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Abstract

Functional analysis techniques are used to rigorously determine the range

of flow Mach number Ma0 for the existence of the critical swirl ratio ω1 for

exchange of stability of a base columnar compressible swirling flow of a perfect

gas in a finite-length straight circular pipe. For swirling flows with a monotonic

circulation profile, it is first established that ω1 definitely exists in the range

0 ≤ Ma0 ≤ 2
√
γ−1
γ

< 1, where 1 < γ ≤ 5/3 is the ratio of specific heat of the

gas. Then, the existence of a limit Mach number Ma0;lim between 2
√
γ−1
γ

and 1

is proven; i.e. ω1 does not exist and the base flow is stable for all swirl levels

when Ma0 is above Ma0;lim. In addition, the analytical solution of ω1 as a function

of Ma0, γ and pipe length x0 for a solid-body rotation flow with uniform axial

velocity and temperature is also derived. For all 1 < γ ≤ 5/3, the Ma0;lim of

this flow increases from 2
√
γ−1
γ

to

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 < 1 as x0 increases from 0 to

infinity. This result matches with the numerical computations of Rusak & Lee

(2002).
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1 Introduction

The stability of compressible swirling flows is an important problem for a variety of techno-

logical applications such as the aerodynamics of slender wings operating at high angles of

incidence (Peckham & Atkinson 1957, Rusak et al. 1983, Delery 1994, Mitchell & Delery

2001), combustion chambers ((Umeh, Rusak & Gutmark 2010, 2012)), inlets and nozzles of

jet engines ((Mclelland, MacManus & Sheaf 2015)), and other high-speed flow devices where

swirl has a dominant influence. The study of this problem may also shed light on compli-

cated stability and breakdown phenomena that appear in numerous problems of geophysical

and meteorological significance. In all of these cases, the flow Mach number is not small and

may reach values of 0.2 to 0.9, and the effect of compressibility is an essential part of the

flow dynamics and influences the conditions for the appearance of instabilities and transition

(breakdown) phenomena.

The phenomenon of vortex breakdown in incompressible flows was studied theoretically,

numerically and experimentally by Wang & Rusak (1996, 1997), Rusak (1996), Malkiel et

al. (1996), Rusak et al. (1998), Rusak & Lamb (1999), Rusak & Judd (2001) and Rusak

& Meder (2004). Rusak & Lee (2002) extended these studies and investigated the effect of

compressibility on the critical swirl level for breakdown of subsonic vortex flows in a straight

circular pipe of finite length. The work extended the critical-state concept of Benjamin

(1962) to include the influence of Mach number on the flow behavior. The analysis was

based on a linearized version of the equations for the motion of a steady axisymmetric

inviscid and compressible swirling flow of a prefect gas. The relationships between the

velocity, density, temperature and pressure perturbations to a base columnar flow state were

derived. An eigenvalue problem was formulated to determine the first critical level of swirl ω1

as a function of incoming flow Mach number Ma0 at which a special mode of a non-columnar

small disturbance may appear on the base flow. It was found that when the characteristic

Mach number of the base flow tends to zero the eigenvalue problem and ω1 are the same as

defined by Wang & Rusak (1996, 1997) (see also Rusak 2000) in their study of incompressible

swirling flows in straight circular pipes. As the characteristic Mach number is increased, ω1

increases and the flow perturbation expands in the radial direction. As the Mach number
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approaches a certain limit value Ma0;lim related to the core size of the vortex, ω1 reaches very

large values and becomes singular. These results indicated that the axisymmetric breakdown

of high-Reynolds-number compressible vortex flows may be delayed to higher levels of the

swirl ratio with the increase of the flow Mach number Ma0. This is similar to results found

in the numerical simulations of Melville (1996) and Herrada et al. (2003).

In a follow up study, Rusak & Lee (2004) studied the linear stability of a compressible

inviscid axisymmetric and rotating columnar flow of a prefect gas in a finite-length straight

circular pipe is investigated. A well-posed model of the unsteady motion of a swirling flow,

with inlet and outlet conditions that may reflect the physical situation, is formulated. The

linearized equations of motion for the evolution of infinitesimal axially symmetric distur-

bances are derived. A general mode of disturbance, that is not limited to the axial-Fourier

mode, is introduced and an eigenvalue problem is developed. It is found that a neutral mode

of disturbance exists at the critical swirl ratio for a compressible vortex flow, ω1(Ma0). The

flow changes its stability characteristics as the swirl ratio increases across this critical level.

When the swirl ratio is below the critical level (supercritical flow), the flow is asymptotically

stable and, when it is above the critical level (subcritical flow), the flow unstable. When the

characteristic Mach number of the base flow tends to zero, the results are the same as found

for incompressible swirling flows in pipes. The growth rate ratio is positive but decreases as

Mach number is increased. This ratio vanishes at the limit Mach number Ma0;lim at which

the critical swirl tends to infinity.

In the present paper, functional analysis techniques are used to rigorously determine the

range of flow Mach number Ma0 for the existence of the critical swirl ratio ω1. For swirling

flows with a monotonic circulation profile. The mathematical formulation is described in

section 2. It is first established that ω1 definitely exists in the range 0 < Ma0 < 2
√
γ − 1/γ <

1, where γ > 1 is the ratio of specific heats of the gas (section 3). Then, the existence of

a limit Mach number Ma0;lim between 2
√
γ − 1/γ and 1 is proven for a subclass of swirling

flows; i.e. ω1 does not exist and the flow is stable for all swirl level when Ma0 is beyond

Ma0;lim (section 3). For example, 0.9035 < Ma0;lim < 1 when γ = 1.4. In particular, the

analytical solution of ω1 as a function of Ma0, γ and pipe length L for a solid-body rotation

flow with a uniform axial velocity and temperature is also derived. The asymptotic behavior
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of this solution as Ma0 tends to zero matches the results of Renac et al. (2007) (section 4).

