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PREFACE 

 

Bio-MicroElectroMechanical Systems (BioMEMS) –  microfabricated sensors, actuators 

and microfluidic and lab-on-chip systems-  is an emerging field that targets to develop miniaturized 

devices for the diagnosis, monitoring and treatment of diseases  as well as to provide enabling 

tools to researchers in the life sciences. In the past few years, three dimensional (3D) printing 

technology has also joined the effort of miniaturization with high resolution 3D printers capable 

of fabricating micrometer scale objects. Furthermore, the increase in material choice has led to an 

explosive growth in microfabrication technology based biomedical applications.  

This thesis, divided into two parts, describes the development of 5 novel Bio-Micro-System 

devices (Figure 1). The term Bio-Micro-System has been used here to describe BioMEMS and 3D 

printed devices, with the dimensions of key device components ranging from micrometers to a 

millimeter.  The first part of the thesis (part A) is focused on ‘Medical’ Micro-System devices that 

can potentially solve common medical problems: two intraocular pressure sensors for monitoring 

glaucoma and a smart skin for combating community acquired infections. The second part of the 

thesis (part B) is focused on ‘Biological’ Micro-System devices for facilitating/enabling biological 

research. Those devices/tools are able to accurately manipulate small model organisms for various 

in vivo studies.  
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Figure 1: Thesis outline. 
 

PART A- Medical Bio-Micro-Systems 

The demand for medical products continues to grow with electronic technologies as their important 

constituents. Despite being a high-growth sector, electronic components including sensors, power 

sources, control units, and wireless communication modules increase product complexity, 

especially for medical implants. The design and manufacturing of those systems is accompanied 

by several engineering challenges including leak proof integration/packaging, affordable 

production costs, low energy consumption to avoid frequent battery replacements, MRI 

compatibility and material biocompatibility. The contribution of this thesis is the development of 

novel passive, Medical Micro-Systems that have no electronics and therefore they do not require 

any power to operate. Specifically, Part A describes: 

- Implantable, electronics-free, intraocular pressure microsensors. Intra Ocular Pressure (IOP) 

Monitoring is central to the diagnosis and management of glaucoma and must be frequent and 

accurate to assess treatment efficacy. The gold standard method, Goldmann Applanation 

Tonometry (GAT),is bulky, complex and requires clinic visits making frequent IOP monitoring 

challenging. Motivated by the need for frequent, long-term IOP pressure monitoring, we developed 

two pressure sensing technologies: 1) ‘Near Infrared Fluorescence-based Optomechanical (NiFO)’ 

technology and 2) ‘Displacement based Contrast Imaging’ (DCI) technology. 

 

1) NiFO technology: Consists of an implantable, passive, miniaturized pressure sensor that 

‘optically encodes’ pressure in the near infrared (NIR) regime. A non-implantable, portable and 
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compact optical head is used to excite the sensor and collect the emitted NIR light. The thesis 

discusses optimized device architecture and microfabrication approaches for best performance 

commercialization. 

2) DCI technology: We present a proof of concept, fluid pressure sensing scheme that is shown 

to operate over a pressure range of 0–100 mbar (∼2 mbar resolution between 0–20 mbar,∼10 mbar 

resolution between 20–100 mbar), with a maximum error of <7% throughout its dynamic range. 

The thesis introduces the technology and discusses its application as an IOP sensor. 

The NiFO technology is expected to not only help manage IOP, but also other elevated 

pressure conditions such as intracranial, bladder, abdominal, blood and joint pressures. The DCI 

technology on the other hand, is expected to provide home-based, frequent, life-long IOP self-

monitoring for patients with moderate/severe glaucoma. 

-A smart-skin for combating community acquired infections. Community Acquired Infections 

(CAIs) ranging from diarrhea to respiratory diseases are caused by a broad range of vectors which 

are transmitted through un-sanitized hands. Washing hands with soap and water is the gold 

standard approach for fighting CAIs, but it requires access to clean water and willingness of the 

end user to wash their hands. To overcome those issues, a novel device for decontaminating 

surfaces was developed: the Touch-activated Sanitizer Dispensing (TSD) System.  

The TSD can be mounted on any surface that is exposed to high human traffic such as a 

door handle and consists of an array of passive, human-powered, miniaturized valves that deliver 

a small amount of an alcohol based disinfectant when touch actuated. The device thereby disinfects 

the person’s hand that is touching the surface over which the TSD is mounted while being self-

sterilized at the same time without requiring any maintenance besides replacing the cartridge that 

contains the disinfectant.  The thesis describes the design and implementation of a proof of concept 

TSD that can disinfect an area equivalent to the size of a thumb. A significant (~ 10 fold) reduction 

in microbiological load is demonstrated with a drop in average Colony Forming Units/cm2 from 

1.52 to 0.05 and 0.37 to 0.03 for the fingertip and device surface respectively within the first 24 

hours. The size and footprint of the TSD can be scaled up as needed. We believe that its usage in 

public places will significantly improve hand hygiene compliance and reduce CAIs. 

PART B- Biological Bio-Micro-Systems 

Small model organisms –such as Caenorhabditis elegans and Drosophila Melanogaster 

larvae - are widely used for studying related principles of health and diseases in humans. Being 
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transparent, they allow direct imaging of biological processes. However, the biggest challenge 

associated with in vivo imaging is ensuring immobilization. Conventional methods (glue or 

dissection) adversely affect biological processes under investigation. Taking advantage of recent 

advances in microfabrication and 3D printing, this thesis describes two devices for immobilizing 

Drosophila melanogaster larvae and Caenorhabditis elegans respectively. Both devices 

immobilize the animal on demand and allow in vivo imaging while minimizing physiological 

damage with fast recovery.  

- Cryo-Larva Chip: A cryo-anesthesia microfluidic chip for immobilizing Drosophila 

melanogaster larvae. We developed a microfluidic chip for immobilizing Drosophila 

melanogaster larva by creating a cold micro-environment around the larva. After characterizing 

on chip temperature distribution and larval body movement, results indicate that the method is 

appropriate for repetitive and reversible, short-term (several minutes) immobilization. The method 

offers the added advantage of using the same chip to accommodate and immobilize larvae across 

all developmental stages (1st instar-late 3rd instar). Besides the demonstrated applications of the 

chip in high resolution observation of sub cellular events such as mitochondrial trafficking in 

neurons and neuro-synaptic growth, we envision the use of this method in a wide variety of 

biological in vivo imaging studies employing the Drosophila larval system, including cellular 

development and other studies. 

- The WormImm Plate: A 3D printed millifluidic device for CO2 immobilization of 

Caenorhabditis elegans populations. We developed a novel 3D printed device for immobilizing 

populations of Caenorhabditis elegans by creating a localized CO2 environment while the animals 

are maintained on the surface of agar. The results indicate that the method is easy to implement, is 

appropriate for short-term (20 minutes) immobilization and allows recovery within a few minutes. 

We envision its use in a wide variety of biological studies in Caenorhabditis elegan, including 

cellular development and neuronal regeneration studies. 

We think that the work demonstrated in this thesis will lead to commercializable devices 

while also expanding the toolsets available for conducting medical diagnostics and biological 

research studies. 
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Figure 7.1: (a): The main components of the microcompressor consist of a commercially available 

glass slide (G), 4 precision machined brass pieces and a machined aluminum tool. The brass pieces 

consist of a threaded outer brass ring (OR) permanently attached to the glass plate, a threaded inner 

ring (IR) that is screwed into the OR and a brass coverslip mount (CM). The CM has a smooth 

outer face that slips into and engages the IR with two overhanging arms to form a locking 

mechanism (LM). The threaded inner face of the coverslip mount accepts the coverslip compressor 

(CC) and a machined step in the center of the mount creates a niche for a 25 mm commercially 

available glass coverslip (GC). The unique design of the coverslip mount bends the coverslip so 

that the very center of the coverslip will be the first section to touch a centered specimen on the 12 

mm coverslip platform (CP). The platform can also be custom-designed for microfluidic control 

or for holding specimens in 3D volumes. (b): Depicts an assembled unit, incorporated with 

microfluidics, ready to be placed on a microscope stage. Samples are loaded on the glass specimen 
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connect to SiO2 chip 2, which serves as the CP and has a 30 mm wide supply and return port for 

specimen perfusion. (d): Cross sectional schematic of the microfluidics. SiO2 chip 1 is adhered to 

the glass base by plasma-bonding to a 25-mm-thick layer of polydimethylsiloxane. The acrylic 

manifold and SiO2 chip 2 are adhered to SiO2 chip 1 by a silicone adhesive. [Figures and captions 
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Figure 7.2: (A) Schematic design of the pneumatic chip– top view (top image) and side view 
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PC for automated control of image acquisition and signal generation respectively. (D) Microscope 

images demonstrating the steps used to load individual larvae using the pneumatic chip (a–d). 

When loaded onto the chip, each larva swam freely into the trap, and (e–f) the larva was then 

pneumatically moved into the trap and immobilized. Time-lapsed fluorescence imaging was 

subsequently conducted on the Central Nervous System (CNS) located inside the Region of 

Interest (ROI). All the figures shown in (D) have a scale bar of 400 μm. (E) Images demonstrating 

the steps used to load individual larvae onto the FlexiChip. The FlexiChip (a) is squeezed and bent 

(b) so that the clip (c) opens up. Then, the larva is inserted into the gap that is created and the 
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Figure 7.3: The Short-term Immobilization (SI) and Long-term Immobilization (LI) microfluidic 

chips for immobilizing Drosophila larva. (A) The SI-chip is a single-layer PDMS microfluidic 
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PDMS layer (labeled with blue color) has the larva immobilization microchamber (thickness 170 
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every 30 minutes). A second PDMS layer (labeled with red color) is vertically integrated on top 

of the first PDMS layer to deliver CO2 through a 10 µm thick gas permeable, flexible PDMS 

membrane. In both the SI and LI chips, a microfluidic network surrounding the immobilization 

chamber is used to create a tight but reversible seal between the PDMS and the glass coverslip. 

(Scale bar, 1 mm.) (C) (I) Bright-field microscope image of a 3rd instar larva immobilized in the 

LI-chip. (Scale bar, 1 mm.) (II) Fluorescent images of the larval body (highlighted in the red square 

in C(I)) before (top image) and after (bottom image) immobilization. After application of CO2 at 

5 psi, the larva is immobilized and the GFP-labeled Ventral Nerve Cord (VNC) is brought into 

focus (bottom image). (Scale bar, 20 µm.) [Figures and captions appears in and are taken from [1]]
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Figure 7.4:  Imaging of GFP:RAB-3-marked vesicle transport in 1-day adult C. elegans 

mechanoreceptor neurons in a microfluidic device. (A) GFP::RAB-3 movement was imaged in the 

posterior lateral touch neuron (PLM) out of the six touch neurons [PLM, anterior lateral touch 

neuron (ALM), posterior ventral touch neuron (PVM), anterior ventral touch neuron (AVM)]. (B) 

and (C) Schematic of PDMS membrane device used for C. elegans immobilization. A deflected 

PDMS membrane using 14 psi nitrogen gas in the control channel in the PDMS 2 layer was used 

for immobilizing C. elegans present in the flow channel in the PDMS 1 layer. (D) Shows life cycle 

of C. elegans with the associated body length and body diameter in parenthesis. L stands for Larva. 

(E) Bright field image of a 1-day adult worm immobilized in a PDMS device. (F) Montage of five 

successive frames acquired at 5 fps with the frame numbers mentioned in each image. Anterograde 

(solid ’down’ arrowhead) and retrograde (solid ’up’ arrowhead) moving vesicles can be clearly 

seen in the neuronal process (cell body on the right side). (G) The image stacks (250 frames are 

shown) are analyzed using kymograph plugins of IMAGEJ to visualize particle displacement over 

time. (H) Schematic representation of a neuron with a 120 µm shaded region near the cell body 

with anterograde and retrograde movements indicated. I) Representative contours for anterograde 

(solid ’down’ arrowhead), retrograde (solid ’up’ arrowhead) and stationary (solid ’left’ arrowhead) 

particle tracks are plotted. The shaded box shows the 20 µm window that is used to calculate 

vesicle flux. (J) Kymograph of an L1 worm imaged in a microfluidic device and anesthetized using 

0.3 mM levamisole (lev), respectively. Scale bar is 200 µm(E),10µm (G and J) and 5 µm(F). 
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Figure 7.5: Schematic of the device showing 2 layer architecture and nematode placement. [Figure 

and caption appear in and are taken from [269]] ........................................................................ 143 

 

Figure 7.6: Schematics of the immobilization system and the microchip. (a) A mixed population 

of worms is injected into the device, worms are imaged, phenotyped and then sorted automatically. 

(b) System block diagram showing the on-chip and off-chip components and their connections. (c) 

Photograph of the microdevice. (d) Optical micrograph of the microchip’s active region (boxed 

region in c). The channels were filled with dye to show specific features: blue - temperature control 

channel; green - valves; and red - sample-loading channel. (d). [Figures and captions appear in and 
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Figure 7.7: (A) The microfluidic device consists of the behavior (I, II and III) and immobilization 

modules (IV and V). The saw shape channel (III) is used to revitalize the worm post 

immobilization and to quantify on-chip the worm’s locomotion pattern. PDMS pillars (II) do not 

allow the worm to enter the position channel. When high pressure (25 psi) is applied to the 

immobilization channel the worm is mechanically compressed on the microfluidic sidewalls (V). 

Scale bar, 1 mm (left picture). Scale bars are 300 mm, 500 mm, 10 mm, 100 mm, 300 mm for 

pictures I–IV respectively. (B) Immobilizing the worm by passing a CO2 stream or by 

mechanically pressurizing the immobilization channel (control layer). [Figures and captions 

appear in and are taken from [270]] ............................................................................................ 146 

 

Figure 7.8: (a) Schematic illustration of the microfluidic worm clamp. The worm clamp consists 

of a tapered microfluidic channel in a slab of PDMS that is designed to physically restrain the 
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motion of a worm. A pressure difference applied across the inlet and outlet drives the flow of liquid 

containing worms through the device. The resulting pressure-driven flow carries the worm into the 

wedge-shaped microchannel (the clamp) until the worm fits snugly within the channel. (b) Design 

of an individual worm clamp. (c) Design of an array of four worm clamps. The array is designed 

such that, on average, one worm is sorted into each clamp. [Figures and captions appear in and are 
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Figure 7.9: The worm clamp microfluidic device. (a) Design of an array of 128 worm clamps. The 

inset is a magnified view of the array showing 16 out of the 128 clamps. (b) The experimental set-

up for the worm clamp device. Devices are made out of PDMS using soft lithography. An inlet 

reservoir is constructed by connecting a glass Pasteur pipette to the inlet of the device using a 2 

cm long piece of polyethylene tubing. The inlet reservoir provides a loading point for introducing 

a fluid suspension of worms into the device. Connecting polyethylene tubing at the outlet of the 

device to a source of vacuum (295 kPa, or 20.94 atm, relative to the atmosphere) through a liquid 

trap (not shown) creates a pressure difference across the device, and produces the flow of worm 

containing liquid through the microfluidic device. [Figures and captions appear in and are taken 

from [239]] .................................................................................................................................. 148 

 

Figure 7.10: Two-layer microfluidic device used for chip-gel hybrid platform. The flow control 

and heating layer (a) contains pneumatic valves (shown in red) for flow control and trapping of 

worms inside chambers of the flow layer, as well as the channel used for flowing heating liquid 

(shown in blue). The flow layer (b) contains the loading inlet (for worms and bacterial solution) 

and an inlet for the PF127 solution, 8 culturing chambers for individual culture of worms, and a 

waste outlet. Design details of the chambers are depicted in (c); and a photograph of a dye-filled 

device is shown in (d); both correspond to the areas marked by dashed line rectangles in (a) and 

(b). The schematic in (e) represents the cross section of a partially closed valve, such as the one 

marked by a dashed line in (d). While unpressurized, the valve remains open. After pressurization, 

the valve membrane deflects into the flow layer, partially obstructing the channel. This prevents 

worms from escaping while allowing flow to continue. Scale bar represents 400 mm. [Figures and 
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Figure 7.11: To culture worms long-term, they were loaded into the microfluidic device and 

trapped individually inside culture chambers (a), where they can remain for 12 hours (b). Worms 

are provided with bacterial food, allowing them to grow and develop normally (c). To demonstrate 

the ability of the device to culture worms long term, they were maintained from early L1 to L3 

stage (d–f) where L stands for Larva. (d–e) show a worm during the L2 stage at 18 and 28 hours 

after hatching and loading; (f) shows an L3 worm at 36 hours past hatching. Scale bars represent 

200 mm in (a–b) and 100 mm in (c–f). [Figures and captions appear in and are taken from [271]]
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Figure 8.1: (a) Bright-field image of a 3rd instar larva immobilized in the microfluidic chip: The 

first and second PDMS layers are highlighted with blue color and yellow colors respectively. 

Passing the coolant fluid through the second layer decreases the temperature of the immobilization 

microchamber. (b) Stereoscopic image of the microfluidic chip (scale bar, 5 mm). (c) Cross 
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sectional schematic of the chip that highlights its working principle. When there is no flow of the 

coolant fluid (left schematic), the larva freely moves in the immobilization microchamber (the 

PDMS membrane is not deflected). (d) When the coolant fluid is introduced, the larva is cryo-

anesthetized and slightly compressed inside the immobilization microchamber. ...................... 159 
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Figure 8.3: (a) Thermograph of the microfluidic chip at a coolant flow rate of 3.2 ml/min (viewed 

from the glass side). The dotted black lines indicate the outline of the chip (scale bar, 5 mm). The 

white rectangle represents the location of the immobilization microchamber. (b) Thermograph 
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obtained over the region bounded by the white rectangle shown in (a) versus time. The cooling 

modules are turned on and coolant flow (3.2 ml/min) through the chip starts at 0 sec with the 
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Figure 8.5: (a) Absolute distance moved by the centroid (point of intersection of the diagonals of 

the white box bordering the cell body and indicated as a red dot in (b)) of a cell body located at 
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green line represents best fit by non-parametric regression using locally weighted scatterplot 

smoothing. Error bars indicate standard error of mean of measurements taken from ten animals 
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ABSTRACT 

 This thesis, divided into two parts, describes the development of 5 novel Bio-Micro-

System devices. The term Bio-Micro-System has been used here to describe BioMEMS and 3D 

printed devices, with the dimensions of key components ranging from micrometers to a 

millimeter.  Part A is focused on ‘Medical’ Micro-System devices that can potentially solve 

common medical problems. Part B is focused on ‘Biological’ Micro-System devices/tools for 

facilitating/enabling biological research.  

Specifically, Part A describes two implantable, electronics-free intraocular pressure (IOP) 

microsensors for the medical management of glaucoma: 1) Near Infrared Fluorescence-based 

Optomechanical (NiFO) technology - Consists of an implantable, pressure sensor that ‘optically 

encodes’ pressure in the near infrared (NIR) regime. A non-implantable, portable and compact 

optical head is used to excite the sensor and collect the emitted NIR light. The thesis discusses 

optimized device architecture and microfabrication approaches for best performance 

commercialization. 2) Displacement based Contrast Imaging (DCI) technology - A proof of 

concept, fluid pressure sensing scheme is shown to operate over a pressure range of 0–100 mbar 

(∼2 mbar resolution between 0–20 mbar,∼10 mbar resolution between 20–100 mbar), with a 

maximum error of <7% throughout its dynamic range. The thesis introduces the DCI technology 

and discusses its application as an IOP sensor. 

Moreover, Part A also describes a Touch-activated Sanitizer Dispensing (TSD) system for 

combating community acquired infections. The TSD can be mounted on any surface that is 

exposed to high human traffic and consists of an array of human-powered, miniaturized valves 

that deliver a small amount of disinfectant when touch actuated. The device disinfects the person’s 

hand that is touching it while being self-sterilized at the same time.  The thesis describes the design 

and implementation of a proof of concept TSD that can disinfect an area equivalent to the size of 

a thumb. A significant (~ 10 fold) reduction in microbiological load is demonstrated on the 

fingertip and device surface within the first 24 hours. The size and footprint of the TSD can be 

scaled up as needed to improve hand hygiene compliance. 
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In Part B, we developed a microfluidic chip for immobilizing Drosophila melanogaster 

larva by creating a cold micro-environment around the larva. After characterizing on chip 

temperature distribution and larval body movement, results indicate that the method is appropriate 

for repetitive and reversible, short-term (several minutes) immobilization. The method offers the 

added advantage of using the same chip to accommodate and immobilize larvae across all 

developmental stages (1st instar-late 3rd instar). Besides the demonstrated applications of the chip 

in high resolution observation of sub cellular events such as mitochondrial trafficking in neurons 

and neuro-synaptic growth, we envision the use of this method in a wide variety of biological 

imaging studies employing the Drosophila larval system, including cellular development and other 

studies. 

Finally, Part B also describes a 3D printed millifluidic device for CO2 immobilization of 

Caenorhabditis elegans populations. We developed a novel 3D printed device for immobilizing 

populations of Caenorhabditis elegans by creating a localized CO2 environment while the animals 

are maintained on the surface of agar. The results indicate that the method is easy to implement, is 

appropriate for short-term (20 minutes) immobilization and allows recovery within a few minutes. 

We envision its use in a wide variety of biological studies in Caenorhabditis elegan, including 

cellular development and neuronal regeneration studies. 
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INTRODUCTION 

1.1 Motivation 

Medical electronic devices - A history of 100 years: In the 20th century, biology and medicine 

have been revolutionized by the development of electronic devices. The first practical 

electrocardiograph, invented approximately 100 years ago  is one of the first electronic devices 

that helped establish the field of cardiology. Since the 1950s, medical technology, especially the 

ones involving electronic systems have undergone a significant transformation, leading to the 

establishment of  "bioelectronics", which is a discipline combining biology and electronics [2].  

Apart from being critical to the development of radiology (lead to the evolution from single 

modality X-rays to Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and 

Positron Emission Tomography (PET)), electronics systems have played a central role in the 

invention of several ex vivo as well as implantable medical devices capable of interfacing with 

living tissues and organs at milli, micro- and nano-scales.  

Advances is electronics technologies has led to a several miniature and wireless devices 

such as gastric/cardiac pacemakers, cochlear implants, cardiovascular defibrillators, 

cardiovascular pressure sensors and neuromuscular stimulators being implanted in patients 

worldwide [2] [3] [4] [5] [6] with Figure 1.1 showing several examples of electronic devices for  

in vivo applications. It is estimated that over 25 million people in the US are heavily reliant on 

implantable medical devices for critical life-sustaining functions [7] (the number of implantable 

cardioverter defibrillators being sold alone has increased tenfold between 1990 and 2002 [8]). On 

the other hand, the field of ex vivo medical devices has witnessed a huge growth in the form of 

electronics devices that are in contact with either skin or mucosa for monitoring critical biomedical 

parameters as well as for  tracking activity (Figure 1.2). These devices generally comprise of 

sensors (accelerometers for tracking movement, gyroscopes for tracking position, pressure 

sensors, temperature sensors, humidity sensors, etc), wireless communication systems, user 

interactive displays and power management units. 
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Rapid development in semiconductor technology, particularly in the areas of micro-

electro-mechanical systems (MEMS) and microfluidic lab-on-chip biomedical systems has 

enabled the development of these in vivo and ex vivo systems for rapid diagnostics and 

administering complex therapeutics [9] [10] [11] [12] [13] [2]. 

 

Figure 1.1: In vivo medical electronic devices: (A) An implantable cardiovascular defibrillator 

treats arrhythmias by administering electrical shocks to the heart. It consists of a pulse generator 

implanted under the skin below the collarbone and analyzes signals form the heart to generate 

electrical impulses. Electrodes, connected to the pulse generator, travel to the heart to deliver the 

electric impulses [Figure and caption appears in [14]]. (B) The CardioMEMS HF System measures 

pulmonary artery (PA) pressures using an implantable capacitive telemetric sensor that couples 

with an external coil unit in patients with heart failure and allows health care professionals to 

remotely monitor their patients [Figure and caption appears in [15]].  (C) The Northstar Stroke 

Recovery System is an implantable device that enhances neuroplasticity in patients after a stroke. 

It consists of an implantable pulse generator (IPG) implanted in the pectoral area. A stimulation 

electrode lead is connected to the IPG and is used to deliver stimulation to the cortex. A 

programming handheld computer communicates with the IPG to control it. [Figure and caption 

appears in [16]] (D) The Medline Plus Cochlear implant (CI) is an implantable device that provides 

a sense of sound to a person who is profoundly deaf. It bypasses the normal hearing process with 

a sound processor that resides on the outside of the skin (worn behind the ear) amd consists of 

microphones, electronics, battery, and a coil which transmits signals to the implant. The implant 

has a coil to receive signals, electronics, and an array of electrodes which is placed into the cochlea, 

which stimulate the cochlear nerve [Figure and caption appears in [17]]
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Figure 1.2: Ex vivo medical electronic devices: (A) Physical sensing – An ultrathin inorganic 

piezoelectric pressure sensor patterned on an elastomeric substrate enables the measurement of 

small changes in arterial pressure after mounting on skin in order to detect early onset of 

cardiovascular disease [Figure and caption appears in [18]]. (B) Wireless sensing – Graphene, a 

material that is highly sensitive to analyte detection, is printed onto water soluble silk followed by 

the biotransfer of graphene nanosensors onto tooth enamel to create a fully biointerfaced sensing 

platform. Using the self-assembly of antimicrobial peptides onto graphene, the sensor is capable 

of detecting bacteria at the single-cell level. Incorporation of a resonant coil enables wireless data 

transfer [Figure and caption appears in [19]]. (C) Chemical sensing – A thin, sensitive In2O3 -based 

conformal biosensor on ultrathin polyimide films based on field-effect transistors using facile 

solution-based processing. Immobilized In2O3 field-effect transistors functionalization with 

glucose oxidase enabled D-glucose detection at physiologically relevant levels [Figure and caption 

appears in [20]]. (D) Multiplexed sensing - A flexible and fully integrated sensor array for 

performing in situ perspiration analysis. The device simultaneously and selectively measures sweat 

metabolites (glucose and lactate) and electrolytes (sodium and potassium ions) while also 

measuring skin temperature. Plastic-based sensors have been merged with silicon integrated 

circuits on a flexible circuit board for complex signal processing while measuring the detailed 

sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities to 

assess in real time the physiological state of the subjects [Figure and caption appears in [21]].
 

1.2 Current challenges 

1.2.1 In vivo implantable electronics devices 

In spite of substantial innovations in the development of biomedical electronic systems, 

they are still faced with a number of challenges [22] [23] [24] [2].  

Size and weight: There is increased focus towards diminishing the size and weight  (less than 2% 

of the patient’s body weight [22]) of in vivo devices in order to make them compatible with normal 

human activities, to enable the surgeon to implant them easily and to enhance host comfort. 

Batteries (single-use or rechargeable) significantly contribute to the device weight and size. 
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Commonly used single-use, non-rechargeable batteries in particular, such as those found in cardiac 

pacemakers and deep brain stimulators, have a predetermined lifespan at the end of which they 

have to be surgically replaced which significantly increases costs [2].  

Power management and interference: In the in vivo environment, good device functionality and 

reliability is critical in order to support real-time stimulation, data collection, data compression 

and fast wireless data transmission to external components of the electronics system. All these 

requirements increases the complexity of the signal processing circuitry and adds to the power 

budget of the device, which should ideally remain very low if the device is to remain operational 

for extended periods of time. For instance, even though an ultra wide band technology provides 

high-speed data transfer between the implanted device and the medical practitioner, its power 

consumption is very high which severely restricts its implementation in an in vivo medical device. 

Furthermore, wireless devices are susceptible to interference as they operate in an  

electromagnetically shared environment. For example, external electromagnetic pulses and 

electric fields as well as those generated from other in vivo electrical devices can all generate 

electromagnetic interference. Additionally, since health practitioners can easily interrogate 

implanted devices (pacemakers, glucose-monitoring and insulin-delivery systems, neural 

stimulators and smart prosthetics), they are vulnerable to hacking [25] [26] [2] which means that 

apart from having access to sensitive patient information, the devices can be reprogrammed, 

thereby interfering with correct device operation. Therefore, security measures like security check 

protocols, firewalls, data encryption and restricted network access needs to be included which 

further adds to device cost as well as complexity [2].  

MRI compatibility: The biological effects from the electromagnetic field sources that electronics 

devices produce have become a serious cause for concern. The magnetic resonance (MR) 

environment may pose problems to patients with electromagnetic field generating implants like 

MRI-related heating and the creation of artifacts which are big negatives, given the growing 

importance of MRI as a diagnostic imaging modality for many disease conditions. Besides tissue 

heating, there might be athermal effects, like the increased risk of cancer, on the biological 

environment of the electromagnetic field generating implant.   

Durability and biocompatibility: The in vivo environment is harsh as the implant is constantly 

being attacked by conductive and corrosive fluids containing biochemically reactive molecules. 

Additionally, large mechanical forces and torques could be applied to the device in vivo. Therefore, 
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the device has to be both mechanically as well as chemically durable to survive this environment. 

Efforts towards creating small, light and flexible electronics devices, although highly desirable, 

may undermine mechanical robustness. Aggressive cleaning procedures, if used prior to 

implantation, may further contribute to the structural breakdown of the device. Besides being 

detrimental to the performance of the device, mechanical/chemical degradation could lead to 

device failure such as electrical shorting thereby requiring subsequent surgical removal. 

Furthermore, the implanted device along with any debris/by-products from degradation may 

stimulate activation of a range of immune responses like inflammation and tissue damage with 

leachant/fragment toxicity hindering recovery of adjacent damaged tissues. Therefore, due to the 

dynamic and complex nature of the in vivo environment as well as the host’s immune response to 

synthetic and organic materials used in electronics device fabrication, achieving biocompatibility 

is extremely challenging. In applications where in vivo sensing or stimulation is required for a 

short period of time, resorbable implantable electronic devices made up of biodegradable materials 

can provide a solution that overcomes the challenges of inflammation/infections that are 

commonly associated with long-term implantation with the degradation products eliciting a 

minimal toxicity response [27] [2]. However, fabricating complicated high-performance electronic 

systems from entirely biodegradable materials is a difficult undertaking, particularly at sub-

millimeter scales.  

Component lifespan: Most electronic components have life cycles that are shorter than the life 

cycle of the end product itself which is especially true for medical devices. While most consumer 

electronics have lifecycles of around 18 months, many medical device implants have a product life 

in excess of a decade. Medical devices are typically not fitted with technology upgrades because 

of high costs and lengthy development times. Therefore, there are often significant challenges to 

modify, upgrade, and maintain electronics systems over the entire life of the device. The majority 

of medical devices are “safety critical", and therefore require time-consuming and costly 

qualification and certification cycles, even for seemingly minor design changes. As a result, 

medical device OEMs are more focused on sustaining their products for long periods of time (often 

5–10 years or longer) rather than upgrading them. Obsolescence issues occur when the 'slow-to-

change' medical device industry relies on a supply chain that was originally and primarily 

developed to support a rapidly changing consumer electronics industry. The medical device 

industry typically has less control over their electronic part supply chain because they have 
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relatively low production volumes compared to consumer electronics. To add to the electronic 

component obsolescence problem, any change to a medical device design requires an evaluation 

related to product risk and performance. The change of a critical component, especially if it is part 

of an implant, would require notification and re-certification with the FDA with a revision to the 

existing 510(k) submission or PMA. Therefore, the need to replace a critical component that goes 

obsolete can be extremely expensive from a cost, resource and time perspective [2] [28].  

In conclusion, application of nano- and micro-scale technologies for design and fabrication 

of implantable circuitry can lead to remarkable advancement in integration density and dynamic 

power dissipation [29] [2]. However, current biomedical nano and micro technologies are still 

faced with several challenges such as low long term reliability, high stand-by power consumption, 

high thermal dissipation within the implant circuitry and electron leakage due to insufficient 

insulation [30] [31] [2]. Given the high costs and time associated with surgical device implantation 

followed by extended patient recovery, long-term reliability of the device is crucial.  

1.2.2 Ex vivo electronics devices 

Several ex vivo electronic device systems have been proposed by the scientific community 

and quite a few of them have even been commercialized for monitoring biomedical parameters. 

However, there still remain some challenges towards implementing these device technologies as 

discussed below:  

Accuracy: The accuracy of high performance devices, particularly sensors, is highly affected by 

external noise sources such as human motion. In order to perform noise cancellation, additional 

signal processing circuitry must be incorporated along with the involvement of advanced 

packaging and manufacturing methods, all of which increase system complexity, size and cost [32] 

[33].  

Risk of injury: Even mild electric shocks maybe a hazard for devices that come into contact with 

skin. Additionally, since these is a tendency for the internal temperatures of electronic components 

to rise over time, there is a risk of burning the skin. Depending on the situation or the environment 

in which batteries are used, there is a possibility of ignition/explosion due to a sudden increase in 

temperature. The presence of metal in electronic devices could cause skin allergies due to 

prolonged contact. Exposure to continuous electromagnetic field energy could cause an increase 

in the core body temperature and high frequency burns [32] [33].   
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Comfort: Devices that make prolonged contact with skin must be easy to wear, easy to carry and 

above all, they must be comfortable. Existing devices are made up of bulky components that must 

be miniaturized to ensure patient/user comfort [32] [33].  

Durability: Electronic devices are generally not robust to extreme temperature and humidity 

conditions with waterproofing being challenging in particularly wet conditions [32] [33]. 

1.3 Need for innovation: Electronic-free devices 

Given these problems, passive electronics-free devices are becoming increasingly desirable 

for medical applications. Unlike active devices, they do not require on-board batteries and the 

problem of replacing the power supply does not exist. They are significantly less complicated, 

smaller, cheaper and require no maintenance resulting in a virtually unlimited lifespan. This thesis 

introduces a new generation of medical devices and demonstrates the design and implementation 

of three novel, powerless, electronics-free, wireless, MRI-safe transducer systems. In these 

devices, the transduction is achieved directly by the human body. They can be used as standalone 

devices or in conjunction with each other for biomedical sensing, diagnosis and disease prevention 

applications (Figure 1.3). 

 

Figure 1.3: Overview of the medical devices presented in the thesis showing biomedical 

applications of these device technologies. 
 

 

In this thesis, 3 novel (2 in vivo and 1 ex vivo), electronics free, medical micro device will 

be described: 
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1) Near Infrared Fluorescence-based Optomechanical (NiFO) Sensor: Pressure sensor for 

frequent and continuous intraocular pressure monitoring for the medical management of 

glaucoma. This is a platform technology that may also be used for other biomedical 

pressure monitoring applications like intracranial, arterial blood, bladder and 

gastrointestinal pressure.  

2) Displacement based Contrast Imaging (DCI) Sensor: Pressure sensor for use in the 

diagnosis, medical management and treatment of intraocular hypertension related diseases 

like glaucoma.  

3) Touch-activated Sanitizer Dispensing System (TDS): Device for use in improving hand 

hygiene compliance for preventing hospital and community acquired infections.  

1.4 Biomedical pressure monitoring 

Pressure in various organs of the body is highly regulated and its value can provide an 

indication of patient health and/or disease progression [34]. In diseases where this ability to 

regulate pressure is lost, impairment of organ function or even death may result. Monitoring the 

variation of internal pressures allows diagnosis of the disease condition as well as tracking the 

progress of any medical intervention [34].   

In current medical practice, it is common to obtain a single pressure data point in the clinic 

for a patient.  However, this information captures just limited snapshots of the organ’s dynamic 

pressure profile. It does not capture peak/trough values or profile changes that can provide 

important clues to plan appropriate intervention strategies. Also, the measurements may be 

perturbed by the stress experienced by some patients when visiting clinical settings [34]. 

Therefore, advances in sensing technology to enable convenient, accurate, and continuous pressure 

monitoring that can extend to settings outside the clinic may enable more effective disease 

management. 

Taking advantage from recent developments in the MEMS field, we propose and develop 

two electronics free medical pressure sensing technologies that overcome the limitations that have 

been discussed up until now, the ‘Near Infrared Fluorescence-based Optomechanical (NiFO)’ 

technology and the 'Displacement based Contrast Imaging (DCI)' technology. The thesis focuses 

on monitoring Intra-Ocular Pressure (IOP) for the medical management of glaucoma as the end 

application for both sensing technologies. While the DCI technology has the potential to efficiently 

manage and treat ocular hypertension diseases like glaucoma, the NiFO technology, besides 
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monitoring IOP, can be used in a variety of biomedical applications including, intracranial, 

cardiovascular and gastrointestinal pressure monitoring as well. 

1.4.1 Clinical need for monitoring IOP 

Primary Open-Angle Glaucoma (POAG or simply known as ‘glaucoma’) is a chronic eye 

disease that results in the insidious, gradual visual field loss and finally total blindness due to the 

progressive damage of the optical nerve [35]. POAG accounts for 90% of the total glaucoma cases, 

it is responsible for more than 120,000 blind people in the US and it is the foremost cause of 

preventable blindness [36]. According to the The Eye Diseases Prevalence Research Group at the 

National Institute of Health, the prevalence of glaucoma is 2% between the ages of 60 and 69, 

spiking to 8% in the age category 80 and over  [37]. This corresponded to a prevalent U.S. 

population of 2.2 million in 2000, growing at a compound annual growth rate of 1-1.5% to 3.36 

million by 2020 over [37]. Estimates put the total number of POAG patients at 44.7 million 

worldwide [38], with 58.6 million cases projected worldwide by 2020 [39].  

In a healthy eye, a clear fluid (called aqueous humor) circulates inside the anterior portion. 

To maintain a constant and normal IOP, the eye continually produces a small amount of aqueous 

humor while an equal amount of the fluid is drained out through the trabecular meshwork. POAG 

occurs when this drainage system becomes inefficient over time, causing fluid pressure inside the 

eye to rise. This build up of fluid pressure in the eye over time may cause damage to the optic 

nerve. Therefore, a major risk factor for POAG is considered to be the elevation of IOP  [40], a 

condition also known as ocular hypertension (when IOP > 21 mmHg). IOP management is based 

on IOP monitoring and the daily use of eye drops (or eye surgery in severe cases) that lowers the 

IOP. These treatments can decelerate the progress of the disease but they cannot regain vision [41]. 

Currently, IOP is measured during the patient’s visit in a hospital or in an ophthalmological 

clinic by a trained nurse. Such a ‘sporadic’ IOP monitoring practice has two significant drawbacks:  

• It might give a ‘false’ IOP value at the time of the examination as studies have shown 

that IOP fluctuates as high as 6-8 mmHg during a 24-hour period period [42]. These studies also 

revealed that peak 24-hour IOP values were higher than peak IOP values measured during office 

hours in 60-70% of the cases, resulting in an immediate treatment change in the majority of the 

cases. 
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• It is not practical to closely monitor short-term IOP variations (e.g. in severe glaucoma 

cases) as that would require weekly or bi-weekly visits. That becomes problematic especially with 

older people (where POAG is prevalent) who might need assistance to reach the hospital. 

It is therefore necessary to continuously monitor IOP for life in POAG patients to: (i) 

capture the daily IOP fluctuations and therefore establish maximum IOP values, (ii) assess the 

short-term and long-term progression of the disease, and (iii) evaluate the efficacy of medical or 

therapies in optimizing IOP control.  

1.4.2 Current practices for monitoring IOP 

Goldmann Applanation Tonometry (GAT) is the gold standard for measuring IOP in a clinical 

setting [43]. It employs a force transducer (or an air puff [44]) that flattens part of the outer surface 

of the eye (Figure 1.4). The IOP is obtained by measuring the force and the deflected area (area of 

applanation). Despite the fact that tonometry is a non-invasive and simple to execute technique, it 

has several disadvantages:  

 it is an indirect technique and therefore subject to errors. The measured IOP value depends on 

the corneal thickness and biomechanical properties of the applanation area, the exact position 

of the measurement on the cornea, the body habitus, and finally the skills of the ophthalmic 

technician or physician taking the measurement. Studies have estimated that tonometric IOP 

measurements are not precise enough to measure the true IOP within an error of few mmHg 

[45]. 

 it requires a visit to the hospital or to a clinic as the measurement is performed by a trained 

personnel (e.g. a nurse). Therefore, tonometry is not a practical solution for closely monitoring 

IOP in PAOG patients. 
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Figure 1.4: (a) Image showing parts of the Goldmann applanation tomoneter. (b) Image showing 

the tonometer being used to measure IOP of a patient. (c) Schematic showing principle of operation 

of the instrument. (d) Bright field as well as fluorescent image showing the tip. (e) Schematic 

showing observed positions of the tip and what they represent. [Figures and captions appear in are 

taken from [46]] 
 

 

Two alternative schemes have been proposed and are on the path to commercialization so 

far for point-of-care, continuous IOP monitoring: (a) contact lens-based IOP monitoring [47], and 

(b) direct IOP monitoring using implantable sensors [48] [49]. The former technology is a non-

invasive, indirect approach that integrates a MEMS (Micro-ElectroMechanical Systems) pressure 

sensor into a contact lens (currently commercialized by Sensimed AG, Figure 1.5). It suffers from 

inaccuracy (inherent to all indirect techniques) and high levels of ‘IOP noise’ due to the non-rigid 

adherence of the contact lens into the eye. In the latter approach, a MEMS pressure sensor is 

inserted along with an Intra Ocular Lens (IOL) inside the lens capsule (currently under clinical 

trial by Eyemate, Figure 1.6) or it is permanently attached to the iris. It is a direct technique and 

therefore more accurate than tonometry. As it requires a surgery, it is targeted to severe POAG 

cases or POAG patients undergoing cataract surgery. 
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Figure 1.5: (a) A soft contact lens developed by Sensimed Triggerfish for long-term (up to 24 

hours) active measurement of intra-ocular pressure, a key indicator of glaucoma. Within the lens 

are small gauges and a transmitter. (b) The device placed on the surface of the cornea. (c) The 

transmitter sends an output signal to a larger antenna affixed to a bandage worn around the eye. 

This antenna is then cable-connected to a recorder. From the recorder, the data is downloaded to 

the practitioner’s computer via Bluetooth. [Figures and captions appear in and are taken from [50]] 
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Figure 1.6: (a) The EYEMATE® IOP pressure measurement system consists of an implantable 

micro sensor, responsible for pressure sensing which is surgically inserted into the eye behind the 

iris. The system also consists of an external hand held device which transfers energy to the micro 

sensor telemetrically and is responsible for data read out and storage. (b) Measurement data is 

transferred to an internet-based database which allows the physician to remotely access 

information about the disease status of the patient. [Figures and captions appear in and taken from 

[51]] 
 

 

The major disadvantage of both these methods is the need for a wireless transmission unit 

that is built into the pressure sensor. The entire transducer that integrates low-power electronics, 

telemetric elements (e.g. antennas) and/or batteries is bulky (of a typical size of ~2 mm x 2 mm x 

0.5 mm, not including the battery) resulting in partial blocking of the visual field. An optical, 

electronic-free approach is therefore needed that will reduce the device size while matching or 

even improving upon performance. 

1.5 Preventing hospital and community acquired infections 

Infectious diseases, dating back to the beginning of mankind, present an important public 

health concern as they cause both increased morbidity as well as mortality. Infections maybe 

broadly categorized as either community-acquired or hospital-acquired.  
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Hospital Acquired Infections (HAIs) are infections affecting patients and healthcare 

personnel in hospitals and other health-care facilities that are not present at the time of admission. 

The prevalence of HAIs is extraordinary: of every 100 hospitalized patients, 7 in developed and 

10 in developing countries will contract at least one health care-associated infection [52]. In the 

US, HAIs infections are responsible for over 100,000 deaths every year [53]. According to the 

European Centre for Disease Prevention and Control more than 4 million episodes of HAIs are 

reported every year in Europe [54], accounting for ~40,000 deaths. Apart from morbidity and 

mortality, HAIs cause prolonged medical stays, and a remarkable increase in the annual cost for 

medical treatment. Annual financial losses due to HAIs are estimated to be $6.5 billion in the US. 

HAIs are caused by bacteria and microorganisms that are transferred from a contaminated surface 

in a health-care unit (e.g. a door handle, a medical tool, etc.) to a patient. These pathogens are able 

to survive for prolonged period of time on surfaces and even transiently colonize the hands of 

health care workers [55].  

The term "Community Acquired Infections (CAIs)" includes many infections we may 

encounter in practice and continues to evolve based on the ongoing diversification and aging of 

the population, climate change and travel. From the reemergence of vaccine-preventable diseases 

to sporadic outbreaks of plague, community-acquired infections have drawn more attention in the 

healthcare community, particularly those that are transmitted between people due to poor hygiene. 

Among the several sources of community acquired infections, feces is the most common source 

of pathogens like Salmonella, E. coli O157, and norovirus. Feces can also spread some respiratory 

infections like adenovirus and hand-foot-mouth disease. Pathogens can get onto hands after people 

use the toilet or change a diaper, but also in less obvious ways, like after handling raw meats. 

Germs can also get onto hands by touching objects that have germs on them either because 

someone coughed or sneezed on the surfaces or the surfaces were touched by some other 

contaminated object. When hand washing is practiced, germs can be passed from person to person 

thereby spreading community acquired infections. 

Therefore, most places, especially the ones seeing high human traffic, are filled with 

contaminated surfaces that are transmitted to humans by touch and lead to HAIs and CAIs.   

1.5.1 Clinical need for improving hand hygiene 

Hands are primary agents for the transmission of pathogens [56] [57] [58] [59] as they 

become easily contaminated when they touch dirty surfaces, then carry the pathogens and 
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eventually transmit them to other environmental surfaces and/or people. Hand hygiene is the most 

important factor for minimizing if not preventing both HAIs well as CAIs. Increasing hand hygiene 

compliance (HHC) has been shown to decrease rates of nosocomial disease and is an important 

step in the fight to break the chain of pathogen transmission through contact [60] [61] [62].  

1.5.2 Current practices for improving hand hygiene 

Minimizing HAIs and CAIs is a challenging task. Current practices have been focused on 

improving hygienic protocols, more importantly ensuring appropriate hand hygiene with 

handwashing being the single most important measure for preventing infection. Washing with soap 

and water has been and continues to be the gold standard for enforcing hand hygiene [63]. Water 

and soap infused with antiseptic agents rapidly eliminates most types of skin flora by using a 

combination of both a mechanical detergent like scrubbing effect as well as sustained chemical 

antimicrobial activity on remaining flora. Effective handwashing with soap requires reliable access 

to clean water supplies but more than three billion people worldwide do not have access to piped 

water [64]. Even in countries that are not plagued with water scarcity, there are a lot of instances 

where people might not have immediate access to soap, water, sinks and towels like for instance, 

while traveling by public transport.  

Alcohol-based antimicrobial disinfectant formulations (liquids/gels/foams) have excellent 

activity against a wide spectrum of Microorganisms (bacteria, viruses and fungi), act rapidly (~ 15 

seconds) and hand rubbing with alcohol involves lesser steps than washing hands with soap and 

water [65]. Most importantly, using alcohol based hand rub formulations does not require the use 

of water making them the preferred agents for enforcing hand hygiene and are they thus termed 

“waterless hand disinfection” agents. Additionally, due the their low surface tension, alcohol based 

hand sanitizers have good spreading quality and dry quickly due to evaporation making them very 

convenient for the routine, day-to-day decontamination of hands. However, even with the adoption 

of waterless alcohol based hand sanitizers, enforcing and improving HCC, especially in public 

places, has been an ongoing battle. Attempts have been made to implement several strategies to 

improve compliance including - 1: increasing awareness of the significance of hand hygiene 

through signs and education [66], 2: enabling real-time monitoring/reminders through 

technologies that provide visual (or other) cues to direct attention to hand hygiene during routine 

work [67] and 3: making it easier to clean hands by installing facilities like sanitizer dispensers in 

convenient locations, of which this last method has proven to be the most effective [68]. However, 
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factors such as forgetfulness, high workload, ergonomics of resource placement [69], proximity, 

cost, staff acceptance [70], device durability and maintenance [71] have significantly affected ease 

of access to sanitizer dispensers. Therefore, HCC continues to be unacceptably low, particularly 

in public settings. Moreover, besides disinfecting skin on hands, keeping surfaces that come into 

contact with skin very frequently, clean and microbe free is another significant challenge. 

