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Spacecraft relativemotion planning is concerned with the design and execution of maneuvers relative to a nominal

target. These types ofmaneuvers are frequently used inmissions such as rendezvous and docking, satellite inspection,

and formation flight, where exclusion zones representing spacecraft or other obstaclesmust be avoided. The presence

of these exclusion zones leads to nonlinear and nonconvex constraints that must be satisfied. In this paper, a novel

approach to spacecraft relative motion planning with obstacle avoidance and thrust constraints is developed. This

approach is based on a graph search applied to a virtual net of closed (periodic) naturalmotion trajectories, where the

natural motion trajectories represent virtual net nodes (vertices), and adjacency and connection information is

determined by conditions defined in terms of safe, positively invariant tubes built around each trajectory. These

conditions guarantee that transitions from one naturalmotion trajectory to another naturalmotion trajectory can be

completed without constraint violations. The proposed approach improves the flexibility of a previous approach

based on the use of forced equilibria and has other advantages in terms of reduced fuel consumption and passive

safety. The resultingmaneuvers, if planned onboard, can be executed directly or, if planned off-board, can be used to

warm start trajectory optimizers to generate further improvements.

Nomenclature

A, Ac, �A = discrete-time, continuous-time, and closed-loop
dynamics matrices

B = discrete-time input matrix
B�Z; γ� = ball of radius γ centered at state vector Z
e = state error
J = trajectory cost
K = state-feedback gain matrix
k = discrete-time instant (integer)
N = set of state vectors corresponding to a closed natural

motion trajectory
O�si; Si� = ellipsoidal exclusion zone centered at point si with

shape matrix Si
P = positive-definite ellipsoidal shape matrix
R = set of real numbers
T N = safe, positively invariant tube for natural motion

trajectory N
T s

N = safe tube for natural motion trajectory N

u = control vector
umax = maximum allowable control
X = spacecraft state vector consisting of relative

positions and velocities, x, y, z, _x, _y, _z
Xn = state vector along a natural motion trajectory
Xni = state vector along natural motion trajectory N i

Z = set of integers
ΔT = discrete-time update period
δ = integer corresponding to initial controller reference

point along a natural motion trajectory
Ek;N = ellipsoidal set centered at Xn�k� along natural

motion trajectory N with scale factor ρk
Es
k;N = safe ellipsoidal set centered at Xn�k� along natural

motion trajectory N with scale factor ρsk
Ξ, Ξw = unweighted and weighted connection arrays
Π, Πw = unweighted and weighted adjacency matrices
ρk = ellipsoidal scale factors used to generate safe,

positively invariant tubes
ρsk = ellipsoidal scale factors for safe sets
ρu, ρOi;k = maximum possible ellipsoidal scale factors consid-

ering control constraints, or the ith exclusion zone
constraint

I. Introduction

R ELATIVE motion planning must frequently account for
obstacles, represented by exclusion zones, to ensure safe

operations. For a satellite mission, these obstacles may be pieces of
orbital debris, other spacecraft, or areas that must be avoided due to
sensor constraints. Obstacle avoidance requirements often result
in nonlinear and/or nonconvex constraints on vehicle motion,
complicating the application of conventional trajectory optimization
methods. Although the problem of motion planning with obstacle
avoidance is commonly encountered in many fields, such as robotics
[1], several factors make the application to spacecraft motion
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planning unique. First, fuel efficiency is important for spacecraft
because refueling is not possible. Second, spacecraft frequently have
limited onboard computing capabilities, thereby requiring fast and
efficient onboard trajectory computation algorithms. Finally,
spacecraft dynamics include periodic behavior and many natural
motion trajectories (NMTs), which can be followed with no control
usage and used to generate fuel efficient trajectories.
An extensive body of literature exists related to the problem of

spacecraft motion planningwith obstacle avoidance. A concise review
of this literature is provided here to highlight the range ofmethods that
have been applied to the problem and to motivate the proposed
approach. A method for calculating fuel-optimal trajectories with
obstacle avoidance is formulated in [2] using mixed-integer linear
programming. A method to generate ΔV optimal paths to inspect
another spacecraft while avoiding keep-out zones is described in [3],
using Sparse Optimal Control Software (SPOCS) [4]. The generation
of passively safe paths (i.e., trajectories that guarantee collision
avoidance in the presence of anomalous behaviors such as thruster
failure) is considered in [5] using receding horizon control.
Spacecraft formation reconfiguration while avoiding collisions has

been proposed using several methods, including state-constrained
optimal control techniques [6], a passivity-based sliding surface
controller [7], and heuristics involving separation planes [8]. An
eccentricity/inclination vector separation method to ensure adequate
separation distances between spacecraft in formation is described in
[9]. This method has been studied for use in both the GRACE and
PRISMA formation flight missions [10,11]. Methods for trajectory
planning with obstacle avoidance using artificial potential functions
have also been considered (e.g., [12–14]). Approaches based on
solving nonconvex trajectory optimization problems with a sequence
of convex optimization problems have been proposed in [15,16].
Motion planning using graph search is desirable in spacecraft

applications because the efficiency and simplicity of certain
algorithms, such as Dijkstra’s algorithm [17], make implementation
onboard a satellite with limited computational capability achievable.
A graph theoretic framework is applied in [18] to leader following
(LF) spacecraft formation control. Rapidly exploring random trees
(RRT) and similar algorithms have also been applied to spacecraft
motion planning while accounting for exclusion zones [19]. A fast
marching tree (FMT) algorithm was applied in [20] to develop safe
paths for satellite rendezvous.
A framework for spacecraft relative motion trajectory planning

with obstacle avoidance that exploits graph search on a virtual net
consisting of static points (forced equilibria) in Hill’s relative motion
frame [21] has been proposed in [22] (see also [23] for more recent
work). In [22], safe (constraint admissible), positively invariant sets
were used to determine feasibility of node-to-node transitions.
Furthermore, it has been shown that the approach can be easily
extended to include bounded disturbances and moving obstacles. In
this paper, we demonstrate that it is possible to integrate closed
nonequilibrium NMTs into this framework. Specifically, NMTs are
used to represent virtual net nodes, and adjacency is determined by
conditions defined in terms of safe, positively invariant tubes around
each trajectory. The use of closed NMTs has several advantages
compared with the forced equilibria considered in [22]. First,
traveling along closed NMTs in steady state is possiblewith zero fuel
consumption, whereas zero fuel consumption is only achieved for
forced equilibria along the in-track axis. Second, the use of closed
NMTs expands the set of trajectories available to compose the overall
maneuver from, while ensuring the resulting maneuvers are fuel
efficient (i.e., when the maneuver consists of NMTs and transfers
connecting them, fuel is consumed only during the transfers and to
compensate for perturbations). Third, the use of closed NMTs has
advantages in terms of passive safety because the spacecraft can
remain on a closed NMT, which does not intersect known obstacles,
and avoid collisions even if thrust is temporarily lost. Because closed
NMTs are open-loop unstable (however, not exponentially unstable),
generally these passive safety properties can be exploited over short
periods of time, after which thrust-based control must be regained.
For background information on invariance, safe positively

invariant sets, and their use, see, for example, [24–27]. Invariant tubes

are used in [28–30] to account for the effect of unmeasured
disturbances. Other relatedwork on trajectory planningwith obstacle
avoidance, not specifically developed for spacecraft, includes [31], in
which a linear quadratic regulator (LQR)-Trees algorithm was
developed to exploit a set of trajectories, calculated using trajectory
optimization algorithms, and stabilized using time-varying LQR
controllers. The regions of attraction for these trajectories
“probabilistically cover” the controllable state space. More recent
related developments include [32], where a trajectory planning
method is developed using invariant “funnels” around a set of open-
loop maneuvers. These funnels are used to piece together multiple
trajectories, forming a path that avoids obstacles. The trajectory
planning is accomplished online and can be recomputed during
execution if additional obstacles are discovered. Finally, Singh et al.
[33] developed a control law that can be applied to track a nominal
trajectory and uses this control law to form an invariant tube around
the trajectory. The use of this control law guarantees that motion will
remain within the tube, and thus constraints are satisfied. Because the
controller can be applied to any trajectory, the nominal path may be
adjusted during execution while keeping the control law unchanged.
Our work is different from [31–33] in that it is focused on taking into
account spacecraft relative motion dynamics, which are open-loop
unstable, and the trajectories considered here are periodic NMTs,
which can be obtained without resorting to trajectory optimization
methods and which can be followed with zero fuel consumption (or
minimal fuel consumption if perturbations are considered) once
reached. Additionally, fixed gain LQR controllers are used in our
work, which also leads to simple implementation. Finally, for
trajectory planning, we use simple graph search on a virtual net with
node adjacency rules that already account for known obstacles, hence
feasible trajectories (satisfying both control and exclusion zone
constraints) may be planned with minimal computations.
In our approach, the adjacency of nodes representing closedNMTs

