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tumor-draining lymph node cells involved in mediating
tumor regression

Atsushi Aruga, Etsuko Aruga, Mark J. Cameron, and Alfred E. Chang

DivLsion of Surgical Oncology, Department of Surgery, University of Michigan, Ann Arbor

Abstract: We have previously demonstrated that the

growth of weakly immunogenic murine sarcomas leads

to the induction of immunologically specffic pre-

effector cells in tumor-draining lymph nodes (TDLN).

The in ‘vitro activation of TDLN cells with anti-CD3

monoclonal antibodies (mAbs) and interleukin-2 (IL-2)

resulted in the acquisition ofeffector function as mea-

sured by tumor regression in the adoptive immuno-

therapy ofpulmonary metastases. Further studies were

performed to characterize the mechanisms associated

with in vivo tumor reactivity mediated by activated

TDLN cells. By positive selection, CD4� and CD8� T

cells were purified and activated by the anti-CD3IIL-2

method. CD8�, but not CD4�, cells manifested tumor-

specific granulocyte-macrophage colony-stimulating

factor (GM-CSF) and interferon-’y (IFN-’y) release in

vitro, and elicited tumor regression in vivo. By con-

trast, only activated CD4� were found to release sig-

nificant amounts of IL-2 in response to tumor antigen

but did not mediate tumor regression in vivo. Mixing

the two purified populations enhanced the antitumor

activity of the CD8� T cells. In culture, IL-2 was found

to augment the relative amount of tumor-specific re-

lease of GM-CSF and WN-y by activated TDLN cells.

We found that the tumor-specffic release of GM-CSF

and IFN-y by activated lymphocytes was strongly asso-

ciated with the in vivo therapeutic efficacy of these

cells. Evidence in support of this included the follow-

ing: (1) cytokine release ofTDLN derived after differ-

ent durations of tumor growth correlated with tumor

reactivity in adoptive transfer studies, (2) cytokine re-

lease of T cells derived from different lymphoid or-

gans corresponded with tumor reactivity in adoptive

transfer, and (3) in vivo administration of neutralizing

mAb to WN-’y and GM-CSF significantly inhibited the

antitumor reactivity ofTDLN cells. These studies doe-

ument the contributory roles of IFN-’y, GM-CSF, and

IL-2 released by activated CD4� and CD8� T cells

involved in tumor regression. J. Leukoc. Biol. 61:

507-516; 1997.
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INTRODUCTION

We have previously reported that tumor-draining lymph

nodes (TDLN) in animals bearing weakly immunogenic

tumors harbor lymphoid cells with antitumor reactivity

I1-61. These TDLN cells were precursors that were not
capable of mediating tumor regression in adoptive immuno-

therapy and required further in vitro activation to differen-

tiate into functional effector cells. Hence, we have referred

to TDLN cells as pre-effector lymphoid cells. One method

to activate pre-effector lymphoid cells is to stimulate them

with irradiated tumor cells in vitro in the presence of low

concentrations of intenleukin-2 (IL-2). In munine models,

this in vitro sensitization (IVS) method generally required

9-10 days and resulted in a three- to fivefold expansion

of lymphoblasts that were predominantly CD8� T cells

[11. These IVS cells mediated immunologically specific

tumor regression after adoptive transfer. Another method

that can induce effector function in pre-effector cells is by

the activation with immobilized anti-CD3 antibody fol-

lowed by expansion in low concentrations of IL-2 [4-61.
This method allowed TDLN cells to expand 6- to 10-fold

and did not require tumor stimulator cells that could be

unavailable in a clinical setting.

Despite the polyclonal nature of stimulating pre-effector

LN cells with anti-CD3, we have reported the ability to gen-

enate immunologically specific effector cells [4, �1 . How-

ever, it is apparent that only a fraction of the total pool of

TDLN cells represent sensitized effector cells. Multiple anti-

CD3 stimulation of a bulk population of lymphoid cells

from immunized animals will result in the loss of antitumor
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reactivity of the expanded cells, presumably due to the out-

growth of non-immune cells [7]. Hence, it is important to

characterize the cellular mechanisms necessary in eliciting

in vivo tumor reactivity in adoptive immunotherapy models

in order to allow the development of more selective meth-

ods to isolate and expand functional effector cells. We have

previously reported that anti-CD3IIL-2 activated TDLN

cells are non-cytolytic in standard 4-h cytotoxicity assays

and are distinctly different from TDLN cells cultured by

the IVS method, which are cytolytic [1]. Therefore, alter-

native assays to assess the in vitro reactivity of potential

effector cells was required. Recent investigations have re-

ported that cytokine release may be a more important as-

say to predict the capability of effector cells in mediating

in vivo tumor reactivity [8, 9]. In a prior study we found

that tumor-specific interferon-y (IFN-y) and granulocyte-

macrophage colony-stimulating factor (GM-CSF) release

by IVS-cultured TDLN cells correlated with their ability to

mediate tumor regression in vivo [101. In this study we ex-

amined the role ofIFN-y, GM-CSF, and IL-2 release of anti-

CD3/IL-2 lymphoid cells with respect to therapeutic

efficacy in an adoptive transfer model. In addition, we have

characterized the role of purified populations of CD4�

and CD8� cells involved in tumor regression. The obser-

vations from this study extend our knowledge about the im-

mune response associated with progressive tumors as well

as providing insights into approaches for isolating compe-

tent immune cells from the tumor-bearing host.

