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†Embraer, São José dos Campos, SP, 12217-901, Brazil

Domingos A. Rade ‡‡

Technological Institute of Aeronautics, São José dos Campos, SP, 12228-900, Brazil
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The flutter behavior of tow steered composite panels, in which the fiber placement follow
curvilinear trajectory, is evaluated. A simple structural model based on Ritz method
combined with supersonic aerodynamic piston theory is used to analyze the aeroelastic
behavior. Classical lamination plate theory and symmetric stacking sequence are used
and the fiber trajectories are defined by Lagrange interpolation functions. The flutter
stability boundaries for optimal conventional (constant stiffness laminates) layups and non-
conventional (variable stiffness laminates) steered panels are numerically compared. The
effect of in-plane loads is also accounted for in the aeroelastic analyses.

I. Introduction

The panel flutter phenomenon is caused by the interaction of inertial, elastic and aerodynamic forces
generated by supersonic airflow. The safe design is driven by the determination of critical aerodynamic con-
ditions regarding Mach and dynamic pressure. Early studies were devoted to understanding the aeroelastic
instability in V-2 rockets using different structural and aerodynamic modeling approaches.1

Dowell2 presents a review of panel flutter, introducing the theoretical mathematical analysis and corre-
lations with experiments. Yang3 proposed a double curved thin shell finite element for modeling of com-
posite plates, curved panels, and composite cylindrical shells. Mei and coworkers4 developed finite element
models to evaluate nonlinear flutter of composite panels considering the von Kàrman large-deflection strain-
displacement relations in the time domain. They also evaluated the nonlinear behavior of composite panels
for different configurations regarding aspect ratios, lamination angles and number of layers.5 Afterwards,
different approaches were developed to improve design and to control instabilities, such as active control
by using piezoelectric actuators,6 considering the stiffener’s base as structural elements7 and using electro-
rheological fluids.8

The classic strategy of aeroelastic tailoring consists in stacking plies in different orientations for aeroelastic
benefits. This design technique has been employed in different projects, such as the flight demonstrator X29,
in which the problem of low divergence speed was solved by arranging the stacking sequence to explore the
terms of bending-torsion coupling in its composite wing.9
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The improvement of fiber placement techniques and the use of automated procedures culminated with
the emergence and development of new manufacturing processes. The automated fiber placement (AFP)
process enables to manufacture variable stiffness panels (VSP), allowing increased design flexibility and new
possibilities to enhance the composite laminate structural design. Examples of VSP can be found to improve
buckling,10 to reduce stress concentrations around holes,11 to maximize the fundamental frequency12 and to
optimize aeroelastic characteristics of composite wing13.14

The impact of defects in variable stiffness plates, especially gaps and overlaps, was neglected in the
literature until the recent years.15 The “Defect layer” method highlights the effect of defects in the critical
buckling load and in-plane stiffness.16 The most common approach to manufacture variable stiffness plates
consists in defining the tow steering angle as functions of two values in the edges of the plate (T0 and T1),
due to the advantage to easily control the turning radius from these parameters. The defects are dependent
mainly on the turning radius, whose the minimum value depends on the fiber width.17

The high cost of optimizing VSP (steered laminates) is a consequence of the large number of design
variables required to define the trajectory, thicknesses and manufacturing constraints.18 This is in contrast
with the traditional composite laminated structures (unsteered laminates) that involve the task of finding a
combination of several straight-fibers layers with constant thicknesses, aiming the best mechanical properties
for different design purposes.19

This paper proposes a new evaluation approach for panel flutter by using aeroelastic tailoring of tow
steered composite laminates. The flutter analysis results for several configurations (steered and unsteered)
are optimized and compared. A differential evolution (DE) algorithm is applied to optimize the tow steered
composite plates providing promising results. For the optimized solutions, the instability boundaries are
evaluated considering in-plane loads and a multi-objective optimization with manufacturing constraints. The
plate is modeled according to the Classical Lamination Theory (CLT), whereas sinusoidal functions are used
as basis for the Ritz Method. The fiber placement trajectory is specified by controlling points interpolated
by Lagrange polynomials of different orders.18 The aerodynamic model is based on the potential flow theory
combined with high Mach number approximation.

