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I. Introduction

PARAMETER governors are predictive control schemes that

adjust parameters, such as gains or offsets, in nominal closed-

loop control schemes in order to enforce pointwise-in-time state and

control constraints and improve performance [1]. Unlike more

general nonlinear model predictive controllers, parameter governors

are low computational complexity approaches based on a solution of

a low-dimensional optimization problem. In some cases, the values

of adjustable variables (parameters) can be confined to a finite set of

small cardinality so that the solution can be determined by direct

search.

In this Note, a parameter governor controller is developed to

control a system of n spacecraft to specified unforced relative motion

trajectories in Hill’s frame with the desired phasing, thereby forming

andmaintaining ann-satellite formationwhile satisfying the imposed

constraints. The controller, referred to as the scale shift governor

(SSG), adjusts commanded scale shifts to each satellite, which

expand and contract the target trajectory so that constraints are

satisfied. Previously, another parameter governor, called the time

shift governor (TSG), which adjusted commanded time shifts to each

satellite, was developed for a two-spacecraft formation [2]. To the

authors’ knowledge, this Note and [2] represent the first applications

of parameter governor-based controllers to spacecraft formation
flight.
In recent years, NASA, the U.S. Department of Defense, the ESA,

and other agencies have shown interest in developing formation-
flying missions [3]. An overview of dynamics models, perturbations,
and simulation techniques relevant to spacecraft formation flight was
given in [4], whereas a concise review of spacecraft formation
guidance and control was given in [3,5].
Of the many existing formation control techniques, those most

relevant to the current work are model predictive control (MPC) [6–11],
and reference/command governors [12]. The schemes proposed in this
work and [2] provide certain advantages over those used in [6–12]. They
augment and coordinate conventional controllers to enforce constraints,
have straightforward computations, and have relatively low computa-
tional complexity. In particular, it is shown that, under reasonable
assumptions, convergence to the desired formation is guaranteed even
when suboptimal optimization algorithms are used and the values of the
adjustable parameters are confined to a finite set. Simulation results
illustrate that good response properties are preservedwith the SSG even
when spacecraft are subjected to bounded disturbances.
Standard notation is used throughout. The set of integers is Z; and

the set of reals isR. Subsets of these sets are identified by a subscript,
e.g., Z�0;T� denotes the set of integers between zero and T.
A superscript b appended to a set Γ denotes the bth-order Cartesian
product of the set, i.e., Γ3 � Γ × Γ × Γ. The predicted value of a
variable s at the time instant t� kwhen the prediction is made at the
time instant t is denoted by s�t� kjt�. Occasionally, the notation is
slightly abused by omitting the full list of arguments of a function
when they are clear from the context, e.g., the shorthand f�t�may be
used in place of f�X�t�; U�t��. For a vector v and a square positive
definite matrix Ξ, kvk2Ξ � vTΞv. A normed unit ball is denoted byB.

II. Problem Formulation

The dynamics of each spacecraft �i � 1; 2; : : : ; n� are expressed by
equations that are relative to, and linearized about, a nominal orbit
position. If the nominal orbit is circular, these equations are the time-
invariant Clohessy–Wiltshire (CW) equations [13], whereas if this orbit
is elliptic, these equations are the time-periodic Tschauner–Hempel
(TH) equations [14], with a period equal to that of the nominal orbit.
In discrete time, with an update period chosen to be an integer

multiple of the nominal orbit period, the state of the ith spacecraft
(Xi ∈ R6) evolves according to