MATERIALS AND METHODS

Mice

Female C57BL/6(B6) mice were purchased from the Jackson Labora-

tory (Bar Harbor, ME) and maintained in a specific pathogen-free en-

vironment. They were used at the age of 8 weeks or older. Principles

of laboratory animal care (NIH publication No. 85-23, revised 1985)

and animal protocols approved by the University of Michigan Laboratory

of Animal Medicine were followed.

Tumor

The MCA 207 and MCA 205 are fibrosarcomas induced by 3-methyl-

cholanthrene, syngeneic to B6 mice, and previously characterized to be

immunologically distinct � The studies performed with MCA 205

utilized a clone of the tumor, H12, and is hereafter referred to as MCA

205 in this article. Tumors were maintained in vivo by serial subcutane-

ous (s.c.) transplantation in syngeneic mice and used within the seventh

transplantation generation. They were kindly provided by Dr. James C.

Yang (National Cancer Institute, NIH, Bethesda, MD). Tumor cell sus-

pensions were prepared from solid tumors by enzymatic digestion in 50

mL of Hanks’ balanced salt solution (HBSS; GIBCO, Grand Island, NY)

containing 40 mg of collagenase, 4 mg of DNase, and 100 units of hyal-

uronidase (Sigma Chemical Co., St. Louis, MO) for 3 h at room temper-

ature as previously described 141.

TDLN cells

B6 mice were inoculated s.c. with 1.5 x 106 MCA 207 or MCA 205

tumor cells in the lower flank. At specific intervals after tumor inocula-

tion the adjacent tumor-draining inguinal LN were harvested and single

cell suspensions were prepared mechanically as described previously

141. Typically, 10� lymphoid cells per TDLN were retrieved in mice

bearing 10-day established s.c. flank tumors. In other studies, mesen-

teric lymph node, splenocyte. and thymus were similarly prepared for

comparison with inguinal LN.

Anti-CD3/IL-2 activation procedure

The 145-2C11 hybridoma cells producing hamster immunoglobulin G

(IgG) monoclonal antibody (mAb) against the CD3c chain of the murine

TCR/CD3 complex were a gift from Dr. J. A. Bluestone, University of

Chicago. Antibodies were prepared by injecting hybridoma cells into sub-

lethally irradiated DBA/2 mice and collecting the ascites. The ascites

was partially purified by 50% ammonium sulfate precipitation and the

IgG content was determined by an enzyme-linked immunosorbent assay

(ELISA). Twenty-four-well tissue culture plates were coated with anti-

CD3 overnight at 4#{176}C.TDLN cells (4 x 106) were cultured in 2 mL

of complete media (CM) at 37#{176}C in a 5% CO2 incubator for 2 days.

CM consisted of RPMI 1640 medium supplemented with 10% heat-

inactivated fetal calf serum, 0.1 mM non-essential amino acids, 1 �.tM

sodium pyruvate, 2 mM fresh L-glutamine, 100 p.g/mL streptomycin,

100 units/mL penicillin, 50 �tg/mL gentimicin, 0.5 �tg/mL Fungizone

(all from GIBCO), and 5 x 10� M 2-mercaptoethanol (Sigma). After

activation with anti-CD3, cells were washed once and cultured at 3 x
10� cells/well in 2 mL of CM containing 60 units/mL of human recom-

binant IL-2 in 24-well plates for 3 days. Human recombinant IL-2 was

a gift from Chiron Therapeutics, Emeryville, CA. It has a specific activity

of 18 x 106 international units/mg protein. In this study, results of all

experiments are expressed in international units (IU). The anti-CD3/

IL-2-activated LN cells were harvested, washed, and resuspended in

HBSS for adoptive immunotherapy or in CM with irradiated tumors for

cytokine release assay.

lmmunofluorescence and flow cytometry

Immunophenotyping of lymphoid cells was carried out by indirect im-

munofluorescence. Briefly, 5 to 10 x 10� cells were incubated for 45

mm at 4#{176}Cwith 25 �tL of appropriately diluted mAb in phosphate-

buffered saline (PBS) containing 1% fetal bovine serum and 0.1%

NaN3. Rat mAb against the murine CD4 (GK1.5, L3T4), CD8 (2.43,

Lyt-2.2), and hamster mAb against the murine CD3 (145-2C11) were

used in ascites form for phenotyping ofT cells (obtained from the Amen-

can Type Culture Collection, Rockville, MD). Bound antibodies were de-

tected by incubation with 20 �tL of the fluorescein isothiocyanate (FITC)-

labeled mAb to rat kappa-chain (MAR 18.5) or an anti-hamster IgG-

Flit cocktail (PharMingen, San Diego, CA). Stained cell preparations

were analyzed in a FACScan flow microfluorometer (Becton-Dickinson,

Sunnyvale, CA). Fluorescence profiles were generated by analyzing

10,000 cells and displayed as logarithmically increasing fluorescence

intensity versus cell numbers.

