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A set of reduced-order models are considered to determine the variation of the material thermal capacity and

thermal conductivity with respect to temperature for a representative hypersonic vehicle structure on a terminal

trajectory. The number of thermal degrees of freedom is first reduced by projecting the thermal state of a sample

structure into a modal space whose bases are determined using proper orthogonal decomposition. A numerical

integration scheme based on the Crank–Nicolson algorithm is used to simulate the thermal state forward in time.

Models for the generalized material thermal properties are based on the method of kriging, a least-squares

polynomial approximation, and a singular value decomposition approach. The resulting thermal models are

compared in terms of accuracy and computational efficiency. The singular value decomposition approach is shown to

be the superior overall reduced-order model to capture the variation of thermal properties with temperature when

compared to a full-order finite element solution. The effects of varying the number of retained thermal modes and

thermal property eigenvectors on the singular value decompositionmodel are then considered. It is shown that only a

few eigenvectors need to be considered to achieve excellent agreement with finite element analysis.

Nomenclature

A = thermal snapshot matrix
B = single snapshot vector of vectorized generalized heat

capacity and thermal conductivity matrices
�B = snapshot matrix of vectorized generalized heat capacity

and thermal conductivity matrices as columns
~B = approximate snapshot of vectorized generalized heat

capacity and thermal conductivity matrices
c = thermal basis coefficients vector
ci = ith entry of a thermal basis coefficients vector
�c = complete polynomials thermal basis coefficients matrix
~c = unsampled thermal basis coefficients vector
F = finite element thermal load vector, W
f = generalized thermal load vector
K = finite element thermal conductivity matrix, W∕K
k = generalized thermal conductivity matrix
ki;j = entry of the ith row and jth column of a generalized

thermal conductivity matrix
L∞ = maximum error
M = finite element heat capacity matrix, J∕K
Me = Mach number external to a flow boundary layer
m = generalized heat capacity matrix
mi;j = entry of the ith row and jth column of a generalized heat

capacity matrix
n = number of training samples
o = number of testing samples
pe = static pressure external to a flow boundary layer, Pa
_qw = wall heat flux in, W∕m2

Rls = least-squares fit coefficient matrix
Rsvd = right singular vectors correlation matrix
r = number of thermal bases
T = temperature vector, K
Te = static temperature external to a flow boundary layer, K
Tw = wall temperature, K

t = time, s
tn = discrete time at level n, s
U = left singular vectors matrix
V = right singular vectors matrix
x = spatial coordinate along the x direction, m
y = spatial coordinate along the y direction, m
z = spatial coordinate along the z direction, m
Δt = discrete time interval, s
εrel = relative energy loss of thermal basis projection
Σ = diagonal singular values matrix
ψ = thermal basis matrix
kk = matrix norm

I. Introduction

H IGH-SPEED flight systems, particularly hypersonic vehicles,
operate in a high-energy environment characterized by strong

fluid, thermal, and structural interactions. Because of a lack of
ground-test facilities that can generate the high-energy environment
of interest, the primary focus for hypersonic vehicle design and
preliminary evaluationmust be through analytical and computational
simulations. Current computational research efforts have focused on
either improving particular physics model fidelity with limited
discipline interactions due to a high computational cost or including
many discipline interactions using very simple models. Thus, there is
a wide middle ground between the low-fidelity, high-interaction and
high-fidelity, low-interaction modeling regimes that has yet to be
considered but is critical to the development of high-speed flight
systems.
In this work, a scramjet-propelled hypersonic vehicle is

considered. Such a vehicle is typically flown at conditions of high
dynamic pressure, leading to trajectories of relatively low altitudes
and high speeds for an airbreathing vehicle. Under such flight
conditions, aerodynamic heating becomes a driving factor in the
design as high surface temperatures and heat flux seep into the
structure andmodify the elastic characteristics of the vehicle. Critical
to accurate determination the thermal state of the structure is
consideration of the variation of the material thermal properties with
temperature, specifically thermal conductivity and heat capacity.
Past works [1–4] have demonstrated that reduction of the thermal