II. Formulation

A. Structural Model

The plate is modeled based on von-Krman strain-displacement assumptions, according to the Classical
Lamination Theory and each ply is assumed to be in plane strain, which means that all the out-of-plane
strains are set to zero:

γzx = γzy = εzz = 0 (1)

The displacement field is represented as:

u(x, y, z, t) = u0(x, y, t)− z ∂w0(x, y, t)

∂x

v(x, y, z, t) = v0(x, y, t)− z ∂w0(x, y, t)

∂y

w(x, y, z, t) = w0(x, y, t)

(2)

where (u0, v0, w0) are the displacements in the midplane.
Assuming small strains and moderately large rotations, the strain components are expressed as:

ε =


εx

εy

γxy

 =


∂u0(x,y,t)

∂x − z ∂2w0(x,y,t)
∂x2 + 1

2

(
∂w0(x,y,t)

∂x

)2
∂v0(x,y,t)

∂y − z ∂2w0(x,y,t)
∂y2 + 1

2

(
∂w0(x,y,t)

∂y

)2
∂u0(x,y,t)

∂x + ∂v0(x,y,t)
∂y − 2z ∂2w0(x,y,t)

∂y∂x + ∂w0(x,y,t)
∂x

∂w0(x,y,t)
∂y

 (3)

where the linear and nonlinear terms are denoted as:

εL =


εLx
εLy
γLxy

 =


∂u0(x,y,t)

∂x
∂v0(x,y,t)

∂y
∂u0(x,y,t)

∂x + ∂v0(x,y,t)
∂y

 (4)
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κ =


κx

κy

κxy

 = −


∂2w0(x,y,t)

∂x2

∂2w0(x,y,t)
∂y2

2∂2w0(x,y,t)
∂x∂y

 (5)

εNL =


εNL
x

εNL
y

γNL
xy

 =


1
2

(
∂w0(x,y,t)

∂x

)2
1
2

(
∂w0(x,y,t)

∂y

)2
∂w0(x,y,t)

∂x
∂w0(x,y,t)

∂y

 (6)

Then, the forces (Q) and moments (B), with the assumptions of CLT, are:{
Q

B

}
=

[
A B

BT D

]{
εL + εNL

κ

}
(7)

in which, the membrane, membrane-bending and bending terms are given by the matrices A,B and D. In
the case of VSP plates, these matrices must be computed accounting for the fact that the fiber angle varies
over the ply according to Lagrange polynomials:18

θ(x, y) = Φi +

M−1∑
m=0

N−1∑
n=0

Tmn.
∏
m 6=i

x− xi
xm − xi

.
∏
n 6=j

y − yj
yn − yj

(8)

where Φi is the reference ply angle and Tmn are the control angles in the reference points, as depicted in
Fig. 1.

T00

T0n

T0N
TmN

TM0

Tmn

TMNy

x

TMn

Tm0

(x0,yN)

(x0,yn)

(x0,y0)

(xm,yN)

(xm,yn)

(xm,y0)

(xM,yN)

(xM,yn)

(xM,y0)

a

b

Figure 1. Non-linear fiber orientation by Lagrange polynomials. (Adapted from Wu18)

Considering symmetric laminates B=0, the matrices A and D derived from a combination of in-plane
and out-of-plane lamination parameters (Vi and Wi).

