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To help wind turbine reliability analysis in a design stage, aeroelastic simulators have
been developed to generate stochastic load responses imposed on a wind turbine structure,
given pre-specified turbulent wind conditions. In particular, system designers can use the
simulators to estimate the extreme load responses during a turbine’s design life. However,
it has been shown that using the crude Monte Carlo sampling methods to simulate the
extreme load associated with a small load exceeding probability is computationally pro-
hibitive, and the estimation results are highly uncertain. Importance sampling methods
can overcome the limitations of the crude Monte Carlo sampling methods. We develop
adaptive algorithms to iteratively refine the importance sampling density to efficiently
estimate the extreme load.

Nomenclature

PT Target probability of load exceedance
lT Extreme load
X Input vector
Y Output variable
pX Original input density of X
qX Importance sampling density
θ Parameter in the importance sampling density

I. Introduction

To achieve reliable operations during a wind turbine’s design life, it is crucial to quantitatively estimate
the expected loads imposed on turbine subsystems over a range of dynamic operating conditions.1 Recent
technology advancements provide opportunities to quantify loads and their variability in the design stage.
For example, the U.S Department of Energy’s National Renewable Energy Laboratory (NREL) has developed
aeroelastic simulators to help design reliable turbines.2,3 The system designer specifies the turbine design
parameters, and feeds a random weather condition as input into the simulators. Then, the simulators generate
structural and mechanical load responses at turbine subsystems. In particular, the NREL simulators use a
stochastic computer model which generates a random output even when the input is fixed. This is because
the NREL simulators embed more than 8 million random variables, so that the output (e.g., blade tip
deflection) is not uniquely determined even at the same simulation input (i.e., weather condition).2 In
this study, we call such simulators as “stochastic simulation models”. On the contrary, some simulators
use deterministic computer models that generate deterministic output at a fixed input. We refer to those
simulators as “deterministic simulation models” in this study.

In the reliability-based wind turbine design, the International Electrotechnical Commission (IEC) design
standard’s design load case (DLC) 1.1 requires assessing the extreme loads during a turbine’s normal opera-
tions.4 Specifically, a turbine designer should estimate the turbine’s extreme load level lT , given the target
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probability of load exceedance (POE) PT , or load exceedance probability, defined as

PT = P (Y > lT ) (1)

=

∫
X

P (Y > lT |X = x) · pX(x)dx, (2)

where pX is the probability density function of the environmental random vector X, and Y is the simulation
output describing the load response of interest.

Typically, 10-minute turbine operations are simulated for each run, which can be used to evaluate a
target PT corresponding to a turbine’s design life (or return period) of T years as follows.5

PT =
10 minutes

T years× 365.25 days× 24 hours× 60 minutes
(3)

≈ 1.9× 10−5

T
. (4)

For example, when a turbine’s design life is 50 years, the target POE PT becomes approximately 3.8× 10−7.
Given PT , the extreme load lT during T -year design life is defined as

lT = inf{θ ∈ R : P (Y > θ) ≤ PT }, (5)

where “inf” represents the infimum.6 Mathematically, the extreme load lT relates to the extreme quantile
associated with the right tail probability PT in the distribution of Y (Figure 1).

Figure 1: Illustration of extreme load lT corresponding to the target POE PT

When PT is small, estimating the extreme quantile faces large estimation uncertainties and computational
difficulties. The objective of this study is to develop a new method that enables computationally efficient
extreme load assessments of wind turbines through effective use of stochastic simulation models.

II. Problem Background

The crude Monte Carlo (CMC) sampling is the default practice to run the stochastic simulator, namely,
sample the input x′s from its probability density function pX(x) and use the sampled x′s to run the simulator
and produce y′s until a sufficient number of output samples are obtained. Let yj denote the jth output of
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response Y and NT denote the total number of simulation runs. Using the CMC, the POE estimator at level
lT is

P̂CMC(Y > lT ) =
1

NT

NT∑
j=1

1 (yj > lT ) , (6)

and the extreme load estimator corresponding to the target POE level PT is given by

l̂T,CMC = inf{θ ∈ R : P̂CMC(Y > θ) ≤ PT }. (7)

