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ABSTRACT 

Many emerging applications of sensing microsystems in health care, environment, 

security and transportation systems require improved sensitivity and selectivity, redundancy, 

robustness, increased dynamic range, as well as small size, low power and low cost.  Providing 

all of these features in a system consisting of one sensor is not practical or possible.  Micro 

electro mechanical microsystems (MEMS) that combine a large sensor array with signal 

processing circuits could provide these features.  

To build such multi-transducer microsystems we get inspiration from “hair”, a structure 

frequently used in nature. Hair is a simple yet elegant structure that offers many attractive 

features such as large length to cross-sectional area ratio, large exposed surface area, ability to 

include different sensing materials, and ability to interact with surrounding media in 

sophisticated ways. In this thesis, we have developed a microfabrication technology to build 3D 

biomimetic hair structures for MEMS multi-transducer platform. Direct integration with CMOS 

will enable signal processing of dense arrays of 100s or 1000s of MEMS transducers within a 

small chip area.  

We have developed a new device structure that mimics biological hair. It includes a 

vertical spring, a proof-mass atop the spring, and high aspect-ratio narrow electrostatic gaps to 

adjacent electrodes for sensing and actuation. Based on this structure, we have developed three 

generations of 3D high aspect-ratio, small-footprint, low-noise accelerometers. Arrays of both 

xxi 



high-sensitivity capacitive and threshold accelerometers are designed and tested, and they 

demonstrate extended full-scale detection range and frequency bandwidth.  

The first-generation capacitive hair accelerometer arrays are based on Silicon-on-Glass 

(SOG) process utilizing 500 µm thick silicon, achieving a highest sensor density of ~100 

sensors/mm2 connected in parallel. Minimum capacitive gap is 5 μm with device height of 

400 μm and spring length of 300 μm.  

A custom-designed Bosch deep-reactive-etching (DRIE) process is developed to etch 

ultra-deep (> 500 µm) ultra-high aspect-ratio (UHAR) features (AR > 40) with straight sidewalls 

and reduced undercut across a wide range of feature sizes. A two-gap dry-release process is 

developed for the second-generation capacitive hair accelerometers. Due to the large device 

height at full wafer thickness of 1 mm and UHAR capacitive transduction gaps at 2 µm that 

extend > 200 µm, the accelerometer achieves sub-µg resolution (< 1µg/√Hz) and high sensitivity 

(1pF/g/mm2), having an area smaller than any previous precision accelerometers with similar 

performance. Each sensor chip consists of devices with various design parameter to cover a wide 

range. Bonding with metal interlayers at < 400 °C allows direct integration of these devices on 

top of CMOS circuits.  

The third-generation digital threshold hair accelerometer takes advantage of large aspect-

ratio of the hair structure and UHAR DRIE structures to provide low noise (< 600 ng/√Hz per 

mm2 footprint proof-mass due to small contact area) and low power threshold acceleration 

detection. 16-element (4-bit) and 32-element (5-bit) arrays of threshold devices (total chip area 

being < 1 cm2) with evenly-spaced threshold gap dimensions from 1 µm to 4 µm as well as with 

hair spring cross-sectional area from 102 µm to 302 µm are designed to suit specific g-ranges 

from < 100 mg to 50 g. 
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This hair sensor and sensor array technology is suited for forming MEMS transducer 

arrays with circuits, including high performance IMUs as well as miniaturized detectors and 

actuators that require high temporal and spatial resolution, analogous to high-density CMOS 

imagers. 
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Chapter 1 INTRODUCTION 

Researchers have continued to explore new approaches to develop miniaturized sensors 

and actuators with improved performance, enhanced functionality, smaller size and lower cost. 

Innovations are made possible with significant advances in design/analysis techniques, integrated 

circuits, micro/nano fabrication and packaging technology. One of the many approaches is based 

on a multi-transducer platform and microsystem which takes advantage of co-fabricated sensor 

arrays and integration with signal conditioning circuitry. Taking inspiration from one of the most 

commonly occuring structures in nature, large arrays of biomimetic hair sensor systems are a 

promising candidate for a multi-transducer platform that can potentially provide many advanced 

features: improved sensitivity and selectivity, redundancy, enhanced robustness, increased 

dynamic range and enhanced functionality. 

 

Our group has proposed the basic elements of a highly functional, sensitive and selective 

biomimetic hair sensor system as shown in [1]. These elements are: 1) the core high aspect-ratio 

small-footprint hair-like structure with large surface-volume ratio configured with an array to 

 
Fig. 1.1. Biomimetic hair sensor system [1]. 

1 



effectively interact with external environment; 2) the transduction elements which efficiently 

converts the external physical parameters to electrical signals; 3) local interfacing circuits to 

improve sensitivity and selectivity, and 4) signal processing and control electronics.  

This chapter starts with the motivation for developing a biomimetic hair multi-transducer 

microsystem. Potential benefits of such sensor system include providing both high accuracy and 

high frequency selectivity measurement over wide dynamic range. We also present a discussion 

of existing MEMS biomimetic hair sensors and sensor arrays, and concludes by presenting the 

contribution and organization of this thesis. 

1.1 Motivation for Biomimetic Hair Multi-Transducer Microsystem 

There are many types of sensors and actuators found in biological systems and among them, 

hair-like structures are used extensively to achieve a myriad of functions including: air/fluid flow 

sensing for aerodynamic control of wing structures, temperature sensing for insulation or 

temperature control, acoustic or vibration sensing, tactile sensing, chemical sensing etc. Cilia 

interact with neural cells when stimulated by specific physical movements which are 

electromechanically converted into electrical potentials enabling the sensing of mechanical motion. 

 

Examples include the lateral line hair in aquatic vertebrates [2], cerci in crickets [3] and 

the cochlear hair cells in human and other mammals [4]. The neuromasts called cupula going 

     
                                            (a)                                                            (b) 
Fig. 1.2. Hair in nature: (a) Neuromast called cupula going down the side of the fish [2]; (b) Air 
flow sensing in crickets by appendages call “cerci” [3]. 
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down the side of the fish bends in response to the water flow. The cluster of sense hairs 

embedded in protective, gel-like domes within the cupula converts the fluid-flow to electrical 

potentials. Air flow sensing in crickets is achieved by appendages called “cerci” where different 

hair lengths and directions provide frequency selectivity and directivity. In humans and other 

mammals, the vestibular system that detects gravity, linear motion and rotary motion and 

cochlear in the auditory system both rely on the phenomenal speed and sensitivity of the hair 

cells [4].  

Sound can be represented as the sum of a set of sinusoidal components of different 

frequencies and amplitudes. The cochlear can separate the acoustic frequencies along its length 

like an acoustic prism. The 35 mm-long basilar membrane in human cochlear responds to 

frequencies from less than 100 Hz to 20 kHz, with logarithmic frequency mapping such that each 

decade occupies an equivalent distance (Figure 1.3(a)).  

Sound waves are initially relayed by the middle ear bones and set in motion the tapered 

basilar membrane. Upward displacement of the basilar membrane stimulates the hair cells by 

bending their stereociliary bundles against the acellular tectorial membrane. Submicron 

deflections of the stereociliary bundles on the inner hair cells in the cochlear are detected by the 

outer hair cells and forces are generated to augment the signal, with the outer hair cells 

functioning as both sensor and motor. The cochlear transmits signals to the auditory nerve and 

eventually to the auditory cortex in the brain.  

 Researchers have different theories that explain the remarkable frequency selectivity 

ability of the auditory system. It partly relies on mechanical resonances of the basilar membrane. 

Sound of different frequencies excite localized patterns of vibration at different positions along 
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the membrane, with the resonant frequency of each section determined by the average mass, 

stiffness, and damping of the basilar membrane (Figure 1.3(b)).  

 

Frequency selectivity is also by the change in morphology of outer hair cells (OHCs) 

located in the organ of Corti within the cochlear. The OHC morphology changes along the length 

of the cochlear duct, with shorter OHCs at the base and longer OHCs at the apex. OHC have a 

cylindrical shape and are about 9 μm in diameter. They vary in length from ~20 μm at the basal 

end of the cochlea to approximately 90 μm at the apex. Figure 1.3(c) shows an example of the V-

shaped “tuning curves” of 3 nerve fibers. For each one, the characteristic frequency (CF) 

represents the frequency at which least energy is needed to stimulate it and elicit a response from 

a central auditory neuron. Different nerve fibers have different CFs and different thresholds. The 

CF of a fiber is roughly the same as the resonant frequency of the part of the basilar membrane 

 
(a) 

 
                           (b)                                         (c)                                            (d) 
Fig. 1.3. Hair cells in the vestibular system and cochlear: (a) Inner and outer hair cells interact 
with basilar membrane excited by sound wave;(b) (c) (d) Auditory frequency selectivity [4]. 
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that it is attached to. Figure 1.3 (d) shows OHCs from different mammals and different cochlear 

turns, with two human OHCs highlighted, one 20 µm at the basal and another one 70 µm at the 

apex. There are more than 20,000 OHCs with afferent nerve fibers in each ear in human, and 

with CFs that span the entire auditory range.  

There are many emerging transducer applications [5-12] that would desire these nice 

features of the biological systems: improved sensitivity and selectivity, redundancy, enhanced 

robustness, increased dynamic range and enhanced functionality. Biomimetic hair sensors can 

have small footprint and high integration density thus arrays of sensors can be integrated 

monolithically. 

 
Some examples are: 1) High performance inertial measurement units that requires large 

dynamic range, high resolution, as well as providing robustness and system redundancy [5-7]; 2) 

      
(a) 

 
(b) 

Fig. 1.4. Examples of potential applications of the proposed hair multi-transducer platform: 
(a) Synthetic Gyroscope [7], (b) Fully integrated tunable RF front-end [8]. 
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RF front-end models where multiple standards for wireless communications and multiple antenna 

switches need to be integrated while size needs to be kept small [8-9]; 3) Large arrays of 

miniaturized detectors and actuators with high temporal resolution and high spatial resolution for 

pattern recognition, analogous to high-density CMOS imagers [10-11]; 4) Flexible and expandable 

smart acoustic sensor array system with powerful real-time signal processing capability [12]. 

For high-performance inertial measurement unit, one can take advantage of large arrays 

of individual sensors. For example, optimally combining measurements from N sensors into a 

single estimate by Kalman filtering proves to be significantly improving the performance over 

individual elements. Xue et al. [7] demonstrated reduced Allan variance, bias instability and 

reduced noise density (0.03°/s/√Hz for the combined rate signal from the six-gyroscope array 

compared to 0.11°/s/√Hz single). Since a single-chip gyroscope array with a different correlation 

was not available, they had to take six separate MEMS gyroscopes ADXRS300 chips to form the 

gyroscope array.  

In addition, the bandwidth and dynamic range of typical MEMS based single-sensor IMU 

are usually fixed and only allows for limited tuning. They use one mechanical sensor for single 

or multiple axis detection and the bandwidth is predetermined by the mechanical resonant 

frequency of a single spring-mass-damper system. Existing wide-band inertial sensors demand 

intensive computation by the control algorithms implemented by microprocessor for further 

filtering and processing, and thus are very power hungry and slow down the control loop. Thus, 

using large array of individually tunable mechanical sensors with modulated performance can 

enable band-selective and large dynamic range inertial measurements. Redundant, reconfigurable 

and programmable mode of operation may also be realized.   
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For RF front-ends design, the radio design is required to work with different wireless 

standards implemented on many frequency bands. The front-end complexity is driven higher at 

the needs to have separate RF chains for each band. The preferred implementation has been a 

combination of parallel front-ends and several tunable broadband antennas to select the desired 

signal path [8].  

Common requirements of these arrayed microsystems are: high performance discrete 

element, large arrays of individual element with modulated specifications, and signal processing 

ability. Biomimetic multi-transducer platform is thus a perfect candidate for these applications. 

Utilizing the third dimension is necessary to build these devices in dense array, small area and at 

a lower cost.  

1.1.1 High Accuracy Over Wide Full-Scale Range 

The multi-transducer platform that mimics hair sensor arrays in nature we proposed in 

this research falls in the realm of what is known as ‘smart sensor' [13]. The fundamental idea of a 

smart sensor system is that the integration of silicon microprocessors with sensor technology not 

only provide customized outputs and interpretive power, but also significantly improve sensor 

system performance and capabilities.  

Once the behavior of the sensing elements is well studied and output has been defined, 

the electronic interface can be designed. For example, a Universal Transducer Interface (UTI) 

[14] from Smartec is available to provide interfacing for many types of application nodes: 

capacitors, platinum resistors, thermistors, resistive bridges and potentiometers. 

One of the major challenges for a smart microsystem has been to realize both high 

accuracy and wide dynamic range from a single-chip microsystem. The demand for the 

measurement to be linear, well characterized, and highly-accurate poses challenges when the 
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signals to be measure covers wide dynamic range (frequency, amplitude, etc.).  For example, for 

a Wheatstone bridge sensor readout configuration, in order to generate outputs at the same order 

of magnitude for a wide range of inputs, the bridge output will need to be amplified by a scaling 

factor (SF) for small-amplitude signals, while being divided by SF for strong signals. This will 

yield better linearity and extend full-scale-range.    

 

 

Two methods are typically employed: single-sensor/multi-processing-paths and multi-

sensor/multi-processing-paths. The latter has the potential to reduce processing circuit 

complexity and enables a more balanced system approach. 

Some examples of the single-sensor/multi-processing-paths approach is to design high 

precision variable gain amplifier by integration of the output of one sensor in the time domain 

 
Fig. 1.6. Measurement results of some of the 16 application nodes of a Smartec UTI [1.14]. 

 
Fig. 1.5. Components of smart sensors. 
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[15-17]. In [15], a low-drift variable gain amplifier is realized by a rotating chain of resistors 

where the effect of mismatch of these resistors is minimized by averaging outputs from multiple 

samples. Small signals are amplified by a larger scale factor by adjusting resistor ratio. The same 

dynamic element matching (DEM) amplifier concept was also realized by using banks of 

switched capacitors to reduce the effect of component mismatches [16]. In [17], a combined 

resistive/capacitive divider network is built to scale down the larger signals. In these cases, the 

sensing element remains the same while the circuit block cycles through each state in time. The 

system memorizes, integrates the outputs, and calculates the average value.  

 

       
                                    (a)                                                                  (b) 

  
                                                                       (c) 
Fig. 1.7. Single-sensor/multi-processing-paths approach with dynamic amplification of sensor 
output by circuit: (a) Rotating chain of K resistors as a dynamic-feedback instrumentation 
amplifier [15]; (b) A dynamic element matching (DEM) switched capacitor amplifier [16]; (d) 
A dynamic voltage divide [17]. 
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However, switching through the all the programmed states slows down the overall 

processing speed. For example, the Smartec UTI has internal frequency at 50 kHz. 

On the contrary, multi-sensor/multi-processing-paths approach is faster and provides 

additional functionalities (spatial resolution, robustness, redundancy, etc.) because arrays of 

devices are used and outputs are readily selected. However, the increase in the number of sensors 

for each application node in the smart sensor system will greatly affect the overall size and thus 

cost. It is not feasible without developing new technology.  

 
One noteworthy work in literature targeted to achieve both high accuracy and large 

dynamic range is by utilizing a course-to-fine or segmented sensing system with an array of 

devices with various designs. The pressure sensor chip proposed by A. V. Chavan et al. [18-19] 

is composed of an array of modulated dimension pressure sensors as shown in Figure 1.8. One of 

the transducers is a lower-sensitivity global range-checking device, while the other four devices 

have higher sensitivity but smaller ranges. The global device spans the entire range of 300 Torr. 

Its response is exponential in the lower half of the span and changes to being logarithmic in the 

upper half. It is not linear over its entire range thus it is more challenging to find an analytic 

         
                                       (a)                                                                     (b) 
Fig. 1.8. An integrated high resolution barometric pressure sensing system [18-19]: Measured 
output voltage of global range selection transducer and four segment transducers. 
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expression for this response over temperature and for calibration. For the segment devices, the 

nominal sensitivity for each one of them is 39 fF/Torr (3800 ppm/Torr) and they each has a short 

operational span of 70 Torr, with considerable overlap in their ranges. Their response thus is 

fairly linear. By using programmable transducer selection provided on the readout circuit, the 

global device is sampled to determine what range the ambient pressure is in, followed by 

switching to the appropriate higher-sensitivity transducer for a high-resolution measurement. 

Another noteworthy work by Hudson et al. [5] investigated in the use of controlled 

multiplexed arrays of MEMS accelerometers to provide full dynamic performance ranges, 

improved harsh environment tolerances, and improved reliability for miniature sensing systems, 

especially for inertial applications.  

An acceleration fusion algorithm to effectively expand the performance range is tested on 

both an array of three commercially-available Colibrys MS8000 series accelerometer chips, and 

an array of in-house co-fabricated SOI accelerometers on a single chip. The calculated extended 

acceleration and weight factor Wi are as followed: 

𝐴 =
∑ 𝑊𝑖(𝐶𝑖𝑉𝑖)𝑖

𝑊𝑖
=
∑ 𝑊𝑖𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖

𝑊𝑖
 (1.1) 

𝑊𝑖 = |𝑉𝑖| 𝑖𝑓 |𝑉𝑖| < 𝑀𝑖 , = 0 𝑒𝑙𝑠𝑒,  ∀𝑖.   

𝐶𝑖 = 1/𝑆𝐹 

 
 

(1.2) 

 

The weight factor 𝑊𝑖 assigned to sensor 𝑖 readout is determined by its zerod acceleration 

voltage 𝑉𝑖 and the voltage at full specified acceleration Mi. If the readout saturates (Vi ≥ Mi), the 

factor is assigned as zero. 

Compare similar devices in the Colibrys MS8000 series, MS8002 with a smaller full-scale 

range ±2 g and large scale-factor (SF) of 1000 mV/g, and MS8100 with a higher full-scale range 

±10 g and small scale-factor (SF) of 20 mV/g, the weight factor 𝑊𝑖(the zeroed voltage output 𝑉𝑖) 
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for greater-range MS8100 is much smaller at lower g-range. Thus, using this algorithm, the large 

bias (500 mg) of MS8100 will be compensated by MS8002 that provides more accurate readout. 

However, it is also true that the noise performance at lower g-range is compromised by including 

the readout from the high-range device, when compared with the single low-range device MS8002. 

Figure 1.9 shows all three accelerometers’ data, the extended range readout and the original 

input acceleration on the same plot. The extended range readout more closely follows the actual 

acceleration than any of the three accelerometers, and it is obvious that at the lower end, error of 

the high-range accelerometer was overcome by the extended-range algorithm. However, the mid-

range sensor that has a smaller bias deviates more from the actual inputs at 4-6 g when the low-

range device already saturates, so this plot may not be accurate according to the algorithm. 

 

 

 
Fig. 1.9. Extend the full-scale range by using multiplexed Colibrys MS800 series accelerometer 
arrays [5]. 
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Full-Scale 
Range

Threshold Scale 
Factor

Bias 
Calibration

MS8002 ± 2 g 0.25 mg 1000 mV/g < 10 mg

MS8010 ± 10 g 1.3 mg 200 mV/g < 50 mg

MS8100 ± 100 g 13 mg 20 mV/g < 500 mg
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Measurements are also presented on custom-designed silicon-on-insulator SOI MEMS 

accelerometer arrays with the expansion algorithm applied. The extended range measurement 

from the three accelerometers array also more closely follows the actual input acceleration, and 

the algorithm is able to compensate for the noisy acceleration measurements of the “high-g” and 

“mid-g” accelerometers. The resolution of the three accelerometers are 10 mg, 100 mg and 

1000 mg respectively from the “low-g” to “high-g” device.   

However, the overall chip area and footprint of each device is relatively large for the 

acceleration resolution they can achieve: each of them are > 2 mm on the side due to the 

thickness of device silicon layer in the SOI stack being only 100 µm. 

 
 

These previous works on single-chip pressure sensor arrays and accelerometer arrays 

have proven the efficacy of extending dynamic range while preserving relatively high 

measurement resolution and accuracy by implementing modulated designs within an array of 

devices co-fabricated on the same chip.  

 

 
Fig. 1.10. Extend the full-scale range by using of multiplexed accelerometer arrays co-
fabricated on custom SOI substrates [5]. 
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However, limitations occur as sensor array size scales up as the number of devices 

increases. To realize high-density arrayed-sensor microsystems on a single chip, new 

microfabrication technologies need to be developed both on high aspect-ratio MEMS fabrication 

techniques as well as efficient MEMS-electronics integration technology. 

1.1.2 Micromechanical Frequency Processer over Wide Frequency Spectrum  

Another key challenge in addition to achieving high accuracy over wide full-scale range 

by a sensing system with a single sensor is realizing high frequency selectivity over wide 

frequency spectrum. Instead, sensing system that consists of massive array of mechanical sensors 

with modulated frequency spectrum lines can provide such function. 

 
An array of mechanical resonators can be used to construct a vibration monitoring 

system. For example, in the scenario of vibration monitoring of engines, gears and bearings, their 

wear state frequencies or vibration signature cover a wide range from several Hertz to 10 kHz 

[6]. Wide-band output from a single sensor is processed by sophisticated electronics to analyze 

and separate the frequency components. Wibbeler et al. [6] suggests that future development of 

     
                             (a)                                                                            (b) 

Fig. 1.11. (a) Signal selective principle, and (b) stiffness modulation of the resonance frequency 
of the spring-mass pair by electrostatic forces. [20]. 
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vibration monitoring equipment will be carried out by smart sensors with fully-digital interface, 

self-test functionality and onboard storage, all at lower cost for permanent monitoring in safety 

related applications or at extremely expensive machinery. 

Mechanical signal processor is built based on the mechanical resonance of a spring-mass 

structure with direct electrostatic stiffness tuning ability as shown in Figure 1.11. An incoming 

spectrum is only amplified at the resonance frequency of a particular sensor. The advantage of 

resonance pickup compared to processing wide-band output signal by electronics is its higher 

signal-to-noise ratio (high SNR) due to the high quality factor (high Q) of the sensor structure. 

The approach will also simplify the signal conditioning circuit.  

 
To characterize the wear state of several spectrum lines, an array of sensor structures with 

stepped base frequencies can be designed to match the spectrum lines. They fabricated and tested 

one-sensor structure that can achieve resonance frequency from 1 kHz to 2 kHz by applying 

various tuning voltages as shown in Figure 1.12(a). The lines at the same frequency share the 

same tuning voltage Vtun. The slight shift (~1%) of the frequency shift is due to different ac 

excitation amplitudes. 

Since higher tuning voltage will reduce the Q-factor (from >11 to <5 with higher Vp) and 

       
                                                (a)                                                                            (b) 

Fig. 1.12. (a) Measurement of one sensor structures that covers 1 to 2 kHz with various tuning 
voltage, and (b) Layout of eight-sensor array that covers 1 to 10 kHz. [20]. 
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limit the frequency range, the researchers designed an eight-sensor array to match desired 

frequency range from 1 to 10 kHz and with tuning voltages of 35 V. 

 
Nguyen [21] has proposed back in 1998 that with quality factor (Q’s) in the tens to 

hundreds of thousands, micromachined vibrating resonators can be used as IC-compatible tanks 

for use in the low phase noise oscillators and highly selective filters of communications 

subsystems as shown in Figure 1.13. Hundreds or thousands of a massively parallel bank of 

switchable micromechanical filters can be fabricated within smaller area to select one of several 

channels over a large frequency range thanks to the tiny size and zero dc power dissipation, 

rather than using a single tunable filter. The desired frequency bands can be switched in when 

needed. Figure 1.13 presents the simplified block diagram for such a front-end architecture, 

where each filter switch combination corresponds to a single micromechanical filter. Such 

system has high switching flexibility such that very resilient frequency-hopping spread spectrum 

transceiver architectures can be built that take advantage of simultaneous switching of high-Q 

micromechanical filters and oscillators. 

                                                                     
Fig. 1.13. Simplified block diagram of highly selective filters proposed for communications 
subsystems, where each filter switch combination corresponds to a single micromechanical 
filter [21]. 
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1.1.3 High Frequency Stability and Accuracy by Resonator Array 

Array of mechanically-coupled resonator can also be used to build stable MEMS-based 

oscillators against supply noise and acceleration. Wu et al. [22] constructed s 215-MHz 

polysilicon capacitive-gap transduced micromechanical resonator array employing 50 

mechanically coupled radial-contour mode disks. The fluctuations in the dc bias voltage (VP) 

applied across the electrostatic gaps results in frequency instability due to electrical stiffness 

variation. The arrayed resonator achieved 3.5 times better frequency stability than single stand-

alone disks against VP fluctuations.  

To model the effectiveness of arrayed resonator on frequency stability, the classic 

equivalent electrical circuit of the 215-MHz radial-contour mode polysilicon disk resonator in a 

two-port excitation and sensing configuration in Figure 1.14(a) is transformed to a negative 

capacitance equivalent circuit of a disk array-composite with N resonators in Figure 1.14(b). In 

(a), the electrical stiffness is lumped into the variable capacitance Cr (1/(km-ke)). To study the 

effect of impact of electrical stiffness on the overall circuit performance, the mechanical stiffness 

is represented through the transformers on both sides to outside the core LCR loop in (c) as 

negative capacitors -Con. If the Con is designed such that the load impedances 𝑍𝐿𝑛 ≫
1

𝜔𝑜𝐶𝑜𝑛
, Con 

will pass most of the current flowing through Con in parallel with ZLn, and almost same current 

will flow through Con and -Con, negating the electrical stiffness represented by -Con.  

Coupled-array increases Con by N times thus leading toward better frequency stability 

against variations in electrical stiffness introduced by variations of the supply voltage. 

Figure 1.14 (d) validates that this method reduces the frequency dependence on dc-bias voltage 

as the number of resonators used in an array increases. 
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1.1.4 Technology Development: 3D Vertical Integration 

Batch fabrication of a wide range of MEMS transducers have been realized by 

microfabrication technologies that were initially developed for making ICs. Potential reduction 

                
                                               (a)                                                                     (b) 

   
                                                (c)                                                                            (d) 

Fig. 1.14. (a) Schematic of a 215-MHz radial-contour mode polysilicon disk resonator in a two-
port excitation and sensing configuration with the classic equivalent electrical circuit that has 
the electrical stiffness lumped into the variable capacitance Cr; (b) Schematic of a disk array-
composite resonator with disks linked by λ/2 coupling beams to enforce in phase vibration of 
each individual resonator. Negative capacitance equivalent circuit of a disk array-composite 
with N resonators based on element values of the single resonator equivalent circuit; (c) SEM 
of a 215-MHz 50 nm capacitive-gap transduced contour mode disk array employing 50 
mechanically coupled resonators; and (d) Measured curves of resonance frequency versus dc-
bias voltage VP plotted against simulation using negative capacitance equivalent circuit models 
for disk arrays with N=1, N=8, N=16, and N=50. [22] 
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in chip size/pinout and improvement in signal transduction motivate integration of MEMS and 

electronics to construct a complete microsystem. Co-fabrication of MEMS and CMOS circuits 

has become a trend in IC design and researchers have worked on various integration methods to 

meet the specific requirements imposed on the process sequence, thermal budget and material 

selection [23-33].  

 
In [23], the authors reviewed the major approaches in modular co-fabricating MEMS and 

electronics and divided them into two major categories as shown in Figure 1.15: 1) “MEMS 

first” where most of device fabrication are carried out prior to circuit fabrication, except potential 

DRIE or plasma release step involved in SOI substrates; and 2) “MEMS last” where MEMS 

layers are deposited and patterned with tight thermal budget post-CMOS fabrication.  

Some of the existing methods are not suitable for building arrays of 3D, tall and high-

aspect-ratio MEMS devices. For example, metallic structural layers that are available in the 

CMOS process or readily deposited at CMOS compatible temperature have been applied to 

 
Fig. 1.15. Options for process integration of MEMS and electronic fabrication sequences: i) 
interleaved steps, ii) MEMS-first, and iii) MEMS-last, including formation of microstructures 
from the metallization stack layers [23]. 
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inertial MEMS [25-26], RF demodulators [27] and pressure sensors [28]. It is done by defining 

the MEMS structure in metal interconnects layers and performing postprocessing etch steps on 

the dielectric passivation layers. However, the structures typically have limited height and 

aspect-ratio which is not optimal for high-performance MEMS Inertial Measurement Units 

(IMUs) [25-26]. In addition, the structure could be very sensitive to the unwanted deformations 

induced by thin-film residual stress and coefficient of thermal expansion (CTE) mismatch of 

metal-dielectric films. MEMS-first approaches where the microstructures are released and 

encapsulated prior to transistor fabrication impose constraints on the transducer design. Lateral 

integration requires at least twice the size of the device or circuit for the integrated sensor chip. 

Parasitics are also added if signal path is disturbed or additional wire-bonding is needed. 

The best method for integrating arrays of hair sensors with CMOS is by vertical 

integration, analogous to vertically-integrated (VI) CMOS image sensors that date back to as 

early as the late 1970s. Vertical stacking allows increased pixel-level data processing and device 

optimization. One advantage is that resistance and capacitance contributed by wirebond or long 

traces on PCB are replaced by shorted interconnections between the vertically-stacked dies, thus 

reducing RC delay as well as transmission power loss.  The second advantage is that the number 

and density of signals passing between the CMOS and sensor dies is no longer limited by the 

perimeter or pad, but is rather limited by the technology in making reliable metallic interconnects 

with fine pitch, thus 3D stacked-integration has the potential to substantially increase the 

information flow.  In addition, both the MEMS devices and CMOS chips/wafers can be 

optimally designed and fabricated in the mostly suitable technology [26]. 

For example, Skorka et al. [30] presented the design of vertically-integrated (VI) CMOS 

image sensors that are fabricated by flip-chip bonding where the sensor chip is composed of a 
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CMOS die and a photodetector die. Figure 1.16 shows two images of a CMOS chip compared 

with a VI-CMOS chip. VI-CMOS facilitate ADC per pixel to convert the readout to digital 

signals. Digital signals are more immune to noise while travelling outside the pixel to the output 

buffers and busses. There are also more degrees of freedom in photodetector design in a flip-

fashion such as the depth of vertical photodetectors can be varied rather than being fixed by the 

doping profiles of the CMOS process. 

 
The performance gain and feasibility of implementing local signal conditioning circuitry 

in a 3D vertically-stacked sensor array-CMOS chip configuration depends on the suitable CMOS 

technology chosen and the needed footprint of the pixel sensor. Although for the VI-CMOS 

image sensor, due to more complex local circuitry, the spatial resolution of image sensor arrays 

may be degraded.  

Flip-chip bonding for vertical integration can also provide high alignment accuracy and 

reliability with top surface metallurgy (TSM) patterned on the CMOS die post-CMOS 

fabrication using the aluminum bond pads from the CMOS process (with native aluminum oxide 

etched before metal stack deposition), and under bump metallization (UBM) on the 

        
                                                    (a)                                       (b) 
Fig. 1.16. CMOS image sensors (a) a CMOS die and (b) VI-CMOS prototype with a 
photodetector die stack on top of a CMOS die [30].  
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photodetector die. Each pixel has a bond pad (BP) and its area is limited by the pixel dimension. 

Two VI-CMOS image sensor prototypes with two different pixel dimension at 100 × 100 µm2 

and 10 × 10 µm2 are shown in Figure 1.17.  

 
1.2 Literature Reviews on MEMS Biomimetic Hair Sensors and Sensor Arrays 

Previous works on bio-inspired hair-like sensors mostly focused on measuring drag force 

and velocity of flow either in air or water. It is most intuitive for engineering designs because the 

idea is to mimic hair in nature for similar functionalities. 

These flow sensor designs (Figure 1.18) incorporate various mechanisms, enable 

directional sensitivity, use different transduction principles, and integrate myriads of materials for 

   
         Image sensor chip floor plan              Pixel layout               Flip-chip bonding site at pixel 

(a) 

 
(b) 

Fig. 1.17. VI-CMOS prototypes: (a) pixel dimension of 100 × 100 µm2; (b) pixel dimension of 
10 × 10 µm pixel dimension of 100 × 100 µm2 [30]. 
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operating in desirable environments. The out-of-plane tall hair-mimicking structures are realized 

either by curled up cantilevers, polymer manual assembly or multi-step lithography [34-39].  

 
Both cantilever-based sensor and piezoresistive strain gauge embedded in the substrate 

plane occupy large surface area and limit the use of high-density arrays. Polymer hair manual 

attachment require separate assembly processes for the hair and transducer thus increase the 

overall process complexity and limits its potential integration with signal processing circuitry 

which is desirable for highly dense arrays.  

Recent advancements in biomimetic hair sensors utilizing capacitive transduction at the 

base proved to be more effective [36-39].  Sadeghi et al. [36-37] reported a hair-based air flow 

sensor that converts drag force to pressure and uses microhydraulic structure for hydraulic 

     
                                                (a)                                              (b) 

      
                                                (c)                                               (d) 
Fig. 1.18. Micromachined hair sensors in literature: (a) 820-μm tall cilium is curled up by 
plastic deformation magnetic-assembly with strain gauge attached [34] to mimic lateral line 
sensors in fish; (b) 700-μm tall SU‐8 hair and strain gauges at their base [35]; (c) Directional air 
flow sensor array by stereo-lithography and MEMS micro-hydraulic structures [36-37]; (d) 
Arrays of SU8 hair by lithography. Capacitive sensing is at the base [38-39]. 
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amplification of the signal and capacitive transduction.  2-D directional sensing is realized by 

hair appendages made using stereo-lithography. Two sensors perpendicularly positioned can 

quantify the air flow direction in the wafer plane.  

