
Watermark-based Sensor Data Authentication

by

Zhe Feng

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Engineering

(Computer Engineering)
in the University of Michigan-Dearborn

2019

Master’s Thesis Committee:

Associate Professor Hafiz Malik, Chair
Assistant Professor Samir Rawashdeh
Professor Weidong Xiang

© Zhe Feng 2019

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Professor Hafiz Malik of the Electrical and Computer

Engineering Department at University of Michigan - Dearborn. He is always warm and welcoming

and patient. He gave me the initial idea, guided me to the right direction when I was lost and

encouraged me to overcome the challenges I met. His office becomes my favourite place in the

whole university.

I would also like to thank other professors, colleagues and friends who provided help to me

during this project. Without their help, this thesis would not be possible.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER

I. INTRODUCTION . 1

II. RELATEDWORK . 3

III. DESIGN . 5

3.1 Introduction . 5
3.2 Negotiation Phase . 6

3.2.1 Option I: encrypt-then-sign . 7
3.2.2 Option II: sign-then-encrypt 8

3.3 Watermarking Embedding Phase . 12
3.4 Watermarking Verification Phase . 13
3.5 Block-Based Feature . 15
3.6 Synchronization Frame Feature . 16
3.7 Separate Thread to Generate Watermark Information 17

IV. IMPLEMENTATION . 19

4.1 Hardware . 19
4.2 Technologies . 20
4.3 Watermark Embedding Implementation Detail 21

V. EVALUATION . 24

iii

5.1 Evaluation Targets . 24
5.2 Correlation and Threshold . 25

5.2.1 Watermark Detection: Same Watermark 25
5.2.2 Watermark Detection: Different Watermark 26
5.2.3 Watermark Detection: No Watermark 26

5.3 Detection Performance . 27
5.3.1 Legitimate Data . 28
5.3.2 Replace with Forged Data . 28
5.3.3 Replace with Replayed Data 29
5.3.4 Swap Attack . 29

5.4 Speed . 30
5.5 Object Recognition Performance . 31
5.6 Performance under Intended Noise . 33
5.7 Sync Frames Feature under Attacks . 34

5.7.1 Insertion Attack . 34
5.7.2 Deletion Attack . 34

5.8 Speed with Separate WM-generating Thread 34

VI. FURTHER THOUGHTS . 37

6.1 Further Thoughts . 37

VII. CONCLUSION . 39

BIBLIOGRAPHY . 40

iv

LIST OF FIGURES

Figure

3.1 Option I’s Data Flow Diagram for Transmitter 8

3.2 Option I’s Data Flow Diagram for Receiver . 9

3.3 Option II’s Data Flow Diagram for Transmitter 10

3.4 Option II’s Data Flow Diagram for Receiver . 11

3.5 Flow Diagram of Watermark Embedding Phase 13

3.6 Watermark Verification Phase . 15

3.7 Block-Based Feature Illustration . 15

3.8 Illustration of Sync Feature . 17

3.9 Separate Thread to Generate Watermark Information 18

4.1 Devices . 20

4.2 Control Flow . 23

5.1 Experiment Setup . 24

5.2 Devices . 32

5.3 Devices . 33

5.4 Program output from receiver under insertion attack 35

5.5 Program output from receiver under deletion attack 36

v

ABSTRACT

Sensors have been widely used in robots, Internet of Things and automobiles. The data sent

from sensor is used to detect objects, measure environment and make decision or conclusion. Since

the sensor data is so critical for the system, the data from sensors must be authenticated before it is

processed. The obvious approach is to use encryption. But this approach is not suitable for real-time

streaming and may fail because of the noise or lossy compression. Besides, the receiver side must

decrypt the data before displaying it and the encryption and decryption takes time when the data

is huge, e.g. video streaming. In this paper, we propose an approach which combines encryption

and watermarking to authenticate the sensor data. It has two phases and is spatial, invisible and

blind-detected. We designed the approach carefully and try to achieve real-time performance. The

experiment shows it is robust and fast.

vi

CHAPTER I: INTRODUCTION

Sensors have been widely used in automobile, Internet of Things(IoT) and robot. They are used

for different purposes such as detecting objects and measuring environment or carrier’s informa-

tion. The sensor data could be further sent to a system for making decisions or conclusion. Take

automobile as an example, because of the high number of deaths caused by motor vehicle acci-

dents (Wikipedia contributors, 2019a), a vehicle-related safety approach called Advanced Driver

Assistance Systems (ADAS) is proposed. ADAS has a lot of functionality including but not limited

to speed assistance, navigation, collision avoidance, lane keeping and intersection support. They

all use sensors or external data to achieve their functionality. For example, the navigation system

needs to position the vehicle by using inertial sensors and GPS. To position the other objects, the

lidar and infrared sensors are used (Lu et al., 2005).

Some well-known attacks to the wireless sensor networks(WSN) have been developed. For

example, in Denial of Service(DoS) attack, the attacker sends enormous packets to the victim sensor

so that it can exhaust the resource of that sensor. In sybil attack, the malicious node pretends to

be other nodes in the network and degrade the distributed system performance. For the attacks

during the transmission, attackers can use a more powerful device to monitor the network and

then modify/intercept/fabricate/interrupt the packets and fools the nodes in network (Pathan et al.,

2006).

Since the sensor data is so critical for the system, the data from sensors must be authenticated

before it is processed. The cryptographical approach may not be suitable for some cases because

the encryption and decryption take time. This delay could be obvious when the data is comparably

huge, such as video stream. But ADAS system may need real-time data to make decision in time.

For example, if the position data is delayed, the navigation system may provide outdated informa-

tion to the driver and the driver may miss the right exit. And the decryption may fail because of

1

error bits caused by transmission.

On the other hand, the watermark has been used widely to protect copy right. And there are

also some reaches on watermark application on data security. These are discussed in next chapter.

