,), there is a
further subsequence (s,,) for which limv, = u}. Hence by Lemma 4.1 (b),

n->0

(1.7) follows.
Once (t,) is chosen, choose a subsequence (r,) such that

T | B, (s, p) [ < L(B) (5.13)
n-0

for z € S(p(x))\B, where B is a Borel set of capacity zero. This can be
achieved by applying the argument of the proof of Theorem 1.5. In (5.10)
we can put « = L(E), and then repeat the steps indicated to (5.11), which
yields (5.13). Next, choose (s,) as a subsequence of (¢,) for which (v, )
converges, say to u,. Continuing the steps of the proof of Theorem 1.5
to (5.12), we now have

Uluo) 2 log(1/L(E)) (5.14)

for z € S(p(x))\(ByuB;). In this case the measure u, does exist, and by
Theorem 1.4 it is unique. Thus y, = p¥ and as already indicated, the
proof of (b) is complete.

(a) We know that L(E) > 0 by Lemma 3.3 (b), and for convenience we
let L(F) = «. If @ = 1/2, then, by Theorem 1.5, for any p(x) € P(E) the
choice k, = n (n = 1, ...) satisfies (1.6). Hence we assume that « < 1/2.

There is an equimeasurable subset of K, say E,, of stable capacity « by
Lemma 3.3(a). Then E, has an equimeasurable subset B such that
B e N(I); Bis a Borel set of type F, and L(B) = C(B) = «. We will define
a function p(z) with S(p(x)) = B, and construct an increasing sequence
(k,) such that (1.6) is satisfied. Since p(x) can be extended to E without
affecting the value of N, (p), (a) will be proved.

We next show that in a representation B = J¥_, K, with K, < I
(n =1,...), K, a compact set, C(K,) > 0, K, < K, ,, which will exist, we
must have, for any n, C(K,) < C(B). The set I\K, must contain an
interior point of I, since otherwise C(B) = 1/2, and hence thereis an interval
[«,B] in I at a positive distance from K,. Now B e N(I), so that
meas(Bn[«,B]) > 0, and thus [«, 8] contains a compact set K*, K* < B,
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measK* > 0. By ([9] p. 59) it then follows that C(K*)> 0. By the
monotonicity of capacity, C(B) 2 C(K,uK*) and, by Lemma 5.4,
C(K,uvK*) > C(K,).

Choose a representation B = |J®_, K, introduced in the previous
paragraph. By Lemma 5.1 and the result C(K,) < C(B), for each integer
n > 0 there is an integer k, and an ¢, > 0 such that

(MK, ) < C(K,)+¢, S C(B) (2 k).
There is no loss in generality in assuming that (k,:n=1,...) is an
increasing sequence of positive integers. Define a function w(z) on B as
follows. For z € K, \K, (n=0,1,...), with K; = @, let w(z) = (3C(B))k».
Thus w(z) is a Borel measurable function defined on B satisfying
0 < w(z) < 1. By Lemma 5.1, |7}, (x| K,)| < 2% for x € I. We use only
the fact that the zeros are on I. Also, from the definition of w(x),
sup w(x) = sup w(x),
xe B\K, ze Ky41\Kn

since the sequence {(3C(B))*»} is decreasing. Thus we obtain inequalities,
for each n > 0, where we put

ga() = [w(@) Ty, (€| K,) |,

supg,(z) < maX{ sup g,(x), sup gn(x)}
ze B\K,

zeB %e Kn
< max{(C(B))kn, (}C(B))kn2%n}
= (C(B))kn. (5.15)

We next let p(z) = (w(z))? and note that S(p(z)) = B. We have, for
n > 0,

Ni(p) £ [ | T (al K Pole)?ds < 208, (5.16)

where the first inequality follows from Lemma 5.2 and the second from
(5.6). From (5.7) we have
Lm (N, (p))V* < C(B) = L(E).
Since
lim (N, (p))"/* 2 L(E),
by (1.5), we finally arrive at (1.6).
This completes the proof of (a) and of the Theorem.

Proof of Theorem 1.1. Since I has stable capacity by Lemma 1.3, and
m(E) =2, E also has stable capacity 1/2, so that L(E)=1/2. By
Theorem 1.5, for any p(x)€ P(E), hm( W(p)Vm=1/2. Thus by
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Theorem 1.6 (b) and the last part of Theorem 1.4, limv, = u;, and thus
n->0

p(x) is regular by Lemma 1.4. This concludes the proof.