With small PT , to estimate l̂T,CMC , CMC requires enormous computational efforts. For example, to
estimate extreme loads for 50 ∼ 100 years, Manuel et al.7 use a Linux computer cluster with 1,024 cores.
Moreover, the estimation results from CMC are highly uncertain, leading to large estimation variance.6

To overcome the limitations of CMC, importance sampling methods have been used to improve the
simulation efficiency and reduce the estimation uncertainty. The underlying idea of the importance sampling
methods is to generate random input samples from a biased distribution rather than the original input
density pX(x), so that the input regions that generate large y’s can get more sampling efforts. As a result,
the estimation efficiency with importance sampling can be significantly improved compared with that of
CMC. Due to its powerful performance, the importance sampling methods have been widely used in the
reliability analysis,8 but most studies have been limited to the deterministic simulation models.

Recently Choe et al.9 introduce the importance sampling for the POE estimation with stochastic sim-
ulation models, called a stochastic importance sampling method. In Choe et al.,9 two important sampling
methods are introduced. The first method allows multiple simulation runs at each sampled input to account
for the randomness in the simulation output, whereas the second method runs the simulation once at each
input. It has been shown that the estimation performance of the two methods is similar. Because the second
method is a special case of the first method, we summarize the first method in our subsequent discussions.

Let xi, i = 1, 2, ...,M , denote the samples of input vector from the importance sampling density qX(x),
and M be the input sample size. At each xi, we run simulations Ni times to obtain Ni outputs of yij ,

j = 1, 2, ..., Ni. The POE estimator of the probability that Y exceeds level lT , denoted as P̂IS(Y > lT ), is

P̂IS(Y > lT ) =
1

M

M∑
i=1

 1

Ni

Ni∑
j=1

1 (yij > lT )

 pX(xi)

qX(xi; lT )
. (8)

Choe et al.9 show that the optimal importance sampling density that minimizes the variance of P̂IS(Y >
lT ), is given by

qX(x; lT ) =
1

Cq
pX(x)

√
1

NT
s(x; lT )(1− s(x; lT )) + s(x; lT )2, (9)

where Cq =

∫
pX(x)

√
1

NT
s(x; lT )(1− s(x; lT )) + s(x; lT )2 is the normalizing constant. Moreover, the op-

timal allocation Ni at each xi, i = 1, ...,M , that collaboratively minimizes the variance of P̂IS(Y > lT ) is
given by:

Ni = NT

√
NT (1−s(xi;lT ))

1+(NT−1)s(xi;lT )∑M
j=1

√
NT (1−s(xi;lT ))

1+(NT−1)s(xi;lT )

, i = 1, ...,M, (10)

where NT is the number of total simulation runs. Here, s(x; lT ) represents the conditional probability that
the response Y exceeds lT , given a realization x of the input X, i.e.,

s(x; lT ) = P (Y > lT |X = x). (11)

Correspondingly, the importance sampling estimator for the extreme quantile lT is given by6

l̂T,IS = inf{θ ∈ R : P̂IS(Y > θ) ≤ PT }. (12)
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Choe et al.6 integrate the importance sampling method with the order statistics theories to improve the
extreme load estimation accuracy, given the computational budget NT . Suppose y(j), j = 1, · · · , NT , denote

the jth smallest order statistic of the output samples. In Equation (8), by replacing lT with y(j), P̂ (Y > y(j))
can be obtained in ascending order at all y(j), where j goes from NT to 1 as shown in Figure 2 (Note that
the POE estimate at the largest sample y(NT ) is 0 from Equation (8), so the smallest nonzero POE estimate
starts from y(NT−1)). From Equation (12), y(j) can be interpreted as the extreme quantile estimate at POE

level P̂ (Y > y(j)) for each j = 1, · · · , NT . As a result, for a small PT ∈ [0, 1], we can get the extreme
load estimate corresponding to each order statistic among the NT output samples. Detailed procedure for
estimating the extreme load with the importance sampling method is provided by Choe et al.6

Figure 2: Extreme load estimates with order statistics

These studies by Choe et al.6,9 show the effectiveness of importance sampling theories in estimating the
wind turbine reliability and extreme load estimations. However, one notable limitation is that to achieve the
optimal estimation of lT using (12), the parameter θ in the IS density qX(x; θ) should be the target extreme
load lT , but lT is the value we want to estimate, which is unknown.

