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The design of satellites and their operation is a complex task that involves a large number of variables andmultiple

engineering disciplines. Thus, it could benefit from the application of multidisciplinary design optimization, but

previous efforts have been hindered by the complexity of the modeling and implementation, discontinuities in the

design space, and the wide range of time scales. We address these issues by applying a newmathematical framework

for gradient-based multidisciplinary optimization that automatically computes the coupled derivatives of the

multidisciplinary system via a generalized form of the adjoint method. The modeled disciplines are orbit dynamics,

attitude dynamics, cell illumination, temperature, solar power, energy storage, and communication. Many of these

disciplines include functions with discontinuities and nonsmooth regions that are addressed to enable a numerically

exact computation of the derivatives for all of the modeled variables. The wide-ranging time scales in the design

problem, spanning 30 s to one year, are captured through a combination of multipoint optimization and the use of a

small time step in the analyses. Optimizations involving over 25,000 design variables and 2.2 million state variables

require 100 h to converge three and five orders of magnitude in optimality and feasibility, respectively. The results

show that the geometric design variables yield a 40% improvement in the total data downloaded, which is the

objective function, and the operational design variables yield another 40% improvement. This demonstrates not only

the value in this approach for the design of satellites and their operation, but also promise for its application to the

design of other large-scale engineering systems.

Nomenclature

A = area, m2

Br = bit rate, Gb∕s
C = vector of all constraint functions
Ci = vector of constraint functions corresponding to

the ith component
c = vector of all constraint variables
D = downloaded data, Gb
dc = distance from satellite to Earth tangent plane at

ground station, km
ds = distance from satellite to Earth–sun axis, km
Gt = transmitter gain
I = current, A
J = mass moment of inertia matrix, kg · m2

L = angular momentum vector, kg · m2∕s
LOSc = satellite-to-ground-station line of sight
LOSs = satellite-to-sun line of sight
O = orientation matrix
P = power, W
_Q = heat transfer rate, W
r = position vector norm, km
r = position vector, km
SOC = battery state of charge
T = temperature, K
Vi = vector of functions corresponding to the ith component

v = vector of all variables (input, state, output); velocity
vector, m∕s

vi = vector of variables corresponding to the ith component
γ = satellite roll angle, rad
ηs = sun line of sight transition parameter
τ = torque, N · m
ω = angular velocity vector, 1∕s
^ = unit vector

I. Introduction

S ATELLITES serve a multitude of purposes that range from
navigation and scientific research to military applications. Over

the past decade, small satellites have gained increasing interest as
alternatives to larger satellites because of the low time and cost
required to manufacture and launch them. In particular, the CubeSat
class of small satellites is becoming a common platform for education
and research because it has a set of specifications that facilitates
relatively frequent launches as secondary payloads.
CADRE (from “CubeSat investigating atmospheric density

response to extreme driving”) is funded by the National Science
Foundation and will study the response of the Earth’s upper
atmosphere to auroral energy inputs [1]. This mission addresses the
need for more accurate modeling of space weather effects, motivated
in part by the growth of the global space-based infrastructure. To help
answer some of the important scientific questions in this area,
CADREwill provide critical in situ measurements in the ionospheric
and thermospheric regions.
CADRE will inherit much of the design of the University of

Michigan’s Radio Aurora eXplorer CubeSat. However, the unique
scientific goals of the mission necessitate a detailed design study.
Power is a driving factor because the scientific instruments are to run
continuously, and large amounts of data must be transmitted to
ground stations. Fortunately, there are several geometric and opera-
tional design variables whose impact can be captured with relatively
inexpensive computational models, and it is possible to use these
variables to satisfy the mission requirements while improving the
satellite’s performance. In the past, this has mostly been done via
experience and human intuition aided by computational design tools
that work with a relatively small number of design variables.
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In the literature, there are many studies in which computational
modeling and optimization have been applied to satellite design. For
instance, Boudjemai et al. [2] performed topology optimization on
the structure of a small satellite using NASTRAN for the finite-
element analysis. Numerical optimization has been applied to several
other disciplines as well. Galski et al. [3] optimized a thermal control
system, while Jain and Simon [4] implemented real-time load-
scheduling optimization of a small satellite’s batteries.More recently,
Richie et al. [5] and Zhang et al. [6] used optimization to size the
energy storage and attitude control system and to design the layout of
the satellite’s components, respectively. All of these single-discipline
optimization studies share a common approach; with the exception of
the actuator sizing optimization, they use a genetic algorithm (GA) as
a simple solution to deal with the discrete design variables and the
discontinuities that are often present in the models.
Other authors considered multiple disciplines simultaneously to

better model the overall physical problem. Barnhart et al. [7] imple-
mented SPIDR, a systems-engineering-based framework for satellite
design with an artificial-intelligence-based optimization algorithm
that incorporates user-defined rules and constraints. Fukunaga et al.
[8] developed OASIS, which uses a machine-learning algorithm to
adaptively select and configure a metaheuristic optimizer such as a
GA to optimize a model in MIDAS [9], a satellite design framework.
SCOUT [10] is another framework that uses a GA for optimization,
and ATSV [11] uses a shopping paradigm to aid the design process.
Recently, Ebrahimi et al. [12] and Jafarsalehi et al. [13] developed
multidisciplinary design frameworks that use a particle swarm
optimizer (PSO) and a GA, respectively.
With the exception of the last two efforts, all of the computational

design tools cited previously have graphical user interfaces that
significantly enhance usability. For these tools, the approach is to
make user interaction with the framework as streamlined as possible,
allowing the user’s knowledge and experience to work together with
the framework’s optimization capability. However, as was the case
with the single-discipline studies, all of these computational design
tools use optimizers or design techniques that do not use gradients,
which limits the number of design variables that can be considered.
Without gradients, algorithmsmust rely on sampling the design space
at a cost that grows exponentially with the number of design
variables, and in practice, this becomes prohibitive when there are
more than O�10� variables. Wu et al. [14] used a gradient-based
approach to solve a satellite multidisciplinary design optimization
(MDO) problemwith collaborative optimization [15,16], but the cost
of computing coupled derivatives limited the number of design
variables to O�10� here as well.
Given the existing body of work, this paper seeks to address the

question of whether MDO can handle the full set of design variables
in the satellite design problem simultaneously, even when there are
tens of thousands of them. The high-level approach is gradient-based
optimization in combination with adjoint-based derivative computa-
tion, with a modular implementation of the disciplinary models in an
integrated framework. The full small-satellite design problem is
simultaneously considered, including all major disciplines, multiple
time scales, and tens of thousands of design variables that param-
eterize the variation of several quantities over time.
The paper begins with a detailed description of CADRE and the

design problem, which explains why such a large number of design
variables is necessary. Next, we discuss the approach taken to im-
plement and solve this large-scale MDO problem by listing all of the
challenges as well as the measures taken to address them. Having
established the background and context, we describe each disci-
plinary model, emphasizing those models that are original and have
been developed specifically for this problem. Finally, we present
optimization results that demonstrate thevalidity of theMDOapproach
advocated in this paper and its potential for small-satellite design.

