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A data-driven framework is applied to enhance Reynolds-averaged Navier-Stokes (RANS)
predictions of flows involving shock-boundary layer interactions. The methodology involves
solving inverse problems to infer spatial discrepancies in the Spalart Allmaras (SA) model
and projecting these discrepancies to locally non-dimensional flow features using machine
learning. The machine-learned reconstruction of the discrepancy is then used within the
RANS partial differential equation solver for predictions. The methodology is applied to
problems involving transonic flow over an axisymmetric bump, oblique shock-boundary
layer interactions and shock train flows. The ability of the model to assimilate data (sur-
face pressure and field velocities) while predicting other quantities (Reynolds stresses) is
studied. Different approaches to infer discrepancies are compared, including a form that
preserves a log-layer constraint in the SA model.

The interaction of shock waves with turbulent boundary layers is an important phenomenon that occurs
in many aerospace systems, including high-speed aircraft, missiles, and scramjet engines. Shock-boundary
layer interactions (SBLI) have been a topic of extensive study1–3 over the past five decades. Reynolds-
averaged Navier-Stokes (RANS) models continue to be indispensable in the modeling of SBLI in practical
systems because of the high Reynolds numbers involved. It is well recognized,4 however, that RANS models
are inaccurate except in the case of weak interactions. This behavior is attributed to the inability of RANS
models to respond to a sharp pressure rise and the use of a single turbulent scale in an inherently multiscale
environment. Furthermore, post-shock relaxation is also a source of high modeling inaccuracy.

A key deficiency of RANS models as applied to SBLI can be attributed to the fact that they were
originally developed and calibrated based on canonical flows that are far removed from the problems of
interest. In this work, starting from a baseline RANS model formulation and LES data, we use inverse
modeling to characterize the structural form of discrepancies in the model. Based on this information from
a number of different SBLI configurations, we intend to modify the functional form of the RANS closure
with the eventual goal of obtaining robust and reliable predictive models for complex high-speed flows. This
work represents preliminary efforts towards that objective.

The general framework of field inversion and machine learning (FIML) has been developed by the authors
over the past three years.5–10 The use of machine learning for turbulence modeling has been growing over
the past year as exemplified by a number of authors.11–13

I. Field Inversion and Machine Learning (FIML) for Turbulence Modeling

A schematic of the FIML methodology is shown in Figure 1. Given an existing model, a model correction
field a β(x) is introduced into the transport equation. Starting with some high-fidelity or experimental data
Gd, an inverse problem will be formulated to minimize (an appropriately regularized form of) ||Gd −Gβ||,
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†Graduate Student, Aerospace Engineering, University of Michigan, Ann Arbor, AIAA Student Member
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aβ is a spatial field if the problem is steady and a spatio-temporal field if it is unsteady.
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where Gβ is the predicted output for a given correction field. Note that the intent is not to infer a limited
set of parameters that characterizes the correction, but rather to extract the correction field itself. In other
words, β is sought at every discrete location in the computational domain and inserted into the transport
equation. Thus we are directly addressing structural errors and uncertainties in the model.

The correction fields will be obtained for an ensemble of problems (on different data sets G1
d,G

2
d..., as

shown in the figure) representative of the physical phenomena that is to be modeled. Unlike in parameter
estimation, in which the inferred parameters can be used directly in simulations, the β(x) field by itself is of
limited use in quantitative modeling. In other words, having inferred the optimal model correction function
β, it remains to convert the inference into modeling knowledge.

To be useful in predictive modeling, the spatial dependence of β(x) has to be transformed into feature
space using machine learning. Machine learning effectively constructs a functional form β(η), where η(U(x))
are features (derived from flow and turbulence variables U) that will be available during the solution process.
The elements of the feature vector η should preferably be locally non-dimensional quantitiesb such that the
functional corrections can be translated across different problems.

Figure 1. Schematic of field inversion and machine learning framework for data-augmented turbulence modeling

II. Forward and Inverse Problems

The governing Reynolds-averaged Navier–Stokes equations are spatially discretized using a cell-centered
finite-volume scheme on a polyhedral unstructured mesh.14,15 The flow and turbulence model equations are
solved in a fully-coupled fashion15 using implicit Euler time integration with local time-stepping. To obtain
information about the modeling discrepancy, inverse problems are solved. The procedure begins with the
introduction of a spatially varying field β(x, y) into the model equation. In the case of the Spalart–Allmaras
(SA) model below, this term is introduced as a multiplier prefacing the production term.

