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I. Introduction

W E CONSIDER a linear quadratic (LQ) optimal control

problem for a class of linear time-invariant systems of the
form

_x�t� � Ax�t� � Bu�t� � d�t�; x�0� � x0 (1)

where A and B are real matrices, x�t� ∈ Rn, u�t� ∈ Rm, and d�t� ∈
Rn is a time-varying disturbance term that is known in advance.
Given an initial state x0, the objective is to find a control u over the
finite time horizon [0, T] that minimizes a quadratic cost functional

J � 1

2

Z
T

0

�xT�t�Qx�t� � uT�t�Ru�t�� dt� 1

2
xT�T�Sx�T� (2)

with Q � QT ⪰ 0 and R � RT ≻ 0. For notational convenience,
we may omit indication of the explicit time dependence of

time-dependent variables when it is clear from the context.
Problems (1) and (2) are relevant to many real-time optimal

control applications: in particular, those where a preview is
available or needs to be incorporated [1–5]. According to [6], most

prior applications in preview control used discrete-time-based
formulations and either H∞ or linear quadratic regulator (LQR)
methods [2,3,7–10]. In contrast, treating the problem in

continuous-time (i.e., without resorting to discrete-time
approximations) can provide higher solution accuracy. In the

continuous-time formulation, optimal control problems (1) and (2)
lead to a two-point boundary value problem (TPBVP) with mixed
boundary conditions. A solution to this problem is based on

solving the Riccati differential equation. In addition, an ordinary
differential equation (ODE) that accounts for the disturbance has

to be solved [11,12]. In general, there is no explicit solution
to this ODE, and numerical and approximate approaches need to
be developed. Numerical approaches to solve this ODE are based

on integrating backward in time, which may become computa-
tionally impractical, especially when larger time horizons are

considered.
Therefore, we solve the problem by approximating the disturbance

term d as a piecewise-linear function of time. Using Pontryagin’s
maximumprinciple, linear systems theory, and analytical integration,
we obtain a closed-form solution to the TPBVP. In addition, we

derive an upper bound on the error between the optimal solution and
the approximate solution when the piecewise-linear disturbance
approximation is used. To the best of our knowledge, there has not
been a closed-form solution to LQ optimal control problems with
previewed disturbance d based on piecewise-linear approximation of
d previously established or analyzed/investigated at a level of detail
as in this Note. Such an approximation yields higher accuracy than
piecewise-constant disturbance approximation that is common in
sampled data/discrete-time treatments of the problem.
The presented approach allows fast computation of the optimal

control, which facilitates potential onboard/real-time implementa-
tion. In particular, this may be useful in applications of model
predictive control (MPC) with previewed disturbance [13–16] or
with disturbance scenarios [17], where an LQ problem with a
disturbance term similar to Eqs. (1) and (2) has to be solved
repeatedly over a receding time horizon. Future research to address
the inclusion of constraints can further extend the use of our
techniques for MPC with a preview to constrained problems.
As our subsequent example demonstrates (Sec. IV), the proposed

strategy can be effective in spacecraft orbital maneuvering problems
to account for higher-order gravity perturbations and air drag.
We note that, in this example, the disturbance is computed for the
trajectory of the nominal/target orbit. Because, in the example, the
spacecraft is relatively close to the known target orbit, the error is
small and the simulation results show that our proposed approach is
effective in the context of controlling a nonlinear system: in
particular, when recomputing the control over a receding time
horizon using MPC techniques to account for unmodeled effects
(Sec. IV.C). At the same time, given that the focus of our theoretical
analysis is an LQ problem with previewed disturbance, we also
include simulation results for the linear model in Sec. IV.B because
they illustrate the conclusions from the analysis in a setting consistent
with the assumptions in this Note.
The developments in this Note are further motivated by enhancing

the implementation of a computational strategy to solve nonlinear
optimal control problems, where one iterates between using d to
approximate a nonlinear term di�1 � ϕ�xi� in the equations of
motion evaluated on a current iteration i of the trajectory and solving
the optimal control problem given by Eqs. (1) and (2) [18].
The structure of this Note is as follows. In Sec. II, the necessary

conditions for optimality are presented and the closed-form solution
to the TPBVP is derived. Section III includes an analysis of the error
incurred by the piecewise-linear approximation of d. The method is
demonstrated for orbital maneuvering in Sec. IV. Section V provides
a conclusion of the work.

