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Microstructure design can have a substantial effect on the performance of critical com-
ponents in numerous aerospace applications. However, the stochastic nature of metallic
microstructures leads to deviations in material properties from the design point, and al-
ters the performance of these critical components. In this work, an inverse stochastic
design approach is introduced such that the material is optimized while accounting for
the inherent variations in the microstructure. The highlight is an analytical uncertainty
quantification model via a Gaussian distribution to model propagation of microstructural
uncertainties to the properties. Metallic microstructure is represented using a finite ele-
ment discretized form of the orientation distribution function. A stochastic optimization
approach is proposed that employs the analytical model for uncertainty quantification, to
explore to maximize the yield strength of Galfenol microstructure in a compliant beam
when constrained by uncertainties in the designed natural frequency of vibration. The
results of the stochastic optimization approach are validated using Monte Carlo Simulation
(MCS). We also show that multiple microstructure solutions can be identified using the
null space of the linear systems involved in the optimization.

I. Introduction

Microstructural uncertainties arise from variations in manufacturing process conditions and can affect the
performance of metallic materials in aerospace components. This is an aleatoric uncertainty, is unavoidable
and is naturally present in metallic systems. The present work aims to investigate the effect of aleatory
uncertainties in microstructure modeling and inverse design of stochastic microstructural features to achieve
a prescribed statistical range of engineering properties. Current state of the art only addresses the direct
uncertainty quantification problem (effect of uncertain microstructures on properties) and the stochastic
inverse problem has not been addressed to the best of our knowledge. The direct problem has been generally
addressed using computational techniques such as Monte Carlo simulation (MCS), collocation and spectral
decomposition methods. Huyse and Maes1 studied the effect of microstructural uncertainties on homoge-
nized parameters by using random windows from the real microstructure, and performed MCS to identify
the stochasticity in elastic parameters such as Young’s modulus and Poisson’s ratio. Sakata et. al2 showed
the variations in Young’s modulus and Poisson’s ratio due to microscopic uncertainties. They validated the
results of their perturbation-based homogenization method with MCS. In another paper, Sakata et. al3

implemented a Kriging approach to calculate the probability density functions of the material properties,
and used MCS to study the uncertainties in geometry and material properties of a microstructure through
the same perturbation-based homogenization method. A computational stochastic modeling approach for
random microstructure geometry was presented by Clement et. al.4,5 The authors presented a high dimen-
sional problem due to the high number of stochastic variables to represent the microstructure geometry. This
high dimensionality was reduced with implementation of Polynomial Chaos Expansion (PCE). Creuziger et.
al6 examined the uncertainties in the orientation distribution function (ODF) values of a microstructure due
to the variations in the pole figure (PF) values by using MCS. Juan et. al7 used MCS to study effects of
sampling strategy on the determination of various characteristic microstructure parameters such as grain
size distribution and grain topology distribution. Hiriyur et. al8 studied an extended finite element method
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(XFEM) coupled with an MCS approach to quantify the uncertainties in the homogenized effective elastic
properties of multiphase materials. The uncertain parameters were assumed to be aspect ratios, spatial
distribution and orientation. They used a strain energy approach to analyze the uncertainties of in-plane
Young’s modulus and Poisson’s ratio. Kouchmeshky and Zabaras9 presented propagation of initial texture
and deformation process uncertainties on the final product properties. They used a data-driven approach
to identify the joint probability distributions of random variables with Maximum Entropy Method, and
modeled the stochastic problem using a stochastic collocation approach. Madrid et. al10 examined the vari-
ability and sensitivity of in-plane Young’s modulus of thin nickel polycrystalline films due to uncertainties
in microstructure geometry, crystallographic texture, and numerical values of single crystal elastic constants
by using a numerical spectral technique. Niezgoda et. al11 computed the variances of the microstructure
properties by defining a stochastic process to represent the microstructure. They marked the sensitive re-
gions in the convex hull generated with Principal Component Analysis (PCA), and calculated the probability
distributions of stiffness and yield stress in case of low, medium and high variances.