Dν̃

Dt
= β(x)P (ν̃, U)−D(ν̃, U) + T (ν̃, U) (1)

b|S|τ is an example of an acceptable feature, where |S| is the magnitude of the strain-rate tensor and τ is a turbulent
time-scale.
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Although the multiplier is introduced to the production term, it is equivalent to adding an additional
source term δ(x) = (β(x)−1)P (ν̃, U). Effectively, the addition of β(x) changes the net balance of all source
terms and hence, there is no constraint on the value β(x) can take.

In this work, we employ the Bayesian formulation to infer an improved estimate for β(x) (and hence
the eddy viscosity) within the SA model. The Bayesian approach16 provides a formalism to quantify the
posterior probability distribution q(β|d), given a prior distribution (p(β)), data vector d, and a likelihood
function h(d|β). The Bayes theorem states that

q(β|d) =
h(d|β)p(β)

c
, (2)

where c =
∫
h(d|β)p(β)dβ. In its current form, the solution to Eq. 2 is intractable using a sampling-based

method because of the infinite-dimensional nature of β. The problem is made finite-dimensional by redefining
it such that value of β is inferred at every point in the computational domain of the RANS grid c.

To promote tractability of the computation of the posterior properties, q(β|d) ≡ e−(β−βprior)
TC−1

prior(β−βprior)

and h(d|β) ≡ e−FTC−1
obsF are approximated to be Gaussian. In these expressions, F is a vector with ith el-

ement fi = di,RANS − di,benchmark; di is the ith data point and can be any flow-dependent quantity such
as pressure, skin-friction, or velocity. Cobs and Cprior are the observational and the prior covariance matri-
ces. βprior is the prior mean of the parameters (and also corresponds to the base model). Under Gaussian
assumptions, the maximum a posteriori (MAP) estimate17 is taken to be representative of the mean of the
distribution. The MAP can be computed by maximizing the numerator in Eq. 2, or equivalently by solving
the following deterministic minimization problem:

βMAP = argmin
β

J(β) = argmin
β

1

2

[
FTC−1

obsF + (β − βprior)TC−1
prior(β − βprior)

]
. (3)

The resulting optimization problem is still high-dimensional, but the posterior distribution is not deter-
mined by sampling methods; instead, the covariance is approximated by linearizing about the MAP point.
This leads to a definition of the covariance in terms of the inverse of the Hessian of the objective function,
J(β),

Cposterior,i,j =

[
d2J(β)

dβidβj

]−1
∣∣∣∣∣
βMAP

. (4)

The deterministic minimization problem to obtain the MAP solution is solved using a gradient-based
optimization algorithm. The required sensitivities are calculated using an efficient adjoint-based formulation.
The framework is described in more detail in Ref. 6.

III. Machine Learning

The spatial functions β(x) are projected onto a feature space using a machine learning algorithm. Machine
learning models are trained using locally non-dimensional flow features. The set of features that were
evaluated includes {χ, S/Ω, τ/τwall, P/D}: the ratio of eddy viscosity to laminar viscosity, the ratio of
strain-rate magnitude to vorticity magnitude, the ratio of the Reynolds stress magnitude to the wall shear
stress, and the ratio of the production term to the destruction term, respectively. The use of locally non-
dimensional quantities enables the application of the same trained model to flow conditions not part of the
initial training. The machine learning model is used in the the partial differential equation solver alongside
the RANS equations.

While we have explored various machine learning algorithms, including Gaussian processes9 and neural
networks,18 we use Adaptive Boosting (Adaboost) in the present work. It was originally developed by Freund
et al.,19 though we use the enhanced version by Drucker20 implemented in the Python package scikit-learn.21

The basic concept of Adaboost is to iteratively apply weak learners to focus on the data that previous learners
failed to learn. For each iteration, point that are mistakenly predicted by the current learners are marked
with higher weights, so that the next iteration perceives them as being more important.

Given training data (ηi,βi)i=1,N , the general steps in Adaboost regression are as follows:20

cNote that is still a very high-dimensional problem.

3 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
03

14
 



1. Assign an initial weight, wi = 1/N , to each data point.

2. Choose N samples from the data (with replacement). Probability of choosing a data point is based on
its weight.

3. Construct a predictor (e.g., decision tree regressor with a maximum depth and number of features)
that minimize the error on current sample of the weighted training data.

4. Compute a measurement of the confidence of the predictor in step 3 based on a chosen loss function.

5. Update the weights wi based on the confidence and point-wise loss function.

6. Repeat from Step 2 until the desired total number of predictors is reached.

7. The regression result is computed as a weighted median of all predecessor predictors based on the
confidence of each predictor and learning rate.