problem is possible by identification of appropriate basis modes and
projection of the governing equations into the space spanned by these
modes. Modal identification using proper orthogonal decomposition
(POD) [5,6], typically through the method of snapshots, has been
used to derive orthogonal thermal basis modes that could then be
linearly combined to approximate the temperature distribution of a
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structure. However, the variation of the thermal conductivity and heat
capacity of the materials was not considered.
The variation ofmaterial thermal properties has been considered in

other literature, although often in a limited capacity. In a study by
McMasters et al. [7] of nonlinear thermal diffusion, an exact
analytical solution was derived with a thermal conductivity that
varied linearly with temperature and was later used to verify the
results of a finite element thermal analysis code, CALORE.Although
thermal conductivity was variable, all other thermal properties were
assumed to be constant.
Matney et al. [8] considered the variation of thermal properties for

the problem of hypersonic flow over a panel with underlying
stiffeners in the development of an adaptive thermal basis set. In their
study, aerodynamic pressure was modeled using piston theory [9],

and heat flux was modeled using the Eckert reference enthalpy
method [10]. These aerodynamic and thermal loading solutions
where then applied to a finite element model (FEM) to observe
structural and thermal responses. Variation of the in-plane thermal
conductivity with respect to the temperature of the panel was
modeled using a property lookup table. Each element of their panel
FEM was identical and could use the same lookup table for all
elements. This approach tomodeling thevariation ofmaterial thermal
properties with respect to temperature was therefore limited to very
simple geometries where uniform finite elements could be used.
The force-derivative method originally developed by Camarda

et al. [11,12] for nonlinear structural dynamics has also been shown
by Balakrishnan et al. [13] to work well for nonlinear thermal
problems by modifying the heat load based on previously linearized
thermal capacity and conductivity properties. In this approach,
variation of the thermal properties of both structures and materials
could be considered but required repeatedly solving an eigenproblem

and inverting a variable FEM conductivity matrix. This allows for
transient thermal solutions more quickly than a full FEM simulation
but not without its own overhead, which could become prohibitive if
more than a couple degrees of freedom are considered.
For the study presented in this paper, a representative substructure

of the hypersonic vehicle developed by Pasiliao et al. [14] using the
Preliminary Aerothermal Structural Simulation code suite is
considered. This vehicle is an air-launched, rocket–scramjet
combined cycle propelled vehicle, which performs a three-phase
trajectory. Shown in Fig. 1, the vehicle would first boost under rocket
propulsion up to a cruising altitude above 50 kft (15.2 km) and
airspeed above Mach 5. The rocket booster would then be jettisoned
and a scramjet engaged to maintain a mostly steady and level cruise
condition. Finally, after exhausting the scramjet fuel supply, the
vehicle would enter an unpropelled terminal phase to reach a ground
target some distance downrange.
Witeof and Neergaard [15] performed material trade and sizing

optimization studies of thermal protection systems (TPSs) and
structural elements to minimize mass while satisfying material
temperature and stiffness constraints. In their trade study,
aerodynamic heating was approximated using the Aerothermal

Target Analysis Program [16]. Structural modes were approximated
using Timoshenko beam elements, and the variation in modal
frequencies due to thermal effects was investigated with respect to
flight time.

The thermal state of the vehicle in the terminal phase is the main
focus of this paper. In this phase, the highest structural temperatures are
experienced and are most likely to impact the flight characteristics of
the vehicle. It is also in this phase that an accurate model of the vehicle
state is required tomaximize strike accuracy and effectiveness. To first
reduce the order of the thermal problem, themethod of POD is applied
and the governing equations generalized with the resulting basis set.
Then, to capture the influence of structural temperature on thermal
conductance and capacitance, three reduced-ordermodels (ROMs) are
investigated: least-squares fit multidimensional polynomials, the
method of kriging, and a newly developed method based on a
combination of singular value decomposition [17] and linear
correlation.