Proof of Theorem 1.2. The proof of sufficiency is modelled exactly on
the proof of Theorem 1.1, if we pick up the argument of the proof from the
point where it is shown that L(E) = 1/2. For the proof of necessity,
suppose that E € N(I) and L(¥) < 1/2. By Theorem 1.6 (a), there are
p(x) € P(E) and an increasing sequence of integers (k,) such that
lim (&, (p))"/%» = L(E). Thus, by Theorem 1.6 (b), limv, =puf. By
n-w0 n->0

Theorem 1.4, p¥ # p;, since L(E) # 1/2. Hence the p(x) constructed is
not regular. This concludes the proof.

6. A sufficient condition for regularity with applications

Lemma 6.1. Let {Q,(x)}(n=1,...) be a sequence of polynomials,
Qn(x) = 2™+ ..., with zeros {xy,,...,%,,} on I. We follow the convention
that a zero of multiplicity k is repeated k times. Let v, be the measure defined
on the Borel subsets of I determined by the conditions v, ({x}) = k/n, when x
is a zero of Q,(x) of multiplicity k and v,(E) = 0 when Q,(x) # 0 on E. Let
M, = ma.Ix[Qn(x) |. Then, if

lim M, = 1/2, (6.1)
N-00
it follows that
lim v, = py. (6.2)
n->0

Proof of Lemma 6.1. We have immediately from

1@, ()| = M, (zel)
the fact that
Em|Q,(x)/* = 1/2 (zel),

or
lim U(v,) 2 log2 (z € I). (6.3)
n-0

By Lemma 4.1 (a), in every increasing sequence of integers (k,), there

is a subsequence (t,) such that (v, ) converges, say with limit u,. If we can

show that p, = p;, using Lemma 4.1 (b) we find that (6.2) is established.

Now by Lemma 4.3
Uz, po) = lim U(z,v,)
N~

for z € I, except for z € B, a Borel set of type F, and of capacity zero.

Hence by (6.3)
Uz, ) 2 log2
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for 2 € I\B. It thus follows from Theorem 1.3 that u, = p;, and the proof
is complete.

We do not use the fact, nor do we prove it, but it is interesting to note
that (6.1) is also necessary for (6.2) to hold.
LemMma 6.2 ([9] p. 178). Let Q,(x) be a polynomial of degree n with
M, = max|Q,(z)].
zel

Then
Q@) S meM, (we ). (6.4)

Proof of Theorem 1.10. We first note that, if (1.13) is satisfied for a
measure u € Q, then ¢(u) = I. Hence, by Theorem 1.8, there is a uniquely
determined set of orthogonal polynomials {P,(z|u)} (» = 0,1,...). For a
given integer n > 0, let {, € I be a point when | P,({|u)| = M,. We will
establish

| Pu(y)| 2 M, /2 (6.5)

for |y —,| £ 1/(2n?) (y € R). By the mean value theorem for derivatives
Fo(y) = F(Ln) + Pr(@*)(L—y),
for z* between {, and y. Thus
| B)] 2 | Bo(a) | = Pr(a®) [ L~y
> M, —ntM, | 1/(2n%)| = M,/2, (6.6)

where we have used Lemma 6.2 in the second inequality.
We next consider the inequalities

12y 2 [| Tl D Pdp 2 [| Pul o) P

Eat1/i2n®)
2 (M,*/4) dp 2 (M,?[4)w(1/(202))
tn—1/(2n)
We have used Lemma 3.5, (5.2), (6.5) and (1.14) successively in this chain
of inequalities, yielding

(1/2)n-2
<L > 7 7
Mo = S/
We then obtain

lim M1 < 1/2,
since

lim w(1/(2n2))12n = lim (w(1/(202))V/m)1/2 = 1

Nn-200 n-0
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by (1.13). Thus, by Lemma 6.1,

limy, = p;
N—->0

and so, by Definition 1.7 and the proof of Lemma 1.4, (1.1) is satisfied
and p is a regular measure.

LevMMA 6.3. Let p(x) € P, and define p(x) = 0 in \I. Let

) = inf [ p(z) da. (6.8)

xeldz—-8
Then p(x) is a regular weight function if
lim 7(1/(2n?))V/" = 1. (6.9)

Proof of Lemma 6.3. There are essentially no alterations from the proof
of the previous lemma, and in (6.7) we use (6.8) and (6.9) instead of (1.14).