II. Solution to the TPBVP

The necessary conditions for optimality in problems (1) and (2) are
provided by Pontryagin’s maximum principle applied to the
Hamiltonian H:

H � 1

2
�xTQx� uTRu� � ψT �Ax� Bu� d� (3)

The optimal control minimizes the Hamiltonian. Hence,
u � −R−1BTψ , where ψ denotes the vector of adjoint variables,
which satisfy

_ψ � −�∂H∕∂x�T � −Qx − ATψ (4)

Moreover, the transversality condition ψ�T� � Sx�T� must be
satisfied. Consequently, we obtain
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�
_x
_ψ

�
�

�
A −BR−1BT

−Q −AT

��
x
ψ

�
�

�
d

0n×1

�
(5)

By defining ~xT � �xT;ψT � and ~dT � �dT; 01×n�, Eq. (5) may be

written as

_~x � ~A ~x� ~d (6)

with initial condition ~xT0 � ~xT�0� � �xT0 ;ψT
0 �, where ψ0 is unknown.

Using the transversality condition for ψ, the terminal state values at

time T are ~xT�T� � �xT�T�; �Sx�T��T �, where x�T� is unknown.

However, x�T� or ~x�T�, respectively, can be computed according to

~x�T� � e
~AT ~x0 �

Z
T

0

e
~A�T−τ� ~d�τ� dτ (7)

The key assumption for deriving a closed-form approximate

solution to the TPBVP is that the disturbance d is approximated by a

piecewise-linear function of time. We consider

�ν − 1�-equidistant time intervals of length Δt

and tk � �k − 1�Δt, k � 1; 2; : : : ; ν, where the final time is

tν � T � �ν − 1�Δt and t1 is at t � 0. In analogy, we

define ~dk � ~d�tk�. Then, the piecewise-linear approximation (such

an approximation can also be referred to as piecewise affine, which

is actually more correct) of the disturbance vector ~d�t� at time t is
given by

~dpwlin�t� � ~dk �
~dk�1 − ~dk

Δt
�t − �k − 1�Δt�; for t ∈ �tk; tk�1� (8)

Consequently, the approximation of Eq. (7) using Eq. (8) is

~xpwlin�T� � e
~AT ~x0 �

Xν−1
k�1

�Z
kΔt

�k−1�Δt
e
~A�T−τ�

×
�
~dk �

~dk�1 − ~dk
Δt

�τ − �k − 1�Δt�
�
dτ

�
(9)

A. Case ~A Is Invertible

When ~A is nonsingular, integration by parts of Eq. (9) and further

simplification yields

~xpwlin�T� � e
~AT ~x0 � ~A−1

Xν−1
k�1

�
e
~A�ν−k�Δt ~dk − e

~A�ν−k−1�Δt ~dk�1

� ~A−1
�
e
~A�ν−k�Δt − e

~A�ν−k−1�Δt
�� ~dk�1 − ~dk

Δt

	�
(10)

