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Numerical investigation of vibrational relaxation

coupling with turbulent mixing
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In flows where the relaxation rate of vibrational motion of the molecules to equilibrium is
comparable to the flow through time scales, the presence of turbulence can alter the mixing
and equilibration process. To understand the coupling between mixing and vibrational
relaxation, a novel state-specific species model is solved in a background turbulent flow.
The method is applied to mixing of two nitrogen streams at different static temperatures.
The relaxation rates for each state are computed using quasi-classical trajectory analysis.
For the flow conditions considered, the first ten vibrational levels are computed in the
flow solver.The direct numerical simulation shows that population in different vibrational
levels are significantly affected by turbulence and that the local distribution becomes non-
Boltzmann. In certain locations in the jet, the population from the direct calculation
can be several orders of magnitude different than the local-temperature based Boltzmann
level. Last, while the bulk vibrational energy is inferior to its local equilibrium value
throughout the mixing layer, the high energy level populations (levels 3 to 8) are on
the opposite always over-populated. As chemical reactions are affected by these high
vibrational energy populations, a simple temperature model would under-estimate the
impact of nonequilibrium on combustion.

I. Introduction

The impact of vibrational nonequilibrium on mixing and chemical reaction rates has been extensively
studied.1–6 These models have been used to study configurations exhibiting strong levels of nonequilibrium,
typically high-speed shock-containing flows, such as supersonic combustion ramjet (scramjet).6–9 In scramjet
engines, the flow is thrown out of equilibrium as it passes through a series of compression shocks in the
isolator, expansion waves at the fuel injectors, and turbulent mixing. The short residence time means
that ignition will happen while the vibrational relaxation process is still ongoing. This proves to be a
design challenge as fast ignition and combustion efficiency provides the vehicle thrust, which determines
in turns the compression ratio at the combustor entrance. The failure of one component results in engine
unstart. Similarly, in a rotating detonating engine (RDE), ignition must happen fast enough to sustain the
detonation wave propagation speed and compression ratio. It happens right behind the detonation front,
where the higher vibrational energy states are under-populated. Interestingly, vibrational nonequilibrium is
not only caused by the strong temperature jump at shock wave fronts, but is also present upstream due to
turbulent mixing between the cold fuel expanded from the pressurized tank and the hot air. Fiévet et al.6

showed that vibrational nonequilibrium can drastically affect ignition time in a scramjet engine while Taylor
et al.10 postulated that it influences the detonation cells structure. Its impact on the flow is also consequent
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prior to ignition, as internal energy exchanges with the vibrational modes will change the flow translational
temperature, affecting the bulk static pressure, temperature, and diffusive processes. Accurate numerical
description of this phenomenon is therefore a key element of a compressible solver used in such environment
and serves as motivation for the current study.

While post-compression/expansion wave nonequilibrium and relaxation process can be studied indepen-
dently of turbulence phenomena in a 1D configuration, the free shear flow offers more complex yet canonical
configuration. In this case there is a close coupling between turbulence mixing and these quantum effects,
affecting macroscopic flow properties (shear layer shape, potential core length, mixture fraction), and there-
fore eventual chemical reactions further downstream. The current study aims at investigating such a flow
by the mean of a Direct Numerical Simulation (DNS), where all turbulent scales are resolved, coupled with
a vibrational states distribution solver. The solver carries a set of scalars corresponding to the vibrational
states number densities relevant to the temperature range throughout the computational domain. The simu-
lations will focus on a non-reacting single-specie free shear flow where translational and rotational modes are
assumed to be in thermodynamic equilibrium, i.e. their states distributions follows a Boltzmann distribution
computed from the same temperature. This is a reasonable assumption as these modes reach equilibrium
within orders of magnitude less collisions than the vibrational mode. Most studies previously cited1–4,6–9 use
a multi-temperature approach to describe vibrational nonequilibrium: the vibrational states distribution is
considered to remain Boltzmann at a different temperature than the translational temperature. This relies
on the assumption that the relaxation timescales are identical for all energy states. However, as the vibra-
tional quantum number increases, the state-to-state energy difference decreases, resulting in a much faster
relaxation process at higher energy levels, effectively distorting the distribution from its original Boltzmann
shape. This error grows as higher vibrational energy levels are populated for hotter flows, and can lead to
erroneous reaction rates estimation and translational temperature as well. This last point is crucial in deter-
mining the local gas kinetic viscosity, and therefore accurately resolving turbulence structures. Two models
will be used to evaluate the distribution relaxation process. First, a modified Landau & Teller11 linear relax-
ation model with a common relaxation timescale for all states is considered, similar to the multi-temperature
approach previously described. Second, a quasi-classical trajectory (QCT) model is used to calculate state-
specific population rates, in an effort to capture the complexity of the vibrational relaxation process through
molecular inelastic collisions, allowing the description of non-Boltzmann distribution throughout the flow.