These numerical uncertainty quantification techniques studied in literature require high computational
costs since they represent the joint probability distributions of the random variables either using interpo-
lation functions or samples. As the problem complexity or the number of variables increases the number
of interpolation terms or sample points also increase. This is especially true for the ODFs which are dis-
cretized using finite element nodes or spectral basis, and contain large number of free parameters whose
joint distribution needs to be sampled. Another drawback of the computational methods is the difficulty
of satisfying design constraints such as volume fraction normalization. All these disadvantages imply the
necessity of developing analytical solutions as a first step in uncertainty quantification. In this work, we
present an analytical formulation based on a Gaussian distribution approach to represent the variations of
the random parameters. The variations of in-plane Young’s modulus (E1) and shear modulus (G12) are
assumed to be provided by the manufacturer, and consistent with the Gaussian distribution. Then the
probability distributions of the ODFs are computed by solving an inverse problem. The variations in the
compliance parameters, S11 and S66, are found first with transformation of random variables rule using input
variations in E1 and G12. The compliance parameters are calculated first since they can be represented with
linear equations in terms of the ODFs. The probability distributions of the compliance parameters are also
assumed to be modeled with a Gaussian approach despite their nonlinear relation to E1 and G12 since the
input uncertainties are very small. Then the inverse problem to find the statistical properties of the ODFs
is defined as a linear programming (LP) problem. A global stochastic optimization approach is implemented
to this analytical solution framework to maximize the yield stress under vibration tuning constraints defined
for the first bending and torsion natural frequencies of the cantilever beam. The optimization variables are
defined as the in-plane Young’s modulus (E1) and shear modulus (G12) of the Galfenol material, and each
design sample is assumed to have the same level of uncertainty. The LP problem approach has been studied
before by the authors to find the optimal processing route to produce a optimum microstructure design to
the same vibration tuning problem.12 However, the LP approach presented before was for the ODF solution
of a deterministic system.12–14 In this paper, we extend the LP solution methodology to identify the sta-
tistical parameters of the ODFs in case of uncertainties in material properties. To the best of the authors’
knowledge this is the first analytical effort in literature for quantification of microstructural stochasticity
given the desired statistical range in properties, in effect, a stochastic inverse problem for microstructure
design. The optimization results are also compared to the results of computational methods which employ
MCS to quantify the uncertainties. The analytical algorithm is able to compute the same optimization vari-
ables and a very close objective function value to the MCS solution, and while decreasing the computational
time by almost two orders of magnitude. Once the optimum ODFs are achieved, then the multiple solution
directions are identified using the direct linear solver, which was presented in our earlier works.12–14 The
linear solver is capable of finding exact solutions for multiple and infinite solution problems. The effect of
uncertainties on the design objective is also discussed at the end by comparing the optimum results with
the deterministic solution for maximum yield stress. The organization of the paper is as follows: Section II
addresses multi-scale modeling of microstructures, particularly the computation of volume-averaged proper-
ties. We introduce the analytical model for uncertainty quantification and stochastic optimization approach
in Section III. In Section IV, we report the results of the stochastic optimization studies performed using
the analytical model and MCS to quantify the uncertainties. A summary of the paper with potential future
applications is presented in Section V.
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II. Multi-Scale Modeling of Microstructures

The alloy microstructure consists of multiple crystals with each crystal having an orientation. The
generalized Hooke’s law for the aggregate of crystals may be written in the form:

< εij >= Seff
ijkl < σkl >, (1)

where < εij > and < σkl > are the volume-averaged strain and stress respectively, Seff is the effective
compliance tensor in the coordinate system of the part. Assuming homogeneity of the deformation in a
macroscale elementary volume, the effective elastic properties may be found through averaging using the
Taylor approximation:15

Seff =< S >, (2)

If the effect of factors (e.g. crystal size and shape) is ignored, averaging (denoted by < . > in the
equation above) can be performed over the ODF (represented by A). The ODF gives the volume density
of each orientation in the microstructure. If the orientation-dependent property for single crystals, χ(r), is
known, any polycrystal property can be expressed as an expected value, or average, given by:

< χ >=

∫
R

χ(r)A(r, t)dv , (3)

where ODF, A, is a function of orientation r, and time t (for plasticity problems). The average value
is computed by integrating in the representative volume element, dv, which can be obtained by considering
the crystallographic symmetries.