We introduce the constant matrices Kk ∈ R2n×2n defined by

Kk � e
~A�k−1�Δt; k � 1; 2; : : : ; ν (11)

and Eq. (10) is rewritten as

~xpwlin�T� � Kν ~x0 � ~A−1�Kν
~d1 − K1

~dν�

� � ~A−1�2
Xν−1
k�1

�
�Kν�1−k − Kν−k�

�
~dk�1 − ~dk

Δt

	�
(12)

which provides 2n equations to solve for the 2n unknowns contained
inψ0 and x�T�. To solve the system of linear equations, the sumof the

second and third terms in Eq. (12) is denoted by qT � �qT1 ; qT2 �,

q � ~A−1�Kν
~d1 − K1

~dν�

� � ~A−1�2
Xν−1
k�1

�
�Kν�1−k − Kν−k�

�
~dk�1 − ~dk

Δt

	�
(13)

where q1, q2 ∈ Rn×1. Then, it follows that

~xpwlin�T� �
�
xpwlin�T�
Sxpwlin�T�

�
� Kν

�
x0

ψ0;pwlin

�
� q (14)

where xpwlin�T� and ψ0;pwlin are the approximations of x�T� and
ψ0 using the piecewise-linear disturbance term. By noting that

Kν �
�
Kν;11 Kν;12

Kν;21 Kν;22

�

and Kν;ij ∈ Rn×n, the solution to the TPBVP is given by

�
xpwlin�T�
ψ0;pwlin

�
�

�
In×n − Kν;12CinvS Kν;12Cinv

−CinvS Cinv

��
Kν;11x0 � q1
Kν;21x0 � q2

�

(15)

where Cinv � �SKν;12 − Kν;22�−1. Now, by following the same steps
and noting that x0 � x0;pwlin, we can derive the solution to the state
equation that, at the discrete time steps tk, reads

~xpwlin�tk� � Kk ~x0;pwlin � ~A−1�Kk
~d1 − K1

~dk�

� � ~A−1�2
Xk−1
i�1

�
�Kk�1−i − Kk−i�

�
~di�1 − ~di

Δt

	�
(16)

and the approximate optimal control at the kth time instant is

upwlin�tk� � −R−1BT �0n×n; In×n� ~xpwlin�tk� (17)

B. Case ~A Is Not Invertible

When ~A is not invertible, it has p ∈ f0; 1; : : : ; 2n − 1g nonzero
eigenvalues and there exists an invertible matrix M ∈ C2n×2n such
that ~A can be decomposed as

~A � M

�
J1 0p×�2n−p�

0�2n−p�×p J2

�
M−1 (18)

where J1 ∈ Cp×p is invertible, and J2 ∈ R�2n−p�×�2n−p� is not
invertible (see Chap. 6.2 in [19]). Therefore, the integral of thematrix
exponential may be written as

Z
tn�1

tn

e
~A�tk−τ� dτ

� M

2
4−J−11 �eJ1�tk−tn�1� − eJ1�tk−tn�� 0p×�2n−p�

0�2n−p�×p
R tn�1
tn eJ2�tk−τ� dτ

3
5M−1 (19)

The integral of eJ2�tk−τ� with respect to τ depends on the number
(algebraic multiplicity) of zero eigenvalues of ~A as well as on the
dimension of the null space of ~A. A procedure that distinguishes
between the possible cases may be implemented for computation
purposes; see [19]. To solve the integral of the matrix exponential in
Eq. (9), we define the following indefinite integrals or antiderivatives:

Z
e
~A�tk−τ� dτ � Fk�τ� � C;

Z
Fk�τ� dτ � Gk�τ� � C (20)

where C ∈ R2n×2n is a constant matrix, and Fk�τ� and Gk�τ� are the
respective antiderivatives for a given k and τ ∈ �0; T�. Note that, in
general, the antiderivative Z�x� of a function z�x�, x ∈ I, satisfies
dZ�x�∕dx � z�x� for x ∈ I, where
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Z
z�x� dx � Z�x� � C

andC � const. WithFk andGk, integration by parts of Eq. (9) yields

~xpwlin�T� � e
~AT ~x0 � Fν�T� ~dν − Fν�0� ~d1

�
Xν−1
k�1

�
�Gν�kΔt� − Gν��k − 1�Δt��

�
~dk�1 − ~dk

Δt

��
(21)