 
Researchers at Universe of Twente [38-39] have also developed an artificial hair flow 

sensor and interfaced arrays of these sensors with frequency-division modulation (FDM) circuits 

for flow pattern recognition (Figure 1.20). For each sensor, capacitive sensing relies on the tilting 

of a membrane by drag forces acting on the SU-8 receptive hair of the sensor, fabricated by 

surface micromachining technology. The 900 µm tall SU-8 hair is made by a sequential exposure 

procedure of two 50 µm-thick SU-8 layers. The thickness limitation of each layer is imposed by 

the maximum exposure thickness of only 700 µm due to UV light adsorption. The diameters of 

the ranges from 25-50 µm and capacitive gap is 0.6-1.0 µm. The 1 µm-thick SiRN (Silicon rich 

Nitride) torsional beams have lengths ranging from 75-100 µm and widths ranging from 5-10 µm. 

Superposition of the acoustic measurements at three different frequencies (10 Hz, 100 Hz and 

400 Hz) on the flow-sensor are presented in Figure 1.20(b).  

    
                         (a)                                            (b)                                                (c) 
Fig. 1.19. Micro-hydraulic structure with hair attached to bossed membrane. The base structure 
consists of top and bottom chambers and a pair electrodes for electrostatic actuation and 
capacitive sensing [36-37]. 
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1.3 Thesis Contributions and Organization 

Thesis Contributions 

The main technological contributions of this thesis are summarized as follows: 

1) Design and analytical modeling of the 3D biomimetic high aspect-ratio hair-like 

microstructure as the basic sensing element for high density MEMS multi-transducer platform. 

Vertically anchored micromachined cantilever spring is introduced for the first time. It reduces 

single device footprint and enables dense transducer array formation. The 3D hair structure with 

increased aspect-ratio and device height can achieve competitive/superior performance compared 

      
                                                                           (a) 

      
                                                                          (b) 
Fig. 1.20. Biomimetic flow sensor array with sensitivities on the order of 1 mm/s. (a) 
Operation: Capacitive transduction relies on the tilting of a membrane by drag forces acting on 
the SU-8 receptive hair of the sensor; (b) Superposition of the acoustic measurements at three 
different frequencies (10 Hz, 100 Hz and 400 Hz) on the flow-sensor. An array of sensors uses 
frequency-division modulation (FDM) circuits for flow pattern recognition [38-39].  

25 



with traditional planar devices. 

2) Develop and characterize an advanced Bosch deep-reactive-ion-etching (DRIE) 

process for realizing ultra-deep (1 mm) ultra-high aspect-ratio (UHAR) silicon structures with 

straight sidewalls across a wide range of feature sizes, and apply this well-characterized Bosch 

DRIE process to the microfabrication 3D high aspect-ratio hair structure. 

3) Develop a two-gap double-sided silicon microfabrication process that takes advantage 

of the ultra-deep UHAR Bosch DRIE. The process allows the 3D hair structure design to be 

optimized for applications in MEMS inertial sensor fabrication.  

4) Develop a CMOS-compatible wafer-level microfabrication technology for integration 

of MEMS device wafer with arrays of 3D hair sensors and CMOS circuit/interconnect wafer to 

realize multi-transducer microsystems.  

5) Design, fabricate and test high performance capacitive accelerometer based on the 3D 

hair structure. Effective high aspect-ratio capacitive transduction along the direction normal to 

the wafer plane is embedded within the hair structure, resulting in a silicon MEMS accelerometer 

with low mechanical noise floor and high capacitive sensitivity per unit footprint.  

6) Design, fabricate and test threshold accelerometer based on the 3D hair structure that 

achieves high threshold resolution and low power consumption within a small footprint. 

Effective contact-mode detection is formed at the top between the proof-mass and stationary 

electrodes.  

7) Demonstrate the use of MEMS sensors arrays to extend full-scale range and introduce 

frequency selectivity. We build arrays of both capacitive hair accelerometers and threshold hair 

accelerometers consisted of devices with tailored structural dimensions in order to cover wide 

performance specifications in terms of full-scale acceleration levels and frequency spectrum.  
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Thesis Organization 

This thesis is organized into eight chapters. Chapter 2 introduces the novel 3D high 

aspect-ratio biomimetic hair structure as the basis to build high performance hair sensor array. 

Both theoretical analysis and COMSOL FEA simulation are used to optimize the critical 

structural dimensions. This section also includes a discussion on two major design constraints 

imposed by critical microfabrication steps: 1) high aspect-ratio anisotropic deep-reactive-ion-

etching (DRIE) process and 2) different bonding methods to provide both electrical connections 

as well as mechanical anchoring. Methods to overcome these constraints and analysis on the 

fabrication results will be discussed for every generation of hair accelerometer arrays in later 

chapters. Chapter 3 detailed a custom-developed deep-reactive-etching (DRIE) process that can 

be applied to the fabrication of the high aspect-ratio biomimetic hair structure introduced in 

Chapter 2.  The new process can etch ultra-deep (> 500 µm) ultra-high aspect-ratio (UHAR) 

silicon structures (AR > 40 for 1 mm through-trench etch, AR ≈ 80 for 500 µm through-trench 

etch, and AR > 20 for 500 µm through-hole etch), with straight sidewalls across a wide range of 

feature sizes. We overcome the challenges in Bosch DRIE by continuously ramping critical 

DRIE parameters throughout the process, including the 380-kHz bias power during etch step, the 

etch/passivation step duration, and the chamber pressure.  

In Chapter 4, we applied the ultra-high aspect-ratio (UHAR) DRIE of 2-10 µm wide 

trench features to the first-generation uniform-gap capacitive hair accelerometer made from 

standard 500 µm thick silicon wafers based on a modified silicon-on-glass (SOG) process 

including 2-10 µm trench DRIE, metal interconnects patterning and anodic bonding. Proof-mass 

footprint varies from 2002µm2 to 5002µm2, and singe spring cross-section varies from 302µm2 to 

502µm2. One array consisting of 25 identical elements (500 µm wide mass and 50 µm wide 
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spring) is measured to have 0.25 fF/g single-ended capacitive sensitivity.  

Chapter 5 discusses the constraints of the uniform-gap devices from Chapter 4 and 

introduces a two-gap hair structure. Analysis and simulation verifies that narrow gap near the top 

of a tall device is sufficient to increase capacitive sensitivity. The device height (H) is not limited 

by DRIE etch and can be further increased. The two-gap design allows all the critical structural 

dimensions to be independently optimized. Major fabrication steps of the two-gap structures 

include ultra-deep (> 500 µm), ultra-high aspect-ratio DRIE and silicon-gold eutectic bonding.  

Based on the two-gap hair structure, Chapter 6 presents the design, optimization and 

characterization of the second-generation low-noise high-sensitivity capacitive accelerometer 

arrays. Critical fabrication results regarding ultra-deep DRIE and silicon-gold eutectic bonding 

are discussed in detail. To further incase capacitive sensitivity per unit footprint, interdigitated 

electrodes and vertical spring thinning technique by isotropic plasma etch are proposed. We 

verify the arrays of accelerometer with various dimensions by resonance testing from 1 µTorr to 

100 mTorr. The last section of the chapter presents the electromechanical testing results when 

devices are subjected to shaker motion. The device performance is compared with the state-of-

the-art, achieving < 1 µg/√Hz noise floor and > 1 pF/g capacitive sensitivity by design. 

Chapter 7 introduces the third-generation low-power wide-range threshold hair 

accelerometer arrays. The chapter starts with the motivation behind developing low-power 

microsystems and a review of existing works on threshold accelerometer arrays and acceleration 

switches. The interactive design optimization of the third-generation digital threshold hair 

accelerometer arrays considers both process capability (including critical gap defining steps and 

structural layers involved), and performance specifications (including acceleration threshold 

range, resolution, and bandwidth). The low noise and frequency selectivity nature of the hair 
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structure and arrays is inherited, and more importantly, the new designs aim to address power 

consumption since it is one of the limiting factors in the state-of-the-art wireless world of 

Internet of Things (IoT).  Low power consumption is realized by switching from capacitive 

sensing to switch-mode detection, along with a low-power circuit block that can sense and 

capture the sensor arrays switching without affecting their operation. The micro-power 

consumption allows it to continuously monitor environmental shocks or vibrations in power 

limited systems, and is extremely critical when the sensor array size is expected to be scaled 

from less than 10 to 100s or even 1000s. 

Chapter 8 summarizes the milestones and contributions of this research. Directions on 

future technology development, as well as suggestions for further development on both single 

hair sensor design and sensor array implementation are presented.  
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Chapter 2 HIGH ASPECT-RATIO BIOMIMETIC HAIR STRUCTURE 

2.1 MEMS Accelerometer and Hair Structure Description 

In this chapter, we proposed a biomimetic hair structure as the basis to build high 

performance hair sensor array. Its implementation as a micro-accelerometer will be presented.  

Accelerometers are devices that measure the instantaneous change in platform velocity. 

To use accelerometer as motion sensors, the distance travelled can be calculated by integrating 

the acceleration output twice over time.  

MEMS accelerometer typically has a proof-mass supported by a compliant spring. The 

spring is fixed to a rigid reference frame, where the acceleration of this rigid frame is to be 

measured as shown in Figure 2.1(a). When the rigid y-frame is going south under an acceleration 

a, the proof-mass will move north relative to the y-frame due to inertial force such that the 

acceleration can be calculated by measuring the relative motion of the proof-mass with respect to 

the rigid frames (𝑧 = 𝑥 − 𝑦). In order to measure the relative motion z with a transducer design, 

with higher accuracy and lower mechanical noise floor, MEMS accelerometer requires large 

proof-mass and large transduction area to capture this change. 

For a single mass-spring pair, it has a fixed resonant frequency 𝜔𝑛 = �𝑚
𝑘

 and the device 

is operated or usable at certain 𝜔
𝜔𝑛

 ratio below this frequency as a static accelerometer, 

determined by the damping ratio ζ = 𝐷
√𝑘𝑚

 or quality factor Q.  
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As shown in the frequency response plot of the second-order system in Figure 2.1(b), 

above the resonant frequency 𝜔𝑛, the proof-mass no longer moves relative to the rigid frame, 

acting as a vibrometer rather than an accelerometer; or it moves by orders of magnitude smaller 

distance than at frequencies lower than 𝜔𝑛 . Bandwidth (BW) is typically specified in dBs 

Proof-mass Motion:    𝑚
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−
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Acceleration: a 
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(b) 

Fig. 2.1. (a) MEMS accelerometer: second order mass-spring-damper system. (b) Amplitude 
and phase response of the second order mass-spring-damper system.  
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(±1 dB, ±3 dB) with respect to the flat band-amplitude. For example, if the BW is specified for -

3 dB, the ω-3 dB represents the frequency at which the output magnitude drops to about 70% (–3 

dB) of the actual magnitude of movement that the accelerometer is experiencing. For example, if 

the damping ratio ζ = 𝐷
√𝑘𝑚

 equals 0.707, the magnitude drops to –3 dB at the resonant frequency 

𝜔−3𝑑𝐵
𝜔𝑛

= 1; while for ζ = 2 the magnitude drops to –3 dB at 𝜔−3𝑑𝐵
𝜔𝑛

= 0.267. 

However, since the accelerometer sensitivity 𝑧 = 𝑚
𝜔𝑛
2   decreases with larger 𝜔𝑛, there’s a 

fundamental tradeoff between sensitivity and BW for a single spring-mass-damper system. 

Table 2.1 listed the accelerometer selection criteria based on various applications, and these 

criteria cover a wide range of sensitivity and BW.  

Table 2.1 Accelerometer Selection Based on Applications [1] 

Measuring Applications Criteria Operation 

Motion slow-moving, integrated 
to calculate velocity or 
displacement;  

DC-response / zero offset 
error / SNR/ Thermal Zero 
Shift (TZS) 

Piezoresistive; 
Variable Cap.; 

High 
Frequency 
Vibration 

gear noise analysis, 
turbine or high-speed 
rotating machinery 
monitoring; 

high-speed rotating 
machinery monitoring / high 
resonance (several kHz to 
>10kHz / low sensitivity 

Piezoelectric;  

Low 
Frequency 
Vibration 

modal analysis, building 
and bridge monitoring 

no phase shift at low 
frequency / base strain 
sensitivity 

Piezoresistive; 
Variable Cap.; 
Force-Balance Servo; 

Shock package drop-testing, 
automotive crash-testing, 
and pyroshock/simulation 

zero shift/ localized material 
responses / usable output / 
survivability. 

Piezoresistive;  

Micro-G 
Vibration 

vibration in space on the 
Hubble telescope, 
monitoring noise in a 
nuclear submarine; 

High sensitivity / low noise 
floor / direction of earth’s 
gravity / limited dynamic 
range 

Variable Cap.; 
Force-Balance Servo; 

Vibration 
on Small 
Objects 

test articles are small  Light weight / Mass-Loading 
Effect / weight ratio <10:1 / 
mounting/ surface curvature 

Piezoelectric;  
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Mass-spring-damper type MEMS accelerometers typically have the springs defined in the 

wafer plane. This approach has the advantage of precisely defining the width and length of the 

springs by layout, and precisely defining the thickness of springs by the thickness of substrate or 

deposited layers to adjust the spring stiffness. However, although meandered springs can be 

designed to reduce the footprint, the longest in-plane spring dimension increase the overall 

device footprint or chip area. For example, the Bosch BGA64 z-axis accelerometer defines both 

the torsional spring and proof-mass in the several-micron thick poly-silicon layer [2] in 

Figure 2.2.  

Although current trend for commercial consumer-grade accelerometer chips is to target 

the thickness of the whole package at ~ 0.5 mm, extending the device thickness in the third 

dimension has the potential to improve performance and lower cost within smaller footprint.  

 
To overcome the limitations imposed by a planar spring and, we design a new device 

structure with the mechanical spring normal to the wafer surface.  As shown in Figure 2.3(a), the 

vertical hair-like spring is anchored at the bottom end and supports a proof-mass at its center. 

The proof-mass also extends out of the wafer plane. The proof-mass is further surrounded by 

multiple electrodes, separated by a gap for capacitive transduction of motion. Critical design 

parameters of this structure implemented as a capacitive accelerometer include: device height 

(H), proof-mass footprint (a×b), spring length (L) and cross-sectional dimension (c×d), and the 

   

Fig. 2.2. Bosch BMA455 Accelerometer [2]. 
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nominal transduction gap (g0). 

Capacitive transduction is chosen because it can utilize the large area without increasing 

the footprint. This is because the hair-like transducer structure can have a larger dimension on 

the planes normal to the wafer surface than in the wafer plane, thus the taller the hair structure, 

the more transducing area there will be. Consider a planar mass (500 µm × 500 µm × 10 µm)–

spring (5 µm × 500 µm × 10 µm) system where the 10 µm thick structural layer determine both 

the spring thickness and proof-mass thickness: if this system is implemented by the hair structure 

in Figure 2.4 where H = 1000 µm, a / b = 50 µm / 50 µm, and c / d / L = 5 µm / 10 µm / 500 µm, the 

overall footprint is reduced by 100 x. 

 
2.2 Optimization of Hair Structure Design 

The hair accelerometer structure in Figure 2.3 is studied as a vertical cantilever beam 

fixed at the bottom with a proof-mass attached to the other end. Finite element analysis (FEA) is 

 
                                                    (a)                                                    (b) 
Fig. 2.3. Proposed biomimetic hair sensor structure: (a) Single biomimetic hair structure with 
vertical hair-like spring, tall proof-mass, and electrodes for capacitive sensing and actuation; 
(b) An array of hair structures with various dimensions. 
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performed using COMSOL Multiphysics® version 5.1 combining the solid-mechanics module 

and the electrostatic module to study the sensor response to in-plane lateral acceleration 

(Figure 2.5).  Since the spring cross-section is designed to be rectangular, for the first bending 

mode, the spring-mass bends along one of the two orthogonal axes toward one of the electrodes. 

The side electrodes are stiffer than the hair spring by > 100 x. 

 

 

 
                                               (a)                                            (b) 
Fig. 2.5. COMSOL simulation results showing: (a) Deflection profile and (b) von Mises stress 
profile of the hair structure along the axis of acceleration applied under in-plane lateral force. 
Maximum stress is at the anchor of the vertical hair spring.  
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Stress ProfileMax
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Min Min

 
                                                       (a)                                         (b) 
Fig. 2.4: (a) Critical design parameters of the hair structure; (b) Gap profile when lateral 
acceleration is applied.  
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Since the top of a vertical inverted pendulum (proof-mass) undergoes the maximum 

deflection, the gap profile between the proof-mass and electrode can be approximated as a 

trapezoidal shape. When the proof-mass is displaced under external acceleration (Accel.), the 

displacement, 𝛥𝑥𝑚𝑎𝑥(𝑧), along the side of the proof-mass is derived as a simple mass (Mass) 

attached to a spring of stiffness (k), and the maximum displacement, 𝛥𝑥𝑚𝑎𝑥(𝐻), at the top along 

the mass sidewall are: 
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The displaced gap dimensions at the top and at the bottom are: 
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Thus, the capacitance when acceleration is applied compared to the initial capacitance are: 

)
)0(
)(

ln(
)0()(

1
1

bot

top

bottop g
Hg

gHg
AreaC

−
××= ε  

 

0
0

1
g

AreaC ××= ε  

 
(2.4) 

 

When the displacement is small, the change in capacitance can be approximated by 

Taylor expansion as: 
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From Equation (2.6), we can see that the sensitivity (S in Farad/g) is inversely 

proportional to 1/g0
2 and scales with the proof-mass size (a, b, H), the sensing area (a, H) and the 
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spring dimensions (c, d, L). A taller H also allows for longer vertical spring L. For example, a 

1000 µm tall device can have a spring with L > 800 µm, while a 400 µm can only have a spring 

with L > 300 µm. Thus, device height H plays a critical role in improving the sensitivity for this 

design by utilizing the third dimension.  

Figure 2.6 presents the effect of varying different design parameters. For example, a 

1 mm thick device can have 800-900 µm long spring, while a 400 µm thick device can only have 

a 300 µm long spring. Thus, a thicker device with larger H will increase sensitivity. When the 

device height H is varied, the achievable minimum uniform sensing gap size will also change 

due to deep reactive ion etching (DRIE) limitations. As shown in Figure 2.6(a), for a 5002 µm2 

footprint (a = b = 500 µm) hair structure with various spring diameter (for example, 

c = d = 10 µm), within a quarter of a mm-squared footprint, the 1mm thick device has more than 

5 times higher sensitivity than the 400 µm thick device, even with a 20 µm air gap (4 times larger 

than a 5 µm gap).  

Due to the tradeoff between BW and sensitivity, the 1 mm thick device has fn around 

166 Hz while the 400 µm device has fn around 1143 Hz since the resonant frequency of a mass-

spring system is, 

𝜔𝑛 = �𝑘
𝑚

. 
 

(2.7) 

In addition, the thinner the spring, the more compliant it is and the higher the 

displacement sensitivity (Figure 2.6(b)) as well as capacitive sensitivity for the same proof-mass. 

If the spring is 10 µm wide, even with 20 µm air gap, this device has very high sensitivity of 

50 fF/g. It can achieve even higher sensitivity at almost 800 fF/g if the spring can be further 

reduced to 5 µm wide.  
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(b) 

 
(c) 

Fig. 2.6. Sensitivity: (a) ΔC/g for 5002 µm2 footprint with various device height H, spring 
dimensions, and nominal sensing gap; (b) Displacement sensitivity; and (c) Comparison of 
2002 µm2 and 5002 µm2 proof-mass footprint devices for various nominal sensing gaps as small 
as 0.5 µm. 
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Sweeping the capacitive gap from 0.5 µm to 7.5 µm, we show that a smaller sensing gap 

(<1 µm) can greatly increase the sensitivity per unit footprint by comparing a 2002 µm2 footprint 

(a = b = 200 µm) and a 5002 µm2 footprint (a = b = 500 µm) hair structure (Figure 2.6(c)).  

However, since the Brownian noise associated with the squeeze film damping effect in 

air (Equation (2.8) BNEA is the Brownian noise equivalent acceleration in g/√Hz) increases 

significantly with reduction of the gap opening, we should not reduce the gap indefinitely.  
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(2.8) 

Therefore, the proof-mass size is a more effective design parameter since both sensitivity 

and Brownian Noise Equivalent Acceleration (BNEA) are improved with a larger proof-mass. 

2.3 Design Constraints Imposed by Critical Fabrication Steps 

2.3.1 Nominal Sensing Gap and Device Height Constraints Imposed by DRIE 

To build the 3D high aspect-ratio biomimetic hair structure, critical in-plane dimensions 

are precisely defined by photolithography. Creating 3D structure into the depth of the silicon 

wafer heavily relies on 3D microfabrication techniques. Challenge arises when both tall structure 

and high aspect-ratio electrostatic transduction gaps are desired.  

Researchers have developed several fabrication methods for making small transduction 

gaps for MEMS devices [4-22]. For effective gaps of several microns, the gap height is typically 

less than 150 µm [6-8].  HAR submicron gaps are achievable for gap height at a few tens of 

microns [6, 8, 12, 13], while other submicron [9] or sub-100 nm gaps [10] are only found in thin 

(several microns) RF resonators that are surface micromachined. Table 2.2 summarizes these 

various methods. 
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Among these methods, sacrificial material is most frequently chosen to precisely define 

HAR gaps at 1 - 2 µm or submicron range [6, 8, 12, 13]. Timing in gas or liquid phase release 

etching is sensitive and limit the proceeding or subsequent process steps. In addition, the 

processes result in larger total chip area than the active device to ensure structural integrity. 

Fabrication process in [6] combines two-sided surface micromachining, bulk micromachining 

and sacrificial oxide patterning. Full wafer thickness is achieved with the 1.5 µm sensing gap and 

thickness of 70 µm. Silicon dioxide is used as sacrificial layer and the device is released in HF 

after anisotropic wet etching of the SCS proof-mass in EDP. Another example is the submicron 

gap SCS resonators/accelerometers/gyroscopes made by HARPSS or HARPSS-SOI process [8, 

12, 13] where sacrificial oxide is also used to define the gap dimensions. The effective thickness 

is bonded in the range of 30 - 150 µm with corresponding gap dimensions definable in the range 

of 0.1-2 µm. Timing in gas or liquid phase release etching limits the maximum thickness 

achieved for a minimum gap dimension. Although the device thickness may be increased by 

back-side processing of the substrate silicon in SOI wafers [8], effective sensing/actuation areas 

are limited to few tens of microns because of the device layer thickness and back-filling 

limitations. 

Work has also been done toward the possibility of enhancing the etching properties of 

photo-assisted electrochemical etching in hydrofluoric acid to create HAR gaps and to replace 

DRIE. Sub-200 nm gaps with ultra HAR of 125:1 has been demonstrated but the height is limited 

to less than 25 µm [15]. Most literature to date only tested uniformly patterned bars, circles or 

rectangles [14-17]. Factors including composition of electrolyte, applied bias and photo-intensity 

of the light source combined affect the etching profile, repeatability and reproducibility.  
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These existing methods are complicated and not applicable to or optimal for 3-D, small-

footprint, thick devices. Wet processing also limits the process window for integrating with other 

parts of MEMS structure and potential integration with CMOS circuits. 

Over the last few decades, deep reactive ion etching (DRIE) has become one of the key 

processes in making high aspect-ratio MEMS [3]. The widely-recognized Bosch process 

alternates between passivation step and etching step to create almost vertical sidewalls.  

Table 2.2: Various methods of making small high aspect-ratio capacitive transduction gaps 

Methods of Making Gaps Gap Gap Height Applications Reference 

Modified SOG 5 µm 400 µm Inertial Sensors [4] 
Sacrificial HTO, electroplated 
Au electrodes and poly-silicon 
structure.  

0.6 µm 6 µm RF Resonators [9] 

Minimum width PR by i-line 
lithography, and further reduced 
by O2 plasma 

50 nm 
minimum 1.5 µm RF Resonators [10] 

SCREAM Several 
microns 

10 - 20 µm,  
< 100 µm Inertial Sensors [11]  

DRIE CMOS-MEMS 1.8 - 2.1 µm 

4.9 µm gap 
10 - 100 µm 
backside 
SCS 
membrane 

Inertial Sensors [21-22] 

SOG 3.2 µm, 5 µm 35 - 140 µm Inertial Sensors [18-20] 

HARPSS 0.1 - 2 µm 30 - 150 µm RF Resonators, 
Inertial Sensors 

[6, 9, 12, 
13] 

Photo-assisted electrochemical 
etching in electrolyte 

Submicron to 
several 
microns 

10 - 300 µm Uniformly patterned 
bars and trenches [14-17] 

 

We have developed an advanced Bosch DRIE process for etching ultra-high aspect-ratio 

(UHAR) trenches in silicon [4-5], this process has also been applied to the fabrication of a 

single-crystal-silicon vibratory cylindrical rate integrating gyroscope (CING) [25]. In order to 

achieve large proof-mass height (H) and gap g0, this Bosch DRIE process ramps several critical 

process parameters including chamber pressure, etch power, passivation time and etching time. 
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Due to aspect-ratio-dependent etch (ARDE) and etch limitation, there is a direct correlation 

between the trench opening and etch depth. Further improvements of this Bosch DRIE process 

will be described in detail in Chapter 3.  

An aspect ratio of 80 was achieved for a 400 μm deep trench with 5 μm originally 

defined on the mask, and 300 μm deep for 2 μm gap originally defined on the mask. This process 

is optimized for trench opening from 2 -6 μm as presented in Figure 2.7 (blue dots). 

 

We apply these HAR silicon DRIE etching results of narrow trenches from 2-10 μm to 

the hair accelerometer design [5]. Ideally a uniform narrow gap is desired to achieve very high 

capacitive sensitivity. Compare a sensor with H = 500 μm / L = 400 μm to a sensor with 

H = 1 mm / L = 900 μm, the latter has sensitivity of more than 45x assuming the same g0, the 

same footprint, and the same spring cross-section according to Equation (2.6). However, it is 

very challenging to produce a 2-5 μm gap to a depth of 1 mm. If the DRIE width/depth data (blue 

dots) in Figure 2.7(b) are applied to g0 and H (with L = H – 100 μm), and are assumed to be the 

only design variables, it is shown that the capacitive sensitivity will be reduced for a larger H. 

  
                                    (a)                                                                      (b) 
Fig. 2.7. Ultra-HAR DRIE characterization: (a) SEM cross-section of UHAR DRIE for 2 μm –
 6 μm gaps; (b) DRIE depth vs. gap width (red) and the normalized capacitive sensitivity when 
this width/depth combination is used as the capacitive sensing gap. 
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This is because the increases in H and L are compromised by the wider sensing gaps that are 

needed to etch a greater depth. 

2.3.2 Shock Survival Constraints Imposed by Hair Spring Bonding Strength  

When in-plane lateral bending force (x-axis and y-axis) is applied, von Mises stress 

analysis by COMSOL shows that the maximum compressive and tensile stress is present near the 

bonding site where the hair spring is anchored to the lower substrate (Figure 2.5(b)). 

During a high-g-shock event in the in-plane directions, the maximum distance traveled is 

limited by the initial transduction gap g0, although in some cases, a different shock-stop gap 

distance less than g0 can be included to further contain the motion. Thus, the maximum stress a 

design can possibly experience before failure is the greater of either the maximum stress when 

full-gap distance is traveled (Equation (2.11)), or the yield bond strength of a specific bonding 

method.  

𝛥𝑥𝑚𝑎𝑥_𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 
𝐹𝐿3

3𝐸𝐼
 =  

(𝑚 × 𝐴𝑐𝑐𝑒𝑙) ×𝐿3

3𝐸(𝑑𝑐3/12)
 

𝜎𝑚𝑎𝑥_𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 
𝐹𝐿𝑡
2𝐼

 =  
(𝑚 × 𝐴𝑐𝑐𝑒𝑙) × 𝐿 × 𝑐

2(𝑑𝑐3/12)
 

𝜎𝑚𝑎𝑥_𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝛥𝑥𝑚𝑎𝑥_𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑔0) = 
3𝐸𝑔0𝑐

2𝐿2
   

 

 

(2.9) 
 

(2.10) 
 

(2.11) 

The von Mises stress profile along the length of the hair spring is simulated and presented 

in Figure 2.8(a). Using Equation (2.11), we plot the maximum stress at the spring anchor vs. 

different spring width (c = 10 – 30 μm, d = 30 μm) when full-gap distance (2 μm) is traveled 

(Figure 2.8(b)) for two device dimensions: H = 1 mm / L = 600 μm and H = 500 μm / L = 400 μm, 

and with typical device footprint at 5002 μm2.  

40 MPa yield/fracture strength is assumed for a specific bonding method and the 

materials’ tensile/fracture strength near the bonding interface. For H = 1 mm / L = 600 μm 
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(Figure 2.9(a)), if the spring width is smaller than c = 28.75 μm, even when the full-gap distance 

is traveled, the maximum stress will not exceed 40 MPa. The structure can survive very high-g 

shock with the counter-electrode as a shock stop. However, if the width is set to c = 30μm, the 

bond will fail before it reaches the counter-electrode. Either a separate shock stop gap needs to 

be included or the maximum acceleration must be much smaller than 55.8 g. If the yield/fracture 

strength of the bonding method and the materials’ tensile/fracture strength near the bonding 

interface is less than 20 MPa, the springs will need to be much thinner (< 15 µm) otherwise they 

should not be subject to acceleration greater than 10 g. 

Similarly, for H = 500 μm / L = 400 μm (Figure 2.9(b)), when the spring width 

c < 12.5 µm, the structure can survive very high in-plane g-shock.  

Comparing Figure 2.9(a) and (b), a longer spring will allow for a wider spring, which will 

also enable the design to withstand larger z-axis g-shock and increase the available bonding area. 

The greater vulnerability is due to out-of-plane z-axis high g-shock unless constraints 

were also designed to limit the out-of-plane motion. The bond strength is also bounded by the 

yield bond strength of the bonding method being used. For the same tensile longitudinal load F, a 

thinner vertical hair spring (smaller cross-section) will lead to great normal stress. For a device 

with c = 10 μm, d = 30 μm, L = 600 μm and H =1000 μm, at 1000g acceleration, σlongitudinal is 

calculated as 19 MPa.  

 

cd
AccelMass

A
Fz

bonding
long ×

×
==

.)(.σ  

 

 

(2.12) 

 

If a larger proof-mass and a more compliant spring is needed for reduced noise and 

higher sensitivity, the maximum g-shock will be further reduced because the z-axis loaded stress 
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will be increased for the same input out-of-plane acceleration. Whereas the in-plane shock limit 

is independent of the proof-mass size. 

Therefore, the in-plane g-shock requirement sets an upper limit on the spring width c 

(Equation (2.11)). And the out-of-plane g-shock requirement sets the minimum spring width c 

(Equation (2.12)). 

 

 

     
                                        (a)                                                                      (b) 
Fig. 2.9. Maximum stress and the corresponding acceleration at full gap g0 = 2 μm. 
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                                           (a)                                                                  (b) 
Fig. 2.8. Maximum von Mises stress analysis for in-plane motion for proof-mass footprint 
a × b = 5002 μm2. (a) von Mises stress profile along the deflected hair spring; (b) Max. stress for 
different spring design. 
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Chapter 3 ULTRA-HIGH-ASPECT RATIO DEEP REACTIVE ION 

ETCHING IN THICK SIILICON 

In order to realize the high aspect-ratio biomimetic hair structure introduced in Chapter 2 

and extend the device height beyond standard 500 µm thickness, new enabling technology must 

be developed in fabricating 3D high aspect ratio features in silicon.  

The development, experimental results, and analysis of the ultra-high-aspect ratio deep 

reactive ion etching (UDRIE) recipe presented in this chapter have been submitted to the Journal 

of Microelectromechanical Systems (JMEMS) for peer review in December 2017. The 

experiments were done in collaboration with Amin Sandoughsaz and Kevin Owen in the Lurie 

Nanofabrication Facility (LNF) at the University of Michigan.  

3.1 Enabling Technology: Deep Reactive Ion Etching (DRIE) 

Deep reactive ion etching (DRIE) has become a cornerstone of microfabrication 

technologies since its introduction in the 1990s [1]. The most prevalent DRIE processes are the 

Bosch DRIE process [1,5,6] and the Cryogenic DRIE process [1-4]. Bosch process is a time-

multiplexed dry plasma etching process [1], and is based on a sequential recipe alternating 

between a passivation sub-cycle and an etching sub-cycle to achieve deep and high aspect-ratio 

(HAR) anisotropic etching. The passivation step isotropically deposits a polymeric layer on the 

bottom and sidewalls of the etched structures, serving as a protective layer against the following 
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etching step. In the next sub-cycle, the directional ion bombardment first removes the passivation 

layer at the bottom and then the fluorine radicals etch the underlying silicon, while the sidewalls 

remain protected. Two fluorine-based chemistries such as SF6 and C4F8 gas species are switched 

on and off during each step.  For nanoscale structures less than 100 nm etched up to several 

microns to tens of microns deep, cryogenic process is generally preferred over the Bosch process 

[1-4]. This is because the cyclic nature of the Bosch process forms undulating sidewalls called 

scallops that measure tens of nanometers wide from peak to valley; whereas the sidewall 

passivation mechanism of the cryogenic etch relies on the formation of 10-20 nm thick 

oxide/fluoride (SiOxFy) on the sidewalls. This passivation is not easily attacked by the fluorine 

radicals at cryogenic temperatures (around -110 °C). The other advantage is that lower 

temperature yields lower sidewall etch rate and increases dry etch resistance of masks (organic, 

oxide, etc.). Issues with cryogenic etch include cracking of standard mask materials at low 

temperatures and deposition of etch by-products on the cold substrate. These shortcomings 

restrict usage of this technique [2-3]. Other DRIE processes are reported using alternative 

reacting gas species including a non-sequential plasma-based DRIE process [7-10]. Among these 

different DRIE processes, Bosch process is an industrial standard etching process.  

