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ABSTRACT 
 

Host cytosolic proteins are endocytosed by Toxoplasma gondii and proteolytically 

degraded in a Cathepsin L (CPL)-dependent manner in its lysosome-like compartment 

called the vacuolar compartment/plant-like vacuole (referred to as the VAC). The exact 

contribution of host protein ingestion to T. gondii virulence is unknown, but CPL-

dependent protein degradation is important in both acute and chronic stages of infection. 

Therefore, the host protein ingestion pathway could provide a novel pool of drug targets, 

however we understand very little about this pathway works, including the route and 

mechanisms of endocytic trafficking. Plant-like features suggest T. gondii endocytic 

trafficking involves transit through the trans-Golgi network (TGN) and endosome-like 

compartments (ELCs) en route to the VAC, and conservation of classical endocytic 

players like clathrin, dynamin, Rab5 and Rab7 suggest endocytic trafficking will resemble 

model systems. However, trafficking to the parasite’s secretory organelles called 

micronemes and rhoptries proceeds through the TGN and ELCs and requires clathrin, 

dynamin, and Rab5. Using fluorescence microscopy and colocalization analysis, we show 

that host cytosolic proteins were endocytosed within 7 min post-invasion, trafficked 

through ELCs en route to the VAC, and were degraded within 30 min. Ingested protein 

colocalized with UDP-GalNAc:polypetide N-acetylgalactosaminyl-transferase fused to 

YFP (GalNac-YFP) and the dynamin related protein B fused to GFP (GFP-DrpB), which 

are typically used as specific markers of the TGN, but these markers labeled both the 

TGN and ELCs in our hands. Therefore, we could not definitively interpret if ingested 

protein is trafficked through the TGN. Ingested host proteins also colocalized with 

immature microneme proteins, proM2AP and proMIC5 but not the immature rhoptry 

protein proRON4, indicating that endocytic trafficking of ingested protein intersects with 

exocytic trafficking of microneme proteins. Further, sorting mechanisms will be required 

to ensure ingested proteins are destroyed in the VAC and microneme proteins arrive 

intact to the microneme organelles. Finally, conditional expression of a dominant-negative 
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mutant of DrpB did not inhibit uptake or delivery of ingested host proteins to the VAC, 

indicating that DrpB is not required for T. gondii endocytosis. This work sheds light on the 

underlying mechanisms of T. gondii endocytosis, but much is left to be discovered. Future 

studies will investigate the role of other proteins classically involved in endocytosis and 

will aim to discover parasite specific proteins involved in this process. 
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Chapter I 
Introduction 

 
1.1 Introduction to Toxoplasma gondii and toxoplasmosis 

Apicomplexa is a phylum of single-celled, eukaryotic, obligate intracellular 

parasites that contains two of the most successful pathogens on the planet, Toxoplasma 

gondii and Plasmodium spp. Plasmodium spp. caused 216 million cases of malaria and  

445,000 deaths worldwide in 2016 alone.1 T. gondii, while not as notorious in the public’s 

eye, has an incredible host range. This parasite is thought to infect any nucleated cell in 

warm-blooded animals from the land, air and sea.2-4 Initially, T. gondii rapidly 

disseminates to establish a systemic acute infection before differentiating into slow 

growing tissue cysts that are thought to persist for the lifetime of the host.5 Vertical 

transmission can occur with acute infection during pregnancy and lead to miscarriage.6, 7 

Reactivation of chronic tissue cysts in immunocompromised or congenitally infected 

individuals can result in seizures, encephalitis, cognitive deficits, blindness and death.6, 7 

Currently, 6.7% of individuals in the United States and 2 billion people worldwide are 

chronically infected with T. gondii and susceptible to reactivated infection.8, 9 There is no 

cure for chronic toxoplasmosis, and acute toxoplasmosis requires prolonged treatment 

that is often poorly tolerated.10 Thus, it is imperative to better understand the fundamental 

aspects of infection in order to identify better treatment options and to minimize the burden 

of toxoplasmosis.  

The focus of this dissertation is an endocytic pathway in which T. gondii ingests 

proteins from the cytosol of the cell it infects, and degrades them in a cathepsin L (CPL)-

dependent manner.11 In acute stage parasites lacking CPL, the ability to degrade proteins 

from the host cell is greatly inhibited, parasite growth is inhibited by 30% in vitro, and 

virulence is reduced fifty-fold in vivo.11 In the chronic stage, CPL-deficient parasites 

accumulate autophagic vesicles, die in vitro, and have severely reduced cyst burden in 

vivo.12 Ongoing studies are working to determine whether chronic stage parasites also 
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undergo endocytosis from the host cell. Although, the exact contribution of host protein 

ingestion to virulence is not known, because CPL is important for degradation of proteins 

acquired from the host cell and parasite-derived proteins, these virulence defects suggest 

breakdown of endocytic material could be important to the parasite. Yet we understand 

very little about T. gondii endocytosis including its underlying mechanisms and exact 

contribution to virulence. An analogous endocytic pathway for ingestion of host cytsol in 

Plasmodium spp. is essential for amino acid scavenging, and targeting this pathway has 

been a successful therapeutic strategy.13-15 However, this pathway is also poorly 

understood. Therefore, studying the T. gondii ingestion pathway in the acute stage, which 

is the focus of this thesis, could be valuable for several reasons. First, there is potential 

for future discovery of novel therapeutic targets against acute and chronic toxoplasmosis. 

Second, acute stage host protein ingestion in T. gondii could serve as a model for 

understanding the enigmatic biology of chronic stage T. gondii infection and for 

understanding host protein ingestion in Plasmodium spp. To begin understanding the 

ingestion pathway in T. gondii, we can look to characterized mechanisms of endocytosis 

in model systems such as yeast, mammalian and plant cells and to host protein ingestion 

by Plasmodium spp. In this introductory chapter, these points will be discussed along with 

what is known about endocytic and exocytic trafficking within T. gondii. From this, 

hypothetical models for endocytic trafficking in T. gondii will be built to serve as a 

framework for work performed for this dissertation. 

 
1.2 T. gondii ingests host protein from within a parasitophorous vacuole 

As an obligate intracellular parasite, T. gondii survival revolves around establishing 

a favorable niche for replication and survival within host cells. For T. gondii, this niche is 

the parasitophorous vacuole (PV), and its formation is coupled to parasite invasion of host 

cells (Figure 1-1). During T. gondii invasion, the host plasma membrane is pushed in 

toward the cytosol and pinched off once invasion is complete. This cloak of host-derived 

membrane provides a protective barrier that resists fusion with host lysosomes and 

prevents autophagic destruction of the parasite.16-19 However, the PV also represents a 

barrier to accessing nutrients in the host cell cytosol for which it is auxotrophic, including 

amino acids like tryptophan, arginine and tyrosine.20, 21 Constitutive secretion of parasite 
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proteins from secretory organelles called dense granules (GRAs) into the PV lumen helps 

overcome this barrier as shown in Figure 1-1. A hypothetical nutrient pore made up of 

GRA17 and GRA23 is inserted into the PV membrane (PVM) and allows diffusion of 

molecules with molecular weights less than 1.3 kilodaltons (e.g. sugars, amino acids and 

nucleotides)22, 23, which could be taken up by transporters at the parasite plasma 

membrane 24-28. GRA2, 4 and 6 promote formation of a system of membrane tubules 

invaginated from the PVM called the intravacuolar network (IVN), which is thought to act 

like intestinal villi, increasing surface area of the PVM for maximum nutrient exchange.29-

31 Finally, GRA7 has been implicated in scavenging cholesterol from the host cell via 

structures called Host Organelle Sequestering Tubulo-structures (H.O.S.T.s). In 

H.O.S.T.s, host lysosomes are recruited to the PV on microtubules, engulfed in PV 

membrane invaginations and pinched off, presumably by GRA7, to form lysosome-

containing vesicles in the PV lumen.32 

 In T. gondii ingestion, host cytosol is taken up into the parasite and trafficked to 

the parasite’s lysosome-like compartment called the vacuolar compartment/plant-like 

vacuole (hereafter referred to as the VAC) where they are degraded.11 To track this 

process, fluorescent proteins like the green fluorescent protein, GFP, or the red 

fluorescent protein, mCherry, are expressed in the host cytosol as non-specific tracers 

that can be visualized by microscopy. GFP and mCherry (molecular weights of 27.0 and 

28.8 kilodaltons) are too large to diffuse through the GRA17/GRA23 pore. Therefore, T. 

gondii does not have direct access to the host cytosolic proteins it consumes in the 

ingestion pathway, and ingestion of host protein will require active transport across both 

the PVM and the parasite plasma membrane in order to reach the VAC. Host protein 

ingestion is not affected by loss of GRA7, but the ability of T. gondii to ingest host proteins 

is reduced by 40% in parasites lacking GRA2.11 This precludes a H.O.S.T.-like 

mechanism and suggests the IVN contributes to host protein ingestion. In addition to its 

suggested role in nutrient exchange, the IVN also acts as a structural component to 

organize replicated parasites into a characteristic rosette pattern within the PV.33 Since 

the role of GRA2 was determine in mature replicated vacuoles, the IVN could contribute 

directly through ingestion of IVN tubules or IVN-derived vesicles (Figure 1-1) or indirectly 

via organization of parasites within the PV. Beyond this, the mechanisms for trafficking 
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across the PVM and parasite plasma membrane, and the path and mechanisms of 

endocytic trafficking to the VAC are not known. Most simply, T. gondii endocytosis can 

be broken down into two steps. First, material from the host cell cytosol is taken up across 

the PVM and parasite plasma membrane into endocytic vesicles in the parasite 

cytoplasm. Second, these endocytic cargoes are delivered to the VAC for degradation. 

To begin understanding how T. gondii endocytosis works, we can look to model systems 

such as yeast, mammals and plants. 

 
1.3 Mechanisms of endocytosis at the plasma membrane in model organisms 

In this section, characterized mechanisms for generating endocytic vesicles at the 

plasma membrane in model systems will be described. It should be noted that in these 

model systems, the cell has direct access to endocytic cargoes and the plasma 

membrane is the only membrane barrier to overcome. T. gondii, on the other hand, must 

endocytose material across both the PVM and the parasite plasma membrane. This is an 

Figure 1-1. The intracellular niche of T. gondii. Toxoplasma gondii forms a parasitophorous vacuole (PV) as it 
invades host cells. Trafficking across the PV membrane may include a hypothetical nutrient pore (GRA17/GRA23: 
grey cylinder), a system of membrane tubules invaginated from the PV membrane called the intravacuolar network 
(driven by GRA2, 4 and 6), or an active trafficking pathway for acquiring cholesterol in LDL particles (blue circle) 
from the host cell with the help of microtubules (blue line) called H.O.S.T.s (associated with GRA7). Ingested protein 
substrates cannot diffuse across the hypothetical nutrient pore. Ingestion does require GRA2 but not GRA7, 
suggesting ingested protein trafficking across the PVM could occur via the IVN as indicated by the arrow from the 
host cell to the interior of the parasite. 
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important consideration that will be discussed later in the context of the parasite. 

Endocytosis involves bending of the plasma membrane in toward the cytosol and scission 

of the plasma membrane to form endocytic vesicles. Mechanisms underlying this process 

will be divided into three categories, clathrin-dependent, clathrin-independent/dynamin-

dependent, and clathrin and dynamin-independent, and are depicted in Figure 1-2. 

There are two forms of endocytosis that require characteristic coats visible by 

electron microscopy, clathrin-mediated endocytosis and caveolar endocytosis. T. gondii 

does not express caveolin/cavin proteins required for caveolar endocytosis and thus this 

mechanism will not be further discussed.34 In mammalian cells, clathrin-mediated 

endocytosis facilitates internalization of transmembrane receptors. First, a nucleation 

complex is formed. F-BAR domain proteins FCHO1/2 and the clathrin adaptor complex 

for endocytosis AP2 bind to phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2 or PIP2) at 

the plasma membrane and recruit scaffolding proteins EPS15, EPS15R and intersectin 1 

and 2, which cluster together to nucleate clathrin-mediated endocytosis.35, 36 AP2 serves 

as a major hub that binds to cytosolic domains of transmembrane cargoes and recruits 

accessory adaptors like AP180/CALM, epsins and HIP1R, which can also bind to specific 

transmembrane cargoes.35, 36 AP2 together with the accessory adaptors then recruit 

clathrin to form the clathrin coat.35, 36 Membrane bending is progressively promoted by 

BAR domains in FCHO1/2, insertion of amphipathic helices in membrane-binding ENTH 

(Epsin N-Terminal Homology Domain) and ANTH (AP180 N-Terminal Homology Domain) 

domains of epsin and CALM, respectively, and polymerization of a curved clathrin lattice 

that encases the forming vesicle which may drive and/or stabilize membrane curvature.35, 

36 The actin nucleation and branching-promoting proteins N-WASP and Arp2/3 are then 

recruited and drive polymerization of actin coupled to the clathrin coat through interactions 

with epsin and HIP1R. This is thought to push against the plasma membrane, elongating 

the neck of the forming vesicle and further promoting membrane bending through tensile 

pressure.35, 37, 38 Vesicle scission is mediated by recruitment of the N-BAR proteins 

endophilin and amphyphisin which are thought to restrict the vesicle neck and also recruit 

the GTPase dynamin.35, 39 Dynamin forms a coil around the neck of budding vesicle and 

hydrolyzes GTP to drive membrane scission.40 Finally, the vesicle is uncoated and 
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clathrin coat components are recycled back to the cytosol by the heat shock cognate 

protein HSC70 and its cofactor auxillin/GAK.35, 36 

Clathrin-mediated endocytosis in yeast largely resembles mechanisms in 

mammalian cells.41 However, the exact role of dynamin in yeast endocytosis is 

controversial. Dynamin is thought to act as a “pinchase” that forms a coil around vesicle 

necks and hydrolyzes GTP to squeeze and sever the membrane to form endocytic 

vesicles.42 A recent study showed that the dynamin-related protein vps1 is recruited to 

sites of clathrin-mediated endocytosis at the plasma membrane, a dominant-negative 

vps1 mutant severely inhibits endocytosis, and is able to tubulate liposomes in vitro 

indicating vps1 can likely directly contribute to membrane bending.43 However, 22% of 

clathrin-mediated endocytic sites lack vps1, and other studies suggest that the role of 

dynamin in membrane scission is indirect through its role in actin organization.43-45 

Membrane scission in this case is thought to be driven by concerted action of actin and 

BAR-domain proteins like amphiphysin.41, 43, 44, 46 Nevertheless, vps1 is required for 

efficient scission of endocytic vesicles in yeast. Additionally, AP2 seems to play a less 

central role in yeast. Whereas knockout of AP2 in mice is lethal and knockdown in 

mammalian cells leads to greater than 90% block in clathrin-mediated endocytosis, AP2 

knockouts in yeast are viable and its only demonstrated role in clathrin-mediated 

endocytosis is for uptake of the yeast toxin K28.36, 47-49  

Plants also undergo clathrin-mediated endocytosis, but AP2 is also not essential 

and FCHO1/2 homologs have not been identified.50 Instead, an ancestral nucleation 

complex called TPLATE seems to be more central to plant endocytosis. The TPLATE 

complex has proteins protein-interaction domains found in the scaffold proteins EPS15 

and intersectin1 and 2, interacts with AP2, two ANTH domain-containing adaptor proteins, 

clathrin, and dynamin.50 

Clathrin-independent endocytosis is generally less understood and has been 

characterized mostly in mammalian cells. These pathways are diverse but are united by 

their requirement of actin polymerization and regulation by GTPase proteins RhoA, Rac1, 

and Cdc42. These GTPases cycle between active GTP-bound and inactive GDP-bound 

states that are regulated by GTPase activating proteins (GAPs), which stimulate GTP 
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hydrolysis, and guanine nucleotide exchange factors (GEFs), which exchange GDP for 

GTP.51 The pathways described below are not exhaustive in terms of clathrin-

independent mechanisms of endocytosis, but are representative examples to illustrate 

the key role of actin in clathrin-independent endocytosis. 

Clathrin-independent endocytosis may require dynamin. For example, the IL-2 

(interleukin 2) receptor endocytosis pathway is dynamin-dependent and requires 

activation of RhoA and local production of phosphatidylinositol 3,4,5 triphosphate  

(PI(3,4,5)P3 or PIP3) to the recruit and activate Rac1.46, 52, 53 WIRS motifs in the IL-2 

receptor recruit the WAVE complex, and activated Rac1 recruits the N-WASP complex, 

which leads to recruitment of Arp2/3 to stimulate actin filament nucleation and branching. 

Rac1 also activates its target kinase Pak1 to phosphorylate cortactin, which also 

associates with N-WASP to enhance actin polymerization.46, 52 Fast endophilin-mediated 

endocytosis (FEME) mediates endocytosis of transmembrane proteins like activated G-

protein coupled receptors. In FEME the protein lamellipodin binds to phosphatidylinositol 

3,4 bisphosphate (PI(3,4)P2) in the plasma membrane, and recruits the N-BAR protein 

Figure 1-2. Mechanisms of endocytosis in model systems. Note that these models are simplified from the text 
to depict key differentiating features of each pathway. See text for full description of endocytic mechanisms. Fast 
endophilin-mediated endocytosis (FEME), clathrin-independent carriers/ GPI-anchored protein enriched early 
endosomal compartments (CLIC/GEEC). 
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endophilin. Endophilin is thought to induce membrane curvature itself and recruits N-

WASP, Arp2/3, and dynamin to drive actin polymerization and endocytic vesicle 

formation.52 This process is regulated by Rac1, RhoA and Pak1, which also likely mediate 

N-WASP and Arp 2/3 recruitment.54 

Other clathrin-independent mechanisms are dynamin-independent, like 

CLIC/GEEC, which can mediate uptake of GPI-anchored proteins, transmembrane 

proteins and bulk uptake of fluid-phase markers into GPI-anchored protein enriched early 

endosomal compartments (GEEC) derived from fusion of uncoated clathrin-independent 

carriers (CLICs).55, 56 In CLIC/GEEC, cycling of Cdc42 activity is required for productive 

endocytosis. Both Cdc42 activation and inactivation are required for productive actin 

polymerization, and the small GTPase Arf1 recruits the Cdc42 GAP protein 

ARHGAP10/21 to mediate Cdc42 inactivation. 46, 52 Activated Cdc42 also recruits the 

GAP GRAF1, which regulates Cdc42 and also has a BAR domain that is thought to 

contribute to membrane curvature and work together with forces generated by actin 

polymerization to drive membrane fission. 46, 52, 57 

 

1.4 Endocytic trafficking across the T. gondii PVM and plasma membrane 
How endocytosis across both the PVM and parasite plasma membrane is 

accomplished has not been determined in T. gondii, but the related Plasmodium spp. 

parasites provide some insight into how this may occur. Plasmodium spp. parasites also 

replicate in a PV in red blood cells (RBCs) and consume RBC cytosol from within this 

niche. Electron microscopy studies show RBC cytosol is taken up across the PVM and 

parasite plasma membrane simultaneously. The PVM extends inward toward a mouth-

like structure at the parasite plasma membrane called the cytostome, and both 

membranes are pinched off into the parasite cytoplasm resulting in RBC cytosol encased 

in two layers of membrane derived from parasite plasma membrane and PVM.58, 59 T. 

gondii has an analogous mouth-like structure called the micropore that is proposed to be 

a site of endocytosis. Electron microscopy studies show vesicles in the parasite 

cytoplasm near the micropore that appear to contain material from the PV lumen, and 

consistent with a Plasmodium-like model of endocytosis, vesicle-like structures 

sometimes occupy the micropore.60 A few things should be noted about these 
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observations. First, it is impossible to say if 

these are free vesicles or if the membranes 

are continuous with the PVM, as described 

for Plasmodium spp., without serial 

sectioning. Second, electron microscopy 

studies provide a single snapshot it time, 

so whether these vesicle-like structures 

are there by coincidence or being trafficked 

in or out of the parasite cannot be 

concluded. Finally, micropores are present 

in acute and chronic stages of infection, but 

micropores occupied by vesicles have only 

been observed in the chronic cyst stage. 

Nevertheless, based on Plasmodium spp. 

RBC ingestion and requirement of GRA2, 

our hypothetical model of acute stage host 

protein ingestion is that host proteins are 

ingested by endocytosis of IVN tubules or 

IVN-derived vesicles at the micropore 

(Figure 1-3). If IVN tubules or IVN-derived 

vesicles are ingested, then integral or 

peripheral membrane proteins exposed on the luminal face of the PVM could mediate 

interactions with receptors on the parasite surface. Therefore, uptake across the parasite 

plasma membrane could be receptor-mediated (Figure 1-3A). 

