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This paper studies the role of seekers’ problem specification in crowdsourcing contests for design problems.

Platforms hosting design contests offer detailed guidance for seekers to specify their design problems when

launching a contest. Yet, problem specification in such crowdsourcing contests is something the theoretical

and empirical literature has largely overlooked. We aim to fill this gap by offering an empirically-validated

model to generate insights for the provision of information at contest launch. We develop a game-theoretic

model featuring different types of information (categorized as “conceptual objectives” or “execution guide-

lines”) conveyed in problem specifications, and assess their impact on design processes. Real-world data

is used to empirically test hypotheses generated from the model, and a quasi-natural experiment provides

further empirical evidence for our predictions and recommendations. We show theoretically and verify empir-

ically that, with more conceptual objectives disclosed in the problem specification, the number of participants

in a contest decreases, but the trial effort provision by each participant does not change; with more execution

guidelines disclosed in the problem specification, the trial effort provision by each participant increases, but

the number of participants in a contest does not change. With that knowledge, we are able to formulate

seekers’ optimal decisions on problem specifications. We find that, to maximize the expected quality of the

best solution to crowdsourced design problems, seekers should always provide more execution guidelines,

and only a moderate number of conceptual objectives.

Key words : crowdsourcing contests, problem specification, design, game theory, empirical analysis

1. Introduction

Online crowdsourcing has become a popular channel for sourcing design (creative) products. A

widely used form of organizing the crowdsourced innovation process is the Crowdsourcing Contest,

used for products ranging from web to interior design. Compared with traditional innovation sourc-
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ing approaches, crowdsourcing contests allow seekers to access a large pool of designers, solicit a

larger number of solutions from which to choose, and pay for only the most satisfying solutions.

A typical crowdsourcing contest starts with a seeker specifying a design problem and associated

award(s), based on which designers generate solutions, and compete for the award(s).

We focus on the seeker’s problem specification: how the seeker specifies his design problem at the

launch of his crowdsourcing contest. In the problem specification, a seeker can state his problem

(e.g., he needs a logo for a real estate company), and communicate what he would like the solu-

tions to achieve (e.g., the logo should convey professionalism and reliability; blue color and sharp

edges are preferred). The information provided in the problem specification defines what consti-

tutes a “high-quality” solution in the focal contest, which can potentially affect designer behavior

and contest outcomes. Hence, it is important to understand the role of problem specifications in

crowdsourcing contests.

Yet, the best approach to problem specification is not obvious. At first sight, one may think

seekers should specify their problems in the most thorough manner possible. A detailed problem

specification clarifies what the seeker is looking for. Without it, designers may miss important

points when generating solutions, and they may also face increased uncertainty about how closely

their solutions match the seeker’s objectives. However, an overly specified problem may backfire,

especially when the seeker is not careful about the types of information he provides. By taking a

closer look at seekers’ problem specifications, we find that problem specifications can contain mul-

tiple types of information, which are likely to affect designers’ behavior differently. For example,

a problem specification with a long list of objectives can overwhelm designers. Designers have to

spend more time digesting the list, clarifying design objectives, and creating designs satisfying mul-

tiple objectives; consequently, designers may choose to not incorporate all of the design objectives,

or even choose not to participate.

In this paper, we aim to address the following research questions: (1) provided with different

types of information in a seeker’s problem specification, how do designers decide whether to join

the contest or not, and if so, how do they reflect information from the problem specification in

their design solutions; and (2) how should seekers optimally specify their design problems?

To answer these questions, we first construct a game-theoretical model to capture designers’

behavior given a problem specification. Our model distinguishes different types of information pro-

vided in problem specifications (“professionalism” and “reliability” can be considered as conceptual

objectives that the seeker wants design solutions to achieve, whereas “blue color” and “sharp edges”

as execution guidance that conveys the seeker’s instructions for design details). To assess how such

information influence decisions in designers’ design processes, our model features distinct stages in

design processes, which is based upon an established framework in the qualitative design research
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literature (e.g., Schön (1984, 1988), Cross (2011)), and explicitly captures the design problem fram-

ing, design concept formulating and design trials generating stages designers go through to generate

designs. Our theoretical model predicts that the number of participating designers in a contest

decreases with more conceptual objectives disclosed in the problem specification, because designers

spend more efforts digesting those objectives and creating designs that satisfy those objectives.

In addition, participants’ trial effort provision increases with more execution guidelines provided

in the problem specification, because those guidelines inform designers about certain execution

details, which designers need to otherwise spend efforts deciding on.

The theoretical predictions of our model are empirically tested against a dataset of logo design

contests collected from a major crowdsourcing platform. In addition, we avail ourselves of a recent

“quasi-natural experiment” opportunity that arose on the platform, wherein changes were made

to the platform’s problem specification template. This further strengthens our empirical results’

reliability.

Leveraging our novel, empirically validated game-theoretical model, we offer insight on how

seekers can optimize their problem specifications to maximize the quality of the winning design.

Our analysis suggests that more execution guidance is always beneficial. However, disclosing more

conceptual objectives does not necessarily lead to a better contest outcome, and seekers should

not always disclose all their conceptual objectives. The recent update to the problem specification

template mentioned above directionally confirms these policy recommendations, and generates

additional nuanced insights into the implementation of these recommendations.

Our study makes several contributions. First, it is one of the first papers studying the role of

problem specifications in crowdsourcing contests, which holds great practical relevance. Second,

we theoretically and empirically distinguish between different types of information contained in

problem specifications, i.e., conceptual objectives and execution guidelines, and highlight their

differential effects on designers’ participation behavior and solution quality. Third, we bring findings

from the design research field into the study of crowdsourcing innovation contests. In particular,

we borrow from the qualitative design research literature, and formulate a mathematical model

to capture three distinct stages in design processes. The incorporation of the first two stages,

the design problem framing and design concept formulating stages, which are often omitted in

theoretical models of crowdsourcing contests, is crucial for capturing a more complete picture of

the designers’ design process and the impact of information provided in problem specification on

this process. Finally, we offer empirical evidence from the field to support the predictions and

recommendations from our theoretical model, linking the theoretical and empirical research of

crowdsourcing innovation contests.
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2. Literature Review

Emerging crowdsourcing contests have attracted increasing academic interest from the operations

management community (see Chen et al. (2018) for a summary of the literature). Existing oper-

ations management literature on the design of crowdsourcing contests has looked at the impact

of award structure (Ales et al. 2017b); competition size and open/closed entry (Boudreau et al.

2011, 2016, Ales et al. 2018); joint decision on award and competition size (Terwiesch and Xu 2008,

Körpeoğlu and Cho 2017); contest duration (Korpeoglu et al. 2017); contest stages (simultane-

ous/sequential) (Hu and Wang 2017); and solvers’ choices among coexisting contests (Körpeoğlu

et al. 2017) on the outcome of crowdsourcing contests (e.g., the quality and quantity of the crowd-

sourced solutions). There is also an emerging literature examining the role of information in crowd-

sourcing contests. A few recent studies investigate the impact of the disclosure of intermediate

solutions (Boudreau and Lakhani 2015, Wooten and Ulrich, Bockstedt et al. 2016), and interim

feedback (Jiang et al. 2016, Gross 2017, Wooten and Ulrich 2017, Bimpikis et al. 2017, Mihm and

Schlapp 2018), on contest dynamics and outcomes.

Another important occasion where seekers disclose information to solvers is problem specification.

The information in a problem specification is a major part of what “defines” the contest, and as such

can have a significant impact on participants’ behavior and contest outcomes. Our paper contributes

to the limited literature on the role of problem specifications in crowdsourcing contests. To the

best of our knowledge, the only other study that looks at problem specification in crowdsourcing

contests is Erat and Krishnan (2012). In that paper, the authors study contests where the seeker

starts with a well-defined problem, and solvers choose from a set of known approaches. They focus

on how the completeness of problem specifications helps provide a more precise valuation of those

approaches, which narrows down the solvers’ search by revealing which of the known solutions are

more likely to be successful. By contrast, we study open-ended creative contests, where the seeker

describes the problem, the “approach(es)” to solving it are generated by each expert designer, and

a longer list of specifications may make it more difficult to find a suitable approach. Moreover,

we study how different types of information disclosed in the problem specification affect designers’

entry, design concept formation and design solution generation behavior. Not surprisingly, with

our different model/setting and research focus, we arrive at different managerial insights. Erat

and Krishnan (2012) find that the seeker may not want to fully specify their problem, in order to

increase ambiguity that in turn increases the breadth of search that the solvers undertake within

a set of known solution approaches. By contrast, we model two types of information, and show

that the seeker always wants divulge all his execution guidelines, but might not want to divulge

all his conceptual objectives because an overly long set of objectives may discourage creators

from participating. Furthermore, we use real-world data to empirically test the predictions of our
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theoretical model, which not only helps ensure the validity of the theoretical model, but contributes

to the empirical literature of crowdsourcing contests.

An innovation in our theoretical model of crowdsourcing contests is that our model borrows from

the classic literature in design research and explicitly captures various stages of designers’ solution

generation process. The design research literature (e.g., French et al. (1985), Pahl and Beitz (1988),

Hubka (1989), Roozenburg and Cross (1991)) often portrays the design process as a sequence of

activities, which can be grouped into phases of design problem framing (clarifying objectives),

design concept formulating (generating and refining design concepts), and design trial generating

(embodying designs and detailing designs). The last phase, which corresponds to the stage where

a designer generates actual solutions, is often the focus of analytical models of crowdsourcing

contests in the operations and economics literature. The first two phases are often overlooked,

possibly because they are less visible and more abstract. Researchers in design research realize the

importance of these two phases in the design process, and call for attention to them (Schön 1984,

1988, Pahl and Beitz 1988, Cross 2011). For example, Schön (1988) suggests that design problems

are often “ill-defined”, in that “in a design project it is often not at all clear what ‘the problem’ is”;

hence, in order to solve those problems, “the designer must frame a problematic design situation”,

in which “the goal is set at a high level with clear objectives”. Cross (2011) continuous to stress

the importance of the design concept formulating stage: “a clear concept of how to reach this goal

is devised, ... and the solution details then cascade from the concept”. In this stage, “designers

select features of the problem space to which they choose to attend, and identify areas of the

solution space in which they choose to explore” (Cross 2001). The model to be presented in the

next section reflects all these important stages of the design process, and captures how information

in the problem specification influence designers’ decisions in each of these stages.

3. Theoretical Model

In this section, we construct a theoretical model that characterizes seekers’ and designers’ decisions

in a crowdsourcing design contest. Consider a situation where a seeker (“he”) wishes to source

solutions to a design problem from a group of designers through a crowdsourcing contest. The

seeker has some conceptual objectives in mind (e.g., the design should convey reliability and help-

fulness); each conceptual objective included in a design gives an equal, incremental quality w. (In

Online Appendix EC.4.2 we consider an alternative model in which the conceptual objectives have

diminishing weights.) Apart from the conceptual objectives, the seeker can also provide execution

guidelines (e.g. what color or shape is/is not desired, etc.). Unlike conceptual objectives which

the designer has to interpret, execution guidelines are more straightforward — e.g., “don’t use the

color red”. (See Online Appendix EC.1 for several examples of conceptual objectives and execution
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guidelines in our data.) The sets of all the conceptual objectives and execution guidelines the seeker

has in mind are denoted as Sr and Sg respectively, with the size of the two sets being |Sr| := Sr

and |Sg| := Sg. Given Sr and Sg, the seeker decides which conceptual objectives and execution

guidelines to disclose in his problem specification. (Note that we do not study how seekers come

up with Sr and Sg in the first place.)

The sequence of events in our crowdsourcing contest model is as follows:

• The seeker posts his design request, in which he announces the award amount (denoted by A)

for the contest winner (we consider “single-winner” contests as those are the most common

type of contests in our empirical setting), and specifies his design problem. In this problem

specification, the seeker can specify some or all of his conceptual objectives and execution

guidelines. The sets of disclosed conceptual objectives and execution guidelines are denoted

as Sr (⊆ Sr) and Sg (⊆ Sg) respectively, with the sizes of the two sets being Sr (≤ Sr) and Sg

(≤ Sg).

• Given the design request, designers (“she”) first decide whether to enter the contest or not,

based on their assessment of the expected net payoff they will receive if they join the contest.

Those who decide to enter the contest then go through a design process (to be explained in

Section 3.1) to develop their design submissions, and submit them to the seeker.

• Finally, the seeker evaluates all the submitted designs, claims the best-quality design among

those submissions, and gives the award to the designer of the winning design.

As is common in the crowdsourcing literature (Terwiesch and Xu 2008, Erat and Krishnan 2012,

Körpeoğlu et al. 2017, Ales et al. 2017b), we model designers simultaneously making participation

and other design decisions.

Below we present a mathematical model reflecting a typical design process, drawing on the design

research literature. Using this model, we analyze designers’ behavior in contests in Section 3.2.