IV. Axisymmetric Transonic Bump

(a) Mesh (b) Density gradient

Figure 2. Mesh and density graident contours for the axisymmetric transonic bump.

The Bachalo–Johnson axisymmetric transonic bump22 is a standard validation case for turbulence models.
The presence of an adverse pressure gradient, a shock, and the resulting region of separation makes it a
particularly challenging test case for RANS models. The flow setup consists of an axisymmetric cylinder
with a bump of length 1, and a uniform freestream with a Mach number of 0.875 and Reynolds number of
2.76 Million. A mesh of size 181 × 81 is used (Fig. 2a). The computational domain ahead of the bump, is
extended to ensure a sufficiently thick boundary layer at the bump onset. Axisymmetric RANS equations
are solved with no-slip boundary conditions at the lower wall and characteristic boundary conditions at the
other three boundaries. Fig. 2b shows the density gradient using the base Spalart-Allmaras (SA) model,
highlighting the shock structure.

RANS-based models are known to predict inaccurate boundary-layer separation and SBLI. This deficiency
results in a more aft shock location and a larger than expected separation region, which are apparent in Fig.
3, a comparison of the wall pressure and skin friction between the base (SA) model and direct numerical
simulation (DNS). These deficiencies can be reduced by solving the inverse problem, as shown in the next
section.

A. Inverse solutions

For this flow, we solve two inverse problems: one using wall pressure, a surface quantity, as data, and the
other using the full velocity vector field as data. The data came from a DNS by Spalart et al.23 The purpose
of this is to compare the inverse solution using sparse data with that using full field data as, for a practical
problem, we rarely have access to the latter. Fig. 3 shows the wall pressure and the skin friction for the
two cases compared with the base SA model and DNS. The surface quantities for both inversions show good
agreement with DNS. Inversion based on pressure performs slightly better than inversion based on velocity;
this is not entirely surprising as the inverse solution is explicitly driven by a surface quantity. Reynolds shear
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(a) CP (b) Cf

Figure 3. Wall pressure and skin friction using DNS, base SA and inverse SA models using pressure and
velocity based objective functions.

stress profiles at different axial locations are shown in Fig. 4. Overall, there is an improvement in Reynolds
stress predictions. Furthermore, there is no conclusive trend to suggest that velocity-based inversion is better
than inversion based on the wall pressure. While it is not prudent to draw general conclusions, in the absence
of full fields of data (as will be the case in high Reynolds number flows), it is not unreasonable to use surface
quantities for inversion. In fact, the authors have demonstrated that for separated flows over airfoils, the lift
coefficient is sufficient to obtain an acceptable β(x) field.18

(a) X = −0.25 (b) X = 1.0 (c) X = 1.25

Figure 4. Reynolds shear stress using DNS, base SA and inverse SA models using pressure and velocity based
objective functions.

(a) Using wall pressure (b) Using velocity field

Figure 5. Inverse solution β(x) using pressure based and velocity based objective functions.

Fig. 5 shows that for the two inverse solutions, the β(x) fields are considerably different after the point of
separation, but they share a high degree of similarity in the attached region. This points towards a universal
trend in the correction term and suggests that the solution fields, at least in the attached region, are not a
result of overfitting.
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A constrained approach to modifying the SA model

In the previous section, we modified the SA model by introducing a multiplier to the production term. In
the present structure, there are no constraints on the values β(x) can assume. It is desirable for corrections
to the base model to maintain accuracy in situations in which the base model is known to perform well.
To achieve this, one might constrain β(x), or modify the model at a lower level to respect physics-based
constraints.

In this section, we modify the dissipation term in the SA model by modifying the function fw. The
dissipation term in the SA model is given by,

D = cw1fw

[
ν̃

d

]2
. (5)

The function fw is defined as:

fw = g

[
1 + c6w3

g6 + c6w3

] 1
6

, g(r) = r + cw2(r6 − r), r =
ν̃

Ω̃κ2d2
, (6)

definition of all the symbols and values of different constants can be found in Spalart et al.24 The function
g(r), and hence fw, is constrained to be unity in the log layer i.e. g(1) = 1. Following this, cw2 is calibrated
so as to match skin friction for a flat-plate boundary layer. We modify this function by introducing a spatial
correction function, β(x), as follows,

g(r) = r + β(x)cw2(r6 − r). (7)

The log layer constraint is still satisfied, and we can infer β(x) as in the previous section. We perform the
inversion using wall pressure data. Fig. 6 shows the resulting wall pressure and skin friction coefficient. The
solution is in good agreement with DNS and the new modification does not restrict the inference. Fig. 9a
shows the resulting contour of β(x) and Fig. 7 shows the plot for fw(r) vs r. The baseline SA model dictates

fw(1) = 1 and dfw(1)
dr = 1, which are retained.