The present work employs the axis-angle parameterization of the orientation space proposed by Ro-
drigues16 since angle-axis representations define an alternate way of representing orientations compared to
Euler angles.17,18 The Rodrigues’ parameterization is created by scaling the axis of rotation n as r = ntan( θ2 ),
where θ is the rotation angle. Finite element discretization of the orientation space and associated integra-
tion schemes using Gauss quadrature allows matrix representation of Eq. 3. The ODF is discretized into N
independent nodes with Nelem finite elements and Nint integration points per element. Using this parame-
terization, any polycrystal property can be expressed in a linear form as follows.19

< χ >=

∫
R

χ(r)A(r, t)dv =

Nelem∑
n=1

Nint∑
m=1

∫
R

χ(rm)A(rm)wm|Jn|
1

(1 + rm · rm)2
, (4)

where A(rm) is the value of the ODF at the mth integration point with global coordinate rm of the nth

element, |Jn| is the Jacobian determinant of the nth element, wm is the integration weight associated with
the mth integration point, and 1

(1+rm·rm)2 represents the metric of Rodrigues parameterization. This can be

shown to be equivalent to an equation linear in the ODF: < χ > = pTA, where A is a vector containing
the ODF values at the k independent nodes of the ODF mesh.20 In addition, the ODF is normalized to
unity as qTA = 1 where q is a normalization vector.

The polycrystal compliance, S̄, is computed through a weighted average (over A) of the compliance
values of individual crystals expressed in the sample reference frame using the lower bound approach (Reuss
average). The yield stress is computed using a crystal plasticity model from our recent work.21 The ODF
representation for Body Centred Cubic (BCC) Galfenol material is shown in Fig. 1.

III. Stochastic Design Optimization of Microstructures

A. Problem Definition: Vibration Tuning for a Galfenol Beam

The optimization problem studied in this paper aims to find the optimum microstructure design to maximize
the yield stress of a cantilever beam made of Galfenol under vibration tuning constraints (Fig. 2). The
material properties of the Galfenol beam are computed with the ODF values at independent nodal points.
The same optimization problem was presented before12–14 in case of deterministic design variables. The
vibration tuning constraints are defined for the first natural bending and torsion frequencies of the beam,
which can be formalized in terms of Young’s modulus (E1) and shear modulus (G12) for an orthotropic
material.
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Figure 1. ODF representation in the Rodrigues fundamental region for cubic crystal symmetry

Figure 2. Geometric representation of Galfenol beam vibration problem

ω1t =
π

2L

√
G12J

ρIp
(5)

ω1b = (αL)2
√
E1I1
mL4

and αL = 1.87510 , (6)

where G12 = 1/S66, E1 = 1/S11, and S11 and S66 being the compliance elements. In these formulations,
J is torsion constant, ρ is density, Ip is polar inertia moment, m is unit mass, L is length of the beam and
I1 is moment of inertia along axis-1. To solve the problem, the length of the beam is taken as L = 0.45 m
and the beam is considered to have a rectangular cross-section with dimensions a = 20 mm and b = 3 mm.

B. Analytical Model for Uncertainty Quantification

The stochastic optimization approach presented in this work for vibration tuning of a Galfenol beam mi-
crostructure starts with an assumption that we are given the variations of E1 and G12 parameters. Ac-
cording to this assumption, both E1 and G12 vary ±5% around their mean values with respect to Gaussian
distribution. The uncertainties of the ODFs are identified through an inverse design LP problem since the
compliances, S11 and S66, can be defined with linear equations in terms of the ODFs using a lower bound
average. However, the relation between the compliances and input parameters is nonlinear since S11 = 1/E1

and S66 = 1/G12. Similarly the variables for the vibration tuning constraints, the first torsion natural fre-
quency (ω1t) and the first bending natural frequency (ω1b), are nonlinear in terms of the input variables.
The transformation of random variables rule is used to identify the statistical properties for S11, S66, ω1t
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and ω1b. Once the probability distributions of S11 and S66 are identified the uncertainties in the ODF values
are calculated using linear transformation. We assume that the probability distributions of the compliance
parameters can be modeled with a Gaussian distribution approximation since the variations in the Gaussian
input parameters (E1 and G12) are small. The analytical modeling approaches used for computing linear
and nonlinear material properties are summarized in the next sections.