In vitro selection of CD4� and CD8� cells by
magnetic beads

In vitro positive selection of CD4� or CD8� T cells was performed with

anti-CD4 (L3T4) or anti-CD8 (Lyt 2) mAb followed by using anti-rat IgG-

conjugated magnetic beads. Briefly, freshly harvested 2 x iO� TDLN

cells were incubated with 200 �tL of L3T4 (1:100 ascites) or Lyt 2

(1:200 ascites) mAb at 4#{176}Cfor 30 mm. After washing, 108 sheep anti-

rat lgG-coated Dyna-beads M-450 (Dyna Inc., Great Neck, NY) at a 1:5

ratio of cells to beads were added into TDLN cells at 4#{176}Cfor 30 mm
before placement in a magnetic holder. The supernatant. containing non-

reacted cells, was depleted and positively isolated cells were incubated

in 0.25% trypsin-ethylenediaminetetraacetate solution at 37#{176}C for 15

mm to detach the beads from the cells. These positively isolated cells

were stimulated by the anti-CD3IIL-2 method described above and the

efficacy ofcell separation was evaluated by FACS analyses before the cells

were used for in vivo adoptive transfer or in vitro cytokine release assays.

In vitro cytotoxicity assay

A long-term cytotoxicity assay was used to assess the cytolytic activity

of TDLN cells over a 48-h period 1121. Freshly harvested tumor cells
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were digested and single cells were cultured in a 96-well flat plate in

100 mL of CM for 24 h. After 24 h, tumor cells were subconfluent and

TDLN after anti-CD3/IL-2 activation were added into the well with 100

�.tL of CM containing 4 units/mL of IL-2. Forty-eight hours later, wells

were washed three times with PBS and fixed with fixing solution for 10

mm. Fixing solution was made from 95% methanol plus glacial acetic

acid in a 3:1 ratio. Plates were washed four times with water and 75

�tL of crystal violet was added for 5 mm. Staining solution was made

from 0.5% crystal violet. The plates were then washed several times with

water until the blank wells became clear. Plates were dried at room tem-

perature overnight and dissolved with 100 �tL of dissolving solution. Dis-

solving solution was made from 95% ethanol, double-distilled H2O,

and glacial acetic acid. Optical density of each well was read at 570 nm

with an ELISA plate reader and cytotoxicity calculated by the following

equation: % of cytotoxicity = fi - (absorbance of tumor cells treated

with effector cells/absorbance control)J x 100.

In this assay, only viable tumor cells were stained and measured by

their optical density. The effector cells and nonviable tumor cells were

removed when the wells were washed by PBS after 48 h.

Measurement of in vitro cytokine release

After anti-CD3/lL-2 activation, TDLN cells were restimulated with ir-

radiated autologous tumor cells in CM. Tumor stimulator cells were

irradiated to 7000 cGy by a ‘37Cs source before using. LN cells (0.5 x
105/mL) and irradiated stimulators (2.5 x 105/mL) were co-cultured

in 2-mL volumes in 24-well tissue culture plates. After 48 h, culture su-

pernatants were collected for cytokine measurements in duplicate using

commercially available ELISA kits. If detectable, background cytokine

values produced by tumors alone were subtracted from the co-culture

values when reporting results. For munine GM-CSF, a standard curve

starting at 20 ng/mL with serial twofold dilutions was performed. For

IFN--y, tumor necrosis factor a (TNF-a), IL-4, and IL-2. standard curves

starting at 1,000 IU/mL, 50 ng/mL, 1,000 IU/mL, and 20 ng/mL were

established in a similar fashion, respectively. Experimental values were

computed with the use of regression analysis.

Adoptive immunotherapy

B6 mice were inoculated intravenously (i.v.) with 2 to 2.5 x iO� MCA

207 or MCA 205 tumor cells to establish pulmonary metastases. Three

days after tumor inoculation, mice were injected i.v. with TDLN cells

and given intrapenitoneal (i.p.) injections of IL-2 commencing on the

day of cell transfer and continuing twice daily for 4 days. At approxi-

mately 3 weeks after tumor initiation, mice were randomized and killed

for enumeration of pulmonary metastatic nodules. The metastases ap-

peared as discrete white nodules on the black surface of lungs in-

sufflated with a 15% solution of India ink and bleached by Fekete’s so-

lution 1131. Metastatic foci too numerous to count were assigned an

arbitrary value of > 250. The significance of differences in numbers

of metastatic nodules between experimental groups was determined by

use of the non-parametric. Wilcoxon rank-sum test. Two-sided P values

< 0.05 were considered significant. Each group consisted of at least five

mice and no animal was excluded from the statistical evaluation.