20

(V1, V2, V3, V4)(x, y) =
1

h

∫ h/2

−h/2
(cos(2θ), sin(2θ), cos(4θ), sin(4θ))dz (9)

(W1,W2,W3,W4)(x, y) =
12

h3

∫ h/2

−h/2
z2(cos(2θ), sin(2θ), cos(4θ), sin(4θ))dz (10)

and laminate invariants:21

Γ0 =

 I1 I4 0

I4 I1 0

0 0 I5

 , Γ1 =

 I2 0 0

0 −I2 0

0 0 0

 , Γ2 =

 0 0 I2/2

0 0 I2/2

I2 I2 0

 ,
Γ3 =

 I3 −I3 0

−I3 I3 0

0 0 −I3

 , Γ4 =

 0 0 I3

0 0 −I3
I3 −I3 0


(11)
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are expressed as: A11(x, y) A12(x, y) A16(x, y)

A12(x, y) A22(x, y) A26(x, y)

A16(x, y) A26(x, y) A66(x, y)

 = h(Γ0 + Γ1V1(x, y) + Γ2V2(x, y) + Γ3V3(x, y) + Γ4V4(x, y)) (12)

 D11(x, y) D12(x, y) D16(x, y)

D12(x, y) D22(x, y) D26(x, y)

D16(x, y) D26(x, y) D66(x, y)

 =
h3

12
(Γ0 + Γ1W1(x, y) + Γ2W2(x, y) + Γ3W3(x, y) + Γ4W4(x, y))

(13)

where h is the total thickness.
The strain energy of the composite plate may be expressed by:

U =
1

2

∫ a

0

∫ b

0

{
εL
}T

[A]
{
εL
}
dxdy +

1

2

∫ a

0

∫ b

0

{
κL
}T

[D]
{
κL
}
dxdy+

1

2

∫ a

0

∫ b

0

{
εNL

}T
[A]

{
εL
}
dxdy +

1

2

∫ a

0

∫ b

0

{
εL
}T

[A]
{
εNL

}
dxdy+

1

2

∫ a

0

∫ b

0

{
εNL

}T
[A]

{
εNL

}
dxdy

=U1 + U2 + U3 + U4 + U5

(14)

For the complete solution for a fully simply supported plate, the transverse displacement field is approx-
imated using:

u0(x, y, t) =

mmax∑
m=m0

nmax∑
n=n0

pmn(t)sin
(
m
x

a

)
sin
(
n
y

b

)
(15)

v0(x, y, t) =

mmax∑
m=m0

nmax∑
n=n0

qmn(t)sin
(
m
x

a

)
sin
(
n
y

b

)
(16)

w0(x, y, t) =

mmax∑
m=m0

nmax∑
n=n0

rmn(t)sin
(
m
x

a

)
sin
(
n
y

b

)
(17)

which can be rewritten in matrix notation as:
u0(x, y, t)

v0(x, y, t)

w0(x, y, t)

 =

 ST
u (x, y) 0 0

0 ST
v (x, y) 0

0 0 ST
w(x, y)




qu

qv

qw

 (18)

Based on the hypotheses of Kirchhoff theory, the kinetic energy (Υ), which is adequate for thin plates,
writes:22

Υ =
1

2

∫ ∫ ∫
ρ0
[
u̇2 + v̇2 + ẇ2

]
dxdydz (19)

where ρ0 is the material density.

B. Aerodynamic Model

Based on potential flow assumptions, the aerodynamic pressure ∆P is modeled according to the method
proposed by Amabili,23 known as third order piston theory:

∆P =
−p∞
Ma

[(
∂w

∂x
+

1

U∞

∂w

∂t

)
+

(1− γ)Ma

4

(
∂w

∂x
+

1

U∞

∂w

∂t

)2

+
(1 + γ)M2

a

12

(
∂w

∂x
+

1

U∞

∂w

∂t

)3
]

(20)

Then, the virtual work done by the aerodynamic load is expressed by:

δW =

∫ a

0

∫ b

0

∆Pδwdxdy (21)
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C. Aeroelastic Model

The aeroelastic model is obtained by combining the expressions of the strains energy (Eq. 14), kinetic energy
(Eq 19), virtual work of the aerodynamic forces (Eq. 21), and the Lagrange’s Equations.24

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂U

∂q
= Q (22)

where, the generalized coordinates are q=[qT
u qT

v qT
w]T .