(a) CP (b) Cf

Figure 6. Wall pressure and skin friction for DNS, base SA model and inverse SA model by modifying fw.

B. Reconstruction using Adaboost

The spatially varying inverse solution, β(x), is projected onto the feature space using Adaboost (as in Section
III) to obtain β(η). Values of five-fold cross-validation coefficients of determination (R2) are listed in Table
1. As seen in the table, the trained model is robust with respect to available data. Fig. 8 shows the inverse
solution and the machine-learned solution for β(η) as a multiplier of the production term, and Fig. 9 shows
β(η) as an element of fw. The machine-learned reconstruction is an accurate representation of the inverse
solution. Fig. 7 compares the machine learned function fw with the base and the inverse fw. The wall
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Figure 7. fw vs r for the base SA, inverse SA and the machine learning augmented SA model.

CV number R2
train R2

validation

1 0.9958 0.9579

2 0.9957 0.9655

3 0.9961 0.9454

4 0.9956 0.9509

5 0.9957 0.9387

Table 1. Cross validation of Adaboost for transonic axisymmetric bump production multiplier.

pressure and the skin friction computed with the machine-learned corrections as part of the RANS solver
are shown in Fig. 10. There is a good agreement between the solution obtained using the machine learning
augmented model and DNS.

(a) Inverse β(x) (b) Machine learned β?(η)

Figure 8. Comparison of the inverse solution and machine learning-based reconstruction of inverse solution
using modification based on production term.
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(a) Inverse β(x) (b) Machine learned β(η)

Figure 9. Comparison of the inverse solution and machine learning-based reconstruction of inverse solution
using modification based on fw.

(a) Wall pressure (b) Skin friction

Figure 10. Pressure and skin friction from DNS, base SA model, machine learning augmented model-based
on production and fw modifications.
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V. Oblique Shock-Boundary Layer Interactions

(a) Mesh (b) Density gradient

Figure 11. Mesh and density gradient contours for shock-boundary layer interaction setup.

To further examine the generality of this methodology, simulations of the interaction of a single oblique
shock with a turbulent boundary layer were considered. The inverse solution was obtained by the authors in a
prior work7 using the k−ω model. The flow conditions attempt to emulate the benchmark setup in Morgan
et al.,25 which employs a well-resolved large-eddy simulation (LES). The incoming boundary layer has a
free-stream Mach number of 2.28, an inlet momentum-thickness Reynolds number of 1500, and a thickness
of 0.87 grid units. A grid of extent 10 units in the streamwise direction and 15 units in the wall-normal
direction is discretized using a Cartesian mesh of 201 uniform points in the streamwise direction and 151
points in the wall-normal direction. The undisturbed shock is aligned at an angle of 8◦ to the freestream and
its reflection point is at the center point of the wall domain. The inlet boundary layer is generated using a
precursor flat plate simulation. Rankine-Hugoniot conditions are used to obtain the shock jump conditions,
which are then enforced at the inlet plane.

A. Inverse solution

Similar to the transonic bump, a correction function β(x, y) is multiplied to the production term of the
SA equation. The coefficient of pressure (Cp) at the lower wall from the LES solution25 is used as the
benchmark data for inversion. Fig. 12 compares the pressure and friction coefficients using the base SA
model, the inverse SA model, and the LES. The posterior Cp tracks the LES consistently. As evident in the
Cf plot, the location and length of the separation bubble is more accurately predicted by the inverse model.
Fig. 13a shows the contour of the inverse solution, β(x), suggesting a significant model discrepancy in the
interaction region.

B. Reconstruction using Adaboost

Adaboost is again used to reconstruct the spatial inverse solution, β(x), in terms of the flow features.
Cross-validation R2 values are shown in Table 2. Fig. 13b shows the reconstructed function β?(η), a good
approximation to β(x). The RANS equations are solved using this machine learning augmented correction
term and the resulting wall quantities are shown in Fig. 14. The solution using the machine learning
augmented model is in good agreement with LES and is a significant improvement over the base SA model.
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(a) Cp (b) Cf

Figure 12. Pressure and friction coefficient for the LES, base SA and the Inverse SA model.

(a) Inverse β(x) (b) Machine Learned β?(η)

Figure 13. Inverse solution β(x) and machine learning constructed β?(η).