There exist a broad range of applications that can benefit from ultra-deep (>500 µm) 

silicon DRIE with ultra HAR: 1) capacitive inertial MEMS transducers that have reduced 

mechanical noise floor and increases sensitivity [11-13]; 2) micrometer to millimeter scale 

devices that can better emulate their macroscopic counterparts [16-18, 22-24]; and 3) through-

silicon-via (TSV) as well as plasma dicing for IC integration [19-21]. For inertial MEMS, Tang 

et al. [11] concluded that DRIE beyond standard 500 µm silicon allows realization of a taller thus 

larger proof-mass per unit footprint. This greatly reduces the thermal mechanical noise floor thus 
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reducing the minimum detectable signal. Apart from inertial MEMS, DRIE can also be applied 

to making myriad of physical devices of sizes ranging from hundreds of microns, to several 

millimeters such as miniaturized optical instruments [16-17], micro-motors and micro-turbines 

[22-24], antimatter trap arrays [25], thick and HAR silicon molds for biotechnology applications 

[26-27]. For example, Narimannezhad et al. [25] built very deep (10 cm) and HAR micro-

Penning-Malmberg trap arrays to store antimatter by stacking two hundred 500 μm-thick silicon 

chips patterned with 100 μm diameter tubes DRIE etched through the thickness. Smaller-

diameter tubes etched through thicker silicon wafers would be preferred since trapped positron 

density is proportional to the inverse square of the trap radius. As for through-silicon via (TSV) 

fabrication, the current trend is to increase the via depth for the same diameter, because adopting 

thicker substrate helps addressing thermal dissipation and warp issue [19-21]. TSVs are widely 

demanded in both MEMS device and IC fabrication for hybrid packaging and three-dimensional 

die stacking. Deep DRIE is the best choice for forming TSVs due to its patterning accuracy, 

controlled etch profile, and high selectivity to masking materials. Other than TSVs, DRIE can 

also be applied to wafer dicing during IC packaging. Traditional blade dicing can cause silicon 

chipping that results in lower yield. The dicing streets width is determined by the blade thickness 

thus removing valuable “real estate”. Dry plasma DRIE dicing has the advantages of improved 

throughput, narrower widths, clean edge, and can take advantage of deep and HAR silicon trench 

etch. 

The depth of silicon DRIE in literature is typically limited to <500 μm. Our goal in this 

research is to achieve ultra-deep (>500 µm) etch in silicon wafers with HAR and vertical 

sidewall profile.  

However, obtaining these features is challenging due to several shortcomings of the 
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standard Bosch DRIE process with fixed etch and passivation sub-cycle parameters. These 

shortcomings include: 1) aspect-ratio dependent etch (ARDE) induced sidewall tapering (θ<90° 

defined as positive and θ>90 ° defined as negative), etch termination (instantaneous etch rate 

equals zero), and DRIE-lag (W1>W2>W3  h1>h2>h3); 2) pattern dependency, i.e., trenches with 

the same width as the diameter of circular holes etch faster (Wtrench=Φholehtrench>>hhole), as 

illustrated in Figure 1(a); and 3) mask selectivity. These shortcomings are observed even when 

the depth of silicon DRIE is limited to <500 μm [1, 5, 6]. 

To address these DRIE shortcomings, we develop an advanced Bosch DRIE process: 

ultra-deep and ultra-high aspect-ratio (UHAR) etch with straight sidewalls are achieved by 

continuously ramping various process parameters including the 380 kHz bias power during etch 

step, the etch sub-cycle and passivation sub-cycle duration, and the chamber pressure during 

both sub-cycles.  

Efficacy of the developed recipe is verified by fabrication results and schematically 

illustrated in Figure 3.1. Trenches with width as small as 2-5 μm are etched in 500 μm thick 

silicon with reduced undercut, achieving AR exceeding 80:1. Through 1 mm thick silicon etches 

are demonstrated with trenches with width as small as 25 μm, equivalent to AR of 40:1. 10-

20 μm wide trenches are also etched to depths of 600-800 μm in 1 mm thick silicon wafers, with 

greatly suppressed ARDE effect. Sidewall slopes of narrower trenches (<10 µm) are slightly 

positive (>89.50 °) whereas those of wider trenches are readily tuned by adjusting process 

parameters to achieve either positive or negative slopes. The sidewall profiles (≈90 °) and flat 

trench bottoms indicate the etching recipe has not reached its limits and greater etch depth 

exceeding 1 mm is feasible. Furthermore, circular holes with various diameters as small as 25-

35 μm are etched through 550 μm thick silicon wafers with slight positive sidewalls (AR≈20).  
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This advanced Bosch DRIE process offers new opportunities for applications ranging 

from through-silicon via (TSV) in 3D CMOS integration to emerging micro and meso-scale 

MEMS devices that demand ultra-deep and ultra HAR DRIE with precise feature control. 

 
 

3.1.1 Shortcomings of Standard Time-Multiplexed Bosch DRIE 

In this section, we will briefly review shortcomings of the standard Bosch DRIE process 

including ARDE induced defects (tapered sidewall, etch termination, DRIE lag) and pattern 

 
                                      (a)                                                         (b) 
Fig. 3.1. Ultra-deep ultra-high aspect-ratio etching of thick silicon wafers (≥ 500 µm) with 
straight sidewalls across a wide range of feature sizes and patterns using an improved Bosch 
DRIE process. Shortcomings of the standard Bosch DRIE process with fixed etch and 
passivation sub-cycle parameters include:1) sidewall slope (θ<90 ° defined as positive and 
θ > 90 ° defined as negative), etch termination (instantaneous etch rate equals zero), and DRIE-
lag (W1 > W2 > W3  h1 > h2 > h3), all caused by ARDE; and 2) DRIE pattern dependency 
(Wtrench =  Φhole htrench > hhole). These shortcomings are addressed by continuously ramping the 
Bosch DRIE etch and passivation sub cycle parameters (plasma power, step duration, and 
chamber pressure) throughout the process. The achieved aspect-ratios (W/h for trenches, Φ/h for 
holes) are greatly increased and sidewall slopes approach 90 °. No etch termination is observed. 
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dependency. Selectivity of etching mask materials will also be discussed.  

A. Aspect-Ratio Dependent Etch (ARDE) 

Aspect-ratio (AR) is typically defined as the ratio of the etched feature depth into the 

wafer plane and the feature width or opening size.  ARDE in silicon DRIE is a well observed 

phenomenon where the etch rate significantly decreases as the etch depth or the AR of the 

feature increases. It is generally caused by the depletion of reactive species at the bottom of the 

etched feature due to the limited Knudsen transport of the gas species, as well as by the reduction 

of ion bombardment.  

ARDE results in: 1) tapered sidewall profiles, 2) etch termination, and 3) DRIE lag. 

These artifacts limit the maximum achievable etch depth and maximum AR. 

Due to ARDE, sidewall becomes tapered at higher AR, and eventually the trench 

sidewalls converge to a point and etch terminates. The sidewall, whether positive (θ < 90 ° as 

shown in Figure 3.1) or negative (θ > 90 °), will degrade the performance of certain 

microfabricated devices. For example, in capacitive MEMS devices, the critical capacitive gaps 

defined by DRIE are required to have straight (θ = 90 °) and smooth sidewalls for high capacitive 

sensitivity and efficient tuning [29-30]. For TSVs, although positively tapered sidewalls by 

through-wafer DRIE may ease the deposition of a seed layer for subsequent Cu electroplating 

[31], slope sidewalls are not desired for creating high density HAR TSV arrays since the pitch of 

the vias must accommodate the tapered etching profile.  

Etch termination happens when the etched feature tapers to a point at a critical AR and 

the etch rate becomes zero. Yeom et al. [32] analytically defined the maximum achievable AR 

for a given trench width as the AR at which the instantaneous etch rate of a given cycle in the 

DRIE process reaches zero. At this critical AR, the instantaneous polymer etch rate equals the 
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product of the instantaneous deposition rate and the set time ratio between the polymer 

deposition and etching phases. The underlying silicon cannot be exposed. They verified their 

model by DRIE experiments and showed that tapering happens at AR ranging from 10:1 to 15:1 

until the etched feature tapers to a tip at the critical AR. The analysis is based on the process 

parameters being fixed throughout each DRIE experiment, although the effects of different 

process parameters on the critical AR are also analyzed in separate etches. 

To compensate for ARDE induced sidewall tapering and etch termination, Owen et al. [5] 

ramped critical Bosch DRIE process parameters during a 150 min etch and demonstrated record-

high AR of ~ 80:1 for 5 µm trenches etched to depth 400 µm. However, DRIE beyond standard 

500 µm and with HAR has remained challenging.  

ARDE also causes DRIE lag where smaller features are etched slower than larger 

features under the same process conditions. For TSV application, the multiplicity of final 

applications creates a wide range of specifications for TSV diameters from sub-micron to tens of 

microns [21]. It evolved from the medium-density interconnects for CMOS image sensor 

(d=70 µm, AR=1:1) to high performance computing applications (d=10 µm, AR=10:1) and to 

today’s very dense logic stack (d=1 µm, AR<10:1). Due to ARDE induced DRIE lag, these vias 

of different diameters with the desired depths are fabricated in separate processes for different 

chipsets. Tian et al. [19] reported an improved method of fabricating TSVs with arbitrary ARs by 

adopting an aluminum etch-stop layer both to provide excellent etch selectivity, and to avoid 

notching for simultaneously fabricating TSVs and large cavities. 

MEMS devices require an even wider range of feature sizes from sub-micron to tens or 

hundreds of microns. Unlike TSVs, the different feature sizes in MEMS devices are usually 

fabricated during the same process. For example, in the widely adopted SOI (silicon-on-
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insulator) and SOG (silicon-on-glass) processes, DRIE lag results in features of different sizes 

being etched through and reaching the dielectric layer at different times. This causes notching at 

the silicon/oxide interface where the charged dielectric layer can re-direct the etching plasma 

ions and the ions will attack the sidewalls. 

Researchers have found ways to reduce ARDE induced DRIE lag and effectively control 

the sidewall slope by adjusting process parameters. Lai et al. [28] demonstrated that a normal 

ARDE induced DRIE lag can be changed to an inverse lag under optimized conditions for 

trenches sizes from 2.5 μm to 10 μm using SF6 and C4F8 gases. This is mainly achieved by 

adjusting step times and rates to offset the different efficiencies in polymer deposition, polymer 

removal and spontaneous silicon etching based on experimentally measured etch rate. Although 

reduced DRIE lag at < 2 % and inverse ARDE lag (-5 %) was shown, the etched trench depth 

tested was < 25 μm. Chung et al. [34] attributes the cause of RIE lag in ICP etching to the 

formation and removal of passivation film at the bottom of the trench, together with feature 

geometry. They fixed the factor of feature area to decrease the extra geometry contribution to 

RIE lag, and found that lag exists at a low pressure of APC (auto pressure control) 30 % while 

APC 75 % resulted in an inverse lag where smaller features etch faster. Pressure determines the 

density of radicals and ions dissociated from C4F8 and SF6 reacting gasses thus governing the 

competition between two contrary reaction mechanisms: 1) the formation and removal of C4F8 

passivation film that impedes etch depth; and 2) the arrival of SF6 etching gas that enhances etch 

depth. Higher pressure leads to thinner passivation in smaller features due to reduced mass 

transport and scattering of CxFy. It also leads to lower ion density of SxFy. However, the 

difference in the effects of lower ion density of SxFy on different features is small, and can be 

improved by higher bias to increase the ion directionality. Although lag-eliminated and inverse 
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lag are achieved, the etch depth are tested up to only < 70 µm after 30 min etch of 2 - 100 µm 

wide trenches, indicating low overall etch rate even for the larger features (< 2.5 µm/min).   

Results by Lai et al. [28] and Chung et al. [34] indicate that adjusting one process 

parameter (step times or pressure) could mitigate ARDE induced lag effect, however, the overall 

etch rate for both small and larger features are greatly reduced. Deeper etch thus will require 

much longer time and the etch depth will plateau. 

B. Pattern Dependency 

3D MEMS devices are fabricated by transferring 2D images on a mask to the desired 

substrate such as silicon and other materials. 3D devices are characterized by the feature 

resolution both in the plane of the wafer surface, and in the planes normal to the wafer surface 

that are etched deep into the bulk of the substrate. Using DRIE to define the critical parameters 

and boundaries of 3D MEMS devices, extra care is needed to study the etch characteristics of not 

only a wide range of feature sizes, but also the crossings and intersections of these features [33-

35]. Kiihamäki et al. [33] showed that the RIE lag is related to the feature length-to-width ratio 

(L/W ratio) where long narrow features (L/W > 16) are etched faster than square holes of the 

same width, as well as the absolution width W. For example, after 80 min etch, the lag between 

holes and long lines with W = 5 µm is >100 %; the lag between holes and long lines with 

W = 50 µm is >20 %. Lag is also related to pattern shape. The intersections of multiple lines 

experience an enhanced etch rate. Chung et al. [34] verified through experiment that a transition 

point exists between the feature length-sensitive and feature length-insensitive area in relation to 

the etching rate of trenches at constant width and is related to the feature dimensions. 

C. Selectivity of Etching Mask Materials  

Selectivity is a measure of the ratio between the silicon etch rate and the mask materials 
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etch rate under the same conditions. Etching of mask materials is mainly due to physical 

sputtering. If the mask material is depleted the patterned features will be destroyed at the top 

surface. This is exceptionally critical for our ultra-deep Bosch DRIE since the target depth are 

approaching or exceeding 1 mm that requires significantly extended etching duration. 

Oxide and aluminum are the most commonly used hard mask for DRIE, and photoresist 

(PR) is most widely used soft mask. Oxide generally has a higher etch selectivity (from 120:1 to 

200:1) to silicon than typical photoresist (PR) (~50:1). For PR, the oxygen or fluorine content in 

the plasma will erode the mask and decrease the selectivity, with the rising temperature due to 

the exothermic reaction aggravating the effect. Lo et al. [36] has shown that with certain 

chemistries, PR has better selectivity and improved anisotropy than oxide due to polymer 

deposition caused by the PR mask. However excessive polymer deposition is not preferred since 

it will promote “black silicon” or “grass” formation (the formation of micro-columns) due to re-

sputtering of the nonvolatile mask materials onto the exposed silicon [37]. Photoresists with 

higher selectivity are used to endure longer DRIE processing with higher plasma power. During 

DRIE of fused silica, Cao et al. [38] reported higher selectivity at 3.4 by using negative 

photoresist KMPR compared to very poor selectivity at ~1:1 of regular photoresists, even under 

bombardment of high-energy ions during the process. Deep etching of large features can also 

take advantage of new developments in ultra-thick PR such as dry film resist to achieve a greater 

etch depth [50-51].  

The selectivity of low-chemical-reactivity metal masks is generally higher than oxide and 

PR, although it is not infinite due to ion bombardment in the process. Yeom et al. [32] reported 

that 1000 Å aluminum mask was used in a 180 min DRIE using a time-multiplexed DRIE 

process with SF6 for etching and C4F8 for sidewall passivation, with silicon etch rate at 1-
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2 μm/min. Ganji et al. [39] have shown that Al have 1000x higher selectivity than AZ1500 PR at 

cryogenic temperature. Marty et al. [6] used 2000 Å aluminum mask to etch 0.374 µm wide and 

40.1 µm deep trenches. Parasuraman et al. [40] used 500 nm evaporated aluminum mask for 

etching 250 nm wide trenches with Bosch DRIE, and achieved >120:1 high AR using cryogenic 

DRIE.  

However, the results with aluminum mask from submicron trench DRIE are not 

compatible with feature sizes in the tens of micrometer range. This is because in these 

submicron-feature etching, sputtering and re-deposition of nonvolatile metal compound were 

naturally suppressed by the high AR, whether cryogenic or Bosch DRIE. For larger feature, 

surface roughness caused by metal masks was reported by Oehrlein et al. [41]. Nonvolatile AlF3 

is formed in CF4 reactive ion etching, which deposits on the exposed silicon and masks against 

subsequent etch resulting in formation of silicon grass.  Ganji et al. [39] reduced substrate bias to 

laterally etch the silicon grass in its initial formation stages, resulting in increased sidewall 

damage. 

This micro-masking may be avoided by preventing metal sputtering in the first part of the 

DRIE and, if prevented, it will not take place in further etching, after a given depth/AR is 

reached, as suggested by Bagolini et al. [42] and Mu et al. [43]. In [42], silicon etch rate 

measures 2.5 μm/min for 100 μm features and aluminum etch rate is measured at <0.05 nm/min. 

Photoresist as thick as 2 μm is necessary on top of the aluminum film to sustain 18 min of Bosch 

DRIE etched to a depth of 45 μm, and thus avoiding the formation of micro-masking during 

DRIE. Beyond this depth, the AlF3 compounds have a limited mobility to reach the cavity 

bottom and re-sputter. To pattern smaller features, 100 nm titanium mask replaces the PR mask 

to sustain 17 min DRIE, where titanium mask does not generate re-sputtering of titanium 
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fluorides. 

Jansen et al. [24] suggested that Cr, Cu and Ni are good candidates as DRIE masking 

materials. Nickel masks endured up to 10-hour DRIE of Pyrex Glass [45]. Dowling et al. [26] 

also reported SF6/O2 ICP etch of silicon carbide (SiC) with a Ni mask (selectivity=60:1). Despite 

high mask selectivity, Ni and Cr are not CMOS compatible and hardly fit into a semiconductor 

environment [47].  

We will discuss the mask materials used in our deep ultra-high aspect-ratio silicon DRIE 

process in the next section.  

We have developed a modified DRIE process to minimize the standard DRIE process 

shortcomings (ARDE induced tapered sidewall/etch termination/DRIE lag, and pattern 

dependency) presented in the previous section. Ultra-deep ultra-high AR features with controlled 

sidewall slope are obtained by dynamically ramping the Bosch DRIE process parameters. This 

section will present detailed description of this modified DRIE process with ramped process 

parameters and comparison with the standard fixed-parameter recipe. 

3.1.2 Standard Fixed-Parameter Bosch DRIE Process 

We use an inductively coupled plasma (ICP) Surface STS Pegasus etcher to conduct all 

the experiments. Standard DRIE recipes have fixed process parameters throughout the etching. 

The etcher is operated at 13.56 MHz ICP power level of 2800 W and 380 kHz RF bias power at 

60 W in the etch sub-cycle and 2000 W ICP power in the passivation sub-cycle. C4F8 and SF6 

gas species are alternated between the passivation and etching steps at 24 mTorr and 30 mTorr 

chamber pressure, respectively. 

1 - 35 μm wide trenches (> 1000 μm in length) are patterned and etched by the standard 

fixed-parameter DRIE process for various durations of 90 min, 110 min and 150 min. Since real-
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time in-situ, process monitoring tool is not available, cross-sectional SEM images are used to 

characterize the process. Figures 3.2 & 3.3 show DRIE results of trenches with various widths.   

Although the DRIE recipe used is designed for etching relatively small features (1 -

 100 μm) with vertical, smooth sidewalls and minimal undercut, the depth of straight sidewalls is 

limited to < 250 μm even for trenches wider than 30 μm wide in Figure 3.2. 

 
The sidewalls of trenches of all the feature sizes taper toward the bottom after certain AR 

is reached (>10:1 and <20:1), and the etch rate slows down significantly, especially for trenches 

that are <10 μm wide. These results are consistent with the AR suggested by Yeom et al. [32] at 

 
Fig. 3.2. Standard fixed-parameter DRIE results: 90 min and 110 min DRIE on 2 - 35 µm wide 
trenches. Sidewalls of trenches < 6 µm wide converge to a point and the etching is terminated 
within the 90 min DRIE. Although the apparent etch rate of trenches > 6 µm wide does not 
reach zero, sidewall tapering of all feature sizes is observed. 
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which sidewalls start to taper.  

This standard recipe has an etch rate of around 3 μm/min for 2 μm wide trenches and 

5.62 μm/min for 10 μm wide trenches, given the etched feature does not exceed certain AR. 

During the last 30 min of the 150 min etch, we measure etch rates of <1 μm/min for the 1-2 μm 

features and <2 μm/min even for 5 μm features. The 5 μm trench closes at a depth of <290 μm as 

shown in Figure 3.3. 

 
Holes with different diameters ranging from 15–35 µm are also etched with the standard 

fixed-parameter recipe. As shown in Figure 3.4, 15 µm holes are etched to <400 µm within 

210 min. The apparent etch rate is close to that of 5 µm trenches at ~2 µm/min. The 35 µm holes 

however are beyond being etched all the way through the wafer (~550 µm). Tapering and 

convergence of sidewalls are observed at the bottom of the holes. Since the holes converge to 

submicron points at the very bottom, sharp points are not observed by cleaving the silicon wafers. 

Due to the ion flux and ion energy dependency on in-plane aspect-ratio (Ø/Ø for holes and L/W for 

 
Fig. 3.3. 150 min DRIE of 1-5 µm wide trenches using standard fixed process parameters. SEM 
images show major sidewall tapering and convergence to a point at the bottom. 
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trenches), obtaining HAR in hole/via etching is more difficult than etching trench with the same 

width as the hole diameter. 

This standard fixed-parameter recipe is used as a baseline recipe to develop and tune the 

dynamic recipe with ramped process parameters to achieve straight sidewalls and flat feature 

bottom. 

 

3.2 DRIE with Ramped Process Parameters for High Aspect-Ratio Deep DRIE 

To address ARDE and create desired structure, instead of adjusting a single process 

parameter [32-38] as discussed in Section II-A, combinations of recipes can be used in sequence 

by modern plasma etching tools. For instance, one can perform an anisotropic RIE etch, an 

isotropic etch and a Bosch DRIE by programming the etching sequence [5, 48,49]. 

Wang et al. [48] reduced undercut by over passivating at the beginning of the etching 

process. To do so, C4F8 passivation gas was introduced to the chamber during the etch sub-cycle 

   
Fig. 3.4. SEM images of holes with various diameter etched for 210 min with the standard 
fixed-parameter DRIE process. The bottom of the holes converge to a sharp point and etching 
is terminated. Due to the ion flux and ion energy dependency on in-plane aspect-ratio (length to 
width), obtaining HAR DRIE in hole/via etching is more difficult compared to etching trench 
with the same width as the hole diameter. 
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and the gas flow was ramped down from 10 sccm to 2 sccm while the SF6 gas flow was kept 

constant at 450 sccm. This method resulted in reduction of undercut from 468 nm to 306 nm. 

Continuous adjustment of process parameters has also been proposed to address ARDE issue. 

For example, Teixeira et al. [49] proposed programming a governing function that determines 

the initial parameters as well as how the parameters are to be transitioned.  

In this work, we attempt to address the key DRIE shortcomings (ARDE induced sidewall 

tapering, etch depth limitations and DRIE lag; and pattern dependency) in order to achieve ultra-

deep ultra-high AR silicon etch by further developing and characterizing a modified Bosch DRIE 

process initially proposed by Owen et al. [5].  Since these issues mainly originate from the 

reduction in transport of etchant agents and ion bombardments at the bottom of deep features as 

the AR increases, Bosch DRIE process parameters are continuously ramped to optimize the 

DRIE conditions at each depth as the etch proceeds.  

The STS Pegasus ICP DRIE etcher allows process parameters to be ramped from a start 

value to an end value.  The ramp rates of different parameters are set in order to maintain as 

constant and high etch rate as possible as AR increases. Then the overall etch time (recipe 

duration) is set to reach a desired etch depth. The start and end values of the various parameters 

are calculated from the product of ramp rate and etch duration.  

Three parameters of the DRIE process are ramped: 380kHz RF bias platen power, etching 

and passivation sub-cycle duration, and chamber pressure. It should be noted that the start and 

end values need to be characterized for specific feature sizes, etch patterns and target depths. For 

example, for 2-10 µm trench width, the following set of ramped parameters are found to best 

compensate the reduced etch rate and result in deep HAR structures by enhancing the etching 

agents effect during the total 150 min DRIE duration: the 380-kHz bias power during etch step is 

66 



increased from 60 W to 140 W; the etch sub-cycle duration starts at 2.6 s and is ramped up to 

5.6 s; and the passivation step duration is increased from 2 s to 3.5 s. The chamber pressure is 

also changed throughout the process: the passivation step chamber pressure is ramped up from 

24 mTorr to 34 mTorr whereas the etch step chamber pressure is ramped down from 30 mTorr to 

15 mTorr. The relevant parameters for the fixed and ramped processes are compared in Table 1. 

The effect of these different parameters will be further discussed. 

 
 

3.2.1 DRIE Process Parameters 

A. 380kHz RF Platen Bias Power 

The plasma is generated by an inductively coupled coil generator at 13.56 MHz and is 

kept constant at 2000 W and 2800 W during the passivation and etching steps respectively. 

A 380 kHz RF platen power is applied to bias the substrate which generates a high 

voltage sheath between the plasma and the wafer. This voltage drop accelerates the ions across 

the sheath to strike the substrate. The STS etcher allows us to set this 380 kHz RF platen power 

during the etch step as well as a higher boost power for a fraction of the etch step time. The main 

power is set to 60 W and the boost power during the first one second of the etch step is set to 

ramp from 60 W to 140 W.  Ramping the boost power improves ion directionality as AR 

increases as well as improving passivation breakthrough at the bottom of the deep trenches.  

Table 3.1: DRIE process parameters oprimized for 150-min etch optimized for 2 -
10 µm trenches: fixed-parameter recipe vs. ramped-parameter DRIE recipe. 

Recipe Etch  Passivation 
 380 kHz Bias 

Power 
Step Time Pressure 

 
Step Time Pressure 

 
 (Watt) (s) (mTorr) (s) (mTorr) 

Fixed 60 2 30 2.6 24 
Ramped 60140 2.65.6 3015 23.5 2434 

This is optimizaed for 2-10 µm trench etch.  
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However, higher boost power reduces mask material etch selectivity drastically even for 

thermally-grown SiO2 mask. Thermal SiO2 mask etch rate is measured to be > 30 nm/min at 

140 W boost power whereas < 18 nm/min at 60 W.  

B. Etch step duration and chamber pressure 

Increasing the etch step time from 2.6 s to 5.6 s throughout the process provides more 

time to the gas species to diffuse through the depth of the trench as it gets deeper. To further 

improve the etchant agents’ transport to the bottom of deep structures, chamber pressure during 

the etch step is decreased from 30 mTorr to 15 mTorr to increase the mean free path of gas 

species, which is achieved by reducing the gas molecules and ions collisions. These adjustments 

throughout the recipe improves breakthrough of the passivation layer at the bottom and promotes 

etching the silicon in deep high AR trenches.  

Increasing the etch step time from 2.6 s to 5.6 s throughout the process provides more 

time for the reactive gas species to diffuse into and for the reaction products to get out of the 

narrow trench as it gets deeper. To further improve the gas transport to the bottom of deep 

structures, the chamber pressure during the etch step is decreased from 30 mTorr to 15 mTorr 

which increases the mean free path of gas species, by reducing the gas molecule and ion 

collisions. These adjustments improve the breakthrough of the passivation layer at the bottom 

and promote etching the silicon in deep high AR trenches. However, lowering the chamber 

pressure will decrease the etch rate slightly due to the lower concentration of reactive radicals in 

the chamber.  

C. Passivation step duration and chamber pressure 

Ramping up the bias power and duration of the etch step to compensate for high AR 

small features increases the undercut at the top of the features by consuming the passivation 
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polymer along the sidewalls of the etched features near the top. Passivation step parameters need 

to be adjusted to reduce lateral etching. This is compensated by ramping the passivation step 

chamber pressure from 24 mTorr to 34 mTorr, and duration from 2 s to 2.6 s. Increasing the 

duration of the passivation step results in a thicker passivation layer. Increasing the pressure 

provides more reactant in the chamber, reinforcing the passivation layer on the sidewalls near the 

top.  At the same time, the polymer deposition rate at the bottom of deep trenches is suppressed 

with reduced gas species transport due to shorter mean free path of gas species. 

3.2.2 Microfabrication process 

For testing and charactering our ramped-parameter silicon DRIE process, experiments 

were carried out on 4-inch lightly doped p-type silicon wafers, and on 4-inch highly doped p-

type silicon wafers. The silicon wafers are patterned with a wide range of patterns and feature 

sizes:  trenches (L>>W) with widths ranging from 1-100 μm and circular holes with diameters at 

10, 15, 25, 35 μm. 500 μm thick silicon wafers are used to characterize narrow-width trenches (2-

10 µm wide) and holes (15-25 µm in diameter), whereas 1 mm thick wafers are used to 

characterize wider features (10-100 µm wide). 

Since mask erosion rate increases throughout the process where dynamic process control 

with ramped-up RF bias power and etch step duration is employed, a thick oxide hard mask 

along with a thick photoresist film is needed to provide sufficient masking materials for the long 

DRIE process. In addition, lithography resolution will limit how precise the small-feature 

patterns can be transferred to a thick mask layer, whether it is thick oxide or thick PR.  

As shown in Figure 3.5, for >150 min DRIE with the ramped-parameter process, ~3 µm 

SPR220 (7.0) photoresist in addition to 4 µm LPCVD SiO2 is used as DRIE mask materials for 

69 



feature sizes of 1-10 μm, and >10 µm SPR220(7.0) photoresist along with 5-6 µm thick SiO2 is 

used as mask materials for feature sizes >10 μm. 

1 - 2 μm wide trench patterns need to be precisely transferred to the oxide mask with 

vertical sidewalls, thus they are patterned using a GCA AS200 AutoStepper with 5:1 reduction 

and etched using SPTS APS Dielectric Etcher for high sidewall verticality.  

In future, high selectivity metal masks may be used to long DRIE with extended times for 

the small features [42-47]. Whereas ultra-deep etching of relatively large features can take 

advantage of new developments in ultra-thick PR such as dry film resist to achieve a greater etch 

depth [50-51].   

 
 
3.3 Ultra-High-Aspect-Ratio Deep DRIE Results 

3.3.1 DRIE of Trenches: Etch Rate and Etch Profile 

Trenches (>1000 μm long and 2-10 μm wide) are patterned and etched in 500 μm thick 

<100> wafers using both the fixed-parameter recipe and ramped-parameter recipe (DRIE 

parameters presented in Table 3.1). Table 3.2 presents the 150-min ramped-parameter DRIE 

 
Fig. 3.5. DRIE masking materials used for ultra-deep ultra-high aspect-ratio (UHAR) long 
DRIE processes: 5 - 6 μm LPCVD SiO2 and thick photoresist layers are used as hard and soft 
masking material respectively. Thinner resist (~ 3 µm) is used for 1 - 10 μm feature sizes due to 
lithography limitations. 

 

Trench Feature size

Mask Material 2 – 5 µm >10 µm

PR 3 µm >10 µm

Oxide 4 µm 5 - 6 µm

Oxide

PR

Silicon
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recipe results with all the depths and lateral dimensions measured at cross-sections after cleaving 

the 500 µm thick silicon wafers. 

 

Ramped DRIE results demonstrate increased etch rate, reduced undercut, suppressed 

ARDE, flat trench bottom even after 150 min etch and ARs exceeding 90:1 for trenches as small 

as 2 µm as shown in Figure 3.6, in contrast to the fixed-parameter process that results in tapered 

sidewall and converged trench bottom (Figure 3.3). 

 

The DRIE depths of various trench sizes after 150 min DRIE are compared for two 

 
Fig. 3.6. DRIE of 2-10 μm wide trenches by the ramped-parameter process for 150 min. Deeper 
trenches with straight sidewalls and flat bottom is obtained compared to the results of fixed-
parameter DRIE shown in Fig. 3.3. 

3 μm 4 μm 5 μm 6 μm2 μm

336 μm
367 μm

388 μm

480 μm

290 μm

10 μm

410 μm

50
0 

µm
150min Trench Etch: Ramped-Parameters

Table 3.2: Final trench profiles for 150 min drie with ramped 
parameter process. 