II. CADRE Design Problem

CADRE is a 3U CubeSat [1], meaning its body is a square prism
with dimensions of 30 × 10 × 10 cm. As with other CubeSats,
CADRE’s dimensions are fixed so that it can be launched as a

secondary payload with a larger satellite to reduce costs. The satellite
has four fins that are initially folded at the sides of the satellite but are
permanently deployed after launch in the rear direction to a preset
angle. Although the roll angle is flexible, CADRE must always be
forward-facing because of the scientific requirements, and so the
swept-back fins provide passive attitude stabilization through aero-
dynamic drag. CADREhas 12 solar panelswith seven cells each: four
panels on the sides of the body, and one on the front and back of each
fin. In general, the 84 cells are only partially illuminated because the
Earth or another part of the satellite can cast shadows evenwhen a cell
is facing the sun. Because the cells cover most of the satellite, it may
be beneficial to install a radiator in place of one or more of the solar
cells that are often shaded to provide cooling and to improve the
power generation of other cells. A rendering of the CADRECubeSat
is shown in Fig. 1.
Other relevant subsystems include energy storage, communica-

tion, and attitude control. Lithium-ion batteries are installed with
charge- and discharge-rate constraints, and a depth-of-discharge limit
of 20% is enforced to lengthen the battery life. To transmit data to
ground stations, an antenna is installed toward the rear of the satellite,
and the installation angle is a parameter that can be varied, although it
is constrained to be in the vertical plane. For the purposes of this
paper, data transmission to ground stations is assumed to use a UHF
antenna, although the final design for CADRE may use an S-band
antenna for high-speed data download. CADRE uses two types of
attitude-control actuators that complement each other: magnetor-
quers for gross changes, and reactionwheels formore precise control.
With the latter, there is potential for the rotation rates of thewheels to
accumulate and grow unmanageably large, and so themagnetorquers
are used to counteract constant torques such as that due to solar
pressure. In this paper, only the reaction wheels are modeled to
capture the power requirements of the desired attitude profiles, and
the cost of counteracting disturbance torques ismodeled as a constant
background power consumption. Figure 2 shows the disciplines and
how they are coupled through the state variables.
CADRE’s mission is to continuously collect data and transmit as

muchof that data as possible to the ground stations. Therefore, the total
data downloaded is the natural objective function for the CADRE
design optimization problem, although generating and storing
sufficient energy is a driving factor. The fin and antenna angles are
important geometric design variables because they affect the power
generation and the data-transmission rate, respectively. CADRE’s
attitude profile over time can be designed as well, providing further
flexibility that can be used to increase power generation, cool panels
whennecessary, and increase transmissiongainduring communication
with a ground station. The attitude profile must be optimized
simultaneouslywith the geometric designvariables because the fin and
antenna angles that are optimal for an assumed attitude profile may no
longer be optimal for an attitude profile that is optimized separately.
The available power must also be optimally distributed between
communication and actuation, and so the power-distribution profile
must be considered simultaneously as well.
Optimizing these profile variables involves manipulating two-

dimensional curves without any a priori knowledge of their final
optimal shapes. To do this, the curves must be discretized and
parameterized, and in the simulation of hours, days, or even months
of the satellite’s operation, the resulting number of design variables
can easily reach tens of thousands. To summarize, the objective of
the CADRE design problem is to maximize the total data down-

Fig. 1 CADRE CubeSat geometry.
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loaded subject to constraints on the power and energy available, with
respect to the fin angle, the antenna angle, the attitude profile, the
communication power profile, and the 84 binary cell-installation
variables.

III. Approach

The advantage of the gradient-based MDO approach taken in this
paper is that it can handle a problem with many disciplines, design
variables, and state variables. As a result, the true design problem can
be optimized with few simplifications. This section discusses the
approach used in this paper by listing each of the technical challenges
and their solutions.

A. Large Number of Design Variables: Gradient-Based Optimization

Gradient-free optimizers do not perform well for problems with
hundreds or thousands of designvariables [18]. Gradient-freemethods
such as GAs and PSOs work with populations distributed over the
design-variable range, but for a constant level of convergence, the
number of required function evaluations grows exponentially.
When combined with analytic derivative computation, gradient-

based optimization can be a powerful tool because the adjointmethod
makes it possible to compute derivatives at a cost that is nearly
independent of the number of design variables [19]. In addition, the
number of iterations required for the optimization typically scales
only linearly with sequential quadratic programming (SQP). In the
aerospace field, the adjoint method has been very successful in
aerodynamic shape optimization, initially with the approach of
Jameson [20] and later with the optimization of full aircraft configu-
rations [21–23]. It has also been successfully applied to the multi-
disciplinary optimization of aircraft aerodynamics and structures
simultaneously using a coupled adjoint approach [24,25].
SQPmethods are among the best for constrained nonlinear optimi-

zation problems because an approximate Hessian of the Lagrangian
is built from only first derivatives, and the method is second-order
convergent close to the optimum point. All of the optimization
problems in this paper are solved using SNOPT [26], through the
pyOpt interface [18]. SNOPT is a reduced-Hessian active-set SQP
optimizer that efficiently solves large-scale, sparse nonlinear con-
strained problems.
Gradient-based optimizers can never guarantee convergence to the

global optimum. However, the global optimum is not a realistic goal
given the number of design variables in this problem because many
local minima are expected. Even as a local optimizer, the gradient-
basedMDO algorithm is still useful because it is able to find a design
for CADRE better than that found using experience and human
intuition. The argument is that a local optimum for a problem that
closely represents reality may be more useful than the global
optimum of a problem based on lower-fidelity models.

B. Large Number of Disciplines: New Multidisciplinary Design,
Analysis, and Optimization Formulation

From an implementation perspective, the large number of
disciplines presents one of the most significant challenges of this
work. Each discipline is decomposed into separate computations
to simplify andmodularize the code, but this results in a large number
of components. For instance, the output of the communication
discipline is ultimately the total data downloaded, but it is broken
down into the computations of the ground station line-of-sight
variable, the position vector from the satellite to the ground station,
the transmitter gain as a function of this vector, the data-download
rate, and the total data downloaded. In total, there are 43 components
when those of all the disciplines are combined, and Fig. 3 shows the
dependencies to illustrate the scope and complexity of this problem.
In the figure, the �i; j�th entry represents the variable(s) computed by
the ith component and used as an argument by the jth component.
The design structure matrix is upper triangular because the problem
has been formulated to remove feedback, as will be discussed
in Sec. V.A.
Programming all of these components, accounting for all of the

dependencies between variables, and correctly programming their
derivatives is a long and error-prone process. We implemented all of
the componentswithin a framework that uses a newmultidisciplinary
design, analysis, and optimization (MDAO) formulation [27]. This
formulation simplifies the task by defining the multidisciplinary
analysis problem mathematically as a nonlinear system of equations.
The design, state, intermediate, input, and output variables are a
subset of the unknowns in this nonlinear system, and the objective,
constraint, residual, and other functions are formulated as equations.
This is accomplished by classifying each variable as an independent
variable whose value can be set, an explicit variable, or an implicit
variable whose value is the root of an equation. Design variables and
parameters are independent; behavior variables and other inter-
mediate variables computed by evaluating an expression (no matter
how complicated) are explicit; and state variables that are computed
by solving a linear or nonlinear system of equations are implicit.
Thus, the input variables for the multidisciplinary analysis are
independent, while the output variables, including the optimization
objectives and constraints, are either explicit or implicit (typically the
former). We define for each variable a corresponding constraint
function that yields zerowhen the variable has converged and has the
value given by its definition, as shown in Table 1. In the remainder of
this section, upper-case symbols designate functions and lower-case
symbols designate variables (e.g., c is the vector of the output
variables of C).
The variables are concatenated into a single vector v, and the

constraint vector is denoted C. This formulation effectively defines
the multidisciplinary analysis problem mathematically as the
nonlinear system C�v� � 0. Because ∂C∕∂v is always invertible in