Figure 3: Proposed idea: iterative updating of parameter θ in the IS density
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Faced with this problem, we develop adaptive sampling method to iteratively choose the proper parameter
θ. Our idea is to start with a small parameter θ and increase θ toward lT as large output samples are obtained,
as shown in Figure 3.

III. Adaptive Importance Sampling for Extreme Load Estimation

To develop the adaptive sampling method for the extreme load estimation, we borrow the idea from
Morio,10 who presents a ρ-quantile method to estimate the extreme quantile in the deterministic simulation
model. The basic idea is to update the parameter θ using the upper ρ percent of output samples in each
iteration. Given the limited computational resource, we proceed the iteration K times. Suppose that we
start with a relatively small θ1 in qX(x; θ) and run simulation n times to get n outputs, y1, ..., yn. These
samples will be generally greater than θ1. Then, we update θ1 to a greater level θ2 by selecting one of the
output samples y1, ..., yn. Specifically, we use the dn(1− ρ)eth smallest sample from the outputs, where dae
is the smallest integer greater than, or equal to, a. Let y(i) (i = 1, · · · , n) denote the ith smallest ordered
statistics. Then, we update the parameter θ1 to θ2 = y(dn(1−ρ)e) in the next iteration. However, in the
updating process, we need to guarantee θ being no greater than the target extreme load lT to have unbiased
POE estimates. Under this restriction, we apply two different updating mechanisms.

First, we start with a safe parameter θ = θ1. In the beginning when we use a small θ in the IS density
qX(x; θ), the output samples tend to be greater than θ, but are not likely to be large enough to estimate the
small target POE. Let Y 1:k

sec−max denote the second largest output sample we obtain up to the kth iteration,
which provides the smallest POE estimate up to the kth iteration. When the current smallest POE estimate
with Y 1:k

sec−max is greater than PT , we cannot estimate the target extreme load lT associated with PT yet.
To obtain larger outputs in the subsequent iterations, we update the parameter θ with the ρ-quantile of the
output samples obtained in the current iteration.

Second, as the parameter θ goes up, we will obtain large output samples. After some iterations, the
smallest POE estimate will reach PT and the extreme quantile can be estimated with the output samples
obtained up to the current iteration. Then, care should be given to prevent the parameter θ from exceeding
the potential extreme quantile lT in the next iteration. We define Wk, which is the largest output sample at
which the corresponding estimated POE is greater than PT , and update the parameter with the minimum
of ρ-quantile and Wk.

We summarize the proposed adaptive sampling algorithm as follows. Let N denote the number of output
samples we obtain in each iteration.

Step 0. Set k = 1 and a low value for θ1. Set ρ ∈ (0, 1) such that ρN ≥ 2.

Step 1. Obtain qX(x; θk) with parameter θk in the kth iteration.

Step 2. Sample xki , i = 1, ...,M , from qX(x; θk).

Step 3. Determine the allocation size Nk
i for each xki , i = 1, ...,M , using Equation (10).

Step 4. Run simulation Nk
i times at each xki to obtain Nk

i outputs, ykij (j = 1, · · · , Nk
i ) for each i (i =

1, · · · ,M). Let y1:k(t) denote the tth order statistic of outputs that satisfies y1:k(t) ≥ max
1≤s≤k

{θs} among

all samples from 1 to the kth iteration, and N1:k
exc be the total number of output samples exceeding

max
1≤s≤k

{θs} up to the kth iteration. For each y1:k(t) ≥ max
1≤s≤k

{θs}, t = 1, ..., N1:k
exc, use all kNT samples of

ysij , s = 1, ..., k to compute

P̂k(y1:k(t) ) =
1

k

k∑
s=1

 1

M

M∑
i=1

 1

Ns
i

Ns
i∑

j=1

1

(
ysij > y1:k(t)

) pX(xsi )

qX(xsi ; θs)

 . (13)

Step 5. If k = K, go to step 6. Otherwise, update the parameter θ as follows.