In addition, Ma0;lim of this flow is between 0.9035 and 0.9283 for γ = 1.4; it increases from

0.9035 to 0.9283 as the pipe non-dimensional length L increases from 1 and tends to infinity.

This result matches with the numerical computations of Rusak & Lee (2002). Results are

concluded in section 5. Specifically, the present results shed light on the stability of base

columnar vortex flows and the evolution to vortex breakdown with the increase of the flow

Mach number.

2 The compressible flow critical-state problem

We consider a base, steady, inviscid, compressible, axisymmetric, parallel, swirling flow of a

perfect gas in a straight, finite-length circular pipe of radius r̃0 and length x̃0. Distances are

scaled with the pipe radius r̃0 and pipe non-dimensional length is x0 = x̃0/r̃0. The cylindrical

coordinate system (x, r, θ) is used to describe the flow, where xmeasures non-dimensional dis-

tance from the pipe inlet along the pipe centerline (0 ≤ x ≤ x0), r measures non-dimensional

radial distance from the centerline (0 ≤ r ≤ 1), and θ is the azimuth angle (0 ≤ θ < 2π). Let

y = r2/2 where 0 ≤ y ≤ 1/2. The corresponding base flow non-dimensional axial, radial and

circumferential velocity components w, u, v (scaled with the inlet centerline axial velocity

Ũ0) are given by the profiles w(x, y, θ) = w0(y), v(x, y, θ) = ωv0(y) and u(x, y, θ) = 0 for

0 ≤ x ≤ x0 and 0 ≤ y ≤ 1/2. Here ω > 0 is the swirl ratio of the flow. The flow non-

dimensional temperature field (scaled with the inlet centerline temperature T̃0) is given by

T (x, y, θ) = T0(y). The flow non-dimensional pressure field (scaled with the inlet centerline

pressure p̃0) is given by p(x, y, θ) = p0(y) = exp
(
γMa2

0ω
2

2

∫ y
0

v2
0(y)

yT0(y)
dy
)

. We focus in this paper

on the family of flows where the axial velocity and the temperature are uniform profiles,

w0(y) = T0(y) = 1. In addition, the Mach number is Ma0 = Ũ0/

√
γRT̃0 where R = R/M is

the specific gas constant, R = 8.3145 J/(mol K) is the universal gas constant and M is the

gas molecular weight. Also, γ is the ratio of specific heat of the perfect gas, 1 < γ ≤ 5/3

(Thompson 1988, p. 80), i.e., γ = 5/3 for a monatomic gas (He, Ne, Ar), γ = 7/5 for

diatomic gases (H2, N2, O2, Air) at a temperature below 300 K, and decreases to 9/7 with

the increase of temperature (above 1000 K). Moreover, γ approaches unity for gases with
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a large number of degrees of freedom and extreme molecular complexity (Butane, Octane,

Fluorocarbons and Hydrofluorocarbons), see Cramer (1989), Cramer & Tarkenton (1992),

and Schnerr & Leidner (1993).

We define the base flow circulation function as K0(y) =
√

2yv0(y). We also assume that

K0(y) is continuous with a continuous first derivative, i.e. K0 ∈ C1[0, 1/2], and that K0(y)

is a strictly monotonic function, i.e. K0(y) > 0, K0y > 0 with the properties
(
K0(y)
y

)
y
≤

0 for 0 < y < 1/2 and K0(y) ∼ cy when y → 0+, where c 6= 0 is a constant. Note that under

these conditions the base flow is neutrally stable according to Rayleigh’s stability criterion

for swirling flows in a pipe with periodic inlet-outlet conditions. However, these flows are

unstable according to Rusak & Lee (2004) and Rusak et al. (2007) when non-periodic inlet-

outlet conditions are used and ω > ω1(Ma0, x0, γ).

Following Rusak & Lee (2002), the critical state of this base flow is determined by the

first eigenvalue Ω = Ω1 = ω2
1 of the following eigenvalue problem:

Φyy + ΦyQ(y) + ΦS(y) = 0 with boundary conditions Φ(0) = Φ(1/2) = 0, (1)

where

Q(y) = −γMa2
0ΩK2

0

4y2
,

S(y) = (1−Ma2
0)

(
ΩK0K0y

2y2
− π2

8x2
0y

)
+ (γ − 1)Ma2

0

(
ΩK2

0

4y2

)2

− (γ − 1)Ma2
0

(
ΩK2

0

4y2

)
y

. (2)

Here Φ(y) is the corresponding eigenfunction. The critical swirl ω1 is a function of incoming

flow Mach number 0 ≤ Ma0 < 1, pipe non-dimensional length x0, and the ratio of specific

heat 1 < γ ≤ 5/3, i.e., ω1(Ma0, x0, γ). Note that this eigenvalue problem is not self-adjoint.

To convert the problem into a self-adjoint problem, we let Φ(y) = exp
(
−1

2

∫
Qdy

)
ψ(y).

