
Understanding the effect of cube size on the near wake

characteristics in a turbulent boundary layer

Siddhesh Shinde∗, Eric Johnsen† and Kevin Maki‡

University of Michigan, Ann Arbor, MI, 48109, USA

Wall-resolved large-eddy simulation of flow over a wall-mounted cube-shaped obstacle
placed in a spatially evolving boundary layer is performed. The Reynolds number of the
flow based on the mean velocity and the inlet boundary layer thickness is 19,600. Our
interests lie in understanding how variations in the cube height h modify the flow dynamics
for situation where the cube is within the boundary layer. For this purpose, we conduct
simulations with height to boundary layer thickness ratios of h/δo = 0.2, 0.6 and 1.0, where
δo is the boundary layer thickness at the cube location. The size of the vortices formed
around the cube, the Reynolds stresses and the turbulent kinetic energy in the boundary
layer all depend on the cube height relative to the boundary layer thickness. The drag
coefficient of the cube is found to increase with increasing h/δo.

I. Introduction

Flow around bluff bodies is a common occurrence in engineering applications and plays a vital role
in the engineering design process, for instance, estimating the wind load over a building or predicting
the aerodynamic drag acting on a vehicle. An example of a simple flow configuration is that of a cube
placed in fully developed channel flow; this problem has been used as a benchmark case by researchers to
validate their numerical methods and turbulence models.1–6 Unsteady incompressible flow predictions of
wall-mounted cube placed in a spatially evolving turbulent boundary layer is a more challenging problem to
simulate accurately due to the complex vortical structures around the cube. Experimental and numerical
studies have revealed that a horse-shoe vortex is formed in front of the cube, a hair-pin vortex on the top of
the cube, tornado-like vortices on the sides and vortex shedding in the wake. These features are illustrated
qualitatively in figure 1, taken from one of our representative simulations.

Martinuzzi et al.7 performed an extensive experimental study of flow over surface-mounted prismatic
obstacles in a fully developed channel flow. Their experiments were performed at Reynolds numbers ranging
from 80,000 to 115,000 based on the channel height. They considered prismatic obstacles in the shape of a
rectangular block with width to height (W/H) ratio ranging from 1 to 24 and documented the reattachment
length and separation length for different ratios. They concluded that for W/H > 6, the flow is nominally 2
dimensional in the middle of the wake. In a experimental study by Hussein and Martinuzzi8 the evolution
of the spatial dissipation rate from the near field recirculation zone to the asymptotic wake is examined.

Numerical studies of flow over a wall-mounted cube placed in a turbulent channel have been performed
using Reynolds Averaged Navier Stokes (RANS) simulations of this flow configuration, including Rodi et
al.4 and Iaccarino et al.5 These studies suggest that steady RANS simulations cannot predict this flow
accurately as unsteady effects due to vortex shedding are neglected. Shah et al.2,9 and Krajnovic et al.1,3

performed Large-Eddy Simulation (LES) of this problem at a Reynolds number of 40,000 based on the mean
velocity and cube height. They compared their results with those of Martinuzzi et al.7 with good agreement.
For this problem, the one-equation LES model and its variants were reported to perform better than the
Smagorinsky type models due their ability to capture back-scatter.
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Figure 1. Second invariant of the instantaneous velocity field for flow around a wall-mounted cube in a spatially evolving
turbulent boundary layer

More recently, Liakos et al.10 performed a Direct Numerical Simulation (DNS) of steady-state laminar
flow over a cube at Reynolds numbers ranging from 1-2000 based on the cube height. The study investigates
the onset of dominant flow structures and instability in this flow configuration. It was found that the
horse-shoe vortex begins to appear at a Reynolds number of 1267 and the onset of unsteadiness is seen at
Re = 2000. In another DNS study by Yakhot et al.11,12 the inflow was fully turbulent with a Reynolds
number of 1870 based on the cube height. In this study, the unsteadiness in this flow is reported to be caused
by the viscous-inviscid interaction between the horse-shoe vortex and a narrow band of positive vorticity in
front of the cube.