is determined by forming safe, positively invariant tubes around each
NMT. These tubes are generated as unions of safe ellipsoidal sets
centered at points along each NMT. Within each tube, constraints on
both control and state variables are satisfied, and thus constraint
satisfaction, including obstacle avoidance, is guaranteed for any
trajectory that stays within the tubes. In contrast to [22], where the
positive invariance of ellipsoidal sets around forced equilibria was
guaranteed regardless of the set size, in this work, the size of each
ellipsoidal set in the tube around a closedNMTmust be appropriately
selected to ensure positive invariance. Two methods of selecting the
ellipsoidal set sizes are developed and proven to yield safe, positively
invariant tubes. One of these methods is conservative (i.e., forms a
relatively small tube), but requires minimal computations. A second
method forms the largest possible safe, positively invariant tube
consisting of ellipsoidal sets, at the expense of slightly increased
computational load. This increase in tube size provides additional
flexibility in trajectory planning.
Trajectories for the spacecraft to follow are generated by graph

search using Dijkstra’s algorithm to produce a sequence of NMTs.
The spacecraft traverses this sequence of NMTs using a fixed gain
state-feedback control law with a time-varying reference along the
current NMT. When the spacecraft reaches the prescribed transfer
location, the controller reference is switched to the next NMT in the
sequence. Trajectories with improved fuel efficiency are obtained by
selecting appropriate costs for the node adjacency matrix. The
onboard calculation of safe trajectories is facilitated by the
introduction of a connection array, which provides the starting point
and initial controller reference point to be used to execute transfers
between any two adjacent NMTs. These trajectories may be either
executed as is or used towarm start open-loop trajectory optimization
algorithms.
As a summary, the specific contributions of this work are

1) development and utilization of a virtual net consisting of nodes
corresponding to closed NMTs for planning spacecraft relative
motion trajectories that can be closed-loop followed, 2) formulation
of two procedures to generate safe, positively invariant tubes around
each NMT, 3) generation of a connection array, which can be used to
simplify the online calculations needed to generate safe trajectories
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between pairs of NMTs, and 4) demonstration of the ability of the

proposed framework to generate trajectories that avoid obstacles

through simulations.
This paper is organized as follows. In Sec. II, the spacecraft model

is summarized including the dynamics, control law, constraints, and a

description of the types of NMTs considered. Section III describes

the generation of safe, positively invariant tubes and provides two

procedures that can be used to generate these tubes. Section IV

introduces the virtual net, which is used to reduce the problem of

trajectory planning to a conventional graph search. Methods are

provided to determine both the adjacency of the virtual net and

connection information, which provides parameters used to generate

safe transfers between NMTs. Simulation results are presented in

Sec.V to illustrate these trajectory planningmethods. Finally, Sec.VI

contains concluding remarks.

II. Preliminaries

A. Spacecraft Model

The spacecraft dynamics model is formulated in Hill’s reference

frame, which has the origin at a specified location on a nominal

circular spacecraft orbit. The x axis is in the radial direction, defined
by the line from the center of the Earth to the origin, the z axis is in the
direction of the nominal orbit angular momentum vector, and the y
axis completes the right-handed coordinate system. As the origin of

this reference frame moves along the nominal circular orbit, the

reference frame rotates at a rate equal to the mean motion of the

circular orbit. Circular orbits are considered here because 79% of

satellite orbits are nearly circular (have an eccentricity of less than

0.025 [34]), and this case yields time-invariant relative motion

dynamics with closed NMTs that are easy to characterize.
In Hill’s frame, the motion of a spacecraft relative to the origin is

expressed using the linearized Clohessy–Wiltshire (CW) equations

[35], which in discrete-time are

X�k� 1� � AX�k� � Bu�k� (1)

where k ∈ Z≥0 denotes the discrete-time instants

X � � x y z _x _y _z �T (2)

and where x, y, and z, are the relative coordinates of the spacecraft in
Hill’s frame; _x, _y, and _z are components of the relativevelocity vector;

and u�k� is the control vector corresponding to continuous thrust

forces.
Assuming an update period of ΔT s, the discrete-time dynamics

and input matrices have the following form:

A � exp�AcΔT� (3)

B �
Z

ΔT

0

exp�Ac�ΔT − τ�� dτ
�

03×3
1
m I3×3

�
(4)

where m is the mass of the spacecraft, 03×3 is the 3 × 3 matrix

consisting of all zeros, I3×3 is the 3 × 3 identity matrix, and

Ac �

2
6666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0

3
7777775

(5)

where ω �
�����������
μ∕R3

0

q
is the mean motion of the nominal circular orbit,

μ is Earth’s gravitational parameter, andR0 is the orbital radius of the

nominal circular orbit.

B. Natural Motion Trajectories

A NMT is defined as a solution to Eq. (1) with u � 0. Depending
on the initial condition, NMTs can take a variety of forms, including

ellipses, spirals, lines, and stationary points [36]. With an initial

condition X�0� � �X0 selected such that

_y�0� � −2ωx�0� (6)

the resulting trajectory will be periodic (i.e., closed), with a period

equal to that of the nominal circular orbit τ � 2π∕ω [37].
Closed NMTs can be stationary points along the y axis (in-track),

periodic line segments in the y–z plane with y�k� � y�0�, or ellipses
centered at a point along the y axis. Figure 1 shows examples of these

types of closed NMTs. Methods to generate initial conditions for

these types of closed NMTs are available (see, e.g., [38,39]) and are

also included in Appendix A for completeness.
IfΔT is chosen such that τ∕ΔT ∈ Z>0, where τ is the period of the

nominal circular orbit, a closed NMT N starting from a specified

initial condition �X0 can be defined as a finite set of state vectors:

N � �X0��N�
n
Xn�k�jXn�0�� �X0;Xn�k�1��AXn�k�;k∈ �0;kmax�

o

(7)

where kmax � �τ∕ΔT� − 1.
Remark 1: Note that the set of state vectors defined by Eq. (7)

completely defines the NMT because, for k > kmax, the sequence of

state vectors repeats, that is, Xn�kmax � 1� � Xn�0�, Xn�kmax � 2�
� Xn�1�, etc. In general, Xn�k� � Xn� ~k� where

~k � mod�k; kmax � 1� (8)

and where the modulo functionmod�x; y� returns the remainder after

division of x by y. In all subsequent developments, any index k > kmax

is taken to be the equivalent index ~k ∈ �0; kmax� given by Eq. (8).

C. Spacecraft Control Law

The nominal feedback law that guides the spacecraft to a desired

closed NMT is given by

u�k� � K�X�k� − Xn�k� δ�� (9)

where K is a state-feedback gain matrix for which the matrix �A �
A� BK is Schur (all eigenvalues are in the interior of the unit disk in

the complex plane), X�k� is the current spacecraft state,Xn�k� δ� ∈
N is a time-varying reference along theNMT, and δ ∈ Z is a shift that

gives the controller set point at the first time instant the controller is

switched to the specified NMT as the target.

-6
2
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-2

1 1

0

Z 
O

u
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o
f-

P
la

n
e 
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m

]

2

0.5

Y In-Track [km]

0

4

X Cross-Track [km]

0

6

-1 -0.5
-2 -1

Stationary Point NMT
Periodic Line NMT
Elliptical NMT

Fig. 1 Examples of different types of closed NMTs.
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D. Closed-Loop Dynamics

Combining Eqs. (1) and (9), the closed-loop dynamics are given by

X�k� 1� � �AX�k� − BKXn�k� δ� (10)

where �A � A� BK. Defining the state error as e�k; δ� � X�k�
−Xn�k� δ�, the error dynamics are given by

e�k� 1; δ� � �Ae�k; δ� (11)

In the subsequent developments, the notation for the state error is
simplified by omitting δ, that is, e�k� � e�k; δ� and e�k� 1�
� e�k� 1; δ�.