Microorganisms are transferred from contaminated surfaces (e.g. a door handle, a medical tool, 

toilet seat etc.) to people, especially in high traffic areas like hospitals, restrooms, schools and 

while using public transport. These pathogens are able to survive for prolonged periods of time on 

surfaces and eventually, transiently colonize the skin on hands [72]. As already discussed, 

traditional chemical cleaning methods - such as hand washing and frequent cleaning of surfaces- 

are the gold standard. However, most pathogens can persist for a long period of time on inanimate 

surfaces – from a few days up to few months – and it becomes impractical for maintenance 

personnel to perform constant cleaning in order to keep the surfaces decontaminated. Thus, 

according to investigations in multiple health care and community based facilities, more than a 

half of the surfaces with high human traffic were found to be inadequately clean [73]. Therefore, 

the need for developing advanced, easy to access and easy to use disinfecting technologies that do 

not depend on end user willingness emerges inevitably. 

1.6 Research goal and objectives 

Part A of this thesis aims to utilize state of the art microfabrication and 3D printing 

technologies to develop passive, electronics free clinical tools for biomedical sensing, diagnosis 

and disease prevention applications. We have three goals:  

1. To develop an implantable, near infrared fluorescent optomechanical (NiFO) MEMS 

biomedical fluid pressure sensing platform that is amenable to commercialization.    

We designed and fabricated the NiFO sensor that “optically encodes” pressure changes by 

converting it to light intensity changes in the near infrared (NIR) regime. NIR device operation 

minimizes light absorption w h i l e  maximizing device output and eliminates any tissue damage.  

The architecture of the sensor consists of a microlens that focuses NI light into a two-

wavelength quantum dot (QD) micropillar that sits on top a f l u i d - exposed flexible 

membrane. A change in f l u i d  p r e s s u r e  results in a change in the fluorescence intensity 

ratio emitted by the QD bilayer as the membrane moves with respect to the focal plane of the 

microlens. A non-implantable, portable and compact optical head is used to excite the QDs and 
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collect the emitted NIR light. 

The first prototype of the NiFO technology was developed in 2012 to monitor Intra 

Cranial Pressure ( ICP) [74] . A smaller sized NiFO senor was developed shortly after to 

monitor IOP after incorporation into a B o s t o n  Keratoprosthesis (KPro) Type I implant [75]. 

In this thesis, we develop and present the next generation of potentially commercializable, 

b i o c o m p a t i b l e ,  more optimized NiFO IOP sensor that maybe incorporated with both the 

Boston KPro Type I corneal implant as well as an IOL implant.    

2. To develop a passive, miniaturized displacement based contrast imaging (DCI) fluid 

pressure sensor.  

We designed and fabricated the DCI sensor that integrates a thin, flexible membrane that is 

exposed to fluid pressure and a non deformable surface. The membrane and the rigid 

surface form an air tight cylindrical micro chamber. The inner faces of the membrane as 

well as the rigid surface are patterned in order to enhance the optical contrast between the 

membrane material and the air in the micro chamber. The DCI sensor essentially senses 

displacement: fluid pressure deflects the thin membrane and the distance between the 2 inner 

surfaces is measured using a precision, a compact off the shelf z-scanning module that auto-

focuses at the 2 patterned surfaces and finds the distance between them.  

  In this thesis, we introduce the DCI pressure sensing technology, demonstrate proof of 

concept and discuss how the DCI sensor maybe used as a standalone device as well as integrated 

with an IOL to continuously monitor IOP. 

3. To develop a touch activated 3D printed disinfectant dispensing device that minimizes 

infections caused by direct contact of human skin with contaminated surfaces and improves 

hand hygiene.  

We designed and fabricated a proof of concept device that disinfects the person’s hand that 

is touching it’s surface while being self-sterilizing at the same time. The device consists of an array 

of passive, human-powered, milli-valves that deliver a fluid disinfectant from a refillable reservoir 

when the hand comes in contact with the surface of the array. The milli-valves are closed when no 

human touch/force is present. When a person touches the surface of the device, the milli-valves 

are slightly pushed in and the disinfectant flows out through them under the influence of 

hydrostatic pressure, onto the person’s hand as well as its own surface, thereby sanitizing both 

target regions by reducing the microbiological load.  
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In this thesis, we present a device which has a simple architecture, is biocompatible and 

may be easily incorporated with/mounted upon/form part of a door handle which maybe 

considered to be a high risk surface for causing hand contamination. The implementation of this 

technology is cheap and is expected to greatly improve hand hygiene compliance.  

1.7 Thesis organization 

The work presented in this thesis is organized as follows :  

Chapter 2 – Literature Review  

 This chapter reviews the recent development of implantable devices for  monitoring of 

intraocular pressure as well as disinfecting devices for improving hand hygiene.  

Chapter 3 - Opto-Mechanical Intra Ocular Pressure Sensing 

This chapter presents two different technologies: NiFO and DCI, for continuously 

monitoring intra ocular pressure. Both technologies employ implantable sensors that were 

fabricated using standard, state of the art, surface and bulk micromachining methods.  We present 

their architectures, demonstrate their applicability for measuring fluid pressure and discuss 

methods that make their fabrication commercializable.  

Chapter 4 - A 3D Printed Touch-Activated Sanitizer Dispensing System for Improving Hand 

Hygiene 

This chapter presents a ‘proof of concept’ 3D printed disinfectant dispensing device that 

may be incorporated onto contaminated surfaces in high human traffic areas. We present the device 

architecture and demonstrate its applicability for disinfecting human skin to improve hand hygiene 

compliance while being self-sterilizing at the same time. 

Chapter 5 – Conclusions and Future Directions 

This chapter summarizes the work presented in Part A of the thesis and discusses future 

directions for the medical micro-systems that have been developed. 
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LITERATURE REVIEW 

2.1 Introduction 

This chapter presents biomedical devices that have been designed and developed for i) 

continuous monitoring of intra ocular pressure and ii) minimizing the spread of infections by 

disinfecting contaminated surfaces in public places.  

2.2 Intra ocular pressure sensors 

This section reviews prominent intraocular pressure sensing technologies and discusses 

their principle of operation, advantages as well as their drawbacks. Research groups have 

developed several technologies that are meant to continuously monitor IOP and they may be 

broadly classified as shown in Figure 2.1. 

 

Figure 2.1: IOP sensing technologies [Figure and caption appears in [49]] 
 

 

Wired sensing techniques: Gillman and Greene [76] developed an external, noninvasive pressure 

sensor consisting of a contact lens that is embedded with a strain gauge. The sensor is placed over 

the meridional angle on the corneal surface at the corneoscleral junction. A variation in IOP causes 

a change in the meridional angle at the corneoscleral junction which is measured by the strain 

gauge. However, to detect this angular change, the contact lens has to be custom molded to exactly 
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conform to the patient’s eye which is a big limitation of this method.  Walter et al. [77] developed 

a piezoresistive strain gauge and mounted it in a curved holder that maybe positioned on the surface 

of the eyeball. It is held in place by the lower eyelid and suction created by the sensor holder. The 

deformation of the strain gauge due to its contact with the eyeball gives an indication of IOP. Wire 

leads from the sensor pass through the holder, over the lower eyelid and finally connect to external 

monitoring circuitry. However, a significant drawback of this technique is that pressure 

measurements are heavily influenced by scleral rigidity. Moreover, even though it maybe worn for 

24 hours, it is neither comfortable nor convenient for the patient.  Similar to the device developed 

by Gillmann and Greene, Leonardi et al. [78], [79]developed a soft contact lens embedded with a 

Wheatstone bridge strain gauge (Figure 2.2). The device measures change in IOP by detecting the 

associated change in the central corneal radius of curvature [80] [81].  

 

Figure 2.2: The pressure sensing contact lens showing the location of the active gauges, which 

are placed circumferentially for sensing changes in the corneal curvature due to IOP. The passive 

gauges are for thermal compensation and are placed radially, where no strain should be measured. 

The gauges are made of thin metallic film patterned by surface micromachining on a polyimide 

microflex substrate, which is then embedded into the silicone soft contact lens. [Figure and caption 

appear in and are taken from [78]] 
 

 

Even though these methods are noninvasive, sensor accuracy is severely affected by the 

mechanical properties of tissue such as thickness and rigidity. Furthermore, the size of the eye as 

well as eye movement and lid pressure also influence measurement accuracy. Additionally, given 

that strain gauges are sensitive to temperature, a mechanism for thermal compensation is required 

to correct for sensor drift which increases device size and design complexity [49]. 
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Inductively coupled telemetry:  Inductively coupled telemetric systems, either active or passive, 

use capacitive pressure sensing. The advantages of capacitive transduction include low power 

consumption, low noise, high sensitivity, low temperature drift and long term stability [49]. 

Additionally, the advances made in microfabrication has enabled further miniaturization of device 

footprints. 

Passive Devices: One of the first passive devices for monitoring IOP was developed by Collins 

[82]. The transducer consists of a gas bubble inside a cylinder with one of the surfaces made up of 

a flexible polyester membrane. The inner surface of the membrane is attached to coaxial spirals 

that are connected to form a single winding. When pressure is applied on the outer surface of the 

membrane, polyester stretches to push the two coils together which increases their mutual 

inductance, thereby changing the resonant frequency of the transducer. The frequency sweep is 

performed of an external inductively coupled oscillator to monitor the resonant frequency. Even 

though the principle of operation is relatively simple, the device is 1-2 mm thick and 6 mm in 

diameter which is too large to be implanted into the eye [49] or form part of an existing commercial 

ocular implant.  

The device developed by Collins et al. was improved by Bucklund et al. [83] who 

incorporated a capacitive pressure sensor made using fusion bonding of silicon. Similar to 

Collins’s technique, a passive frequency sweep is used for pressure sensing and the resonance 

frequency is detected using a grid dip configuration [49]. The size of the device is reported to be 

5 mm in diameter and 2 mm in thickness and was tested in a cannulated rabbit eye. 

Schuylenbergh and Puers [84] further improved this technique by fabricating flat coil 

electrodes to form LC tank circuits. The resonance frequency of the tank circuits maybe obtained 

by inductive excitation. The two coils are connected with the spirals acting cooperatively as a 

single coil. As the capacitive coupling between the coils is changed by pressure, the gap between 

the coils changes which causes a change in the resonant frequency of the device. Eventually, Puers 

et al. [85] fabricated the inductive element by depositing copper on a chip with a pressure sensitive 

diaphragm. In this design, one half of the inductor is placed on the flexible diaphragm and the 

other half is fixed on the substrate. A diode connected in parallel to the chip overcomes any weak 

inductive coupling between the detector coil and implant as well as results in the generation of 

higher harmonics with maximum magnitude at resonance. The sensor implant size was reported 

as 4 x 4 x 1 mm [49]. 
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Figure 2.3: (A) Passive wireless LC tank circuit based IOP sensing concept. The implanted sensor 

can faithfully register pressure variations using corresponding capacitance changes, which are 

measured using an external reader through wireless inductive coupling. (B) Cross sectional view 

of sensor design (not to scale) showing variable capacitor. The deformable diaphragm with respect 

to changing applied pressure realizes pressure-sensitive electrical characteristics of the sensors. 

(C) Image of microfabricated device. [Figures and captions appear in and are taken from [86]] 
 

 

Similarly, Akar et al. [87] developed an absolute capacitive pressure sensor using LC 

resonance technique. The fabrication of the inductor inside the sealed cavity of the capacitor inside 

the chip lead to an implant size of 2.6 x 2.6 x 1.6 mm. Due to the low Q factor of the sensor coil, 

the coil separation distance is however only 2 mm [49]. 

Several other passive sensors have been reported [88] [89] [86], however, the implant size 

needs to be further miniaturized to be viable for surgical placement in the eye. Additionally, since 

the size of the coil inside the implant is limited, these devices require high coupling between the 

external antenna and implant for reliable pressure measurements. If the coupling is weak, even 

small changes in the relative positions of the implant and the external device affects pressure 

measurement accuracy. Therefore, the sensor and detector circuits need to be very close to, and 
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aligned with each other with the distance being strictly controlled which makes the implementation 

of this type of technology tedious and error prone [49].  

Active Devices: Compared to passive devices, active devices have the ability to transmit data over 

larger distances, have higher signal to noise ratios and the capability to store calibration data on 

chip. Therefore, they maybe considered to be more robust than passive devices for miniaturized 

IOP sensing implants [49].  

Schuylenbergh et al. [90] [91], developed a sensor that was implanted in an IOL (size 3.5 

mm ID x 8 mm OD x 0.5 mm  thickness) and operated with a power of 100 µW, delivered by a 

tuned coil system. Using a switch capacitor circuit, a differential pressure measurement between 

the reference capacitor and the pressure sensor was performed [49]. McLaren et al. [92] implanted 

a commercially available telemetric pressure transducer under the skin on the neck of rabbits. IOP 

was then measured by inserting the tip of a catheter in the anterior eye chamber that conducted 

pressure to the commercial pressure transducer. Given that this is an invasive technique, the 

drawbacks include eye irritation and corneal scarring [49].  

Schnakenberg et al. [93] [94], developed a telemetric pressure sensor that is integrated into 

the haptic portion of an IOL and transmits data digitally to an external reader unit that is placed on 

a pair of spectacles worn by the user. The size of the sensor is reported to be 15 mm in diameter 

and 4.5 mm in thickness. Performance was evaluated in rabbit eyes which showed promising 

results. Stangel et al. further improved the design of the system by incorporating a temperature 

sensor and additional reduction of parasitic capacitances [48] [95] [96]. The modified device is 

reported to be 10.5 mm in diameter and was implanted in rabbit eyes for six months [49]. 

Even though active devices are superior to passive devices in terms of having better 

performance, their design is much more complex. Additionally, there is no robust batch 

manufacturing process that enables the incorporation of the antenna into the implantable chip. 

Moreover, the size of the implants need to be further miniaturized in order to be comfortably placed 

surgically and accommodated inside the eye [49].   

Other techniques: Fink et al. [97] developed an optically powered wireless IOP sensor, consisting 

of an IR photodiode, capacitor, resistor, pressure actuated switches and a solar cell power source. 

The pressure actuated switch consists of two electrodes that are part of a compressible gas filled 

chamber. When IOP increases above a certain threshold, the switch is collapsed thereby 

discharging the capacitor which in turn is detected by an external read out unit. The main drawback 
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of this technique is that it does not provide a continuous measurement for IOP. Additionally, as 

there is no  data, it is not evident if the device has been put into practice [49].   

Bae et al. [98] [99], developed a piezoresistive pressure sensor with an electromagnetically 

actuated membrane valve for fluid flow control. The piezoresistive element is incorporated onto 

the surface of the valve membrane and a Wheatstone bridge circuit is used to detect the change in 

resistance in response to applied pressure on the membrane.  Tests were conducted to evaluate 

sensor performance and noise was identified as a limiting factor for piezoresistive sensors. Given 

that the device is made up of materials like PDMS that is not suitable for long term implantation, 

the biocompatibility of the device is questionable. Additionally, the final size of the entire device 

(9 mm x 9 mm x 2 mm) is quite large to be implanted in the anterior chamber of the eye [49]. 

 

Figure 2.4: (A) Microfabricated highly sensitive parylene IOP sensor with 1.1 mm diameter 

spirals. (B)  Pressure response of the sensor with a lateral sensing trajectory and pressure difference 

being applied between interior and exterior of the parylene tube.  [Figures and captions appear in 

and are taken from [100]] 
 

 

Chen et al. [101] [102] [100]developed a purely mechanical passive pressure transducer 

comprising of a bourdon tube fabricated in the form of a spiral (Figure 2.4A). The device is pre-

pressured to 1 atm and then sealed. When fluid pressure is applied, the tube gets elongated 

circumferentially which is optically tracked to estimate pressure (Figure 2.4B). Results show a 

linear dependence between pressure and tube elongation. Although simple, the device has not been 
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demonstrated to be able to detect diurnal variations in IOP. Furthermore, the location of the 

external read out unit in relation to the implant needs to be very precise in order to minimize 

measurement error [49]. Given that the pressure sensor is designed to be implanted in the iris in 

order to allow for optical access, a separate surgery is required solely for implanting the sensor at 

an increased cost to the patient.  

2.3 Devices for disinfecting contaminated surfaces in public places 

Eliminating HAIs and CAIs has been a challenging task. Even though current practices 

have mostly been focused on improving hygienic protocols, there have been several research 

efforts to develop and implement novel disinfection technologies [103].  

UV disinfection: Ultraviolet (UV) light has been proposed for disinfecting contaminated surfaces 

[104]. UV light has been proven to contribute to a radical reduction of the survival of 

microorganisms and bacteria. This technology requires the use of strong UV lamps that need to be 

installed in public spaces (Figure 2.5). A major drawback of UV light is its reduced effectiveness 

in decontaminating shadowed surfaces, which has led to the limited practical use of this technology 

[105]. In addition, UV light exposure cannot be used in high-traffic areas, e.g. corridors and 

waiting rooms, as people cannot be exposed to UV light. An improved variation of the above 

technology is to use UV light activated surface coatings [106]. Those coatings produce cytotoxic 

species after irradiation causing a remarkable reduction in the survival of microbial colonies. 

However, those coatings do not affect adequately all different types of pathogens and it is difficult 

to implement them in a public environment as they require a constant source of photoactivation. 
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Figure 2.5: A portable UV robotic system that precisely measures reflected UV light and 

automatically determines the optimal dose required for disinfecting health care environments. 

[Figure and caption appear in and are taken from [107]]
 

Metal coatings: Coatings impregnated with metals, such as silver or copper have also been studied 

as self-sterilized surfaces and they have been proven to be effective up to several hours [108].  

However, those metal surfaces need to be coated with corrosive inhibitors that lower the 

effectiveness of their antimicrobial action. A similar approach based on coatings containing 

quaternary ammonium silyl oxide and titanyl oxide moieties was shown to efficiently reduce the 

number of colony-formed units for weeks [109]. This claim remains highly questionable as the 

validation procedure was combined with normal cleaning procedures and even within the second 

week of use, some of those coatings were found not to meet the critical limit of less than 5 

CFU/cm2. 

Micropatterned surfaces: More recently, micropatterned surfaces were proposed as a potential 

solution for preventing microorganisms from adhering to a surface. Several geometries comprising 

of micropilars or microchannels have been developed [110] and they are currently in the 

commercialization phase by Sharklet Technologies Inc (Figure 2.6). Although this technology 

seems promising, rigorous clinical validation of this technology has not yet been performed. More 

importantly, it remains questionable if it can compete against the chemical treatment methods that 

are able to kill all present pathogens and viruses.   
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Figure 2.6: (A) Scanning electron micrograph of Sharklet micro-patterned acrylic surface. (B) 

Microbial persistence of Sharklet surface. Smooth and micro-patterned acrylic films were coated 

with a sprayed inoculum and dried for 30 minutes. Log densities of bacteria present on the surfaces 

of the Sharklet layer compared to smooth controls are plotted with the associated standard error of  

mean. A representative image of an agar contact plate after inoculum sampling, the Sharklet 

surface (right) has fewer bacteria compared to the smooth surface (left). p < 0.005 (***) n = 3. 

[Figures and captions appear in and are taken from [110]] 
 

 

PullClean door handle: Only a few from the aforementioned technologies have reached 

commercialization and the most successful story seems to be the ‘PullClean’ door handle (Altitude 

Medical Incorporated). This is a low-tech handle that simply integrates a hand sanitizer –contained 

in a disposable cartridge- on a door handle (Figure 2.7). The main drawback of this product is that 

it relies on the willingness of the person entering the door to employ it, making its effectiveness 

difficult to predict. In addition, it is hard to envision, how such a handle can be integrated in every 

surface in an area that sees a lot of human traffic. 

 

Figure 2.7: The PullClean device designed as a door handle with a built-in hand sanitizer dispenser 

that requires the user to willingly actuate it. [Figure and caption appear in and are taken from [111]] 
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2.4 Conclusions 

2.4.1 Intraocular pressure sensing 

In this chapter, a comprehensive review of the state-of-the-art in IOP sensing technologies 

has been presented. Among them, wired non-telemetry based techniques are not suitable for 

continuous IOP measurement as they cause patient discomfort. Given that they provide an indirect 

measurement due to their non-invasiveness, these techniques are sensitive to either corneal or 

scleral rigidity [49].  

Passive telemetry sensors provide a direct measurement of pressure and driven by the 

advances that have been made in monolithic ultra miniaturization technologies, they have small 

footprints and simple on-chip circuitry. However, a smaller footprint entails a smaller coil which 

reduces inductive coupling efficiencies. The resulting low Q-factor requires the sensing coil to be 

precisely aligned and placed very close to the sensor coil thereby making the acquisition of 

measurements challenging, particularly if communication over larger distances is required. Even 

if RF signals are used, they will quickly dissipate while passing through soft tissue [34].  

Active sensors are popular due to their superior data processing and transfer capabilities. 

However, long term monitoring with active devices would require long lasting battery units/power 

supply and implantable power sources are large in size. The presence of signal processing and 

power management circuitry further increases design complexity and device footprint [34].  

The majority of the current IOP implant devices have been designed without taking into 

consideration the spatial constraints inside the eye, the surgical complexity involved and the 

reliability of the device, thereby making them impractical [49].  

First and foremost, the surgical procedure to insert the implant must be as minimally 

intrusive as possible requiring just a small incision (< 2.8 mm) in the tissue that can heal by itself 

without any stitches. Therefore, it is important that the mechanism that deploys the sensor is 

flexible enough to be easily insertable through the incision. Additionally, the sensor must fit inside 

the anterior chamber, a region that has not been used efficiently by current sensor designs as well 

as the devices presented in this chapter. The anterior chamber is the most viable location for sensor 

placement inside the eye since it causes the least damage and post-surgical complications like 

infection, retinal detachment and fibrosis. Given that the cornea is 0.5 mm along the optical axis 

and 1 mm at the ends, the lens diameter is 16 mm and a cylindrical region along the optical axis is 

not usable (to allow for unimpeded vision), a hollow cylinder with an ID of 7 mm, an OD of 8 mm 
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and height of 0.5 mm is available for sensor placement [49]. Additionally, the implant should not 

be near the irido-corneal angle in order to not hinder the flow of aqueous humor as well as to not 

adhere to the iris and cornea. Also, the ability to easily incorporate the sensor with a commercial 

implant that is already associated in some form with patients who are at risk of developing 

glaucoma will be a huge benefit in terms of minimizing cost and recovery time since an additional 

surgery dedicated for just inserting the sensor would no longer be required [34].   

The design of telemetric electronics components for implantation into the eye requires 

optimization of power consumption, coil size and even communication frequencies. Implanting 

electronics components requires careful consideration of the characteristics of the electromagnetic 

radiation used for device communication to ensure minimization of tissue heating and radiation 

specific absorption in the environment. Any potential dielectric heating during an MRI 

examination must be evaluated as well as interactions with X-rays in order to determine 

microcontroller damage [34].  

Finally, in order to be viable as a long term implant, it is critical to consider materials and 

packaging methods that will survive the In vivo environment without causing any toxicity. The 

device must integrate with the neighboring tissue, bio-fouling must be minimal, must be 

hermetically sealed so that sensor performance does not get compromised, must be sterilizable, 

must not have sharp corners, must have long term mechanical and chemical stability. Especially 

for electronic sensors, proper sealing and material choice is critical for there to be no electrolyte 

intrusion, corrosion, failure or sensor drift [34].  

In conclusion, there is a need to develop a miniaturized, implantable sensor for direct IOP 

measurement that is 1: free of any electronics components, 2: wireless, 3: biocompatible, 4: can 

be manufactured using a batch fabrication process, 5: maybe incorporated into an existing 

commercial ocular implant, 6: must be compatible with the spatial limitations of the eye's anatomy 

and 7: must be easy to insert surgically.  

2.4.1 Technologies for infection control 

The review of technologies for infection control that have been discussed in this chapter 

show that eliminating HAIs and CAIs still remains a great challenge due to technical limitations 

of existing disinfectant methods, their inconvenience for large scale use in public spaces, as well 

as low end user compliance. Therefore, a novel, cost-effective solution for decontaminating any 
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given surface that will not interfere with current cleaning practices and workflow, that will work 

reliably at all times and will not be subjected to the end-user willingness, needs to be developed.   
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OPTO-MECHANICAL PRESSURE  MICROSENSORS FOR MONITORING 

INTRAOCUALR PRESSURE 

3.1 Introduction 

Intraocular pressure monitoring is an invaluable tool for the diagnosis and management 

of glaucoma, a medical condition involving severe optic nerve damage due to elevated IOP . 

It is clinically desired to monitor these fluctuations as frequently as possible in order to assess 

the efficacy of treatments and disease progression [112]. IOP monitoring systems, since their 

introduction in the 60’s, have undergone very few design changes with the gold standard for 

IOP measurement being the Goldmann applanation tonometer. O ne of the major drawbacks of 

the tonometer is that, due to its complexity, only trained personnel can operate the equipment 

which means that the patient needs to visit the clinic every time an IOP measurement needs 

to be taken [113]. The tonometer cannot continuously monitor IOP variations over time because 

it is designed for single pressure measurement snapshots [75] in the clinic. Frequent and life-

long IOP monitoring is therefore expensive, inconvenient and taxing for both patients and their 

family members who transport and accompany them. Besides the need to acquire frequent IOP 

measurements, the measurement accuracy is equally crucial in the screening, diagnosis, and 

management of glaucoma. Given that the GAT is not directly exposed to fluid inside the eye, this 

method assesses IOP indirectly based on force required to flatten the corneal surface by a certain 

amount. GAT accuracy is therefore heavily influenced by corneal thickness, curvature, rigidity, 

viscosity, elasticity and hydration [114]. These biomechanical properties show large variability 

between individuals which increases GAT measurement error. Additionally, biomechanical 

properties are significantly affected by surgery such as keratoplasty (a corneal transplant procedure 

which is a potential precursor to the development of glaucoma due to surgical complications), 

making GAT an unsuitable method for reliably monitoring IOP in these patients [115]. 

Furthermore, since GAT involves a physical probe that touches the surface of the eye, the method 

introduces the risk of infections if the probe is not disinfected adequately between patient use and 

can potentially cause corneal abrasions during the IOP measurement process [116].  
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Motivated by the need for frequent, long-term, direct pressure monitoring, the lack of 

commercially available fully implantable IO P  microsensors, and taking advantage of recent 

developments in the MEMS field, this thesis chapter presents two opto-mechanical, passive 

IOP sensing technologies that overcome the limitations mentioned above. 

Both technologies can potentially provide home-based, frequent  and life-long IOP 

self-monitoring for patients with POAG, the most common type of glaucoma. 

3.2 Filling the gap: NiFO and DCI technologies 

As discussed in Chapter 2, there is no commercially available IOP monitoring technology 

that: (i) directly monitors IOP (ii) is portable and therefore point-of-care, (iii) is easy-to-use and 

does not require trained personnel to operate, (iv) is affordable, (v) allows continuous recordings 

to be made during the day, (vi) its accuracy is comparable to that of GAT. Here, two novel types 

of IOP monitoring technologies are developed, termed ‘Near Infrared Fluorescence-based 

Optomechanical (NiFO)’ sensing technology and the ‘Displacement based Contrast Imaging 

(DCI)’ technology.  

Both the NiFO and DCI technologies are designed to have the following characteristics: 

• Frequent IOP monitoring 

• Allow the patient to perform IOP measurements at home 

• Require no sensor maintenance (e.g. battery replacement) 

• Increased accuracy as IOP is measured directly 

• Very small footprint (~1.5 mm2) 

• Magnetic resonance imaging (MRI) compatible 
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Table 3.1: Summary of and comparison between the properties of GAT, NiFO and DCI IOP 

monitoring technologies.  

 GAT (Tonometry) NiFO/DCI 
Technologies 

Method of 

IOP 

assessment. 

Indirect Direct 

Influence of 

biomechanics of 

corneal surface on 

IOP measurements. 

Dependent Independent 

Portability No Yes 

Frequency of 

IOP 

measurements. 

Sporadic Frequent 

Point of care No Yes 

Application of 

topical anesthesia. 

Yes No 

Invasiveness Non invasive Invasive 

 

3.3 Impact 

We expect that both the NiFO and DCI technologies will be primarily used by: (1) 

patients with diagnosed moderate (IOP > 25 mmHg) or severe (IOP > 31 mmHg) POAG, 

(2) POAG suspects (IOP > 21mmHg) that undergo cataract surgery, (3) patients for whom 

prior anterior segment surgery precludes the need for monitoring IOP (e.g. eyes with KPro 

implants), and in (4) patients with severe ocular hypertension (traumatic hyphema, orbital 

edema, etc). In categories 1, 3, and 4, the NiFO sensor maybe implanted in the iris after fitting 

with a KPro device while the DCI sensor maybe implanted as a standalone device in the anterior 

chamber. In case 2, the DCI sensor may be an integral part of an IOL. Additionally, for case 2, 

the NiFO sensor can be introduced into the IOL by creating a pouch like/recess structure on 

the IOL. Monitoring IOP using a portable readout unit with the NiFO sensor and/or a 

smart phone with the DCI sensor will not only enable easy readout by patients or their families, 

but also assist in data collection, analysis and improving communication with the clinician to 

facilitate better outpatient monitoring and management. 

We estimated that a total of 2-3 million people will benefit from the proposed 

N i F O  a n d  D C I  technologies [112]. Additionally, these sensors will significantly reduce 

the medical management costs of glaucoma which is currently estimated at $2.6 billion per year 
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[117]. 

3.4 NiFO Technology 

The NiFO technology was initially described by Ghannad Rezaie et al. [74] [118] for 

monitoring intracranial and intraocular pressures. The key element of the NiFO technology is the 

use of two layers of Near Infra-Red (NIR) Quantum Dots (QDs) (absorbing light at 785 nm and 

emitting light at 840 nm and 940 nm) that are separated by an optical spacer (SU-8 layer). This 

forms a ‘two color’ QD micropillar that sits on top of a flexible membrane that is exposed to fluid 

pressure. A microlens is used to focus incoming NIR light onto the pillar and to collect the emitted 

light from the QD micropillar. The intensity of the emitted light is a function of the microlens-QD 

pillar distance that depends on the applied pressure. 

The first generation of the NiFO microsensor (Figure 3.1) was fabricated using low 

stress silicon nitride as the membrane material and 850 nm and 940 nm lead (Pb) based 

QDs. The emitted fluorescent intensity at the two wavelengths was measured as a function 

of the applied pressure i n  o r d e r  to calculate the intensity ratio. The obtained intensity 

ratio was shown to have a linear correlation to the applied pressure in the clinically relevant 

applied pressure range of 10-45 mm Hg. Additionally, the NiFO microsensor demonstrated an 

accuracy better than 2 mm Hg in the entire 0-45 mm Hg range with less than 1 mm Hg zero 

drift over a 14 day period in  studies [118]. However, in these prototype devices, each individual 

microlens has to be manually incorporated into the sensor which makes the fabrication process 

very labor intensive. Additionally, Poly-Di-Methyl-Siloxane (PDMS) is used to hold the 

microlens in place in the sensor. Given that PDMS absorbs fluids and swells, it cannot be used 

for long term implantation in the  environment. Furthermore, the QDs are directly exposed to the 

biological environment which means that heavy metal ions can leach out into surrounding tissue 

that could lead to cytotoxic effects [119].   

The work presented in this chapter is an improvement over the first generation NiFO 

senor prototype in the following ways: (i) T w o  distinct device architectures are presented: one 

for incorporation with Type 1 Keratoprosthesis (KPro) implant devices and the other for 

incorporation with in t ra ocular  l enses . (ii) The material of the pressure sensing membrane 

is changed from silicon nitride to polysilicon in order to get higher deflection and therefore 

improve sensitivity over the initial prototype. Additionally, the membrane has a thinner 

geometry and lower pre-stress that further improves deflection response to pressure. 
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(iii) Unlike the f i r s t  g e n e r a t i o n  d e v i c e , the QD micropillar sitting on top 

of the membrane is enclosed in a glass microchamber around the membrane. This is intended 

to prevent any direct exposure of heavy metal based QDs to the biological environment as 

they are known to have cytotoxic effects . Additionally, the concentration of QDs has been 

increased five times with a 20% increment in quantum yield and improved fluorescence stability. 

(iv) A fabrication process is developed that is meant to produce a high yield of devices without 

requiring manual placement of individual microlenses into the sensor. The sensors are produced 

in the form of an array of 20 devices each, where a 4” wafer can accommodate 9 such arrays. 

Each fabricated batch will therefore yield 180 devices. v) The use of polymers such as PDMS 

has been eliminated to improve long term biocompatibility. vi) The entire fabrication process 

is setup to be amenable to being outsourced to contract manufacturers for future 

commercialization of the technology. 

 

Figure 3.1: The architecture of the first generation NiFO microsensor prototype developed by 

Ghannad-Rezaie et al. [Figure appears in and is taken from [118]]. 
 

 

3.4.1 Device architecture and system overview 

 The NiFO IOP monitoring technology consists of the implantable NiFO sensor and an 

external (non-implantable), portable optical readout system (Figure 3.2). That readout system 

integrates an optical head consisting of an NIR laser source, optical filters and photodetectors along 

with a data acquisition and display unit that is used to excite, collect and analyze the emitted 

fluorescent light from the NiFO sensor. Operating the NiFO sensor in the NIR regime is critical 

for minimizing light absorption by the skin and the eye tissue [120]. 

The implantable NiFO sensor consists of: (i) a flexible low stress (< 5 MPa) polysilicon 

membrane (600 µm diameter, 200 nm thickness) with a 2-layer QD (CdSeTe/ZnS with TOPO, 

HDA) structure (the ‘QD micropillar’) that emits a two-color (840 nm and 940 nm) NIR 
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fluorescent light and (ii) a plano-convex (500 µm diameter, 147 um thickness) lens (we use the 

term ‘microlens’). 

 

 

 

Figure 3.2: (a) Overview of the NiFO IOP pressure monitoring system. The NiFO sensor can be 

integrated into a KPro implant which is surgically placed in the eye. A portable optical readout 

system maybe used in order to both excite the sensor as well as to collect the emission from it.(b) 

Schematic showing placement of the sensor in the KPro implant. (c) Cross–sectional schematic of 

the NiFO pressure sensor showing critical device dimensions. 
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Figure 3.3: The NiFO sensor has two distinct architectures that can be integrated into (a) a suturing 

hole located in the back plate of a KPro implant or (b) in a recess created in the haptic region of 

an IOL implant. Both the KPro and IOL implants are surgically placed in the eye. 
 

 

There are two distinct device architectures (Figure 3.3), one for incorporation with a 

Boston KPro Type I implant (for glaucoma or at risk of developing glaucoma patients with 

severe corneal disease that has lead to compromised vision) and the other for incorporation with 

an intra ocular lens (for glaucoma or at risk of developing glaucoma patients undergoing cataract 

surgery). 

NiFO architecture for incorporation into KPro implant: When the cornea becomes severely 

diseased and vision is heavily compromised due to tissue opacity, corneal transplantation from 

human donors becomes necessary. However, in a lot of cases, the procedure fails as the graft is 

either rejected or the patient shows poor prognosis that prevents future grafting. For such cases, 

the only alternative is in the form of an artificial cornea that is popularly referred to as the Boston 

KPro implant. The KPro implant is surgically inserted using a procedure known as keratoplasty 
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but even after surgery, nearly 64% of patients develop glaucoma during postoperative recovery 

[121] [122] [123]. Therefore, it is critical that IOP be monitored frequently to detect the onset 

of and to check the progression of postoperative glaucoma to ensure normal recovery.  

The KPro implant (available in Types I and II) is essentially an artificial cornea consisting 

of an optic portion for vision, a front plate that accommodates the optics, a back plate and a 

locking mechanism (in the form of a C ring) which when assembled, resembles a collar button 

that positions and holds the device in place. The implant is made up of clear plastic 

polymethylmethacrylate (PMMA) and the C-ring is made up of titanium. Given that the implant 

is mostly made up of infelxible plastic, using GAT to monitor IOP would result in inaccurate 

pressure measurements due to the artificially enhanced corneal surface rigidity caused by the 

presence of the implant. On the other hand, the NiFO technology, being a direct method to 

measure IOP, is independent of the mechanical stiffness of the cornea. Therefore, the 

incorporation of the NiFO sensor into the KPro implant would lead to reliable long term IOP 

monitoring to perform risk management for glaucoma in these patients.   

The type I device, which is the most frequently used configuration, is then sutured into 

the patient’s cloudy cornea in a surgical procedure similar to a standard transplant. The holes in 

the back plate allow the surgeon to pass suturing thread through them while letting the aqueous 

humour provide nutrients to expedite recovery as the patient’s own tissue grows into the holes 

to anchor the device at the surgical site. The titanium locking ring prevents the  unscrewing of 

the front plate and holds the assembly in place. The type I device has a smaller footprint and 

does not protrude through the eyelid. Therefore, it is usually recommended for patients with 

good eyelid anatomy and ability to blink without problems [124]. The type II version is very 

similar in design to the type I style except for the fact that it has an additional 2 mm in length 

anterior cylinder that protrudes through the eyelids (Figure 3.4). Unlike type I, type II is mainly 

used for disease conditions involving poor tear function [124]. Several modifications in device 

design have improved success rates with the latest FDA approved design having 8 holes (1.1 

mm diameter) in the back plate for both types I and II. The base of the NiFO sensor (Figure 

3.3(a)) has a diameter of 1.12 mm that is only slightly larger than the diameter of the circular 

fluidic/suture holes in the KPro backplate. When heated to 900C, the KPro device gently expands 

and the holes in the backplate also get larger. This allows the insertion of the NiFO sensor base 

into one of the fluidic/suture holes. After insertion, the integrated unit is cooled down to room 
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temperature to obtain a tight fit between the sensor and the KPro implant, thereby seamlessly 

integrating the two devices without interfering with the locking mechanism that connects the 

front and back plates.  

 

Figure 3.4: (A) Assembly showing components of a Boston keratoprosthesis type I implant. (B) 

Slit-lamp photograph of a Boston keratoprosthesis type I implant with a polymethyl methacrylate 

(PMMA) back plate with suturing holes. (C) Boston keratoprosthesis type I and II devices with 

PMMA back plates. (D) Slit-lamp photograph of a Boston keratoprosthesis type II implant with 

the optic extending through an eyelid that is surgically shut [Figures and captions appear in and 

are taken from [125]]. 
 

 

NiFO Architecture for incorporation into IOL Implant: The natural crystalline transparent 

lens that is located in the capsular bag and suspended by a circular ligament complex, is bi-

convex and along with the transparent cornea, forms the ocular diopter that allows vision. During 

an extremely prevalent condition called cataract, the lens becomes opaque. The light entering 

the eye is therefore diffracted and scattered. Visual acuity is therefore gradually lost along with 

an altered perception of color/hue and the emergence of refractive defects/glare [126]. Given 

that there is no treatment to stop this opacity from developing, surgically removing the diseased 

lens and replacing it with an artificial IOL is the only available medical intervention. Besides 
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restoring vision, the IOL can also correct any other pre-existing defects like myopia, hyperopia, 

astigmatism and presbyopia. Although there is no direct association between cataract and 

glaucoma, both conditions are common with age with more and more people developing both 

after the age of 60 [127]. Given that cataract surgeries are now commonplace, the IOL can be 

an excellent vehicle to accommodate probes inside the eye and it is therefore logical to 

incorporate a pressure sensor like the NiFO sensor to monitor IOP [128].  

Cataract surgery uses minimally-invasive lasers that break up natural lens material 

without damaging tissue around it. By creating a small incision, (~ 2.2 mm) the surgeon inserts 

an ultrasound emitting tube to suction out the broken up lens debris in a process called ultrasonic 

phacoemulsification [126]. A flexible artificial IOL is then folded and inserted through the same 

incision. Once positioned inside, the folded IOL springs into place within the lens capsule. In 

most cases, the 2.2 mm incision is self-healing and therefore does not require suturing thereby 

minimizing any inconvenience to the patient. IOLs have an optics portion that focuses light as 

well as a haptics portion that holds it in place inside the lens capsule. The diameter of the optic 

portion ranges between 5.5 to 7.0 mm and overall length varies between 12 to 13 mm. While 

preserving the same membrane size, QD micropillar and microlens geometries as the KPro 

architecture, the NiFO sensor footprint is reduced to ~ 1.2 mm3 in order to incorporate it into 

either the edge of the optic or at the base of the haptic (Figure 3.3(b)). A 1.15 mm in diameter 

and 0.3-0.5 mm in depth recess maybe created in the IOL (edge or haptic) followed by the 

manual placement of the NiFO sensor inside it. Given the dimensions of the NiFO sensor, which 

is much smaller than the lens, placing the sensor at the edge of the optics is not expected to cause 

any optical aberrations or any other negative effects on image quality. This is supported by 

clinical findings where small irregularities or scratches sustained on an IOL during the insertion 

process which were comparable to the size of the recess/ NiFO sensor assembly did not cause 

significant optical aberrations or patient complaints [129].  Alternatively, placing the NiFO 

sensor in the haptic would further eliminate any chances of producing optical effects such as 

glare. Furthermore, the size of the recess-NiFO sensor unit is small enough to likely not interfere 

with the ability of the surgeon to manipulate the IOL during insertion. Moreover, the recess 

maybe easily created by employing a process such as femto second laser machining which is a 

technology that is already widely used in ophthalmology for manufacturing IOLs and in clinical 

procedures (creating corneal incisions, capsulotomy, and lens fragmentation) [126].  
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External optical read out unit: The ORS has (Figure 3.5) an optical head and a data acquisition 

and display unit that consists of an excitation laser, two photodiodes, a data acquisition board 

and an interactive display unit. A key aspect of the optical design is the fact that the IOP 

measurements are independent of the distance between the optical head and the NiFO sensor as 

light enters/exits the sensor collimated. 

The optical head unit consists of metal housing components containing a beam expander 

(AC080-016-B, LB1471-B, Thorlabs Inc.), a dichroic mirror (T810lpxr, Chroma Technology 

Corp.) which separates the NIR excitation from the emitted fluorescent light, a filter to block 

any ambient light (800AGLP, Omega Optical Inc.), another dichroic mirror (NC424630-

880dcrx, Chroma Technology Corp.) that separates the two QD wavelengths, two corresponding 

emission filters (ET845/55m, Chroma Technology Corp., 950DF70, Omega Optical) and two 

collecting lenses (ACL2520-B, Thorlabs Inc.) that ultimately focus the collected light onto two 

ultrasensitive photo detectors (PDF10A, Thorlabs Inc.), each one monitoring the intensity at 840 

nm and 940 nm respectively. 

The photo detectors produce a voltage output each that are fed into two channels of a data 

acquisition board (Arduino Mega 2560) to read, analyze the signals and display measured IOP 

on a LCD touchscreen module (MEGA2560 5'' LCD Extend TFT Shield for Arduino, 5" 5 inch 

TFT LCD 480X800 Arduino DUE MEGA2560 R3 Raspberry Pi, SainSmart Inc.). 
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Figure 3.5: Schematic showing the ORS that has two units (i) an optical head and (ii) a data 

acquisition and display unit that consists of an excitation laser, two photodiodes, an electronic 

amplifier, a data acquisition board and an interactive display unit. 
 

 

The QDs are excited using a 785 nm, variable power laser diode (LD785-SH300, Thorlabs 

Inc.) whose light goes through a collimating lens (A280TM-B, Thorlabs Inc.) and excitation 

filter (FL780-10, Thorlabs Inc.) before reaching the first dichroic mirror (T810lpxr, Chroma 

Technology Corp.). The 785 nm wavelength is ideal for penetrating eye tissue as it is not visible, 

therefore more comfortable for the patient and it does not cause any tissue damage [130]. The 

presence of the laser collimator makes sure that light enters/exits the housing cube collimated. 

The beam expander is designed to produce a laser beam diameter of ~19 mm in order to ensure 

that the beam reaches the NiFO sensor even if misalignment is present. The user can turn the 

laser on or off and control its power through the touch screen interface. 

The laser diode is attached to a heat sink mount (TCLDM9, Thorlabs Inc.) to dissipate 

heat and prevent laser damage. The laser current, and therefore optical power is regulated by a 

laser controller (LDC205C, Thorlabs Inc.).   

The ORS housing has been manufactured using precise CNC machining to maintain focal 

distances and optical alignment.  
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3.4.2 Principle of operation 

NiFO technology consists of an implantable MEMS sensor (the ‘NiFO’ sensor) and a 

portable, optical readout system. 

As seen in Figure 3.6, the NiFO sensor functions as an ‘analog optical encoder’ when 

excited by a near infrared (~785nm) laser. Changes in IOP are converted into intensity-based 

ratiometric changes of a two-wavelength fluorescent light in the NIR regime (840 nm – 950 nm). 

The fluorescent light emitted by the sensor passes through the outer surface of the eye and is 

collected by an optical head. Operating the device in the NIR regime is crucial for effectively 

transmitting the NIR light through the eye (the absorption coefficient of the eye tissue (cornea, 

retina, etc) in the 700-950 nm window is extremely low [130] and for minimizing retinal 

damage. 

Key design element of the NiFO sensor is the vertical integration of a microlens with a 

two-layer (two- color/wavelength) quantum dot (QD) pillar, termed the ‘QD micropillar’. Each 

of the two QD layers contains QDs that emit fluorescent light at a specific NIR wavelength (at 

840 nm and 940 nm respectively). A third ‘blank’ layer separates the two QD layers and 

functions as an optical spacer. The QD micropillar sits on top of a flexible membrane that is 

exposed to IOP (Figure 3.6). At  zero-IOP, collimated light passing through the microlens is 

focused at the top surface of the QD micropillar, resulting in the excitation of the first QD layer. 

Due to the finite focal volume of the focused excitation light, the second QD layer is also excited 

but with lower intensity. An increase in IOP causes deflection of the membrane resulting in the 

first QD layer to exit and the second QD layer to enter the focal volume respectively. The IOP 

is thus ‘fluorescently encoded’ as the IOP changes are converted into changes in the fluorescent 

ratio intensity between the two QD wavelengths. Finally, the emitted light is collected by the 

microlens and exits the NiFO sensor collimated. 

As previously discussed, the NiFO sensor can be either integrated into an IOL, or it is 

surgically mounted after fitting it into a KPro implant (Figure 3.3). In both cases, the NiFO 

sensor is exposed directly to the IOP of the aqueous humor. 

 

 

 

 



45 

 

 

 

Figure 3.6: The sensor has a micro lens that is vertically integrated with micro pillar on top of a 

flexible membrane containing two layers of quantum dots that are separated by an optical spacer. 

When excited by a NIR laser: (a) at zero-IOP, collimated light passing through the microlens is 

focused at the top surface of the QD micropillar, resulting in the excitation of the first QD layer. 

(b) An increase in IOP causes deflection of the membrane resulting in the first QD layer to exit 

and the second QD layer to enter the focal volume respectively. Therefore, changes in IOP are 

converted into intensity based ratiometric changes of a two wavelength fluorescent light in the 

NIR regime. 
 