Fig. 2 Extended design structure matrix diagram [17] showing all relevant disciplines in the CADRE design problem.
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practice, the inverse function theorem states that the inverse of the
Jacobian ofC is the Jacobian of the inverse function ofC, yielding the
following result [19]:

∂C
∂v

dv

dc
� I � ∂C

∂v
Tdv

dc

T

(1)

Methods resulting from the left equality are described as forward
mode and those from the right equality as reversemode. For example,
the two modes of algorithmic differentiation as well as the direct and
adjointmethods correspond to one of these twomodes. This equation
unifies all known methods for computing numerical derivatives;
more details can be found in [19]. Given accurate partial derivatives,
the equality on the right yields numerically exact partial derivatives at
a cost that is nearly independent of the number of designvariables. As
an illustration, Fig. 4 shows how the adjoint method can be derived
from Eq. (1) with the appropriate definition of the vector v. The
nomenclature used in this figure is consistent with the source of the
figure [19], but it does not apply to the rest of this paper. In Fig. 4, x is
the design or input variable vector, y is the state variable vector, and f
represents the output variables.
Figure 4 also helps explain the entries of the dv∕dc matrix, the

interpretation of which may be unclear. This matrix is the Jacobian of
the local inverse of theC function at the solution ofC�v� � 0, and so
a column dv∕dci is the vector of perturbations to v that solves the
nonlinear systemwith a small perturbation added to the ith constraint.
The figure illustrates themeaning of the derivatives of input variables
such as dx∕df ; because f has neither an explicit dependence on x nor
an implicit one through y, these derivatives are zero. It also illustrates
the meaning of the derivatives with respect to the residuals; a column
of dy∕dr represents the vector of perturbations to y that comes about
by adding a small perturbation to one of the residuals. In the second
equality of Eq. (1), solving for the column of the transpose of dv∕dc
corresponding to a desired objective or constraint function, for
instance f, yields the full vector of the derivatives of f, a subset of

which is df∕dx. Thus, one of the gradients needed during an
optimization iteration can be computed at the cost of just a single
solution of a linear system.
Based on this formulation of the problem, it is possible to

automatically solve the multidisciplinary system and compute the
coupled derivatives. To implement a component, we simply define
methods for computing Ci, ∂Ci∕∂v and its transpose, and the
preconditioner for ∂Ci∕∂vi and its transpose, and we implement a
component-level solver that computes vi: Ci�v� � 0. Because
feedback has been removed from the current problem, as shown in
Fig. 3, a system-level solver can then solve the nonlinear system by
running a single iteration of the nonlinear blockGauss–Seidelmethod.
It can also solve the linear system in Eq. (1) using a single iteration of
the linear block Gauss–Seidel method to obtain the desired vector of
derivatives. For the optimization problem presented in this paper, we
must find 31 linear solutions of the second equality in Eq. (1), one for
each objective and constraint function,where the right-hand side of the
linear system is the ith column of the identitymatrix, and i is the index
of the output variable of interest in the global v vector.
Although coupled derivatives are computed in the framework

using Eq. (1), each component must be able to compute the partial
derivatives of any variables it computes with respect to any variables
onwhich it depends. The simplest option is finite-differencing, either
column-by-column or as a directional derivative. However, the
accuracy of finite differences is limited because subtractive
cancellation error dominates at small step sizes, and the error term in
the first-order Taylor expansion becomes significant at larger step
sizes. The complex-step method avoids this issue because there is no
subtraction operation in the formula [19,28]. However, the cost of
differentiation is proportional to the number of variables, which is of
the order of thousands in this case. Algorithmic differentiation is
another option with an error theoretically on the order of machine
precision, but the cost is proportional to either the number of outputs
or the number of inputs, which are both large in this problem [19].

Fig. 3 Design structure matrix diagram illustrating the complexity of the problem.

Table 1 Classification of variables in the MDAO formulation

Type ith variable Corresponding constraint

Independent vi � v�i Ci�v� � vi − v�i
Explicit vi � Vi�v1; : : : ; vj≠i; : : : ; vn� Ci�v� � vi − Vi�v1; : : : ; vj≠i; : : : ; vn�
Implicit vi: Ri�v1; : : : ; vj≠i; : : : ; vn; vi� � 0 Ci�v� � −Ri�v1; : : : ; vj≠i; : : : ; vn; vi�
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For these reasons, each component has been analytically dif-
ferentiated. This approach yields numerically exact derivatives and
can be more efficient than the other methods. Furthermore, many of
the Jacobians are large (thousands by thousands) but sparse. These
sparse matrices are assembled directly in Fortran very efficiently.

C. Multiple Time Scales: Multipoint Optimization

The CADRE design problem involves multiple time scales.
Capturing CADRE’s power generation and temperature fluctuations
requires a time resolution ofO�5 min� because its orbit has a period
of roughly 90 min. Ground-station passes last O�10 min�, and
energy must be stored between sets of ground-station passes, which
occur in patterns that roughly repeat each day. Assuming that the
ground stations are close to the Equator, this requires a resolution of
O�1 min� with a simulation of at least 12 h of the satellite’s
operation. However, depending on the launch orbit, CADRE’s orbit
mayprecessmultiple times per year. This, combinedwith the effect of
the seasons, requires a simulation of one year to model one period of
oscillations in the satellite’s operating conditions.
This multiscale characteristic, combined with the ambitious scope

of the design problem, presents a significant challenge. For a truly
unbiased simulation, the year must be simulated with a resolution of
1 min, yielding 262,800 discrete points. If a shorter period of time is
simulated, the resulting design may be optimal in one season but not
others. In some seasons, the satellite may have difficulty generating
sufficient power because the solar cells seemuch less of the sun at the
chosen fin angle.
The periodic nature of many of the variables suggests a frequency-

domain approach for the state and design variables to reduce the size
of themodel and the optimization problems. Such an approachwould
capture the oscillatory behavior of the variables with a relatively
small number of degrees of freedom. However, we did not adopt this
approach for two reasons. First, many of the state variables, such as
the sun line-of-sight variable, have near-discontinuous jumps that
cannot be accurately represented with a small number of frequencies.