The paper is organized as follow : a first section will present the different models implemented to
numerically describe vibrational relaxation, with a strong focus on the novel state-specific rates model
introduced in the current work. The second section will present the compressible flow solver and numerical
details of the configuration. A third part presents the results and observations.

II. Derivation of state-specific vibrational relaxation rates

A. QCT formulation of inelastic rates

The vibrational inelastic rates for the reaction

N2(v1) + N2(v2) −→ N2(v′1) + N2(v′2) (1)

were calculating using quasi-classical trajectory (QCT) analysis.5,12,13 The QCT method assumes that
the motion of the nuclei are classical and driven by the potential energy surface (PES). For a particular
trajectory, the ith nuclei follows a classical path governed by

dQi

dt
= Pi (2)

dPi
dt

= − ∂V

∂Qi
, (3)

where Qi and Pi are the position and momentum vectors of the ith, respectively, and V represents the PES.
Solving these classical equations is the main process in a QCT simulation. The numerical method chosen
to solve Eqs. 2 and 3 was the adaptive Runge-Kutta Prince-Dormand (8,9) method as implemented in the
open source GNU Scientific Library (GSL).14 Though the method is not symplectic, the error tolerance was
set sufficiently low so that the total energy of the system did not drift noticeably over a typical trajectory
time frame.
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The inelastic scattering rates were approximately determined using Monte-Carlo integration as con-
ventionally done in QCT analysis.5,12,13 Here, the rates were determined a function of a translational-
rotational temperature T , an initial vibrational quantum number v = (v1, v2), and a final vibrational number
v′ = (v′1, v

′
2). The scattering rate is denoted as ks(v,v

′, T ). So, for each trajectory, v is fixed, and the relative
speed and initial rotation quantum numbers are sampled based on their respective probability distribution
functions (PDFs). After the N2 molecules collide, the final state is marked (i.e., v′). The aggregation of the
outcomes is used to determine the inelastic scattering rates. The following section describes the process for
calculated ks used for this N2-N2 system.

1. Inelastic scattering rate calculation

Each trajectory is initialized as follows. For the ith reactant, the motion is characterized by: (1) two angles
to represent the initial orientation of the diatom, (2) a vibration phase based on v, and (3) a rotation vector
based on the initial rotational quantum number J = (J1, J2). Let τ denote the initial orientation, vibration
phase, and rotational vector of the reactants. The relative motion is characterized by: (1) the relative speed
of the reactants g, (2) the impact parameter b, and (3) the initial separation between the centers of mass of
each reactant. The separation was set to be sufficiently large so that at the start of each trajectory, each
reactant imposed negligible effects on the other (greater than 15 Å for this system15).

For a given τ , g, and b, the outcome of the trajectory is deterministic (i.e., only one outcome is observed).
It follows that the outcome is a Dirac-delta function given by δs(v → v′,J → J ′, g, b, τ ), where δs = 1 if
v′ and J ′ are the final rovibrational quantum numbers and 0 otherwise (note that v and J are parameters
from which τ is randomly sampled). The scattering probability Ps is defined by averaged δs along τ , i.e.,

Ps(v → v′,J → J ′, g, b) =

∫
τ
δs(v → v′,J → J ′, g, b, τ )fτ (τ ) dτ , (4)

where fτ (τ )dτ is the PDF of the initial orientations, vibration phases, and rotational vectors. This integral
is approximating by Monte-Carlo integration.16 That is, for N trajectories sampled at fixed (v,J , g, b) and
random τ (sampled from its PDF), let Ns denote the number of trajectories with a post-collision rovibrational
quantum numbers v′ and J ′. Then, Ps is approximated by

Ps(v → v′,J → J ′, g, b) ≈ Ns(v
′,J ′)

N(v,J , g, b)
, (5)

The relative uncertainty of Ps, denoted by εs, is defined as two standard deviations normalized by Ps (this
corresponds to a 95 % confidence interval), which is given by5,12,13

εs = 2

(
1

Ns
− 1

N

)1/2

≈ 2

(
1

Ns

)1/2

(6)

where dependencies were dropped for brevity and the approximation is valid when N � Ns. So, for a 95 %
confidence interval to be within 5 % of the mean (i.e., ε = 0.05), approximately 1,600 trajectories in which
v → v′ need to be observed.