Electron microscopy also shows that the micropore sometimes appears bare and 

other times appears to have a proteinaceous coat.60 This suggests that both coat-

dependent and coat-independent mechanisms of endocytosis may occur (Figure 1-3A 

and B), and since T. gondii does not express caveolin or cavin, the coat is most likely 

clathrin.34 Conservation of classical endocytic players like clathrin, dynamin-related 

proteins, epsin-like proteins, and actin suggest that T. gondii endocytosis may resemble 

model systems. However, clathrin, actin, the dynamin-related proteins DrpA and DrpB, 

Figure 1-3. Hypothetical models for ingestion 
across the PVM and parasite plasma membrane. 
Ingested proteins are proposed to be taken up across 
PVM and parasite plasma membrane is proposed to 
occur at the micropore into double membrane vesicles 
as in Plasmodium spp. Mechanisms could resemble 
model systems and depend on coats, dynamin, and 
actin. Examples of A clathrin-mediated or B clathrin–
independent processes, represented by CLIC-GEEC 
are depicted. C. Scission of endocytic vesicles may also 
require host proteins for pinching of the PVM as 
depicted by possible recruitment of host ESCRT 
machinery. 
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and the epsin-like protein TgEpsL have not been localized to the plasma membrane and 

have characterized roles in parasite motility (actin), maintenance of a chloroplast-like 

organelle called the apicoplast (DrpA), or exocytic trafficking to the parasite’s unique 

secretory organelles called micronemes and rhoptries (clathrin, DrpB and TgEpsL, 

discussed further in Section 1.6). 61-66 Small, transient populations at the plasma 

membrane could be overlooked like the yeast dynamin-related protein Vps1. Vps1 

predominantly localizes to internal organelles like the trans-Golgi network (TGN), and 

localization to endocytic sites at the plasma membrane only became apparent with the 

use of specialized microscopic methods for isolated imaging of the plasma membrane 

like total internal reflection fluorescence microscopy.43 Further, the roles for these proteins 

mentioned above in endocytosis have not been tested, and other potential mediators of 

endocytosis such as AP2 or BAR-domain containing proteins have not been studied. 

Finally, trafficking endocytosed material across both the PVM and parasite plasma 

membrane may require added machinery (Figure 1-3C). For example, dynamin and actin 

are required for RBC endocytosis in Plasmodium spp., but it is not known if they are 

sufficient for pinching off both the parasite plasma membrane and the PVM.67 Additional 

parasite proteins in the PV lumen could orchestrate pinching off of the PVM, or host 

proteins may be hijacked to perform this function. The host Endosomal Sorting Complex 

Required for Transport (ESCRT) complex is a rational candidate for this job. ESCRT 

normally drives budding of vesicles away from the host cell cytoplasm and into the lumen 

of endosomes in the host cell, and is hijacked by retroviruses like HIV for budding from 

the plasma membrane.68, 69 Host ESCRT could be recruited to the PVM to perform a 

similar function and bud vesicles into the PV lumen. 

 

1.5 Endocytic trafficking to the lysosome in model organisms 
Once host cytosol has been internalized into endocytic vesicles in T. gondii, it will 

next be transported to the lysosome-like VAC. In yeast and mammals, endocytosed 

cargoes, whether they are derived from clathrin-mediated or clathrin-independent 

endocytosis, are trafficked sequentially through the Rab5 endosome, Rab7 endosome 

and then the lysosome.46, 70 These trafficking events are coordinated by the Rab GTPases 

Rab5 and Rab7, which mediate endosome maturation and fusion with the lysosome. 
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Rab5 activity is maintained by its GEF, RABGEF1/Rabex5, and recruits the class C core 

vacuole/endosome tethering factor (CORVET) complex, which drives homotypic fusion 

with other Rab5 endosomes.70-73 Rab5 also recruits the phosphatidylinositol-3-kinase 

(PI3K) to generate phosphitidyl-3-phosphate (PI3P), which mediates recruitment of 

ESCRT.70, 74 Endocytosed solutes and ligands released from their receptors already 

occupy the lumen of the endosome to be sent to the lysosome, but ESCRT is required to 

target transmembrane proteins for lysosomal degradation through budding of intraluminal 

vesicles away from the cytosol and into the lumen of Rab5 and Rab7 endosomes. PI3P 

along with RABGEF1/Rabex5 also recruits the Rab7 GEF, SAND1/Mon1-Ccz1, 

mediating endosome maturation via a Rab5/Rab7 switch. SAND1/Mon1-Ccz1 

dissociates RABGEF1/Rabex5, leading to loss of Rab5 and recruitment of Rab7.75, 76 

Finally, CORVET (composed of VPS3, 8, 11, 16, 18, and 33) is converted to form the 

homotypic fusion and vacuole protein sorting (HOPS) complex, which mediates fusion 

with the lysosome. 75, 76 CORVET and HOPS share four core proteins (VPS11, 16, 18 

and 33) that are retained in the switch, while VPS3 and 8 are switched out for VPS39 and 

41.77  

The mechanisms that govern endocytic trafficking in plants are less well-

understood, but there are clear differences from yeast and mammals. First, plants deliver 

endocytosed cargoes initially to the TGN before trafficking through the Rab5 endosome, 

Rab7 endosome and finally to the lysosome.50, 78, 79 The Rab5 endosomes are 

Figure 1-4. Model for path and mechanisms of endocytic trafficking in plants (blue line) and 
yeast/mammals (dark grey line). 
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multivesicular compartments derived by ESCRT-dependent maturation of the TGN 

(Figure 1-4).80 Plants also have a homologous SAND1/Mon1-Ccz1 complex that acts as 

a Rab7 GEF and mediates conversion from Rab5 to Rab7 on its endosomes.81, 82 

Homologs of HOPS and CORVET are also present in plants.83 However, the function of 

CORVET has not been studied, and the existence of a HOPS complex is inferred from 

studies of VPS16 and VPS41. VPS16 regulates biogenesis and fusion with the lysosome 

and interacts with two more putative HOPS complex members VPS11 and VPS33 at late 

endosomal and lysosomal membranes.84-86 Vps41 also localizes to the late endosomal 

and lysosome membranes, interacts with Rab7, and is important for lysosomal fusion.87 

 
1.6 Trafficking to the T. gondii VAC through a plant-like exocytic system? 

Toxoplasma has a conserved basic endomembrane structure including a TGN, 

endosome-like compartments (ELCs) marked by Rab5 and Rab7, and a lysosome-like 

VAC. T. gondii also belongs to the phylum Apicomplexa, which has evolutionary origins 

that are thought to predate the split between plants and animals and share features of 

both.88 In relation to plants in particular, T. gondii possesses a plant-specific vacuolar 

pyrophosphatase proton pump and an aquaporin in the VAC and a plant-specific Rab5 

isoform.89, 90 T. gondii expresses three Rab5 isoforms, Rab5A, Rab5B and Rab5C. 

Rab5A and Rab5C resembles conventional Rab5 and are C-terminally geranylated while 

Rab5B is N-terminally myristoylated like the plant-specific Rab5 isoform Ara6.90, 91 This 

suggests endocytic trafficking in T. gondii most likely resembles plants, and endocytosed 

material would be delivered initially to the TGN, then to Rab5 and Rab7-marked ELCs, 

and finally to the VAC (Figure 1-5A). Alternatively, endocytic trafficking could resemble 

yeast and mammals, despite other plant-like features, and deliver endocytosed material 

initially to the ELCs before reaching the VAC (Figure 1-5B). Conservation of Rab5, Rab7, 

and the HOPS complex suggest mechanisms of endocytic trafficking likely resemble 

those of model organisms.  

However, the T. gondii endocytic system was thought to be adapted specifically 

for exocytic trafficking for secretion.  Apicomplexa are named for the unique organelles 

found at their apical end called micronemes and rhoptries (Figure 1-5). Micronemes and 

rhoptries are regulated secretory organelles that are normally secreted only during 
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invasion and egress, and they mediate 

parasite motility, host cell attachment, 

invasion, defense against host immune attack, 

and pore-formation and host cell lysis during 

host cell egress.63, 92-101 Trafficking to the 

micronemes and rhoptries proceeds through 

the TGN and ELCs (Figure 1-5C), and 

requires clathrin, DrpB, Rab5A, Rab5C, the 

Rab5A GEF Vps9, and the HOPS complex. 

Interference with the function of any of these 

proteins is lethal and leads to aberrant 

secretion of microneme and rhoptry proteins 

into the PV lumen presumably through 

rerouting to the dense granule constitutive 

secretion pathway. 61, 66, 90, 102-105 However, 

whether the T. gondii endolysosomal system 

is also used for endocytic trafficking to the 

VAC, and whether any of these proteins 

contribute to endocytic trafficking in T. gondii 

is not known. 

The potential for mixing of endocytic 

and exocytic cargoes poses an interesting 

problem given that endocytosed host protein 

is delivered to the VAC for degradation, and 

microneme and rhoptry proteins must be 

delivered to their respective organelles in 

order to coordinate parasite invasion, egress 

and defense against host immune attack.63, 92-

101 Emerging models of endocytosis in 

Plasmodium spp. offer two possible ways for these cargoes to avoid interaction 

altogether. Plasmodium spp. also make microneme and rhoptry organelles, and the path 

Figure 1-5. Hypothetical model for trafficking to 
the VAC. Endocytic trafficking (black lines) may 
proceed through A a plant-like or B a 
yeast/mammal-like endocytic system, which has 
the potential to intersect with C exocytic trafficking 
(yellow to micronemes and blue like to rhoptries) to 
the micronemes and rhoptries. TgSORTLR, 
clathrin, dynamin (DrpB), AP1 and TgEPsL 
mediate sorting of microneme and rhoptry proteins 
at the TGN, but sorting from the ELCs is undefined. 
Alternatively, endocytic trafficking may go directly 
to the VAC D as proposed in one emerging model 
for Plasmodium spp. ingestion of RBC cytoplasm. 
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of endocytic trafficking to its lysosome is not known. However, ingestion of RBC cytosol 

and biogenesis of microneme organelles occur at different times during the cell cycle.106-

110 So even if these cargoes traverse the same endolysosomal compartments, they never 

do so at the same time. In this case, mechanisms for trafficking to the micronemes versus 

the lysosome may be switched on or off at exclusive times during the cell cycle. 

Alternatively, one model of RBC endocytosis predicts that endocytic vesicles generated 

from the cytostome fuse directly with the lysosome, avoiding the endosomal 

compartments altogether (Figure 1-5D).111  

If endocytic and exocytic trafficking do intersect in the TGN or ELCs, sorting will 

be required. Microneme and rhoptry protein sorting is partially understood (Figure 1-5C). 

The sorting receptor sortillin (TgSORTLR) binds to soluble microneme and rhoptry 

proteins in the TGN, and the clathrin adaptor protein complex AP1 is thought to recognize 

the cytoplasmic portion of TgSORTLR or transmembrane microneme and rhoptry 

proteins.66, 112 AP1 also interacts with the epsin-like protein TgEpsL, and together they 

are thought to recruit clathrin for sorting from TGN to the ELCs via clathrin-coated vesicles 

that are pinched off by DrpB.64, 66 How the microneme and rhoptry proteins are sorted 

from ELCs is unknown. Host-protein-containing vesicles may be sorted in a similar 

manner using sorting receptors that recognize parasite proteins embedded in the PVM-

derived vesicle membrane. Alternatively, the endocytosed vesicles could behave like 

soluble cargo that lack receptors or sorting signals, which are by default delivered to the 

lysosome for degradation via a bulk flow pathway, which even occurs for endocytosed  

red fluorescent protein, RFP, delivered to the TGN in plants.70, 113, 114 Therefore, 

determining the path that ingested proteins take to reach the VAC and when the parasite 

is actively ingesting host proteins compared to biogenesis of microneme and rhoptry 

organelles will have important implications for regulation of the endolysosomal system in 

T. gondii.  

 
1.7 Summary and chapter outline 
 Our current hypothetical model predicts that ingested host proteins are taken 

across the PVM and parasite plasma membrane at the micropore into double membrane 

vesicles in the host cell cytoplasm, like in Plasmodium spp. Based on plant-like features, 
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we favor a model where these vesicles are then trafficked through a plant-like endocytic 

system, proceeding sequentially through the TGN, ELCs and VAC. However, how and 

when ingested proteins are delivered to the VAC for degradation remains undefined. This 

dissertation addresses these aspects of T. gondii endocytosis and is split into two parts. 

Chapter 2 includes an observational study that explores two phenomena: the path of 

endocytic trafficking to the VAC and the spatiotemporal relationship between endocytic 

trafficking to the VAC and exocytic trafficking to micronemes and rhoptries. Chapter 3 is 

a functional study exploring the role of DrpB in T. gondii endocytosis. Finally, Chapter 4 

will include a summary of findings from Chapters 2 and 3 as well as a discussion of 

ongoing efforts and projected future directions for this body of work. 
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Chapter 2 
Intersection of endocytic and exocytic systems in Toxoplasma gondii 

 
2.1 Abstract 

Host cytosolic proteins are endocytosed by the intracellular parasite Toxoplasma 

gondii and degraded in its lysosome-like compartment, the vacuolar compartment/plant-

like vacuole, hereafter referred to as the VAC. Conserved endocytic components and 

plant-like features suggest endocytic trafficking in T. gondii involves transit through 

endosome-like compartments (ELCs) marked by Rab5 and Rab7 as in other eukaryotes 

and potentially through the trans-Golgi network (TGN) as in plants. However, exocytic 

trafficking to regulated secretory organelles, micronemes and rhoptries, also proceeds 

through ELCs and requires classical endocytic components like clathrin, dynamin and 

Rab5. Therefore, endocytic and exocytic trafficking may intersect in T. gondii, but the 

dynamics and route of endocytic trafficking remain undefined. Using fluorescence 

microscopy and colocalization analysis, we found the following. Host cytosolic proteins 

are endocytosed within 7 min post-invasion, trafficked through ELCs and potentially the 

TGN en route to the VAC, and are degraded within 30 min. Endocytosis of host-derived 

proteins and microneme/rhoptry biogenesis occur simultaneously and microneme 

synthesis occurs throughout the cell cycle, whereas rhoptry protein synthesis occurs in S 

and M/C phases. Finally, ingested host proteins colocalize with immature promicroneme 

proteins, proM2AP and proMIC5, in transit to the micronemes, but not with the immature 

prorhoptry protein proRON4. Collectively, these findings are consistent with endocytic 

trafficking of ingested protein intersecting with exocytic trafficking of microneme proteins 

and suggests sorting mechanisms are required for proper targeting of endocytic exocytic 

cargoes. 
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2.2 Introduction 
Endocytosis is pathway by which material is taken up across the plasma 

membrane and trafficked to the lysosome for digestion. An analogous pathway was 

recently discovered in the obligate intracellular eukaryotic parasite, Toxoplasma gondii, 

termed the ingestion pathway. In T. gondii ingestion, proteins acquired from the host cell 

cytosol are trafficked across the parasitophorous vacuole (PV) and parasite plasma 

membrane to a lysosome-like compartment within the parasite termed the vacuolar 

compartment/plant-like vacuole (VAC/PLV; the term VAC will be used hereafter) for 

degradation.1 However, how ingested cargoes are delivered to the VAC is not known. 

Endocytic trafficking to the lysosome is highly conserved among eukaryotes with 

a slight variation observed in plants. In mammalian and yeast cells, endocytic cargoes 

are delivered sequentially to the Rab5 compartment, the Rab7 compartment and finally 

to the lysosome.2 Plant cells, on the other hand, initially deliver endocytosed cargoes to 

the trans-Golgi network (TGN), followed by sequential movement through the Rab5 

compartment, the Rab7 compartment and finally the lysosome for degradation.3 

Toxoplasma has a conserved endomembrane structure including a TGN, endosome-like 

compartments (ELCs) marked by Rab5 and Rab7, and the lysosome-like VAC, and also 

expresses the essential machinery for endocytic trafficking to lysosomes including 

clathrin, dynamin, Rab5 and Rab7.4 The presence of a plant-like lysosome and a plant-

specific proton pump within the T. gondii endolysosomal system suggests that endocytic 

trafficking in T. gondii may resemble trafficking in plants, as proposed by Pieperhoff et 

al.5, 6 However, exocytic trafficking of proteins destined for the parasite’s regulated 

secretory organelles, the micronemes and rhoptries, proceeds through the TGN and 

ELCs, and requires clathrin, dynamin and Rab5 for transit.5, 7-13 In contrast to the ingestion 

pathway, which leads to the destruction of its cargo, many microneme and rhoptry 

proteins have propeptides that are cleaved off during transit to the microneme and rhoptry 

organelles, but must otherwise remain intact to orchestrate parasite invasion, egress and 

defense against host immune attack.14-24 Without these exocytic proteins and organelles, 

the parasite cannot  establish a successful infection. 

How T. gondii regulates and ensures proper targeting of endocytic and exocytic 

cargo is unclear, but other eukaryotic systems reveal several possible mechanisms. 
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Endocytic and exocytic trafficking may be spatially regulated like certain GPI-anchored 

proteins that traffic directly to the plasma membrane from the TGN, avoiding endosomes 

in mammalian cells.25 Alternatively, these processes may be temporally regulated. In 

Plasmodium spp., endocytosis of red blood cell cytoplasm is most active in G1 and early 

S phase, whereas microneme organelle biogenesis occurs later in the late S and mitosis 

and cytokinesis (M/C) phases of its cell cycle.26-30 Another scenario is that endocytic and 

exocytic trafficking intersect and require sorting mechanisms to ensure proper targeting. 

This is illustrated by the TGN in plants, which serves as a sorting station for endocytic 

and exocytic cargoes, or by transferrin receptors in mammalian cells, which traffic through 

endosomes before reaching the plasma membrane.25, 31 

In this study, we determine the temporal and spatial relationships between 

endocytic and exocytic trafficking within T. gondii. We find that host cytosolic proteins are 

ingested during or immediately following invasion and are trafficked through the ELCs 

and potentially the TGN en route to the VAC for degradation in 30 min. Host protein 

ingestion and microneme/rhoptry biogenesis occur simultaneously. Ingestion and 

microneme biogenesis occur throughout the cell cycle, whereas rhoptry biogenesis is 

restricted to the S and M/C phases. Finally, ingested proteins colocalize with newly 

synthesized microneme but not rhoptry proteins. Taken together, our work suggests that 

endocytic trafficking of ingested protein intersects with exocytic trafficking of microneme 

proteins. 

 

2.3 Results 
2.3.1 Localization of the TGN/ELC marker GalNac-YFP 

Plant-like features of T. gondii led to the prediction that ingested proteins follow a 

plant-like endocytic route through the TGN and ELCs en route to the VAC. To test if the 

endocytic trafficking is plant-like in T. gondii, we generated a parasite line stably 

expressing UDP-GalNAc:polypetide N-acetylgalactosaminyl-transferase fused to YFP 

(GalNac-YFP), typically used as a specific TGN marker.32 Consistent with TGN 

localization, GalNac-YFP appeared in a centrally located structure that overlapped 

substantially with, or was just apical to, the Golgi marker GRASP55-mRFP (Figure 2-1). 

Interestingly, GalNac-YFP overlapped best with NHE3, a vacuolar type Na+/H+ 
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exchanger, in the central region of the parasite despite previous observations that NHE3 

partially colocalized with the VAC.33 Therefore, we interpret NHE3 to be an ELC marker 

that partially overlaps with the TGN, similar to the established ELC marker proM2AP, the 

immature proform of the microneme protein M2AP.7, 34 GalNac-YFP also partially 

overlapped with proM2AP, but rarely colocalized with the VAC-localized proteases 

FIGURE 2-1 Localization of GalNac-YFP in RH GalNac-YFP parasites. Representative images for localization 
of GalNac-YFP in RH GalNac-YFP parasites. GalNac-YFP parasites or GalNac-YFP parasites transiently 
transfected to express GRASP55-RFP were stained with DAPI to label the apicoplast or CPB, CPL, NHE3 and/or 
proM2AP using antibody staining. The best localization was seen with NHE3 and GRASP55-RFP, which showed 
perfect overlap or slightly offset localization. As previously observed, proM2AP also showed significant overlap, but 
with more anterior signal than NHE3. CPL, CPB and the apicoplast showed rare overlap with GalNac-YFP. Blue 
arrowhead indicates the apicoplast, and white arrows indicate “Golgi-free” GalNac-YFP signal. Images are 
representative of two biological replicates. Scale bars: 2µm. 
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cathepsin B (CPB) and cathepsin L (CPL) or the parasite’s residual chloroplast-like 

organelle called the apicoplast (Figure 2-1, blue arrowheads for apicoplast). We also 

observed that some parasites had GalNac-YFP-labeled structures that were not 

associated with GRASP55-mRFP (Figure 2-1, white arrowheads). These structures are 

reminiscent of “Golgi-free” TGN bodies in plants35 This observation together with 

substantial overlap with the ELC markers proM2AP and NHE3, suggests GalNac-YFP 

occupies the TGN, ELCs, and perhaps additional sites. 

  

2.3.2 Ingested proteins traverse ELCs 
The ability of T. gondii to ingest proteins from the host cytosol can be monitored 

using fluorescent protein reporters, such as the red fluorescent protein mCherry, 

expressed in host cytosol (Figure 2-2A). Chinese hamster ovary (CHO-K1) cells 

transiently transfected with a plasmid encoding cytosolic mCherry are infected with T. 

gondii and incubated to allow consumption of host cytosol. Parasites are then purified 

from host cells and analyzed by fluorescence microscopy. In our previous study, 

accumulation of ingested host protein was enhanced by the absence of the VAC-localized 

protease CPL or by treatment with a CPL inhibitor, morpholinurea-leucine-

homophenylalanine-vinyl phenyl sulfone (LHVS).1 When LHVS-dependent accumulation 

of ingested host protein ingestion in detected, the ingestion pathway is considered to be 

active, and localization of the ingested protein can be assessed by determining the 

percentage of ingested mCherry puncta overlapping with endolysosomal system markers 

(%Colocalized).  

To determine which endolysosomal compartments ingested protein traffics 

through on the way to the VAC, GalNac-YFP or WT (RH) parasites retrieved from 

mCherry-expressing CHO-K1 cells were treated and processed as shown in Figure 2-2A 

and stained with antibodies against proM2AP, NHE3, or CPB. As a negative control, the 

apicoplast, a compartment that is in the same region as, but distinct from, the 

endolysosomal system, was stained with DAPI as a test for random colocalization. 

Ingestion was found to be active in both strains (Figure 2-2B and C), and localization 

analysis revealed that ingested protein significantly colocalized with GalNac-YFP, 
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proM2AP and CPB, but not NHE3 when compared to the apicoplast (Figure 2-2D and E). 