Considering only linear terms and out-of-plane displacements, simplifying the aerodynamic loading to
first order and neglecting aerodynamic damping, the equations of motions are obtained as:

Mq̈ + (λK + C) qw = 0, (23)

where M is the mass matrix, K is the aerodynamic stiffness matrix and C is the structural stiffness. Also,
the parameter λ, which represents the airflow conditions, is conveniently defined as:

λ =
ρ∞U

2
∞√

M2
∞ − 1

. (24)

Thus, from solution of the following eigenvalue problem, the eigenvalues of the aeroelastic system can be
evaluated. Flutter instabilities conditions are associated by inspections of the eigenvalues for different values
of λ . (

λK + C− ω2M
)
qw = 0 (25)

D. Linear Buckling

Considering only prescribed in-plane loads, the associated potential Energy writes:

V = −1

2

∫ a

0

∫ b

0

[
Nxx

(
∂w

∂x

)2

+Nyy

(
∂w

∂y

)2

+ 2Nxy
∂w

∂x

∂w

∂y

]
dxdy (26)

which results in the geometric stiffness matrix (KG). Then the general system of buckling equation is given
as:25

(K− ΛKG)qw = 0, (27)

where (K) is the bending constitutive matrix.
The lowest eigenvalue associated with to Eq. 27 is the critical buckling load (Λbuck = min(Λ)).
The full aeroelastic formulation including in plane loads, which is extensively treated in the literature to

account for temperature effects, is also done herein considering only compressive loads in x direction (Nxx)
conveniently expressed in function of the buckling load as:

α =
Nxx

(Nxx)buck
(28)

being (Nxx)buck equal to Λbuck when Nxx=1; Nyy=0 and Nxy=0.
Consequently the combined problem of linear solution of aeroelastic and buckling is expressed as:(

λK + αKG + C− ω2M
)
qw = 0 (29)

III. Test-case Description and model Verification

Before analyzing the panel flutter of a tow steering laminate, first the lamina properties and plate
geometry. Then, the numerical model is verified by comparing the natural frequencies and modes shapes,
from the Rayleigh Ritz approach with the Nastran R© model.

A. Test-case Description

Fig. 2 and Table 1 show a simply-supported plate dimensions and lamina properties.
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 a = 300 mm

 b
 =

 2
0

0
 m

m

ss

ss ss

ss

y

x

Figure 2. Plate Model Description

Table 1. Lamina Material properties and plate dimensions

Property Value Property Value

E1 129500 MPa Length, a 400 mm

E2 9370 MPa Width,b 300 mm

G12 5240 MPa Density,ρ0 1500 kg/m3

µ12 0.38 Ply thickness, t 0.19 mm

B. Model Verification

In this section the model verification regarding natural frequencies and mode shapes is presented for two
different plate configurations. Configuration A represents a common laminate with constant stiffness, and
Configuration B is a variable stiffness plate.

For configuration A the stacking sequence of the four layers has been defined as [0o/45o/−45o/90o]s with
dimensions and material properties as detailed in Table 1. For configuration B fiber deposition course is
defined following the second order Lagrange polynomials, as definded in Eq. 8. It should be noted thats the
same stacking sequence is adopted for configuration B, in which the steered laminae are rotated according
to the prescribed angles.

The accuracy of the computed natural frequencies are shown in Table 2 for CA and in Table 3 for CB
with trajectory defined as per Fig. 4. Also, Figure 3 portrays the modal assurance criteria (MAC) values for
both configurations, where is shown the good match between the modes shapes obtained from NASTRAN
and the counterparts obtained from the R.R. proposed model.

As per Table 2 and Table 3 considering six assumed modes in both x and y directions is sufficient to
guarantee the model convergence with an acceptable error. Also, the steered configuration for the developed
R.-R. model and Nastran FE model are depicted in Fig. 4.

IV. Optimization Procedure

The Differential Evolution (DE) algorithm is used to achieve the maximum aeroelastic instability margin
of non steered and steered plates subjected to aerodynamic load. In addition, the optimization procedure was
done considering suitable generations and populations, evaluating at least five tests for each configuration.