Xi�t� 1� � A�t�Xi�t� � B�t�ui�t� (1)

where t ∈ Z≥0 designates the discrete-time instants;
Xi��xi yi zi _xi _yi _zi �T ; xi, yi, and zi are the relative position
coordinates of the ith spacecraft in Hill’s frame with the origin at a
nominal point on a reference orbit; _xi, _yi, and _zi are components of the
ith relative velocity vector; and ui are the control inputs for the ith
spacecraft that correspond to instantaneous velocity change, given by
ΔVi. Note that A�t� in Eq. (1) is the state-transition matrix of the
continuous-time dynamics, and hence is invertible and full rank.
The form of this matrix was reported in [2] for the CW equations
and in [15] for the TH equations. The matrix B�t� is given
by B�t� � A�t��03×3I3×3�T.
The formations considered in this work are similar to the series of

concentric passive relative orbits described in [16]. In our case, the
objective of the SSG is to place the satellites onto specified closed,
unforced natural motion trajectories in Hill’s frame with the correct
phasing while satisfying constraints. Such a target trajectory for the
ith satellite in discrete time is defined as a solution to Eq. (1) with
ui � 0, i.e.,
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�Xdi�t� 1� � A�t� �Xdi�t� (2)

with an initial condition �Xdi�0�, appropriately selected to provide a
closed, periodic relative motion orbit. Conditions for such an initial
condition for both the nominal circular orbit case and the nominal
elliptical orbit case were detailed in [17].
To achieve a prescribed position in the formation, the target to the

ith spacecraft is given as

Xdi�t� � �Xdi�t� θi� (3)

where θi ∈ Z≥0 specifies the desired phase shift along the trajectory.
Each satellite is controlled by a nominal inner-loop state feedback
law that tracks the prescribed target:

ui�t� � K�t��Xi�t� − Xdi�t�� (4)

where K�t� is a possibly time-varying state feedback gain matrix
chosen such that the inner-loop system is uniformly exponentially
stable. Although control law (4) is capable of achieving the desired
formation, the response may not satisfy constraints.
For the formation, state and control constraints may be imposed as

requirements on the stateX�t� � �X1�t�T X2�t�T : : : Xn�t�T �T
and control u�t� � � u1�t�T u2�t�T : : : un�t�T �T of the overall
systemX�t� ∈ X, u�t� ∈ U. These constraints may reflect magnitude
limits on ΔVi of the individual satellites, or collision avoidance
constraints between the satellites.
Remark 1: For the time-invariant case of the CW equations, the

condition that the state feedback gainmatrixK�t� in Eq. (4) is chosen
such that the inner-loop system is uniformly exponentially stablemay
be satisfied with a constant matrix K chosen such that the inner-loop
dynamics matrix A� BK is Schur (all eigenvalues are in the interior
of the unit disk on the complex plane).

III. Scale Shift Governor

To enforce the constraints on the system defined by Eqs. (1) and (4),
the SSG is added to the inner-loop controller described previously. The
SSG can modify the target provided to each spacecraft according to

Xdi�t; gi�t�� � gi�t� �Xdi�t� θi� (5)

where gi�t�, which is the parameter adjusted by the SSG, is a scale
factor that enlarges or shrinks the nominal reference trajectory
[Eq. (3)]. Define g�t� ≜ � g1�t� g2�t� : : : gn�t� �T and

Xd�t;g�t��≜
h
Xd1�t;g1�t��T Xd2�t;g2�t��T ::: Xdn�t;gn�t��T

i
T

Figure 1 illustrates the application of theSSG to the nominal inner-loop
system.
The scale factor gi�t� is limited to a discrete set:

gi�t� ∈ Λ � fgmin; gmin � ζ; gmin � 2ζ; · · · ; gmin � αζg (6)

where gmin > 0 is the minimum possible scale factor, ζ ∈ R>0 is the
parameter step size, andα ∈ Z>0 defines themaximumpossible scale
factor.