Further, mCherry+ parasites are capable of invading new host cells, indicating that these 

Figure 2-2. Ingested host cytosolic mCherry is associated with the ELCs, VAC, and possibly the TGN. A, 
Experimental design for detection and localization of host cytosolic protein ingestion. CHO-K1 cells were transiently 
transfected with a plasmid encoding cytosolic mCherry fluorescent protein 18-24 h before synchronous invasion for 
10 min with T. gondii parasites (pretreated with 1µM LHVS or the vehicle control DMSO for 36 h). Parasites were 
allowed to ingest host cytosol for 3 h in the presence of 1 µM LHVS or DMSO before being purified, stained and 
analyzed by fluorescence microscopy. B-C, Quantitation of ingestion of host cytosolic mCherry in WT or GalNac-
YFP parasites treated with 1 µM LHVS or DMSO. Shown is percentage of mCherry positive parasites, at least 200 
parasites analyzed per condition, ratio paired t-test for B and C. D, Quantitation of colocalization of ingested 
mCherry with the indicated markers of the endolysosomal system. At least 30 ingested mCherry puncta per marker, 
one-way ANOVA with Dunnet’s test for multiple comparisons to colocalization with the apicoplast. E, Representative 
images for localization of ingested mCherry in LHVS-treated parasites from B and C relative to the apicoplast using 
DAPI staining, CPB, NHE3 or proM2AP using antibody staining, or GalNac-YFP. Scale bars: 2µm. Blue arrowhead 
indicates the apicoplast, and white arrows indicate areas of colocalization when the endolysosomal marker of 
interest has several puncta. All bars represent mean from 3 or more biological replicates with standard deviation 
error bars. * p<0.05, ** p,<0.01, ***p<0.001, otherwise not significant. 
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parasites are viable, and uptake and colocalization is not due to loss of integrity during 

the purification process (Figure 2-3). 

Why ingested protein colocalized significantly with GalNac-YFP, but not NHE3 

despite their near perfect overlap in the central region of the parasite was puzzling. 

Further investigation revealed that most of the ingested mCherry that colocalized with 

GalNac-YFP also simultaneously colocalized with CPB (Figure 2-4A and B). This was not 

due to redistribution of GalNac-YFP in response to LHVS treatment since overlap of 

GalNac-YFP with CPB and CPL did not change with treatment (Figure 2-4C). GalNac-

YFP also still showed substantial overlap with NHE3 in the central region of the parasite, 

and both GalNac-YFP and NHE3 showed only rare overlap with CPB when treated with 

LHVS (Figure 2-4D). Further analysis of the GalNac-YFP+CPB+ compartment showed 

that it was labeled with CPL, proM2AP and NHE3 (Figure 2-4E), implying it could be a 

subdomain of the ELCs or the VAC rather than the TGN.  However, we cannot rule out 

the possibility that GalNac+CPB+ puncta represent a TGN subcompartment reserved for 

sorting of both ingested and biosynthetic cargoes to the ELCs and VAC. Although we can 

clearly distinguish localization of ingested protein from the apicoplast and NHE3 

compartment, the dynamic localization of TGN markers within the apical region of the 

parasite makes their colocalization with ingested protein difficult to definitively interpret. 

Therefore, we cannot conclusively determine whether ingested proteins are trafficked  

FIGURE 2-3 Harvested mCherry+ parasites are viable and can invade HFF cells. A, Representative images for 
mCherry associated with extracellular (EC) and intracellular (IC) parasites. Ingestion assay performed with RH 
parasites as described in Figure 2-2A using CHO imCherry cells (described in Figure 2-11A) to maximize mCherry+ 
parasites (see Figure 2-11C). Following harvest, parasites were resuspended in DMEM/10% cosmic calf serum/20 
mM HEPES/2 mM L-glutamine/50µg/ml penicillin/streptomycin treated with 1µM LHVS to inhibit ingested mCherry 
turnover during the invasion period, and a green-blue invasion assay was performed. Rabbit anti-SAG1 (blue) 
indicates EC parasites and mouse anti-SAG1 (green) will label all parasites. Images are representative of two 
biological replicates. B, Quantitation of ingestion in EC versus IC parasites depicted in A. Shown is percentage of 
mCherry-positive parasites, at least 100 parasites analyzed for each of two biological replicates, unpaired two-
sample t-test. C, Representative images for mCherry in IC parasites colocalizing with CPL. Parasites treated as in 
A, but stained with mouse anti-CPL instead of mouse anti-SAG1. CPL colocalized with 77.6% (13/17) ingested 
mCherry puncta, suggesting the mCherry is contained within the parasites. One biological replicate. Bars represent 
means, and error bars represent standard deviation. ns = not significant. Scale bars: 2µm. 
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FIGURE 2-4 Ingested mCherry colocalizes with GalNac-YFP in a CPB positive compartment. A, 
Representative images for localization of ingested mCherry relative to GalNac-YFP and CPB in LHVS-treated 
GalNac-YFP parasites stained for CPB from Figure 2-2. From top to bottom are examples of ingested mCherry 
colocalized with GalNac-YFP only, CPB only, both GalNac-YFP and CPB, and neither GalNac-YFP or CPB. White 
arrows indicate localization of ingested mCherry accumulation. B, Quantitation of colocalization of ingested mCherry 
with GalNac-YFP and/or CPB in LHVS-treated GalNac-YFP parasites stained for CPB from Figure 2-2. Data are 
derived from 4 biological replicates with at least 30 ingested mCherry puncta analyzed per marker per replicate. C, 
Quantitation of colocalization of GalNac-YFP with CPB and CPL in DMSO and LHVS-treated parasites. HFF cells 
were synchronously invaded for 10 min with GalNac-YFP parasites (pretreated with 1µM LHVS or the vehicle control 
DMSO for 36 h), incubated in the presence of 1 µM LHVS or DMSO, and fixed at 3 h post-invasion. Parasites were 
then stained with antibodies against CPB and CPL and analyzed by fluorescence microscopy. Data are derived 
from 2 biological replicates with at least 33 GalNac-YFP puncta analyzed per replicate. D, Representative images 
of GalNac-YFP distribution with DMSO or LHVS treatment. GalNac-YFP parasites were treated as in C and stained 
for NHE3 and CPB. Scale bars, 1µM. E, Quantitation of colocalization of the GalNac-YFP+CPB+ compartment with 
other endolysosomal system markers. GalNac-YFP parasites were treated as in C and stained for CPB and CPL, 
proM2AP, NHE3, or DAPI to label the apicoplast. Data are derived from 3 biological replicates with at least 20 
GalNac-YFP+CPB+ puncta analyzed per marker per replicate, one way ANOVA with Dunnet’s test for multiple 
comparisons to colocalization with the apicoplast, ** p,<0.01, ***p<0.001. All bars represent means, and error bars 
represent standard deviation. Scale bars: 2µm. 
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through the TGN. Nevertheless, the data is consistent with ingested proteins trafficking 

through ELCs on the way to the VAC. 

 

2.3.3 Ingested proteins reach the VAC for CPL-dependent digestion within 30 min 
To better understand the dynamics of ingested protein trafficking to the VAC, GalNac-

YFP parasites were prepared as shown in Figure 2-2A, purified at 15 min intervals through 

the first hour of infection, and LHVS-treated parasites were stained with antibodies 

against CPB and CPL to label the VAC. Parasite-associated mCherry was detected at 

the earliest time point (7 min post-invasion) and 

throughout the first hour of infection (Figure 2-5A). 

Intriguingly, accumulation of mCherry at 7 min 

post-invasion was independent of LHVS treatment 

(Figure 2-5A). Detection of ingested mCherry 

became increasingly dependent on LHVS 

treatment at 22 min post-invasion and beyond with 

ingestion in DMSO-treated parasites reaching the 

typically observed basal levels by 37 min post-

invasion (Figure 2-5A). Colocalization of ingested 

mCherry with CPB/L increased as detection of 

ingested protein in DMSO-treated parasites 

Figure 2-5. Host cytosolic mCherry is ingested into a non-digestive compartment before delivery to the VAC 
within 30 min. A, Time course of ingestion in DMSO or LHVS-treated GalNac-YFP parasites through 1 h post-
invasion. Experiment performed as in Figure 2-2A, but with a 7 min invasion period and harvested at the indicated 
times. Shown is percentage of mCherry-positive parasites from analysis of at least 200 parasites analyzed per 
condition and time point. Ratio paired t-test comparing DMSO vs. LHVS treatment at each time point, * p<0.05, 
otherwise not significant. B, Quantitation of colocalization of ingested mCherry with CPB/L in LHVS-treated parasites 
from A stained with mouse antibodies against both CPB and CPL. At least 30 ingested mCherry puncta were analyzed 
per marker and time point. C, Representative images for localization of ingested mCherry relative CPB/L. Scale bars, 
2 µm: For all graphs, points represent the mean of 3 biological replicates, bars represent standard deviation. 
 

FIGURE 2-6 Peak colocalization with the 
GalNac-YFP+CPB/L+ compartment 
coincides with rapid degradation of 
ingested material. Quantitation of 
colocalization of ingested mCherry with 
GalNac YFP or CPB/L in LHVS-treated 
parasites from Figure 2-5. At least 30 
ingested mCherry puncta analyzed per 
marker and time point. Points represent the 
mean of 3 biological replicates, bars 
represent standard deviation. 
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decreased, and colocalization with CPB/L peaked at 37 min post-invasion (Figure 2-5B 

and C). Further, localization within the GalNac-YFP+CPB/L+ compartment also peaked at 

37 min post-invasion (Figure 2-6), indicating that this compartment is digestive in nature, 

further supporting its identity as a subdomain of the ELCs or the VAC. Although external 

protease treatment of purified parasites is routinely performed to remove host protein 

sticking to the parasite surface, we wanted to ensure the mCherry accumulation was truly 

inside the parasite, especially at 7 minutes post-invasion. Deconvolution of Z-stack 

images confirmed that the mCherry accumulation was fully contained within the parasite 

(Figure 2-7A), and ingested mCherry was resistant to external protease treatment while 

the parasite surface protein SAG1 was not (Figure 2-7B). Taken together, these findings 

suggest that ingested host proteins are internalized either during or immediately after 

invasion, initially delivered into a non-proteolytic compartment and then trafficked to the 

VAC where they are degraded within 30 min. 

 

FIGURE 2-7 T. gondii ingests host cytosolic mCherry within 7 min post-invasion. A, mCherry accumulation is 
contained within the SAG1 surface outline of the parasites at 7 min post-invasion. Experiment performed as in 
Figure 2-5 with a 7 min invasion period, parasites were purified immediately following invasion (7 min post-invasion), 
and stained for the parasite surface marker SAG1. Unlike the samples in all other experiments in this study, no 
protease protection assay was performed (No Pronase), leaving SAG1 on the surface of the parasite. Shown are 
cut views from Z-stacks displaying a single plane that cuts through the center of the accumulated mCherry signal. 
B, mCherry accumulation, but not SAG1 is resistant to protease protection assay (Pronase). Experiment performed 
as in Figure 2-5 with a 7 min invasion period, parasites were purified immediately following invasion (7 min post-
invasion), subjected to protease protection assay, and stained for the parasite surface marker SAG1. In parasites 
where SAG1 was digested off the parasite surface, mCherry accumulation remains. Images are derived from one 
biological replicate performed in GalNac-YFP parasites treated with DMSO or 1µM LHVS for 36 h or RH∆cpl 
parasites as indicated. Scale bars: 2µm. 
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2.3.4 Promicroneme proteins are detected in all cell cycle phases 
Antibody staining against propeptides of microneme and rhoptry proteins label 

newly synthesized, immature promicroneme and prorhoptry proteins in transit to their 

respective organelles and possibly also cleaved propeptide, but not mature proteins in 

the microneme and rhoptry organelles. For example, staining for the propeptide of the 

microneme protein M2AP (proM2AP) or rhoptry protein ROP4 (proROP4) shows overlap 

with the TGN and ELCs but not the micronemes or rhoptries.7, 13, 34, 36 Therefore, the 

colocalization of ingested protein with proM2AP noted above suggests that endocytic 

trafficking to the VAC may intersect with exocytic trafficking to microneme and rhoptry 

organelles. An important limitation of this experiment, however, is that parasites were 

treated with LHVS for 36 h prior to infection to emulate detection of ingested host protein 

in the CPL knockout. Under these conditions, ingested host protein persists with a half-

life of 2 to 3 h.1 Persistent accumulation presumably occurs within the VAC, but trafficking 

might also be backed up in upstream compartments like the ELCs. Therefore, we cannot 

differentiate protein ingested several hours prior to fixation from actively trafficking, newly 

ingested protein. So while we conclude that proM2AP and ingested protein are trafficked 

through the ELCs, this experiment does not conclusively demonstrate that they occupy 

the ELCs at the same time under normal conditions. Nevertheless, how these cargoes 

can be trafficked through the same compartment, yet meet very different fates is unclear.  

To test if endocytic and exocytic trafficking in T. gondii are temporally separated 

processes, we next sought to determine when during the cell cycle microneme or rhoptry 

biogenesis and ingestion occur. T. gondii divides by building daughter parasites within 

the mother cell in a process called endodyogeny and has a cell cycle characterized by 

three phases: G, S, M/C.37 Progression through the T. gondii cell cycle can be monitored 

using two markers: TgCentrin2 (Cen2) which associates with the centrosome and 

additional apical structures, and IMC1 which associates with the inner membrane 

complex, a system of flattened membranous sacs beneath the parasite plasma 

membrane that outlines the periphery of the mother cell and newly forming daughter 

parasites.38 In the G phase, parasites display a single mother IMC1 structure and a single 

centrosome. In S phase, the centrosome is duplicated and in M/C phase, two additional 

U-shaped IMC1 structures outlining the newly forming daughter cells will appear within 



 36 

the IMC1 outline of the mother parasite. To test when microneme or rhoptry biogenesis 

occurs during the cell cycle, Cen2-EGFP parasites were stained with antibodies against 

IMC1 to determine cell cycle phase and against propeptides of microneme and rhoptry 

proteins, which in previous experiments have been associated with timing of microneme 

and rhoptry biogenesis.18  

We first examined microneme protein synthesis using antibodies against proM2AP 

and proMIC5. proM2AP staining has been observed in all phases of the cell cycle, but to 

what extent remained unclear.7, 34 Parasites were analyzed at 4 to 6 h post-invasion when 

Figure 2-8. Microneme proteins are expressed in G, S and M/C phase. A and B, Representative images for 
detection of proM2AP or proMIC5 by immunofluorescent staining in G, S and M/C phase Cen2-EGFP vacuoles 
stained for IMC1 at 4 to 6 h post-invasion. C and D, Quantitation of percentage of Cen2-EGFP vacuoles positive 
for proM2AP or proMIC5 staining in G, S and M/C phase at 4 to 6 h post-invasion. E and F, Representative images 
for detection of proM2AP or proMIC5 by immunofluorescent staining in G, S and M/C phase Cen2-EGFP vacuoles 
stained for IMC1 at 24 h post-invasion. G and H, Quantitation of percentage of Cen2-EGFP vacuoles positive for 
proM2AP or proMIC5 staining in G, S and M/C phase at 24 h post-invasion. Error bars in all graphs represent 
standard deviation, and the point where the grey fill intersects the error bars represents the mean. Values derived 
from 3 biological replicates each with at least 100 total vacuoles and at least 30 vacuoles per cell cycle phase 
analyzed. Scale bars: 2 µm. 
 



 37 

parasites in all three phases of the cell cycle were present. proM2AP and proMIC5 were 

detected in G, S and M/C phases, and in the majority of parasite-containing vacuoles 

(Figure 2-8A through D). To ensure that this was not a product of pulse invasion into host 

cells or only characteristic of the first cell division, asynchronous, overnight cultures of 

parasites allowed to naturally invade host cells were also analyzed. Again, proM2AP and 

proMIC5 were detected in G, S and M/C phases and in the majority of parasite-containing 

vacuoles (Figure 2-8E through H), suggesting that microneme protein synthesis occurs 

throughout the cell cycle. 

 
2.3.5 Prorhoptry proteins are detected in S and M/C phases 

We next examined detection of rhoptry protein synthesis using antibody staining 

against proROP4 or proRON4, which is known to label M/C phase parasites.17, 39 The 

Figure 2-9. Rhoptry proteins are expressed in S and M/C phase. A, Representative images for detection of 
proROP4 by immunofluorescent staining in G, S and M/C phase Cen2-EGFP vacuoles at 4 to 6 h post-invasion. B, 
Quantitation of percentage of Cen2-EGFP vacuoles positive for proROP4 staining in G, S and M/C phase at 4 to 6 
h post-invasion. C and D, Representative images for detection of proROP4 or proRON4 by immunofluorescent 
staining in G, S and M/C phase Cen2-EGFP vacuoles at 24 h post-invasion. E and F, Quantitation of percentage 
of Cen2-EGFP vacuoles positive for proROP4 or proRON4 staining in G, S and M/C phase at 24 h post-invasion. 
Error bars in all graphs represent standard deviation, and the point where the grey fill intersects the error bars 
represents the mean. Values are derived from 3 biological replicates each with at least 100 total vacuoles and at 
least 30 vacuoles per cell cycle phase analyzed. Scale bars: 2 µm.  
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antibody mAb T5 4H1, used to detect proRON4, also detects the moving junction. As 

previously observed, staining of the moving junction remained on the PVM at 4 to 6 h 

post-invasion and could not be distinguished from staining within the parasites.18, 39  

Therefore, RON4 synthesis was only analyzed in asynchronous overnight cultures. 

proROP4 and proRON4 were detected in both S and M/C phases but were absent from 

nearly all parasite vacuoles in G phase at 4 to 6 or 24 h post-invasion (Figure 2-9). This 

suggests that rhoptry protein synthesis is restricted to later in the cell cycle and occurs in 

both S and M/C phases.  

 
2.3.6 Ingestion is active throughout the cell cycle 

We next sought to determine when during the cell cycle T. gondii ingests host 

proteins. To more precisely measure when parasites are ingesting protein from the host 

cell, LHVS treatment was reduced from 36 h to 30 min, adding LHVS immediately prior 

to parasite purification (Figure 2-10A). This is the time it takes to complete one ingestion 

event from uptake to turn over (Figure 2-5) and should reflect only recently ingested 

protein. Further, this treatment is shorter than the briefest phase of the cell cycle, M/C 

phase, which is estimated to last from 1 to 3 h.37, 40-42 To do this, the LHVS concentration 

had to be increased from 1 µM to 50 µM, but detection of ingested protein under this 

condition was indistinguishable from parasites treated with LHVS for 36 h (Figure 2-10B). 

To test when during the cell cycle the ingestion pathway is active, Cen2-EGFP 

parasites were treated as in Figure 2-10A, purified at 4 to 6 h post-invasion when all cell 

cycle phases were observed (Figure 2-10C), and stained with antibodies against IMC1. 

Because promicroneme and prorhoptry proteins were detected with similar cell cycle 

dynamics during the first and subsequent cell division cycles (Figures 2-8 and 2-9), cell 

cycle dependence of ingestion was not analyzed at 24 h post-invasion for comparison. In 

samples where ingestion was active (Figure 2-10D), ingestion of mCherry was observed 

in parasites of all three cell cycle phases (Figure 2-10E). To determine if ingestion is 

down-regulated in any phase of the cell cycle, the percentage of mCherry positive 

parasites was also determined in G, S or M/C phase parasites. No significant differences 
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were observed, suggesting that ingestion was equally active during all phases of the cell 

cycle (Figure 2-10F). 

 

Figure 2-10. T. gondii ingests host cytosolic mCherry throughout its cell cycle. A, Experimental design for 
detection and localization of recently ingested host cytosolic protein ingestion. CHO-K1 cells were transiently 
transfected with a plasmid encoding cytosolic mCherry fluorescent protein 18-24 h before synchronous invasion for 
10 min with untreated T. gondii parasites. 50 µM LHVS or DMSO added during the last 30 min of infection before 
being purified, stained and analyzed by fluorescence microscopy. B, Quantitation of ingestion in Cen2-EGFP 
parasites treated with DMSO or LHVS for 36 h or 30 m and purified at 3 h post-invasion. Shown is the percentage 
of mCherry-positive parasites; at least 200 parasites were analyzed per condition, One-way ANOVA with Tukey’s 
multiple comparisons. C, Cell cycle phasing of LHVS-treated Cen2-EGFP parasites harvested at 4 to 6 h post-
invasion to be quantitated for ingestion in D as determined by the pattern of Cen2-EGFP and antibody staining for 
IMC1. D, Quantitation of ingestion in DMSO or LHVS-treated Cen2-EGFP parasites at 4 to 6 h post-invasion. Shown 
is percentage of mCherry positive parasites, at least 200 parasites analyzed per condition, ratio paired t-test. E, 
Representative images for detection of ingested host cytosolic mCherry in parasites in G, S or M/C phase. F, Cell 
cycle phase-specific analysis of ingestion pathway activity. Percentage of mCherry positive parasites in each cell 
cycle phase from parasites in D was determined with at least 230 parasites in G phase, at least 55 parasites in S 
phase and at least 24 parasites in M/C phase analyzed, one-way ANOVA. All bars represent the mean of 4 biological 
replicates, error bars represent standard deviation, ** p<0.01, ns = not significant, scale bars are 2 µm. 
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2.3.7 Ingested host protein trafficking intersects with microneme protein trafficking 
Although our results indicate that ingestion, microneme protein synthesis, and 

rhoptry protein synthesis are active during the same cell cycle phases and traffic through 

the ELCs, it is still possible that ingested proteins and microneme or rhoptry proteins could 

avoid interaction. For example, sequential rounds of ingestion and microneme or rhoptry 

synthesis could occur independent of the cell cycle. To determine if ingestion is down-

regulated during microneme or rhoptry synthesis and if their trafficking paths intersect, as 

suggested by our findings in Figure 2-2, we compared the trafficking of newly ingested 

protein with that of newly synthesized microneme and rhoptry proteins en route to their 

respective apical secretory organelles. 