The literature demonstrates that there is a good understanding of the complex flow structures formed
around the cube like the horse-vortex, hair-pin vortices and vortex shedding for a range of Reynolds num-
bers. However, most of these studies are performed in a fully developed channel flow with a cube height
approximately half the channel height. We are interested in a situation where an obstacle is being placed in
a spatially evolving turbulent boundary layer. There have been some efforts in the past by researchers in
the atmospheric boundary layer community to perform numerical studies of cubic obstacles placed in a tur-
bulent boundary layer (Yazid et al.,6 Lim et al.13). However, these efforts either use the RANS approach or
wall-modeled LES with a rough wall model used to replicate the bottom-wall. Flow around a wall-mounted
cube in a zero pressure gradient flat plate boundary layer (ZPGFPBL) has not garnered significant attention,
particularly using wall-resolved LES. This lacuna of knowledge motivates the present study. The goal of our
work is to understand the effect of varying the cube height (h) to boundary layer thickness (δo) ratio on the
turbulent wake characteristics. To adequately represent the physics, we used wall-resolved LES.

The article is organized as follows. We first describe our numerical approach in Section II. We then
present validation results for a cube in a fully developed turbulent channel flow and for a spatially evolving
zero-pressure gradient flat plate turbulent boundary layer in Section III. Next, we investigate the flow
dynamics of a wall-mounted cube in a turbulent boundary layer in Section IV. We outline our conclusions
and list future research directions in Section V.

II. Numerical approach

The incompressible Navier-Stokes equations are solved using the one equation eddy viscosity LES model
in OpenFOAM. A second order central finite volume scheme is used in space and the solution is advanced in
time using a second order backward implicit time marching scheme. We validate the discretization schemes
and LES model in OpenFOAM by simulating flow over a wall-mounted cube in a fully developed channel and
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Figure 2. Schematic of the case setup1,8 for flow over a wall-mounted cube in a channel.

comparing our results with previous numerical1 and experimental8 studies. We validate our inflow generator
by simulating a spatially evolving turbulent boundary layer at the desired Reynolds number of 19,600 and
comparing the turbulent statistics with the work done by Wu et al.14

III. Validation

Given the lack of relevant experimental data for the problem of interest, we conduct our validation
studies for two related problems: fully developed turbulent flow around a wall-mounted cube in a channel,
and spatial evolution of a zero-pressure gradient flat plate turbulent boundary layer.

III.A. Fully developed turbulent flow over a wall-mounted cube in a channel

Experimental8 and numerical1,9 studies have been performed for fully developed flow over a wall-mounted
cube placed in a channel. The reason we chose to compare our results to those of Krajnovic et al.’s1 numerical
study as our validation case is that they used similar LES models and discretization schemes as ours. For
these reasons this test case would provide us with valuable information about the accuracy of our flow solvers
and the LES model.

Full details about the geometry and the numerical setup can be found in Krajnovic et al.1 A precursor
channel flow simulation at Reb = 40, 000 (based on the mean velocity and half channel height) was performed
to obtain a single inlet velocity profile to be used as the inlet boundary condition. We used the finest mesh
resolution as used by Krajnovic et al. such that, ∆x+ = 28.5, ∆y+ = 4.6 and ∆z+ = 23.7 in the vicinity of
the cube.

The separation (XF ) and reattachment (XR) lengths for the simulation as presented in table 1 were
calculated from the skin-friction coefficient Cf = τw

1/2ρU2
b

in the center-plane along the bottomwall of the

domain. We obtain a 10% error in XF and a 13% error in XR relative to the experiments, by contrast to
9.1% error in XF and 9.7% error in the LES by Krajnovic et al.1 This discrepancy is partly due to the coarse
grid near the separation and reattachment point, as local mesh resolution plays a larger role in predicting
the correct reattachment length than in predicting the flow over the top of the cube.1

In figure 3 we show the x− and y−components of the mean velocity and the xx− and xy−components
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(d) xy-component of Reynolds stress

Figure 3. Mean velocity components and Reynolds stresses in the center plane for fully developed turbulent flow
around a wall-mounted cube in a channel . +: experimental result;8 dashed line: one equation model;1 dash-dotted
line: localized dynamic one equation model;1 : our results with one equation model.

of the Reynolds stress. In general, the agreement of our results with the experiments is at least as good, if
not better, than Krajnovic et al.,1 except for the xy−component of the Reynolds stress tensor. We expect
that the agreement with experiments would be even better with finer resolution simulations.

III.B. Zero pressure gradient flat plate turbulent boundary layer

To verify the accuracy of the inflow conditions at desired Reynolds number we simulate a zero pressure
gradient flat plate turbulent boundary layer (ZPGFPBL). The objective of this simulation was two-fold: to
test the accuracy of the inflow conditions replicating a ZPGFPBL at a Reynolds number (based of bulk
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Figure 4. Schematic of the case setup for zero pressure gradient flat plate boundary layer simulations

velocity Ub and boundary layer thickness at the inlet δo) of 19,600, and to determine the properties of the
boundary layer as a function of streamwise coordinate to place the cube at the appropriate location in our
subsequent simulations.

