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Abstract

When performing a Genome-Wide Association Study (GWAS), one attempts to
associate a phenotype with some genomic information, commonly a gene or set
of genes. Often we wish to have more accuracy and attempt to identify a Single
Nucleotide Polymorphism (SNP) or Single Nucleotide Polymorphisms (SNPs) that
are associated with the phenotype. Sometimes a GWAS is also used to associate
other kinds of genetic data, like methylation or Copy Number Variations (CNVs)
with the phenotype. The phenotype in such studies is often a disease, e.g. Type
IT Diabetes Melitus (T2D), Coronary Heart Disease (CHD), cancer, or others, but
can be other traits as well, for instance, height, weight, eye color, or intelligence.
In order to perform a GWAS it is necessary to sequence the Deoxyribonucleic Acid
(DNA) of the individuals in the study. This sequencing is much cheaper than it
once was, but is still very expensive for large scale studies. Large scale studies
are needed in order to achieve the necessary statistical power to reliably identify
associations. By performing imputation we are able to increase the size of studies in
two ways. Individual studies are able to sequence more individuals on their budget
because they can sequence individuals for only certain sites and impute the rest of
the sites to recover part of the power. Also, large scale meta-studies can impute in
order to have full sequences for all the individuals in the smaller studies in order
to make them comparable, this is the approach taken by Fuchsberger et al [33].
Imputation for genetic data is done in two main ways. The first way is population-
based imputation, which depends on Linkage Disequilibrium (LD) and knowing the
allele frequencies for a reference population that the study population is believed
to be similar to. The second main way to impute is Identity By Descent (IBD)-
based imputation, in which we infer genotypes based on the familial relationships
in pedigree data. In this thesis, we focus on IBD-based imputation. Imputing on
pedigree data can be quite time consuming, for instance, the original implementation
of GIGI (Genome Imputation Given Inheritance), Cheung et al [15], took around
17 days to impute chromosome 2 (2,402,346 SNPs) of a pedigree with 189 members,
using 28 GB of RAM [53]. Being able to complete family (IBD)-based imputation
in a timely manner with high accuracy is of great value to researchers around the
world, especially now as this data becomes more available to those without large
budgets for sheer computing power. The basis for phasing and imputation along
with the details of the calculations involved and exploration of ways to increase the
speed for imputing large pedigree data are described in this thesis.
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Acronyms

CAAPA Consortium on Asthma among African-ancestry Populations in the Amer-
icas

CHD Coronary Heart Disease

cM centimorgan

CNYV Copy Number Variation

DNA Deoxyribonucleic Acid

GWAS Genome-Wide Association Study
HapMap International Haplotype Map Project
IBD Identity By Descent

IQ Intelligence Quotient

LD Linkage Disequilibrium

MAF Minor Allele Frequency

MCMC Markov Chain Monte Carlo
POPRES POPulation REference Sample
RAM Random Access Memory

SNP Single Nucleotide Polymorphism

T2D Type II Diabetes Melitus

UCLA University of California, Los Angeles
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Glossary

1000 Genomes Project A project with the goal of sequencing 1000 individuals
with high accuracy from different populations for use as a reference population.
This initial goal has been surpassed.

allele A variant of a gene or SNP, at each location in the genome humans have two
variants (so we say humans are diploid organisms), one from each parent.

autozygosity Alleles or other segments of DNA that are IBD.
CAAPA CAAPA stuff

cancer A wide set of diseases involving abnormal cell growth or cell cycle that can
spread through the body to the detriment of healthy /normal cells.

centimorgan A centimorgan (¢cM), aka map unit, is the distance between two loci
for which the expected number of crossovers is 0.01 between generations. On
average one centimorgan in humans corresponds to one million base pairs.

centromere The center of X shaped chromosome pair where the sister chromatids
are joined.

chromatid One half of an X shaped chromosome pair joined to the other chromatid
(its sister chromatid) at the centromere.

chromosome A DNA molecule containing some or all of the genetic material in
an organism. In humans, during the metaphase stage of the cell cycle the
chromosomes condense into a chromatid that is copied to a joined chromatid
making an X shaped structure visible under a microscope.

Copy Number Variation Variations in the number of repeats of highly repetitive
sequences in the telomeres.

crossover The process by which sister chromatids exchange portions of their se-
quence.

diploid Having two distinct sets of DNA.

E. coli Escherichia coli, a bacterium that serves as a common model organism, i.e.
an organism that has been extensively characterized and studied.

founder Members of a pedigree for which no earlier ancestor is known.

fully sequenced An individual that has had their entire genome sequenced.



Glossary Glossary

gamete A fully divided germline cell that merges with a corresponding gamete
during reproduction (i.e. sperm and egg cells).

gene The basic unit of heredity that occupies a specific location on a chromosome.
Each consists of nucleotides arranged in a linear manner. Most genes code for
a specific protein or segment of protein leading to a particular characteristic
or function.

genome The full set of genetic material encoding an organism.

germline Cells of the reproductive line that either are gametes can give rise to
gametes.

GWAS A GWAS (genome-wide association study) is a way for scientists to iden-
tify inherited genetic variants associated with risk of disease or a particular
trait. This method surveys the entire genome for genetic polymorphisms,
typically single nucleotide polymorphisms (SNPs) (pronounced “snips”), that
occur more frequently in cases (people with the disease or trait being assessed)
than in controls (people without the disease or trait). Also called genome-wide
association study.

haplotype A set of genotype markers in high LD with each other such that they
are correlated and are often inherited together as a block.

Haplotype Reference Consortium A project to map a large number of haplo-
types for a number of reference populations. They have started by mapping
the haplotypes for the 1000 Genomes Project references and intend to incor-
porate other cohorts as they become available and as they have the resources
to do the identify reference haplotypes.

haplotyping The process of assigning a haplotype to a segment of DNA.

HapMap Another project to map a large number of haplotypes for a number of
reference populations.

Hardy-Weinberg Equilibrium Allele and genotype frequencies should remain
the same from generation to generation given seven assumptions, (1) organisms
are diploid, (2) sexual (as opposed to asexual) reproduction, (3) generations
do not overlap, (4) random mating, (5) infinite population size, (6) allele fre-
quencies are not affected by sex, and (7) there is no mutation, selection, or
outside influence on the gene pool like that which can result from migration,
admixture, or gene flow.

heterozygous Having two different alleles.
homozygous Having two of the same allele.

IBD graphs A representation of alleles at a given marker location that indicates
the restrictions on possible alleles due to the relationships found between in-
dividual’s genomes when considering their inheritance vectors. To solve the
graph is to find the set of possible alleles after resolving these constraints.
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Glossary Glossary

Identity By Descent Two segments of DNA are Identical By Descent if they are
identical sequences without recombination from a common ancestor.

imputation Assigning (a value) to something by inference from the value of the
products or processes to which it contributes. - Google Dictionary 2nd defini-
tion, originating in finance.

inheritance vector A vector containing a number identifying the original genome
that position can be traced back to for each marker position.

Intelligent Quotient A score from testing designed to measure human intelli-
gence. They are limited in their utility and have been subject to many le-
gitimate criticisms, especially as some have misused them to further racist
and/or sexist agendas.

Kappa Statistic A k statistic is a statistic for measuring inter-rater agreement
and is differentiated by attempting to account for the possibility that they
agree by chance.

Linkage Disequilibrium The deviance from Hardy-Weinberg Equilibrium between
SNPs, aka a lack of independence between them, i.e. the correlation between
SNPs.

Markov Chain Monte Carlo A class of methods that sample the distribution of
a Markov Chain, for instance via Metropolis-Hastings or Gibbs sampling.

Mb Megabase pairs, i.e. millions of base pairs (nucleotides, aka SNPs).
meiosis The process by which germ (reproductive) cells divide into gametes.

Mendelian That which follows Mendel’s laws of inheritance based on his very early
studies of inheritance in pea plants. The Law of Segregation (gametes carry
just one allele), the Law of Independent Assortment (the chance of inheriting
alleles at each location is independent), and the Law of Dominance (there is
a dominant and a recessive allele and having even one dominant allele results
in a dominant phenotype while having two recessive alleles is required to show
the recessive phenotype).

methylation The process by which methyl (CH3) groups are added to DNA.

methylation profile A data set indicating the methylation status over a range, or
even the entirety, of the DNA.

microsatellite DNA A section of repetitive DNA, also often referred to as short
tandem repeats.