E. Constraints

Two constraints are considered. First, the thrust is limited as

ku�k�k∞ − umax ≤ 0 (12)

where k ⋅ k∞ denotes the infinity norm. This constraint is
equivalently stated as

ηTi K�X�k� − Xn�k� δ�� ≤ umax; i � 1; 2; : : : ; 6 (13)

where ηi are the vectors corresponding to the vertices of the unit
infinity-norm hypercube, andumax is the normbound specified by the
mission designer.
Second, the satellite is required to stay out of one or more

prescribed exclusion zones. These exclusion zones could, for
example, represent the locations of other spacecraft or obstacles that
must be avoided. The exclusion zones are modeled as ellipsoidal
sets centered at specified points si ∈ R3. The ith exclusion zone is
defined as

Oi�si; Si� � fX ∈ R6j�ΦX − si�TSi�ΦX − si� ≤ 1g (14)

where Si � STi > 0 is a shape matrix based on characteristics of the
obstacle, including any uncertainty in its position, and the matrix
Φ � � I3×3 03×3 � extracts the position components from the state
vector. The constraints on the spacecraft’s position based on the l
exclusion zones are given by X�k� ∈= Oi�si; Si�, i � 1; 2; : : : ; l,
which is equivalent to the inequality constraints

1 − �ΦX�k� − si�TSi�ΦX�k� − si� ≤ 0; i � 1; 2; : : : ; l (15)

Note that the constraints are given as inequalities in Eqs. (12) and
(15) to facilitate their use in the simulation results given in Sec. V.

III. Safe, Positively Invariant Tubes for Closed NMTs

In this section, safe, positively invariant tubes are defined
for closed NMTs. In this context, “safe” (constraint admissible)
implies that constraints are satisfied pointwise within the tube, and
“positively invariant” implies that, if the spacecraft state is within the
tube at a given time instant, and the spacecraft motion is governed by
the closed-loop dynamics (10), then it will remain within the tube for
all future time instants. In the following subsections, this tube is
formed by generating ellipsoidal sets about each state vector along
the NMT N and then adjusting the sizes of these sets such that the
tube formed by their union is both safe and positively invariant.

A. Safe Sets

An ellipsoidal set, centered at the state vector Xn�k� ∈ N with
scale factor ρk ≥ 0, is defined as

Ek;N � fX ∈ R6j�X − Xn�k��TP�X − Xn�k�� ≤ ρkg (16)

where the shape matrix P � PT > 0 is chosen to satisfy the discrete
Lyapunov inequality

�A� BK�TP�A� BK� − P < 0 (17)

and where A and B are the discrete-time state and input matrices
defined in Eqs. (3) and (4), respectively, and K is the state-feedback
gainmatrix defined in control law (9).With the samemotivation as in
[22], where safe sets are formed around forced equilibriumpoints, the
set Es

k;N defined by Eq. (16) with ρk � ρsk, that is,

Es
k;N � fX ∈ R6j�X − Xn�k��TP�X − Xn�k�� ≤ ρskg (18)

is safe if the scale factor ρsk is set to the largest possible value, such that
both 1) the control constraint (12) is satisfied pointwisewithin the set
with δ � 0, that is,

ku�k�k∞ � kK�X − Xn�k��k∞ − umax ≤ 0 for all X ∈ Es
k;N

and 2) the exclusion zone constraints (15) are satisfied pointwise
within the set, that is,

1 − �ΦX − si�TSi�ΦX − si� ≤ 0;

i � 1; 2; : : : ; l for all X ∈ Es
k;N

The scale factor ρsk is determined by first calculating the maximum
possible scale factor for which item 1 holds, denoted by ρu, and for
which item 2 separately holds, denoted by ρOi;k. Then, ρ

s
k is selected

to be

ρsk � minfρu; ρOi;k; i � 1; 2; : : : ; lg (19)

1. Maximum Scale Factor Considering the Control Constraint

The control limit on the scale factor ρsk, denoted ρu, is found by
solving, for i � 1; 2; : : : ; 6, the following convex optimization

problem:

maximize
X

ηTi K�X − Xn�k��

subject to
1

2
�X − Xn�k��TP�X − Xn�k�� ≤ α (20)

If a value for α is found such that the solutions X�
i of problem (20)

satisfy maxifηTi K�X�
i − Xn�k��g � umax, then ρu � 2α.

The solution to problem (20) is obtained following the method
developed in [22]. The matrix P is diagonalized as P � VTΛV,
where V is orthogonal andΛ is a diagonal matrix with eigenvalues of
P on the diagonal. Next, by defining parameters ζi and hi as

X − Xn�k� � VTΛ−1∕2ζi (21)

and

hTi � ηTi KV
TΛ−1∕2 (22)

the optimization problem (20) is reformulated as

maximize
ζi

hTi ζi

subject to
1

2
ζTi ζi ≤ α (23)

which has the solution of

ζi �
hi

khik2
������
2α

p
(24)

Therefore, the control limit on the scale factor ρsk is given by

ρu � min
i

u2max

khik22
(25)

Although the scale factor ρu corresponds to the largest ellipsoidal
set for which the control constraint is satisfied pointwise within the
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set, the control constraint will also be satisfied pointwise in any set

with ρsk ≤ ρu.
Remark 2:Note that the scale factor ρu is independent of the point

Xn�k�. Hence, ρu is constant for allXn�k� andmust only be calculated

once. This differs from the case considered in [22], in which the

controller set points were forced equilibria and the value of ρu
depended on the chosen forced equilibria.

2. Maximum Scale Factor Considering Exclusion Zone Constraints

Themaximum size scale factor ρOi;k, considering the ith exclusion
zone constraint, is determined as the solution to a convex

optimization problem in which the minimum-sized ellipsoid,

centered at Xn�k�, is sought, which shares a common point with the

exclusion zone Oi�si; Si�. This is accomplished by solving

minimize
ρOi;k;X

ρOi;k

subject to �X − Xn�k��TP�X − Xn�k�� ≤ ρOi;k;
�ΦX − si�TSi�ΦX − si� ≤ 1

(26)

The solution to problem (26) is obtained viaKarush–Kuhn–Tucker

(KKT) conditions [40], following the method used in [22].
Note that, although the scale factor ρOi;k corresponds to the largest

ellipsoidal set for which the ith exclusion zone constraint is satisfied
pointwisewithin the set, the ith exclusion zone constraint will also be
satisfied pointwise in any set with ρsk ≤ ρOi;k.
Remark 3: If the point Xn�k� lies within a keep-out zone [i.e.,

Xn�k� ∈ Oi�Si; si�], then no safe set may be formed. In this case,

ρOi;k is set to zero.

B. Safe Tubes

A safe tube centered on the NMT N is defined by

T s
N �

[
k∈�0;kmax �

Es
k;N (27)

This tube is safe in the sense that, for allX�k� ∈ T s
N , the exclusion

zone constraints (15) are satisfied and there exists δ ∈ Z such that the

control constraint (12) is satisfied.
Figure 2 shows three orthographic views of the projection of the

six-dimensional tube T s
N onto the position space for an example

closed NMT. The tube T s
N was formed considering the control

constraint (12) and a single exclusion zone centered at the origin. In

Fig. 2, different colors correspond to different ellipsoids Es
k;N ⊂ T s

N .
If the spacecraft initial state X�0� ∈ T s

N , then, with a suitable

choice of δ, constraints are guaranteed to be satisfied at that instant.

However, there is no a priori guarantee that constraints will be

satisfied for k > 0. The next subsection develops methods to

construct a new tube T N , such that T N is both safe and positively

invariant, guaranteeing constraints will be satisfied for all future time

instants.

C. Safe, Positively Invariant Tubes

A safe, positively invariant tube T N is developed by generating a

new set of scale factors ρk from ρsk, such that the property of positive
invariance holds and ρk ≤ ρsk for all k ∈ �0; kmax�, hence T N ⊂ T s

N
and the safety of the tube is maintained.
To guarantee all constraints are satisfied, it must hold that the

spacecraft statevector is alwayswithin the ellipsoidal set corresponding

to the current controller set point (i.e., X�k� ∈ Ek�δ;N ). Therefore, the

following definition for positive invariance is used:
Definition 1: Given an NMT N , a tube

T N �
[

k∈�0;kmax �
Ek;N (28)

is positively invariant with respect to the closed-loop dynamics given

by Eq. (10) if there exists a δ ∈ Z such that

X�k1� ∈ Ek1�δ;N ⇒ X�k2� ∈ Ek2�δ;N ∀ k2 ≥ k1; k1; k2 ∈ Z≥0

(29)

Remark 4:Note that the definition of positive invariance inEq. (29)

implies T N , as a set, is positively invariant with the appropriate

selection of the control law (9) and δ.
Two theorems are now presented that give conditions on the values

of ρk that result in a positively invariant tube. These theorems can then

be used to generate values for the scale factors ρk from the safe scale

factors ρsk. The condition in Theorem 1 is a sufficient condition and is

conservative. The condition in Theorem 2 is both necessary and

sufficient for positive invariance. However, applying Theorem 2 to

determine ρk requires slightlymore computation time comparedwith

Theorem 1.