The cost function used by the SSG is given compactly as

J�t; g�t�; X�t�� � W�g�t�� � Ω�t; g�t�; X�t�� (7)

where

W�g�t�� �
Xn
i�1

jgdi − gi�t�j (8)

the parameter gdi is the desired scale factor for the ith spacecraft, and

Ω�t; g�t�; X�t�� �
Xn
i�1

XT
k�0

�kXi�t� kjt� − Xdi�t� kjt; gi�t��k2Θ

� kui�t� kjt�k2Φ� (9)

whereΘ andΦ are symmetric positive definite weightingmatrices, T
is the prediction horizon, and the predicted state and control
[Xi�t� kjt� and ui�t� kjt�] also depend on the same g�t� and X�t�.
To simplify the notation in subsequent developments, the state and
control penalty terms in Eq. (9) are defined as

Ei�t� kjt; g�t�; X�t�� � kXi�t� kjt� − Xdi�t� kjt; gi�t��k2Θ
(10)

and
Ui�t� kjt; g�t�; X�t�� � kui�t� kjt�k2Φ (11)

The SSG updates the parameter g�t� in order to minimize the cost
[Eq. (7)] subject to the condition that, if g�t� kjt� � g�t� is kept
constant over the prediction horizon, constraints are enforced.
Specifically, the optimization problem to be solved is as follows:

Minimize
g�t�

J�t; g�t�; X�t��
subject to X�t� kjt� ∈ X; k � 0; 1; : : : ; T;

u�t� kjt� ∈ U; k � 0; 1; : : : ; T − 1;
g�t� kjt� � g�t�; k � 0; 1; : : : ; T;
g�t� ∈ Λn;
X�tjt� � X�t�

(12)

The optimization is performed over a finite set of values: g�t� ∈ Λn.
If the parameter set Λ contains only a few elements, the optimization
can be performed by running a small number of simulations across the
range of g values and selecting the g that gives the smallest cost.

IV. Convergence Analysis

In this section, it is first shown that, under appropriate conditions,
recursive feasibility is guaranteed for a sufficiently long horizon T
because the previous value g�t − 1� is feasible at time t. Additionally,
sufficient conditions are presented that guarantee finite-time
convergence to the correct formation configuration, i.e., of gi�t� to
gdi. This convergence is guaranteed using any algorithm that adjusts
the parameter such thatW�g�t�� decreases by the parameter step size
ζ whenever such a decrease is feasible with respect to constraints.
Hence, convergence may be achieved by a broad class of
computational strategies that, for example, adjust only a single gi�t�
at a time and only examine a few values for gi�t�.
Define the set of feasible states and scale shift parameters at time t

for problem (12) as follows:

D�t� � f�X0; g0�jX0 ∈ R6n; g0 ∈ Λn; X�t� � X0:

g�t� kjt� � g0 ⇒ X�t� kjt� ∈ X; u�t� kjt� ∈ U; k ∈ Z�0;T�g

Then, the set of feasible initial states for problem (12) is the
projection of D�t� on the state coordinates in R6n:

C�t� � ProjXD�t�Fig. 1 Scale shift governor.
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Consider the following assumptions that highlight the properties
needed for convergence. A discussion of how some of these may be

relaxed and/or satisfied is included in the following:
Assumption 1: X�0� ∈ C�0�.
Assumption 2: There exists T� ∈ Z>0 such that, for X0 ∈ C�t�,

t ∈ Z>0 if X�t� kjt; g; X0� ∈ X and u�t� kjt; g; X0� ∈ U for

k ∈ Z�0;T��; then, X�t� kjt; g; X0� ∈ X and u�t� kjt; g; X0� ∈ U
for all k > T�.
Assumption 3: There exists q ∈ R�0;1� such that, for all

�X0; g� ∈ D�t�, and all t ∈ Z≥0

Ω�t� 1; g; X�t� 1jt; g; X0�� ≤ qΩ�t; g; X0� (13)

Assumption 4: There exist ϵ > 0 and t� ∈ Z≥0 such that, for all
t ≥ t�, all

δ ∈ f�	ζ; 0; 0; : : : ; 0�T; �0;	ζ; 0; : : : ; 0�T; : : : ; �0; 0; 0; : : : ;	ζ�Tg

and all g0 ∈ Λn such that g0 � δ ∈ Λn; the following holds:

�Xd�t; g0� � ϵB; g0 � δ� ⊂ D�t�

Assumption 5: There exist ρi ≥ ζ;Mi > 0; Ni > 0, and ϵ > 0,
such that, if jĝi − gij ≤ ρi, ĝi ∈ Λ, then, for all

X ∈
[

t∈Z≥0;g∈ΛnXd�t; g� � ϵB

and all t sufficiently large, it follows that

jEi�t� kjt; ĝi; X� − Ei�t� kjt; gi; X�j ≤ Mijĝi − gij (14)

jUi�t� kjt; ĝi; X� − Ui�t� kjt; gi; X�j ≤ Nijĝi − gij (15)

for i � 1; 2; : : : ; n.
Assumption 6: The prediction horizon T>0 satisfies T�Mi�Ni�<1

for i � 1; 2; : : : ; n.
Assumption 1 ensures that the initial state is feasible.Assumption 2

ensures that, for sufficiently long prediction horizons, if constraints
are satisfied up to the horizon, they will remain satisfied afterward as
long as g is held constant. This assumption can be relaxed, and

constructive procedures for estimating the required horizon T can be
developed, similar to [18]. Assumption 3 ensures that, if g is held
constant, Ω is strictly decreasing as a function of time. Due to the
uniform exponential stability of the inner-loop system, this

assumption is reasonable and is satisfied for sufficiently long
prediction horizons. Simulation results suggest that choosing T to be
one period of the reference trajectory is sufficient to satisfy both
Assumptions 2 and 3. Assumption 4 ensures that, if the spacecraft is

sufficiently close to the reference trajectory, gi can be adjusted by at
least 	ζ without causing constraint violation. This assumption
typically holds in the case of state and control constraints on the

individual spacecraft (i.e., control vector magnitude limits) but may
not hold when considering constraints coupling two or more
spacecraft, such as separation distance constraints. Simulation results
show that the SSG is able to accommodate this type of constraint for

formationswith sufficient spacing between spacecraft. Assumption 5
is a locally Lipschitz-type condition on the penalty functions
involved and is reasonable due to the construction of Ei and Ui and

the periodic nature of A�t� and B�t�. Note that this assumption needs
to hold only in the neighborhood of the reference trajectory in which
Assumption 4 is valid. Assumptions 1–5 are similar to the properties
typically exploited for parameter governors [1] and reference

governors [19]. Assumption 6 is strong and is needed in the case
where the setΛ is finite to ensure that changes in g near the reference
trajectory lead to a decrease in cost. This assumption can be satisfied

by adjusting the costweightingmatricesΘ andΦ or by decreasing the
parameter step size in Eq. (6).

Theorem 1: Suppose Assumptions 1–6 hold, T ≥ T�, where T� is
defined in Assumption 2 and g�t� is determined by any algorithm

such that, for all t ∈ Z>0, �X�t�; g�t�� ∈ D�t�, the cost J defined in

Eq. (7) is nonincreasing, i.e.,

J�t� 1; g�t� 1�; X�t� 1�� ≤ J�t� 1; g�t�; X�t� 1�� (16)

and, for large t, adjustments to g�t� that decrease W�g�t�� are made

whenever feasible, [i.e.,W�g�t�� � W�g�t − 1�� − ζ, where ζ is the
parameter step size defined in Eq. (6) whenever there exists g0 such
that �X�t�; g0� ∈ D�t� and W�g0� ≤ W�g�t − 1�� − ζ].
Then, the following properties hold:
Property a: X�t� ∈ C�t�, X�t� ∈ X, and u�t� ∈ U for all t ∈ Z≥0.
Property b: Ω�t; g�t�; X�t�� → 0 as t → ∞.
Property c: ui�t� → 0 as t → ∞ for i � 1; 2; : : : ; n.
Propertyd:ei�t��Xi�t�−Xdi�t;gi�t��→0 as t→∞ for i�1;2;:::;n.
Property e: There exists ~t ∈ Z>0 such that W�g�t�� � 0 for all

t ≥ ~t and J�t� → 0 as t → ∞.
Sketch of the Proof: Property a follows fromAssumptions 1 and 2.