Mask 
Opening 

(µm) 

Measured Trench 
Width (µm) 

Trench 
Depth 
(µm) 

Aspect 
Ratio 

Sidewall 
Slope 

(°) 

Under-
cut  

(µm) Top Mid. Bottom 
2.5 6.3 3.0 1.7 290 98 89.95 1.90 
3.5 7.4 3.9 2.5 336 87 89.59 1.95 
4.5 8.8 4.7 3.4 367 77 89.58 2.20 
5.5 10.2 5.7 4.7 388 69 89.58 2.35 
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processes in Figure 3.7. The overall etch rate is increased by over 25 % for all feature sizes 

>2 µm compared to the fixed-parameter process. The widths at the bottom of the trenches are 

reduced by only 10-15 % from the original feature sizes on the mask. By measuring the depth at 

the deepest point, one might argue that the ramped-parameter recipe produces more ARDE 

induced DRIE lag, i.e., comparing the etch depth of the 5 µm wide trenches to that of 2 µm wide 

trenches, the lag is at 30 % with the ramped-parameter process compared to 28 % with the fixed-

parameter process. However, well-controlled vertical sidewall profile with much less tendency of 

etch termination is more important. 

 

Time-lapse depth measurements are made at 60 min, 90 min, 120 min and 150 min of 

DRIE to monitor the progress of the etch rate and AR dependency. Figure 3.8 depicts the 

obtained trench depth at different time intervals for 1-5 µm wide trenches. Figure 3.9 presents the 

calculated average etch rate at different time intervals: 0-60 min, 60-90 min, 90-120 min, and 

120-150 min.  

 
Fig. 3.7. Comparison of DRIE results of 1-5 μm wide trenches using the fixed-parameter and 
the ramped-parameter process for 150 min: for all feature sizes, deeper depth is obtained by 
using the ramped-parameter DRIE process. 
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In a standard fixed-parameter DRIE process, a negative incremental etch rate is usually 

observed as the features are etched deeper due to ARDE effect. With the ramped recipe that 

applies higher bias power, longer etch step duration and reduced etch step chamber pressure, we 

obtained a positive incremental etch rate toward the end of the process, i.e. the etch rate during 

120-150 min are higher than the etch rate during 90-120 min for 3-5 µm wide trenches. The 

 
Fig. 3.9. Trench depth obtained at different time intervals for 1-5 µm wide trenches using the 
ramped-parameter DRIE process. Time-lapse depth measurements are made at 60 min, 90 min, 
120 min and 150 min to monitor the progress of the etch rate and aspect-ratio dependency.  
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Fig. 3.8. Trench depth obtained at different time intervals for 1-5 µm wide trenches using the 
ramped-parameter DRIE process. Time-lapse depth measurements are made at 60 min, 90 min, 
120 min and 150 min of DRIE to monitor the progress of the etch rate and aspect-ratio 
dependency.  
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overall etch rate for the entire duration (150 min) is still reasonably high: greater than 

1.5 μm/min for 4-5 µm wide trenches. For all 2-5 µm features ARDE effect is efficiently 

suppressed to achieve deeper etch. 

Figure 3.10 show the final etched profiles all the way along the trench depth for 120 min 

and 180 min etch with the ramped recipe. The trench bottoms are relatively flat and the widths at 

the very bottom of the trenches are reduced by only 10-15 % from the original feature sizes 

defined on the mask. 

 

     120 min Trench Etch: Ramped-Parameter DRIE     180 min Trench Etch: Ramped-Parameter DRIE 
 

  
                                           (a)                                                                              (b) 

Fig. 3.10. 2-5 µm wide trenches etched for (a)120 min and (b) 180 min with ramped-parameter 
DRIE process. Final etch profiles are shown by highlighting the trench openings at both the 
bottom of the trenches and underneath the oxide mask near the top. The trench bottoms are 
relatively flat, and the widths are almost the same as the original feature sizes defined on the 
mask. The upper half of the trench is tapered slightly due to DRIE undercut and lateral etch. 
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The upper half of the trench is also tapered slightly due to DRIE undercut and lateral etch. 

The 180 min etch results in larger undercut (>2.5 µm on each side) compared to the 120 min etch 

(<2 µm on each side). This is because the increased power has the side effect of more easily 

breaking through the passivation layer at the top and enhances lateral etch. The ramped-up 

passivation step pressure and sub-cycle time duration provide more reactant to form thicker 

passivation layer on the trench sidewalls, reducing this undercut, but not completely. 

3.3.2 DRIE of Circular Holes: Etch Rate and Etch Profile 

In contrast to the converged bottoms shown in Figure 3.4, the ramped parameter process 

can create flat bottoms even for etching circular holes as shown in Figure 3.11. Etch rate is also 

increased compared to the fixed-parameter recipe. 25 µm diameter holes are etched to >500 µm 

within 150 min using the ramped process while 210 min of the original fixed-parameter process 

only obtained maximum depth of <400 µm.  

 
The in-plane AR (length /width, L/W) of the etched features also play an important role 

on the etch rate. 15 µm wide trenches reach a depth of more than 520 µm whereas the 15 µm 

     
                                          (a)                                                                             (b) 

Fig. 3.11. (a) Holes and (b) small in-plane aspect-ratio rectangles at 8 µm×50 µm are etched for 
150 min with the ramped-parameter DRIE recipe.  

>4
00

 µ
m

24.1 
μm

b

15.2 
μm

16.5 
μm

a Bottom of 15µm holes

Bottom 
of 25µm 
holes at 
an angle

55
0 

µm

150 min Hole Etch: Ramped-Parameter DRIE
Ø=15 µm  h=413 µm

a

 

 

   
 

  
 

 

 

 

 

 

  

 
  

  
 

 

     
    

>5
00

 µ
m

55
0 

µm

Ø=25 µm 
h>500 µm

Rect.: 8x50 µm2

 h=488 µm

48
8 

µm

b

75 



diameter circular holes only reach a depth of ~400 µm with the same 150 min ramped DRIE 

process. A rectangular pattern (8 µm×50 µm) is also etched deeper than 15 µm diameter circular 

holes. This verifies that etch rate is also in-plane AR (W/L) dependent. Long lines etch 

considerably faster than circular holes of the same width, or of even larger width as shown in 

Figure 3.11. 

3.3.3 Ultra-Deep and Through-Wafer DRIE 

In another test, 10-100 μm wide and >1000 μm long trenches are patterned on a 1mm 

thick silicon wafer and etched for 140 min. The wafers are then diced prior to taking cross-

sectional SEM images. The sidewall slopes are slightly positive (89.50°<θ<90°) for relatively 

narrow trenches (1-10 µm in Figure 3.6 and 12-25 µm in Figure 3.12), and slightly negative 

(θ>90°) for wider trenches (25-100 µm) as shown in Figure 3.12. 

 
ARDE is effectively suppressed for trenches > 20 - 25 µm wide and are easily etched to 

more than 600 µm deep. The flat trench bottom and slightly negative sidewall profiles indicate 

    
Fig. 3.12. Ultra-deep DRIE of 12–100 µm wide trenches in 1 mm thick silicon wafer by the 
ramped-parameter recipe for >130 min. The sidewall slopes are slightly positive 
(89.50 °<θ<90 °) for relatively narrow trenches (1 - 10 µm wide as shown in Fig. 6, and 10-
25 µm wide), and slightly negative (θ > 90 °) for wider trenches (> 25 - 100 µm).  
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the etch has not been tested to its limit and can go all the way through 1 mm wafer thickness by 

increasing the DRIE process time.  

Figure 3.13 illustrates DRIE results of 15 µm, 20 µm, 35 µm, and 40 µm wide trenches 

etched simultaneously.  For 35 µm and 40 µm wide trenches, the bottom is widened by >5 µm 

while the 15 µm trenches bottom measure 15.9 µm and preserves the original mask dimensions. 

The slight negative tapering (θ>90°) of the larger features contrasts with the positive tapering 

(θ<90°) of narrower trench etch results using the fixed-parameter DRIE recipe shown in 

Figure 3.10.  

 
Widening of the trenches bottoms for larger trench width are expected due to the ramped-

up bias power, increased etch step duration and ramped down chamber pressure. This can be 

accounted for by adjusting these ramped parameters, as discussed in the next section, although 

this will also impact the profile for smaller trenches. 

 
Fig. 3.13. Widening of trench bottoms is observed in > 20 µm wide trenches caused by the 
ramped DRIE process parameters (increase biased power, longer etch duration, and lower etch 
step chamber pressure), while 15 µm features has very straight sidewalls.  
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By adjusting the ramped process parameters and overall DRIE process time, specific 

range of features sizes could be designed to have perfectly straight sidewall slopes, or tailored to 

obtain either positive or negative slopes.  

Based on the slightly negative sidewall profiles for trenches wider than 25 µm, we 

cascaded several DRIE recipes to test the limit of our ramped-parameter DRIE process. In one 

experiment, the end conditions of the process parameters in Table 3.1 (optimized for 2-10 µm 

trench features) are modified and the overall duration of a continuously-ramped recipe is 

increased from 150 min (2.5 hours) to 240 min (4 hours). As shown in Table 3.3, the final 

380 kHz boost power during the etch sub-cycle is set to 180 W and the final etch step chamber 

pressure is set to 10 mTorr, with the other parameters kept the same as in Table 3.1. The trench 

etch results are shown in Figure 3.14.  

 
 

This recipe produces very straight sidewalls for trenches wider than 18 µm. However, 

trenches narrower than ~16 µm wide are tapered and terminated before the end of the 4-hour 

DRIE. Thus, the setting is not sufficient to compensate the DRIE shortcomings for trenches 

narrower than 18 µm. This means that constant ramp rates for DRIE parameters are not optimal 

for a wide range of features sizes. 

Table 3.3: DRIE process parameters set for 240-min etch with 
ramped-parameter DRIE recipe. 

Recipe Etch  Passivation 
 380 kHz 

Bias Power 
Step Time Pressure 

 
Step Time Pressure 

 
 (Watt) (s) (mTorr) (s) (mTorr) 

Ramped 60180 2.65.6 3010 23.5 2434 
Time 240 min 
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In another experiment, several DRIE processes are conducted back to back with the end 

conditions of one section determining the start conditions of the next section, unless noted 

otherwise, as shown in Table 3.4.  It started with a 180 min (3 hours) recipe with an increased 

380 kHz boost power to 160 W toward the end of the section; followed by a 60-min section with 

constant 380 kHz boost power at 160 W; and concluded by another 60-min section in which both 

the boost power ramped up from 160 W to 180 W as well as the etch step chamber pressure 

ramped down from 15 mTorr to 10 mTorr. 

To prepare for a 5-hour-long through-wafer DRIE of 1 mm thick silicon substrate, 13-

15 µm photoresist along with more than 6 µm LPCVD SiO2 masks are patterned. The trench etch 

results are shown in Figure 3.15. After the 5-hour DRIE process, 1.5 µm oxide was remained; 

vertical sidewall profile and flat trench bottoms are achieved. No etch termination is observed. 

 
Fig. 3.14. Ultra-deep DRIE in 1 mm thick <100> silicon substrate using 240 min of 
continuously-ramped DRIE process. This recipe produces very straight sidewalls for trenches 
wider than 18 µm. However, although final boost power is increased from 140 W in Table 2 to 
180 W, and final etch step chamber pressure is reduced to 10mTorr from of 15 mTorr, trenches 
smaller than ~16 µm wide are tapered and converged before the end of the 4 hour DRIE.  
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Trench depth of >900 µm with width <20 µm (AR>40:1), and trench depth of >700 µm with 

width ~10 µm (AR>70:1) are obtained. Trench depth versus trench width is plotted in 

Figure 3.16. Further optimization of all process parameters is needed to achieve perfectly straight 

sidewall profiles all the way along the etch features. 

 

 
 

   
Fig. 3.15. Ultra-deep ultra-high aspect-ratio DRIE in 1 mm thick <111> silicon substrate. 
Trench depth of >900 µm with width <20 µm (AR > 40:1), and trench depth of >700 µm with 
width ~10 µm (AR>70:1) are obtained. After the 5 hour DRIE process, 1.5 µm oxide remains. 
Vertical sidewall profile and flat trench bottoms are achieved and no etch termination is 
observed. 
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Table 3.4: Through-wafer drie process parameters set for 5-hour etch with 
ramped-parameter DRIE recipe. 

Segmented 
Recipe 

Time Etch  Passivation 
 380 kHz 

Bias Power 
Step Time Pressure 

 
Step Time Pressure 

 
 (min) (Watt) (s) (mTorr) (s) (mTorr) 

1st 180 60160 2.65.6 3015 23.5 2434 
2nd 60 160 5.6 15 3.5 34 
3rd 60 160180 5.6 1510 3.5 34 
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3.3.4 Pattern Dependency 

To study the effect of DRIE pattern dependency, in our experiment, a 15 µm wide trench 

is etched to target depth >700 µm with crossing trenches of different widths from 20-45 µm in 

1mm thick silicon wafer.   Figure 3.17 shows that the 15 µm trench is etched more than 60 µm 

deeper near the 20 µm crossing trenches compared to the same feature size near the 40 µm 

crossing trenches, while both are etched deeper than where no crossing is present. 

The etch rate and profiles at the junctions of narrow and wide features are very sensitive 

to abrupt widening/narrowing of features and sharp corners. In another experiment, 500 µm thick 

silicon wafer is patterned with 5-10 µm trenches that intersect at multiple points. It is etched 

using the ramped-parameter DRIE process followed by blanket thinning from the backside. The 

complicated artifacts at the trench bottoms where wide and narrow trenches intersect at 90-

degree corners are shown in Figure 3.18: the etched depth on the narrow side near the junctions 

are greatly reduced compared to the flat trench bottoms farther away from the junction.  

These artifacts are likely caused by the distorted trajectory of the incoming ions by the 

local electric fields created by the sharp corners along the sidewalls, such that the etch rate will 

 
Fig. 3.16 Etch depth of ultra-deep ultra-high aspect-ratio DRIE for >130 min with the ramped-
parameter recipe, compared to 300 min (5 hour) through wafer etch results from Fig. 3.15.  
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be altered for both wide and narrow features. In addition, when there is an abrupt change in 

feature size-induced etch depth, the artifacts could be exacerbated by a passivated “wall” across 

the different etch depths. 

 

Rounding the corners where the different features intersect has been found to mitigate the 

effect and assist the etching of the narrow side. Narrow trenches connected to a large pattern 

with rounded corners etch faster than trenches of the same width standing alone. When we apply 

this customized deep HAR DRIE to a HAR MEMS accelerometer design in Chapter 4 through 

Chapter 7, the sharp corners at the wide and narrow feature intersections are all replaced with 

 
Fig. 3.17. Effect of crossing patterns on the etch depth: one 15 µm wide trench with crossing 
trenches of different widths from 20 - 45 µm is etched to a depth > 700 µm. The 15 µm trench is 
etched more than 60 µm deeper near the 20 µm crossing trenches compared to the one close to 
the 40 µm crossing trenches and both are etched deeper than where no crossing is present. 

82 



rounded features. The accelerometers are successfully released, proving that the etch has reached 

the desired depth for all different feature sizes. 

 

3.4 Summary 

This chapter describes an advanced deep-reactive-ion-etching (DRIE) process for 

realizing ultra-deep (> 500 µm) ultra-high aspect-ratio (AR) silicon structures (AR > 40 for 1 mm 

through-trench etch, AR ≈ 80 for 500 µm through-trench etch, and AR > 20 for 500 µm through-

hole etch), with straight sidewalls across a wide range of feature sizes.  

The challenges of making such structures are overcome by continuously ramping critical 

parameters of the Bosch DRIE process throughout the process, including the 380-kHz bias power 

during etch step, the etch/passivation step duration, and the chamber pressure. The masking 

material capable of enduring the long DRIE process is also discussed. 10 μm and 25 μm wide 

trenches are etched to a depth of > 750 μm and > 1000 μm respectively, both in 1 mm-thick 

silicon wafers with straight sidewall profiles and flat trench bottoms. Deeper trenches are 

expected to be etched beyond a 1mm thick wafer with thicker and/or higher selectivity masking 

materials. We have also demonstrated etching of circular holes of diameters as small as 25 μm to 

 
Fig. 3.18. Etch profile at junctions of narrow and wide features: Bottom of deep trenches are 
revealed by thinning down the wafer from backside: etch depth on the narrow side near the 
junctions are greatly reduced. 
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a depth of > 500 μm, and potentially with 10 - 15 μm diameter holes. This advanced DRIE 

process offers opportunities for applications ranging from through-silicon via (TSV) in 3D 

CMOS integration to emerging micro and meso-scale MEMS applications that demand ultra-

deep and ultra-high aspect-ratio (UHAR) DRIE. 

The results will be applied to the fabrication of the proposed 3D HAR biomimetic hair 

accelerometer made from silicon. Chapter 4 will describe devices with one uniform sensing gap 

that mainly utilize the UHAR DRIE of 2-10 µm trenches. Chapter 4 through Chapter 6 will focus 

on employing the ultra-deep and ultra-high aspect-ratio (UHAR) DRIE to the fabrication of a 

two-gap hair structure that greatly extend the device height as well as preserving small and well-

controlled electrostatic transduction gaps to achieve high performance. 
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Chapter 4 UNIFORM-GAP HAIR ACCELEROMETER BY SILICON-ON-

GLASS (SOG) PROCESS 

In the previous chapter, we described an advanced deep-reactive-ion-etching (DRIE) 

process for realizing ultra-deep (> 500 µm) ultra-high aspect-ratio (AR) silicon structures 

(AR > 40 for 1 mm through-trench etch, AR ≈ 80 for 500 µm through-trench etch, and AR > 20 

for 500 µm through-hole etch), with straight sidewalls across a wide range of feature sizes (2 -

 100 µm). We overcome the challenges in Bosch DRIE by continuously ramping critical DRIE 

parameters throughout the process, including the 380-kHz bias power during etch step, the 

etch/passivation step duration, and the chamber pressure.  

The first-genration uniform-gap hair accelerometer prototype mainly utilizes the ultra-

high aspect-ratio (UHAR) DRIE of 2 - 10 µm wide trench features. 

4.1 Technology Development and Microfabrication 

4.1.1 Applying Ultra High Aspect-Ratio DRIE 

As shown in Figure 4.1, the spring length L of the uniform-gap device is determined by 

2 µm wide trenches surrounding the spring (L≈ 300 μm). Our first-generation hair accelerometer 

utilize standard 500 µm thick silicon wafers thus 5 µm wide trenches are chosen as the capacitive 

sensing and actuation gap g0 separating the proof-mass and electrodes. Referring to Figure 2.1, 

although g0 at 3 µm or 4 µm may lead to a higher normalized sensitivity, the first DRIE etch 
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depths are less than 400 µm such that the release DRIE must be longer.  

 

5 µm sensing gap is optimal in achieving maximum device height (H) at almost full 

thickness (H < 500 µm), maximum spring length L (L < H) and large enough isolation gap 

between neighboring electrodes (10 µm). To increase the array layout density, the positive and 

negative axes along the same axis of two devices side by side are separated only by the 10 µm 

isolation gaps. Larger isolation gaps (gisolation = k × g0) are desired to reduce the feedthrough 

between the positive and negative axis (Figure 4.2). However, gisolation = 10 µm (k = 2) is the 

maximum dimension we can set due to DRIE lag: with large gisolation, the wafer will be etched-

through in step (a) in Figure 4.4. 

The proof-masses are designed to have footprint (a × b) ranging from 2002 - 5002 µm2 and 

hair spring cross-section (a × b) ranging from 302 - 502 µm2. Four electrodes are arranged along 

two perpendicular sensitive axes and form four capacitors (X+, X-, Y+, Y-). To increase the 

capacitive sensitivity, arrays of 25 hair accelerometers are connected in parallel, i.e., the sensing 

capacitor from the same direction (X+, X-, Y+, or Y-) are connected in parallel (Figure 4.3). All 

the proof-masses within the array are electrically connected through the metal traces contacting 

    
Fig. 4.1. Uniform-gap hair accelerometer: ultra-high aspect-ratio DRIE of trenches defines the 
device height, vertical hair spring length and isolation between neighboring electrodes.    

H

b (x a)

c (x d)

g0

L

90 



the conductive silicon hair spring at the spring bonding site.  

 

 

The prototype 3D hair structure proposed in Figure 4.1 is fabricated using a silicon-on-

glass (SOG) process (Figure 4.4).  

(a) The process starts with a p-type double-side-polished 500 µm thick silicon wafer with 

0.005 - 0.020 Ω-cm resistivity.  A shallow recess of 2 µm is etched in the silicon wafer followed 

by a long deep reactive ion etching (DRIE) step to define the small capacitive gaps (5 µm) and 

the gaps surround the vertical hair spring within the proof-mass (2 µm), while simultaneously 

etching more deeply to separate neighboring electrodes (10 µm) by exploiting aspect ratio 

dependent etching (RIE lag).   

 

                                          (a)                                                              (b) 
Fig. 4.3. SEM of 25 (5×5) arrays of hair accelerometers: (a) Proof-mass footprint (a×b) equals 
500×500 µm2; (b) Proof-mass footprint (a×b) equals 400×400 µm2. 

 

Fig. 4.2. Capacitive feedthrough due to the maximum separation gaps that can be realized by 
the SOG process in Fig. 4.4. 
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(b) A Pyrex 7740 glass wafer is then patterned to define the anodic bond pads.  A 3 µm 

deep recess is wet-etched by buffer hydrofluoric acid (BHF). The electrical interconnections are 

realized by a first metal layer (Ti/Pt of 200 Å /1500 Å) patterned by liftoff. These 

interconnections are in direct contact with the silicon springs that are later anodically bonded to 

the glass substrate. An optional second metal stack (Ti/Al of 200 Å /1500 Å) can protect the first 

metal layer from being sputtered during final DRIE step.   

(c) The Si and glass wafers are aligned and anodically bonded at 400 °C. 

(d) Finally, the bonded wafer stack is flipped and mounted on a 4-inch silicon carrier 

wafer. Without additional masking and patterning, blanket DRIE from the silicon side thins 

down the silicon and releases the proof-mass. 

 

 
Fig. 4.4. Silicon-on-Glass (SOG) fabrication process for fabricating uniform gap hair 
accelerometer. The sensing gap g0, mass height H and spring length L are defined by a single 
DRIE step. 
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Figure 4.5 shows the cross-section of a single hair structure and the close-up of the 

bonded silicon-glass after dicing the bonded wafer.  The grain size of the two materials and the 

separation gaps between the proof-mass and glass substrate can be seen at the interface. 

4.1.2 Silicon-Glass Anodic Bonding with Metal 

Anodic bonding is a one of the key integration technologies in making 3D MEMS 

structures. It was first introduced in 1969 by Wallis and Pomerantz [1]. During a typical anodic 

bonding process, the glass wafer is usually placed on top of the silicon wafer. The cathode 

electrode is in contact with the glass wafer from the top. Temperature is risen to 350 - 400 °C 

before a bond voltage between 500 - 1000 Volt is applied to cause the diffusion of sodium ions 

(Na+) away from the interface to toward the cathode. The temperature increases the mobility of 

the positive ions in glass. However, it should not exceed the glass transition temperature. As a 

result, in the glass wafer in contact with silicon a few micrometers thick high-impedance 

depletion region is formed. The potential drop across the few micrometers such that the electrical 

field intensity in the depletion region is very high, causing the oxygen ions to drift to the bond 

interface and react with the silicon to form SiO2. The voltage is typically retrieved after the 

 

Fig. 4.5. Bonded silicon-glass interface: SEM of single hair structure cross-section and close-up 
of the silicon-glass interface. 
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current drops to certain percentage of the initial value I0 (ex. 5%, 10%). After that slow cool 

down is preferred due to coefficient of thermal expansion (CTE) mismatch. 

 

Anodic bonding can provide hermetic seals and thus has been applied to a wide range of 

devices from inertial sensors, pressure sensors to microfluidic devices. Anodic bond can be 

formed between alkali-rich glass and semiconductor, as well as any metal. Among the different 

combinations, bonding of glass to silicon has been the most extensively investigated, although 

bonding to aluminum [2-3], polysilicon [4], thermal 𝑆𝑖𝑂2 [5], and 𝑆𝑖3𝑁4[6].  

 

In order to increase sensitivity, we should reduce the cross-sectional area of the hair 

     
                                         (a)                                                        (b) 
Fig. 4.7. Bonded silicon-glass interface: SEM of single hair structure cross-section and close-up 
of the silicon-glass interface. 
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                                   (a)                                                                        (b) 
Fig. 4.6. Anodic bonding principle and plot of bonding parameters vs. time for a typical anodic 
bonding process. 
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spring to make the it more compliant. Anodic bonding is chosen for its high bond strength and 

simplicity. However, it requires a minimum surface area for a successful bond and any material 

present between the silicon and glass substrate will prevent good contact between the two 

wafers.  Thus, a shallow recess of 1200 Å is etched by BHF before the 1700 Å thick metal 

deposition. As shown in Figure 4.7(a), only ~500 Å of metal will breach the surface the glass 

substrate.  

To minimize the spring cross-section area, we also ensure efficient pre-bond cleaning and 

apply plasma activation to the wafer surfaces to enhance the bonding strength. Good pre-bond 

alignment and optimization the anodic bond recipe (voltage, temperature, and annealing process) 

helps to ensure reliable bonding as well. For Si wafer pre-bond cleaning, we use H2SO4–H2O2 (1:1 

Piranha) and HF solutions. In our case Piranha is necessary because polymers such as photoresist 

and CF6-induced compounds can stick to the walls of the deep trenches during DRIE. Oxygen 

plasma activation is also used to treat both wafers before bonding. For both silicon and glass 

surfaces, the total surface energy increases even at low power or short plasma exposure times.  

We pre-bond by applying - 500V at 250 °C for 30 minutes. Then we perform the second 

bonding step by applying -1300V at 350 °C. After the second bonding step is complete, we 

anneal the wafers at 350 °C for 1.5 hours and slowly ramp down to room temperature over 

2 hours. With these settings, we achieve almost 100 % yield for posts with cross-sections larger 

than 30 µm × 30 µm with the metal contact fingers (~500 Å higher than the glass substrate 

surface) between the silicon and glass substrates. 

The anodic bonding quality is assessed visually as shown in Figure 4.7(b). The darker 

grey color indicates well-bonded areas while the light-colored areas represent the recess in the 

glass where the two substrates are separated. There are no visible particles at the interface. 
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A close-up of an array of hair accelerometer structures and their cross-section are 

presented in Figure 4.8, revealing the metal electrical interconnections on the glass substrate and 

the vertical silicon hair spring anchored securely to the glass bond pads by anodic bonding. 

 
 
4.2 SOG Accelerometer Testing Results 

Two-axis 25-element arrayed hair accelerometer chips with different design parameters 

are fabricated by the SOG process presented in Figure 4.4 and their electro-mechanical response 

is tested. Standard 500 µm thick highly-doped p-type silicon wafer is used such that the final 

device height H equals 400 µm. The single hair accelerometer footprint (a × b) is varied from 

200 × 200 µm2 to 500 × 500 µm2, whereas the spring cross-section area (c × d) is varied from 

30 × 30 µm2 to 50 × 50 µm2.  

An Unholtz-Dickie 400ATE/C Transducer Calibration System is used to characterize the 

device under test (Figure 4.9).  

 

Fig. 4.8. Close-up of an array of hair accelerometer structures and their cross-section: vertical 
silicon hair spring is anodically bonded to the glass substrate and makes electrical contact with 
the metal fingers patterned on the glass substrate.  
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We set the maximum acceleration and frequency of the shaker vibration motion and 

monitored the capacitance readout from an Analog Devices Capacitance-to-Digital Converter 

chip AD7746 CDC output. Since we connected the capacitors directly to the CDC inputs on the 

PCBs, parasitics are avoided as much as possible.  The PCB was mounted in a way that one of 

the two sensing axes is aligned with the motion of the shaker.  

 

The testing was carried out by sweeping the maximum acceleration from 1 g to 24 g at an 

excitation frequency of 40 Hz. The motion follows a sine wave. The shaker can output acceleration 

ranging from 0.1 g to 100 g with a resolution of 0.01 g. It has a wide frequency range from 2 Hz to 

10 kHz. COMSOL was also used to simulate the device sensitivity based on the measured 

fabricated device dimensions. However, the limit in the vibration amplitude means it is not feasible 

to apply high acceleration at very low frequency. In addition, the CDC chip had a sampling 

frequency at 90.9 Hz. This sampling rate is too low to reconstruct the sine waveform expected for 

the capacitance change at the vibration frequency of 40 Hz.  Since it is above the Nyquist rate, we 

capture the envelope of the capacitance change and read the peak to peak values as we swept the 

acceleration magnitude. An example of the time domain measurement is shown in Figure 4.10. 

      
                                             (a)                                                    (b) 
Fig. 4.9. Fabricated sensor chip mounted on PCB and then mounted on shaker table for 
electromechanical testing. 

97 



 

 

Figure 4.11 presents the differential capacitance change in the X-axis of one of the hair 

accelerometer arrays tested when subjected to peak acceleration from 1g to 24 g on the shaker 

table. We show the measured result compared with the analytical result of an array of 25 400-

μm-tall SOG sensors (5002 μm2 proof-mass, 502 × 300 μm3 spring and 5 μm g0) when different 

levels of acceleration are applied. The differences are due to process variation from the designed 

 
Fig. 4.11. Differential capacitance changes in X-axis of an array of 25 hair accelerometers 
connected in parallel when subjected to peak acceleration from 1 g to 24 g on Unholtz-Dickie 
shaker table. Each hair accelerometer in the array is composed of: 1) a 380 µm tall proof-mass 
that has footprint at 500 × 500 µm2; 2) a ~300 µm long spring that has a cross-sectional area of 
50 × 50 µm2, and 3) nominal sensing gaps at 5 µm. 
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Fig. 4.10. Time domain capacitance change when shaker motion is turn on and off. 
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dimensions and parasitic capacitance. The differential mode measurement shows a more linear 

curve than the single-ended measurement. Due to the symmetry of the structure, common-mode 

noise is canceled in differential mode measurement.  

Differences in the measured and simulated data are due to the discrepancies between the 

exact spring/gap profiles of the fabricated devices and the dimensions assumed in the COMSOL 

simulation based on the SEM measurement. Parasitics associated with electrical routing and wire 

bonding will also degrade the capacitive sensitivity. 

The frequency response of the sensor array is measured using a standard bias-drive-sense 

method for the first bending mode. An AC signal is applied to one electrode and the resulting 

signal is picked off at the other side, 180˚ offset. Table 4.1 lists the simulated resonant 

frequencies for the first bending mode. A narrower spring (i.e., a smaller bond area) leads to 

more compliant springs, while a larger mass decreases the resonant frequency. The DC bias 

applied to the proof mass creates a force which softens the spring, thus decreasing the vibration 

resonant frequency of the hair structures.  
 

Table 4.1: Measured vs. simulated resonant frequencies (in 
kHz) for different mass and post sizes for 5x5 hair 

accelerometer arrays. 

Mass Size 
(a×b) ⇓ 

Spring Area 
(c×d) ⇒ 

Resonant Frequency (kHz) 

302 µm2 402 µm2 502 µm2 

4002 µm2 
Simulated 15.76 27.85 43.13 
Measured 16.5 27.6 41.5 

5002 µm2 
Simulated 12.57 22.29 34.55 
Measured 11.7 20.6 32.6 

 
Figure 4.12 compares the frequency response of two different arrays having different 

proof-mass sizes (a × b) and the same spring (c × d): The 4002 µm2 array has resonant peak at 

16.5 kHz and the 5002 µm2 array has resonant peak at 11.7 kHz. Multiple peaks are observed due 
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to variation in mass/spring dimensions across the array as well was asymmetric electrical 

routings at each accelerometer in the array. 
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Fig. 4.12. Frequency response of two different hair accelerometer arrays both with 
302 × 300 µm3 hair springs: (a) Proof-mass footprint (a × b) equals 500 × 500 µm2; (b) Proof-
mass footprint (a × b) equals 400 × 400 µm2.  
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Chapter 5 TWO-GAP HAIR STRUCTURE 

5.1 Design Objectives 

In Chapter 4 we present the first-generation uniform-gap biomimetic hair-like 

accelerometer arrays using a Silicon-on-Glass (SOG) process. Each accelerometer is composed 

of a proof-mass supported by a vertical hair-like spring and surrounded by four silicon electrodes. 

Each electrode is separated from the proof-mass by a capacitive transduction gap. The spring is 

vertical and located in the center of the proof mass. For the first bending mode, the spring-mass 

bends along one of the two orthogonal axes toward one of the four electrodes (x+, x-, y+, y-) 

when inertial force is applied, closing the gap between the proof-mass and the electrode.  

In the SOG process, the minimum gap must be > 5 μm for a maximum achievable device 

height H of only 400 μm and spring length L of less than 300 μm. Although these numbers were 

quite impressive, more compliant spring and taller proof-mass are needed for higher performance 

sensing systems. 

To achieve higher performance sensing systems, we need to overcome the limitations in 

device fabrication. In the SOG device design, the gap between the proof mass and the electrodes 

is defined using a single DRIE step performed on one side to the maximum height achievable by 

DRIE (Figure 4.4).  Even with an advanced DRIE process for etching ultra HAR in silicon, due 

to DRIE lag and etch limitation, there is a direct correlation between the maximum device height, 

the maximum vertical spring length, and the minimum sensing gap.  Deeper etches require a 
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larger gap, and this limits sensitivity. Thus, to achieve narrow gap for higher sensitivity, device 

height and spring length had to be reduced. 

Ideally, a narrow gap, long vertical spring and tall device are needed for improved 

sensitivity.  This can be achieved by using the 2-gap structure as shown in Figure 5.1, 

highlighting all the critical design parameters (device height H, spring length L and width b, 

two-part sensing gap (gtop, gtop, and top gap height htop).  Since the sensing area A is defined by 

the gap height htop and the width of the capacitive plate a (A = htop × a), we also need to increase 

htop in addition to increasing H, L, and reducing b, g. 