 

3.4.3 Micro-fabrication 

A  combination of bulk and surface micromachining processes h av e  b ee n  u s e d  to 

microfabricate the integrated NiFO sensor as shown in Figure 3.7. 1 :  A  0 .2  μm thick layer of 

dry oxide was created by the thermal oxidation of a standard 4” silicon wafer followed by 2: the 

deposition of 0.2 μm of polysilicon u s ing  Lo w  P r es su r e  C h emi ca l  V ap o r  

D ep os i t i o n  ( LP C VD ) .  T h e  po l ys i l i con  l a ye r  w as  t h en  an n ea l ed  t o  r e su l t  

i n  a  t ens i l e  f i lm  s t re s s  o f  ~  5MP a .  3 :  A  2  μm  layer of oxide was then deposited on 
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one side of the wafer using Plasma Enhanced Chemical Vapor Deposition (PECVD). The side 

containing the PECVD oxide was patterned using a 7 μm thick layer of photoresist (SPR 220). 4 

& 5: The o p p o s i t e  s i d e  o f  t h e  wafer w as  t h e n  patterned using QDs in PMMA and SU-

8 to obtain 9 arrays of QD micropillars with each array yielding 20 devices (Figure 3.7). To boost 

the fluorescent signal, the QD micropillar is made out of extremely concentrated CdSeTe/ZnS 

QDs (5mg/ml) embedded in PMMA polymer. To microfabricate the QD micropillar, 840 nm 

QD solution was mixed into pre-polymerized PMMA photoresist and then spun cast and cured 

(Appendix A, Sections  A1, A2). SU-8 (2010) photoresist was then spun and patterned on top 

of the first QD/PMMA layer to form the 8 µm thick optical spacer. The second 940 nm 

QD/PMMA layer was then spun cast and cured using an identical process followed by spin 

casting and curing a 1 μm layer of SU-8 (2002) on top of the cured 940 nm QD layer. Finally, 

Reactive Ion Etching (RIE) was used to remove the PMMA layers deposited on polysilicon 

around the patterned QD micropillars. A microlens array, containing 20 half ball lenses and 

with spacing conforming wi th  the micropillar arrangement was custom made using a glass 

molding process. A glass piece with through holes was manufactured using ultrasonic 

machining to act as a spacer between the polysilicon membrane and the microlens array. The 

thickness of this glass spacer was calculated to accommodate the thickness of the microlens 

as well as its effective focal length to ensure that the incoming laser beam will be focused 

on the QD micropillar by the microlens. The wafer  was  then  d iced  to  yie ld  9  ar rays  

cons is t ing of  20 QD  micropi l lars  each .  6 :  A Deep Reactive Ion Etch (DRIE) was 

performed on the side containing PECVD oxide up until a depth of ~ 350 μm into bulk silicon. 

7: Subsequently, each microlens array, spacer and polysilicon chip with QD m i c r o pillars 

were meant to be laser bonded to form a glass microchamber around the membranes that 

encloses each QD micropillar. However, as laser bonding could not be performed 

(Section 3.4.4.7), UV curable glue (NOA 60, Norland Optical Adhesives) was used to 

bond the microles array, spacer and the polysilicon surface with the patterned QD 

micropillars at which point the individual devices were diced from the array. 8: This was 

followed by an isotropic xenon difluoride (XeF2) etching step to remove silicon. Finally, 

reactive ion etching was performed to remove the dry oxide layer and create the IOP-

exposed polysilicon membrane. 
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Figure 3.7: The NiFO sensor consists of a silicon chip, a glass spacer and a micro-lens layer 

assembled on top of each other. The key element of the design, the QD micropillar, consists of two 

QD layers separated by SU-8 layers that are photolithographically patterned on top of the IOP-

exposed membrane of the silicon chip. 
 

 

Figure 3.8: A 4” wafer yields 180 devices with each array comprising of 20 devices. The 

micropillar array, the glass chip with through holes and the microlens array are aligned and bonded 

together to yield 20 NiFO devices per array. 
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3.4.4 Results and discussion 

3.4.4.1 Material selection 

 As tissue scatters and absorbs more light at shorter wavelengths, NIR light can (600 – 1000 

nm) penetrate biological tissue the most efficiently [130]. However, from Figure 3.9 it can be seen 

that at wavelengths < 750 nm, significant absorption takes place by hemoglobin (HHb) in blood. 

Additionally, at wavelengths longer than 950 nm, there is a sharp increase in absorption by water 

and lipids. Therefore, a clear window exists at wavelengths between 750 nm and 950 nm for optical 

imaging of live tissue.  Taking advantage of this window, the NiFO technology uses a laser that 

has a wavelength of 785 nm to excite the QDs. The QDs in turn have been chosen to absorb light 

at 785 nm and emit at peak wavelengths of 840 nm and 940 nm respectively. Since all these 

wavelengths lie within the NIR window, the amount of laser light reaching the NiFO sensor is 

maximized which in turn maximizes the amount of light emitted by the QDs  and collected by the 

photodetectors in the external optical readout unit, thereby maximizing the signal to noise ratio.  

 The QDs used previously by Ghannad-Rezaie et al. [118], consisting of just a lead sulfide 

(PbS) core dissolved in toluene, had a quantum yield of ~ 15%. By using cadmium selenium 

tellurium (CdSeTe) QDs with a zinc sulfide (ZnS) shell, the photoluminescence quantum yield is 

improved to 35-40%. Additionally, the presence of surfactants like trioctylphosphine oxide 

(TOPO) and hexadecylamine (HDA) provides greater tolerance to processing conditions necessary 

for incorporation of QDs into the NiFO sensor by reducing QD aggregation.  

  

Figure 3.9: Absorption spectra of deoxyhemoglobin (Hb), oxyhemoglobin (HbO2), and water 

(H2O) in the visible and NIR regions. [Figure and caption appear in and are taken from [131]]. 
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 All the materials used in the NiFO sensor (silicon, polysilicon, silicon dioxide, SU-8, 

PMMA, L-LAM 72 glass) maybe considered to be biocompatible except for the QDs.  

 With the advent of biomedical MEMS devices, several research groups have implanted 

silicon/polysilicon-based devices to study their biologic response. When silicon electrodes where 

implanted in the peripheral taste nerve fibers in rats for 91–118 days, normal nerve regeneration 

was observed [132] [133] with minimal tissue response.  Additionally, when the thin film samples 

of LPCVD polysilicon developed by Kotzara et al. [133] were subjected to physiochemical, 

cytotoxic and histopathology tests after implantation in rabbits, the amount of residue that was 

formed was found to be well below detectable levels. Additionally, there was negligible change in 

pH which indicates good biocompatibility potential of polysilicon as an implant material.  

 Silicon dioxide (SiO2) has also been tested by transecting a peripheral nerve electrode 

coated with silicon dioxide onto a nerve in a rabbit. The conduction properties of the implant was 

confirmed and it was also observed that the EMG of the affected muscles had recovered 32 days 

post surgery. Furthermore, the affected muscles were indistinguishable from the contralateral 

control muscles after 150 days [134] which demonstrates the biocompatibility of SiO2. 

 SU-8, commonly used to fabricate high aspect ratio MEMS structures, was used as an 

insulating agent on neural electrodes as well as in cell cultures performed by researchers at the 

Ecole Polytechnique Federale de Lausanne. As the cultures were performed over a span of more 

than 3 months which represents a chronic application, the researchers concluded that SU-8 could 

be considered to be biocompatible [133]. 

 PMMA is known to have a good degree of compatibility with human tissue and is used in 

several biomedical implants such as bone cement while performing joint replacements, in dentures, 

in cosmetic surgeries where is injected under the skin to reduce wrinkles/scars, in body building 

to create artificial muscle and even in the treatment of tuberculosis where the pleural space is filled 

with PMMA balls to compress and collapse the infected portions of the lungs [135]. Specifically, 

due to its excellent anti-inflammatory properties [136], the most widespread use of PMMA has 

been to use it to manufacture intraocular lenses.  

It must be noted that with reference to the NiFO sensor, the structures made up of SU-8 

and PMMA being fully enclosed inside the device, are not exposed to the environment which 

makes the biocompatibility of SU-8 and PMMA non critical. 
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 Ceramics span a wide range of inorganic materials, including glasses that are thermally and 

chemically resistant. In terms of medical applications, they have been used in dental and 

orthopedic implants due to their robust and biocompatible properties. Glass in particular, is a very 

popular choice for the encapsulation of electronics components in medical MEMS implants for 

long term applications [137]. Besides having the properties of ceramics such as biocompatibility 

and excellent resistance to biological fluids, L-LAM 72, being lead free, eliminates the possibility 

of heavy metal leaching into surrounding tissues thereby minimizing chances of cytotoxicity.   

 Since the NiFO sensor uses heavy metal based QDs, discussing the potential for any 

systematic cytotoxicity of QDs is of critical importance. To date, a large amount of studies on 

cytotoxicity of QDs for their practical biological and biomedical applications have been carried 

out [138] [139] [140] [141]. Bhatia et al. showed that there is a correlation between the release of 

free cadmium ions from Cd based organometallic QDs and cell death [142] [143]. Yamamoto et 

al. found that apart from the nanoparticles themselves, the cytotoxicity of QDs could also be the 

result of the molecules covering the surface of QDs [143]. Park et al. further demonstrated that, in 

addition to the release of cadmium ions, precipitation of QDs on the cell surface impairs cell 

viability [141] [143]. Even though these studies prove cytotoxicity of QDs and some of the 

underlying mechanisms, the QD micropillar in the NiFO sensor is fully encapsulated by the 

polysilicon membrane on one side and glass on the other, thereby having no direct contact with 

biological tissue. Additionally, the QDs are trapped inside a PMMA matrix that further hinders its 

ability to leach outside the micropillar. Even though the chances of the QDs inside the NiFO sensor 

coming into contact with tissue is remote, it might be worthwhile to explore the possibility of using 

non heavy metal based NIR QDs such as silver chalconide QDs in the future.  

 Finally, due to the complex nature of the meaning of the term “biocompatibility”, one 

cannot automatically conclude that all these materials will pass the full battery of ISO 10993 

testing. Even though preliminary results from tests published in literature form a good reference 

point for choosing these materials by showing that silicon, polysilicon, silicon dioxide, SU-8 epoxy 

photoresist, PMMA and glass with their respective MEMS processing methods are suitable for 

implantable medical devices, any changes introduced by processing methods used while 

fabricating the NiFO sensor might potentially affect material biocompatibility. Therefore, it should 

be noted that additional testing will be required to meet the ISO 10993 requirements for the NiFO 

implants.  
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3.4.4.2 Characterization of membrane deflection 

The membrane deflection-pressure dependence is an impor t an t  aspect of the sensor 

design as it s p e c i f i e s  s e n s o r  dynamic range and sensitivity. The greater the membrane 

deflection, the greater the sensitivity as well as the range over which pressure can be measured.  

 The shape of pressure sensor membranes can be square, rectangular or circular. To 

maximize area efficiency (active area/dice area) and simplify fabrication processes such as 

dicing, square and rectangular membranes are commonly used. However, for the same active 

area used, a circular diaphragm gives the largest sensitivity and the rectangular diaphragm gives 

the smallest sensitivity [144]. Furthermore, since there is no sharp corner on the circular 

diaphragm, the maximum stress on the edges is reduced compared to the other two shapes. This 

causes the center deflection and in turn sensitivity, to be the largest in circular membranes [145]. 

Therefore, for applications in which maximum deflection plays an important role such as in the 

NiFO sensor, the circular shape is preferred and has been used. 

The deflection-pressure behavior of the thin circular  membrane maybe analytically 

modeled by the following equation [145]:   

𝑃 =
𝐸ℎ4

𝑎4 [
16𝑦

3(1−𝑣2)ℎ
+

(7−𝑣)𝑦3

3(1−𝑣2)ℎ3 +
4𝑎2𝜎𝑦

(1−𝑣)𝐸ℎ3]------------- (1) 

Where y, h and a are the maximum deflection (deflection at the center of the membrane), 

thickness and radius of the membrane, P is the applied pressure, σ, E are the residual stress and 

Young’s modulus (169 GPa) of the polysilicon film and v (0.22) is the Poisson’s ratio. From the 

analytical equation, it can be seen that maximum membrane deflection is directly proportional 

to diameter and inversely proportional to thickness, residual stress and Young’s modulus.  

Analytical deflection-pressure characterization curves for circular membranes of 

diameter 600 µm, thickness 200 nm, residual stress of 5 MPa and different materials 

(silicon nitride and polysilicon) were obtained (Figure 3.10). Since polysilicon has a lower 

modulus of elasticity (E) compared to silicon nitride (E = 290 GPa, the material used in the device 

developed by Ghannad Rezaie et al. [118]), the maximum deflection for the same amount of 

applied pressure is larger for polysilicon membranes. Therefore, by simply switching the material 

to polysilicon, the maximum deflection is improved by ~ 1 µm in the physiological pressure 

range (0-20 mmHg) and ~ 2 µm in elevated IOP cases (20-45 mmHg) compared to the results 

obtained from a silicon nitride membrane.   
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The deflection-pressure characterization results in Figure 3.11 show that for circular 

membranes, the larger the membrane diameter, the greater the maximum deflection obtained. 

Given that the device footprint is limited and after taking into account, the minimum area 

required to bond the glass spacer to polysilicon (see Section 3.4.4.7), the maximum size of the 

membrane can be 1 mm (in diameter). However, making the membrane 1 mm in diameter would 

result in a very fragile base that would not be able to fit into the KPro without breaking. Having 

a membrane of diameter 400 µm would result in a much stronger base but the maximum 

membrane deflection (under 5 µm at 40 mm Hg) would be very low. Therefore, to maximize 

membrane deflection while also maximizing the amount of material to strengthen the base to be 

able to withstand insertion into the KPro device, a membrane of diameter 600 µm was chosen 

for the NiFO sensor.    

During the process of thin film deposition used to fabricate the membrane, the thermal 

expansion coefficient mismatch between different materials causes the buildup of residual stress 

in the membrane. A compressive residual stress results in higher deflection sensitivity but the 

membrane has the risk of buckling under compression. A very tensile membrane, though stable 

against buckling, has reduced membrane deflection (as shown in Figure 3.12) and can break in 

the presence of excess pressure or high temperature gradients. The residual stress of the 

polysilicon membrane was therefore controlled to be slightly tensile at 5 MPa to eliminate the 

risk of buckling without significantly compromising the ability of the membrane to deflect.  

Membrane thickness typically seen in MEMS devices range from 0.15–1000 µm. From 

Figure 3.13, it maybe seen that the thinner the membrane, the greater the membrane deflection. 

Given that polysilicon membranes which are thinner than 0.15 mm are very hard to manufacture 

without holes and are generally not strong enough to withstand pressure loads [145], a membrane 

thickness of 0.2 µm was used to fabricate the NiFO sensor. 

The results shown in Figures 3.10, 3.11, 3.12 and 3.13 depict a nonlinear regime at the 

physiological pressure range (0–20 mmHg) and a linear regime at higher pressures (20–45 

mmHg).  

The membrane deflection-pressure dependence ch a r ac t e r i s t i c s  can be affected by 

the weight of the QD micropillar resting on the  membrane. To study this loading effect of the 

QD micropillar, the membrane along with the QD micropillar was simulated using Finite 

Element Analysis (FEA) in ANSYS to evaluate maximum membrane deflection with varying 
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pressure. From the results of the simulation depicted in Figure 3.14, it may be seen that within 

the clinically relevant pressure range of  0-45 mm Hg, there is a maximum difference in 

membrane deflection of ~ 1.2 µm at 45 mm Hg with and without the QD micropillar . In contrast, 

there is a maximum difference in membrane deflection of ~ 3 µm and ~ 4.7 µm for membrane 

diameters of 800 µm and 1000 µm respectively, which demonstrates a greater QD micropillar 

loading effect with increasing membrane size.  Furthermore, the membrane deflection-pressure 

dependence FEA results (without QD micropillar) match closely with the analytical results (as 

seen in Figure 3.16) thereby validating the simulated model of the membrane.  

A mechanical failure, besides rendering the NiFO sensor useless, poses a risk to the 

patient. As the membrane is the most fragile element of the sensor, the possibility of failure was 

evaluated with an FEA. The stress distribution across the membrane while subjecting it to a 

pressure load was evaluated. It is critical that the maximum stress of the membrane, the von 

Mises stress, has to be smaller than the (tensile) yield strength of polysilicon (∼2.5 GPa [146]) 

as increased stress can lead to plastic deformation and/ or microcracks. In the FEA simulations, 

pressure was varied between 0 and 100 mmHg for a 600 μm diameter, 200 nm thickness 

membrane with 5 MPa residual stress. The results shown in Figure 3.15 suggest that even at 

extreme IOP values (e.g. 100 mmHg), the maximum von Mises stress is one order of magnitude 

lower than polysilicon’s yield strength. As expected, the maximum stress always appears at the 

edges which are anchored.  

To experimentally estimate deflection-pressure dependence, the backside of the 

polysilicon membrane was exposed to a pressure range representing physiological (0-20 

mmHg) and elevated IOP cases (20-45 mmHg). With the top side of the membrane 

maintained  at  atmospheric pressure, the bottom side of the membrane was exposed to fluid 

pressure. After housing the sensor in a custom holder that fits into a pressure chamber, air 

inside the sealed pressure chamber was used to apply the desired fluid pressure while 

membrane deflection was measured using white light interferometry, as described in Section 

3.4.5.1.  Deflection-pressure characterization curves for a 600 µm diameter, 200 nm 

thickness circular membrane with a residual stress of 5 MPa were obtained (Figure 3.17). 

The pressure was regulated from 0 mmHg to 45 mmHg by manually adjusting the d i a l  o f  

a  p r e s s u r e  r e g u l a t o r  and the corresponding membrane deflection was measured for 

every 5 mmHg. The results depict a non-linear regime at the physiological range (0-20 
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mmHg) and a linear regime at higher pressures (20-45 mmHg). No plastic deformation was 

observed and none of the membranes failed despite repetitive loading at 45 mm Hg (maximum 

applied pressure) which indicates robust operation with the experimental results matching closely 

with the analytical solution (Figure 3.17). 

 

 

Figure 3.10: Maximum membrane deflection versus applied pressure for circular membranes of 

diameter 600 µm, thickness 200 nm, residual stress of 5 MPa and different materials (silicon nitride 

and polysilicon).  
 

 

 

 

Figure 3.11: Maximum membrane deflection versus applied pressure for circular polysilicon 

membranes of 4 different diameters (0. 4 mm, 0.6 mm, 0.8 mm, 1.0 mm), thickness 200 nm and 

residual stress of 5 MPa.  
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Figure 3.12: Maximum membrane deflection versus applied pressure for circular polysilicon 

membranes with 4 different residual stresses (5 MPa, 50 MPa, 100 MPa, 150 MPa), diameter of 

600 µm and thickness of 200 nm.  
 

 

Figure 3.13: Maximum membrane deflection versus applied pressure for circular polysilicon 

membranes with 4 different thicknesses (200 nm, 500 nm, 750 nm, 1000 nm), diameter of 600 µm 

and residual stress of 5 MPa. 
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Figure 3.14: Maximum membrane deflection versus applied pressure for circular polysilicon 

membranes of 4 different diameters (0. 4 mm, 0.6 mm, 0.8 mm, 1.0 mm), thickness 200 nm and 

residual stress of 5 MPa with and without QD micropillar loading.  
 

 

Figure 3.15: The maximum von Mises stress at different applied pressure in a 600 μm diameter, 

200 nm thickness membrane with a residual stress of 5 MPa. 
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Figure 3.16: Maximum membrane deflection versus applied pressure for circular polysilicon 

membranes of diameter 600 µm, thickness 200 nm and residual stress of 5 MPa determined 

analytically and from FEA simulations.  
 

 

 

Figure 3.17: Maximum membrane deflection versus applied pressure determined experimentally 

and analytically for circular membrane of diameter 600 µm, thickness 200 nm and a residual stress 

of 5 MPa. Error bars represent standard error of the mean (SEM) from 3 measurements (taken 

from one device).  
 

 

3.4.4.3 Fluorescence from QD micro-pillar 

A readout platform was built to characterize the opto-mechanical performance of the 

NiFO sensor (see Section 3.4.5.2.) using which, the emitted fluorescent intensity was 

measured at 940 nm and 840 nm as a function of the applied pressure. The emission intensity 

for each QD layer was quantified by measuring the average intensity in the 815 nm - 855 nm 
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and 915 nm – 975 nm spectral windows respectively. Subsequently, the normalized 940 nm 

/ 840 nm intensity ratio was  calculated  (Figure 3.18). For t he  600  µm d iamete r  

membrane, it maybe concluded that the dependence of pressure to the intensity ratio and to 

membrane deflection is identical in the clinically relevant pressure range of 0-45 mmHg.  

 

Figure 3.18: (a) The fluorescent intensity obtained from each QD layer (taken from one device). 

Normlaized intensity ratio versus (b) membrane deflection and (c) applied pressure for a NiFO 

sensor consisting of a 600 µm diameter, 200 nm thickness, 5 MPa residual stress circular 

membrane. The dashed lines represent a fit by a third-order polynomial. 
 

 

3.4.4.4 Characterization of micro-lens array 

 The magnitude of the fluorescent signal collected from the QD micropillar depends upon 

the design of the microlens. The characteristics of the microlens that influence its fluorescent light 

gathering capacity include its Numerical Aperture (NA) and the Depth of Field (DOF). 

Furthermore, the variation of these and related parameters such as lens diameters and focal lengths 

between microlenses in each array directly determines production yield and is therefore equally 

important.    
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 The microlens arrays were custom made by Isuzu Glass Inc. using high temperature 

compression molding of L-LAM 72, a high refractive index glass material that is used to make 

optics. The lenses have optical quality surface finish (Scratch & Dig - Surface 1 : 160-50; Surface 

2 : 80-50), tight dimensional tolerances (2.5 µm) and excellent broadband transmission (> 99% 

between 480-1800 nm).   

 The amount of light collected by the microlens maybe quantified by its numerical aperture 

that is given by: NA = nM·sinθ, where nM is the refractive index of the medium that the lens is 

placed in and θ is the half angle of the cone of rays collected by the lens. The maximum half angle 

θ and therefore the maximum NA can be obtained when the sample, in this case the QD micropillar, 

is located at the focal length of the lens. In order to increase the NA, one can increase the refractive 

index of the medium and/or increase the angle θ. Since the lens is sealed onto the NiFO sensor to 

create an air cavity around the micropillar, nM is given by the refractive index of air which is 1. 

The angle θ can be increased by choosing a high refractive index lens material since the higher the 

refractive index of the lens, the shorter the focal length and therefore, the wider the optical cone 

which translates to a larger θ. L-LAM 72, a popular industrial glass material, was chosen due to 

its high refractive index (1.72) for NIR wavelengths, superior NIR spectral transmission (> 99%) 

and amenability to be compression molded at high temperatures with good surface finish.  

 Given the dimensions of the polysilicon membrane (0.6 mm in diameter), the diameter of 

each microlens was chosen to be 0.5 mm to allow for a clearance of 0.1 mm to perform alignment 

while assembling the sensor. The focal length of each microlens in the array was experimentally 

determined using the method described in Section 3.4.5.3. From the results shown in Figure 

3.19(a), it can be seen that the maximum variation in focal length between microlenses in an array 

is ~ 55 µm while the variation in average focal lengths in between arrays is under 10 µm.  

Based on the experimentally determined focal lengths and a lens diameter of 0.53 mm, the NA 

is subsequently calculated from Equation 3 and was found to be ~ 0.5. Figure 3.19(b) shows the 

NA for each microlens in 5 separate lens arrays.  

 Apart from the NA, the excitation focal volume is also determined by the DOF of the 

microlens. Based on the NA and for a wavelength ( λ) of 785 nm, Figure 3.19 (c) shows the DOF 

of individual microlenses in 5 separate lens arrays estimated from Equation 4 is ~ 3 µm.   Being 

greater than the thickness of each quantum dot layer in the micropillar, this DOF makes the focal 
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volume large enough to capture all the fluorescent flux from one layer without overlapping with 

the other layer. 

 

Figure 3.19: Scatter plots showing variations in (a) EFL, (b) NA and (c) DOF of 20 microlenses 

in each lens array.  
 

3.4.4.5 Patterning quantum dot micro-pillars 

 In recent years, the nanoscale quantum confinement shown by semiconductor QDs  have 

attracted a lot of attention for various photonic and optoelectronics applications including 

communications, [147] displays, [148] and biology [149]. While there are many methods for 
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synthesizing them, semiconductor QDs formed in colloidal solutions via chemical synthesis has 

been the most popular method [150]. In colloidal solutions, however, QDs are suspended in a 

solvent, making them less practical for microfabrication and integration of photonic and 

optoelectronic devices. The introduction of such QDs into a solid-state matrix, therefore, is of great 

interest. One approach incorporates the QDs into polymer thin films and has shown great promise 

[151] [152]. The incorporation of QDs into a thick, bulk polymer matrix has also been investigated 

by using many complicated synthesis techniques to prevent aggregation of QDs [153]. In order to 

realize the NiFO sensor, CdSeTe/ZnS quantum dots of wavelength, 840 nm and 940 nm 

(purchased from Nano Optical Materials, Inc) dispersed as a colloidal suspension in toluene were 

used. Cd based core/shell QDs provide narrower band fluorescent emission and provide higher 

levels of photoluminescence and stability when compared to core only complexes. The QDs are 

surface coated with organic surfactants that make them lipophilic and soluble in organic solvents 

such as toluene, chloroform, and hexane.   We implemented a simple method to embed these QDs 

in PMMA using the pre-polymerization of PMMA monomers to obtain a uniform distribution of 

QDs and to prevent them from separating from the polymer matrix [154]. Furthermore, the 

incorporation of QDs in other polymers that are routinely used in MEMS based microfabrication 

processes such as SU8 and PDMS were also explored.  
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Figure 3.20: Grayscale micrographs showing fluorescence from QD micropillars fabricated with 

(a) QDs in hexane, photo-lithographically patterned after mixing with SU-8, (b) QDs in toluene, 

pre-polymerized in PMMA, spin cast and cured on SU-8, (c) QDs in hexane printed on cured SU-

8, (d) QDs in toluene, mixed with PDMS, spin cast and cured on SU-8, (e) QDs in toluene, photo-

lithographically patterned after mixing with SU-8 with corresponding line scans data. (f) Plot 

showing fluorescence signal to noise ratios obtained from each patterning technique.   Error bars 

indicate standard deviation of measurements performed on five different micropillars on the same 

wafer and belonging to the same array. 
 

 

QD-PMMA composite: The synthesis of the QD-PMMA composite is based on the radical 

polymerization of MMA (methyl methacrylate). Under vigorous stirring, a quantity (Appendix A, 

Section A1) of nanoparticle colloidal solution of QDs in toluene was slowly added into distilled 

MMA with a concentration of radical initiator benzoyl peroxide. It is commonly known that the 

uniform dispersion of nanoparticles in the polymer–QD composites is hampered by cluster 

aggregation which separates the QDs from the polymer matrix. Direct polymerization of QDs, in 

which the QD-MMA solutions was placed in a thermostatic water bath at 60 0C for 1 hour exhibited 

serious non-uniformity and clustering of the QDs. When the QD-MMA solution was, however, 

first placed into a thermostatic water bath at 90 °C for about 5 min for a short and quick pre-

polymerization, and then was transferred into a thermostatic bath at 60 °C to completely 

polymerize for 20 min, before proceeding to spin cast and cure for 10 minutes at 110 0C, a uniform 
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distribution of QDs in PMMA (layer thickness of ~ 100 nm) was observed without any aggregation 

(Figure 3.20(b)). The rapid polymerization of MMA monomers form oligomers, which envelope 

the QDs and prevent them from aggregating during the following post-polymerization process.  

 Additionally, it was observed that when the temperature for curing PMMA was increased 

from 110 0C to 150 0C, the QDs displayed a quenching effect with more than a 2 fold reduction in 

photoluminescence as shown in Figure 3.21(a). Furthermore, the amount of PMMA-QD deposited 

during the spin casting process was higher at the center of the wafer compared to the edges by 

about ~ 0.3 µm, as demonstrated by an increase in photoluminescence from the micropillars 

patterned at the center of the wafer compared to those at the edges (Figure 3.21(b)). The lack of 

any statistically significant variation in photoluminescence sampled from comparable locations 

across two wafers show that the patterning process is repeatable (Figure 3.21(b)).   

 
Figure 3.21: (a) Scatter plots showing variations in fluorescence from micropillars (840 nm QD 

layer) patterned at the center of the 4” wafer (middle array of 20 micropillars) with  the PMMA-

QD matrix cured at 110 0C and 150 0C respectively. (b) Scatter plots showing variations in 

fluorescence from micropillars (840 nm QD layer) patterned at the center of a 4” wafer 1 (middle 

array of 20 micropillars), from micropillars patterned at the center of another 4” wafer 2 (middle 

array of 20 micropillars) and from micropillars patterned at the periphery of the 4” wafer 1. [p < 

0.1; * p < 0.05; ** p < 0.01; *** p < 0.001;] 
 

 

QD-SU8 Composite: SU8 has been used as an UV sensitive material in microelectromechanical 

systems [155], and in holographic lithography [156]. Given that the spacer between the QD layers 

in the NiFO sensor is made up of SU8 and due to the superior adhesion between consecutive SU8 

layers, we attempted to create SU8–QD composites to form the QD bilayer structure.  
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 Because of the incompatibility of SU8 with toluene, which is the solvent of the QD colloid, 

the QDs were first transferred into hexane which is a SU8 compatible solvent. A volume of the 

QD solution in toluene was mixed with an excess of methanol (10 times the volume of QD solution 

in toluene). The mixture was then centrifuged to precipitate the QDs, the clear supernatant was 

discarded and the precipitated QDs were then mixed with hexane to achieve the desired 

concentration (5 mg/mL). Given that methanol can wash the surfactants from the surfaces of the 

QDs, several rounds of precipitations lead to the QDs losing their brightness and aggregation to 

occur.  However, one cycle of methanol washing and precipitation had negligible effects on 

aggregation levels and QD brightness.  The QDs in hexane solution was then added into the SU8 

(2002) solution very slowly with strong stirring to prevent clustering of QDs in SU8. Compared 

with the aforementioned PMMA–QD composite, the QD concentration in the SU8–QD composite 

cannot be increased arbitrarily high due to the low dispersibility of QDs in the viscous SU8–

polymer solution. 

 A SU8–QD composite layer was prepared by spin coating the solution onto a substrate 

followed by a soft bake at 65 °C for 5 min. The PL in the SU8–QD composites was measured as 

shown in Figure 3.20(a). It was observed that despite solvent compatibility between hexane and 

cyclopentanone (the solvent found in SU-8) and vigorous mixing, the QDs continued to aggregate, 

leading to the formation of a highly non-uniform distribution of QDs in cured SU8. Additionally, 

the variation in the thickness of the SU-8-QD composite layer was also very large (~ 4 um).    

QD-PDMS composite: PDMS (Polydimethylsiloxane), commonly used in soft lithography, is a 

polymeric organosilicon [157] with a band gap of ~4.77 eV and is transparent to light with 

wavelengths longer than 260 nm [158]. Being chemically inert and weather resistant, its 

applications include its use in contact lenses, medical devices and as an elastomer. Additionally, 

it is viscoelastic so given a long flow time, or high temperature it will mold to the imperfections 

of a surface. This mechanical property allows PDMS to be easily applied to many surfaces as a 

protective layer or as a carrier of certain substances. Given that it is one of the most commonly 

used materials for regulating flow in microfluidic chips, PDMS is regularly used in soft lithography 

[159]. Due to these properties of PDMS, its availability and low cost, we explored the possibility 

of using it as a carrier for the QDs to fabricate the NiFO sensor. 0.5 mL of the 5mg/mL QDs was 

added to 3 mL of a 10:1 (ratio of elastomer to curing agent) mixture of PDMS  and thoroughly 

mixed with the help of a mechanical stirrer. However, despite having a visually uniform post 
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mixing appearance, the combination when spin cast on a wafer and cured, lead to the formation of 

QD aggregates, as shown in Figure 3.20(d).  

Printing QDs directly onto the micropillars: An attempt was also made to deposit QDs directly 

on patterned SU8 to explore the possibility of increasing fluorescence by achieving a higher 

concentration of QDs while creating more uniform layers. To implement this approach, the 

Dimatix inkjet printer (DMP-2831) was used with the QDs suspended in a mixture of hexane and 

liquid SU8 (2000.5) as the ink. The printer allows the deposition of fluids directly onto the 

substrate by utilizing a disposable piezo inkjet cartridge. QDs in hexane was mixed with liquid 

SU8 to reduce evaporation and encourage spreading of the ink on the patterned and cured SU8 

spacer substrate. As seen from Figure 3.22, the ink did not spread uniformly on the substrate before 

the solvent evaporated, despite efforts to promote spreading by subjecting the substrate to oxygen 

plasma treatment. Furthermore, the evaporation of the solvent lead to the aggregation of the QDs 

in SU-8 leading to a quenching of fluorescence. Additionally, besides requiring multiple passes (> 

40) to cover a circular area of diameter 150 µm with ink, the printing nozzles on the cartridge had 

to be moved sequentially from one patterned feature to the next which made this approach very 

time intensive and low throughput. 
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Figure 3.22: (a) Pseudo-color micrographs showing fluorescence from a row of QD micropillars 

fabricated with QDs in hexane printed directly onto cured SU-8. The inset is a single micropillar 

demonstrating QD distribution on the surface of the micropillar after solvent evaporation. (b) 

Pseudo-color micrographs showing fluorescence from two rows (without and with surface plasma 

activation) of QD micropillars fabricated with QDs in hexane printed directly onto cured SU-8. 
 

 

3.4.4.6 Glass micro-machining 

 The microlens array is incorporated above the QD micropillar array and into the device via 

a glass spacer consisting of through holes as shown in Figure 3.8.  

 Since glass is difficult to be machined precisely at a micro scale, several methods to create 

the through holes were considered. Sandblasting, which is a technique in which a high velocity jet 

of abrasive particles is directed towards the sample for material removal by mechanical erosion, 

could not be used due to the formation of V shaped, tapered etch profiles that are produced with 

this method. Given the fixed distance requirement that needs to be maintained between consecutive 

through holes in accordance with microlens placement and hole depth, there is not enough room 

to accommodate V shaped etch profiles.  Wet etching of glass has been investigated by many 

researchers [160] [161] with the advantages of this method being its simplicity, high etching rate, 

high mask selectivity and low surface roughness. However, due to its isotropic etching behavior, 

the aspect ratio that is achievable with this method is limited and the etch profile is U shaped with 

huge undercuts making it unsuitable for creating the through holes in the glass spacer. 

Additionally, metal masks (Cr-Au) are required in this method making it costly.  Coming to RIE, 



67 

 

even though this method has been used extensively to create high aspect ratio structures with 

vertical walls in silicon, there is very little literature that mentions deep glass etching with smooth 

surface, vertical etch profiles and high aspect ratio structures. The aspect ratio that can be created 

in glass is limited due to low selectivity between glass and mask material. While attempting to 

create the through holes with this method using the SPTS APS Dielectric Etch tool and with KMPR 

photoresist as the masking layer, the etch depth was limited to about 50 µm. Beyond this etch 

depth, the sample developed cracks that might have originated from stresses created in the material 

by the conditions inside the etching chamber. Mechanical drilling with a silicon carbide drill bit 

was also employed to fabricate the through holes after mounting the sample on a carrier (for 

mechanical shock absorption during the drilling process) with UV curable glue. However, despite 

the stabilizing support provided by the carrier, the mechanical vibrations created by the drill bit 

caused sample cracking. Additionally, the holes produced had significant blow out around the 

sides/edges that prevented any possibility of achieving good bonding between the spacer and the 

microlens array. Finally, ultrasonic drilling (Bullen Ultrasonics Inc.) was used to create the through 

holes in the glass spacer. Ultrasonic machining has a low material removal rate and is a loose 

abrasive machining process in which the mirror image of a shaped tool can be created in hard, 

brittle materials such as glass. Material removal is achieved by the direct and indirect hammering 

of abrasive particles against a work piece by means of an ultrasonically vibrating tool. Even though 

the process is physical, it induces minimal stresses in the work piece. Being non-thermal, non-

chemical, and non-electrical, the chemical and physical properties of the work piece are left 

unchanged. Ultrasonic machined features can have high aspect ratios with vertical side walls, 

enabling us to preserve valuable space in between the through holes. Like wet etching and RIE, 

multiple features can be machined at the wafer or substrate level simultaneously, making the 

process scalable and low cost.  

3.4.4.7 Laser bonding microlens array 

 Bonding glass to glass substrates and other combinations typically requires heating of the 

substrates to obtain bonding diffusion of the materials across the substrate boundaries unless 

adhesives are employed. Various examples of current bonding practices are fusion bonding, anodic 

bonding of sodium rich glass to silicon and adhesive bonding.  

 Fusion bonding glass to glass involves placing the two glass substrates in contact with each 

other and then applying pressure and heat. The glass is brought up to at least its first transition 
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temperature to soften it thereby melting the two surfaces together to create one bonded piece. 

Besides requiring both surfaces to have matched TCEs (Thermal Co-efficients of Expansion), the 

method is highly susceptible to the formation of air bubbles due to sensitivity to impurities that 

compromises bonding. Additionally, the surface of the glass becomes distorted. Even though it is 

possible to use this method to bond the microlens array to the glass spacer consisting of the through 

holes, any distortion of the lens array will drastically affect the optical path which would 

significantly reduce device yield.  

 Anodic boding, which is commonly used to bond glass with silicon, cannot be used to 

perform glass to glass bonding. Glass containing sodium is essential for bonding which takes place 

at very high temperatures of around 400 0C and over a period of several hours. A potential 

difference is then applied to drive the sodium atoms across the glass-silicon boundary that creates 

a sodium-oxide bond at the interface. However, this method cannot be applied to fabricate the 

NiFO sensors as both SU-8 as well as the QDs would not be able to survive such high temperatures. 

 There are adhesives specifically designed to bond glass to glass and glass to silicon. While 

they are easy to apply, it is usually very difficult to make a bubble free joint. It would be very 

challenging to pattern the adhesive on polysilicon around the patterned QD micropillars to perform 

glass to polysilicon bonding. Alternatively, the adhesive could be applied to the lower surface of 

the glass spacer but there would still be a large possibility for the glue to squeeze out from between 

the surfaces after they are joined and cover the membrane thereby affecting its deflection 

properties. Additionally, most adhesives absorb fluids and swell over time, leading to leaks at the 

joints. This especially makes the method unsuitable for sealing implantable devices.  

 Therefore, due to the limitations of the above mentioned conventional bonding methods, 

we attempted to bond the microlens array, the glass spacer with the through holes and the 

polysilicon layer with patterned QD micropillars using a low (room temperature) laser bonding 

technique developed and patented by Invenios Inc. (US 20130112650 A1).  

 The process for room temperature bonding involves two substrates, with one of them being 

transparent to laser of a certain wavelength (usually glass). The interface created by the two 

substrates is therefore characterized by a transmissivity change. A change in transmissivity maybe 

accomplished by depositing a heat absorbing coating like a metal, semiconductor or ceramic which 

maybe as thin as 10 Å on either one of the substrates. When laser light is irradiated through the 

transparent substrate and focused onto the heat absorbing layer at the interface, a localized high 
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temperature region is created from the energy being supplied by the laser. As more and more 

energy is absorbed, the glass around softens, a plasma is created and the temperature rises to enable 

diffusion to take place. At some point, the heat absorption layer diffused into glass and therefore 

becomes transparent to the laser. Once the heat absorption layer becomes transparent, the plasma 

collapses and the two substrates fuse to form a permanent bond.  

 Given that the heat absorption layer diffuses at a temperature that is higher than the first 

transition temperature of glass, the glass becomes soft and bonds to the neighboring material. The 

method is therefore fairly robust as it is not sensitive to the presence of particles. Additionally, the 

bulk of both substrates remain at room temperature during the bonding process. Only the heat 

absorption layer and the material immediately adjacent to the bond-line are elevated to the 

diffusion temperature. The width of a single bond-line can vary from approximately 0.001 μm to 

100 μm. The depth is usually 500 nm but can be as deep as upto several micro-meters. Finally, the 

heat affected zone is approximately 1 µm. The spacing in between consecutive NiFO devices is 

such that there is a 200 µm space around the membrane in each device for bonding polysilicon to 

glass, thereby satisfying this requirement. Moreover, there is ample space around the through holes 

to allow laser bonding the glass spacer to the glass microlens array.  

 When bonding one substrate to another, a surface flatness of under 50 nm is needed to 

achieve acceptable bond quality. From Figure 3.24, it maybe seen that for the glass spacer, the 

shape of the sample resembles a “potato chip” with the surface flatness being ~1.5 µm for both 

sides. For the sample consisting of the patterned micropillars on polysilicon (Figure 3.25), the 

surface flatness is 0.79 µm on the side of the QD micropillars and 0.63 µm on the opposite side. 

Even though these values are well above 50 nm, it is possible to achieve this target as they can be 

forced flat with pressure and laser bonded. However, for the microlens array (Figure 3.23), the 

surface flatness for both top (side with the lenses) as well as bottom surfaces (plain side) is ~ 2 

µm. For these samples however, force flattening would not be possible as that would damage the 

lenses. Therefore, in order to proceed with room temperature laser bonding, the molding process 

that is used to manufacture the microlens arrays must be improved to achieve a surface flatness of 

50 nm that shall be employed in a future iteration. Additionally, since this process does not require 

bonding to take place over the entire surface of the glass, but rather the samples can be seam sealed, 

the target flatness of 50 nm maybe achieved with minimal modifications to the molding process. 
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Therefore, room temperature laser bonding is still a viable method that can be employed to 

assemble the NiFO sensors while ensuring maximum production yield.   

 

Figure 3.23: Microlens array (a) bottom surface (lens side) showing a maximum flatness non 

uniformity of 2 µm and a (b) buckled, bowl shaped profile. Microlens array (c) top surface (flat 

side) showing a maximum flatness non uniformity of 2 µm and a (d) warped profile with two 

valleys. 
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Figure 3.24: Glass spacer (a) bottom surface (with alignment cross marks) showing a maximum 

flatness non uniformity of 1.5 µm and a (b) twisted bowl shaped profile. Glass spacer (c) top 

surface (without alignment cross marks) showing a maximum flatness non uniformity of 1.5 µm 

and a (d) twisted bowl shaped profile. 
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Figure 3.25: Silicon piece with array of patterned QD micropillars (a) top surface (with QD 

micropillars) showing a maximum flatness non uniformity of 0.6 µm and a (b) buckled, bowl 

shaped profile. Silicon piece with array of patterned QD micropillars (c) bottom surface 

(membrane side) showing a maximum flatness non uniformity of 0.7 µm and a (d) buckled, bowl 

shaped profile. 
 

3.4.5 Experimental methods 

3.4.5.1 Characterization of membrane deflection 

 The experimental setup for characterizing the NiFO sensor membrane deflection consists 

of a custom made pressure chamber, an external fluid reservoir, an air pressure regulator (Elveflow 

microfluidic AF1 pressure pump), an external fluid pressure sensor 

(MMG005USBHT6ME0T9A10, USB pressure transducer, Omega Engineering), an external 

temperature sensor (KHSS-14G-RSC-2, USB K Type thermocouple, Omega Engineering), a 3D 

printed holder and the NiFO sensor’s readout unit (Figure 3.26).     

 The NiFO sensor (without its microlens) was placed in a 3D printed holder that fits into the 

lid of a pressure chamber. The pressure chamber, consisting of a base and a lid, is machined out 

of brass. The lid consists of three threaded openings, one for accommodating the 3D printed NiFO 

sensor holder, one for accommodating a brass compression fitting (BRLK-14-14, Omega 

Engineering) through which the temperature probe maybe passed and one for accommodating the 

threaded end of the external fluid pressure sensor. The edges of the lid have multiple (eight) 
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threaded holes to accommodate screws that fix the lid to the base. The base has a recess in its top 

surface that houses an o-ring and eight threaded holes. The screws (standard M6 threading) when 

inserted through the lid, passes through into the base and hold the lid in place while the o-ring 

creates a leak proof seal in between the two parts. The base has an opening at the bottom that is 

connected to a ferrule through which tubing (dimensions) is inserted. The tubing connects the base 

to an external fluid reservoir which is in turn connected to an air pressure regulator. Fluid (can be 

air or distilled water) pressure inside the pressure chamber was maintained by using the air pressure 

regulator. The pressure chamber was placed on a hot plate at 370C to maintain fluid at 

physiological temperatures. 

The setup was then placed on the stage of a non-contact optical 3D profiler (Zygo NewView 

5000). Using high resolution scanning white light interferometry,  the membrane inside the NiFO 

sensor was imaged. By mapping the microstructure and topography of membrane surface, the 

deflection was measured by regulating the fluid pressure inside the chamber at physiological 

temperatures.   

3.4.5.2 Characterizing fluorescence from quantum dot micro-pillar: 

A 20x, 0.75 NA objective lens (UPLANSAPO, Olympus), was fixed in front of the optical 

read out unit with the photodetectors attached to a two channel oscilloscope (PicoScope 3425, Pico 

Technology). The 785 nm laser was operated in continuous mode with a driving current of 150 

mA, which corresponds to a laser power of 60mW. Using a camera (Hamamatsu Digital Camera, 

C11440-22C, Orca Flash 4.0), the lens was initially focused on the top QD (940 nm) layer.  While 

regulating the fluid pressure inside the chamber as described in Section 3.4.5.1, the fluorescence 

from the QD layers was collected by the two photo-detectors and recorded using a two channel 

oscilloscope (Pico Technology, picoscope 5000 series).   
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Figure 3.26: Schematic of the device characterization and testing platform. Chamber pressure may 

be varied to simulate IOP fluctuations in the eye along with temperature regulation.   
 

3.4.5.3 Characterizing micro-lens array: 

 To obtain the optical properties of the microlenses, 5 arrays consisting of 20 lenses each 

were characterized. The focal length of individual microlenses was measured using a custom-made 

optical setup (Figure 3.27) and a 2- step sequence was followed: i) the top surface of a microlens 

was visually identified and set as the reference plane (plane I), and ii) the plane containing the 

image of the focused laser beam was brought into the imaging plane of the microscope objective 

(plane II) by vertically moving the microlens. The distance between these two planes (I and II) 

may be used to estimate the focal length of the microlens. Plane II was identified as the plane of 

maximum light intensity through the image analysis software (Metamorph®).  

 The NA of the microlenses (for use in air) was estimated from the following equation where 

a and F represent the microlens radius and effective focal length respectively.  

𝑁𝐴 = sin [tan−1 (
𝑎

𝐹
)] -----------(3) 
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 The DOF was estimated theoretically from the NA and wavelength ( λ=785 nm) using the 

following equation [162]. 

𝐷𝑂𝐹 =  
𝜆

𝑁𝐴2 -------------(4) 

 

Figure 3.27: Schematic of the experimental setup for characterizing individual focal lengths of 

microlenses in a lens array. 
 

3.4.6 Conclusions 

A novel NIR, optomechanical, electronic-free and powerless implantable pressure 

sensor that can potentially monitor intraoccular pressure was developed. The sensor can 

monitor pressure within the clinically desired IOP range (0-45 mmHg) seen in patients 

suffering from POAG. The sensor does not suffer from photobleaching and has a 

maximum error of under 15%. The experimental results indicate that the sensor can accurately 

as well as repeatedly respond to fluid pressure changes in the range (0-45 mmHg) without 

breaking, as predicted by analytical and FEA models. Upon evaluation of the possibility for 

mechanical device failure, the maximum von Mises stress at 100 mmHg fluid pressure was 

found to be one order of magnitude lower than the polysilicon yield strength (2.5GPa).  