Substituting it into (1) we obtain

ψyy + P (y)ψ = 0 with boundary conditions ψ(0) = ψ(1/2) = 0, (3)

where

P (y) = (1−Ma2
0)

(
ΩK0K0y

2y2
− π2

8x2
0y

)
+

[
−γ

2Ma4
0

4
+ (γ − 1)Ma2

0

](
ΩK2

0

4y2

)2

+
(

1− γ

2

)
Ma2

0

(
ΩK2

0

4y2

)
y

. (4)
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The problem (3) is rearranged in the form

−ψyy + C(y;x0;Ma0)ψ + ΩG1(K0, K0y, y;Ma0; γ)ψ + Ω2G2(K0, y;Ma0; γ)ψ = 0, (5)

ψ(0) = ψ(1/2) = 0,

where

C(y;x0;Ma0) = (1−Ma2
0)

π2

8x2
0y
,

G1(K0, K0y, y;Ma0; γ) = (Ma2
0 − 1)

K0K0y

2y2
+
(γ

2
− 1
)
Ma2

0

(
K2

0

4y2

)
y

,

G2(K0, y;Ma0; γ) =

[
γ2Ma4

0

4
− (γ − 1)Ma2

0

](
K2

0

4y2

)2

. (6)

In the Appendix A, we define the functional spaces L2
(
0, 1

2

)
and H1

0

(
0, 1

2

)
to be used in

the following analysis. Based on (6), let

L(·) ≡ − d2

dy2
(·) , A ≡ L−1, G1 ≡ −G1A, G2 ≡ −G2A.

be linear operators on L2. Positive definiteness of L and Hardy’s inequality (17) imply that

G1 and G2 are well-defined. Notice that the operators A, G1 and G2 are self-adjoint and

compact; in particular, A is positive definite.

According to Eisenfeld (1968), let ξ ≡ L1/2ψ. We obtain an equivalent form of (5)

(I + CA)ξ − ΩG1ξ − Ω2G2ξ = 0. (7)

Here I is the identity operator on H (defined in Appendix A). In the following sections, we

prove the range of Ma0 for the existence of Ω1 based on the two forms of the eigenvalue

problem, (5) or (7).

3 Existence of Ω1 for subsonic swirling flows

From (6), we find that G2(K0, y;Ma0; γ) ≤ 0 for all 0 < y ≤ 1/2 if and only if γ2

4
Ma4

0 −

(γ − 1)Ma2
0 ≤ 0 or 0 ≤ Ma0 ≤ 2

√
γ−1
γ

< 1 when 1 < γ ≤ 5/3. In addition, we show in

Appendix B that if x0 ≥
√

1−Ma2
0

4
then the operator I +CA is invertible and (I +CA)−1 is

self-adjoint, bounded and positive definite for each 0 ≤Ma0 < 2
√
γ−1
γ

< 1.
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In Appendix C we prove the following theorem:

Theorem 1: The critical swirl Ω1 exists for each Mach number Ma0 and pipe non-

dimensional length x0 if x0 ≥ 1
4

√
1−Ma2

0 and 0 ≤ Ma0 < 2
√
γ−1
γ

< 1. Moreover,

the critical swirl for a finite-length pipe Ω1(Ma0, x0, γ) is greater than the critical swirl

Ω1(Ma0, x0 →∞, γ) for an infinitely-long pipe.

It should be noted, however, that given a monotonic circulation function K0(y), the

critical swirl Ω1(Ma0, x0, γ) may not always exist for all Ma0 in the range 2
√
γ−1
γ
≤Ma0 < 1.

For example, we rigorously show in section 4 that for a solid-body rotation flow where

K0(y) = 2y, the critical swirl Ω1 does not exist when

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 < Ma0 < 1 with

1 < γ ≤ 5/3.

For each circulation function K0(y) and pipe length x0, we define the limit Mach number

Ma0,lim as

Ma0,lim = sup{Ma ≥ 0 : Ω1 exists for each 0 ≤Ma0 < Ma}. (8)

Theorem 1 shows that for any monotonic circulation function, Ma0,lim ≥ 2
√
γ−1
γ

.

In Appendix D we prove the following theorem:

Theorem 2: If there exists 0 < y∗ < 1/2 such that

y∗K0y(y
∗) >

2(γ − 1)

γ
K0(y∗) (9)

and

yK0y(y) 6= 2(γ − 1)

γ
K0(y) (10)

almost everywhere over 0 < y < 1/2, then Ω1 exists at Ma0 = 2
√
γ−1
γ

.

In particular, Theorem 2 shows that for both the solid-body rotation flow, where K0(y) =

2y, and the Lamb-Oseen vortex flow, where K0(y) = 1−exp(−2by) (where b > 0 is the vortex

core parameter, rc = 1.12/
√
b), the critical swirl Ω1 exists at Ma0 = 2

√
γ−1
γ

< 1, but takes

different values for each flow.

In Appendix E we prove the following theorem:

Theorem 3: The critical swirl Ω1 does not exist in a vicinity of Ma0 = 1− for every

monotonic circulation function K0(y) for which
(
K0(y)
y

)
y
< 0 almost everywhere in the

domain 0 < y < 1/2.
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Theorem 3 shows that for every circulation function K0(y) which fulfills the theorem

assumption, its Ma0,lim < 1. The limit Mach number Ma0,lim may be close to unity or quite

below unity, depending on the values of γ and x0. Notice that the solid-body rotation flow

K0(y) = 2y does not fulfill the assumption in Theorem 3. However, as we show in the next

section, that the above conclusion still holds for this flow.

4 The critical swirl for a solid-body rotation flow

The base circulation function of a solid-body rotation flow in a rotating pipe is K0(y) = 2y.

Substituting this into (5) and multiplying both sides by y we obtain

yΦyy − γMa2
0ΩyΦy +

[
(γ − 1)Ma2

0Ω2y + (1−Ma2
0)

(
2Ω− π2

8x2
0

)]
Φ = 0, (11)

Φ(0) = Φ(1/2) = 0.