To do this, a new cell line developed during the course of this study was used. 

These cells, termed CHO-K1 inducible mCherry cells (CHO-K1 imCh), produce cytosolic 

mCherry in response to induction with doxycycline (Figure 2-11A). mCherry is expressed 

in 76.0±0.42% of doxycycline-treated CHO-K1 imCh cells compared to 18.6±4.3% of 

transiently transfected CHO-K1 cells (Figure 2-11B). Consistent with the broader 

expression, we observed mCherry in 42.6±8.7% of parasites treated with LHVS for 36 h. 

Also, ingested mCherry was detected in 16.5±4.1% of parasites treated with LHVS for 30 

min, although in this case the LHVS concentration had to be increased to 200 µM to 

consistently detect LHVS-dependent mCherry accumulation (Figure 2-11C and D). It 

should be noted that despite broader expression the mCherry fluorescence intensity of 

CHO-K1 imCh cells was about 2.8 times lower than transiently transfected CHO-K1 cells 

(Figure 2-11B). Thus, results from CHO-K1 imCh cells might still underrepresent the 

proportion of parasites that are actively ingesting host-derived protein. 

To determine if ingestion is down-regulated during microneme or rhoptry 

biogenesis, parasites were allowed to ingest mCherry from doxycycline-treated CHO-K1 

imCh cells and treated with LHVS for 30 min to exclusively detect newly ingested host 

protein. The parasites were then purified and stained for proM2AP, proMIC5 and 

proRON4 to detect newly synthesized microneme and rhoptry proteins. We attempted to 

detect proROP4, but the antibody did not work well in extracellular parasites. In samples 

where ingestion was active (Figure 2-12A), the activity of the ingestion pathway during 

microneme and rhoptry biogenesis was analyzed by determining the percentage of   
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FIGURE 2-11 Validation of CHO-K1 imCherry cell line for detection of ingestion. A, Conceptual model for 
mCherry expression in CHO-K1 inducible mCherry (CHO-K1 imCh) cell. CHO-K1 cells that stably express mCherry 
under the control of the minimal CMV promoter and the tetracycline-responsive element (TRE) as well as the 
reverse tetracycline-controlled transactivator (rtTA) were generated. In the absence of tetracycline or its derivative 
doxycycline, rtTA cannot bind the TRE, and cytosolic mCherry transcription is repressed. In the presence of 
doxycycline, doxycycline will bind to rtTA and allow it to bind to the TRE and induce transcription of cytosolic 
mCherry. B, From top to bottom, representative images of mCherry detection in the parental CHO-K1 WT cell line, 
CHO-K1 WT cells transiently transfected with the pmCherry N3 plasmid, CHO-K1 imCh cells without DOX for 96 h 
and CHO-K1 imCh cells treated with 2µg/mL DOX for 96 h. To the right are values for the percentage of cells that 
are mCherry positive (%mCh+) and mean fluorescence intensity of the mCherry (MFI) as determined by flow 
cytometry. Data derived from 2 biological replicates with 20,000 cells analyzed per condition per replicate. Scale 
bar, 20µm. C, Quantitation of ingestion of host cytosolic mCherry from CHO-K1 WT, CHO-K1 WT cells transiently 
transfected to express cytosolic mCherry, CHO-K1 imCh cells without DOX for 96 h and CHO K1-imCh cells with 
2µg/mL DOX for 96 h. Cells were synchronously invaded for 10 min with WT parasites treated with DMSO or LHVS 
as indicated, purified at 3 h post-invasion, fixed and analyzed by fluorescence microscopy. Shown is percentage of 
mCherry positive parasites with at least 200 parasites analyzed per condition, one-way ANOVA with Tukey’s test 
for multiple comparisons, ** p<0.01, ***p<0.001, ns = not significant. D, Representative images of detection of 
ingested mCherry from parasites in C. Scale bars: 5µm. 
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mCherry+ parasites in populations expressing proMIC5 or proRON4 compared to 

populations of parasites that are negative for each of these markers. This analysis was 

not performed for proM2AP since 85.9±8.2% of parasites were expressing proM2AP. 

Ingestion pathway activity was not significantly different in proMIC5+ versus proMIC5- or 

proRON4+ versus proRON4- subpopulations, suggesting that ingestion is not down-

regulated during microneme or rhoptry biogenesis (Figure 2-12B and C). Interestingly, 

even though ingestion is active during microneme and rhoptry biogenesis, ingested 

protein colocalized with proM2AP and proMIC5, but not proRON4 when compared to the 

apicoplast negative control (Figure 2-12D and E). Therefore, endocytic trafficking of 

ingested host proteins intersects with exocytic trafficking to micronemes, but not to 

rhoptries, suggesting that rhoptry trafficking may diverge earlier in the endolysosomal 

system such as the TGN or occupy functionally distinct ELCs. 

 

Figure 2-12. Endocytic trafficking is merged with microneme biogenesis in T. gondii. A, Quantitation of 
ingestion in DMSO or LHVS-treated WT parasites at 3 h post-invasion. Experiment carried out as in Figure 2-11C 
with infection of CHO-K1 imCh cells and 200 µM LHVS treatment for 30 m to detect recently ingested mCherry only. 
Shown is percentage of mCherry positive parasites, at least 200 parasites analyzed per condition, unpaired t-test. 
B, Quantitation of ingestion pathway activity during microneme biogenesis by comparing proMIC5 positive and 
negative populations. Shown is percentage of mCherry positive parasites, at least 200 parasites analyzed for each 
proMIC5 positive and negative population, ratio paired t-test. C, Quantitation of ingestion pathway activity during 
rhoptry biogenesis by comparing proRON4 positive and negative populations. Shown is percentage of mCherry 
positive parasites, at least 200 parasites for each proRON4 positive and negative population, ratio paired t-test. D, 
Quantitation of colocalization of ingested mCherry with proM2AP, proMIC5, proRON4 or the apicoplast in LHVS-
treated parasites from A stained with antibodies each marker. At least 30 ingested mCherry puncta analyzed per 
marker. E, Representative images of localization of ingested mCherry relative to proM2AP, proMIC5, proRON4 or 
the apicoplast (indicated by the blue arrow head). All bars represent the mean from 3 biological replicates, error 
bars represent standard deviation, ** p,<0.01, ***p<0.001, ns = not significant, scale bars are 2 µm.  
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2.4 Discussion 
2.4.1 Trafficking of ingested proteins 

Our data are consistent with ingested proteins trafficking through the ELCs on the 

way to the VAC, however we could not conclusively determine if ingested protein is 

trafficked through the TGN due to extensive localization of GalNac–YFP with ELC 

markers. Additionally, ingested protein colocalized with GalNac-YFP in a compartment 

that predominantly labeled with CPB and CPL and seems to be digestive in nature. This 

suggests an ELC or VAC-like identity for the GalNac-YFP+CPB/L+ compartment. Indeed, 

digestion of ingested proteins in prelysosomal compartments has been described in 

Plasmodium parasites. Haemozoin, a visible byproduct of hemoglobin digestion has been 

observed in transport vesicles en route to the lysosome-like organelle of Plasmodium 

called the digestive vacuole, suggesting that hemoglobin digestion begins and may even 

be complete before reaching the digestive vacuole.29, 43 Where digestion begins in T. 

gondii is unclear, but rapid digestion beginning soon after ingestion could explain why 

very few parasites have detectable levels of ingested protein in the absence of LHVS. 

Future use of super resolution microscopy and more precise endomembrane markers, 

especially of the TGN, will better define the localization of ingested protein. Finally, 

identifying a method for monitoring T. gondii ingestion using live-cell imaging will also be 

invaluable to determine the order that ingested proteins travel through the endolysosomal 

compartments, the rate of endocytosis, and whether every parasite undergoes 

endocytosis.  
 
2.4.2 Cell cycle dependence of microneme and rhoptry biogenesis 

Population-based transcriptomic studies and live cell imaging of fluorescently-

tagged microneme and rhoptry proteins suggest that microneme and rhoptry organelles 

are made de novo during daughter cell formation once per cell cycle in M/C phase.41, 44 

However, transcript levels do not necessarily correspond to protein levels, and fluorescent 

tagging of microneme and rhoptry proteins will label both immature protein in transit and 

mature protein within the microneme and rhoptry organelles. Our data suggests that 

microneme proproteins are present in all phases of the cell cycle, whereas expression of 

rhoptry proproteins is limited to S and M/C phase. It should be noted that antibodies used 
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for this study may detect cleaved propeptides, which could persist after mature 

microneme and rhoptry proteins are further trafficked with an unknown half-life. However, 

the pattern of protein expression that we observe mirrors expression patterns in 

transcriptomic data. Microneme transcript levels are decreased in G phase, but remain 

high throughout the cell cycle, whereas rhoptry protein transcripts show a much sharper 

drop in the G phase.44 Previous work found that expression of promicroneme and 

prorhoptry proteins is mutually exclusive such that parasites express one or the other, but 

not both.18 Together the findings imply that microneme biogenesis occurs in multiple 

waves during the cell cycle with a pause during a portion of S or M/C phase for rhoptry 

production. In future studies, live cell imaging of fluorescent protein timers, which change 

color over time indicating time since synthesis, would be informative in more accurately 

determining when microneme and rhoptry biogenesis occurs.45, 46 

 

2.4.3 Cell cycle dependence of T. gondii ingestion 
Endocytosis persists, but is down-regulated during the M/C phase of the cell cycle 

in mammalian cells.47-49 Similar observations have been made in Plasmodium parasites, 

which undergo schizogony. This process involves a G1/trophozoite stage followed by 

multiple rounds of nuclear division in S phase and segmentation into many parasites in 

M/C phase. Endocytosis in Plasmodium parasites begins in G1 and is thought to remain 

active until the fourth nuclear division of the S phase.27-30 However, examples of 

Plasmodium segmenters that appear to ingest red blood cell cytoplasm during the final 

stages of daughter cell formation have been observed.50 We find that ingested host 

cytosolic proteins can be detected in T. gondii parasites of all cell cycle phases. Ingestion 

does not appear to be significantly down-regulated in any phase of the cell cycle. 

However, it should be noted that we were not able to enrich for M/C phase parasites. 

Attempts to synchronize cell cycle progression by pulse invasion as observed by Gaji et 

al.42 were unsuccessful, because mechanically liberated parasites used to infect mCherry 

expressing CHO cells were not homogeneously in G0 (data not shown). This limited our 

power to detect a decrease in ingestion in the M/C phase. 
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2.4.4 Intersection of endocytosis and exocytosis in T. gondii 
Ingested protein colocalizes with proM2AP and proMIC5, but not proRON4. This 

suggests that endocytic trafficking to the VAC intersects with exocytic trafficking to the 

micronemes, which contrasts with the distinct phases of endocytosis and microneme 

biogenesis in Plasmodium parasites. Microneme biogenesis begins late in the fourth 

nuclear division, when endocytosis is shut down.27, 30 On the other hand, synthesis of 

Plasmodium rhoptry proteins has been observed as early as the G1/trophozoite stage.26, 

51, 52 Accordingly, endocytosis and rhoptry synthesis likely occur at the same time, 

opening the possibility that endocytic and exocytic trafficking also intersect in 

Plasmodium. Further, the intersection of ingested protein and microneme protein 

trafficking in T. gondii implies the existence of sorting mechanisms that ensure ingested 

proteins are delivered to the VAC for destruction and microneme proteins remain intact 

and are delivered to the microneme organelles. We speculate the existence of yet 

unidentified receptors for sorting of cargoes to their target organelles, discussed further 

below. 

 

2.4.5 A model for sorting in the T. gondii endolysosomal system 
Taken together, we propose the following working model for intracellular trafficking 

in T. gondii (Figure 2-13). Because T. gondii replicates inside a PV, ingested proteins 

must traverse both the PV membrane (PVM) and the parasite plasma membrane. Studies 

of hemoglobin ingestion by Plasmodium, which also reside in a PV, showed that red blood 

cell cytoplasm is simultaneously taken up across the PVM and parasite plasma 

membrane through a mouth-like structure called the cytostome, producing double-

membrane transport vesicles.43, 50 Vesicles have been seen in the cytostome-like 

structure of T. gondii called the micropore53, which is thought to be a site of endocytosis 

in the parasite, although there is no direct evidence for this. Our initial studies 

demonstrated that the intravacuolar network (IVN), a system of PVM-associated, 

membranous tubules extending into the PV lumen, is important for acquiring host 

proteins.1 Using Plasmodium as a model, we propose that host cell cytoplasm is taken 

up into double-membrane transport vesicles potentially via the micropore in T. gondii. 

These transport vesicles are proposed to be the non-digestive compartment occupied at 
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7 min post-invasion and could be derived from endocytosis of IVN tubules or vesicles 

derived from the PVM. Active ingestion at 7 min post-invasion (Figure 2-5A) before the 

IVN is formed favors the existence of PVM vesicles. The IVN may contribute to ingestion 

indirectly through its role in organizing parasites within the PV.54, 55 We could not  

conclusively determine if ingested protein colocalized with the TGN, but our data is 

consistent with trafficking through the ELCs. Our model represents a conservative 

interpretation of the data, predicting yeast or mammal-like endocytic trafficking. In this 

case, transport vesicles will fuse with the ELCs, releasing PVM-derived vesicles into the 

Figure 2-13. Working model for trafficking and sorting of endocytic and exocytic cargoes in T. gondii. 1. 
Host cell cytosol (red) is taken up across the PVM and parasite plasma membrane into double membrane 
transport vesicles at the micropore (MP). 2. These transport vesicles then fuse with the ELCs and deliver the host 
cytosol-containing, PVM-derived vesicles to the ELC lumen, where we propose ingested protein trafficking 
intersects with trafficking of microneme proteins. 3. Fusion of the ELCs with the VAC would then deliver the PVM-
derived vesicles to the lumen of the VAC. How the PVM-derived vesicles are sorted away from the microneme 
proteins is unclear. Trafficking to the VAC may represent a bulk flow pathway independent of receptor-mediated 
uptake and sorting, or it could require unidentified receptors that recognize parasite proteins associated with the 
PVM-derived vesicles. This model depicts the possibility of receptor-mediated uptake of PVM-derived vesicles at 
the parasite plasma membrane and escorting them all the way to the VAC. 4. In the VAC, the PVM-derived 
vesicles are presumably ruptured by parasite lipases, releasing host cytosolic proteins and exposing them to 
degradation by parasite proteases. 5. Immature microneme and rhoptry proteins are escorted to the ELCs by 
TgSORTLR where their propeptides are cleaved off by proteases. However, trafficking at some point diverges so 
that trafficking of microneme proteins intersect with ingested protein, but rhoptry proteins do not and may occupy 
a distinct subset of ELCs. 6. Microneme and rhoptry proteins are sorted from the ELCs to their respective 
organelles by unknown mechanisms that likely involve unidentified receptors. 
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ELC lumen. The PVM-derived vesicles are then delivered to the VAC where they are 

digested. Intersection of ingested protein trafficking with exocytic trafficking to the 

micronemes is predicted to occur in the ELCs. How micronemes, rhoptries and ingested 

protein vesicles are further sorted from the ELCs to their respective target organelles is 

unclear and likely requires additional, unidentified sorting receptors including potential 

transmembrane receptors on the parasite surface that could escort PVM-derived vesicles 

to the VAC. Future studies will seek to better understand the molecular mechanisms of 

ingested protein trafficking to the VAC and sorting away from microneme proteins. 

Discovery of plant-like features will be particularly interesting and will provide potential 

targets for development of novel therapeutics that are divergent from the mammalian cells 

that T. gondii infects. 

 

2.5 Materials and methods 
Host Cell and Parasite Culture 
All cells and parasites were maintained in a humidified incubator at 37˚C with 5% CO2. 

CHO-K1 cells (ATCC® CCL-61™) were maintained in Ham’s F12 supplemented with 10% 

FBS, 20 mM HEPES, and 2 mM L-glutamine. HFF cells (ATCC® CRL-1634™) were 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

Cosmic Calf serum, 20 mM HEPES, 2 mM L-glutamine, and 50µg/ml 

penicillin/streptomycin. Toxoplasma gondii parasites were maintained by serial passaging 

in HFF cells. Centrin2-EGFP parasites were kindly provided by Dr. Ke Hu of Indiana 

University and were maintained in the presence of 1 µM pyrimethamine.38 

 
Generation of Parasite Lines 
To generate the GalNac-YFP strain, 50µg of the pTUB GalNac YFP CAT plasmid56 was 

transfected into 1.7x107 RH parasites by electroporation in a 4 mm gap cuvette using a 

Bio-Rad Gene Pulser II set to exponential decay program with 1500 V, 25 µF capacitance 

and no resistance. Transfected parasites were cultured in HFF cells in the presence of 

chloramphenicol. Once chloramphenicol-resistance was established, clones were 

obtained by limiting dilution of the population and confirmed by immunofluorescence. 
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Transient Transfection of Toxoplasma 
50µg of the pDHFR GRASP55-mRFP plasmid56 was transfected into 1x108 GalNac-YFP 

parasites by electroporation in a 4 mm gap cuvette in the presence of 1% DMSO using a 

Bio-Rad Gene Pulser II set to exponential decay with 2400 V, 25 µF capacitance and 24 

Ω resistance. Transfected parasites were cultured in HFF cells for 24 to 48 h before 

experimentation. 

 
Chemicals and Reagents  
Morpholine urea-leucyl-homophenyl-vinylsulfone phenyl (LHVS) was kindly provided in 

powdered form by Dr. Matthew Bogyo at Stanford University. LHVS was dissolved in 

DMSO, and applied with a final DMSO concentration of 0.1-1%. 

 
Plasmids 
pCMV mCherry N3 plasmid was kindly provided by Dr. Jonathan Howard Insituto 

Gulbenkian de Ciecia.57 pTUB-GalNac-YFP CAT56 and pDHFR GRASP55-mRFP32 

plasmids were kindly provided by Dr. David Roos at University of Pennsylvania. 

pTRE2hyg plasmid (Clontech Cat# 631014) was generously provided by Dr. Christiane 

Wobus at the University of Michigan. 

 
Transfection of CHO-K1 Cells 
CHO-K1 cells were plated in 35 mm dishes and transfected when they reached 70-80% 

confluency. Each dish was transfected with 2 µg of pCMV mCherry N3 plasmid using the 

X-TREMEGENE 9 Transfection Reagent (Roche, Cat# 6365787001) using a 3:1 ratio of 

plasmid to transfection reagent in Opti-MEM (Gibco, Cat#31985062) and a total final 

volume of 200 µl. Cells were then incubated overnight at 37˚C and infected at 18-24 h 

post-transfection. 

 
Synchronized Invasion  
Synchronous invasion was accomplished using the ENDO Buffer Method of invasion58 
with the following modifications. Briefly, parasite cultures were purified by scraping, 

syringing, and passing through a 3µm filter and then pelleted by spinning at 1000xg for 
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10 min. The pellet was then resuspended to 1-3x107 parasites per 1 mL in ENDO Buffer 

(44.7 mM K2SO4, 10mM MgSO4, 106mM sucrose, 5 mM glucose, 20 mM Tris–H2SO4, 

3.5 mg/ml BSA, pH 8.2) for infection of 35 mm dishes, 0.3-1x107 parasites per 1 mL 

ENDO Buffer for infection of 8-well chamber slides. Host cells were rinsed once with 

ENDO Buffer, and then 1 mL of ENDO Buffer-parasite suspension was added to each 35 

mm dish or 100µl of ENDO Buffer-parasite suspension was added to each chamber of an 

8-well chamber slide. Parasites were allowed to settle at 37˚C for 10 min before the ENDO 

Buffer was removed and replaced with twice the volume of Invasion Media (Ham’s 

F12/3% Cosmic Calf Serum/20 µM HEPES). Parasites were allowed to invade at 37˚C 

for 7 or 10 min as indicated. Cells were washed three times with warm media to remove 

uninvaded parasites and placed back at 37˚C until ready for purification or fixation. 

 
Protease Protection Assay 
Protease protection assay was performed as in reference 3. Briefly, purified parasites 

were pelleted for 10 min at 1000xg at 4˚C, supernatant was removed, and resuspended 

in 250 µl of freshly prepared 1 mg/mL Pronase (Roche, Cat# 10165921001)/0.01% 

Saponin/PBS and incubated at 12˚C for 1 h. Reaction was stopped with the addition of 5 

mL ice cold PBS. 

 
Intracellular Fluorescent Protein Acquisition Assay for assessment of ingestion 
and colocalization with ELCs 
Transfected CHO-K1 cells were synchronously invaded by the ENDO Buffer method with 

T. gondii parasites, treated with LHVS or equal volume of DMSO, and purified at the 

indicated times post-invasion as previously described.1 All steps are performed on ice or 

at 4˚C unless otherwise noted. Infected cells were washed twice with ice-cold PBS to 

remove any extracellular parasites, and intracellular parasites were liberated and purified 

by scraping and syringing with a 5/8” 25g needle before passing through a 3 µm filter. 