3.1. Designers’ Three-Stage Design Process

In the design literature, design processes are often considered to consist of several cognitive steps,

which can be broadly classified into three stages: design problem framing, design concept formulating

and design trial generating (van den Kroonenberg 1986, Cross 2001, 2011). To mathematically

represent these three distinct stages, we formulate a stylized model, with simple functional forms,

that tractably captures the key features of our setting; simplification by assuming functional forms,

to ensure tractability, is an approach widely used in previous theoretical research on crowdsourcing

or open innovation contests (Ales et al. 2017b, Korpeoglu et al. 2017, Mihm and Schlapp 2018).

Next we provide modeling details for each of the three stages in the design process.

Design Stage (I) — Framing the Design Problem. Design problems are nearly always “not all

clear” and “may have been only loosely defined by the client (seeker)” (Cross (2001) p.81). Hence,
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a key aspect of the design process lies in digesting and understanding the conceptual objectives (Sr)

in seekers’ problem specifications. This stage is referred to as the design problem framing stage.

Framing the design problem is effort-consuming (Cross 2001). In reality, conceptual objectives

in a problem statement are often embedded in sentences or paragraphs, as seekers endeavor to

communicate what they are looking for in a design. Designers need to exert efforts to understand

the problem statement text and extract and comprehend the conceptual objectives conveyed. The

more conceptual objectives (Sr) are embedded in the problem specification, the higher effort cost a

solver has to incur in the design problem framing stage. We model this cost as c1Sr. Note that we

assume the problem framing cost increases only with conceptual objectives but not with execution

guidelines in problem specifications, as execution guidelines are mostly objective instructions in

standardized design terms, and are therefore more straightforward for designers to understand.

(Empirical evidence for this assumption is provided in Online Appendix EC.2.)

Design Stage (II) — Formulating the Design Concept. After framing the problem, par-

ticipating designers “select features of the problem space to which they choose to attend”, and

then “identify areas in the solution space where they choose to explore” (Cross 2001). We form a

mathematical model for these two steps: (1) designer i chooses Dr,i (⊆ Sr) to incorporate into her

design(s), with the number of incorporated objectives being ri := |Dr,i|; (2) designer i searches for

a design concept satisfying all conceptual objectives in Dr,i.

We model the cost associated with step (2) as follows. Consider a potential design concept to be

a “sample” (random draw). The probability that a sampled design concept satisfies any particular

conceptual objective is p∈ [0,1]. Assuming the objectives are independent (we consider an extension

capturing the level of overlap across objectives in Online Appendix EC.4.1), the probability of a

sampled design concept being “successful”, i.e., satisfying all ri targeted objectives, is pri . Hence,

in expectation, designer i has to attempt ( 1
p
)ri design concepts until she finds a “successful” one.

If the cost associated with each attempt is c2, the expected cost of the design concept formulating

stage is c2( 1
p
)ri . Note that this cost increases exponentially with the number of objectives designer

i incorporates (ri), which captures the fact that it gets increasingly more challenging to find a

design concept that simultaneously satisfies more objectives.

Design Stage (III) — Generating Design Trials. In the final stage, based on the design

concept identified in Stage II, designers generate design trials, which are submitted to the seeker.

(Hereafter, we use submissions, solutions, and trials interchangeably.) We assume designers incur

a cost of c3 to come up with a design trial — in this stage, designers need to figure out the

execution details, such as shape, color, font, etc., which is effort-consuming. If the seeker provides

execution guidelines, (i.e., recommends designers what fonts, colors, shapes, etc. to use), it will save

designers’ time and effort in determining such details. Hence, we expect the cost of each design
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trial (c3) decreases with more execution guidelines (Sg). Correspondingly, in our model, we assume

c3 = h(Sg), where h(·) is a decreasing function. (We provide empirical evidence for this assumption

in Section 4). Given c3, designer i who decides to generate mi design trials incurs a cost of c3mi in

the design trial generating stage.

For focal designer i, the quality of each trial τ (= 1,2, ...,mi), denoted as Viτ , is assumed to be

the baseline value of designer i’s design concept (vi), plus a quality random shock (εiτ ) (i.e., Viτ =

vi + εiτ ). The baseline quality of designer i’s design concept (vi) is the sum of weights associated

with all its satisfied conceptual objectives, vi = wri. The uncertainty captured by εiτ may come

from seeker taste uncertainty (the perceived quality is often subject to the taste of the seeker)

and trial quality shock (the uncertainty associated with the execution of the design concept). Like

Dahan and Mendelson (2001) and Terwiesch and Xu (2008), we model trial shocks, εiτ ’s, as Gumbel

distributed with mean zero and scale parameter µ, i.i.d across design trials.

3.2. Designers’ Problem

Combining the three design stages discussed above, when participating designer i incorporates ri

conceptual objectives and generates mi design trials, her overall expected cost is:

Ci(ri,mi) = c1 ·Sr︸ ︷︷ ︸
Design Stage (I)

+ c2 · (1/p)ri︸ ︷︷ ︸
Design Stage (II)

+ c3 ·mi︸ ︷︷ ︸
Design Stage (III)

, where c3 = h(Sg); (1)

and the quality of designer i’s best design is:

Vi(ri,mi) = max
τ=1,...,mi

Viτ = max
τ=1,...,mi

(vi + εiτ ) = riw+ max
τ=1,...,mi

εiτ . (2)

We are modeling a single-winner contest, where the seeker’s utility is determined by the quality of

the best design; therefore, if a designer submits multiple designs, only her highest-quality design

matters. Note that we do not explicitly consider designers’ choices on the amount of execution

guidance to follow, because this decision is trivial: designers would always follow all the execution

guidance to lower their design trial generation cost. This is captured by setting c3 = h(Sg).

We now analyze designers’ entry decision, design concept formation and trial effort provision in

a crowdsourcing contest. Consider a focal designer i facing a contest with award A, Sr conceptual

objectives, and Sg execution guidelines. Let j = 1, ...,N( 6= i) index the other designers who would

be i’s opponents participating in the contest, where rj is the number of conceptual objectives j

will incorporate and mj is the number of design trials j will generate. Focal designer i makes

the following decisions: whether to join the contest or not (i.e., a binary entry decision, denoted

by di), how many conceptual objectives to incorporate in the design concept formulating stage

(i.e., a concept formation decision, denoted by ri), how many trials to generate in the design trial
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generating stage (i.e., a trial effort decision, denoted by mi). Designer i makes those decisions to

maximize her expected utility (her expected compensation minus her expect costs):

max
di,ri,mi

Ui(di, ri,mi) = Idi=1 · [Pr(i wins) ·A−Ci(ri,mi)] + Idi=0 · s,

where Pr(i wins) = Pr(Vi >Vj|j=1,...,N( 6=i)) = Pr(Vi(ri,mi)>max{Vj|j=1,...,N(6=i)(rj,mj)}).
(3)

If designer i decides not to join (di = 0), she earns utility s from choosing her outside option.

(In other words, we consider s to be the opportunity cost of joining a contest.) If designer i’s

best design provides the highest value to the seeker (i.e. Vi >Vj,∀j 6= i), she wins the contest and

receives the award A; otherwise, she does not receive anything.

3.3. Designer’s Equilibrium Behavior

Utilizing Equation (3), we solve for designers’ equilibrium behavior. As is common in the crowd-

sourcing literature (Terwiesch and Xu 2008, Erat and Krishnan 2012, Körpeoğlu et al. 2017, Ales

et al. 2017b), we focus on symmetric pure strategy Nash equilibrium throughout the paper. In our

analysis, we assume that the number of potential participants is sufficiently large that participants

will enter the contest as long as it is profitable to do so. That is, the size of a contest is never

limited by a lack of potential participants. (This assumption is natural in crowdsourcing contests

— for example, in our dataset, on any given day, the average number of active designers (i.e.,

potential participants) on the platform is around 300, while the average number of participants in

a contest is around 26; see Table 1). Theorem 1 characterizes the equilibrium number of partic-

ipants (N∗) in a crowdsourcing contest, the equilibrium number of objectives each participating

designer incorporates (r∗), and the equilibrium number of design trials each participating designer

generates (m∗). See Appendix A for the proof. For simplicity, in our analysis we allow N∗, r∗, and

m∗ to be non-integer numbers; and to avoid trivial solutions, we confine our attention to problem

parameters for which can assume N∗ > 1, m∗ > 0, and the seeker is able to induce designers to

incorporate all disclosed conceptual objectives by disclosing sufficiently few conceptual objectives

in the problem statement (i.e., r∗ = Sr if Sr is sufficiently small).

Theorem 1. In a crowdsourcing contest, the equilibrium number of participating designers, N∗,

decreases with more disclosed conceptual objectives Sr, but does not change with the amount of

execution guidance provided Sg. (The exact formula for N∗ is provided in Appendix A.)

The unique symmetric equilibrium for r∗ and m∗ are as follows. The equilibrium number of objec-

tives a designer incorporates is r∗ = min{r,Sr}, where r =
ln(N

∗−1
(N∗)2

w
µ
A
c2

1
ln(1/p)

)

ln(1/p)
, and the equilibrium

number of design trials each designer generates is m∗ = A(N∗−1)

(N∗)2c3
, where c3 = h(Sg).

Theorem 1 suggests that fewer designers will join a contest in which the seeker discloses more con-

ceptual objectives. The intuition is as follows. With more disclosed conceptual objectives, designers
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have to spend more time understanding and digesting the objectives, and more effort searching for

design concepts that satisfy those objectives simultaneously, which leads to a higher participation

cost (i.e., the total cost a designer incurs throughout the three stages of the design process). This is

true even in cases where designers choose to only select a subset of the disclosed objectives to incor-

porate (i.e., the number of disclosed objectives Sr is larger than the number of objectives designers

are willing to incorporate r̄), because although designers’ design concept formation cost does not

increase when Sr exceeds r̄, they would still need to spend more time understanding and digesting

all disclosed objectives to frame the design problem at the beginning of the design process. Thus,

the participation cost always increases with more disclosed conceptual objectives, which leads to

a lower equilibrium expected profit under the same level of competition, and correspondingly a

smaller number of participants in equilibrium.

Comparing the marginal benefit and cost of incorporating each objective, a participating designer

is willing to incorporate at most r objectives. When the seeker discloses fewer objectives than what

designers are willing to incorporate (Sr ≤ r), designers incorporate all the disclosed objectives, i.e.

r∗ = Sr; otherwise (Sr > r), designers only incorporate a subset of the disclosed objectives, i.e.

r∗ = r. In terms of the trial effort, designers decide on their design trial effort by comparing the

marginal benefit against the marginal cost of generating one design trial. Designers’ equilibrium

trial effort (m∗) increases with a lower cost for the designer to come up with a design trial (c3). Per

Section 3.1, c3 decreases with more execution guidance (Sg). Hence, with more execution guidance

(Sg) and correspondingly a lower trial cost (c3), designers increase trial effort (m∗). Since designers

tailor their equilibrium number of design trials (m∗) to the size of c3 (or associated Sg), the size of

c3 (or associated Sg) ends up not affecting the designers’ entry decision.

3.4. Key Takeaways and Model Extensions

We summarize the key theoretical results as follows.

Takeaway 1: The number of participating designers decreases with the number of disclosed con-

ceptual objectives in the problem specification, but does not change with the amount of execution

guidance in the problem specification.

Takeaway 2: Given the equilibrium number of participating designers, more execution guidance

leads to a higher level of designer trial effort provision from each participating designer. However,

more conceptual objectives will not affect designers’ trial effort provision.

We keep our main model parsimonious and focus on capturing a complete picture of design-

ers’ design process. The results from this parsimonious model are in fact robust to alternative

modeling assumptions and are supported by empirical data. We formally derive theoretical results

for two extensions, which we have alluded to in Section 3.1. (Details are provided in Online
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Appendix EC.4.) First, we consider overlaps among conceptual objectives (e.g., “friendly” and

“welcoming” overlap more than “friendly” and “professional” do). Second, we allow for diminishing

weight/importance among conceptual objectives (i.e., some objectives are more important than

the others, and objectives are sorted of descending order in importance). In both extensions, the

qualitative findings, i.e., Takeaways 1 and 2, remain intact. Next, we specify two sets of hypotheses

derived from the theoretical results, and empirically test them in Section 4.

3.5. Hypotheses

Based on the aforementioned predictions of our theoretical model, we develop testable hypotheses.

Specifically, we derive Hypothesis 1a and Hypothesis 1b from Takeaway 1, and Hypothesis 2a and

Hypothesis 2b from Takeaway 2. We formally specify the hypotheses as follows.

Hypothesis 1a: The number of participants (N∗) decreases with the number of conceptual objec-

tives (Sr) specified in the problem specification.

Hypothesis 1b: The number of participants (N∗) does not change with the amount of execution

guidance (Sg) provided in the problem specification.

Hypothesis 2a: Given the number of participants (N∗), more execution guidance (Sg) leads to

more trial effort provision (m∗) from each participating designer.