In vivo neutralization of GM-CSF and IFN-Y by mAb

Inhibition of GM-CSF and IFN-? was performed with the i.v. administra-

tion of the neutralizing mAb to both cytokines. Briefly, rat anti-IFN-y

mAb (R4-6 A2) obtained from Dr. Keith Bishop (University of Michigan,

Ann Arbor, MI) and rat anti-GM-CSF mAb (MP1-22E9) obtained from

Dr. Robert Coffman (DNAX, Palo Alto, CA) were utilized as ascites de-

veloped from the hybnidoma lines. Hybridoma cells were cultured in

CM, injected i.p. (3 x iO� cells) into cyclophosphamide-pretreated

DBA mice after 600 cGy whole-body irradiation. Approximately 9 days

later, ascites were harvested and centrifuged to remove the cells. The

efficacy of neutralizing activity was measured by ELISA assay where

1:100 ascites could neutralize at least 20 ng/mL of GM-CSF or 1000

units/mL of IFN-’y. In the adoptive transfer model, 0.2 mL of ascites

was administered via caudal vein daily for 4 days after cell transfer. Con-

trol groups were given rat Ig i.v. at the same dose and intervals as the

neutralizing mAb.

RESU LTS

Role of CD4� and CD8� TDLN cells in the
regression of MCA 207 tumor

To document the role of CD4� and CD8� T cells in the

regression of MCA 207 tumor, we depleted those T cell sub-

sets with mAb after adoptive transfer of activated TDLN

cells. MCA 207 TDLN cells were harvested 9 days after

s.c. inoculation and activated by the anti-CD3IIL-2 method.

Shortly after adoptive transfer of l0� TDLN cells, anti-

CD4 or anti-CD8 mAb was administered i.v. Selected

groups of mice were given IL-2 i.p. As shown in Table 1,

depletion of CD8� cells completely abrogated the anti-

tumor regression mediated by the whole population of ac-

tivated TDLN cells with or without the administration of ex-

ogenous IL-2. Depletion of CD4� cells in the absence of

IL-2 administration diminished the tumor regression me-

diated by the remaining CD8� TDLN cells. With the ad-

ministration of IL-2, the depletion of CD4� cells had no

effect on the antitumon reactivity mediated by the trans-

ferred TDLN cells. This experiment demonstrated the req-

uisite role of CD8� T cells involved in MCA 207 tumor re-

gnession as well as the facilitory contribution of CD4 � cells.

To more fully evaluate the reactivity of CD4� and CD8�

T cell subsets, we proceeded to purify each population

from whole TDLN for further analysis. Fneshly harvested

MCA 207 TDLN obtained 10 days after tumor inoculation

contained a heterogeneous population of lymphoid cells.

Immunophenotyping by flow cytometry of fresh TDLN re-

vealed 28% Thy l.2� lymphoid cells that were 14% CD4�

and 18% CD8� (data not shown). After anti-CD3IIL-2 ac-

tivation the cells were predominantly Thy 1.2k (99.8%) and

consisted of (9%) of CD4� and (90%) CD8� cells (Fig.

TABLE 1. Therapeutic Efficacy of TDLN Cells After In Vivo

Depletion of CD4� and CD8� T Cells

Group

TDLN

cells0

In vivo

IL�2b

In vivo

antibodyc

Mean no. of lung

metastases (saM)

A - - - >250

B - + - >250

C + - Ratlg 6(2)d

D + - anti-CD4 125 (7)�

E + - anti-CD8 >250

F + + Ratlg 0c

G + + anti-CD4 8 (3)d

H + + anti-CD8 >250

a Nine days after MCA 207 tumor s.c. inoculation, TDLN were harvested for

anti-CD3/IL-2 activation. Mice were injected with 2 x 10� tumor cells i.v. and

received 1 0� TDLN cells 3 days later.
bIL2 30,000 IU i.p. twice daily after cell transfer.

cAntiCD4 or anti-CD8 ascites (0.2 mL) were injected iv. after cell transfer.

Lungs were harvested on day 20.
dp < o.oooi compared with group A, B, E, and H; P < 0.001 compared

with group D.
ep < o.ooi compared with group A, B, E, and H.
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1). CD4� and CD8� T cell subpopulations were selected

by an immunomagnetic bead technique from whole TDLN

and subsequently activated by the anti-CD3IIL-2 method.

Flow cytometry demonstrated a relatively homogeneous popu-

lation of cells: the L3T4-selected cells were 94% CD4� and

the Lyt-2 selected cells were 96% CD8� (Fig. 1).

The therapeutic efficacy of these cells was assessed in

the adoptive immunotherapy ofpulmonary metastases (Table

2). The adoptive transfer was performed in the absence of

exogenous IL-2 administration to determine the relative role

of CD4� cells. The whole TDLN population significantly

mediated tumor regression. CD4� cells were not efficacious

compared with CD8� cells, which significantly reduced the

mean number of pulmonary metastases. Importantly, when

both CD4� and CD8� cells were mixed together, tumor re-

gression was significantly improved compared with CD8�

cells alone and indicated a cellular interaction between the

two cell populations.