Parasites were then subjected to the protease protection assay. Parasites were then 

pelleted by spinning at 1000xg for 10 min and washed three times in ice cold PBS before 

depositing on Cell-Tak (Corning, Cat# 354240) coated chamber slides. Parasites were 

fixed with 4% formaldehyde at room temperature, permeabilized with 0.1% Triton X-100, 
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and stained with antibodies as indicated. Parasites were imaged at 63x with an AxioCAM 

MRm camera-equipped Zeiss Axiovert Observer Z1 inverted fluorescence microscope. 

Ingestion of host mCherry was scored manually as mCherry positive or mCherry negative. 

Colocalization of ingested mCherry with endolysosomal markers was scored manually 

with each ingested mCherry spot being scored using a binary measure of colocalized or 

not, giving a readout of percent ingested mCherry puncta colocalized with a given 

endolysosomal system marker within each experiment. Ingested mCherry puncta were 

scored as colocalized if they showed any overlap, and there was no differentiation 

between complete or partial colocalization. As a negative control indicating random 

colocalization, colocalization of ingested host protein with the apicoplast was determined, 

since the apicoplast is in the same general region as the proposed endosomal 

compartments but is expected to be separate from endocytic trafficking. An independent, 

blinded observer validated the colocalization findings by reanalyzing 15 percent of the 

colocalization data. Their findings confirmed the reported results. 

 
Immunofluorescent Antibody Labeling 
Purified parasites or chamberslides were fixed with 4% formaldehyde for 20 min, and 

washed 3 times with PBS for 5 min each. Slides were then permeabilized with 0.1% 

TritonX-100 for 10 min, rinsed three times in PBS, blocked with 10%FBS/0.01% Triton X-

100/PBS, and incubated in primary antibody diluted in wash buffer (1% FBS/1% 

NGS/0.01% Triton X-100/PBS) for 1 h at room temperature. The following primary 

antibodies and dilutions were used in this study. Affinity purified rabbit anti-CPL (1:100)59, 

mouse anti-CPB (1:100)60, affinity purified rabbit anti-proM2AP (1:400)7, rabbit anti-P30 

(SAG1) (1:1000)61 kindly provided by Dr. John Boothroyd at Stanford University, affinity 

purified mouse anti-SAG1 (US Biological) (1:1000), affinity purified rabbit proMIC5 

(1:100)10, mouse αRON4 mAb T5 4H1 (1:100) kindly provided by Jean-Francois 

Dubremetz39, rabbit αproROP4 UVT70 (1:3000) and mouse anti-IMC1 (1:1000) kindly 

provided by Dr. Gary Ward of University of Vermont17, 62, and rabbit anti-IMC1 (1:1000) 

kindly provided by Dr. Con Beckers of University of North Carolina, Chapel Hill.62 Slides 

were washed three times and then incubated in Alex Fluor goat anti-mouse, anti-rabbit, 

anti-rat secondary antibody (Invitrogen Molecular Probes) diluted (1:1000) in wash buffer 
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for 1 h at room temperature. Slides were washed three times and mounted in Mowiol 

before imaging at 63x with an AxioCAM MRm camera-equipped Zeiss Axiovert Observer 

Z1 inverted fluorescence microscope. 

 
Generating CHO-K1 inducible mCherry Cells 
A plasmid expressing mCherry under a tetracycline-inducible minimal CMV promoter was 

generated by inserting mCherry into the pTRE2hyg plasmid (Clontech Cat# 631014) 

using Gibson Assembly. mCherry was amplified from the pmCherry N3 plasmid using the 

forward primer 5’-ctagtcagctgacgcgtgatggtgagca agggcgag-3’ and reverse primer 5’-

tcgatgcggccgcgctagttacttgtacagctcgtc-3’. The pTRE2 plasmid was cut within the multiple 

cloning site using NheI, and mCherry was inserted by homologous recombination using 

Gibson Assembly Master Mix (NEB, Cat# E2611S) to generate the plasmid pTRE2-

mCherry. Insertion was confirmed by sequencing. pTRE2-mCherry and pTet-On 

(Clontech, Cat# 631018), expressing the reverse tet-responsive transcriptional activator, 

were cotransfected into CHO-K1 cells and selected with 200 µg/mL hygromycin B 

(Invitrogen, Cat# 10687010) and 400 µg/mL geneticin (Invitrogen, Cat# 10131035). After 

recovery from drug selection, the cells were maintained in culture with 200µg/mL 

hygromycin B and 400 µg/mL geneticin, sorted for the brightest mCherry signal following 

treatment with doxycycline (Clontech, Cat# 63111) by live fluorescence-associated cell 

sorting and cloned out. Clones were chosen based on screening for lack of signal in the 

absence of doxycycline and intensity of mCherry following treatment with addition of 1 

µg/mL doxycycline for 48 h. Fluorescence intensity as compared to transiently transfected 

CHO-K1 WT cells was evaluated using flow cytometry using a BD LSRFortessa Cell 

Analyzer with FACSDiva software. 

 

Green-blue invasion assay for viability of mCherry+ parasites 
Ability of mCherry+ parasites to invade host cells was determined using a modified red-

green invasion assay.63 The intracellular fluorescent protein acquisition assay was 

performed with RH parasites treated with 1µM LHVS for 36 h harvested from iCHO imCh 

cells at 3 hpi with the following modifications. Protease protection assay was not 

performed, and instead, parasites were resuspended in 100 µl DMEM/10% Cosmic Calf 
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serum/20 mM HEPES/2 mM L-glutamine/50µg/ml penicillin/streptomycin/1µM LHVS and 

allowed to invade HFF cells in an 8-chamber slide for 30 min at 37˚C. Treatment with 1 

µM LHVS during the invasion period was performed to prevent mCherry degradation. The 

chamber slide was then gently washed to remove uninvaded and unattached parasites, 

fixed with 4% formaldehyde for 20 min, and washed 3 times with PBS for 5 min each. 

Extracellular parasites were stained by blocking with 10%FBS/PBS followed by 

incubation with rabbit anti-SAG-1 diluted in wash buffer without detergent (1% FBS/1% 

NGS/PBS) for 1 h at room temperature. Both intracellular and extracellular parasites were 

then stained with mouse anti-SAG-1 or mouse anti-CPL according to the 

immunofluorescent antibody labeling protocol above beginning with Triton X-100 

permeablization. 

 

2.6 Notes and notable contributions 
Data in this chapter was published in Traffic: 

 

McGovern OL, Rivera-Cuevas Y, Kannan G, Narwold A, Jr, Carruthers VB. Intersection 

of Endocytic and Exocytic Systems in Toxoplasma gondii. Traffic. 2018. doi: 

10.1111/tra.12556 [doi]. 

 

Author contributions are as follows. Olivia McGovern and Vern Carruthers 

designed experiments. Data in Figures 2-2 and 2-5 was generated and analyzed by Olivia 

McGovern, and Yolanda Rivera-Cuevas carried out a blinded analysis of 15% of the 

colocalization data to validate Olivia’s findings and method for analyzing colocalizaiton. 

Experiments for Figures 2-9 and 2-10 were carried out and analyzed by Yolanda Rivera-

Cuevas and Andrew Narwold, Jr. The CHO-K1 imCherry cell line used to generate data 

in Figures 2-3, 2-11 and 2-12 in this study was created by Geetha Kannan. CHO-K1 

imCherry cells were prepared for flow cytometry by Olivia McGovern, and Geetha Kannan 

and a collaborator (mentioned below) contributed equally to collecting and analyzing flow 

cytometry data in Figure 2-11. Data for all other figures was collected and analyzed by 

Olivia McGovern. 

Other contributions are as follows. The ingestion assay used in this study was 
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originally designed by Zhicheng Dou and was modified by Olivia McGovern to include 

synchronized invasion and reduced LHVS treatment times. A special thank you to Ronald 

Holz for his suggestion to reduce LHVS treatment to more accurately measure when host 

protein ingestion is occurring, which made experiments in Figure 2-10 and 2-12 possible. 

Sophina Taitano and Geetha Kannan contributed equally to collecting and analyzing flow 

cytometry data in Figure 2-12. We gratefully acknowledge funding to support this work 

including NIH T32 Molecular Mechanisms of Microbial Pathogenesis (5T32AI007528 to 

Olivia McGovern), NIH Ruth L. Kirschstein F31- Diversity (1F31AI118274-01 to Olivia 

McGovern), and ASM Robert D. Watkins Graduate Research Fellowship (to Olivia 

McGovern) and an NIH operating grant (R01AI120607 to Vern Carruthers). We thank our 

colleagues for the generous contribution of reagents essential for this study including Ke 

Hu, David Roos, Matthew Bogyo, Jonathan Howard, Christiane Wobus, Peter Bradley, 

Jean-Francois Dubremetz, Gustavo Arrizibalaga, Gary Ward, and Con Beckers. 
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Chapter 3 
T. gondii endocytosis does not require DrpB 

 
3.1 Abstract 

Ingested host proteins are taken up into Toxoplasma gondii and trafficked through 

the parasite’s endosome-like compartments (ELCs) where endocytic trafficking of 

ingested protein intersects with exocytic trafficking to the parasite’s specialized secretory 

organelles called the micronemes. Microneme proteins remain intact the rest of the way 

to the microneme organelles, while ingested proteins are further trafficked to a lysosome-

like compartment called the VAC where they are degraded in a Cathepsin L (CPL)-

dependent manner. Whether ingested host proteins are also trafficked through the trans-

Golgi network (TGN) as in plants remains unclear since GalNac-YFP, typically used to 

specifically mark the TGN, colocalizes with ingested host proteins but labeled both the 

TGN and ELCs. Moreover, the mechanisms that coordinate endocytosis of host cytosolic 

proteins into T. gondii, downstream trafficking to the VAC, and proper sorting of 

microneme versus ingested proteins remain unclear. In this study, the role of DrpB, a 

TGN-associated dynamin-related protein involved in secretory trafficking, in the T. gondii 

host protein ingestion pathway was determined. Using fluorescence microscopy and 

colocalization analysis, DrpB colocalized with ingested host proteins, however it also 

labeled both the TGN and ELCs, as observed for GalNac-YFP. Therefore, whether 

ingested proteins traffic through the TGN remains unclear. Further, expression of a 

dominant negative mutant of DrpB, ddFKBP-GFP-DrpB K72A, had no effect on the ability 

of T. gondii to internalize proteins from the host cell or to traffic ingested host proteins to 

the VAC. Taken together, this suggests that DrpB is not required for endocytic trafficking 

to the VAC, and is likely dedicated to exocytic trafficking only. This work provides the first 

glimpse into differentiating mechanisms for endocytic and exocytic trafficking in T. gondii. 
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3.2 Introduction  

The obligate intracellular parasite 

Toxoplasma gondii lives in a 

parasitophorous vacuole (PV) where it 

consumes proteins from the host cell 

cytosol. In this endocytic pathway, host 

cytosolic proteins are taken up across the 

PV membrane (PVM) and parasite 

plasma membrane into endocytic 

vesicles in the parasite cytoplasm and 

trafficked to the parasite’s lysosome-like 

organelle called the VAC for degradation. 

However, how endocytosed material is 

delivered to the VAC was unclear. Data 

in Chapter 2 showed that ingested 

protein colocalized significantly with the 

trans-Golgi network (TGN) marker 

GalNac-YFP1, the endosomal-like 

compartment (ELC) marker/immature microneme protein proM2AP2, 3, and the VAC 

marker cathepsin B (CPB).4 This suggested that endocytic trafficking in T. gondii could 

resemble plants with endocytosed material trafficking sequentially through the TGN, 

ELCs and finally to the lysosome.5 However, careful analysis of GalNac-YFP localization 

revealed that this marker is not restricted to the TGN and colocalizes with markers of the 

ELCs. Therefore, whether endocytic trafficking proceeds through the TGN as in plants is 

unclear. Further, colocalization with the immature microneme protein proM2AP indicated 

that endocytic trafficking to the VAC intersects with exocytic trafficking to the parasite’s 

unique secretory organelles called micronemes (Figure 3-1). However, the mechanisms 

that govern endocytic trafficking and sorting of endocytic and exocytic cargoes in T. gondii 

are not known.  

To further investigate if endocytic trafficking in T. gondii involves the TGN and to 

investigate the mechanisms that underlie this process, we determined the role of the 

Figure 3-1. Recap of relevant findings from Chapter 2. 
Proteins from the host cell cytosol are endocytosed across 
the parasitophorous vacuole membrane (PVM) and 
parasite plasma membrane into endocytic vesicles in the 
T. gondii cytoplasm. Ingested proteins are then trafficked 
through endosome-like compartments but likely not the 
trans-Golgi network (TGN), and are delivered to the 
parasite’s lysosome-like compartment (VAC) for 
degradation. Endocytic trafficking intersects with 
microneme trafficking, but mechanisms for sorting 
ingested proteins destined for degradation in the VAC 
from microneme proteins which must reach the 
microneme organelles intact remain unclear.  
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dynamin-related protein DrpB. The dynamin superfamily is a diverse set of GTPases that 

are perhaps best known for their highly conserved role in vesicle fission from the plasma 

membrane during endocytosis. Classical dynamins consist of five domains, the N-

terminal G domain for GTP binding and hydrolysis, the middle/stalk domain which 

mediates dimerization, the pleckstrin homology domain which mediates interaction with 

membranes in particular the lipid phosphatidylinositol bisphosphate (PI(4,5)P2), the 

GTPase effector domain which assists in oligomerization and stimulates GTPase activity, 

and the proline-rich domain which mediates protein-protein interactions.6 Dynamin-

related proteins, including T. gondii DrpB and yeast Vps1 typically have only the G 

domain, the middle/stalk domain, and the GTPase effector domain.7, 8 Dynamin-

dependent vesicle scission during endocytosis is thought to involve assembly of dynamin 

dimers into rings that form a collar around the forming vesicle neck, and GTP hydrolysis 

by the GTPase domain triggers a conformational change that results in constriction and 

fission of the vesicle membrane.6 Alternatively, dynamin could  participate in endocytosis 

indirectly through regulation of the actin cytoskeleton, as proposed for yeast.6, 9 

Other members the dynamin family perform a similar function to promote 

maintenance of mitochondria or chloroplasts, cytokinesis, and trafficking from post-Golgi 

compartments including the trans-Golgi network (TGN) and endosomes.6, 10, 11 For 

example, the dynamin-related proteins DRP3 in plants and Mgm1 in yeast are required 

for mitochondrial maintenance.12, 13 Plant DRP2 on the other hand, has been implicated 

in endocytosis at the plasma membrane, cell plate formation during cytokinesis and post-

Golgi trafficking from the TGN and endosomes.14-17 DrpB in T. gondii is localized to the 

TGN and is required for exocytic trafficking to the microneme and rhoptry organelles, 

presumably through fission of microneme and rhoptry protein-containing vesicles from 

the TGN.7, 18 However, a role for DrpB in T. gondii endocytosis has not been tested. 

If DrpB is indeed restricted to the TGN, it would serve as a suitable marker for 

determining if endocytic trafficking in T. gondii is plant-like. Further, DrpB could be 

predicted to play two possible roles in T. gondii endocytosis. First, DrpB could promote 

fission of endocytic vesicles at the parasite plasma membrane. Although DrpB has not 

been observed at the parasite plasma membrane7, 18, dynamin-dependent fission of 

endocytic vesicles at the plasma membrane is conserved in plants, mammals, fungi and 
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other protozoan parasites including the malaria parasite Plasmodium spp..6, 8, 10, 19, 20 

Therefore, it is tempting to speculate that there could be transient populations of DrpB 

that are difficult to detect by traditional microscopy similar to the yeast dynamin-related 

protein Vps1.8 The second possible role would be in downstream trafficking of 

endocytosed material to the VAC potentially at the ELCs or TGN. To test these 

possibilities, a dominant negative mutant GTPase mutant of DrpB shown to interfere with 

dynamin function in T. gondii and other eukaryotes will be expressed.7, 21 

In this study, we find that ingested protein colocalizes with DrpB, but the 

localization of DrpB, like that of GalNac-YFP, is not restricted to the TGN. Therefore, it is 

still unclear whether endocytic trafficking of ingested protein proceeds through the TGN 

as in plants. DrpB is not required for trafficking of ingested host proteins across the 

parasite plasma membrane or for downstream trafficking to the VAC. Interestingly, 

expression of a dominant negative GTPase mutant of DrpB actually enhanced 

endocytosis in T. gondii. In contrast to wildtype DrpB, the dominant-negative mutant did 

not colocalize with ingested host protein and showed almost no colocalization with the 

ELCs or VAC, suggesting the observed enhancement of endocytosis is likely due to 

indirect effects such as decreased DrpB interaction with an effector protein that promotes 

endocytic trafficking or sequestration of a negative regulator of endocytic trafficking. 

Finally, these results provide functional distinction between exocytic and endocytic 

trafficking in T. gondii, with DrpB likely being directly devoted to exocytic trafficking only.  

 
3.3 Results 
3.3.1 DrpB localizes to the TGN and ELCs 

Although GalNac-YFP is often used as a marker for the TGN, we found that 

GalNac-YFP was not restricted to the TGN and also localizes to the ELCs and potentially 

to the VAC (Figures 2-1, 2-4 and 2-6). Current literature suggests that DrpB is restricted 

to the TGN, and could serve as a suitable marker to determine if ingested proteins are 

trafficked through the TGN.7, 18 To determine this, the localization of DrpB was examined 

using RH∆hx ddFKBP-GFP-DrpB WT (ddGFP-DrpB WT) parasites.7 In addition to the 

endogenous copy of DrpB, these parasites express an ectopic copy of DrpB fused to GFP 

and a destabilization domain (dd), which allows for post-translational control of protein 
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expression upon addition of the stabilizing drug Shield-1. To minimize possible off-target 

effects due to DrpB overexpression, Shield-1 treatment was optimized to observe ddGFP-

DrpB WT expression in the majority of parasites with minimal treatment: 0.8µM Shield-1 

for 30 min. Secretion of microneme proteins is regulated such that they are only released 

during invasion and egress under normal conditions. However, Breinich et al. observed 

that overexpression of a dominant negative DrpB GTPase mutant, DrpB K72A, but not 

wildtype DrpB interfered with trafficking of microneme proteins such as MIC3 and led to 

their secretion into the PV lumen.7 As previously observed, ddGFP-DrpB WT 

overexpression under these conditions did not interfere with microneme trafficking (Figure 

3-2).  

Immunofluorescence staining of ddGFP-DrpB WT parasites revealed that ddGFP-

DrpB WT showed little to no overlap with the VAC marker CPL or the residual chloroplast-

like organelle called the apicoplast (Figure 3-3 top panels). However, ddGFP-DrpB WT 

did colocalize with ELC markers, most prominently with proM2AP (the immature proform 

of the micronemes protein M2AP) and partially with NHE3 (a vacuolar type Na+/H+ 

exchanger). This suggests that DrpB localizes to the ELCs in addition to the TGN but may 

FIGURE 3-2 Expression of dominant negative, but not wildtype ddGFP-DrpB leads to MIC3 secretion into 
the PV lumen. A, Representative images for lack of aberrant secretion of MIC3 into the PV lumen in ddGFP-DrpB 
WT and ddGFP-DrpB K72A dominant negative mutant parasites. Synchronously-infected cells were treated with 
1µM Sh-1 or the vehicle control ethanol (EtOH) for 6h, partially permeablized with 0.02% saponin to allow staining 
of the PV lumen but not the parasite interior and stained with antibodies against MIC3 and as a positive control for 
PV lumen staining, TgPI-1. B, Quantitation of aberrant MIC3 secretion into the PV lumen in ddGFP-DrpB WT 
parasites treated with 1µM Sh-1 for the last 0.5, 1 or 6 h of infection or 6h with EtOH and fixed at 6 h post-invasion 
or ddGFP-DrpB K72A parasites treated with 1 µM Sh-1 for 6h as a positive control. Shown is percentage of TgPI-
1+ vacuoles that are MIC3+, at least 100 vacuoles scored in each of two biological replicates. One-way ANOVA with 
Dunnet’s test for multiple comparisons to the EtOH control, only significant results shown. Bars represent means, 
error bars represent standard deviation, *p<0.05. All scale bars: 2 µm. 
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show a slightly different localization to GalNac-YFP, which most prominently colocalized 

with NHE3 (Figure 2-1). Consistent with this, DrpB showed dynamic interaction with the 

TGN/ELC marker GalNac-YFP, sometimes showing a high degree of colocalization and 

in other cases showing partial or no overlap (Figure 3-3). Colocalization of DrpB with 

ELCs was confirmed by antibody staining of endogenous DrpB in wildtype (RH) parasites, 

suggesting overexpression under these conditions also did not cause mislocalization of 

ddGFP-DrpB WT (Figure 3-3 bottom panels). Taken together, these findings suggest that 

ddGFP-DrpB WT is not restricted to the TGN and colocalization of ingested protein with 

ddGFP-DrpB WT cannot be used to conclusively determine if ingested protein traffics 

through the TGN. Nevertheless, a role for DrpB in T. gondii endocytic trafficking was 

investigated. 

 

3.3.2 Ingested protein colocalizes with DrpB 
To determine if DrpB plays a role in endocytic trafficking in T. gondii, we first 

investigated whether DrpB significantly colocalized with ingested host mCherry using the 

Figure 3-3. DrpB localizes to the TGN and ELCs. Representative images for localization of DrpB in RH∆hx 
ddFKBP-GFP-DrpB WT and RH or RH GalNac-YFP parasites. Parasites were synchronously invaded into HFF 
cells and fixed at 3 h post-invasion. ddGFP-DrpB WT parasites were treated with 0.8 µM Sh-1 for the last 30 min of 
infection, RH and RH GalNac-YFP (GalNac image only) parasites were stained with DrpB antibodies (αDrpB). 
Parasites were stained with DAPI to label the apicoplast (blue arrow heads) or antibodies to label CPL, NHE3 or 
proM2AP. Images are representative of two biological replicates for RH and RH GalNac-YFP and three biological 
replicates for ddGFP-DrpB parasites. 
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host protein ingestion assay as depicted in Figure 3-4A. Chinese hamster ovary (CHO-

K1) cells expressing cytosolic mCherry were synchronously infected with ddGFP-DrpB 

WT parasites to allow ingestion of host cytosol and then purified at 3 h post-invasion. The 

infected cells were treated with and 0.8µM Shield-1 to induce stabilization of ddGFP-DrpB 

WT or the vehicle ethanol (EtOH). Infected cells were also treated with morpholinurea-

leucine-homophenylalanine-vinyl phenyl sulfone (LHVS) or the vehicle control DMSO. 