Five different optimizations are proposed, as presented in Fig. 5. The first optimization (O1) considers
only non-steered trajectory and discrete conventional angles (±450, 00, 900). The second optimization
considers also a non-steered plate (O2), but the angles can vary continuously between −900 to +900. Then,
in the third optimization (O3), the VSP has fiber paths defined by a first order Lagrange polynomial in
both x and y direction. In the forth optimization (O4) the trajectories is defined by second order Lagrange
polynomial. And, the last optimization (O5) a third order Lagrange polynomial is used to define steering
angles.

In Table 4 is summarized the description of each optimization, the design variables and their types, and
their lateral constraints. Therefore, the optimization problem can be stated as:
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Figure 3. Mode Assurance Criteria for CA and CB

Table 2. Comparison of the values of natural frequencies obtained by R.R. and the FE model for configuration
A

ωn1 (Hz) ωn2 (Hz) ωn3 (Hz) ωn4 (Hz) ωn5 (Hz) ωn6 (Hz)

Nastran 63.88 152.47 166.97 248.68 309.94 333.02

R.R.

mmax=3, nmax=3 64.64 154.26 169.10 254.81 315.60 337.37

(1.18) (1.17) (1.27) (2.46) (1.82) (1.30)

mmax=4, nmax=4 64.53 154.20 168.93 254.63 313.88 336.64

(1.01) (1.13) (1.17) (2.39) (1.27) (1.08)

mmax=5, nmax=5 64.52 154.06 168.88 254.20 313.80 336.62

(1.00) (1.04) (1.14) (2.21) (1.24) (1.08)

mmax=6, nmax=6 64.48 154.05 168.81 254.16 313.62 336.51

(0.93) (1.03) (1.10) (2.20) (1.18) (1.04)

mmax=7, nmax=7 64.48 153.99 168.79 254.00 313.59 336.50

(0.93) (0.99) (1.09) (2.13) (1.17) (1.04)

mmax=8, nmax=8 64.45 153.98 168.76 253.98 313.52 336.45

(0.89) (0.99) (1.07) (2.13) (1.15) (1.03)

mmax=9, nmax=9 64.45 153.95 168.75 253.90 313.50 336.45

(0.89) (0.97) (1.06) (2.09) (1.14) (1.03)

mmax=10, nmax=10 64.45 153.95 168.75 253.90 313.50 336.45

(0.86) (0.97) (1.04) (2.09) (1.13) (1.01)

* Values indicated between parentheses are relatives deviations

Maximize: λflutter
Design Variables: As per second column of Table 4
Subject to: As per forth column of Table 4

It is proposed to use the results from O1 as baseline layup for O3, O4 and O5.
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Table 3. Comparison of the values of natural frequencies obtained by R.R. and the FE model for configuration
B

ωn1 (Hz) ωn2 (Hz) ωn3 (Hz) ωn4 (Hz) ωn5 (Hz) ωn6 (Hz)

Nastran 65.38 151.55 170.43 248.68 319.74 330.67

R.R.

mmax=3, nmax=3 66.03 153.29 172.80 252.79 326.56 337.03

(0.99) (1.15) (1.39) (1.65) (2.13) (1.92)

mmax=4, nmax=4 66.00 153.03 172.49 252.26 324.34 335.19

(0.95) (0.98) (1.21) (1.44) (1.44) (1.37)

mmax=5, nmax=5 66.00 153.01 172.47 252.11 323.34 334.79

(0.95) (0.96) (1.20) (1.38) (1.13) (1.25)

mmax=6, nmax=6 65.97 152.98 172.43 252.08 323.31 334.69

(0.90) (0.94) (1.17) (1.37) (1.12) (1.22)

mmax=7, nmax=7 65.97 152.95 172.41 251.96 323.30 334.68

(0.90) (0.92) (1.16) (1.32) (1.11) (1.21)

mmax=8, nmax=8 65.96 152.94 172.39 251.94 323.25 334.64

(0.89) (0.92) (1.15) (1.31) (1.10) (1.20)

mmax=9, nmax=9 65.96 152.92 172.38 251.87 323.24 334.64

(0.89) (0.90) (1.14) (1.28) (1.09) (1.20)

mmax=10, nmax=10 65.95 152.91 172.37 251.86 323.21 334.62

(0.87) (0.90) (1.14) (1.28) (1.09) (1.19)