Compared to traditional security schemes, watermark is light weight and requires less computing

resource.

In our approach, we propose an approach using watermarking techniques. We try to achieve

data authentication in real-time. Our approach is spatial and invisible and blind-detected. It is also

semi-fragile against jpeg compression. We focus on image authentication and try to prevent some

known attacks. In our attack model, we assume the attacker attacks from the inside and cannot com-

promise any important entities nor discover the credentials and parameters used in transmission.

The external attacks such as presenting a picture in front of the camera are not considered.

Although we use camera sensor in our work, the algorithm can be applied to other sensors as

long as the data can tolerate some level of distortion. The experiment shows that we can authenticate

the data correctly without bring too much impairment to the data itself.

The details of algorithmwill be discussed in later chapters. The rest of the document is arranged

as follows: chapter 2 discusses the related works, the detail of the approach is presented in chapter

3, the chapter 4 shows how the experiment is set up and its result is shown in chapter 5. The chapter

6 is the further thoughts of the project and the final chapter presents the concluding remark.

2

CHAPTER II: RELATEDWORK

Because of the high-speed internet, online video piracy is getting easier and more popular.

Now it is a big concern of the film industry. Then watermark is used by the industry to claim

their copyright. A watermark system consists of an encoder and a decoder. Before the movie is

distributed, the watermark is added into the movie by the encoder and then the watermarked movie

is released. The Internet Service Provider (ISP) has the decoder and will reject the request if the

movie to be downloaded contains the watermark. (Asikuzzaman and Pickering, 2018)

There are many watermark embedding techniques for different domains such as compressed

domain (e.g. MPEG-2), spatial domain (e.g. LSB-based), transform domain (e.g. discrete Fourier

transform). Some issues exist for video watermark. For example, the imperceptibility of the wa-

termark means the watermark is invisible to human visual system. The payload of the watermark

means the number of watermarking bits is embedded. The blind detection of the watermark sys-

tem means the we can extract the watermark from the watermarked video without referring to the

original video. (Asikuzzaman and Pickering, 2018)

Also, watermark systems are facing some attacks. In signal processing attacks, the watermark’s

energy is reduced because the pixel values are changed. This may happen if compression, such as

MPEG-2, is adopted. In geometric attacks, the frames could be upscaled, rotated, cropped and

downscaled to an arbitrary resolution and thus may remove the watermark. The temporal synchro-

nization attacks may insert frames into original frames, drop frames, swap frames and change the

rate of the frame (e.g. double the frame rate). (Asikuzzaman and Pickering, 2018)

Juma et. al. proposed their approach which uses watermark to protect the integrity of sensor

data in their paper (Juma et al., 2008). They proposed two schemes “Simplified Sliding Group

Watermark” (S-SGW) and “Forward Watermark Chain” (FWC). In S-SGW scheme, they use hash

function on each data reading along with secret key K. Then the synchronization point can be deter-

3

mined by the value of hash modulo secret parameter m and current group is longer than minimum

group length L. Watermark can be calculated when two such groups are found. In FWC scheme,

the difference is that the watermark is calculated based on single group itself. Thus, FWC is even

faster. (Juma et al., 2008)

For the image authentication, Hu et al. proposed their watermark algorithm that uses two semi-

fragile watermarks. A watermark is semi-fragile if it is robust to acceptable content-preserving

manipulations but not to malicious distortions. In their algorithm, the two watermark is generated

by extracting the image feature from the low frequency domain. One is to classify intentional

content modification and the other is to indicate the modified location. The authentication does not

need the original image or watermark. The experiment shows their algorithm is practicable. (Hu

and Han, 2005)

Watermarking can also be applied to audio. Malik et al. proposed a novel watermarking scheme

applied on audio. It is based on frequency-selective spread spectrum. Compared to similar works,

it doesn’t use the whole audible frequency range to embed watermark. Instead, it randomly selects

subbands(s) signal(s) to do that. There are two blind watermark detection methods. One is based

on estimation correlation and the other is based on normalized correlation. The proposed approach

has better fidelity, secure embedding and other nice attributes. (Malik et al., 2008)

Recently, Azeem et al. proposed a novel approach which uses physical-fingerprinting of con-

troller area network. They found that each Electronic Control Unit(ECU) has unique frequency

response. So, in their approach, they use this unique physical property of ECUS to identify which

ECU is sending the data. (Avatefipour et al., 2017) (Hafeez et al., 2017) (Tayyab et al., 2018)

(Hafeez et al., 2018)

4

CHAPTER III: DESIGN

3.1 Introduction

In this chapter and the experiment in later chapters, we use data from camera sensor as the

example. But generally, this solution can be applied to other kinds of sensors as long as it can

accept an amount of intentional modification.

There are two phases in the proposed approach. The first phase is the negotiation phase and

the other phase is the watermarking phase. In the later phase, if it is a transmitter, it will embed

the watermark into the video in this phase. If it is a receiver, it will extract the watermark from the

video and verify the watermark in this phase.

In the negotiation phase, the two entities will negotiate the parameters used during the trans-

mission and watermarking. After the negotiation, the transmitter takes live video, watermarks each

frame and sends them to the receiver. And the receiver receivers the data and authenticate each

frame. If authentication fails, there will be a warning message displayed on the screen.

Because the video steam consists of continuous image capture from the camera. For clarity, we

name each such image capture a “frame” and denote it by Fi where the i is the index of the frame

in the sequence. Then we define the original video stream V as an infinite sequence of frames:

V = {F1, F2, ...}

The watermark embedding phase generates a new frame F ′
i for each original frame Fi. And we

define the watermarked video steam V ′ as an infinite sequence of frames:

V ′ = {F ′
1, F

′
2, ...}

5

The following sections of this chapter describe those phases in detail.