II. Theoretical Development

A. Proper Orthogonal Decomposition

A common method to reduce the dimensionality of the thermal
problem is to apply proper orthogonal decomposition (POD). POD is a
statistical method in which empirical data are used to identify
correlated features, or modes, of a system and is optimal in the sense
that the fewest number ofmodesmay be used to represent the majority
of the system energy. The retention of only the most dominant modes
allows for the creation of a basis that captures the overall behavior of
the system while significantly reducing the number of degrees of
freedom. The ultimate goal is then to represent the thermal state of a
system as a sum of basis modes and time-varying coefficients, i.e.,

T�t� � Ψc�t� (1)

where T�t� is a column vector of time-varying temperatures at
predefined locations of interest, suchas finite element nodes, centroids,
or integration points;Ψ is the thermal basis matrix whose columns are
the thermal basis modes; c�t� is a column vector of the time-varying
coefficients for each basis mode; and t is time. The basis matrix Ψ is
determinedbyconsiderationof a snapshotmatrixAwhose columns are
vectors of temperatures at specific moments during a high-fidelity
heat-transfer simulation, such as a finite element analysis (FEA)
solution. The error incurred by representing the thermal state with a
truncated thermal basismatrixmaybe interpreted as the relative energy
lost (εrel) by projecting the snapshot matrix A onto the space spanned
by the truncated thermal basis matrix Ψ, given by [1]

εrel �
kA −ΨΨTAk2

kAk2 (2)

For brevity, a full description of the POD method is omitted;
however, a thorough description of this method’s application to
thermal problems is given in [1].

B. Generalization of Thermal Problem

Once an appropriate thermal basis is determined, one may
generalize the governing system of equations for the thermal problem

M�T�t�� _T�t� � K�T�t��T�t� � F�t� (3)
into

m�c�t�� _c�t� � k�c�t��c�t� � f�t� (4)
where

m�c�t�� � ΨTM�Ψc�t��Ψ (5a)

k�c�t�� � ΨTK�Ψc�t��Ψ (5b)

f�t� � ΨTF�t� (5c)

and whereM�T� andK�T� are the thermal capacity and conductivity
matrices, each a function of the time-varying temperature vectorT�t�,
and F�t� is the time-varying thermal load vector.

Fig. 1 Basic outline of a boost–cruise–terminal mission profile for an

air-launched, rocket-boosted hypersonic vehicle.
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C. Numerical Integration

To numerically integrate the generalized thermal problem forward
at discrete times tn and tn�1, separated by the time interval Δt, the
Crank–Nicolson algorithm is considered due to its known
unconditional stability for both linear and nonlinear heat conduction
systems [18]. This results in

c�tn�1� �
�
k

2
� m

Δt

�−1��
−
k

2
� m

Δt

�
c�tn��

f�tn�� f�tn�1�
2

�
(6)

D. Modeling Generalized Temperature-Dependent Material Thermal

Properties

1. Least-Squares Fit Polynomials

The first method considered is to approximate each entry of the
generalized thermal matrices using polynomials formed from the
thermal mode coordinates, i.e.,

B≈Rls�1 ··· 1 c1 ··· cr c1c1 c1c2 ··· crcr c1c1c1 c1c1c2 ··· �T
�Rls �c (7)

where Rls is a matrix of coefficients for each permutation of thermal
mode coordinates ci, where ivaries from 1 to r for each thermal basis,
and B contains the entries of the thermal matrices k and m stored as
column vectors:

B � � k1;1 k1;2 · · · kr;r m1;1 m1;2 · · · mr;r �T (8)

The coefficientmatrixRls is determined by the solution to the least-
squares problem:

Rls � � �c �cT�−1 �c �B (9)

where �c is a matrix whose columns are vectors of the thermal mode
coordinates for each snapshot expanded to include all powers and
combinations of the modal coordinates desired for the polynomial to
be fit; and �B is amatrixwhose columns are vectors of the entries of the
thermal matrices k and m corresponding to each set of thermal
coordinates.