The inelastic scattering cross-section σs is calculated by integrating Ps along b weighted by 2πb, i.e.

σs(v → v′,J → J ′, g) =

∫ bmax

0

2πbPs(v → v′,J → J ′, g, b) db. (7)

where Ps = 0 for all b > bmax. As with the probability, the integral defining the cross-section is approximated
by Monte-Carlo integration.16 By this, Eq. 7 is approximated as

σ(v → v′,J → J ′, g) ≈ πb2max
Ns(v

′,J ′)

N(v,J , g)
, (8)

where now N refers to trajectories wherein τ and b are each randomly sampled from their respective PDFs.
Note that the relative uncertainty of σs is the same as defined in Eq. 6.
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The inelastic scattering rate ks is calculated by integrating σs along g weighted by gfg, where fg is the
PDF of the relative speed. Here, the translational energy is assumed to be in equilibrium, so the relative
speed is characterized by a Maxwell distribution at temperature T given by

fg(g;T ) =

(
µ

2πkBT

)3/2

4πg2e−µg
2/2kBT , (9)

where µ is the reduced mass of the reactants and kB is the Boltzmann constant. Then, ks is given by

ks(v → v′,J → J ′, T ) =

∫ ∞
0

gfg(g;T )σ(v → v′,J → J ′, g) dg, (10)

As with the probability and cross-section, the integral defining the rate is approximated by Monte-Carlo
integration.16 By this, Eq. 10 is approximated as

ks(v → v′,J → J ′, T ) ≈ πb2max
(

8kBT

πµ

)1/2
Ns(v

′,J ′)

N(v,J)
, (11)

where now N refers to trajectories wherein τ , b, and g are each randomly sampled from their respective
PDFs. This denotes the rovibrationally state-specific inelastic scattering rate.

Now, the rate is averaged along the rotational states. As with the translational energy, the rotational
energy is assumed to be in equilibrium, so the rotational energy is characterized by a Boltzmann distribution
at temperature T . For the ith reactant at a fixed vibrational quantum number vi, this rotational energy
PDF is defined as

fr,i(Ji; vi, T ) =
gs(Ji)(2Ji + 1)e−(εint(vi,Ji)−εint(vi,0))/kBT

Qr,i(vi, T )
, (12)

where gs is the spin degeneracy of the rotational state, εint is the internal energy, and Qr is the rota-
tional partition function, which normalizes fr,i. The combined rotational PDF is denoted fr(J ;v, T ) =
fr,1(J1; v1, T )fr,2(J2; v2, T ). Using this PDF, the vibrationally state-specific rate is given by

ks(v → v′, T ) =
∑
J

∑
J ′

fr(J ;v, T )ks(v → v′,J → J ′, T ) (13)

Similar to before, the Monte-Carlo method approximates Eq. 7 as16

ks(v → v′, T ) ≈ πb2max
(

8kBT

πµ

)1/2
Ns(v

′)

N(v)
, (14)

where now N refers to trajectories wherein τ , b, g, and J are each randomly sampled from their respective
PDFs, and Ns does not count the final rotational quantum numbers. Note that the relative uncertainty of
ks is the same as defined in Eq. 6. Finally, note that ks is divided by two to account for the fact that both
reactants are the same species.