Introducing the substitution Φ = η
Ω
w(η) where η = Ωy gives an equivalent equation for w(η),

ηwηη + (2− γMa2
0η)wη +

[
(γ − 1)Ma2

0η + (1−Ma2
0)

(
2− π2

8x2
0Ω

)
− γMa2

0

]
w = 0.

This is a second-order ordinary differential equation and its general solution consists of a

linear combination of two linearly independent solutions of the form (Slater (1960)

w(η) =A exp

(
γMa2

0

2
η

)
exp

(
−
√

∆

2
η

)
1F1

1−
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ; η

√
∆


+B exp

(
γMa2

0

2
η

)
exp

(√
∆

2
η

)
Ψ

1 +
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ;−η

√
∆

 . (12)

Here ∆ = 4G2 and 1F1 and Ψ are Kummer’s and Tricomi’s functions, respectively. The

coefficients A and B are constant. Assuming that w is bounded, then the boundary condition

Φ(0) = 0 is automatically satisfied. However, because we are interested in bounded real-

valued eigenmodes Φ(y) of (11), we need to be specific on the choice of the coefficients A

and B. In Appendix F we prove that we must have B = 0. Then, the eigenmode Φ(y) that

corresponds to the first eigenvalue Ω1 of (11) is given by

Φ(y) = y exp

(
γMa2

0Ω1

2
y

)
exp

(
−
√

∆

2
Ω1y

)
1F1

1−
(1−Ma2

0)
(

2− π2

8x2
0Ω1

)
√

∆
; 2; Ω1

√
∆y

 .(13)
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Using the boundary condition Φ(1/2) = 0, the critical swirl Ω1 is the least positive root of

the following characteristic equation in terms of Ω

1F1

1−
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ;

Ω

2

√
∆

 = 0. (14)

We consider three cases according to the sign of ∆:

Case (I): When ∆ < 0, then 0 < Ma0 <
2
√
γ−1
γ

. From Theorem 1 in section 3 we find

that Ω1 exists in this range of Ma0.

Case (II): When ∆ = 0, then either Ma0 = 0 or Ma0 = 2
√
γ−1
γ

. For this case, (14) is re-

duced to either J1

(√
2
(

2Ω1 − π2

8x2
0

))
= 0 whenMa0 = 0 or J1

(√
2(1− 4γ−1

γ2 )
(

2Ω1 − π2

8x2
0

))
=

0 when Ma0 = 2
√
γ−1
γ

. We obtain ω1 =
√

j21
4

+ π2

16x2
0

when Ma0 = 0, where j1 is the first pos-

itive zero of the Bessel function J1. This is the critical swirl of an incompressible solid-body

rotation flow in a finite-length straight circular pipe (first defined in Wang & Rusak 1996).

Also, ω1 =
√

γ2j21
4(2−γ)2 + π2

16x2
0

when Ma0 = 2
√
γ−1
γ

.

Case (III): When ∆ > 0, then 2
√
γ−1
γ

< Ma0 < 1 for 1 < γ ≤ 5/3 and
√

∆ is real. First,

when x0 →∞ equation (14) becomes

1F1

(
1− 2(1−Ma2

0)√
∆

; 2 ;
Ω1

2

√
∆

)
= 0. (15)

When the first argument of 1F1 is negative, 1−2(1−Ma2
0)√

∆
< 0, we haveMa0 <

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 .

Then, we use the distribution of zeros of Kummer’s function (Bateman et al. 1955) to deduce

the existence of a solution Ω1 > 0 of (15). On the other hand, when 1 − 2(1−Ma2
0)√

∆
≥ 0 we

have

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 ≤ Ma0 < 1 for 1 < γ ≤ 5/3. Then from the series representation

(29) we know that the left-hand side of (15) is greater than 1 for all Ω > 0, and thus Ω1

does not exist.

Combining cases (I), (II) and (III), we find that when x0 →∞ the critical swirl ω1 exists

in the subsonic flow regime if and only if 0 ≤Ma0 <

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 . This implies that

Ma0,lim(x0 →∞, γ) =

√
6− 2γ − 2

√
2γ2 − 6γ + 5

4− γ2
. (16)

Note that Ma0,lim(x0 → ∞, γ = 1.4) = 0.9283; this value is same as the one obtained

numerically in Rusak & Lee (2002) and (2004). Figure 1 presents the results of ω1 =
√

Ω1
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when x0 → ∞ as a function of 0 ≤ Ma0 ≤ 1 for various values of γ = 1.4, 1.1, and 1.02.

The limit values Ma0,lim for each value of γ are also shown for reference. It can be seen

that ω1 increases with Ma0 and tends to ∞ as Ma0 approaches Ma0,lim(x0 →∞, γ). Also,

Ma0,lim(x0 →∞, γ) decreases with the decrease of γ toward unity to a limit value of 0.8165.

Similarly, for a finite-length pipe with length x0, the same argument implies the existence

of Ma0,lim(x0). Besides, since (1−Ma2
0)
(

2− π2

8x2
0Ω1

)
< 2(1−Ma2

0), we have Ma0,lim(x0, γ) <

Ma0,lim(x0 →∞, γ). Moreover, since the term (1−Ma2
0)
(

2− π2

8x2
0Ω

)
monotonically increases

with x0 for each 0 ≤ Ma0 < 1 and Ω > 0, it follows that Ma0,lim(x0, γ) is an increasing

function of x0 toward the limit value Ma0,lim(x0 →∞, γ) .