1. Conditions for Positive Invariance

Two assumptions are needed for both Theorems 1 and 2. These

assumptions were previously introduced in Sec. II and are restated

here for clarity:
Assumption 1: The closed-loop dynamics and error dynamics are

given by Eqs. (10) and (11), respectively.
Assumption 2: The ellipsoidal set shape matrix P � PT > 0 is

chosen such that �ATP �A − P � −Q, Q � QT > 0.
The condition for positive invariance in Theorem 1 is developed by

leveraging Assumption 2, which ensures that the state error e�k�
always decays to successively smaller ellipsoids as time progresses,

that is, e�k�TPe�k� − e�k� 1�TPe�k� 1� > 0 for all k ∈ Z≥0.
Theorem1:SupposeAssumptions 1 and 2hold. Then, the tubeT N

is positively invariant if

ρk1 ≤ ρk2 whenever k1 ≤ k2 (30)

Proof: Without loss of generality, let k2 � k1 � 1 and let δ � 0.
Assume X�k1� ∈ Ek1;N , therefore e�k1�TPe�k1� ≤ ρk1. By Assump-

tions 1 and 2,

e�k2�TPe�k2� − e�k1�TPe�k1� � e�k1�T� �ATP �A − P�e�k1�
� −e�k1�TQe�k1� (31)

Fig. 2 Visualization of the safe tube T s
N projected onto R3.
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Since Q � QT > 0,

e�k2�TPe�k2� − e�k1�TPe�k1� ≤ −λmin�Q�ke�k1�k22 (32)

where λmin�Q� ∈ R>0 is the minimum eigenvalue of the matrix Q.
Therefore, e�k2�TPe�k2� < e�k1�TPe�k1�. If ρk1 ≤ ρk2, it is
guaranteed that e�k2�TPe�k2� < ρk2. Therefore, X�k2� ∈ Ek2 ;N . □

Theorem1may be applied to generate scale factors ρk from ρsk such
that the resulting tube is both safe and positively invariant. It is shown
later in Sec. III.C.2 that the calculations required are minimal;
however, this tube may be much smaller than the initial safe tube,
limiting its utility in trajectory planning. To address this limitation,
Theorem 2 is developed, which gives a necessary and sufficient
condition for positive invariance. Hence, a tube generated using
Theorem 2 is as large as possible given an ellipsoidal shape matrixP.
The idea behind the condition for positive invariance given in

Theorem 2 is to determine the smallest possible amount by which the
error ellipsoid eTPewill shrink over one discrete-time step. Then, by
ensuring that the ellipsoidal sets, with size defined by scale factors ρk,
along the NMT do not shrink by more than this amount, the resulting
tube is guaranteed to be positively invariant. This idea is first applied
in Lemma 1. The proof of Lemma 1 relies on the following
proposition.
Proposition 1: Let D ⊂ Rn be a compact, convex set with a

nonempty interior, and let f�X�:D → R be convex. If f�X� ≤ a
when X ∈ ∂D (i.e., X is on the boundary of D), then f�X� ≤ a for
all X ∈ D.
Proof: The proof follows from the standard fact that the maximum

of a convex function over a compact, convex set occurs on the
boundary of the set (see [41] Corollary 32.2.1). □

Lemma 1: Suppose Assumptions 1 and 2 hold. The tube T N is
positively invariant if and only if

ρk�1 ≥ ρk − �d�ρk� ∀ k ∈ Z≥0 (33)

where

�d�ρk� �min
e�k�

e�k�TPe�k� − e�k� 1�TPe�k� 1�

subject to e�k�TPe�k� � ρk (34)

Proof:Without loss of generality, let δ � 0. To prove sufficiency,
suppose conditions (33) and (34) hold. Assume X�k� ∈ Ek;N ,
therefore, e�k�TPe�k� ≤ ρk. Define D � fejeTPe ≤ ρkg. The set D
is a closed and bounded subset ofR6 (i.e., compact). It is also convex
because it is a sublevel set of the strictly convex function eTPe,
P > 0. Define f�e�k�� � e�k�T �ATP �Ae�k� � e�k� 1�TPe�k� 1�.
The matrix �A is invertible, hence �ATP �A > 0, and f�e�k�� is convex.
From condition (34), f�e�k�� ≤ ρk − �d�ρk� for all e�k� ∈ ∂D.
Therefore, by Proposition 1,

f�e�k�� � e�k� 1�TPe�k� 1� ≤ ρk − �d�ρk� (35)

for all e�k� ∈ D. Combining condition (33) and Eq. (35) yields

e�k� 1�TPe�k� 1� ≤ ρk − �d�ρk� ≤ ρk�1 (36)

Therefore, X�k� 1� ∈ Ek�1;N . The same arguments may be
repeated to show X�k� 2� ∈ Ek�2;N ; : : : , X�k� n� ∈ Ek�n;N ,
therefore, T N is positively invariant.
The proof for necessity is by contradiction. Suppose T N , defined

by Eqs. (28) and (16), is positively invariant, but condition (33) does
not hold, that is,

ρk�1 < ρk − �d�ρk� (37)

Consider X�k� such that e�k�TPe�k� � ρk. Then, condition (34)
gives e�k� 1�TPe�k� 1� ≤ ρk − �d�ρk�. Hence, there exists a X�k�
such that X�k�∈Ek;N and e�k�1�TPe�k�1��ρk− �d�ρk�>ρk�1,

hence X�k�1�∈=Ek�1;N , contradicting the assumption that T N is
positively invariant. □

Note that, although Lemma 1 provides a necessary and sufficient
condition for positive invariance, using the condition (33) to generate
ρk from ρsk may result in a ρk > ρsk. This is because, to apply condition
(33), the parameter �d�ρk�must be calculated from a givenvalue of ρk,
and then used to potentially adjust ρsk�1 upward. Therefore, although
the tube T N is guaranteed to be positively invariant, it may not be
safe. To generate a positively invariant tube that is also guaranteed to
be safe, an equivalent condition to condition (33) is derived by
calculating the minimum change in ρk over one discrete-time step by
looking backward in time. Before stating Theorem 2, the following
Lemma is presented to establish the equivalence of the conditions
given in Lemma 1 and Theorem 2.
Lemma 2: Suppose Assumptions 1 and 2 hold. Then,

ρk ≤ ρk�1 � d�ρk�1� ∀ k ∈ Z≥0 (38)

where

d�ρk�1� � min
e�k�1�

e�k�TPe�k� − e�k� 1�TPe�k� 1�

subject to e�k� 1�TPe�k� 1� � ρk�1 (39)

if and only if

ρk�1 ≥ ρk − �d�ρk� ∀ k ∈ Z≥0 (40)

where

�d�ρk� �min
e�k�

e�k�TPe�k� − e�k� 1�TPe�k� 1�

subject to e�k�TPe�k� � ρk (41)

Proof: See Appendix B.1. □

Theorem 2: Suppose Assumptions 1 and 2 hold. The tube T N is
positively invariant if and only if

ρk ≤ ρk�1 � d�ρk�1� ∀ k ∈ Z≥0 (42)

where

d�ρk�1� � min
e�k�1�

e�k�TPe�k� − e�k� 1�TPe�k� 1�

subject to e�k� 1�TPe�k� 1� � ρk�1 (43)

Proof: The proof follows directly from Lemmas 1 and 2. □

2. Application of Theorems 1 and 2

Both Theorems 1 and 2 can be used to generate safe, positively
invariant tubes by determining values for scale factors ρk from the
safe scale factors ρsk. Next, procedures are given to accomplish this.

a. Application of Theorem 1. Because of the periodicity of the
NMTs, to satisfy the conditions of Theorem 1, a safe, positively
invariant tube T N may be formed using the following procedure.
Procedure 1:
1) Set ρk � min

k∈�0;kmax �
ρsk for k ∈ �0; kmax�.

It is clear that defining T N using this method requires minimal
calculations, however, doing so may result in a tube much smaller
than the safe tube T s

N . This will occur, for example, for an NMT that
passes very near an exclusion zone.

b. Application of Theorem 2. By applying Theorem 2, a larger tube
may be formed. To do so, the quadratically constrained quadratic
program (QCQP) given in Eq. (43) must be solved. This is done
efficiently by first converting the QCQP to a linear program (LP) (see
Appendix C). Then, the scale factors ρk are obtained from ρsk using
the following procedure.
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Procedure 2:
1) Start at k such that

k� 1 � argmin
k∈�0;kmax �

�ρsk� (44)

and set ρk�1 � ρsk�1. If multiple k satisfy Eq. (44), any such k
can be chosen as the starting location.