Minor Allele Frequency The Minor Allele Frequency is the frequency of the mi-
nor allele at a given locus in the population.

missing heritability problem The enigma presented by the fact that studies of
heritability indicate that a larger portion of phenotypic traits is inherited than
has been able to have been explained based on the genotype.

11
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mitosis The process by which somatic (non-reproductive) cells divide.

pedigree A formal description of a family structure, often with additional annota-
tions of phenotypes and genotypes.

phasing The process of sorting out which alleles come from which of the two sets
of DNA that humans possess, one from each parent.

phenotype The observable trait or traits that an organism possesses, including
instances of disease.

POPulation REference Sample The Population Reference Sample, POPRES: a
resource for population, disease, and pharmacological genetics research.

quantitative A measurable trait with a continuous distribution, as opposed to a
categorical trait.

Random Access Memory A class of computer memory for which access times to
any part of the memory for reading or writing are about the same.

recombination The process by which genetic material is exchanged between chro-
matids during meiosis (though it may also occur during mitosis) via crossover
between the chromatids.

sequence To read the genetic material of an organism via any of a number of meth-
ods, some of which read small fragments and other that read longer strands
at a time. Aside from construction of a de novo reference genome these are
then aligned to an existing reference genome to place the location of each gene
read.

sparsely sequenced An individual that has been sequenced at and/or around spe-
cific marker locations in the genome.

statistical power The statistical power is defined as follows:
P(reject Ho|H; is true)

For binary hypotheses, in which Hy and H; are usually specific hypotheses
other than Hy being !H;, then it is usually not possible to get the probabilities
needed to calculate Hy. Rather than calculating the power, the power is often
more useful when considered as a parameter to be met. For this, one can carry
out a power analysis, in which one chooses the desired power and calculates
the needed sample size to achieve that power.

telomere The ends of the chromatids where Copy Number Variation occurs.
Type II Error A type II Error is failing to reject a false null hypothesis.
Type I Error A type I Error is the rejection of a true null hypothesis.

variant Each distinguishable version of an allele.

12



Chapter 1

Introduction

1.1 Imputation

While performing a GWAS, on a budget, whether large or small, it is usually best
to optimize the statistical power of the study for that budget. One of the main
approaches for this is utilize imputation while gathering data for the study. In
population-based studies where the subjects are of a known reference population it
is possible to sparsely sequence everyone in the study at carefully chosen marker
locations and impute all the rest based on the reference. This form of imputation
works because many of the Single Nucleotide Polymorphisms (SNPs) are in LD, so
they are not independent. This form of imputation has been the more popular one,
in part because the tools to do it are faster and easier to run. Some existing popular
tools for doing this include Beagle [9], Impute [43], and Minimac [32]. There are
servers available for some of these tools, including the very well known and popular
Michigan Imputation Server [25].

In order to use imputation in family /pedigree-based studies, some of the subjects
will be fully sequenced while the rest will be sparsely sequenced at a chosen set of
markers. Then, the family relationships will be used to impute the remaining data
for the sparsely sequenced individuals, this is IBD-based imputation. This is the
kind of imputation that GIGI does, and is that which will be examined in detail.
Some of the main tools for doing this kind of imputation are GIGI [15] and Merlin [1].

Aside from the imputation itself, there are some other important aspects to con-
sider when doing imputation. These each have their own tools available as well.
The two largest considerations are choosing which individuals to sequence, and do-
ing the phasing for the pedigree relationships. Some programs for selecting subjects
for full sequencing are GIGI-Pick, ExomePicks, and PRIMUS. Some programs for
doing the phasing are MaCH [57] (can also do imputation, but is implemented with
Minimac as a two step procedure), SHAPEIT 2 [26] (w/ or without duoHMM [78]),
and Eagle [61]. These tools are compared in Ullah et al [108].

13



CHAPTER 1. INTRODUCTION 1.2. BACK TO BASICS

1.2 Back to Basics

In order to understand the basis of these algorithms, it is useful to look back to the
underlying biology. Every living organism has genes that encode for proteins, which
in turn are responsible for their biological life processes. These genes are encoded
in DNA, but there is also DNA that does not code for genes, but may have other
functions. For the moment it is sufficient for our model to say that each protein
is encoded by a segment of DNA, though there are other steps in between DNA
and protein, but we do not need to go into those details here. DNA is arranged
in highly compact structures that we call chromosomes. In E. coli there is only
a single circular chromosome consisting of 4.6 Mb pairs. In humans, there are 23
pairs of linear chromosomes. That is, humans are diploid, they keep two different
sets of their genome, totalling 46 chromosomes. Each of these chromosomes has two
identical chromatids, so in total a human cell has 4 copies of the genome, 2 identical
copies derived from their mother and 2 identical copies derived from their father.
For our purposes we can say they have two unique genomes, referred to as A and B.

When genomes are inherited, there are many genes that are highly correlated.
Some of these correlations are easily explained, for instance, by spatial proximity
in the chromosome, but others have no known physical explanation or mechanism.
Which genes are highly correlated in this way can be calculated for a given popu-
lation, the reference population, from a known set of many samples. Some example
reference populations are the 1000 Genomes Project [20], HapMap [22], CAAPA
[66], and Haplotype Reference Consortium [67]. This can be extended to the SNPs
within each gene. If our subjects in a GWAS study are from the same population as
a reference population, then if they have a particular gene, say gl, then we can say
that they are very likely to also have some other genes that are in LD with g1, say g2,
g3, and g4. This is the basis upon which most population-based imputation works.
This tends to work better when doing imputation with European populations than
African ones because European populations have more genes in LD [34]. This also
works much better for common SNPs than rare ones because it is difficult to find
strong LD associations between markers when one rarely encounters a given marker.
Despite the name, rare SNP markers are actually quite common [19] [31], even out-
numbering common allele frequency markers. Their low frequency of occurence
makes them uninformative, for both kinship and LD-based analysis. For this reason
they are often underepresented in the sparse genotyping arrays used for gathering
genetic information in population studies. In pedigree data it becomes possible to
analyze rare alleles because they will frequently be shared by many members of the
family so that they are disproportionately represented, i.e. an allele that occurs in
0.001 percent of the population may be found in 7 of 11 members in a small pedigree.

During cell division for germline cells, meiosis, there is a stage in which crossover
occurs, during which segments of Deoxyribonucleic Acid (DNA) are exchanged be-
tween genome A and genome B. After meiosis one cell has divided into four gametes,
each of which has only a single copy of the genome, but a portion of that genome
could be from genome A or genome B due to the crossover. The program gl_auto in
the MORGAN software [103] (MORGAN was not actually dubbed with that name
until later in May of 1997, previously called Gibbs) is designed to use a Markov

14



CHAPTER 1. INTRODUCTION 1.3. MISSING HERITABILITY

Chain Monte Carlo (MCMC) algorithm to identify where these crossovers occur,
given a pedigree of known relationships and sparsely sequenced subjects, with at
least some subjects fully sequenced. The program will output inheritance vectors,
which trace each location in the genome of sparsely sequenced subjects to that of a
founder in the pedigree. This process is also called haplotyping. These inheritance
vectors give IBD relations between the genomes of those in the pedigree. These
relations can be considered as graphs, in particular as IBD graphs [104] and solved
for the most likely set of SNPs that complete the graph. The program GIGI imputes
by solving these IBD graphs. This kind of imputation is much better at imputing
rare SNPs variants than the population-based methods are. Merlin does something
similar, but by solving for the maximum likelihood more exactly via the Lander-
Green algorithm [54] without sampling.