These effects propagate to other variables, such as the temperature,
solar power, and battery current, as similar discontinuities or as
nonsmoothness. Second, although other state variables do behave
smoothly for the most part, they tend to have one or more spikes due
to ground-station passes. The transmitter gain, battery current, and
temperature are examples of variables that exhibit such spikes,
although for temperature these are on a relatively small scale. These
high-frequency components could potentially be represented by
additionalmodes, but theywould require a priori knowledge ofwhere
the passes are, and some of the automation in the computational tool
would be lost. Nonetheless, it is worth noting for future work that
representing some of the state variables in the frequency domain and
others in the time domain would no doubt reduce the size of the
problem.
Our solution is to simulate six 12 h blocks with 0.5 min resolution,

distribute them uniformly over the year, and weight each one equally
in a single optimization problem. The orbit and communication time
scales are captured within the 12 h blocks, and simulating half a day
every two months captures the orbit-precession time scale. The
optimization constraints are applied separately to each block, and
the objective functions computed from the six blocks are averaged.
This approach is essentially multiscale, multipoint optimization; the
minute-level time scale is directly simulated, and the objective func-
tion for themonth-level time scale is numerically integrated using the
midpoint rule.

D. Large Number of Constraints: Constraint Aggregation

As previously mentioned, the coupled-derivative equations
compute the gradients efficiently because they give either the full
vector of derivatives with respect to a single variable [forward mode
of Eq. (1)] or the full gradient of a variable [reverse mode of Eq. (1)]
using a single solution of a linear system. Because our optimization
has a large number of design variables, the reverse mode must be
used, but it requires a linear solution for each constraint. Moreover,
the battery discipline requires four inequality constraints at each time

Fig. 4 Derivation of the adjoint method from Eq. (1) [19].
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instance — maximum charge rate, maximum discharge rate,
minimum state of charge, and maximum state of charge— resulting
in tens of thousands of constraints.
We use constraint aggregation to reduce the number of constraints.

The Kreisselmeier–Steinhauser (KS) function [29] aggregates the
constraints over all of the time instances into a single criterion. Con-
straint aggregationwithKS functions has been shown toworkwell in
combination with the adjoint method in optimization problems, for
instance in structural weight minimization [30] and aerostructural
optimization [31,32]. The KS function is given by

KS�x� � fimax
�x� � 1

ρ
ln
X
i

eρ�fi�x�−fimax
�x�� (2)

where fi is the ith function in the vector of functions we wish to
aggregate, imax is the index of the function with the largest value at x,
and ρ is a parameter that is problem-dependent. In the limit, as ρ
approaches infinity, the KS function approaches the maximum
function because eρ·0 dominates in the sum, and KS�x� approaches
fimax
�x�. For finite ρ, the KS function is a smooth function that is

dominated by the fi with the largest values. Thus, as an inequality
constraint, the KS function encourages the optimizer to resolve the
largest infeasibilities first and eventually choose a point at which the
KS function itself is less than or equal to zero. The optimization

problems solved in this paper use ρ � 50, a value that was found
through numerical tests.

E. Nondifferentiable Models: B-Spline Interpolant

Often, a discipline has a model that cannot be differentiated. The
reason could be that the underlying physical phenomenon is
nonsmooth, the computational model is a legacy codewithout source
code access, or only a table of data is available. To address these
situations, we implemented in Fortran a tensor-product B-spline
interpolant with analytic derivatives. A model with any number of
input variables can be fitted with this interpolant, given a structured
array of data that spans the full range of values for the input variables.

F. Derivatives of Ordinary Differential Equation Variables: Modular
Runge–Kutta Solver

Several of the disciplines in the CADRE design problem involve
ordinary differential equations (ODEs), which complicates the task
of computing partial and total derivatives. In particular, ODEs in time
have a natural forward direction, and so the unknown variable
depends only on those before it in time, but the reverse mode of
Eq. (1) must compute the total derivatives in the opposite direction.
This is not possible if the values from previous time instances are
discarded as the algorithmmoves forward, and so the CADREMDO
algorithm explicitly keeps track of the full time series as a vector and
operates on the entries of this vector in sequence. Furthermore, the
fourth-order Runge–Kutta method (RK4) has been implemented in
Fortran as a modular solver with the time-marching scheme
differentiated. For each discipline that uses this modular RK4 solver,
only the derivatives of the ODE must be provided; correct indexing
and application of the chain rule to combine these with the partial
derivatives of the RK4 equations are automatically handled.

IV. Discipline Models

This section describes the models for all of the disciplines in the
CADREMDO algorithm. For vectors, the nomenclature used in this
section is as follows. Upper-case subscripts represent the frames of
reference;B,R,E, and I represent the body-fixed frame, rolled body-
fixed frame (explained later), Earth-fixed frame, and Earth-centered
inertial (ECI) frame, respectively. Lower-case subscripts represent
the origins of frames; b, e, g, and s denote the body (satellite), Earth,
ground station, and sun, respectively. For instance, rb∕e signifies a
vector pointing from the Earth’s origin to the satellite’s origin.

The axes of the body-fixed frame are denoted îB, ĵB, and k̂B. The
orientation matrices are represented by O (e.g., OB∕I represents the
orientation of the body-fixed frame as seen in the ECI frame).

A. Orbit Dynamics

The orbit-dynamics discipline computes the Earth-to-body
position vector in the ECI frame. In the orbit equation, there are
terms that represent the fact that the Earth is not a perfectly spherical
and homogeneous mass. These are captured in the J2, J3, and J4
coefficients in the following equation§:

�r � −
μ

r3
r −

3μJ2R
2
e

2r5

��
1 −

5r2z
r2

�
r� 2rzẑ

�

−
5μJ3R

3
e

2r7

��
3rz −

7r3z
r2

�
r�

�
3rz −

3r2

5rz

�
rzẑ

�

� 15μJ4R
4
e

8r7

��
1 −

14r2z
r2
� 21r4z

r4

�
r�

�
4 −

28r2z
3r2

�
rzẑ

�
(3)

The values of the coefficients are listed in Table 2.
The J2, J3, and J4 terms must be considered because their effect is

to rotate the orbit plane on a scale of months. If they are ignored, then
a fin angle thatmay initially increase power generationmay no longer

Table 2 Data for discipline models

Variable Symbol Value

Orbit dynamics

Earth’s gravitational
parameter

μ 398; 600.44 km3 · s−2

Earth’s radius Re 6,378.137 km
Orbit perturbation
coefficients

J2 1.08264 × 10−3

J3 −2.51 × 10−6

J4 −1.60 × 10−6

Attitude dynamics

Model coefficients a 4.9 × 10−4 A1∕2 · s∕rad
b 4.5 × 102 A1∕2∕�N · m�
I0 0.017 A

Temperature

Mass m 0.4 (fin), 2.0 (body) kg
Specific heat capacity cv 0.6 (fin), 2.0 (body) kJ∕kg · K
Absorptivity α 0.9 (cell), 0.2 (radiator)
Emissivity ϵ 0.87 (cell), 0.88 (radiator)
Boltzmann constant k 1.3806488 × 10−23 m2 · kg∕�s2 · K�
Speed of light c 2.99792458 × 108 m∕s
Planck’s constant h 6.62606957 × 10−34 m2 · kg∕s
Total cell area AT 2.66 × 10−3 m2

Solar constant qsol 1.36 × 103 W∕m2

Communication efficiency ηp 0.2

Solar power

Diode voltage V0 −0.6 V
Maximum short-circuit
current

Isc0 0.453 A

Saturation current Isat 2.809 × 10−12 A
Diode factor n 1.35 V
Charge of an electron q 1.60217657 × 1019 C
Shunt resistance Rsh 40 Ω