2) Determine d�ρk�1� and set

ρk �
�
ρk � ρsk if ρsk ≤ ρk�1 � d�ρk�1�;
ρk � ρk�1 � d�ρk�1� otherwise

(45)

3) Increment k � k − 1 and repeat step 2. When k � −1, set
k � kmax and continue until returning to the starting index.

Remark 5: Procedure 2 yields the largest safe, positively invariant

tube composed of ellipsoidal sets with shape matrix P. Specifically,
setting ρk using Procedure 2 results in the largest possible ρk such that
both ρk ≤ ρsk and condition (42) from Theorem 2 holds.
Remark 6: Note that, if any ρsk � 0, then the NMT passes through

an exclusion zone andmotion along the NMT is not safe. In this case,

using either Procedure 1 or 2 to select ρk will result in ρk � 0 for all
k ∈ �0; kmax�. This is desirable because it ensures that the NMTwill

not be included in any trajectories planned using the methods

described in Sec. IV.
Using Procedure 1 or 2, a safe, positively invariant tube with

ρk > 0 for all k ∈ �0; kmax� can be formed about any trajectory that

does not enter any exclusion zones. This statement is presented

formally in Theorems 3 and 4. In these theorems, the notation ∅ is
used to denote the empty set.
Theorem 3: Suppose Assumptions 1 and 2 hold, umax > 0, and

N ∩ Oi�si; Si� � ∅, for i � 1; 2; : : : ; l. Then, there exist ρk > 0 for
all k ∈ �0; kmax� obtained using Procedure 1 such that T N is safe and
positively invariant.
Proof: See Appendix B.2 □

Theorem 4: Suppose Assumptions 1 and 2 hold, umax > 0, and
N ∩ Oi�si; Si� � ∅ for i � 1; 2; : : : ; l. Then, there exist ρk > 0 for
all k ∈ �0; kmax� obtained using Procedure 2 such that T N is safe and
positively invariant.
Proof: See Appendix B.3 □

3. Example Showing Implementation of Procedures 1 and 2

The safe, positively invariant tubes for an exampleNMTgenerated
using Procedures 1 and 2 are illustrated in Fig. 3. Figure 3a contains
plots of both ρsk and ρk showing how the values of ρsk are adjusted
using Procedures 1 and 2. Note that the values for ρk generated using
Procedure 1 are all constant and equal to the minimum value of ρsk. It
is clear that, using Procedure 1, the values of ρk are limited by the
minimum value of ρsk.
The values of ρk generated using Procedure 2 are also less than or

equal to the corresponding ρsk value, however, they increase and
decrease along the trajectory such that the less conservative condition
of Theorem 2 is satisfied. The starting location for Procedure 2 is
denoted in Fig. 3a by an open box □. Because Procedure 2 starts at
the minimum value of ρsk and proceeds backward in terms of the
discrete-time instances, and because the maximum value for ρk is

a) Plot of ρρ s
k, and ρk obtained by adjustments to ρ s

k using
Procedures 1 and 2

c) Projection of safe, positively-invariant tube corresponding to
ρk calculated with Procedure 1

d) Projection of safe, positively-invariant tube corresponding to
ρk calculated with Procedure 2

b) Projection of safe tube corresponding to ρ s
k

Fig. 3 Example illustrating the application of Procedures 1 and 2.

3106 FREY ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

29
14

 



limited by thevalue of ρk�1, scale factors ρk determined by Procedure
2 are also limited by the minimum value of ρsk.
Figures 3b–3d show projections of the safe tube T s

N , and safe,
positively invariant tubes T 1

N and T 2
N generated using Procedures 1

and 2, respectively. Note that T 1
N ⊂ T 2

N ⊂ T s
N . Additionally, the

tubeT 2
N shown in Fig. 3d is very similar to the safe tubeT s

N shown in
Fig. 3b, illustrating that Procedure 2 makes relatively small
adjustments to the scale factors ρsk.

IV. Virtual Net for Safe Trajectory Planning

Using the safe, positively invariant tubes defined earlier, safe
trajectories are planned between desired closed NMTs. Given a set of
m closed NMTs M � fN 1;N 2; : : : ;Nmg, a virtual net is formed.
This virtual net consists of a directed graph with one node
corresponding to each closedNMTN i ∈ Mand is represented by an
adjacencymatrix and connection array, defined next. A single node is
sufficient for eachNMTdue to the periodicity (i.e., if the spacecraft is
able to reach a single point along a closed NMT, it is able to reach all
points along the closed NMT given sufficient time). Using the safe,
positively invariant tube for each node, the adjacency of nodes in the
virtual net is determined, along with connection information, which
consists of both the starting point and the initial controller reference
point for a transfer between NMTs. Note that the adjacency
information only determines if a safe transfer is possible from one
node to another, whereas the connection information provides the
starting location and controller set point to actually execute a transfer.
After the adjacency and connection information has been
determined, safe trajectories are generated using efficient graph
search algorithms such as Dijkstra’s algorithm [17].

A. Virtual Net Adjacency

The definition of adjacency of two nodes N 1 and N 2 is given as
follows.
Definition 2: N 1 is adjacent to N 2 if there exists k1 ≤ kmax and

k̂2 ≤ kmax such that

B�Xn1�k1�; γ1� ⊂ Ek̂2;N 2
(46)

where B�Z; γ� � fXjkX − Zk2 ≤ γg, and γ1 is a small parameter
chosen by the mission designer. Note that choosing a larger value for
γ1 may result in fewer pairs of adjacent nodes. See Remarks 7 and 8
for additional discussion regarding the choice of γ1. Figure 4 shows a
sketch illustrating the parameters used in the adjacency definition
(46). The requirement B�Xn1�k1�; γ1� ⊂ Ek̂2;N 2

in definition (46)
alongwith the positive invariance of T N 2

ensures that a transfer from
N 1 to N 2 may be executed without violating constraints by setting
the controller reference point toXn2�k̂2� ∈ N 2when the spacecraft is
near Xn1�k1� ∈ N 1.

Remark 7: It is also possible to define adjacency between nodes by
replacing the requirement B�Xn1�k1�; γ1� ⊂ Ek̂2 ;N 2

with

Xn1�k1� ∈ Int�Ek̂2;N 2
� (47)

which is consistent with the definition of adjacency between forced
equilibrium points in [22]. If a pair of nodes are adjacent by Eq. (47),
then there exists a γ1 > 0 such that the pair is also adjacent by
definition (46). The adjacency definition (46) is used here because
this allows for more control in defining the switching behavior
(i.e., the criteria used to determine when the controller reference
point is switched to the next node) and ensures a bettermatch between
the predicted fuel consumption in the graph search optimization
and the actual fuel consumption. Note also that, in definition (46),
B�Xn1�k1�; γ1� may be replaced with any bounded set containing
Xn1�k1� in its interior. Finally, in definition (46), the parameter γ1may
be chosen to be zero. This choice may be made to simplify adjacency
calculations at the expense of possible constraint violation because
the spacecraft only asymptotically approaches the NMT under the
control law (9). Simulations show that this simplified implementation
rarely leads to constraint violation.

1. Unweighted Adjacency Matrix

An unweighted adjacency matrix Π is generated using the

adjacency definition (46) as follows. To determine ifN i is adjacent to

N j for i; j ∈ �1; 2; : : : ; m�, a grid search over all Xni�ki� ∈ N i and

Xnj�k̂j� ∈ N j is performed until the first pair satisfying definition

(46) is found. If N i is adjacent to N j for i; j ∈ �1; 2; : : : ; m�, the
corresponding matrix element is set to one, [i.e.Π�i; j� � 1]. IfN i is

not adjacent toN j for i; j ∈ �1; 2; : : : ; m�, the corresponding matrix

element is set to �∞. Note that if N i is adjacent to N j, it does not

imply, in turn, that N j is adjacent to N i.

2. Weighted Adjacency Matrix

The unweighted adjacency matrix can be used to generate safe
trajectories between NMTs, however, these trajectories may not be
fuel efficient. To generate trajectories with decreased fuel
consumption (i.e., less control usage), a weighted adjacency matrix
Πw is generated by determining the most control-efficient transfer

between adjacent NMTs as follows. A grid search over all Xni�ki� ∈
N i and Xnj�k̂j� ∈ N j is performed. For each pair of state vectors

Xni�ki� and Xnj�k̂j� satisfying the adjacency criteria given in

definition (46), a transfer trajectory is calculated using Eq. (1) and
control law (9), starting at initial point X�0� � Xni�ki� and initial

controller reference Xn�0� � Xnj�k̂j�. The trajectory is propagated

until the current state is within a small neighborhood of the controller

reference [i.e., until k � �k such that X� �k� ∈ B�Xnj� �k� k̂j�; γ2�,
where γ2 is a small positive value chosen by themission designer (see
Remark 8)]. The cost of transition is calculated as the total control
used over this trajectory, scaled by 1∕ΔT,

utot �
X�k

k�0

ku�k�k1 (48)

where k ⋅ k1 denotes the 1-norm [note that the 1-norm is used here to
represent fuel usage on a spacecraft with three thrusters (or thruster
pairs) mounted orthogonal to each other]. The weighted adjacency
matrix Πw is formed by storing the lowest cost of transition between
adjacent NMTs in the corresponding matrix element and, for NMTs
that are not adjacent, the corresponding matrix element is set to�∞.