 

 

Fig. 5.1. 2-gap structure compared with SOG structure with uniform capacitive gap: Deflection 
of the proof mass under applied force is maximum at the top where the top gap g0 (gtop / htop) 
contributes to ΔCtop. 
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The top of a vertical inverted pendulum (proof-mass) undergoes the maximum deflection 

under applied lateral (in plane) inertial force. Thus, the capacitive sensing gap near the top of a 

vertical capacitive transducer contributes a larger fraction of the total change in capacitance, ΔC. 

This is verified by COMSOL simulation of various gap profiles (Figure 5.2). The total vertical 

sensing gap consists of two parts, gtop that extends htop and gbot that extends hbot. For a uniform 

gap (gtop = gbot = 5 μm) device, the top 40 % (htop / H = 0.4) of the gap contributes > 60 % of 

ΔCtotal (C). For gtop = 2 μm, gbot = 10 μm and htop / H = 0.2, ΔCtop / ΔCtotal is > 90 % (A).  

Therefore, to achieve high sensitivity, one does not need to etch a narrow gap through the 

entire device height.  A narrow gap near the top of a tall device is sufficient to improve 

sensitivity.  

  

The proposed new 2-gap structure allows gtop to be made very narrow and tall, and 

removes limitation on device height due to DRIE lag. This high-sensitivity 2-gap process is 

achieved primarily by creating a narrow gap through the top ~ 40 % of the device height, and a 

wider gap (which is much easier to etch) through the rest of device height.  

 

Fig. 5.2. ΔCtop contributes to most of total ΔCtotal. 
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The device height (H) is not limited by DRIE etch and can be further increased. The new 

design allows all the critical structural dimensions to be independently varied. More detailed 

analysis on the application this structure to the hair accelerometer design will be presented in the 

next Chapter 6. 

5.2 Two-Gap Process 

The CMOS-compatible two-gap dry-release all-silicon fabrication process is shown in 

Figure 5.3. One silicon wafer with arrays of 3D MEMS accelerometers and a second silicon 

wafer with electrical interconnects (or circuits) are fabricated separately and eutectically-bonded 

together. Silicon-Au eutectic bonding at 400 °C is used in the current process, which can be 

replaced by CMOS-compatible Al-Ge at 450 °C. 

(a) A 4 µm recess is created in a 1 mm thick highly-doped silicon wafer by deep reactive 

ion etching (DRIE). These recessed areas mainly suspend the proof-mass over the 2nd silicon 

substrate so that when the proof-mass tilts toward the contact electrodes, the bottom of the proof-

mass will not touch the bottom substrate. After the recessed is formed, > 4 µm of LPCVD silicon 

oxide (SiO2) is deposited. This oxide layer serves as the hard-mask against long DRIE during 

both the front-side and back-side etching. The front-side is the side that will be in contact with 

and eutectically-bonded to the 2nd silicon wafer patterned with gold. The oxide on the front-side 

is patterned to defined the boundaries of the vertical hair spring, the proof-mass and electrodes.  

(b) Deep, high aspect-ratio DRIE masked by the front-side oxide is controlled by the 

different opening sizes as well as the total etch duration. After DRIE, the wafer is cleaned by 

oxygen plasma at 150 °C and 800 W followed by Piranha clean. The remaining front-side oxide 

hard mask is then removed by BHF while the back-side oxide mask is protected by hard-baked 
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photoresist. 5000 Å gold is blanket deposited to prevent the silicon from being oxidized, as well 

as to serve as the silicon-gold eutectic bonding inter-layer. 

(c) The next step is carried out on the 2nd silicon substrate.  4 µm of LPCVD silicon oxide 

(SiO2) is deposited as passivation layer before 3 µm deep recess is plasma etched. In-situ doped 

polysilicon of 0.6 µm serves as the electric interconnections over the passivation oxide. The 

poly-silicon is deposited in LPCVD furnace, patterned and etched by RIE. Since the polysilicon 

traces will be exposed to plasma during release DRIE, another passivation oxide is patterned and 

etched, covering the polysilicon traces where they will be exposed. 

(d) After that, 1 µm thick gold for gold-silicon eutectic bonding is patterned by lift-off 

and evaporation.  

(e) The 1st silicon wafer and 2nd silicon wafer are aligned and eutectically bonded. 

Detailed analysis of silicon-gold eutectic bonding principles and results will be presented in the 

next Chapter 6 on the fabricated hair accelerometer array chips. 

(f) After the 4-inch wafer stack (1 mm silicon device wafer + 500 µm silicon) are diced 

~1.1 mm deep from the top of the 1 mm silicon slide. The process is completed with a release 

DRIE step from top of the bonded wafer stack that defines the narrow 2 μm capacitive sensing gap.  

The device height is not limited to 1 mm and the process can be applied to any full-wafer 

thickness. By taking advantage of ultra-HAR DRIE presented in Chapter 3, gbot, the wide gaps 

can be etched even deeper than 1mm (1.5 mm, 2 mm, etc.) by using masking layer thickness or 

material that can withstand the long etch to achieve a greater device height. For example, we use 

~4 µm of silicon dioxide in the current process.  The size of the top gap, gtop of 2 μm at 300 μm 

can also be further narrowed if needed by further optimizing the DRIE process, or by narrowing 

the gap through deposition of additional films.  
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Since this process can build high performance devices within a small footprint, it can be 

applied to high-density sensor arrays where hundreds or thousands of sensors will be addressed 

simultaneously.  

 

   

   

Fig. 5.3. Two-gap CMOS compatible dry-release all-silicon fabrication process.  

(a) Pattern recess and 
front-side/back-side DRIE 
oxide mask.

(b) Front-side DRIE to 
define spring and wide 
gaps. Deposit bonding 
interlayer.

(c) Deposit and pattern 
passivation oxide and 
poly-Si interconnects.

(d) Metal lift-off for 
eutectic bonding.
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This process also enables bonding of the HAR MEMS sensor array on top of signal 

processing CMOS circuits necessary to realize the various sensor arrays’ functions. Since 

MEMS sensors with HAR transduction gaps and CMOS circuits can be fabricated separately, 

this process removes the constraints in temperature, materials, chemicals and transducers’ design 

that an integrated MEMS-CMOS process imposes. Compared to metallic structural layer that are 

available in the CMOS process that have limited height and aspect-ratio, the HAR 2-gap 

structure is more desirable for high performance MEMS Inertial Measurement Units (IMUs). 

All the layout dimensions are determined experimentally by adjusting DRIE parameters 

and total etch duration on 1 mm thick silicon wafers. The two gaps gtop and gbot are designed so 

that they will connect after the final DRIE of the smaller gtop to ensure successful device release 

(Figure 5.4). The oxide hard mask for both the front-side and back-side DRIE have to survive the 

total etch duration respectively. 

 
Figure 5.5 presents the SEM cross-sections of the fabricated 2-gap structure: two 

neighboring 1 mm tall structure with gtop = 2 µm extending 300 µm and spring length L = 700 µm 

   

Fig. 5.4. DRIE characterization to determine the gap dimensions and etch depth to ensure the 
release of the capacitive hair accelerometer.   
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etched by a gbot opening at 35 µm. The majority of the device height is also defined by 35 µm 

trench openings.  

 
Close-up of the small and large gap junction is highlighted in Figure 5.6. The 5-6 µm 

misalignment is attributed to the 4-inch wafer-level contact exposure procedure.  

 

   
Fig. 5.6. Junction of gtop and gbot. 
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Fig. 5.5. SEM cross sections of fabricated 2-gap devices: two neighboring 1 mm tall devices 
with gtop = 2 µm extending 300 µm and spring L = 700 µm. 
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The misalignment of the top and bottom gaps will cause imbalance of the proof-mass 

between the positive and negative directions along the sensing axis. If the misalignment is 5 µm, 

one side will have (htop×10 µm) more mass per unit width of electrode.  

Since the device sense in-plane lateral acceleration by capacitors along the sidewall, the 

mass-imbalance does not contribute to offset error or scale-factor error.  
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Chapter 6 LOW-NOISE HIGH-SENSITIVITY MULTI-AXIS 

CAPACITIVE HAIR ACCELEROMETER 

To build high performance capacitive MEMS accelerometer, we need to optimize the hair 

structure and transducing element design targeting both high capacitive sensitivity 

(>1 pF/g/mm2) and low Brownian noise floor (sub-µg/√Hz). With 1 pF/g capacitive sensitivity, if 

the front-end readout circuit can resolve ΔC = 1 aF, we can detect 1 µg change in acceleration. 

The dominant mechanical noise source for micromachined capacitive accelerometers at 

atmosphere or higher pressure is mainly limited by the thermos-mechanical noise associated with 

the Brownian motion of the gas molecules surrounding the device within the package [1]. To 

achieve thermomechanical noise below 1 µg/√Hz and high sensitivity per unit area for capacitive 

MEMS accelerometers, efforts have been made toward realizing both large proof-mass and 

narrow and high aspect-ratio (HAR) sensing gaps. Increasing the proof-mass size has proven to 

be the most effective way to reduce mechanical noise [1-3], while reducing the sensing gap is the 

most effective way to increase sensitivity.  The former increases the device area, which is not 

desirable due to cost, while the latter contributes to gas damping that increases Brownian noise.  

Using existing technologies, the MEMS device footprint has to be increased to allow for 

large proof-mass and sense area because the device height is typically limited to ≤ 500 µm 

(Table 6.1). SOG [1] and CMOS MEMS [3] capacitive accelerometer that demonstrated 
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< 10 µg/√Hz noise floor have limited proof-mass thickness, typically < 150 µm and 5 µm 

respectively. Thus, the device footprint must be increased. A HARPSS-SOI process has also 

been explored to increase proof-mass by utilizing the silicon mass on the backside of the SOI 

handle wafer (400 µm) [2]. Although a noise floor of < 200 ng/√Hz is reported, the device 

footprint is large (49 mm2) due to the limited gap height and device height.  

It is desired to achieve 1 pF/g capacitive sensitivity by capacitive type sensor since 1 µg 

change in acceleration can be detected (navigation grade) if the front-end readout circuit can 

resolve ΔC = 1 aF.  

 
In this work, by utilizing thick silicon wafers of more than 500 µm (1-2 mm, etc.), we can 

greatly increase the proof-mass size per unit area, thus providing higher sensitivity and lower 

mechanical noise floor. This is realized by the unique vertical 3D hair-like capacitive structure 

we present in Chapter 2 [4] and a robust 2-gap fabrication technology we present in Chapter 5 

[5] facilitated by well a characterized ultra-high aspect-ratio Bosch DRIE presented in Chapter 4. 

A wide range of device performance can be designed based on this structure. 

Table 6.1: Low-noise high-sensitivity capacitive accelerometer in literature. 
 [1] [2] [3] This Work 
Technology SOG SOI MEMS CMOS MEMS 3D Vertical Hair 
Mass Footprint 1.3 mm × 3 mm 5 mm × 7 mm 160 μm × 350 μm 4 mm × 250 µm 
Overall Area 2.2 mm × 3 mm 7 mm × 7 mm 350 μm × 500 μm 4 mm × 350 µm 
Sensor Height 120 μm 500 μm 5 μm 1 mm 
Res. Freq. 2.14 kHz 8.9 kHz 200 Hz 627 Hz 
Sensing Gap 2.0 μm 4-5 μm 1.5 μm 2–2.7 μm 
Gap Height  120 μm 100 μm < 5 μm > 250 μm 
Sensitivity 0.8 fF/g > 30 pF/g 0.13 fF/g > 1 pF/g 
Sensitivity / mm2 0.091 fF/g/mm2 > 0.6 pF/g/mm2 0.74 fF/g/mm2 ~ 1 pF/g/mm2 
BNEA* 10 μg/√Hz < 200 ng/√Hz 6.9 μg/√Hz < 1 µg/√Hz 
*BNEA: Brownian Noise Equivalent Acceleration 
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6.1 Objectives: High Sensitivity (>1pF/g/mm2) and Low Noise Floor (sub-µg/√Hz) 

Each hair-like accelerometer structure (Figure 6.1) has a thick silicon proof-mass 

supported by two (or one on the center) vertical hair-like spring, and located on the two ends of 

the proof-mass along the axis normal to the sensing axis direction. Small spring constant can be 

achieved while reducing cross-axis sensitivity. The proof-mass is surrounded by multiple 

sense/feedback electrodes that are separated from the proof-mass by narrow capacitive 

transduction gaps. Multiple electrodes are implemented to enable fully symmetric differential 

readout, and provide force feedback for closed-loop operation. 

 
Critical design parameters are: proof-mass height H and footprint area (a × b), spring 

length (L) and cross-section (c × d), and the two-part transduction gaps. The top gap gtop extends 

a height of htop and the bottom gap gbot extends a height of hbot (Figure 6.2). 

 
Fig. 6.1. High aspect-ratio two-gap hair-like accelerometer: tall proof-mass (1 mm), vertical 
spring, sense/feedback electrodes, and high aspect-ratio capacitive transduction gaps. 

 

Top View

Cross-Section AA’HAR Transduction Gap

S
pr

in
g

E
le

ct
ro

de

Proof-
Mass

E
le

ct
ro

de

S
en

se
 &

 F
ee

db
ac

k 
E

le
ct

ro
de

s 
A

A’

Vertical Spring
b

a

C
C

Anchor

112 



Since the top of a vertical inverted pendulum (proof-mass) undergoes the maximum 

deflection under applied lateral (in plane) inertial force, the gap profile can be approximated as a 

trapezoidal shape. When the displacement is small, the change in capacitance can be written as: 
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The capacitive sensitivity (S) of the two-gap accelerometer is highly dependent on the 

gap dimensions, the proof-mass size and spring dimensions.  
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(6.4) 

 
From Equation (6.1) through (6.4), it is shown that the sensitivity scales with 1/gInitial

2 and 

H5. The device height plays a critical role in improving the sensitivity for this accelerometer 

     
                                              (a)                                                                  (b) 
Fig. 6.2. (a) Critical design parameters of the two-gap hair-like accelerometer (Cross-section 
AA’ in Figure 6.1); (b) Deflection profile of the hair structure and sense gap profile of the 
inverted pendulum design with applied acceleration. 
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design by utilizing the third dimension. H = 1 mm provides large proof-mass (> 

2.33 milligram/mm2) and can be further increased by using thicker silicon wafers than 1 mm. 

COMSOL simulation of capacitive sensitivity verified that the capacitive sensing gap 

near the top of a vertical capacitive transducer (gtop) contributes a larger fraction of the total 

change in capacitance, ΔCtotal since the proof mass undergoes the maximum deflection at the top. 

As shown in Figure 6.3, for a uniform gap (gtop = gbot = 2 μm), the top 30 % (htop / H = 0.3) of the 

gap contributes about 50 % of ΔCtotal (black). It does not matter what ratio of is htop / H evaluated 

along the height, the sensitivity ΔCtotal per unit acceleration is fixed and is normalized to 1 in 

Figure 6.3(a).  

 
For gtop = 2 μm, gbot = 5 μm and htop / H = 0.3, ΔCtop / ΔCtotal is > 85 % (blue) and ΔCtotal per 

unit acceleration is almost 60 % of the sensitivity of a 2 μm uniform narrow gap profile device. For 

gtop = 2 μm, gbot = 20 μm and htop / H = 0.3, ΔCtop / ΔCtotal is > 90 % (red) and ΔCtotal per unit 

acceleration is greater than 50 % of the sensitivity of a 2 μm uniform narrow gap profile device. 

 
                                         (a)                                                                    (b) 
Fig. 6.3. (a) Sensitivity ΔC per unit acceleration and (b) Contribution of ΔCtop to the ΔCtotal 
for different gap profiles (gtop/htop and gbot/hbot).  
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Thus, to achieve high sensitivity, one does not need to etch a narrow gap through the entire device 

height.  A narrow gap near the top of a tall device is sufficient to improve sensitivity.   

The Brownian noise associated with the squeeze film damping effect in air increases 

significantly with reduction of the gap opening. There’s tradeoff between sensitivity and noise 

floor. The nominal gap (g0) should be reduced and sensing area (A = W × L) should be maximized 

to increase the capacitive sensitivity. While the damping factor D increases with the parallel plate 

capacitor width (W) and length (L), and is inversely proportional to g0 as in Equation (6.5). For the 

two-gap hair structure, htop = 200 µm is typically smaller than the longer edge (dimension a in 

Figure 6.1) of the proof-mass footprint, thus W = htop a and L = a. Viscosity of air µ is assumed to 

be 18.76×10-6 [Pa·s] and f (W/L) ≈ 0.99. Thus, we should not reduce the gap indefinitely. 
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(6.5) 

 
The effect of reducing the gap is shown in Figure 6.4 by COMSOL simulation combining 

solid mechanics module and squeeze film damping for different sensing gap dimensions of 3 µm, 

5 µm and 10 µm at 100 mTorr. The proof-mass footprint is 500 µm×200 µm with 

 
Fig. 6.4. COMSOL solid mechanics model including squeeze film damping effect for different 
sensing gap dimensions of 3 µm, 5 µm and 10 µm at 100 mTorr.  
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500 µm×200 µm sensing area on both sides of the proof-mass. The spring dimensions are 

20 µm×20 µm×80 µm. We can see that the smaller the gap, the higher the damping. 

Furthermore, the proof-mass size is more effective design parameter since both 

sensitivity and Brownian Noise Equivalent Acceleration (BNEA) are improved with large mass.  
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In this design, the gap and proof-mass size are weakly dependent. Tall device, narrow 

gap, and long/thin vertical springs are needed for improved sensitivity and reduced BNEA. Both 

gtop and H can be optimized without compromising the sensitivity or the mechanical noise floor, 

realized by the two-gap process presented in Chapter 5.  

 
The different spring lengths L can be easily achieved by utilizing DRIE lag.  Setting 

L ≈ 500-600 μm (Figure 6.5(a)) places the anchor point of the spring midway along the height of 

the proof-mass, thus increasing displacement near the top where the changes in the narrow gap 

gtop contribute the most to total ΔC and increasing sensitivity. 

 

                                              (a)                                                              (b) 
Fig. 6.5. (a) Optimize spring length: L ≈ 500-600 µm gives the maximum sensitivity for two 
different proof-mass sizes; The sensitivity is normalized to L = 300 µm; (b) Setting L = 600 µm 
and reducing the spring width (c and d) to < 25 µm lower the spring constant to < 50 N/m. 
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We optimized various design parameters, targeting high capacitive sensitivity (S) and 

sub-µg/√Hz BNEA for a sensor footprint at 1 mm2 and 2 mm2 as shown in Figure 6.6. 

 
The 1 mm2 footprint sensor is designed to have a proof-mass area of 4 mm × 250 μm 

while the 2 mm2 footprint sensor has a proof-mass area of 4 mm × 500 μm. With the spring 

dimensions listed in Figure 6.5, The 1 mm2 footprint accelerometer has resonant frequency at 

627 Hz and the 2 mm2 footprint sensor has resonant frequency at 443 Hz.  

In both devices, 4 mm is the sense capacitor width. Figure 6.5 presents the calculated 

BNEA based on squeeze film air damping and COMSOL simulated sensitivity (S) for these two 

designs. A gap opening less than 2 μm will defeat the purpose to achieve BNEA of < 1 μg/√Hz.  

2-3 μm is favorable for the 2-mm2 sensor and 3.3-4 μm is desired for the 1 mm2 sensor to achieve 

sub-μg noise performance. In the meantime, a 2.5 μm gap allows both sensors to achieve high 

capacitive sensitivity of greater than 1 pF/g per 1 mm2 footprint.  

 

                                          (a)                                                                    (b) 

• H = 1 mm, a is the electrode width, b is the mass width along sense axis; 
• Sense area A = a × htop, htop = 250 µm; 
• Single spring: c = 20 µm, d = 30 µm, L = 600 µm; 

Fig. 6.6. COMSOL simulation to optimize the capacitive gap size for minimizing BNEA and 
maximizing capacitive sensitivity (S) for a sensor footprint of 1 mm2 and 2 mm2.  
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As shown in Figure 6.7 and Table 6.2, we design and layout an array of 1mm thick high 

sensitivity and low noise capacitive hair accelerometers with various design parameters. The top 

small gaps are 2 to 2.5 µm and extend 250 µm. We cover a wide range of proof-mass sizes to 

target different sensitivity levels and full-scale ranges. Within the same chip, the spring 

dimensions are fixed. The higher sensitivity devices can achieve micro-g resolution.  

 
Table 6.2: high sensitivity and low noise capacitive hair accelerometer design specifications of an 

array of devices with various design parameters 

Device 
Footprint k Simulated and Calculated 

Specifications 
G-Range @ 1/3 

g0 

g-range 
@ 

ΔC=1pF 

a b k C0 
(pF) 

ΔC/g 
(fF/g) 

fres 
(kHz) 

Displacement 
Sensitivity 

BNEA 
(µg/√Hz) 

Accel. 
@ 1/3 g0 

ΔC @ 
1/3 g0  

4 mm 1 mm 2k0 4.080 156 1.256  0.157 µm/g 0.384 5.3 g 826.8 fF 6.4 g 

2 mm 500 µm 2k0 2.187 19.2 2.512  0.0393 µm/g 1.086 21.2 g 195.0 fF 52.1 g 

500 µm 500 µm k0 0.510 2.40 3.553  0.0196 µm/g 2.172 42.5 g 102.2 fF 416. g 

300 µm 300 µm k0 0.305 0.52 5.921  7.079 nm/g 4.674 117.7 g 61.2 fF 1923 g 

• H = 1mm 
• Gap: 2.5 µm / 250 µm 
• Spring: c ≈ 35 µm, d  ≈  45 µm, L = 600 µm 

 
Fig. 6.7. SEM of a sensor chip consisting of an array of 1mm thick high sensitivity and low 
noise capacitive hair accelerometers with various design parameters. 

 

118 



For example, a 4 × 1 mm2 footprint device has about 400 ng/√Hz noise floor and has 

capacitive sensitivity at >100 fF/g. Another 2 × 0.5 mm2 footprint device has almost 20 fF/g 

sensitivity while providing a larger g-range considering the same maximum change in 

capacitance that can be handled by the readout circuit. Resonant frequencies of these structures 

are all above 1 kHz and the usable BW should be at least 500 Hz. 

6.2 Fabrication Results 

 

 

 
Fig. 6.8. CMOS-Compatible two-gap fabrication process: (a) MEMS devices wafer patterned 
with the spring, mass, narrow and wide gaps; (b) Interconnect wafer patterned with electrical 
connections and eutectic bonding metals; (c) Released bonded wafer. 
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This 3D vertical hair-like accelerometer with HAR transduction gap is fabricated by a 

well-characterized CMOS compatible two-gap microfabrication process introduced in Chapter 5. 

Sensor chip fabrication starts with HAR DRIE etching from one side of a 1 mm thick silicon 

wafer to define the proof-mass, vertical hair spring, and electrodes, is followed by bonding this 

wafer to an interconnect/circuit wafer, and is completed with a second HAR DRIE release step to 

define the 2-μm sensing gap gtop from the other side (Figure 6.8). 

6.2.1 Ultra-Deep DRIE 

This two-gap structure approach removes any limits due to DRIE on the maximum device 

height and minimum sensing gap that other fabrication approaches impose, and allows all the 

critical structural dimensions to be independently varied. The device height (H) can be greatly 

increased by allowing a reasonably wider gbot. An ultra-high aspect-ratio (UHAR) DRIE process 

was developed for achieving > 100:1 aspect-ratio for gap sizes down to 2 μm for etching gbot [6]. 

 

  
                                         (a)                                                                      (b) 
Fig. 6.9. SEM cross-section of fabricated 3D vertical hair-like accelerometers by the two-gap 
process: (a) Two 1-mm tall devices side-by-side. The left device has L = 580 μm and the right 
one has L = 700 μm; (b) Cross-section of a 500-μm tall device. 
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We implement the two-gap process and structure both with 500 μm and 1 mm thick 

silicon wafers. Figure 6.9(a) shows the cross-sectional SEMs of two fabricated 1mm tall 

accelerometers with different vertical spring lengths, measuring 580 µm and 700 µm respectively. 

Figure 6.9(b) represents 500 µm tall accelerometers cross-section. Both devices have top gaps 

that are 2 µm wide, extending > 250 µm in height. 

In this generation of hair accelerometers, to reduce the cross-axis sensitivity, two springs 

are placed parallel to the electrode plate (k = 2k0). The spring anchor dimensions are also 

designed to be at least 35 µm × 45 µm to ensure reliable silicon-gold eutectic bonding of the 

vertical hair springs to the substrate with electrical connections. 

Various devices were designed. The proof-mass sizes range from 3002 µm2 to 4×1 mm2, 

and the spring cross-sections range from 302 µm2 to 502 µm2, thus covering a broad range of 

performance specifications. Shaker table testing on the fabricated accelerometers will be 

presented in the next section. 

Figure 6.10 compares the optical and SEM images of a fully released accelerometer (4 

mm2 footprint, 9.32 milligram), with < 2.5 μm average gtop (htop = 233 μm), > 30 μm gbot 

(hbot = 762 μm) and sense/feedback electrodes. The aspect-ratio of the critical transduction gap 

gtop is almost 100:1. The proof-mass is intentionally detached to show the two-part gap along the 

proof-mass sidewall formed by two DRIE steps.  

The HAR transduction gap, gbot is measured along htop. (Figure 6.11).  gbot is initially 

2 μm defined on the mask layout: after the release DRIE the gap near the top increases to 

2.69 μm due to release DRIE undercut, the gap in the midway measures 2.36 μm and the gap at 

the junction of gtop and gbot is slightly less than 2 μm. 

121 



 

 
 

6.2.2 Silicon-Gold Eutectic Bonding 

Due to the large number of devices to be integrated. our proposed hair accelerometer 

array sensing system is not viable without vertical stacking of multiple wafers to form complex 

heterogeneous microsystems where functions are distributed over the different wafers in the 

 
Fig. 6.11. HAR transduction gap profile with gap dimension measured along htop for 2 μm 
initial capacitive transduction gap defined on the mask.  
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Fig. 6.10. Fully released accelerometer (4×1×1 mm3 proof-mass): optical and SEM images of 
detached proof-mass sidewalls formed by DRIE. The device is fully released when gtop is 
etched through and joined with gbot. The two-part gaps along the height are htop = 233 µm 
DRIE-ed from the top and hbot = 762 µm DRIE-ed from the other side. 
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stack. Mechanical functions are realized in one or multiple wafers/layers in the stack while at 

least one of the wafers is dedicated to the readout circuits.  

There are two main disadvantages with silicon-on-glass (SOG) process used in 

fabricating the uniform-gap capacitive hair accelerometer: 1) It is not compatible with processes 

where one of the constituent wafer to be integrated is CMOS IC chip or wafer because the high 

voltage apply during anodic bonding may destroy the underlying circuit; and 2) It does not 

provide electrical connections: although glass can be anodically-bonded to any conductor 

including metal, the oxidized bond interface is not electrically conductive. Patterning metal 

contact fingers between silicon and glass limit the minimum achievable bonding area thus result 

in a minimum hair spring diameter. 

Thus silicon-gold eutectic bonding is implemented in the fabrication of high-sensitivity 

capacitive hair accelerometer array chips, to both mechanically anchor and electrically conduct 

the vertical high-doped springs as well the electrodes [6, 7]. It is also chosen for its relatively 

high bonding strength and low processing temperature at 350 - 400 °C. Li et al. [8] reported 

bonding strength of 66.8 MPa when bonding temperature has been raised to 400 °C.  

 
The gold-silicon binary system reveals the most dramatic reduction of the melting 

 
Fig. 6.12. Silicon-gold phase diagram. 
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temperature:  19 at. % (3 wt %) silicon is dissolved in the eutectic silicon-gold compound at 

363 °C compared to the 1063 °C melting temperature of pure gold or to the 1412 °C melting 

temperature of silicon as shown in Figure 6.12. For example, silicon substrate and thin-film gold 

in direct contact act as a solder. The thickness ratio of gold and silicon layers is 3.9 to 1 

calculated from the atomic ratio. Bonding is typically carried out at a temperature slightly above 

the eutectic temperature of 363 °C. Before the saturation composition is reached silicon keeps 

being dissolved. After a set time, the wafers are slowly cooled and reliable bonds are obtained. 

𝑡𝐴𝑢
𝑡𝑆𝑖

=
𝑚𝐴𝑢 /𝜌𝐴𝑢 

𝑚𝑆𝑖 /𝜌𝑆𝑖 
=

3.9
1

 

 

(6.7) 

 

 
Figure 6.13 illustrates the eutectic bonding stack used in the fabrication of our two-gap 

 
Fig. 6.14. Silicon gold eutectic bonding sites showing recess in the bottom silicon substrate and 
the suspended structure from device wafer.  

Anchor for vertical
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Metal bonding 
interlayer

Cleaved
silicon 

            
Fig. 6.13. Patterned eutectic bonding stack in the fabrication of capacitive hair accelerometer. 
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capacitive hair accelerometer arrays: poly-silicon is patterned over the passivation oxide on the 

bottom silicon substrate followed by at least 1 µm Au thin film deposition. The poly-silicon layer 

supplies the silicon atom that can diffuse into the thick Au layer. The bonding sites (spring and 

electrode anchors) on the bottom surface of the top silicon substrate is covered with Cr as 

adhesion layer as well as diffusion barrier and 0.5 µm Au to prevent the silicon spring being 

oxidized. The total Au stack thickness of 1.5 µm needs 0.38 µm silicon to form eutectic 

composition. Since Au has both high ductility and malleability, thicker Au layer helps with 

forming good atomic contact at the bonding sites of the two wafers when high bond contact force 

is applied to compensate for wafer warping from previous processing steps.  

 

The bonding results and interfaces were observed and analyzed with optical microscope, 

scanning electron microscope (SEM), and a related energy dispersive spectrometer (EDS). 

 

Fig. 6.15. Au-Si alloy squeezed out during bonding due to high contact force to ensure atomic 
contact of the two wafers: they can be seen on almost all the devices since the electrodes have 
larger bonding area (more Au-Si alloy formed).  

Almost 50 µm wide
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A minimum force must be applied to ensure good atomic contact of the two wafers 

because unlike anodic bonding, there’s no large electrostatic force pulling the wafers into good 

contact. However, a thick gold stack along with the larger contact force result in eutectic stack 

being squeezed out under large compressive force. There will also be nonuniformity in the final 

alloy thickness across the wafer.  

Due to warping of both the silicon wafers being bonded, we apply a high contact force to 

flatten the wafers and to ensure local bonding pressure is at least 1 MPa based on the percentage 

bonding area out of the 4-inch diameter.  However, the high contact force causes Si-Au alloy in 

its liquid transition phase being squeezed from the edges of the bonding pads and results in 

reduced thickness of the bonding interlayer as shown in Figure 6.15. They can be seen on almost 

all the devices since the electrodes have larger bonding area (more Au-Si alloy is formed). 

Although squeeze-out from the edge of the bonded wafer pair is a good indication of good 

atomic contact, these alloy balls may short neighboring electrodes, or short the electrodes and 

proof-mass. The alloy balls measures 30-50 µm in diameter.  

To effectively minimize the effect of the eutectic alloy squeeze-out, the large DRIE-ed gap 

gbot separating the proof-mass and electrode is designed to be greater than 35 µm. In addition, 

recessing both the bottom surface of the top substrate by > 5 µm, and the top surface of the bottom 

silicon substrate passivation oxide layer by > 3 µm creates more space along the vertical axis.  

We analyze the bond interface after the silicon spring with the proof-mass is broken-off 

from the lower silicon substrate. Figure 6.16 (a) and 6.17 (a) show bond sites where the springs 

broke off at the silicon spring. Figure 6.16 (b) and 6.17 (b) show locations where the they broke 

off at the gold layer, and surface texture due to the formation of fine silicon microstructures on 

top of the gold surface can be observed, indicating that 100% bonded area was not achieved.  
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The fine microstructure formation is due to heating of the wafer beyond the eutectic 

temperature. This effect is already known from die bonding and studied by WoHenbuttel et al. 

[7]. They experiment with p-type (100) Si wafers thermally oxidized and deposited with 300 Å 

Ti and 1200 Å Au, and concluded that the microstructure formation. is almost time and 

temperature independent: the effect occurs after 60 s at 400 °C, 100 s at 390 °C, 5 min at 370 °C 

and 10 min at 365 °C. The mixing of Si into Au is due to solid-state diffusion. Clusters of silicon 

are formed rather than taking place uniformly until the eutectic composition is reached (19 at. % 

Si). Shiny eutectic alloy can be seen in Figure 6.13 and 6.17(c). Different bonding results across 

the wafer may be caused by temperature and bonding force nonuniformity. 