The NiFO IOP sensing system presented in this thesis is a significant improvement over 

the first generation proof of concept device developed by Ghannad-Rezaie et al. Although the 

device developed by Ghannad Rezaie et al. does meet the clinical requirements for IOP 

monitoring, the choice of materials are not suitable for long term use in the in vivo environment. 
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Additionally, as per the design of the first generation prototype, the QD micropillar is directly 

exposed to the fluid inside the anterior chamber of the eye that raises questions about the 

cytotoxic effects of heavy metal  based  QDs on surrounding tissue. Also, the fabrication process 

does not provide good device yield as the microlenses have to be individually arranged and 

aligned manually on each device which is very laborious. Furthermore, the fabrication process 

cannot be outsourced easily to external contract manufacturers for commercialization. The 

sensor design/microfabrication approach presented here addresses these issues by 1) reducing 

the device footprint to ~ 1.4 mm x 1.4 mm x 1 mm and ~ 1 mm x 1 mm x 1 mm for incorporation 

with KPro and IOL implants respectively, 2) preventing direct exposure of cytotoxic QDs to 

biological tissue and 3) describing a batch fabrication process that is amenable for future 

commercialization of the NiFO technology. 

We envision that the proposed NiFO sensing technology can be extended to other 

biomedical applications where pressure monitoring is required such as arterial, intracranial 

and gastrointestinal pressure monitoring. 

3.5 DCI Technology 

3.5.1 Device design 

The DCI sensor [163] is an electronic-free, image contrast based sensor which can measure 

fluid pressure (Figure 3.29). The pressure value can be extracted by imaging the sensor using an 

objective lens, a Charge Coupled Device (CCD) camera and z-scanning module. Key design 

element of the sensor is the incorporation of a deformable, 10 µm thick, semi-transparent PDMS 

membrane (indicated as ‘s-PDMS’ in Figure 3.29) that is exposed to pressure. The membrane is 

attached to a thick PDMS slab that contains a circular microchamber, a microfluidic channel and 

one inlet that is used to pressurize the membrane. A rigid thick glass substrate seals the entire 

sensor. 
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Figure 3.28: (a) Cross–sectional schematic of the PDMS pressure sensor. ‘PR’ and ‘s-PDMS’ 

stand for ‘PhotoResist’ and ‘Semi-transparent PDMS’ respectively.(b)Stereoscopic image of the 

fabricated sensor (scale bar, 2 mm) along with bright field micrographs of the PDMS membrane 

with food color aggregates (top right) as well as the photoresist patterns on the glass substrate 

(bottom right) (scale bars, 400 µm). 
 

3.5.2 Principle of operation 

The pressure sensor functions as a ‘displacement sensor’ (Figure 3.30): pressure deflects 

the thin, PDMS membrane and the distance between the membrane and the top surface of the glass 

substrate is measured using a precision, z-scanning module. This module consists of a microscope 

lens (5x) and a computer controlled, high speed (10 ms /step) piezoelectric stage (Figure 3.30). The 

z-scanning module focuses first at the inner (bottom) surface of the semi-transparent, membrane 

and then at the inner (top) glass surface of the microchamber using a custom-made image contrast 

analysis algorithm. The z-scanning module is able to focus on those two surfaces because the 

refractive index changes significantly from PDMS to air and from air to glass and therefore those 

interfaces (PDMS/air and glass/air interfaces) have high image contrast. 
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Figure 3.29: (a) Principle of operation of the contrast image based pressure sensor. The plot 

depicts the changes in the image contrast as the sensor is being scanned in the z-direction for the 

‘no pressure’ (dashed line) and ‘increased pressure’ (solid line) cases. (b) The z-scanning setup for 

measuring the distance between the 2 interfaces. The same setup was used to characterize the 

sensor. 
 

3.5.3 Micro-fabrication 

An inexpensive fabrication process was employed using a combination of low cost materials 

and standard soft lithography techniques to manufacture the sensor which consists of 3 layers: (a) 

a 5 mm thick, PDMS slab. The slab was replicated from an SU-8 mold and contains the microfluidic 

channel which is 10 mm long, 200 µm wide and 100 µm thick.  After the slab was peeled off from 

the SU-8 mold, two through holes - corresponding to the microchamber and pressure inlet- were 

made using a hole puncher, (b) a 10 µm thick, semi-transparent PDMS layer. This layer contains 

the pressurized membrane and was fabricated by spin casting and curing on a bare silicon wafer a 

mixture of 30% by weight of food color (Nourriture Coloration, FD&C Red #3, 0.5% in Aqueous 

Solution) and PDMS elastomer (10:1 weight ratio), and (c) a 500 um thick borosilicate glass 

substrate that mechanically supports and seals the sensor. A 20 µm thick photoresist film (KMPR® 

1000, MicroChem) was photolithographically patterned on the top surface of the glass substrate. 

The photoresist patterns were used to increase image contrast (Figure 3.29). The glass substrate 

was then aligned and irreversibly bonded to the bottom surface of the slab after treating the surfaces 

with air plasma (700 mTorr chamber pressure, 50 W, 60 s exposure time) [164]. The slab was 

finally bonded to the 10 µm thick, semi-transparent layer. The portion of the membrane covering 
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the pressure inlet hole was pierced to create the inlet and to allow the insertion of a metallic needle 

in order to pressurize the microchamber.  

Food color was added while fabricating the 10 µm thick membrane to make it semi-

transparent and, thereby, to increase its optical contrast. Even though the food color aggregation 

improves contrast (top right micrograph in Figure 3.29), the membrane is still relatively clear, 

allowing to visualize the patterned glass substrate.  

3.5.4 Results and discussion 

The normalized image contrast along the z axis of the sensor for various values of applied 

pressure is shown in Figure 3.31. Changes in image contrast depend on changes in the refractive 

index along the z-axis, e.g. at focal planes that coincide with the glass/air and PDMS/air interfaces. 

As a result, the image contrast has two peak values: the first peak corresponds to the patterned 

glass/air interface while the second peak corresponds to the semi-transparent membrane 

(PDMS/air interface). Because the membrane is thinner than the scanning step (20 µm), only one 

peak is observed when scanning along the membrane. Since the glass surface is rigid, the position 

of the first peak -corresponding to this fixed surface does not change with applied pressure. The 

second peak moves as the membrane deflects under pressure. The increased distance between the 

two peaks is therefore an indication of the membrane being deflected. A decrease in the normalized 

image contrast of the first peak with increased pressure was also observed. This can be attributed 

to the reduced illumination/reflection light that reaches/reflects from the glass substrate when the 

membrane is deflected and therefore curved. 
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Figure 3.30: Normalized image contrast versus z scan position for six different values of applied 

pressure.as extracted from the image processing algorithm. The two micrographs depict the 2 

interfaces that the maximum contrast is observed (scale bars, 200 µm). 
 

 

Figure 3.31: (a) Membrane deflection of PDMS sensor versus applied pressure estimated from 

our image processing algorithm and measured experimentally using interferometry. The solid line 

represents a fit by a third-order polynomial. (b)  Pressure values obtained from the PDMS sensor 

versus known (accurately-controlled) applied pressure. Error bars indicate standard deviation of 

three measurements performed on the same device. The solid line represents best fit by linear 

regression and the square of the correlation coefficient R demonstrates a very good agreement 

between applied and measured pressures. 
 

 

Experiments were performed over the 0-100 mbar pressure range for a 10 µm thick, 4 mm 

diameter membrane in order to validate the image processing algorithm and to obtain the 

calibration curve of the sensor (Figure 3.32(a)). For a given pressure (measured with an external 

pressure gauge), the membrane deflection was measured using a scanning white light 

interferometer (Zygo NewView 5000) as well as using our scanning module and image processing 

algorithm. The image processing algorithm estimates membrane deflection with a maximum mean 

absolute percentage error of 9.5% when compared to interferometric data. Below 20 mbar, 

membrane deflection is non-linear and increases rapidly with applied pressure. Above 20 mbar, 
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the increase in membrane deflection with applied pressure is linear and pressure sensitivity 

decreases to ~6 µm/mbar. Taking into account the fact that depth of focus of the objective lens 

(~59 µm) is the limiting factor for measuring membrane deflection with accuracy, we estimated 

that the resolution of our setup (PDMS sensor and scanning module) is ~2 mbar in the 0-20 mbar 

pressure range and ~10 mbar in the 20-100 mbar pressure range. 

By fitting the data obtained from our image processing algorithm to a least squares 3rd order 

polynomial function (solid line in Figure 3.32), the calibration curve of the sensor (having a 4 mm 

diameter, 10 µm thick PDMS membrane) can be obtained: 

8 3 4 22.450 10 1.709 10 0.024 0.055P D D D        --------(5) 

Where P (mbar) is applied pressure and D (µm), the deflection of the membrane from its 

undeflected position. Using this equation, an unknown applied pressure value can be obtained by 

measuring D using the z-scanning module and the image processing algorithm. 

 

Figure 3.32: Membrane deflection versus applied pressure for PDMS sensors of: (a) 4 different 

diameters (1, 2, 3 and 4 mm). All sensors had a 10 μm thick PDMS membrane and, (b) 4 different 

thicknesses (10, 100, 200 and 400 µm) having 4 mm in diameter PDMS membranes. 
 

 

Furthermore, sensors were fabricated with membranes of various diameters and 

thicknesses and measured their performance using our image processing algorithm and scanning 

module (Figure 3.33). As membrane thickness is increased and diameter decreased, membrane 

deflection and sensitivity for a given pressure decreases, while the regime of linear response 

extends to lower pressures. Therefore, both dynamic range as well as sensitivity can be tuned by 

simply changing the diameter and/or thickness of the membrane. Additionally, the resolution of 

pressure measurement can be increased by selecting an objective lens with a smaller depth of focus 

(higher NA) and a sensor with reduced thickness (such that the membrane deflects more). The use, 

for example, of a 10x objective lens which has a typical depth of focus of 15 µm, will result a 
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resolution of ~0.5 mbar and ~2.5 mbar in the 0-20 mbar and 20-100 mbar pressure ranges 

respectively. 

Finally, the proposed technology was validated by comparing pressure measurements 

obtained from the DCI pressure sensor (using the calibration equation (1)) to readings obtained 

from an external pressure gauge (2174 Ashcroft Digital Pressure Gauge) (Figure 3.32(b)). The 

sensor operates with a maximum mean absolute error of 0.94 mbar in the 0-20 mbar pressure range 

and maximum mean absolute error of 2.64 mbar in the 20-100 mbar pressure range. The maximum 

relative standard error is therefore ~7% throughout its dynamic range.  

3.5.5 Experimental methods 

 To characterize pressure sensor performance, a bright-field microscope (Olympus BX-51) 

in reflection mode equipped with a high speed z-scanning stage, colored CCD camera (Olympus 

DP72 Microscope Digital Camera) and a pressure pump with a built-in pressure regulator 

(Elveflow microfluidic AF1 pressure pump) (Figure 3.30(b)) was used. The pump, which is 

connected to the sensor inlet using a metallic needle, was used to pressurize the microchamber 

with air and deflect the membrane to the desired pressure value. The PDMS sensor was mounted 

on the z-scanning stage and imaged through a 5x microscope objective (MPLFLN5x, Olympus). 

At a given pressure, the CCD camera acquired a stack of bright field images while scanning the 

entire thickness of the sensor along its z axis with a step of 20 µm. A MATLAB image analysis 

algorithm was developed to calculate image contrast for every focal plane at the end of each scan. 

In order to calculate the image contrast, a 2D matrix containing intensity values for each 

pixel in the region of interest (ROI) – which is typically 800 µm x 800 µm, is formed. The ROI in 

every image is at the center of the PDMS membrane where the deflection has the maximum value. 

The microfabricated patterns on the glass surface are used to accurately locate the center of the 

PDMS membrane and therefore the ROI. Additionally, processing over the ROI instead of the 

entire image results in faster computation time. The total computation time for processing a stack 

of 400 images which covers the entire depth of the sensor is ~11 seconds. A contrast function is 

implemented which first calculates the intensity gradient by computing the change in intensity 

along both x and y directions of the 2D matrix. The directional gradients are used in order to 

evaluate the magnitude of the intensity gradient.  The contrast over the ROI is then equal to the 

average value of the magnitude of the intensity gradient [165]. Contrast is further normalized to 

yield an image quality ranging between 0 and 1, with 0 being no contrast (uniform gradient over 
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ROI) and 1 being maximum contrast (maximum gradient change over ROI). The flowchart of 

algorithm, is shown in Figure 3.34.  

 

Figure 3.33: Flowchart of image process algorithm employed in the DCI technology. 

 

3.5.6 Conclusions 

In this chapter, we have described a novel image contrast based fluid pressure sensor that is 

low-cost while being easy to fabricate. The sensor architecture is distinct compared to traditional 

MEMS pressure sensors as it does not require the use of any on chip electronic elements which 

means that there is no need for powering the sensor. There is also the possibility to build a more 

compact readout unit consisting of cheaper components obtained from the consumer electronics 

industry such as autofocus mechanisms, lenses used in cameras and CCDs used in smartphones.   
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A disadvantage of the current version of the DCI sensor prototype is low measurement 

speed. This is mainly due to the relatively large high resolution image acquisition and computer 

storing time (~3 minutes to acquire and store 400 images), which can be significantly reduced by: 

(i) reducing the sensor thickness in order to collect fewer images, and (ii) by performing high-

resolution z-axis scanning only near the glass/air and PDMS/air interfaces which are critical for 

accurately measuring the distance between them.  

Additionally, membrane deflection might vary slightly from one device to another due to 

inherent non uniformities in repeatability of the fabrication process such as variations in the 

thickness of the membrane, elastomer-curing agent mixing ratios, Young’s modulus of PDMS and 

the amount of food color aggregates formed. To circumvent the effects of this non uniformity, 

each device will have its own calibration curve to maintain accuracy and device performance. 

 We anticipate that this novel pressure monitoring concept can be used in various 

biomedical applications such as monitoring IOP for the medical management of glaucoma as well 

as in the consumer electronics industry. 
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A 3D PRINTED TOUCH-ACTIVATED SANITIZER DISPENSING SYSTEM FOR 

IMPROVING HAND HYGIENE 

4.1 Introduction 

 Poor hand hygiene plays an important role in the transmission of pathogens [60] [166] 

[167] [63]. Hands become easily contaminated when they touch dirty surfaces, carrying the 

pathogens and eventually transmitting them to other  commonly touched surfaces (e.g. door 

handles/knobs, credit cards) and to people (e.g. shaking hands). Hand hygiene is the most 

important prevention strategy for reducing Healthcare Acquired Infections (HAIs) as well as 

Community Acquired Infections (CAIs). Increasing Hand Hygiene Compliance (HHC) has been 

shown to decrease pathogen transmission through contact, resulting in reduced rates of nosocomial 

diseases [168] [169] [58] [59].  

Washing with soap and water is the gold standard for enforcing hand hygiene [170]. Soap 

infused with antiseptic agents rapidly removes and/or kills most types of microorganisms present 

on the skin. Effective handwashing with soap requires access to clean water which might not be 

accessible at all times (e.g. in resource-limited settings).  

Alchohol-based formulations of soaps are a great alternative that eliminating the need for 

water. Those formulations, termed ‘hand sanitizers’, have excellent killing activity against a wide 

spectrum of microorganisms (bacteria, viruses and fungi) and they act rapidly (~ 15 seconds). 

Additionally, due the their low surface tension, hand sanitizers spread easily and dry quickly due 

to the evaporation of alcohol. The optimum concentration of alcohol varies between 60%–90% by 

volume [171] [172] with the most commonly used formulation being 70% ethanol (v/v). In fact, if 

a consumer does not have access to soap and water, the U.S. Centers for Disease Control and 

Prevention (CDC) recommends the use of an alcohol-based hand sanitizer that contains at least 

60% (v/v) alcohol [173]. 

However, even with the adoption of waterless alcohol based hand sanitizers, enforcing and 

improving HCC, especially in public places, has been an ongoing battle. Attempts have been made 

to implement several strategies to improve compliance including - 1: increasing awareness of the 
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significance of hand hygiene through signs and education [67], 2: enabling real-time 

monitoring/reminders through technologies that provide visual (or other) cues to direct attention 

to hand hygiene during routine work [68] and 3: making it easier to clean hands by installing 

facilities like sanitizer dispensers in convenient locations, of which this last method has proven to 

be the most effective [174]. For instance, a multicenter study by Bischoff et al. [175] assessing 

HHC among health care workers,  found that an education/feedback system coupled with sink and 

soap handwashing failed to improve HHC but HHC increased significantly (23%-48%) following 

the simple introduction of easily accessible alcohol-based waterless sanitizer dispensers at sites 

where they are needed. The authors therefore concluded that higher HHC was driven by a mere 

improvement in access to and the ease of use achieved with the dispenser. Moreover, keeping 

surfaces that come into contact with skin, clean and microbe-free is another significant challenge. 

Microorganisms are transferred from contaminated surfaces (e.g. a door handle, a medical tool, 

toilet seat etc.) to people, especially in high traffic areas like hospitals, restrooms, schools and 

while using public transport. These pathogens are able to survive for prolonged periods of time on 

surfaces and eventually, transiently colonize the skin on hands. Efforts for assessing the 

microbiological status of surfaces, especially in hospitals, has resulted in two major criteria for 

cleanliness [176]: (i) the presence of a specific indicator pathogen, and (ii) the total colony number 

in colony-forming units (CFU)/cm2. Scientific data indicate that the CFU number should be less 

than 5 CFU/cm2 in order to minimize pathological infections.  However, most pathogens can 

persist for a long periods of time on inanimate surfaces – from a few days up to few months – and 

it becomes impractical for maintenance personnel to perform constant cleaning in order to keep 

the surfaces decontaminated. Thus, according to investigations in multiple health care and 

community based facilities, more than a half of the surfaces with high human traffic were found 

to be inadequately clean [177]. Therefore, the need for developing easy to access and easy to use 

disinfecting technologies emerges inevitably.  

Research efforts to develop and implement novel disinfection technologies [103] like 

ultraviolet (UV) light has been proposed for disinfecting contaminated surfaces [104]. UV light 

has been proven to contribute to a radical reduction of the survival of microorganisms and bacteria. 

This technology requires the use of strong UV lamps that need to be installed in public spaces. A 

major drawback of UV light is its reduced effectiveness in decontaminating shadowed surfaces, 

which has led to the limited practical use of this technology [105]. In addition, UV light exposure 
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cannot be used in high-traffic areas, e.g. corridors and waiting rooms, as people cannot be exposed 

to UV light. An improved variation of the above technology is to use UV light activated surface 

coatings. [106]. Those coatings produce cytotoxic species after irradiation causing a remarkable 

reduction in the survival of microbial colonies. However, those coatings do not affect adequately 

all different types of pathogens and it is difficult to implement them in a public environment as 

they require a constant source of photoactivation. Coatings impregnated with metals, such as silver 

or copper have also been studied as self-sterilized surfaces and they have been proven to be 

effective up to several hours [178]. However, those metal surfaces need to be coated with corrosive 

inhibitors that lower the effectiveness of their antimicrobial action. More recently, micro-patterned 

surfaces were proposed as a potential solution for preventing microorganisms to adhere to a 

surface. Several geometries comprising of micro-pillars or micro-channels have been developed 

[179] and they are currently in the commercialization phase by Sharklet Technologies Inc. 

Although this technology seems promising, rigorous clinical validation of this technology has not 

yet been performed. Only a few from the aforementioned technologies have reached 

commercialization, the most successful story seems to be the ‘PullClean’ door handle (Altitude 

Medical Incorporated). This is a low-tech handle that simply integrates a hand sanitizer –contained 

in a disposable cartridge- on a door handle. The main drawback of this product is that it relies on 

the willingness of the person entering the door, making its effectiveness difficult to predict. In 

addition, it is hard to envision, how such a handle can be integrated in every surface in a public 

setting. Therefore, a novel, cost-effective solution for decontaminating surfaces that will not 

interfere with routine workflow, that will work reliably at all times, will not be subjected to the 

end-user willingness and which uses an alcohol based sanitizer formulation as the decontaminating 

agent needs to be developed.  

In this work, we present the development of a   passive, 3D printed, dispensing device that 

can be mounted on any flat surface such as the surface of a door handle or of a medical equipment. 

The device disinfects the person’s hand that is touching the surface over which it is mounted while 

it is being self-sterilized at the same time. It consists of an array of passive, touch-powered, 

miniaturized valves that deliver a small amount of a disinfectant to the hand when the hand comes 

in contact with the surface of the array. The miniaturized-valves are normally closed - when no 

human touch/force is present. When a person touches the surface of the device, the miniaturized-

valves open and the disinfectant flows through them onto the person’s hand as well as its own 
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surface, thereby decontaminating both target regions. The device, we use the term ‘Touch-

activated, Sanitizer Dispensing (TSD) system’, requires no maintenance besides replacing the 

cartridge that contains the disinfectant. In the following sections, we describe the design and 

characterization of a small-size TSD that can disinfect an area equivalent to the size of a thumb. 

Apparently, the size and footprint of the TSD can be scaled up as needed. We believe that the 

usage of TSD in public places will significantly improve hand hygiene and reduce HAIs and CAIs.  

 4.2 Device design 

We designed and fabricated a prototype of the TSD system using 3D printing technology 

(Figure 4.1).  The TSD system consists of a 4x4 Dispensing miniaturized Valve Array (DVA) that 

is connected to a sanitizer-filled cartridge through plastic tubing (Figure 4.1). Each milli-valve in 

the DVA consists of a pin-type piston, a piston chamber and an off-the-shelve, compression spring. 

An orifice is formed between the piston and the piston chamber. The piston and the orifice have a 

diameter of 1 mm and 1.2 mm respectively. The piston protrudes 1 mm over the orifice, as it is 

being pushed against the recess of the orifice under the action of the spring. In this position, the 

valve is closed and the sanitizer does not flow through the orifice. Each piston chamber has an 

opening at its bottom that facilitates the assembly of the piston and the spring. This opening is 

sealed with a base plug after the assembly is completed. All the milli-valves are connected through 

a network of fluidic channels to an internal reservoir at the bottom of the DVA. The inlet of the 

internal reservoir is formed into a hose barb and it is connected to the external reservoir/cartridge 

(we used a syringe as a cartridge) through a 3/8” internal diameter (I.D.) tubing. 

The DVA has 3 important dimensions (Figure 4.1C): (i) the active area of the DVA that 

comes into contact with human skin when touched (active touch region). For demonstration 

purposes, the size of that area (11.5 mm x 11.5 mm) was chosen to match the surface of a human 

thumb (~ 100 mm2), (ii) the distance between two valves (edge-to-edge valve spacing). This 

distance has been set to 1.8 mm in order to minimize the dead area between the valves that might 

not get disinfected properly. Smaller distances, although they are desirable, would compromise the 

mechanical integrity of the DVA, (iii) the protrusion length and the diameter of the piston. The 

protrusion length affects the maximum force that is required to fully open each valve as well as 

user comfort. The protrusion length has been set to 1 mm in order to be minimally noticeable to 

human touch and also to enable the finger to fully open the valves in a short period of time (under 

2 seconds) with a minimum force (~ 0.54 N is required to fully open each valve). The diameter of 
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each piston was set to 1 mm, as this value allowed the placement of the maximum number of 

valves within the active area without compromising the mechanical stability of the DVA. 

A helical compression spring was chosen to actuate each piston milli-valve with a stiffness 

of 3.1 lbf./inch. Each spring is pre compressed by 1.35 mm, inside the piston chamber upon 

insertion of the base plug to create a leak proof seal in between the piston base and the piston 

holder. The springs are made up of music wire steel (Material ASTM No. A228) which is a type 

of steel known for its high tensile strength, high elastic limit, ability to withstand high stresses 

under repeated loadings and continuous performance under many normal cyclic applications. It is 

not as corrosion resistant as stainless steel but plating can easily be performed with tin or zinc to 

improve anti corrosiveness properties for longer life. 
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Figure 4.1: (A) Schematic of the TSD along with external fluid reservoir (cartridge) mounted onto 

a door handle (scale bar, 20mm). (B) Schematics of a single piston milli-valve inside the piston 

holder showing device architecture and assembled sub-components (C) Bright field images of 

front and side views of the 3D printed device (scale bars, 4mm) showing active touch region (given 

by the 11.5 mm x 11.5 mm region bounded by the red box) and other critical device dimensions. 

Schematics showing exploded (D) isometric and (E) side views of TSD demonstrating order of 

assembly of device sub-components. (F) Schematic showing assembled TSD.   
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4.3 Principle of operation 

The valves are normally closed when no external force is applied (Figure 4.2(I)). 

Disinfecting fluid is filled into the internal reservoir.  If more fluid needs to be added, tubing maybe 

be attached to the barb fitting on the device with the other end plugged into an external fluid 

reservoir/cartridge  as shown in Figure 4.1. As more fluid is added, the higher the height of the 

liquid column in the reservoirs (both internal and external) above the milli-valves and the greater 

the hydrostatic pressure exerted by the fluid at the milli-valves. Under the influence of this 

pressure, the fluid flows from the reservoir and enters the piston chambers as well as the fluidic 

channels connecting the chambers inside the piston holder (Figure 4.2(I), (IA), (IB), (IC)). 

However, as the milli-valves are closed, the fluid is prevented from flowing out. Given that the 

height of each piston chamber is less than the length of each compression spring, the springs are 

pre-loaded and therefore create a tight seal in between the pistons and piston holder. This ensures 

that there is no fluid leakage from the orifices when the milli-valves are closed. When the piston 

milli-valves are pushed in/actuated with a finger, they are opened and the disinfectant flows 

through the annular orifices around the piston handles under the influence of hydrostatic pressure, 

exits the milli-valve array and is deposited on the finger (Figure 4.2(II), (IIA), (IIB), (IIC), (IID)). 

When the actuating force is removed, the compression springs snap back to close the milli-valves 

and in that process, the pistons lift the fluid above that has been accumulated in the piston chambers 

during milli-valve actuation. This lifting mechanism expels the fluid through the orifices and 

deposits it onto the surface of the device around the piston handles. The deposited fluid then 

spreads and the device thereby self sanitizes itself (Figure 4.2(III), (IIIA), (IIIB), (IIIC)). 
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Figure 4.2: (I) Schematic showing piston milli-valves in the closed state before actuation with the 

pre-loaded springs pushing each piston base (shown in red) against the piston holder (shown in 

grey). The disinfectant (shown in blue) is contained inside the piston chamber. (IA) Image showing 

front view of the active touch area (scale bar, 4mm). (IB) (scale bar, 4mm) & (IC) (scale bar, 1 

mm) Side view images of the active touch area in which the piston handles are shown to be 

protruding above the surface of the piston holder. (II) Schematic showing piston milli-valves in 

the open state upon actuation by finger. The disinfectant (shown in blue) flows out from the 

internal reservoir, piston chamber and the side channels through the orifice around the piston 

handle onto the finger. (IIA), (IIB) & (IIC) Images showing piston milli-valves being actuated by 

the finger (thumb), (scale bars, 4mm). (IID) Image showing 16 drops of liquid disinfectant (1 drop 

per piston milli-valve) dispensed onto surface of thumb after device actuation (scale bar, 2 mm). 

(III) Schematic showing piston milli-valves in closed state after actuation. The disinfectant (shown 

in blue) above the piston base is lifted up by the piston upon finger release and this displaced fluid 

flows out of the orifice and onto the surface of the active touch area (on and around the piston 

handles). (IIIA) Image showing top view of active touch area with disinfectant on device surface 

(scale bar, 4mm). (IIIB) (scale bar, 4mm) & (IIIC) (scale bar, 1 mm) Side view images of the 

active touch area showing disinfectant on device surface. Blue arrows represent hydrostatic 

pressure and direction of fluid flow.    
 

4.4 Fabrication 

The piston holder, pistons, base plugs and internal reservoir were 3D printed in M3 crystal 

resin using the Fused Deposition Modeling (FDM) [180] method on the ProJet 3500 HD Max 



93 

 

printer. During the printing process, polymer materials were heated and ejected from the nozzles 

of the inkjet printer onto an aluminum build plate. The print was performed vertically upwards 

with a layer resolution of 16 µm in the axial direction and 32 µm in the lateral resolution. Building 

(VisiJet EX 200, 3D Systems Inc., Rock Hill, SC, USA also known as M3 Crystal) [181] and 

sacrificial materials (VisiJet S100, 3D Systems Inc., Rock Hill, SC, USA) [182] were deposited 

alternatively from dual nozzles to form the printed parts, in which the building material defines 

the solid structures in the device, while the sacrificial material occupies the hollow 

channels/cavities. Upon completion of the printing process, the 3D structures and the aluminum 

plate were placed in a refrigerator at 4°C for 20 minutes to easily remove the structure from the 

plate. The structures were then subjected to a post-printing procedure to remove the sacrificial 

material. First, the entire 3D-printed sample was immersed in a mineral oil (Bayes® high 

performance food-grade mineral oil) bath at 60 °C while sonicating at ~ 45 kHz for 2 hours to 

dissolve the sacrificial material. Second, the residual mineral oil was removed by thoroughly 

washing the parts in detergent soap and water (both at 60 0C, sonicated at ~45 kHz) baths in 

sequence. The structures, being delicate, were then air-dried for 24 hours to remove any water 

remaining inside the channels/cavities.  

Off the shelf springs (PC007-057-11.000-MW-0.250-C-N-IN, Access Spring Co.) were 

purchased and inserted manually into each piston chamber inside the piston holder. The 3D printed 

base plugs were treated with a primer (#770, Loctite Bonding Primer) followed by the application 

of a waterproof adhesive (#4014, Lactate® High-Purity Instant-Bonding Adhesive) on top of the 

dried primer layer after 1 hour. The primer improves plastic-to-plastic bonding. The plugs were 

then glued to the base plate in order to permanently secure the springs inside the device with the 

adhesive reaching full bond strength after 24 hours. The piston holder with the fully assembled 

milli-valve array was then inserted and glued to the internal reservoir using the same primer and 

adhesive combination.  

4.5. Results and discussion 

4.5.1 Force needed to operate the valves 

The activation force required to open the valves in the DVA was calculated using Hooke’ 

law and measured experimentally. This force is equal to the force required to compress the helical 

spring by 1 mm (1 mm is the protruding length of the piston) and was calculated to be 0.54 N per 

valve (for a spring constant k = 3.1 lbs/in, provided by the manufacturer). The force to actuate the 
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DVA comprising of 16 milli-valves is therefore 8.6 N (0.54 N x 16 = 8.6 N). A piezoresistive force 

sensor (Section 4.6.1) was used to experimentally obtain the actuation force. The sensor was 

calibrated prior to the experiment using standard gram weights. The DVA was pressed against the 

surface of the sensor until all the valves were fully open and the voltage across the sensor was 

measured using a digital voltmeter. From the calibration curve (Appendix B, Figure B2), the force 

required to actuate the DVA was estimated to be 7.90  0.7 N, which is in close agreement with 

the theoretical value. We used the theoretical valve of 8.6 N in our finite element analysis as this 

represents the worst case scenario. 

4.5.2 Finite Element Analysis (FEA) of the base plate under normal loading 

When the pistons in the DVA are being pushed in under the action of a normal (vertical) 

force, then the base plate is being deformed. This loading scenario, which can result in failure 

(plastic deformation or breakage) of the supporting beams of the base plate, was modelled using 

FEA analysis (Section 4.6.2). In our FEA (Solid Works Simulation Package) model, we anchored 

the edges of the base plate (shown in green with orange arrows, Figure 4.3B) to prevent movement 

in the x,y and z directions. 16 normal forces with a magnitude of 0.54 N were applied to the areas 

of the base plate that are in contact with the plugs (shown in red with purple arrows in Figure 4.3B, 

the normal force is transferred through the springs and the plugs to those areas). The simulation 

results indicate that the maximum von Mises stresses are being developed at the supporting beams, 

while the maximum displacement appears at the center region of the base plate (Figure 4.3D). The 

maximum von Mises stresses are ~20% of the yield strength of the M3 crystal resin. The material 

properties for M3 Crystal used in the simulations were obtained from the manufacturer and have 

been provided as part of Appendix B, Table 1. The maximum deflection of the base is ~ 73 µm 

(Figure 4.3C). The FEA analysis demonstrates that there is no risk of failure for the base plate. 

Based on the value of the maximum, von Mises stress, we anticipate that the base plate can 

withstand more than several million cycles of loading before failing (we assume that the M3 crystal 

resin has a similar fatigue performance to the ABS plastic material as there aren’t any fatigue data 

available for the M3 crystal resin) [183]. The maximum von Mises stresses could further be 

reduced by increasing the thickness of the supporting beams and/or by rounding their sharp 

corners.  
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Figure 4.3: (A) 3D schematic of TSD and the base plate consisting of 16 base plugs (in green) 

attached to the base of the piston holder (in grey) on which FEA has been performed.  (B) 

Schematic of base plate showing faces subjected to force loading (in red, force direction shown by 

purple arrows) and fixed constraints (in green, directional constraints shown by orange arrows). 

Color maps for base plate top and bottom surfaces showing distribution of (C) displacement and 

(D) von Mises stress when a normal force is applied on surfaces where the springs compress 

against during device operation.   
 

4.5.3 Finite Element Analysis (FEA) of the piston under shear loading 

The human hand, when touches and activates the DVA, can possibly slide against the DVA. 

In this case, a shear force will be applied to the top surface of the pistons, the pistons will tilt, hit 

the orifice and possibly break. We modeled this loading scenario (Section 4.6.2) by assuming that 

the generated shear force is proportional to the normal force that is required to open the valves 

(0.54 N per valve) times the human skin-plastic coefficient of friction. Given that the coefficient 

of static friction between human skin and plastic is around 0.46 [184], we estimated that a shear 

force of 0.25 N (0.54 N x 0.46 = 0.25 N) will be applied to the top surface of each piston (shown 

in red with purple arrows in Figure 4.4B). A fixed constraint was applied to the piston base and 

support (piston holder) (shown in green with orange arrows in Figure 4.4B) to prevent 

displacement in x,y and z directions.  
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The FEA results indicate that the piston handle as well as the piston holder support are 

subjected to a maximum stresses at the point where they collide with each other under the influence 

of the applied shear force (Figure 4.4D). At this location, the maximum von Mises stress is  ~1/5 

of the yield strength of the M3 crystal (Figure 4.4D) and therefore the risk of failure (e.g. by having 

plastic deformation of the material) is minimum. By introducing a bevel around the orifice, the 

von Mises stress concentration at this point maybe further reduced to ~ 0.13 times the yield 

strength (Figure 4.4E). Apart from reducing localized stress concentration, the bevel will 

potentially help with distributing the disinfectant fluid more uniformly over the device surface 

once dispensed after device actuation. 

 

Figure 4.4: (A) 3D schematic of  TSD and a single unit consisting of a piston (in red) and 

surrounding piston holder structure (in grey) on which FEA has been performed (B) Schematic of 

piston with surrounding piston holder support structure showing faces subjected to force loading 

(in red, force direction shown by purple arrows), fixed constraints (in green, directional constraints 

shown by orange arrows) and no penetration contacts (in blue). Color maps showing distribution 

of (C) displacement,(D) Von Misses stress without and (E) with the circular edge filleted, when a 

force that is tangential to the top surface of the piston handle is applied. 
 

4.5.4 Theoretical analysis of helical compression spring performance 

A helical compression spring was chosen to actuate each piston milli-valve with a stiffness 

of 3.1 lbf./inch. Each spring is pre compressed by 1.35 mm, inside the piston chamber upon 
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insertion of the base plug to create a leak proof seal in between the piston base and the piston 

holder. Given the dimensions of the piston and piston chamber as well as the amount of pre-

compression applied while securing it inside the device, the maximum allowed deflection of the 

spring is 2.35 mm which is well above its minimum working length (1 mm) that is required to 

maintain linear behavior without any mechanical failure.  It is known that if the deflection of a 

compression spring is too large for a given free length, the spring may buckle. Alternatively, if the 

spring's free length is too long in comparison to its mean diameter, the spring is likely to buckle. 

After performing a stability analysis (Appendix B, Section B3), the factor of safety against 

buckling was found to be 1.02 and the spring slenderness ratio was found to be 5. Since the factor 

of safety is barely above 1 and the slenderness ration slightly greater than 4, the spring might 

buckle inside the piston chamber. To limit any buckling to be < 100 µm during normal device 

operation, a spring support in the form of a rod guide/shaft (height 3 mm, diameter 0.9 mm) is 

incorporated as part of each base plug around which the spring is inserted (Figure 4.1B).  

An analysis was performed to inspect the stresses in the compression spring while applying 

a cyclic load (Appendix B, Section B1) that uses Zimmerli’s data [185] to calculate endurance 

limit based on Gerber, Sines and Goodman fatigue failure theories [186]. The material properties 

for music wire steel was obtained from Nisbett.K. et.al. [187]. The factors of safety against fatigue 

for each of the three fatigue failure theories was found to be 1.6, 2.1 and 1.4 meaning that the 

expected stresses are below the endurance limits for all three criteria. Since the endurance limit 

indicates infinite life for a material, these factors of safety show that theoretically, the spring has 

an infinite life under given loading conditions.  

When a spring is going to be used in an environment where there is repetitive loading, the 

loading frequency should be much lower than (at least 20 times lower) the spring's natural 

frequency [188]. Resonance will amplify damaging stresses in the spring, since the internal 

damping of spring materials is quite low. An analysis was performed to calculate the natural 

frequency of the helical compression spring whose one end is fixed and the other end is loaded by 

applying a cyclic force (Appendix B, Section B2). The natural frequency was found to be 3970 Hz 

meaning that the maximum allowed loading frequency should be ~ 200 Hz. It is expected that the 

maximum loading frequency is going to be ~ 1-2 Hz which is well below this limit.  
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4.5.5 Amount of the sanitizer dispensed by the TSD system 

As per the standards set by the American Society for Testing and Materials (ASTM E 1174-

94), it is  recommended that 1.5-2 mL of commercial alcohol based hand sanitizers is sufficient to 

ensure adequate coverage of both hands [189]. Given that the average surface area of male hands 

is 448 cm2 [190], the volume of sanitizer needed to cover the surface area of a fingertip is ~ 5 µ L. 

In order to ensure that the DVA dispenses enough volume of fluid for covering a fingertip, 

we measured the dispensed fluid volume under different experimental conditions. Specifically, we 

filled the TSD system -for practical purposes, we used a syringe as a cartridge- with a solution of 

70% ethanol in water (v/v). We adjusted the height of the hydrostatic fluid column inside the 

syringe to achieve different value of the dispensing pressure. The valves were then activated by 

manually pressing the pistons with a finger for ~2 seconds which is the time required to fully open 

the valves (Figure 4.5B). The volume of the sanitizer dispensed on the fingertip as well as on the 

surface of the DVA was aspirated from those 2 surfaces using a 0.01 mL graduated syringe 

(Perfektum tuberculin, 1 mL capacity syringe, Sigma Aldrich) and measured by visually inspecting 

the syringe. Measurements of the total dispensed volume of the sanitizer were also performed by 

varying the actuation time (Figure 4.5B). As expected, the higher the hydrostatic pressure, the 

higher the velocity of fluid exiting the orifices and therefore, the higher the volume of sanitizer 

dispensed by the TSD system (Figure 4.5A). At the same time, for a given height of the liquid 

column, the longer the valves are actuated, the greater the volume of the dispensed sanitizer is 

(Figure 4.5B).  Figure 4.5 also indicates that this target of 5 µ L is achieved even while using the 

device with the lowest height of fluid level in the reservoir. 
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Figure 4.5: (A) Plot showing volume of liquid disinfectant dispensed by the device when actuated 

for ~ 2 seconds on the finger as well as on the surface of the device (active touch region) for 

varying heights of fluid levels in the reservoir. (b) Plot showing total volume of liquid disinfectant 

dispensed by the device (on finger as well as the device surface) for varying time durations of 

device actuation for three different heights of fluid levels in the reservoir. The dashed lines 

represent best fit by linear regression and the square of the correlation coefficient R demonstrates 

a good linear relationship between: (a) height of fluid in reservoir and measured volume of fluid 

dispensed and (b) time duration of actuation and measured volume of fluid dispensed. Error bars 

indicate the standards error of mean (SEM) of three measurements performed with the same 

device. 
 

 

Any excess fluid that is dispensed will evaporate in a few minutes, which is sufficient to 

disinfect the entire DVA.   

4.5.6  Ex vivo validation on human skin 

The device demonstrates a significant (~ 10 fold) reduction in microbiological load of the 

contaminated surfaces with a drop in average CFU/cm2 from 1.52 to 0.05 and 0.37 to 0.03 for the 

finger and device surface respectively within the first 24 hours. Figure 4.6(AIII), (BIII) shows 

CFU/cm2 covering the plate after 36 hours as well as after 72 hours. 
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Figure 4.6: (AI) Image showing surface of agar plate containing bacterial colonies cultured (after 

24 hours) from finger surface (right thumb) without using the device (control). (AII) Image 

showing surface of agar plate containing bacterial colonies cultured (over 24 hours) from finger 

surface (right thumb) after using the device. (AIII) Plot showing CFUs/cm2 measured by counting 

the number of colonies formed by culturing samples from skin before and after device actuation 

over 24, 48 and 72 hours. (BI) Image showing surface of agar plate containing bacterial colonies 

cultured (after 24 hours) from the active surface of the device before actuation (control). (BII) 

Image showing surface of agar plate containing bacterial colonies cultured (over 24 hours) from 

the active surface of the device after actuation. (BIII) Plot showing CFUs/cm2 measured by 

counting the number of colonies formed by culturing samples from the active surface of the device 

before (control) and after actuation over 24, 48 and 72 hours. Error bars indicate standard error of 

mean (SEM) of three measurements performed with the same device.  
 

 

Furthermore, the average bacterial load on the thumb after washing hands with the 

commercially available PURELL® Advanced Instant Hand Sanitizer (70% ethanol (v/v)) 

formulation was found to be 0.03 CFU/cm2. This is comparable to the average bacterial load (0.05 

CFU/cm2) on finger after using the device.   

4.5.7 Evaporation of the sanitizing fluid through the device 

Due to surface roughness of 3D printed parts (~ 30 µm), the contact surfaces that form the 

milli-valves do not form a perfect seal thereby allowing the disinfectant to evaporate through the 
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gaps. Additionally, some evaporation can take place through the material due to the porosity of 

the plastic. The volume of disinfectant fluid evaporated after a week was found to be ~ 25% of the 

starting volume (Appendix B, Figure B1). The rate of evaporation of the disinfectant through the 

3D printed material can be reduced by coating the device with a low gas permeability material like 

parylene c to minimize material porosity at the device surfaces. Additionally, the rate of 

evaporation through the 100 µm gaps around the piston handles can be minimized by incorporating 

miniature o-rings in each piston chamber to create a perfect seal in between the piston and the 

piston holder.     

4.6 Methods 

4.6.1 Force needed to operate the valves 

The force required to fully actuate the milli-valves was estimated both analytically using 

Hooke's law, the technical specifications of the helical compression spring (Appendix B, Table 1) 

as well as experimentally.  

To estimate the actuation force experimentally, a piezoresistive force sensor was used 

(Square Force-Sensitive Resistor (FSR) 406, Interlink Electronics). The sensor was connected as 

part of a voltage divider circuit formed by itself along with a 10k Ohm fixed resistor. The voltage 

across the FSR was measured with a digital voltmeter and calibrated using standard gram weights. 

The area of the sensor over which the weights were applied is comparable to the area of the 

fingertip (~ 100 mm2). Upon completion of the calibration process, the device was pressed against 

the surface of the sensor until all the milli-valves were fully open and the voltage across the sensor 

measured. From the calibration curve (Appendix B, Figure B2), the actuation force was estimated. 

4.6.2 Finite Element Analysis (FEA) of TSD 

Finite element structural analysis using the Solid Works Simulation package was 

performed on the 3D printed components that are acting as load bearing structures in the TSD to 

assess mechanical failure. A static non-linear study was performed on the piston handle as well as 

on the base plate, the two main load bearing structures in the device, in order to test for permanent 

deformation under various conditions encountered during device operation.  

A tangential force of 0.25 N (shown as purple arrows, Figure 4.4B) was applied to the top 

surface of each piston handle (shown in red, Figure 4.4B). A fixed constraint was applied to the 

piston base and support (piston holder) (shown in green with orange arrows, Figure 4.5A) to 

prevent displacement in x,y and z directions. A no penetration contact pair was specified between 
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the cylindrical touching surfaces (shown in blue, Figure 4.5B): surface of the piston handle and 

surface of the orifice inside through which the piston handle passes.  

A face load of 0.54 N (8.64 N distributed over 16 piston base plug surfaces) was applied 

to those areas (shown in red, Figure 4.6B) on the base plug where each spring pushes against it 

while being compressed during normal device operation. A fixed constraint was applied to the 

edges of the base plate (shown in green with orange arrows, Figure 4.6B) to prevent displacement 

in x,y and z directions.  

The material properties for M3 Crystal used in the simulations were obtained from the 

manufacturer and have been provided in Appendix B, Table B1. The results of the static analysis 

was used to determine structural deformation under applied load, distribution of Von Misses stress 

as well as to estimate load factor of safety against permanent deformation at each location. 

4.6.3 Theoretical analysis of helical compression spring performance 

A theoretical analysis was performed on the helical compression spring to assess failure 

under both single and cyclic static loading events. The parameters influencing spring design as 

well the governing equations used in the analysis have been provided in Appendix B, Sections B1, 

B2 and B3.   

4.6.4 Amount of the sanitizer dispensed by the TSD system 

The device was filled with varying quantities of 70% ethanol in water (v/v) to achieve 

different heights of the liquid disinfectant fluid column in the reservoir behind the DVA. For 

volumes larger than 6.5 mL (volume capacity of the internal fluid reservoir), an external fluid 

reservoir (15 mL syringe) was interfaced to the device through Luer attachments and tubing (3/8” 

hose barb size, Masterflex C-Flex ULTRA tubing) connected to the barb fitting on the internal 

fluid reservoir.  

While vertically orienting the device and for a given height (H) of the liquid column above 

the milli-valves, the milli-valves were fully actuated by manually pressing the piston handles for 

varying periods of time. The volume of fluid dispensed by the device on skin as well as on the 

surface of the device itself was measured by aspirating the fluid using a 1 mL capacity, 0.01 mL 

graduated syringe (Perfektum tuberculin syringe, Sigma Aldrich). Measurements were also 

acquired using the same procedure by actuating the milli-valve for 2 seconds (measured with a 

stop watch) while varying the height of the liquid column H.  
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4.4.5  Ex vivo validation on human skin 

The internal fluid reservoir of the device was filled with 6.5 mL of 70% ethanol in water 

(v/v) and the open end closed after inserting a low gas permeability tubing (3/8” hose barb size, 

Masterflex C-Flex ULTRA tubing) on the barb fitting. The other end of the tubing was sealed by 

inserting interlocking Luer connectors with Teflon tape linings.  

As part of the control experiment, a sterile swab dipped in sterile DI water was rolled over 

the right half the fingertip of the right thumb (dominant hand). The swab tip was then dipped in 

300 µL of sterile Luria Broth (LB) and manually stirred for 5 minutes to transfer the bacteria from 

the swab tip to the LB medium. The LB medium was then mixed using a shaker (40 rpm, Labline 

3527 Orbital Incubator Shaker) at 37 0C for 1 hour.  To culture the bacteria, the LB medium was 

then transferred to a 10 cm diameter LB Agarose plate and distributed uniformly using the spread 

plate method: the bacterial suspension was spread over an agar plate using a flame sterile metal 

rod that evenly distributed the bacterial suspension. The bacteria was then incubated for 1-3 days 

at 37 0C under aerobic conditions, with colonies starting to form after 24 hours. The device was 

then actuated by the right thumb for ~2 seconds, which is the time that it takes to fully depress the 

piston handles. A sterile cotton swab dipped in sterile DI water was used to uniformly spread the 

dispensed alcohol solution to cover the surface of the finger (~100 mm2 area). After waiting for 1 

min to ensure that all the alcohol has evaporated and the finger is completely dry, a sterile swab 

dipped in sterile DI water was rolled over the left half of the fingertip of the right thumb and 

subjected to the same procedure as that of the control experiment. The experiment was repeated 

two more times on two consecutive days.  