The rates as defined in Eq. 14 are completely independent from one another. Thus, the QCT-calculated
rates are not necessarily symmetric and detailed balance at thermal equilibrium is not guaranteed. To ensure
that the rates are consistent (i.e., the rates are symmetric and give rise to detailed balance), the rates are
modified as necessary. First, for symmetry, the rates are modified so that

ks
(
(v1, v2)→ (v′1, v

′
2), T

)
= ks

(
(v2, v1)→ (v′2, v

′
1), T

)
(15)

This relation is imposed directly in Eq. 14 by setting

Ns(v) = N(v1, v2) +N(v2, v1) (16)

Ns(v → v′) = Ns(v1 → v′1, v2 → v′2) +Ns(v2 → v′2, v1 → v′1). (17)

Note that v is added as a dependency for Ns to be clarify how final states are counted. Next, for detailed
balance, the rates are modified so that

fv(v, T )ks(v → v′, T ) = fv(v
′, T )ks(v

′ → v, T ) (18)
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where fv is a Boltzmann function that characterizes the vibrational energy distribution. This relation is
imposed by calculated a set of detailed balance rates from the QCT-calculated rates, i.e.,

k∗s(v → v′, T ) =
fv(v

′, T )

fv(v, T )
ks(v

′ → v, T ). (19)

Then, a final set of rates is defined as 1
2 (ks + k∗s) for use in the CFD simulation.

B. State-specific relaxation rates

Inelastic scattering rates were directly calculated using the QCT method as derived in Sec. II at 9 translational-
rotational temperatures:

T = 500, 1,000, 1,500, 2,000, 2,500, 3,000, 4,000, 5,000, and 6,000 K. (20)

The first 10 vibrational quantum numbers were sampled, so for N2-N2 collisions, there exist 104 vibrational
state combinations (i.e, degrees of freedom). A total of 2.8 billion trajectories were simulated using the QCT
program developed by Voelkel et al.5,13 on the Texas Advanced Computing Center (TACC) machine using
4,104 cores for 30 hours. At the end of each trajectory, the final vibrational quantum number was determined
as the closest lying state compared to the classical vibrational energy resulting from the collision.

In total, 9 × 104 rates were to be calculated based on the sampled states (including both inelastic and
elastic collisions). However, many of the final states were never observed, implying that the probability
of the particular transition was approximately zero. Table 1 summarizes the number of trajectories and
rates calculated per temperature. Fewer transitions were observed at lower temperatures (resulting in fewer

Table 1: Number of trajectories and rates calculated per sampled temperature.

Temperature (K) Trajectories Calculated Rates

500 2.3× 108 438

1,000 2.3× 108 468

1,500 2.3× 108 480

2,000 2.3× 108 526

2,500 1.6× 107 512

3,000 2.3× 108 877

4,000 6.3× 108 2,493

5,000 5.0× 108 4,344

6,000 5.0× 108 6,124

calculated rates) because the total energy of the colliding N2-N2 pair was not sufficient to dramatically shift
the vibrational state. At high temperatures and vibrational quantum numbers, more energy is stored in
translational-rotational and vibrational energy modes on average. This increases the total energy that can
be repartitioned during the collision event, which in turn increases the likelihood of observing vibrational
transitions.

To illustrate the difficulty of observing transitions at low-lying vibrational states and at low temperatures,
consider the transition from (v1 = 0, v2 = 0) to (v′1 = 1, v′2 = 0). For N2, at 500 K the most probable
rovibrational energy to be sampled is 0.165 eV, and the most probable translational energy to be sampled
is 0.043 eV, corresponding to an initial total energy of 0.373 eV. Assuming that all translational-rotational
energy can be converted into vibrational energy, there exists 0.079 eV of available energy. However, the
energy difference between v = 0 and v = 1 is approximately 0.3 eV, so at this temperature, the translational-
rotational energy is not sufficient to cause a transition. In contrast, using a similar analysis at 4,000 K, there
exists 0.690 eV of translational-rotational energy, which is sufficient to increase the vibrational energy from
v = 0 to v = 1. Thus, it is far more likely that this transition will be observed.

The set of directly calculated inelastic rates, at 2,000 K and 4,000 K is plotted in Fig. 1, and the corre-
sponding plots are referred to as the rate matrix for a particular temperature. The x and y axes correspond
to the initial/final state of the first and second nitrogen molecule, respectively. Because symmetry was
enforced, the rate matrix is symmetric across the x = y diagonal. Note that if the rate is zero, this implies
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(a) T = 2, 000K (b) T = 4,000K

Figure 1: Directly calculated inelastic scattering rates (units for the rate are cm3/mol/s).

that the transition was not recorded throughout the QCT simulation. Hence, the rate matrix at 2,000 K
is sparse because most vibrational state transitions were not observed, whereas the rate matrix at 4,000 K
is less sparse. Note that the rates at the other temperatures follow the general trends seen for these two
temperatures.