Hypothesis 2b: Given the number of participants (N∗), the number of conceptual objectives (Sr)

does not affect the trial effort provision from each participating designer (m∗).

4. Data Description and Empirical Analysis

In this section, we empirically test the hypotheses specified in Section 3.5.

4.1. Empirical Context and Data Description

The data we use for the empirical analysis is from crowdsourced creative contests hosted on an

online platform. We focus on logo design contests because it is a representative form of open-ended

creative contests; it is also the largest category on the platform both in terms of the number of

completed contests and the number of designers participating in the category.

A typical logo design contest on this platform proceeds as follows. First, a seeker in need of a

design posts a design request. In the posting, he specifies the design problem by answering the

following five questions:

• Q1: What name should be in the logo?

• Q2: What is the industry?

• Q3: What are the top 3 things the logo should communicate?

• Q4: What are preferred design styles for the logo?

• Q5: Any other info or links?

11
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The seeker also announces the award structure (e.g., whether the award is guaranteed, the number

of winners, and the award(s) for the winner(s)). Based on the seeker specified information, designers

on the platform can join the contest and submit design(s). Finally, the seeker picks his favorite

submission(s) and gives the pre-announced award to its (their) author(s). Note that, although the

platform asks the seeker to list the “top 3 things” (in Q3), there is no hard limit on seekers’ answer

to this question. As can be seen from the additional examples in Online Appendix EC.1, some

seekers specify more than “3 things” in their problem specification. As further evidence of the

same, the summary statistics to be shown in Table 1 reveal substantial variation in the length of

seekers’ answers to Q3 across different contests.

The main advantages of our data include the fact that (i) different types of information, namely,

conceptual objectives (Q3) and execution guidelines (Q4 and Q5) are already separated by questions

in a seeker’s problem specification (the categorization is self-explanatory with how the questions

are raised); (ii) the number of submissions made by each designer is available, which allows us to

quantify the designers’ trial efforts (often-unobserved in other contexts); (iii) the exact problem

specification (textual information) provided in each contest is available, from which we can extract

conceptual objectives and execution guidelines mentioned in each problem specification using either

manual coding or natural language processing.

We use data from logo-design contests on this crowdsourcing platform from March, 2012 to

November, 2014. For each contest, we record the seeker’s problem specification and participating

designers’ submission activities. To facilitate the empirical analysis, we focus on 7-day contests

where the design seekers promise to award $200 to one and only one final winner. This is because

it has been documented (Yang et al. 2009, Liu et al. 2014) that the contest length and award

structure can affect designers’ behavior and contest outcomes; since the objective of this study is to

examine the effect of problem specification and to find the optimal way to specify a design problem,

we purposefully minimize the heterogeneity among the contests in these other dimensions. The

contests included in our sample are representative contests on the platform — 97% of the contests

held on the platform have a single award, 61% have a guaranteed award, and $200 and 7-day are

the most common award-level and length among all contests.

The final working sample consists of 463 contests and 11,148 contest-designer combinations.

Table 1 reports summary statistics of contest-level characteristics. The first three rows present the

summary statistics for the word count for answers to Q3, Q4, and Q5. In our main empirical analy-

sis, we use word count to measure the amount of information provided in the problem specification.

That is, a longer answer to Q3 indicates more disclosed conceptual objectives, and longer answers

to Q4 and Q5 indicate more execution guidance. We are aware that word count is not a perfect

measure. We use it in the main analysis because it is an objective measure and does not suffer from
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human or machine coding errors. Later, as robustness checks, we consider alternative measures

constructed using textual analysis and manual coding. Specifically, we use textual analysis to count

keywords related to each aspect of design execution included in the problem specification (e.g.,

colors, fonts, shapes, art styles, etc). However, it is challenging to apply this approach (textual

analysis based on keywords) to extract conceptual objectives, because conceptual objectives are

much less structured and involve a wide range of concepts, which are often embedded in sentences

and sometimes implicitly mentioned. Hence, we hire several coders with design backgrounds to

read the sampled problem specifications, and manually list down the key conceptual objectives in

each problem specification. (See Table EC.1 for summary statistics of these alternative measures.)

Also reported in Table 1 are summary statistics characterizing designers’ behavior, including

their entry (No.Designers) and effort (Avg. Sub Per Designer) decisions in each contest. We

observe considerable variation in these variables across different contests. Our empirical analysis

explores the relationship between characteristics of problem specifications and designers’ behavior.

Table 1 Summary Statistics

Variable Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Length.Q 3 25.205 34.075 0 5 11 33 317
Length.Q 4 20.503 31.053 0 4 9 27.5 442
Length.Q 5 44.216 47.606 0 11 29 63 346
Avg. SubPerDesigner 3.551 1.192 1.600 2.759 3.308 3.968 9.429
No.Designers 26.305 10.585 7 18 25 33 57
No. Submissions 71.883 36.484 14 48 65 89 385

4.2. Empirical Models

Effect of Conceptual Objectives on Number of Participating Designers: To test Hypoth-

esis 1a and Hypothesis 1b, we estimate Equation (4), which characterizes the relationship between

different types of information provided in problem specification and designers’ entry decisions.

(No.Designers)q = β0 +

Effect of Conceptual objectives︷ ︸︸ ︷
β1log(lenQ3 + 1)q +

Effect of Execution Guidance︷ ︸︸ ︷
β2log(lenQ4 + 1)q +β3log(lenQ5 + 1)q

+α1(No.Updates)q +ωIndustry +φWeek Day + δMonth +µY ear.

(4)

In Equation (4), q indexes contests. The number of conceptual objectives contest q’s problem

specification contains is measured by the logarithm of the word count of the seeker’s answer to

Q3 (log(lenQ3 + 1)q), and the amount of execution guidance is proxied by the logarithm of the

word counts of the seeker’s answers to Q4 and Q5 (log(lenQ4 + 1)q and log(lenQ5 + 1)q). (The

log transformation is applied to reduce the skewness of the distribution of the word count of

seekers’ answers to these questions.) We control for the number of times the seeker updates the

problem specification ((No.Updates)q) during contest q. We include the industry fixed effect (i.e.,

the seeker’s answer to Q2) to control for the possibility that different industries might have different
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levels of attractiveness to designers; we also include the year dummies, day-of-week dummies and

month fixed effects to control for possible seasonality effects or contemporaneous unobservables.

Effect of Execution Guidelines on Number of Submissions Per Participating Designer:

Next, we use Equation (5) to empirically test Hypothesis 2a and Hypothesis 2b. Designer i’s

trial effort in contest q is proxied by the number of submissions made by designer i to contest q

((No.Submissions)i,q). Specifically, we regress (No.Submissions)i,q on the amounts of different

types of information in the problem specification (proxied by log(lenQ3 + 1)q, log(lenQ4 + 1)q and

log(lenQ5 + 1)q) and the number of designers (No.Designersq) in contest q. We control for the

number of updates ((No.Updates)q), and include industry dummies, day-of-week dummies, month

dummies, year fixed effects and designer-specific dummies.

(No.Submissions)i,q = ρ0 +

Effect of
Conceptual objectives︷ ︸︸ ︷
ρ1log(lenQ3 + 1)q +

Effect of
Execution Guidance︷ ︸︸ ︷

ρ2log(lenQ4 + 1)q + ρ3log(lenQ5 + 1)q

+ζ1(No.Updates)q + ζ2(No.Designers)q + υIndustry +χDesigner + ηWeek Day + ιMonth +ψY ear.

(5)

4.3. Empirical Results

The estimation results for Equation (4) are presented in the first column in Table 2. As can be seen

from the table, the number of participating designers in a contest ((No.Designers)q) is significantly

negatively associated with the number of conceptual objectives (proxied by log(lenQ3 +1)q), which

supports Hypothesis 1a. Additionally, the proxies for the amount of seeker execution guidance

(log(lenQ4 + 1)q and log(lenQ5 + 1)q) are not significantly associated with (No.Designers)q, which

is consistent with Hypothesis 1b.

The estimation results for Equation (5) are presented in the third column in Table 2. These

results show that (No.Submissions)i,q is significantly positively correlated with the amount of

seeker execution guidance (measured by log(lenQ4 + 1)q and log(lenQ5 + 1)q). This supports

Hypothesis 2a — more seeker execution guidance leads to more submissions per designer. More-

over, (No.Submissions)i,q is not significantly associated with the number of conceptual objectives

(log(lenQ3 + 1)q), which supports Hypothesis 2b.

Overall, the regression results (for Equations (4)-(5)) are consistent with our theoretical predic-

tions and support our theoretical model. (Negative binomial count models for Equations (4)-(5)

yield qualitatively similar results.)

4.4. Robustness Checks

We perform robustness checks to ensure our empirical results are not sensitive to how we measure

the numbers of conceptual objectives and execution guidelines. In addition, we use seemingly-

unrelated-regression framework to estimate Equations (4)-(5) simultaneously, to account for the
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Table 2 Regression Results of Equation (4) and Equation (5) and Corresponding Robustness Checks

Dependent Variable:

(No.Designers)q (No.Submissions)i,q (per designer)

Conceptual objectives
log(lenQ3 + 1)q −1.707∗∗∗ (0.488) 0.082 (0.049)
(No.Concepts)q −0.551∗∗∗ (0.129) 0.013 (0.011)
(lenQ3/No.Concepts)q 0.002 (0.134)
Concept Similarity 0.259∗∗∗ (0.070) −0.054 (0.522)

Execution Guidance
log(lenQ4 + 1)q −0.416 (0.507) 0.125∗∗ (0.038)
log(lenQ5 + 1)q −0.127 (0.415) 0.171∗∗∗ (0.031)
(No.GuideWords)q 0.016 (0.107) 0.061∗∗∗ (0.009)

Control Variables
(No.Designers)q −0.008∗ (0.004) −0.008∗ (0.004)
(No.Updates)q −0.189 (0.421) −0.110 (0.460) 0.215∗∗∗ (0.032) 0.170∗∗∗ (0.036)
Day-of-Week Fixed Effects Yes Yes Yes Yes
Month Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes
Creator Fixed Effects No No Yes Yes

Observations 463 463 12,173 12,173
R2 0.211 0.261 0.479 0.483
Adjusted R2 0.140 0.188 0.306 0.308
Residual Std. Error 9.818 (df = 424) 9.482 (df = 423) 3.321 (df = 9142) 3.320 (df = 9142)
F Statistic 2.975∗∗∗ 3.383∗∗∗ 2.774∗∗∗ 2.721∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

possibility that certain contest specific unobservables can affect both designers’ entry and trial

effort decisions, and show the robustness of our empirical results to this assumption.

Alternative Measure for Number of Conceptual objectives: In our main empirical analy-

ses, we use log(lenQ3 +1)q (based on word-count) as a proxy for the number of disclosed conceptual

objectives in seekers’ problem specifications. One might argue that different seekers can have dif-

ferent writing styles, e.g., some seekers write in a concise way, while others in a more elaborate

way. In other words, two problem specifications that contain the same amount of information may

have different lengths. To ensure our empirical results are robustness to the measure of conceptual

objectives, we consider an alternative measure that involves manual coding. Specifically, we hire

several coders with design background and ask each of them to independently read the problem

specifications in our dataset, and manually list down the conceptual objectives for each contest.

(The complete coding instructions and resulting data are available from the authors upon request.)

We take the average across coders and use it as an alternative measure for the number of concep-

tual objectives ((No.Concepts)q) in each problem specification. The average inter-rater reliability

(assessed using Weighted Kappa) is 0.91, which is considered very good (Cohen 1968).

Alternative Measure for Amount of Execution Guidance: In our main empirical analysis,

we use log(lenQ4 +1)q and log(lenQ5 +1)q based on word-count to proxy for the amount of execution

guidance. We now consider an alternative measure — we use textual analysis to count keywords

related to each aspect of design execution (e.g., colors, fonts, usages, shapes, and styles) in the

15



 Electronic copy available at: https://ssrn.com/abstract=3260862 

problem specification. For example, we count words such as “green”, “red”, “round”, “shining”,

etc., and use the total number of such keywords (No.GuideWords)q as an alternative measure for

the amount of execution guidance.

Robustness Checks with These New Measures: With the new measures of the number of con-

ceptual objectives ((No.Concepts)q) and the amount of execution guidance ((No.GuideWords)q),

we make the following modifications to Equations (4)-(5). First, we replace the original measure

of conceptual objectives log(lenQ3 + 1)q with (No.Concepts)q, and replace the original measure

of execution guidance log(lenQ4 + 1)q & log(lenQ5 + 1)q with (No.GuideWords)q. (Note that in

these robustness checks, we replace the measures for both conceptual objectives and execution

guidance at the same time. The conclusions from robustness checks are the same if we replace

the measure for one of them at a time.) Additionally, when measuring conceptual objectives using

(No.Concepts)q, we also control for the level of overlap among the coded conceptual objectives.