To show Properties b–d, consider the change in the cost [Eq. (7)] over

one time step with g�t� held fixed. From Eqs. (7) and (16), as well as

Assumption 3, it follows that

J�t� 1� ≤ J�t� 1; g�t�; X�t� 1�� ≤ J�t� − �1 − q�Ω�t� (17)

Because q ∈ �0; 1� andΩ is nonnegative by construction, Eq. (17)

shows that the sequence J�t� is bounded and nonincreasingwith time,

and therefore converges to a limit. Hence, Ω�t� → 0 as t → ∞, and

Property b holds. From Eq. (9), Θ > 0, and Φ > 0, it follows that
ei�t� and ui�t� → 0 as t → ∞; thus, Properties c and d hold.
To prove Property e, note that

ei�t� 1� � A�t�ei�t� � B�t�ui�t�
� A�t��Xdi�t; gi�t�� − Xdi�t; gi�t� 1��� (18)

Because ei�t�, ui�t� → 0 as t → ∞ and A�t� is full rank and

periodic (hence persistently exciting),

lim
t→∞

�Xdi�t; gi�t�� − Xdi�t; gi�t� 1��� � 0 (19)

Based on Eqs. (5) and (19),

lim
t→∞

�gi�t� − gi�t� 1�� � 0 (20)

Because gi�t� ∈ Λ andΛ is a discrete set, gi�t� is a discrete-valued
sequence. Therefore, Eq. (20) implies that gi�t� converges to a limit

βi in finite time, i.e., gi�t� � βi for all t ≥ ~t.
The property βi � gdi for i � 1; 2; : : : ; n, and, therefore

W�g�~t���0, is shown by contradiction. Suppose, for large t, that
gi�t� � βi ≠ gdi. Without loss of generality, let g1�t� ≠ gd1 and

consider a new value for g1�t�, ĝ1 while g2�t�, g3�t�, : : : , gn�t�
remain unchanged. Let ĝ�t���ĝ1 g2�t� g3�t� ::: gn�t��T . By

Assumption 4, for large t, it is possible to select ĝ1 ∈ Λ so that

W�ĝ�t�� � W�g�t�� − ζ (21)

and system trajectories remain feasible. The difference in total cost J
resulting from the change in g�t� is written as

J�t; ĝ�t�; X�t�� − J�t; g�t�; X�t�� ≤ −ζ � Ω�t; ĝ�t�; X�t��
−Ω�t; g�t�; X�t�� (22)

where Ω�t; ĝ�t�; X�t�� −Ω�t; g�t�; X�t�� is given by Eq. (9).

Assumptions 5 and 6 guarantee that
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jΩ�t; ĝ�t�; X�t�� − Ω�t; g�t�; X�t��j ≤ Tζ�M1 � N1� < ζ (23)

Therefore, J�t; ĝ�t�; X�t�� − J�t; g�t�; X�t�� < 0. Thus, the cost
would decrease by replacing g�t� with ĝ�t�, and we arrive at a
contradiction. Therefore, there exists ~t ∈ Z>0 such thatW�g�~t�� � 0
and, due to Eq. (16),W�g�t�� � 0 for all t ≥ ~t. As shown earlier, with
g�t� held fixed, Ω�t� → 0 as t → ∞; therefore, by Eq. (7), J�t� → 0
as t → ∞. □

Remark 2: Due to the state-feedback nature of the nominal
controller [Eq. (4)], sufficiently small disturbances are naturally
accommodated. It is expected that bounded disturbances may be
incorporated into the convergence analysis using an input-to-state
stability analysis similar to what has been done for other MPC
controllers, e.g., [20]. Although this extension is left to future work,
simulation results show that the SSG is able to converge [i.e.,
W�g�t�� → 0], and the spacecraft converge to small regions about
their controller setpoints, even when disturbances are present.