In summary, we find that there exists a limit Mach number Ma0,lim(x0, γ) < 1 such that

Ω1 exists if and only if 0 ≤Ma0 < Ma0,lim. Moreover, for each 0 < x0 <∞ we have for the

solid-body rotation flow that

2
√
γ − 1

γ
< Ma0,lim(x0, γ) < Ma0,lim(x0 →∞, γ) =

√
6− 2γ − 2

√
2γ2 − 6γ + 5

4− γ2
.

This is also demonstrated in figure 1 for various values of γ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Figure 1: ω1 versus Ma0 plots for γ = 1.02 (black), γ = 1.1 (red) and γ = 1.4 (blue) when

x0 →∞. The solid vertical lines represent the respective values of Ma0,lim according to (16)

and the dash lines represent the respective values of Ma0 = 2
√
γ−1
γ

.
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5 Conclusions

Functional analysis techniques are used to rigorously determine the range of flow Mach

number Ma0 for the existence of the critical swirl ratio ω1 for exchange of stability of a base

columnar compressible swirling flow of a perfect gas in a finite-length straight circular pipe.

For swirling flows with a monotonic circulation profile, it is first established that ω1 definitely

exists in the range 0 ≤ Ma0 ≤ 2
√
γ − 1/γ (Theorems 1 and 2). Then, the existence of a

limit Mach number Ma0,lim between 2
√
γ − 1/γ and 1 is proven, i.e. ω1 does not exist when

Ma0 is above Ma0,lim < 1. For example, 0.9035 < Ma0,lim < 1 when γ = 1.4. In addition,

the analytical solution of ω1 as a function of Ma0, γ and pipe non-dimensional length x0 for

a solid-body rotation flow with a uniform axial velocity and temperature is also derived. The

limit Mach number Ma0,lim of this flow increases from 2
√
γ−1
γ

to

√
6−2γ−2

√
2γ2−6γ+5

4−γ2 as x0

increases from 0 to infinity. This result matches with the numerical computations of Rusak

& Lee (2002). The upper limit decreases with decreasing γ to unity and approaches a limit

value of 0.8165.

The present results demonstrate that the axisymmetric breakdown of high-Reynolds-

number compressible vortex flows may be delayed to higher swirl ratios with the increase

of the incoming flow Mach number Ma0 toward Ma0,lim. It also indicates that there is

no critical swirl and instability of the base columnar vortex flow at Mach numbers above

Ma0,lim that is less than unity. Therefore, it is predicted that no vortex breakdown process

can evolve under such conditions. Furthermore, the increase of molecular complexity of the

operating gas decreases the value of the limit Mach number.

Appendix A

The space of square-integrable functions on (0, 1/2) is defined by

L2

(
0,

1

2

)
=

{
f :

(
0,

1

2

)
→ R

∣∣∣∣∣ f is measurable,

∫ 1/2

0

|f |2dy <∞

}

with the associated function norm

‖f‖L2(0, 1
2) =

(∫ 1/2

0

|f |2dy

)1/2

.
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Let

H1
0

(
0,

1

2

)
=

{
f ∈ L2

(
0,

1

2

) ∣∣∣∣∣ f(0) = 0 = f

(
1

2

)
,

∫ 1/2

0

(
df

dy

)2

dy <∞

}

be the usual Sobolev space induced by L2(0, 1/2) with the norm

‖f‖H1
0 (0,1/2) =

(∫ 1/2

0

(
|f |2 + |f ′|2

)
dy

)1/2

.

For brevity, we denote H1
0 ≡ H1

0 (0, 1/2) and L2 ≡ L2(0, 1/2) hereafter. The following version

of Hardy’s inequality is adopted in this study (see Davies 1995): Let 0 < β <∞,−∞ < α <

1, and let f ∈ H1
0 (0, β). Then∫ β

0

yα−2|f(y)|2dy ≤ 4

(1− α)2

∫ β

0

yα|f ′(y)|2dy. (17)

In this study, we refer the term Hardy’s inequality to the above inequality with parameters

β = 1/2 and α = 0.

In addition, for the problem (7), we denote H ≡ L1/2(H1
0 ). Let A,B ∈ {H1

0 , L
2}. We

endow each bounded linear operator T which maps from (A, ‖ · ‖A) into (B, ‖ · ‖B) with the

standard operator norm

‖T ‖op = inf{c ≥ 0 : ‖T x‖B ≤ c‖x‖A for all x ∈ A}.

Appendix B

For each 0 ≤Ma0 < 2
√
γ−1
γ

< 1, if x0 ≥
√

1−Ma2
0

4
, then the operator I +CA is invertible

and (I + CA)−1 is self-adjoint, bounded and positive definite.

Proof: The first (minimal positive) eigenvalue λ1 of L is determined by the Dirichlet

problem d2ψ
dy2 +λ1ψ = 0 subject to ψ(0) = ψ(1/2) = 0. Solving this Dirichlet problem implies

that λ1 = 4π2. Thus, ‖A‖op = ‖L−1‖op ≤ 1
4π2 . Besides, using the definition of C in (6), we

find that for each ψ that belongs to H1
0 with ‖ψ‖H1

0
≤ 1,

‖Cψ‖L2 =
(1−Ma2

0)π2

8x2
0

(∫ 1/2

0

ψ2

y2
dy

)1/2

<
(1−Ma2

0)π2

4x2
0

‖ψ‖H1
0
≤ (1−Ma2

0)π2

4x2
0

.

Here, the first inequality is derived from Hardy’s inequality. Therefore, ‖CA‖op < 1−Ma2
0

16x2
0

.
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In accordance with the Neumann series theorem (see Tosio 1966), I +CA is invertible if

‖CA‖op < 1, which requires
1−Ma2

0

16x2
0
≤ 1 or equivalently x0 ≥

√
1−Ma2

0

4
.