B. Virtual Net Connection Information

To aid in trajectory planning, in addition to the weighted and
unweighted adjacency matrices, weighted and unweighted
connection arrays Ξ and Ξw are formed. These connection arrays
store the transfer starting location and the initial controller reference
point used to execute the transfer between each pair of adjacentFig. 4 Illustration of the parameters used in adjacency definition (46).
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NMTs. Specifically, for each pair of adjacent NMTs, the

corresponding element of the connection array consists of a vector

containing the indices of the initial transfer location and initial

controller reference point to be used to execute the transfer, that is,

Ξ�i; j� � � ki k̂j �, where Xni�ki� and Xnj�k̂j� satisfy the adjacency
criteria given in definition (46).
The parameters ki and k̂j are determined for the unweighted and

weighted connection arrays as follows. For the unweighted

connection array Ξ, ki and k̂j can be any indices satisfying the

adjacency criteria of definition (46) and are selected by performing a

grid search over all Xni�ki� ∈ N i and Xnj�k̂j� ∈ N j until the first
pair satisfying definition (46) is found. Note that a transfer executed

using the information in the unweighted connection array is not

guaranteed to be fuel efficient. For theweighted connection arrayΞw,

a grid search over all Xni�ki� ∈ N i and Xnj�k̂j� ∈ N j is performed

and, for each pair Xni�ki� and Xnj�k̂j� satisfying definition (46), the

control cost (48) is calculated. The values for ki and k̂j, which
correspond to the lowest control cost, are stored in the weighted

connection array Ξw. Hence, a transfer executed using the

information in the weighted connection array is expected to be the

lowest control-cost trajectory between the specified NMTs N i and

N j when the possible starting locations and controller set points are

confined to the sets N i and N j, respectively, defined in Eq. (7).

C. Trajectory Planning

After forming the virtual net, safe trajectories can be planned

online using the initial conditions for each NMT in the virtual net and

the unweighted or weighted adjacency matrix and connection array.

Dijkstra’s algorithm is applied to generate a sequence of nodes

(NMTs) that connects given starting and ending NMTs. Note that

Dijkstra’s algorithm checks the adjacency of the entire virtual net to

generate the sequence of nodes, and that the algorithm is complete

(i.e., if a solution exists, the algorithm will return the solution).

After a sequence of NMTs has been obtained, the appropriate
connection array is used to generate a safe trajectory by switching the
controller reference to the next NMT in the sequence once the
spacecraft reaches a small neighborhood of each transfer location.
Specifically, for a spacecraft traveling toward NMT N i before
transferring to NMT N j, the connection array element
Ξ�i; j� � � ki k̂j �. The controller reference is switched to Xnj�k̂j�
at the first time instant �k when the spacecraft state vector satisfies

X� �k� ∈ B�Xni�ki�; γ3� (49)

where γ3 is a small parameter chosen by the mission designer.
Remark 8: Note that in Eq. (49), B�Xni�ki�; γ3� may be replaced

with any convex set containing Xni�ki� in its interior. Choosing the
sets used to define adjacency in definition (46) and switching in
Eq. (49) to be the same (i.e, choosing γ1 � γ3) ensures all transfer
trajectories between NMTs will satisfy constraints and therefore that
any trajectory consisting of multiple transfers between successive
pairs of NMTs will be safe. Additionally, choosing γ1 � γ2 � γ3
yields the best match between predicted and actual fuel usage.
However, as noted earlier, γ1 may be chosen to be zero to simplify
adjacency calculations. Simulations show that choosing γ1 � 0 and
γ2 � γ3 to be small, but nonzero, rarely leads to constraint violations
and provides a good estimate of fuel usage.

V. Simulations

Simulation case studies are now considered. Table 1 lists
spacecraft parameters, nominal circular orbit parameters,
constraints, and parameters used to determine adjacency, transfer
costs, and controller switching times. The state-feedback gain
matrix K for the controller (9) is an LQ gain matrix corresponding
to the selection of state and control weighting matrices given
by QLQ � 100diag� 1; 1; 1; 1 × 105; 1 × 105; 1 × 105 � and
RLQ � 2 × 107I3×3. The shape matrix P for the ellipsoidal set
computations is chosen to be the solution to the discrete-time
Riccati equation in the LQ problem [42]. The projection and
visualization of ellipsoidal sets is accomplished using the
Ellipsoidal Toolbox for MATLAB [43], and Dijkstra’s algorithm
is implemented using the MatlabBGL toolbox [44].

A. Simulation Virtual Net

A set of 84 closed NMTs is used, including 54 elliptical NMTs
centered at the origin, 15 straight line segment periodicNMTs, and 15
stationary point NMTs (in-track equilibria). These NMTs are chosen
to be evenly spaced within a box of 3.5 × 7 × 10 km in the x, y, and z
directions, respectively, centered at the origin. The 54 elliptical
NMTs are chosen to have initial conditions corresponding to all
combinations of parameters b, θ1, and θ2, defined in Appendix A,
given by b � f0.5; 0.75; : : : ; 1.75g, θ1 � f45; 90; 135g deg, and
θ2 � f−45; 0; 45g deg. The 15 straight line segment NMTs and 15
stationary point NMTs are chosen to be evenly spaced along the y
axis with intersections at y � f−3.5;−3; : : : ; 3.5g. These 84 NMTs
are shown in Fig. 5. Two virtual nets are formed, corresponding to
safe, positively invariant tubes generated using Procedures 1 and 2,
respectively.

Table 1 Parameters used in simulations

Parameter Symbol Value

Spacecraft mass m 140 kg
Nominal orbital radius for CW
dynamics

R0 7728 km

Mean motion ω 0.001027 rad∕s
Discrete-time update period ΔT 30.58 s
Discrete-time index of final point
(before repeating) on closed NMTs

kmax 199

Maximum allowable control umax 0.005 kg ⋅ km∕s2 (5 N)
Center of exclusion zone 1 s1 � 0 1 0 �T km
Center of exclusion zone 2 s2 � 0 −1 0 �T km
Shape matrix for exclusion zones Si, i � 1; 2 �1∕0.22�I3×3
Parameter used to determine
adjacency

γ1 0

Parameter used to determine cost of
transition between nodes

γ2 0.0001

Parameter used to determine
controller switching times

γ3 0.0001
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Fig. 5 NMTs in the virtual net.
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Remark 9: There is much flexibility in choosing what types of

NMTs, and how many NMTs, are included in the virtual net.

Increasing the number of NMTs in the virtual net may increase the

number of pairs of adjacent NMTs, increase the number of feasible

trajectories between NMTs, and/or decrease the cost of trajectories

connecting NMTs. These potential benefits come at the expense of

additional computations required to generate the adjacency matrix

and connection array. Development of methods to optimally choose

NMTs for the virtual net will be considered in future work.

B. Description of Simulation Figures

In the results that follow, in addition to the trajectories and

constraints, the parameter

w�k� � e�k�TPe�k� − ρik�δi
(50)

Discrete-time instant, k
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a) Trajectory and constraints generated using Procedure 1 and unweighted adjacency matrix
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b) Trajectory and constraints generated using Procedure 1 and weighted adjacency matrix
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c) Trajectory and constraints generated using Procedure 2 and weighted adjacency matrix
Fig. 6 Simulation results using Procedures 1 and 2.

Table 2 Cost comparison

Virtual net Adjacency and connections Shown in figure Cost

Procedure 1 Unweighted Fig. 6a 1480 N ⋅ s
Procedure 1 Weighted Fig. 6b 951 N ⋅ s
Procedure 2 Weighted Fig. 6c 930 N ⋅ s
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is plotted, where ρik�δi
is the ellipsoidal scale factor for the current

controller set point. This is done to demonstrate that the trajectories
stay within the tubes T N i

at all times. Note that, ifw�k� ≤ 0, then the
current state X�k� is within the safe, positively invariant tube

corresponding to the current controller set-point [i.e., X�k� ∈ T N i
].