(We compute the semantic similarity of coded objectives based on Wordnet, and use the average

pairwise similarity (Concept Similarity; on a scale of 1-100) to account for the level of overlap

among conceptual objectives.) Finally, in Equation (4), we also add the ratio (lenQ3/No.Concept)q,

a proxy for in-conciseness, as another control variable.

We estimate the modified Equation (4), and report the estimation results in the second col-

umn of Table 2. The results reveal that (No.Designers)q is significantly negatively associated

with the measure of the number of conceptual objectives (No.Concepts)q, but not significantly

associated with the amount of execution guidance (No.GuideWords)q, which again supports

Hypothesis 1a and Hypothesis 1b. Additionally, after including (No.Concepts)q, (No.Designers)q

is not significantly associated with the in-conciseness ((lenQ3/No.Concepts)q), which further ver-

ifies that (No.Designers)q is affected by the number of conceptual objectives (Hypothesis 1a),

rather than the conciseness of seekers’ expression for each objective. It is also worth noting that

(No.Designers)q is significantly positively associated with Concept Similarity, which supports an

additional theoretical result from the extension (which we relegate to Online Appendix EC.4.1 to

save space) accounting for the overlap across conceptual objectives — the number of participating

designers in a contest increases with the overlap across conceptual objectives, everything else equal.

We next estimate the modified Equation (5), and report the estimation results in the last column

in Table 2. The results again support Hypothesis 2a and 2b: (No.Submissions)i,q is significantly

positively associated with the measure of the amount of execution guidance (No.GuideWords)q,

but not significantly associated with the number of conceptual objectives (No.Concepts)q.

Seemingly Unrelated Regression System: We further consider the possibility that certain

contest-specific unobservables can affect both designers’ entry and trial effort decisions. If this

indeed happens, the errors in Equation (4) and those in Equation (5) might be correlated. We
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model and estimate the SUR, and find that the results are almost the same as OLS regression

results.

5. Managing the Problem Specification

In the previous sections, we explored how designers’ entry, concept formulating and trial effort

decisions are influenced by the conceptual objectives and execution guidelines a seeker provides in

his problem specification. Based on our empirically validated theoretical model, in this section we

analyze how seekers should provide information in their problem specification to maximize their

“profit” in crowdsourcing design contests.

A seeker’s profit (Πs) is defined as the expected highest quality among all the designs submitted

to his contest, i.e., Πs =Eε maxi V
∗
i , where V ∗i is the equilibrium quality of designer i’s best design,

and the expectation is taken over the vector of all participating designers’ design trials’ quality

shocks ε. (For simplicity, the “profit” ignores the cost of the award A, as this is a fixed value and

we are focusing on how the seeker optimizes the problem specification given an award size A).

The seeker maximizes Πs by choosing the number of conceptual objectives to disclose (Sr) and the

amount of execution guidance to provide (Sg). We define the seeker’s problem as:

max
Sr≤Sr,Sg≤Sg

Πs(Sr, Sg) = max
Sr≤Sr,Sg≤Sg

[
Eε max

i∈N∗
V ∗i (r∗,m∗)

]
, (6)

where N∗ is the equilibrium number of participating designers, and r∗ and m∗ are the equilibrium

design concept formation and trial generation strategies of participating designers. Problem (6) is

a joint problem in both Sr and Sg. From Theorem 1, we know the impacts from Sr and Sg can be

separated: N∗ and r∗ are only affected by Sr but not by Sg; and given N∗, m∗ is only affected by

Sg but not by Sr. So, we can rewrite Problem (6) as the following problem separable in Sr and Sg

(see Appendix B for the proof):

Lemma 1.

max
Sr≤Sr,Sg≤Sg

Πs(Sr, Sg) = max
Sr≤Sr

[
w · r∗(Sr) +µ lnAN∗(Sr)−1)

N∗(Sr)

]
+ max
Sg≤Sg

[−µ ln(h(Sg))] . (7)

With the seeker’s decisions on Sr and Sg being separable (Problem (7)), we next discuss how the

seeker should set Sr and Sg separately.

Seeker’s Decision on Number of Conceptual Objectives to Disclose. We first consider the

problem associated with the seeker’s optimal choice of Sr, the number of conceptual objectives to

disclose in the problem specification. The seeker’s objective is to choose a Sr that maximizes the

expected quality of the best design sourced from the contest under any fixed amount of execution

guidance provided (Sg), i.e., maxSr≤Sr Πs(Sr;Sg).
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Proposition 1. Πs(Sr;Sg) decreases in Sr once Sr becomes sufficiently large, and thus for

sufficiently large S̄r, we have S∗r < S̄r. Details are in Appendix C.

The seeker’s profit Πs is first increasing and eventually decreasing with Sr. The intuition is as

follows. Disclosing more conceptual objectives has two countervailing effects. On the one hand, with

more conceptual objectives being disclosed, designers are aware of and thus can incorporate more

objectives, which leads to a higher expected quality of each design generated, positively affecting

the best design quality Πs(Sr). We call this effect the “quality effect”. On the other hand, with more

disclosed objectives, the designers’ total participating cost increases (higher costs in the design

problem framing and design concept formulating stages), leading to fewer designers participating in

the contest. We call this the “competition effect”. This competition effect negatively affects the best

design quality Πs(Sr), because Πs(Sr) is an extreme value of qualities of all design submissions,

which will decrease if there are fewer participating designers.

As the seeker discloses more and more conceptual objectives (a larger Sr), the negative com-

petition effect increases and eventually dominates the quality effect, because (i) design concept

formation cost grows exponentially with Sr, hence the number of designers decreases quickly, (ii)

with only a handful of designers in the contest, a small decrease in the number of participating

designers would have a severe impact on the extreme value Πs(Sr). As a result, Πs(Sr) will decrease

when the seeker discloses too many conceptual objectives. Therefore, the seeker should not always

disclose all the conceptual objectives he cares about. For reasonable parameter ranges, simulation

results suggest that the optimal S∗r is relatively small (from 2 to 5); see Appendix C.

Seeker’s Decision on Number of Execution Guidelines to Provide. Next, we consider

the seeker’s problem of choosing a Sg that maximizes the expected quality of the best design

sourced from the contest under any fixed level of conceptual objectives provided (Sr), i.e.,

maxSg≤Sg Πs(Sg;Sr). This problem is trivial, since providing more execution guidelines (Sg) always

increases best design quality. Intuitively, as the seeker provides more execution guidelines (a larger

Sg), it is easier for designers to come up with design trials (a lower trial cost c3), because the

execution guidelines give directions for different aspects of design execution (such as color, shape,

etc.), which designers otherwise need to spend effort figuring out and deciding on. Hence, with the

lowered cost to generate each design trial, designers will come up with more trials (a larger m∗),

which then in turn leads to a higher extreme value in submission quality (a higher Πs). Therefore,

the seeker should disclose all his execution guidelines (i.e., S∗g = Sg).

6. Further Evidence from the Field

In this section, we discuss a recent change to the crowdsourcing platform we collect data from:

the template for seekers’ problem specifications was updated. This update, as to be shown below,
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not only validates our earlier suggestions on how seekers should provide information in problem

specifications, but also introduces an exogenous shock to seeker problem specification behavior on

the platform and thus provides an opportunity for us to further identify the effects of disclosing

conceptual objectives and execution guidelines on designers’ behavior.

The update took place in summer 2017. The update involves two major adjustments. First, the

platform provided an example when prompting the seeker to specify conceptual objectives (i.e.,

“top 3 things to communicate”). This example only includes three sample keywords. Potentially,

this short three-keyword example can lead seekers to shorten their list of conceptual objectives.

Second, the updated template changed the way the seeker provides execution guidelines. Instead

of providing a short text answer to the “what logo styles do you prefer” question in a text box,

seekers are asked to answer four multiple choice questions, including logo usage (e.g. screen/digital,

clothing), preferred logo style (e.g. image+text, image only), preferred fonts (e.g. sans-serif, mono),

colors to explore (e.g. aqua, green). The multiple choice question format can potentially reduce

the cost for seekers to provide execution guidelines. (In our model, we concluded that the seeker

should provide all his execution guidelines but we did not include a cost of doing so. One can easily

imagine that, if there are costs associated with the seeker coming up with or disclosing execution

guidelines, the seeker will stop providing more when the marginal cost of providing an additional

guideline exceeds the marginal benefit from doing so.) The multiple choice question format can

also remind them to provide guidelines on each of these four aspects of logo designs. But at the

same time, it limits the guidelines the seeker can provide — the seeker is not expected to provide

guidelines on other logo features beyond usage, style, font and color. Therefore, the direction of

the effect of this second adjustment is not very clear.

Since this update does not affect how seekers answer Question 5 (Q5) much, we do not consider

Q5 in the following analysis. Besides the two main changes described above, we also observe that

the platform added a new area called “vision” in the template. This new area is located below

the “top 3 things” box, providing additional space for the seeker to elaborate what message he

envisions a logo to convey. We find that most of the time, content provided in the “vision” area

does not involve introducing additional conceptual objectives. In the manual coding of conceptual

objectives for contests that took place after the website update, we incorporate the occasional

additional objectives that are mentioned in the “vision” area but do not appear in the “top 3

things” box.

This update shows that the platform recognizes problem specification as a crucial design ele-

ment for crowdsourcing design contests, and distinguishes among different types of information

conveyed through the problem specification, i.e., conceptual objectives and execution guidelines.
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Moreover, the example the platform provides for specifying the “top 3 things” is also aligned with

our recommendation not to specify too many conceptual objectives.

In addition, the website update provides an exogenous shock to how seekers specify their prob-

lems. In the empirical analysis presented in Section 4, the identification of the effects of the number

of disclosed conceptual objectives and the number of execution guidelines relies on cross-contest

variations in the amounts of these two types of information provided under the same website lay-

out. One may argue that these variations could be driven by seekers’ unobserved idiosyncratic

characteristics, and if those seeker characteristics can also affect designers’ participation behavior,

then the regression models presented earlier may suffer from an endogeneity problem. The update

to the problem specification template imposes an exogenous shock on the number of conceptual

objectives and execution guidelines, which is unlikely to be correlated with seekers’ idiosyncratic

characteristics, allowing us to better identify the effects of conceptual objectives and execution

guidelines on designers’ participation behavior.

Specifically, we collect additional data on all logo design contests that took place on the platform

three months before and three months after the update. As in the empirical analysis presented

in Section 4, we focus on contests where the design seekers promise to give a $200 award to one

and only one winner. (However, we include contests that are not only 7-days long to increase the

statistical power of the test.) The contests that took place during the transition of the platform

website (i.e., 10 days before and after August 31, 2017) are excluded. This new sample consists

of 214 contests (6,070 contest-designer combinations). Below, we first establish how the template

update affects the numbers of conceptual objectives and execution guidelines seekers provide in

their problem specification, and then study how these changes in seekers’ problem specification

affect designers’ entry and trial effort decisions.

Conceptual objectives: We first test whether the number of conceptual objectives decreases, as

expected, after the website update. Specifically, we compare how many words there are in seekers’

answers to Q3 (i.e., using the seeker’s answer to the “top 3 things” question as a proxy for the

number of conceptual objectives) before and after the template update — the average word-count

for Q3 before the update (Len(Q3)pre
q ) is 30.02, and the average word-count after the update

(Len(Q3)post
q ) is 8.75, and the difference is statistically significant (p-value<0.001; details of T-tests

are in Appendix D). We also compare the number of manually coded conceptual objectives before

and after the update, and the results are similar — the average number of conceptual keywords

before the update ((No.Concept)pre
q ) is 5.72, and the number after the update ((No.Concept)post

q )

is 3.81, and the difference is also statistically significant (p-value<0.001). In the manual coding

process, the coders report the total number of conceptual keywords mentioned in both the “top
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3 things” and “vision” areas. These results suggest that seekers indeed provide fewer conceptual

objectives after the update.

Next we examine how fewer disclosed conceptual objectives affect designer behaviors. Specifically,

we regress the number of designers in each contest on the the dummy variable I(post-update)q,

which indicates whether the focal contest took place after the website update. We include contest

duration, and Day-of-Week dummies in the regression as control variables. Additionally, we include

“Week Slope” in the regression model, to control for any time trend that may exist prior to the

website update. The estimation results for this regression are shown in the first column of Table 3.

The estimated coefficient of the dummy variable I(post-update)q is positive and significant, indi-

cating that after the update, the number of participating designers increases. This result, combined

with the finding that after the website update, seekers disclose fewer conceptual objectives, again

supports Hypothesis 1a, which hypothesizes that the number of participating designers decreases

with the number of disclosed conceptual objectives. (In a robustness check, we test and verify that

the increase in (No.Designers)q is indeed due to the decrease in the number of disclosed objectives,

but not other concurrent changes to the platform resulting from this update. Details are provided

in Appendix D.)