VI. Application to isolator shock train

The shock-train configurations corresponds to the LES of a constant area isolator performed by Morgan
et al.26 The cross-sectional dimension of the duct is 33.75 mm (height) by 76.2 mm (width). At the inlet,
the Mach number of the core flow is 1.61 and the momentum-thickness Reynolds number is Reθ ≈ 1660,
resulting in a confinement ratio of 0.32. The length of the duct is 400 mm. The outlet to inlet pressure ratio
is set to 2.23085. These numbers correspond to the experimental studies of Caroll and Dutton,27 but at a
reduced Reynolds number. Figure 15 qualitatively compares the LES and experiments. Detailed validation
studies are presented in Ref. 26 using using the Spalart-Allmaras, Menter SST, and Wilcox k − ω models.
The solutions obtained from RANS simulations were seen to vary dramatically depending on the turbulence
model. The location of the initial shock, given the same back pressure for each model was shown to be offset
by nearly 12 inlet boundary layer thickness compared to the LES.

For the rest of the study, the Spalart Allmaras (SA) model is considered for improvement.

CV number R2
train R2

validation

1 0.9931 0.9015

2 0.9939 0.8795

3 0.9940 0.9078

4 0.9937 0.9238

5 0.9937 0.9067

Table 2. Cross validation of Adaboost for oblique shock-boundary layer interaction.
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(a) Cp (b) Cf

Figure 14. Pressure and friction coefficient for the LES, base SA and the ML augmented SA model.

Figure 15. Shock train in a constant area isolator: (Top) LES contours of instantaneous |∇ρ|. (Middle) LES-C
contours of time- and span- averaged |∇ρ|. (Bottom) Experimental schlieren image.27

For the inversion, wall pressure and skin-friction from the LES is used as data. Figure 16 shows the
LES, base SA and the inverse SA solutions. Quite clearly, the inverse model is able to assimilate the data
successfully. By just using the wall data, inverse SA model leads to much-improved pressure at the centerline.
Further, as seen from Figure 17, the solution is improved in the entire flow field, lending further credibility
to the inverse solution.

Figure 18(a) shows the contours of the correction function β(x). The correction function is higher than
unity in the shock boundary layer interaction region and less than unity around the sonic line. There are
some qualitative similarities with regard to the region of high β at the foot of the shock, offering promise
for the development of a universal correction.

The machine-learned reconstruction of the correction function is shown in Figure 18(b). For this case, the
quality of reconstruction is not as good as in previous cases, mainly because the discrepancy in the baseline
model is very large. Due to this deficient reconstruction, the first shock location using the ML augmented
model is about 5 boundary layer thicknesses downstream in comparison to the LES (or the inverse) solution.
However, there is still a significant improvement over the base SA model, and the error in the shock location
is reduced by approximately two-third. The resulting pressure distributions are shown in Figure 16.
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(a) Wall (b) Centerline

Figure 16. Pressure for the LES, base SA, inverse SA and the machine learning augmented SA model.

(a) Base SA (bottom) vs LES (top) (b) Inverse SA (bottom) vs LES (top)

Figure 17. Mach number predictions (lines represent sonic conditions)

.
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(a) Inverse β(x)

(b) Machine Learned β?(η)

Figure 18. Density contours using the inverse solution and its machine learned reconstruction, colored by β.

VII. Summary

A data-driven framework comprising of full-field inversion and machine learning was used to augment the
Spalart–Allmaras (SA) model for flows involving the interaction of shocks with turbulent boundary layers.
The methodology was applied to problems involving transonic flow over an axisymmetric bump, oblique
shock-boundary layer interaction and a shock train. Solutions of full-field inversion using wall pressure and
the full velocity field were evaluated, and their performance were found to be comparable. An alternate
approach of modifying SA model, which satisfies a log-layer constraint, is considered. The constraint does
not inhibit the efficacy of full-field inversion.

The full-field inverse solutions were reconstructed in terms of locally non-dimensional features using a
machine learning algorithm, Adaboost. The reconstructed fields were embedded into a RANS solver to
augment the solution of partial differential equations. The solution with this machine learning augmented
model shows significant improvement over the baseline SA model for the transonic bump and the flow
involving oblique shock boundary interaction. For the shock train, the machine learning reconstruction is
is seen to offer an improvement over the baseline model, but is inferior to the inverse solution. The poor
reconstruction can either be due to imperfect training, or our choice of flow features used for training; this
remains under investigation. This paper presents preliminary progress towards the development of improved
predictive models for turbulent high-speed flow applications.
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