Energy storage

Nominal capacity Q 2900 mA · h
Temperature decay
coefficient

λ ln� 1
1.15
�

Reference temperature T0 293 K
Maximum discharge rate Imin −10 A
Maximum charge rate Imax 5 A

Communication

Receiver gain Gr 12.9 dB
Line loss factor Ll −2.0 dB
Transmission frequency f 437 MHz
System noise temperature Ts 500 K
Minimum acceptable SNR SNR 5.0 dB

§Eagle, C. D., “Orbital Mechanics with MATLAB,” http://www.cdeagle
.com/ommatlab/toolbox.pdf [retrieved February 2013].
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be optimal after the orbit plane has changed. This also makes the
CADRE design problem a multiscale problem in time because much
of the system’s behavior occurs on the scale of minutes and hours,
since the period of the satellite’s orbit is roughly 90 min. The
slow rotation of the orbit plane affects the power generation and
communication as well because the satellite’s trajectory affects how
muchdata canbe transmitted as it passes overground stations.We solve
the orbit equation using the modular RK4 solver described earlier.

B. Attitude Dynamics

Because of the requirements for scientific data collection, CADRE
must always have a forward-facing orientation. The roll angle γ can
change, provided the maximum rate of 1 rad∕min is not exceeded.
The optimizer controls the roll-angle profile over time, and all of the
other attitudes, torques, and related quantities are computed from
this. Because all of the time instances are modeled simultaneously,
this approach is equivalent to determining the control inputs using
optimization instead of a controller.
At any given time instance, CADRE’s attitude is determined by

applying the rotations from the ECI frame to what is referred to here
as the rolled frame and then to the actual body-fixed frame. The rolled
frame is an intermediate frame obtained after ensuring that CADRE is
forward-facing but before applying the appropriate rotation from the

specified roll-angle profile. For this frame, k̂B must point in the

direction opposite v̂b∕e, and the chosen convention is that ĵB is

parallel to r̂b∕e. The orientation matrices that implement these two

successive rotations are given by

OR∕I �

2
664
îTB

ĵTB

k̂
T
B

3
775 �

2
664
−�r̂b∕e × v̂b∕e�T

r̂Tb∕e

−v̂Tb∕e

3
775 and

OB∕R �

2
664

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

3
775 (4)

Once the OB∕I matrix is known for all time instances, its time

derivative can be computed using finite differences, and the angular-

velocity vector can be computed using ω×
B � _OB∕I · O

T
B∕I .

As mentioned previously, we model only the reaction wheel for
actuation.The required inputs are computed from the satellite’s angular-
velocity profile. We do this by applying conservation of angular
momentum to the satellite and reaction-wheel system, expressed by
setting the time derivative of the total angular momentum to zero:

_L � JB · _ωB �ωB × �JB · ωB�|���������������������{z���������������������}
τB

� JRW · _ωRW|������{z������}
τRW

� ωB

× �JRW · ωRW� � 0 (5)

Computing the required reaction-wheel torque is a three-step process.
First, we can compute τB becauseωB is known, and its time derivative
can again be computed using finite differences. Next, we solve the
resultingODE todetermineωRW over time, and finallywecan compute
τRW when the reaction wheels’ angular-velocity profiles are known.
The mass moment of inertia matrices for the satellite and reaction
wheels are, respectively,

JB �

2
664
18 0 0

0 18 0

0 0 6

3
775 × 10−3 kg · m2 and

JRW �

2
664
28 0 0

0 28 0

0 0 28

3
775 × 10−6 kg · m2 (6)

Based on the manufacturer’s data,¶ we develop a simple equation to
model the dependence of the reaction wheel’s current draw on its
angular velocity and desired torque:

I � �aω� bτ�2 � I0 (7)

Given the right coefficients, this simplifiedmodel correctly captures the
trends, as shown in Fig. 5. When both the angular velocity and desired
torque are zero, there is a constant baseline current draw.As the angular
velocity increases in either direction, the current draw increases roughly
quadratically with the torque constant. However, the behavior is
asymmetric because we need less power to achieve a torque in the
opposite direction of the angular velocity, which amounts to slowing
down thewheel with the assistance of friction. This effect is reflected in
both the actual data and the model, as shown in Fig. 5. The motor is
assumed to run at 4 V.

C. Cell Illumination

The cell-illumination discipline models the area of each solar cell
that is exposed to the sun, projected onto the plane normal to the sun’s
incidence. The 84 exposed areas depend on the fin angle aswell as the
azimuth and elevation angles of the sun in the body-fixed frame. We
compute these using anOpenGLmodel of the geometry, in which the
satellite is discretized into small rectangles.
Because this model is both discontinuous and difficult to

incorporate into the framework, we generate a table of data, and we
use theB-splinemultidimensional interpolantmentioned in Sec. III.E
to provide an approximation of the exposed areas in terms of the three
parameters. This also has the effect of smoothing the areas because
the B-spline interpolant does not have a sufficient number of control
points to capture the discontinuous jumps, but it does have the
degrees of freedom to follow the general trends. Figure 6 shows
the variation in the exposed area as a function of the sun’s position for
the outermost cell in one of the inward-facing panels.
The line-of-sight variable LOSs is essentially a multiplier for the

exposed areas; it is 0 if the satellite is behind the Earth and 1
otherwise. To smooth this discontinuous jump, we assume that the
sunlight does not decrease instantaneously as the satellite moves into
the Earth’s shadow, but instead, smoothly transitions to zero. This is
physically the case to a certain extent because of the umbra and
penumbra effects, but it is greatly exaggerated to avoid numerical
difficulties in the optimization. The procedure used to computeLOSs
is illustrated in Fig. 7, and it is defined by

Fig. 5 Reaction-wheel model compared with manufacturer-provided
data for three torques.

¶Sinclair, D., “10 mNm-sec Power Consumption Curves,” http://www
.sinclairinterplanetary.com/reactionwheels [retrieved June 2012].
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LOSs �

8>><
>>:

1 rb∕e · r̂s∕e ≥ 08<
:

1; ds > Re
3η2 − 2η3; αRe < ds < Re

0; ds < αRe

9=
; rb∕e · r̂s∕e < 0

9>>=
>>;
(8)

where ds and η are given by

ds � krb∕e × r̂s∕ek2 and η � ds − αRe
Re − αRe

(9)

Mathematically, we construct a simple cubic function between ds �
αRe and ds � Re, satisfying C1 continuity at each end point. The
value of α represents how far this smoothing effect extends into the
Earth’s shadow; a typical value is α � 0.9.

D. Temperature

Temperature is an important consideration that couples many
disciplines: it affects solar power generation and battery perfor-
mance, while both cell illumination and data transmission generate
heat. The temperature is assumed to be uniformwithin each of the fins
and the body, and so there are five temperature state variables at each
time instance. We use the Stefan–Boltzmann law to model the rate of
heat radiation, andwe use the area exposed to the sun to compute each
cell’s contribution to the heating of its fin. Because communication
power amplifies data transmission with an efficiency ηp of roughly
20%, we assume that the remaining 80% is converted to heat, which
contributes to the temperature ODE for the body. The equations are

_T �
_Qin − _Qout � _Q�comm

mcv
(10)

_Qin � αqsolAexpLOSs (11)

_Qout � ϵ

�
2π5k4

15c2h3

�
T4AT (12)

_Qcomm � �1 − ηp�Pcomm (13)

whereAexp is the exposed area of the cell, T is the temperature, and _Q
is the rate of heat transfer. The values for all of the constants are listed
in Table 2.