Under this condition, the self-adjointness of (I+CA)−1 follows from the self-adjointness

of (I + CA), the boundedness of (I + CA)−1 follows from the bounded inverse theorem

(see Rudin 1991), and the positive definiteness of (I + CA)−1 follows from the positive

definiteness of (I + CA).

For each 0 ≤ Ma0 < 2
√
γ−1
γ

< 1, the improper integrals
∫ 1/2

0
Cψ2dy,

∫ 1/2

0
G1ψ

2dy, and∫ 1/2

0
G2ψ

2dy are convergent (i.e. they have finite values) for every ψ ∈ H1
0 , where C,G1, and

G2 are given by (6). Besides, we have the following estimations∫ 1/2

0

|G1|ψ2dy ≤ g1

∫ 1/2

0

ψ2

y2
dy,

∫ 1/2

0

|G2|ψ2dy ≤ g2

∫ 1/2

0

ψ2

y2
dy, (18)

where

g1 =
1

2

[(
1− γ

2
Ma2

0

)
sup

0<y≤1/2

(K0K0y) +
(

1− γ

2

)
Ma2

0 sup
0<y≤1/2

(
K2

0

y

)]
,

g2 =
1

16

[
−γ

2

4
Ma4

0 + (γ − 1)Ma2
0

](
sup

0<y≤1/2

(
K2

0

y

))2

. (19)

Proof: Based on (6), for each ψ ∈ H1
0 we have the following estimations

|G1|ψ2 ≤

∣∣∣∣∣12(Ma2
0 − 1)K0K0y

ψ2

y2

∣∣∣∣∣+

∣∣∣∣∣12 (γ2 − 1
)
Ma2

0

(
K0K0y −

K2
0

y

)
ψ2

y2

∣∣∣∣∣
≤ 1

2

(
1− γ

2
Ma2

0

)
K0K0y

ψ2

y2
+

1

2

(
1− γ

2

)
Ma2

0

K2
0

y

ψ2

y2
≤ g1

ψ2

y2
,

and

|G2|ψ2 =
1

16

[
−γ

2

4
Ma4

0 + (γ − 1)Ma2
0

](
K2

0

y

)2
ψ2

y2
≤ g2

ψ2

y2
.

Besides, since
∫ 1/2

0
ψ2

y2 dy is convergent, which is by virtue of Hardy’s inequality (17). We

conclude that
∫ 1/2

0
|G1|ψ2dy and

∫ 1/2

0
|G2|ψ2dy are convergent, and so do

∫ 1/2

0
G1ψ

2dy and∫ 1/2

0
G2ψ

2dy (absolute convergence implies convergence for improper integrals). Moreover,

the convergence of
∫ 1/2

0
Cψ2dy follows from the convergence of

∫ 1/2

0
ψ2

y
dy, which is in turn

by virtue of the comparison ψ2

y
< ψ2

y2 for every 0 < y ≤ 1/2.

Appendix C
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Proof of Theorem 1: By virtue of (7) and Appendix B, the boundary value problem

(BVP) (7) is equivalent to

ξ − Ω(I + CA)−1G1ξ − Ω2(I + CA)−1G2ξ = 0.

Appendix B also implies that the operators (I + CA)−1G2 and (I + CA)−1G1 are compact

(the product of a bounded and a compact operator is compact, see for example Tosio (1966).

Besides, the operator (I + CA)−1G2 is positive definite if 0 < Ma0 < 2
√
γ−1
γ

< 1.

Case (I): When Ma0 = 0, the incompressible flow case, the BVP (7) becomes

ξ − Ω(I + CA)−1G1ξ = 0.

Since G1(K0, K0y, y; 0) = −K0K0y

2y2 < 0 for every 0 < y < 1/2, the operator G1 is positive

definite. Then, BVP (7) is put into an equivalent form

(I + CA)−1G1ξ =
1

Ω
ξ, ξ ∈ H. (20)

In accordance with the spectral theorem by Rudin (1991), (20) has a countable set of non-

negative eigenvalues with Ω = 0+ being its only possible accumulation point. Moreover,

we have the following definition of Ω1 derived from the Rayleigh quotient of the BVP (5)

(Hadeler 1967)

Ω1 = inf
ψ∈H1

0−{0}

∫ 1/2

0
ψ2
ydy +

∫ 1/2

0
π2

8x2
0y
ψ2dy∫ 1/2

0

K0K0y

2y2 ψ2dy
.

We next show that the Ω1 defined above is positive, and hence it is an eigenvalue of the

BVP (7). It is sufficient to show that this is the case for x0 →∞. Letm1 ≡ sup
0<y≤1/2

(K0K0y) >

0. For each ψ ∈ H1
0 we have∫ 1/2

0

ψ2
ydy ≥ 1

4

∫ 1/2

0

ψ2

y2
dy =

1

2m1

∫ 1/2

0

m1ψ
2

2y2
dy ≥ 1

2m1

∫ 1/2

0

K0K0y

2y2
ψ2dy,

in which the first inequality is the Hardy’s inequality (17). Therefore, Ω1 ≥ 1
2m1

> 0 and

thus Ω1 is the least positive eigenvalue of the BVP (7).