Based on the friction velocity (uτ ) and δo, the Reynolds number is 800. As seen in figure 4 the length
of the domain is 20δo, the height is 5δo and the width is 5δo. The mesh is uniform in the streamwise (x)
and the spanwise (z) directions whereas, in the wall-normal (y) direction it is non-uniform. In wall-units the
grid spacing is, ∆x+ = 23, ∆y+wall = 2 and ∆z+ = 23. A no-slip boundary conditions is prescribed on the
bottom-wall, slip boundary condition on the top-wall. The domain is periodic in the spanwise direction. A
zero-gradient boundary condition is prescribed at the outlet for velocity and the inlet boundary condition is
a time-varying turbulent inflow condition as describe by Shinde et al.15 The simulation is run for 1200δo/Ub
time units and the turbulent statistics are averaged over 400δo/Ub units.

In figure 5, we show the boundary layer thickness (δ/δo) and momentum thickness Reynolds number
(Reθ = U∞θ/ν) as a function of the streamwise coordinate (x). From Direct Numerical Simulation (DNS) of
a spatially evolving turbulent boundary layer done in prior studies14,16 we expect δ/δo and Reθ to grow in
a linear manner with x after a brief transition length in the beginning of the domain, which is the behavior
observed in the figures 5(a) and 5(b). In our subsequent simulations, we place the cube at x/δo = 12, since
δ/δo = 1

We further compare the Reynolds stresses at different streamwise locations in figure 6 with DNS results
from Wu et al.14 The DNS results are obtained at a momentum thickness Reynolds number (Reθ = U∞θ/ν)
of 900 whereas in our simulation Reθ varies from 2100 to 2600. As described by Wu et al. and De Graaff
et al.17 the Reynolds stresses do not exhibit a universal scaling in inner coordinates especially in the
logarithmic region and hence, we do not expect our simulation results to match exactly. However, after an
initial transition length of approximately 10δo there is negligible difference in streamwise (u′2+) Reynolds
stress and the wall-normal (v′2+) Reynolds stress. The near-wall peak u′2+ value matches well in location
with the DNS data, as expected.

From the behavior of mean and turbulence quantities in figures 5 and 6 we are confident that we can

Contribution LES Model Grid XF /h XR/h

Martinuzzi and Tropea8 Experiment — 1.04 1.61

Krajnovic et al.1 one equation 210 × 66 × 114 1.10 1.45

Krajnovic et al.1 localized dynamic one eqn. 210 × 66 × 114 1.13 1.44

Present simulations one equation 210 × 66 × 114 0.936 1.82

*XF : separation length in front of the cube, XR: reattachment length behind the cube

Table 1. Separation and reattachment lengths normalized by the cube height (h)
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Figure 6. Reynolds stress at different streamwise locations

simulate a spatially evolving turbulent boundary layer with reasonable accuracy and that the boundary layer
is turbulent at a streamwise location, x/δo = 12 where the boundary layer thickness is δo.
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Figure 7. Schematic of the case setup for spatially evolving turbulent boundary layer flow around a wall-mounted cube.

IV. Flow around a cube in a spatially evolving turbulent boundary layer

IV.A. Case setup

As seen in figure 7 the cube is placed in the plane of symmetry of the domain. The cube height is h and
the boundary layer thickness at the inlet of the domain is δo. Three different cube height to boundary layer
thickness ratios (h/δo) are used: 0.2, 0.6 and 1. The length of the domain in front of the cube is 12δo and
the length of the domain behind the cube is 5h. A length of 12δo was chosen in front of the cube because
our ZPGFPBL simulations predict that at this distance from the inlet the boundary layer is turbulent and
the boundary layer thickness is δo. The choice of spanwise width of 7h is based on our knowledge from prior
studies.1 This width is considered to be sufficient to prevent sidewalls effects from becoming significant.
The domain height is 8h. The Reynolds number (Reb) based on the bulk velocity (Ub) and boundary layer
thickness (δo) at the inlet is 19,600. The Reynolds number (Reτ ) based on the friction velocity (uτ ) and
the boundary layer thickness (δo) at the inlet is 800. The simulation is carried out for a total time period
of 300δo/Um with variable time-step and a maximum Courant number of 1. The turbulent statistics are
averaged over a time period of 100δo/Um to avoid contamination of the results by the initial transient.