Table 3 Regression Results for the Update’s Impacts on Contests’ Outcomes

Dependent Variable:

(No.Designers)q (NOSubmission)i,q

I(post-update)q 10.579∗∗ (3.779) −0.872∗∗ (0.313)
I(short Q4)q ∗ I(pre-update)q 0.772 (0.384)
I(long Q4)q ∗ I(pre-update)q 1.213∗∗∗ (0.354)

Control Variables
(No.Designers)q −0.004 (0.004) −0.004 (0.004)
Durationq 0.650∗∗ (0.195) 0.035∗∗ (0.011) 0.028∗ (0.011)
Week Slope Yes Yes Yes
No.Updates Yes Yes Yes
Industry Fixed Effects Yes Yes Yes
Designer Fixed Effects No Yes Yes
Day-of-Week Fixed Effects Yes Yes Yes

Observations 214 6,070 6,070
R2 0.323 0.316 0.318
Adjusted R2 0.199 0.211 0.213
Residual Std. Error 12.136 (df = 180) 3.337 (df = 5262) 3.333 (df = 5261)
F Statistic 2.604∗∗∗ 3.011∗∗∗ 3.033∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Execution Guidelines: Since the platform updated the form of execution guidelines from open-

ended descriptions to multiple choice questions, we cannot directly measure the change in the

number of execution guidelines; however, we notice some changes in the information provided.

Prior to the update, the number of guidelines provided varies a lot from seeker to seeker — some

seekers provide extremely detailed execution guidelines, including suggestions for shape, color, and

pattern (e.g., “Please use variations of red, black, silver and gold (matte, not shiny). Make sure
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that the logo doesn’t rely on silver and gold effects, need a color palette that is easily translatable to

web. Please do not use green, blue or maroon.”), whereas others provide very brief guidelines (e.g.,

“image+text”). After the update, this seeker heterogeneity no longer exists, because all seekers are

now required to answer the exact same set of multiple-choice questions.

We regress the number of submissions per designer on the post-update dummy, controlling for

the number of designers in the same contest, contest duration, Day-of-Week dummies and week

slope. The regression results are reported in the second column of Table 3. Quite surprisingly,

the coefficient of I(post-update)q turns out to be negative and significant, suggesting that on

average each designer submits fewer designs after the update. Why is this the case? One possible

explanation is that, as mentioned previously, the template update removes seeker heterogeneity

in execution guideline provision. Prior to the update, some seekers are willing to provide detailed

guidelines, and others are not. For seekers who would provide few execution guidelines in the open-

ended Q4 template, the switch to the standardized questionnaire may have increased the number

of guidelines they provide; whereas for seekers who would provide detailed guidelines in the open-

ended Q4 template, the switch in fact limits the amount of execution guidance they can provide. An

average negative effect reflected in the negative estimated coefficient of I(post-update)q seems to

suggest that more seekers suffer the negative effect of the switch to the standardized questionnaire

format than those who benefit from it.

To test whether this explanation is supported by the data, we use I(short Q4)q ∗ I(pre-update)q

and I(long Q4)q ∗I(pre-update)q to substitute for the I(post-update)q dummy variable in the regres-

sion of the number of submissions per designer described above, with I(short Q4)q (I(long Q4)q)

indicating the focal contest having less (more) than 15 words in the Q4 answer. In doing so,

we treat the post-update contests as the baseline group, and separately evaluate the difference

in the number of submissions per designer between the post-update contests and pre-update

contests with short (I(short Q4)q) v.s. long (I(long Q4)q) execution guidelines. The results of

the regression are presented in the third column of Table 3. The coefficient of the interaction

term I(short Q4)q ∗ I(pre-update)q is insignificant, whereas the coefficient of the interaction term

I(long Q4)q ∗ I(pre-update)q is significant and positive. These results align with our conjecture:

pre-update seekers who provide a lot of execution guidelines on average receive more submissions

from each participating designer, compared with seekers using the new multiple-choice format;

seekers using the new multiple-choice format can only achieve a similar number of submissions per

participant as pre-update seekers who provide few execution guidelines.

To fully understand the mechanism driving the difference in outcome between long- and short-

guideline contests, we perform a textual analysis to understand the exact change in the content of

the execution guidelines seekers provide before and after the update. In particular, we first classify
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seeker-provided execution guidelines into seven categories (colors, logo styles, shapes, font, usage,

art styles, and resources). For each problem specification in the sample (to increase the statistical

power we include all single-guaranteed-award contests from March 2012 to November 2014, and

control for the award amount and contest duration), we note down whether the seeker provides any

information in each of these seven categories. Then we regress the number of submissions made by

each participating designer on the seven dummy variables indicating whether the seeker provides

guidelines in the corresponding categories, as well as a similar set of control variables as those

appearing in Table 3. The results of this regression (reported in Table D.3 in Appendix D to save

space in the body), provides several interesting observations. (1) Providing guidelines for “color”

and “logo style”, two of the four categories included in the new multiple-choice format, is not very

helpful in increasing the number of submissions made by each designer. (2) Providing guidelines for

“shape” and “art style”, information categories that are not included in the new multiple-choice

format, has a significant positive effect on the number of submissions per participating designer.

(3) The multiple-choice format limits the amount of information the seeker can provide for each

category. Consider “usage” as an example. After the update, the seeker can only choose from

the five options provided (outdoor, clothing, screen/digital, print, signature); whereas, prior to

the update, seekers could, and in fact did provide more detailed information about logo usage

(e.g. embroidery, building, banner, sticker, letterhead, device, t-shirt, vest, uniform, hat, etc). All

these results suggest that the new multiple-choice format appears to be less effective for execution

guideline provision than the old open-ended format, and therefore, this change may have increased

designers trial cost (c3 in our analytical model), which then leads to the decrease in the number of

submissions per participant we observe in the data. This result further supports Hypothesis 2a.

To sum up, the recent website update discussed above underscores the importance of managing

the problem specification, especially the seeker’s provision of conceptual objectives and executive

guidelines. The update related to the conceptual objective provision is successful — as discussed in

Section 5, disclosing fewer conceptual objectives may increase the number of participants, which is

beneficial to the seeker. On the other hand, the update related to the execution guideline provision

is not very effective. The convenient multiple-choice format is intended to encourage seekers to

provide more execution guidelines; however, empirical data suggest that this new format may have

limited the amount and the variety of execution guidance the seeker can provide, and consequently,

has a negative effect on the number of submissions made by each participating designer, especially

in contests where seekers are willing to provide detailed execution guidance if possible.

7. Conclusion

Crowdsourcing contests are an increasingly popular way to source solutions to design problems

(creative problems). How to optimally specify problems for such contests is an important ques-

tion facing seekers, as the information provided in the problem specification can affect how many
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designers their contests can attract, how much effort participating designers are willing to exert,

and how good the solutions sourced from the contests will be. In this paper, we combine analytical

and empirical methods to examine the effects of different types of information provided in seekers’

problem specifications — namely, conceptual objectives and execution guidance — on designers’

participation behavior, and prescribe recommendations for optimal information provision in prob-

lem specifications.

Our study provides the following novel insights. First, our theoretical analysis suggests — and

our empirical analysis confirms — that the number of participating designers in a contest decreases

with more conceptual objectives provided in the problem specification, and that the trial effort

provision increases with more execution guidance provided in the problem specification. Based on

the empirically validated theoretical model, we then solve the seeker’s problem of the numbers

of conceptual objectives and execution guidelines to provide in the problem specification. Our

analysis suggests that, while providing more execution guidelines always benefits the seeker, the

seeker should not always disclose all the conceptual objectives he cares about. Further, we exploit a

“quasi-natural experiment” (involving an update to the platform’s problem specification template)

to strengthen the reliability of our empirical results. In addition, the update made by the crowd-

sourcing platform directionally supports our recommendations for seekers’ problem specifications,

and our detailed textual analysis provides further insights into what types of execution guidelines

are more helpful in reducing designers’ cost to come up with design trials.

Like any research, our study has a few limitations. First, our empirical analyses are based on

data collected from a single crowdsourcing platform. Although we believe that contests on this

platform are representative, further empirical analysis of data collected from other crowdsourcing

platforms would be helpful in establishing the external validity of our findings. Second, we focus

on how the initial problem specification affects the contest outcome, and do not consider the

updates to the problem specification that might take place during the contest period. Such updates

are relatively rare in our data, but in other settings where updates to problem specifications are

more prevalent, the effects of the problem specification updates may require special attention.

Third, because analyzing a model with both the agent’s output uncertainty and heterogeneity is

considered intractable in the innovation-contest literature (e.g., Terwiesch and Xu (2008), Ales

et al. (2017a), Korpeoglu et al. (2017)), we assume homogeneous designers and focus on the impact

of the designers’ solution uncertainty.

Despite these limitations, our study offers rich empirical evidence from the field to support the

predictions and recommendations from our theoretical model, linking the theoretical and empirical

research of crowdsourcing contests. This study also proposes a novel theoretical model building

upon the design literature to characterize designers’ design process, which allows us to examine
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the role of information in distinct stages of this design process and its impact on contest outcome.

This theoretical modeling framework can be used to study other design problems in the context of

open design/creative contests. As one of the first papers studying problem specification in crowd-

sourcing contests, this study contributes to the academic literature of crowdsourcing contests. It

also provides rich managerial implications, especially for individuals or organizations that are using

crowdsourcing contests to source creative solutions or products (i.e., seekers in crowdsourcing cre-

ative contests). We hope that this study inspires further work that analytically and/or empirically

investigates problems in crowdsourcing contests.
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Appendices

A. Proofs for Theorem 1 — Designers’ Equilibrium Decisions

To solve designers’ problem (Equation (3)), we first solve for designers’ equilibrium choices of the number of

conceptual objectives to incorporate (r∗(N)) and the number of design trials to generate (m∗(N)), given a

number of participating designers (N). Then we solve for the equilibrium number of participating designers

(N∗). As a preparation, we exploit the Gumbel distribution’s property (recall that V.s in Equation (2) follow

a Gumbel distribution), and compute designer i’s probability of winning, given i’s choices (ri and mi), and

all other competing designers’ choices (r and m):

Pr(i wins) =
mi exp(v(ri)/µ)

mi exp(v(ri)/µ) + (N − 1)m exp(v(r)/µ)
. (A.1)

We analyze the symmetric pure strategy Nash equilibrium, where every designer chooses the same r∗ and

m∗. Such equilibrium exists in our game, according to Theorem 1.2 in Fudenberg and Tirole (2000).

Equilibrium r∗: Designer i’s first-order condition (F.O.C.) with respect to concept formation decision ri (in

Equation (3)) is ∂Ui
∂ri

= 0. Substituting Pr(i wins) from Equation (A.1), and using symmetry (m=mi =m∗

and r= ri = r∗), we can simplify the marginal change in the winning chance with respect to ri as ∂Pr{i wins}
∂ri

=

w
µ
N−1
N2 . With that, we solve the F.O.C. and obtain a unique symmetric solution: r=

ln(N−1

N2
w
µ
A
c2

1
ln(1/p)

)

ln(1/p)
. Note

that, by definition, designers cannot incorporate more conceptual objectives than the total disclosed ones

(i.e., ri ≤ Sr); therefore,

r∗(N) = min(Sr, r) , where r=
ln(

N−1
N2

w
µ
A
c2

1
ln(1/p)

)

ln(1/p)
. (A.2)

Equilibrium m∗: Designer i’s F.O.C. with respect to trial effort decision mi (in Equation (3)) is ∂Ui
∂mi

= 0.

Substituting Pr(i wins) from Equation (A.1) into the F.O.C., and using symmetry (m=mi =m∗ and r =

ri = r∗), the F.O.C. reduces to A (N−1)m∗

(m∗N)2 − c3 = 0, which has a unique solution:

m∗(N) = A(N−1)

N2c3
. (A.3)

Equilibrium N∗: Having derived participating designers’ equilibrium choices (r∗(N) and m∗(N)) under a

given number of participants N , we compute the equilibrium number of participating designers (N∗). We

add a subscript to N∗ to help distinguish N∗ in two scenarios: N∗1 stands for N∗ when ri ≤ Sr is binding

(i.e., designers decide to incorporate all the disclosed conceptual objectives); N∗2 stands for N∗ when ri ≤ Sr
is not binding (i.e., designers decide to incorporate a subset of all disclosed conceptual objectives).

• Region I: In this region, designers are willing to incorporate all disclosed conceptual objectives. Equi-

librium conditions imply that designers are indifferent between participating or not, i.e., Pr(i wins) ·
A−Ci(ri=Sr,mi=m

∗) = s. In a symmetric equilibrium, Pr(i wins) = 1/N . We can simplify and solve

for the equilibrium number of participating designers as

N∗ =N∗1 =
√

A
s+c1·Sr+c2·(1/p)Sr

. (A.4)

• Region II: In this region, designers incorporate a subset of all disclosed conceptual objectives. Again,

designers are indifferent between participating or not, i.e., Pr(i wins) ·A−Ci(ri=r̄,mi=m
∗) = s. In a

symmetric equilibrium, Pr(i wins) = 1/N . After substituting r (see Equation (A.2)), we can rearrange

and solve for the equilibrium number of participating designers as:

N∗ =N∗2 =

√
4Y (X+1)+X2−X

2Y
, where X = w

µ ln(1/p)
and Y = s+c1·Sr

A
. (A.5)
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Next, we show that, the two regions are located on either side of a threshold Sic
r such that Sic

r = r(N∗2 (Sic
r ))

(where r is from Equation (A.2), and N∗2 is from Equation (A.5)). In words, Sic
r is the number of conceptual

objectives the seeker discloses, under which designers are willing to incorporate exactly what are disclosed.