1.3 Missing Heritability

Historically, a number of rare diseases were detected in small family, pedigree-based,
studies. Most of these were relatively easy to trace in the lineage because they were
Mendelian diseases. In recent years, the advances in sequencing have allowed for the
exploration of non-Mendelian, or quantitative traits. These traits are believed to
be influenced by many genes and have an essentially continuous distribution. Some
examples include height, weight, blood pressure, and intelligence (as measured by
some metric, e.g. Intelligence Quotient (IQ)), as well as diseases like Type II Dia-
betes Melitus (T2D). These traits have have largely been explored through GWAS,
with the aim of identifying strongly associated mutations. For this approach, many
turned to larger sample sizes available from population-based studes, instead of
family-based ones, in order get better statistical power. Thousands of risk factors
for hundreds of complex traits have been discovered this way. Estimates of the
amount of heritability explained by genetics suggests that the amount should be
much higher than what variants discovered in GWAS type studies have been able
to explain. This is known as the missing heritability problem [63]. It has since been
shown that most, or even all, prior GWAS lack the statistical power to detect many
of these very rare, small effect, variants, so they may be where we find this missing
heritability. A number of large meta-studies have been published more recently that
identify more statistically significant associated variants, and these depend heavily
on imputation to get matching data sets across all the included data from individual
studies. Unfortunately, even these GWAS results from the large meta studies have
not yet been able to provide all that some hoped for or that they believed that
they would. In order to achieve better power in detecting rare variants of small
effect, it is essential to do a better job of imputing these rare variants. There has
been a renewed interest in family-based studies because pedigree-based imputation
methods are much better at correctly imputing rare variants than population-based
imputation methods (which are better for common variants).

15



Chapter 2

Metrics

2.1 Power Analysis

The Power of a statistical study is the conditional probability of rejecting Hy given
that H; is true, for binary analyses at least. Somewhat more generally, it is 1 minus
the probability of making a type II error. There are two main ways to decrease the
type II error, by reducing the measurement error (obtaining more reliable measure-
ments) or by reducing the sampling error (for instance, by increasing the sample
size). Imputation allows for much larger sample sizes at a given cost, by allowing
more sampled individuals with the same number of SNPs per individual as if they
had all been fully sequenced in the final analysis. Unfortunately, some of this gained
ground is lost back to imputation errors, that is, there is higher measurement error
for imputed SNPs than genotyped SNPs. Not all variants of a SNP in a population
are equally likely, and as we lean more towards examining the effects of less common
SNPs, we find that they are vastly underrepresented relative to common SNPs and
former studies do not have the necessary power to confidently identify the effects of
rare SNPs. In order to address this, there has been a trend towards re-examining the
existing data by combining them in a single large data set for meta-analyses. Some
software has been developed specifically towards this goal, e.g. METAL [116]. Here,
imputation remains a crtical step because many of these studies being combined did
not sequence the same sets of SNPs as were sequenced in other studies.

2.2 Metrics

There are several metrics used for determining phasing and imputation accuracy.
For phasing, one can use the haplotype accuracy, the imputation accuracy, or the
switch error. They tend to produce the same ranking of methods [11]. The haplotype
accuracy and the switch error both require the existence of a gold standard, which
can be constructed experimentally. A recent review of experimental haplotyping
methods is provided by Huang et al. [45]. The imputation accuracy is still a
good metric for phasing accuracy because good phasing in prerequisite for successful
imputation. The imputation accuracy can also be determined without a true gold
standard by masking in simulated data because it doesn’t require knowledge of the
true haplotype phase.

16



CHAPTER 2. METRICS 2.2. METRICS

2.2.1 Haplotype Accuracy

The haplotype accuracy is the number of haplotypes that have been phased fully cor-
rectly in the area being examined. When used for simulated data the true haplotype
phase must still be known. Experimentally, the use of closely related individuals can
be used to find the true phase at most locations via the application of Mendelian
constraints. This measure isn’t that good for large numbers of markers because the
need for 100% correctness of the haplotype to count it becomes very unlikely as the
number of markers increases.

2.2.2 Switch Error Rate

The switch error rate is the number of switches needed to change the predicted
haplotype to the true haplotype phase divided by the number of locations that such
an error could occur at, i.e. the number of heterzygote markers minus one (initial
phase can be chosen arbitrarily).

2.2.3 Imputation Accuracy: R>

Imputation accuracy can be measured in different ways, almost all the remaining
sections of this chapter deal with imputation accuracy, which is a direct measure of
how well imputed the genotypes are, and indirectly a measure of how well they are
phased. These sections are name appropriately. The coefficient of determination,
R?, is the proportion of variance in the response variable that is predicted by the
independent variables. This is a common metric used to evaluate imputation meth-
ods. In this case, the R? is calculated for each SNP between the imputed SNPs and
ground truth SNPs from sequencing or simulation. There are various definitions
of R? and some generalizations, here it is sufficient to treat it as the square of the
Pearson correlation coefficient, R, given as
cov(X,Y)

PXyYy = ——

0x0y

where cov is the covariance and oy and oy are the standard deviation of X and Y
respectively.

2.2.4 Imputation Accuracy: Concordance Rate

The concordance rate, for purposes of measuring genetic imputation accuracy is the
proportion of genotypes that are in agreement between the imputed values and the
ground truth. It is the sum of the diagonal of the confusion matrix divided by the
sum of all entries. The confusion matrix is shown in the IQS section below, P, ;
indicates the value contributing to confusion matrix at the ith row and jth column.
For instance, P, ; is 1 if the imputed value and the ground truth value are both AA,
otherwise it is zero. Likewise, P is 1 if the imputed value is AA and the ground
truth is AB, and is zero otherwise. To get the total number of instances where both
are AA, we sum over the total number of SNPs, so the 1st entry of the confusion
matrix is ZnNzl Pg,.

P S Py, + N Pop, + N Py,
) —
N
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The condordance rate tends to be vastly overinflated as a measure of imputation
quality.

2.2.5 Imputation Accuracy: 1QS

IQS is the Imputation Quality Score, it is a fairly new metric, introduced in Lin
2010 [58].
PO - Pc

1-PF,

where F, is the concordance rate as described above and

1QS =

3 N 3 N 3 N 3 N 3 N 3 N
. A2
Po={D D Pusd D Pt 3 Piad 3 Pagtd D Piard Y Pos N
i=1 n=1 j=1 n=1 i=1 n=1 j=1 n=1 i=1 n=1 j=1 n=1
Where these sums are derived from the following confusion matrix:
Ground Truth
AA ‘ AB ‘ BB ‘ Row Sum
N N N 3 N
Imputed AA Zn:1 Plln 27121 P12" anl Pl3n Zj:1 Zn:1 Plj,,,
AB > P, Y Poa, s Pos, > >on P
BB Yoo P, Yo Poa, Yoo Pis, > om P
Col Sum Zle 25:1 Py, 25’:1 25:1 Py, Z?:l 25:1 Pz, | N = total number of SNPs

The authors of the IQS paper claimed that Beagle’s R? and the concordance rate
overestimated, and hence IQS should be used. They found that IQS was similar with
squared correlation, i.e. non-Beagle/regular R? This much is not in dispute. They
go on to show that R? and IQS deviate for low MAF SNPs, with the R? being
the higher of the two. The authors suggest that R? is overestimating, showing
inflation. Ultimately, inflation of R? is not observed in our results when compared
empirically against the power. We simulated a data set based on 1000G allele
frequencies dropped down through generations in 20 different pedigrees containing
1200 individuals. We masked off part of this data to impute and compared the IQS
and the R? to the final power and we found that the IQS is in less agreement with
the power than the R? is. Publication pending in Genome Research [108].

Power of association tests performed in European and African data for the dif-
ferent combination of phasing+imputation approaches using the random selection
strategy for a=0.05.

Method MAF Bin
[0,001) [ [0.01,0.05) | [0.050.1) | [0.1,02) | [0203) [ 0304 [ [04,0.5]
Population
\ | EUR | AFR | EUR | AFR | EUR | AFR [ EUR | AFR | EUR | AFR | EUR | AFR | EUR [ AFR |

Observed Genotypes || 0.546 | 0.616 || 0.807 | 0.813 || 0.806 | 0.812 | 0.805 | 0.812 || 0.800 | 0.811 | 0.806 | 0.810 | 0.808 | 0.812

Ped Pop 0.296 | 0.314 || 0.403 | 0.403 || 0.513 | 0.427 || 0.529 | 0.433 || 0.591 | 0.448 || 0.606 | 0.471 || 0.541 | 0.470
GIGI 0.301 | 0.315 || 0.403 | 0.400 || 0.393 | 0.380 || 0.383 | 0.359 || 0.372 | 0.345 || 0.370 | 0.356 || 0.369 | 0.368
Merlin 0.216 | 0.225 | 0.291 | 0.297 || 0.343 | 0.347 || 0.355 | 0.354 || 0.358 | 0.354 || 0.354 | 0.362 || 0.349 | 0.340