2. Kriging

The second method considered to capture the variation of the
thermal capacity and conductivity matrices with respect to the
thermal modal coordinates,m�c� and k�c�, is kriging [19]. Kriging is
a statistics-based method that can incorporate the trend model
properties of a more typical linear or polynomial regression with the
spatial correlation properties of kernel-based approximationmethods
[20]. It provides flexible and computationally efficient models that
may be adapted to represent many complex n-dimensional response
surfaces. Kriging is a useful approximation of computer analysis in
particular, where no random error is present, due to the method’s
ability to exactly recover the solutions of the training points used to
create it.
To create the kriging model, a set of training samples of thermal

conductivity and capacity matrices is produced from a heat-transfer
FEM based on coordinates of the thermal modal basis. Selection of
the modal coordinates is determined by Latin hypercube sampling
(LHS) [21,22] within thermal coordinate bounds determined by the
extremes observed in the POD snapshot matrix previously described.
Upon collection of a number of model training and testing samples,
several kriging models may be constructed based on different
combinations regression and correlation functions, many of which
are available in the Matlab DACE Toolbox [23]. Each model is then
tested for accuracy in reproducing the test samples by a root-mean-
squared-error (RMSE) and maximum normalized error (norm L∞).

3. Singular Value Decomposition

The third method is a new approach that uses singular value
decomposition (SVD) and nonlinear correlation. This method is

modeled after [24], which used a similar approach to efficiently
approximate the aerodynamic loads of a maneuvering aircraft. For
the application of determining the entries of the generalized thermal
capacity and conductivity matrices, a sampling of the FEM solutions
is first required. These are taken using the same LHS as the kriging
ROM generation for direct comparison of the methods. A snapshot
matrix �B is constructed with the entries of k�c� and m�c� as column
vectors at each LHS point and may be represented as

UΣVT � �B (10)

where U is a square matrix whose columns are the left singular
vectors of �B,Σ is a rectangular diagonal matrix of the singular values,
andV is a square matrix whose columns are the right singular vectors
of �B. Because of the arrangement of the snapshot matrix �B,Umay be
thought of as a set of orthogonal unit vectors that span the space
populated by the snapshots, Σ as the relative importance of each unit
vector to describing that space, and V as a list of coefficients
corresponding to the location of each snapshot in the space.
If the space spanned by the columns of �B is large (i.e., each

snapshot contains a large number of degrees of freedom), the problem
may be reduced by removing the smallest singular values inΣ as well
as the corresponding columns ofU andV. In this way, dimensions of
the snapshots that are least important to the representation of �B may
be ignored, and the order of the eventual model is reduced.
The next step is to relate the coordinates of each snapshot stored in

V to the thermal coordinate inputs �c. A correlation matrix Rsvd is
determined that relates the basis amplitudes in V to the thermal mode
coordinates for each snapshot stored as column vectors in matrix �c
using a least-squares fit:

�cTRsvd � V (11)

Rsvd � � �c �cT�−1 �cV (12)

Then, given any additional set of thermal mode coordinates ~c, not
necessarily included in the snapshot matrix, an estimated snapshot
matrix ~B may be found by

~B � UΣRT
svd ~c (13)

such that the columns of ~B contain approximate entries of the thermal
matrices k and m. Thus, k�c� and m�c� are readily available during
integration of the thermal problem.

III. Test Case Example

A. Structural Model

To compare each ROM approach, a sample FEM was established
that was representative of a small portion of the hypersonic vehicle
proposed by Pasiliao et al. [14] and later refined by Witeof and
Neergaard [15]. This substructure was located at the interface of the
vehicle nose ballast and forebody, on the Earth-facing side during
typical flight conditions, in a region thatwas previously shown in [25]
to experience high thermal loads and contain several different
materials. For simplicity, this substructure was considered to be
approximately two-dimensional, despite the curvature of the
vehicle’s body in this region. The vehicle, sample substructure, and
FEM grid are shown in Fig. 2. The FEM consisted of 6478 nodes and
3040 linear hexahedral solid elements clustered near regions where
high-temperature gradients were expected due to external heat flux or
material interfaces. Three materials are considered: elemental
tungsten in the nose ballast, Exelis Inc.’s Acusil-II material in the
thermal protection layer covering the forebody, and titanium alloy Ti-
6Al-4V, which comprised the structural monocoque of the vehicle.
For simplicity, neighboringmaterials were considered to be perfectly
bonded, and no joiner or fastener geometrywas included. Boundaries
of the FEM that were not exposed to the external heat flux were
adiabatic.
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B. Material Thermal Properties

Experimental thermal properties of the materials considered in the

FEM are given in Fig. 3 [26–33]. Only one data point was available
for the specific heat capacity of the Acusil-II material due to its
proprietary nature. However, with all other thermal properties over
the temperature range of interest, the substructure and material set
presented a highly nonlinear system onwhich to compare the thermal
ROM approaches.