E. Solar Power

The cells in each solar panel are connected in series, and so their
output voltages are added to compute the total voltage for the panel.
The voltage is set so as tomaximize the power output, but the optimal
voltage, and thus the optimal current, changes depending on the
illumination and temperature of the cells.
Each cell has a unique I − V curve that depends on its exposed area

and temperature. Our model is based on one [33] that is a nonlinear
implicit equation in I given by

I � Isc − Isat
�
exp

�
V � RsI
VT

�
− 1

�
−
V � RsI
Rsh

(14)

where the values of the constants are listed in Table 2, and

Isc � LOSs
Aexp

AT
Isc0 and VT �

nkT

q
(15)

Our model has two modifications. First, the series resistance is very
small, and so the two terms containingRs can be neglected. Second, a

a) Fin angle: 30 deg b) Fin angle: 80 deg

Fig. 6 Normalized exposed area as a function of relative sun position for the outermost cell in an inward-facing panel.

Fig. 7 Illustration of the sun line-of-sight variable.
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diode is used to limit the voltage in the negative region to
V0 � −0.6 V, and so a shifted hyperbolic tangent function is used to
model the I − V curve for negative voltages. We determine the
coefficient in the argument of tanh by applying the constraint that
the first derivative must be continuous at V � 0. Because V is still an
implicit function of I in the positive voltage region, we evaluate the
model for the full ranges of areas and temperatures, and we fit the
B-spline interpolant discussed earlier. The model is plotted in Fig. 8,
and the expressions are

8<
:
Isc − Isat

h
exp

�
V
VT

�
− 1

i
− V
Rsh

− I � 0; I ≤ Isc

V�I� � V0 tanh
h

−VTRsh

V0�IsatRsh�VT � �I − Isc�
i
; I > Isc

9=
; (16)

F. Energy Storage

The energy-storage discipline tracks the state of charge (SOC) of
the battery. We can compute the SOC by integrating the nonlinear
ODE given by

_SOC � Pbat

VbatQ
(17)

where Q is the nominal discharge capacity of the battery.
We model the dependence of the voltage on the SOC as an

exponential, primarily to ensure that the voltage is always positive. A
linear relationship would have been within the scope of this work.
However, a battery at a large negative SOC has a negative voltage,
and drawing power from the battery would increase its SOC because
the current is still positive. Negative states of charge often arise at the
initial point in an optimization, when a poor baseline design point
uses more power than is available. In these circumstances, the model
must provide the optimizer with the correct gradient directions
instead of failing. Artificially removing the drop-off in voltage does
not lead to inaccuracies that affect our results because the
optimization constrains the SOC to be nonnegative, which ensures
that the optimal design is never in this drop-off region.
The dependence of the voltage on the temperature is also

exponential, as shown in Fig. 9, which compares the model to the
manufacturer’s data.** The values for the constants are listed in
Table 2, and the expression is

Vbat�SOC� �
�
3� e

SOC − 1

e − 1

��
2 − eλ

T−T0
T0

�
(18)

At any given time instance, the battery power is the sum of the
loads, i.e.,

Pbat � Psol − PRW − Pcomm − P0 (19)

where P0 is a 2 W constant power usage that accounts for the
scientific instruments on the satellite and small actuator inputs in
response to disturbance torques.

G. Communication

The communication disciplinemodels the data-transfer bit rate as a
function of several variables. We fix the signal-to-noise ratio (SNR)
to a minimum acceptable value to maintain a reliable connection. A
line-of-sight variable, similar to that computed in the sun-position
discipline, is used to account for the times when a link with the
ground station is not possible. We compute the resulting data-
download rate using the following equation [34]:

Br �
c2GrLl

16π2f2kTs�SNR�
ηpPcommGt

S2
LOSc (20)

where the constants are listed in Table 2, S is the distance to the
ground station, and Gt is the transmitter gain, which is plotted
in Fig. 10.

Fig. 8 Solar cell I − V curve at different cell temperatures and exposed
areas.

Fig. 9 Battery-discharge curve model compared with manufacturer’s
data at two temperatures.

Fig. 10 Transmitter gain as a function of the ground-station position in
the body-fixed frame.

**Panasonic, “Batteries & Energy Products-Lithium Ion Batteries,
Cylindrical Type, NCR18650,” http://industrial.panasonic.com/www-data/
pdf2/ACA4000/ACA4000CE240.pdf [retrieved January 2013].

1656 HWANG ETAL.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
ic

hi
ga

n 
- 

D
ud

er
st

ad
t C

en
te

r 
on

 D
ec

em
be

r 
13

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

32
75

1 

http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf
http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf
http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf
http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf
http://industrial.panasonic.com/www-data/pdf2/ACA4000/ACA4000CE240.pdf


We compute the LOSc variable based on the dot product between
the normalized Earth-to-ground station vector and the Earth-to-body
vector in the inertial frame. We again smooth the discontinuous
function, in this case by assuming that the line-of-sight variable
gradually increases as the satellite comes over the horizon. This is
illustrated in Fig. 11.

V. Optimization

A. Multidisciplinary Design Optimization Architecture

For an optimization problem involving many disciplines, the
choice of the MDO architecture is critical. We use the multi-
disciplinary feasible (MDF) architecture [16], which solves anMDO
problem by fully resolving the coupling between all of the disciplines
within each optimization iteration, effectively treating the coupled
analyses of all of the disciplines as one monolithic analysis. The
rationale is that taking a restricted path to the optimum, with the
interdisciplinary coupling converged at every optimization iteration,
yields a robustness that is likely necessary for a problem with such a
large number of disciplines. For a review of MDO architectures, the
reader is encouraged to refer to Martins and Lambe [16].
However, the approach has elements that resemble the simul-

taneous analysis and design (SAND) architecture [16,35] because
some of the design variables could also be state variables. The roll-
angle design variables could be replaced with reaction-wheel control
inputs that are computed using a control law, and the optimal solar
panel current at every time instance could be computed using
maximum-power point tracking (MPPT). Instead, we use nonlinear
optimization as the controller in the former case. In the latter case, we
compute all of the peak power currents simultaneously as a smooth
profile over time; our goal is to avoid poor conditioning due to local
maxima.