TABLE 2. Therapeutic Efficacy of MCA 207 TDLN After Positive

Selection for CD4� and CD8� T Cells

In vitro immunological reactivity of activated
CD4� or CD8� TDLN cells

We have previously reported that anti-CD3IIL-2-activated

TDLN cells were non-cytolytic in a 4-h cytotoxicity assay

[5]. However, in a 48-h cytotoxicity assay, we found that pu-
rifled CD8� cells mediated significant MCA 207 tumor ly-

sis with markedly diminished activity observed with purffied

CD4� cells (Fig. 2). The cytolytic activity of CD8� cells

was immunologically specific (data not shown).

The release of IFN-’y, GM-CSF, and IL-2 by purified

CD4� and CD8� TDLN cells was assessed. MCA 207

TDLN cells obtained 10 days after inoculation were posi-

lively selected for CD4� and CD8� T cells and activated

Effector

Adoptive immunotherapy�’

Mean no. pulmonary

Group Effector cells’� IL-2 metastases (sEM)

A - - >250

B Whole TDLN - 0c

C CD4� TDLN - >250

D CD8� TDLN - 1 10 (9)d

E CD4� plus CD8� TDLN - 0c

aTen days after MCA 207 tumor s.c. inoculation TDLN were harvested for

anti-CD3IIL-2 activation.
b The tumor reactivity of the activated TDLN cells was assessed in the adop-

tive immunotherapy of 3-day established MCA 207 pulmonary metastases as

described in Table 1 . Lungs were harvested on day 20.
cP < 0.001 compared with other groups.

dp < o.oi compared with A and C.

0.8 1.6 3.1 6.25 12.5

Elf ratio

Fig. 2. Cytotoxicity of MCA 205 or MCA 207 TDLN against the rele-

vant tumor target in a 48-h assay.
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Fig. 1. Flow cytometnic analysis of TDLN after acti-

vation with anti-CD3/IL-2. The whole-cell population

was analyzed in conjunction with CD4-and CD8-

selected subpopulations.
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Fig. 4. Tumor-specific release ofIFN-’y and GM-CSF by activated MCA

207 TDLN before and after positive selection for CD4� and CD8� cells.

The cytokine release assay was performed in the presence of 4 IU/mL

IL-2. Tumor-specific release of cytokines was observed from the whole

and CD8�-selected population.

TABLE 3. Specificity of Tumor Regression Mediated by

Anti-CD3/IL-2-Activated TDLN Cells in Adoptive Immunotherapy

aTen days after MCA 207 or MCA 205 tumor inoculation TDLN were har-

vested for anti-CD3IIL-2 activation.
bMice were inoculated with 2.5 x 10� MCA2O7 or 4 x l0� MCA 205 tumor

cells iv. Three days later, mice received activated TDLN cells iv. along with

the concomitant administration of IL-2 (60,000 IU) i.p. twice daily for a total

of eight doses. Lungs were harvested on day 20.
cP < 0.0001 compared with other groups.
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Fig. 3. Tumor-specific release ofIL-2 by CD4� MCA 207 TDLN cells.

by the anti-CD3IIL-2 method. We found that activated CD4�

TDLN released significantly greater amounts of IL-2 com-

pared with CD8� cells in response to MCA 207 tumor an-

IFN y release

tigen and not to the irrelevant MCA 205 tumor (Fig. 3).

By contrast, activated CD8� TDLN cells demonstrated

tumor-specific release ofIFN-y and GM-CSF compared with

CD4� cells, which had significantly diminished IFN-y se-

cretion in response to MCA 207 antigen, and released both

IFN-y and GM-CSF in a non-specific manner in response

to MCA 205 (Fig. 4) [121. The non-specific release of these

cytokines by CD4� cells suggested a lymphokine-activated

killer cell (LAK)-like phenomenon. We have previously re-

ported that LAK cells, which secreted IFN-’y and GM-CSF

nonspecifically in response to tumor, were significantly less

efficient in mediating tumor regression on a per cell basis

compared with sensitized T cells, which released those cy-

tokines in a tumor-specific manner �10J. The in vivo tumor

reactivity of MCA 207 and MCA 205 TDLN cells at the

whole population level was found to be immunologically

specific in criss-cross experiments summarized in Table 3.

We did not evaluate the in vivo antitumor reactivity of CD4�

cells at significantly higher dose levels required to observe

nonspecific LAK activity.

In a separate experiment we evaluated the effect of ex-

ogenously added IL-2 to the in vitro release of GM-CSF

and IFN-’y by activated TDLN cells. As shown in Figure

5, the presence ofincreasing concentrations ofIL-2 resulted

in greater release of both GM-CSF and IFN-’y over the 24-h

culture period. This observation, in conjunction with our

adoptive transfer studies, suggested that CD4� cells provide

help to CD8� cells elaborating IL-2, which in turn,

enhances GM-CSF and IFN-y release in response to tumor

antigen.