C. Sample Collection

To create the thermal property ROMs, a number of training and

testing samples were required. The process used to collect these
samples is outlined in Fig. 4 and begins with considering the thermal
basesΨ and thermal mode rangesmin�c� andmax�c� resulting from
a POD of an FEA heat transfer simulation of the substructure. Latin
hypercube samplingwas used to determine a uniformly random set of
thermal coordinates c, which were then converted to physical
temperature distributions T within the FEM. These were then passed
to an FEA solver, which assembled the full thermal propertymatrices
M andK, which were then exported and generalized according to the
thermal bases Ψ into m and k. Each generalized thermal property

matrix was then paired with its corresponding thermal coordinates c
and sent to each of three ROM training functions to be incorporated
into a thermal property ROM.
Within each ROM training function, the c, m, and k samples are

divided into two groups. One group of n training samples was used to
train each model within the ROM type. For the least-squares ROM,
three models were considered: linear, quadratic, and cubic
polynomials of the thermal coordinates c. The kriging ROM

contained 18 combinations of three regression functions (constant,
linear, and quadratic polynomials) and six correlation functions (pure
exponential, general exponential, Gaussian, linear, spherical, and
spline). Each of these regression and correlation functions were
default forms provided with the Matlab DACE toolbox [23]. The
SVD and linear correlation ROM contained three models: linear,
quadratic, and cubic polynomials of the thermal coordinates.
Another group of o testing samples was then used to test the

accuracy of each model in prediction of samples not contained in the
training set. Themodel that contained the least single entrymaximum
error (L∞) normalized by the value each entry was considered the
most accurate and exported for comparison against the other ROM
types. The L∞ error metric was selected to compare the different
ROM variants within a training function because it is the most
conservative measure of error. A flowchart of this process is shown
in Fig. 5.

IV. Results and Discussion

A. Finite Element Analysis Heat Transfer Simulation

To determine a suitable POD basis set for the substructure, a high-
fidelity heat transfer simulation was performed using the Dassault
Systèmes Inc.’s Abaqus FEA [34] heat transfer solver. During
simulation, at every time step, the wall temperature Tw, time t, and
spatial locations x, y, z of every node exposed to flow were exported
to a Fortran user-defined subroutine and used to search for a
corresponding node in a preprocessed database of flow conditions,
namely pressure pe, temperature Te, and Mach number Me. This
database was determined a priori by an in-house unsteady
aerodynamics code employing oblique shock, Prandtl–Meyer

Fig. 2 Sample substructure with overlaid FEM grid and its location on the vehicle.
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expansion, and third-order piston theory [9]. The flight trajectory

consisted of a 520 s, Mach 6, 75 kft (22.9 km) altitude cruise phase,

during which the vehicle was trimmed for propelled steady and level

flight, followed by a 37.5 s unpropelled terminal phase along a path

optimized formaximum final kinetic energy. Details of this trajectory

and optimization process may be found in [25]. Once the flow

properties near a node of interest were found, the Eckert reference

temperature [10] and black-body radiation methods were used to

determine the heat flux _qw to the node. The heat flux was imported

back to the FEA heat transfer solver as a boundary condition, and the

solution was moved ahead in time. A flowchart of this process is

shown in Fig. 6. The resulting temperature profiles of the substructure

during the cruise and terminal phases are shown in Figs. 7 and 8,

respectively.
During the cruise phase, the substructure is initially a uniform

238 K. The outer surface of the TPS quickly warms to nearly 1277 K

and begins slowly conducting heat inward toward the skin. The

ballast meanwhile has a high thermal conductivity and warms almost

uniformly. Protected by the TPS, the skin is the slowest to warm;