Based on Eq. (20), the following constant matrices are defined:

~Fi;k � Fk��i − 1�Δt�; ~Gi;k � Gk��i − 1�Δt� (22)

with i � 1; 2; : : : ; ν and k � 1; 2; : : : ; ν. Using Eqs. (11) and (22),
we write Eq. (21) as

~xpwlin�T� � Kν ~x0 � ~Fν;ν
~dν − ~F1;ν

~d1

�
Xν−1
k�1

�
� ~Gk�1;ν − ~Gk;ν�

�
~dk�1 − ~dk

Δt

��
(23)

In analogy to Eq. (13), the constant vector qT � �qT1 ; qT2 � is defined
in order to solve the TPBVP:

q � ~Fν;ν
~dν − ~F1;ν

~d1 �
Xν−1
k�1

�
� ~Gk�1;ν − ~Gk;ν�

�
~dk�1 − ~dk

Δt

��
(24)

Now, the initial adjoint variables ψ0;pwlin and the final state vector
xpwlin�T� can be obtained according to Eq. (15). Similarly, we can
derive the solution to the state equations at the discrete time steps tk:

~xpwlin�tk� � Kk ~x0;pwlin � ~Fk;k
~dk − ~F1;k

~d1

�
Xk−1
i�1

�
� ~Gi�1;k − ~Gi;k�

�
~di�1 − ~di

Δt

	�
(25)

and the approximate optimal control is computed according to Eq. (17).

III. Error Estimation

In this section, we derive an upper bound for the error between the
optimal solution ~x�t� and its approximation ~xpwlin�t�. For the
derivation, we make the following assumptions:
Assumption 1: For t ∈ �0; T�, ~d�t� is twice continuously

differentiable.
Assumption 2: The matrices S and ~A are such that CT exp� ~AT� �

�K1; K2�, where K2 ∈ Rn×n has rank n and CT � �S;−In×n�.
Our numerical experiences suggest that Assumption 2 holds. This

may be because, for most applications, the diagonal elements of
exp� ~AT� are nonzero (see infinite power series representation for
matrix exponentials [19], where the first term is the identity matrix)
and S is usually diagonal. In the following, k ⋅ k � k ⋅ kp denotes the
p norm or Hölder norm [19] of a vector or matrix and exp�⋅� � e�⋅�.
Proposition 1: Suppose Assumptions 1 and 2 hold. Then, for

t ∈ �0; T�,

k ~x�t� − ~xpwlin�t�k ≤ exp�k ~Akt�
�
max
a∈�0;T�




 �~d�a�



4tΔt2∕27�M�Δt2�

�

where

M�Δt2� � kCTk





�
CT exp� ~AT�

C0

�−1




× k exp� ~AT�kmax

a∈�0;T�
k �~d�a�k4TΔt2∕27

with C0 � �In×n; 0n×n� and CT � �S;−In×n�.

Proof: First, a bound for k ~d�t� − ~dpwlin�t�k is derived. In contrast

to the piecewise-linear ~dpwlin�t�, the continuous ~d�t� is differentiable
at each of the discrete time points tk, k � 1; 2; : : : ; ν. Using Taylor’s
theorem, we express ~d�tk� and ~d�tk�1� as

~d�tk� � ~d�t� � �tk − t� _~d�t� � 1

2
�tk − t�2 �~d�a1�;

~d�tk�1� � ~d�t� � �tk�1 − t� _~d�t� � 1

2
�tk�1 − t�2 �~d�a2� (26)

where t ∈ �tk; tk�1�, a1 ∈ �tk; t�, and a2 ∈ �t; tk�1�. By noting that
~d�tk� � ~dk and ~d�tk�1� � ~dk�1, the expression for ~dpwlin�t� in Eq. (8)
can be stated as

~dpwlin�t� �
tk�1 − t

Δt
~d�tk� −

tk − t

Δt
~d�tk�1� (27)