Case(II): When 0 < Ma < 2
√
γ−1
γ

< 1, the subsonic compressible case, then the operator

(I + CA)−1G2 is positive definite, compact, and self-adjoint. The BVP (7) is equivalent to

the following system (I + CA)−1G1 ((I + CA)−1G2)
1
2

((I + CA)−1G2)
1
2 0

 ξ

ν

 =
1

Ω

 ξ

ν

 , (ξ, ν) ∈ H× H, (21)
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where

ν ≡ Ω
(
(I + CA)−1G2

) 1
2 ξ.

Since the coefficient matrix of (21) is compact and self-adjoint. In accordance with the

spectral theorem, the BVP (7) has a countable set of non-negative eigenvalues with Ω = 0+

being its only possible accumulation point. Moreover, we have the following definition of Ω1

derived from the positive quadratic Rayleigh functional of the BVP (5) (Hadeler 1967

Ω1 = inf
ψ∈H1

0−{0}

∫ 1/2

0
G1ψ

2dy +
√
D

−2
∫ 1/2

0
G2ψ2dy

, (22)

where

D = D(K0, K0y, x0, y;Ma0)

≡

(∫ 1/2

0

G1ψ
2dy

)2

− 4

∫ 1/2

0

G2ψ
2dy

∫ 1/2

0

[
ψ2
y + (1−Ma2

0)
π2

8x2
0y
ψ2

]
dy. (23)

Similar to case (I), it is sufficient to show that the above variational infimum is bounded

below by a positive constant. Again, it is sufficient to show that this is the case for x0 →∞.

Let g1 and g2 be the positive constants defined by (19), and let m2 be the positive root of

the quadratic equation

g2m
2
2 + g1m2 − 1/4 = 0. (24)

We claim that
√
D ≥ −

∫ 1/2

0

G1ψ
2dy − 2m2

∫ 1/2

0

G2ψ
2dy (25)
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for each ψ ∈ H1
0 . We have

(25)⇐=
√
D ≥

∣∣∣∣∣
∫ 1/2

0

G1ψ
2dy + 2m2

∫ 1/2

0

G2ψ
2dy

∣∣∣∣∣
⇐⇒ D ≥

(∫ 1/2

0

G1ψ
2dy

)2

+ 4m2
2

(∫ 1/2

0

G2ψ
2dy

)2

+ 4m2

(∫ 1/2

0

G1ψ
2dy

)(∫ 1/2

0

G2ψ
2dy

)

⇐⇒ −4

∫ 1/2

0

G2ψ
2dy

∫ 1/2

0

ψ2
ydy ≥ 4m2

2

(∫ 1/2

0

G2ψ
2dy

)2

+ 4m2

(∫ 1/2

0

G1ψ
2dy

)(∫ 1/2

0

G2ψ
2dy

)

⇐⇒
∫ 1/2

0

ψ2
ydy ≥ −m2

2

∫ 1/2

0

G2ψ
2dy −m2

∫ 1/2

0

G1ψ
2dy

⇐=

∫ 1/2

0

ψ2
ydy ≥ m2

2

∫ 1/2

0

|G2|ψ2dy +m2

∫ 1/2

0

|G1|ψ2dy

⇐=

∫ 1/2

0

ψ2
ydy ≥

∫ 1/2

0

(g2m
2
2 + g1m2)

ψ2

y2
dy ⇐⇒

∫ 1/2

0

ψ2
ydy ≥

1

4

∫ 1/2

0

ψ2

y2
dy,

in which the last two lines are due to (18) and (24), respectively. Hardy’s inequality (17)

implies that the last line is valid. Therefore, Ω1 ≥ m2 and thus Ω1 is the least positive

eigenvalue of the BVP (7).

Appendix D

Notice that condition (9) does not contradict to the assumption
(
K0

y

)
y
≤ 0 for every

1 < γ < 5/3.

Proof of Theorem 2: Let Ma0 = 2
√
γ−1
γ

. For every 0 < y < 1/2 we have G2 = 0 and

G1 =
2− γ
γ

K0

2y2

[
2(γ − 1)

γ

K0

y
−K0y

]
, (26)

where G1, G2 are given by (6) and are viewed as functions of y only. Observe that conditions

(9) and (10) are equivalent to G1(y∗) < 0 and G1 6= 0 a.e. over 0 < y < 1/2, respectively.

First, if G1(y) < 0 for every y ∈ (0, 1/2). Let

a =
2− γ

2γ
sup

0<y≤1/2

K0 sup
0<y≤1/2

(
2(γ − 1)

γ

K0

y
+K0y

)
,
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it is clear that for each ψ ∈ H1
0−{0} we have |G1| ≤ aψ

2

y2 . By carrying out the same argument

as Case (I) in the proof of Theorem 1, we conclude that the BVP (7) has a countable set of

non-negative eigenvalues. Besides, we have∫ 1/2

0

ψ2
ydy ≥

1

4

∫ 1/2

0

ψ2

y2
dy =

1

4a

∫ 1/2

0

aψ2

y2
dy ≥ 1

4a

∫ 1/2

0

(−G1)ψ2dy.

Thus, we obtain

Ω1 = inf
ψ∈H1

0−{0}

∫ 1/2

0
ψ2
ydy +

∫ 1/2

0
π2

8x2
0y
ψ2dy∫ 1/2

0
(−G1)ψ2dy

≥ 1

4a
> 0.

Therefore, Ω1 is the least positive eigenvalue of the BVP (7).

On the other hand, if G1(y1) > 0 for some y1 ∈ (0, 1/2), then G1 changes sign over

0 < y < 1/2. It is clear that G1 and C given by (6) are locally integrable over 0 < y < 1/2

(i.e. they are integrable over any closed sub-interval of (0,1/2)). Besides, condition (10)

ensures that |G1| > 0 a.e over 0 < y < 1/2. In accordance with standard Sturm-Liouville

theory (see, for example, Zettle 2005). The BVP (5) has a least positve eigenvalue Ω1.