however, after roughly 320 s, the substructure became completely

thermally soaked, meaning nearly a uniform 1277 K. Upon entering

the terminal phase, the vehicle switched from a nose-up to a nose-
down angle of attack. Thus, the substructure, which was initially on

the highly thermal loaded windward side of the vehicle, was then on
the less-loaded leeward side, which caused a small initial drop in the

outer TPS temperature. After about 32 s, the vehicle had sufficiently
slowed to allow additional cooling of the TPS until the end of the

terminal phase at 37.5 s. Throughout the terminal phase the skin
remained nearly at 1277 K because insufficient time passed to

conduct its heat back out through the TPS.

B. Thermal Bases

After performing a simulation of the sample structure along the

cruise and terminal phase trajectories, thermal baseswere determined

using the method of POD for the terminal phase. The first five bases
are shown in Fig. 9, with the relative eigenvaluemagnitudes and basis

truncation error shown in Fig. 10. Figure 9 reveals that almost the
entirety of all modes focus on describing the temperature gradient in

the TPS of the model due to the low conductivity of the Acusil-II
material compared to the tungsten and titanium alloy of the ballast

Fig. 4 Training sample collection process.

Fig. 5 ROM training, testing, and selection for each ROM type.

Fig. 6 FEA heat transfer simulation along flight trajectory.
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and skin, respectively. Some detail is afforded for the titanium alloy
skin; however, this is largely to enforce the temperature continuity
between the skin and TPS. Despite placing almost all focus on the
TPS, Fig. 10 shows that the truncation of the bases to the first five
modes provided a relative error of∼10−8, which is typically sufficient
to accurately represent the thermal state of the structure. Thus, one
may use these bases to generalize the rank 6478 thermal problem
considered by the FEA to a rank 5 problem and be confident that
reasonable solution accuracy may still be obtained if similar thermal
loading is simulated.

C. Reduced-Order Model Accuracy

For each ROM type, the number n of training samples was varied
by powers of 2 from n � 2 to 1024. Each of the resultingmodels was
then testing using the same k � 1000 samples to evaluate each
ROM’s accuracy. The root-mean-squared error (RMSE) and

normalized maximum error (norm L∞) of each ROM type are shown
in Fig. 11, with the most accurate of each type compared in Fig. 12.

For all ROM types, the higher-order regression and polynomial
functions resulted in the lowest errors when a sufficient number of

training sampleswere provided.However, if too few training samples

were provided, the higher orders often resulted in higher errors than
their lower-order counterparts, especially for the least-squares and

SVD models. For n > 200, both the least-squares and SVD ROMs
did not exhibit a reduction in error given further training samples.

This was due to the limitation of their maximum cubic polynomial

function order. The kriging method produced two distinct groups of
models. The first was when the zeroth-order polynomial regression

was used. This allowed kriging models to be constructed using very

few training samples and is akin to radial basis function type ROMs.
However, once n ≥ 8, first and then second-order regression

polynomials were shown to be superior. For all kriging ROMs, the

Fig. 7 Temperature range in substructure during cruise phase.

Fig. 8 Temperature range in substructure during terminal phase.

Fig. 9 First five most prominent POD thermal modes.
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RSMEcontinued to reduce as additional training sampleswere added

until n � 1024, with the exception of the zeroth-order regression and
general exponential (expg) formulation, which appeared to be

especially sensitive to the pseudorandomLHS sampling pattern. This

is evident by the uneven and erratic shape of the maximum RMSE

line in Fig. 11. Kriging was found to be the most accurate ROM type

of those considered. For all ROM types, a steady decline in the

normalized L∞ was observed, and all ROM types showed

approximately the same order of normalized L∞ for n > 100. Some

minor noise was observed due to the random nature of the LHS

method, but the overall trend that more training samples resulted in

lower measures of error was clear. For the largest training set size

considered, the least-squares cubic model, 25 bases SVDmodel with

Fig. 11 Error of each ROM type for a given training set sample size.