3.2 Negotiation Phase

In this phase, the transmitter initiates the negotiation with the receiver. They negotiate the

parameters that are used in the transmission. These parameters include but not limited to the per-

centage of the data to be watermarked, the transmission model and credentials or keys used during

watermarking.

Although the transmitted sensor data doesn’t need to be confidential, these parameters them-

selves have to confidential. Otherwise the attacker can simply eavesdrop the parameters and forge

the data to fool the receiver.

To achieve the confidentiality, we investigated some symmetric (wini J , 2015) and asymmetric

cryptosystems (Kuhn et al., 2001). Then we choose the RSA public key cryptosystem. It is only

used in negotiation phase and thus the delay caused by encryption and decryption is acceptable

because this phase only occurs once in the whole transmission. In our design, we use the following

functions:

1. Sign(data, Priv) which uses a private key and creates a signature for input data. The Priv

stands for the private key.

2. Verify(signature, Hash Value, Pub) which uses a public key and verify the identity of the

signature.

3. SHA384(data) which generates the hash for input data. There are some other hash functions

available for RSA. We choose SHA384.

4. Encrypt(data, Pub) which encrypt data with a public key. The Pub stands for the public key.

5. Decrypt(data, Priv) which decrypt the data with a private key.

The public keys and private keys for the sensors and ADAS can be pre-installed in the devices

6

or retrieved from certification authority (CA). If the keys are pre-installed, the hardware security

module (HSM) is need.

We have considered two options to do this. One is encrypt-then-sign and the other is sign-then-

encrypt.

3.2.1 Option I: encrypt-then-sign

If we use encrypt-then-sign, the transmitter first encrypts the parameters data with receiver’s

public key. Then it uses its own private key to sign the encrypted message and generate the sig-

nature. The encrypted message along with the signature is sent to the receiver. For the receiver,

it does the reversed process. It first verifies the signature with transmitter’s public key and then

decrypt the message and get the parameters.

For the transmitter, the process can be expressed by algorithm 1 and the data flow diagram is

shown in figure 3.1.

Algorithm 1: Transmitter process when using encrypt-then-sign

Cipher Text← Encrypt(Parameters, PubR);

Hash Value = SHA384(Cipher Text);

Signature = Sign(Hash Value, P rivT);

Transmit(Cipher Text||Signature);

In the pseudocode, the Cipher Text is the data after encryption. PubR means the public key of

receiver. PrivT stands for the private key of transmitter. And “||” means concatenation and this

concatenation should also provide some metadate so that the receiver can split the data correctly.

For the receiver, once it received the data, the process can be expressed in algorithm 2 and the

data flow diagram is shown in figure 3.2.

7

Figure 3.1: Option I’s Data Flow Diagram for Transmitter

Algorithm 2: Receiver process when using encrypt-then-sign

Hash Value← SHA384(Cipher Text);

if V erify(Signature,Hash Value, PubT) then

Parameters← Decrypt(Cipher Text);

else

Reject the request;

end

3.2.2 Option II: sign-then-encrypt

If we use sign-then-encrypt, the transmitter first calculates the hash and signs the parameters

data with its own private key and generate the signature. Then it uses receiver’s public key to

encrypt the whole message that consists of parameters data and the signature. The encrypted whole

message is sent to the receiver. After transmission, the receiver decrypts the whole message with

8

Figure 3.2: Option I’s Data Flow Diagram for Receiver

its own private key and verifies the signature with transmitter’s public key.

Similarly, for the transmitter, the process can be expressed by algorithm 3 and the data flow

diagram is shown in figure 3.3.

Algorithm 3: Transmitter process when using sign-then-encrypt

Hash Value← SHA384(Parameters);

Signature← Sign(Hash Value, P rivT);

Cipher Text← Encrypt(Parameters||Signature, PubR);

Transmit(Cipher Text);

For the receiver, once it received the data, the process is expressed by algorithm 4 and the data

flow diagram is shown in figure 3.4.

9

Figure 3.3: Option II’s Data Flow Diagram for Transmitter

Algorithm 4: Transmitter process when using sign-then-encrypt

Parameters||Signature← Decrypt(Cipher Text);

Hash Value← SHA384(Parameters);

if V erify(Signature,Hash Value, PubT) then

Accept parameters;

else

Reject the request;

end

In our case, these two options are both suitable. So both of them are implemented and can be

chosen by run-time arguments provided to the program.

After this phase, the transmitter and the receiver should have enough information for the next

phase.

10

Figure 3.4: Option II’s Data Flow Diagram for Receiver

It is worth noting that there is a potential replay attack in this phase. The attacker eavesdrops

the network and record the negotiation request from transmitter and following frames. Although

the attacker cannot decrypt data and get the parameter, he can replay it to the receiver directly and

then replay the frames he has eavesdropped. Because the all the data is legitimate, so the receiver

will be fooled and accept the frames just like it was from the transmitter.

To prevent this, we have to also ensure the data freshness. We added a time-stamp field among

the parameters, so when the receiver receives a negotiation request, it will first validate the time-

stamp. If the time-stamp is too old, it will reject the request. To make this work, the time skew

between them shall not be too large.

11

3.3 Watermarking Embedding Phase

The transmitter takes the video streaming and embeds watermark into each frame. We defined

a special algorithm to generate the different watermark information for each frame. So even if our

attacker reveals the watermark information of a frame, he cannot use that information to discover

watermark information of other frames.

In general, the transmitter captures the image from the camera, transforms it into a more suitable

representation, embeds the watermark and transforms it back to image. Then it compresses the

image by jpeg and transmits the data to the receiver.

In a more formal way, we define a function Generate_Watermark that generates unique wa-

termark information for each frame:

Wi = Generate_Watermark(Fi)

where Fi is the i-th frame andWi is the generated watermark.