The above procedure was repeated for evaluating the self-disinfecting performance of the 

device by collecting a swab from the surface of the device (both from the tops of the 16 piston 

handles and the gaps in between the handles) after actuating the device containing 70% ethanol 

(v/v) for ~ 2 secs. The sampling area on the device was comparable to the area of the fingertip. As 

part of the control experiment, swabs were collected from the surface before actuating the device. 

The experimental procedure was also repeated where swabs were collected from fingers 

before and after washing hands with the commercially available PURELL® Advanced Instant 

Hand Sanitizer (70% ethanol (v/v)) formulation to compare with and assess efficacy of the 3D 

printed TSD.  
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Each culture plate was then inspected under a stereo microscope and the number of colony-

forming-units (CFU)/cm2 was quantified by manually counting the colonies formed on each agar 

plate.  

The two tailed unpaired t test along with Welch's correction was done to test the 

significance of the difference in mean of CFU/cm2 between experimental and control cases. 

4.6.6 Evaporation of the sanitizing fluid through the device 

The internal fluid reservoir of the device was filled with 6.5 mL (starting volume) of 70% 

ethanol in water (v/v) and the open end closed after inserting a translucent, 5 cm long, low gas 

permeability tubing (3/8” hose barb size, Masterflex C-Flex ULTRA tubing) on the barb fitting. 

The other end of the tubing was sealed by inserting interlocking Luer connectors with Teflon tape 

lining. Two drops of food color (Nourriture Coloration, FD&C Blue #3, 0.5% in Aqueous 

Solution) was added to the ethanol solution for better visualization of the liquid level in the tube. 

The change in height of the liquid level in the tube was monitored every 24 hours using a pair of 

calipers. Given the measured drop in fluid level as well as known device and tubing dimensions, 

the volume of liquid lost due to evaporation was estimated.  

Evaporation was allowed to take place through the 100 µm annular gaps around the milli-

valves as well as through the 3D printed material itself, both of which are possible during normal 

device operation. A translucent low gas permeability tubing was chosen to easily visualize the 

fluid level while minimizing evaporation of fluid through the walls of the tubing. Furthermore, 

while not taking any measurements, a piece of parafilm was wrapped around the Luer connectors, 

tubing and barb fitting portion of the device to further minimize any chances of evaporation from 

gaps in those areas.    

4.7 Conclusions 

In conclusion, we have demonstrated a 'proof of concept', smart 3D printed TSD prototype 

device using a low-cost, easy to fabricate technology. Its unique features include: (1) zero power 

requirements as it consists of a passive hand-powered milli-valve array, (2) the use of liquid 

antimicrobial disinfectants which is currently the best known disinfection approach, (3) device 

dimensions can be scaled up or down providing versatility on what type of disinfectants can be 

used (liquid/gel/foam), (4) maximum prevention as the device disinfects both the surface on which 

it is applied (e.g. the door handle) as well as the human skin, (5) minimum fluid consumption as 

disinfection is localized at the contact areas (all milli-valves operate independently - no touch/no 
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activation), (6) biocompatibility of the material that is coming in contact with skin (USP Class VI 

certified) and (7) mechanical durability over an extended period of operation. Even though 3D 

printing has been employed to fabricate the proof of concept prototype device, we should 

emphasize that microfabrication technology can be easily employed to develop a ‘MEMS skin’ 

version of the device for low-cost, mass production in the future and its fast adoption by hospitals 

and other community facilities (Section 4.8). 

A disadvantage of the current version of our device is its large actuation force (~ 9 N) 

compared to the force required to open a door (under 5N). This is mainly due to the relatively large 

individual stiffness (k = 3.1 lbs/in) of the springs that have been employed to prevent any leakage 

from the milli-valves. This limitation can be easily overcome by reducing the stiffness of the 

springs while preventing valvular leakage by incorporating miniature o-rings into the design to 

create a good seal between the pistons and the piston holder. Reducing spring stiffness and 

incorporating o-rings will further optimize the volume of fluid dispensed and minimize any 

wastage in the form of excess fluid. There is a chance that the 100 µm gaps could get clogged if 

the device is placed in an extremely dusty environment with prolonged periods of disuse. However, 

since the device is meant to be placed in high human traffic areas indoor, it is expected to be in 

almost continuous use and therefore, clogging due to accumulation of dust is not likely to occur. 

Additionally, since the long term chemical resistance and warping reaction to polar solvents of M3 

Crystal is not well known, a material like Alloy 910 maybe used instead to enhance chemical 

resistance. Furthermore, other biocompatible materials like Bendlay, thermoplastic elastomers 

(TPE), Polyethylene Terephthalate(PET) and Polyamide (Nylon) may be used for 3D printing 

more flexible versions of the device to make it more ‘skin’ like and conformal to surfaces of 

varying shapes. These plastics may also be used to 3D print the springs thereby enabling easier 

device assembly. 

We anticipate that the proposed platform technology, implemented in community based 

facilities of any kind, promises to provide a radical reduction of infections while greatly increasing 

HHC, and therefore reduce mortality rates and the associated healthcare cost. The technology 

could easily be scaled up and implemented in high traffic public places such as hospitals, schools, 

toilets, stadiums and buses. The results could be remarkable as the hygiene conditions of an entire 

population will improve and the transmission of parasites and bacteria will be prevented. Even 

though the device in its current form is targeted towards disinfecting hands which is one of the 
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most common ways that infection is transmitted, the device can be employed for disinfecting any 

other type of surface by a simple change in geometry which is easily accomplished due to advances 

in 3D printing technology. Finally, the low fabrication, operational and maintenance cost of the 

device renders it ideal for implementation in the developing world and other resource-poor 

settings. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Conclusions 

The important contributions of Part A in this thesis include: 

5.1.1 NiFO sensing technology 

We developed a novel near infrared, optomechanical, electronic-free and powerless 

implantable pressure sensor that can potentially monitor intraoccular pressure. The sensor, 

consisting of a mini-lens, a two-wavelength QD micropillar and a p o l y s i l i c o n  

membrane, converts pressure changes into fluorescent intensity ratio changes when 

illuminated with a laser. As tissue is transparent to NI light, operating the sensor in the NI 

regime is critical for obtaining a high signal to noise optical signal. The sensor can monitor 

pressure within the clinically desired IOP range (0-45 mmHg), it has a maximum error of less 

than 15% and it does not suffer from photobleaching and drift. The experimental results 

indicate that the sensor can accurately respond to IOP changes in the clinically relevant pressure 

range (0-45 mmHg), as predicted by analytical and FEA models. Upon evaluation of the 

possibility for device failure, the maximum von Mises stress at 100mmHg was found to be one 

order of magnitude lower than the polysilicon yield strength (2.5GPa).  

The NiFO IOP sensing system is a significant improvement over the first generation proof 

of concept device developed by Ghannad-Rezaie et al. Although the device developed by 

Ghannad Rezaie et al. does meet the clinical requirements for IOP monitoring, the choice of 

materials are not suitable for long term  use. Additionally, the QD micropillar is exposed  to IOP 

that raises  questions about the cytotoxic effects of heavy metal  based  QDs on surrounding 

tissue. Also, the fabrication process, besides being very laborious as the microlenses have to be 

individually arranged and aligned manually on each device, does not provide good yield and 

cannot be outsourced easily to external contract manufacturers for commercialization. The 

sensor design/microfabrication approach presented here addresses these issues by reducing the 

device footprint to ~ 1.4 mm x 1.4 mm x 1 mm and ~ 1 mm x 1 mm x 1 mm for incorporation
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 with KPro and IOL implants respectively, preventing direct exposure of cytotoxic QDs to 

biological tissue and describing a batch fabrication process that is amenable for future 

commercialization of the NiFO technology. 

We envision that the proposed NiFO sensing technology can be extended to other 

biomedical applications where  pressure monitoring is required such as arterial, intracranial 

and gastrointestinal pressure monitoring. 

5.1.2 DCI sensing technology 

We have developed a novel image contrast based pressure sensing scheme using a low-cost, 

easy to fabricate sensor. Its architecture is distinct compared to traditional (e.g. capacitive, 

piezoresistive) micromachined pressure sensors as it does not require the use of any on chip 

electronic elements (CMOS circuitry, inductors, batteries, etc). The need for powering the sensor 

is therefore eliminated. There is also the potential to build a more compact readout unit consisting 

of cheaper components obtained from the consumer electronics industry (e.g. autofocus 

mechanisms and lenses used in cameras, CCDs used in smartphones).   

A disadvantage of the current version of our sensor is low measurement speed. This is 

mainly due to the relatively large high resolution image acquisition and computer storing time (~3 

minutes to acquire and store 400 images), which can be significantly reduced by: (i) reducing the 

sensor thickness in order to collect fewer images, and (ii) by performing high-resolution z-axis 

scanning only near the glass/air and PDMS/air interfaces which are critical for accurately 

measuring the distance between them.  

Additionally, membrane deflection might vary slightly from one device to another due to 

inherent non uniformities in repeatability of the fabrication process (e.g. variations in the thickness 

of the membrane, elastomer-curing agent mixing ratios, Young’s modulus of PDMS and the 

amount of food color aggregates formed). To circumvent the effects of this non uniformity, each 

device will have its own calibration curve to maintain accuracy and device performance. 

 We anticipate that this novel pressure monitoring concept can be used in various 

biomedical applications such as monitoring IOP for the medical management of glaucoma as well 

as in the consumer electronics industry. 

5.1.3 TSD System 

In this thesis, we have demonstrated a 'proof of concept', 3D printed TSD prototype device 

using a low-cost, easy to fabricate technology. It has zero power requirements as it consists of a 
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passive hand-powered milli-valve array. It uses liquid antimicrobial disinfectants which is 

currently the best known disinfection approach and device dimensions can be scaled up or down 

providing versatility on what type of disinfectants can be used (liquid/gel/foam). It enables 

maximum prevention as the device disinfects both the surface on which it is applied (e.g. the door 

handle) as well as the human skin with minimum fluid consumption as disinfection is localized at 

the contact areas (all milli-valves operate independently - no touch/no activation). The material 

that comes in contact with skin is biocompatibility (USP Class VI certified) and provides 

mechanical durability over an extended period of operation. Even though 3D printing has been 

employed to fabricate the proof of concept prototype device, we should emphasize that 

microfabrication technology can be easily employed to develop a ‘MEMS skin’ version of the 

device for low-cost, mass production in the future and its fast adoption by hospitals and other 

community facilities (Section 5.2.4). 

A disadvantage of the prototype device is its large actuation force (~ 9 N) compared to the 

force required to open a door (under 5N). This is mainly due to the relatively large individual 

stiffness of the compression springs but this limitation can be easily overcome by reducing the 

spring stiffness while preventing valvular leakage by incorporating miniature o-rings to create a 

good seal between the pistons and the piston holder. Reducing spring stiffness and incorporating 

o-rings will further optimize the volume of fluid dispensed and minimize any wastage in the form 

of excess fluid. Since the device is meant to be placed in high human traffic areas indoor, it is 

expected to be in almost continuous use and therefore, clogging of the milli-valves due to 

accumulation of dust is not likely to occur. Additionally, since the long term chemical resistance 

and warping reaction to polar solvents of M3 Crystal is not well known, alternative materials like 

Alloy 910 maybe used instead to enhance chemical resistance.  

Due to the fact that it can be easily scaled up, we anticipate that the TSD system, 

implemented in community based facilities of any kind, promises to provide a radical reduction of 

infections while greatly increasing HHC, and therefore reduce mortality rates and the associated 

healthcare cost. Even though the device in its current form is targeted towards disinfecting hands, 

the device can disinfect any other type of surface by a simple change in geometry.  

5.2 Future directions 

 We envision that the work presented in Part A of this thesis chapter can be extended in the 

following research directions: 
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5.2.1 NiFO sensing technology 

 The microlens array needs to be integrated into the NiFO sensor by i) increasing surface 

flatness (< 50 nm) for performing laser bonding and ii) by reducing microlens sags to minimize 

variations in focal lengths (< 3 µm), both of which can be achieved with better annealing control 

during the glass molding process. Additionally, by using a higher refractive index material and by 

increasing the diameter of each microlens to 800 µm, the NA as well as the f number will increase, 

thereby increasing its light gathering capacity from the QD micropillar. Moreover, using a higher 

concentration of QDs (25 mg/mL) to pattern the micropillar would further increase fluorescence 

output.     

Micro-lens Array: Improving surface flatness and increasing NA: As the microlens array is 

fabricated using a glass molding technique in a heat press, the glass shrinks after the molding 

process is complete which leads to variations in the surface profile as seen in Figures 3.24, 3.25 

and 3.26. However, with annealing, the flatness can be significantly improved to achieve the 

required specification of 50 nm to allow laser bonding to take place. Additionally, this 

improvement in flatness will also lower microlens sag and therefore, the variations in focal lengths 

will also be much lower (< 3 µm).  The refractive index of L-LAM 72 is ~1.7 for NIR light which 

corresponds to a NA of ~0.5. If a higher refractive index material like S-LAH79 is used, which 

has a refractive index of 2.003 for NIR light, the NA would increase to ~0.62 indicating an 

improved light gathering capacity.  

 The microlenses may also be fabricated insides recesses to create a one piece array that can 

be directly bonded to polysilicon instead of creating the spacer with through holes as a separate 

piece, thereby further streamlining the manufacturing process.  

Increasing fluorescence from quantum dot micro-pillars: Fluorescence from the QD 

micropillar maybe increased by incorporating a higher concentration of QDs in PMMA. However, 

the higher the concentration of QDs in solution (on the order of 10-25 mg/mL), the higher the 

chances of aggregation. To minimize aggregation, higher concentrations maybe achieved by 

increasing the amount of surfactants being used to make the QDs in solution more stable. 

Additionally, the thickness of the QD-PMMA layers maybe increased to increase the amount of 

QDs in the micropillar. However, if the layers are made too thick (> 1 µm), the deflection 

sensitivity of the membrane will reduce due to the loading effect introduced by the increased 

weight of the pillar. 
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NiFO Temperature Sensor: There are two existing theories, mechanical and vascular, that help 

explain the causes that are responsible for the development of glaucoma.  The mechanical theory 

is the most popular one which claims that elevated IOP causes the laminar beams to stretch inside 

the eye, damages the retinal ganglia and thereby causes vision loss. On the other hand, the vascular 

theory claims that an insufficient supply of blood either due to elevated IOP or some other risk 

factor leads to glaucoma.  

 In conditions like congenital glaucoma, angle-closure glaucoma, or secondary glaucomas, 

it has been clearly demonstrated that increased IOP leads to glaucoma. However, in conditions 

such as normal-tension glaucoma, optic nerve damage and visual field loss progress despite 

seemingly normal IOP which seems to partially support the vascular theory. The majority of 

studies about Ocular Blood Flow (OBF) report reduced ocular perfusion in glaucoma patients 

compared with normal subjects. Furthermore, the reduction of OBF often precedes nerve damage  

associated with glaucoma [191].  Blood flow in glaucoma patients can also be reduced in other 

body parts such as the extremities.  Temperature has been a popular but indirect method for 

assessing organ blood flow.  It is well known that limbs get colder if their blood flow is decreased 

and the same phenomenon also holds true for the eye.  Corneal temperature correlates significantly 

with blood flow in the ophthalmic artery, suggesting that OBF indeed influences corneal 

temperature.  Reports indicate that the eyes of patients with glaucoma are cooler than those of 

patients without glaucoma by almost 0.5 0C. Furthermore, reports also show that an increase in 

OBF induced by medication that reduces IOP, increases corneal temperature [192].  

 Given that QD photoluminescence is sensitive to temperature, the NiFO sensor maybe used 

as a temperature sensor as well (Figure 5.1). The device architecture is the same, except for the 

fact that the polysilicon membrane is absent and the QD micropillar is directly patterned on a 

silicon wafer substrate.  With a 20x objective lens having a NA of 0.75, a temperature measurement 

sensitivity of ~ 2.5 0C was obtained. By choosing a higher NA lens to collect more light, by 

increasing the amount of the QDs in the device (increasing the thickness of the QD layer or the 

concentration of QDs) or by measuring the shift in emission wavelength with temperature [193], 

a higher detection sensitivity might be achieved to potentially allow for an alternative medical 

management method for certain forms of glaucoma.  
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 Other potential applications of the NiFO sensor include detecting cardiovascular plaques 

[194] as well as monitoring temperatures in therapeutic/interventional procedures such as laser 

ablation surgeries [195].   

 

 

Figure 5.1: Normalized intensity ratio curve for a NiFO sensor (membrane not released) versus 

temperature. Error bars represent SEM from 5 measurements from the same device. 
 

5.2.2 DCI sensing technology 

The DCI pressure sensor prototype is not appropriate for implantation in the eye: it has 

a very large size (membrane size is 4 mm) and low resolution (1.5-7.5 mmHg) as the image 

contrast between the PDMS and air within the microchamber is low. In addition, the PDMS 

microchamber is not sealed air-tight (PDMS is air/liquid permeable) and its long term 

mechanical stability is questionable.  Here, a new design/manufacturing methodology is 

described that may be implemented in the future to address these issues.  

The DCI operating principle maybe materialized in 2 different directions by 

manufacturing (1) A high-resolution, stand-alone DCI sensor that can be potentially inserted 

over the iris (or integrated into an IOL), (Figure 5.2A) and (2), modify the design of a 

commercial IOL, such that the IOL itself becomes the DCI sensor (no separate integration is 

required)(Figure 5.2B). In the latter case, the IOL lens has the IOP sensor embedded into it. As 

a result, the overall geometry and the dimensions of the IOL do not have to be s i g n i f i c a n t l y  

modified, which is critical for the potential adoption of the proposed technology by IOL 

manufacturers. 
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Figure 5.2: (A) Fabrication of the stand alone DCI sensor, (B) the embedded DCI sensor into an 

IOL. 
 

 

Optimization of sensor for incorporation into iris implant: For the first version of the sensor 

(Type 1), a microfabrication approach can be used to create a compact, high-resolution DCI 

sensor (Figure 5.2A). The sensor can be made out of Polytetrafluoroethylene (PTFE – also 

known as ‘Teflon’). PTFE has exceptional resistance to chemical stability, excellent performance 

in thermal and mechanical strength, it is biocompatible and gas impermeable. It is worth 

mentioning that the fist FDA-approved implantable MEMS pressure sensor (the CardioMEMS 

sensor) is made out of PTFE [ 1 9 6 ] . The DCI sensor will consist of two PTFE layers bonded 

together. The top, thicker, PTFE layer c a n  be molded on a silicon mold that maybe 

microfabricated using DRIE. The bottom layer maybe spin casted to the desired thickness on 

top of a supporting substrate. To increase the image contrast of the two layers, laser ablation 

maybe used to create ridged patterns (eg. concentric circles) on the inner PTFE surfaces of the 

microchamber or by patterning chrome/gold using the lift-off process (dry film photoresist 

deposition might be necessary to uniformly cover the top PTFE layer). After patterning, the 2 

PTFE layers maybe thermally, irreversibly bonded. 

Similar to the NiFO sensor, the overall device footprint should not exceed 2 mm x 1.5 

mm in order to fit through a 2 mm corneal incision (typical of suture-less cataract surgeries) and 

to not damage the corneal endothelia cells. Given that the device is going to be located on the 
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surface of the iris instead of being part of the KPro implant, its thickness must be limited to under 

0.6 mm as per anatomical constraints inside the anterior chamber. In order to secure the device, 

a haptic maybe incorporated into the device similar to the design developed by Haque et al. [197]. 

The iris, being mostly made up of muscle, is very flexible and is expected to stretch out and hold 

the device in place once inserted by the surgeon thereby allowing for a simple suture free 

procedure that seamlessly integrates with the workflow involved in performing a cataract surgery.  

Optimization of sensor for incorporation into IOL implant: For the second version of the of 

the DCI sensor (Type 2), femto second laser micromachining [198] maybe used to ablate material 

from a commercial IOL lens in order to create the microchamber and the thin membrane. Since 

commercial IOLs are made up of different materials (PMMA, silicone, hydrophobic/hydrophilic 

acrylic), lasing energy, pulse repetition rate and other relevant parameters must be optimized for 

each case. A FEA based simulation software like COMSOL maybe used to model and optimally 

design a pressure sensitive membrane by determining size and thickness while trying to minimize 

device footprint for each type of IOL material. This needs to be followed by experimentation with 

different dimensions of the patterned concentric circles, e.g. the spacing, width and thickness (50 

nm-1 µm thick) of the chrome– coated or laser ablated patterns of circular lines. 

External optical read out unit: To be able to  extract data from the DCI sensor from home, a 

compact, portable, light weight and easy to use Optical Readout System (ORS) must be 

engineered. The ORS will acquire bright field images of the two surfaces forming the DCI 

sensor by scanning the entire thickness of the sensor. It will then estimate image contrast for 

every focal plane from which the distance between the two surfaces will be calculated. This 

distance is related to the amount by which the IOP exposed membrane deflects. Based on the 

amount of deflection, the ORS will display measured pressure from the calibration data for each 

DCI sensor.  

The ORS (Figure 5.3) will consist of two parts: (i) an optical head and (ii) a data 

acquisition, processing and display unit. The optical head will be made up of a precision, high 

resolution, motorized z scanning module which houses an objective lens and an eyepiece (optical 

adaptor). The z scanning module enables images to be captured at different focal planes along the 

thickness of the DCI sensor which includes images of the two surfaces. This module is connected 

to a high  resolution monochromatic digital board camera sensor with its own objective lens. The 

board camera in turn is attached to a motorized x,y mini stage. The x-y mini stage is used to find 
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the position of the DCI sensor and center it with respect to the position of the sensor on the board 

camera. The images acquired by the sensor is transmitted via USB to a low cost, credit-card sized 

computer (Raspberry Pi) that plugs into a display shield, both of which form the data acquisition, 

processing and display unit of the ORS. The mini computer is programmed to run a gradient 

calculation based image processing algorithm, similar to the one used to characterize the 

prototype DCI sensor, using a computer software like Open CV.  

 

Figure 5.3: Schematic of optical read out unit for DCI sensor. 
 

 

Alternatively, the optical adaptor, z scanning module and mini x-y stage can be attached 

in front of a smart phone camera that uses an app to perform gradient based image processing, 

followed by estimating and displaying measured pressure.  The sizes of the optical head (3 cm x 

3 cm x 3 cm) and processing/display unit (8.5 cm x 6 cm x 4 cm) are compact to ensure portability. 

5.2.3 Ex vivo and in vivo validation of NiFO and DCI sensing technologies 

 The NiFO and DCI sensor's specifications will need to be established (dynamic range, 

precision error, etc.) by immersing the sensors into a bath containing aqueous humor (in vitro 

testing) followed by testing in human cadaver eye globes (ex vivo).  Testing should be performed 

according to the standards recommended by the Association for the Advancement of Medical 

Instrumentation (AAMI). The test protocol would involve immersing the IOP sensors in a bath 

containing aqueous humor. The bath will be tightly sealed, its temperature will be maintained at 

36.5-370C to mimic physiological temperature and its pressure (that represents IOP) will be 
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precisely regulated. By monitoring the 940 nm / 840 nm intensity ratio, the dynamic range and 

precision error post microlens incorporation must be determined for the NiFO sensor. The sensor 

must be subjected to static (for upto 4 weeks with pressure monitored every 8 hours) and dynamic 

pressure loading (to simulate  IOP fluctuations) conditions to determine any zero drift that might 

be caused due to changes in the material properties of the IOP exposed membrane as well as long 

term stability. Additionally, by varying pressure as step inputs, the times response of the sensor 

needs to be determined by estimating the time that is required for the intensity ratio to reach 

equilibrium.  

 Similarly the dynamic range, precision error, zero drift, long term stability and response 

time for the various design variations of the DCI sensor need to be determine. Additionally, the 

optimal image contrast of the laser ablated/chrome plated surfaces must be evaluated for maximum 

deflection measurement sensitivity.  

  Ex vivo experiments should be conducted to evaluate the performance of the NiFO and 

DCI microsensors over a 14 day period. Standard surgical procedure can be used to integrate each 

microsensor assembly into a human cadaver eye globe. The IOP can be increased up to 45 mm Hg 

by manually injecting saline into the eyeball using a syringe and then measurements can be taken 

periodically while the IOP is decreased. The pressure readings from the microsensor can be 

compared to the readings from a digital manometer that is directly connected to the ocular anterior 

chamber. The experiment should then be repeated 14 days after implantation. The  experiments 

cannot last more than 14 days due to tissue degradation. 

  In vivo testing of the NiFOand DCI sensors (both Types 1 and 2) should be performed in 

the rabbit model in order to determine long term device performance (especially sensor drift) and 

biocompatibility (absence of localized irritation and toxicity). Signs of material change like 

fatigue, erosion, creep, etc may be observed as these will invariably impact the device 

performance. The operation procedure is simple and approximates that used clinically in humans 

and the post operative appearance of the graft is similar to that seen in humans. One eye of each 

animal should be operated while the non operated eye should be used as a control for IOP 

assessment. Animals can be examined with a hand held slit lamp and submitted to IOP 

measurements, for one week prior to surgery, to train them for evaluation after surgery and to 

establish IOP baseline for each eye. After surgery, prednisolone acetate 1% can be used as an anti-

inflammatory drug as well as to induce intraocular hypertension. If further elevation of IOP is 
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required, cannulation of the eye under general and topical anesthesia should be performed. IOP 

measurements should be made at different pressure points and should be monitored intermittently 

for the duration of the experiment of thirty (30) days (at 1 day, at 1 week, and at 1 month time 

points), via digital manometry, pneumotonometer, tonopen, and Icare tonometer to be compared 

with the wireless IOP monitor, possibly requiring no anesthesia or restraining device. In case of 

failure of measurement, the animal should be sedated, to minimize erratic IOP readings as a result 

of forceful squeezing of eyes by the frightened animal. This will also avoid sympathetic responses 

affecting the IOP, reported with animal restraining and with contact tonometry. Rabbits should be 

euthanized if they are not standing, alert, and eating for a 24 hour period. Otherwise, they should 

be euthanized at the end of the experimental procedure at 1 month after which the eye should be 

removed, exposed to a fixative agent and examined for gross pathological evidence of 

inflammatory response, tissue damage and protein aggregation. A similar procedure can be 

adopted for testing the DCI sensors after incorporation with IOLs and onto the iris. 

5.2.4 TSD system 

The DVA of the proof-of-concept prototype has a footprint of ~ 11.5 mm x 11.5 mm, a 

limited spatial resolution (~ 1 mm) and they cannot be miniaturized any further due to the 

limitations of the 3D printing technology. This is a critical requirement in order to ensure that the 

device thoroughly covers the soft and deformable shape of the human hand, and therefore the 

sanitizer is dispensed fast and uniformly to the entire contact surface. In addition, the 3D printed 

valves are very stiff in the vertical direction (due to the presence of the spring) but at the same time 

they cannot support tangential forces (shear stress). Moreover, 3D printing, being a rapid 

prototyping method, is not presently a technology that is amenable for mass production. Therefore, 

implementing the concept as a MEMS device by microfabricating an array of silicon-based 

microvalves and optimizing their mechanical design is a better alternative that would address the 

issues with 3D printing as well as ensure proper and robust operation. 

Similar to the 3D printed prototype, the operating principle of the MEMS-based, smart 

‘skin’ is based on the idea of an array of passive, human-powered, microvalves that deliver a liquid 

sanitizer when the human hand comes in contact with the surface of the array (Figure 5.4). The 

microvalves are closed when no human touch/force is present. When a person touches the surface 

of the MEMS skin, the microvalves are slightly pushed in and the disinfectant flows through them 

(Figure 5.4B).  Each microvalve contains: (i) a movable piston, (ii) a set of 2 or 4 cantilever beams 
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that support the piston and that act as a mechanical spring, (iii) a circular disk that has tens of 

microholes (~80-100 µm in diameter) and, (iv) a fluidic microchamber. The microchambers could 

be connected through a glass microfluidic network to a disposable cartridge that contains the 

disinfectant. All those elements maybe easily microfabricated (with high precision) in a wafer-

level process.  

 

 

 

Figure 5.4: (A) The architecture of the MEMS smart, skin consisting of thousands of passive 

microvalves. (B) The operation principle of a single microvalve. The sanitizer fills the microvalve 

when the disc of the array is touched. 
 

The MEMS valve microarray could consists of 3 bonded wafers. As seen in Figure 5.5, the 

middle wafer is an SOI (Silicon-On-Insulator) wafer: it has a thick single crystal silicon layer 

(~500 µm thick), a buried thin layer of silicon dioxide (2 µm thickness) and a second thin silicon 

layer (~5 µm thick). The process starts with the LPCVD deposition of a 0.5 µm thick silicon nitride 

film (Si3N4) on the SOI wafer. The Si3N4 film –that is patterned in both sides of the SOI wafer- 

has a dual role: (i) it is used as a hard masking layer for patterning the front side of the wafer (step 

4 in Figure 5.5) and (ii) it bends –after release- the suspended Si beams upward so the microvalve 



119 

 

is always closed. The bending of the Si3N4/Si beams is due to the tensile stress of the Si3N4 film. 

The patterned SOI is then anodically bonded to a DRIE-etched silicon wafer that contains the disc 

with the holes and to a glass wafer that contains the microfluidic network. Finally, the 3-stack is 

time-etched released in HF (the SiO2 is partially etched). After release, a thick oxide layer of SiO2 

is deposited to make the array hydrophilic and therefore facilitate the flow of the sanitizer through 

each microvalve. Finally, the microfluidic network is connected to the sanitizer reservoir and is 

allowed to fill the array.  

 

Figure 5.5: The microfabrication process of the MEMS smart skin. The MEMS skin consists of 2 

silicon wafers and 1 glass wafer that are bonded together. 
 

From Figure 5.6, it can be seen that the area of the disc that comes in contact with the 

human hand needs to be optimized to ensure rapid and uniform distribution of the sanitizer. The 

microvalve-to-microvalve spacing needs to be minimized as dead areas between the microvalves 

might not get disinfected properly. Additionally, the thickness and length of the suspended beams 

need to be optimized as these dimensions would affect the force that is required to open each 

microvalve.  
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Figure 5.6: The critical dimensions of the microvalve array that must be optimized.  

 

The processes used for fabricating the microvalve array (e.g. DRIE, anodic bonding) are 

well-established which means that there should not be any difficulties. A minor concern –which 

seems unlikely- is leakage from the microvalves. If leakage is present, a thin film of parylene 

maybe selectively deposited at the bottom surface of the piston. Parylene is slightly hydrophobic, 

can be deposited uniformly and it is therefore expected to provide excellent sealing. Finally, it is 

possible that after long term tem, the holes in the disc will filled up with dust particles. In this case, 

the diameter of the holes can be increased, such that the increased flow rate of the sanitizer through 

the holes will remove any deposited particles. 

The design of MEMS valves is distinct from the 3D printed valves: (1) the small size of 

the valves allows uniform and rapid distribution of the sanitizer, (2) the piston of the valve is 

suspended through a set of cantilever beams. That ensures that the piston will move in the vertical 

direction under a light touch and it will not tilt/rotate when a tangential force is applied to (in the 

3D printed valves, the piston is free-floating and it could get easily misplaced) and (3) all of the 

components of the MEMS valves are batch-microfabricated so there is no need for manual 

assembly.  

Due to the small distances travelled by the piston (few microns) and the small mass of the 

microvalves, the time for the disinfectant to reach the top surface of the array is expected to be in 

the millisecond (ms) range. That short operation time is more than enough, as the time required 

opening a door or moving a cart is at least few seconds. The unique features of the MEMS skin 

include: (1) zero power requirements as it consists of a passive hand-powered microvalve array, 

(2) the use of  liquid antimicrobial disinfectants which is the best known disinfection approach, (3) 

versatility on what type of disinfectants can be used, (4) maximum prevention as the MEMS skin 

does disinfect both the surface on which it is applied (e.g. the door handle) as well as the human 
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skin, (5) minimum sanitizer consumption as disinfection is localized at the contact areas (all 

microvalves operate independently - no touch/no activation) Finally, it should be emphasize that 

the use of MEMS technology is critical for the low-cost, mass production of the MEMS skin in 

the future and its fast adoption.  
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PART B – Biological Micro Systems 
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INTRODUCTION 

6.1 Motivation 

 Key goals in the fields of neuro and developmental biology are to understand how living 

systems operate macroscopically through morphogenesis and behavior and how this operation is 

governed by microscopic activities such as gene expression and cell signaling. To address these 

questions, the most common method is to directly observe biological processes in living organisms 

followed by the extraction of meaningful information from the observations. This process of  

imaging generally uses fluorescence microscopy and over the past several years, enormous 

advances in optical techniques have made possible the ability to perform high content imaging 

with excellent spatiotemporal resolution to observe structures that are located deep within intact 

tissue. On the other hand and in parallel, engineers have made advances, especially in the field of 

microfluidics, to enable high throughput observations that supplements high content, high 

resolution imaging to produce vast amounts of biological data.   

 Caenorhabditis elegans (nematodes) and Drosophila melanogaster (fruit flies) are two of 

the most widely-used invertebrate model organisms that are used by biologists to study human 

diseases [199] [200]. The ability to manipulate these small-scale organisms that includes their 

delivery, orientation, and immobilization plays a critical role in the success of biological imaging 

to answer fundamental questions about causes, pathways and treatments for human diseases. 

Besides imaging, other examples of applications where manipulation is highly demanded are in 

cell ablation [201], microinjection [202] and dissection [203] of these organisms. 

 Conventional manual methods [204] and recent microfluidic techniques [205] [206] [207] 

used to manipulate model organisms are typically non-reversible and time-consuming at a single 

animal level. In conventional manual methods, animals are oriented with picks or tweezers, then 

glued or trapped for imaging [208]. These procedures require high levels of expertise while being 

non-reversible and time-consuming. Recent microfluidic-based methods have demonstrated 

manipulation of nematode and fruit fly larvae with acceptable efficiencies, but only yielding 
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limited orientation directions (i.e., lateral or dorsal) [209] and poor levels of animal 

immobilization. Therefore, there is a need for developing tools that produce a reversible effect, are 

easy to implement, whose implementation is not labor intensive and that have the potential to 

enable high speed, high throughput  imaging on intact C. elegans and Drosophila melanogaster 

across multiple developmental stages. 

 In this thesis, 2 separate, novel approaches for immobilizing and imaging Drosophila 

melanogaster larvae and C. elegans nematodes are described and discussed. Both methods are 

simple to implement, the operator does not need to have any specialized skills to implement them, 

allow reversible immobilization to perform  imaging in whole organisms and enable precise 

manipulation of the animals. Furthermore, both methods are amenable to computer automation. 

1. Cryo-Larva Chip: Microfluidic chip for cryo-aneasthesia of Drosophila larvae for high 

resolution  imaging applications: The thesis describes a microfluidic method for short term, 

repetitive immobilization of Drosophila melanogaster larvae to perform high resolution  imaging 

on intact animals for neurobiological studies. The method is easy to implement, allows complete 

larval recovery and can be used to immobilize larvae of different developmental stages. It can be 

subjected to multiple uses while making the larval loading process extremely quick and easy. The 

microfluidic device is also equipped with feeding ports to enable food supply to the larva and avoid 

starvation in order to maintain the animal on chip for long term time lapse imaging experiments.  

2. The WormImm Plate: A 3D Printed Millifluidic Tool for CO2 Immobilization of C. elegans on 

Agar for Population Studies and In vivo Imaging Applications: The thesis describes an easy to use, 

3D printed milli-fluidic tool for immobilizing on demand, entire populations of C. elegans as they 

are grown and maintained on an agar surface. The method is appropriate for short-term (20-30 

minutes) worm immobilization which is sufficient for performing several experiments on worm 

populations like scoring lifespan assays and performing fluorescence imaging under a stereoscope. 

Besides allowing quick recovery, the method offers the additional advantage of observing worm 

populations without mechanically manipulating or disturbing them as they continue to grow on 

the agar surface. Furthermore, with minor dimensional modifications to device architecture, we 

envision the use of this method in a wide variety of higher resolution biological imaging studies 

in C. elegans, including cell developmental and neuronal regeneration studies. 
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6.2 Techniques for  manipulation of Drosophila melanogaster 

6.2.1 Research need 

 The fruit fly, D. melanogaster (Figures 6.1 and 6.2), is one of the most well-studied model 

organisms and one of the first model organisms used for genetic studies [210]. Additionally, the 

Drosophila melanogaster larva is a widely used organism for modeling human biology and 

diseases at the behavioral, cellular and molecular level [211] [212] [213]. Drosophila larva is 

genetically tractable, has a translucent cuticle, a short life cycle and a simple neuroanatomy that is 

amenable to  imaging [214] [215] [216] [217]. However, one of the biggest challenges associated 

with live imaging of Drosophila larvae is achieving an acceptable degree of immobilization. For 

high resolution imaging to observe cellular and sub-cellular events with high spatial and optical 

resolution, the larva body needs to be exceptionally stationary during immobilization. For time-

lapse imaging of more long term events like the growth of new axons post injury requires an 

immobilization method that is very gentle on the animal’s physiology [218]. Therefore, in order 

to image reliably cellular/sub cellular events over longer periods, an easy to use, reversible, low 

cost and chemical-free immobilization method is needed. 

 

Figure 6.1: Anatomy of adult and larval Drosophila melanogaster [Figure and caption appears in 

[219]].  
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Figure 6.2: Drosophila melanogaster life cycle [Figure and caption appears in [220]]. 
 

6.2.1 Current practices 

 Current, conventional immobilization techniques include dissection [221] [222], the use of 

anesthetics [223] or glue and squeezing the larva body [224]. Dissection prevents imaging intact 

larvae while long term image acquisition is not possible. Glue is toxic, provides irreversible 

immobilization and is difficult to implement for very young animals. The use of anesthetics –such 

as isofluorane [225] [226] - has many advantages but they are known to affect the animal’s 

neurophysiology and various biological processes. Additionally, imaging must be restricted to 

short intervals in order to allow recovery between doses [225] [226]. Besides affecting larval 

survival, conventional anesthetics also pose a threat to the user’s safety. The most popular 

mechanical immobilization technique involves capturing the larva by flattening it between two 

microscope slides using light pressure. While this can be easily performed, the degree of control 

is poor and the immobilization is not adequate in order to allow stable high resolution imaging of 

cellular processes. Furthermore, the imaging duration is limited and larval recovery can be difficult 

if not impossible [227]. 
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6.3 Techniques for  manipulation of C. elegans 

6.3.1 Research need 

 The nematode, C. elegans (Figures 6.3 and 6.4), is one of the most widely studied model 

organisms with several practical advantages like easy maintenance, short generation times and 

optical transparency well into adulthood [200] [228] with well established genetic manipulation 

techniques being applicable to them [229]. Biological studies of C. elegans often require that they 

remain immobile during observation, especially for experiments such as detailed structural 

analysis of anatomical features like the shape of the pharynx [230] or the structure of the muscles 

of the body [30], performing surgical ablation of tissues using laser pulses, [231] and acquiring 

time-series snapshots of neuronal responses to stimuli with fluorescent probes [232]. In addition, 

the ability to immobilize multiple worms at once is highly desirable as it would drastically decrease 

the amount of time needed to collect data from large worm populations. Furthermore, the 

immobilization method must be minimally toxic to worm physiology. With the advancement of 

microfluidics technology, several research groups have recently proposed microfluidic chip based 

systems for observing C. elegans populations.  These systems are however expensive to fabricate 

with complicated designs that are difficult to implement, especially for low resolution imaging 

[233] [234] [235].  Moreover, there is no existing method that allows for the simultaneous imaging 

of worm populations without displacing them from their culture medium. Therefore, there is a 

need to develop a low cost, easy to implement tool that allows large worm populations to remain 

immobilized or at the very least, within the field of view of the imaging microscope for the duration 

of the observational procedure without being toxic to the worms while continuously maintaining 

them on an agarose culture medium.  
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Figure 6.3: C. elegans hermaphrodite anatomy [Figure and caption appears in [236]]. 
 

 

Figure 6.4: C. elegans life cycle where L stands for Larva [Figure and caption appears in [237]]. 
 

6.3.1 Current practices 

 Generally, C. elegans are immobilized in two ways: (i) The worms can be fixed to an 

agarose pad using a cyanoacrylate glue, [238] [239] or (ii) the worms maybe treated with chemical 
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anesthetic drugs including metabolic inhibitors (like sodium azide) [240] [239] or cholinergic 

agonists (like levamisole) [241] [239].  

 Gluing a single worm takes several minutes which means that in order to examine a large 

number of worms, researchers must devote substantial time and effort to immobilize an entire 

population during an experiment thereby making this method highly inefficient. In addition, the 

glue adheres to the worm irreversibly. Apart from the fact that once an animal has been glued and 

that it cannot be released, the glue by itself is very likely to have a toxic effect on the organism. 

Treatment with anesthetic drugs is useful for paralyzing and thereby immobilizing very large worm 

populations at once. However, it unavoidably changes the internal biochemical state of the worm 

during the procedure thereby affecting experimental observations. On some occasions, individual 

worms have been immobilized with either their head or their tail being held by the researcher 

inside a micropipette using suction [242] [239]. Similar to the gluing method, a major limitation 

of this procedure is that it is possible to immobilize and image just one worm at a time making the 

process very tedious and impractical for population studies.  

6.4 Thesis objectives 

 In order to conduct biological studies in small model organisms like Drosophila 

melanogaster and C. elegans, experimental methodologies need to be developed that would be 

simple to implement, not be skill intensive and allow precise manipulation of the animal and its 

micro-environment. This thesis aims at utilizing the potential of microfluidic and millifluidic 

technology as well as manufacturing processes like 3D printing for developing such methodologies 

for conducting neuroscience studies in Drosophila melanogaster and C. elegans. This thesis aims 

at achieving the following objectives:      

1. To realize a microfluidic approach for immobilizing and performing high resolution  

imaging on Drosophila melanogaster larvae 

 Immobilization of the larvae is a critical step for high resolution neurobiological research 

studies that include laser ablation of neurons, imaging stimulus-evoked neuronal responses, 

analyzing anatomical features and imaging cellular development. However, the conventional 

immobilization techniques are labor and time intensive, low throughput, toxic and moreover, not 

amenable to automation. Here, we designed and fabricated a microfluidic platform for 

immobilizing and performing high resolution imaging on intact larvae across different age groups 
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(1st instar to late 3rd instar). The method is simple to implement, is not skill intensive, non-toxic, 

reversible, allows precise larval manipulation and is amenable to computer automation. 

2. To fabricate an immobilization assay for C. elegans on an agarose plate. 

We designed and fabricated a 3D printed milli-fluidic device for immobilizing worm 

populations as they are grown and maintained on an agarose surface. The method is appropriate 

for  immobilizing worm populations for short periods of time (20-30 minutes), immobilizes worms 

of different age groups (L2’s to adults), is easy to implement and allows worm recovery within a 

few minutes after immobilization. Moreover, the device architecture is compatible with low as 

well as high resolution optical microscopy.  

6.4 Thesis organization 

 The work presented in Part B of this thesis is organized as follows :  

Chapter 7 – Literature Review  

 This chapter reviews the recent developments in immobilization device technology for 

Drosophila melanogaster and C. elegans research studies. 

Chapter 8 – Cold and Compressive Immobilization of Drosophila Larvae On-Chip for High 

Resolution  Imaging Applications 

 In this chapter, we present a microfluidic approach for immobilizing the model organism, 

Drosophila melanogaster larva, on-chip for high resolution, live,  imaging in whole animals. The 

chip creates a cold micro-environment around the larva while also utilizing a deformable PDMS 

membrane to mechanically restrict larval movement. After characterizing on chip temperature 

distribution and larval body movement, our results indicate that the method is appropriate for 

repetitive as well as reversible, short-term (several minutes) larval immobilization. The method 

offers the added advantage of using the same chip to accommodate and immobilize larvae across 

all developmental stages (1st instar to late 3rd instar). The process of loading larvae onto the chip 

is also quick and easy. Besides the demonstrated application of the chip in high resolution 

observation of sub cellular events such as mitochondrial trafficking in neurons, we envision the 

use of this method in a wide variety of biological  imaging studies employing the Drosophila larval 

system, including cellular development and other studies. 

Chapter 9 – The WormImm Plate: A 3D Printed Millifluidic Tool for CO2 Immobilization of C. 

elegans on Agar for Population Studies and  Imaging Applications 
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       In this chapter, we present a simple to use, practical, 3D printed milli-fluidic tool for 

immobilizing entire populations of the roundworm C. elegans as they are grown and maintained 

on an agar surface. A CO2 environment is created on demand at the surface of the agar layer that 

causes a near immediate immobilizing effect on the worms.  Our results indicate that the method 

is appropriate for short-term (20-30 minutes) immobilization which is sufficient for performing 

several experiments on entire worm populations like scoring lifespan assays and performing 

fluorescence imaging under a stereoscope. The method offers the additional advantage of 

observing worm populations without mechanically manipulating or disturbing them as they 

continue to grow on the agar surface. The device has a simple architecture that is compatible with 

both upright or inverted microscopes. Furthermore, with minor dimensional modifications to 

device architecture, we envision the use of this method in a wide variety of higher resolution 

biological imaging studies in C. elegans, including cellular developmental and neuronal 

regeneration studies. 

Chapter 10 – Conclusions and Future Directions 

This chapter summarizes the work presented in Part B of the thesis and discusses future 

directions for the biological micro-systems that have been developed. 
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LITERATURE REVIEW 

7.1 Introduction 

As discussed in Chapter 5, small model organisms such as Drosophila melanogaster and 

C. elegans are used very commonly in biological studies as they provide unique opportunities for 

scientific discovery. Apart from the gold standard methods of using glue and/or chemical 

anesthesia, there have been significant breakthroughs in the development of technologies over the 

past few years to manipulate and image these organisms for a variety of experimental studies. 

Among these newer technologies, microfluidics based systems have been the most prominent. This 

chapter presents various microfluidics based methods that have been developed and used for 

immobilizing Drosophila larvae and C. elegans nematodes for imaging purposes. 

7.2 Microfluidic technologies for micro-manipulating, imaging and phenotyping small 

model organisms 

With the advancement of research in the biological sciences, soft materials, drug screening 

and lab on a chip assays, microfluidics has emerged as an attractive technology choice, especially 

for developing high throughput based systems [243] [244]. As it employs dimensions at the micron 

scale [245] [244], fluid flow is precisely controllable thereby allowing the application of accurate 

flow rates, concentration gradients and shear stresses to manipulate small model organisms in a 

regulated micro-environment. Additionally, manufacturing microfluidic devices involve the use 

of fabrication techniques that are very similar to those used in making MEMS devices with small 

features ranging between 1-100 µm. Generally, soft lithography replica molding of an optically 

transparent, soft, gas permeable, non-toxic and inert silicone based elastomer called PDMS is used 

to fabricate microfluidic devices. Moreover, the method is easy and quick to implement, relatively 

inexpensive and allows each chip to be used multiple times. In the past few years, three 

dimensional (3D) printing technology has also joined the effort of miniaturization with high 

resolution 3D printers capable of fabricating micrometer scale objects. Furthermore, the increase 

in material choice has led to an explosive growth in 3D printing technology for manufacturing 
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microfluidic devices for biomedical/biological applications. These advantages make PDMS, soft  

lithography replica molding as well as 3D printing suitable for applications in biological 

experiments and microscopic imaging observations.  

Given its status as a platform technology for biological studies, microfluidic devices have 

been used to handle and study cells as well as small model organisms. Specifically in the field of 

Drosophila larval research, microfluidic systems have been employed to perform embryo sorting 

[246] [247] [248], microinjection [248] [249] and arraying [250] [251] [248] among other 

experiments. Similarly, the field of C. elegans research has also been significantly impacted by 

microfluidic technology ( [252]; [253]; [254]; [255]; [256]; [257]; [258]; [259]; [260]; [261]; 

[262]; [263]; [264]; [265]), as it not only allows controlled flows and targeted chemical stimuli 

delivery, but it also enables easy animal handling and manipulation. In general, microfluidics has 

helped transform Drosophila and C. elegans research from a laborious, time-consuming, low 

throughput process into an easier task, aided by the simple, precise and rapid on-chip animal 

handling, immobilization, and imaging capabilities that the technology offers. Additionally, the 

majority of microfluidics systems tend to avoid the use of glues and chemical anesthetics for 

studies that require worm immobilization which minimizes any potential negative impacts on 

animal physiology. 