V. Simulation Results

In this section, simulation results are presented to demonstrate the
ability of the SSG to establish and maintain a formation of three
spacecraft while enforcing convex and nonconvex constraints, as
well as accommodating additive input disturbances. Although the
preceding convergence analysis shows that the SSG can be used to
form and maintain a formation of n spacecraft, the majority of
upcoming spacecraft formation flight missions plan to use only two
to three spacecraft [21]. Therefore, a formation of three satellites is
considered here.
The parameter setΛ is taken to be discretewith 50 distinct values, i.e.,

Λ � f 0.5 0.6 : : : 5.4 g. Traditional grid search techniques are
used to update g�t�. These grid search techniques are simple and robust,
and their application is supported by theoretical results discussed earlier;
i.e., they avoid numerical convergence issues, and their worst-case
computation time can be easily estimated (see Remark 3 in the
following).
At t � 0, a search over allg1,g2,g3 ∈ Λ is conducted until the first

feasible solution is found. Note that the exact minimizer of Eq. (12) is
not required, and any feasible solution can be used. For all t > 0, the
parameter vectorg ismodified by updating, on a rotating basis, only a
single parameter (g1, g2, or g3) per discrete-time step. Each
parameter is updated by searching only 	1 step from the current
value and choosing the value that satisfies constraints for
k � 0; : : : ; T and minimizes the cost. Using this method to update
the parameters for all t > 0 allows computations to be distributed
over time and between spacecraft, similar to [22], as only a single
spacecraft’s parameter is adjusted at each time instant. Additionally,
this method may be applied to generate formations with a large
number of spacecraft because, as more spacecraft are added to the
formation, the computational time required to update the parameter
for all t > 0 remains fixed.
Remark 3: The parameter update method described previously

does not explicitly meet the criterion of Theorem 1, requiring updates
to g�t� that reduce W�g�t�� whenever feasible. Although the use of
this method is reasonable and rationalized by the fact that the same
computations are distributed over several time steps, between which
the optimization problem does not substantially change, the detailed
analysis of its convergence properties is left to future work. Other
methods, which satisfy all theoretical results, may also be used to
update the parameter, e.g., the method used for the TSG in [2]. These
methods may provide faster convergence and/or reduced fuel
consumption, but they require additional computation time. In the
current implementation, using MATLAB® R2016a on a MacBook
Pro® with a 2.8 GHz processor, the worst-case computation time for
an initial feasible solution at t � 0 is approximately 1 min, whereas
the time required to update the parameter at each t > 0 is
approximately 0.005 s. To guarantee that a feasible solution for gi�0�
exists and can be obtained rapidly, it is possible to precompute offline
sets of states (e.g., forced or unforced equilibria) for which certain
gi�0� are known to be feasible. The spacecraft can be safely

prepositioned to such initial states with initial maneuvers before the
SSG is engaged to drive the spacecraft to the desired formation
configuration. Procedures to generate such sets and initial maneuvers
will be considered in future work.

A. Simulation Specifications and Constraints

As the majority (79%) of satellites operate in near-circular orbits
[23], we consider spacecraft maneuvering near a nominal circular
orbit with relative dynamics modeled by the CW equations.

1. Simulation Specifications

The nominal circular orbit uponwhich theCWdynamics are based
is chosen such that the mean motion isω � 1.144 × 10−3 rad∕s. The
discrete-time update period is set to ΔT � 109.84 s (1/50th of the
orbital period), and the forms of matricesA andB in Eq. (1) are given
in [2]. A 2 × 1 ellipse natural motion reference trajectory is
considered with initial condition �Xdi�0���1 0 0 0 −2ω 0�T , for
i � 1; 2; : : : ; n, and units of kilometers for position and kilometers
per second for velocity. The desired formation has the satellites
placed onto three concentric elliptical trajectories scaled from the
reference trajectory (i.e., gd1 � 0.5, gd2 � 1.0, and gd3 � 1.5), and
the phase shift parameters θi in Eq. (3) are selected such that the
satellites are separated by approximately 120 deg.
Each spacecraft is controlled by a controller [Eq. (4)] with

a Linear Quadratic Regulator (LQR) gain K that corresponds to
the selection of the state and control weighting matrices
Q�diag�1; 1; 1; 0.001 0.001 0.001� and R� 108I3×3. The weight-
ing matricesΘ andΦ used in the cost [Eq. (7)] are set toΘ � 0.1I6×6
and Φ � I3×3.