Fig. 10 Relative POD eigenvalue magnitude and truncation error.

Fig. 12 Effect of training sample size on the accuracy of ROMs

generated from three different approaches.
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cubic regression, and kriging model with a quadratic regression and

spherical correlation were found to be the most accurate of their

respective ROM types.

D. Reduced-Order Model Computational Efficiency

Also critical to evaluation of a ROM’s utility is the computational

efficiency of a ROM. To quantify computational efficiency, the

amount of computer memory the ROM must occupy and the time

required for the ROM to be executed were considered. For each of

the ROM types and training sets, the memory consumption and

execution time required to run the k � 1000 test samples were

recorded and are shown in Fig. 13. It can be seen that, although the

kriging ROMwas the most accurate, this accuracy came at the price

of rapidly growing memory requirements and slower execution

times than the least-squares and SVD ROMs. This agreed with

intuition because the method of kriging is able to reproduce the

entire training set and thus contains all of the information used to

train the ROM. The least-squares and SVD approaches did not have

the ability to reproduce the training set and thus retained only a

fraction of the information used to train the ROMs, which resulted

in lower memory requirements for the computer.

In terms of processing speed, the least-squares and SVDROMswere

roughly two orders of magnitude faster than kriging. The SVD ROM

was also slightly faster than the least-squares ROM; however, at these

submillisecond scales, the specific implementation of the models and

state of the computer’s background programs may influence which of

these two ROMs would be processed more quickly. To reduce random

fluctuations in processing speed, each ROM was run 10 times, timed

using the tic and toc functions of Matlab, and the results averaged.

E. Comparison to Finite Element Analysis

As a check of ROM accuracy and efficiency, simulations of the

generalized thermal problem with constant thermal properties and

with each ROM approach were conducted. The sample structure was

Fig. 13 Effect of training sample size on the computational cost of

ROMs generated from three different approaches.

Fig. 14 Mean temperature distribution.

Fig. 15 Significant qualitative improvement when using the thermal property ROMs with the five-mode thermal system compared to with constant

thermal properties.

KLOCK AND CESNIK 2365

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

54
99

 



started at a uniform 1260K, similar to the structure temperature at the

initiation of the terminal phase of the trajectory. A steady outward

heat flux was then applied with the spatial distribution

_qw � −20341.7�exp�−100x� 4�∕10� 0.9� (14)

to simulate a cooling boundary layer with a logarithmic thickness

profile. Here, x is the distance in meters from the ballast edge farthest

from the TPS, and _qw is the heat flux inwatts per squaremeter. This is

not physical because the boundary layer imposing the heat flux

would change with the change in the wall boundary conditions.

However, the accuracy of the boundary layer heat flux is not the focus

of this paper, and a consistent heat flux profile allowed for direct

comparison of the methods. The constant thermal properties were

taken from the materials at the mean temperature distribution

observed during the FEA simulation shown in Fig. 14.
All thermal problemswere integrated for 37.5 s, the duration of the

terminal phase of the trajectory. The final temperature distributions

for the FEA, five-POD-mode generalized system with constant

thermal properties, and five-POD-mode generalized system with the

SVD, least-squares fit, and kriging ROMs varying the thermal

properties can be seen in Fig. 15. An overall improvement in the
agreement between the FEA and five-POD-mode system solutions is
evident when using the ROMs to model the thermal properties of the
substructure. Processing times and final error measurements for each
approach are shown in Table 1. As expected, kriging was the slowest,
increasing the total processing time for the simulation by a factor of
24. SVD and least-squares were much faster and slowed the
simulation by a factor of 2.4. The SVD and least-squares approaches
provided the lowest final RMSE of the temperature field. However,
all of the approaches vastly improved the accuracy of the simulation
compared to using no thermal property model. It is likely that the
RMSE of about 2 K arose from generalization of the governing
equations with the five thermal modes rather than the thermal
property ROMs.