LHVS is an inhibitor of CPL, a VAC-localized protease that drives degradation of ingested 

host protein, to enhance detection of ingested protein.22 In samples where LHVS-

Figure 3-4. Ingested protein colocalizes with DrpB. A, Experimental design for detection and localization of 
ingested host cytosolic protein in ddGFP-DrpB WT parasites. CHO-K1 cells were transiently transfected with a 
plasmid encoding cytosolic mCherry fluorescent protein 18-24 h before synchronous invasion for 10 min, allowed 
to ingest host cytosol for 3 h, and purified before staining with DAPI to label the apicoplast and analysis by 
fluorescence microscopy. Parasites were treated with LHVS or DMSO for 36 h (pretreated with 1µM LHVS or the 
vehicle control DMSO for 36 h before infection and then for the entire 3 h infection period) or 30 min (50µM LHVS 
or 0.05% DMSO at 2.5h post-invasion) to enhance detection of ingested mCherry. Parasites were also treated with 
0.8µM Sh-1 or EtOH at 2.5h post-invasion to induce stabilization or ddGFP-DrpB WT. B, Ingestion in ddGFP-DrpB 
WT parasites treated as in A. Shown is percentage of mCherry positive parasites, at least 200 parasites analyzed 
per condition for each of three biological replicates for 36 h LHVS treatment and 2 biological replicates for 30 min 
LHVS treatment, Dunnet’s test for comparison of DMSO and LHVS treated samples, one-way ANOVA with Tukey’s 
multiple comparisons for comparison of 36h DMSO and LHVS-treated samples. C and D, Quantitation of 
colocalization of ingested mCherry with ddGFP-DrpB WT or the apicoplast from LHVS/Sh-1 treated parasites in B. 
At least 30 ingested mCherry puncta per marker, unpaired two-sided t-test. E, Representative images for 
colocalization of ingested mCherry and ddGFP-DrpB WT in parasites analyzed in D (top) and E (bottom). All scale 
bars: 2 µm, bars represent means, error bars represent standard deviation, *p<0.05 **p<0.01, ****p<0.0001, ns is 
not significant. 
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dependent accumulation of host-derived mCherry is observed, ingestion is considered to 

be active and localization can be assessed. Colocalization of ingested proteins with the 

ELC marker proM2AP was examined with both prolonged LHVS treatment (+LHVS 36h: 

36 h pre-treatment and 3 h treatment during the experimental infection with 1 µM LHVS), 

which allows detection of both recently ingested and accumulated host protein and brief 

LHVS treatment (+LHVS 30 min: 50 µM LHVS for the last 30 min of infection), which 

allows detection of only recently ingested host protein. The level of colocalization between 

ingested host protein and proM2AP was similar under both treatment conditions (36h in 

Figure 2-2D: 30.1±8.2% and 30 min in Figure 2-12D: 35.9±1.3%), suggesting both 

methods are valid. Therefore, both LHVS treatment conditions were tested for DrpB 

colocalization. Following purification, the apicoplast, an apical organelle that is distinct 

from the endolysosomal system, was stained with DAPI as a negative control to test for 

random colocalization.  

Ingestion was found to be active in the ddGFP-DrpB WT parasites, and the 

percentage of mCherry+ parasites was not significantly different when comparing ethanol 

and Shield-1 treatments indicating that overexpression of DrpB under these conditions 

did not interfere with ingestion (Figure 3-4B). Localization of ingested mCherry was 

determined as the percentage of ingested mCherry puncta overlapping with ddGFP-DrpB 

WT puncta or the apicoplast (%Colocalized). Ingested protein colocalized significantly 

with ddGFP-DrpB WT when compared to the apicoplast, and the level of colocalization 

was similar whether parasites were treated with LHVS for 36 h (23.3±6.5%) or 30 min 

(24.2±3.2%) (Figure 3-4 C through E). This suggests that DrpB could promote endocytic 

trafficking in T. gondii in addition to its role in promoting exocytic trafficking of a subset of 

microneme and rhoptry proteins. 

 

3.3.3 DrpB is not required for endocytosis of host cytosol 
To determine is DrpB plays a role in endocytic trafficking in T. gondii, we first 

investigated whether DrpB promotes fission of endocytic vesicles containing host 

cytosolic mCherry at the plasma membrane. If DrpB plays this role, then interfering with 

DrpB function should inhibit uptake of host cytosol across the parasite plasma membrane 

and reduce the percentage of mCherry+ parasites. To test this, an inducible dominant 
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negative DrpB mutant was expressed to interfere with DrpB function using RH∆hx 

ddFKBP-GFP-DrpB K72A (ddGFP-DrpB K72A) parasites. When treated with the vehicle 

control ethanol, these parasites are essentially wildtype, but addition of Shield-1 stabilizes 

ddGFP-DrpB K72A, a GTPase mutant shown to interfere with dynamin function in 

endocytosis in other organisms.21 Prolonged, overnight treatment with Shield-1 in this 

strain leads to aberrant secretion of microneme and rhoptry proteins into the PV lumen, 

depletion of microneme and rhoptry organelles and non-invasive parasites.7 To avoid 

issues with invasion for the ingestion assay, Shield-1 treatment was optimized to induce 

dominant negative effects in short periods of time using MIC3 secretion into the PV lumen 

as in Figure 3-2. A significant percentage of vacuoles were positive for MIC3 staining in 

the PV lumen within 3 but not 2 h of 1µM Shield-1 treatment when compared to the 

ethanol treated control (Figure 3-5A and B). Therefore, ingestion assays were performed 

with ddGFP-DrpB K72A parasites as in Figure 3-4A with 30 min LHVS treatment to 

observe recently ingested protein and Shield-1 treatment for up to 3 h to induce 

expression of ddGFP-DrpB K72A. Following harvest and fixation, the percentage of 

mCherry+ parasites was determined by fluorescence microscopy. 

Figure 3-5. DrpB is not required for endocytosis of ingested protein. A, Representative images for aberrant 
secretion of MIC3 into the PV lumen in ddGFP-DrpB K72A parasites with the addition of Shield-1 (Sh-1), but not 
the vehicle control ethanol (EtOH). Synchronously-infected cells were treated with 1 µM Sh-1 or EtOH for the last 
5 h of infection, fixed at 6 h post-invasion, partially permeablized with 0.02% saponin to allow staining of the PV 
lumen, but not the parasite interior, and stained with antibodies against MIC3 and as a positive control for PV lumen 
staining, TgPI-1. Scale bars: 2 µm. B, Quantitation of aberrant MIC3 secretion into the PV lumen in ddGFP-DrpB 
K72A parasites prepared as in A and treated with 1µM Shield-1 (Sh-1) for the last 2, 3 or 5 h of infection or 5 h for 
EtOH. Shown is percentage of TgPI-1+ vacuoles that are MIC3+, at least 100 vacuoles scored in each of 3 biological 
replicates. One-way ANOVA with Dunnet’s test for multiple comparisons to the EtOH control. C and D, Quantitation 
of mCherry ingestion in ddGFP-DrpB K72A and RH parasites. Experiments were conducted as in Figure 3-2A, 
using CHO-K1 imCherry cells treated with 2 µg/mL doxycycline for 96h. Infected cells were treated with 0.2% DMSO 
or 200 µM LHVS for 30 min and 0.1% EtOH or 1µM Sh-1 for the indicated amounts of time in C, and 3 h in D. 
Shown is percentage of mCherry positive parasites, with at least 200 parasites analyzed for each of 2 biological 
replicates for DMSO+Shield-1 in C, and at least 3 biological replicates for all other samples. One-way ANOVA with 
Dunnet’s test for multiple comparisons of LHVS+EtOH treated samples to the DMSO+EtOH treated control are not 
shown, but all comparisons are significant. Unpaired, two-sample t-tests for comparison of EtOH and Sh-1 treated 
samples shown. All bars represent means and error bars represent standard deviation. **p<0.01, ***p<0.001, ns is 
not significant. 
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LHVS-dependent accumulation of mCherry was observed in the ethanol treated 

control parasites, confirming that ingestion is active in this parasite strain (Figure 3-5C). 

Interestingly, parasites treated with LHVS and Shield-1 showed a significant increase in 

the percentage of mCherry+ parasites compared to those treated with LHVS and ethanol 

(Figure 3-5C). A similar increase was not observed in DMSO-treated ddGFP-DrpB K72A 

parasites or in wildtype RH parasites treated with Shield-1, suggesting the increased 

accumulation of ingested protein was not due to defects in the turnover of ingested protein 

or off-target effects of Shield-1 itself (Figure 3-5C and D). Taken together, this suggests 

that DrpB is not required for fission of endocytic vesicles at the plasma membrane but 

may indirectly restrict the rate of ingested protein endocytosis. 

 

3.3.4 DrpB is not required for downstream trafficking to the VAC 

DrpB could also play a role in downstream trafficking of ingested proteins at the 

TGN or ELCs. In this case, interfering with DrpB function will interfere with delivery of 

ingested protein to the VAC, reducing colocalization of ingested mCherry with VAC 

markers and potentially preventing its degradation. Efficient turnover of ingested mCherry 

in parasites treated with DMSO and Shield-1 in Figure 3-5C suggested that endocytic 

trafficking to the VAC was not disturbed. To confirm this, the localization of ingested 

mCherry was determined in LHVS-treated parasites from Figure 3-5C. Following 

purification, parasites were stained with DAPI to label the apicoplast, with antibodies 

against proM2AP to label the ELCs, or with antibodies against CPL to label the VAC. As 

previously observed, ingested mCherry showed significant colocalization with proM2AP 

and CPL when compared to the apicoplast in ethanol-treated control samples (Figure 3-

6A). When comparing ethanol and Shield-1 treated parasites, colocalization of ingested 

mCherry with proM2AP and the apicoplast was not affected, but surprisingly 

colocalization with the VAC marker CPL was significantly increased (Figure 3-6A). 

Localization of CPL relative to NHE3, proM2AP and CPB and the overall staining pattern 

of these markers was not altered under the same Shield-1 treatment conditions, excluding 

the possibility that increased colocalization of CPL with ingested mCherry was due to 

redistribution of CPL into multiple endocytic compartments, e.g. the VAC and ELCs 

(Figure 3-6B through D). Taken together, this suggests that DrpB is also not required for 
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downstream endocytic trafficking of ingested protein to the VAC or trafficking of CPL. 

Consistent with this, ddGFP-DrpB K72A showed almost no association with the 

endolysosomal system, maintaining reduced but significant localization with proM2AP, 

but not NHE3, and was not significantly associated with ingested mCherry or CPL (Figure 

3-6A and C through E). This suggests that ddGFP-DrpB K72A may indirectly increase 

colocalization between ingested mCherry and CPL, potentially through enhancing the rate 

of endocytic trafficking to the VAC. Proposed mechanisms for these observations are 

Figure 3-6. DrpB is not required for trafficking of ingested protein to the VAC. A, Quantitation of colocalization 
of ingested mCherry with GFP-DrpB K72A, proM2AP and CPL by antibody staining, or the apicoplast by DAPI 
staining in LHVS+Sh-1 treated ddGFP-DrpB K72A parasites from Figure 3-5C. At least 30 ingested mCherry puncta 
were analyzed per marker for each of 4 biological replicates for CPL and 3 biological replicates for all other markers. 
One-way ANOVA with Dunnet’s test for multiple comparisons of EtOH treated samples to the apicoplast are not 
shown, but proM2AP and CPL comparisons are significant. Unpaired two-sample t-tests for comparison of EtOH 
and Sh-1 treated samples for each marker and comparison of the apicoplast and ddGFP-DrpB K72A in Sh-1 treated 
parasites shown. B, Quantitation of colocalization of CPL with the indicated markers by antibody staining in 
intracellular ddGFP-DrpB K72A parasites synchronously invaded into HFF cells, treated with 0.1% EtOH or 1µM 
Sh-1 for 3 h and fixed at 3 h post-invasion. At least 40 CPL puncta analyzed per marker for each of 3 biological 
replicates. Unpaired two-sample t-tests for comparison of EtOH and Sh-1 treated samples. C and D, Representative 
images for colocalization of ddGFP-DrpB WT or ddGFP-DrpB K72A with the indicated markers by antibody staining, 
quantitated in E. White arrows indicate regions of colocalization. Scale bars: 5 µm. E, Quantitation of colocalization 
of Sh-1 treated ddGFP-DrpB WT or ddGFP-DrpB K72A with the indicated endolysosomal markers by antibody 
staining or the apicoplast by DAPI staining in intracellular parasites. ddGFP-DrpB WT parasites were treated with 
0.8 µM Sh-1 for 30 min and ddGFP-DrpB K72A parasites treated with 1.0 µM Sh-1 for 3 h. At least 40 DrpB puncta 
analyzed per marker, per replicate for 3 biological replicates. One-way ANOVA with Dunnet’s test for multiple 
comparisons of each marker to the apicoplast for each ddGFP-DrpB WT and ddGFP-DrpB K72A parasites, only 
significant results shown. Unpaired two-sample t-tests for comparison of localization in ddGFP-DrpB WT vs K72A. 
All bars represent means and error bars represent standard deviation. *p<0.05, ***p<0.001, ns is not significant. 
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discussed below. Finally, these results provide functional distinction between exocytic 

and endocytic trafficking in T. gondii, with DrpB likely being devoted to exocytic trafficking 

only. 
 
3.4 Discussion 
3.4.1 Does endocytic traffic in T. gondii resemble traffic in plants? 

Previous studies localized DrpB exclusively to the TGN, however, we find that 

DrpB also at least partially localizes to the ELCs. Therefore, colocalization of ingested 

protein with DrpB does not definitively indicate that endocytic trafficking in T. gondii 

involves the TGN as in plants. Extensive overlap DrpB with the ELC marker proM2AP 

and similar levels of colocalization of ingested protein with DrpB (~23-24%) and proM2AP 

(~30-35%) could suggest that DrpB colocalizes with ingested protein primarily in the 

ELCs. However, GalNac-YFP colocalized with ingested protein primarily in an ELC- or 

VAC-like compartment that was degradative in nature and contained CPB despite very 

little overall overlap between GalNac-YFP and VAC markers CPB or CPL (Figure 2-1). 

Whether DrpB colocalizes with ingested protein in a similar compartment was not 

determined but could prove valuable to better define if DrpB colocalizes with ingested 

proteins in the ELCs, TGN or elsewhere. Future studies will also greatly benefit from more 

specific markers of the TGN. 

Expression of the dominant negative DrpB mutant, ddGFP-DrpB K72A, prevents 

delivery of microneme and rhoptry proteins to their respective organelles and leads to 

their secretion into the PV lumen, presumably by interfering with trafficking of microneme 

and rhoptry proteins out of the TGN.7, 18 In this study, we reproduce aberrant secretion of 

the microneme protein MIC3 in the presence of ddGFP-DrpB K72A, but find no defects 

in delivery of ingested proteins to the VAC. Therefore, if ingested protein is delivered to 

the TGN, then subsequent trafficking to the ELCs would occur in a DrpB-independent 

manner. In a model resembling plants, the TGN (and any contents that are not sorted 

away) is thought to mature into multivesicular endosomes that will fuse with the lysosome. 

Ingested host protein trafficking from the TGN to the VAC could resemble trafficking of 

soluble cargoes in plants, which are by default sent to the lysosome in the absence of 

sorting signals.23-26 Alternatively, ingested protein trafficking out of the TGN could require 
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vesicular trafficking like microneme and rhoptry proteins. Soluble microneme and rhoptry 

proteins bind to the sorting receptor TgSORTLR in the TGN lumen, and the AP1 adaptor 

complex is thought to interact with the cytosolic domains of TgSORTLR and 

transmembrane microneme and rhoptry proteins to mediate clathrin coated vesicle 

formation for trafficking to the ELCs.18, 27 Whether ingested host proteins traffic through 

the TGN, require sorting receptors like microneme and rhoptry proteins, or require 

clathrin- or AP1-dependent trafficking remains to be determined. However, whatever the 

mechanism, it is DrpB-independent, which distinguishes endocytic trafficking from 

exocytic trafficking.7 

 

3.4.2 DrpB-independent does not necessarily mean dynamin-independent 
Expression of a dominant negative DrpB did not interfere with ingestion of host 

mCherry or its trafficking to the VAC, suggesting that DrpB is not required for host 

mCherry endocytosis in T. gondii. However, this does not preclude the existence of DrpB-

dependent endocytosis of other substrates. How host mCherry is taken up into endocytic 

vesicles in T. gondii is unclear. T. gondii expresses three dynamin-related proteins DrpA, 

B and C. DrpA localizes to a chloroplast-like organelle of T. gondii called the apicoplast, 

and is required for apicoplast maintenance.28 The domain structure of DrpC, which 

contains only a GTPase domain, most closely resembles dynamins that are involved in 

maintenance of chloroplast division29 and because DrpA maintains the apicoplast, DrpC 

is presumed to be involved in maintenance of mitochondria in T. gondii.18 However the 

localization and function or DrpC are unknown, leaving open the possibility that DrpC 

could drive dynamin-dependent endocytosis in T. gondii. Alternatively, endocytosis of 

host proteins could be dynamin-independent and involve BAR domain proteins or 

CtBP/BARS, which have established roles in membrane fission.30 

 

3.4.3 Expression of ddGFP-DrpB K72A enhances T. gondii endocytosis 
Interestingly, expression of ddGFP-DrpB K72A enhanced endocytosis and 

delivery of ingested protein to the VAC. While this could indicate that DrpB directly inhibits 

endocytic trafficking, this enhancement is likely indirect given the lack of interaction of the 

dominant negative mutant ddGFP-DrpB K72A with ingested mCherry or the 
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endolysosomal system. ddGFP-DrpB K72A could sequester binding partners that are 

involved in DrpB-dependent exocytic trafficking along with liberating other partners. For 

example, blocking exocytic trafficking from the Golgi in mammalian cells leads to an 

increase in CLIC/GEEC endocytosis by freeing up the shared GTPase Arf1.31 Dynamin 

hydrolyzes GTP to GDP during membrane fission and GDP is exchanged for GTP to 

reactivate dynamin either spontaneously or through interaction with guanine nucleotide 

exchange factors.32, 33 ddGFP-DrpB K72A is defective in GTP binding and hydrolysis and 

should decrease pools of GDP-bound DrpB.7, 21 Therefore, ddGFP-DrpB K72A 

expression could lead to increased rates of endocytic trafficking by increasing free pools 

of guanine nucleotide exchange factors required for endocytic trafficking. Alternatively, 

both DrpB-dependent and DrpB-independent endocytosis could exist, and shutdown of 

DrpB-dependent endocytosis could lead to upregulation of DrpB-independent 

endocytosis. Consistent with this, knockdown of core structural proteins required for 

endocytosis via caveolae (a dynamin-dependent endocytic pathway) leads to 

upregulation of the dynamin-independent CLIC/GEEC endocytic pathway.34 

Understanding the mechanisms that underlie T. gondii endocytosis should be a key focus 

going forward, especially understanding mechanisms distinguishing exocytic and 

endocytic trafficking.  This study provides the first glimpse into this aspect of T. gondii 

biology and suggests that DrpB is likely reserved for secretory trafficking only. 

 

3.5 Materials and methods 
Host Cell and Parasite Culture 
Cells and parasites were maintained at 37˚C with 5% CO2 in a humidified incubator. CHO-

K1 cells (ATCC® CCL-61™) were maintained in Ham’s F12 supplemented with 10% 

Cosmic Calf serum, 20 mM HEPES, and 2 mM L-glutamine. CHO K1 cells expressing 

mCherry under a tetracycline-inducible promoter (CHO imCherry cells), were maintained 

in Ham’s F12 supplemented with 10% Cosmic Calf serum, 20 mM HEPES, 2 mM L-

glutamine, 200µg/mL hygromycin B (Invitrogen, Cat# 10687010) and 400 µg/mL geneticin 

(Invitrogen, Cat# 10131035). HFF cells (ATCC® CRL-1634™) were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% Cosmic Calf 

serum, 20 mM HEPES, 2 mM L-glutamine, and 50µg/ml penicillin/streptomycin. 
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Toxoplasma gondii parasites were maintained by serial passaging in HFF cells. RH∆hx 

ddFKBP-GFP-DrpB WT and RH∆hx ddFKBP-GFP-DrpB K72A parasites were kindly 

provided by Dr. Markus Meissner of University of Glasgow.7 RH∆hx ddFKBP-GFP-DrpB 

WT parasites had lost transgene expression in a significant portion of the population and 

were subcloned by limiting dilution to obtain a 100% GFP+ population. 

 

Chemicals and Reagents  
Morpholine urea-leucyl-homophenyl-vinylsulfone phenyl (LHVS) was kindly provided by 

Dr. Matthew Bogyo at Stanford University. LHVS powder was dissolved in DMSO, and 

applied with a final DMSO concentration of 0.1-0.2%. Shield-1 was purchased from 

Clontech, resuspended in ethanol to a concentration of 1 µM and added to cultures with 

a final ethanol concentration of 0.08-0.1%. 