1. Uncertainties in linear material properties

The uncertainties in the linear material properties are computed using Gaussian distribution features in
linear relations. The summary of the Gaussian approach to model a linear property is given below:
Assume a d-dimensional multivariate Gaussian distribution: X ∼ Nd(µ,Σ). Now we define a new random
variable:

Z = CX (7)

where C is a constant matrix. Then, Z is also Gaussian distributed.20 The mean vector and covariance
matrix of Z are given by:

µZ = CµX (8)

ΣZ = CΣXC
T (9)

The Gaussian approach presented here can be modified accordingly to represent the variations in the
ODFs and linear material properties. Since the ODF values are identified from an inverse problem we assume
that the first k−1 number of ODFs are independent (where k indicates the total number of ODF variables at
independent nodes) to decrease the amount of random variables. In order to satisfy the unit volume fraction
constraint, the equations to compute the statistical properties of the kth ODF are modified. The mean and
variance of the kth ODF value can be obtained as E[Ak] = cTµA + 1

qk
and σ2[Ak] = cT ΣAc, where

ci = − qi
qk

, µA = E(Ai) and ΣA = E[(Ai − µAi
)(Aj − µAj

)]. After the modification for the kth variable, the
ODF covariance matrix can be written as:

ΣA =

[
Σ∗

A S

ST σk
2

]
(10)

where, Σ∗
A is the covariance matrix defined for the first independent k − 1 ODFs, and S is a column

vector whose values are given by:

Si = −
1

qk

k−1∑
j=1

qj(Σ
∗
A)ij (11)

The uncertainties in the linear material properties are computed using the linear transformation. The
linear variables chosen for this study are the compliance parameters, S11 and S66. The mean and variance
equations for S11 can be shown as below using the Gaussian approach. The same computation also applies
to the statistical parameters of S66.

µS11 = pT1 µA (12)

σS11

2 = p1ΣAp
T
1 (13)

where p1 represents the single crystal property values for S11.

2. Uncertainties in nonlinear material properties

The uncertainties in nonlinear material properties are computed using the transformation of random variables
rule. The application of this rule is as follows: Given the input parameter, x, and the output parameter,
y, we assume that the relation between x and y can be identified using y = h(x), and can be inverted as
x = u(y). This method computes a Jacobian value, J , based on this explicit relation (where J = du/dy),
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and finds the probability density function (PDF) of the output variable as a product of input PDF and the
Jacobian. Eq. 14 shows the computation of output PDF:

fy(y) = fx[u(y)]× |J | (14)

where fx and fy are the PDFs of input and output variables respectively. Since the input PDF, fx, and
inverted function, u(y) are already known, the output PDF, fy, can be computed using this method. Then,
the expected value, E[y], and variance, σ2

y, of the output parameter can be calculated using Eq. 15 and 16
respectively:22

E[y] =

∫ ymax

ymin

yfy(y)dy (15)

σ2
y = E[(y − E[y])2] (16)

where ymin and ymax are the minimum and maximum values of the output variable, y, can take. These
values can be computed using the relation y = h(x) for the minimum and maximum values of the input
variable, xmin and xmax, respectively. The approach is first applied to compute the PDF of the compliance
parameters, S11 = 1/E1 and S66 = 1/G12. The same method is then used to compute the PDFs of the first
torsion and bending natural frequencies of a cantilever beam, ω1t and ω1b, using Eq. 5 and Eq. 6.

C. Linear programming approach for inverse design

The statistical properties of the ODF values are identified by solving the inverse design problem as an LP
problem. The PDFs of S11 and S66 were previously computed using the transformation of the random
variables rule. The mean values and variances of S11 and S66 were then computed using Eq. 15 and Eq.
16. The variations in these parameters were assumed to agree with the Gaussian distribution due to small
variations in the input parameters, E1 and G12. With this assumption the ODF values can be determined
by solving an LP problem. A general formulation of an LP problem is given as follows:

min fTx

such that Aeqx = beq

Ax ≤ b
lb ≤ x ≤ ub

The unknown vector, x, of this LP problem includes the mean values and variances of the first k − 1
ODF values: µA and σA