Using Eq. (26) and Δt � tk�1 − tk, Eq. (27) becomes

~dpwlin�t� � ~d�t� �
�~d�a1�
2Δt

�tk�1 − t��tk − t�2

�
�~d�a2�
2Δt

�t − tk��tk�1 − t�2 (28)

It follows from Eq. (28) that, for t ∈ �tk; tk�1�, the error between
~d�t� and ~dpwlin�t� is bounded by

k ~dpwlin�t� − ~d�t�k ≤





�~d�a1�
2Δt

�tk�1 − t��tk − t�2

�
�~d�a2�
2Δt

�t − tk��tk�1 − t�2




 ≤

k �~d�a1�k
2Δt

�tk�1 − t��tk − t�2

� k �~d�a2�k
2Δt

�t − tk��tk�1 − t�2 ≤ 2Δt2

27
�k �~d�a1�k

� k �~d�a2�k� ≤
4Δt2

27
max

a∈�tk;tk�1 �
k �~d�a�k (29)

because �tk�1 − t��tk − t�2 ≤ 4Δt3∕27 and �t − tk��tk�1 − t�2 ≤
4Δt3∕27. The error between the solutions to Eq. (6) is denoted

by e�t� � ~x�t� − ~xpwlin�t�. Using Eq. (6), the time derivative of the

error is _e�t� � ~d�t� − ~dpwlin�t� � ~Ae�t�. Integrating this expression

yields

e�t� �
Z

t

0

� ~d�τ� − ~dpwlin�τ� � ~Ae�τ�� dτ� e�0� (30)

It follows from Eq. (30) and the triangle inequality that

ke�t�k ≤
Z

t

0

k ~d�τ� − ~dpwlin�τ�k dτ�
Z

t

0

k ~Akke�τ�k dτ� ke�0�k
(31)

Using the Gronwall–Bellman inequality [20], Eq. (31) becomes

ke�t�k ≤
�Z

t

0

k ~d�τ� − ~dpwlin�τ�k dτ� ke�0�k
�
exp�k ~Akt� (32)

Next, we derive an error bound for ke�0�k. Using the transversality
condition for the adjoint variables, as well as the fact that the initial

error between the states is zero, we obtain the following equations

CTe�T� � 0n×1 (33)

C0e�0� � 0n×1 (34)
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whereCT � �S;−In×n� andC0 � �In×n; 0n×n�.UsingEq. (30), Eq. (33)
may be expressed as

CT exp� ~AT�e�0� � CT

Z
T

0

exp� ~A�T − τ��

× � ~d�τ� − ~dpwlin�τ�� dτ � 0n×1 (35)

Combining Eqs. (34) and (35) yields

e�0� �
�
CT exp� ~AT�

C0

�−1

×
�−CT

R
T
0 exp� ~A�T − τ��� ~d�τ� − ~dpwlin�τ�� dτ

0n×1

�
(36)

where the inverse exists by Assumption 2. Finally, Eq. (36) implies that

ke�0�k ≤ kCTk





�
CT exp� ~AT�

C0

�−1





×
XT∕Δt
k�1

�Z
tk�1

tk

k exp� ~A�T − τ��� ~d�τ� − ~dpwlin�τ��k dτ
�

(37)

Using Eqs. (29) and (37), we obtain

ke�0�k ≤ kCTk





�
CT exp� ~AT�

C0

�−1



max
τ∈�0;T�

k exp� ~A�T − τ��k

×
T

Δt
4Δt3

27
max
a∈�0;T�

k �~d�a�k ≤ kCTk





�
CT exp� ~AT�

C0

�−1




×



 exp� ~AT�




 4TΔt2
27

max
a∈�0;T�




 �~d�a�



 (38)

For notational conveniencewe denote the error bound for e�0� byM,
which is a function of Δt2:

M�Δt2� � kCTk





�
CT exp� ~AT�

C0

�−1




×



 exp� ~AT�




 4TΔt2
27

max
a∈�0;T�




 �~d�a�



 (39)

With Eqs. (38) and (39), the error bound for e�t� in Eq. (32) may be
stated as

ke�t�k ≤
�
t
4Δt2

27
max
a∈�0;T�




 �~d�a�



�M�Δt2�

�
exp�



 ~A


t� (40)

IV. Example: Spacecraft Orbital Maneuver

In this section, the proposed method is used for spacecraft orbital
maneuvering. The control problem, including the nonlinear and
linearized spacecraft models, is described in Sec. IV.A. Section IV.B
presents the open-loop solution based on the linear model and
numerically quantifies the error incurred by the piecewise-linear
approximation of the disturbance. Then, in Sec. IV.C, a recedinghorizon
control (RHC) implementation of the linear-model-based controller is
applied to the nonlinear model. All computations in this section were
performed in MATLAB 2015a on a laptop with an i5-6300 processor.

A. Control Problem

We consider the following nonlinear equations of motion:

�r � −
μ

krk32
r −

1

2BC
ρk_rk2 _r� fg � u (41)

where r is the position vector of the spacecraft relative to the center of
the attracting body, u denotes the vector of control input
accelerations, and μ is the gravitational parameter associated with
the two-body problem. The second term in Eq. (41) represents the
perturbation due to atmospheric drag, where BC is the spacecraft’s
ballistic coefficient and ρ is the density of the atmosphere, which is
computed using the NRLMSISE-00 model [21]. In this model, we
neglect the effect of a moving atmosphere. The third term fg in
Eq. (41) is a nonlinear function of r, representing the J2 and J3
perturbations (see [22]) that, in addition to atmospheric drag, are the
major perturbations for low Earth orbits. In general, our approach
allows us to consider any kind of disturbances, and additional
perturbations can be readily included.
An optimal control problem with the cost functional [Eq. (2)] is

considered, where the quadratic penalty on the control u reflects
propellant consumption for a variable specific impulse (VSI) thruster
[23]. The linear model is obtained by linearizing the nonlinear model
in Eq. (41) around a circular target/desired orbit and is given by the
Clohessy–Wiltshire (CW) equations; see [24]. The CW equations
describe the spacecraft’s motion in the Hill’s frame, where the x axis
is along the radial direction and the z axis is orthogonal to the orbital
plane of the nominal orbit (pointing in the direction of the nominal
orbit’s angular momentum vector). The y axis completes the right-
hand frame and is along the velocity vector of the nominal orbit.
The state vector in the Hill’s frame is xT � �rx; ry; rz; vx; vy; vz�,
describing the position and velocity of the spacecraft relative to the
target orbit. The control vector is uT � �ux; uy; uz�, where ux, uy, and
uz are accelerations in the respective directions of the Hill’s frame.
The time-varying disturbance term as viewed from the Hill’s frame is
dT � �0; 0; 0; dx; dy; dz�. It is obtained by calculating the respective
disturbances (i.e., −0.5ρ0k _r0k2 _r0∕BC� fg;0) for the known
nominal orbit, and then transforming the vectors from the Earth-
centered inertial (ECI) frame to the Hill’s frame.
A generic spacecraft with amass ofm � 250 kg is considered. For

the linear model, we only take into account atmospheric drag along
the nominal orbital track direction (y direction), where a relevant
surface area of A � 5 m2 and a drag coefficient of 2.5 are assumed,
yielding a ballistic coefficient of BC � 20 kg∕m2. The weights for
the cost function are chosen as Q� 06×6, R � diag�10; 10; 10�, and
S � diag�106; 10; 106; 106; 106; 106�, emphasizing achievement of
the desired final state [except for the final position ry�T� on the target
orbit] with minimum propellant consumption with a VSI low-thrust
engine. The emphasis on minimum fuel consumption may be
increased by either lowering the diagonal elements of S or increasing
the diagonal elements ofR, whichmay, however, increase the error in
the final state. Note that the approach does not take into account hard
constraints on the state and control inputs. However, matrices Q, R,
and S provide tuning parameters by which maximum state and
control deviators can be affected. Moreover, in some problems,
nearly feasible solutions are acceptable, especially when no strictly
feasible solution exists.
Two different cases with different target orbits and initial conditions