For visual clarity, legends are not included in plots showing

trajectories. In these plots, exclusions zones are shown by gray

ellipsoids. The spacecraft trajectory is depicted as a solid pink line,
the initial NMT is a dashed green line, the final NMT is a dashed red

line, and intermediate NMTs are depicted as dashed black lines.

Transfer locations and initial controller reference points are depicted
with * and□, respectively. The initial spacecraft position is shown as

a green X, and the final position is shown with a red O (For

interpretation of the references to color in these Figures, the reader is
referred to the web version of this article.).

C. Simulation Results

Figures 6a and 6b show a simulation in which the trajectory is

constructed using the virtual net calculated using Procedure 1. In this
example, a safe trajectory is planned between two elliptical NMTs

centered at the origin. The initial condition used to generate the initial
and final NMTs are given by �Xi

0��0 1 −1 0.0005 0 −0.0007�T and
�Xf
0��0 3 0 0.0015 0 0.0015�T , respectively, with units of kilometers

for position and kilometers per second for velocity. The trajectory
calculated using the unweighted adjacency matrix and connection

array, alongwith the corresponding constraints andw�k�, are shown in
Fig. 6a, whereas the same parameters calculated using the weighted
adjacencymatrix and connection array are shown in Fig. 6b. Note that,

in each case, constraints are satisfied (i.e., all constraint values are≤0)
andw�k� ≤ 0 for the entire trajectory. Using the same initial and final

NMTs, a simulation is run using a virtual net calculated using
Procedure 2 and a weighted adjacency matrix (see Fig. 6c). Note that
this trajectory uses more intermediate NMTs then the trajectories
calculated using the Procedure 1 virtual net and that the trajectory
forms a spiral between successively larger NMTs for much of the
trajectory. The total cost J of each trajectory, corresponding to the total
control usage along that trajectory, that is,

J � ΔT
Xkfinal
0

ku�k�k1

is shown in Table 2 with units of newtons times seconds. As expected,
the trajectories planned using the weighted adjacency matrices have
lower total control costs than the trajectory planned using the
unweightedmatrices. The total cost for the trajectory plannedusing the
Procedure 2 virtual net and a weighted adjacency matrix is lower than
either cost obtained using the Procedure 1 virtual net. This reduction in
cost may be due to the increased adjacency of the Procedure 2 virtual
net compared with the virtual net calculated using Procedure 1.
Specifically, in thevirtual net formed usingProcedure 1, there are 1501
pairs of adjacent nodes, whereas in the virtual net formed using
Procedure 2, there are 2457 pairs of adjacent nodes.
An additional advantage of the increased adjacency provided by

the virtual net calculated using Procedure 2 is that safe trajectories
may be planned between NMTs that are not possible using a virtual
net calculated using Procedure 1. This is illustrated in Figs. 7 and 8.
Consider an NMT, denoted N f, that passes nearby an exclusion
zone. Such a straight line segment NMT is plotted in Fig. 7 as a solid
red line. The corresponding safe, positively invariant tube is plotted in
purple. The tube for N f generated using Procedure 1 is shown in

Fig. 7 Two views showing a) lack of connections toN f using the safe, positively invariant tube calculated using Procedure 1 and b) possible connections
to N f using the safe, positively invariant tube calculated using Procedure 2.
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Fig. 7a. Note that the tube is small and no nearby NMTs (in terms of

distance, plotted as black dashed lines) pass through it. Hence, no

other NMTs are adjacent toN f, and no trajectories ending onN f are

possible. Figure 7b shows that the tube for N f generated using

Procedure 2 is much larger and connections to N f are possible.

Figure 8 shows an example trajectory from a stationary point

NMT, given by �0 3.5 0 0 0 0�T, to N f which is generated with an

initial condition given by �Xf
0��0 0.5 0 0 0 0.0051�T. Trajectories

generated using both a weighted and unweighted virtual net

calculated using Procedure 2 are shown.Note again that the trajectory

calculated using the weighted adjacency matrix includes more

intermediate NMTs, but requires less control (fuel) to execute.

Remark 10:Note that the lack of connections toN f using a virtual

net calculated using Procedure 1, illustrated in Fig. 7a, is partially due

to the spacing between NMTs in the virtual net. If more NMTs were

added to the virtual net near N f, then connections may be possible.

However, the addition of more NMTs to the virtual net comes at the

expense of additional computations required to form the adjacency

matrix and connection array.

Remark 11:Using themethods described earlier, for the virtual net
considered here with 84 closed NMTs, the approximate computation
times required to generate the safe, positively invariant (SPI) tube
scale factors and the weighted and unweighted adjacency matrices
are shown in Table 3. Calculations are performed running MATLAB
R2016a on a MacBook Pro with a 2.8 GHz processor. Computation
time for theweighted and unweighted connection arrays is negligible
because the calculations simply consist of storing indices determined
in the adjacency calculation. After forming the virtual net, the
calculation of a safe trajectory is accomplished on the order of 0.1 s.
For implementation, the calculations to form the virtual net may be
conducted offline, and after uploading the adjacency matrix,
connection array, and NMT initial conditions to the satellite,
individual trajectories may be planned onboard.Methods to speed up
the offline calculation of the virtual net are currently being
investigated.

VI. Conclusions

In this paper, the problem of constrained spacecraft relativemotion
planning was reduced to a graph search by forming a “virtual net”
with nodes corresponding to closed natural motion trajectories. The
adjacency of the nodes in the virtual net was determined by forming
safe, positively invariant tubes, which were defined as the union of
safe ellipsoidal sets centered at discrete points along the NMT. Two
methods to compute the ellipsoidal set scale factors were described
and proven to yield safe, positively invariant tubes. By appropriately
weighting the virtual net adjacency matrix, and using a connection
array that provided information used to execute safe transfers

Discrete-time instant, k
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a) Trajectory and constraints generated using unweighted adjacency matrix (total cost: J = 2887 N·s)
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b) Trajectory and constraints generated using weighted adjacency matrix (total cost: J = 2290 N·s)
Fig. 8 Simulation results using Procedure 2.

Table 3 Approximate computation times

Computation time, min

SPI tube scale factors using Procedure 1 0.8
SPI tube scale factors using Procedure 2 1.5
Unweighted adjacency matrix 13.7
Weighted adjacency matrix 63.0
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between NMTs, fuel efficient trajectories were planned using graph

search algorithms. Simulation results showed that the developed

methodology can be used to generate feasible maneuver solutions to

the difficult, nonconvex problem of trajectory planning with obstacle

avoidance. Similar to what has been shown in [22] for a virtual net of

forced equilibria, it is expected that an additional benefit of the

framework used in this paper is the ability to both incorporate

bounded disturbances, such as actuation, navigation, and modeling

errors, and avoid moving obstacles. These developments are left to

future work.

Appendix A: Calculation of Initial Conditions
for Closed NMTs

A “stationary point” closed NMTmay be generated with an initial

condition �X0 satisfying

y�0� � y0;
x�0� � z�0� � _x�0� � _y�0� � _z�0� � 0

(A1)

and a “periodic line segment” closed NMTmay be generated with an

initial condition �X0 satisfying

y�0� � y0; z�0� � c sin�ψ�;
_z�0� � ωc cos�ψ�; x�0� � _x�0� � _y�0� � 0 (A2)

where c ∈ R gives the magnitude of oscillation (i.e., one-half the

length of the line segment), y0 gives the location of intersection with
the y axis, and the phase angle ψ can be arbitrarily chosen.
Although elliptical trajectories may be generated centered at any

point along the y axis, trajectories centered at the origin are of

particular interest because the origin of Hill’s frame is frequently a

point of special significance. For example, the origin may be the

location of another spacecraft or the center point of a spacecraft

formation. A closed elliptical NMT centered at the origin can be

generated with any initial condition satisfying Eq. (6) and

y�0� � 2

ω
_x�0� (A3)

These trajectories can be characterized by three parameters: a scale

factor b and two angles θ1 and θ2 [38]. The angles θ1 and θ2 are

measured from the origin with respect to the relative orbit normal

vector ĥ, perpendicular to the relative orbital plane, as shown

in Fig. A1.

Given b, θ1, and θ2, the initial condition �X0 is given by

�X0��bsin�ν� 2bcos�ν� csin�ψ� bωcos�ν� −2bωsin�ν� cωcos�ψ��T
(A4)

where ν is the x–y plane phase angle corresponding to the initial
condition

tan�ν − ψ� � 2
cos�θ1�
tan�θ2�

(A5)

and

c � b

sin�θ1�
���������������������������������������������
�tan2�θ2� � 4cos2�θ1�

q
(A6)

Therefore, by choosing ν ∈ �0; 2π�, and specifying b, θ1, and θ2,
the desired initial condition may be calculated using Eqs. (A4–A6).
Derivations for Eqs. (A4–A6) can be found in [38].