Overall, this SAND-type approach yields three benefits. First, it
avoids assumptions that would be required if these design variables
were implemented as state variables. For instance, the attitude-con-
trol law must assume a desired roll-angle profile based on pre-
determined weights for the solar panel heating and cooling, cell
illumination, and communication signal strength, while the opti-
mization considers the net effect of rolling on the objective function
by way of these three criteria. Second, it eliminates the risk that a
discipline may not have a feasible solution, such as the attitude
controller lacking the power to satisfy the forward-facing orientation
constraint for any roll angle. Allowing the optimizer to control the
distribution of power and enforce the battery-power and charge-level
constraints ensures that all of the disciplines are feasible internally,
while we allow the battery constraints to be violated during the
optimization. Finally, it removes the coupling between disciplines
from the multidisciplinary analysis by moving the appropriate state
variables to the optimization as design variables. The optimizer
resolves the coupling, allowing the MDA to become a sequential
problem, as shown in Fig. 12.
To avoid confusion, it is worth restating that theMDO architecture

used in this problem is still MDF. The connection to SAND is limited
to the fact that certain variables that could have been state variables
have been implemented as design variables. However, the remaining
state variables are not exposed to the optimizer, and all of the
variables are converged fully within every optimization iteration,
which is consistent with the MDF architecture.

B. Optimization Problems

As previously mentioned, the multiscale nature of the problem
requires a multipoint optimization with six points, each representing
a 12 h simulation at the midpoint of every two-month interval. We
simulate half a day, one, three, five, seven, nine, and 11 months after

Fig. 11 Illustration of the ground-station line-of-sight variable.

Fig. 12 Extended design structure matrix diagram [17] for the MDO problem.
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launch. This results in a multidisciplinary analysis with a total of
2,204,861 variables. The objective function is the average of the data-
downloaded values of the six points, which is an estimate of the total
annual data downloaded after a scaling factor. The battery charge
rate, discharge rate, minimum SOC, maximum SOC, and periodicity
constraints are enforced separately for each of the six points. The
periodicity constraint enforces equality of the SOC at the beginning
and end of each 12 h simulation. The remaining four constraints are
KS aggregation functions.
There are two scalar design variables (fin angle and antenna angle)

and 84 binary variables that indicatewhether or not a cell or radiator is
installed. The variables that require the parameterization of their

variations over time are the roll angle, the 12 solar panel currents, and
the power allotted to the communication discipline for transmission.
The current variable has the effect of emulating MPPT for the solar-
power module because the optimizer effectively selects the current,
and indirectly the voltage, at which the maximum power can be
generated from the cells in a given solar panel. Each profile variable is
discretized with 1500 points, which is the number of points used in
the time integrations, and they are represented using fourth-order
B-splines with 300 control points. The optimization problem is
summarized in Table 3.
As previously mentioned, we solve the optimization problem

using SNOPT [36], a reduced-Hessian active-set SQP optimizer that
solves nonlinear constrained problems very efficiently, particularly
when derivatives are provided, as is the case here. We use the pyOpt
optimization framework [18]; it provides a common interface to a
suite of optimizers, including SNOPT.
Figure 13 plots the convergence history for the optimization. The

number of function evaluations roughly corresponds to the number of
SQP major iterations, and each takes about 20 min on a single pro-
cessor, including the derivative computations. Overall, the algorithm
requires 100 h to achieve convergence of nearly five orders of
magnitude in feasibility and three orders of magnitude in optimality.

Table 3 General optimization problem

Variable/function Description Quantity

Maximize
P

6
i�1 Di Data downloaded

With
respect to

0 ≤ Isetpt ≤ 0.4 Solar panel current 300 × 12 × 6

0 ≤ γ ≤ π∕2 Roll-angle profile 300 × 6
0 ≤ Pcomm ≤ 25 Communication power 300 × 6
0 ≤ cellInstd ≤ 1 Cell versus radiator 84
0 ≤ finAngle ≤ π∕2 Fin angle 1
0 ≤ antAngle ≤ π Antenna angle 1
0.2 ≤ SOCi ≤ 1 Initial state of charge 6

Total number of design

variables

25,292

Subject to Ibat − 5 ≤ 0 Battery charge 6
−10 − Ibat ≤ 0 Battery discharge 6
0.2 − SOC ≤ 0 Battery capacity 6
SOC − 1 ≤ 0 Battery capacity 6
SOCf − SOCi � 0 SOC periodicity 6

Total number of

constraints

30

Fig. 13 Convergence histories and snapshots of data and SOC at intermediate optimization iterations.

Table 4 Optimal design variables for the three optimization
problems

Fin
angle,
deg

Antenna
angle,
deg

Data
downloaded,
Gb∕year

Baseline optimization 45 0 2122
Geometry optimization 63.8 −45 2991
Geometry and attitude
optimization

64.4 −45 3758
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Figure 13 shows that, by the end of the optimization, nearly half of the
design variables are superbasic variables in SNOPT, which are those
variables that are truly free to change because they are not fixed by
bounds or constraints. This indicates that, near this local optimum,
the dimension of the feasible design space is large,meaning that there
is considerable design freedom with respect to which the design is
optimal.
Figure 13 also illustrates the sequence in which the objective

function was improved and the battery constraints were satisfied. For
all six points, the initial design is clearly infeasible because the SOC
curve is mostly negative. The optimizer spends most of the first 100
function evaluations trying to increase the power generation to make
the SOC curves feasible. After this, it focuses on increasing the
objective function.

C. Impact of Optimization

To quantitatively assess the impact of the optimization, we solve
three optimization problems. The first is a baseline optimization that
is the same as the original optimization problem in Table 3, except
that the fin angle, antenna angle, and roll-angle profile are removed
from the set of design variables. The remaining design variables are
the solar-panel current, communication power, initial SOC, and
installation of cell or radiator, which provide a baseline design. The
second optimization adds the geometric design variables, which are
the fin and antenna angles. The third optimization adds both the

Fig. 14 Division of total data downloaded over the six simulations for
the three optimization problems.

Fig. 15 Initial and optimized profiles of quantities of interest for the three optimization problems (continued in Fig. 16).
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geometric and attitude design variables to the baseline optimization,
yielding the problem described in Table 3.
Table 4 summarizes the results. Because the constraints are

satisfied in all of the optimizations, the objective function alone
provides a goodmetric for comparison. Adding the geometric design
variables yields a 40% increase in the estimate of the data
downloaded, and adding the roll angle yields an additional 40%
increase. Whenever the antenna angle is permitted to vary, it goes
to the bound of −45 deg, while the fin angle converges to an
interior optimum. For all of the problems, the optimizer chooses to
install the solar cell instead of the radiator for all 84 cells. Figure 14
shows how the objective-function increases are distributed among the
six points.
These optimization results can be summarized as follows. The fin

angle and roll-angle profile increase the cell illumination to provide
more communication power, and the antenna angle increases the gain
during the ground-station passes for higher data rates. However, an
examination of each variable reveals more insight into how the
optimization problems compare as well as how they satisfy the
battery constraints and increase the total downloaded data. Figures 15
and 16 plot several quantities of interest as functions of time, for each
point and for each of the three optimization results.
In Fig. 15, the data-downloaded plots demonstrate the importance

of optimizing both the geometric and attitude design variables. The
communication power plots show that the optimizer allocates power
to the transmitter only during the ground-station passes, as expected,
but the peaks of the spikes are limited by the available SOC and the