MaCH+Minimac 0.052 | 0.045 || 0.122 | 0.086 || 0.408 | 0.301 || 0.441 | 0.334 || 0.517 | 0.363 || 0.525 | 0.379 || 0.476 | 0.360
SHAPEIT+Minimac || 0.118 | 0.079 || 0.240 | 0.159 | 0.490 | 0.367 || 0.515 | 0.396 || 0.573 | 0.422 || 0.576 | 0.430 || 0.516 | 0.406
duoHMM+Minimac | 0.127 | 0.086 || 0.253 | 0.173 || 0.498 | 0.377 || 0.521 | 0.405 || 0.578 | 0.430 || 0.581 | 0.437 | 0.519 | 0.413
IMPUTE+IMPUTE | 0.112 | 0.119 || 0.219 | 0.204 || 0.476 | 0.403 || 0.504 | 0.430 || 0.569 | 0.460 | 0.573 | 0.466 | 0.537 | 0.447
SHAPEIT+IMPUTE || 0.087 | 0.093 | 0.179 | 0.166 | 0.435 | 0.360 || 0.460 | 0.385 || 0.528 | 0.416 || 0.532 | 0.425 || 0.491 | 0.402
duoHMM+IMPUTE || 0.094 | 0.103 || 0.192 | 0.182 | 0.443 | 0.373 || 0.467 | 0.396 || 0.533 | 0.427 || 0.538 | 0.434 || 0.497 | 0.412
BEAGLE+BEAGLE | 0.055 | 0.052 | 0.119 | 0.093 || 0.389 | 0.298 || 0.422 | 0.332 || 0.499 | 0.366 | 0.504 | 0.381 || 0.443 | 0.354
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Figure 2.1: Mean correlation R? between true and imputed genotypes for all ap-
proaches for (A) European and (B) African populations using a random selection
strategy for selecting which individuals will be fully sequenced. The first/second of
a pair of programs in the key indicates phasing/imputation functions.

19



CHAPTER 2. METRICS 2.2. METRICS

A
0.6 1
0.4 1
%)
s}
0.2
==~ duoHMM+IMPUTE -8~ duoHMM+Minimac =8~ BEAGLE+BEAGLE == Ped_Pop
-~ IMPUTE+IMPUTE MaCH+Minimac ~ =&= MERLIN
0.0 ~£~ SHAPEIT+IMPUTE =&= SHAPEIT+Minimac =& GIGI
0.00-0.01  0.01-0.05 0.05-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5
MAF Interval
B === duoHMM+IMPUTE -8~ duoHMM+Minimac =8~ BEAGLE+BEAGLE == Ped_Pop
0.67 -~ IMPUTE+IMPUTE MaCH+Minimac ~ =&= MERLIN
~£~ SHAPEIT+IMPUTE =&= SHAPEIT+Minimac =&~ GIGI
0.4
%)
g
0.2+
0.0+

0.00-0.01 0.01-0.05 005-0.1 01-02  02-0.3  03-04  04-05
MAF Interval

Figure 2.2: Mean IQS between true and imputed genotypes for all approaches for
(A) European and (B) African populations using a random selection strategy for
selecting which individuals will be fully sequenced. The first/second of a pair of
programs in the key indicates phasing/imputation functions.
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Consider the lines for GIGI and Merlin in Figure 2.1, the R? would indicate that
GIGI performs better than Merlin throughout the range of MAF intervals. Looking
at figure 2.2, the IQS shows Merlin to be better starting from interval [0.05,0.1)
with the European population and starting from interval [0.1,0.2) for the African
population. However, the R? is more consistent with the power as shown in table
1, in which GIGI is consistently better than Merlin for the European population
and is ahead or very close to Merlin for the African population. It seems that the
suggestion of the authors of the IQS paper that R? is inflated for variants may not
be correct, rather, the IQS may be deflated. When it comes down to it, the 1QS
is an instance of a k statistic, which are well known to be deflated for rare events
with high agreement [110][29][18]. Yet another criticism is that the chance aspect
of k statistics, which supposedly correct for chance, assumes that all possibilities
are treated as equally likely and does not take into account other possible chance
models [106].

2.2.6 Imputation Accuracy: Hellinger and SEN

Though we have the R? and IQS scores, each software tends to report back a slightly
different quality metric [82]. For instance, Beagle’s R? is calculated between the
most likely genotype and the true allele dossage [7] while MaCH reports three met-
rics (Number of iterations where final imputed genotype by majority vote matches,
accuracy at each marker averaged across individuals, and an R? estimate between
true and imputed genotypes by comparing the distribution of sampled genotypes
in each iteration with the allele counts estimated by averaging over all iterations.
They report that the last of those three measures has a correlation of 0.84 with the
actual R? [57]. Impute2’s INFO score does something quite different, incorporating
the allele frequency along with the dosage [43].

N
Zn:l(fﬂ — e?z)
2NO(1 —6)
In order to compare between these different scores, two more scores were pro-
posed. First, the Hellinger Score, which is a modification of the Bhattacharyya
coefficient between two trinomial distributions (the posterior genotype probabilities

in this case).
Blg) = 3 _/ fi(9)fi(9)

Here, B(g) is the Bhattacharyya coefficient and the following H(g) is the Hellinger
score. fi1(g) and fy(g) are the probability distributions, with i representing the
respective vector component.

1—+/1— B(g)
And secondly, the SEN, i.e. Scaled Euclidean Norm, score. The SEN score is
the expected Euclidean distance between genotypes.

E(fi(9)) = M =0 «pia+1xpio+2%(1—(pr1+pi2) =2— (pr2+2p11))
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E(f2(g9)) = MimP — ki1 +1xpio+2%(1—(pr11+pi2) =2—(p12+ 2p11))
So then the SEN score is:

(Mobs _ Mimp)Z

:]_—
o 4

2.2.7 GST and FST

Nei’s G-statistics, or Ggr and F-statistics, Fig7, are not meant to measure imputation
quality, but are used to quantify genetic similarity between groups. In the case of
imputation they can be used to find the distance between sample populations and
reference poplations in order to select the best reference population to use when
performing imputation on one’s sample. In particular Nei’s 1986 G g7 is used here

74

Dy

Hr

57 is the mean gene diversity between subpopulations and Hr is the heterozy-

gosity that would be expected under Hardy Weinberg-Equilibrium [38][112]. The
following is an estimate for Ggr at marker k as proposed by Bhatia in 2013 [5].

Gsr =

H% = 2p];vg(]' - p];vg)

ro Db
avg 9
N
ST = i D
N
>t H

Where p} and ph are the allele frequencies of marker k in the 1st and 2nd popu-
lation respectively.

In 2015 [83] it was demonstrated that the Ggr has a linear relationship with
the Hellinger score for several imputation programs. This confirms the intuitive
hypothesis that using a genetically closer population as the reference gives better
population results. They note the African American population (AfAm from the
POPRES dataset [76]) turns out to be an outlier. The authors went on to confirm
that this difference was not due to the sample size alone. While one might initially
think this is because AfAm is an admixed population, something similar is not
observed for the Mexican population in POPRES, which one would also expect to
be admixed [47][69]. Going back to the POPRES paper, the UCSF African American
group was recruited from all across the US, while other groups were recruited largely
from a single geographical location. Also, there may be effects due to the genetic
distance between the groups admixed in the UCSF African American group vs.
those admixed in the Mexican population.

Nei’s Ggr, though called a G-Statistic, is essentially an F-Statistic and is simi-
lar in formulation to some other F-test measures and measures of genetic distance.
Other such measures, some more similar than others, include: the Hudson estimator,
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the WC estimator, the WH moment-based estimator, the WH-ML estimator, Nei’s
standard genetic distance 1972, The Cavalli-Sforza chord distance, the Reynolds,
Weir, and Cockerham genetic distance, Nei’s D4 distance 1983, the Goldstein dis-
tance 1995, Nei’s minimum genetic distance 1973, Roger’s distance 1972, and the
Fixation index. The measures are numerous and some are better for specific ap-
plication than others, e.g. Nei’s D4 distance is known to be quite successful for
microsatellite DNA data [75] [102].
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Chapter 3

Phasing, Crossovers, and
Haplotypes

3.1 Phasing

The data for imputation methods should usually be phased. That is, it is usually
not sufficient to know the genotype alone, it is also necessary to know whether
that genotype is from the paternal or maternal chromosome. In other words, at a
given locus with alleles al and a2, we cannot treat [al,a2] the same as [a2,al]. In
population data this is often determined based on the haplotype frequency. That
is, if we have genotypes {A,C}, {G,T}, and {A, T}, they could be arranged on the
chromosomes four different ways. The first chromosome (arbitrarily chosen) could
read {A,G,A}, {A,G, T}, {AT,A}, or {A,T,T} with the second chromosome having
the corresponding complement. Each of these four can be considered as a haplotype
and the most frequent haplotype in the population is also indicative of the most likely
phase of the data. In GIGI, phasing is pre-computed by gl_auto from the MORGAN
package. Many of the population-based methods use the following methods.