In Fig. 1a, the directly calculated rates for low-lying vibrational states is zero, but the physical rate is
non-zero. This discrepancy is due to the statistical nature of the QCT method and the low probability of
observing such a transition. To overcome this, the scattering rates at low temperatures were extrapolated
from the rates at high temperatures. Furthermore, from the set of directly calculated rates, as modified to the
enforce detailed balance (Eq. 19), the scattering rates were also interpolated at intermediate temperatures
between 1,800 K and 4,200 K at an increment of 2 K. For the interpolation, it was assumed that the logarithm
of ks was proportional to the inverse of T (similar to the conventional Arrhenius expression). The interpolated
(and extrapolated) rate matrices at 2,000 K and 4,000 K are plotted in Fig. 2. Comparing Fig. 2b with Fig.1b,

(a) T = 2, 000K (b) T = 4,000K

Figure 2: Interpolated and extrapolated inelastic scattering rates (units for the rate are cm3/mol/s).

notice that the rate matrix for 4,000 K is approximately unchanged. However, at 2,000 K, the interpolated
rate matrix is significantly less sparse than before. Specifically, the non-zero entries in the rate matrix was
increased from 526 to 2,521. These interpolated rate matrices were used in the thermal bath and turbulent
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planar jet simulations.

C. Thermal bath simulations

As an initial test, the rates were used to simulate vibrational relaxation on N2 in a 0D heat bath. Here, for a
fixed translational-rotational temperature T , the evolution of the number density of the ith vibrational state
φi is governed by

dφi
dt

=
∑
j

∑
k

∑
l

gijkl

(
φkφlks(vk → vi, vl → vj , T )− φiφjks(vi → vk, vj → vl, T )

)
(21)

where the summations over j, k, and l are for all vibrational states, and gijkl is a degeneracy factor given by

gijkl =
(
1 + δij(1− δik)(1− δil)

)(
1− δik(1− δij)

)(
1− δil(1− δij)

)
. (22)

The initial vibrational populations were set based on a Boltzmann distribution is some Tv. Then, Eq. 21
was solved until the final vibrational state matched a Boltzmann distribution at the translational-rotational
temperature T .

Two cases were tested: (1) Tv < T (cold to hot), and (2) Tv > T (hot to cold). In both cases, T was fixed
throughout the simulation, and the pressure was fixed at 1 atm. Figure 3 shows the normalized energy versus
time for cold-to-hot (red) and hot-to-cold (blue) relaxation processes In general, the cold-to-hot relaxation

Figure 3: Average vibrational energy versus time for both Tv < T and Tv > T

process for all temperature combinations is well characterized by a Landau-Teller model11 (i.e., exponential
relaxation). From hot-to-cold, this is not the case. Instead, a quasi-steady state is achieved quickly during
the relaxation process, which then relaxes more slowly towards equilibrium. It was observed that the initial
quasi-steady state corresponded to the relaxation of high-lying vibrational states, and the final steady state
was governed largely by the low-lying vibrational states.

In Fig. 4, the change in vibrational relaxation based on the initial vibrational distribution was measured
for several temperatures. The figure shows that as the temperature increases, the relaxation time decreases.
This is attributed to two main causes: (1) as the temperature increases, the inelastic scattering rates also
increase (see Fig. 2), and (2) as the temperature increases, the collision rate increases. The figure also
suggests that the initial distribution only plays a role in the relaxation process at lower temperatures.
At 6,000 K, the difference in the relaxation processes is marginal, whereas at 3,000 K, the relaxation from
500 K takes approximately an order of magnitude longer to begin compared to the relaxation from 2,000 K.
However, the time to reach a final steady state is approximately independent of the initial distribution,
regardless of the final temperature. This suggests the relaxation model can be parametrized by only the
translational-rotational temperature, as done by Millikan and White.17

D. Compressible flow solver with vibrational nonequilibrium

1. Coupling of the vibrational relaxation model with Navier-Stokes equations

The implementation of the state-specific inelastic scattering rate in the compressible flow solver is done by
adding additional transport equations for every state’s population number density, and by transforming the
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Figure 4: Average vibrational energy versus time for varied initial distributions.