2. Constraints

The control constraints considered for each satellite are

yci�t� � ui�t�Tui�t� − u2max ≤ 0; for i � 1; 2; 3 (24)

where umax � 0.001 km∕s. Note that, with constraints as defined in
Eq. (24), all assumptions for the convergence analysis presented
earlier may be verified.
Separation distance constraints are also considered for which

Assumption 4 may not hold. Nevertheless, simulation results
demonstrate that these constraints are handled well by the SSG,
assuming the spacecraft are at feasible initial positions. The three
separation distance constraints are

yci�t� � −kS�Xj�t� − Xk�t��k22 � ρ2min ≤ 0; for i � 4; 5; 6 (25)

where j and k denote different spacecraft, i.e., j, k � 1, 2, 3, j ≠ k,
S � � I3×3 03×3 � and ρmin � 1 km.

B. Results

The initial conditions for the three spacecraft are, respectively,
X1�0���0 −6 0 0 0 0�T , X2�0���0 −8 0 0 0 0�T , and
X3�0���0 −10 0 0 0 0�T . The position units are kilometers, and
the velocity units are kilometers per second. Disturbances are added
to the control vector for each spacecraft at each time step:

ui�t� � K�Xi�t� − Xdi�t; gi�t��� � wi�t� (26)

wherewi�t� ∈ R3 is the disturbance vector randomly sampled from a
uniform distribution over a ball centered at the origin with a radius of
0.0001 km∕s, or 10% of the maximum allowable ΔV. Note that
disturbances modeled in this way can represent thruster errors, and
they can also be taken to represent the effects of orbital perturbation
forces or navigation uncertainty.
Figure 2 demonstrates the effectiveness of the SSG. Figure 2a

shows that, with no SSG, both control constraints and separation
distance constraints are violated (constraints are violated if
yci�t� > 0). Figure 2b shows that, after adding the SSG, constraints
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are strictly enforced. Figure 2c illustrates how the SSG adjusts the

parameters with time. Note that W�g�t�� � 0 for large t. Figure 3a
shows spacecraft trajectories, and Fig. 3b shows that the norm of the

state error decays to a small value for each spacecraft, illustrating that

the desired formation is attained.
The total ΔV used by each spacecraft for the simulation shown in

Figs. 2 and 3 isΔV1�5.255×10−3 km∕s,ΔV2�4.630×10−3 km∕s,
and ΔV3 � 8.545 × 10−3 km∕s. Additional ΔV reductions may be

achieved by adjustments to the state feedback gain matrix K used in

Eq. (4) or by modifying the method used to update the parameter at

each time step.

VI. Conclusions

The scale shift governor proposed in this Note is capable of

augmenting and coordinating nominal spacecraft guidance

controllers to steer a formation of n spacecraft to a set of desired

unforced periodic reference trajectories in Hill’s frame with the

correct phasing while satisfying pointwise-in-time state and control

constraints. Under appropriate assumptions, it is shown that the

parameters adjusted by the SSG converge in finite time and the

spacecraft achieve the desired formation without violating

constraints, even if possible parameter values are confined to a

finite set and suboptimal algorithms are used. Simulation results

demonstrate that the proposed methodology is also effective in the

presence of bounded disturbances. The present Note, along with [2],

serves as an indication of the theoretical and numerical results

achievable with parameter governors in a formation control setting.

While time shift adjustments or scalings of the reference trajectory

appear to provide promising and practical approaches to spacecraft

formation control, other mechanisms, including combining the two

approaches into a single scheme while applying a suboptimal

solver with low computational footprint, will be addressed in

future work.
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