3.2 Population-Based

3.2.1 MaCH

MaCH utilizes an HMM to model the set of genes at the markers in an individual
as an imperfect mozaic of the known haplotypes. The forward-backward algorithm
for HMMs [79] is used to do this, and it has a complexity of O(M K?), where M is
the number of markers and K is the number of known haplotypes. MaCH attempts
to mitigate the running time by sampling a subset from K randomly.

3.2.2 Impute2

In Impute2, it uses a model similar to that of MaCH. Like MaCH, it uses a subset
of the K known haplotypes to reduce the complexity. These are chosen to be similar
to the most recent haplotype estimates for the individual in Impute2.
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3.2.3 Beagle

Beagle also takes a similar approach to MaCH, but their set of K haplotypes, H, is
represented as a graph where the edges of the graph are states of the HMM. The
graph complexity increases more slowly than O(M K?) as K increases.

3.2.4 Fastphase

In fastphase a small number of parameterized states are used are used instead of the
set of all known haplotypes. These need to be estimated as the model is fitted, this
takes some overhead time, but the method is constant with the number of SNPs.

3.2.5 SHAPEIT

SHAPEIT [26] uses two main improvements to the basic HMM of MaCH. First, it
utilizes a graph structure for H, H,, in which H is partitioned into disjoint segments
with J haplotypes per segment and second, a linear coplexity sampler for the graph
with linear complexity O(MJ)

3.2.6 EAGLE

Eagle [61] attempts to do long range phasing, with IBD-based regions > 4 centimor-
gan in outbred population data. In short, the idea is to use the outbred population
as a big pedigree to identify large haplotype blocks spreading from up to ~12 gen-
erations back, use these to call approximate phases, then do two iterations with
an HMM to phasing in overlapping 1 glscmg windows by detecting complementary
haplotype pairs from the previous step. The paper makes some strong performance
claims that didn’t seem to work out here. Maybe it is because of the kind of data
(simulated, but with a biologically based process dropping down each generation),
or perhaps some parameter could have been tweeked. We saw SHAPEIT 2 and
duoHMM perform significantly better, 3.1.

3.3 Pedigree-Based

3.3.1 Elston-Stewart

The Elston-Steward method does phasing and imputation at the same time, but sep-
arate from the likelihood calculation. It will be discussed further in the imputation
section.

3.3.2 Merlin

Merlin [1] is a tool often used for pedigree-based imputation developed by Abecasis
et. al. It utilizes the Lander-Green algorithm, which does phasing and imputation
at the same time. Further discussion of Merlin will be deferred to the Imputation
section.
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Figure 3.1: Mean correlation R? between true and imputed genotypes for different
phasing approaches with IMPUTE and Minimac for (A) European and (B) African
populations using a random selection strategy for selecting which individuals will
be fully sequenced. The first/second of a pair of programs in the key indicates
phasing /imputation functions.
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3.3.3 gl auto

The gl auto program is a part of the MORGAN [103] software package and is one
of three programs included in it that measure autozygosity (i.e. IBD). The other
two programs lm_auto and Im_pval need to include the affectation status as input in
addition to the genotypes and have some different outputs. Here, we are concerned
with gl_auto because the output of gl_auto is one of the inputs to GIGI. gl_auto uses
an MCMC algorithm to sample possible inheritance vector (IV) realizations. It is
not an exact method and by sampling it is able to give results with complexity that
is linear with both pedigree size and the number of markers. As we will see in the
next section, this is different from other pedigree-based approaches like the Elston-
Stewart and Lander-Green algorithms. Simwalk2 [98] is a comparable program.
Loki [39] also did something similar, but has been superseded by Morgan, and if
one sees references to Pangaea, Pedigree Analysis for Genetics (and Epidemiological
Attributes), it is a blanket term that includes Loki, gl_auto (inside MORGAN), and
some more specific IBD software. Instead of outputting the probabilites of each IV
gl_auto outputs each realization. They are expressed in a compact form indicating
chiefly the locations of crossover events, i.e. where an IV, V; differs from V,,;. The
MCMC methods used for these vectors utilize the LM-Sampler in MORGAN, which
has been shown to be the only (of the two) program to give accurate results in a
computationally practical time for large numbers of dense diallelic markers when
compared to Simwalk2 [115].
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Imputation

4.1 Population-Based Imputation

Population-based imputation is based almost entirely on comparing phased haplo-
types. Methods like Beagle, Minimac, and Impute, and their subsequent versions,
in essence are all variations on using the phasing results of the test populations to
search for the best match in the reference population and use that haplotype. This
works well for common alleles, but has trouble with imputing rare markers correctly
because they are unlikely to appear in population haplotypes, which in turn are
expressions of LD. This improves as the size of the reference population increases,
but so far pedigree-based imputation methods have been the best for imputing rare
alleles correctly and tracing inheritance of rare mutations. It is not clear how far
results can be improved through increased size of the reference population. For now,
having more rare haplotypes in the reference population increases the chance that
a rare haplotype (which also contains more rare alleles) in the subject population
can be well matched. At some point, having more rare haplotypes should start to
fill the possiblity space, in which case even incorrect haplotypes would be matched
because we have a matching reference for any haplotype.

4.2 Elston-Stewart

Elston and Stewart put forward a method for estimating the likelihood of genotypes
in pedigree data in 1971 [27]. They consider multiple pedigrees ( 1,2,..ip ), and
use r;;, where i; is a sequence starting with the pedigree iq and then followed by
the number of each member in each generation from the top of the pedigree to the
current individual. Those that are marying in are denoted with y instead and are
numbered separately. Therefore, in a simple example of a three generation family,
the grandparents are 1 and y;, their two children are x1; and x5, whom are married
to y11 and yi9 respectively. The third generation are xq1; and x112, children of the
couple [x11,y11] and xq21, child of couple [x19,y12].

The genotype for every phenotype, x, is then modeled as g,(x) for u possible
genotypes. g,(x) is assumed to be a continuous multi-nomial distribution, even
normal, though these assumptions are not strictly necessary. g,(z) is then the
conditional probability of x given u. The likelihood of a child having genotype u,
given that the parents have the genotypes s and t is pg,, and the likelihood that two
sets of genotypes come from siblings is:
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n k
H Z pstugu(xi)
i=1 u=1
For n traits or markers and k potential genotypes. Elston and Stewart go on to
derive that:

k k
H Z ¢50950 (xio) Z ¢togto (yio)

i0 sp=1 to=1

Is the likelihood of observing all the original x traits on the parents in all the
pedigress of individuals with k genotypes per trait, where 1, is the likelihood that
an individual has genotype v, i.e. the fraction of the population with v.

They further derive that for an individual in a pedigree with a finite number of
genotypes, the probability that the individual w has genotype u conditional on all
the other observed data on their relatives is:

q(w,u) = L(w,u)/ ZL(w, u)

where L(w,u) is the following:

k k
Z 2bSogSo (xio) Z wtogto (yio)

so=1 to=1

L.e., the probability of observing the data for a single individual instead of for
the entire pedigree or pedigrees. Unfortunately, the number of haplotypes to be
considered here is k"', where W is the number of individuals and k is still the
number of possible genotypes at a given location.