The bonding quality may also be degraded by the formation of silicon oxide over the gold 

layers on silicon substrate [9]. This oxide layer could inhibit the Silicon-Gold eutectic alloy from 

the two wafers to join and form reliable bonds. They observed that a 1000 Å silicon-oxide could 

readily be grown on top of a gold layer on a silicon substrate by heat treatment at a far lower 

temperature (~250 °C) in air or oxidation atmosphere when silicon atoms already migrate 

through the gold film to reach the top of the thin gold film. In our bonding process, since the 

bonder process chamber is not purged with forming gas to ensure the removal of this potential 

oxide layer, bonding quality may be degraded. The authors also pointed out the importance of 

the Si-metal interface in the formation of oxide by slightly oxidizing the silicon wafer in hot 

nitric acid before vacuum evaporation of an Au film, oxide formation on top of the Au was not 

detected following anneal in oxidizing atmospheres at temperatures as high as 300°C for up to 

1 hour. We cannot adopt this method since we do not want to inhibit the diffusion of Silicon. 
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(b) 

 

(c) 

 

Fig. 6.17. (a) Silicon peeled off from the hair spring indicates that the bonding strength is 
higher than the silicon fracture strength; (b) The hair spring broke off at the alloyed interlayer. 
(c) Other bonding locations. 

 

This seemed to brake at Si     

 
(a) 

 

(b) 

 
Fig. 6.16. EDX analysis of silicon-gold eutectic bonding interface. 
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6.2.3 Thinning Hair Spring by Isotropic RIE 

The other major challenge lies with achieving minimum hair spring width (bond area) 

while maintaining reliable bonding quality. However, whatever bonding method is adopted it 

requires a minimum bonding area: Chapter 4 shows silicon-glass anodic bonding with metal 

fingers only yield if the bond area is greater than 30 µm wide, and this Chapter shows silicon-

gold eutectic bonding is reliable for similar bond area.  

 
One technique to achieve a more compliant spring is to narrow the spring originally 

defined by DRIE while preserving a minimum required bonding area. COMSOL simulation is 

used to study the effect of different widths along a 600 µm long hair spring supporting a 

 

w1 / h1 30 μm/600 μm 20 μm/600 μm 20 μm/100 μm 20 μm/200 μm 30 μm/400 μm 

w2 / h2 30 μm/600 μm  20 μm/600 μm  30 μm/500 μm 30μm/400 μm 20μm/200 μm 

Displ. @ 1g 
Accel.  0.83 nm 4.1 nm 2.1 nm 3 nm 1.1 nm 

Fig. 6.18. Hair spring composed of different width sections are simulated to study the 
effectiveness of narrowing the spring: narrowing the spring width from 30 µm to 20 µm for a 
length of 200 µm out of the entire 600 µm spring length from the anchor point increases the 
displacement sensitivity by more than three times (> 3x). 
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6003 µm3 proof-mass. Ideally a uniform thin spring is desired: a 20 µm diameter spring results in 

five times displacement sensitivity compared to a 30 µm spring (Figure 6.18). 

Isotropic SF6 dry plasma etch can be used to thin the springs after the deep DRIE. As 

shown in Figure 6.19, conformal oxide deposition produces thick oxide both on the top and on 

the sidewall of the step at the spring anchors, thus protecting the anchor from being etched in 

isotropic SF6 plasma. The sidewalls of the trenches surrounding the vertical springs should be 

thoroughly cleaned by oxygen plasma to remove any polymer on the sidewall that will present 

subsequent SF6 etch. Ideally, the sidewalls of should also cleaned by HF to be free of native 

oxide but it is difficult when the masking oxide hard mask is to be preserved. Inefficient sidewall 

polymer and oxide removal may stop the spring thinning etch. 

 
In addition, there’s also a limit on how far the reactive species can migrate into the narrow 

trenches surrounding the spring (20 µm), even with reduced chamber pressure (10 mTorr) and 

increased platen power (30 W). We increase the platen power to increase both the density and the 

energy of the free electrons. The DC voltage becomes more negative with increasing power thus 

driving the reactant normal to the wafer surface and into the etched HAR trenches. 

With all these measures, there is still limit on how deep into the trenches we can narrow 

 

Fig. 6.19. Spring width after 130 min DRIE on 1 mm thick silicon wafer: oxide patterned 
around the spring anchor protect it from being etched during isotropic SF6 etch.  
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the spring, so springs composed of different width sections are simulated in COMSOL as shown 

in Figure 6.18. Narrowing the spring width from 30 µm to 20 µm for a length of 200 µm out of 

the entire 600 µm spring length from the anchor point increases the displacement sensitivity by 

more than three times (> 3x). 

 

 

Figure 6.20 shows the spring profile after 7.5 min isotropic SF6 etch on a 1 mm thick 

silicon characterization wafer patterned with different trench widths and DRIE-ed for 130 min 

(Figure 6.18) for. For a 40 µm wide spring surrounded by 40 µm wide trenches, SF6 etch reaches 

a depth about 150 µm from the top. The silicon at the anchor is intact. However, in this example, 

 
Fig. 6.21. Spring profile after 7.5 min isotropic SF6 etch: experimented on 500 µm thick wafer 
(trenches are DRIE-ed for 70 min).  Different openings result in different etch depth.  

 
Fig. 6.20. Spring profile after 7.5 min isotropic SF6 etch experimented on 1 mm thick silicon 
wafer (trenches are DRIE-ed for 130 min).  
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undercut makes the anchor very thin. The narrowest continuous portion of the spring is ~ 15 µm. 

Another 30 µm wide spring originally defined by DRIE has the narrowest continuous portion at 

8 µm (Figure 6.21). 

Different trench openings result in different SF6 etch depth and lateral etch rate. Applying 

the trench etch results to hair spring fabrication, the lateral etch rate may be higher and more 

lateral etch will occur since all four faces of the spring are defined by the DRIE gaps thus the 

plasma angle increases. 

6.3 Interdigitated-Electrode Device by Two-Gap Process 

Interdigitated electrodes are employed extensively in planar devices to increase the 

sensing and actuation area [1-3]. The electrodes typically have the same thickness as the proof-

mass formed simultaneously with the proof-mass in a single DRIE step (or DRIE followed by 

sacrificial layer refill).  

 
To further increase the capacitance change per unit footprint of the capacitive hair 

accelerometer, interdigitated parallel-plate type electrodes can be formed instead of one capacitor 

 
Fig. 6.22. Increasing the capacitive sensitivity per unit footprint by optimization of the gap 
dimension gtop, and interdigitated electrode width wfinger and length lfinger. 
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on each side of the proof-mass along the sensitive axis. With optimization of the gap dimension 

and interdigitated electrode width and length with respect to the solid portion of the proof-mass, 

the capacitive sensitivity per unit footprint may be further increased from a solid proof-mass 

design. It is also easier to implement fully differential operation without reference capacitor.  

As shown in Figure 6.22, effective capacitor plate area can be increased for the same device 

footprint by implementing the interdigitated electrodes. Since the interdigitated electrodes are 

formed by the top gap gtop and the bottom gap gbot is much wider than gtop, adding the interdigitated 

fingers will reduce the effective proof-mass width from b to b’ = b – 2×lfinger. The key is to increase 

the density of interdigitated fingers to increase the total ΔC per unit footprint. However, the 

electrodes density is limited by DRIE capabilities: etching closely-spaced long and narrow trenches 

(2 µm) introduces micro-loading and etch rate nonuniformity along the long trenches and at the 

junctions of various openings that define the contours of the proof-mass and different electrodes. 

Due to DRIE undercut, the interdigitated fingers should have a minimum width wfinger and 

maximum length lfinger to avoid flexing. These criteria determine the electrodes density N. Through 

analytical analysis and COMSOL simulation, we found that maximum ΔCtotal for a given footprint 

(a × b) can be achieved with b > a, and with finger length lfinger = 1/4 a. Compared to a solid proof-

mass with a single electrode, ΔCtotal is scaled by approximately (1 + N/4). 

As shown in Figure 6.23, we set lfinger = a/4, wfinger =15 μm (denser fingers that results to 

10 fingers within 500 μm) or 30μm (less dense electrodes that results to 10 fingers within 1 mm), 

gtop = 2 μm, and gtop_isolation = 20 μm for the interdigitated electrode designs. However, within the 

same footprint, sensitivity is traded-off with noise performance since the squeeze film damping 

effect increases with larger sensing area and reduced effective proof-mass (

2/ MassAreaBNEA∝ ).  
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The solid proof-mass device in Figure 6.10 (4x1 mm2 footprint) is modified to include the 

interdigitated electrodes. There are 10 interdigitated electrodes for each orthogonal axis and the 

 
Fig. 6.24. Interdigitated devices successfully released. 
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Fig. 6.23. Hair accelerometer with interdigitated electrodes form by the top gap: schematic and 
two devices with different electrodes density. 
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proof-mass is > 50 % of that a solid mass design and the capacitive sensitivity is increased by 2x. 

If the finger density is increased such that 20 electrodes are placed in each orthogonal axis, the 

capacitive sensitivity is increased by 3x (Figure 6.22 Denser Electrodes). 

 
6.4 Capacitive Hair Accelerometer Testing Results 

6.4.1 Electromechanical Testing 

The fabricated chips are mounted on a printed circuit board (PCB) with an Analog 

Device 7746 Capacitance to Digital Convertor (CDC) chip. We tested the accelerometers on 

Unholtz-Dickie 400ATE/C Transducer Calibration System. This shaker table outputs 

acceleration as low as 0.1 g over a wide frequency range. We tested both the 500 μm-thick and 

1 mm-thick capacitive hair accelerometer arrays. 

500 µm Tall Device 

Figure 6.25 compares the capacitance testing results of arrays of 25 devices in parallel 

(5002 μm2 proof-mass and 500 thick device silicon wafer) between the two-gap devices and the 

uniform-gap devices by silicon-on-glass (SOG) process in Chapter 4. The single-ended 

measurement of one of the axis of a 5×5 array with 5002 μm2 footprint proof-mass, 502 μm2 posts 

achieved a sensitivity of 2.1 fF/g, corresponding to about 80 aF/g per hair device. The SOG 

device with the same footprint and array size has single-ended sensitivity of 0.25 fF/g. The 

results show that even starting with the same 500 µm thick silicon substrate the two-gap devices 

have 8x improvement in capacitive sensitivity.  

1 mm Tall Device 

Multiple devices with different design parameters (Figure 6.25) are fabricated on the 

same chip. Since 1mm thick devices has much higher capacitive sensitivity than 500 µm thick 

devices, all devices are individually readout. COMSOL is also used to re-simulate the device 
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sensitivity based on the measured fabricated device dimensions by SEM or optical microscope. 

The electro-mechanical testing results are presented in Table 6.3, compared to the simulated data.  

 

 

     

                               (a)                                                                    (b) 
Fig. 6.26. Layout of 1mm thick devices: (a) Single chip layout including multiple devices with 
different designs; (b) SEM of another fabricated chip highlighting the single devices. 
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Fig. 6.25. Vibration table electromechanical testing of the second-generation two-gap device 
compared to the SOG devices, showing an improvement of 8x in capacitive sensitivity. 
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Figure 6.27 shows the time-domain response of a 4×1 mm2 footprint hair accelerometer to 

1 g acceleration at 20 Hz. The capacitance change ramped up after shaker table is turned on. At 

 
Fig. 6.27. Time-domain response of a 4×1 mm2 footprint hair accelerometer to 1 g acceleration 
at 20 Hz. The capacitance change ramped up after shaker table is turned on. At 90.0 Hz 
sampling frequency, the noise envelope is less than 1.5 fF. 

 

Time (ms)

C
ap

ac
ita

nc
e 

(p
F)

3.50

3.54

3.58

3.62

3.66

3.70

10,000 12,000 14,000 16,000 18,000 20,000 22,000

220 fF

3.607

3.607

3.608

3.608

3.608

3.608

3.609

3.609

3.609

10,000 11,000 12,000 13,000 14,000
3.50

3.54

3.58

3.62

3.66

3.70

18,000 18,500 19,000 19,500 20,000

C
ap

ac
ita

nc
e 

(p
F)

2 fF

Noise

Time (ms) Time (ms)

Shaker table is off

Peak Acceleration at 1 g, 20 Hz

Table 6.3: Measured capacitive sensitivity compared to comsol simulation for various 
accelerometer designs 

Device ID Footprint  Simulated Measured 
Single Devices a b k C0 ΔC/g C0 ΔC/g 

D1/D2 4 mm 1 mm 2k0 4.080 pF 156 fF/g 3.187 pF 105 fF/g 
D3 2 mm 500 µm 2k0 2.187 pF 19.2 fF/g 1.478 pF 12.46 fF/g 
D5 1mm 250 µm k0 510 fF 2.40 fF/g 728 fF  1.33 fF/g 
D7 300 µm 300 µm k0 305 fF 0.52 fF/g 257 fF 0.36 fF/g 

• Dimensions are measured post-fabrication (Figure 7 & 8); 
• Sense area A = a × htop, gtop = 1.94-2.69 µm, htop = 233 µm; gbot = 40 µm, hbot = 767 µm; 
• Double spring: H = 1 mm, c ≈ 35-40 µm, d ≈ 45-50 µm, L = 600 µm  k  = 2k0; 
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90.0 Hz sampling frequency, the noise envelope is less than 1.5 fF. Measured ΔCppk is 196 fF, 

which corresponds to single-ended sensitivity of 98 fF/g. The y-axis is minus a DC capacitance 

of 3 pF.  

Zooming-in on the response in Figure 6.27, the response is fit with a 20 Hz sine wave as 

shown in Figure 6.28. Differences in the measured and simulated data are due to the 

discrepancies between the exact spring/gap profiles of the fabricated devices, and the dimensions 

assumed in the COMSOL simulation based on the SEM measurement. Parasitics associated with 

electrical routing and wire bonding will also degrade the capacitive sensitivity. 

 
The fabricated accelerometers are also tested on a turntable for DC response. Figure 6.29 

presents the open-loop response of this 4×1 mm2 proof-mass footprint hair accelerometer to input 

acceleration from 0 g to1 g. ΔC at 1 g measures 105 fF.  

Process variations in MEMS fabrication cannot be avoided even within the same 4-inch 

wafer area, especially when experiments are done at a research environment where production-

grade tools are not available. Other deviations from the designed dimensions and specifications 

are inherent to the process. Figure 6.30 presents the measured change in capacitance of another 

  
Fig. 6.28. Time-domain response of a 4x1 mm2 footprint hair accelerometer to 1 g acceleration 
at 20 Hz and zoom-in on the response in Fig. 6.25. It is fit with a 20 Hz sine wave. 
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4 × 1 mm2 footprint hair accelerometer measured over a frequency range, sampled at 90.9Hz. 

Results are shown at two acceleration levels, 0.1 g and 1 g. The extracted acceleration is greater 

than 300 fF/g. 

 

 

 

 
Fig. 6.30. Measured ΔC in time domain for another 4 × 1 mm2 footprint hair accelerometer over 
a frequency range.   
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Fig. 6.29. Measured ΔC vs. acceleration for a 4 × 1 mm2 footprint hair accelerometer. The 
acceleration ranges from 0 g to 1 g.   
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 DIRE undercut and etch depth non-uniformity across a 4-inch wafer and between 

different batches cause the critical sensing gap dimensions (gtop, gbot, htop, hbot) to vary over a 

specific range. The gap opening at the junction of the small top gap and large bottom gap is close 

to 2 μm (gtop1 ≈ 2 μm in Figure 6.29) however gtop2 can could vary over a wider range from >2 μm 

to 5 μm due to DRIE undercut. At the same time, the exact vertical spring width and length are 

also affected by DRIE undercut and etch depth non-uniformity.  

Figure 6.31 tabulates the estimated capacitive sensitivity for a device with 4 × 1 mm2 

proof-mass footprint, with htop fixed at 233 μm, spring length (L) fixed at 600 μm and gbot fixed 

at 40 μm, showing the effect of process-variation induced spring width variation and top gap 

variation on the change in capacitive sensitivity.  
 

 
 

Proof-mass 
Footprint 

Spring Cross-
seciton 

Top Gap 
Dimension Sensitivity 

 
 
 

 

a × b c d gtop1 gtop2 
 4 × 1 mm2 20 µm 30 µm 2 µm 3 µm 2.12 pF/g 

4 × 1 mm2 30 µm 40 µm 2 µm 2 µm 704 fF/g 
4 × 1 mm2 35 µm 45 µm 2 µm 2 µm 392 fF/g 
4 × 1 mm2 30 µm 40 µm 2 µm 3 µm 464 fF/g 
4 × 1 mm2 35 µm 45 µm 2 µm 3 µm 256 fF/g 
4 × 1 mm2 35 µm 45 µm 2 µm 4 µm 192 fF/g 
4 × 1 mm2 35 µm 45 µm 2 µm 5 µm 153 fF/g 
4 × 1 mm2 40 µm 50 µm 2 µm 3 µm 152 fF/g 
4 × 1 mm2 40 µm 50 µm 2 µm 4 µm 115 fF/g 
4 × 1 mm2 40 µm 50 µm 2 µm 5 µm 91 fF/g 

  

Fig. 6.31. DIRE undercut and etch depth non-uniformity across a 4-inch wafer and between 
different runs cause the critical sensing gap dimensions and spring cross-sections to vary from 
the designed values, thus resulting in variation in the capacitive sensitivity. 
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6.4.2 Resonance Testing and Quality Factor 

The frequency response of each single hair accelerometer or an array of accelerometers is 

measured using a standard bias-drive-sense method for the first bending mode. An AC signal is 

applied to one electrode and the resulting signal is picked off at the other side, 180˚ offset. Single 

device D1, D3 and D5 (Table 6.2) have resonant frequencies around 1 kHz, 2 kHz, and 3 kHz at 

100 mTorr (Figure 6.32). 

Figure 6.33 presents the resonant responses of a single device D3 with footprint 

a × b = 2 × 0.5 mm2. The resonant frequency fres is measured around 2.1 kHz. The resonant 

responses are measured at different vacuum levels while sweeping the bias voltage applied. At 

100 mTorr and 1 mTorr, ∆f−3dB  for this device measures > 5 Hz and < 2.5 Hz, which gives 

Q ≈ 400 and Q ≈ 800. At 100 µTorr, ∆f−3dB for this device measures < 900 mHz, which gives 

Q > 2000. At 50 µTorr, we zoom-in near the resonant peak with span = 2 Hz, 

fcenter = 2.022146 kHz and ∆f−3dB < 40 mHz, which gives a Q > 50k (Figure 6.34). 

However, the ringing during the frequency sweep may distort this peak at 50 µTorr. For a 

MEMS resonator, the quality factor Q typically scales inversely with logarithmic of the package 

pressure P, and plateaus at high vacuum level (low pressure) as measured in [9] when pressure 

damping is dominant over intrinsic losses such as thermoelastic dissipation (TED) (Figure 6.35).  

Resonant peak measurements verified that an array of hair accelerometers can be 

designed to cover a wide frequency range by simply modifying several key structural parameters. 

Such an array can be used to construct a MEMS-based mechanical spectrum analyzer more 

effective and less complex than proposed by Rocha et al. [11]. In [11], the frequency of the drive 

voltage is swept over a selected range, the mechanical (vibration) spectrum is analyzed in the 

mechanical domain. 
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Table 6.4: Quality factor at different vacuum level of device D3 

Vacuum Level Quality factor (Q) 

100 mTorr 400 

1 mTorr 800 

100 µ > 2000 

50 µTorr > 50000 

 
Fig. 6.32. Single devices with different resonant frequencies fres around:1 kHz (Device D1), 
2 kHz (Device D3), and 3 kHz (Device D5) at 100 mTorr. 
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Fig. 6.34. Zoom-in on resonant peak of device D3 single device with footprint 
a×b = 2 × 0.500 mm2. The ringing during the frequency sweep may distort the peak. At 
50 µTorr, it is zoomed-in near the resonant peak with span = 2 Hz, fcenter = 2.022146 kHz and 
∆f−3dB = < 40 mHz, which gives a Q > 50k. 
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Fig. 6.33. Resonance testing of device D3: single device with footprint a × b = 2000 × 500 μm2. 
The resonant frequency fres is measured around 2.1 kHz. The resonant responses are measured 
at different vacuum levels with different bias voltage applied. 
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Fig. 6.36. Quality factor vs. pressure curve [10].  

 
Fig. 6.35. Zoom-in the resonant response of an array of seven D3 in parallel (D4 in 
Figure 6.24). Multiple peaks are observed. At 100 mTorr, we can track the resonant peak 
shifts between the multiple devices in the array. 
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Fig. 6.37. Comparison between the resonant responses around 3 kHz of (a) D5: single 
1000 × 250 μm2 and (b) an array of four D5 in parallel (D6 in Figure 6.24).  
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Chapter 7 CAPACITANCE READOUT FRONT-END 

7.1 Precision Readout Circuits for Capacitive MEMS Accelerometer 

In section 6.4, the noise envelop from the Analog Device CDC chip is 1.5-2 fF when 

sampled at 90.9 Hz. For a capacitive MEMS accelerometer that has sub-µg resolution and is 

tested to have 100 fF/g sensitivity, it is difficult to resolve less than 20 mg acceleration. High 

precision measurement is not possible without a front-end capacitive readout interface closely 

integrated with the sensor output, either by wire-bonding or direct 3D stacking. 

The three most commonly adopted readout circuits for capacitive MEMS accelerometers 

are AC -bridge with voltage amplifier, transimpedance amplifier (TIA) and switch capacitor (SC) 

circuit as shown in Figure 7.1 [11]. The voltage output Vout and the capacitance readout 

resolution ΔCmin rms are listed for each readout scheme.   

Similar to our hair accelerometer structure (Figure 2.3 and Figure 6.1) for which there are 

at least one electrode on each side of the proof-mass along the sensitive axis that form a 

differential pair, in most cases, capacitive MEMS accelerometers are designed to provide a 

differential capacitance output. The reference capacitors Cr in in Figure 7.1 has the same rest 

capacitance as CS0 and change in opposite polarity (+ΔC and – ΔC). 

The design goal is to increase Vout and improve the capacitance readout resolution, i.e. 

minimizing ΔCmin rms.  
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                                            (a)                                                                            (b) 
Fig. 7.2. Minimum detectable ΔCmin rms for different capacitance readout schemes [11]: (a) 
Comparing CS0=100 fF and CS0=1 pF shows that a larger CS0 will result in larger ΔCmin.; and (b) 
Capacitance resolution for various readout schemes with CS0=250 fF. 

 
Fig. 7.1. Simplified block diagram of various capacitive readout circuits: AC-bridge with 
voltage amplifier, transimpedance amplifier (TIA), and switch capacitor circuit (SC) [11].  
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For capacitive MEMS, as the rest/nominal electrostatic gap g0 is reduced and sensing area 

A is increased to achieve larger capacitance change ΔC, the sensor rest capacitance CS0 also 

increases. For AC-bridge with voltage amplifier, the correlation between ΔC and has an inverse 

effect on increasing Vout, while for TIA and SC configuration, Vout is not dependent on CS0 so 

that ΔC can be optimized by reducing the nominal sensing gap. 

At the same time, a larger CS0 will result in a larger minimum detectable ΔCmin. for all 

readout schemes as shown in Figure 7.2(a), comparing CS0=100 fF and CS0=1 pF. Figure 7.2(b) 

presents the capacitance resolution for various readout schemes: AC-bridge offers the best 

resolution if parasitics are small; the virtual ground at the input of both TIA and SC circuits 

reduce the input parasitic capacitance CP; SC circuit resolution improves with higher sampling 

frequency (thus it consumes more power) and efficient cancellation of kT/C noise, and it is also 

suitable for large input CP.  

Since the SC scheme is more suitable for non-monolithic integration that has relatively 

large parasitic capacitance, in the next sub-sections, we will first discuss the implementation of 

switched-capacitor charge amplifier front-end and the feasibility of monolithic integration of hair 

accelerometer arrays of front-end CMOS circuit. It is also the basic building block in a ΣΔ 

architecture which we will investigate in the future for high resolution readout [2]. 

7.2 Pixel-Level Differential Switched-Capacitor Charge Amplifier Front-End 

Switched-capacitor front-end is investigated as the capacitance to voltage convertor for 

readout of our capacitive hair accelerometer arrays. As shown in Figure 7.3, each hair sensor has 

its own front-end switched-capacitor block. The output from each channel are multiplexed in 

time. The amplifier offset and 1/f noise, charge injection, and kT/C noise can be cancelled by 

correlated double sampling (CDS) [3]. CDS is performed at the preamplifier output so the errors 
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from both amplifiers are cancelled. The virtual ground at the input of SC readout reduces the 

effect of input parasitic. 

Implementing pixel-level switched-capacitor circuit has the advantage of being able to 

adjust the circuit gain to accommodate a wider range of ΔC since our accelerometer array covers 

a wide range of capacitive sensitivity (ΔC/g) and nominal capacitance (CS0). It also has the 

advantage of parallel processing of each sensor and achieving a higher sampling rate. However, 

it is done at a cost of the overall power consumption scaling with the number of sensor in the 

array. In order to reduce the power consumption, several sensors can share the same SC circuit as 

will be shown later in Figure 7.5.  

 

   
Fig. 7.3. Hair sensor array with integrated IC block diagram: switched-capacitor front-end and 
multiplexing of sensor array. 
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A switched-capacitor charge amplifier front-end is designed and layout in TSMC 0.18μm 

technology as shown in Figure 7.4. The design specifications of this core rectangle block front-

end is tabulated in Table 7.1 and it can be repeated to incorporate multiple sensors in future runs. 

Table 7.1: Interface IC with MEMS 

Technology TSMC 180 nm CMOS 
Supply voltage 0, 1.8 V  
Vcm 0.9 V 
Vrefp, Vrefn 0.3 V, 1.5 V 
Sampling clock (fS) Desired Data Rate ×  N 

Eg: 2 kHz × 16 = 32 kHz 
       1 kHz × 1024 = 1 MHz 

Cint 0.5 pF 
CS/H 3 pF 
CS0 Wide range: 300 fF to < 4 pF 
Circuit Gain 4.8 mV/fF 
Max Output Swing ±800 mV 
Open-loop max. ΔC 0.167 pF 
Opamp design specifications: 
Open-loop gain (AOL)  >100 dB 
Phase margin (φM) 42º  
Power consumption of two amplifiers 1.8V × (2 × 440μA) = 1.584mW 
 

Figure 7.5(a) shows the schematic of four sensors with different sensitivity (ΔC/g) 

sharing a common readout block from Figure 7.4. The proof-mass terminal of each sensor is 

connected to one common node and connected to the inverting input of an op-amp, bypassing a 

correlated-double-sampling capacitor (CCDS) [3].  The time-domain transient simulation results 

by Cadence of the four-sensor array is presented in Figure 7.5(b). The non-overlapping clock 

cycles/phases (P1, P2 and PCM) for the four sensors are multiplexed in time. The clock signals 

are generated by the on-chip digital clock generator from an off-chip clock signal.  

When one sensor is selected for readout, during phase P1, the differential capacitor pair 

CS+ (CS+=CS0+ΔC) and CS- (CS-=CS0+ΔC) are charged with opposite polarity voltages, Vrefp and 
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Vrefn respectively. During the delayed and complementary P2, Vrefn and Vrefp are applied 

respectively such that a packet of charges proportional to the capacitance change ΔC are 

integrated on the integration capacitor Cint. During the active readout cycle of one of the N 

sensors, the two electrode-terminals of the other (N-1) sensors are connected the common mode 

potential (CM) thus they appear as a lumped parasitic capacitor Cp = (N-1) CS.  

 

 
(a) 

   

 
(b) 

Fig. 7.4. Switched-capacitor front-end core: (a) schematic, (b) layout including both digital and 
analog block. 
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Interface Circuit Noise 

The circuit thermal noise that limit the performance of the SC circuit should be evaluated 

and compared with the mechanical noise in order to determine the overall system performance, 

assuming correlated-double-sampling (CDS) technique is incorporated and larger input PMOS 

devices are used to effectively reduce the 1/f noise.  

We mainly focus on the sampled thermal noise as a function of frequency (fsample), 

sensing capacitor (C1), sampling capacitor (C2) and load capacitor (C3) in Figure 7.6(a). The 

 
(a) 

  
(b) 

Fig. 7.5. Cadence transient simulation showing multiplexing of four sensors. 
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circuit’s thermal noise sources in our system can be categorized into: 1) front-end amplifier 

noise, 2) kT/C switch sampling noise, and 3) sensor charging reference voltage noise of Vref. 

 
In our op amp implementation, we study the effect of the thermal noise of the input 

differential pair [12]. The total thermal noise of the stage is represented by a single equivalent 

noise voltage source vn,eq in Figure 7.6(a) and it has PSD 𝑆𝑣𝑡(𝑓) ≈ 16𝐾𝑇
3𝑔𝑚1

. 

The closed-loop transfer function H(s) of the input stage is: 

𝐻(𝑠) =
𝐺𝑜

1 + 𝑠𝜏
≈  

1
𝛽

1 + 𝑠𝜏
=

1 + 𝐶1
𝐶2

1 + 𝑠𝜏
  

𝜏 = 𝑅𝐶 =
𝛽𝐶𝑜𝑢𝑡
𝑔𝑚1

=
�1 + 𝐶1

𝐶2
� (𝐶3 + 𝐶1𝐶2

𝐶1 + 𝐶2
)

𝑔𝑚1
 

Under negative feedback vn,eq  is shaped by H(s) and produce an output noise component: 

𝑣𝑜𝑢𝑡2������ = � 𝑆𝑣𝑡(𝑓)|𝐻(𝑗2𝜋𝑓)|2𝑑𝑓 =
∞

0

16𝐾𝑇
3𝑔𝑚1

𝐺𝑜2

4𝜏
=  

4𝐾𝑇
3𝛽𝐶𝑜𝑢𝑡

 

The sampled system (Figure 7.6(b)) will magnify the noise PSD due to aliasing (if used 

without oversampling) by a factor of 1/(2τfs). The power of the noise being shaped by H(s) and 

then sample at fs is: 

𝑣𝑛𝑜2���� = 𝑣𝑜𝑢𝑡2������ 

   
                                   (a)                                                               (b) 
Fig. 7.6. Calculation of equivalent noise of continuous and sampled data [12]. 
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𝑆𝑛𝑜𝑠(𝑓) =
𝑣𝑛𝑜2����

𝑓𝑠/2
≈  

𝐺𝑜2𝑆𝑣𝑡
2𝜏𝑓𝑠

 

Thus, the sampled thermal noise at the output is: 

𝑣𝑜𝑢𝑡_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = �
8𝑘𝑇

3𝐶𝑜𝑢𝑡
�
𝐶1 + 𝐶2 + 𝐶𝑃

𝐶2
�

1
𝑓𝑠

= �
8𝑘𝑇

3𝐶𝑆/𝐻
�
𝐶𝑆0 + 𝐶𝑖𝑛𝑡 + (𝑁 − 1)𝐶𝑆0

𝐶𝑖𝑛𝑡
�

1
𝑓𝑠
�
𝑉
√𝐻𝑧

� 

Our implementation of the switch-capacitor front-end shown in Figure 6.39 has the 

following components: 

• C1 = CS0: the rest sensing capacitors CS0 that covers a wide range across the array depending 

on the sensor design; 

• C2 = Cint = 0.5pF, is the sampling capacitor; 

• CP = (N-1) CS0, during the active cycle of one of the sensors and appears as parasitics; 

• Cout = CS/H = 3pF, CS/H is the sample and hold capacitor; 

• fS: the sampling frequency of P3. 

Since CS/H and Cint are integrated on-chip, they cannot be modified post-fabrication. 

However, the CP can be modified post-fabrication to study the effect of the scaling of the sensor 

arrays.  

kT/C switch sampling noise and reference voltage noise can be expressed as followed: 

𝑣𝑜𝑢𝑡𝑘𝑇/𝐶 = �
4𝑘𝑇

 𝑓𝑠 𝐶𝑖𝑛𝑡
(
𝑉
√𝐻𝑧

) 

𝑣𝑜𝑢𝑡𝑉𝑟𝑒𝑓 = �
2𝑉𝑛2𝐶𝑠

𝑓𝑠 𝑅𝑆𝑊 𝐶𝑖𝑛𝑡2
(
𝑉
√𝐻𝑧

) 

These two noise sources all have strong dependence on two parameters: Cint and fS. The 

transmission gate switches’ equivalent switching resistance Rsw is simulated by Cadence to be 
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1kΩ. For an array of four sensors (N=4), with CS0 = 2 pF and vref with PSD = 10nV/√Hz, the 

contributions from the three circuit noise sources are listed in Table 7.2. The resolution improves 

as the sampling frequency increases. 

Table 7.2: Interface circuit noise of switched-capacitor front-end 

 Amplifier 
Noise 

kT/C Vref Noise Total Noise 

fs = 100 kHz 0.791 μV/ √Hz 0.575 μV/√Hz 4 μV/√Hz 5.366 μV/√Hz 
fs = 500 kHz 0.354 μV/ √Hz 0.257 μV/√Hz 1.79 μV/√Hz 2.401 μV/√Hz 
fs = 1 MHz 0.259 μV/ √Hz 0.182 μV/√Hz 1.27 μV/√Hz 1.711 μV/√Hz 

 

The overall system resolution would be limited by the circuit noise if it is greater than the 

mechanical noise floor. With Vrefp - Vrefn = 1.2 V and Cint = 0.5pF (4.8 V/pF), the output voltage 

gain is calculated as a function of capacitive sensitivity.  