2. The mean and variance terms related to the kth ODF value can then be obtained
using the definitions for µA and σA

2 in the volume fraction normalization constraint equation. The equality
constraints are derived by using the homogenized linear equations for the mean values (Eq.17 and Eq. 18)
and variances (Eq. 19 and Eq. 20):

pT1 µA = µS11 (17)

pT6 µA = µS66 (18)

p1ΣAp
T
1 = σS11

2 (19)

p6ΣAp
T
6 = σS66

2 (20)

In these equations, p1 and p6 are the vectors of length k including single crystal coefficient values for S11

and S66 respectively, µS11 and µS66 are the mean values, and σS11
2 and σS66

2 are variances of S11 and S66.
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Accounting for the normalization constraint, we only solve for the k-1 ODF values. The augmented system
of the equality constraints for the first k-1 ODF values can be derived as:

[pT1 −
p1(k)
qk

qT ]
1×(k−1)

01×(k−1)

[pT6 −
p6(k)
qk

qT ]]1×(k−1) 01×(k−1)

01×(k−1) P ∗
11×(k−1)

01×(k−1) P ∗
61×(k−1)


[
µA(k−1)×1

σA
2
(k−1)×1

]
=


µS11 −

p1(k)
qk

µS66 −
p6(k)
qk

σS11
2

σS66
2


where q is a vector containing the first k − 1 values of the normalization vector, and 01×(k−1) is a row

vector of zeros with a length of k − 1. The elements of the rows vectors, P ∗
1 and P ∗

6 , can be calculated as
below by using Eq. 19 and Eq. 20 with the definition for ΣA (i = 1, 2, ..., k − 1):

P ∗
1 (i) = [p21(i) + (p1(k) + 1)(p1(i)c(i)) + (p21(k)c2(i))] (21)

P ∗
6 (i) = [p26(i) + (p6(k) + 1)(p6(i)c(i)) + (p26(k)c2(i))] (22)

The first inequality equation is derived for the lower boundary of the kth ODF value such that the first
k − 1 ODFs should satisfy the constraint, qTµA ≤ 1, to guarantee that the unit volume normalization
constraint is satisfied with a non-negative kth ODF value (q > 0 and qk > 0). Since the compliance
parameters are assumed to agree with the Gaussian approach the ODF values have the same distribution
because of their linear relation. We used the following inequalities to ensure that the probability distributions
of the ODFs always satisfy the non-negativity condition: −µA + zσA

2 ≤ 0 and −µAk + zσAk
2 ≤ 0

where z is a constant to be determined. In these inequality equations the standard deviation parameter
is approximated by the variance since the variances are the unknowns in the LP problem definition. The
standard deviation can be replaced with the variance since the standard deviation and variance values of
the compliances are in the same order, and the ODFs are assumed to follow the same trend. However,
the variances are controlled with the constant parameter, z, rather than directly considering the traditional
3.5σ assumption for Gaussian distribution. The inequality equation for the variation of the kth ODF can be
manipulated further by using the definitions for µAk

and σAk
2. The final form of the inequality equations is

given in Eq. 23, 24 and 25:
qTµA ≤ 1 (23)

−µA + zσA
2 ≤ 0 (24)

−
1

qk
qTµA + zC∗σA

2 ≤
1

qk
(25)

where the elements of the C∗ vector are: C∗(i) = c(i)
2
. Using Eq. 23, 24 and 25 the augmented system

for the inequality constraints can be derived as below: qT 1×(k−1) 01×(k−1)

−[I](k−1)×(k−1) z[I](k−1)×(k−1)
1
qk
qT 1×(k−1) zC∗

1×(k−1)

 [
µA(k−1)×1

σA
2
(k−1)×1

]
≤

 1

0(k−1)×1
1
qk


where [I] is the identity matrix. The objective of the stochastic optimization problem is to maximize

the mean yield stress value of the beam. Since the standard LP problem defines the objective function
for minimization instead of maximization the negative of the yield stress value, −σy, is minimized. This
objective function is also linear in the ODFs such that: −σy = (−yT + (yk

qk
)qT )µA − yk

qk
where y is the

vector of yield stress coefficients for the first k − 1 single crystals and yk is the same coefficient value for
the kth single crystal. The objective function, f is defined as: f = (−yT + (yk

qk
)qT )µA and therefore:

−σy = f − yk
qk

. The objective function of the LP problem for min fTx, can be written as:

f = [y∗T
1×(k−1)01×(k−1)]

T (26)
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where y∗T is defined as: y∗T = −yT + (yk

qk
)qT . In the final step, the lower and upper bounds are

determined considering the non-negativity conditions for the ODFs. The unknowns of the LP problem,
the mean values and on-diagonal variance terms of the ODF parameters, have a zero value lower bound.
An ODF, Ai, can have the value of 1/qi as an upper bound. This is also true for the mean values, µAi

.
However, the variances are known to be lower than the mean values in this problem. Therefore defining the
same upper bound values for the corresponding variance terms is mathematically possible. The lower and
upper bound vectors for this problem are then defined as: lb = [01×2(k−1)] and ub = [1/qi 1/qi], where
i = 1, 2, .., k − 1.

D. Definition of the stochastic optimization problem

The stochastic optimization problem for the vibration tuning of a Galfenol beam microstructure with yield
stress objective is defined with the implementation of the presented analytical solution methodology for
uncertainty quantification. The optimization starts with the global sampling for the input variables, µE1

and µG12 , which are the mean values of E1 and G12. In the next step, the statistical properties of compliances,
S11 and S66, and natural frequencies, ω1t and ω1b, are calculated using the random variables transformation
rule in Section III-B2. The ODF solution satisfying the calculated statistical properties of the compliances
and maximizing the mean yield stress value is identified by implementing the LP problem of Section III-C
to the optimization algorithm. The mathematical formulation of the optimization problem is given below:

max µσy (27)

subject to P (20.25 Hz ≤ ω1t ≤ 24.25 Hz) = 1 (28)

subject to P (132.75 Hz ≤ ω1b ≤ 139.75 Hz) = 1 (29)

s = (µE1
, µG12

), (30)

where the optimization variables are µE1 and µG12 in the global problem, and the means and variances of
the first k− 1 ODFs in the LP problem definition. Eq. 27 shows the objective function, which is determined
as maximization of the mean yield stress value. The output variables have probability distributions based
on their statistical properties. The constraint parameters are expected to satisfy the strict vibration tuning
constraints in every point of their probability distribution. Therefore the probability of satisfying the design
constraints is expected to be 1 as shown in Eq. 28 and Eq. 29. In the last row, s shows the vector of global
optimization variables. The corresponding ODF solution to the optimum values of the global variables
provides the optimal microstructure design of the problem. The non-negativity condition of the ODFs is
considered as a lower bound in the LP problem. The volume normalization constraint is also considered
through the definition of the kth ODF and the inequality constraint in Eq. 23.

1. Multiple solutions with a direct linear solver

After the computation of one optimum design, the multiple optimum ODF solutions to the Galfenol problem
are identified with the implementation of a direct linear solver through the use of linear parameters. These
linear parameters are the optimum values of the compliance parameters and yield stress of the orthotropic
Galfenol beam, which can be computed through the optimum ODFs using the equations below:

< S∗ >=

∫
SA∗dV (31)

< σy
∗ >=

∫
σyA

∗dV (32)

In Eq. 31 and 32, S∗ and σy
∗ are the optimum values for the compliance parameters and yield stress

respectively, A∗ denotes the vector of optimum ODF values. The objective of this step is to identify all the
ODFs which provide the same S∗ and σy

∗ values. The direct linear solver determines the multiple ODFs
for the optimum properties. The solver is capable of finding multiple/infinite solutions because it uses null
space of the coefficient matrix to find the directions of the solutions. The use of the null space approach
requires any one solution to the problem. This one solution comes from the global optimization result for
this problem. The remaining infinite solutions are defined as the sums of this one solution and solution
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directions represented by null space vectors. The coefficient matrix can be defined using the linear relations
for macro properties and the unit volume fraction constraint for the ODF. The size of the coefficient matrix
is (4× k) because the rows are representing 3 independent linear equations for S11, S66 and σy calculation,
and one design constraint for volume fraction normalization (