The following Lemma characterizes Sic
r .

Lemma 2. There exists a unique Sic
r . Sic

r divides the number of conceptual objectives the seeker discloses

into two regions. Region I: when Sr ≤ Sic
r , designers are willing to incorporate all the disclosed objectives (i.e.,

Sr ≤ r(N∗2 (Sr))); Region II: when Sr >S
ic
r , designers incorporate only a subset of all the disclosed objectives

(i.e., Sr > r(N
∗
2 (Sr))).

Lemma 2 (proved in Online Appendix EC.3) suggests we can discuss N∗1 and N∗2 separately in Region I and

Region II defined in Lemma 2; the two regions are self-contiguous and do not overlap.

The Number of Participants Decreases with More Disclosed Conceptual objectives. It is obvious

that in Region I, the number of participating designers (N∗1 ) decreases with more disclosed conceptual

objectives (Sr). In Region II, we have,
∂N∗

2

∂Sr
=

∂N∗
2

∂Y
· ∂Y
∂Sr

= −−X
√
X2+4XY+4Y+X2+2XY+2Y

2Y 2
√
X2+4XY+4Y

· c1
A
≤ 0. That is,

the number of participating designers (N∗2 ) also decreases with more disclosed conceptual objectives (Sr)

in Region II. Moreover, N∗ is continuous with Sr. Therefore, the number of participating designers always

decreases with more disclosed conceptual objectives.

Lastly, we can substitute N∗ (Equations (A.4)-(A.5)) into Equations (A.2)-(A.3), and get m∗ and r∗ under

the equilibrium number of participating designers.

B. Proof for Lemma 1

maxSr≤Sr,Sg≤SgΠs(Sr, Sg)

= max
Sr≤Sr,Sg≤Sg

[
Eεmax

i∈N∗
V ∗i (r∗,m∗)

]
, (from Problem (6))

= max
Sr≤Sr,Sg≤Sg

[
Eε max

i∈N∗(Sr)
V ∗i (r∗(Sr),m

∗(Sg,N
∗(Sr)))

]
, (according to Theorem 1)

= max
Sr≤Sr,Sg≤Sg

[v(r∗(Sr)) +µ ln (m∗(Sg,N
∗(Sr)) ·N∗(Sr))] , (Gumbel distribution’s property)

= max
Sr≤Sr,Sg≤Sg

[
w · r∗(Sr) +µ ln A(N∗(Sr)−1)

N∗(Sr)
−µ ln(h(Sg))

]
,

= max
Sr≤Sr

[
w · r∗(Sr) +µ lnAN∗(Sr)−1)

N∗(Sr)

]
+ max
Sg≤Sg

[−µ ln(h(Sg))] .

(B.6)

C. Details for Proposition 1

We provide a detailed discussion on the characteristics of seekers’ optimal number of conceptual objectives

to disclose (S∗r := arg max Πs(Sr;Sg)), including its theoretical properties and simulated comparative statics.

Theoretical Properties of S∗
r . We separately discuss the optimal number of conceptual objectives to

disclose (S∗r ) under two scenarios: In Scenario 1, we assume that N∗ follows Equation (A.4), m∗ follows

Equation (A.2), and r∗ = Sr regardless of the size of Sr. In Scenario 2, we assume that N∗ follows Equa-

tion (A.5), m∗ follows Equation (A.2), and r∗ = r regardless of the size of Sr. In words, in Scenario 1 (2)

we assume that the equilibrium formulas of Region I (II) will prevail regardless of the size of Sr. We define

S1∗
r and S2∗

r as the optimal numbers of conceptual objectives the seeker should disclose in Scenario 1 and 2

under Sr =∞, and show their properties in Lemmas 3 and 4, respectively.
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Lemma 3. In Scenario 1, the seeker’s profit Πs is first increasing and eventually decreasing with Sr.

When c1 = 0 (i.e., no designers’ problem framing cost), Πs(Sr) is a concave function maximized at S1∗
r,c1=0 =

ln(2[
√
A(A+s( µ

w
)2 ln2 1

p
+2s µ

w
ln 1
p

)+(A−2s)−s µ
w

ln 1
p

])−ln(c2( µ
w

ln 1
p

+2)2)
ln (1/p)

. When c1 ≥ 0, Πs(Sr) is maximized at S1∗
r ,

and S1∗
r ≤ S1∗

r,c1=0.

Lemma 4. In Scenario 2, the seeker’s profit Πs decreases with Sr.

The proofs for Lemmas 3 and 4 are provided in Online Appendices EC.5 and EC.6, respectively. Note that

Scenario 1 corresponds to Region I in Lemma 2 when Sr ≤ Sic
r ; Scenario 2 corresponds to Region II in Lemma

2 when Sr >S
ic
r . With this observation and the continuity of Πs(Sr), Lemmas 3 and 4 imply that the optimal

number of conceptual objectives to disclose is S∗r ≤min{Sr, S1∗
r , S

ic
r }. Therefore, the seeker should not always

disclose all the conceptual objectives he cares about.

Comparative Statics of S∗
r . Next, we examine how the optimal number of conceptual objectives to dis-

close (S∗r ) changes with the nature of the design problem. Specifically, we simulate S∗r at different values of

the model primitives, including: cost of digesting each conceptual objective (in the “design problem framing”

stage) (c1); unit cost of each design concept formulating attempt (c2); opportunity cost (s); concept formu-

lating difficulty (1/p); award level (A); and relative problem uncertainty (λ := µ/w). Figure C.1 illustrates

the simulation results. The relationships between S∗r and each of those model primitives are consistent with

intuition. To save space, detailed discussion of the results are provided in Online Appendix EC.7.

(a) c1 (cost of problem framing) (b) c2 (cost of concept forma-
tion)

(c) s (opportunity cost)

(d) 1/p (difficulty of search) (e) A (award level) (f) λ (problem uncertainty)

Figure C.1 Optimal Number of Conceptual Objectives to Disclose, S∗r

(when A= 200, s= 2, p= 0.5, c2 = 3, µ= 6, w= 2, c1 = 2).
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D. Changes in Problem Specification Before and After the Platform Update

Table D.1 Measured by the Word-Count

Len(Q3)post
q Len(Q3)pre

q

Mean 8.745 30.025
Variance 102.114 3706.703
Observations 51 163
H0 Len(Q3)post

q =Len(Q3)pre
q

df 187
t Stat -4.278
P(T≤t) two-tail 3.007E-05

Table D.2 Measured by the Number of Manually
Coded Keywords (Including “Top-3 Things” and “Vision”

Boxes)

(No.Concept)post
q (No.Concept)pre

q

Mean 3.810 5.718
Variance 2.577 14.401
Observations 51 163
H0 (No.Concept)post

q = (No.Concept)pre
q

df 187
t Stat -5.234
P(T≤t) two-tail 3.957E-07

Table D.3 Impact of Different Elements of Execution Guidelines on No.Submissions Per Designer

Dependent Variable: (NOSubmission)i,q In Post-Update Multiple-Choice Questions?

Elements of Execution Guidance
Colors Dummy −0.041 (0.035) Yes
Logo Style Dummy 0.046 (0.029) Yes
Shapes Dummy 0.063 (0.040) No
Font Dummy 0.174∗∗∗ (0.046) Yes
Usage Dummy 0.088∗∗ (0.031) Yes
Art Styles Dummy 0.154∗∗∗ (0.029) No
Resources Dummy 0.100∗∗ (0.031) No

Control Variables
log(lenQ3 + 1)q −0.005 (0.010)
Durationq 0.015∗∗∗ (0.001)
Awardq 0.001∗∗∗ (0.0001)
(No.Designers)q −0.001∗∗ (0.0003)
Fixed Effects Start-Date, Industry, Creator

Observations 124,183
R2 (Adjusted R2) 0.247 (0.214)
Residual Std. Error (F Statistic) 3.381 (7.467∗∗∗, df = 118960)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Robustness check for the impact of platform update on (No.Designers)q. To make sure the increase

in (No.Designers)q after the website update is indeed due to the decrease in the number of disclosed

conceptual objectives, but not other concurrent changes to the platform, we conduct the following robustness

check. We regress the number of participants in each contest on not only I(post-update)q, but also log(lenQ3 +

1)q and I(post-update)q ∗ log(lenQ3 +1)q. (We include the same set of control variables as those shown in Table

3.) The estimation results are reported in the second column of Table D.4. After controlling for log(lenQ3 +

1)q, the dummy I(post-update)q no longer correlates with (No.Designers)q, indicating that the increase in

(No.Designers)q is explained by the change in the number of disclosed objectives (log(lenQ3 + 1)q); after

considering log(lenQ3 + 1)q, I(post-update)q does not explain the change in (No.Designers)q. In addition,

the interaction term I(post-update)q ∗ log(lenQ3 + 1)q is not significantly associated with (No.Designers)q,

suggesting that the effect of conceptual objectives on participation is not significantly different before and

after the platform update.

Table D.4 Robustness Check on Platform Update’s Impact

Dependent Variable: (No.Designers)q
(main test) (robustness)

I(post-update)q 10.579∗∗ (3.779) −1.615 (7.344)
log(lenQ3 + 1)q −1.794∗∗ (0.680)
I(post-update)q ∗ log(lenQ3 + 1)q 3.238 (3.500)

Control Variables No.Updatesq, Durationq, Week Slope, Day-of-Week, Industry Fixed Effects

Observations 214 214
R2 (Adjusted R2) 0.323 (0.199) 0.329 (0.201)
Residual Std. Error (F Statistic) 12.136 (2.604∗∗∗; df = 180) 12.118 (2.580∗∗∗; df = 179)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Online Appendices

EC.1. Examples of the Types of Information in Problem Specifications in the Data

Example-1

Company Name: .

Industry: Retailing.

Q3 (Conceptual objectives): It’s a fun brand for kids. Very happy, upbeat and never quit on your dreams.

Community and fun.

Q4 (Execution Guidance): Image only. A cartoon duck with a sailor hat - not too much like Donald Duck.

The hat should be green, the duck bill should be yellow. The duck should be white.

Q5 (Execution Guidance): Duck face a bit like this (link) but with hat and less body visible.

Example-2

Company Name: .

Industry: Consulting and Professional Services.

Q3 (Conceptual objectives): We want to generate a sense of progress to our customers, as well as communicate

that we are a professional organization. We’re here to help our clients cut through industry baggage to help

them really focus on what will help them do business well.

Q4 (Execution Guidance): Image with the company name, or image only. We won’t consider text only logos.

Q5 (Execution Guidance): None.

Example-3

Company Name: .

Industry: Social Media Advertising and Marketing.

Q3 (Conceptual objectives): We are looking for a design that is professional but not too corporate. We want

to convey reliability, fun and professionalism.

Q4 (Execution Guidance): None.

Q5 (Execution Guidance): Not really.

EC.2. Additional Tables

Additional summary statistics. In Table EC.1, we report the summary statistics of alternative measures

number of conceptual objectives and the amount of execution guidance per problem specification.

Table EC.1 Summary Statistics for Alternative Measures of Conceptual Objectives and Execution Guidance

Variable Notation Mean Std. Dev. Min Pctl(25) Med Pctl(75) Max

Number of Conceptual objectives (No.Concepts)q 5.759 3.857 1 3 4 7 30
Word-count per objectives (lenQ3/No.Concept)q 3.529 3.654 0.63 1.25 2.03 4.11 28.91
Semantic Similarity Among objectives Concept Similarity 18.3 7 0 14 17 21 51
Number of Execution Guidelines (No.GuideWords)q 6.482 4.560 0 3 5 9 26

Data evidence for problem framing cost increasing with conceptual objectives. Table EC.2 reports

the results of the regression of coders’ reading time for a problem specification on the characteristics of the

1
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problem specification. The results suggest that the coders spend more time reading problem specifications

with more conceptual objectives, but not on those with more execution guidelines. This supports our modeling

assumption that the problem-framing cost increases with the number of conceptual objectives, but not with

the number of execution guidelines.