are considered. In each case, we set the maneuver time T to the orbital
periodof the nominal orbit. The first case assumes a target orbit altitude
of 250 km with an inclination of i � 30 deg; a right ascension of the
ascending node (RAAN) of 50 deg; and an orbital period T � 1.49 h,
where the initial condition is given by rx�0� � ry�0� � 20 km and
rz�0� � vx�0� � vy�0� � vz�0� � 0. The second case assumes a
1000 km target orbit with i � −50 deg; RAAN � 0; and an
orbital period of T � 1.75 h, where rx�0� � −100 km, ry�0� �
60 km, rz�0� � 40 km, vx�0� � −80 m∕s, vy�0� � 10 m∕s,
and vz�0� � 40 m∕s.

B. Linear Model Results

The results for the linear model [Eq. (1)] are analyzed in this
subsection. Figure 1 (top) shows the time history of the relative
control input error urel�t� � ku�t� − upwlin�t�k∕ku�t�k for the two
test cases using a sampling time ofΔt � tk�1 − tk � 100 s, where u
is the optimal solutionwhen the actuald rather than its approximation
is used. Moreover, the average error
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eavrg �
Xν
k�1

k ~x�tk� − ~xpwlin�tk�k∕ν

of the augmented state vector is plotted against Δt in the bottom of

Fig. 1. Note that, throughout this section, we use the 2-norm and units

of kilometers and seconds to compute cost values and norms. The

relative control input error incurred by the piecewise-linear

approximation of dwithΔt � 100 s is less than 0.1% for most of the

maneuver time and never exceeds 0.8% according to Fig. 1.

Furthermore, in linewith Proposition 1, the average error eavrg can be
bounded by a quadratic function of Δt.
Figure 2 shows the required computation times for our proposed

method for different sampling timesΔt. The total computation time is

the sumof the required time to build thematrices in Eqs. (11) and (20)

(top plot in Fig. 2), the time to solve the TPBVP (i.e., obtain ψ0;pwlin)

(middle plot), and the time to compute the state and control sequences

for all tk (bottom plot). In general, the computation times are

decreasing exponentiallywith increasingΔt, and themajor part of the

total computation time is due to building the matrices (top plot in

Fig. 2). For practical applications, this needs to be done only once and

can be performed offline. Solving the TPBVP and obtaining the state
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Fig. 1 Linear model results: relative control input error urel�t� �
ku�t� − upwlin�t�k∕ku�t�k for Δt � 100 s (top), and average error
eavrg � P

ν
k�1 k ~x�tk� − ~xpwlin�tk�k∕ν vs sampling time Δt (bottom).
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Fig. 3 Nonlinear model results with RHC: control input acceleration in
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Fig. 2 Computation times vs Δt: time to build the matrices in Eqs. (11)
and (20) (top), time to solve the TPBVP (middle), and time to compute
~xpwlin�t� and upwlin�t� for all tk (bottom).
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Fig. 4 Nonlinear model results with RHC: spacecraft position in Hill’s

frame vs time.
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Fig. 5 Nonlinear model results with RHC: spacecraft velocity in Hill’s
frame vs time.

J. GUIDANCE, VOL. 40, NO. 2: ENGINEERING NOTES 479

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

16
66

 



and control sequences is performed substantially faster, on the order
of milliseconds.
In contrast, when the actual d rather than its approximation is used,

the TPBVP solution is obtained numerically using ode45 and fsolve
inMATLAB.Although the computation time is affected by the initial
guess of ψ0, for Δt � 100 s, default solver settings, and an initial
guess ofψ0 � 06×1, the computation time is about 7.8 s for test case 1
and 9.3 s for test case 2. For poor initial guesses of ψ0, computation
times are higher.