∫
AdV = 1). Assuming C is the coefficient

matrix including the entries for compliances, S, and yield stress, σy, the infinite solutions can be represented
as shown next (i = 1, 2, 3, 4, ...., n):

Ai = A1 + λVi; (33)

Vi = Null(C(:, i)) (34)

where Eq. 33 defines the infinite solutions, Ai, using one solution, A1, and null space vectors, Vi. n
is the number of null space vectors. Even though the number of null space vectors is finite, the number
of solutions can be infinite because λ can be any number that satisfies the ODF positiveness constraint
(A ≥ 0). Because the optimization problem is solved in the space of macro properties (property closure
of homogenized parameters), and the space of macro properties is generated by the ODF values through
averaging equations, any point inside this solution domain corresponds to a known set of ODF values.
Therefore, there is always at least one optimal ODF solution inside this domain. The solution strategy aims
to find this optimum solution not only when it is unique but also when it is multiple. A more detailed
discussion about implementation of the linear solver and generation of the property hulls can be found in
the earlier papers of the authors’.12–14

IV. Results

The stochastic optimization is performed using Incremental Space Filler (ISF) as the global sampling
method for the input parameters, and Non-Dominated Sorting Genetic Algorithm (NSGA-II) as the op-
timization algorithm in Modefrontier software. The same sampling and optimization algorithm were used
in the previous deterministic optimization studies.12,13 However, the limits of the design constraints are
changed in this problem. In order to compare the effect of uncertainty to the final design and material
properties we also performed a deterministic optimization for the same problem. The constant parameter,
z, of the analytical LP approach is considered as z = 3.5. In addition we also performed another stochastic
optimization using MCS method to model the uncertainties. In this MCS technique, we used 10000 samples
to generate the probability distributions for one set of global ISF sample points. The compliance values, S11

and S66, are calculated using the exact equations in terms of the input parameters. Then the ODF solutions
are identified by solving for 10000 separate LP problems per one global sample. These deterministic LP
problems are simplified forms of the presented LP methodology since they do not consider the inequality
constraints defined for the variations (Eq. 24 and Eq. 25). The MCS method, despite the use of the LP
approach to solve the ODFs, is a computational burden compared to the required computational time to
run the analytical solution. The optimum design parameters of stochastic optimization studies are given in
Table 1. In all cases, the optimum parameters correspond to multiple optimal polycrystal designs with the
implementation of the direct linear solver. The optimum deterministic parameters are also shown as the best
case (with no uncertainties) in Table 1 to indicate the significant impact of the uncertainties to the design
objective. The significant difference between the computational times spent on the stochastic optimization
studies is also pointed in the last row of Table 1.

The difference between the optimum objective function values of the best case and stochastic optimization
(Table 1) implies the substantial impact of the input uncertainties to the engineering properties. One
critical feature of the results is that both stochastic optimization applications were able to identify the same
solution for the global input parameters, µE1 and µG12 . However, the optimum design criteria and objective
function values are slightly different due to the different solution approaches in the analytical model such
as random variables transformation rule and extended LP problem implementation by consideration of the
ODF variances in contrast to the exact solution formulas being used by the MCS method. The variations of
the yield stress and vibration frequencies of the stochastic optimum designs are shown in Fig. 3. According
to the results in Fig. 3 the analytical model is able to capture the values and variances of the optimum
material properties.

After identifying the optimum solutions to the stochastic problems the multiple polycrystal designs are
also computed using the direct linear solution methodology with null space approach. Some of the multiple
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Table 1. Stochastic Optimization Results for Vibration Tuning of the Galfenol Beam

Best Case Stochastic (Analytical) Stochastic (MCS)

σy = 367.9385 MPa µσy
= 340.1034 MPa µσy

= 340.2584 MPa

ω1t = 22.7038 Hz µω1t = 22.8272 Hz µω1t = 22.7408 Hz

ω1b = 134.3167 Hz µω1b
= 136.4554 Hz µω1b

= 136.2892 Hz

E1 = 262.5002 GPa µE1
= 270.3112 GPa µE1

= 270.3112 GPa

G12 = 87.5001 GPa µG12 = 87.8067 GPa µG12 = 87.8067 GPa

t = 5 mins t = 20 mins t = 44 hours 35 mins
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Figure 3. The variations of yield stress and vibration frequencies of the stochastic optimum designs

optimum solutions to the ODF mean values obtained by the analytical model and MCS are shown in Fig.
4. The first microstructure design of both solutions is the optimum initial design identified with the global
optimization. The other microstructures are obtained using the same independent null space vectors in the
direct linear solver for both analytical and MCS solutions.