energy conservation equation to account for V-T energy transfer modes.
We call φ̇k the source term of φk, number density of vibrational level k. The transport equation of the

population number density for the m-th vibrational energy state φm is defined as :

∂ρφm
∂t

+
∂ρuiφm
∂xi

=
∂

∂xi
ρD

∂φm
∂xi

+ φ̇m. (23)

φ̇m is directly computed from the state-specific rates :

φ̇m = ρ2
∑
i

∑
j

∑
k

∑
l

εm,ijkl × ks(vi → vk, vj → vl, T )× φi × φj , (24)

where εm,ijkl characterizes the impact a particular reaction would have on the m-th level population, and
is defined as :

εm,ijkl = −δi,m − δj,m + δk,m + δl,m. (25)

While energy gets pumped in/out of the gas molecules vibrational motion during relaxation, energy
conservation ensures that an equal amount is transferred from/into the two other modes of internal energy:
the translation and rotational modes. We call Et the sum of the translational, rotational and kinetic energies
which are assumed at local thermodynamic equilibrium. The coupling with Navier-Stokes equations appears
in the right hand side of Et transport equation. All the source terms of states populations number densities
φk are multiplied by their respective vibrational level energy ev,k, and summed up to represent the amount
of energy transferred into vibrational motion. The transport equation of Et becomes:

∂ρEt
∂t

+
∂uj(ρEt + P )

∂xj
=

∂

∂xj
k
∂T

∂xj
− ∂

∂xj
(τijui)−

∑
k

φ̇kev,m (26)

where ρ is the fluid density, ui is the velocity vector and k the heat transport coefficient.
In addition to the energy conservation Eq. 26, the compressible solver’s governing equations are given by

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (27)

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂P
∂xi

+
∂τij
∂xj

(28)

where P is the pressure, and τij is the Newtonian stress tensor, where the kinetic viscosity is computed
using Sutherland’s law.
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2. Reduced formulation of the state-specific rates

In an effort to reduce the computational cost of rates calculations at every iteration, φ̇m does not need to
be directly computed as in Eq. 21. Instead, it is reduced into a more compact form during the initialization
of the simulation. In Eq. 24, the summations on the index k and l corresponding to the product of the
scattering reaction rate can be pre-computed into a matrix of size number of levels power 3 called Rmij
defined as :

Rmij =
∑
k

∑
l

εm,ijkl × ks(vi → vk, vj → vl, T ). (29)

Then, Eq. 24 simply becomes

φ̇m = ρ2
∑
i

∑
j

Rmij × φi × φj . (30)

It can be observed that this reduced formulation is analogous to the law of mass action for conventional
chemical reaction rates. For each vibrational energy level m, Rmij gives at a given temperature a clear vision
of the kind of trajectory replenishing/depleting the number density φm. Figure 5 presents Rmij for the first
9 levels (m = [0 8]) at a temperature of 3000 K. Dark blue corresponds to a maximum depletion, and dark
red to a maximum replenishment over the whole rates temperature range (2000 to 4000 K). The table is
symmetric along the identity diagonal. A first observation is that all almost all cells located on the i = m
or j = m lines are blue, i.e. collisions involving at least one molecule of level m usually result in a depletion
of φm. At high levels (m > 3), depletion is usually maximum when both colliding molecules are initially on
level m. On the other hand, it tends to be shifted towards the right/left of the (i, j) = (m,m) cell for lower
levels as inelastic collisions with a m molecule are more likely to occur when involving a partner at higher
level. This appears clearly when looking at the m = 2 table for instance. At 3000 K, a (i, j) = (2, 2) collision
is less effective at depleting φ2 than (i, j) = (6, 2) for instance. Interestingly, the ground state rates table
is characterized by a positive production (red cell) for any neighbor of the (i, j) = (0, 0) cell. Similarly, the
highest replenishment rates are found for high levels (m > 3) in vicinity of the (m,m) cell on its diagonals.
Logically, the fourth quadrant (both i, j > m) always have higher rates than the second quadrant (both
i, j < m).