Table EC.2 Regression of Reading Time

Dependent Variable: (Reading T ime)q

(No.Concepts)q 0.074∗∗∗ (0.004)
(lenQ3/No.Concepts)q 0.054∗∗∗ (0.004)
log(lenQ4 + 1)q −0.004 (0.016)
log(lenQ5 + 1)q −0.014 (0.013)
Constant −0.395∗∗∗ (0.112)

Observations 463
R2 0.647
Adjusted R2 0.612
Residual Std. Error (F Statistic) 0.292 (18.536∗∗∗; df = 424)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Robustness checks related to the “quasi-natural experiment”. As a robustness check for the platform

update’s impact on the number of submissions per designer, we experimented with alternative cutoffs for

the short- and long-execution-guideline problem specifications. The results of this robustness check, which

are reported in Table EC.3, show that the qualitative results of the regression are not affected by the choice

of the cutoff value.

Table EC.3 Alternative Cutoffs for Short v.s. Long Execution Guidelines

Dependent Variable: (NOSubmission)i,q

Cutoff for Short v.s. Long Q4 10 15 (main analysis) 20

I(short Q4)q ∗ I(pre-update)q 0.762 (0.374) 0.772 (0.384) 0.699 (0.366)
I(long Q4)q ∗ I(pre-update)q 1.174∗∗∗ (0.353) 1.213∗∗∗ (0.354) 1.150∗∗ (0.350)

Control Variables
(No.Designers)q −0.003 (0.004) −0.004 (0.004) −0.004 (0.004)
Durationq 0.029∗ (0.011) 0.028∗ (0.011) 0.028∗ (0.011)
Additional Controls No.Updatesq, Week Slope, Day-of-Week, Industry, Designer Fixed Effects

Observations 6,070 6,070 6,070
R2 (Adjusted R2 ) 0.317 (0.213) 0.318 (0.213) 0.318 (0.213)
Residual Std. Error (df = 5261) 3.333 (3.029∗∗∗) 3.333 (3.033∗∗∗) 3.333 (3.033∗∗∗ )

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

EC.3. Proof for Lemma 2

Below, we first show that Sic
r exists and is unique. Recall that Sic

r is the point where designers are willing to

incorporate the exact number of conceptual objectives disclosed by the seeker, i.e., Sic
r = r̄(N∗2 (Sic

r )). N∗2 is

the equilibrium number of participating designers when r∗ ≥ Sr is not binding.

Existence. We prove Sic
r exists by showing:

Lemma 5. (1) ∃Sr→ 0 s.t. r̄(N∗2 (Sr))≥ Sr, and (2) ∃Sr > 0 s.t. r̄(N∗2 (Sr))<Sr.

We now provide proofs for (1) and (2) in Lemma 5.

(1) By assumption, r∗ = Sr if Sr is sufficiently small (see Section 3.3), hence we know that ∃Sr → 0 s.t.

r̄(N∗2 (Sr))≥ Sr.

(2) We are interested in studying contests where N∗ > 1 (see Section 3.3); hence, under the problem param-

eters we focus on, ∃Sr s.t. N∗(Sr) > 1. This implies when Sr is sufficiently small, N∗ > 1, since when Sr

2
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increases, N∗ decreases (shown in Appendix A). On the other hand, when Sr becomes extremely large,

the number of participating designers is approaching zero: lim
Sr→∞

N∗(Sr) = 0 (both lim
Sr→∞

N∗1 (Sr) = 0, and

lim
Sr→∞

N∗2 (Sr) = lim
Sr→∞

√
4Y (X+1)+X2−X

2Y
= 0 (by L’Hopital’s Rule)). Hence, given continuity of N∗(Sr), ∃Sr > 0

s.t. N∗(Sr) = 1 (denoted as Sr,N=1). If the seeker discloses Sr,N=1 conceptual objectives, the number of objec-

tives designers are willing to incorporate is lim
Sr→Sr,N=1

r̄(N∗(Sr)) = lim
Sr→Sr,N=1

r̄(N∗=1) =−∞, which implies

r̄(N∗(Sr)) < Sr, and thus the number of participating designers in the equilibrium is N∗2 . Hence, ∃Sr s.t.

r̄(N∗2 (Sr))<Sr.

Uniqueness. If there are multiple Sic
r ’s s.t. Sic

r = r̄(N∗2 (Sic
r )), call the smallest one among them Sic(1)

r .

Lemma 5 implies that
∂r̄(N∗

2 (Sr))

∂Sr
|
S

ic(1)
r
≤ 1. Next, at any point Sr, we can compare the left and right limits of

∂r̄(N∗
2 (Sr))

∂Sr
, namely left limit lim

Sr→S−
r

∆r̄(N∗
2 (Sr))−

∆Sr
=

r̄(N∗
2 (Sr))−r̄(N∗

2 (Sr-∆Sr))

∆Sr
, and right limit lim

Sr→S+
r

∆r̄(N∗
2 (Sr))+

∆Sr
=

r̄(N∗
2 (Sr+∆Sr))−r̄(N∗

2 (Sr))

∆Sr
. Note that r̄(N∗2 (Sr)) is a function of Sr through the equilibrium number of partici-

pating designers (N∗2 ). Hence, corresponding to the left and right limits, we can define the changes in N∗2 as

∆N∗−2 and ∆N∗+2 respectively. Algebra based on Equation (A.5) implies that,
∂N∗

2

∂Sr
< 0 and

∂2N∗
2

∂S2
r
> 0, from

which we know |∆N∗+2 |< |∆N∗−2 | (i.e., the number of participants decreases with Sr at a decreasing speed).

Based on the formula for r̄(N∗2 ), we can write ∆r̄ as a function of ∆N∗2 : ∆r̄ =
(
N∗−

2 |∆N∗
2 |−1)(N∗

2 )2

(N∗−
2 |∆N∗

2 |)
2(N∗

2−1)

)
/(ln 1

p
).

Now, we can compare lim
Sr→S−

r

∆r̄−

∆Sr
and lim

Sr→S+
r

∆r̄+

∆Sr
:

• WhenN∗2>2: ∂∆r̄
∂|∆N∗

2 |
>0. In this case, ∆r̄+<∆r̄− since |∆N∗+2 |<|∆N∗−2 |. Hence, lim

Sr→S+
r

∆r̄+

∆Sr
< lim
Sr→S−

r

∆r̄−

∆Sr
.

• When N∗2<2: r̄ increases with N∗2 , so decreases with Sr (∆r̄-<0, ∆r̄+<0). So lim
Sr→S-

r

∆r̄-

∆Sr
<0, lim

Sr→S+
r

∆r̄+

∆Sr
<0.

The assessment of the left and right limits indicates that, ∂r̄
∂Sr

is either decreasing or negative. Therefore, we

have that ∀Sr > Sic(1)
r , and ∂r̄

∂Sr
|Sr < 1. This suggests Sic(1)

r is the only Sr, s.t. r̄(N∗2 (Sr)) = Sr. This result,

combined with Lemma 5, suggests that Sic
r divides the number of conceptual objectives the seeker discloses

Sr into two regions: Region I, when Sr ≤ Sic
r , Sr ≤ r(N∗2 (Sr)); Region II, when Sr >S

ic
r , Sr > r(N

∗
2 (Sr)).

EC.4. Extensions

We extend our main model to allow for the following possibilities: (1) overlap/similarity across concep-

tual objectives; (2) diminishing weights/importance among conceptual objectives. We are able to show in

both cases, the qualitative results from the model, hypotheses derived from the model predictions, and the

managerial implications (the optimal way of providing problem specifications) remain intact.

EC.4.1. Extension (I): Overlap Across Conceptual objectives

We extend our main model to consider the level of overlap across conceptual objectives. For example,

designers might consider “friendly” and “welcoming” more overlapping than “friendly” and “professional”.

Intuitively, satisfying multiple conceptual objectives with a large overlap is likely to be easier than satisfying

the same number of objectives with a small overlap; on the other hand, if a design already satisfies one

objective, satisfying another objective that overlaps a lot with the first one might only generate limited

marginal improvement to the design’s quality. To capture these effects, we make the following adjustments

to the main model. Given the level of overlap (denoted as 1−α where α∈ [0,1], i.e., when α is smaller, objec-

tives overlap significantly), we assume that conditional on one objective being satisfied, (1) the probability

3
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that another objective is satisfied by a random design concept generated is pα (when objectives are more

overlapping, pα is closer to 1); (2) the weight carried by any additional objective is αw (when objectives are

more overlapping, αw is closer to 0). Correspondingly, when a designer incorporates r objectives, her cost

of concept formulation is (1/p)1+α(r−1); and the base quality of her designs is w(1+α(r− 1)). Another way

to think about this is that the number of “orthogonal” objectives is 1+α(r− 1) (when objectives are almost

completely overlapping, the number of “orthogonal” objectives approaches 1; on the other extreme, as the

level of overlap goes to zero, the number approaches r). We solve for designers’ equilibrium behavior, given

the seeker’s problem specification (Sr, Sg, and α):

Lemma 6. In a crowdsourcing contest, the equilibrium number of entrants, Nα,∗, is decreasing with more

disclosed conceptual objectives Sr, but does not change with the amount of execution guidance provided Sg.

Specifically, let Sα,icr be the threshold number in extension I (its analog in the main model is Sic
r defined

in Lemma 2). When Sr ≤ Sα,icr , Nα,∗ = Nα,∗
1 =

√
A

s+c1·Sr+c2·(1/p)1+α(Sr−1) ; when Sr > Sα,icr , Nα,∗ = Nα,∗
2 =

√
4Y (X+1)+X2−X

2Y
, where X = w

µ ln(1/p)
and Y = s+c1·Sr

A
.

The unique symmetric equilibrium for rα,∗ and mα,∗ is as follows. The equilibrium number of objectives a

designer incorporates is rα,∗ = min{r̄α, Sr}, where r̄α =
ln(N

α,∗−1

(Nα,∗)2
·w
µ
· A
c2
· 1
ln 1/p

·p1−α)

α ln 1
p

, and the equilibrium number

of design trials each designer generates is mα,∗ = A(Nα,∗−1)

(Nα,∗)2c3
, where c3 = h(Sg).

Lemma 6 generalizes Theorem 1, and considers the level of overlap among conceptual objectives. This

lemma has the same intuition as Theorem 1 — the direction of the relationship between designers’ equi-

librium behaviors and the number of conceptual objectives and execution guidelines in seekers’ problem

specification remains unchanged; and Hypotheses 1a-b and 2a-b also remain intact. Note that this extension

provides an additional insight: as α decreases (i.e., the level of overlap increases), the number of participating

designers increases (first strictly increases, and then stays the same). We in fact find empirical support for this

additional insight: the number of participating designers in a contest increases with the semantic similarity

(Concept Similarity on a scale of 1-100) among the manually coded keywords for conceptual objectives (see

Table 2 Column 2 for the detailed regression results). Furthermore, our recommendation that seekers should

disclose as much execution guidance as possible, but disclose conceptual objectives only up to a certain level

stays the same. The proofs are straight-forward generalization of proofs in Appendix A and Appendix C,

which we omit here given the limited space.

EC.4.2. Extension (II): Descending Weights Among Conceptual Objectives

We extend our main model to consider the possibility that conceptual objectives could carry different

weights/importance to the seeker. Each conceptual objective (denoted as sr) carries a weight of wsr , which

represents the importance of this objective, or the quality improvement of a design if this additional objec-

tive sr is satisfied. The seeker’s objectives (sr = 1, ..., S̄r) are sorted in descending importance, with smaller

sr indicating more important objectives (i.e., wsr is decreasing with sr). We assume wsr = wΦsr−1, where

Φ ∈ [0,1]. The parameter Φ captures how “skewed” the distribution of wsr is, i.e., when Φ is large, all the

objectives are very similar in terms of their importance to the seeker; whereas when Φ is small, the impor-

tance drops quickly with sr, and only a small number of objectives are important. We assume that wsr

4
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is common knowledge. As objectives are equally difficult to achieve but of different importance, the seeker

would always want to disclose objectives in the order of decreasing importance (i.e., from the most important

to the least important). Given the seeker’s problem specification (Sr, Sg, and Φ) we solve for designers’

equilibrium behavior:

Lemma 7. In a crowdsourcing contest, the equilibrium number of entrants, NΦ,∗, is decreasing with more

disclosed conceptual objectives Sr, but does not change with the amount of execution guidance provided Sg.

The unique symmetric equilibrium for rΦ,∗ and mΦ,∗ is as follows. The equilibrium number of objectives

a designer incorporates is rΦ,∗ = min{r̄Φ, Sr}, where r̄Φ =
ln(N

Φ,∗−1

(NΦ,∗)2
· w
µ(1−Φ)

· A
c2
· ln 1/Φ
ln 1/p

)

ln 1
pΦ

, and the equilibrium

number of design trials each designer generates is mΦ,∗ = A(NΦ,∗−1)

(NΦ,∗)2c3
, where c3 = h(Sg).