The small differences between the analytical model and MCS results in the final material properties shown
in Fig. 3 and multiple optimum ODF solutions shown in Fig. 4 can be explained with two features of the
analytical approach. First, the analytical solution assumes that the first k − 1 ODFs are independent, and
identifies only the on-diagonal variances for these ODFs. The system of equations in the LP problem already
imply an underdetermined system, and the consideration of the non-diagonal terms makes the solution
infeasible. However, the MCS method automatically considers the dependencies of the ODFs since it uses
the exact solutions with direct sampling. The other reason is predicted to be the effect of the adjustable
constant parameter, z, of the analytical solution, which represents the ODF variations. We used z = 3.5 in
the results reported in Fig. 3 and Fig. 4. The effect of this parameter is further investigated by computing
the yield stress values of the optimum microstructure using different z values. The same analysis is not
performed for the natural frequency parameters since they are directly related to the global variables, not
to the LP problem, so the change in z parameter does not affect them. The yield stress distributions of the
optimum microstructure design with varying z values in the analytical solution are shown in Fig. 5.
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Figure 4. Examples for multiple optimum microstructures of the stochastic optimization problem

Fig. 5 implies that the variations in the optimum yield stress parameter are smaller when z is smaller.
This is an expected result since z represents the variations in the ODFs. Compared to the MCS samples
the best matching analytical result is provided by z = 3.5 condition, which was also used in the stochastic
optimization.

V. Conclusion

The present work addresses a stochastic optimization problem which employs an analytical uncertainty
modeling approach. The optimization problem is solved to maximize the mean value of the yield stress
of a Galfenol beam under vibration tuning constraints defined for the first torsion and bending natural
frequencies. We initially assumed that the probability distributions of Young’s modulus and shear modulus
parameters (E1 and G12) were provided. The probability distributions of these input parameters were
assumed to be Gaussian with ±5 % variations around the mean value. For vibration tuning constraints
we applied the random variables transformation rule to compute the probability distributions of the first
torsion and bending natural frequencies of the beam. In order to compute the probability distributions
of the orientation distribution function (ODF) values we first computed the statistical properties of the
compliances, S11 and S66, using the same random variables transformation technique. We assumed that the
probability distributions of the compliance parameters can be modeled with Gaussian approach since the
input uncertainties are small. Next, we solved an inverse problem to identify the mean and variances of
the ODF parameters. We solved the inverse design problem by implementing a linear programming (LP)
problem approach since the equations to compute the compliance parameters and yield stress are linear in
terms of the ODFs. We computed the values for the first k − 1 ODF parameters, and identified the kth

ODF through the implementation of the volume fraction normalization constraint to the LP problem. The
stochastic optimization was performed on this analytical model to find the optimal ODF solution which
maximizes the mean yield stress value. We also performed another stochastic optimization which uses
Monte Carlo Simulation (MCS) method to model the uncertainties. The analytical solution for uncertainty
modeling not only reduced the computational time requirement for the optimization but also provided the
same optimum parameters with very slight differences in yield stress and frequency parameters compared
to the MCS results. A deterministic optimization was also performed to compare the optimum results with
and without the effect of uncertainties. The differences on the optimum solutions of the deterministic and
stochastic cases imply the necessity of considering uncertainties when modeling the materials. The multiple
optimal microstructure designs were also identified by using a direct linear solver with null space approach.
Finally we performed a parametric study to analyze the mathematical definition of the ODF variations in
the LP problem and its effect to the optimum result. Future effort will aim to improve the analytical solution
methodology so as to solve the ODF parameters without the independency assumption.
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Figure 5. Yield stress distributions of the optimum microstructure design with varying z values in the analytical
solution
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