 

Immunofluorescent Antibody Labeling 
Purified parasites or chamberslides were fixed with 4% formaldehyde for 20 min, and 

washed 3 times with PBS for 5 min each. Slides were then permeabilized with 0.1% 

TritonX-100 for 10 min, rinsed three times in PBS, blocked with 10%FBS/0.01% Triton X-

100/PBS, and incubated in primary antibodies diluted in wash buffer (1% FBS/1% 

NGS/0.01% Triton X-100/PBS) for 30 min to 1 h at room temperature. Primary antibodies 

used include affinity purified rabbit anti-CPL (1:100)35, mouse anti-CPB (1:100)4, rat anti-

DrpB (1:200) kindly provided by Dr. Peter Bradley at University of California Los Angeles7, 

affinity purified rabbit anti-proM2AP (1:400)2, guinea pig anti-NHE3 (1:500) kindly 

provided by Gustavo Arrizabalaga36, rabbit anti-TgPI-1 (1:500)37, and mouse anti-MIC3 

(1:500) kindly provided by Jean-Francois Dubremetz38, 39. Slides were washed three 

times with wash buffer and incubated in Alex Fluor goat anti-mouse, anti-rabbit, anti-rat 

secondary antibody (1:1000) (Invitrogen Molecular Probes) in wash buffer for 1 h at room 

temperature. Slides were washed three times with wash buffer and mounted in Mowiol 

before imaging. 
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Transfection of CHO-K1 Cells 
CHO-K1 cells that were 70-80% confluent, were transfected with 2 µg of pCMV mCherry 

N3 plasmid, kindly provided by Dr. Jonathan Howard Insituto Gulbenkian de Ciecia40. The 

X-TREMEGENE 9 Transfection Reagent (Roche, Cat# 6365787001) was used at a 3:1 

ratio of plasmid to transfection reagent in Opti-MEM (Gibco, Cat#31985062) in a total final 

volume of 200 µl. CHO-K1 cells were incubated with the transfection mixture overnight at 

37˚C and media was changed before infection at 18-24 h post-transfection. 

 

Synchronized Invasion  
The ENDO Buffer Method of invasion41 was used for synchronous infection with the 

following modifications. Briefly, parasite cultures were purified by scraping, syringing, and 

passing through a 3µm filter and then pelleted by spinning at 1000xg for 10 min. The 

pellet was then resuspended to 1-3x107 parasites per 1 mL in ENDO Buffer (44.7 mM 

K2SO4, 10mM MgSO4, 106mM sucrose, 5 mM glucose, 20 mM Tris–H2SO4, 3.5 mg/ml 

BSA, pH 8.2) for infection of 35 mm dishes, and 0.3-1x107 parasites per 1 mL ENDO 

Buffer for infection of 8-well chamber slides. Host cells were rinsed once with ENDO 

Buffer, and then 1 mL of ENDO Buffer-parasite suspension was added to each 35 mm 

dish or 100µl of ENDO Buffer-parasite suspension was added to each chamber of an 8-

well chamber slide. Parasites were allowed to settle at 37˚C for 10 min before the ENDO 

Buffer was gently removed and replaced with twice the volume of Invasion Media (Ham’s 

F12/3% Cosmic Calf Serum/20 µM HEPES). Parasites were allowed to invade at 37˚C 

for 10 min before washing three times with warm media to remove uninvaded parasites. 

Infected cells were incubated at 37˚C until ready for purification or fixation. 

 

Protease Protection Assay 
Protease protection assay was performed as in Dou et al.22 Briefly, purified parasites were 

pelleted for 10 min at 1000xg at 4˚C, supernatant was aspirated, and the pellet 

resuspended in 250 µl of freshly prepared 1 mg/mL Pronase (Roche, Cat# 

10165921001)/0.01% Saponin/PBS and incubated at 12˚C for 1 h. 5 mL ice cold PBS 

was added to stop the reaction. 
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Intracellular Fluorescent Protein Acquisition Assay 
Host cells expressing cytosolic mCherry were obtained by with transiently transfecting 

CHO-K1 cells with pCVM mCherry N3 plasmid or treating CHO-K1 imCh cells with 2 

µg/mL doxycycline (Clontech, Cat# 63111) for 96 h. Cytosolic mCherry expressing cells 

were then synchronously invaded with T. gondii parasites by the ENDO Buffer method, 

treated with LHVS or equal volume of DMSO for the indicated time prior to harvest, and 

purified at the indicated times post-invasion as previously described.22 For ddGFP-DrpB 

strains, EtOH or Shield-1 was added for the indicated amounts of time prior to harvest to 

induce DrpB WT or K72A expression. All subsequent harvesting steps are performed on 

ice or at 4˚C unless otherwise noted. Infected cells were washed twice with ice-cold PBS 

to remove any extracellular parasites, and intracellular parasites were liberated and 

purified by scraping and syringing with a 5/8” 25g needle before passing through a 3 µm 

filter. Parasites were then subjected to the protease protection assay, pelleted by spinning 

at 1000xg for 10 min and washed three times in ice cold PBS before depositing on Cell-

Tak (Corning, Cat# 354240) coated chamber slides. Parasites were fixed and stained 

with the indicated antibodies.  

 
Assessment of ingestion and localization 
Imaging was performed at 63x with an AxioCAM MRm camera-equipped Zeiss Axiovert 

Observer Z1 inverted fluorescence microscope. Ingestion of host mCherry was scored 

manually as mCherry-positive or mCherry-negative. Colocalization of ingested mCherry 

and endolysosomal markers was scored manually with each individual puncta of ingested 

mCherry or endolysosomal marker signal being scored using a binary measure of 

colocalized or not. This gives a readout of percent puncta colocalized with a given 

endolysosomal marker within each experiment. Ingested mCherry or endolysosomal 

marker puncta were scored as colocalized if they showed any overlap, and there was no 

differentiation between complete or partial colocalization. 

 

Detection of MIC3 Secretion into the PV 
HFF chamber slides were synchronously invaded with ddFKBP-GFP-DrpB WT or K72A 

parasites by the ENDO Buffer Method and treated with ethanol or Shield-1 for the 
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indicated amounts of time immediately prior to fixation at 6 h post-invasion. Chamber 

slides were fixed and stained for MIC3 and TgPI-1 as described above, except cells were 

partially permeablized with 0.02% w/v saponin for staining of the PV lumen but not the 

parasite interior. Cells were then blocked with 10%FBS/PBS, and incubated in primary 

and secondary antibodies diluted in wash buffer without detergent (1% FBS/1% 

NGS/PBS) to stain MIC3 as a representative microneme protein and the dense granule 

protein TgPI-1 as a control stain for the PV lumen. %MIC3+ vacuoles were determined 

by scoring of TgPI-1+ vacuoles for MIC3 staining. 

 

3.6 Notes and notable contributions 
Data in this chapter was published in Traffic: 
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Chapter 4 
Discussion 

 
4.1 Overview 

Cathepsin L (CPL)-deficient parasites exhibit virulence defects in both the acute 

and chronic stages of infection.1, 2 While we do not understand the exact contribution of 

host protein ingestion to virulence since CPL contributes to degradation of both proteins 

acquired from the host cell and parasite-derived proteins, these virulence defects suggest 

that ingestion pathway could be an important source of novel drug targets. Further, 

Plasmodium spp. have an analogous endocytic pathway for ingestion of host cytosol that 

is essential for scavenging of amino acids, but the mechanisms of this pathway are poorly 

understood.3 Therefore, a better understanding of the T. gondii ingestion pathway could 

be useful for development of novel therapeutics for toxoplasmosis and could serve as a 

model to understand host protein ingestion in Plasmodium spp.  

Prior to these studies, we knew that proteins from the host cell cytosol were taken 

up into T. gondii and degraded in the lysosome-like VAC. Acquisition of host proteins 

required GRA2, a structural component to the intravacuolar network (IVN), and 

degradation of the ingested protein required the VAC-localized protease CPL.2 Our 

hypothetical model can now be updated based on data in Chapters 2 and 3 (Figure 4-1). 

First, host proteins are rapidly ingested within 7 minutes post-infection, when IVN tubules 

are not yet established, suggesting IVN is not required for ingestion. Once taken up into 

the parasite, ingested host proteins are trafficked through the endosome-like 

compartments (ELCs), where they intersect with exocytic trafficking to the micronemes, 

and reach the VAC within 30 minutes for degradation. Whether endocytic cargoes are 

also trafficked through the trans-Golgi network (TGN) as in plants remains unclear since 

typical TGN markers in the field, GalNac and DrpB, localized to both the TGN and ELCs. 

Definitive mechanistic insight is still elusive, but DrpB is not required for endocytic 
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trafficking across the parasitophorous vacuole membrane (PVM) and parasite plasma 

membrane or for downstream trafficking to the VAC. 

Remaining gaps in our hypothetical model that should be addressed in future work 

will be discussed in this chapter (Figure 4-1). Phenotype scores from a CRISPR-based 

screen knocking out every gene in the T. gondii genome will also be discussed as a guide 

for which targets could be particularly fruitful (Table 4-1).4 Phenotype scores indicate the 

relative contribution of a gene to parasite fitness under normal growth conditions in vitro. 

A negative score indicates that loss of the gene decreases fitness, and a positive score 

indicates that loss of the gene confers an advantage relative to the entire population of 

knockouts. Although the fitness scores do not indicate involvement in T. gondii 

endocytosis, from a practical point of view, genes that are most important for parasite 

survival would be most likely to lead to discovery of druggable targets. Clathrin, DrpB, 

Rab5A and Rab5C are required for microneme and rhoptry organelle biogenesis and are 

therefore essential. For reference, they have phenotype scores of -4 to -5 (Table 4-1).4-7 
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Figure 4-1. Working model for host protein ingestion and overview of Chapter 4 discussion of ongoing work 
and future directions. Note Section 4.6 and 4.7 are not included in this figure. Section 4.6 will address tools to be 
used and/or developed for studying the targets discussed in Sections 4.2-4.5. Section 4.7 will address the possible 
roles of the endocytosis in T. gondii. 
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Table 4-1. Phenotype scores for genes potentially involved in T. gondii endocytosis.  
 

GeneID 
Protein 
Name Domain/Complex Predicted (?)/Known Function Phenotype 

Score4 

TgGT1_290950 Clathrin Heavy Chain 
Interacts with AP-1 mu1 at TGN8, 
promotes microneme and rhoptry 

trafficking at the TGN 5 
- 4.77 

TgGT1_221940 

AP2 

alpha subunit 

Clathrin adaptor for endocytosis? 9 

- 4.32 

TgGT1_240870 beta2 subunit - 2.83 

TgGT1_230920 mu2 subunit - 1.60 

TgGT1_313450 sigma-1 subunit - 2.88 

TgGT1_320760 Hypothetical  BAR/IMD-like 
Domain Promote membrane curvature? 0.56 

TgGT1_259720 Hypothetical  BAR/IMD-like 
Domain Promote membrane curvature? - 4.55 

TgGT1_216030A Hypothetical  ENTH/VHS Domain Promote membrane curvature, clathrin 
adaptor protein? - 0.67 

TgGT1_227800 TgEPS15 Eps15 Homology 
Domain 

Clathrin-mediated endocytosis 
nucleation/scaffold protein? -3.19 

TgGT1_214180 TgEpsL ENTH Domain 
Interacts with TgAP-1 at TGN but likely 
not AP-2, formation of clathrin coated 

vesicles in secretory trafficking8 
-0.52 

TgGT1_213370 Frm3 Actin-binding Actin nucleation during endocytosis?10 -2.79 

TgGT1_267045 Hypothetical 
Ras 

superfamily/Rho 
GTPase 

Regulation of actin during 
endocytosis? 0.81 

TgGT1_249170 Hypothetical 
Ras 

superfamily/Rho 
GTPase 

Regulation of actin during 
endocytosis? -0.79 

TgGT1_233300 Hypothetical RhoGAP Regulation of actin during 
endocytosis? 1.52 

TGGT1_321620 DrpB GTPase Microneme and rhoptry trafficking at 
the TGN6 -4.91 

TgGT1_270690 DrpC GTPase Mitochondrial maintenance?5 -4.54 

TgGT1_ 267810 Rab5A GTPase Microneme and rhoptry trafficking at 
the TGN/ELCs 7 -4.48 

TgGT1_ 207460B† Rab5B GTPase Undefined7, recycling to plasma 
membrane?  0.55 

TgGT1_ 207460A† Rab5B GTPase Undefined7, recycling to plasma 
membrane?  -1.35 

TgGT1_ 219720 Rab5C GTPase Microneme and rhoptry trafficking at 
the TGN/ELCs 7 -4.24 

TgGT1_248880 Rab7 GTPase Undefined7, fusion with the lysosome?  -2.67 

TgGT1_230220 Vps11 CORVET/HOPS 

Exocytic trafficking to the micronemes 
and rhoptries11, biogenesis of the 
VAC11, endocytic trafficking through 
Rab5 and Rab7 compartments to the 
VAC? 

-4.09 
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GeneID 

Protein 
Name Domain/Complex Predicted (?)/Known Function Phenotype 

Score4 

TgGT1_320670 Vps16 CORVET/HOPS 
Exocytic trafficking to the micronemes 
and rhoptries? Endocytic trafficking 
through Rab5 and Rab7 compartments 
to the VAC? 

-4.82 

TgGT1_289730 Vps18 CORVET/HOPS 

Exocytic trafficking to the micronemes 
and rhoptries11, endocytic trafficking 

through Rab5 and Rab7 compartments 
to the VAC? 

-3.24 

TgGT1_295000 Vps33 CORVET/HOPS 

Exocytic trafficking to the micronemes 
and rhoptries? Endocytic trafficking 

through Rab5 and Rab7 compartments 
to the VAC? 

-4.78 

TgGT1_224270 Vps41 HOPS 

Exocytic trafficking to the micronemes 
and rhoptries? Endocytic trafficking 

through Rab5 and Rab7 compartments 
to the VAC? 

-3.75 

TgGT1_315530 Vps39 HOPS 
Exocytic trafficking to the micronemes 
and rhoptries 11, endocytic trafficking 

through Rab5 and Rab7 compartments 
to the VAC? 

-4.18 

TgGT1_291120 Mon1 SAND1/Mon1-Ccz1 

Rab7 GEF? Exocytic trafficking to the 
micronemes and rhoptries 11, endocytic 

trafficking through Rab5 and Rab7 
compartments to the VAC? 

-4.42 

TgGT1_207960 Ccz1 SAND1/Mon1-Ccz1 

Rab7Gef? Exocytic trafficking to the 
micronemes and rhoptries? Endocytic 

trafficking through Rab5 and Rab7 
compartments to the VAC? 

-3.96 

TgGT1_224710 VSR1 PA domain Undefined(unpublished data), cargo 
recognition for sorting to the VAC? -0.90 

TgGT1_312860 VSR2 PA domain Undefined(unpublished data), cargo 
recognition for sorting to the VAC? -0.09 

 
 
 
 
 
 
 

Note: phenotype scores are color coded from dark red (most essential) to blue (least essential), and hypothetical 
proteins were found based on Interpro search terms. †There are two, separate annotated Rab5B-like genes found in 
the GT1 genome, which is the strain that guide RNAs for the genome-wide CRISPR screen was designed against. 
These genes are TgGT1_207460A and TgGT1_207460B, and neighbor each other on chromosome 1b. This appears 
to be an incorrect annotation in the ToxoDB database, and these likely correspond to the 5’ and 3’ ends of a single 
Rab5B gene. 
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4.2 Ongoing and future work for mechanisms of trafficking across the PVM 
The 40% reduction in ingestion observed in overnight replicated GRA2 knockout 

parasites could be explained by the IVN contributing directly, e.g. ingestion of IVN tubules 

or vesicles derived from the IVN, or indirectly through the role of the IVN in organizing 

parasites in the PV.2, 12 Data in Chapter 2 showed that ingestion begins within 7 minutes 

post-invasion. Since IVN tubules are not generated until about 1 h post-invasion, this 

suggests that the IVN is not directly required for ingestion.13 Consistent with this, 

preliminary studies show that GRA2 is not required for ingestion during the first hour of 

infection before IVN tubules are generated or even at 3 hours post-invasion when IVN 

tubules are generated, but vacuoles are not disorganized (Figure 4-2A). This suggests 

that IVN contributes to 

ingestion indirectly by 

organizing parasites within 

the PV, and host protein-

containing vesicles are likely 

derived from the PVM rather 

than the IVN.  

The hypothetical 

model proposed in Chapter 1 

also suggested that proteins 

in the host cell like the 

Endosomal Sorting Complex 

Required for Transport 

(ESCRT) complex, which 

drives intraluminal vesicle 

formation on host 

endosomes, could aid in 

endocytic trafficking across 

the PVM. The complexes of 

the ESCRT machinery, 

ESCRT-0, -I, -II, -III are 

Figure 4-2. Host ESCRT may contribute to ingestion. A. Ingestion of 
host cytosolic mCherry in CPL knockout parasites that are wildtype (∆cpl) 
or knocked out for GRA2 (∆cpl∆gra2). Ingestion assay performed as in 
Figure 2-2. Shown is percentage of parasites with ingested mCherry, at 
least 200 parasites analyzed per strain per time point for three biological 
replicates. Paired t-test to compare ∆cpl vs. ∆cpl∆gra2 parasites for each 
time point. No significant differences. Performed and analyzed by Olivia 
McGovern. B. Ingestion of host cytosolic Venus in cells expressing 
wildtype or dominant negative Vps4 on ingestion of host Venus. CHO cells 
were transfected with Venus alone (control) or cotransfected with plasmids 
expressing wildtype Vps4A or dominant negative mutants of Vps4A or 
Vps4B, infected with RH or ∆cpl parasites and harvested at 3 h post-
infection. Shown is percent parasites with ingested Venus normalized to 
the cpl knockout control. At least 200 parasites analyzed per condition for 
three biological replicates. One sample t-test to test if values are less than 
100, only significant results shown. *p<0.05, **p<0.01. Performed and 
analyzed by Anna-Lisa Lawrence. C. Model for ingestion across the PVM 
and parasite plasma membrane depicting a role for ESCRT in PVM 
scission. D. GRA14 schematic. SP is signal peptide, TM is transmembrane 
domain. Blue rectangles indicate location of PPPY, PTAP, and YPDL 
motifs for ESCRT recruitment in retroviruses. Bioinformatic analysis 
performed by Dr. Vern Carruthers. 
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sequentially recruited to bend endosomal membranes away from the cytosol, and Vps4 

hydrolyzes ATP to recycle the ESCRT machinery back to the cytosol and to drive scission 

and release of vesicles into the lumen of the endosome.14 We propose that host ESCRT 

could be recruited to the PVM, where it would promote scission of vesicles into the PV 

lumen. Consistent with this, expression of a dominant negative Vps4 mutant in infected 

host cells, which cannot hydrolyze ATP or form intraluminal vesicles, reduces ingestion 

by 40% (Figure 4-2B).15 This suggests that host ESCRT is required for endocytosis 

(Figure 4-2C). It is unclear whether reduction in endocytosis is due to requirement of Vps4 

and/or other ESCRT components sins Vps4 drives membrane scission and ESCRT 

recycling. Future studies will include interference with additional ESCRT components 

through expression of dominant negative mutants or siRNA knockdown.  

How ESCRT could be hijacked by T. gondii is also being explored. Presence of 

the lipid phosphatidylinositol-3-phosphate (PI3P) in endosomal membranes and 

ubiquitinated proteins are responsible for recruiting ESCRT machinery.14 PI3P does not 

appear to be abundant on the PVM and ubiquitinated proteins are not abundantly present 

without interferon gamma stimulation, which is not a necessary condition for ingestion.16, 

17 However, enveloped viruses can bypass these requirements and use ESCRT 

machinery to bud out of the host cell.18 PT/SAP and YPXL motifs in the cytosolic portion 

of HIV GAG directly recruit Tsg101 of ESCRT-I and the ESCRT-associated protein Alix.18 

Alix binds to HIV Gag, Tsg101 and CHMP4 of ESCRT-III.18 The rest of the ESCRT-III 

complex is assembled and recruits Vps4 to mediate scission of HIV particles out of the 

cell.18 Additionally, PPXY motifs in the Gag of retroviruses like Rous Sarcoma Virus recruit 

Nedd4 family ubiquitin ligases.18, 19 How these Nedd4 ubiquitin ligases connect retroviral 

budding with the ESCRT machinery is not well established, but ubiquitination of Gag 

could provide a scaffold for ESCRT assembly at the viral budding site. Alix and the 

ESCRT-I complex both bind to ubiquitin, and mutation of the Alix ubiquitin binding sites 

impairs HIV and EIAV budding.14, 20 Conjugation of ubiquitin to EIAV, which lacks a PPXY 

motif, rescues budding of viruses lacking their YDXL motif in an Alix- and Tsg101-

dependent manner.21 Alternatively, arrestin-related-trafficking proteins (ARTs) may link 

Nedd4 ubiquitin ligases to ESCRT machinery. ARTs are recruited to budding sites for 

Murine Leukemia Virus, they interact with Nedd4 ubiquitin ligases, Alix and Tsg101, and 
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their overexpression inhibits viral budding.22 Interestingly, the dense granule protein 

GRA14 is an integral membrane protein in the IVN and PVM of T. gondii, and the C-

terminal domain, which is exposed to the host cytosol, contains all three of these motifs 

(Figure 4-2D).23 It will be interesting to know if GRA14 is required for ingestion of host 

cytosol and hijacking host ESCRT. Given the roles of the PTAP, YPDL and PPPY motifs 

in retroviruses, Alix, Tsg101, CHMP4 and ARTs should be priorities for dominant negative 

interference and siRNA knockdown experiments to test the role of ESCRT.  