Proof of Theorem 1.9. We will next define an atomic measure pu € Q
which satisfies the condition
lim w(1/(2n?))V* = 1, (6.10)
Nn-0
which by Theorem 1.10 is a sufficient condition for u to be regular.
Because (6.10) is satisfied, c(u) = I.
For each integer » > 0, let u, be the measure determined by the
conditions
2k—1
el § R = —nd — 2
”"({2(n2+1)}) A, (K ne, —n+1,...,02+1), (6.11)
where A, is a positive constant to be determined. Let p = ¥®_,u,. By
[6] p. 232 this defines a measure, ¢(x) = I and u(l) = ¥2_,(2n%+2)A,,. We
choose

1
An = (2n2+2)n(n+1) (6-12)
so that u(I) = 1.
We next note that, for any integer n > 0,
w(1/(2n%) 2 M, (6.13)

since forx e I

LI | 1 LI P
F\* " g2 ont)) = Fal\*® 27),2’3;-'-272,2 =

To see this, observe that, for « € I, the interval (x—3n—%,x+4n2?) has
length »—2, while the points (k—13%)/(n?+1) (k= —n%—22+1,...,02+1)
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are spaced at a distance 1/(n%+ 1) apart, with the two extreme points at
a distance 1/(2(n?+ 1)) from the end points of I. By combining (6.13) and
(6.12), we see that (6.10) holds.

Proof of Theorem 1.7. We associate with each integer n > 0 a function
Pp(x) if the following way. First centre at each point (k—3)/(n%+1)
(k= —mn% —n®+1,...,n%+1) an interval [, , of length 1/n2(n?+1). This
choice ensures that one of the intervals [, lies entirely inside any
interval of the form [x — §n~2,z + 4n~2]. Define p, () to be A, /meas(l;. ,,n E),
where A, is defined by (6.12) and the quantity in the denominator is not
zero since B € N(I). We then note that [;p,(x)dx = (2n?+2)A,, since
the intervals 1, are non-overlapping. Thus p*(z) = ¥Pp,(x) is an
integrable function by the monotone convergence theorem for integrals
([6] p. 84) and S(p*(x)) < E. Finally let p(z) = p*(x) + yg(x), the added
term being the characteristic function of Z. Thus S(p(z)) = E. We will
now show by Lemma 6.3 that p(z) is a regular weight function. For any
x € I, we have

z+in—?

p@idzz [ p@)dwz ),

z—4n—2

z+in—2

wn) z [

z—tn—2
Thus, using (6.12), we see that

lim +(1/(2n2))V/r = 1,

and so the proof is completed by reference to Lemma 6.3.

7. Concluding remarks

One question that we have dealt with is ‘When is p(z) € P a regular
weight function?” We have settled the question of when this fact can be
ascertained from S(p(z)) alone. Thus the next logical problem is to
develop criteria for regularity in the case where S(p(z)) € N(I) but is not
a determining set. For each set K € N(I) that is not a determining set,
we have seen that both regular and non-regular weight functions can occur
having E as support. We remark that the criterion (1.10) given in
Theorem 1.8 distinguishes between weight functions that are very regular
and those that are not on the basis of the values of p(z).

Unlike the situation in the second-order theory, the question of
characterizing regular measures, at least by our approach, is not settled
by the characterization of regular weight functions.

The following two questions are related to each other, and to the
result (1.11) for the second-order theory.
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For p(x) € P, does lim (N, (p))¥* = 1/2 imply that the p(z) is a regular
n->0

weight function?
For p € Q, ¢(u) an infinite set, does lim (N, (x))* = 1/2 imply that pis a
n-

regular measure?

Our final question was raised by Paul Erdos in conversation. Let
0 = U, I, be an open set dense in I, where {I,} are pairwise disjoint
intervals. We have shown by our results that y,(z), the characteristic
function of O, is a regular weight function if lim C(U3_, ;) = 1/2. If

n-0

lim C(U?., L) < 1/2, is xo(x) necessarily not a regular weight function?
n-»0

The techniques of Lemma 1.3 (¢) show that y,() is not a regular weight
function if, in addition, the length of I, tends to zero sufficiently rapidly.

We finally remark that [10] and [11] contain the preliminary form of
several techniques used in this paper, as well as related results.
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