A. If min
t=1,...,N1:k

exc

{P̂k(y1:k(t) ) : P̂k(y1:k(t) ) > 0} > PT , update the parameter as

θk+1 = γkρ , (14)
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where γkρ is the upper ρ-quantile of output samples in the kth iteration. Set k = k + 1 and go
back to step 1.

B. Otherwise, set

Wk = max
t=1,...,N1:k

exc

{y1:k(t) : P̂k(y1:k(t) ) > PT }, (15)

θk+1 = min{Wk, γ
k
ρ}. (16)

Set k = k + 1 and go back to step 1.

Step 6. If {y1:K(t) : 0 < P̂K(y1:K(t) ) ≤ PT } 6= φ, the extreme load estimate is given by

Q̂PT ,K = min
t=1,...,N1:K

exc

{y1:K(t) : 0 < P̂K(y1:K(t) ) ≤ PT }. (17)

Otherwise, the extreme PT -quantile cannot be estimated given the computation resources.

Under the condition y1:k(t) ≥ max
1≤s≤k

{θs}, P̂k(y1:k(t) ) in Equation (13) is an unbiased estimator for P (Y > y1:k(t) ),

for each t = 1, ..., N1:k
exc. Based on the above discussions, the IS density with any θk, for 1 ≤ k < K, can be

applied to unbiasedly estimate the POE level of PT .
In the proposed approach, the ρ-quantile updating scheme is introduced to increase parameter θ from a

small starting value towards the extreme quantile lT . This algorithm controls the proposed parameter with
newly obtained output samples in each iteration. We note that the value of ρ should be selected carefully.
When ρ is too large, close to 1, the ρ-quantile of output samples is small and the parameter θ will not increase
rapidly as needed. On the contrary, when ρ is too small, the number of upper ρ percent output samples
is small, which could lead to large variations in the ρ-quantile. For example, consider NT = 1, 000 and
ρ = 0.002. The ρ-quantile becomes the second largest output sample. In general, this specific single sample
has large variation in the stochastic simulation model. As a result, the variance of ρ-quantile is unavoidably
increased when ρ is too small, which possibly adds uncertainty to the extreme quantile estimation.

IV. Wind Turbine Extreme Load Estimation

In this section, we apply the proposed algorithm to the wind turbine extreme load estimation with the
set of NREL simulators, TurbSim2 and FAST.3 The input variable X is 10-minute average wind speed,
which is assumed to follow a truncated Rayleigh distribution on the interval [3, 25] (m/s). The cumulative

distribution function of Rayleigh distribution is F (x) = 1−e−x2/2τ2

with the scale parameter τ =
√

2/π ·10.
With the input average wind speed, TurbSim generates 10 minutes time series of a 3D wind profile, and
passes them to FAST. FAST simulates the load response Y at different wind turbine components.

In this case study, we investigate two types of load responses, namely, the flapwise bending moment and
the in-plane tip deflection. To obtain the IS density qX(x; θ) in (9), we need s(x; θ) in (11). We take a
pilot sample and fit the non-homogeneous GEV distribution with the output sample data and approximate
s(x, θ). Detailed procedure to estimate s(x; θ) is available in Choe et al.9

In our adaptive algorithm, we use the starting parameters θ1 = 2.33 (m) and θ1 = 14, 600 (kNm)
for the in-plane tip deflection and the flapwise bending moment, respectively. In the standard IS that
does not update θ, we use these fixed parameters in the IS density. We use ρ = 0.1. We use N = 300,
M = 50 to implement 10 iterations for the adaptive algorithm. To maintain the same computational effort
in comparing the extreme load estimation performance of the adaptive and the standard IS, the standard IS
uses NT = 300× 10 = 3, 000 and M = 50× 10 = 500. Each extreme load estimation trajectory in Figure 4
and 5 is obtained by linear interpolation on 3, 000 pairs of the output samples and their associated POE
estimates.