Note although it only takes the current frame data as the input, it also uses the some internal

information including the parameters negotiated in previous phase.

The transformation function Transform does the transformation to the frame. The embed-

ding function Embed embeds the watermark into the frame. The reverse transformation function

Transform−1 reverses the transformation. The pseudocode can be found in algorithm 5:

Algorithm 5:Watermark Embedding

Wi ← Generate_Watermark(Fi) ;

Ti ← Transform(Fi) ;

T ′
i ← Embed(Ti,Wi) ;

F ′
i ← Transform−1(T ′

i) ;

Transmit(Compress(F ′
i));

Where Ti stands for the data in transformed representation. Then we use a compress func-

tion Compress (in our case, it is JPEG with default quality parameter) and transmission function

12

Transmit to send data to receiver.

If we remove the intermediate variables in the formula, the watermark embedding process can

be expressed as:

F ′
i = Transform−1(Embed(Transform(Fi), Generate_Watermark(Fi)))

The flow diagram of process is also shown in figure 3.5.

Figure 3.5: Flow Diagram of Watermark Embedding Phase

To improve the performance, the implementation is little different than what is described in this

chapter. And there are other features that can be enabled for this phase. They are described in later

sections.

3.4 Watermarking Verification Phase

The receiver receives the data from transmitter and recovers the video frames and verifies the

watermark. It must use the same special algorithm to generate the watermark information for each

frame. In general, it follows the similar process but in a reversed way. It restores the frame from the

received data, do the transformation and extracted the watermark. Then it calculates the correlation

between the extracted watermark and the generated watermark. If the correlation is above the

threshold, the authentication is successful; Otherwise, the received data is suspicious.

Similarly, using the same notation, the process can be expressed in algorithm 6.

13

Algorithm 6:Watermark Embedding

Wi ← Generate_Watermark(Fi);

Ti = Transform(Fi);

W ′
i = Extract(Ti,Wi);

if V erify(W ′
i ,Wi) then

Inform the user the frame is safe;

else

Warn the user the frame is suspicious;

end

Where the Extract is the function which uses generate watermark information to extract the

watermark from the received frame. And V erify also uses the generated watermark information

to calculate the correlation and compare it with the threshold.

The correlation definition is simple and we choose it because of real-time requirement:

W ′
i ·Wi

| W ′
i || Wi |

Where the Wi is the locally generated watermark and the W ′
i is the watermark extracted from

the received video. The correlation could be with or without the absolute symbol. Because there

are thousands of watermarked pixels, the correlation should be relatively very small if Wi and

W ′
i are generated with different watermark parameters. Thus, the sign of them doesn’t matter.

For example, correlation −0.05 and 0.05 both indicate that the received video is forged. So, the

correlation could also be:

∣∣∣∣ W ′
i ·Wi

| W ′
i || Wi |

∣∣∣∣
The threshold value is chosen based on the experiment data.

The control flow diagram is shown 3.6.

14

Figure 3.6: Watermark Verification Phase

3.5 Block-Based Feature

In the watermark phase, the watermark information can be generated for each block of frames.

For example, the first fifty frames use the same watermark information. Then the new watermark

information is generated for the next fifty frames.

In this way, the overall performance should be better. Because for the frames in the same block,

we don’t have to generate new watermark info for each frame.

But this feature may make the algorithm vulnerable to the frame insertion attack because a

replied frame is verified as valid.

The idea can be illustrated in figure 3.7.

Figure 3.7: Block-Based Feature Illustration

15

3.6 Synchronization Frame Feature

It is possible to have some frames lost during the transmission. In this way, the transmitter and

the receiver may generate different watermark information for the same frame. And this leads to

verification failure for all the frames after the lost ones.

To solve this issue, we proposed a feature called “synchronization frame feature”. This feature

uses fixed watermark information called “synchronization watermark” that must be known to the

both sides before the transmission. Because the attacker should not know the block size and the

location of synchronization frames, we assume that the attacker cannot precisely insert frames

between the synchronization frames and cannot delete all the synchronization frames of a block.

The transmitter uses the synchronization watermark for the last few frames in each block. The

receiver calculates the correlation between the watermark in the received frame and the synchro-

nization watermark. If the correlation reaches the threshold, it will regard it as a synchroniza-

tion frame. Then it prepares the watermark information for next block and wait for the next non-

synchronization frame. Once it finds a non-synchronization frame, it starts the verification process

for next block.

In this way, even if there are few frames lost or deleted by deletion attack during the transmis-

sion, the impact is constrained in that block of frames.

The idea is also illustrated in the figure 3.8.

And also, to fight against the insertion attack, the receiver would not generate new keys for next

block unless it receives at least one synchronization frame.

It is also worth noting that we should calculate the synchronization watermark even though

we can calculate the synchronization watermark in advance. This is to prevent the potential side-

channel attack. If we don’t do it, the attacker can monitor the network and may find that few

frames are prepared relatively faster. And further the attacker may discover the size of the block

and number of the synchronization frames.

16

Figure 3.8: The 10-th frame is lost during the transmission and the verification of all later frames
in the same block fail. But in next block, the keys are synchronized again.

3.7 Separate Thread to Generate Watermark Information

To improve the performance even further, the whole process to generate watermark information

for frames or blocks can be delegated to a separate thread. To implement this, a new thread, called

“generating thread”, is created for this task. It communicates with the main thread through a queue.

Then the only difference is that all thewatermark information generation in the process ismoved

to the thread and the main thread retrieves them instead of generating itself.

The idea is also illustrated in figure 3.9.

17

Figure 3.9: Separate Thread to Generate Watermark Information

18

CHAPTER IV: IMPLEMENTATION

4.1 Hardware

The following devices are used in the experiment:

1. Two Raspberry Pis (Raspberry Pi 3 Model B Rev 1.2) and their power supply. One is the

transmitter and the other is the receiver.