Table 7.3: Circuit Gain 

Sensitivity Circuit Gain Sensitivity Circuit Gain 
0.1 fF/g 0.48 μV/mg 1 pF/g 4.8 mV/mg 
1 fF/g 4.8 μV/mg 2 pF/g 9.6 mV/mg 
10 fF/g 48 μV/mg 10 pF/g 48 mV/mg 
100 fF/g 0.48 mV/mg   

 

The ratio of circuit thermal noise floor and voltage/acceleration gain is the circuit 

equivalent noise acceleration (CNEA). For example, for an interface with output noise floor at 

2.4 μV/√Hz from Table 7.3 and voltage/g gain of 9.6 mV/mg (for a device with 1 pF/g capacitive 

sensitivity in Table 7.4), the resolution limited by circuit performance can be calculated as 

500 ng/√Hz. If this sensor having capacitive sensitivity at 1 pF/g has a mechanical thermal noise 

floor <500 ng/√Hz, the resolution of the system (sensor and front-end circuit) is limited by the 

interface circuit.  
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7.3 CMOS MEMS Integration 

To integrate large arrays of hair sensors, CMOS-MEMS chip-to-chip or wafer level 

integration process need to be developed specifically to incorporate the 2-gap hair structure 

fabrication process. 

As we have discussed in Chapter 1, the best method for integrating arrays of hair sensors 

with CMOS is by vertical integration since it allows increased pixel-level data processing and 

device optimization. Both the MEMS devices and CMOS chips/wafers can be optimally 

designed and fabricated in the mostly suitable technology. Resistance and capacitance 

contributed by wirebond or long traces on PCB are replaced by shorted interconnections between 

the vertically-stacked dies, thus reducing RC delay as well as transmission power loss.  In 

addition, the number and density of signals connecting the CMOS and MEMS sensor chip is not 

limited by pad numbers on the perimeter, but is rather limited by the technology in making 

reliable metallic interconnects with fine pitch, thus 3D stacked-integration has the potential to 

substantially increase the information flow. 

 

 

Fig. 7.7. CMOS chip from 180nm process: bond pads for post-CMOS processing and 
integration and die edge.  
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Figure 7.7 shows SEMs of CMOS chip from 180nm process highlighting the bond pads 

and chip edge. To process the IC chip, top surface metallurgy (TSM) needs to be patterned on 

aluminum bond pads from the CMOS process after removing the native aluminum oxide. CMOS 

die street width and dicing accuracy should also be well characterized to ensure successful 

patterning and subsequent CMOS-MEMS integration. In addition, CMOS chip surface topology 

will be different for different IC processes. 

 

 

                                             (a)                                                                              (b) 

Fig. 7.8. (a) CMOS chip and microfluidic chip self-aligned (accuracy can be within 5 µm) 
integration process includes placing the CMOS die in a silicon socket and patterning metal lift-
off on CMOS chip for electrical connections; (b) Testing procedure to verify the alignment 
accuracy of process in (a): metal A represents the original patterns on CMOS chip and metal B 
will be lift-off when the chip is placed in the socket. 
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Figure 7.8(a) presents the process steps to package a CMOS chip with a microfluidic chip 

proposed by Uddin et al. [5].  This process allows for the fabrication of sockets in wafers that are 

at most 5 µm larger than the chip on each side. After patterning the cavity to place the chip 

inside, the cavity and the chip are placed face-down on a carrier substrate. BCB-coated carrier is 

then bonded with the backside of the chip and the holder. During the bonding, the gap between 

the chip and the cavity is filled and the top surface is planarized with Spin-on-Glass SOG. Vias 

to the contact pads of the chip are created by patterning the spin-on-glass (SOG) layer followed 

by making the metal interconnects from the chip to the cavity. 

This method provides us inspiration on post-processing of CMOS dies for integration 

with MEMS chips with sensor arrays which include three major steps in addition to the original 

hair structure 2-gap process: (1) Pattern bonding interlayers on the foundry CMOS chip (Figure 

7.8(b)); (2) Bond the MEMS hair array chip fabricated in-house with the patterned CMOS chip, 

and (3) DRIE release the MEMS devices arrays (Figure 7.9). 

 

 

Fig 7.9. CMOS-MEMS chip-scale integration and hair sensor array release process. 
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Since every CMOS technology has different parameters for its conductive layers and 

dielectric layers, choosing the suitable and cost-effective IC technology for integration of MEMS 

and CMOS is critical. For the hair sensor array chip, the width or length of each sensor in the 

wafer plane (including the sensor and electrodes) could vary from several tens of microns, to 

several hundreds of microns, up to several millimeters. For the smaller footprint devices, the 

bond-pad density available for 3D-stack integration of the MEMS chip on top of the CMOS chip 

is limited by the minimum bond pad / passivation opening, pad metal overlap of passivation, and 

minimum pad spacing to unrelated metal (metal-to-metal or M2M). For example, as shown in 

Figure 7.10, the electrode pitch for this technology is at least: 

nin. pad opening + 2×overlap + M2M = 20 µm + 2×6 µm + 30 µm = 62 µm 

In addition, the finished chip surface is not flat. For example, as shown in Figure 7.11 

using the TSMC 0.35-μm technology (2015) surface topology scan, the passivation openings are 

the lowest points on the chip, 1.5 μm below the uniform passivation level. Additional topology is 

present where UTM (ultra-thick-metal) is patterned. 

 

 

Fig 7.10. Technology parameters of top metal and passivation layers of an IC technology. 
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When bonding the vertical hair springs of width w to the exposed bond pad openings 

(passivation openings), we need to take into consideration the misalignment m1 produced by 

different bonding methods: die-to-die (D2D), wafer-to-wafer (W2D), or die-to-wafer (D2W) as 

shown in Figure 7.12. If no tolerance is designed, i.e. the spring width w is exactly the same as 

the bond pad openings, the flat bottom of the spring may land on the step boundary of the bond 

 
(a) 

 
(b) 

Fig 7.11. TSMC 0.35-μm technology (2015) surface topology scan: passivation openings are the 
lowest points on the chip, 1.5 μm below the flat passivation level. Additional topology is present 
where UTM (ultra-thick-metal) is patterned.  
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pad openings and pad metal- passivation overlap when there’s misalignemtn. The bond pad 

openings (passivation openings) thus should be at least w + 2m1: 

nin. pad opening  ≥  w + 2m1 

The state-of-the-art Finetech Flip Chip Bonder at LNF can achieve m1 = 1 µm alignment 

accuracy die-to-die or die-to-wafer, while at least 10-20 µm alignment error is expected if a 

mechanical alignment jig is designed to perform the alignment.  

 

 
To electrically contact the exposed Al pad and to assist bonding of silicon hair spring to 

the CMOS die at the pad, a gold layer (Au) with diffusion barrier can be patterned on top of 

exposed Al. m2 is the misalignment when patterning this metal layer by shadow mask or 

 

Fig 7.13. Pattern additional metal by shadow mask. (a) Width designed the same as the bond pad 
opening cannot cover the bond pad with misalignment m2; (b) The metal pattern extended by 
m2; to cover the exposed bond pad. 
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Fig 7.12. CMOS-MEMS chip-scale integration and hair sensor array release process. 
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lithography. To ensure this metal covers the exposed bond pad metal, the metal pattern has to be 

wider than w + 2m1 + 2m2 as shown in Figure 7.13: 

Metal pattern width: n  ≥  w + 2m1 + 2m2 

The minimum electrode spacing/pitch is the greater dimension of m + 2×overlap + M2M 

and n + 2m2. Figure 7.14 shows that when the misalignment m1 and m2 are small, the minimum 

electrode pitch is bounded by the sum of the bond pad passivation overlap and the minimum 

metal-to-metal (M2M) spacing.  

Min. electrode pitch = max (m + 2×overlap + M2M, w + 2m1 + 4m2) 

 
Further applying the analysis to integration of the MEMS hair array chip with a CMOS 

chip, the minimum hair pixel is at least three times (3x) the electrode pitch when two countering 

electrodes are needed on opposite sides of the spring-mass pair as shown in Figure 7.15.  

 

Fig 7.14. Minimum electrode pitch determined by technology parameters and alignment 
capability.  
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Instead of directly bonding to the exposed top metal bond pads, the electrical leads can be 

redistributed on the surface of the die outside the original pad region as shown in Figure 7.16 by 

a redistribution layer (RDL) [6]. It is an extra metal layer on a chip that makes the IO pads of an 

IC chip available in other locations. For example, when performing flip-chip bonding, this 

method can be applied to spread the contact points around the die so that solder balls can be 

applied and the stress of mounting can be spread.  

 
When applied to MEMS-CMOS stack integration, RDL helps with mapping the electrical 

leads on the MEMS die to the bond pad on the IC die. For example, as shown in Figure 7.17, the 

patterned metal can run over the passivation and bond to the hair springs. The minimum 

electrode pitch considering the topology and accumulated misalignment is about the same as in 

       
                                                     (a)                                                            (b) 
Fig 7.16. Bond Pad Redistribution Layers (RDL): (a) Polyimide dielectric layer is deposited and 
patterned to open bond pads while sealing fuse openings. Conductive metal layer connects old 
bond pads to new pad locations. The second layer of polyimide protects the metal trace. New 
bond pad location is opened for solder bumps reflow. (b) Optical image of old bond pads patterned 
with RDL and solder bumps. [6] 

 

Fig 7.15. Minimum hair sensor pixel pitch is determined by the electrode layout and minimum 
achievable electrode pitch. 
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Figures 7.12-7.14. Although Figure 7.17 shows the bonding site close to the IC bond pads to 

calculate the minimum electrode pitch, with the redistribution layer (RDL), we are provided with 

more flexibility in designing the locations of the CMOS-MEMS bonding sites. 

 
Other than redistibution layers, interposers can also be designed as an intermediate 

substrate between IC chips and MEMS substrates. Integration with interposers is referred to as 

heterogenous integration method and usually involved a specially-desinged thin or thick 

substrates with through-silicon-vias (TSVs) [7-10]. It can lower the cost by dis-integrate 

different technologies: bond pitches in IC continue to decrease whereas the bond pitches in 

MEMS devices remains what it needs to be.  

For our application, each hair sensor within the array have different footprint, ranging 

from several mirons, to several tens of microns, to several hundreds of mirons on the side. As 

shown in Figure 7.18, the interposer intermediate substrates assists mapping of MEMS devices’ 

electircal leads to the finer-pitch IC chips. The overall chip size of the MEMS and CMOS chips 

can also be different.  

 
(a) 

 
(b) 

Fig 7.17. Patterned metal runs over the passivation and bond to the hair springs, similar to bond 
pad redistribution Layers (RDL) method. 
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In addition, the stringent alightment and surface topology requirements assiciated with 

direct interface between MEMS and CMOS chips can be released by the interposer substrates. 

Chemical mechanical posiishing (CMP) and wet etching create smooth and flat surface for 

bonding on both sides of the interposer substrates.  
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Chapter 8 LOW-POWER WIDE-RANGE DIGITAL HAIR 

ACCELEROMETER AND ACCELEROMETER ARRAYS 

For some applications of accelerometers such as airbag deployment and micro-relays, it 

requires that the sensors will switch states when a preset threshold level is detected. It is critical 

that the sensor system has high precision, fast response time, and reliability since human life is at 

stake. In addition, many autonomous platforms such as the micro air vehicles such as Quadrotors 

typically have many inertial sensors integrated for assisting simultaneous localization and 

mapping (SLAM) but have limited power supplies, which necessitates low power consumption 

of all the instruments and sensors onboard. Switch-mode operation also offers the ease of 

interface with the host microprocessor. 

In this chapter, we introduce the digital threshold hair accelerometer array that can take 

advantage of the low noise and frequency selectivity nature of the hair structure and arrays. Low 

power consumption is realized by switching from capacitive sensing to switch-mode detection. 

This is extremely critical when we scale the sensor array size from less than 10 to 100s or 1000s. 

8.1 Motivation 

Compared to the many effort dedicated to measuring continuously varying acceleration, 

there are limited number of work on accelerometers measuring shock or threshold accelerations 

[1-6]. In contrast to the installation of a single device, threshold devices typically employ an 
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array of devices of various features (for example, geometrical dimensions) due to its digital 

nature.  

 
Earlier works on threshold accelerometers dates to the time when piezoresistive 

accelerometers were most widely adopted. Back in 1978, Peterson et al. [1] proposed arrays of 

electrostatically deflectable thin 𝑆𝑖𝑂2 membranes for applications in light modulator arrays as 

well as in voltage controlled switches (>l010 cycle lifetime). Frobenius et al. [2] presented 

threshold accelerometers covering a wide range from few tens of g’s up to 8000 g by 

constructing flexible metal beam and contact pairs as shown in Figure 8.1. The axis of inertia 

detection is in a direction normal to the contact plane. The temperature sensitivity of this device 

is merely the temperature coefficient of the modulus of elasticity for electroplated gold. Since the 

fabrication process is surface micromachining and the tip of beam deflection is given by 

𝑌𝑚𝑎𝑥 = 3𝜌𝐿4𝑎/2𝐸𝑡2, the design strategy was to fix the gold beam thickness 𝑡 = 1.5 µm as well 

as the tip deflection 𝑌𝑚𝑎𝑥 = 3 µm . The beam length L suffices to adjust the acceleration 

threshold levels. In addition, maximum bending stress 𝜎𝑚𝑎𝑥  in a beam is given by 𝜎𝑚𝑎𝑥 =

3𝜌𝐿2𝑎/t. For a known material (E, 𝜎𝑚𝑎𝑥 , 𝜌) and maximum deflection 𝑌𝑚𝑎𝑥 , the maximum 

       
                      (a)                                            (b)                                              (c) 
Fig. 8.1. Microminiature threshold accelerometers [2]: (a) SEM of a seven-cantilever module; 
(b) Design curves; and (c) Acceleration test results of a three-beam module accelerated in a 24-
cm diameter biochemical centrifuge.  
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obtainable acceleration level 𝑎𝑚𝑎𝑥  will be 𝑎𝑚𝑎𝑥 = 1/6 (E/𝜌) (𝜎𝑚𝑎𝑥/𝐸)2(1/𝑌𝑚𝑎𝑥). The upper 

limit for the acceleration threshold of the shortest beam (minimum L) turns out to be 7.15×104 g. 

The chip was tested in a 24-cm diameter biochemical centrifuge. As can be seen from Figure 

8.1(c), after two operations the threshold values remained well within 2 %.  

More recent works on threshold accelerometers aim to address one of the limiting factors 

in the state-of-the-art wireless world of Internet of Things (IoT): power consumption [4-5]. Since 

many sensors may be deployed in locations that may not have power available and will be 

operating on battery, minimizing power consumption is crucial in lowering the service costs and 

is directly affecting the dependability of the distributed sensor nodes.  

Piezoelectric, piezoresistive and capacitive type MEMS accelerometers whether in 

academic or commercially available all require an analog front-end circuit to amplify and 

digitize the output (by an analog to digital converter). The power consumption for these chips are 

in the range of tens of μWatt to a few mWatt. For example, with a coin cell battery that has 

200 mAh capacity and a nominal voltage supply of 1.5 V, for a sensor node that consumes 30 

μW and relies on this 1.5 V supply, the battery can last slightly more than 1 year. At the same 

time, there has been aggressive power reduction in digital electronics, which makes most MEMS 

sensors one of the most power-hungry components in the integrated systems.  

Table 8.1: Examples of battery type and leakage 
Battery I (leakage) 

A 
I (sensor) 

A 
I (total) 

A 
Power 
(W) 

Capacity 
(mAh) 

Voltage 
(V) 

Life 
Time 
(Year) 

L92 1.10E-05 6.67E-09 1.10E-05 1.64E-05 1200 1.5 12.5 
Alkaline 2.05E-06 6.67E-09 2.05E-06 3.09E-06 150 1.5 8.31 
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If sensor nodes’ power consumption can be reduced to nW range, considering the 

characteristics of coin cell or AAA batteries for example, they can provide a lifetime of at least 

several years and limited only by self-discharge.    

 

Selvakumar et al. [4] presents a complete threshold acceleration detection microsystem 

comprising an array of threshold accelerometers and a low power interface circuit. A wide 

latitude in acceleration threshold levels from 1.5-1000g (with bandwidths of 45 Hz to 40 kHz 

                                       
                                                   (a)                                                                 (b) 

                         
                         (c)                                               (d)                                          (e) 
Fig. 8.2. Microminiature threshold accelerometers [4]: (a) Illustration of threshold acceleration 
sensors employing redundancy (three identical sets, each set containing three different 
thresholds); (b) Top: Threshold accelerometer designs and Bottom: Front view of the threshold 
switch: asymmetric pull down with double contact configuration vs. balanced pull down with 
triple contact layout with well-defined contact gap at 0.25 μm; (c) SEM micrograph of a triple 
array with threshold of 1.5 g with 100 μm long 25 μm wide and 0.75 μm thick oxide beams and 
175 μm long, 114 μm wide and 15 μm thick inertial mass; (d) Functional circuit block diagram 
showing the input redundant channels and the logic voting of the majority function; (e) 
Schematic diagram of a sense channel. 
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and mass sizes ranging from 0.015 μg to 0.7 μg) is demonstrated realized by the bulk-silicon 

dissolved-wafer process. The sensible axis is normal to the wafer/chip plane. Low-resistance 

gold–gold contacts are used for the switch. An upward acceleration greater than the threshold of 

the device causes a gold pad under the deflected mass to short the gold leads on the glass 

substrate. Referring to Figure 8.2, all beams are 0.75 μm thick and all mass are 15 μm thick 

except for the 1000 g device (2.5 μm thick). The separation between contacts is 0.25 μm. The 

contact gap is very well defined by using a 1.5 μm KOH recess that is eventually reduced to the 

design gap value by the metal and LPCVD oxide structural layers. 

The interface circuit dissipates less than 300 μW by the circuit shown in Figure 8.2(e). A 

pull-up chain consisting of M1 and M2 for the channel input is designed to be weak in order to 

limit the current flow through the input switch. The input high-to-low transition is amplified by a 

CMOS inverter (M5–M6) and latched at the channel output. The ultra-low power operation of 

the interface is obtained by designing for virtually no static current flow in the circuitry, and 

using an asynchronous design approach. Most of the circuit blocks are digital CMOS, which do 

not draw static current. The power dissipation of the circuit designed to operate from a 5 V 

power supply was less than 10 μW from transient current flow during switching events. Higher 

reliability and fault tolerance is achieved by using channels with triple redundancy.  

In the next seciton, we propose a circuit that implements the latch at the front end to 

further reduce the power consumption compared to Selvakumar [4]. The circuit is designed and 

simulated with 0.13 µm CMOC technology to achieved nano-Watt power cinsumption. 

Another noteworthy work is presented by Kumar et al. [5] in 2016 that aims to 

significantly decrease the power consumption of digital accelerometers as shown in Figure 8.3. 

Instead of having an array of devices, this accelerometer chip consists of a single proof mass and 
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a number of parallel plate electrostatic actuators that can be turned on and off in a sequential 

manner by a digital controller. A simple 2-bit version of such accelerometers has been 

successfully fabricated and operated in the 0-1 g range. The same device concept and the 

configuration can be enhanced to higher number of bits.  

 
Contact lithography and plasma etch constraints restrict the gap size between the proof 

mass and the metallic tip to ∼1.5μm. They deposit a thick layer of gold with side wall coverage 

to reduce the gap sizes to as small as 270 nm. However, although the device was design to 

resolve 3-bit, some electrodes are used as tuning electrodes to set acceleration threshold limit to 

1g. The applied the bias voltage is set to be 47.2V to further reduce the gap to ~12 nm to enable 

full-range at 1 g acceleration.  

Like any other threshold acceleration switch, the device itself is a passive switch. They 

claimed 10.8 nW power consumption at 100Hz assuming the total capacitance to be charged up 

      

  

 

 

 

 

 

 

                   (a)                                                 (b)                                               (c) 
Fig. 8.3. 3-bit digitally operated accelerometer [5]: (a) Mapping of the acceleration binary 
output; (b) SEM view a fabricated digital accelerometer also showing device electrical 
connections; (c) Zoomed-in side view of the gap between the proof mass and the output 
electrode showing the gap narrowed down by gold deposition. 
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to the system operating voltage at 5V and eventually depleted during each measurement cycle is 

8.62 pF. 

8.2 Digital Threshold Array Design Objectives 

The threshold accelerometer arrays by Selvakumar et al. [4] covers a wider acceleration 

full-scale range (1.5-1000 g) and the single-device approach by Kumar et al. [5] achieves higher 

precision within 0-1 g.  

In this research, we aim to achieve both large full-scale and high resolution across an 

array of devices. The threshold acceleration level is essentially a function of the proof-mass size 

(m), the spring constant of the vertical hair spring (k), and the air-gap dimension separating the 

proof-mass and the two contact electrodes (g0). By changing the design parameters, different 

threshold levels can be achieved for specific applications.  

 

          
                                           (a)                                        (b)                         (c) 

Lower-g threshold levels  Higher-g threshold levels 

Structure (a) (a) (c) 
Fixed threshold gap (g0) 4 µm 
Fixed spring width (c×d) 20 µm×20 µm 

Spring length (L) 600 µm 600 µm 1000 µm 
Desired threshold levels 1 g 100 g 1000 g 
Estimated proof-mass 

footprint (a×b)  ~2 mm×2 mm ~200 µm×200 µm ~20-30 µm 
Spring is mass  

Fig. 8.4. Different designs cover low-g to high-g threshold levels. Examples are given for fixed 
threshold gap and spring cross-sections, while adjusting the proof-mass footprint.  
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As shown in Figure 8.4, the two-gap process can easily define these structures with both 

small and large proof-mass with footprint from 20 µm on one side (the vertical hair spring being 

the proof-mass as shown in Figure 8.4(c)), to several millimeters on one side, which suffices to 

adjust the acceleration threshold levels. Further modulating the gap (g0) to tune the threshold 

acceleration levels will be analyzed later.  Without exceeding the maximum bending stress 𝜎𝑚𝑎𝑥 

of the spring, for a known material (E, 𝜎𝑚𝑎𝑥 , 𝜌) and maximum deflection Ymax = 4 µm, the 

maximum obtainable acceleration levels from 1 g, 100 g to 1000 g for different proof-mass 

footprints are listed in Figure 8.4. Tradeoffs for a single device still exist: although a higher g-

range is achieved, the noise also increases. In this chapter, we focus on the design, fabrication 

and characterization of low-noise arrays, but with a relatively smaller g-range. 

 

 
Fig. 8.5. Perspective drawing (showing three different threshold sensors each with different 
proof-mass dimensions), and cross-sectional views of a single sensing unit. The contact gap 
width wgap can be designed small enough to reduce squeeze film air damping. 

H = 1 mm

a1 = 500 µm
b1 = 500 µm

a2 = 50 µm
b2 = 100 µm

a3
b3

a

b
Proof-
mass

wgap

= 200 µm
= 200 µm
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The threshold hair accelerometer is derived from the two-gap hair structure and consists 

of a tall and high aspect-ratio inertial mass. The tall inertial proof-mass is supported by one or 

two vertically anchored compliant spring. Two pair of electrodes are located along the sensitive 

axis of the spring-proof mass, and are separated from the proof-mass by an air-gap. As shown in 

Figure 8.6, when the proof-mass travels toward the two electrodes on the same side and close the 

air gap due to external acceleration greater than the threshold of the device, the metal on the 

proof-mass shorts the metal contacts on the two electrodes and closes a sensing circuit. This 

signal can be used as event trigger. 

Side View 

     
Top view 

 
Fig. 8.6. Operation of threshold hair accelerometer: when the proof-mass travels toward the two 
electrodes and close the air gap due to external acceleration > threshold of the device, the metal 
on the proof-mass shorts the metal contacts on the two electrodes and closes a sensor circuit. 
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For example, as shown in Figure 8.7, a 600 µm long and 20 ×30 µm2 wide spring 

supports a 1 mm tall and 2 mm×500 µm footprint proof-mass, 1-g acceleration in the sensitive 

axis (Y-axis) results in ΔY = 0.898 µm and ΔZ = -0.265 µm, with ΔY/ΔZ ≈ 3.4:1. The 

displacement filed in all three axes are shown in Figure 8.8. If this device is designed to have an 

air gap of 0.898 µm, the switch closes at 1-g acceleration. For this device, the height of the 

electrodes in the Z-axis telectrodes must be greater than 0.265 µm (since ΔZ = -0.265 µm) so that 

when the metal covered electrodes on the proof-mass will be able to not miss but and make good 

contact with the stationary electrodes. The ratio of ΔY/ ΔZ is approximately the ratio of the 

device height (H) and half of the proof-mass width (b/2), 2H/b. If the acceleration threshold is 

 
Fig. 8.7. COMSOL simulation of a device that consists of a 600 µm long and 20×30 µm2 wide 
spring that supports a 1 mm tall and 2 mm×500 µm footprint proof-mass under 1-g acceleration 
in the Y-axis. The height the electrodes in the Z-axis electrodes must be greater than 0.265 µm 
so that the proof-mass will make good contact with the stationary electrodes. 

Single device with single spring 

Spring length L 600 µm

Spring width 20 µm x 30 µm

Mass footprint 2 mm x 500 µm

Mass height H 1 mm

Total displacement (µm)

ΔZ = -0.265 µm

Max ΔY = 0.898 µm

@ Acceleration = 1g in Y-Axis  ΔZ / Max ΔY  = 1: (3.4)
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desired to be 8-g, which means the sensing gap equals 7.148 µm (8×0.898 µm), the oxide/metal 

stack thickness must be at least 2.125 µm (7.148 µm divided by 3.4). The thickness of the 

electrodes is determined by the thickness of the oxide hard mask after the top-gap DRIE as well 

as the thickness of the metal stacks deposited on the top the oxide. Details on how we realize 

such precise control over the dimensions in microfabrication will be discussed in the next section. 

 

An array of N devices can provide threshold acceleration detection resolution of (𝑎𝑁−1 −

𝑎0)/(𝑁 − 1), or 𝑙𝑜𝑔2𝑁  bit. The mass-spring can be modulated to cover different frequency 

spectrum and dynamic range. For example, an array of 4 (N = 4) devices that can resolve 

acceleration level from a1 to a4 by varying the air gap (Figure 8.9 (a)). The threshold acceleration 

detection resolution is (a3 - a0)/(N-1). Similarly, an array of 32 devices having gap from 1 µm to 

4.1 µm and Δgap = 0.1 µm can be constructed to cover 32 different threshold levels from a0 to 

 
Fig. 8.8. Displacement filed in all three axes from the simulation in Fig.8.7. 

Y displacement

X displacement Z displacement

Total displacement
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a0 +31Δa as shown in Figure 8.9 (b). By further varying the spring width (c & d), we can cover 

different range of threshold levels as well as different incremental acceleration levels that can be 

detected within the same array. The spring width ranges from 10×10 µm2 to 30×30 µm2, only 

limited by the bonding strength for mechanically anchoring the vertical hair spring.  

 
We layout two different chips with various proof-mass footprint and spring dimensions. 

The 16-array chip measures 4×0.5 mm2 for each device: the gaps range from 1 µm to 4 µm with 

an increment of 0.2 µm. The 32-array chip measures 2×0.5 mm2 for each device (Figure 8.10): 

the gaps range from 1 µm to 4.1 µm with an increment of 0.1 µm. The spring diameter ranges 

from 10×10 µm2 to 30×30 µm2, only limited by the bonding strength for mechanically anchoring 

the vertical hair spring. The design specifications for these two chips occupying total active chip 

area of less than 1 cm2 are also summarized in Table 8.2. 

Example: an array of 4 devices 

 
(a) 

 
(b) 

Fig. 8.9. Threshold hair accelerometer arrays: (a) an array of N=4 devices that can resolve 
acceleration level from a0 to a3 by varying the contact gaps; (b) 32 different threshold levels 
from a0 to a0 +31Δa. 

VDD g0 VDD g0 + Δg VDD
g0 + 2Δg

a0 a1 a2

VDD
g0 + 3Δg

a3

Gap (µm)
0 0.5 1.0 1.5   2.0     2.5  3.0     3.5     4.0

g0 = 1.0 µm;
g15 = 4.1 µm;
Δg = 0.1 µm;a0

a0+5×Δa 

a0+31×Δa 

Accel. (g) …
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The width (Wgap) and height (htop) of the top small gap are 50 µm by 50 µm. Even with 

the minimum threshold gap of 1 µm, compared to the capacitive device in Chapter 6 with 

W/g0 = 2 mm/2.5 µm, BNEA contributed by squeeze film damping can be reduced by 10 times 

since it is proportional to (W/g0)1.5L0.5. For a device with 4×0.5 mm2 footprint, the calculated 

BNEA is about 300 ng/√Hz, or 600 ng/√Hz per 1 mm2 footprint of proof-mass. 

 

   
                                               (a)                                                                        (b) 

 
                                               (c)                                                                            (d) 

Fig. 8.10. (a) 16-array chip measures 4×0.5 mm2 for each device; (b) 32-array chip measures 
2×0.5 mm2 for each device, with the same spring design within the same chip; (c)&(d) 
Threshold levels vs. gap and different spring designs for the 32-array chip: Increment gap 
Δg = 0.1 µm is equivalent to an increment acceleration ΔAccel = 13 mg when the spring is 
10 µm wide; and different threshold ranges realized by varying the spring dimensions. 
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8.3 Fabrication Process and Results 

The sensor was fabricated using a modified silicon-on-glass (SOG) process combining 

the two-gap process presented in section V. SOG process is a well-studied and reliable process 

that allows for flexibility in the sensor design [12]. The air-gap dimensions are precisely defined 

by photolithography to suit different acceleration levels.  

The process consists of six major steps as presented in Figure 8.11:  

(a) A 4 µm recess is created in a highly-doped silicon wafer by deep reactive ion etching 

(DRIE). These recessed areas mainly suspend the proof-mass over the glass substrate so that 

when the proof-mass tilts toward the contact electrodes, the bottom of the proof-mass will not 

touch the bottom substrate. In addition, during the anodic bonding step, less mirrored charge will 

be built up when a large voltage is applied across silicon and glass. After the recessed is 

Table 8.2: Design parameters and specifications of the 4×0.5 mm2 and 2×0.5 mm2 
mass footprint threshold accelerometers layout in the 16- and 32-element arrays. 

Proof-mass Spring Resonant 
Frequency 

Displacement 
Sensitivity 

Threshold 
@ 

gap = 1 µm a b Mass c d k 

mm mm µ-gram µm µm N/m Hz µm/g g 
4 0.5 4.66 10 10 3.01 127.89 15.176 0.0659 
2 0.5 2.33 10 10 3.01 180.87 7.588 0.132 
4 0.5 4.66 15 15 15.23 287.77 2.998 0.334 
2 0.5 2.33 15 15 15.23 406.96 1.499 0.667 
4 0.5 4.66 20 20 48.15 511.58 0.948 1.054 
2 0.5 2.33 20 20 48.15 723.49 0.474 2.109 
4 0.5 4.66 25 25 117.55 799.35 0.389 2.574 
2 0.5 2.33 25 25 117.55 1130.45 0.194 5.148 
4 0.5 4.66 30 30 243.76 1150.56 0.187 5.347 
2 0.5 2.33 30 30 243.76 1627.85 0.0937 10.69 

• Device height H = 1 mm; Spring length L = 600 µm; 
• Double spring: k = 2k0; 
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formed, > 4.5 µm of LPCVD silicon oxide (SiO2) is deposited. This oxide layer serves as the 

hard-mask against long DRIE during both the front-side and back-side etching. The front-side is 

the side that will be later be in contact with and be anodically bonded to the glass wafer. The 

oxide on the front-side is patterned to defined the boundaries of the vertical hair spring, the 

proof-mass and electrodes.  

(b) A two-mask sequence is used to define the small sensing and switching gaps from the 

back-side of the silicon wafer from (a). The first mask is to be used with stepper lithography and 

it can resolve from <1 µm features to 1 µm features as the threshold switching gaps. Wherever 

the photoresist is exposed and developed, the oxide will be etched to expose the silicon. The 

thickness and selectivity of the photoresist is critical to precisely define the air gap openings. The 

second mask is to thin down the un-etched oxide from the initial 4.5 µm to 2 µm where contact 

needs to be made between the highly-doped silicon electrodes /proof-mass and the metal 

deposited on the very in step (f). The 2 µm should be thick enough to survive the back-side DRIE 

from the top on the silicon-glass wafer stack. Any residual oxide will be stripped by dry plasma 

etch after the devices are all release. The difference of 2.5 µm defines the contact electrodes 

thickness before metal is deposited. The oxide thickness being deposited and removed in this 

two-mask sequence needs to suit a range of gap dimensions.  

(c) Deep, high aspect-ratio deep reactive ion etching (DRIE) masked by the front-side 

oxide. The etch depth are tuned by the different opening sizes as well as the total etch duration. 

After DRIE, the wafer is cleaned by oxygen plasma at 150 °C at 800 W followed by Piranha 

clean. The remaining front-side oxide hard mask is then removed by BHF while the back-side 

oxide mask is protected by hard-baked photoresist.  
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(d) The next two steps are carried out on the glass substrate. The first step is to etch recess 

on the glass surface by 3 µm except in the anchoring and contact regions by BHF wet etching. This 

further reduces the squeeze-film damping between the inertial proof-mass and the glass substrate. 