Lemma 7 generalizes Theorem 1, and considers the possible descending weights/importance among concep-

tual objectives. It has the same intuition as Theorem 1: the direction of the relationship between designers’

equilibrium behaviors and the numbers of conceptual objectives and execution guidelines in the seeker’s

problem specification remains unchanged; and Hypotheses 1a-b and 2a-b remain intact. Furthermore, our

recommendation that it is optimal for seekers to disclose as much execution guidance as possible stays the

same, and our suggestion that seekers should only disclose conceptual objectives up to a certain level becomes

even more salient. Intuitively, as the importance of the conceptual objectives decreases with sr, the quality

improvement from incorporating an additional objective is smaller (a lower “quality effect”). Yet, the nega-

tive “competition effect” from disclosing more conceptual objectives remains (a higher cost for designers to

digest and incorporate disclosed conceptual objectives, which lowers the number of participating designers).

The proofs are straightforward generalization of proofs in Appendix A and Appendix C, which we omit here

given the limited space.

EC.5. Proof for Lemma 3

We denote Πs in Scenario 1 (defined in Appendix C) as Π1
s . In Scenario 1, all designers incorporate all the

disclosed objectives (Sr). In this case, the seeker solves the following optimization problem:

max
Sr≤S̄r

Π1
s(Sr;Sg) = max

Sr≤S̄r
w ·Sr +µ lnA(1− 1

N∗
1 (Sr)

)−µ ln(h(Sg)), where N∗1 is from Equation (A.4). (EC.1)

EC.5.1. With Zero Cost for Designers to Digest Each Conceptual objective (i.e., c1 = 0)

We calculate the second derivative of Π1
s(Sr;Sg|c1 = 0) with respect to Sr as follows:

∂2Π1
s(Sr;Sg|c1=0)

∂Sr2 =−µc22 ln2 1
p

( 1
p

)Sr [c2( 1
p

)Sr+2s(1−B)]

4A2B3(B−1)2 < 0, where B=

√
c2( 1

p
)Sr+s

A
= 1
N∗ ∈ (0,1], (EC.2)

which shows Π1
s(Sr;Sg|c1 = 0) is a concave function w.r.t Sr.

Maximum of Π1
s(Sr;Sg|c1 = 0): For a concave function Π1

s(Sr;Sg|c1 = 0), the global maximum is reached

when
∂Π1

s(Sr;Sg|c1=0)

∂Sr
= 0. We can write this F.O.C. as [x ln 1

p
c2µ + 2w(s + xc2)]2 = 4w2A(s + xc2), where

x := ( 1
p
)Sr . The roots for this quadratic function are:

x1 =
2[−
√
c22Aw2(Aw2+sµ2 ln2 1

p
+2sµw ln 1

p
)+(c2w

2(A−2s)−c2sµw ln 1
p

)]

c22(µ ln 1
p

+2w)2 ;

x2 =
2[
√
c22Aw2(Aw2+sµ2 ln2 1

p
+2sµw ln 1

p
)+(c2w

2(A−2s)−c2sµw ln 1
p

)]

c22(µ ln 1
p

+2w)2 .
(EC.3)
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Because c2
2Aw2(Aw2 +sµ2 ln2 1

p
+2sµw ln 1

p
)− (c2w

2(A−2s)− c2sµw ln 1
p
)2 = c2

2sw2(A−s)(µ ln 1
p
−2w)2 >

0, we know that x1 < 0, x2 > 0. Hence, x2 is the unique maximum (by definition, x = ( 1
p
)Sr is positive).

Therefore, the optimal number of conceptual objectives to disclose is S1∗
r,c1=0 = min{Sr, lnx2

ln (1/p)
}, where x2 is

from Equation (EC.3).

EC.5.2. With Positive Cost for Designers to Digest Each Conceptual Objective (i.e., c1 >

0) The Seeker’s Profit Π1
s is Eventually Decreasing with Sr. As mentioned in Section 3.3, we are

interested in studying contests where N∗ > 1; hence, under the problem parameters we focus on, ∃Sr s.t.

N∗(Sr)> 1. This implies when Sr is sufficiently small, N∗ > 1, since when Sr increases, N∗ further decreases

(shown in Appendix A). Also, when Sr is sufficiently small, specifically, Sr ≤ Sic
r , the equilibrium number of

participating designers is N∗1 , and thus N∗1 > 1. On the other hand, when Sr becomes extremely large, N∗1 is

approaching zero: lim
Sr→∞

N∗1 (Sr) = 0. Hence, given continuity of N∗1 (Sr), ∃Sr > 0 s.t. N∗1 (Sr) = 1 (we denote

it as Sr,N∗
1 =1).

While Sr increases and approaches Sr,N∗
1 =1, the seeker’s profit is approaching to negative infinity, i.e.,

lim
Sr→Sr,N∗

1 =1

Π1
s(Sr;Sg) = lim

Sr→Sr,N∗
1 =1

w ·Sr +µ lnA(1− 1
N∗

1 (Sr)
)−µ ln(h(Sg)) =−∞. Therefore, the seeker profit

Π1
s is eventually decreasing with a high enough Sr, which suggests S1∗

r <∞, i.e., the seeker should not always

disclose all of his conceptual objectives in Scenario 1 (i.e., even if designers are “required” to incorporate all

the disclosed conceptual objectives).

Optimal Number of Conceptual Objectives to Disclose (S1∗
r ) is Bounded Above by S1∗

r,c1=0. We

first show that the seeker’s profit always decreases with the unit cost for designers to frame the design problem

(i.e., a higher c1).
∂Π1

s(Sr;Sg)

∂c1
=

∂Π1
s(Sr;Sg)

∂N∗
1

∂N∗
1

∂c1
< 0 (according to Equation (EC.1)). Hence, Π1

s(Sr;Sg|c1 > 0)<

Π1
s(Sr;Sg|c1 = 0), i.e., the seeker’s profit is always lower when there is positive cost for designers to frame

the design problem. In addition, based on algebra, we have
∂
∂Π1
s(Sr ;Sg)

∂Sr

∂c1
= −µ ln′(1− 1

N∗
1

)
∂

1/N∗
1

∂Sr

∂c1
< 0, which

suggests

∂Π1
s(Sr;Sg|c1≥0)

∂Sr
≤ ∂Π1

s(Sr;Sg|c1=0)

∂Sr
. (EC.4)

Recall that, Π1
s(Sr;Sg|c1 = 0) is concave and maximized at S1∗

r,c1=0; thus,
∂Π1

s(Sr;Sg|c1=0)

∂Sr
|Sr>S1∗

r,c1=0
< 0. Com-

bining this with Equation (EC.4), we have
∂Π1

s(Sr;Sg|c1≥0)

∂Sr
|Sr>S1∗

r,c1=0
≤ ∂Π1

s(Sr;Sg|c1=0)

∂Sr
|Sr>S1∗

r,c1=0
< 0. In other

words, when Sr is greater than S1∗
r,c1=0, the seeker’s profit is always decreasing with Sr. Hence, the global

maximum of Π1
s(Sr;Sg) is bounded above by S1∗

r,c1=0. Furthermore, based on simulations in Appendix C,

we find that S1∗
r is not very sensitive to c1, which suggests that, the maximum S1∗

r,c1>0 is relatively close to

S1∗
r,c1=0.

EC.6. Proof of Lemma 4

We denote Πs in Scenario 2 (defined in Appendix C) as Π2
s . In Scenario 2, designers incorporate the equi-

librium subset (r) of all the disclosed objectives. In this case, the seeker solves the following optimization

problem:
max
Sr≤S̄r

Π2
s(Sr;Sg) = max

Sr≤S̄r
[w · r̄(N∗2 (Sr)) +µ ln (m∗(Sg,N

∗
2 (Sr)) ·N∗2 (Sr))],

where N∗2 is from Equation (A.5), and m∗ and r are from Theorem 1.
(EC.5)
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Now we show
∂Π2

s

∂Sr
< 0, i.e., Π2

s(Sr;Sg) is monotonically decreasing w.r.t Sr. Note that, Π2
s(Sr;Sg) is a function

of Sr only through N∗2 ; hence, we can write

∂Π2
s

∂Sr
=

∂Π2
s

∂N∗
2
· ∂N

∗
2 (Sr)

∂Sr
, (EC.6)

in which we know that
∂N∗

2 (Sr)

∂Sr
≤ 0 (see the proof in Appendix A). Now we show

∂Π2
s

∂N∗
2
> 0:

∂Π2
s

∂N∗
2

=w
∂r̄(N∗

2 )

∂N∗
2

+µ 1
(N∗

2 )2−N∗
2

= 1
(N∗

2 )2−N∗
2
· w

ln(1/p)
· (µ ln(1/p)

w
+ 2−N∗2 ). (EC.7)

Based on Equation (A.5), the last term in Equation (EC.7) can be re-written as µ ln(1/p)

w
+ 2−N∗2 = 1

X
+ 2−√

4Y (X+1)+X2−X
2Y

, which can be shown to be positive using algebra. With all the terms in Equation (EC.7)

being positive (by assumption, N∗2 > 1),
∂Π2

s

∂N∗
2
≥ 0. Combining

∂N∗
2 (Sr)

∂Sr
≤ 0 and

∂Π2
s

∂N∗
2
≥ 0, we have

∂Π2
s

∂Sr
≤ 0

(Equation (EC.6)). That is, the seeker profit is monotonically decreasing with respect to the number of

disclosed objectives in the problem specification in Scenario 2.

EC.7. Intuition for Comparative Statics in Figure C.1

It is optimal for the seeker to disclose more conceptual objectives (a higher S∗r ), when the unit cost of concept

formation is lower (a smaller c2), or the conceptual objectives are easier to satisfy (a larger p, or equivalently,

a smaller 1/p). This is intuitive – when it is less costly or less difficult to find a design concept satisfying each

disclosed conceptual objective, designers are willing to incorporate more conceptual objectives and the seeker

benefits from disclosing more objectives with a lower competition effect. Note that neither the unit cost of

problem framing (c1), nor the opportunity cost (s) has a large impact on the optimal number of disclosed

conceptual objectives (S∗r ). This is because the opportunity cost and the “problem framing” cost are fixed for

every participating designer, and those fixed costs do not significantly affect the seeker’s trade-off between

the quality effect and the competition effect, given designers’ decision on the number of conceptual objectives

to incorporate is not significantly affected by those fixed costs (Theorem 1).

We also observe that, if the seeker can afford a larger award amount, the optimal number of disclosed

conceptual objectives increases. The reasons are as follows. When the award level is high, everything else

equal, (1) designers are willing to incorporate more conceptual objectives; (2) a higher possible award balances

with the increased participation cost, which alleviates the negative competition effect.

Another observation worth mentioning is that, when the problem is more uncertain (a larger λ := µ/w,

meaning the quality uncertainty is on a larger scale in comparison with the weights of the conceptual objec-

tives), the optimal number of conceptual objectives to disclose is smaller. When uncertainty in design quality

is relatively high, it is crucial for the seeker to attract more designers to the contest — more participating

designers allow more random draws from the distribution of quality shocks (ε’s); when the scale of the quality

shock is larger, the contribution of each additional participant and her submissions (or, additional random

quality draws) to the expected extreme (highest) quality value (i.e., the seeker’s profit) is also larger. In

this case, the competition effect, which drives the number of participating designers down, has a very strong

negative effect. Therefore, the seeker will be better-off disclosing fewer conceptual objectives to reduce the

competition effect.

In terms of the sensitivity of the optimal number of conceptual objectives to disclose (S∗r ) to these model

parameters, somewhat surprisingly, we find that S∗r is not sensitive to most parameters, including unit cost
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of problem framing (c1), unit cost of concept formulating (c2), opportunity cost (s), award level (A), and

relative problem uncertainty (λ := µ/w). This is because in our model, the “design concept formulating” cost

rises very fast (exponentially) with the number of conceptual objectives designers incorporate. We believe

this aligns with the reality that it becomes increasingly difficult for a designer to satisfy and fit in multiple

objectives in a single design solution simultaneously. In particular, based on our numerical examples (Figure

C.1 in Appendix C), the optimal number S∗r is always around 2–5, regardless of how we adjust the set of

model parameters discussed above. This result has important managerial implications, as it suggests that

different contests may share a similar optimal number of conceptual objectives to disclose, and the platform

does not need to adjust the recommended number of disclosed conceptual objectives for different seekers or

different contests. The only parameter to which S∗r is sensitive is the concept formation difficulty, 1/p. The

concept formation difficulty is more related to the nature of the design problem the seeker has. For example, in

crowdsourcing industrial design contests with straightforward conceptual objectives that are less challenging

to achieve (1/p is smaller; e.g., for a helmet design, the objectives can be: protective, lightweight, adjustable

fit system, and with cost-effective material), the platform should recommend the seeker to disclose more

conceptual objectives he wants the designs to achieve. In contrast, in crowdsourcing fashion design contests

with less straightforward conceptual objectives (e.g., a bag design that symbolizes excellence, elegance, and

supremacy), the seeker may want to highlight only a few important conceptual objectives, because those

objectives tend to be relatively more abstract, ambiguous, and thus, more challenging to achieve (1/p is

larger).
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