2. One Pi camera. Version 2.1. It is mounted on the transmitter.

3. An Ethernet wire.

4. A computer which is used to run the object recognition algorithm.

(a) Operation system: Ubuntu 18.04

(b) CPU: Intel Core 2 Quad CPU Q9950

(c) Memory: 4GB

19

(a) (b)

(c) (d)

Figure 4.1: The used devices: (a) Raspberry Pi board; (b) Ethernet; (c) Computer; and, (d) Other
peripherals

4.2 Technologies

The following technology is used:

1. Python. An elegant script language. We developed our demo quickly with it. We use some

bitwise operators to optimize the calculation.

2. OpenCV. Open Source Computer Vision Library (OpenCV) (Wikipedia contributors, 2019c).

It is an open source computer vision and machine learning software library. It is designed

for computational efficiency and real-time applications. It also provides Python APIs. We

delegate the time-consuming tasks to Numpy so that the overall speed is really fast.

20

3. Numpy. A fundamental library provides for scientific computing. We need a lot of compu-

tation for the watermark. Numpy (Wikipedia contributors, 2019b) is the most efficient one

we found for this task.

4. YOLOv3. There aremany object recognition algorithms using deep learning, such asAlexNet

(Krizhevsky et al., 2012) and ZFnet (Zeiler and Fergus, 2014), and other approaches such as

support vector machine (Pontil and Verri, 1998) and through kinect using Harris Transform

(Hafeez et al., 2014). We used third version of “You only look once” (YOLO) algorithm

(Redmon and Farhadi, 2018) which is relatively new. In the experiment, we use the pre-

trained network directly and OpenCV 3.4.2 implementation of YOLOv3.

5. Linux bash script. We need to test our watermark algorithm with different parameters and

also test the YOLOv3 performance on them. We prepare the data and write bash script to

automate the whole process.

And in the experiment, we pre-install the RSA keys in the two Raspberry Pis.

4.3 Watermark Embedding Implementation Detail

Video data is relatively large, and it takes time to transmit each frame. During our implementa-

tion, we found that if we do the video capture and transmission synchronously, we may lose some

frames because the program has to wait for the transmission and then take the next frame.

We solve this problem by creating another thread called “sending thread” besides the main

thread. The main thread takes video frames, apply the watermark and then puts them into a thread-

safe first-in-first-out double-ended queue. The other thread retrieves data from the queue and sends

it to the receiver.

The detailed pseudocode is described in algorithm 7.

21

Algorithm 7: Detailed Watermark Embedding

Init();

SendingThread(queue, receiv);

while Fi ← Capture() do

Wi ← Generate_Watermark(Fi);

Ti ← Transform(Fi);

T ′
i ← Embed(Ti,Wi);

F ′
i ← Transform−1(T ′

i);

SendToQueue(queue, F ′
i);

end

In the pseudocode, the Init() initializes and prepare objects such as camera, queue and socket.

The SendingThread() starts a thread which reads data from queue and sends data to the receiver.

The SendToQueue() sends frame to the shared queue.

For the sending thread, it uses simple algorithm 8.

Algorithm 8: Sending Thread

while F ′
i ← Read(queue) do

Transmit(Compress(F ′
i));

end

The idea and control flow are also shown in figure 4.2.

22

Figure 4.2: Control Flow

23

CHAPTER V: EVALUATION

In this chapter, we show the result of our experiment. And during our experiment, we found

that there is always a trade-off between the parameters that negotiated at first. Unless otherwise

specified, we use a group of “proper” parameters values which have a balance betweenWM speed,

compressed frame size, video impairment and verification rate.

The picture of experiment looks like in figure 5.1:

Figure 5.1: Experiment Setup

5.1 Evaluation Targets

We want to acquire the following information of our algorithm via experiment:

24

1. How much is the correlation between:

(a) frames with same watermark

(b) frames with different watermark

(c) frames with watermark and those without watermark

2. What value should the threshold be?

3. How long would it take to generate watermark, apply watermark, transmit the frame, extract

the watermark, and verify the watermark?

4. Is the performance of object recognition affected by the watermark?

5. How is the performance of when other features are enabled?

6. What is the performance of the algorithm under intended noise in the transmission?

7. What is its performance under some temporal attacks such as frame insertion, deletion, swap-

ping?

5.2 Correlation and Threshold

Theoretically, if there is no loss during the compression and transmission, the correlation should

reach 100%. But since we use lossy compression for each frame before the transmission, there is

degradation and loss of quality and thus the correlation is not 100%.

The following experiments are performed with compression. For each experiment in this sec-

tion, we tested ten batches and each batch has 30 frames and we calculated the average correlation

of each batch. Based on the experiment, we believe we can choose 50% as the threshold.

5.2.1 Watermark Detection: Same Watermark

This is the idea case. With the same watermark parameters, the transmitter transmits the frames

with same watermark generated by the receiver. Theoretically, it should be very high. But we also

25

need to know its value in our implementation.

Part of the experiment data is listed in table 5.1.

Batch Average(%) High(%) Low(%)
1 64.38 73.90 55.79
2 65.62 71.91 50.86
3 66.28 72.30 59.04
4 64.94 70.78 55.99
5 64.52 72.39 56.48
6 63.71 73.37 54.84
7 64.91 72.45 55.49
8 64.69 73.38 57.81
9 65.34 72.63 58.19
10 66.65 72.15 60.50

Table 5.1: Correlation between frames with same watermark

5.2.2 Watermark Detection: Different Watermark

If the transmitter uses different parameters to generate thewatermark, or an attacker who doesn’t

have the parameters sends forged watermark to the receiver, the receiver will receive frames with

different watermark. The theoretical correlation should be low.