III. Turbulent planar jet simulations

A. Numerical configurations

The simulations were performed using the in-house compressible flow solver, UTComp, which has been
extensively verified and validated.7,18–20 The solver uses a finite difference fifth-order WENO LLF scheme
with characteristics reconstruction to compute the fluxes,21,22 while a fourth-order central scheme is used
for the viscous and diffusion terms. The viscosity is determined using Sutherland’s law with N2 coefficients
and the thermal diffusivity is obtained using a constant Prandtl number of 0.72. Further details on the flow
solver are provided in Koo.21 Time-integration is carried out using a fourth-order Runge-Kutta scheme. The
planar jet has a height of 8 mm and is 1.6 cm wide, while the domain is 16 cm long. It is discretized using
an orthogonal grid system of (nx, ny, nz) = (2048, 640, 128) cells. The domain is periodic in the spanwise
direction, and non-reflective characteristic boundary conditions are applied at the other boundaries of the
domain. Statistics were sampled over 0.5 ms, which corresponds to 1.0 flow-through timescale τc based on
the integrated centerline velocity. The plane jet inflow is a fully resolved 2D channel flow and was obtained
from an auxiliary DNS. It possesses a 0.8 mm top and bottom boundary layer, and a 400 m/s core velocity,
with a static pressure of 2.0 atmosphere and a static temperature of 2000 K for a Reynolds number based
on the boundary layer height Reλ = 1875. The coflow is also at 2.0 atmospheric pressure, has a speed of
80 m/s and its static temperature is 4000 K. The simulation ran with a Courant-Friedrichs-Lewy number of
roughly 0.9, giving a timestep of about 0.1 µs. The code uses domain-decomposition based parallelization,
and each simulation was run on 8000 cores for 10 hours.
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Figure 5: Rmij for the first 9 levels (m = [0 8]) at a temperature of 3000 K.

B. Turbulent planar jet

A numerical simulation of a N2 turbulent plane jet configuration described in section III was carried out. An
inert mixture fraction Zmix was transported alongside the reacting first 10 vibrational state number densities.
Zmix allows us to observe how turbulent mixing tends to naturally bring the cell-averaged vibrational energy
state distribution out of the equilibrium. The vibrational state distribution is transported and resolved
using the reaction rates previous determined in Sec.II to account for nonequilibrium and the distribution
relaxation process. Figure 6 presents an instantaneous snapshot of the density gradient magnitude and
translation temperature fields, revealing a highly turbulent mixing layer and post-potential core region.

Figure 6: Instantaneous snapshots of (top) Magnitude of density gradient in kg/m2 of the N2-N2 planar jet
and (bottom) contour of inert scalar Zmix.

Instantaneous snapshots of φ1 and φ9 are shown in Fig. 7. It can be seen that the overall mixing appears
to be complex and dependent on the vibrational level. φ9 appears to be dominated by the cold part of the
jet while lower level populations like φ1 seem to mix more evenly, similarly to Zmix. This suggests that is
φ1 relaxation process is slower than the mixing timescale, meaning the mixing process dominates. On the
contrary, at higher level 9 known to have the highest scattering rates (i.e. relaxation faster than mixing),
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the state population doesn’t simply follow the same process.

Figure 7: Instantaneous snapshots of vibrational state population number densities for levels i = 1 (left) and
i = 9 (right).

Before further analysis on the state populations, it is important to quantify the amount of vibrational
nonequilibrium triggered by the turbulent mixing between the cold and hot flows. Figure 8 shows the error
between the integrated bulk vibrational energy of the flow Ev compared to its local equilibrium value Ev

∗

computed assuming a Boltzmann distribution at the local temperature T . It appears the the mixing layer is
overwhelmingly vibrationally under-excited, with peak departure from equilibrium of only 3%. This value is
integrated over the whole energy distribution and therefore dominated by the most-populated levels 0 and
1.

Figure 8: Instantaneous snapshots of error between Ev and Ev
∗ in percentage. Red/blue indicate a locally

vibrationally over/under-excited population.

The state-specific departure from equilibrium for level i is quantified by a parameter called Bi(Ev) defined
as :

Ei =
φi − Bi(Ev)

Bi(Ev)
, (31)

where Bi(Ev) is the number density of level i for a Boltzmann distribution yielding the same bulk Ev.
Figure 9 shows the magnitude of that factor Ei throughout the computational domain on the right, along
with its distribution with local mixture fraction Zmix on the left. Only levels 1, 2, 3 and 9 are shown for
conciseness reasons, as levels 3 to 9 behave similarly.