Most biological experiments require high resolution live imaging making the 

immobilization of the small model organism an important prerequisite. Any movement can lead 

to out of focus images that can render the observation useless. In general, the immobilization 

approaches that have been developed are either chemical or physical techniques. The first category 

includes methods that use chemical compounds such as metal ions or antibodies to achieve 

immobilization. Even though they provide good quality of immobilization, these techniques 

adversely affect animal physiology, even at very low concentrations [266]. The techniques in the 

second category cause immobilization by altering the viscosity of the medium or by using some 

means of capturing, holding and/or applying pressure on the animal. Even though negative effects 

on animal physiology is minimized, the quality of immobilization is usually inferior to a chemical 

method. The following sections describe and review in further detail, the microfluidic approaches 

that have been specifically developed and published in existing literature for immobilizing 

Drosophila larvae and C. elegans nematodes.  
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7.3 Immobilization approaches for Drosophila melanogaster 

Several research groups have developed systems that either physically constrict/compress 

the larvae to restrict movement or use CO2 to achieve immobilization. In the following paragraphs, 

the most notable device technologies will be briefly presented followed by a discussion of their 

advantages and disadvantages. 

Mechanical micro-compression: Yan et al.  (2014) [267] constructed a microfluidic device 

(Figure 7.1) to immobilize Drosophila larvae using a mechanical microcompressor. The 

microcompressor, made up of CNC machined brass, can be adjusted to precisely press down 

against a coverslip which bows and compresses against another coverslip with a larva mounted in 

between them. The mechanical pressure applied by the microcompressor flattens the larvae thereby 

immobilizing it. Additionally, the compression pressure visually enhances the appearance of sub-

cellular structures and organelles while observing under a microscope. The device has 

microfabricated glass channels that allow on chip perfusion of fresh media or drugs to the animal 

during imaging (Figure 7.1(c)).  The mechanical microcompressor was made out of CNC 

machined brass. Yan et al. [267] imaged E-cadherin dynamics in the eye imaginal disc in live 

third-instar larvae expressing an E-cadherin–GFP fusion using this immobilization approach 

coupled with a two-photon confocal microscope.  

The device design is simple and compatible with either upright or inverted microscopes. It 

is possible to integrate the method with additional microfluidics modules which widens its range 

of applications in which high resolution bright field and/or fluorescence microscopy is required. 

However, despite these advantages, the method requires the use of complicated and expensive 

laser and CNC fabrication processes in addition to soft lithography replica molding. Additionally, 

given that the mechanical stress being applied on the animal is not well regulated while using this 

method, larval recovery post immobilization is poor. Since the animals do not survive after several 

hours, the application of this method in most time lapse imaging experiments is severely limited.   
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Figure 7.1: (a): The main components of the microcompressor consist of a commercially available 

glass slide (G), 4 precision machined brass pieces and a machined aluminum tool. The brass pieces 

consist of a threaded outer brass ring (OR) permanently attached to the glass plate, a threaded inner 

ring (IR) that is screwed into the OR and a brass coverslip mount (CM). The CM has a smooth 

outer face that slips into and engages the IR with two overhanging arms to form a locking 

mechanism (LM). The threaded inner face of the coverslip mount accepts the coverslip compressor 

(CC) and a machined step in the center of the mount creates a niche for a 25 mm commercially 

available glass coverslip (GC). The unique design of the coverslip mount bends the coverslip so 

that the very center of the coverslip will be the first section to touch a centered specimen on the 12 

mm coverslip platform (CP). The platform can also be custom-designed for microfluidic control 

or for holding specimens in 3D volumes. (b): Depicts an assembled unit, incorporated with 

microfluidics, ready to be placed on a microscope stage. Samples are loaded on the glass specimen 

platform at the center of the unit, after which the coverslip mount is inserted into the threaded 

assembly. Vertical adjustment of the top coverslip is made by rotating the ring assembly, engaging 

the fine threads of the two rings. (c): The glass plate with outer ring from above incorporated with 

glass (SiO2) microfluidics. SiO2 chip 1 has two 200 mm wide and 30 mm deep channels machined 

into it that each run from an acrylic manifold on the bottom left and bottom right of the image. 

These manifolds both have connectors for tubing that would carry fluid via a pump. The channels 

connect to SiO2 chip 2, which serves as the CP and has a 30 mm wide supply and return port for 

specimen perfusion. (d): Cross sectional schematic of the microfluidics. SiO2 chip 1 is adhered to 

the glass base by plasma-bonding to a 25-mm-thick layer of polydimethylsiloxane. The acrylic 

manifold and SiO2 chip 2 are adhered to SiO2 chip 1 by a silicone adhesive. [Figures and captions 

appear in and are taken from [267]] 
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Mechanical clamping: Ghaemi et al. (2014) [227] developed two microfluidic devices (Figure 

7.2) to immobilize 3rd in star larvae for performing live fluorescence functional imaging of the 

central nervous system in response to a controlled source of acoustic stimulation with neuronal 

responses peaking at 200 Hz. 

The first device, referred to as the pneumatic chip, consists of an inlet port for larval 

loading, a channel for directing each larva to a tapered trap that mechanically immobilizes the 

animal during imaging and an outlet for larval ejection at the of experimentation. The chip 

therefore enables automated loading, immobilization, testing and unloading of the larvae.  The 

immobilization trap consists of a narrowed channel, a primary gate, a secondary gate and a stopper. 

Once the larva is directed into the trap, the gates apply pressure on the body. The rest of the animal 

is encapsulated inside the narrow channel. The dimensions of the secondary gate allow just the 

nose of the immobilized larva to protrude through the gate which prevents it from escaping [227].  

The second device, referred to as the FlexiChip, has a main channel that fits a 3rd instar 

larva and has a clasping clip mechanism that clamps the larval head. The clip opens when the 

PDMS is flexed and closes upon flexion reversal. There is a 100 μm diameter glass wire on top of 

the clip that creates an enclosed opening that prompts the larva to enter the channel while 

stabilizing the anchoring once the clip is closed. There are auxiliary channels for the possibility to 

introduce electrical/mechanical probes for body-wall stimulation during live-imaging. It must be 

noted that while being subjected to different sensory stimuli, the larva continues to breathe [227]. 

  The pneumatic chip is a good choice for performing high throughput studies due to its 

automated loading and unloading feature. The FlexiChip, being more simple in its implementation, 

is better suited for smaller scale studies especially since the larvae maybe quickly loaded manually. 

Both chips have a simple principle of operation, use 3D printed molds that make their fabrication 

cheap and significantly reduce endogenous body movements to a large extent.  However, small 

body movements are still present that do not allow higher resolution imaging of sub cellular 

structures. Additionally, the architecture of the devices is complicated and they are capable of 

accommodating only 3rd instar larvae making developmental studies impossible [227].  
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Figure 7.2: (A) Schematic design of the pneumatic chip– top view (top image) and side view 

(bottom image). The inlet channel is 25 mm in length, 3 mm in width and 2 mm in depth with an 

inlet port located at its end for loading animals. The outlet channel is 8 mm in length, 3 mm in 

width and 2 mm in depth for ejection of tested animals. (B) Schematic design of the FlexiChip – 

top view (top image) and side view (bottom image). (C) Schematic showing the experimental setup 

used to examine larval auditory response. An insulation box with sound damping foam is used to 

accommodate the microscope right beneath the speaker that is connected to a function generator 

(FG) through an amplifier for sound actuation. Both the microscope and the FG is connected to a 

PC for automated control of image acquisition and signal generation respectively. (D) Microscope 

images demonstrating the steps used to load individual larvae using the pneumatic chip (a–d). 

When loaded onto the chip, each larva swam freely into the trap, and (e–f) the larva was then 

pneumatically moved into the trap and immobilized. Time-lapsed fluorescence imaging was 

subsequently conducted on the Central Nervous System (CNS) located inside the Region of 

Interest (ROI). All the figures shown in (D) have a scale bar of 400 μm. (E) Images demonstrating 

the steps used to load individual larvae onto the FlexiChip. The FlexiChip (a) is squeezed and bent 

(b) so that the clip (c) opens up. Then, the larva is inserted into the gap that is created and the 

FlexiChip is then released and sealed by a coverslip (d). Time-lapsed fluorescence imaging was 

subsequently conducted on the CNS located inside the Region of Interest (ROI). (F) Snapshots of 

the fluorescence activities in the CNS of a larva (a) before and (b) during exposure to sound wave 

of duration 5 second with a frequency of 200 Hz and amplitude of 105 dB with the animal loaded 

onto the pneumatic chip. [Figures and captions appear in and are taken from [227]] 
 

 

Carbon dioxide immobilization with mechanical compression: Ghannad-Rezaie et al. [1] 

developed two microfluidic chips (Figure 7.3): one for short-term imaging (up to 1 h) and the other 

for long-term imaging (up to 10 h) experiments using which they investigated short and long term 

cellular responses to neural injury.  
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Both devices are not permanently bonded to any substrate and are therefore reversibly 

attached to a glass coverslip. The first microfluidic device (Figure 7.3A) that maybe used for short 

term immobilization (termed the ‘SI-chip’ for Short-term Immobilization over several minutes) 

contains a micro chamber  that fits an early-stage 3rd instar larva. A microfluidic network surrounds 

the micro chamber and has a vacuum access port. Once connected to vacuum, the network creates 

a strong seal between PDMS, oil and the coverslip, thereby preventing the larva from escaping 

from the chip. The mechanical pressure applied through the PDMS/glass walls on the larval body, 

although mild, is sufficient to immobilize it. Additionally, the pressure brings internal body 

structures closer to the coverslip thereby allowing for easier high-resolution imaging. In order to 

remove the larva from the chip, the vacuum seal must be manually released. Given that the 

loading/unloading process is quick and simple without creating a permanent bond between glass 

and PDMS, the same chip can be used multiple times for additional experiments [1].  

To increase the survival rate over more extended (>1 hour) periods of time compared to 

the SI chip, a second PDMS microfluidic device (Figure 7.3B) was developed  (termed the LI-chip 

for Long-term Immobilization).  With a double-layer architecture, a ‘CO2 micro-chamber’ is 

incorporated above the immobilization micro-chamber containing the larva for delivering a 

mixture of CO2/air that completely immobilizes the animal. The immobilization micro-chamber is 

dimensionally similar to the SI-chip and is separated from the CO2 micro-chamber by a 10 µm 

thick PDMS membrane. CO2 can diffuse through this gas permeable membrane into the 

immobilization micro-chamber. Furthermore, since CO2 is supplied under moderate pressure (5 

psi) to the LI-chip, the membrane separating the two micro-chambers deflects and collapses onto 

the larva body thereby applying a mechanical pressure on it. The LI-chip has food ports in the 

form of two microfluidic channels that are connected to the immobilization micro-chamber 

through which food maybe introduced to maintain the larva in between imaging sessions over 

several hours [1].  

Although good immobilization results were obtained with the SI chip that mechanically 

compresses the larva against a coverslip while imaging with a very simple setup, only 3rd instar 

larvae were accommodated with poor long term survival. While younger larvae were poorly 

immobilized, older larvae did not fit inside the chip. The LI chip on the other hand was able to 

accommodate larvae of all ages due to the presence of the flexible membrane which is a significant 

advantage over the SI chip. However, CO2 is known to negatively impact animal physiology over 
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long exposures. While both devices significantly reduced movement compared to freely moving 

larvae, the level of immobilization was not satisfactory for imaging internal structures located 

deeper inside the larvae. Frequent, small body movements did not allow high spatial resolution 

imaging of subcellular structures (such as mitochondria at neuro-muscular junctions and axons) 

inside the larval body [1].  

 

Figure 7.3: The Short-term Immobilization (SI) and Long-term Immobilization (LI) microfluidic 

chips for immobilizing Drosophila larva. (A) The SI-chip is a single-layer PDMS microfluidic 

device that utilizes a 140 µm thick immobilization microchamber to mechanically fix individual 

3rd instar larve in the vertical direction. (Scale bar, 1 mm.) (B) the two-layer LI-chip. The first 

PDMS layer (labeled with blue color) has the larva immobilization microchamber (thickness 170 

µm) and is connected to two microfluidic channels to supply food to the larva (typically delivered 

every 30 minutes). A second PDMS layer (labeled with red color) is vertically integrated on top 

of the first PDMS layer to deliver CO2 through a 10 µm thick gas permeable, flexible PDMS 

membrane. In both the SI and LI chips, a microfluidic network surrounding the immobilization 

chamber is used to create a tight but reversible seal between the PDMS and the glass coverslip. 

(Scale bar, 1 mm.) (C) (I) Bright-field microscope image of a 3rd instar larva immobilized in the 

LI-chip. (Scale bar, 1 mm.) (II) Fluorescent images of the larval body (highlighted in the red square 

in C(I)) before (top image) and after (bottom image) immobilization. After application of CO2 at 

5 psi, the larva is immobilized and the GFP-labeled Ventral Nerve Cord (VNC) is brought into 

focus (bottom image). (Scale bar, 20 µm.) [Figures and captions appears in and are taken from [1]] 
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Fluid pressure immobilization: Mondal et al. [268] developed a two layer, membrane based 

microfluidic device to acquire imaging data at the millisecond time scale of GFP-tagged proteins 

on various cargoes at the sub cellular level. By immobilizing larvae expressing fluorescently 

labeled mitochondria, the researchers were able to monitor mitochondrial transport in live, 

unanesthetized animals.  

To develop this method, they used a water column instead of gas to apply mechanical 

pressure on the larval body. Even though fabrication of the device involves two layers of 

polydimethylsiloxane (PDMS), it does not require sensitive alignment nor cleanroom facilities. 

The larvae are fed manually into the microfluidic chip without complex flow valves making this 

method very easy to implement. Due to the bilayer, membrane based architecture, the same device 

maybe used for accommodating all larval developmental stages. Additionally, the same device 

architecture was used to successfully immobilize C. elegans and observe vesicle transport in 

mechanoreceptor neurons (Figure 7.4). The operation of the device is shown schematically in 

Figure 7.4. However, the loading process is tedious and the larvae have to be squeezed against the 

microfluidic walls which can negatively impact their survival due to excessive mechanical stress. 
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Figure 7.4:  Imaging of GFP:RAB-3-marked vesicle transport in 1-day adult C. elegans 

mechanoreceptor neurons in a microfluidic device. (A) GFP::RAB-3 movement was imaged in the 

posterior lateral touch neuron (PLM) out of the six touch neurons [PLM, anterior lateral touch 

neuron (ALM), posterior ventral touch neuron (PVM), anterior ventral touch neuron (AVM)]. (B) 

and (C) Schematic of PDMS membrane device used for C. elegans immobilization. A deflected 

PDMS membrane using 14 psi nitrogen gas in the control channel in the PDMS 2 layer was used 

for immobilizing C. elegans present in the flow channel in the PDMS 1 layer. (D) Shows life cycle 

of C. elegans with the associated body length and body diameter in parenthesis. L stands for Larva. 

(E) Bright field image of a 1-day adult worm immobilized in a PDMS device. (F) Montage of five 

successive frames acquired at 5 fps with the frame numbers mentioned in each image. Anterograde 

(solid ’down’ arrowhead) and retrograde (solid ’up’ arrowhead) moving vesicles can be clearly 

seen in the neuronal process (cell body on the right side). (G) The image stacks (250 frames are 

shown) are analyzed using kymograph plugins of IMAGEJ to visualize particle displacement over 

time. (H) Schematic representation of a neuron with a 120 µm shaded region near the cell body 

with anterograde and retrograde movements indicated. I) Representative contours for anterograde 

(solid ’down’ arrowhead), retrograde (solid ’up’ arrowhead) and stationary (solid ’left’ arrowhead) 

particle tracks are plotted. The shaded box shows the 20 µm window that is used to calculate 

vesicle flux. (J) Kymograph of an L1 worm imaged in a microfluidic device and anesthetized using 

0.3 mM levamisole (lev), respectively. Scale bar is 200 µm(E),10µm (G and J) and 5 µm(F). 

[Figures and captions appear in and are taken from [268]] 
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7.3 Immobilization approaches for C. elegans 

In recent years many techniques, almost exclusively microfluidics based, have been 

developed in order to obtain on-chip worm immobilization. The most notable ones use cooling 

[269], compression or restriction [270] [239], CO2 [270] and gelation of the surrounding fluid 

[271] to immobilize the nematodes. In the following paragraphs, these techniques will be briefly 

presented followed by a discussion of their advantages and disadvantages [244]. 

Temperature induced on-chip immobilization: K. Chung et al. [269] developed a device 

(Figure 7.5) that created a cold micro environment (nematodes are cooled down to ~ 4 °C ) to 

immobilize individual worms while providing automated manipulation and observation [244].  

The device design comprises of a PDMS microfluidic chip with valves that are built-in in 

order to control the flow of nematodes that are suspended in solution. An algorithm performs high 

throughput image acquisition, analysis and worm sorting without any human intervention. Prior to 

reversible and short term cryo-immobilization, the worms are individually loaded into the chip by 

applying a constant pressure-driven flow.  Once immobilized, a high resolution scan is obtained 

before phenotyping and sorting takes place. The images/videos that are acquired during the 

imaging session are then stored for further analysis. After imaging, the nematode is flushed out 

and a new animal is loaded on the chip [244]. 

Conventional soft lithography replica molding method is used for fabricating the 

microfluidic chip, which consists of two layers, one for regulating flow and the other for 

controlling temperature. The two layers are bonded together but separated by a 20 µm thick, 

flexible membrane. The device is bonded to a glass cover slip via oxygen plasma treatment. The 

worm loading process is automatically regulated by a built-in system which ensures that just a 

single worm is present inside the imaging chamber at a time. An automated positioning system 

places individual animals in the same location inside the chip with a high degree of precision. In 

order for immobilization to take place, the temperature around the animal needs to be controlled 

which is provided by a cooling system (Figure 7.6). The setup is fully compatible with any standard 

microscopy equipment and demonstrates high throughput and sorting efficiency. Since this method 

does not use any chemical anesthetic, any potential side effects of drugs use are eliminated. 

However, despite the many advantages presented by this method, its design is very complicated 

and requires a fairly elaborate setup consisting of cooling units, several control valves along with 

an air gas cylinder thereby making its implementation expensive and replication tedious [244]. 
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Figure 7.5: Schematic of the device showing 2 layer architecture and nematode placement. 

[Figure and caption appear in and are taken from [269]] 
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Figure 7.6: Schematics of the immobilization system and the microchip. (a) A mixed population 

of worms is injected into the device, worms are imaged, phenotyped and then sorted automatically. 

(b) System block diagram showing the on-chip and off-chip components and their connections. (c) 

Photograph of the microdevice. (d) Optical micrograph of the microchip’s active region (boxed 

region in c). The channels were filled with dye to show specific features: blue - temperature control 

channel; green - valves; and red - sample-loading channel. (d). [Figures and captions appear in and 

are taken from [269]] 
 

 

Carbon dioxide immobilization: The method developed by Chokshi et al.  [270] 

for immobilizing C. elegans uses a microfluidic chip that creates a CO2 micro environment around 

an individual nematode inside of an immobilization chamber. With the animal inside the chip, 

body movements are inhibited over extended periods of time (~ 2 hours). No lasting mechanical 
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damage was observed with this method. Moreover, once CO2 flow is cut off, the worms 

demonstrated quick recovery (within a few seconds) [244]. 

The device employs the popular two layer architecture (Figure 7.7) and has two modules. 

The behavior module, consisting of a saw shaped microchannel, revitalizes the animal after 

immobilization by mechanically stimulating it to move in a sinusoidal pattern. The immobilization 

module, consisting of two layers – an upper control layer and a lower flow layer separated by a 

flexible PDMS membrane, restricts movement during imaging once CO2 is introduced into the 

control layer and diffused into the flow layer through the membrane. Additionally, worm loading 

is automated through a set of valves and control channels (Figure 7.7A) [244].  

This technique can achieve long periods of immobilization making extended microscopic 

imaging possible. The lack of oxygen in the immobilization chamber due to CO2 flow reduces 

photobleaching of fluorescent markers which further supports the applicability of this method for  

long-term fluorescence imaging experiments. Furthermore, due to the PDMS membrane, the chip 

can accommodate worms of different age groups - L4’s to adults. However, even though this 

method effectively immobilizes worms for high magnification  imaging without any supposed 

permanent damage, the physiological effects of CO2 exposure on many cellular processes remain 

uncharacterized. Additionally, animals cannot be cultured and grown on-chip. C. elegans still need 

to be maintained on agarose plates external to the chip and must be serially loaded onto the device 

in order to perform imaging which subjects them to mechanical stresses. Furthermore, due to the 

device architecture, only one animal can be imaged at a time thereby not allowing the simultaneous 

observation of an entire nematode population [244].   
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Figure 7.7: (A) The microfluidic device consists of the behavior (I, II and III) and immobilization 

modules (IV and V). The saw shape channel (III) is used to revitalize the worm post 

immobilization and to quantify on-chip the worm’s locomotion pattern. PDMS pillars (II) do not 

allow the worm to enter the position channel. When high pressure (25 psi) is applied to the 

immobilization channel the worm is mechanically compressed on the microfluidic sidewalls (V). 

Scale bar, 1 mm (left picture). Scale bars are 300 mm, 500 mm, 10 mm, 100 mm, 300 mm for 

pictures I–IV respectively. (B) Immobilizing the worm by passing a CO2 stream or by 

mechanically pressurizing the immobilization channel (control layer). [Figures and captions 

appear in and are taken from [270]] 
 

 

Mechanical immobilization with microfluidic array of clamps for trapping: S. Elizabeth 

Hulme et al. [239] developed a microfluidic system that mechanically traps a large number of 

worms (>100) and enables biologists to observe entire worm populations simultaneously. 

Consisting of an array of wedge shaped channels (Figures 7.8 and 7.9) called clamps, each channel 

traps a single worm by physically restricting its movements [244].   

The device architecture consists of a network of channels that feed into an array of clamps. 

The worms are driven into these clamps by a constant pressure flow. Once a worm is trapped, the 

fluidic resistance of the clamp channel is increased. Therefore, when another worm arrives at the 

junction of the same channel, it will not follow the same path as the previous worm which means 

that the device can load a given clamp with only one worm at a time. There is also no control over 

the orientation of the worm while it is loaded into a clamp. Upon completion of imaging, the flow 
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is reversed to release them from the clamps which allows the same population to be viewed 

multiple times. Since they are mechanically immobilized, the normal physiological state of the 

worms is not affected. Additionally, since the clamps taper gradually, worms of different sizes 

maybe accommodated in the same clamp. Furthermore, this design feature can be used to analyze 

the size distribution in a population. It must be noted that the device design requires the application 

of constant pressure. If constant flow is applied instead, the resultant unbounded increase in 

pressure would cause permanent mechanical damage to the nematodes [244].  

This technique therefore reversibly immobilizes a large population in a short period of time 

(~15 min) without using any chemical anesthetics making it a high throughput method. Moreover, 

its microfluidic platform makes the incorporation of further improvements/new features relatively 

easy. Finally, as an ordered array of immobilized worms is created, data acquisition maybe further 

automated with a motorized microscope system. However, despite these advantages, animals 

cannot be cultured and grown on-chip. C. elegans still need to be maintained on agarose plates 

external to the chip and must be loaded onto the device in order to perform imaging thereby 

subjecting the animals to multiple rounds of mechanical stress especially if time lapse imaging is 

performed [244].  

 

Figure 7.8: (a) Schematic illustration of the microfluidic worm clamp. The worm clamp consists 

of a tapered microfluidic channel in a slab of PDMS that is designed to physically restrain the 

motion of a worm. A pressure difference applied across the inlet and outlet drives the flow of liquid 

containing worms through the device. The resulting pressure-driven flow carries the worm into the 

wedge-shaped microchannel (the clamp) until the worm fits snugly within the channel. (b) Design 

of an individual worm clamp. (c) Design of an array of four worm clamps. The array is designed 

such that, on average, one worm is sorted into each clamp. [Figures and captions appear in and are 

taken from [239]] 
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Figure 7.9: The worm clamp microfluidic device. (a) Design of an array of 128 worm clamps. The 

inset is a magnified view of the array showing 16 out of the 128 clamps. (b) The experimental set-

up for the worm clamp device. Devices are made out of PDMS using soft lithography. An inlet 

reservoir is constructed by connecting a glass Pasteur pipette to the inlet of the device using a 2 

cm long piece of polyethylene tubing. The inlet reservoir provides a loading point for introducing 

a fluid suspension of worms into the device. Connecting polyethylene tubing at the outlet of the 

device to a source of vacuum (295 kPa, or 20.94 atm, relative to the atmosphere) through a liquid 

trap (not shown) creates a pressure difference across the device, and produces the flow of worm 

containing liquid through the microfluidic device. [Figures and captions appear in and are taken 

from [239]] 
 

 

Compressive immobilization: Chokshi et al. [270] developed a variation of the CO2 method 

employing the same two layer PDMS chip structure. In this method, a high pressure (25 psi) air 

flow deflects the membrane which mechanically compresses the worm in order to immobilize it 

(Figure 7.7) [244].  

In order to optimize the compression effect in order to minimize movement, the membrane 

was made more deformable compared to the membrane used in the CO2 device. This was achieved 

by increased the PDMS to curing agent ratio while fabricating the membrane [244].  



149 

 

Chemical free immobilization, ease of manufacturing and implementation are the primary 

advantages of this method. Moreover, the same device can be used to immobilize animals of 

different ages. Additionally, worms maybe quickly and easily loaded serially thereby increasing 

throughput. However, a shortcoming of this method is the rather short (few minutes) 

immobilization time achievable compared to the other techniques. Additionally (and similar to the 

CO2 method), animals cannot be cultured and grown on-chip. C. elegans still need to be maintained 

on agarose plates external to the chip and must be serially loaded onto the device in order to 

perform imaging. Furthermore, due to the device architecture, only one animal can be imaged at a 

time thereby not allowing the simultaneous observation of an entire population [244].  

Chip-Gel Hybrid Immobilization: If worm morphology or phenotype needs to be investigated, 

then the methods that have been described until now would work very well. However, techniques 

like the cryo-immobilization method do not enable imaging of physiologically active processes as 

cooling down the animal would hinder these processes by significantly slowing them down. The 

compressive/mechanical methods, though usually effective and easy to implement, induce shifts 

in anatomical features which can disrupt imaging. Hang Lu et al. [271] tried to overcome these 

issues by developing a microfludic chip that houses a gel system to allow for long term high 

resolution imaging of biological processes at normal physiological conditions. Specifically, the 

device enables the growth, culture, immobilization and imaging of a nematode on the same chip 

as well as at the same time [244].  

 The worms are reversibly immobilized using Pluronic F127, a commercially available 

biocompatible polymer. The polymer undergoes a reversible thermally induced sol-gel transition 

when the temperature is shifted by ~2 0C. In its gel state, the viscosity increases and is high enough 

to prevent any nematode body movements [244].  

The microfluidic device design incorporates the well known PDMS-based two layer chip 

(Figure 7.10), where the two layers are bonded together and separated by a thin PDMS membrane. 

One of the layers is for loading and controlling flow, whereas the other one is for delivering 

temperature control to the chip. A distinct advantage of this method is that worms maybe cultured 

on chip. Each chip consists of 8 culture chambers that provide nutrition as well as gas supply to 

the worm in each chamber. Given that these chambers keep animals separated, development of 

individual animals can be tracked easily through time. Flow inlets makeup the flow layer which is 

responsible for worm loading as well as supplying PF127. The pneumatic valves prevent the 
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nematodes from escaping from the culture chambers. The temperature control layer triggers the 

transition of PF127 on the device by regulating flow of a heating fluid with a constant source 

temperature [244].  

Given the principle of operation of this method, immobilization can take place anywhere 

in the chamber with no dependence on worm placement. Also, up to 8 worms maybe immobilized 

reversibly and for an undefined number of times for long durations without anything interfering 

with their biological functions. However, despite these significant improvements over other 

techniques, this method continues to have several disadvantages. Even though it claims to allow 

imaging multiple nematodes at once, only 8 animals maybe imaged at a time. If there is a need to 

increase throughput, enabling the device to accommodate more than 8 animals at a time will 

require significant modifications to design as well as increased fabrication effort, given the 

relatively complicated architecture. Additionally, the setup is also complicated as it employs 

several control valves as well as heating/cooling elements making the implementation of this 

method costly and its replication tedious. Furthermore, the fact that the polymer fluid needs to be 

flowed into and flushed out of the device chambers increases procedure time and reduces 

throughput [244].    
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Figure 7.10: Two-layer microfluidic device used for chip-gel hybrid platform. The flow control 

and heating layer (a) contains pneumatic valves (shown in red) for flow control and trapping of 

worms inside chambers of the flow layer, as well as the channel used for flowing heating liquid 

(shown in blue). The flow layer (b) contains the loading inlet (for worms and bacterial solution) 

and an inlet for the PF127 solution, 8 culturing chambers for individual culture of worms, and a 

waste outlet. Design details of the chambers are depicted in (c); and a photograph of a dye-filled 

device is shown in (d); both correspond to the areas marked by dashed line rectangles in (a) and 

(b). The schematic in (e) represents the cross section of a partially closed valve, such as the one 

marked by a dashed line in (d). While unpressurized, the valve remains open. After pressurization, 

the valve membrane deflects into the flow layer, partially obstructing the channel. This prevents 

worms from escaping while allowing flow to continue. Scale bar represents 400 mm. [Figures and 

captions appear in and are taken from [271]] 
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Figure 7.11: To culture worms long-term, they were loaded into the microfluidic device and 

trapped individually inside culture chambers (a), where they can remain for 12 hours (b). Worms 

are provided with bacterial food, allowing them to grow and develop normally (c). To demonstrate 

the ability of the device to culture worms long term, they were maintained from early L1 to L3 

stage (d–f) where L stands for Larva. (d–e) show a worm during the L2 stage at 18 and 28 hours 

after hatching and loading; (f) shows an L3 worm at 36 hours past hatching. Scale bars represent 

200 mm in (a–b) and 100 mm in (c–f). [Figures and captions appear in and are taken from [271]] 
 

7.4 Conclusions 

In this review chapter, the most notable methods - the majority of which happen to be 

microfluidics based systems - for immobilizing Drosophila larvae and C. elegans have been 

presented along with a discussion on each of their advantages and disadvantages. Conventional 

immobilization methods (glue or chemical anesthetics drugs) are time-consuming, labor intensive, 

and also potentially toxic in comparison to these alternative systems. With recent advancements 

in 3D printing, soft lithography replica molding has become significantly cheaper as the molds can 

now be 3D printed. However,  there is no 3D printed device that maybe used as a standalone system 

to immobilize Drosophila larvae or C. elegans. The review also emphasizes the advantages of 
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exploiting microfluidics, which is the primary technology that has been developed for 

immobilizing small model organisms.  

This review chapter discusses the recent development of novel devices and systems have 

emerged for immobilizing Drosophila larvae. Many research groups have developed microfluidic 

devices that immobilize un-anesthetized larvae with the primary approach being the application of 

pressure to mechanically restrict movement. However, the majority of these device have 

complicated designs making their fabrication and implementation challenging.  Additionally, 

either their architecture do not generally accommodate animals of all age groups or they have a 

tedious animal loading process. Moreover, while these methods significantly reduced movement 

compared to freely moving larvae, the level of immobilization is not satisfactory for imaging 

internal structures or structures that are only a few microns in size due to frequent, small body 

movements. Therefore, there exists a need for a method that is simple to use, easy to implement 

and allows for high spatial resolution imaging of subcellular structures located deeper inside the 

larval body.  

For immobilizing C. elegans, all of the methods that have been reviewed provide good 

results by minimizing animal movement. However, the CO2 method (Chokshi et al., 2009 [270]) 

provides the best trade off in terms of being relatively easy to manufacture while providing 

superior quality of immobilization. The method demonstrates that CO2 affects movement and 

minimizes it sufficiently in order to allow high resolution imaging of cellular and sub-cellular 

events . Furthermore, the fact that the method ensures quick recovery indicates that animal 

physiology is not permanently damaged.  The chip has the popular two layer architecture that has 

a simple design and is easy to manufacture. Additionally, the same chip maybe used for both 

compressive (short term) as well as CO2 (long term) immobilization, depending on the 

requirements of the biological study while being able to accommodate worms of all ages. 

However, the chip cannot be used to image more than a single worm at a time thereby making 

population studies impossible. Moreover, as the worm cannot be cultured on chip, animals need to 

be transferred back and forth from the culture plates to the chip thereby subjecting them to cycles 

of mechanical stress that might negatively affect their development. Therefore, there exists a gap 

for a method that takes advantages of the benefits of CO2 induced immobilization to 

simultaneously image an entire population of worms without disturbing them from the culture 

medium. The method must also be easy to use and cheap to implement.  
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In conclusion, the mechanism of immobilization and fluidic device design that is selected 

would ultimately depend on the requirement of the specific end application. For instance, for 

imaging very small features, the method must provide absolute immobilization. If sorting post 

imaging is required, the device must be designed by taking flow control into consideration. 

Functional imaging of processes occurring in real time would require imaging under normal 

physiological conditions. Finally, all designs should ensure that the chosen immobilization 

scheme, whether it is temperature, CO2 or mechanical pressure, does not significantly alter the 

biological features of interest/ process under study.  
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ON CHIP CRYO-ANEASTHESIA OF DROSOPHILA LARVAE FOR HIGH 

RESOLUTION   IMAGING APPLICATIONS 

8.1 Introduction 

Drosophila melanogaster is a widely used organism for modeling human biology and 

diseases at the behavioral, cellular and molecular level [272] [212] [273]. The larval stage has a 

translucent cuticle and a simple neuroanatomy that is amenable to  imaging [274] [275] [276] 

[277]. However, one of the biggest challenges associated with live imaging of Drosophila larvae 

is achieving an acceptable degree of immobilization which is required for observing cellular and 

sub-cellular events with high spatial, optical resolution without affecting the animal’s physiology.    

Current immobilization techniques include dissection [278] [279], the use of anesthetics 

[280] [281] or glue, and squeezing the larva’s body [282]. Methods such as dissection are lethal, 

which therefore prohibits long term imaging. Glue is toxic, provides irreversible immobilization 

and is difficult to implement for very young animals. The use of anesthetics –such as isofluorane 

[11] [12] or desflurance [281] - has many advantages, but they are known to affect the animal’s 

neurophysiology and neural activity [283] [284] [268]. Additionally, imaging must be restricted 

to short intervals in order to allow recovery between doses [284] [283]. Conventional anesthetics  

pose a threat to the user’s safety and being regulated chemicals, require installing several safety 

components. The most popular mechanical immobilization techniques involves capturing the larva 

by flattening it between two microscope slides using light pressure, by placing water in between a 

coverslip and glass slide to hold the larva with capillary pressure [282], or by taping the larva onto 

a coverslip [285]. While these methods can be easily implemented, the degree of control is not 

ideal and the immobilization is not necessarily adequate in order to allow stable high resolution 

imaging of sub-cellular processes in all regions of the larvae. Furthermore, the imaging duration 

is limited and larval recovery can be difficult, if not impossible, if too much pressure is 

inadvertently used to flatten the animals [227]. In order to image reliably cellular/sub cellular 
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events while maintaining proper body orientation over longer periods, an easy to use, reversible, 

low cost and chemical-free immobilization method is needed. 

With the recent development of micromachining and soft lithography fabrication 

techniques [286] [287], novel microfluidic devices and systems have emerged for manipulating 

small organisms. Many research groups have developed microfluidic devices that immobilize un-

anesthetized larvae. The microfluidic device developed by Yan et al. [267] immobilizes 3rd instar 

larvae using a mechanical microcompressor. While proving to be a versatile platform, it requires 

the use of complicated and expensive laser and CNC fabrication processes in addition to PDMS 

soft lithography. Ghaemi et al. [227] constructed two pneumatically-driven microfluidic devices 

to immobilize and perform calcium imaging in 3rd instar larvae. Although the principle of operation 

is simple and standard soft lithography fabrication techniques were used, the architecture of the 

devices is complicated and capable of accommodating only 3rd instar larvae. Mondal et al. [268] 

developed a microfluidic device that can immobilize  larvae at different developmental stages, but 

the loading process is tedious and the larva have to be  squeezed against the microfluidic walls. 

Ghannad-Rezaie et al. [1] developed microfluidic devices for short term  imaging. The device 

mechanically compresses the larva against a coverslip while imaging. Although good 

immobilization results were obtained without the use of a complicated setup, the chip could 

accommodate only 3rd instar larvae. Younger larvae were poorly immobilized whereas older larvae 

did not fit in the chip. While the device significantly reduced movement compared to freely moving 

larvae, the level of immobilization was not satisfactory for imaging internal structures. Frequent, 

small body movements did not allow high spatial resolution imaging of subcellular structures (such 

as neuro-muscular junctions and axons) inside the larval body.  

In this work, we present a temperature based immobilization approach for high resolution  

imaging of sub-cellular structures and processes in Drosophila larvae. Specifically, we developed 

a microfluidic chip that creates a cold micro-environment around the larval body while effectively 

anesthetizing it. The microfluidic chip will henceforth be referred to as the cryo-larva chip. The 

experimental setup is made up of commercially available, off the shelf parts making its assembly 

and replication straight forward. While cryo-anesthesia has been previously implemented by 

Chung et al. [288] and Rhode et al. [289] to immobilize other model organisms such as C.elegans, 

a system dedicated towards performing low temperature immobilization of Drosophila larvae for 

high magnification  imaging has not been demonstrated until now.   
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The cryo-larva chip [290] can be used to study a wide variety of biological processes, 

including the transport of organelles and proteins at the cellular/sub-cellular level as well as neuro-

synaptic growth demonstrated here. Using the chip, we observed  mitochondrial trafficking in 

neurons and the developmental growth of synapses at the neuromuscular junctions (NMJs).  Nearly 

all studies of mitochondrial transport in neurons have previously been conducted in isolated cells 

in culture, while observation of the developmental growth of synapses is often inferred from 

cultured neurons “aged” over the course of a few days. Our technology therefore provides a 

powerful alternative for studying those events within intact animals .  

Apart from its demonstrated use for  neurobiological studies, the cryo-larva chip based 

immobilization method can help many other fields of Drosophila biology, since it should also 

allow for imaging over time of the salivary glands, fat bodies, body-wall muscles, and other 

commonly studied larval organs. Additionally, with the popularity of the use of genetically-

encoded fluorescent reporters, live tissue is often required to utilize many newly developed 

fluorescent probes that provide a readout of real-time cellular physiology which is abolished with 

dissection and fixation. Some examples include autophagy reporters (mCherry-GFP fusions that 

measure pH in autophagosomes) [291] [292], intracellular pH indications (pHluorins) [293] [294], 

various calcium reporters (including GCaMPs and CaMPARI) [295] [296], and ATP biosensors 

(ATeam and Perceval) [297] [298]. Our chip will allow such reporters to be now used in intact 

animals, and changes in these physiological readouts can be tracked and compared within different 

genetic and environmental manipulations.  

8.2 The Microfluidic chip and the cooling system 

The Microfluidic Cryo-Larva Chip. The proposed immobilization method incorporates a 

PDMS/glass microfluidic chip with a two-layer architecture (Figure 8.1). The first layer (‘Layer 

1’) contains a 5.0 mm long, 1.6 mm wide and 170 µm thick immobilization microchamber which 

accommodates the larva. The immobilization microchamber is surrounded by a network of 

microchannels that is held under vacuum applied through the vacuum port. The vacuum creates a 

reversible and strong seal between the PDMS, oil, and glass coverslip holding the larva in place 

after it is manually loaded onto the chip. After imaging is completed, the vacuum is released and 

the larva can be easily removed from the chip. The chip has also two ports (indicated as ‘food 

inlet’ and ‘food outlet’ in Figure 8.1(a)) for providing food to the larva if needed. The second layer 

(‘Layer 2’), contains a 5.5 mm long x 2.8 mm wide x 100 µm thick microchamber (the ‘cooling’ 
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microchamber) and sits on top of the immobilization microchamber. The two microchambers are 

separated by a 10 µm thick PDMS membrane. Chilled coolant fluid is passed under moderate 

pressure (~ 3 psi) through Layer 2 via the coolant inlet/outlet ports. This creates a low temperature 

microenvironment (~5 0C), while at the same time the PDMS membrane deflects and compresses 

the larval body against the glass coveslip. Even though the membrane semi-restricts large body 

movements, cooling the larva down to ~50C is the dominant factor that anesthetizes the larva body. 

This dual approach cryo-anesthesia and mechanical compression results in effective 

immobilization allowing stable, long term, high resolution imaging. 

The height and overall dimensions of the immobilization microchamber are large enough 

to accommodate larvae of different developmental stages (1st instar to late 3rd instar). In order to 

achieve membrane deflections large enough to mechanically restrict the larva, a 15:1 mixing ratio 

was used for fabricating the first PDMS layer. This reduces the elastic modulus by a factor of ~ 2 

[299] when compared to the 10:1 mixing ratio used for the second PDMS layer.  
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Figure 8.1: (a) Bright-field image of a 3rd instar larva immobilized in the microfluidic chip: The 

first and second PDMS layers are highlighted with blue color and yellow colors respectively. 

Passing the coolant fluid through the second layer decreases the temperature of the immobilization 

microchamber. (b) Stereoscopic image of the microfluidic chip (scale bar, 5 mm). (c) Cross 

sectional schematic of the chip that highlights its working principle. When there is no flow of the 

coolant fluid (left schematic), the larva freely moves in the immobilization microchamber (the 

PDMS membrane is not deflected). (d) When the coolant fluid is introduced, the larva is cryo-

anesthetized and slightly compressed inside the immobilization microchamber.  
 

 

The Cooling System. The microfluidic cryo-larva chip, that sits on the stage of an inverted 

microscope, is connected to a closed-loop, cooling system  that consists of a peristaltic pump, a 

cooling module and a reservoir (Figure 8.2). 
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The peristaltic pump (GE P-1, GE Healthcare Life Sciences) circulates the coolant through 

the system.  

The cooling module consists of two thermoelectric Peltier units (TEC1-12710, 50W), each 

mounted on an aluminum heatsink (41 mm x 41 mm x 13 mm), and a flow chamber that is 

sandwiched between the two Peltier units. A small fan is attached to each aluminum heatsink in 

order to remove the generated heat. The coolant leaves the flow chamber at a below-zero 

temperature and, after passing through the chip, returns to the closed reservoir 

When immobilization is not required or the larva needs to be unloaded, the coolant is 

diverted away from the chip into the reservoir through a three port stopcock valve and bypass tube. 

Polyvinyl tubing is used for all fluidic connections. Silicone rubber tubing is used in the peristaltic 

pump. The length of tubing used is optimized to accommodate the cooling system around the 

inverted microscope while minimizing any parasitic heat gain (Appendix C, Figure C1).  

 

Figure 8.2: Schematic diagram of the experimental setup highlighting the components of the 

cooling system. The solid blue lines indicate coolant flow. 
 

8.3 Results and discussion 

8.3.1 Microfluidic chip and system characterization 

We used an infrared camera (FLIR SC600) to obtain the temperature distribution within 

the chip. The average temperature of the immobilization microchamber was measured to be 5 0C 

± 1°C at a coolant flow rate of  3.2 ml/min.  (Figure 8.3), indicating a uniform temperature profile 
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within the microchamber. Upon stabilization of the immobilization microchamber temperature to 

~ 50C, the low-temperature environment was maintained over a period of several hours. 

 

 

Figure 8.3: (a) Thermograph of the microfluidic chip at a coolant flow rate of 3.2 ml/min (viewed 

from the glass side). The dotted black lines indicate the outline of the chip (scale bar, 5 mm). The 

white rectangle represents the location of the immobilization microchamber. (b) Thermograph 

showing the temperature variation in the immobilization microchamber (~ 2.5 0C difference 

between the center and the sides). (c) Maximum, average and minimum temperature values 

obtained over the region bounded by the white rectangle shown in (a) versus time. The cooling 

modules are turned on and coolant flow (3.2 ml/min) through the chip starts at 0 sec with the 

average temperature stabilizing to ~5 0C in under 5 min.  
 

 

A concentrated salt water solution (5M sodium chloride) was used as the coolant fluid. We 

used salt in order to eliminate freezing of the water (the coolant reaches below zero temperatures 

in the flow chamber). Additionally, it allows us to pre-cool the coolant before use (typically placed 

in a freezer at -100C for 1-2 hours). It was observed that the pre-cooling step reduced the response 

time needed for the temperature to stabilize by ~ 50%.  (Appendix C, Figure C2). We define the 

response time of the system as the time needed for the temperature of the immobilization 

microchamber to reach 90% of its steady state temperature after the flow of the coolant has started. 

Increasing the flow rate of the coolant also reduces the response time (Figure 8.4) from  ~ 2 minutes 

(at flow rate of 1.7 ml/min) to ~ 1 minute (at flow rate of 3.7 ml/min).   
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Figure 8.4: Average temperature of the immobilization microchamber versus time for different 

flow rates. Coolant flow through the chip started at 0 sec. 
 

 

All experiments were conducted with the average ambient relative humidity maintained 

below 15% for optimal cooling. Higher humidity levels, especially above 50%, resulted in 

condensation on the tubing as well as on the cold surfaces of the Peltier modules that compromised 

the cooling performance of the system leading to reduced immobilization.  

8.3.2 Time required for larval immobilization 

An experiment was performed to quantify the dual effect of mechanical compression and 

cryo-anesthesia upon larval movement. Individual larvae were loaded into the chip and GFP-

expressing neuronal cell bodies along the ventral nerve cord (VNC) were imaged (we used a 

confocal microscope at 250X magnification). A video where each frame is a single optical plane 

image (Section 8.4.4) was acquired for a total duration of 9 min (the flow of the coolant was turned 

on at 0.5 min and turned off at 5.5 min).  

For each acquired frame, we selected the centroid of a cell body along the VNC that was 

visible in all frames in the video. The absolute distance moved by the centroid between consecutive 

frames was tracked over time using Metamorph software (Figure 8.5). Results show that with no 

coolant flow through the chip, the larvae were active and crawling in the immobilization 

microchamber. Once the coolant started flowing through the chip, rapid immobilization was 

observed with movement decreasing and stabilizing in under 3 minutes. As soon as flow was 

turned off, the larvae started to rapidly regain mobility inside the chip and recovered completely 

within 15 minutes after removal from the chip. 
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Figure 8.5: (a) Absolute distance moved by the centroid (point of intersection of the diagonals of 

the white box bordering the cell body and indicated as a red dot in (b)) of a cell body located at 

the VNC over time (acquired before (I), during (II) and after (III) immobilization). The dashed 

blue line represents average distance moved between frames for ten 3rd instar larvae. The solid 

green line represents best fit by non-parametric regression using locally weighted scatterplot 

smoothing. Error bars indicate standard error of mean of measurements taken from ten animals 

imaged on the same device. (b)  A single frame showing the VNC and the centroid of a cell body 

(scale bar, 30 µm). 
 

 

Furthermore, it takes ~ 1 min before any significant reduction in the body movement is 

observed. At that time point, the temperature has decreased to 10 0C (see Figure 8.4 for a flow rate 

of 3.2 ml/min) and the corresponding average body movement is ~ 5 µm (Figure 8.5). That result 

demonstrates that there is a correlation between the temperature of the immobilization 

microchamber and the magnitude of the body movement.  We selected 5 0C as an optimum 

temperature at which body movements are negligible (< 0.5 µm) while chilling-induced injury is 

minimized. 