C. Nonlinear Model Results

Weuse aRHC implementation of the proposed approach to control
the nonlinear spacecraft model. The sampling time is set to Δt �
100 s and, based on the current state,we recompute the solution to the
TPBVP at every sampling instant tk, k � 1; 2; : : : ; ν − 1, for a
receding and shrinking time horizon T − tk. The controls upwlin�tk�
andupwlin�tk�1� are computed according toEq. (17), andwe apply the
control

uinterp�t� � upwlin�tk� � �upwlin�tk�1� − upwlin�tk���t − tk�∕Δt

to the spacecraft during the sampling interval t ∈ �tk; tk�1�. This
receding horizon implementation provides a form of feedback to
compensate for unmodeled effects not present in the linear model.
Although the respectivematrices in Eqs. (11) and (20) are built offline
before themaneuver (computation timeswithΔt � 100 s:≈0.3 s for
case 1 and ≈0.4 s for case 2; see top plot in Fig. 2), the computation
times for recomputing the control are negligible. For recomputing the
control according to the proposed RHC scheme, we record a
maximum total computation time over all sampling instants of 1.5ms
for case 1 and 1.8 ms for case 2, where the average total computation
time over all sampling instants is about 1 ms for both cases. Hence,
the RHC implementation is suitable for real-time applications. Note
that it is not necessary to recompute the disturbance term d�t�,
because the nominal trajectory given by the target orbit does not
change.
Figures 3–5 show the control input accelerations as well as the

spacecraft’s position and velocity relative to the target orbit for
cases 1 and 2, defined in Sec. IV.A using the proposed RHC
implementation. In both cases, the controller is able to drive the
spacecraft to the desired target orbit.
The cost values for the trajectories in Figs. 3–5 are listed in Tables 1

and 2, which also include the final states. In addition to the RHC
scheme based on the piecewise-linear approximation of d ( ~dpwlin),
Tables 1 and 2 include the results when using the RHC scheme with
either a piecewise-constant approximation of d [i.e., ~dpwconst�t� �
�dT�tk�; 01×n�T for t ∈ �tk; tk�1�] or without taking into account the
disturbance when computing the control ( ~d ≡ 02n×1).
It is evident that taking into account the disturbance for the control

improves the performance because the controller with ~d ≡ 02n×1
performs poorly compared to the controllers based on ~dpwlin and
~dpwconst. Moreover, the piecewise-linear approximation of d

improves the performance compared to a piecewise-constant
approximation, where the advantage of using ~dpwlin increases with
increasing Δt. Note that the weight for ry�T� (final position on the
target orbit) is smaller compared to the terminal weights on the other
states, which explains the deviations compared to the other states in
Tables 1 and 2.

V. Conclusions

A linear quadratic optimal control problem was considered for
linear systems with a previewed time-varying disturbance term d�t�.
A closed-form solutionwas derived based on Pontryagin’smaximum
principle by approximating d�t� by a piecewise-linear function of
time using equidistant time intervals. It was shown that the error due
to the piecewise-linear approximation can be bounded by a quadratic
function of the length of the time intervals. The closed-form solution
can readily be implemented in computer code and allows for fast
computations in real time. Besides, the proposed approach can be
used to warm start nonlinear optimal control solvers that require a
good initial guess for convergence and can, in addition, handle state
and control constraints. The approach was applied to spacecraft
orbital maneuvering, where disturbances due to atmospheric drag
and J2 and J3 perturbation were taken into account. Two test cases
with different initial conditions and circular target orbits were treated.
In both cases, the spacecraft was successfully driven to the prescribed
target orbit using a receding horizon control implementation of the
closed-form solution to the LQ problem.
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