4.3 Lander-Green

Take M, ..., M,, as m ordered loci and 6; as the recombination fraction from one
loci to the next, and assuming no crossover interference (add to glossary). What is
the set of 0 = (01, ..., 0,,_1) that maximizes the likelihood of the data. In the Elston-
Stewart algorithm given above, they went as far as calculating probabilities of having
a set of genotypes given the data, in the Lander-Green paper, this is then used to
find the “genetic map” (phasing 4 imputation) by then starting from the top of the
pedigress and computing the probability distributions for each triple (child and its
parents) using Bayes theorem. Then, for each triplet of genotypes corresponding to
them, find the expected number of triples having that set of genotypes. There are
22m=2 guch sets of triplet genotypes, sum the probabilites for each triplet. Finally,
add the expected occurences of crossover patterns with a recombination in each
interval. These four steps have an expected complexity of O(a®™), where m is still
the number of loci and a is the number of alleles. This is massively problematic
because, for full genome sequencing, we’re potentially considering over 3 billion
markers. Even for just the exome m could potentially be over thirty million. Often
genetic statistical techniques use the (mostly true) assumption that chromosomes are
independent and run on each chromosome separately, even then m will be well into
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the millions. Lander and Green proposed to overcome this by using hidden markov
chains. Take k to be the number of non-founders in the pedigree. For each locus
M; define an inheritance vector v; of length 2k. Each position on the inheritance
vector is either 0 or 1, 0 when the marker comes from the paternal side and 1 if it
comes from the maternal side. 6; is the recombination fraction, or the chance that
there was a crossover, between v; and v;.1. The probability distributions p; can then
be computed for each v; given M;, and the probability values stored as ¢;. In the
worst case, there are 22¢ possible p; and ¢;, and hence it would have that length,
but in practice many can be excluded, i.e. uninformative SNPs can be excluded.
At the time, they posited that & <= 20 may be feasible and potentially practical.
The steps for this markov chain are to (1) compute the left and right conditioned
probabilities for p{jrl given pf and pft | given pff respectively.
L [0/ T(6;)] * [qis1]

P [pET (@) @ [aie]

Where * is for element by element multiplication and e is the dot product.
T(6;) is the transition matrix between M; and M, ;, computed as the Kronecker
product of the 2x2 transition matrices representing the 2k transitions. The right
conditioned probability is analogous. (2) T(6;) has entries t,,, corresponding to the
transition from inheritance vector v to vector w. Let tx,, = d(v, w)t,, where d(v,w)
is the number of positions at which v and w are different. Let these be entries of a
transition matrix 7*(6;), then the number of recombinations expected is:

[P T (0:)] * %]
[piT(6:)] @ %]

This approach gives a complexity of O(6mk2%), Lander and Green note that
the linear complexity with the number of markers will allow it to scale well in
that sense, but that it will probably only be practical for pedigrees with 10-25 non-
founders. This turns out to be a better tradeoff than in the Elston-Stewart algorithm
because the number of markers that must be analyzed has exploded in number
while most pedigrees even today are not very big. Note that the likelihoods are also
calculated for free in the denominator of p, , so imputation (genetic reconstruction)
and likelihood calculation happen at the same time with the markov chain approach.

4.4 Merlin

Merlin is a tool often used for pedigree-based imputation developed by Abecasis et.
al. It utilizes the Lander-Green algorithm and attempts to mitigate the poor (expo-
nential) memory scaling of the Lander-Green algorithm with the size of the pedigree
by introducing some novel data structures for this kind of program. In particular,
they applied sparse binary trees with bit-wise indexing. While this greatly reduces
the absolute memory requirements, the scaling is still exponential. To estimate the
amount of memory needed, one can calculate the number of meioses needed as a
measure of the complexity of the pedigree. This is two times the number of non-
founders in the pedigree minus the number of founders. Merlin is able to work on
a 24-bit (24 meioses) pedigree with 2 Gb of memory, but a 30-bit pedigree already
requires more than 128 Gb of memory and is not feasible for most individuals, but
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still is for many companies and institutions. 35-bit pedigrees are likely out of reach
for all but the most extreme, possibly experimental, system configurations. In the
Merlin paper there are some ways presented to approximate a solution with reduced
resources, but the dominant narrative in the literature is that Merlin fails to work
for large pedigrees.

4.5 GIGI

GIGI was originally described in Cheung et al [15], and uses the inheritance vectors
from gl auto (MORGAN) to build IBD graphss. The use of these IBD graphss was
expanded in in 2014 by Blue and Cheung et al [6]. For the exact case, gl auto is
subject to some of the same limitations on the number of meioses that they can
do exact computation for. They default to exact computation when the number
of meioses is less than or equal to 8, and use approximations when the number
of meioses is above that. What the gl auto program provides in particular is a
set of meioses indicators that determine the Founder Genome Label (FGL) matrix.
The file consists of a number of realizations computed by gl_auto that indicates the
locations where crossovers occur. GIGI does SNP by SNP by solving IBD graphss
between related individuals. When the graph is unsolvable GIGI will fall back on
using the population frequency of the SNP (given as one of the inputs to GIGI). GIGI
is the only pedigree-based imputation available for large pedigrees. Overall, there
are three approaches for pedigree data, Elston-Stewart, which cannot handle large
numbers of markers, Lander-Green, which cannot handle large pedigrees but is what
many modern pedigree imputation approaches are based on, and MCMC sampled
approximate methods, for which the only implementations of repute are Simwalk2
and the LM-sampler in MORGAN. Among them, only the MORGAN LM-Sampler
used by gl_auto has been shown to have accurate results for large numbers of diallelic
markes in a feasible time. As mentioned earlier, Simwalk2 is not sufficient in this
case [115], and GIGI is the only method utilizing the IBD information from gl_auto
for imputation. In short, GIGI+gl_auto is the only well known method for doing
pedigree-based imputation on large pedigrees, i.e. with a bit-depth of more than 30
in most cases.

4.6 Other Potential Approaches

4.6.1 Primal

Primal [60] appeared on PLOS One in 2015. They take a different approach to IBD,
rather than trying to identify crossover locations, they attempt to de novo match
IBD segments as if they were haplotypes via clique graphs. They targetted founder
populations in particular and also incorporate LD in their imputation. The software
apparently generated a lot of interest, we were asked on more than one occasion to
compare with Primal. Unfortunately, the software is not currently available in a
working state to compare against. We look forward to doing so if it receives an
update.
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4.6.2 cnF2freq

This imputation software, cnF2freq [77], is a bit of an unevaluated case. The claim
is that they implement the same idea as Merlin, but with automatic overlapping
areas of the pedigree. The software is more difficult to install and use than many
others. It requires compiling with the Boost libraries and OpenMP. It seems to have
undergone a number of modifications to deal with plant genomes in particular. The
author was responsive to helping with some compilation issues but development on
the code base has been sporadic and I'm not confident in the current code base. I
also do not have a great understanding of the expected input and output formats
from this particular software. It should be evaluated in the future for correctness
against masked data and against some of the stalwarts to see if it merits more
widespread use.

4.6.3 Matrix Completion

A rather different approach to imputation, on family or population data, is Matrix
Completion. The technique gained widespread recognition when it won the Netflix
challenge [51]. It was applied by Kenneth Lange in (cite) and while he showed low
error for certain scenarios, the R? in the most important cases were not particularly
impressive. This implementation [16] is available in the Mendel software package
made availabe on Kenneth Lange’s UCLA site: http://software.genetics.ucla.
edu/. As Lange notes, the results from matrix completion are heavily biased towards
zero. We performed some exploratory analysis for this approach. Lange indicates
that the output from matrix completion be further fit with a gaussian mixture
model to fit the three alleles. He also recommends correcting for Mendellian errors
and stated in a lecture that these corrections were more effective than trying to
incorporate additional constraints [55].

4.7 FamPipe

FamPipe [17] is pipeline for family GWAS studies that includes an imputation step.
For a part of their pipeline they perform imputation. They include two options for
this imputation, Merlin, and GIGI. For using Merlin on large pedigrees they make
use of PedCut [59] in order to split up the pedigree into sub-pedigrees of less than
a specified number of bits. They recommend using Merlin for small pedigrees, but
GIGI for large ones. This is because splitting up the pedigrees with PedCut leads to
worse performance for Merlin. In our pending imputation comparison paper we saw
that by choosing sub-pedigrees by hand, of a maximum size that we can compute,
and maximizing overlap between sub-pedigrees, we can get better results than by
using PedCut. Even then, the results of using Merlin on split pedigrees is not as
good as GIGI directly, as shown in figure 4.1. These conclusions still hold for several
other automated splitting strategies, including Pedstr [50], and most of the other
methods do worse than those two do.
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Figure 4.1: GIGI and Merlin. Merlin is evaluated on only the split pedigree because
the amount of memory to run it on the full pedigree is not feasible (2018). GIGI is
shown running on the split pedigree and also on the full pedigree. While Merlin does
better on the sub-pedigrees, GIGI is able to outperform it by utilizing the complete
pediree at once.
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4.8 PedPop

As we have seen in previous sections, in figures 2.1 and 2.2, population-based imputa-
tion (Impute, Minimac, Beagle) does better on common alleles, and pedigree-based
imputation (Merlin, GIGI) does better on rare alleles. In Saad et al [86], it was
proposed to combine pedigree and population-based methods as PedPop. In figures
2.1 and 2.2 we can see that overall PepPop performs much better than either other
imputation approach individually. It suffers very slightly for rare allele imputation
relative to GIGI, but does even better than the population-based imputation method
on common alleles.
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Chapter 5

Data

5.1 Real Data

GIGI-Quick and GIGI were both tested on various real pedigrees of sizes, 16, 36,
92, 154 and 189 and others. These pedigrees reside with our collaborators at the
University of Washington and we are unfortunately unable to release them to the
public due to privacy concerns.