8.3.3 Characterization of larval movement 

To validate the proposed method we recorded the movement of various neuronal structures 

during immobilization under high magnification (400x).  

Individual larvae were loaded onto the chip and pre-cooled coolant was placed into the 

reservoir. The flow rate was set to 3.2 ml/min and coolant flow through the chip was turned on. 
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After 4 minutes, a video where each frame is a collapsed z-stack of ~7 images of GFP-labelled 

neuronal structures of interest was collected over a 2 minute duration (Section 8.4.4) before 

diverting flow away from the chip using the bypass tube. Acquiring a collapsed z-stack of a focal 

volume within each larva instead of a single image of a focal plane allowed continuous observation 

of sufficient features of interest throughout the 2 minute period despite photobleaching effects and 

any potential movements along the z axis by the peristaltically deflecting membrane. To identify 

whether the low-temperature environment in the immobilization microchamber (4-6 0C) results in 

larval immobilization, a control experiment was performed with the coolant flowing through the 

chip without activating the Peltier units.  

For every acquired frame, three features that were visible across all frames were selected; 

mitochondria within NMJ terminals, mitochondria within segmental nerve axons, and neuronal 

cell bodies within VNCs (Figure 8.6(a), (c)). The distance moved by the centroids of these features 

in between consecutive frames was estimated by tracking them over time and then averaged 

(Figure 8.6). Mitochondrial labeling was used for this analysis because the separated, 

distinguishable puncta (Figure 8.6) allowed for tracking of individual small features through time. 

Upon the initiation of coolant flow, we noticed that the pressure of unchilled coolant (still at room 

temperature) caused some reduction in larval movement. This is because the flexible membrane 

mechanically compresses the larva against the coverslip if there is coolant flowing through the 

chip, irrespective of coolant temperature. Additionally, mechanical compression aids optical 

access by bringing internal body structures close to the coverslip which are otherwise hard to 

observe. However, under the influence of purely mechanical compression, the larvae are not 

adequately immobilized to enable steady, high resolution imaging of sub-cellular structures 

necessary for performing neurobiological studies. The average movement of the neuronal 

structures was further minimized when chilled coolant was flowed through the chip (Figure(s) 8.6-

8.8), thereby clearly indicating the immobilizing effect of cryo-anesthesia. This demonstrates that 

mechanical compression of the flexible membrane and the low-temperature environment act 

synergistically to promote larval immobilization. Imaging with the chilled coolant led to a 

significant improvement in imaging quality. Figure 8.7 shows the total trajectory of distances 

moved  over a 2 minute  duration, comparing chilled verses unchilled (at room temperature) 

coolant flow. The trajectories obtained with chilled coolant flowing through the chip are far more 

localized, further supporting the results shown in Figure 8.6. Histograms showing percentage of 
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total number of movements occurring over a 2 minute duration (Figure 8.8) illustrate that 

immobilization of NMJs, VNCs and axons with the proposed method is predominantly due to the 

cryo-anesthetic effect of flowing chilled coolant through the chip. The probability density 

estimates fitted onto the histogram data (Figure 8.8) indicates that bigger movements (greater than 

one pixel) are much less likely to occur while imaging with chilled coolant use compared to with 

the control. Apart from having a larger spread of data points, the maximum distance moved was 

also larger while imaging all three neuronal structures for the control compared to with using 

chilled coolant as demonstrated by the box and whisker plots in Appendix C, Figure C3.  
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Figure 8.6: Schematic representation of larval neuronal structures of interest. Confocal 

micrographs  showing fuorescently labeled: (a) Mitochondria at an NMJ with red dots representing 

centroids of individual mitochondria. (b) Cell bodies at the VNC with  red dots representing 

centroids of individual cell bodies. (c) Mitochondria along axons with red dots representing 

centroids of individual mitochondria. Plots showing the average of distances moved by centroids 

of: (a) mitochondria at NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons in 

between video frames collected over 2 minutes. The videos were collected with larvae loaded on 

the microfluidic chip with chilled as well as room temperature coolant (5M salt water) flowing 

(3.2 ml/min) through the chip respectively. Error bars indicate standard error of mean of 

measurements taken from ten larvae imaged on the same device. (scale bar, 11µm). 
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Figure 8.7: Confocal micrographs showing the trajectories (shown as green, blue and yellow paths 

and marked by red numbers) moved by three randomly selected centroids of (a) mitochondria at 

NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons in between video frames 

collected over 2 minutes. The videos were collected with larvae loaded on the microfluidic chip 

with chilled as well as room temperature coolant (5M salt water solution) flowing (3.2 ml/min) 

through the chip respectively (scale bar, 11µm). 
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Figure 8.8: Histograms showing percentage of total number of movements in between frames of 

(a) mitochondria at NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons in 

between video frames collected over 2 minutes. The solid lines (red and blue) represent probability 

density estimates fitted onto histogram data. The videos were collected with larvae loaded on the 

microfluidic chip with chilled (represented in blue) as well as room temperature (represented in 

red) coolant (5M salt water solution) flowing (3.2 mL/min) through the chip respectively. Pixel 

resolution is 0.18 µm. 
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8.3.4 Evaluating performance of alternative coolants 

The main disadvantage of using 5M salt water solution as a coolant is that over time, salt 

precipitates out of the solution and can clog the coolant inlet/outlet ports if the device if not rinsed 

thoroughly after use. Furthermore, besides requiring a more rigorous cleaning/rinsing protocol, 

any accidental leakage of the coolant onto metallic microscope parts can lead to corrosion, which 

could cause significant and expensive long term damage. The metal flow chamber sandwiched in 

between the two Peltier modules can also get corroded over time, which can lead to release of 

debris that might enter the chip along with coolant flow and obstruct the fluidic channels. This 

may ultimately cause the membrane to burst under fluid pressure, which would cause permanent 

damage to the chip. 

To overcome these disadvantages, we explored the use of two other commonly available, 

non-corrosive coolants with subzero freezing points: 40% ethanol and 50% glycerol solutions. 

Video frames of collapsed Z stacks (under 400x magnification) of mitochondria at NMJs, cell 

bodies in VNCs, and axonal mitochondria in segmental nerves were collected over 2 minute 

intervals and analyzed using the previously described experimental procedure (Section 8.4.4). 50% 

glycerol solution proved to be too viscous and affected peristaltic pump performance (flow rate 

was significantly reduced). Furthermore, as a result of its dense nature, movement artifacts were 

created  along the z direction while imaging due to very large membrane deflections which in turn 

increased pressure on each larva leading to poor immobilization. 40% ethanol solution, being 

relatively less viscous, did not produce any significant reduction in flow rate (comparable to 3.2 

ml/min with the flow rate potentiometer setting on the pump being constant) and did not produce 

any perceptible movement artifacts. Additionally, the immobilization microchamber stabilized to 

the same final steady state temperature of ~ 50C in ~ 1.8 minutes without requiring any precooling. 

This is comparable to the performance of pre-cooled 5M salt water solution maintained at -10 0C 

in the external coolant reservoir (Appendix C, Figure C4). Furthermore, the quality of 

immobilization within the VNCs and axons was comparable to the results obtained with 5M salt 

water solution. However, the structures at the NMJs were not as well immobilized by 40% ethanol 

solution (Figure 8.9). Given that PDMS is gas permeable and ethanol is highly volatile, it is likely 

that vapors of ethanol may reach the larva in the immobilization microchamber and affect the 

quality of immobilization. Ethanol is a well-known stimulant and has been proven to affect 

mobility in adult fruit flies [300] by inducing muscle contractions, but its effect on larvae are less 
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well understood. To minimize any ethanol vapors from reaching the micro immobilization 

chamber, a 2 µm layer of parylene c was sandwiched in between two 10 µm PDMS layers creating 

a 22 µm thick PDMS-parylene c-PDMS membrane separating the immobilization microchamber 

from the cooling microchamber. Parylene c is sandwiched in between two thin PDMS layers 

instead of depositing it as a single layer on the bottom surface of the device in order to minimize 

any crack formation [301].  

 

Figure 8.9: Plots showing average of distances moved by (a) mitochondria at NMJs, (b) cell bodies 

along VNCs and (c) mitochondria along axons in between video frames collected over 2 minutes. 

The videos were acquired with larvae loaded on the microfluidic chip (without and with parylene 

c) with chilled coolant (5M salt water and 40% ethanol) flowing through the chip. Error bars 

indicate standard error of mean of measurements taken from ten animals imaged on the same 

device. 
 

 

After the parylene c coating, the average movement of the neuronal structures at NMJs 

imaged with 40% ethanol coolant were significantly lower, and were comparable to results 

obtained using 5M salt water solution (Figure 8.9). Since the total membrane thickness is larger 

and parylene c is stiffer compared to PDMS (Young’s modulus is three orders of magnitude 

higher), the resulting membrane deflection and therefore pressure being applied on the larvae is 

lower even though the final steady state temperature remains the same. Given that the quality of 

immobilization is similar despite membrane deflection being significantly lower in the parylene c 

coated chips, it may be concluded that the cooling effect is the dominant factor contributing 

towards causing immobilization compared to the effect of mechanical compression. In fact, 

making the membrane stiffer results in lower mechanical pressure being applied on each larva as 

it is being compressed against the coverslip implying the potential to have improved survival post 
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immobilization. Therefore, apart from using 5M salt water solution, 40% ethanol solution can be 

used as an alternative coolant choice by using the modified chip post parylene c deposition.  

It was seen that for the 5M salt solution, the flow rate increases with pump motor speed, 

which is adjusted with the flow rate potentiometer setting on the pump. However, for heavier more 

viscous fluids like 40% ethanol and 50% glycerol solutions, increasing load on the pump limits 

one’s ability to control flow rate. Therefore, for these fluids, the steady state temperature and 

system response time will not reduce even if the flow rate potentiometer setting is increased 

beyond 4. 

All  the imaging experiments were performed at the same flow rate potentiometer setting 

for ease of comparison between different coolant performances. Additionally, higher flow rates 

would exert greater fluid pressure on the membrane causing it to deflect more and overcome the 

vacuum pressure generated by the syringe, leading to the chip detaching from the glass cover slip. 

Since it is possible for 5M salt water solution to reach lower temperatures with higher flow rates, 

in theory, it might be possible to achieve even better immobilization with increased pump motor 

speeds while using a stronger negative pressure source like a vacuum pump to maintain the chip 

on the coverslip. However, due to larger membrane deflection caused by higher flow rates, the 

fluid pressure acting on the membrane (Appendix C, Figure C5) would also lead to a larger 

mechanical compressive force on the larvae which could lead to reduced survival. A negative 

effect on the health of the larvae due to increased mechanical pressure could in turn potentially 

lead to a lower quality of immobilization. Therefore, the flow rate should be increased with 

caution, especially while using the cryo-larva chips without parylene c.     

8.3.5 Larval survival 

To determine the effect of cryo-anesthesia on larval survival, we subjected batches of 3rd 

instar larvae to repetitive fifteen minutes long cooling periods at 4 0C with a gap of 1 hour in 

between consecutive exposures. Even after six consecutive cycles, survival remained unaffected 

(Appendix C, Figure C6). A trial was considered a success if the larva was alive after being 

subjected to each cooling cycle. 

While 3rd instar larvae showed good survival even after multiple imaging sessions, most of 

the 1st instar larvae did not survive long enough to develop into 2nd instars even after being 

subjected to single 10 minute imaging sessions on the microfluidic chip containing a PDMS 

membrane. However, survival of young animals was increased significantly when the parylene 
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coating was used: 90% of the 1st instar larvae survived to develop into 2nd instars after being 

subjected to single 10 minute imaging sessions on the microfluidic chip containing a PDMS-

parylene c-PDMS membrane. Being both thicker as well as stiffer, the mechanical compressive 

force applied by the PDMS- parylene c-PDMS membrane on the larvae is significantly lower 

compared to the pressure applied by just the PDMS membrane. This seems to confer significantly 

improved survival of the fragile 1st instar larvae.  

8.3.6 Use of the cryo-larva chip to track mitochondria within neurons  reveals stationary 

nature of synaptic mitochondria and heterogeneous mitochondrial turnover 

As an application of the new immobilization method for  imaging, we observed the 

trafficking of mitochondria from the cell bodies of larval motoneurons to their synaptic axon 

terminals through time. To track the trafficking of mitochondrial contents in neurons, we used the 

photo-convertible Dendra2 protein targeted to the mitochondrial matrix (mitoDendra2), which was 

expressed in a subset of motoneuron using Gal4/UAS system. Intact 3rd instar  larvae were 

immobilized using the chip (without parylene c), and were subjected to focal application of UV 

light to irreversibly convert mitoDendra2 from green to red fluorescence specifically in the cell 

bodies in the VNC (section 8.4.4). With the immobility of the animal, the photo-conversion is 

specific to the VNC only, as no converted (red) mitoDendra2 can be observed at t=0h in distal 

regions like the axons and NMJ (Figure 8.10). The trafficking of red (photoconverted) 

mitochondria from cell bodies to axons and the axon terminals was then observed through time 

via successive imaging in the larval chip (Figure 8.10(a), (b)). Because of the non-invasive nature 

of the proposed method, the same neuronal structures within a single animal could be analyzed 

through time. Between imaging sessions the larvae were removed from the chip and allowed to 

crawl and feed unrestricted on grape-agar plates. Neither the photo conversion nor multiple 

imaging sessions in the microfluidic chip were toxic to the animals (Data not shown). Moreover, 

the degree of photo conversion (Appendix C, Figure C7) and the distribution of converted 

mitoDendra2 at different time points was reproducible from animal to animal (Figure 8.10).  

The data suggest that mitochondrial contents distribute rapidly from cell bodies to axons 

where they merge with unconverted (green) mitochondria resident in axons, presumably via 

mitochondrial fusion (Figure 8.10(c)) [302]. Within 5 hours after photoconversion of the 

mitochondria in cells bodies, most of the mitochondria within axons contained both red and green 

mitoDendra2 protein, while only a few (green only, white arrows) remained devoid of converted 
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mitoDendra2. This represents a population of axonal mitochondria that has not been subjected to 

fusion with cell-body derived mitochondria within this short time frame. Within 12 hours, the vast 

majority of the mitochondria in axons are both red and green, which suggests a continued mixing 

of mitochondrial contents throughout the axon with mitochondria derived from the cell body at the 

time of photoconversion (Figure 8.10(c)). Previously, mitochondrial fusion in axons was only 

assessed by observing individual events captured via time-lapse imaging [302], limiting the chance 

of observing a fusion event to only a few minutes at a time. With this new method, mitochondrial 

dynamics in axons can be assessed globally over the course of days, through time, and in the same 

animal.  

At a further distance from the cell body, at the ends of the axon are the axon terminals at 

the NMJ synapse. We were able to observe the trafficking of cell-body derived mitochondria to 

the terminal through time by capturing the mixing of red mitochondria with the green/un-converted 

mitochondria that were resident in the NMJ (Figure 8.10(c)). Surprisingly, the time lapse imaging 

revealed that, in contrast to their high degree of motility in axons [303] for which we could not 

track the same mitochondria across individual time points (Figure 8.10(c)), mitochondria at NMJ 

synapses are stationary, maintaining the same relative position and shape between imaging 

sessions over time courses as long as 12 hrs. By observing the same pool of synaptic mitochondria 

over time, it can be inferred that the contents of the synaptic mitochondria are dynamic: the 

increase in red fluorescence, accompanied by a decrease in the green fluorescence (Figure 8.10(d)) 

suggests that the contents of synaptic mitochondria are slowly replaced over time with new 

material from the cell body. With this new method, we were able to quantitatively measure this 

delivery of cell-body derived mitochondria to the NMJ by plotting the frequency distributions of 

the average red to green fluorescent intensity ratio per mitochondria of individual mitochondria at 

the different time points (Figure 8.11(a)). On the population level, there is a clear progression of 

the increased delivery of cell body derived (red) mitochondria to the NMJ (higher red:green ratio) 

as time from conversion increases as shown by the distinct peaks in the distributions at 5 and 12h 

post conversion.   

The immobility of individual mitochondria at the NMJ makes it straight-forward to 

recognize and quantify the changes that occur to individual mitochondria through time (Figure 

8.11(b),(c)). As shown by the broad distributions in the 5 and 12h post conversion frequency 

distribution, incorporation of cell-body derived mitochondria is not homogenous to all NMJ 
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mitochondria (Figure 8.11(a)), especially at the 5h time point. At 5h after photoconversion of cell 

body mitochondria, converted mitoDendra2 appears within some (Figure 8.11(b), pink arrowhead) 

but not all of the synaptic mitochondria (Figure 8.11(c), blue arrowhead), with some variation in 

intensity changes of green and red fluorescent intensities within individual mitochondria, even in 

the same position in the NMJ (Figure 8.11(b)). Within 12 hours, nearly all of the synaptic 

mitochondria contain photo-converted mitoDendra2 (Figure 8.10(d)), but with varying degrees of 

green and red intensities on the individual mitochondria level as shown by the red:green ratios of 

19 individual mitochondria that were tracked across the 3 time points (Figure 8.11(c)). This time 

course implies that although on the global level, there is consistent delivery of mitochondria to the 

NMJ (Figure 8.11(a)), there seems to be non-uniform turnover of contents from individual 

mitochondria at the NMJ synapse that can be tracked with this method. We would ultimately be 

interested in understanding more about this heterogeneous turnover of mitochondria, and how it 

correlates with other subcellular events occurring in the NMJ synapse in the future. 
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Figure 8.10: (a) Schematic representation of newly developed assay to measure mitochondrial 

trafficking from the cell-bodies of motor neurons in Drosophila larvae to axons and the NMJ 

synapse in intact larvae. While immobilized in the cryo-larva chip, whole larvae are subjected to 

focal application of UV light to their VNC to photo-convert labeled mitochondria (mitoDendra2). 

Converted cell-body derived mitochondria (red) can then be tracked as it is trafficked to distal 

neuronal processes.  (b) Representative example of motor neuron cell-bodies on one side of the 

VNC expressing mitoDendra2 before (Pre-conversion) and immediately after (Post-conversion) 

photo-conversion. For all subsequent images in this figure: Green fluorescence is unconverted 

Dendra2, while red fluorescence is photo-converted Dendra2 protein (scale bar, 20 µm) (c) 

Representative example of the mitochondria in axons of motor neurons from the same animal 

through time following photo-conversion (0 hours (h) represents immediately following 

conversion). Notice at 5h post-conversion (middle), most resident axonal mitochondria have fused 

with cell-body derived mitochondria (green + red). Some axonal mitochondria have not fused with 

mitochondria trafficked from the cell body (green alone, arrowheads). By 12h, all axonal 

mitochondria contain content from trafficked cell-body derived mitochondria (green + red) (scale 

bar, 10 µm). (d) Representative example of an NMJ synapse from the same animal tracked through 

time for the delivery of cell-body derived mitochondria. Top panel shows whole synapse, while 

bottom panels represent a high magnification view a single branch of the NMJ (boxed region). 

Notice at 5h post conversion (middle panel), there is some trafficked mitochondrial material in the 

NMJ shown by the weak red-fluorescence in certain mitochondria (arrowheads). By 12h post-

conversion, all mitochondria in the NMJ contain mitochondrial material that was present at the 

cell-body at the time of conversion (scale bars, 20µm and 10µm). 
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Figure 8.11: (a) Frequency distribution plot of the average red:green ratio of individual 

mitochondria at the NMJ from the three different time points observed in mitochondrial trafficking 

experiments (t=0h (blue), 5h (green) and 12h (red) post conversion). Each time point include >500 

mitochondria from at least 6 NMJs originating from 3 different animals. Bars represent frequency 

histogram and dotted lines represent Gaussian fit curves for each individual time point. (b) 

Representative region of NMJ containing 4 recognizable stationary mitochondria across all time 

points (t=0h, 5h and 12h post conversion). Merged pictures are shown in top row, while middle 

row is un-converted (green) mitoDendra2 alone and bottom row shows cell-body dervived 

converted (red) mitoDendra2 alone. Colored arrowheads depict 2 different mitochondria with 

differing rates of incorporation of red material, and correspond to the colored lines in (c). (scale 

bar, 2.5µm) (c) Example plot of the individual red:green fluorescent intensity changes of 19 

individual mitochondria across the three different time points shown in (b). Colored lines related 

to the corresponding colored arrowheads in (b). Note the differential changes in red:green ratios 

of neighboring mitochondria indicating a heterogeneous delivery and turnover of mitochondria in 

the NMJ. 
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Figure 8.12: Box and whisker plots showing (a) correlation and (b) % co-localization area between 

red and green channels of mitochondria at NMJs, cell bodies along VNCs and mitochondria along 

axons. The image frames correspondonding to the red and green channels are 8 secs apart. The 

videos were collected with larvae loaded on the microfluidic chip with chilled coolant (5M salt 

water solution) flowing through the chip. Each  box extends from the 25th to 75th percentiles, the 

line in the middle is plotted at the median and the whiskers span between the smallest and largest 

data values (measurements taken from ten animals imaged on the same device). 
 

 

In trafficking experiments, co-localization of multiple fluorescent markers acquired 

sequentially (on the order of milliseconds of separation) is essential for proper interpretation of 

results. Therefore, mitochondrial identification and tracking is heavily dependent upon quality of 

immobilization, which directly influences how well the fluorescent features are spatially co-

localized across image frames. To test how reliably our chip can immobilize larvae on short term 

time-scales that would be necessary for co-localization of dual fluorescent markers, we quantified 

the co-localization of fluorescent sub-cellular features in between image frames acquired 8 seconds 

apart (average time taken by image acquisition system to acquire image frames from both red and 

green channels). Co-localization has been evaluated both in terms of estimating correlation 

between (Section 8.4.7) the frames (Figure 8.12(a)) as well as quantifying percentage areal overlap 

of objects (Section 8.4.8) identified in and common to both frames (Figure 8.12(b)). The greater 

the value of correlation and percentage of areal overlap, the higher the degree of co-localization. 

Furthermore, it was observed that while co-localization of features at the NMJs was comparable 

to the results obtained from the chip developed by Ghannad-Rezaie et al. [1] (referred to as the 

mechanical chip) which mechanically immobilizes the larvae, the co-localization of features at the 

VNCs and axons is significantly improved with the proposed cryo-anesthetic method compared to 
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the purely mechanical immobilization approach [18] by 30% and 50% respectively (Appendix C, 

Figures C8 and C9). 

8.3.7 Use of the cryo-larva chip to observe neuro synaptic growth  

Because of the powerful genetic tools available, the Drosophila larval NMJ has been a 

widely used model for studying and understanding the cellular machinery involved in synaptic 

growth. Various screens have been used to identify genetic mutations that result in the altered 

growth of the NMJ, typically assessed by observing the morphology of the NMJ at a later stage 

(ie, 3rd instar) [304]. This post-mortem analysis can be used to infer much information about 

synaptic growth, but few studies have been able to assess developmental growth, since this requires 

successively imaging the same larvae through multiple developmental stages [305] [306].  The 

method proposed in this paper can be used to observe the growth of synapses at the NMJs as the 

larvae grow dramatically in size, starting from the 1st instar and all the way up to the 3rd instar 

developmental stage. This is a significant improvement over the method previously developed by 

Ghannad-Rezaie et al. [1] in which the same device could not be used to image different larval 

sizes. Individual 1st instar larvae were immobilized and their NMJs imaged with the microfluidic 

chip containing a PDMS-parylene c-PDMS membrane. The same animals were then placed on the 

chip after they developed into 2nd and then 3rd instar larvae after 24 and 48 hours respectively and 

their NMJs were re-imaged. The growth of synapses at the NMJs, both in terms of size as as well 

as number of branches, can be easily observed across all larval developmental stages as seen in 

Figure 8.13. Although shown here is observing the developmental growth of a normal NMJ, with 

the wealth of genetic tools and mutations available from decades of research in the Drosophila 

NMJ field, the details of many of the synaptic growth defects can be looked at in a more in-depth 

manner using this method to track growth dynamics from 1st through 3rd instars larvae. Further, 

although we are observing the simple morphological growth in this particular example, with the 

abundance of endogenously tagged protein traps [307] and fluorescent reporters available in the 

Drosophila field, subcellular changes can be observed with this same method at different 

developmental stages of NMJ development.   
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Figure 8.13: Representative images of growing NMJ terminals imaged successively during larval 

development in a single animal. To visualize the morphology of the NMJ synaptic terminal, a 

membrane tagged red fluorescent protein (UAS-mCD8-RFP) was driven in three motoneurons 

(onto muscles 26, 27, and 29) via the M12-Gal4 driver. Late 1st instar larvae were immobilized 

and imaged with the cooling chip on day 0 (left), and the same animal was imaged 24h (middle) 

and 48h (right) later. The different developmental stages of the animal are indicated on top.  

Arrowhead denotes the region of high magnification below and in inset, highlighting the growth 

and elaboration of one region of the NMJ. All pictures are at the same scale with scale bars of 

20µm (whole NMJ pictures) and 2µm (high magnification images). 
 

8.3.8 Comparison of  cryo-larva chip to other approaches of immobilization 

Even though low temperature larval immobilization has not been demonstrated for 

Drosophila before, cryo-anesthesia has previously been implemented to immobilize other model 

organisms such as C.elegans. Chung et al. [288] developed a fully automated microfluidic 

platform for performing high throughput microscopy and sorting of C.elegans with flow based 

pressure driven loading and robust temperature control on chip. While this platform has been very 

successfully implemented for worm populations studies, it would not be possible use a pressure 

driven flow based loading mechanism as the larvae cannot be maintained in a fluid suspension like 

C.elegans. Larvae would not be able to survive inside a fluid without having access to air while 

being manipulated by pressure driven flow inside tubing. Additionally, the Drosophila larval 

cuticle is tougher than the C. elegans cuticle, making them more susceptible to mechanical stresses 

during flow based manipulation. A flow based pressure driven loading approach cannot guarantee 

loading larvae with their ventral surface facing downwards which is the required orientation to 

perform most imaging applications. Furthermore, a significant change in device dimensions as 

well as architecture would be required to accommodate Drosophila larvae due to their significantly 

larger sizes. Rhode et al. [289] developed a high throughput technology for screening C.elegans 
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inside multiwall plates by cryo-immobilizing and imaging worms using a custom made Peltier 

element array. While the method can be successfully used to perform imaging at the cellular level 

for C.elegans, Drosophila larvae being much larger and having a more turbid cuticle compared to 

C.elegans require slight mechanical compression for good optical accessibility, especially for 

imaging more internal structures and sub-cellular processes which is not possible with the platform 

developed by Rhode et al. [289].  

Among the several approaches that have been developed for Drosophila larval 

immobilization, the method presented by Heemskerk et al. [281] enables  imaging of larvae using 

desflurane with an immobilization chamber that is easy to implement. However, desflurane, a 

regulated chemical substance, requires additional safety components such as a gas collection 

assembly, transfer tubing, gas disposal assembly and gas disposal tubing making the use of 

desflurane more complicated. The device developed by Heemskerk et al. seems to be amenable 

for use with other gas anesthetic agents like CO2, which is relatively easier to implement than 

desflurane. Given that the cryo-larva chip has a two layer architecture with a liquid impermeable, 

but gas permeable PDMS membrane separating the two layers, chilled coolant flow through the 

chip could be easily replaced with a gas anesthetic like CO2. This feature makes the cryo-larva 

chip an “off the shelf” versatile alternative to previous devises used to immobilize larvae since it 

can utilize both liquid coolants, and potentially anesthetic gases (as previous shown by Ghannad-

Rezaie et al. [1]). 

 Even though anesthetics like CO2 are attractive choices for immobilization, chemical 

vapors have relatively more significant negative effects on larval physiology compared to chemical 

free cold immobilization. A study conducted by Badre et al. [308] concludes that apart from effects 

such as blocked synaptic transmission at the neuromuscular junction by decreased sensitivity to 

glutamate, an exposure to 100% CO2 for 30 minutes will kill Drosophila larvae. On the other hand, 

a study conducted by Kostal et al. [309] concludes that viable larvae may be stored in quiescence 

at low temperatures (3-90C) for up to two months, with larval survival showing further 

improvement with a fluctuating thermal regime (stored at 50C for 20 hours followed by 4 hours at 

110C for 60 days) indicating that exposure to warmer temperatures allows repair of potential chill 

injury. These results reflect  positively on the utility of the cryo-larva chip that also subjects larvae 

to less than 10 minutes of cold temperatures (4-60C) followed by recovery over extended periods 

at room temperature. Even though the studies have been conducted over long durations under the 
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fluctuating temperature regime, the results presented by Kostal et al. [309] provide evidence of 

larvae re-establishing ion balance, repair by heat shock protein assisted processing, replenishment 

of depleted ATP , management of oxidative damage and synthesis of cryo-protectants, all of which 

would be expected to take place using the cryo-larva chip. Additionally, the fact that ~ 80% of the 

larvae imaged with the cryo-larva chip subsequently pupariated (unpublished observation) 

demonstrates minimal long term physiological effects due to the cryo-immobilization method. 

Even though cooling the animal will effect biological processes on the order of tens of minutes, 

the intended use of the cryo-larva chip is to cool the animal for short periods of time (2-4 minutes) 

only to perform imaging, and then allow the animal to recover and develop back at normal 

temperature to provide a series of snapshots through time of long term processes like mitochondrial 

transport and synaptic growth that takes places over several hours if not days. It is not meant to 

perform shorter term (on the level of tens of minutes) time-lapse imaging of a physiological 

process taking place while the animal is being cooled inside the chip, for which the method 

developed by Heemskerk et al. [281] would be a better alternative.   

The method developed by Heemskerk et al. [281] avoids mechanical compression to 

minimize tissue distortion which is very effective for applications where imaging of soft internal 

structures such as the wing disc is required. In applications in which the maintenance of the tissue 

architecture without distortion is absolutely necessary, the mechanical compression would be a 

downside, and the method utilized by Heemskerk et al. could be a better alternative. However, the 

mechanical pressure and subsequent tissue distortion would be generally consistent in different 

imaging sessions of the same animal, and therefore would be accounted for in comparisons through 

time. In our application, we notice no significant distortion of the structures we imaged (VNCs, 

axons, NMJs) in comparison to fixed larval tissue from dissected animals that are not compressed 

in any way. Further, Drosophila larvae have a turbid cuticle and slight mechanical compression is 

required for good optical accessibility, especially for higher resolution imaging of sub-cellular 

structures along the dorsal and ventral surfaces that are relatively much less distorted when 

squeezed compared to lateral organs like the wing disc. The PDMS membrane in the cryo-larva 

chip improves optical focus by pushing the larva against the glass coverslip. Additionally, since is 

it critical to have the animal lie straight with its ventral surface facing downwards on the coverslip 

to be able to locate anatomical landmarks while imaging, the mechanical compression applied by 

the membrane maintains proper body orientation and minimizes tissue distortion by preventing the 
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larva from crawling around/coiling/twisting/flipping inside the chamber before the cooling effect 

immobilizes the animal. Furthermore, any potential effects of mechanical compression on cellular 

dynamics within the animal, can be minimized by making minor modifications to device 

dimensions such as making the membrane thicker and/or stiffer as already demonstrated by 

improved survival of 1st instars with the parylene membrane. 

Simpler, physical constraint type techniques using capillary pressure developed by 

Nienhaus et al. [282] or using tape to mechanically immobilize larvae developed by Restrepo et 

al. [285] are convenient choices for imaging events at the tissue or cellular level. However, there 

are excessive small body movements that continue to take place while the animal is physically 

constrained with these mechanical approaches that will have a more substantial negative impact 

on higher resolution image quality while studying sub-cellular processes like mitochondrial 

transport. These movements also increase recording time as more image frames need to be 

acquired to correct for movement. Therefore, by supplementing the partial immobilizing effect 

provided by a mechanical constraint with cryo-anesthesia, the cryo-larva chip minimizes these 

small body movements, both in terms of magnitude and frequency. This greatly improves imaging 

quality and reduces the time to image sub-cellular structures/processes at high magnifications. 

Additionally, the cryo-larva chip and associated cooling system is a universal approach as 

it maybe easily implemented with both inverted as well as upright transmission/reflection 

microscopes. Given that some high resolution imaging studies are performed on an inverted 

microscope in transmission mode, placing a peltier unit with heat dissipation modules directly on 

top of the animal or coverslip while imaging will require the construction of specialized 

mechanisms to prevent excess mechanical loading of the animal, as well as the microscope’s piezo-

stage while still allowing light to pass through. Implementing this approach will therefore 

significantly increase system complexity that would have to be specific to the user’s microscope 

configuration. Therefore, even though biologists have been known to immobilize adult flies very 

easily by simply placing them directly on the surface of a Peltier element or ice in order to image 

on a microscope, implementing this approach would have to be able to be accommodated by the 

microscope configuration and not be universally usable like the cryo-larva chip set up. 
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8.4 Experimental methods 

8.4.1 Device fabrication 

Soft lithography was used to fabricate the microfluidic device. Master molds for Layer 1 

and Layer 2 were micro fabricated on two different silicon wafers. A 170 µm mold was created 

for Layer 1 by spinning and patterning SU-8-2100 photoresist on a silicon wafer (Appendix C, 

Section C1). Similarly, a 100 µm mold was created for Layer 2 by spinning and patterning SU-8-

2050 photoresist on another silicon wafer (Appendix C, Section C1). To fabricate Layer 1, a 15:1 

PDMS mixture ratio was spun cast at 400 rpm for 50 secs over the 170 µm mold and cured at 65 

0C for 5 hours. To fabricate Layer 2, a 10:1 PDMS elastomer to curing agent mixture was poured 

over the 100 µm mold and allowed to cure for 5 hours at 65 0C. Layer 2 (~ 3.5 mm thick) was 

peeled off from the 100 µm SU-8 master mold and the coolant inlet/outlet ports were punched 

using a sharpened, 19-gauge needle (0.031 inch I.D., O.D: 0.042 inch O.D.; Kathetics). Layer 2 

was then aligned and air plasma bonded (50 W, 250 mTorr, 60 s) to Layer 1. The two layer PDMS 

structure was then peeled off from the 170 µm SU-8 master mold followed by the creation of 

vacuum and food ports using the sharpened, 19-gauge needle that was previously used to create 

fluidic ports in Layer 2. Leak proof access to Layers 1 and 2 was provided using polyvinyl tubing 

(0.023 inch I.D., 0.038 inch O.D.; BD Intramedic) connected via a steel pin (0.016 inch I.D., 0.025 

inch O.D.) to the coolant inlet/outlet and vacuum ports on the device. 

For fabricating devices with PDMS-parylene c-PDMS membranes, the same master molds 

for Layers 1 and 2 were used. Layer 1 was fabricated by spinning 15:1 PDMS elastomer to curing 

agent mixture at 400 rpm for 50 secs and curing it at 65 0C for 5 hours. A 2 µm parylene-c polymer 

using the physical vapor deposition (PVD) process [310] was deposited in a conformal manner 

onto the surface of PDMS on Layer 1. A 15:1 PDMS elastomer to curing agent mixture was spun 

cast at 400 rpm for 50 secs over the parylene c layer and cured at 65 0C for 5 hours to create a 22 

µm thick PDMS-parylene c-PDMS membrane. Layer 2 was fabricated with coolant inlet/outlet 

ports punched into it and plasma bonded to Layer 1, ports for vacuum and food were punched and 

fluidic access was provided as previously described. 

8.4.2 Animal preparation 

For experiments tracking immobilization upon the onset of coolant flow (Figure 8.5), 

membrane targeted GFP was expressed in all motoneurons using the Gal4/UAS system (OK6-

Gal4; UAS-mCD8GFP). For experiments measuring immobility at specific neuronal structures 
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(VNC, Axons, or NMJ) (Figures 8.6, 8.7, 8.8, 8.9 and 8.10), mitochondria were labeled by driving 

expression of the fluorescent protein Dendra2 fused to the mitochondrial targeting sequence from 

cytochrome C oxidase subunit VIII under the control of a UAS promoter (UAS-mitroDendra2) 

[311]. Expression of UAS-mitoDendra2 [311] was driven using the m12-Gal4 driver line [1] [312] 

[313] which expresses in 2 motoneurons per hemi-segment allowing for the visualization of 

individual mitochondria through time. For photo-conversion experiments (Figure 8.10) UV light 

was applied using epi-fluorescence (UV dichroic, 405nm) which was focused onto the VNC using 

the microscope’s condenser at full power for 8 seconds. The approximate region converted was 

~25µm circular region over individual pairs of motoneurons in the VNC, performed multiple times 

to convert all visible motoneurons in the lateral VNC expressing mitoDendra2. Images of the VNC 

were taken before and after conversion, and initial t=0h images of the axons and NMJ were taken 

after photo-conversion. In between imaging sessions (at 5h and 12h), animals were removed from 

the chip and placed on grape-agar plates to freely crawl around and feed. All animals were 3rd 

instar larvae and were cultured and reared using standard Drosophila protocols.  

For tracking synaptic growth (Figure 8.13), adult crosses were set 3 days prior to collection 

of late 1st instar/early 2nd  instar animals. Larvae chosen for study varied slightly in size from 1-

2mm in overall length, no animals >2mm were chosen for initial imaging on day 0. On day 0, 

collected larvae (genotype:M12-Gal4, UAS-mCD8RFP/+) were washed in water and placed on 

the chip containing a PDMS-parylene c-PDMS membrane. After imaging, animals were removed 

from the chip and placed individually on grape-agar dishes supplemented with yeast paste (dry 

baker’s yeast mixed with water) in a 25°C incubator to freely crawl and forage for 24 hours before 

the next imaging session (the same procedure was followed in subsequent imaging sessions). 

8.4.3 Larval loading and manipulation 

Individual larvae were placed in halocarbon oil 700 (cat. # H8898 Sigma Aldrich Inc.), put 

on a glass coverslip (#12-544E, Fisherbrand), and then covered by placing the transparent chip on 

top using manual alignment under a stereo dissection microscope. A tight seal between the PDMS 

chip, oil and coverslip was created by applying vacuum pressure (600 mTorr) using a 20 cc syringe 

to the vacuum port of the microfluidic network in ‘Layer 1’ [314].  

8.4.4 Fluorescence imaging 

All  imaging acquisitions were conducted using a spinning disk confocal system (Perkin 

Elmer), consisting of a Yokagawa Nipkow CSU10 scanner, and a Hamamatsu C9100-50 EMCCD 
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camera, mounted on a Zeiss Axio Observer with an oil objective. Volocity software (Perkin Elmer) 

was used for image acquisition.  

For experiments tracking immobilization upon the onset of coolant flow to determine the 

time required to immobilize the larvae (Figure 8.5), a single optical plane was captured with a 25x 

(0.8 NA) oil objective lens every 2 seconds for 9 minutes in total. In each typical imaging session, 

animals were kept in the chip for approximately 9 minutes. 

For experiments measuring immobility at specific neuronal structures (VNC, Axons or 

NMJ) (Figure(s) 8.6, 8.7, 8.8, 8.9), a collapsed z-stack of the whole structure was acquired every 

1 second over 2 minutes with a 40x (1.3 NA) oil objective lens. Each collapsed z stack, containing 

6-7 z planes with step size 0.5-1.5 µm and exposure time of 100-115 milli-seconds, took ~1 second 

to acquire. In each typical imaging session, animals were kept in the chip for approximately 10 

minutes. 

For photo-conversion experiments (Figure(s) 8.10, 8.11), each image was captured with a 

40x (1.3 NA) oil objective lens. All images were confocal collapsed z-stacks taken of sequential 

red and green channels of neuronal structures at all time points. If slight movements occurred 

during the z-stack and red/green channels were slightly mis-aligned, another z-stack was acquired 

until no movement was observed during the z-stack. Each collapsed z stack, containing 6-7 z 

planes with step size 0.5-1.5 µm and exposure time of 100-115 milli-seconds, took ~1 second to 

acquire. In each typical imaging session, animals were kept in the chip for approximately 5 

minutes. 

For tracking synaptic growth (Figure 8.13), imaging of NMJs was initiated two minutes 

after onset of flow of coolant. Typically, 3 NMJs per animal were imaged with a confocal z-stack 

using a 40x (1.3 NA) oil objective lens and single channel acquisition. Each z-stack containing 6-

7 z-planes, spaced 0.5µm apart, was acquired with an exposure time of 100-115 milliseconds and 

took ~ 1 second to acquire. In each typical imaging session, animals were kept in the chip for 

approximately 5 minutes. 

8.4.5 Quantification of on-chip larval movement 

In order to quantify on chip larval movement and comment on the quality of 

immobilization, for every video acquired with the animal immobilized, three random features were 

selected after ensuring that they are visible across all collapsed z stack frames in the video 

(Figure(s) 8.6-8.9). For videos that were acquired of the larval VNCs, these features corresponded 
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to fluorescently labeled neuronal cell bodies located at the VNC. Whereas for videos that were 

acquired of the larval NMJs and axons, the features corresponded to fluorescently labeled 

mitochondria. For a given video, the three chosen features were tracked across every frame and 

the absolute distance moved by their centroids in between consecutive frames was estimated using 

Metamorph 7.7.0.0 Imaging software. The video was accessed by the software in the form of 8-bit 

grayscale multi-tiff image frames. The features to be tracked were manually selected on the first 

frame by drawing a box around their periphery which formed their template images. The centroid 

of each box was defined as the corresponding feature centroid. After defining the template images, 

the search regions (the area in which the software should search for the feature to have moved to) 

around the features were also defined. The template matching algorithm [315] was then employed 

by the software to track the location of the features within the search regions in every frame. While 

running the template matching algorithm, the correlation coefficient threshold was set to 0.5. If 

the software failed to locate a feature in any given frame, tracking was stopped and the correct 

location of the feature was manually redefined by visual inspection before proceeding with 

automated tracking. The average distance moved in between frames was then calculated for every 

feature centroid followed by the estimation of the average distance moved across all frames for all 

three feature centroids. The optical resolution of the microscope setup that was used for distance 

estimation with 400x magnification is 0.18 µm (1 image pixel corresponds to 0.18 µm) 

respectively. 

In order to quantify the larval response time to immobilizing effects, for every video 

acquired before, during and after immobilization, a point (centroid of a cell body along the VNC) 

was selected that was visible across all frames (Figure 8.5).  The point was then manually tracked 

across every frame and the distance moved in between consecutive frames was estimated using 

Metamorph 7.7.0.0 Imaging software. The optical resolution of the microscope setup that was used 

for distance estimation with 250x magnification is 0.29 µm (1 image pixel corresponds to 0.29 

µm). Automated tracking with template matching was not possible as there was a lot of movement 

before and after immobilization. 

8.4.6 Quantification of mitochondria fluorescent changes 

Individual mitochondria were extracted from merged Z-stacks of confocal images of the 

NMJ using the Volocity software (Perkin Elmer), with an algorithm that selected individual puncta 

via a determined fluorescent threshold above background. From each mitochondria, an average 
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fluorescent intensity of the whole mitochondria in the red and green channel were used to 

determine the red:green ratio. For population changes (Figure 8.11(a)), the average red:green ratio 

of pooled mitochondria at t=0h (where there is no red fluorescence) was used to normalize all data. 

For measuring changes in individual mitochondria (Figure 8.11(c)), mitochondrial ratios at time 

points after t=0h were compared to their original red:green ratio at t=0h to determine a fold change. 

Only mitochondria that we were certain to be present and accounted for (based on visual 

landmarks) all time points were used for this analysis.  

For measuring the conversion efficiency (Figure C7), all converted cell bodies from a 

merged Z-stack image pre conversion and post conversation were compared in their overall 

average red:green fluorescent intensity ratios (similar to what is shown in Figure 8.10(b)). The 

ratios were compared to themselves to determine the fold change in the ratio displayed in the graph.  

8.4.7 Quantification of correlation coefficient as a measure of co-localization 

Image frames that are temporally 8 seconds apart at the start of each 2 minute video were 

chosen to be the green and red channels. Pearson's correlation coefficient [315] was calculated 

between these two frames (Figure 8.12(a)) using the CellProfiler software [316].  

8.4.8 Quantification of % co-localization area 

Image frames that are temporally 8 seconds apart (determined to be the average time to 

complete 2 color sequential z stack in our experiments) at the start of each 2 minute video were 

chosen to be the green and red channels. Objects (mitochondria and cell bodies) were identified in 

these two frames using the CellProfiler software. The objects were identified using the three-class 

Otsu thresholding method [317]. The % area of pixels that spatially overlapped between the two 

segmented images was then calculated and defined as % co-localization area (Figure 8.12(b)).  

8.4.9 On chip temperature measurement 

We estimated the temperature distribution created by the chilled coolant flowing through 

the microfluidic device as well as the temperature in the micro-immobilization chamber using non-

invasive infrared thermal imaging [318]. Given the dimensions of the microfluidic device, the 

region of interest is too small to enable accurate contact measurement based conventional 

thermometer systems. A FLIR SC600 (measurement range: -200C – 150°C, accuracy: ± 2°C or 

2%), 7.5 – 13 μm pre-calibrated long-range infrared thermal camera fitted with a FLIR T198059 

close up lens (spatial resolution: ±50 µm) was used to measure the temperature of the 

immobilization microchamber in the chip. The chip was connected to the cooling setup and 
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mounted upside down with the coverslip facing the camera mounted on top. The coverslip was 

placed at the focal distance of the infrared lens with its plane lying perpendicular to the vertical 

axis of the camera. As it is difficult to measure the temperature of transparent surfaces, a piece of 

thin (100 µm) black tape with known surface emissivity (0.95) was cut to ~ 5.5 mm x 2.8 mm (size 

of the immobilization microchamber) and pasted on the coverslip over the immobilization 

microchamber. Images of the chip were then collected at 1 frame per second after starting coolant 

flow through the chip. Data acquisition and post processing of the infrared images was handled by 

the FLIR ExaminIR software. The software was also used to specify emissivity (0.95), ambient 

temperature (230C) and ambient humidity corrections (15%).During data acquisition and/or during 

post processing, the minimum, maximum and average temperatures over the region of interest 

(region covered by the black tape) was estimated and plotted over time. Given that the coverslip 

(~ 150 µm) and the tape (~ 100 µm) are extremely thin, the time taken by these surfaces to 

equilibrate to the steady state temperature of the immobilization microchamber inside the chip 

maybe considered to be negligible. 

8.4.10 On chip fluid pressure measurement 

In order to estimate the pressure exerted by the PDMS membrane on the larva, the 

deflection of the membrane was first calibrated with the application of known static air pressure. 

The cooling microchamber was pressurized with air at known pressure using an air flow regulator 

(Elveflow microfluidic AF1 pressure pump) while plugging off the cooling microchamber outlet 

thereby causing the PDMS membrane to deflect. Membrane deflection was measured by optically 

focusing on the center of the membrane before and during pressurization using an upright 

microscope (Olympus BX-51), 10x objective lens (MPLFLN10x, Olympus) and bright field 

illumination mode. Food color was added to PDMS during the fabrication of Layer 1 to enhance 

optical contrast and improve membrane deflection measurement accuracy. The calibration data 

was curve fitted using a 3rd order polynomial function (Figure C5). After calibration was 

completed, the chip was connected to the cooling setup without adding the coverslip and coolant 

(5M salt water solution) was pumped through the cooling microchamber in the chip. The resulting 

membrane deflection under pressurized coolant flow was optically estimated and measurements 

were obtained at different flow rates of the coolant. The higher the flow rate, the greater the 

membrane deflection. Using the calibration curve and measured membrane deflection for a given 

flow rate, the fluid pressure being applied on the membrane was estimated.  
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8.4.11 Coolant preparation 

5M salt water solution was prepared by mixing 73.05 g of sodium chloride (cat. # S9888 

Sigma Aldrich Inc.) with 200 ml of ddH2O while stirring. Additional ddH2O was added until the 

final volume was 250 ml. 250 ml of 40% (v/v) ethanol solution was prepared by mixing 100 ml of 

100% ethanol (cat. # 2701 Decon Laboratories Inc.) with 150 ml of ddH2O by stirring. 250 ml of 

50% (v/v) glycerol solution was prepared by mixing 125 ml of 100% glycerol (cat. # 536407 Sigma 

Aldrich Inc.) with 125 ml of ddH2O by stirring.  