F. Variation of Singular Value Decomposition Reduced-Order Model

Number of Thermal Modes

Because the SVD ROM approach is novel to this type of problem,
the effect of varying the number of retained thermal modes was also
studied. Using the methods previously described, SVD ROMs that
considered the top two, five, and eight POD thermal modes were
trained and used to simulate the steady-heat-flux case in the previous
section. The temperature range of each simulation compared to the
FEA solution is shown in Fig. 16 and RMSE in Fig. 17. It can be seen
that using only two modes provided a reasonable range of
temperatures for much of the simulation but was unable to accurately
express the initial temperature profile. Further modes first refined the
initial portion of the solution when five modes were included and
later refined the later portion when eight modes are included. A final
RMSE as low as 0.4 K is shown in Fig. 17 when eight modes are
included.

Table 1 Simulation performance of each ROM

approach

Thermal property ROM Processing time, s RMSE, K

None 2.6 167.7
SVD 6.3 2.2
Least-squares 6.3 2.2
Kriging 62.5 2.8

Fig. 16 Temperature range of SVD ROM simulation converges on FEA solution as the number of retained thermal modes is increased.

Fig. 17 Convergence of SVD ROM to FEA solution with increasing number of retained thermal modes.

Fig. 18 Sorted singular values of the eight thermal mode snapshot matrix.
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G. Truncation of Singular Value Decomposition Bases

In some cases, it may be impractical to perform a full SVD on the
snapshot matrix. This could be due to the matrix being too large
because it contains too many degrees of freedom, snapshots, or both.
In such a scenario, the Lanczos algorithm or some other method may
be used to find only most important singular values and bases. A
threshold value could be chosen by the engineer, below which the
singular values and bases would be neglected. This truncation of the
SVDbasesmay degrade the accuracy of the final ROM, but as long as
the most dominant bases are retained, this degradation would be
minimal. Figure 18 shows the sorted magnitudes of the singular
values of the eight-thermal-mode snapshot matrix. It can be
determined from the singular values that bases 1 through 9 dominate
the solution space, whereas higher bases are negligible. Therefore,
neglecting these higher bases still produced a good SVDROM. From
Fig. 19, it can be seen that this was the case because SVD ROMs
generated with truncated bases continue to closely match the
temperature ranges of the FEA solution during simulation and have
very small errors compared to retaining the full, 64-base set.

V. Conclusions

Three reduced-order models were applied to the problem of
modeling the thermal conductivity and capacity variation with
respect to temperature for a sample substructure of a hypersonic
vehicle. The thermal problemwas first reduced through projection of
the thermal states into bases determined by proper orthogonal
decomposition. A relative error of order 10−8 was determined when
the POD bases were truncated to the top five most prominent thermal
modes. A Latin hypercube sample distribution of the thermal mode
coordinates was then used to determine a sample set of generalized
thermal conductivity and capacity matrices for the substructure.
Various numbers of these samples were then used to create least-
squares fit polynomial, kriging, and singular-value decomposition
based ROMs. These ROMs were then compared in terms of error
compared to FEA solutions and numerical efficiency.
The SVD ROM was determined to be the superior approach. For

relatively small training sample sizes of around 200, this ROMprovided
similar accuracy to the least-squares and krigingmethods. However, the
SVD ROM also required up to approximately 600 times less memory
than the kriging ROM and was similar to the least-squares ROM. The
SVD ROM was also capable of execution slightly faster than the least-
squares ROM and roughly 100 times faster than the kriging ROM.
Integration of the five-modegeneralized thermal problemwas then

performed with constant thermal properties and thermal properties
varied according to the SVD, least-squares, and kriging ROMs.
Generalized solutions were compared to a full-order FEA solution
with empirical thermal properties. Significant qualitative improve-
ments were evident, lending to the importance and utility of a thermal
conductivity and capacity ROM for thermal problems spanning wide
temperature ranges.
Finally, the effect of the number of retained thermal modes and

number of retained SVD bases on the performance of the SVDROM
during simulation was considered. Including more thermal modes
improved the quality of the ROM solution, as expected. However, as
few as three SVD bases provided excellent agreement with the FEA
solution with an RMSE between 0.5 and 4.2 K.
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