5.2 Simulated Data

We simulated 20 pedigrees with a total of 1200 subjects. The pedigrees had a median
of 47 subjects, minimum of 10, and maximum of 174 with structures extracted from
an Alzheimer’s disease cohort. This set is simulated 100 times for African and 100
times for European ancestry similar to the LD structure and MAF distribution of
the 1000 Genomes Project data with the same procedure as described in Saad and
Wijsman 2014 [86].

20,000 haplotypes were simulated for each ancestry for a region on chromosome
22 of GRCh37, 26443384 - 32049917 using HAPGEN (Su et al. 2011) [101]. For the
founders of the outbred populations haplotypes were drawn randomly without re-
placement. Haplotypes were dropped through the generations with a recombination
rate of 1%/cM /meiosis assuming 1 ¢cM ~ 1000 kbp. The number of SNPs from the
1000 Genomes data was 8,954 for European and 11,891 for African. 500 from each
list were selected at random to be the SNPs selected for sequencing in the GWAS
study. Quantitative traits were also simulated, 10 for the null hypothesis and 10
for the hypothesis of association for each SNP and each dataset. These are used to
compute the type 1 error rate and statistical power respectively. Further details are
available in Ullah et al [108].

The simulated data is available on the website of the Qatar Computing Research
Institute’s Bioinformatics group, a subset of their Data Analytics group. https:
//bioinformatics.qcri.org/IRD As well as via Zenodo at DOI: 10.5281/zenodo.
1485557
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Chapter 6

Improvements to GIGI

6.1 GIGI-Quick

6.1.1 Approach

GIGI-Quick is a set of Bash scripts and C++ utilities developed for running GIGI in
parallel to obtain the results more quickly. GIGI-Quick requires a recent version of
Bash for full compatility (Bash 4.3 or later) because ‘wait -n” was added in 4.3. Older
versions may be used if one does not intend to utilize the -q option. Compiling the
C++ utilites requires a reasonably recent C++ compiler and CMake if you intend
to use the included compilation script. GIGI-Quick takes your input parameters
and writes a GIGI input file for the number of chunks one specified for GIGI-Quick
to split into. It then splits the appropriate input files into that number of chunks
and runs GIGI on each chunk while tracking the process. When all the chunks have
completed running GIGI-Quick will combine them into a single set of outputs as if
one had just run GIGI on the input directly.

GIGI-Quick supports a flexible set of command line options while retaining the
exact same parameter file for GIGI-Quick as for GIGI. Other flags define other
parameters, such as the output file names, number of CPUs to utilize, and requested
memory. Internally, GIGI-Quick splits three input files, 14, I5, and 16, into C' non-
overlapping chunks. By default, this number is the number of cores - 1 times the
number of threads per core. The user is able to override the number of threads to
be used. After splitting, GIGI-Quick prepares the appropriate parameter files to
run GIGI on the C' chunks. Finally, it merges all output chunks, column-wise for
01, 02, and O3, and row-wise for O4. GIGI-Quick is a combination of two utilities
written in C++ and several Bash scripts. The first C++ program is used to split the
inputs and the second program is used to merge the imputation outputs. The Bash
scripts (1) parse the user’s parameters (such as the number of splits, GIGI original
parameter file, and the long format flag), (2) call the splitting program, (3) run
GIGI in parallel, and (4) call the merging program that will give one set of outputs,
similar to what GIGI gives without splitting. Independent logs, which show memory
usage, time, and other information, are kept for each run with GIGI as well as for
the split and merge programs. GIGI-Quick implements two different approaches to
memory constrained scenarios, one queue-based and the other utilizing cgroups, a
feature of the Linux kernel for controlling resource usage. GIGI-Quick also allows
the user to easily perform imputation on a specified region of interest rather than
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Figure 6.1: GIGI-Quick flow of inputs and outputs.

an entire chromosome by giving the start and end positions of the region.

6.1.2 Availability

GIGI-Quick can be cloned via git from https://cse-git.qcri.org/Imputation/
GIGI-Quick.git and can also be downloaded from a browser by going to https:
//cse-git.qcri.org/Imputation/GIGI-Quick/tree/master and downloading it
in a compressed format.

6.1.3 Installing and Compiling

Once you have the files, most users won’t need to do anything else to use GIGI.
There are executables compiled on Ubuntu 64 bit Linux for 64 bit and 32 bit (via
multilib) x86 systems. GIGI-Quick will automatically choose which of these to run.
We recommend using these unless your system has a different architecture (e.g.
PowerPC, ARM). When GIGI-Quick runs, if there are locally compiled versions of
the binaries then GIGI-Quick will use those, it will check for them in the following
locations: ./GIGI/GIGI, ./MERGE/gigimerge, ./SPLIT/gigisplit.

We use cmake to create make files for the architecture being compiled on, to
use that method one will need a reasonably recent cmake installed. This approach
should be compiler and architecture agnostic. To do this, one need only run the
included make.sh script:
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./make.sh

This should create the make file then compile all three binaries. It will write a
log file in ./make.log. If the cmake method is not working on your system, you can
compile directly with your compiler, we give an example with g++ from the gnu gcc:

cd ./SPLIT/

g++ -02 GIGISplit.cpp -o gigisplit
cd ../MERGE/

g++ -02 GIGIMerge.cpp -o gigimerge
cd ../GIGI/sre/GIGI v1.06.1

g++ -02 GIGL.cpp -0 ../../GIGI

Extra Integration

The folder structure of GIGI-Quick should not be separated, GIGI-Quick de-
pends on relative paths to locate the scripts and executables included other than
run_GIGI.

As an Unprivileged User

If you like you can now add GIGI-Quick to your path, the examples assume that
you have, you can do this by adding the following to your .bashrc (located in your
home folder)

export PATH=$PATH:/path/to/folder/where/you/put/run_GIGI

Then source your .bashrc to apply the changes right away

source ~/.bashrc

As a Root/Sudo User

To add run_GIGI to the path system-wide for all users you can create a symlink
in /usr/bin pointing to the run_GIGI script:

In -s /path/to/run_GIGI/script /usr/bin/run_GIGI

6.1.4 Running GIGI-Quick

Note: The parameter file is the same as you would use for GIGI normally, but if you
are using the long format, then pass the “-1” option The examples in shown below
use the file “param-v1_06.txt” because it is included in the repository and can be
run by simply cutting and pasting the example line.

run_GIGI parameter file-o [OUTPUT FOLDER] -n [RUN NAME] -t [THREADS]
“m [MEMORY IN MB] [] [-v] -q [THREADS] -r [START] [END] [-V] [-4]
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-0 [OUTPUT FOLDER] : This is the path to use for the outputs from the
run_GIGI scripts, including temporary files.
-n [RUN NAME] : This is a path relative to the [OUTPUT FOLDER] to use to keep
the outputs from more than one run of run_GIGI separated.
-t [THREADS] : The number of threads to use for run_GIGI, and also the number
of chunks to split the input into.
-m [MEMORY IN MB] : The amount of RAM that run_GIGI will restrict its use to,
not yet implemented
-1 : Specifies that the input is in the long format.
-V : Verbose mode, output from run_GIGI is much quieter now, you can see much
more of what it is doing and what variables are set to at various stages with -V.
-v : Display the version of GIGI-Quick and exit.
-h : Display this help text.
-r [START] [END] : Run on only a selected region, starting at start and ending at
end, this region will be selected before any further splitting.
-q [THREADS] : Run in queued mode, this mode will run up to THREADS instances
of GIGI at a time and will attempt to keep the total amount of memory being used
less than [MEMORY IN MB| using an estimate of the amount of memory GIGI may
need. If -m [MEMORY IN MB] wasn’t given, then it will use the amount of memory
available as shown by ‘free.” For older kernels this isn’t shown and we use an estimate
that is no longer accurate for modern systems (amount free + amount of buff/cache).
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?71d=34e431b0ae398fcb54eab9f£85ec700722c9da773
Also, -t is ignored when -q is given.
-e [MEMORY IN MB] : Manual estimate of how much memory GIGI will need for
queued mode in case the calculated estimate is too inaccurate