Appendix B: Proofs

B.1. Proof of Lemma 2

Suppose Eqs. (38) and (39) hold.
Define the following sets

D1 � fe�k� 1�je�k� 1�TPe�k� 1� � ρk�1g;
D2 � fe�k�je�k� � �A−1e�k� 1�je�k� 1� ∈ D1g;
D3 � fe�k�je�k�TPe�k� � ρkg;
D4 � fe�k� 1�je�k� 1� � �Ae�k�je�k� ∈ D3g (B1)

and consider the following notation

e 0�k� 1� ∈ D1; e 0�k� ∈ D2; e 0 0�k� ∈ D3; and e 0 0�k� 1� ∈ D4

(B2)

Then, by Eqs. (38) and (39),

e 0�k�TPe 0�k� ≥ e 0�k� 1�TPe 0�k� 1� � d�ρk�1�
� ρk�1 � d�ρk�1� ≥ ρk (B3)

From Eq. (B3), it follows that any e 0 0�k� can be expressed as
e 0 0�k� � λe 0�k�, where λ ∈ �0; 1� if ρk�1 � d�ρk�1� � ρk and
λ ∈ �0; ν�, ν ∈ �0; 1� if ρk�1 � d�ρk�1� > ρk. Therefore,

e 0 0�k� 1�TPe 0 0�k� 1� � e 0 0�k�T �ATP �Ae 0 0�k�
� λ2e 0�k�T �ATP �Ae 0�k�
� λ2e 0�k� 1�TPe 0�k� 1� ≤ ρk�1 (B4)

where the last inequality holds for λ ∈ �0; 1� and becomes a strict
inequality if λ ∈ �0; ν�, ν < 1.
Considering Eq. (B4),

e 0 0�k�TPe 0 0�k� − e 0 0�k� 1�TPe 0 0�k� 1�
� ρk − e 0 0�k� 1�TPe 0 0�k� 1� ≥ ρk − �ρk�1 − ϵ� (B5)

where ϵ � 0 if λ ∈ �0; 1� and 0 < ϵ ≤ ρk�1 if λ ∈ �0; ν�. Hence, �d�ρk�
defined in Eq. (41) is given by

�d�ρk� � ρk − �ρk�1 − ϵ� (B6)
and

ρk�1 � ρk � ε − �d�ρk� ≥ ρk − �d�ρk� (B7)

therefore Eq. (40) holds.
Fig. A1 Depiction of angles θ1 and θ2 used to parametrize elliptical
NMTs centered at the origin.
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The proof in the opposite direction is similar. Suppose Eqs. (40)
and (41) hold. Define the following sets

E1 � fe�k�je�k�TPe�k� � ρkg;
E2 � fe�k� 1�je�k� 1� � �Ae�k�je�k� ∈ E1g;
E3 � fe�k� 1�je�k� 1�TPe�k� 1� � ρk�1g;
E4 � fe�k�je�k� � �A−1e�k� 1�je�k� 1� ∈ E3g (B8)

and consider the following notation

~e�k� ∈ E1; ~e�k� 1� ∈ E2; �e�k� 1� ∈ E3; �e�k� ∈ E4 (B9)

Then, by Eqs. (40) and (41),

~e�k� 1�TP ~e�k� 1� ≤ ~e�k�TP ~e�k� − �d�ρk� � ρk − �d�ρk� ≤ ρk�1

(B10)

From Eq. (B10) it follows that any �e�k� 1� can be written as
�e�k� 1� � λ ~e�k� 1�, where λ ∈ �1; σ�, σ ∈ R>1 if ρk − �d�ρk� �
ρk�1 and λ ∈ �1� ν; σ�, ν ∈ �1; σ� if ρk − �d�ρk� < ρk�1. Therefore,

�e�k�TP �e�k� � �e�k� 1�T �A−1TP �A−1 �e�k� 1�
� λ2 ~e�k� 1�T �A−1TP �A−1 ~e�k� 1�
� λ2 ~e�k�TP ~e�k� ≥ ρk (B11)

where the last inequality holds for λ ∈ �1; σ� and becomes a strict
inequality if λ ∈ �1� ν; σ�. Considering Eq. (B11),

�e�k�TP �e�k� − �e�k� 1�TP �e�k� 1� � �e�k�TP �e�k� − ρk�1

≥ �ρk � ϵ� − ρk�1 (B12)

where ϵ � 0 if λ ∈ �1; σ� and 0 < ϵ ≤ ρk if λ ∈ �1� ν; σ�. Hence,
d�ρk�1� defined in Eq. (39) is given by

d�ρk�1� � �ρk � ϵ� − ρk�1 (B13)

and

ρk � ρk�1 � d�ρk�1� − ϵ ≤ ρk�1 � d�ρk�1� (B14)

hence Eq. (38) holds. □

B.2. Proof of Theorem 3

Choosing ρk using Procedure 1 ensures that the resulting set ρk,
k ∈ �0; kmax� satisfies Theorem 1. Hence, T N is positively invariant.
Because Procedure 1 results in ρk ≤ ρsk for all k ∈ �0; kmax�, T N is
also safe. Because umax > 0 and N ∩ Oi�si; Si� � ∅ for
i � 1; 2; : : : ; l.,

min
k∈�0;kmax �

ρsk > 0

Therefore, using Procedure 1 to set ρk yields ρk > 0 for all
k ∈ �0; kmax�. □

B.3. Proof of Theorem 4

Choosing ρk using Procedure 2 ensures that the resulting set ρk,
k ∈ �0; kmax� satisfies Theorem 2. Hence, T N is positively invariant.
Because Procedure 2 results in ρk ≤ ρsk for all k ∈ �0; kmax�, T N is
also safe. It remains to show that, using Procedure 2, ρk > 0 for all
k ∈ �0; kmax�. Because umax > 0 and N ∩ Oi�si; Si� � ∅ for
i � 1; 2; : : : ; l.,

min
k∈�0;kmax �

ρsk > 0

Per step 1 of Procedure 2, the first ρk is chosen to be

ρk�1 � min
k∈�0;kmax �

ρsk > 0

Therefore, to show that Procedure 2 results in ρk > 0 for all
k ∈ �0; kmax�, it suffices to show that d�ρk�1� > 0 for ρk�1 > 0. From
Assumptions 1 and 2,

e�k�TPe�k� − e�k� 1�TPe�k� 1� � e�k� 1� �A−1Q �A−1e�k� 1�
≥ λmin�Q�k �A−1e�k� 1�k22 > 0 (B15)

for e�k� 1� ≠ 0. Therefore, d�ρk�1� ≥ λmin�Q�k �A−1e�k� 1�k22 >
0 for ρk�1 > 0. □

Appendix C: Converting Quadratically Constrained
Quadratic Program to Linear Program

The solution to the QCQP

d�ρk�1� � min
e�k�1�

e�k�TPe�k� − e�k� 1�TPe�k� 1�

subject to e�k� 1�TPe�k� 1� � ρk�1 (C1)

is obtained by reformulating the QCQP as an LP [45], which can be
solved efficiently bymany direct methods. First, Eq. (C1) is rewritten
using the error dynamics

d�ρk�1� � min
e�k�1�

e�k� 1�T �Qe�k� 1�

subject to e�k� 1�TPe�k� 1� � ρk�1 (C2)

where �Q � �A−1TP �A−1 − P. The matrices �Q > 0 and P > 0 are
simultaneously diagonalized with an invertible matrix L such that
L �QLT � I6×6, and LPLT � PD, where I6×6 is the 6 × 6 identity
matrix and PD is a diagonal matrix [46]. The matrix L is calculated as
follows: L � �TU�−1, where T � VD, the matrix V has columns
corresponding to the normalized eigenvectors of the matrix �Q, D is a
diagonal matrix with entries consisting of the square roots of
eigenvalues of the matrix �Q, and the matrix U has columns
corresponding to the normalized eigenvectors of the matrix T−1PT−1.
Let e�k� 1� � LTy. With this substitution, problem (C2)

becomes

d�ρk�1� � min
y
yTy

subject to yTPDy − ρk�1 � 0 (C3)

Next, define zi � y2i , where yi denotes the ith entry of the vector y,
and let PDi denote the �i; i� entry of PD. Then, the problem (C3) is
restated as an LP:

d�ρk�1� � min
zi;i�1;2; : : : ;6

X6
i�1

zi

subject to
X6
i�1

�PDizi� − ρk�1 � 0;

zi ≥ 0; i � 1; 2; : : : ; 6 (C4)
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