The boundary conditions used in the simulation are no-slip on the bottom-wall and the surface of the
cube. Slip-wall boundary condition was used on the side walls and the top wall. A zero-gradient boundary
condition is used on the outlet. A time varying turbulent inflow boundary condition as described by Shinde
et al.15 is used at the inlet in order to obtain a spatially evolving turbulent boundary layer. The mesh is
non-uniform with smallest cells in the vicinity of the cube and largest cells towards the periphery of the
domain. The grid spacing of cells next to the cube are given in table 3. A hyperbolic tangent stretching is
used for the cells in the streamwise and spanwise direction. In the wall normal direction the grid spacing
on the bottomwall and the top surface of the cube is as described in table 3. This fine resolution is required
to resolve the fine scales inside the turbulent boundary layer and those near the top surface of the cube.
The cells are stretched using a hyperbolic tangent spacing from the top surface of the cube to the top of the
domain. For each h/δo ratio three meshes with different levels of refinement are used.

IV.B. Results and discussion

We compared the streamlines in the plane of symmetry of the domain and, in the plane at y = 0.1h from the
bottom-wall for different cube heights in figure 8. We observe the vortices reported in previous studies: the
horseshoe vortex formed in front of the cube, the hair-pin vortex formed on the top the cube and counter
rotating vortex pair formed behind the cube. The arch-type vortex formed behind the cube as seen in the
left column in figure 8 is larger for h/δo = 0.2 than those observed in the other cube heights. We believe
the reason for this larger vortex is the location inside the boundary layer: the vortex for h/δo = 0.2 is
closer to the wall, where the velocity magnitudes are smaller as compared to the vortices for h/δo = 0.6 and
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(a) h/δo = 0.2, centerplane (b) h/δo = 0.2, at y/h = 0.1

(c) h/δo = 0.6, centerplane (d) h/δo = 0.6, at y/h = 0.1

(e) h/δo = 1.0, centerplane (f) h/δo = 1.0, at y/h = 0.1

Figure 8. Streamlines colored by speed for spatially evolving turbulent boundary layer flow over a wall-mounted cube.

1.0. There exist 2 saddle points in the flow, first, where the flow separates in front of the cube and second,
where the flow reattaches behind the cube. The streamlines diverge from these points in the flow field. The
horse-shoe vortex extends to a distance of ∼ 1.5h on the sides of the cube in all three cases. Yakhot et al.11

observe similar width of the horse-shoe in DNS of flow over a wall-mounted cube in a channel.
By sampling the x−component of mean velocity along the bottom-wall, the skin friction coefficient (Cf )

is plotted as a function of the stream-wise coordinate in figure 9. As the flow gets separated in front of the
cube, Cf becomes negative; this length is defined at the separation length (XF ). The flow reattaches after
the arch-type vortex behind the cube at the point where Cf becomes positive again; this length is called
the reattachment length (XR). The values of XF and XR for different h/δo ratios are presented in table 2.
The non-dimensional values of XF and XR are almost identical for different h/δo ratios. This suggests their
independence on the h/δo ratio.

The drag coefficient (Cd) on the other hand increases with increase in cube height. This is expected for
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Figure 9. Skin friction coefficient (Cf ) along the bottomwall for a spatially evolving turbulent boundary layer flow
around a wall-mounted cube. h/δo = 0.2, h/δo = 0.6 and h/δo = 1.0.

2 reasons: a larger cube presents a larger area normal to the flow, thus causing a greater pressure force on
the front face, and a larger cube also has a larger surface area, thus increasing the total viscous force acting
on the cube. The values of Cd for the three h/δo ratios are presented in table 2.

In figure 10 we present contours of turbulent kinetic energy are different stream-wise planes normal to
the flow direction. An important point to remember while viewing figure 10 is that the viewing angle is
adjusted so that all the three cases appear similar. In reality the physical dimensions of the three cases are
different and scale with the cube height h. As we move along the stream-wise direction we observe two things
happening: one, the maximum value of TKE decreases due to dissipation, and two, TKE spreads over a
larger spanwise area due to convection. At a distance of 1h behind the cube we observe a large magnitude of
TKE. At a distance of 3h behind the cube the magnitude of TKE for h/δo = 1.0 is slightly greater than the
other 2 cases. Further downstream at a distance of 6h from the cube we observe a more uniform distribution
of TKE inside the boundary layer due to convection. Also, the magnitude is lower due to dissipation. From
the contour plots in figure 10 and TKE density plot in figure 11 we realize that the magnitude of TKE for
different h/δo ratios are comparable to each other, however the value of TKE is more concentrated in smaller
region behind the cube for h/δo = 0.6 and 0.2. The larger magnitude of TKE for h/δ = 1.0 gets distributed
over a larger area making it least effective in TKE entrainment per unit area.