We have so far proved first part in the statement of Theorem 2. Suppose next K0(y) =

1− exp(−2by), where the constant b > 0 is arbitrary. Let h : y 7→ yK0y

K0
− 2(γ−1)

γ
be a function

with domain (0, 1/2). Let us show that h′ < 0 for 0 < y < 1/2. We have

h′(y) =
2b

[exp(2by)− 1]2
[(1− 2by) exp(2by)− 1] . (27)

Let k : y 7→ [(1− 2by) exp(2by)− 1] be a function with domain (0, 1/2). Since k′(y) =

−4b2y exp(2by) < 0 for every 0 < y < 1/2 and k(0+) = 0, we have k < 0 for 0 < y < 1/2.

Since h′ has the same signature as k for 0 < y < 1/2, we conclude that h′ < 0 for 0 < y < 1/2.

Thus, h strictly decreases over 0 < y < 1/2. Therefore, h has at most one zero over (0, 1/2).

Besides, since h(0+) = 2−γ
γ

> 0 for every 1 < γ < 5/3, in accordance with the first part of

Theorem 2, we conclude the existence of a least positive eigenvalue Ω1 to the BVP (5) for

this case.

Appendix E

Proof of Theorem 3: Let K0 be a circulation function which is not directly proportional

to y, and let ψ ∈ H1
0 be a non-zero function. Recall that G1, G2 and C were defined by (6).
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Since K0, γ, and ψ are given, these coefficients depend on Ma0 and y only hereafter. Let

l : Ma0 7→
∫ 1/2

0
G1ψ

2dy be a function over 0 < Ma0 < 1. By virtue of Hardy’s inequality

(17), l is well-defined and continuous. Hence, we have

lim
Ma0→1−

∫ 1/2

0

G1ψ
2dy =

∫ 1/2

0

lim
Ma0→1−

G1ψ
2dy = −

∫ 1/2

0

K0

2y

(
1− γ

2

)(K0

y

)′
ψ2dy > 0.

By continuity of l, we conclude that l > 0 in a vincinity of Ma0 = 1−. Besides, since

C,G2 > 0 in a vincinity of Ma0 = 1−, the following estimation holds for every Ω ≥ 0 in a

vincinity of Ma0 = 1−∫ 1/2

0

ψ2
ydy +

∫ 1/2

0

Cψ2dy + Ω

∫ 1/2

0

G1ψ
2dy + Ω2

∫ 1/2

0

G2ψ
2dy > 0. (28)

Thus, ψ is not an eigenfunction of the BVP (5). Moreover, since ψ was arbitrarily chosen, we

conclude that the BVP (5) does not have non-negative eigenvalue in a vincinity of Ma0 = 1−.

Appendix F

Kummer’s and Tricomi’s functions have the following properties: for each a, b, z ∈ C with

b not being a non-positive integer, we have the following identities (Slater 1960)

1F1(a; b; z) =
∞∑
n=0

(a)n
(b)nn!

zn = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)2!
z2 + · · · , (29)

exp(−z)1F1(a; b; z) = 1F1(b− a, b,−z), (30)

1F1(1 + a; b; z) = 1F1(a; b; z) +
z

a

d

dz
1F1(a; b; z), (31)

lim
a→∞ 1F1

(
a, b,−z

a

)
= Γ(b)z

1
2
− b

2Jb−1(2
√
z) (32)

We first prove that the expression φ(η) ≡ exp
(
−
√

∆
2
η
)

1F1

(
1−

(1−Ma2
0)

(
2− π2

8x2
0Ω

)
√

∆
; 2 ; η

√
∆

)
is real-valued for each Ma0 ≥ 0, Ω > 0 and 0 < x0 ≤ ∞. We analyze three cases according

to the sign of ∆.

Case (I): If ∆ < 0, then η
√

∆ = iη
√
|∆| is purely imaginary. Applying (29) and (30) we
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obtain

φ(η) = exp

(
−
√

∆

2
η

)
1F1

1−
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ; η

√
∆


= exp

(√
∆

2
η

)
1F1

1 +
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ; − η

√
∆

 = φ(η).

This implies that the complex conjugate of φ is equal to itself, so φ is real-valued in this

case.

Case (II): If ∆ = 0, then Ma0 = 0 or Ma0 = 2
√
γ−1
γ

. Applying (31) and (32) we obtain

φ(η) = lim
∆→0

1F1

−(1−Ma2
0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ; η

√
∆



=
Γ(2)√

η(1−Ma2
0)
(

2− π2

8x2
0Ω

)J1

(
2

√
η(1−Ma2

0)

(
2− π2

8x2
0Ω

))

=
1√

η(1−Ma2
0)
(

2− π2

8x2
0Ω

)J1

(
2

√
η(1−Ma2

0)

(
2− π2

8x2
0Ω

))
,

which is also real-valued.

Case (III): If ∆ > 0, then from (29) it is clear that φ is real-valued.

The following expression

exp

(√
∆

2
η

)
Ψ

1 +
(1−Ma2

0)
(

2− π2

8x2
0Ω

)
√

∆
; 2 ;−η

√
∆


has a non-zero imaginary part for each real value of ∆ and 0 < y ≤ 1/2 (Bateman et al.

1955). Hence, by Theorem 3, for the solution (12) to be a real-valued solution of (11), it

enforces that B = 0. Taking A = 1 as a scaling parameter of the linear problem, we obtain

(13). Besides, Ω1 is determined by Φ(1/2) = 0 which leads to (14).
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