* Values indicated between parentheses are relatives deviations

X

Y

T00

T10

T20

T01

T11

T21

T02

T12

T22

(a) (b)

Figure 4. Steering Lamina - a) Rayleigh-Ritz model; b) Nastran Model

A. Manufacturing Constraints

In the current stage of manufacturing technology, the realization of tow steered composites is limited due
the fact that the trajectories of small curvature radius are associated to larger densities of defects (gaps
and overlaps). In this sense, the best strategy found in the literature to tackle this limitations is the fiber
placement using constant curvature courses,16 because programming of the placement machine is easier and
the induced defects can be controlled in terms of the turning radius.

The tow steered path is formulated using three different parameters (Φ, T0 and T1 ). The turning radius,
is determined by:26

r =
a

sinT1 − sinT0
(30)

is the most relevant manufacturing constraint that should be taken into account to avoid local buckling,
wrinkle out of the plane and crimping during fiber placement, which are prone to reduce the strength of
laminate. Considering a typical ply width (3.17mm) the minimum turning radius allowable is found to be
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T00

T01

T02

T03

T10

T12

T13

T20

T21

T22

T23

T30

T31

T32

T33

T11

y

x

        O5 - 3rd order

  16 variables (T00 .... T33)

T00

T01

T02

T10

T12

T20

T11

T22

y

x

         O4 - 2nd order

   9 variables (T00 .... T22)

T21

T00

T01

T10

T11

y

x

           O3 - 1st order

 4 variables (T00, T01 ,T10,T11)

y

x

             O1 - Non sterred

   4 variables (θ1 , θ2 , θ3 , θ4 )

y

x

            O2 - Non steered

   4 variables (θ1 , θ2 , θ3 , θ4 )

00

450

900

-450
-900

 900

Figure 5. Configurations adopted for optimization and their types

Table 4. Lay-up options and design variables

Configuration Design Variables Variables Type Boundaries

O1 [θ1 θ2 θ3 θ4] Discrete [±450 00 900]i

O2 [θ1 θ2 θ3 θ4] Continuous [−900 900]i

O3

[
T01 T11

T00 T10

]
Continuous [−900 900]i

O4

 T02 T12 T22

T01 T11 T21

T00 T10 T20

 Continuous [−900 900]i

O5


T03 T13 T23 T33

T02 T12 T22 T32

T01 T11 T21 T31

T00 T10 T20 T30

 Continuous [−900 900]i

635mm.
The steering angle in the ply is defined as:

sin(θ(x)) = sinT0 + (sinT1 − sinT0)
x

a
(31)

Consequently, considering a generic configuration where T1 is different from T0, the fiber trajectory is
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easily evaluated by integration of dy/dx = tan θ(x):

y(x) =

∫
tan(θ(x))dx =

a

√
1−

(
sin(T0)− x (sin(T0)−sin(T1))

a

)2
sin(T0)− sin(T1)

(32)

V. Analysis and Results

This section presents the results of flutter analysis and optimization for five different configurations of
composite plates, based on the procedures described in the previous sections.

Table 5 shows the characteristics of the optimized laminates, while Fig. 6 illustrates the obtained fiber
trajectories for configurations O3, O4 e O5.

It can be seen that as the order of the polynomial describing the fiber placement trajectories increases,
more complex shapes of deposition paths are obtained, which, in practical cases, can be infeasible due to
manufacturing constraints.

It can also be seen that, taking O1 as a reference, all optimized configurations provided improvements of
the flutter speed. This improvement increases with the order of the polynomial used to described the fiber
trajectories.

Figure 7 illustrates the evolution of the eigenvalues of the aeroelastic system, (showing the coalescence
of natural frequencies that characterizes the onset of instability), for the optimized configurations.