discharge constraint. The transmitter gain plots show the highest
gains for the geometry and attitude optimization, followed by the
geometry optimization, then the baseline optimization. This is
evidence that the fin angle provides an increase in gain, and the roll-
designvariables provide a further increase in gain, which translates to
higher data rates. An interesting observation regarding the roll-angle
profiles is that they are smooth for the most part but exhibit spikes
aligned with ground-station passes. Finally, the SOC plots show that
the additional power generated by the optimizations is used for a
gradual build-up of energy between data transmissions, enabling
short and rapid power discharges for high-bit-rate data transmissions.
In Fig. 16, the large increase in the solar power generation from the

baseline optimization to the geometry optimization and the smaller
increase from the geometry optimization to the geometry and attitude
optimization indicate that the fin angle has a large effect, and the
attitude profile has a smaller but still definite effect. The solar-panel
current curves represent themaxima for each time instance among the
12 panels, and they correctly go to zero when the satellite is in the
Earth’s shadow to prevent negative voltages, while taking on optimal
current values when in the sun to maximize power. As with the solar-
power plots, the total-exposed-area plots give a clear indication that
the fin angle has the largest effect in increasing cell illumination, and
interestingly, the exposed area is sacrificed in months 1 and 7 when the
satellite is always in the sun and is not power-constrained. The body
temperature isweakly dependent on the roll-angle profile, and it also has
a smaller effect on the solar power, and so periodicity constraints are not
used to avoid the additional linear solutions required for the associated

Fig. 16 Initial and optimized profiles of quantities of interest for the three optimization problems (continued from Fig. 15).
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derivatives. The battery-current plots show that the communication
power is limited by the battery-discharge constraint for many of the
ground-station passes, while the remainder are energy-limited.

D. Comparison Between Launches

One of the strengths of our approach and implementation is that the
design optimization algorithm is robust with respect to convergence.
To aid decision-making, it is possible to run optimizations for various
choices of parameters, such as the launch, ground-station selection,
and satellite specifications, and to compare them. To illustrate, we ran
two additional optimizations for different launch orbits and dates.
These optimizations involve the design variables listed in Table 3.
The results are summarized in Table 5. The antenna angles con-

verge to the samevalue, and the estimated data downloaded is roughly
the same for the three launches. However, there is a large discrepancy
in the optimal fin angle, which suggests that it could be sensitive to the
launch orbit. It has been consistently observed that the fin angle has a
large effect on the potential power generation, and the optimal fin angle
varies significantly for different launches, as the result for launch 2
shows. This observation points to the importance of carefully selecting
the fin angle once the launch orbit is known. Figure 17 shows how the
total downloaded data is divided among the points.

VI. Future Research Directions

In the course of this work, it has become clear that combining
small-satellite design and MDO is beneficial to both fields. From the
MDOpoint of view, this problemhasmany disciplines, variables, and
tradeoffs, and the fact that much of the behavior and coupling in the
system can be capturedwith relatively inexpensive numerical models
allows it to truly leverageMDO.These features alsomake it a suitable
benchmarking problem; in fact, it has been implemented as a test
problem inOpenMDAO[37],which is an open-source framework for

MDAO. From the satellite-design point of view, our results show that
MDO has the potential to shorten the design process and yield
performance improvements when CADRE is designed and built.
The most obvious avenue for futurework is to improve the models

and explore the design problem with more fidelity. In particular, the
temperature model and the reaction-wheel power consumption
model have room for improvement, and a model for the magne-
torquers would be beneficial. These areas do not strongly affect the
objective and constraint functions, and so they are not expected to
significantly change the results of this study. However, they represent
weaknesses in the model that could be addressed in the future.
Another potential avenue for future research is the exploration of

alternative objective functions. Themodularity of the framework that
has been developed facilitates the rapid implementation of new
objective and constraint functions because the most time-consuming
aspects, interfacing new code to the existing code and computing the
coupled derivatives, are handled with a high level of automation. For
instance, tomaximize profit rather than the total data downloaded,we
would simply need to implement a computation for profit as a function
of the data downloaded and other relevant variables as well as the
corresponding partial derivatives. The coupled derivatives that the
framework automatically computes would then include derivatives of
the profit with respect to any other variable in the MDAO problem.
On the numerical side, parallel computing would significantly

reduce the wall time for the analysis and optimization, enabling a
faster turnaround time and a more rapid exploration of the design
problem. Many of the models can easily be parallelized because the
state variables at all time instances are tracked simultaneously.
Parallel computing would also result in more available memory,
which would allow us to consider larger problems with more
resolution or a longer satellite operation time.
Finally, the generalization of our MDAO formulation to

seamlessly support problems in other fields is a promising area for
future work. A forthcoming paper will present a formal description
and detailed exposition of the generalized formulation.

VII. Conclusions

The objective of this paper was to apply large-scale multi-
disciplinary design optimization to a small satellite. We used
gradient-based optimization alongwith themultidisciplinary feasible
architecture implemented within a new formulation for multidisci-
plinary analysis and optimization problems. Other key enabling tools
included multipoint optimization, constraint aggregation, multidi-
mensional B-spline interpolation, a differentiated fourth-order
Runge–Kutta solver, and efficient numerical linear algebra.
We have demonstrated the ability to reliably solve an optimization

problem with seven disciplines, more than 25,000 design variables,
and over 2.2million statevariables that represent 12 h of the satellite’s
operation at six uniformly spaced points over the year. To assess the
impact of this tool, we solved three optimization problems with
varying sets of design variables. The addition of geometric design
variables to the satellite design problem yielded a 40% improvement
in the objective function (the total data downloaded), and the addition
of operational design variables yielded a further 40% improvement.
Furthermore, changing the launch parameters changed the values of
the objective function and the design variables, suggesting that this
tool could be used to evaluate launch options and to tailor the design
to a particular launch opportunity.
In addition to these contributions to satellite design, we have

made four broader contributions. First, we have demonstrated that
considering all of the major disciplines, time scales, and design
variables simultaneously for the small-satellite problem is feasible
through a rigorous multidisciplinary approach. As an alternative to
more detailed single-discipline studies, this approach provides a
system-level perspective of the problem with sufficient depth to
capture high-level tradeoffs and reveal insights that are perhaps
not obvious at the discipline level. Second, we have demonstrated
that a design problem with many discontinuities and discrete data
can be solved with gradient-based optimization. The discontinuities
were overcome with a combination of multidimensional B-spline

Table 5 Optimal values for the three launches

Launch Fin angle, deg Antenna angle, deg Data downloaded, Gb∕year
1 64.4 −45 3758
2 49.9 −45 3829
3 68.5 −45 3587

Fig. 17 Division of total data downloaded over the six simulations for
the three launches.
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interpolation of the data and the development of smooth models for
various disciplines. Third, the SAND-like approach of implementing
what might more naturally be state variables as design variables
simplified the multidisciplinary analysis without a significant
sacrifice in the optimization convergence. Instead of using
predetermined state variables to satisfy the power constraints, the
optimizer had the freedom to optimally distribute the available power
among the attitude-control actuator, communication gain, and
scientific instruments, while satisfying the battery constraints. Our
final contribution is the successful application of the MDAO
formulation. The disciplines were implemented in a modular way so
that solving the multidisciplinary analysis problem and computing
the coupled derivatives was as automated as possible, and the task of
adding more disciplines was greatly simplified. These results
demonstrate the promise of this approach and build a strong case for
the adoption of this method not only in satellite design but in other
engineering design problems as well.
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