After that, photoresist is patterned to lift off and evaporate Titanium/Platinum (200/1500 Å) stack 

 
Fig. 8.11. Modified silicon-on-glass (SOG) process combining the two-gap process: (a) Recess 
formation and front-side DRIE hard mask patterning; (b) Two step back-side DRIE and contact 
pads hard mask patterning; (c) Front-side deep high aspect-ratio DRIE; (d) Recess formation 
and metal lift-off on glass wafer, followed by anodic bonding of the silicon wafer and the glass 
wafer; (e) Small top gap DRIE to release the proof-mass; (f) Blanket metal evaporation for 
electrical contact. 
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as contact fingers as well as routings on the glass substrate. Before the deposition, 1000 Å recess is 

further wet etched by BHF to allow for this thick stack of metal, while not compromising anodic 

bonding quality. The second step is anodic bonding: the processed silicon and glass wafers are 

aligned and electrostatically bonded together at 400 °C at 1500 V.  

 (e) After the 4-inch wafer stack (1 mm silicon + 500 µm glass) are diced 1 mm deep 

from the glass slide, the stack is mounted on a carrier wafer and the final DRIE is performed. 

This etch defines the small gaps from the top. The oxide mask defined in step (b) ensures that 

oxide hard mask remains after the release DRIE and serves to more precisely define the 

threshold air gaps.   

(f) The final metallization consists of two angled metal evaporation runs to ensure good 

coverage of metal on the vertical contact planes of the >2 µm thick oxide on top of both the 

proof-mass and electrodes. Each time 5000 Å metal is deposited thus the electrodes stack height 

will be increased by 1 µm. 

Figure 8.12 and 8.13 presented partial view and overall chip view SEM of fabricated 

threshold hair accelerometer arrays. The charging effects in SEM indicates that all the devices 

are released.  

 
 

 
Fig. 8.12. SEM of fabricated threshold hair accelerometer arrays: partial view.  

32 devices: 2x0.5mm2 footprint 16 devices: 4x0.5mm2 footprint
     

184 



 
8.3.1 Release DRIE 

One of the common process issues involved in microelectromechanical system (MEMS) 

devices release by plasma etch such as DRIE is severe silicon undercut caused by overheating of 

suspended microstructures [13]. For capacitive devices, small transduction gaps (parallel-plate 

capacitors or comb fingers) normal to the silicon wafer planes are typically defined by DRIE, 

thus yielding large sensing and actuation areas if thick single crystal silicon wafers are used. 

Electrical isolation between electrodes at different potentials may also be etched simultaneously. 

Large proof-mass for higher sensitivity are usually supported by silicon beams defined using the 

same DRIE step that creates the sensing gaps, or by thin-film isolation beams defined by 

isotropic silicon undercut etching. As a result, the gap between sensing plates will be increased, 

the proof-mass boundary will be etched, and the support springs will be thinned, which decreases 

sensing capacitance, reduces proof-mass size, and decrease the spring constant in an 

unpredictable manner.  

 
Fig. 8.13. SEM of fabricated threshold hair accelerometer arrays: chip overview of 32 element 
array and 16 element array. 
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Over-etching is necessary to ensure electrical as well as mechanical isolation. However, 

lateral etch cannot be avoided: rapid silicon lateral undercut occurs after most of the suspended 

structures are etched-through. According to Equation 8.1 undercut is mainly attributed to the 

rapid temperature rise on the suspended MEMS structures: as temperature T rises the surface 

reaction rate also rises.  

𝑟 ∝ 𝐴 × 𝑇
1
2 × exp (−

𝐸
𝑘𝑇

) 
 

(8.1) 

 
The energy influx of ions is considered the major source that causes the substrate 

temperature rise: the kinetic energy of the impinging ions will convert to heat completely. Thus, 

the key is to estimate the temperature of the suspended microstructures. Qu et al. [13] calculated 

that in less than 1 s, the temperature of their z proof-mass design is increased by 100 °C, 

assuming the microstructure is assumed to be approximately 50 °C before release (Figure 8.14). 

They modified the accelerometer fabrication process to include photoresist (PR) coating step on 

backside of the wafer. The thick PR reduces the overall thermal resistance by almost 60 times. 

       
                            (a)                                                 (b)                                            (c)  
Fig. 8.14. Solutions to reduce lateral undercut caused by overheating of released microstructure 
[13]: (a) Calculated temperature rise on z proof mass: in less than 1s, the temperature is 
increased by 100 °C; (b) Modified process flow to include 10 µm PR coating on the backside of 
processed wafer before the final release DRIE. This reduces the thermal resistance when the 
proof-mass is almost released; (c) Comparison between backside-coated and uncoated samples 
showing the intact and etched-away. 
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10 μm AZ 9260 photoresist with thermal conductivity of 0.2 W/mK. By using backside 

photoresist coating, the release of the sensing fingers is well controlled with slight footing effect 

without being etched away (Figure 8.14 (c)). 

In our case, due to the trenches being high-aspect ratio as well as the bonded silicon-glass 

wafer stack, it is not feasible to apply backside PR coating directly in contact with the features 

being etched to reduce the thermal resistivity.  

 
The main challenge lies in the different threshold gaps designed for different threshold 

acceleration levels. As shown in Figure 8.15, for top gap sizes from 1 to 4 µm and bottom gap 

sizes of 40 µm etched to 830 µm, 110 min ramped-parameter DRIE over-etches the 4 µm gaps by 

over 50 %, which means the 4 µm threshold gap devices are released much earlier than the 1 µm 

threshold gap devices. This is caused by DRIE lag: larger features etch deeper than smaller 

 
Fig. 8.15. Junctions of the top and bottom gaps: 40 µm wide bottom gaps connect with top gaps 
from 1-4 µm. The 4 µm top gap is etched pass the height of the 40 µm gaps.  

• 1 µm gtop  187 µm
• 4 µm gtop  282 µm
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features with a fixed etch duration. The ramped-parameter recipe was design to etch small 

trenches with high aspect-ratio, however, lag-free DRIE is not achievable. In addition, there will 

be etch rate variations across one wafer. 

When the proof-mass is already released, it will only be supported by one or two vertical 

hair spring(s) to the glass substrate: undercut right underneath the oxide hard mask can be seen in 

the optical images (Figure 8.16) since the etch needs to continue to ensure the release of all 

devices. The undercut is more than 60 µm maximum. The oxide mask is rigid and does not 

collapse. 

 
Since we cannot entirely compensate for DRIE lag and undercut, the better option is to 

use the remaining oxide hard mask to more precisely define the contact threshold gap. However, 

DRIE undercut should still be reduced as much as possible. In the layout, we add dummy gaps 

𝑔𝑑𝑢𝑚𝑚𝑦 = 𝑔𝑚𝑖𝑛𝑖𝑚𝑢𝑚  to each device in order to delay the release of the devices with larger 

threshold gaps. For example, if the threshold gaps across an array is from 1-4 µm, then 

𝑔𝑑𝑢𝑚𝑚𝑦 = 1 µ𝑚. Arranging the dummy gaps along the sensitive axis will limit the motion of the 

 
Fig. 8.16. Overetch creates large undercut due to overheating of the suspended structures. 
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proof-mass as shown in Figure 8.17 (a) (left). In this design, we place the dummy gaps along the 

axis normal to the sensitive axis as shown in Figure 8.17 (a) (right) so that 𝑔𝑑𝑢𝑚𝑚𝑦 can match the 

minimum gap across the array as well as be much smaller than 𝑔𝑠𝑒𝑛𝑠𝑒. After metal deposition, 

both the dummy gaps and sense gaps are very smooth. 

 

 

 
Fig. 8.18. DRIE scallop and DRIE undercut right underneath the > 2 µm thick oxide hard mask 
left after the release DRIE. 

 
(a) 

 
(b) 

Fig. 8.17. Add dummy gaps to delay the release of devices with larger threshold gaps: (a) The 
dummy gaps are located along an axis perpendicular to the sensitive axis such that they do not 
limit the motion of the proof-mass; (b) Fabrication results of the devices with dummy gaps after 
top metal deposition. 
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Undercut still exist but it will not affect the operation of the threshold devices. 

Figure 8.18 shows the DRIE scallop and DRIE undercut right underneath the >2 µm thick oxide 

hard mask left. 

The overall small-gap etch time is reduced from 110 min to 50 min. This means the deep 

gap by front-side DRIE needs to by deeper than 900 µm, which is more challenging. 

Figure 8.19(a) shows optical images of the DRIE-ed sidewall of the released proof-mass: the top 

gap measures 77-84 µm due to DRIE non-uniformity caused by pattern geometry and density. 

The darker brown color in the images, especially at the electrodes location, indicates DRIE 

undercut caused by the overheating of the proof-mass when the proof-mass is mostly released. 

SEM of the electrode (Figure 8.19 (b)) proves that the device is cleaned very well and free of 

residues from DRIE or wet chemical cleaning steps.  

 
After the final metal evaporation, the threshold gap dimensions are measured by SEM to 

verify the gap dimensions. The 1 µm gap originally defined on the layout increases to 1.43 µm, 

and the 4 µm gap originally defined on the layout increases to 4.32 µm as highlighted in 

Figure 8.20. The smooth edge/sidewall of the oxide hard mask left after the small-gap DRIE 

 
                                              (a)                                                                                     (b) 

Fig. 8.19. Optical images of the DRIE-ed sidewall of the proof-mass: the top gap measures 77-
84 µm due to DRIE non-uniformity caused by pattern geometry and density. The darker brown 
color in the images, especially at the electrodes location, indicates DRIE undercut caused by 
overheating of the proof-mass when the proof-mass is mostly released. 
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ensures good contact between the metal thin-films deposited on the electrodes and the proof-

mass as shown in Figure 8.21. 

 

 

 
8.3.2 Silicon-Glass Anodic Bonding Quality and Strength 

The other major challenge of the process lies in anodic bonding with small bonding area. 

Compared to capacitive hair accelerometers, the proof-mass supported by the hair spring does 

not need to be connected electrically to a certain potential, thus no metal fingers are sandwiched 

between the bottom of the vertical silicon hair spring and the islands on the glass substrate as 

 
Fig. 8.21. Gap open and gap closed.  

 
Fig. 8.20. Gap dimension after bonding, release DRIE and metal deposition: 1 µm gap originally 
defined on the layout increases to 1.43 µm, and the 4 µm gap originally defined on the layout 
increases to 4.32 µm. 

1.43 µm

4.32 µm
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with the uniform gap capacitive devices by SOG process in section IV. Reliable bonding was 

only achieved for spring cross-section greater than 30 × 30 µm2 when metal fingers are present.   

In this design, the minimum spring cross-section area we experiment with is 15 × 15 µm2, 

and the maximum spring cross-section area we experiment with is 30 × 30 µm2. We pre-bond by 

applying -500 V at 250 °C for 30 minutes. Then we perform the second bonding step by applying 

-1300 V at 350 °C. After the second bonding step is complete, we anneal the wafers at 350 °C for 

1.5 hours and slowly ramp down to room temperature over 2 hours. Pyrex glass has a similar 

CTE to silicon in the temperature range up to 400 °C. 

 
Figure 8.22 optically analyze the anodic bonding quality. The darker grey color indicates 

very good bonding quality. Both the silicon and glass surfaces are free of particles thanks to the 

thorough cleaning process before bonding. The silicon electrodes are bonded to the glass 

 
(a) 

 
(b) 

Fig. 8.22. After anodic bonding: (a) Dark grey color in the larger bonding areas, electrodes and 
hair spring locations all indicate good anodic-bonding quality. (b) Silicon springs of different 
cross-section areas are all in good contact and are bonded well to the glass substrate. 
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substrate that is patterned with metal fingers. Shallow metal recess (>1500 Å) is etched by BHF 

before 2000 Å thick metal stack is evaporated so that the silicon electrodes can make good 

contact with the glass substrate. Variation of the etch rate of glass in BHF caused by lack of 

circulation of etchant or other factors may result in the final metal thickness breaching the 

surface being in the range of 400-600 Å. As shown in Figure 8.22 (a), rings of un-bonded regions 

of finite width can be seen at the edges of the metal fingers. They extended about 4 - 5 µm from 

the edge of the metal deposited until the two sides make good contact and are well-bonded. This 

distance may be reduced by more precisely controlling the metal thickness breaching the glass 

surface to less than 100 Å such that the un-bonded ring width can be less than 1 µm. Without 

metal fingers, the silicon springs of different cross-section areas are all in good contact and are 

bonded well to the glass substrate. 

After the devices are bonded and released, the hair spring-mass could be broken to 

analyze the bonding interface. Chunks of glass attached to the silicon spring are verified by both 

SEM and optical images for hair springs of different diameters. The 15 µm wide springs 

sometimes not only got pull off from the substrate, they also broke in the middle (Figure 8.23) 

since they are very compliant (k <10 N/m) and large proof-masses are attached. The sidewalls of 

the vertical springs are not very smooth after deep DRIE and may also cause the spring to break 

more easily. 

The glass fringe is good indication of descent anodic-bonding quality since typical bond 

strength of anodic bonding is higher than the tensile strength of glass before it fractures. The 

tensile strength of Borosilicate (Pyrex 7740) Glass could vary considerably about a mean value 

commonly found to occur at about 6.9 MPa (1000 psi). The lack of ductility of glass prevents the 

equalization of stresses at local irregularities or flaws. 
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25 µm hair spring: glass pieces on top of the detached silicon spring 
Glass charged up in SEM 

 
 

30 µm hair spring: glass pieces on top of the detached silicon spring 

 
Fig. 8.23. Anodic bonding fracture morphology analyzed after the released hair spring-mass 
pairs are broken off from the glass substrate. Chunks of glass attached to the silicon spring are 
verified by both SEM and optical images, indicating good initial anodic bonding quality.  

15 µm hair spring: glass pieces on top of the detached silicon spring
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8.4 Electromechanical Testing Results 

The fabricated threshold hair accelerometer array chip is glued and wire-bonded to a PCB. 

The PCB is mounted on Ulholtz-Dikkie voice coil shaker table for electromechanical testing of 

the threshold accelerometer arrays as shown in Figure 8.24. Each accelerometer in the array has 

four electrodes accessible, two for the positive axis and two for the negative axis.  

 
For analog readout, each acceleration acts as a switch. The output ports 𝑉𝑝_𝑜𝑢𝑡 and 𝑉𝑚_𝑜𝑢𝑡 

are initially charged to 𝑉𝐷𝐷 through a bias resistor as shown in Figure 8.25. When one of the 

switches is closed due to external acceleration, 𝑉𝑝_𝑜𝑢𝑡 or 𝑉𝑚_𝑜𝑢𝑡 will be pulled down through a 

discharging path. The resistor should be large enough to limit the current passing through the 

switch when it is on. Resistance welding [10-11] is observed (Figure 8.26) as a result of the 

 
Fig. 8.24. PCB mounted on Ulholtz-Dikkie voice coil shaker table for electromechanical testing 
of the threshold accelerometer arrays. The sensor chip is glued and wire-bonded to the PCB. 

16-array chip

Wire-bonded

Axis of Shake Table Motion

PCB Stack for Signal Routing Wire-bonded 
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localized heating generated by the excessive current flow, leading to contact material melting 

when current measures around 130 µA. Thus 𝑉𝐷𝐷 is set to 5 V and 𝑅𝑏𝑖𝑎𝑠 is pick such that the 

discharge current is less than 5 µA. No welding is observed. 

 

 
The outputs from the array are routed through the PCB to the analog input channels of the 

National Instrument DAQ board NI PCI-6070E. The input impedance of the analog input 

channels is 100 GΩ resistance in parallel with 100 pF capacitance. We control the shaker table to 

operate at different frequencies and peak acceleration levels to test if the proof-mass and 

countering electrodes will make good contact to discharge the output nodes. The analog channel 

captures the threshold hair accelerometer contacting events that match with the input motion 

frequencies.  

The sensor chip being tested has 4×0.5 µm2 proof-mass footprint and 20×20-25×25 µm2-

wide > 600 µm-long double supporting springs. The outputs nodes are pulled down from the 

 
Fig. 8.28. Micro-welding at the electrodes due to excessive current flow.  

 
Fig. 8.26. Analog readout setup.  
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initial 5 V at 20 Hz and 40 Hz. At 40 Hz, it is pulled down to ~ 3 V and at 20 Hz it is pulled down 

to 4.6 V as shown in Figure 8.27.  

 

 
We also feed the output ports (𝑉𝑝_𝑜𝑢𝑡  and 𝑉𝑚_𝑜𝑢𝑡  in Figure 8.28) to the Keysight 

Technologies MSOX3054T Mixed Signal Oscilloscope’s digital input channels to capture the 

 
Fig. 8.28. Digital output setup.  
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Fig. 8.27. Analog outputs from one threshold hair accelerometer: the outputs nodes are pulled 
down from the initial 5 V at 20 Hz and 40 Hz. At 40 Hz, it is pulled down to ~ 3 V and at 20 Hz 
it is pulled down to 4.6 V. 
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switching events of multiple threshold accelerometers simultaneously. The input impedance of 

the digital input channels is 100 kΩ 𝑅𝐿in parallel with 8.5pF 𝐶𝐿. 𝑉𝐷𝐷 is set to 0.5V so that 𝐼𝑚𝑎𝑥 is 

less than 5 µA. The step response time 𝜏 = (𝑅𝑆//𝑅𝐿)𝐶𝐿 < 1 µ𝑠.  

 
Figure 8.29 and 8.30 present two threshold hair accelerometers are switched 

simultaneously with 6 g peak acceleration at 30 Hz, and with 8 g peak acceleration at 40 Hz. 

Since these two devices in the array have the same proof-mass and spring design, and differ only 

in the threshold gaps, their responses are almost synchronized.  

 
Fig. 8.31. Two threshold accelerometers are switched simultaneously with 6 g peak acceleration 
at 30 Hz. 

Span = 500 ms Span = 1 s

Span = 2 s Span = 5 s
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Switching of two sensors at 30 Hz
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Figure 8.31 presents the switching responses from two sensors in the array as the shaker 

motion was ramped up from rest. Missing bits were observed at the beginning. There’s also 

offset (approximately 0.5 ms) between the two sensors’ responses. 

 

 
Fig. 8.32. Two threshold accelerometers are switched simultaneously with 8 g peak acceleration 
at 40 Hz.  

Span = 500 ms Span = 1 s

Span = 2 s Span = 5 s
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Switching of two sensors at 40 Hz
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8.5 Low-Power Digital Resonant Array for Micromechanical Frequency Processer  

As introduced in Chapter 1.1, an array of micromechanical resonators can be used to 

construct a vibration monitoring system, performing mechanical FFT based on the mechanical 

resonance of a spring-mass structure in the range of from several Hertz to 10 kHz.  

In this sub-section, we discuss the feasibility of building micromechanical signal 

processer using our proposed hair structure in dense array. Figure 8.32 presents the schematic of 

a large array of digital hair structures that can cover a wide frequency range by adopting single 

vertical cantilever beams structure for high frequencies, and vertical cantilever beams with 

 
Fig. 8.31. Switching responses from two sensors in the array as the shaker motion was ramped 
up from rest. There’s also offset (approximately 0.5 ms) between the sensors’ responses. 
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proof-mass for lower frequencies. For each accelerometer, there is a pair of contact/switch 

electrodes along the sensitive axis and digital outputs can be registered when the switches are 

closed due to vibration or acceleration at the designed resonant  frequency of the sensor. 

 

 
(a) 

 
(b) Higher Frequency 

 
(c) Lower Frequency 

 
For single cantilever beams in Clamped-Free (C-F) configuration, the flexural resonators 

operate at their best at frequency ranges from several kHz to 100 MHz.  

Blom et al. [14] in their 1992 article [14] gave theoretical design rules for the geometry 

of resonant silicon beams in order to achieve a high quality-factor at atmospheric conditions. 

Expressions are derived for the damped resonance frequency and the Q-factor of a damped 

vibrating beam considering only air damping (not squeeze film damping from small sensing 

gaps), as well as for the pressure dependence of both parameters.  

For a single cantilever design of length L, width b, and thickness d vibrating in its 

flexural mode when fixed on one end and placed in a fluid medium, the nth order undamped 

Fig. 8.32. High density MEMS transducer arrays based on the 3D biomimetic hair structures.  
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angular resonance frequency is given by equation 8.2 [14]. For the first-order resonance mode 

𝑘0 = 1.875. 

𝜔𝑛 = 2𝜋𝑓𝑛 = 𝑘𝑛2
𝑑
𝐿2
�

𝐸
12𝜌𝑆

,𝑤𝑖𝑡ℎ 𝑘0 = 1.875  
 

(8.2) 

 

 

   
(a) 

 
(b) 

Fig. 8.33. (a) Dimensions of the beams used (length I, width b, and thickness d), their first-
order resonance frequency f0. It also presents the calculated results of the curve fitting for the 
radius R of a sphere (model the beams by discsspheres) and the critical pressure pc in order 
to maximize Q at higher pressure; (b) the damped resonance frequency fd0 as function of the 
dimensional parameter d/l2 for the cantilever beams. [14] 
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In the hair array design, with the current fabrication technique of fabricating the vertical 

hair structures from a thick wafer of fixed thickness, it is not possible to modify the beam length 

L on the same chip as in reference [14] and [15].  

 
However, we can modify the width the spring to target different resonant frequencies for 

the 1st flexural mode from 1 to 100 kHz (Figure 8.35(a)) and from 1 kHz to 10 kHz 

(Figure 8.35(b)). 

 
For resonant frequencies from 100 to 1000 Hz, the hair structure with both the vertical 

 
                                                (a)                                                                             (b) 

Fig. 8.35. For a single cantilever hair spring with fixed beam length L, different beam width can 
be designed to target the desired resonant frequencies for the 1st flexural mode targeting (a) 1 to 
100 kHz and (b) 1 to 10 kHz.  

 

0

5

10

15

20

25

30

35

0 2,000 4,000 6,000 8,000 10,00

1 mm
2 mm
0.5 mm

0

50

100

150

200

250

300

350

1,000 10,000 100,000

1 mm
2 mm
0.5 mm

L = 1 mm
L = 2 mm
L = 0.5 mm

1st flexural mode resonant frequency of cantilever with different length L and width

Resonant frequency (kHz)
1                                 10                              100

B
ea

m
 w

id
th

 (µ
m

)

Resonant frequency (kHz)
0            2             4        6     8           10

B
ea

m
 w

id
th

 (µ
m

)

L = 1 mm
L = 2 mm
L = 0.5 mm

 
Fig. 8.34. SEM image of the array of cantilever beams in [15]. 
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hair spring and proof-mass can be implemented.  Figure 8.36 shows that by varying the proof-

mass footprint, the resonant frequencies above 200 Hz can be realized by proof-mass that is less 

than 400 µm on the side, and 100 Hz can be realized by proof-mass that is less than 850 µm on 

the side. 

 

 
  

   

              |𝐻(𝑗𝜔)| =
1
𝑘

��(𝜔 𝜔𝑛� )2−1�
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Fig. 8.37. Frequency response of second-order mass-spring-damper system.  
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Fig. 8.36. Resonant frequency of spring-mass hair structure targeting 100 Hz to 1000 Hz.  

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

Series1

Series2

0

200

400

600

800

0 200 400 600 800 1000

Series1

M
as

s 
w

id
th

 (µ
m

)

M
as

s 
w

id
th

 (µ
m

)

Resonant frequency (kHz) Resonant frequency (kHz)

Mass H = 1 mm
Spring width = 10 µm
& L = 0.8 mm

Mass H = 2 mm
Spring width = 20 µm
& L = 1.8 mm
Mass H = 2 mm
Spring width = 10 µm
& L = 1.8 mm

Resonant frequency of spring-mass for different mass height H, mass width and spring dimensions

204 



Amplitude amplification at resonant frequency by quality factor (Q) requires packaging 

at specific pressure (affecting the damping ratio ζ in Figure 8.37) to ensure enough displacement 

for the proof-mass to contact the stationary electrodes.  

Based on the resonant testing results in section 6.4.2, the digital array sensor chip needs 

to be packaged below 1mTorr. Due to the tradeoff between resonant frequency and displacement 

sensitivity, achieving Q that is high enough for higher frequency resonant mode is more 

challenging.  

 
Readout architecture similar to the interface circuit previously developed in our group for 

threshold sensor arrays can be implemented with latest technology for our hair accelerometer 

arrays [4].  

This circuit (Figure 8.38) can sense and capture the sensor arrays switching without 

affecting its operation. The micro-power consumption allows it to continuously monitor 

environmental shocks or vibrations in power limited systems. Furthermore, multiple channels 

can address large switch arrays and provide higher reliability and fault tolerance. 

 
                                    (a)                                                                        (b) 
Fig. 8.38. Proposed circuit block for threshold detection and latching.   
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The schematic diagram of a sensor detection circuit is shown in Figure 8.38(a). 

Compared to [4], this circuit merges a latch at the front end that further reduces power. Before 

the normal mode of operation, the internal node VA is pre-charged to VDD. Transistor M3 is on 

and the output capacitor, CF, discharges. The output signal is fed back to the gate of transistor M2 

and this also pre-charges VA to VDD.  When the switch is off, the limited current (the leakage 

current of the transistors) for both nodes reduce the overall chip power dissipation.  

When the proof-mass touches the two electrodes capacitor Cp is grounded.  The input of 

high-to-low transition is amplified by a common source amplifier (M3 right to capacitor CS). The 

output signal will be latched because the pulses of the MEMS switch contacting will be short and 

will have different duty cycles.  

 
Figure 8.38 (b) shows the timing diagram of the signal detection block. We show timing 

diagram of the two signal detection blocks for two sensors having different resonant frequencies. 

When both sensors are shorted, the output will go high and be latched until the ACK signal goes 

low. Figure 8.39 shows the Cadence simulation results of channel output in response to pulsed 

 
Fig. 8.39. Cadence simulated circuit response to pulsed sensor contacting.  
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sensor contacting. The circuit is designed to operate from a 1.2 V power supply, and power 

dissipation of each circuit block is less than 0.165 nW from transient current flow when no event 

happens, and 0.140 nW when proof-mass contacts the electrodes.   
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Chapter 9 CONCLUSION 

9.1 Accomplishments 

This thesis work led to a number of technological contributions to the MEMS community 

including development of a novel 3D biomimetic high aspect-ratio hair-like microstructure, a 

new CMOS-compatible 3D MEMS microfabrication technology, the design and optimization 

low-noise high sensitivity lower-power silicon MEMS accelerometer and wide dynamic range 

MEMS accelerometer arrays. The significant accomplishments of this thesis are summarized as 

follows: 

1) Design and analytical modeling of the 3D biomimetic high aspect-ratio hair-like 

microstructure as the basic sensing element for high density MEMS multi-transducer platform.  

• Vertical spring /cantilever was introduced for this first time. 

• Reduced device footprint enabled dense transducer array formation. The 3D hair structure 

with increased aspect-ratio and height achieves competitive/superior performance 

compared with traditional planar devices. 

2) Developed and characterized an advanced Bosch deep-reactive-ion-etching (DRIE) 

process for realizing ultra-deep (1 mm) ultra-high aspect-ratio (UHAR) silicon structures with 

straight sidewalls across a wide range of feature sizes, and apply this well-characterized Bosch 

DRIE process to the microfabrication 3D high aspect-ratio hair structure. 
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• The challenges and shortcomings in Bosch DRIE was overcome by continuously ramping 

critical DRIE parameters throughout the process, including the 380-kHz bias power 

during etch step, the etch/passivation step duration, and the chamber pressure. These 

parameters were adjusted along with the total etch duration for a target etch depth for 

certain feature sizes.  

• DRIE mask materials and stack thickness were studied, experimented and selected based 

the targeted feature sizes and etch depth. 

• Aspect-ratio (AR) greater than 40 was achieved for 1 mm through-trench etch. AR ≈ 80 

was achieved for 500 µm through-trench etch, and AR > 20 was achieved for 500 µm 

through-hole etch, with straight sidewalls across a wide range of feature sizes from 2 to 

100 µm.  

3) Developed a two-gap double-sided silicon microfabrication process taking advantage 

of the ultra-deep UHAR Bosch DRIE. The process allows the 3D hair structure design to be 

optimized for applications in MEMS inertial sensor fabrication. 

• DRIE from both sides of 500 µm and 1 mm thick silicon substrates were well 

characterized to suit the desired dimensions for the 3D hair structure. 

4) Develop a CMOS-compatible wafer-level microfabrication technology is developed 

for integration of MEMS transducer device wafer built with arrays of 3D hair sensors and CMOS 

circuit/interconnect wafers in order to realize multi-transducer microsystems.  

• The associated ultra-deep ultra-high aspect-ratio Bosch DRIE, silicon-gold eutectic 

bonding, and patterning were integrated into one process, and it is characterized for better 

process control and yield. 

• Identified the major challenges in the 3D integration technology of the dense hair sensor 
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arrays with circuit substrates in terms of transducer integration density and post-CMOS 

compatibility (metallization and bonding).  

5) Design, fabricate and test high performance capacitive hair accelerometer based on the 

3D hair structure.  

• Effective high aspect-ratio capacitive transduction was formed between the side of the 

tall proof-mass and stationary electrodes, which greatly extended the capacitive 

transduction area, the contact gap opening height being 2 µm and gap height being 

greater than 200 µm.  

• The device was designed to achieve low mechanical noise floor at <1 µg/√Hz limited by 

squeeze film air damping, and high capacitive sensitivity >1 pF/g per millimeter-squared 

footprint.  

6) Design, fabricate and test threshold hair accelerometer based on the 3D hair structure 

that achieves high threshold resolution and low power consumption within a small footprint. 

Effective contact-mode detection is formed at the top of the proof-mass and stationary 

electrodes.  

• High acceleration threshold resolution was realized by small-area (gap being less than 

50 µm in height compared to >250 µm in the capacitive devices) contact-mode detection 

with reduced air damping.  

• In addition to varying the hair structure’s physical dimensions, the threshold gap was 

designated as a strong design parameter to tune the threshold g-levels. 

7) Demonstrate the use of MEMS sensors arrays to extend full-scale range and introduce 

frequency selectivity. We build arrays of both capacitive hair accelerometers and threshold hair 

accelerometers consisted of devices with tailored structural dimensions in order to cover wide 
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performance specifications in terms of full-scale acceleration levels and frequency spectrum.  

9.2 Suggestions for Future Work 

There are several areas we are interested in pursuing with our hair sensor and sensor 

array in the future.  

A. Further process development and optimization on the 3D hair structure design 

To further reduce the thermal mechanical noise, technology needs to be developed to 

improve the performance of the single hair sensor structure. For example, instead of pure silicon 

proof-mass, extra mass can be patterned (electroplated, printed, wire-bonded, etc.) on top of the 

hair structure to increase the mass density per unit footprint. The vertical spring that has a 

minimum width at 15-20 µm may also be further reduced to <10 µm by sacrificial layers while 

preserving descent spring anchors area for reliable bonding.  

B. Alternative transduction gaps for higher sensitivity 

In the current work, capacitive transduction and threshold detection located along the 

proof-mass and stationary electrodes sidewalls with minimum 1-2 µm gaps are implemented. 

Smaller initial sensing gap can be defined by sacrificial layers at different locations: for example, 

sensing gaps of 10s-100s nanometers may be located between the top surface of the proof-mass 

and electrodes that extend from the stationary electrodes; they may also be located between the 

bottom surface of the proof-mass and electrodes patterned on the circuit substrates.  

C. Build high density MEMS transducer arrays 

The size of sensor arrays can be extended to more than few 10s as shown in Figure 9.1. In 

addition to modulating the structural dimensions of the hair structure to extend the full-scale signal 

detection range and frequency spectrum, identical design can be duplicated to add sensor system 

redundancy and increase robustness. Large number of sensors with local signal processing will 
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further reduce noise floor and increase sensitivity proposed by the following methods. 

 

1) Reduce thermal mechanical thermal noise/circuit noise by arrays 

Researchers have developed analytical apparatus for optimally combining measurements 

from N sensors into a single estimate that theoretically proves to be significantly improving the 

performance over that of individual element. Algorithm such as Kalman filtering is used to 

minimize the variance of errors [1-2]. For example, the mechanical noise 𝑎𝑛 = �4𝑘𝑇𝜔0
𝑚𝑄

  (g/√Hz) 

inherent to the mass-spring-damper system will be reduced by √N in this fashion. 

The cancellation of noise may also be done by inclusion of a reference cell. This 

reference sensor along with the circuit will sense the temperature variation and other electrical 

 
Fig. 9.1. High density MEMS transducer arrays based on the 3D biomimetic hair structures. In 
addition to modulated structural dimensions to extend the full-scale signal detection range and 
frequency spectrum, system redundancy and increase robustness are enabled by duplicating 
identical designs. Large number of sensors with local signal processing will further reduce 
noise floor and increase sensitivity by compensating for CMOS/MEMS process variations. 
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and mechanical Brownian noise as all the other sensors while being immune to external vibration 

and motion of interest.  

2) Compensate for process variation and shift of resonant frequencies by arrays 

Deviations from the designed sensor specifications are partially contributed by the 

normally-distributed MEMS/CMOS process variations.  By implementing large arrays of 

identical sensors, they can be compensated by post-processing the array outputs and choosing the 

sensor output that deviates the least from the designed features. For example, the resonant 

frequency of the hair structure will be different than designed value due to process variations 

thus we may use an array of N devices designed to offset from the nominal target frequency by 

few Hz to few 10s of Hz to account for the process variations.  
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