First, the higher the vibrational level i, the higher Ei becomes. This indicates that the level is locally
over-populated. Level 1 is on the other hand slightly locally under-populated, which is consistent with the
observation previously made from Fig. 8 showing a bulk under-excited vibrational energy Ev. According to
the rates definition and thermal bath tests, the highest levels adjust faster than the lowest one to the local
thermal equilibrium conditions. As the local relaxation timescale of the high levels becomes smaller than the
mixing timescale, these levels relax towards the local equilibrium Ev

∗ (larger than Ev) by increasing their
population. This results in a relative under-population of the slowly relaxing level 1 compared to B1(Ev). E9
high values are attributed to the large range of φ9 throughout the mixing layer. Possibly, one intermediary
level could have a relaxation timescale comparable to the mixing timescale. As observed in the experiment
of Reising et al.,23 there is an inflection point in the shear layer where the flow switches from under to
over-populated vibrational modes. This happens when the mixing and relaxation timescales become similar
and no process dominates the other. In the present study, a similar phenomenon affects the distribution of
φ2. It is therefore consistent to observe temperature inversion on one state only, and to notice that this state
separates those exclusively over-excited and under-excited.

Similar observations can be made when looking at time-averaged y-profiles at a downstream location of
x = 2H. Figure 10 shows the various Bi(Ev) for i ∈ [1 2 3 9] from left to right, with the temperature profile
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Figure 9: (Left) Instantaneous snapshots of Ei for i ∈ [1 2 3 9] from top to bottom. (Left) Realizations of Ei
for i ∈ [1 2 3 9] from top to bottom with Zmix.
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Figure 10: Time-averaged Y-profiles at x = 2H of Ei for i ∈ [1 2 3 9] from left to right.

in blue on the second y-axis. It can be noticed that the location of the peak error changes as the level
increases. While closely matching the center of the shear layer (T = 3000 K) for the level 1, it is strongly
skewed towards the centerline for level 9 which is again attributed to the larger ratio of states population
densities φi with increasing level i. The direct impact of the relaxation rates on these profiles is therefore
difficult to extract, as it is blended within the mixing-triggered nonequilibrium. It is therefore interesting to
compare the populations with what their local value would be using the mixture fraction to compute a φmix
distribution simply defined as : Zmix × φ(T = 2000 K) + (1−Zmix)× φ(T = 4000 K), corresponding to a
frozen V-V and V-T energy exchange process. Similarly, Tmix is defined as the linear mix of jet and coflow
temperatures. First, Fig. 11 verifies a near-perfect collapse between T and Tmix y-profiles. Then, Fig. 12
presents for the same 4 levels as before both φi (left y-axis) and Ei (right axis). The simulation profiles are
shown in solid lines while the profiles obtained using the inert mixture fraction are dashed. Logically, the
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rates tend to preserve a Boltzmann-type vibrational energy distribution and limit the errors Ei compared to
the inert mixing case (for instance, the error E9 is about five times lower).
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Figure 11: Time-averaged Y-profiles at x = 2H of temperature T, temperature Tmix obtained from the
mixture fraction, and mixture fraction Zmix.
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Figure 12: Time-averaged Y-profiles at x = 2H of φi and φi,mix obtained from the mixture fraction (left
axis), alongside Ei and Ei,mix obtained from the mixture fraction (right axis).

IV. Conclusions

The QCT method was used to calculate a set of vibrational state-specific scattering rates for the collision
N2(v1) + N2(v2). For this system, the maximum temperature was approximately 4,000 K, so only the first
10 vibrational states were considered (the likelihood of higher vibrational states is very small). During the
QCT simulation, the translational-rotational energy was sampled from one of nine temperatures ranging
from 500 K to 6,000 K. In total, 2.8 billion trajectories were simulated to calculate the set of rates.

A numerical simulation of turbulent plane jet coupled with a vibrational state populations solver was
then performed to investigate the coupling between turbulence mixing and vibrational nonequilibrium. It
was found that the mixing between the cold jet and hot coflow would generate a vibrationally under-excited
mixing layer. However the highest vibrational states are on the contrary drastically over-excited, which
would potentially affect chemical reactions. A numerical description of nonequilibrium only resolving the
bulk vibrational energy, i.e. integrated over the whole energy level distribution, would not be sufficient for
reacting flows.
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