Neutralization of GM-CSF and IFN-’y by mAb
administration

The role of GM-CSF and IFN-y released from anti-CD3IIL-

2-activated TDLN cells was examined with the use of neu-

tralizing mAb administered to mice after the adoptive trans-

fer ofcells. Neutralizing antibodies were administered daily

for 4 days after cell transfer with control animals receiving

rat Ig. Animals that received activated TDLN along with

rat Ig demonstrated significant tumor regression compared

Source of

TDLN�

Adopti ye immunotherapyb

No. of cells

transferred IL-2

Mean no. pulmona

(5GM)

iy metastases

MCA 207 MCA 205

None - - >250 >250

None

MCA2O7

MCA 205

-

10�

10�

+

+

+

>250

0�

>250

>250

235 (12)

0’�
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Fig. 5. Tumor-specific release of IFN-y and GM-CSF by activated MCA 207 TDLN is increased by the addition of IL-2 in culture.

with mice that received rat Ig only (Table 4). When anti-

GM-CSF or anti-IFN-y mAb were administered after cell

transfer, in vivo therapeutic efficacy was diminished; how-

ever, there was no statistical difference between the rat

Ig-administered group and either the anti-GM-CSF or anti-

IFN-y mAb-administered group. Importantly, when both neu-

tralizing mAb were administered, in vivo therapeutic efficacy

was significantly diminished. These results confirm that

both GM-CSF and IFN-y released from TDLN cells have

an important role in the tumor destruction associated with

this therapy.

Kinetics of pre-effector cell induction in TDLN

The correlation of GM-CSF and IFN-y release by activated

lymphoid cells and their subsequent therapeutic efficacy

was further examined in this tumor model. The kinetics of

pre-effector cell induction in TDLN was examined by in-

oculating MCA 207 tumor subcutaneously and harvesting

TDLN every few days for cryopreservation up to 21 days.

TABLE 4. Therapeutic Efficacy of MCA 207 TDLN After

Administration of GM-CSF and IFN-’y-neutralizing mAb

Group

MCA 207

TDLN#{176} Antibody

Mean no. pulmonary

metastases (sEM)b

A - Rat Ig >250

B - anti-GM-CSF+ anti-IFN-y >250

C + Rat Ig 24 (8)C

D + anti-GM-CSF 50 (12)C

E + anti-IFN-’y 60 (1 1)C

F + anti-GM-CSF+anti-IFN-y 135 (14)�’

aTen days after MCA 207 or MCA 205 tumor s.c. inoculation TDLN were

harvested for anti-CD3IIL-2 activation.
b Mice were injected with 2.5 x i0� MCA 207 tumor cells iv. and received

io� effector cells three days later. Antibody (0.2 mL) was injected iv. daily for

4 days after cell transfer. Lungs were harvested on day 15.
cP < 0.0001 compared with other groups.

dp < o.oi compared with groups C, D, and E.

Upon collecting all the TDLN from different time intervals,

the TDLN were thawed, washed, and cultured by the anti-

CD3IIL-2 method. After activation, TDLN cells were re-

stimulated in vitro with irradiated MCA 207 or MCA 205

tumor and supernatant harvested for cytokine determinations

(Fig. 6). There were insignificant amounts of IFN-y or GM-

CSF released by day 0, 4, and 21 TDLN cells. These TDLN

cells were also assessed for therapeutic efficacy by adoptive

transfer into mice with established 3-day MCA 207 pul-

monary metastases (Table 5). TDLN harvested on days 0,

4, and 21 had no therapeutic activity compared with control

groups. TDLN cells harvested on day 10 after tumor in-

oculation mediated significant regression of pulmonary me-

tastases. These results suggested that a correlation existed

between in vitro tumor-specific IFN-y and GM-CSF release

with the in vivo therapeutic efficacy of TDLN cells. The

mechansim associated with loss of antitumor function of

TDLN cells during progressive tumor growth may be related

to an acquired defect in T cell signaling, which has been

reported to occur with prolonged tumor exposure [141. In

a separate report we have documented a significant decrease

in ‘ItR� chain expression by TDLN cells in late tumor-bearing

animals, which persisted despite subsequently anti-CD3IIL-2

in vitro activation [15].

Distribution of pre-effector cells in different
lymphoid organs

We proceeded to investigate whether a correlation was pres-

ent between tumor-specffic cytokine release oflymphoid cells

obtained from different sites and their in vivo therapeutic

efficacy. B6 mice were inoculated in the lower flank with

MCA 207 tumor cells and 10 days later had inguinal, mes-

enteric LN, spleen, and thymus removed for anti-CD3IIL-2

activation. After activation, cells were assessed for in vitro

cytokine release and for in vivo tumor reactivity as previously

described. The therapeutic efficacy of each cell population



TABLE 5. Therapeutic Efficacy of MCA 207 TDLN Obtained on

Different Days after Tumor Inoculation

a Mice were inoculated s.c. with MCA 207 tumor cells. At different inter-

vals after tumor inoculation inguinal TDLN were harvested for anti-CD3IIL-2

activation.

bThe tumor reactivity of the activated TDLN cells was assessed in the adop-

tive immunotherapy of 3-day-established MCA 207 pulmonary metastases as de-

scribed in Table 1.
CP < 0.0001 compared with all other groups.