 

4.3 Ongoing and future work for mechanisms of trafficking across the parasite 
plasma membrane  

The proposed site of endocytosis is the micropore, which sometimes shows a 

proteinaceous coat by electron microscopy.24 Since T. gondii lacks caveolins/cavins, this 

coat is likely clathrin, suggesting that clathrin-mediated endocytosis may occur in T. 

gondii.5, 25 However, a bioinformatics search for homologs of genes in the yeast clathrin 

interactome revealed a paucity of effectors required for endocytosis. Clathrin, dynamin, 

actin and an epsin-like protein (TgEpsL) are expressed in T. gondii, and the bioinformatic 

search found homologs for the scaffolding protein EPS15 and the clathrin adaptor 

complex AP2.5 However, there were no obvious homologs for the nucleator intersectin, 

adaptors AP180 or epsin, actin polymerizing and branching proteins N-WASP and Arp2/3, 

Hip1R which links actin to the clathrin coat, or uncoating proteins related to auxillin.5 It 

should be noted that the F-BAR nucleator FCHO1/2 and N-BAR proteins endophillin and 

amphyphysin were not included in this search. Given that clathrin also has not been 

localized to the plasma membrane, this could suggest that clathrin-mediated endocytosis 

does not occur in T. gondii.5  

However, other parasite proteins could substitute for these missing players. 

Additional searching revealed T. gondii encodes two hypothetical BAR domain proteins 

(TgGT1_259720 and TgGT1_320760) and a hypothetical ENTH-domain containing 

protein (TgGT1_216030A) that could participate in membrane bending or nucleation or 

endocytosis like FCHO1/2 (Table 4-1). A recent study in yeast also discovered a clathrin-

independent endocytic pathway that does not require Arp2/3 and instead relies on formin 

and RhoA GTPase.26 T. gondii expresses three formin (Frm) proteins capable of 
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polymerizing actin. T. gondii Frm1 and Frm2 promote parasite motility during invasion.27 

Frm3 is not required for invasion and localizes to a discrete, unidentified structure at the 

apical end of the parasite.10 Frm3 seems like the best candidate given that this localization 

is consistent with the micropore (Table 4-1). Alternatively, T. gondii may not require these 

missing effectors or may have evolved novel effector proteins of its own. For example, 

another protozoan parasite, Trypanosoma brucei, undergoes clathrin-mediated 

endocytosis despite lacking AP2 and encoding a single dynamin that is devoted to 

mitochondrial maintenance but not endocytosis.28, 29 Plants have evolved a unique 

nucleator complex for clathrin-mediated endocytosis called the TPLATE complex.30 

Protein BLAST searches did not reveal homologs of any TPLATE complex members in 

the T. gondii genome, but other yet to be discovered parasite-specific effectors could exist 

and coordinate clathrin-mediated endocytosis.  

It is also possible that ingestion of host proteins by T. gondii could resemble 

clathrin-independent mechanisms and require actin, regulatory Rho family GTPases, 

and/or BAR-domain containing proteins as in the RhoA GTPase-dependent IL-2 receptor 

endocytosis pathway, CLIC/GEEC, or FEME (Figure 4-3B).31-33 Actin could be nucleated 

by a protein like Frm3, and T. gondii has two hypothetical Rho-like GTPases and a 

hypothetical RHOGAP-like protein, TgGT1_267045, TgGT1_249170 and 

TgGT1_233300 respectively (Table 4-1). Alternatively, N-BAR or ENTH domain proteins 

that have amphipathic helices may act independently in membrane scission. The N-BAR 

domains of endophilin and amphiphysin and the ENTH domain of epsin have amphipathic 

helices and are capable of vesiculating liposomes in vitro.34, 35 Also, overexpression of 

epsin can rescue scission of clathrin-coated vesicles when dynamin is knocked down.35 

Whatever mechanism drives endocytosis across the PVM and parasite plasma 

membrane, data in Chapter 3 shows that it does not require DrpB, but host protein 

ingestion could still require dynamin. Toxoplasma expresses two more dynamins-related 

proteins, DrpA and DrpC, which have not been tested in endocytosis. DrpA is responsible 

for the maintenance of the chloroplast-like organelle of the parasite, the apicoplast. DrpC 

is presumed to function in mitochondrial maintenance, but its localization and function are 

undefined and could possibly drive endocytic vesicle fission (Figure 4-3A).7, 36 
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Future studies will include more comprehensive bioinformatic searches for 

homologs of characterized endocytic players. To differentiate between clathrin-

dependent and -independent mechanisms, clathrin, AP2 and actin should be targeted. 

DrpC, the hypothetical BAR-domain containing protein TgGT1_259720, and the putative 

EPS15 homolog TgGT1_227800 could be interesting given their phenotype scores are -

4.54, -4.55, and -3.19 respectively (Table 4-1), indicating they are particularly important 

to parasite survival. Finally, studying these proteins should also give insight into the site 

of endocytosis in T. gondii. We predict that endocytosis occurs at the micropore, but to 

date there are no known markers associated with this elusive structure. Frm3 or AP2 

could be particularly interesting from this point of view given Frm3’s peculiar localization 

and that AP2 is expected to be exclusively dedicated to endocytosis at the plasma 

membrane.37 

 

4.4 Ongoing and future work for mechanisms of trafficking to the VAC 
Localization of GalNac and DrpB to the TGN and ELCs prevented us from 

determining if ingested protein trafficked through the TGN. Future studies will benefit from 

discovery of markers that are restricted exclusively to the TGN. Alternatively, ingested 

protein trafficking could be tracked using correlative light and electron microscopy 

(CLEM), which allows electron microscopy of structures of interest that are identified by 

fluorescence microscopy on a defined grid.38  MiniSOG is a small green fluorescent 

Figure 4-3. Hypothetical models for mechanisms of endocytosis. A. Clathrin-mediated endocytosis or B. 
clathrin-independent CLIC/GEEC-like mechanism of endocytosis, driven by BAR-domain containing proteins and 
actin. Favored proteins, based on phenotype score or proposed function, are inserted into their potentially 
appropriate places as indicated by the legend to the left. Note that actin filaments are depicted as linear and 
orthogonal to the plasma membrane depicting the mechanisms for actin polymerization by formin versus N-WASP 
and Arp2/3, which promotes branched actin. 
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protein that generates reactive oxygen species when exposed to 488nm light, and in the 

presence of diamidobenzidene, will create electron dense deposits that can be detected 

by osmium tetroxide staining by electron microscopy.38 Parasites allowed to ingest 

miniSOG from host cells in a time course like in Chapter 2 could be imaged in this way to 

define the ultrastructural morphology of compartments that contain ingested proteins. For 

example, is the non-digestive compartment occupied at 7 minutes post-invasion really a 

double membrane vesicle like in Plasmodium spp.? Are ingested proteins associated with 

Golgi or TGN-like structures at a later time point? This method could also be coupled with 

immunogold labeling of Rab5, Rab7, or a specific TGN marker to identify specific 

endocytic compartments. 

If ingested host proteins are trafficked through the TGN, it will be interesting to 

identify the mechanism of downstream trafficking to the VAC is. Knockdown of a 

component of the ESCRT-II complex in plants blocks maturation of the TGN into Rab5 

endosomes.39 T. gondii lacks most components of ESCRT, and only expresses the 

ATPase Vps4 and one subunit of ESCRT-III.9 If the TGN is involved in endocytic 

trafficking, subsequent trafficking could involve clathrin coated vesicles as proposed for 

exocytic trafficking to the micronemes and rhoptries. Albeit this would occur in a DrpB-

independent manner as indicated in Chapter 3. 

The roles of Rab5 and Rab7 in endocytic trafficking to the VAC also remain 

untested. Like plants and Plasmodium spp., T. gondii expresses two C-terminally 

geranylated, conventional Rab5s, Rab5A and Rab5C, and one plant-specific, N-

terminally myristoylated Rab5, Rab5B.7, 40, 41  As in plants, the conventional Rab5s show 

nearly perfect colocalization, whereas plant-like Rab5B only partial colocalizes with RabA 

and Rab5C, and also shows surface localization.7, 41 In plants, the conventional Rab5s 

promote endocytic trafficking to the lysosome, whereas the plant-specific Rab5 promotes 

trafficking from a late endosomal compartment to the plasma membrane.41 Rab5A and C 

but not Rab5B promote exocytic trafficking to the micronemes and rhoptries.7, 42 The 

function of Rab5B remains unknown.7 Rab5A and RabC could play dual roles in endocytic 

and exocytic trafficking. Alternatively, Rab5B localization could be consistent with a 

conserved role in recycling to the plasma membrane or endocytic trafficking from the 
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plasma membrane to the ELCs. In this case, Rab5A and Rab5C could be dedicated to 

exocytic trafficking, while Rab5B, could be devoted to endocytic trafficking.  

Based on model systems, subsequent trafficking to the VAC would involve a Rab5 

to Rab7 switch mediated by recruitment of the Rab7 GEF SAND1/Mon1-Ccz1 and 

conversion of the CORVET complex to the HOPS complex.30, 43, 44 T. gondii expresses 

the core subunits shared by the CORVET and HOPS complexes (Vps11, Vps16, Vps18, 

Vps33) and the two HOPS-specific subunits (Vps39,  Vps41), but not the CORVET-

specific subunits (Vps3, Vps8).11 Therefore, whether CORVET functions in T. gondii is 

uncertain. Expression of dominant negative Rab7 does not interrupt microneme and 

rhoptry biogenesis, implying that it is not involved in this exocytic trafficking route.7 

Consistent with a role for CORVET and/or HOPS in trafficking to the VAC, Vps11 

knockdown resulted loss of Rab7 association with endosomes also the absence of CPL 

staining, indicating disruption of the VAC.11 However, in contrast to Rab7, the putative 

Rab7 GEF Mon1 and HOPS-specific subunit Vps39 are required for microneme and 

rhoptry biogenesis.11 It would be interesting to know if Rab7 and Mon1 or HOPS have 

different effects on endocytic trafficking as well. 

Future studies should resolve colocalization with ELCs, which refers to both the 

Rab5 and Rab7 endosomes, by using Rab5 and Rab7 as specific markers. Testing 

Rab5B function would be particularly interesting given its localization and the prospect for 

identifying plant-like features of T. gondii and potentially Plasmodium spp. Finally, studies 

of Rab7 would also be interesting given its phenotype score (-2.67) and possible lack of 

a role in exocytic trafficking to the micronemes and rhoptries. 

 

4.5 Sorting receptors for endocytic cargo 
Data in Chapter 2 showed that endocytic trafficking of ingested proteins and 

exocytic trafficking of microneme proteins intersects in the ELCs and potentially the TGN 

if ingested proteins transit there. How these cargoes are properly sorted to ensure that 

ingested cargo is sent to the VAC for degradation and microneme proteins are delivered 

intact to the micronemes is not clear but sorting mechanisms will be required. In future 

studies, it will be interesting to determine if ingested host proteins require sorting to reach 

the VAC. Endocytic trafficking through TGN and/or ELCs to the VAC could occur by bulk 
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flow like endocytosed solutes or receptor ligands released in the lumen of endosomes in 

mammalian cells.45 This could even occur from the TGN since endocytosed RFP is 

delivered to the TGN in plants, where it mixes with exocytic cargoes, and is delivered to 

the lysosome without any sorting signal or receptors.46, 47 However, secretion of soluble 

proteins into the PV lumen via dense granules is considered to be the default pathway in 

T. gondii. 48, 49 Whether this occurs from the Golgi or TGN is unclear, but the TGN is likely 

give that interference with trafficking of microneme and rhoptry proteins from the TGN, 

e.g. interfering with clathrin or DrpB, leads to their secretion into the PV lumen, 

presumably via dense granules.5, 6, 8, 50 Unless this default secretion occurs from the Golgi 

due to downstream blockage in the secretory pathway, unguided transport to the VAC 

would more likely start in the ELCs. 

On the other hand, endocytic trafficking could require receptors and sorting 

machinery. Receptors at the parasite plasma membrane could recognize parasite 

proteins embedded in the PV-derived membrane of host protein-containing vesicles, 

which would be difficult to identify using a candidate-based approach. Receptors could 

also recognize ingested host protein-containing vesicles in endosomal compartments like 

the TGN or ELCs to assist with sorting to lysosomes. In this case we can look to mannose-

6 phosphate receptor, sortilin and the plant-like vacuolar sorting receptors (VSRs), which 

are the best studied receptors for sorting proteases to the lysosome. 

T. gondii does not have a mannose-6-phosphate receptor but does express sortilin 

(TgSORTLR) and two plant-like VSRs, VSR1 and VSR2 (Table 4-1). TgSORTLR sorts 

microneme and rhoptry proteins from the TGN to the ELCs on their way to their respective 

organelles.50 The role of TgSORTLR in endocytic trafficking to the VAC has not been 

tested, so it is possible that it could act as a sorting receptor that co-transports ingested 

protein vesicles, microneme proteins and rhoptry proteins from the TGN to the ELCs. 

However, this seems unlikely given the lack of colocalization between ingested host 

protein and immature rhoptry proteins, described in Chapter 2.  
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VSR1 and VSR2 could be interesting candidates. 

VSRs are thought to bind soluble lysosomal proteases in 

endoplasmic reticulum via its luminal protease 

associated (PA) domain and escorts them to the TGN 

where they are released for bulk flow trafficking to the 

lysosome.47, 51 From there the VSRs are trafficked to 

Rab5 endosomes, where many predominantly localize, 

and are recycled back to the endoplasmic reticulum or 

Golgi for another round sorting.47, 51, 52 VSRs also have epidermal growth factor repeats 

that can bind calcium, and cargo binding is thought to depends on both calcium and pH.51 

One study found that optimal cargo binding for BP-80 occurred at pH 6.0 when performed 

in the presence of low calcium, and in another study high concentrations of calcium 

stabilized cargo binding at pH as low as 4.0 whereas calcium depletion can trigger cargo 

release independent of pH.53, 54 Interestingly, like mannose-6-phosphate receptor and 

some sortillins, the VSR BP80 also localizes partially to the plasma membrane where it 

participates in endocytosis.55-57 

T. gondii VSR1 and VSR2 do not play roles in trafficking to the micronemes and 

rhoptries (data not shown), and VSR2 predominantly colocalizes with ELCs of T. gondii 

(Figure 4-4).50, 58, 59 The localization of VSR1 is not known. VSR1 and VSR2 are not likely 

to participate in endocytic trafficking if they work the same way in plants, but they may be 

regulated differently since they each have a PA domain but do not appear to have EGF 

domains. How cargo binding and release could work is also difficult to predict given that 

the gradients of calcium concentration and pH within the T. gondii endolysosomal system 

have not been defined. Knockouts of VSR1 and VSR2 are in hand and could be tested 

for defects in ingested protein uptake and downstream trafficking to the VAC. However, 

an unbiased approach to discovering possible receptors for endocytic trafficking may be 

more productive and is described in the next section. 

 
4.6 Tools for testing predictable and unpredictable targets 

Predictions so far are based on what we know about model systems. However, 

discovery of parasite-specific proteins that we cannot predict a role for will be even more 

Figure 4-4. VSR2 colocalizes with 
VP1, an ELC marker. Endogenously 
myc-tagged VSR2 parasite strain 
was generated by Raj Gaji, allowed to 
replicate overnight in HFF cells, fixed 
and stained with anti-myc and anti-
VP1 antibodies as described in 
Chapters 2 and 3.  
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interesting.  Developing a strategy to find these proteins in an unbiased way will be 

important for future work. If studies of roles for conserved endocytic players are 

confirmed, they could be used as handles a proximity-based labelling approaches to 

identify binding partners in live or fixed cells. In proximity labeling using Ascorbate 

Peroxidase (APEX), proteins of interest are fused to ascorbate peroxidase, which in the 

presence of biotin-phenol and hydrogen peroxide, generates biotin-phenoxyl radicals that 

can covalently bind to tyrosine, tryptophan, cysteine, and histidine amino acids of proteins 

within 20 nm.60 Alternatively, if tagging is an issue, biotinylation by antibody recognition 

method (BAR) can be applied in fixed cells.61 In this method, fixed cells are stained with 

antibodies against the protein of interest and secondary antibodies conjugated to 

horseradish peroxidase. In the presence of hydrogen peroxide and biotin-tyramide, 

horseradish peroxidase creates biotin-phenoxyl radicals that can covalently bind to fixed 

proteins in proximity to the antibody-stained protein of interest. Proximity labeling by these 

techniques can be performed in minutes, which should minimize non-specific labeling, 

and biotinylated proteins can then be pulled down using Streptavidin and identified by 

mass spectrometry. For example, players in endocytosis at the parasite plasma 

membrane could be used to identify micropore markers if it is the site of endocytosis, 

some of which may be endocytic receptors. If AP2 is involved in host protein endocytosis, 

it would be expected to bind to endocytosed transmembrane proteins, which would be 

good candidates for endocytic receptors. 

The roles of proteins of interest could be tested using the ddFKBP/Shield-1 system 

as described in Chapter 3 for determining the role of DrpB. Briefly, proteins of interest are 

fused to the ddFKBP destabilization domain, which leads to protein destabilization, 

ubiquitination and proteasomal degradation unless treated with the stabilizing drug 

Shield-1.62, 63 This allows for conditional, rapid, reversible post-translational induction of 

dominant negative mutants. We are also preparing to use the newly developed auxin-

inducible degradation (AID) for conditional protein knockdown. In this system, proteins of 

interest are fused to the auxin-inducible degron peptide, which mediates ubiquitination 

and proteasomal degradation of the protein of interest in response to the plant hormone 

auxin. This allows for conditional, rapid, reversible protein knockdown.64, 65 These 

approaches are advantageous due to their ability to induce protein expression or 
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degradation within a period of hours, which will be especially important for essential genes 

that cannot be knocked out like clathrin and for potentially preventing compensatory 

mechanisms from taking over. They will work well as complementary approaches to 

demonstrate the roles of potential endocytic players in future work. 

 

4.7 The importance of host protein ingestion 
Host cytosol ingestion in Plasmodium spp. parasites is essential for acquisition of 

amino acids.3 Targeting this pathway has been a successful therapeutic strategy.66, 67 T. 

gondii could gain access to arginine, tryptophan and tyrosine via the GRA17/GRA23 

hypothetical nutrient pore, but in the context of the immune response ingestion could be 

required to scavenge these essential amino acids. Interferon gamma, the main driver of 

the immune response against T. gondii, induces expression of indoleamine-dioxygenase, 

which degrades and starves the parasite of tryptophan.68 Further, macrophages infected 

with certain strains of T. gondii undergo parasite-driven activation of the arginine-

degrading enzyme arginase-1, which limits the growth of the parasite.69 In this context, 

the main source of arginine and tryptophan will be bound up in host proteins, which could 

be liberated via ingestion. 

Beyond nutrient acquisition from the host cell, endocytosis could be important for 

cell signaling, membrane turnover, or specifically in the case of T. gondii sensing the host 

cell environment or controlling the immune response.70 Interestingly, the virulence defect 

of cathepsin L (CPL) knockout parasites is completely rescued in the absence of the 

interferon gamma receptor, suggesting that protein degradation in the VAC is somehow 

involved in immune evasion.2 This could be explained by the ingestion pathway providing 

access to essential amino acids like arginine or tryptophan through CPL-dependent 

degradation of ingested proteins when arginase and indoleamine-dioxygenase are 

upregulated during the immune response. Could the parasite sample the host cytosol to 

sense when it is in danger? Ingestion of mCherry from the host cytosol is expected to 

occur by a non-specific bulk flow-like mechanism since T. gondii is not expected to have 

receptors on the PVM that recognize fluorescent proteins. However, the parasite could 

have receptors on the PVM that bind to specific host immune effectors. For example, 

rhoptry proteins on the host cytosolic face of the PVM bind to and inactivate immunity 
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related GTPases and guanylate-binding proteins, interferon-gamma induced immune 

effectors that vesiculate and strip away the PVM, leading to autophagic death of the 

parasite.71-73 

Finally, host cytosol ingestion has been demonstrated in acute stage parasites, but 

whether this process also occurs in chronic stage parasites is unclear. Parasites lacking 

CPL can differentiate into cysts normally, but eventually accumulate autophagosomes 

and die.1 Chronic stage parasites are thought to persist for the lifetime of the host, but are 

not completely dormant and continue to divide.74 Whether autophagosomes accumulate 

because they are not being turned over or are induced in response to starvation for host-

derived nutrients like amino acids is unclear. Current work aims to determine if ingestion 

also occurs in chronic cyst stage parasites. 

 

4.8 Conclusion 
The work in this dissertation has expanded our understanding of endocytosis in 

Toxoplasma gondii, but there is much more to be discovered. As a cell biologist, the 

paucity of conserved endocytic players and the fact that T. gondii performs endocytosis 

across two membranes presents an exciting opportunity to discover potentially novel 

aspects of endocytosis. The analogous endocytic pathway for ingestion of red blood cell 

cytosol in Plasmodium spp. has been a successful therapeutic strategy, but drug 

resistance to nearly every antimalarial treatment is emerging.3, 66, 67, 75 However, very little 

is known about how this pathway works either. It is also not known if other Apicomplexan 

parasites have analogous ingestion pathways, including Cryptosporidum which causes 

serious diarrheal illness that is often not curable in immunocompromised individuals.76 T. 

gondii could serve as a model for understanding these and other apicomplexan parasites 

as well as for the eventual discovery of druggable targets for toxoplasmosis other 

apicomplexan infections. 
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