In this experiment, we let the transmitter use different watermark parameters. The difference

between parameters is very tiny.

Part of the experiment data is listed in table 5.2.

As we can see, although the difference is really tiny, the correlation rate drops dramatically. So

our algorithm is very sensitive to the parameters.

5.2.3 Watermark Detection: No Watermark

We also tested the correlation between frames with legitimate watermark and frames without

any watermark. This could happen if the attacker just sends the original video frames. Theoreti-

cally, the correlation should also be low.

Part of the experiment data is listed in table 5.3.

26

Batch Average(%) High(%) Low(%)
1 -0.17 11.50 -13.08
2 -0.38 6.85 -9.98
3 1.00 13.60 -16.39
4 -0.28 11.97 -16.27
5 -0.58 15.87 -12.72
6 0.39 14.90 -11.16
7 0.29 10.09 -8.55
8 0.16 11.44 -11.46
9 0.04 11.80 -8.43
10 -0.10 13.09 -14.81

Table 5.2: Correlation between frames with different watermark

Batch Average(%) High(%) Low(%)
1 -2.02 6.60 16.41
2 0.38 7.32 -17.71
3 -0.41 12.86 -13.46
4 -0.33 8.02 -11.32
5 0.08 12.75 -13.92
6 -0.97 8.09 -8.17
7 0.34 12.24 -12.45
8 0.38 15.56 -20.69
9 0.99 10.30 -13.61
10 -0.28 8.37 -13.65

Table 5.3: Correlation between frames with watermark and without watermark

5.3 Detection Performance

Based on the threshold we choose, we experiment the precision and recall under different cir-

cumstances. The definition of precision and recall is same as commonly used in machine learning

classification:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Where TP means true positive, FP means false positive and FN means false negative. If the

27

receiver believes the frame is legitimate, we will call this verification is positive. Otherwise, we

call it negative.

5.3.1 Legitimate Data

This is the idea scenario between the transmitter and the receiver. So all of the frames are

legitimate and the ideal precision and recall should be 100%.

No. N TP FP TN FN Precision(%) Recall(%)
1 2067 2067 0 0 0 100 100
2 2212 2211 0 0 1 100 99.95
3 2584 2583 0 0 1 100 99.96
4 2864 2864 0 0 0 100 100
5 2117 2117 0 0 0 100 100
6 2577 2577 0 0 0 100 100
7 2288 2287 0 0 1 100 99.96
8 2787 2786 0 0 1 100 99.96
9 2258 2258 0 0 0 100 100
10 2204 2204 0 0 0 100 100

Table 5.4: Detection performance of legitimate sensor data. We included some very rare case.

From the experiment, we can see that the algorithm has almost 100% precision and recall. And

the false positives we found in the experiment, their correlations range from 49.25% to 49.99%

correlation, which are very close to the threshold.

5.3.2 Replace with Forged Data

In this experiment, we replace a portion of the legitimate frames with the original frames which

contains no watermark. Each frame has 10% probability to become the original one.

Part of the experiment data is listed in table 5.5.

In previous test, the precision and recall are both 100%.

28

No. N TP FP TN FN Precision Recall
1 2719 2442 0 277 0 100 100
2 2403 2172 0 231 0 100 100
3 2142 1934 0 208 0 100 100
4 2191 1945 0 246 0 100 100
5 2481 2243 0 238 0 100 100
6 2378 2132 0 246 0 100 100
7 2792 2488 0 304 0 100 100
8 2501 2267 0 234 0 100 100
9 3031 2729 0 302 0 100 100
10 2643 2379 0 264 0 100 100

Table 5.5: Detection rate of forged sensor data

5.3.3 Replace with Replayed Data

In this experiment, we replace a portion of the legitimate frames to the replayed frames and

test whether the receiver can detect them. For each watermarked frame, the transmitter has 10%

chance to replace it with previous watermarked frame.

Part of the experiment data is listed in table 5.6.

No. N TP FP TN FN Precision Recall
1 2031 1825 0 205 1 100 99.95
2 2193 1972 0 221 0 100 100
3 2344 2094 0 250 0 100 100
4 2274 2046 0 228 0 100 100
5 2473 2221 0 252 0 100 100
6 2134 1922 0 212 0 100 100
7 2281 2040 0 241 0 100 100
8 2493 2229 0 264 0 100 100
9 2033 1835 0 198 0 100 100
10 2269 2056 0 212 1 100 99.95

Table 5.6: Detection rate of replayed sensor data

5.3.4 Swap Attack

In this experiment, we evaluate the performance of the algorithm under swap attack. To simulate

the attack, for each pair of frames, they have 10% chance to be swapped. And we regard the two

29

swapped frames are both invalid.

The experiment result is shown in table 5.7.

No. N TP FP TN FN Precision Recall
1 2030 1660 0 370 0 100 100
2 2128 1714 0 414 0 100 100
3 2294 1866 0 428 0 100 100
4 2258 1840 0 418 0 100 100
5 2108 1689 0 418 1 100 99.94
6 2048 1682 0 366 0 100 100
7 2149 1731 0 418 0 100 100
8 2165 1795 0 370 0 100 100
9 2115 1737 0 378 0 100 100
10 2138 1732 0 406 0 100 100

Table 5.7: Detection rate under swap attack

Without the synchronization feature, the frame insertion and dropping attack will cause the

receiver to detect all the frames after the insertion or dropping.

5.4 Speed

Like many cryptography algorithms, in our algorithm, we also need to generate a lot of random

numbers so that it is almost impossible for the attacker to forge the same watermark information.

We calculated the time used to do the watermarking for each frame. And we also record the

time used to generate the random numbers and the time used to in other parts of the algorithm.