Table 5. Optimization Results

Configuration Optimal Values Flutter [ λ ] Improvement *

O1 [0◦ 0◦ 0◦ 45◦] 223500 —

O2 [−24.24◦ 31.79◦ 31.67◦ 24.95◦] 233500 4.47%

O3

[
64.98◦ −64.56◦

−15.23◦ 11.34◦

]
229000 2.46%

O4

 −77.57◦ −26.31◦ −83.35◦

50.71◦ 7.88◦ 53.40◦

−74.33◦ −34.21◦ −63.44◦

 249000 11.41%

O5


39.95◦ −75.60◦ −69.75◦ −14.01◦

−32.67◦ −10.82◦ 8.23◦ 30.14◦

−49.58◦ 11.18◦ −11.42◦ 55.71◦

−15.15◦ −55.95◦ 60.09◦ 1.65◦

 269500 20.50%

* Improvements of flutter speed with respect to configuration O1.

#O3 #O4 #O5

Figure 6. Optimized Trajectories for configurations O3, O4 e O5

Also, the results obtained for the problem combining aeroelastic and buckling stability (according to
Eq. 29), are shown in Fig. 8. It can be seen that O3, O4 e O5 have quite similar buckling loads, but the
non-steered configuration optimized with continuous O2 presents best results in terms of buckling load.
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O1

O3

O2
O4

O5

Figure 7. Aeroelastic Evaluation - Evolution of the natural frequency for the optimized configurations
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LCO

STABILITY

Figure 8. Buckling and Aeroelastic Evaluation - Flutter Results Comparison

A. Flutter and Buckling optimization under manufacturing constraints

A multi-objective optimization was done considering six different variables, composed of the tow steered an-
gles and the four layup angles, which are Ξ=[T0 T1 a1 a2 a3 a4 ]. Therefore, the multi-objective optimization
problem is stated as:

Maximize: J1(Ξ) = flutter(Ξ, )

J2(Ξ) = buckling load(Ξ, )

subject to: (min. bound value)i ≤ (Ξ)i ≤ (max. bound value)i;

The results shown in Fig. 8 lead to conclude that the requirements for flutter and buckling stability
can be conflicting with each other. Therefore, the possibility of increasing the combined stability region
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in the α λ plane by a multi-objective criteria optimization approach was investigated, accounting for the
manufacturing constraints addressed in subsection VI A.

The fiber placement trajectory follows constant-curvature courses and the manufacturing constraints obey
the rule of minimum turning radius, as given by Eq. 32. The influence of the manufacturing constraints
can be evaluated in Fig. 9, which shows the Pareto fronts obtained from optimization runs in two different
conditions: accounting for manufacturing constraints and not accounting for this constraint.

Comparing performance of configuration OM with the baseline non-steered configuration O1, it can be
seen that the aeroelastic-buckling behavior of OM is noticeably superior of that of O1. The stability region
for OM is much broader then that for O1; the buckling load for OM is more than double the counterpart
for O1.

7000 7500 8000 8500 9000 9500

Buckling Load [N/m]

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

λ
F

lu
tt

e
r

×10
5

with constraint
OM
without constraint

Figure 9. Pareto fronts obtained from two multi-criteria optimization runs.
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Figure 10. Aero-buckling behavior comparison
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VI. Summary and Conclusion

The theoretical modeling and numerical investigation of variable stiffness composite plates were presented
in this paper. The linear and geometrically non linear formulation were developed based on Rayleigh-Ritz
approach, in combination with the use of Lagrange polynomials of various orders to represent the fiber
deposition path over each lamina. The formulation includes the statement of eigenvalue problems associated
to dynamic stability (flutter), linear buckling and combination of these two types.

In the numerical simulations, it was attempted to compare the instability behavior of VSP with traditional
unidirectional fiber deposition counterparts in order to evaluate the possible benefits provided by tow steering.
Such benefits have been quantified, thus corroborating the findings reported in previous studies.

Single objective and multi-objective problems have been formulated and solved numerically for the pur-
pose of maximizing the stability behavior. In particular, constraints imposed by manufacturing restrictions
have been accounted for.

The optimization tests were found to be successful in determining steered configurations with improved
buckling and flutter behaviors, as compared to traditional non-steered laminate composites.
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