8.4.12 Statistical significance test 

The two tailed unpaired non parametric Man-Whitney test was performed to test the 

significance of the difference in mean of average movement measurements (Figure 8.6) from 

features at NMJs, VNC and axons between using the proposed method with chilled coolant flow 

and coolant flow at room temperature (control). 

A one way ANOVA test followed by Tukey’s multiple comparison test was performed to 

test the significance of the difference in mean of average movement measurements (Figure 7.9) 

from features at NMJs, VNC and axons between using the proposed method with chilled 5M salt 

water solution flow, chilled 40% ethanol solution flow above the PDMS membrane and chilled 

40% ethanol solution flow above the PDMS-parylene c-PDMS membrane. 

8.5 Conclusion 

We developed and characterized a microfluidic method for immobilizing Drosophila 

melanogaster larvae which enables  imaging in intact animals. The method uses a microfluidic 

cryo-larva chip to create a low-temperature micro-environment to deliver a combination of 

mechanical compression and cryo-anesthesia to immobilize individual larvae. A deformable 

membrane is used to mechanically compress each larva while simultaneously flowing chilled 

coolant over the PDMS/PDMS-parylene c-PDMS membrane and subjecting the larva to cold 

temperatures. The method is easy to implement, allows complete larval recovery and can be used 

to immobilize larvae of different developmental stages. Additionally, since the device is not 

permanently bonded to the glass coverslip, it can be subjected to multiple uses while making the 

larval loading process extremely quick and easy. Our results indicate that the proposed method is 

appropriate for repeated short-term (less than 10 minutes) immobilization sessions, with 

immobilization sufficient to perform high resolution imaging of sub-cellular structures.  
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 Besides demonstrating high resolution imaging of larval NMJs, VNCs and axons, the 

proposed immobilization approach can have an impact on a variety of other imaging applications 

in Drosophila neuroscience, including neuronal laser microsurgery for studying axon regeneration, 

neuronal circuits and time lapse imaging for studying synapse development. Furthermore, 

technical challenges (mainly survival) have limited the successive imaging of the same Drosophila 

larvae across developmental stages without the use of anesthetics [305] [306]. The combined 

pressure/cooling immobilization of young larvae presented here allowed for an acceptable level of 

survival of imaging young larvae across their developmental ages. This alone will make this 

technique of high value for developmental biologists. Although the focus of this particular data 

was on the mitochondrial trafficking in neurons, the technique of  local photo-conversion and 

trafficking that we were able to perform using this chip can be utilized for a variety of different 

long-term time lapse applications. These include imaging of subcellular trafficking, tracking of 

long range cell migration, and imaging proliferation dynamics. Having such a powerful tracking 

ability within an intact animal over multiple imaging sessions can be a great resource to many 

biological fields.  
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THE WORMIMM PLATE: A 3D PRINTED MILLIFLUIDIC TOOL FOR CO2 

IMMOBILIZATION OF C. ELEGANS ON AGAR FOR POPULATION STUDIES AND 

IMAGING APPLICATIONS 

9.1 Introduction 

C. elegans is a popular model organism for studying various biological processes including 

cell apoptosis, ageing and neural plasticity among several others due to its completely sequenced 

genome [319] [320] [321] [322], easy maintenance, fast generation times and optical transparency. 

At the heart of these biological studies lies the necessity to immobilize them sufficiently in order 

to produce high quality live videos and/or images thereby allowing biologists to analyze 

anatomical features [323], observe biological processes like axonal regeneration [324] [325] [217], 

cellular development/gene expression [326], monitor neuronal response with various stimuli [232] 

or for even scoring lifespan assays [327]. The immobilization method should therefore minimize 

any movement of the organisms that would otherwise cause them to crawl out of the recorded field 

of view as well as minimize any motion artifacts such as loss of focus.  

Conventional techniques for worm immobilization incorporate the use of glue [238] [328] 

or anesthetic compounds [329] [241] to minimize body movement but even though these methods 

are and have been very popular, they have certain limitations. If glue is used, only a single animal 

can be immobilized at a time thereby making the process very labor-intensive and low-throughput. 

Therefore, the 'glue' technique makes the immobilization of a large population of worms for 

simultaneously study impractical. Furthermore, it is a permanent method as the worms may not be 

released alive after they are glued. Chemical anesthetic compounds can be used to immobilize 

large worm populations but their effect on nematode physiology and overall toxicity is unknown 

[330]. Additionally, transferring the animals from their agar culture media to a coverslip or chip 

to either glue or anesthetize them can induce mechanical stress on them, thereby negatively 

impacting the biological process under observation with the study of aging being especially 

relevant here. Therefore, novel techniques that enable reversible immobilization, are minimally 
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toxic and are easy to implement while eliminating any mechanical stress associated with plate 

transfers would be a great tool for performing studies that require simultaneous imaging of large 

worm populations.  

Motivated by the unique ability of microfluidics to handle small-size biological objects, 

scientists have designed a variety of microfluidic devices for the precise manipulation of C. 

elegans. Chronis et al. [256] have developed microtraps that maybe used to immobilize worms 

before correlating their neuronal activity to their locomotion patterns while Chalasani et al. [254] 

used the same microtraps to image worm olfactory response. For immobilizing large worm 

populations simultaneously, Hulme et al. [239] developed an array of fixed size clamps that 

mechanically restrict movement. Rohde et al. [289] developed a two step approach using suction 

posts that maybe used to immobilize a single animal at a time. Zeng et al. [331] in turn further 

improved Rhode et al.’s device by integrating a deformable membrane for more stable 

immobilization. In these studies, immobilization was for a short time period (seconds) and in an 

environment different from the agarose medium on which they are normally cultured.  To achieve 

prolonged immobilization, Chokshi et al. [270] developed a microfluidic approach for 

immobilizing C. elegans on-chip by creating a CO2 micro-environment around the worm. Apart 

from allowing stable, long term immobilization (1-2 hours), the CO2 method offers the additional 

advantage of minimizing photobleaching should fluorescent imaging be required during 

immobilization. However, the worms need to be serially loaded since it is possible to only image 

one animal at a time. Additionally, the worms need to be transferred from their agar culture plate 

and placed onto the chip before imaging can take place thereby applying some mechanical stress 

on the animal. Therefore, there is no existing method that allows for the simultaneous observation 

of entire worm populations that require extended periods of immobilization (tens of minutes) 

without displacing them from their culture medium. 

Moreover, the different techniques available for the large scale fabrication of microfluidics 

devices such as micro-machining, soft lithography, embossing, in situ construction injection 

molding and laser ablation [332] require expensive equipment facilities, are labor intensive 

involving multiple step processes to make the final product and incorporating any design changes 

is time consuming. For small scale production of microfluidic devices for analysis in a laboratory 

environment, soft lithography, an expensive and multiple step process is the current gold standard. 

A quick and easy fabrication method for fluidic devices is highly preferred [333] as biologists may 
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not necessarily have the time to learn the fabrication process and employing a process engineer is 

expensive [334]. Recent advancements in 3D printing in terms of resolution and speed have 

simplified the fabrication process for micro and millifluidics devices into a single step. 3D printing 

can now create intricate and minute layered structures that offer great topography flexibility that 

allows high precision construction of multi-layered channel networks in the range of 100- 300 m 

with an accuracy of tens of microns [335] [336] [337].  

Taking advantage of the advances made in 3D printing technology as well as the benefits 

of CO2 immobilization as outlined by Chokshi et al. [270], we developed a 3D printed millifluidic 

device, the WormImm Plate, for immobilizing worm populations as they are grown and maintained 

on an agar surface. The device creates a high concentration CO2 environment on the surface of the 

agar layer which ceases worm body movement and has been demonstrated to be appropriate for 

immobilizing worm populations for short periods of time (20-30 minutes). The method maybe 

used to immobilize worms of all ages from larvae to adults, is very easy to implement and allows 

quick post immobilization recovery within a few minutes. Moreover, the device architecture 

allows optical access to the immobilized worms through a transparent glass plate below the agar 

layer making the method compatible with low as well as high resolution optical microscopy 

techniques employing a transmitted light source. 

9.2. Device design 

The device has a modular design and incorporates 3D printed, annular, lower and upper 

chambers, a lid, a microporous PolyEthylene (PE) membrane gas diffuser, a Teflon light diffuser, 

a PolyMethylMethAcrylate (PMMA) window, Light Emitting Diode (LED) housing cap and an 

electronics control unit (Figure 9.1) .The lower chamber consists of a series of interconnected, 

milli-fluidic channels connected to a main gas (CO2) inlet through a Luer connector interface. The 

micro-porous PE membrane gas diffuser which is also annular in shape is incorporated into the 

lower chamber and above the milli-fluidic channels.  The upper chamber consists of an enclosed, 

continuous milli-fluidic channel, the walls of which have multiple (eight), equally spaced 

openings/windows that act as CO2 outlets. The upper chamber is placed onto the lower chamber 

with the PE membrane in between separating the two chambers. A circular, optically transparent, 

2 mm thick PMMA disk is inserted into the annular region in the center and rests on the lower 

chamber along its edges. A circular lid that houses four white LEDs with a notch at the side for 

allowing wiring from the LEDs to pass through is fitted onto the bottom of the lower chamber. A 
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circular, 0.5 mm thick translucent Teflon optical diffuser disk is inserted over the PMMA disk. 

The LEDs are connected through wires to a 3D printed, electronics control box that consists of a 

micro USB rechargeable battery, a charging circuit board and a push button switch.  

The gap between the top surface of the Teflon disk and the bottom of the CO2 outlet 

windows creates a region that can accommodate a circular disk (diameter 37 mm, thickness 2 mm) 

of agar to be placed/molded into the region at the center of the device.  

9.3 Principle of Operation 

CO2 (99.9% bone dry) enters the device through the main gas inlet from a gas cylinder with 

a regulated outflow pressure of 1.5 psi, flows through the milli-fludic channels in the lower 

chamber, is slowed down by and passes through the PE micro-porous membrane gas diffuser. After 

passing though the membrane, the gas enters the upper chamber and then exits through the outlet 

windows thereby creating a high gas concentration above the agar layer containing the worm 

population on its surface. This high concentration CO2 environment that is created by the 

membrane diffuser induces an almost immediate immobilization effect on the entire worm 

population. The Teflon sheet diffuses white light from the LEDs at the bottom which enables 

viewing the worms with dark field illumination under a stereoscope/ camera microscope. The 

LEDs are powered by a micro USB rechargeable battery that can be manually turned on and off 

using a toggle switch in the electronics control unit (Figure 9.1). Given the modular architecture, 

the LEDs at the bottom maybe easily removed and the device can also be used with a microscope 

with external illumination. 
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Figure 9.1: (A) Cross sectional schematic of the device assembly, components of the electronics 

control unit with device dimensions and CO2 flow (blue arrows). (B) Top view of the device 

showing CO2 flow (blue arrows). (C) Exploded view of the device components. The gas diffuser, 

light diffuser and transparent window are not 3D printed. (D) Photograph of the WormImm plate 

showing upper and lower chambers, main CO2 inlet, transparent PMMA base and CO2 outlet 

windows (scale bar, 1 cm). (E) Photograph of the device with electronics control unit showing 

LEDs placed on the housing cap (scale bar, 1.5 cm).  
 

 

When the CO2 supply is turned off, the worms recover within several minutes and continue to 

grow on the agar surface.  

9.4 Fabrication 

The upper and lower chambers were 3D printed using the Fused Deposition Modeling 

(FDM) [180] method on the ProJet 3500 HD Max printer. During the printing process, polymer 

materials are heated and ejected from the nozzles of the inkjet printer onto an aluminum build 

plate. The print was performed vertically upwards with a layer resolution of 16 µm in the axial 

direction and 32 µm in the lateral resolution. Building (VisiJet EX 200, 3D Systems Inc., Rock 

Hill, SC, USA) [181] and sacrificial materials (VisiJet S100, 3D Systems Inc., Rock Hill, SC, 

USA) [182] were deposited alternatively from the dual nozzles to form the printed parts, in which 

the building material defines the solid structures in the device, while the sacrificial material 

occupies the hollow channels/cavities. Upon completion of the printing process, the 3D structure 

and the aluminum plate were placed in a refrigerator at 4 °C for 20 minutes to easily remove the 

structure from the plate. The structure was then subjected to a post-printing procedure to remove 
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the sacrificial material. First, the entire 3D-printed sample was immersed in a mineral oil (Bayes® 

high performance food-grade mineral oil) bath at 60 °C while sonicating at ~ 45 kHz for 2 hours 

to dissolve the sacrificial material. Second, the residual mineral oil was removed by thoroughly 

washing the parts in detergent soap and water (both at 60 0C, sonicated at ~45 kHz) baths in 

sequence. The structures were then air dried for 24 hours to remove any water remaining inside 

the milli-fluidic channels/cavities.  

A commercially available micro-porous PE sheet (1/8in. UHMW porous polyethelene, 

Genesee Scientific) was machined with a Computer Numeric Controlled (CNC) mill to create the 

annular membrane gas diffuser. The membrane gas diffuser was incorporated on top of the milli-

fluidic channels in the lower chamber by securing its sides to the walls at the periphery of the 

lower chamber with Loctite super glue, an adhesive which creates a permanent bond between 

plastics. After air drying for 24 hours which is the time required by the adhesive to attain maximum 

bond strength, the bottom of the upper chamber was then glued to the lower chamber and the 

membrane towards the periphery using the same adhesive. A commercially available transparent 

PMMA sheet and translucent Teflon sheet were CNC machined to create the circular optical base 

and light diffuser respectively.  

9.5 Results and discussion 

To visualize the immobilizing effect of the proposed method on worm populations, we 

obtained video recordings of the movement of individual worms on the device. As part of the 

experimental procedure, worms were loaded onto the agar surface of the device and were 

immobilized using CO2 supplied to the main inlet from a compressed gas cylinder with a pressure 

of 1.5 psi. We tracked over time, the absolute distance moved by the tip of the head of each worm 

in between the video frames (Figure 9.2B) before, during and after immobilization. The worms 

were initially active before immobilization and became immobile in the presence of CO2 

(immobilization periods up to 20 minutes were performed) flowing through the device. Once CO2 

flow was turned off,  the worms recovered back to their initial level of activity pre immobilization 

as shown in Figure 9.2A. As part of the control experiment, we also recorded on-device, the 

movement of individual worms with air supplied to the main inlet with a pressure of 1.5 psi. From 

Figure 9.2B, it maybe observed that the worms continued to crawl around even with air flowing 

through the device and it can therefore be concluded that the presence of CO2 is the dominant 

factor that causes immobilization. As the flow rate of any gas (air and CO2) is substantially reduced 
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by the PE membrane diffuser, it is unlikely to significantly affect worm locomotion. Furthermore, 

the membrane diffuser creates a high concentration of CO2 on the surface of the agar thereby 

anesthetizing the worms. Given that the bacterial lawn was located at the center of the agar layer, 

worm movement was mostly clustered around this food source prior to immobilization. If the 

bacterial lawn were to be spread uniformly, we anticipate that the size of the region 

accommodating the agar layer (circular region of diameter 3.7 cm as shown in Figure 9.1B) is 

small enough for CO2 to be distributed equally over the agar layer and not cause any significant 

differences in the quality of immobilization in worms located towards the periphery and at the 

center.  However, if the size of the device is substantially increased, movement seen in worms that 

are distributed across the agar layer must be characterized to determine differences in quality of 

immobilization, if any.   

 

Figure 9.2: Effect of on-device exposure to CO2 on worm movement. (A) Absolute distance 

moved by the tip of the head in age L2 over time (acquired before (I), during (II) and after (III) 

CO2 immobilization). The grey line represents average distance moved between frames for ten L2 

larvae. The solid green line represents best fit by non-parametric regression using locally weighted 

scatterplot smoothing. (B) Bar graphs showing the average of distances moved by the tip of the 

head in ages L2, L3, D1, D3 and D6 in between video frames (1.3 frames per second) collected 

over 15 minutes. The videos were collected with worms loaded on the 3D printed device with air 

flowing through the chip (at 1.5 psi gas pressure), with CO2 flowing through the chip (at 1.5 psi 

gas pressure) as well as with neither air nor CO2 flowing through the device respectively. Error 

bars indicate standard error of mean of measurements taken from ten worms imaged on the same 

device. 
 

 

To evaluate the effectiveness of the proposed method to immobilize worm populations 

belonging to different developmental stages, we acquired videos of worm populations loaded onto 

the agar surface in the device before, during and after the application of CO2 flow (Section 
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9.6.2).The absolute distance moved in between the video frames by the tip of the head, tail and the 

center of each worm body (Figure 8.3A) before, during and after immobilization was then tracked 

over time using a video processing software (Section 9.6.2). The experiment was performed for 

synchronized populations of worms belonging to L2, L3, D1, D3 and D6 developmental stages. 

For every developmental stage, worms were active before immobilization and freely crawling all 

over the agar surface. However, when CO2 flow was introduced through the device, worm 

locomotion was drastically reduced in under 0.5 minutes. Even though the worms were not able to 

crawl over the agar surface and became fixed in position with respect to each other, some 

movement was still observed, especially at the head region (Figure 9.3A).   With CO2 flow through 

the device maintained for 20 minutes, the movement of the worms dropped off sharply and then 

settled to lie within a variation of 10% in under 2.5 minutes for all developmental stages. Upon 

removing the flow of CO2, the worms seem to fully recover to their initial activity level within 10 

minutes for all developmental stages. This is further supported by the fact that there is no 

statistically significant difference between the average movement speed (Section 9.6.3) computed 

10 minutes before and 10 minutes after CO2 flow is turned off post the 20 minute immobilization 

period, as shown in Figure 9.4. 

 

Figure 9.3: Effect of on-device exposure to CO2 on worm head, tail and mid-body movement. Bar 

graphs showing the average of distances moved by the tip of the head, center of the body and tail 

in ages L2, L3, D1, D3 and D6 in between video frames collected over 15 minutes. The videos 

were collected with worms loaded on the 3D printed device with CO2 flowing through the chip (at 

1.5 psi gas pressure). Error bars indicate standard error of mean of measurements taken from ten 

worms imaged on the same device.  
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Figure 9.4: Effect of on-device exposure to CO2 on worm speed. Bar graphs showing the average 

speed of the tip of the head in ages D1, D3, D5, D7 and D9 in between video frames collected over 

10 minutes before and after CO2 flow through the device is turned on (1 pixel corresponds to 10 

mm). D stands for Day. Error bars indicate standard error of mean of measurements taken from 

ten worms imaged on the same device. All p values are greater than 0.5. 
 

 

Figure 9.5: Photobleaching following on-device exposure to CO2. Line plots showing 

photobleaching of GFP-expressing neurons during CO2 immobilization and immobilization with 

Cygel and sodium azide respectively. Line plots shows percentage change in fluorescence intensity 

over time with respect to the intensity measured at start of imaging. Error bars represent standard 

error of mean from ten worms imaged on the same device.  
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Figure 9.6: Brood size following on-device exposure to CO2 during development. Total brood 

size was determined from 21 worms exposed for 20min in CO2 every 18-20 hrs during their 

passage from L1 to L4 larval stage. Values represent the mean for each condition. Error bars 

indicate standard error of mean of measurements taken from 17 naïve worms imaged on the 

same device. All p values are greater than 0.5. 
 

 

 

Figure 9.7: Lifespan following on-device exposure to CO2 during development. Worms were 

exposed for 20 min to CO2 every 18-20 hrs during their passage from L1 to L4 larval stage. Median 

survival: non CO2 = 16, (n=127); CO2 = 16, (n=125).  
 

 

To test to what extent the CO2 application affects C. elegans physiology, we tested the 

fecundity and lifespan of worms by exposing them to CO2 during their developmental stages. 

Given that larval developmental stages are more sensitive to any changes in their environment, 

stages L1 through L4 were exposed to CO2. We did not observed any statistically significant 

differences (all p values are greater than 0.5) on the brood size of worms during their reproductive 

period (Day1 to Day 4 of adulthood) (Figure 9.6).  
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It has been shown that exposure of worms in the early developmental stages to elevated 

concentrations of CO2 (19%) over hours at a time extends lifespan [338].  However, for the same 

CO2 exposure protocol that was used for studying the effect of the WormImm Plate on progeny 

which was limited to just 20 minutes, we did not see any effect of C02 on the mean lifespan of 

worm populations (Figure 9.7) (all p values are greater than 0.5).  

Furthermore, we studied the effect of the CO2 environment on photobleaching of 

fluorescent markers to test the applicability of  CO2 immobilization for long term observation of 

worms on agar media. Photobleaching was quantified by imaging fluorescent YPF-expressing 

motor neurons (Figure 9.5). Upon immobilization, the fluorescent intensity of the neuronal cell 

body was recorded over 20 minutes. As part of the control, the same experiment was repeated by 

attaching the worms to a glass cover slip using a combination of Cygel and an anesthetic (10mM 

of sodium azide) which is the more conventional, non-microfluidic approach that is known to be 

popularly employed [339]. A ~25% reduction in the fluorescent intensity was observed in a CO2 

environment at the end of the 20 minute period. This is comparable to the ~20% reduction observed 

with the non-microfluidic cygel-sodium azide based immobilization approach. 

9.6 Experimental methods  

9.6.1 C. elegans maintenance, lifespan assay and fecundity.   

Standard procedures were followed for C. elegans strain maintenance [229]. Nematode 

Growth Medium (NGM) agar was aseptically poured into the 3D printed device on top of the 

Teflon disk to a maximum thickness of 2 mm just below the level of the CO2 outlet windows. 

Lifespan studies were performed at 20 0C in the presence of FuDR [340] that made the worms 

sterile. Worms were exposed for 20 min to CO2 every 18-20 hrs during their passage from L1 to 

L4 larval stage.  Survival was scored every 2 days, and worms were censored if they crawled off 

the plate, hatched inside, or lost vulva integrity during reproduction. Survival plots were generated 

using GraphPad Prism. The log-rank (Mantel-Cox) test was performed to determine statistical 

significance. 

For the same CO2 exposure protocol, the brood size was measured by individually placing 

worms in plates at 20 0C at the L4 stage and then moving them to new plates every 18-20 hours 

until Day 4 of adulthood. Live offspring were counted at each time point after adults were removed 

to new plates. A one-way ANOVA and t-test pairwise analysis was performed to determine 

statistical significance. 
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9.6.2 Quantification of worm locomotion pattern  

The experiments to characterize worm movement (Figures 9.2 and 9.3) were performed 

using a camera microscope (200X 0.3MP 8-LED Zoom USB Digital Microscope) at 135x 

magnification. A grayscale real-time video stream of worm movement was obtained (1.3 

frames/sec) and analyzed in the image processing software Metamorph. Worm body movement 

was tracked by the software that extracted the coordinates of points chosen at the tip of the head, 

tail as well as on the mid-section of each individual worm’s body (optical pixel resolution of 

microscope: 2.35 µm). 

A one way ANOVA test followed by Tukey’s multiple comparison test was performed to 

test the significance of the difference in mean of average movement measurements (Figure 9.2B) 

from the head between using the WormImm Plate with CO2 flow, no CO2 flow and air flow through 

the device.  

A one way ANOVA test followed by Tukey’s multiple comparison test was performed to 

test the significance of the difference in mean of average movement measurements (Figure 9.3) 

from the head, body and tail while using the WormImm Plate with CO2 flow through the device.  

9.6.3 Speed measurement 

Worms were placed on the device and CO2 was applied for 20 minutes. The movement of 

individual worms were recorded (1.3 frames per second, optical pixel resolution of microscope: 

10 mm) using a camera microscope (200X 0.3MP 8-LED Zoom USB Digital Microscope) for 10 

minutes prior to and 10 minutes after the CO2 application period. Worm body movement was 

tracked in Metamorph that extracted the coordinates of points manually chosen at the tip of the 

head. Speed was estimating by dividing the distance moved by the tip of the head in between 

consecutive frames with the time to acquire an image frame. 

The two tailed unpaired non parametric Man-Whitney test was performed to test the 

significance of the difference in mean of average movement measurements (Figure 9.4) from the 

head before and after CO2 immobilization. 

9.6.4 Fluorescence imaging  

The fluorescence imaging experiments were performed using an epifluorescent 

stereoscope (8X-50X Track Stand Stereo Zoom Parfocal Trinocular Microscope) at 25x 

magnification. An image processing software (Metamorph) was used to calculate the average 

fluorescence intensity relative to the average intensity recorded at time t=0 from the real-time 
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video stream captured with an exposure time of 60 ms for each frame. A back-illuminated camera 

(QUANTEM:512SC, Photometrics) was used to acquire the video stream.  

9.7 Conclusions  

We developed a simple to use, practical, hybrid 3D printed milli-fluidic tool for 

immobilizing entire populations of the roundworm C. elegans as they are grown and maintained 

on an agar surface. A CO2 environment is created on demand at the surface of the agar layer that 

causes a near immediate immobilizing effect on the worms.  Our results indicate that the method 

is appropriate for short-term (20-30 minutes) immobilization which is sufficient for performing 

several experiments on entire worm populations like scoring lifespan assays, counting and 

observing ageing while performing fluorescence imaging under a stereoscope. The method offers 

the additional advantage of observing worm populations without mechanically manipulating or 

disturbing them as they continue to grow on the agar surface. Furthermore, with minor dimensional 

modifications to device architecture, we envision the use of this method in a wide variety of higher 

resolution biological imaging studies in C. elegans, including cellular developmental and neuronal 

regeneration studies. Moreover, the device architecture allows optical access to the immobilized 

worms through a transparent glass plate below the agar layer making the method compatible with 

low as well as high resolution optical microscopy techniques employing a transmitted light source. 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

10.1 Conclusions 

The important contributions of Part B in this thesis include: 

10.1.1 Cry-larva chip 

The thesis presents the development and characterization of a microfluidic method for 

immobilizing Drosophila melanogaster larvae and the results indicate that it is appropriate for 

repeated short-term (less than 10 minutes) immobilization sessions, with immobilization sufficient 

to perform high resolution imaging of sub-cellular structures.  A microfluidic cryo-larva chip is 

used to create a low-temperature micro-environment to deliver a combination of mechanical 

compression and cryo-anesthesia to immobilize individual larvae. The method is easy to 

implement, allows complete larval recovery and can be used to immobilize larvae of different 

developmental stages.  

 Besides demonstrating high resolution imaging of larval neuronal structures, the proposed 

immobilization approach may be used on a variety of other imaging applications including 

neuronal laser microsurgery for studying axon regeneration, neuronal circuits and time lapse 

imaging for studying synapse development. Poor survival has limited the successive imaging of 

the same Drosophila larvae across developmental stages without the use of anesthetics [305] [306]. 

However, as already discussed in Chapter 8, the combined pressure/cooling immobilization of 

young larvae with the cryo-larva chip allowed for an acceptable level of survival while imaging 

young larvae across their developmental ages. This alone makes this technique of high value for 

developmental biologists. Although the focus of the results presented in the thesis was on the 

mitochondrial trafficking in neurons, the technique of  local photo-conversion and trafficking that 

we were able to perform using this chip can be utilized for a variety of different long-term time 
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lapse applications including imaging of subcellular trafficking, tracking of long range cell 

migration, and imaging proliferation dynamics.   

10.1.2 The WormImm plate 

The WormImm Plate is a simple to use, practical, 3D printed milli-fluidic tool for 

immobilizing entire populations of the roundworm C. elegans as they are grown and maintained 

on an agar surface by creating a CO2 environment. As discussed in Chapter 9,  the results indicate 

that the method is appropriate for short-term (20-30 minutes) immobilization which is sufficient 

for performing several experiments like scoring lifespan assays and performing fluorescence 

imaging under a stereoscope. With this method, worm populations can be observed without 

mechanically manipulating or disturbing them. The device architecture allows optical access to the 

immobilized worms through a transparent glass plate below the agar layer making the method 

compatible with low resolution optical microscopy techniques employing a transmitted light 

source. Finally, with minor dimensional modifications to device architecture, we envision the use 

of this method for higher resolution biological imaging studies in C. elegans as well.  

10.2 Future directions 

 We envision that the work presented in Part B of this thesis chapter can be extended in the 

following research directions: 

10.2.1 Cryo-larva chip 

In all the time lapse imaging experiments that are presented in this chapter, the larvae were 

removed from the chip in between successive imaging sessions and maintained externally on a 

grape plate. However, the inclusion of food ports as part of device architecture provides the 

possibility to maintain animals on chip and in between imaging sessions, similar to Ghannad-

Rezae et al.’s [1] studies, in which food is delivered every 30 minutes to keep larvae alive on chip 

for 10 hours. Apart from incorporating the ability to accommodate multiple larvae on the chip and 

computer enabled flow and Peltier control, employing the food ports will facilitate any attempt at 

transitioning to a more automated version of the system in the future to increase throughput.  

Besides immobilizing Drosophila larvae, the cryo-larva chip has the potential to be used 

to study cellular biological events across developmental stages in other model organisms like C. 

elegans. Immobilization of Drosophila larvae is more difficult than that of C. elegans as they are 

much larger in size and therefore exert stronger body forces. Additionally, even if the outer larval 

body is completely immobilized by physical encapsulation, imaging internal organs of interest 
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such as the CNS (Central Nervous System) capsule is extremely challenging as they can freely 

move inside the hemolymph-filled body cavity. Given that the proposed method successfully 

immobilizes Drosophila larvae for high resolution imaging, it is extremely likely that with minor 

modifications to the device architecture, the method will prove to effectively immobilize C. 

elegans as well, thereby expanding its potential applications.  

10.2.2 The WormImm plate 

It was observed that the worms were significantly immobilized within 1–2 minutes upon 

CO2 flow being turned on through the device. This delay might be the time that CO2 requires to 

diffuse into the chamber and displace the air content from above the agar layer. However, this 

hypothesis needs to be validated by measuring the exact concentration of CO2 on top of the agar 

layer that the animals are being exposed to by using a pH sensitive dye such as thymol blue.   

Even though it was observed that air flowing into the device with a pressure of 1.5 psi 

caused no appreciable change in worm movement, increasing the flow rate by increasing gas 

pressure (5 psi) did produce some noticable slowing of body movement. This could be due to the 

mechanical pressure exerted by the air flowing against the worm’s body which is a hypothesis that 

needs to be validated in future experiments. To our knowledge there has not been a systematic 

investigation of how the rate of change of air flow influences movement response in C. elegans 

and must be further characterized. If at higher flow rates, the quality of immobilization is 

acceptable, the response and recovery times are fast and if there is no significant impact on progeny 

and lifespan, then CO2 could potentially be replaced by air thereby eliminating any physiological 

effects of CO2 while further simplifying the implementation of the WormImm Plate. 

Even though there was no visible effect on progeny and lifespan with the worms exposed 

to CO2 during their early developmental stages, tests on adult C. elegans are needed to conclusively 

investigate CO2 exposure effects on egg laying and lifespan. It also needs to be determined if  E. 

coli, the food source of C. elegans, get affected by CO2 or not.  

Furthermore, instead of using commercially available PE, the gas diffuser maybe 3D 

printed with a porous material such as PORO-LAY LAY-FOMM in which case the entire device 

will be 3D printed.  

Last but not the least, alternate applications of the WormImm plate could be explored. For 

instance, the device could be used as a behavioral assay by incorporating the ability to locally vary 

the temperature across the plate to study thermostaxis [341] followed by the quantification of 
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fluorescence at the population level post CO2 immobilization. Similarly, by incorporating different 

wavelength LEDs [342], the response of a population to light maybe determined. Finally, the 

device maybe easily modified to create gas concentration gradients by administering multiple 

gases at the same time or administer volatile compounds mixed with air followed by the 

observation of the worm decision making process in response to these altered environmental 

stimuli [343]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 



209 

 

 

 

 

APPENDIX A: OPTO-MECHANICAL PRESSURE  MICROSENSORS FOR 

MONITORING INTRAOCUALR PRESSURE 

Section A1: Procedure for preparing QD-PMMA mixture  

1. The master solution is prepared by manually stirring 10 g of Poly (Methyl Methacrylate) 

(PMMA) with 50 mL of Methyl Methacrylate (MMA).  

2.  5 mL of the master solution is mixed with 5 g of MMA by manually stirring. 

3. 225mg of ground Benzoyl Peroxide (BP) is added to the solution created in step 2 and stirred 

until BP gets dissolved (Warm to 400C if necessary to aid dissolution and then bring back to room 

temperature). 

4. Add dropwise 1.5 mL of QD in organic solvent (toluene) to 1.5 mL of the solution from step 3 

with constant manual stirring. 

5. Place the mixture created in step 4 in a water bath at 900C, for 5 min then transfer the mixture 

to 600C bath for 20 minutes. Evaporation of organic solvent is minimized by capping the mixture.  

Section A2: Procedure for patterning the QD micropillars 

1. Spread PMMA (950 A2) at 500 rpm for 5 seconds followed by spinning at 3000 rpm for 30 

seconds to obtain a layer that is approximately 100 nm thick. 

2. Bake on a hot plate at 1500C for 10 minutes. 

3. Spread the QD (840 nm)-PMMA mixture (prepared in section A1) at 500 rpm for 5 seconds 

followed by spinning at 3000 rpm for 30 seconds to obtain a layer that is approximately 100 nm 

thick. 

4. Bake on a hot plate at 1100C for 10 minutes. 

5. Spread SU-8 2010 at 500 rpm for 5 seconds followed by spinning at 3000 rpm for 30 seconds 

to obtain a layer that is 8 µm thick.  

6. Bake on a hot plate at 950C for 2.5 minutes.  

7. Expose to UV light via the appropriate mask using the ‘soft contact’ mode for approximately 

10 seconds. 
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8. Perform post exposure bake on a hot plate at 950C for 3.5 minutes.  

9. Spread PMMA (950 A2) at 500 rpm for 5 seconds followed by spinning at 3000 rpm for 30 

seconds to obtain a layer that is approximately 100 nm thick. 

10. Bake on a hot plate at 1100C for 10 minutes. 

11. Spread the QD (940 nm) -PMMA mixture (prepared in section A1) at 500 rpm for 5 seconds 

followed by spinning at 3000 rpm for 30 seconds to obtain a layer that is approximately 100 nm 

thick. 

12. Bake on a hot plate at 1100C for 10 minutes. 

13. Spread SU-8 2002 at 500 rpm for 5 seconds followed by spinning at 4000 rpm for 30 seconds 

to obtain a layer that is approximately 1.5 µm thick.  

14. Bake on a hot plate at 950C for 1 minutes.  

15. Expose to UV light via the appropriate mask using the ‘soft contact’ mode for approximately 

4 seconds.  

16. Perform post exposure bake on a hot plate at 950C for 2 minutes. 

17. Develop with SU-8 developer for approximately 15 seconds.  

18. Perform RIE (1-2 minutes) to remove PMMA deposited around the QD micropillars. 
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APPENDIX B: A 3D PRINTED TOUCH-ACTIVATED SANITIZER DISPENSING 

SYSTEM FOR IMPROVING HAND HYGIENE 

 
Figure B1: Plot showing volume of liquid disinfectant lost due to evaporation from the 3D printed 

device over time. The dashed line represents best fit by linear regression and the square of the 

correlation coefficient R demonstrates a good linear relationship between liquid volume and time. 

Error bars indicate standard error of mean (SEM) of three measurements performed on the same 

device. 
 

 

Figure B2: Calibration plot showing applied force versus measured voltage. The solid line 

represents best fit by a third-order polynomial. Error bars indicate standard error of mean (SEM) 

of three measurements performed on the same device and is represented by the data points. 
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Table B1: Material properties of M3 Crystal 

 

 

 

Section B1: Formulae for coil compression spring fatigue analysis 

Table B2: List of parameters for evaluating fatigue performance 

Symbol Definition Value 

Fmax Maximum cyclic force 1.269 N 

Fmin Minimum cyclic force 

(preload) 

0.729 N 

D Spring mean diameter 0.05 in 

d Wire diameter 0.007 in 

Sut Ultimate tensile strength 

of material 

2840 MPa 

 

Force Amplitude Fa:    

𝐹𝑎 =
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

2
        ---------- (1) 

Midrange force Fm: 

𝐹𝑚 =
𝐹𝑚𝑎𝑥+𝐹𝑚𝑖𝑛

2
       ---------- (2) 

Spring outer diameter OD: 

𝑂𝐷 = 𝐷 + 𝑑            ---------- (3) 

Spring inner diameter ID: 

𝐼𝐷 = 𝐷 − 𝑑             ---------- (4) 

Spring index C: 

𝐶 =
𝐷

𝑑
                       ---------- (5) 

Whal factor Kw: 

𝐾𝑤 =
4𝐶−1

4𝐶−4
+

0.615

𝐶
   ---------- (6) 

Material Properties Value 

Elastic Modulus 1463 MPa 

Poisson's Ratio 0.35 

Mass Density 1020 kg/m3 

Yield Strength 42.4 MPa 
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Shear stress amplitude τa: 

𝜏𝑎 = 𝐾𝑤
8𝐹𝑎𝐷

𝜋𝑑3            ---------- (7) 

Midrange shear stress τm: 

𝜏𝑚 = 𝐾𝑤
8𝐹𝑚𝐷

𝜋𝑑3          ---------- (8) 

Torsional rupture strength Ssu: 

𝑆𝑠𝑢 = 0.67𝑆𝑢𝑡         ---------- (9) 

 

Slope line r: 

𝑟 =
𝜏𝑎

𝜏𝑚
                     ---------- (10) 

Amplitude strength component for infinite life (Shot peened)-(Zimmerli Data) Ssa_zim: 398 MPa 

(57.5 kpsi) 

Midrange strength component for infinite life (Shot peened)-(Zimmerli Data) Ssm_zim: 534 MPa 

(77.5 kpsi) 

Shear endurance limit according to Gerber (with Zimmerli Data) Sse: 

𝑆𝑠𝑒 =
𝑆𝑠𝑎_𝑧𝑖𝑚

1−(
𝑆𝑠𝑚_𝑧𝑖𝑚

𝑆𝑠𝑢
)

2   ---------- (11) 

Shear stress amplitude limit (According to Gerber failure criteria) Ssa: 

𝑆𝑠𝑎_𝑙𝑖𝑚 =
𝑟2𝑆𝑠𝑢

2

2𝑆𝑠𝑒
[−1 + √1 + (

2𝑆𝑠𝑒

𝑟𝑆𝑠𝑢
)

2

] ---------- (12) 

Shear endurance limit according to Goodman (with Zimmerli Data) Sse: 

𝑆𝑠𝑒 =
𝑆𝑠𝑎_𝑧𝑖𝑚

1−(
𝑆𝑠𝑚_𝑧𝑖𝑚

𝑆𝑠𝑢
)
    ---------- (13) 

Shear stress amplitude limit (According to Goodman failure criteria) Ssa: 

𝑆𝑠𝑎_𝑙𝑖𝑚 =
𝑟𝑆𝑠𝑒𝑆𝑠𝑢

𝑟𝑆𝑠𝑢+𝑆𝑠𝑒
   ---------- (14) 

Shear stress amplitude limit (According to Sines failure criteria) Ssa: 

𝑆𝑠𝑎_𝑙𝑖𝑚 = 𝑆𝑠𝑎_𝑧𝑖𝑚   ---------- (15) 

Factor of safety against fatigue fosf: 

𝑓𝑜𝑠𝑓 =
𝑆𝑠𝑎_𝑙𝑖𝑚

𝜏𝑎
        ---------- (16) 
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Section B2: Formulae for estimating critical frequency of coil springs 

Table B3: List of parameters for evaluating critical frequency 

Symbol Definition Value 

D Spring mean diameter 0.05 in 

d Wire diameter 0.007 in 

ρ Spring material density 0.284 lb./in3 

k Spring rate 3.1 lbf./in 

Na Number of coils 11 

 

Spring index C: 

𝐶 =
𝐷

𝑑
                       ---------- (1) 

Spring outer diameter OD: 

𝑂𝐷 = 𝐷 + 𝑑            ---------- (2) 

Spring inner diameter ID: 

𝐼𝐷 = 𝐷 − 𝑑             ---------- (3) 

Mass of the active coils m: 

𝑚 =
𝜋2𝑑2𝐷𝑁𝑎𝜌

4
          ---------- (4) 

Natural frequency of the spring f: 

𝑓 =
1

2
√

𝑘

𝑚
                 ---------- (5) 

Section B3: Formulae for estimating buckling of coil springs 

Table B4: List of parameters for evaluating buckling performance 

Symbol Definition Value 

D Spring mean diameter 0.05 in 

α End condition constant 0.5 

E Elastic modulus 203.4 GPa 

G Modulus of rigidity 82.7 GPa 

Lf Free Length 0.25 in 

Spring stability condition: 

𝐿𝑓 <
𝜋𝐷

𝛼
[

2(𝐸−𝐺)

2𝐺+𝐸
]

1

2
  ---------- (1) 
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Factor of safety against buckling fosb: 

𝑓𝑜𝑠𝑏 =
𝜋𝐷

𝛼
[

2(𝐸−𝐺)

2𝐺+𝐸
]

1
2

𝐿𝑓
 ---------- (2) 
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APPENDIX C: ON CHIP CRYO-ANEASTHESIA OF DROSOPHILA LARVAE FOR 

HIGH RESOLUTION   IMAGING APPLICATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1: Schematic diagram of the experimental setup highlighting the components of the 

cooling system. The table shows lengths, diameters and material for all tubing used to make fluidic 

connections. 
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Figure C2: Average temperature of the immobilization microchamber in the chip versus time. 

After turning on the Peltier units, chilled coolant flow (3.2 ml/min) through the chip is started at 0 

seconds with temperature of the coolant in the external reservoir being at 23 0C (room temperature) 

and -10 0C respectively (pre-cooled). 
 

 

 
Figure C3: Box plots showing all distances moved in between frames by (a) mitochondria at 

NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons in between video frames 

collected over 2 minutes for ten animals loaded onto the same chip. The videos were collected 

with larvae loaded on the microfluidic chip with chilled coolant (5M salt water solution) as well 

as with coolant at room temperature flowing (3.2 ml/min) through the chip respectively. Each box 

extends from the 25th to 75th percentiles, the line in the middle is plotted at the median and the 

whiskers span between the ends of the interquartile ranges to the furthest observations within the 

whisker length (1.5 times the interquartile range). Observations lying beyond the whiskers are 

displayed with a red + sign. Pixel resolution is 0.18 µm. 
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Figure C4: Average temperature of the immobilization microchamber in the chip versus time. 

After turning on the Peltier units, chilled coolant flow (at 3.2 ml/min) through the chip is started 

at 0 seconds with: (a) Temperature of 5M salt water solution in the external coolant reservoir being 

at 23 0C (room temperature), temperature of 5M salt water solution in the external coolant reservoir 

being at -10 0C (pre-cooled) and temperature of 40% ethanol solution in the external coolant 

reservoir being at 23 0C (room temperature) respectively.   
  

 

 
Figure C5: (a) Known (accurately controlled) applied static air pressure versus experimentally 

measured deflection of flexible PDMS membrane. The solid line represents a fit by a third-order 

polynomial. (b)  Fluid (5M salt water solution) pressure exerted on the PDMS membrane versus 

known (accurately-controlled) fluid flow rate. The solid line represents best fit by linear regression. 

Error bars indicate standard deviation of three measurements performed on the same device and is 

given by the data point.  
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Figure C6: Survival rate versus time after six consecutive cycles. Error bars indicate standard 

deviation of ten animals. 
 

 

 
Figure C7: Conversion efficiency of seven individual VNCs as measured pre and post conversion 

in their red:green ratio of the average fluorescent intensities at the cell bodies. Fold change was 

compared to pre-conversion ratio.   
 

  

 

 

 

 

 

 

Figure C8: Box and whisker plots showing correlation of red and green channels of: (a) 

mitochondria at NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons. The image 

frames corresponding to the red and green channels are 8 secs apart. The videos were collected 

with larvae loaded on the chip developed by Ghannad-Rezaie et al. [266] (mechanical) that 

performs mechanical immobilization and on the microfluidic chip with chilled coolant (5M salt 

water solution) flowing through the device. Each box extends from the 25th to 75th percentiles, 

the line in the middle plotted at the median and the whiskers span between the smallest and largest 

data values (ten measurements performed on the same device). 
 



220 

 

 

 

  

 

 

 

 

 

Figure  C9: Box and whisker plots showing % area co-localized between red and green channels 

of: (a) mitochondria at NMJs, (b) cell bodies along VNCs and (c) mitochondria along axons. The 

image frames corresponding to the red and green channels are 8 secs apart. The videos were 

collected with larvae loaded on the chip developed by Ghannad-Rezaie et al. [266] (mechanical) 

that performs mechanical immobilization and on the microfluidic chip with chilled coolant (5M 

salt water solution) flowing through the device. Each box extends from the 25th to 75th percentiles, 

the line in the middle plotted at the median and the whiskers span between the smallest and largest 

data values (ten measurements performed on the same device). 
 

Section C1: Procedure for microfabricating SU-8 molds  

Layer 1:  

1. Rinse the wafer with acetone, isopropyl alcohol and DI water. Dehydrate the wafer on a hot 

plate at 160 0C for 20 minutes. 

2. Spread 3 mL of SU-8-2100 at 500 rpm for 30 seconds followed by spinning at 1350 rpm for 50 

seconds. 

3. Perform soft baking in the following sequence: 1) At room temperature for 4 hours. 2) Place 

wafer on a hot plate and ramp temperature from 20 0C to 65 0C with ramp rate of 10 0C/hours. 

Leave wafer at 65 0C for 5 hours. 3) Ramp temperature from 65 0C to 70 0C with ramp rate of 5 

0C/hours. Leave wafer at 70 0C for 1 hour. 4) Ramp temperature from 70 0C to 75 0C with ramp 

rate of 5 0C/hours. Leave wafer at 75 0C for 1 hour. 5) Ramp temperature from 75 0C to 80 0C with 

ramp rate of 5 0C/hours. Leave wafer at 80 0C for 1 hour. 

4. Expose to UV light via the appropriate mask (Figure C10) using the ‘soft contact’ mode for 

approximately 36 seconds.  

8. Perform post exposure bake on a hot plate at 65 0C for 10 minutes and at 95 0C for 20 minutes. 
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9. Develop with SU-8 developer for approximately 10 minutes. 

 

Figure  C10: Mask layout for Layer 1 of the cryo-larva chip. 
 

Layer 2: 

1. Rinse the wafer with acetone, isopropyl alcohol and DI water. Dehydrate the wafer at 160 0C 

for 20 minutes. 

2. Spread 3 mL of SU-8-2050 at 500 rpm for 30 seconds followed by spinning at 1300 rpm for 50 

seconds. 

3. Perform soft baking in the following sequence: 1) At room temperature for 4 hours. 2) Place 

wafer on a hot plate and ramp temperature from 20 0C to 65 0C with ramp rate of 10 0C/hours. 

Leave wafer at 65 0C for 5 hours. 3) Ramp temperature from 65 0C to 70 0C with ramp rate of 5 

0C/hours. Leave wafer at 70 0C for 1 hour. 4) Ramp temperature from 70 0C to 75 0C with ramp 

rate of 5 0C/hours. Leave wafer at 75 0C for 1 hour. 5) Ramp temperature from 75 0C to 80 0C with 

ramp rate of 5 0C/hours. Leave wafer at 80 0C for 1 hour. 

4. Expose to UV light via the appropriate mask using the ‘soft contact’ mode for approximately 

30 seconds.  

8. Perform post exposure bake on a hot plate at 65 0C for 10 minutes and at 95 0C for 20 minutes.  

9. Develop with SU-8 developer for approximately 7 minutes.  
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Figure  C11: Mask layout for Layer 2 of the cryo-larva chip. 
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