The table 5.8 contains some experiment data from transmitter. The first column shows water-

mark percentage, i.e. how much percentage of the image is watermarked. Other columns show the

percentage of the time used in the corresponding process. The transmission speed is not included

because its speed is irrelevant to our algorithm. In our implementation, it normally takes 0.013

seconds to transmit a 480x640 frame.

From the experiment data, we found that the time used to generate the watermark increases

as the watermark percentage increases while the time used to embed the watermark almost keeps

30

WM Percentage(%) WM Generation(%) WM Embedding(%)
1 13.59 86.41
5 24.19 75.81
10 34.72 65.28
15 41.39 58.61
20 47.12 52.88
25 51.69 48.31
50 67.64 32.36
75 74.81 25.19
100 78.92 21.08

Table 5.8: Speed

same. This is because the watermark embedding uses binary operation on the whole image while

the watermark generation is based on how much of the image is to be watermarked.

5.5 Object Recognition Performance

Since we add some dither into the video, we want to know whether the watermark degrades the

performance of object recognition and how severe it is. We use the pre-trained parameters from

Darknet github repository (Redmon, 2013–2016).

In this experiment, we didn’t do it in real-time like previous experiments. This is because the

Yolov3 takes time to recognize the objects in each frame and that’s why we need a PC to do the

calculation. We actually tried to run the Yolov3 on Raspberry Pi directly so we don’t need to copy

videos to the PC. But It turned out one Raspberry Pi might take a whole week to analyze the videos.

We define the performance P of the Yolov3 on watermarked videos in following formula:

P =

∑N
i=0

mi

ni

N

Where theN is the number of frames and ni is the number of the objects recognized in the original

i-th frame andmi is the number of the same objects recognized in the corresponding watermarked

i-th frame.

And to simplify the experiment, we put only single object in the video or different multiple

31

objects in the video. In this way, to determine whether the object is recognized, we only need to

check whether the object’s ID is in the generated object ID list.

We tested the performance of Yolov3 under different percentage of watermark. We used four

videos: static single-object video, moving single-object video, static multiple-object video, moving

multiple-object video. And their performance is shown in graph 5.2. And the screen-shot of the

generated video is shown in 5.3.

(a) (b)

(c) (d)

Figure 5.2: The used devices: (a) Yolov3 applied on a static single-object video; (b) Yolov3 applied
on a moving single-object video; (c) Yolov3 applied on a static multiple-object video;
and, (d) Yolov3 applied on a moving multiple-object video

32

(a) (b)

Figure 5.3: Screen-shot of the Yolov3 result: (a) for single-object video; (b) multi-object video

5.6 Performance under Intended Noise

Although we have proved that our watermark algorithm is semi-fragile via JPEG encoding, we

also tested its performance under certain degree of intended noise. Without the knowledge of the

algorithm, the noise is added in a blind way so that every pixel may have some bits inverted because

of the noise. The noise is generated from random numbers. The degree of the noise is defined as

how much percent of the watermark information could possibly be corrupted by the noise. For

example, 25% degree of noise means that the generated random noise could corrupt 25% of the

generated watermark at most. Note that the noise is added to the video before the JPEG encoding

and transmission.

We did the same experiment in section 5.3.2 using noise degree of 25%, 50%, 75% and 100%

respectively. The experiment shows that the precision and recall stays almost 100% for 25% and

50% noise degree. With 75% noise degree, the precision is still 100% but recall drops to 72.29%.

With 100% noise degree, the precision and recall drops to 0 because all the frames are suspicious

to the receiver.

33

5.7 Sync Frames Feature under Attacks

5.7.1 Insertion Attack

In this experiment, we inject one frame randomly into the video stream from transmitter. Then

we compare the logs generated by the transmitter and the receiver to know whether the receiver

get synchronized again in next block. As mentioned in section 3.6, we assume the attacker cannot

insert the frames precisely between the synchronization frames.

The log is shown in 5.4. For the log, we can see the synchronization works as expected. The

27th frame is duplicated on purpose and all the following frames of that block become suspicious.

And after receiving the 40th frame, the receiver refuses to generate next watermark information

because it hasn’t received the synchronization frames. But after the synchronization frames, the

watermark information in next block becomes synchronized.

5.7.2 Deletion Attack

This experiment is similar to the previous one. But instead of insertion, we delete some frames

from the video stream from transmitter. As mentioned in section 3.6, we assume the attacker cannot

precisely delete all the synchronization frames of a block.

From the logs shown in 5.5, we can see that three frames are deleted after the 27th frame and all

following frames become suspicious. But after the synchronization frames, the next block becomes

synchronized.

5.8 Speed with Separate WM-generating Thread

Theoretically, if there are enough CPU cores, this feature should increase the speed of both

the transmitter and the receiver. But somehow, in our experiment, the result shows that there will

be some unexpected delay which may occurs randomly between frames. And this random delay

makes the video sometimes fast and sometimes slow. This is unacceptable.

34

We believe this problem may be caused by threading competition. But more evidence may be

needed to confirm it.

Figure 5.4: Program output from receiver under insertion attack

35

Figure 5.5: Program output from receiver under deletion attack

36

CHAPTER VI: FURTHER THOUGHTS

6.1 Further Thoughts

Our approach is not perfect. There are still some further works to do.

We tried to implement the project in C/C++ or delegate the time-consuming task from Python

to C/C++ module (Python contributors, 2019). But we meet some problems such as generating the

pseudo-random numbers. As mentioned before, our algorithm needs to generate a lot of random

numbers for each frame. This can be done by a single Numpy function call. But we are searching

for its C++ counterpart.

We also thought about implementing the project on FPGA. FPGA can be much more powerful

than Raspberry Pi. But the implementation seems even more challenging.

TheNumpy usesMersenne Twister pseudo-randomnumber generator (Matsumoto andNishimura,

1998) which is fast but not cryptographically secure. Currently we didn’t find its replacement in

Numpy. Although this should not be a problem for our algorithm because the adversary should not

be able to perceive the generated random numbers at all, further investigation on this is needed.