Figure 4 demonstrates the 16 extreme load estimation trajectories for the in-plane tip deflection. Intervals
AI and BI show the ranges of extreme load estimation at PT = 10−5 using the proposed approach and
standard IS respectively. The result shows that AI and BI ranges [2.632, 2.768] (m) and [2.625, 2.805] (m),
respectively. The narrower range of AI indicates that the proposed approach reduces the extreme load
estimation uncertainty, compared with the standard IS. Moreover, the minimum POE estimate using the
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proposed approach reaches 1.5×10−6, which is smaller than 7.7×10−6 obtained using the standard IS, with
the same computational effort.

Figure 5 demonstrates the 20 extreme load estimation trajectories for the flapwise bending moment.
Intervals AF and BF show the ranges of extreme load estimation at PT = 1.1−4 using the proposed ap-
proach and standard IS, respectively. AF and BF ranges [15157, 15530] (kNm) and [15114, 15640] (kNm),
respectively. In addition, the minimum POE estimates using the proposed approach are around 6.3× 10−5

∼ 9.5 × 10−5, which are smaller than that obtained using the standard IS (9.5 × 10−5 ∼ 1.1 × 10−4), with
the same computation resources. These results suggest the proposed approach has higher extreme load es-
timation accuracy and computation efficiency compared with the standard IS method. Figure 6 shows the
parameter in IS density is updated through iterations from the low starting level 14, 600 to 15, 210 in the
proposed approach for estimating the extreme load of flapwise bending moment.

To further estimate the extreme load for a longer design life, say, 50 years, we conduct experiments with
a larger NT . We collect output samples from multiple experiments and construct a combined extreme load
estimation trajectory.6 Figure 7 shows the extreme load estimation trajectories for the in-plane tip deflection.
The trajectory is obtained from 40, 000 (N = 1, 000 in each iteration, 10 iterations and 4 repetitions) output
samples. The largest estimated extreme load is 3.05 (m), which is associated with the POE level of 5.6×10−8

(339-year return period). In particular, the 50-year extreme load estimate, which is associated with POE
3.8 × 10−7, is 2.99 (m). This estimation is similar to those presented in Choe et al.6 which were obtained
with larger computational runs.

Figure 8 shows the combined extreme load estimation trajectory for the flapwise bending moment. From
the trajectory obtained from 240, 000 (N = 1, 000 in each iteration, 10 iterations and 24 repetitions) output
samples, it shows that the 50-year extreme load estimate associated with POE 3.8× 10−7 is 15980 (kNm).
Both results for in-plane tip deflection and flapwise bending moment indicate that our proposed approach
provides a computationally feasible solution for the extreme load estimation with limited computational
resources.

Figure 4: Extreme load estimation of in-plane tip deflection (For PT = 10−5, the extreme load estimate
from the proposed approach ranges from 2.63 (m) to 2.768 (m), indicated by interval AI , whereas the

extreme load estimate from the standard IS ranges from 2.625 (m) to 2.805 (m), indicated by interval BI .)
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Figure 5: Extreme load estimation of flapwise bending moment (For PT = 1.1× 10−4, the extreme load
estimate from the proposed approach ranges from 15, 157 (kNm) to 15, 530 (kNm), indicated by interval
AF , whereas the extreme load estimate from the standard IS ranges from 15, 114 (kNm) to 15, 640 (kNm),

indicated by interval BF .)

Figure 6: Updates of parameter θ in the IS density for estimating the extreme load of flapwise bending
moment
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Figure 7: In-plane tip deflection extreme load estimation trajectory

Figure 8: Flapwise bending moment extreme load estimation trajectory
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V. Conclusion

In this study, we develop an adaptive algorithm which updates the importance sampling density according
to the information obtained from output samples in each iteration. By iteratively increasing parameter θ in
the importance sampling density toward the target extreme quantile lT , we improve the simulation efficiency
and reduce the estimation uncertainty compared with the existing method.

Our results using the set of NREL simulators demonstrate the superiority of adaptive approach in two
aspects over the standard IS method: (a) the proposed approach greatly reduces the extreme quantile
estimation variance with the same computational effort; (b) it is capable of estimating much larger extreme
load levels with a smaller computational resource. Future studies extend the proposed approach to the
extreme load estimation considering wake effects in a multi-turbine wind farm.11
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