The presence of the cube induces vortices capable of entraining turbulent kinetic energy (TKE) from the
mean flow to the near wall region. As such, the cube acts as a passive vortex generator (VG). In figure 11
we sample the TKE at different planes normal to the streamwise direction from the bottomwall to a height
of 1.6δo and the entire span of the domain. We add all these values in the y− z plane. The TKE values are
normalized by the square of the mean velocity Ub and divided by the area of the plane stretching over 7h in
span and 1.6δo in height. The area is normalized by the square of the boundary layer thickness at the cube,
which is δo. From figure 11 we observe that TKE per unit area is same for all three cases at a distance of

h/δo Cd Separation length (XF /h) Reattachment length (XR/h)

0.2 0.6 1.3 1.6

0.6 0.9 1.2 1.8

1 1.0 1.5 1.6

*Cd: Drag coefficient

Table 2. Separation and reattachment length normalized by cube height for a
spatially evolving turbulent boundary layer flow over a wall-mounted cube.
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(a) h/δo = 0.2, x = h (b) h/δo = 0.6, x = h (c) h/δo = 1.0, x = h

(d) h/δo = 0.2, x = 3h (e) h/δo = 0.6, x = 3h (f) h/δo = 1.0, x = 3h

(g) h/δo = 0.2, x = 6h (h) h/δo = 0.6, x = 6h (i) h/δo = 1.0, x = 6h

Figure 10. Contours of turbulent kinetic energy at different stream-wise locations. (a), (d) and (g) are for h/δo = 0.2,
(b), (e) and (h) are for h/δo = 0.6 and (c), (f) and (i) are for h/δo = 1.0. The figures in the top row are planes at a
distance of 1h from the cube, figures in the middle row are planes at a distance of 3h from the cube and figures in the
bottom row are planes at a distance of 6h from the cube.
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cube, h/δo = 0.2
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cube, h/δo = 1.0

Figure 11. Average turbulent kinetic energy (TKE) per unit area as a function of the streamwise coordinate

1h from the back-face of the cube. As we move along the streamwise direction the TKE area density for
h/δ = 1.0 decrease most rapidly followed by h/δ = 0.6 and finally 0.2. This indicates that there exist higher
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(b) yy-component of Reynolds stress

Figure 12. Turbulence statstics for a spatially evolving turbulent boundary layer flow around a wall-mounted cube.
h/δo = 0.2, h/δo = 0.6, h/δo = 1.0.

TKE dissipation for a cube with larger height. From the statistical derivation of the k−equation LES model
explained by Yoshizawa et al.18 we know that the KE dissipation rate ε ∼ k3/2, where k is the sub-grid scale
(SGS) kinetic energy. The production of k is directly proportional to the velocity gradient.18 This helps
us to explain the pattern observed in figure 11. For a larger cube the shear layer formed on the top of the
cube is surrounded by higher velocity fluid. Therefore, a larger cube has steeper velocity gradients on its top
surface, giving rise to more production of SGS k and subsequently more dissipation of TKE. Thus, a larger
cube has smaller TKE area density.

In figure 12 we present the xx− and yy−components of Reynolds stress at different stream-wise locations
in the plane of symmetry for the 3 cube heights. Two main observations are that the peak value increases
with increasing cube height and the position of the peak value also increases with increasing cube height.
The magnitude of the peak value depends on the magnification of the disturbances introduced by the cube.
Disturbances are proportional to the cube size. Thus, a larger cube introduces disturbances at greater
distances from the bottomwall where the background velocity is higher leading to a greater correlation in
the Reynolds stresses. Also, the position of the peak value depends on the position of the shear layer formed
from the top surface of the cube. A close look at the magnitude of the xx−component near the wall reveals
that the value remains almost constant. This is due to the fact that the rate of recovery is much faster in
the inner region of the boundary layer. Similar observations were made by Wasistho et al.19 on a backward
facing smooth ramp.