Besides, we assume that the attacker cannot precisely insert frames between the synchronization

frames nor delete all the synchronization frames. But if he randomly chooses the insertion and

deletion location, it is possible that he might eventually be able to do that. This case can not

be handled by current synchronization feature. We believe we could add some block sequence

information into the synchronization watermark information. But how to precisely preserve and

detect those information after the lossy compression and transmission error is still under research.

And there is a potential attack in which the attacker only changes a very smaller portion of the

frame, e.g. adding a very small stop sign. The correlation should decrease but may not decrease so

much that it becomes suspicious. Depending on how small the modification is, the current solution

37

may or may not detect it. In other words, the integrity may not be guaranteed by current solution.

38

CHAPTER VII: CONCLUSION

Sensors are used everywhere today. The security of the sensor data is critical for the decision-

making systems to achieve their functionality. Therefore, the sensor data must be authenticated

before it is used. In this paper, we present our approach to authenticate data by mainly using

watermark techniques. We use camera sensors as the example but this approach may also suitable

for other sensor data. Our algorithm is spatial, invisible and blind-detected. And it is semi-fragile to

some compression. We designed, implemented and evaluated our approach. The experiment result

shows that the algorithm almost has 100% precision and recall. We also added some feature to the

original algorithm to make it faster and robust under certain temporal attack. Our implementation

is relatively generic and modularized. Any further ideas shall be applied to it easily. So we think

our work is beneficial for both the current industry and further research.

39

BIBLIOGRAPHY

Asikuzzaman, M., and M. R. Pickering (2018), An overview of digital video watermarking, IEEE
Transactions on Circuits and Systems for Video Technology, 28(9), 2131–2153.

Avatefipour, O., A. Hafeez, M. Tayyab, and H. Malik (2017), Linking received packet to the trans-
mitter through physical-fingerprinting of controller area network, in 2017 IEEE Workshop on
Information Forensics and Security (WIFS), pp. 1–6, IEEE.

Hafeez, A., H. Arshad, A. Kamran, R. Malhi, M. A. Shah, M. Ali, and S. Malik (2014), Object
recognition through kinect using harris transform, European Scientific Journal, ESJ, 10(10).

Hafeez, A., H. Malik, O. Avatefipour, P. R. Rongali, and S. Zehra (2017), Comparative study of
can-bus and flexray protocols for in-vehicle communication, Tech. rep., SAE Technical Paper.

Hafeez, A., M. Tayyab, C. Zolo, and S. Awad (2018), Finger printing of engine control units by
using frequency response for secure in-vehicle communication, in 2018 14th International Com-
puter Engineering Conference (ICENCO), pp. 79–83, IEEE.

Hu, Y.-P., and D.-Z. Han (2005), Using two semi-fragile watermark for image authentication, in
2005 International Conference on Machine Learning and Cybernetics, vol. 9, pp. 5484–5489,
IEEE.

Juma, H., I. Kamel, and L. Kaya (2008), Watermarking sensor data for protecting the integrity, in
2008 International Conference on Innovations in Information Technology, pp. 598–602, IEEE.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification with deep convolu-
tional neural networks, in Advances in neural information processing systems, pp. 1097–1105.

Kuhn, D. R., V. C. Hu, W. T. Polk, and S.-J. Chang (2001), Introduction to public key technol-
ogy and the federal pki infrastructure, Tech. rep., National Inst of Standards and Technology
Gaithersburg MD.

Lu, M., K. Wevers, and R. Van Der Heijden (2005), Technical feasibility of advanced driver as-
sistance systems (adas) for road traffic safety, Transportation Planning and Technology, 28(3),
167–187.

Malik, H., R. Ansari, and A. Khokhar (2008), Robust audio watermarking using frequency-
selective spread spectrum, IET Information Security, 2(4), 129–150.

40

Matsumoto, M., and T. Nishimura (1998), Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), 8(1), 3–30.

Pathan, A.-S. K., H.-W. Lee, and C. S. Hong (2006), Security in wireless sensor networks: issues
and challenges, in 2006 8th International Conference Advanced Communication Technology,
vol. 2, pp. 6–pp, IEEE.

Pontil, M., and A. Verri (1998), Support vector machines for 3d object recognition, IEEE transac-
tions on pattern analysis and machine intelligence, 20(6), 637–646.

Python contributors (2019), Extending python with c or c++, [Online; accessed 24-February-2019].

Redmon, J. (2013–2016), Darknet: Open source neural networks in c, http://pjreddie.com/
darknet/.

Redmon, J., and A. Farhadi (2018), Yolov3: An incremental improvement, arXiv preprint
arXiv:1804.02767.

Tayyab, M., A. Hafeez, and H. Malik (2018), Spoofing attack on clock based intrusion detection
system in controller area networks.

Wikipedia contributors (2019a), Motor vehicle fatality rate in u.s. by year — Wikipedia, the free
encyclopedia, [Online; accessed 15-February-2019].

Wikipedia contributors (2019b), Numpy — Wikipedia, the free encyclopedia, [Online; accessed
26-February-2019].

Wikipedia contributors (2019c), Opencv — Wikipedia, the free encyclopedia, https://en.
wikipedia.org/w/index.php?title=OpenCV&oldid=879892622, [Online; accessed 26-
February-2019].

wini J, Y. (2015), Key distribution for symmetric key cryptography: A review, International Jour-
nal of Innovative Research in Computer and Communication Engineering, 03, 4327–4331, doi:
10.15680/ijircce.2015.0305047.

Zeiler, M. D., and R. Fergus (2014), Visualizing and understanding convolutional networks, in
European conference on computer vision, pp. 818–833, Springer.

41