GM-CSF release

1200-il � I Restimu1ate�

l000U� with

800 -H� [�e IJ

� 600�”� �MCA207�

400H [#{216}MCA2O4n. II

0�_�__,
0 4 10 21

Days on TDLN harvest

IFN y release

140

120#{149}

100

.� 80

� 60

40

20

0 4 10

Days on TDLN harvest

21

Fig. 6. Duration of MCA 207 tumor growth influenced the cytokine

release profile ofactivated TDLN. Only day 10 MCA 207 TDLN released

IFN-y and GM-CSF cytokines and correlated with in vivo antitumor efficacy

(see Table 5).
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was found to vary, with inguinal TDLN cells being the most

effective followed by splenocytes (Table 6). Mesenteric LN

and thymus cells did not mediate significant tumor regres-

sion nor did these cells release significant amounts of cyto-

kines (Fig. 7). In contrast, tumor-specific release of IFN-y

and GM-CSF was associated with in vivo therapeutic efficacy,

which was greatest with inguinal TDLN cells followed by

splenocytes.

DISCUSSION

A variety of methods have been reported to isolate lymphoid

cells from the tumor-bearing host for ex vivo culture and

subsequent use in adoptive immunotherapy. One of the first

clinical applications was the harvesting of peripheral blood

lymphoid cells by leukapheresis for subsequent activation

in IL-2 to generate LAK cells [16]. LAK cells were found

to be highly cytotoxic in vitro against tumor targets in a non-

MHC-restricted manner 1171.Although these cells mediated

regression of established disease in animal models, it re-

quired relatively large numbers oftransferred cells and was

limited to the treatment of micrometastatic disease. In ad-

dition, clinical studies involving LAK cells plus IL-2 have

demonstrated minimal benefit over the use of IL-2 alone

[18]. Alternative approaches have focused on T cells with

MHC-restricted reactivity to tumor. One such approach in-

volves the isolation of tumor-infiltrating lymphocytes (TIL),

Days after

s.c. tumor

inoculatioW’

Adoptive immunotherapyb

IL-2

Mean no. pulmonary

metastases (saM)

- - >250

- + >250

0 + >250

4

10

+

+

173 (39)

0c

21 + >250

which are expanded in IL-2 [19, 20]. In animal models,

these approaches are more potent than LAK cell therapies

and appear to have clinical efficacy in a select group of pa-

tients [21, 22]. As another approach to generate tumor-specific

T cells, we have examined the antitumor reactivity of human

vaccine-draining LN cells secondarily activated in vitro 123,
24]. Characterizing the requisite cell populations that are

necessary for mediating tumor regression in vivo and defin-

ing in vitro parameters that correlate with therapeutic po-

tential would be critical in the further development of cm-
ical cellular therapies.

Several reports have indicated that cytokine secretion by

TIL appears to correlate with therapeutic efficacy in animal

models. Barth et al. examined non-cytolytic CD8� TIL cell

lines derived from a weakly immunogenic murine sarcoma

and demonstrated that IFN-y and TNF-a release in response

to tumor stimulation was associated with their antitumor

reactivity after adoptive transfer [9]. Goedegebuure et al.

reported that the release ofIFN-’y and GM-CSF by TIL dur-

ing culture with anti-CD3 and IL-2 appeared to correlate

with their therapeutic efficacy in the treatment of MCA 105

tumors 110]. In clinical TIL studies, Schwartzentruber et

al. reported that the release of GM-CSF by TIL in response

to autologous tumor appeared to be an independent pre-

dictor of tumor response in melanoma patients [22J.

This study extends our earlier reported observations that

the tumor-specific release of GM-CSF and IFN-’y by TDLN

cells secondarily activated in culture was associated with

therapeutic efficacy 1101. In contrast to the previous report,

which involved in vitro activation of TDLN cells with tumor

antigen, we examined an alternate method to activate TDLN

cells utilizing anti-CD3 mAb, a pan-T cell-stimulating reagent.

In addition, we have examined the release of GM-CSF and

IFN-y by CD4� and CD8� TDLN cells with their tumor

reactivity in vivo. Isolation of these T cell subsets involved

positive selection techniques resulting in purified cell pop-

ulations. We found that positively selected CD8� TDLN cells

were capable of mediating tumor regression in the absence

of CD4� cells. CD8� cells were found to release GM-CSF

and IFN-y in a tumor-specific manner. By contrast, isolated
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TABL E 6. Therapeutic Efficacy of Lymphoid Cells From Different
Sites in MCA 207 Tumor-Bearing Mice

Group

Adoptive Immunotherapy

Source of lymphoid cells Mean no. of pulmonary
for activationa IL-2 metastases (sEM)b

A - + 181(18)

B Inguinal LN + OC

C Spleen + 64 (18)d

D Mesenteric LN + 154 (9)

E Thymus + 187 (12)

a Mice were inoculated s.c. with MCA 207 tumor cells in the lower flank and

underwent removal of LN 10 days later for anti-CD3/IL-2 activation.

tThe tumor reactivity of the activated TDLN cells were assessed in the adop-

tive immunotherapy of 3-day established MCA 207 pulmonary metastases as

described in Table 1.
cP < 0.01 compared with all other groups.

dp < � compared with groups A. D, and E.