The xx−component of the Reynolds stress decreases for all three cube heights as we move along the
stream-wise direction. This is expected because the turbulent kinetic energy gets dissipated as the boundary
layer recovers. The same can be said about the yy−component. However, an interesting phenomenon is
observed in the yy−component for the h/δo = 0.2 case. The magnitude of this component remains almost
constant at all the stream-wise locations after the cube. It has been observed that the yy−component
exhibits slower recovery as compared to the other Reynolds stress components in flow over a smooth ramp.19

It is speculated to be because of the farther distance of the peak for the yy−component away from the wall.
It is unclear why this behavior is observed only for the h/δo = 0.2 case.
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V. Conclusions and future work

In this study we validated our flow solvers by comparing our results to simulations and experiments
of a the wall-mounted cube in channel flow. The results are in good agreement with experimental and
numerical results from prior studies. We also tested our inflow generation method by performing a high-
fidelity simulation of flow over a flat plate at Reτ = 800. We are able to replicate a spatially evolving
turbulent boundary layer with reasonable accuracy. The main focus of the present study is to understand
the effect of varying the cube height to boundary layer thickness ratio (h/δo) on the flow characteristics at
an inlet Reynolds number of 19,600. We present our results for three h/δo ratios namely, 0.2, 0.6 and 1.0 on
three grids with increasing refinement levels.

Our results indicate that the separation and reattachment length of the flow is independent of the h/δo
ratio. The flow reattaches at a distance of ∼ 1.8h after the cube. The streamline plots reveal that the
size of the arch-type vortex formed behind the cube decreases with increasing h/δo ratio. The horse-shoe
vortex in front of the cube extends to a distance of 3h around the cube. The drag coefficient (Cd) acting
on the cube increases with increasing cube height. The cube with h = 0.2δo entrains the most turbulent
KE inside the boundary layer per unit area as compared to the other two cases due to higher dissipation
of TKE in the shear layer on the top of a cube with large size. The xx− and yy−components of Reynolds
stresses in the center-plane show different behavior. The xx−component recovers at a faster rate closer to
the wall as compared to the shear-layer, whereas the yy−component does not exhibit this fast recovery. The
yy−component of Reynolds stress for the case with h/δo = 0.2 decays by negligible amount over a stream-
wise distance of 4h as compared to the cases with h/δo = 0.6 and 1. In the future we propose to understand
effect of the distance between multiple cubes when placed next to each other on the flow characteristics.
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VII. Appendix: Grid refinement study

To establish grid independence, we used three grids for each of the three different cube heights. The
grids are labelled as coarse, medium and fine. The non-dimensional grid spacing is the same for the three
different cube heights. The details of the grid spacing are summarized in table 3.

In figures 13, 14 and 15 we present the streamwise component of mean velocity and xx−component
of Reynolds stress for three cube heights h/δo = 0.2, 0.6 and 1.0 on the coarse, medium and fine mesh
respectively to determine how well resolved the simulations are. For h/δo = 0.2, we observe greater deviation
in the x−component of mean velocity in the coarse mesh from the medium and fine mesh than for the larger
values of h/δo. The reason for this greater difference in the h/δo = 0.2 case is the same non-dimensional grid
spacing used across all the three cases, which results in fewer cells across the cube height in the coarse mesh
for the smallest h/δo. The results for x−component of mean velocity from medium and fine mesh cases are
in good agreement for all the 3 cube heights.

We observe noticeable deviations in the xx−component of Reynolds stress between the coarse, medium
and fine mesh cases in figures 13(b), 14(b) and 15(b). Since Reynolds stresses are calculated as the mean of

Property coarse mesh medium mesh fine mesh

∆+
x 22 18 15

∆+
z 22 18 15

∆+
y 5 1 1

* ∆+ represents grid spacing in wall units. ∆+ = ∆uτ/ν

Table 3. Non-dimensional grid spacing details
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Figure 13. Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for spatially evolving turbulent
boundary layer flow around a wall-mounted cube with h/δo = 0.2. coarse mesh, medium mesh, fine
mesh
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Figure 14. Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for spatially evolving turbulent
boundary layer flow around a wall-mounted cube with h/δo = 0.6. coarse mesh, medium mesh, fine
mesh
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Figure 15. Profiles of mean velocity (x-component) and Reynolds stress (xx-component) for spatially evolving turbulent
boundary layer flow around a wall-mounted cube with h/δo = 1.0. coarse mesh, medium mesh, fine
mesh

the difference between instantaneous and time-average velocities, the magnitude of values under consideration
are small. As a result any slight deviations get amplified. According to our experience and from the literature,
we believe that the results in figures 13(b), 14(b) and 15(b) are acceptable and that the finest mesh accurately
represents the flow dynamics.
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