CD4 � cells did not mediate tumor regression upon adoptive

transfer. CD4+ cells manifested reduced levels of IFN-’y

release and nonspecific release of GM-CSF. The important

role that GM-CSF and IFN-y has in mediating tumor regres-

sion was documented in several other experiments. We were

able to show that the induction of pre-effector TDLN cells

over a prolonged duration oftumor growth diminished. This

was directly correlated with loss of the ability of activated

TDLN cells to release both cytokines in response to tumor.

In addition, the ability to generate therapeutic effector cells

from different lymphoid organs was also associated with the

functional ability of the activated cells to release GM-CSF

or IFN-’y in a tumor-specific manner. Finally, the adminis-

tration of neutralizing mAb to either cytokine reduced the

antitumor effect ofadoptively transferred immune cells, with

neutralization of both cytokines having a greater effect than

either cytokine alone. It should be noted that we did not

completely abrogate tumor regression with neutralization

of these cytokines, which suggested either incomplete neu-

tralization or more likely that other mechanisms were involved

in the antitumor response.

The role of CD4 + cells was also characterized in our

studies. We confirmed by in vivo depletion studies that

CD4� cells were important in the adoptive immunotherapy

model. This cell population appeared to be necessary as

a source of IL-2, since their absence could be replaced

by the exogenous administration of the cytokine. In cytokine

release assays, we found that purified CD4 + cells released

signfficantly greater amounts of IL-2 in response to tumor

stimulation compared with CD8� cells. Moreover, IL-2 was

found to augment the release of GM-CSF and IFN-’y when

added exogenously to activated TDLN cells co-cultured with

irradiated tumor cells. This latter observation suggests one

mechanism by which CD4� cells interact with CD8� cells

in mediating tumor regression in vivo.

The potential role of GM-CSF and IFN-’y involved in the

immune rejection response may relate to their influence on

host components. We and others have demonstrated that

the adoptive transfer ofimmune lymphoid cells can mediate

tumor regression in animals previously subjected to whole

body irradiation (500 cGy), which eliminated a major con-

tribution of the host lymphoid compartment in the rejection

of tumor f25-28]. A potential radiation-resistant cell that

may play a significant role in the immune response are

monocytes/macrophages. In two separate studies, the in vivo

inhibition of macrophage function by carragenan or trypan

blue abrogated the therapeutic efficacy of adoptively trans-

ferred lymphoid cells in animal models (27, 28]. As a cor-

ollary, we have reported that the administration of anti-Ia

mAb will also inhibit the antitumor effects mediated by adop-

tively transferred T cells suggestive of a contributory role

for host antigen-presenting cells (APC) [31. Both IFN-’y and

GM-CSF have been shown to activate macrophages to be-

come tumoricidal [29-31]. In addition, APC has been re-

ported to be down-regulated in the tumor-bearing host [32,

33]. In this context, GM-CSF has been recently shown to

reconstitute the immunostimulatory capacity of tumor-derived

APC [33]�

Other potential mechanisms related to the antitumor re-

activity associated with IFN-’y release may be secondary to

its effects on tumor. IFN-’y has direct tumoricidal effects on

tumor cells I��] It is also associated with the enhanced

expression of MHC and/or tumor-associated antigens that

could make tumors more susceptible to T cell eradication

IFN y release35�’r1____ I
Restimulate H

30 with

25 #{149}None

- 20 OMCA 207

�‘ !aiIJ.411
Ing LN Spleen Mes LN

Effector cells

GM-CSF release

Thymus

250-�’�l

200

I 15oi���HI
� III. _______es I �4-1

�l00(I I

50t�HI __

0�
Ing LN Spleen Mes LN Thymus

Effector cells

Fig. 7. Tumor-specific release of activated cells derived from different

lymphoid organs in animals inoculated with MCA 207 tumor 10 days

earlier. Cytokine release correlated with in vivo antitumor reactivity (see

Table 6).
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[35, 36]. Another intriguing mechanism that may be oc-

curring is the modulation oftumor cells by IFN-y to become

non-professional APC that can present tumor antigen to host

immune components 13�I#{149}
In summary, we have demonstrated that sensitized CD8�

T cells are necessary in initiating tumor regression in an

adoptive immunotherapy model. The elaboration of GM-

CSF and IFN-y are involved in this antitumor response and

may prove to be important functional endpoints for the iden-

tification ofcellular reagents used in adoptive immunotherapy.
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