Examples:

./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt #Output in the current
folder with no run name identifying subfolder, threads and memory determined au-
tomatically

./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS -n test_run
#Output in ./OUTPUTS /test_run

/run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS -n test_run
-V #Output in ./OUTPUTS/test_run, verbose mode (print more detailed informa-
tion)

./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS -n test_run
-1 #O0utput in ./OUTPUTS /test_run for a parameter file in the long format, do not
cut and paste this one because the included param-v1_06.txt is not in the long format

./run_GIGI ./INPUTS/Sample_Input /param-v1_06.txt -t 2 #Limit to only 2 threads
(and hence two chunks)
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./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -m 1000 #Limit memory use
to 1 GB, please read the section on memory and cgroups

/run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -lmt 1000 2 #Limit mem-
ory use to 1 GB, please read the section on memory and cgroups, and threads to 2
with input in the long format, do not cut and paste this one because the included
param-v1_06.txt is NOT in the long format

./run_GIGI INPUTS /Sample_Input/param-v1_06.txt -o RUN_.FOLDER/ -n test_run
-m 20 -q 3 -V -r 3 70 #Output in ./RUN_FOLDER/test_run, limit memory to 20
MB, use the queued mode with up to 3 threads at a time, and run on only the
region from 3 to 70, note: the memory estimated as needed in queued mode does
not account for the restricted region

If there is a problem that makes GIGI stop before completion, then the output
files are left as they are in order to allow users to rerun only failed portions as
needed. If you are unsure where the failure occurred, then the safest approach
will be to remove the intermediate files before rerunning (e.g. rm -R [OUTPUT
FOLDER|/[RUN NAME]), use rm with caution as always e.g. if the 2nd example
failed, I would “rm -R ./OUTPUTS/test_run” before rerunning,.

The -n option is largely redundant, as it is equivalent to using the -o option with
a longer path giving the subfolder, e.g.

./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS -n test_run
is equivalent to:
./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS /test_run

The inclusion of -n is mostly a semantic convenience.

6.1.5 Logging

With the addition of -v and cleanup of output, you may notice that even with -v
you don’t see the output of split, gigi, and merge any longer. These are now written
to their own individual log files in the output directory/run subdirectory.

e.g. ./run_GIGI ./INPUTS/Sample_Input/param-v1_06.txt -o ./OUTPUTS -n
test_run will have logs in ./OUTPUTS /test_run/LOGS

6.1.6 Miscellaneous
Memory and cgroups:
We handle memory restrictions using cgroups. After looking at a number of

different memory limiting mechanisms we saw this as the best solution, unfortu-
nately it has some caveats. One is that root/sudo access is required to create the
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initial cgroup. If you are on a shared machine then we encourage you to discuss
this with your system administrator if you intend to use the cgroups. For most
shared clusters, we encourage you to use the built in memory limiting mechan-
ims of your submission system (e.g. gsub, SLURM, Torque) instead of limiting it
through run_GIGI, most of these also themselves make use of cgroups (e.g. https:
//slurm.schedmd. com/cgroups.html and HTCondor http://help.uis.cam.ac.
uk/supporting-research/research-support/camgrid/camgrid/technical3/cgroups).
If you are using this on your own system where you have root/sudo access, then you
will need to make sure that your cgroups are set up and that you have your equiv-
alent of the libcgroup library installed for the cgcreate and cgexec commands for
your distribution. If you have a very old (e.g. maybe 7+ years old) kernel, then
you may need to install a newer kernel that has cgroups (they are part of the Linux
kernel technically).

Here is a list of common distributions and links to help/documentation on
cgroups

Redhat: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_
Linux/6/html/Resource_Managemen_Guide/ch-Using_Control_Groups.html

Arch: https://wiki.archlinux.org/index.php/cgroups you may note that
libegroup is an AUR package, to install such packages: https://wiki.archlinux.
org/index.php/Arch_User_Repository

Debian/Ubuntu: https://www.devinhoward.ca/technology/2015/feb/implementing-
cgroups—-ubuntu-or—-debian

Fedora: https://docs.fedoraproject.org/en-US/Fedora/17/html/Resource_
Management_Guide/ch-Using_Control_Groups.html

Fedora: https://docs.fedoraproject.org/en-US/Fedora/15/html/Resource_
Management_Guide/sec-Creating_Cgroups.html

OpenSuSE: https://www.suse.com/documentation/opensusel14/book_tuning/
data/sec_tuning_cgroups_usage.html

Once you have a functional cgcreate command to create cgroups, you can make
them permanent (unfortunately in different syntax) by editing /etc/cgconfig.conf on

Linux distributions using systemd (most of them).

Ubuntu: https://askubuntu.com/questions/836469/install-cgconfig-in-
ubuntu-16-04

Already covered in many of the other links above.
If your distro isn’t covered, it is still worth looking at the above guides, most

things will be similar in your distro though they may not be exactly the same (e.g.
package names could be different, package manager, etc..).
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Here is some distribution agnostic information on cgroups: http://man7.org/
linux/man-pages/man7/cgroups.7.html

https://www.kernel.org/doc/Documentation/cgroup-vil/

cgroups will eventually be replaced with cgroups2, but most of their controllers
are not yet functional: https://www.kernel.org/doc/Documentation/cgroup-
v2.txt

Technically you can create the cgroup/s we need with mount and mkdir com-
mands, but we ourselves depend on cgcreate and cgexec in code, of course you could
create cgcreate and cgexec scripts and add them to your path instead of using the
programs in cgroup-tools. We wouldn’t recommend that route though.

Example:

Essentially, the goal here is to get a user writable cgroup setup that run_GIGI
(running as your user) can make use of to create its own subcgroup.

On Ubuntu in BASH you can do this as follows:

First we install cgroup-tools to get cgcreate and cgexec, etc...
sudo apt-get install cgroup-tools

Then we create a cgroup that your user has access to:

sudo cgcreate -a SUSER -g memory,cpu:user_cgroup

We can see that it was create by checking the contents of /sys/fs/cgroup/memory
and/or /sys/fs/cgroup/cpu

They should both now have a folder user_cgroup that your user has write per-
missions to the contents of

Is -la /sys/fs/cgroup/memory /user_cgroup

Is -la /sys/fs/cgroup/cpu/user_cgroup

When run as your user normally with -m, run_GIGI will make its own subcgroup
of this cgroup (do not run run_GIGI with sudo) These are not persistent cgroups

(that is, they will disappear on reboot).

To make persistent ones, please see the distribution documentation above, for
most this involves editing a configuration file /etc/cgconfig.conf
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Figure 6.2: GIGI-Quick when run on a pedigree of 189 individuals for chromosome
22 split into different numbers of chunks on a Ryzen 1800X. This is expressed as a
percentage of the maximum to show scaling.

6.1.7 GIGI input and output files

Assume a goal of imputation on a pedigree of size IV, where we sequence S subjects
on a dense marker panel of M markers. Assume that the IBD was computed using
a sparse marker panel of P informative markers. GIGI requires seven input files. 11:
Pedigree structure file (~N rowsx 5), I2: Meiosis indicator file, containing the IBD
information, I3: Sparse marker position file used to compute the IBD (P x 1), I4:
Dense marker position file (M x 1), I5: Dense marker allele frequency file for the
pair of allele frequencies (M x 2), 16: Dense marker genotype file (S x M), and I7:
A parameter file that specifies all the aforementioned files and other flags for GIGI.
GIGI outputs four files. O1: A probability file, for each of three possible genotypes
(N x (3M)), O2: A genotype file, containing the best guess genotypes (N x (2M)),
O3: A dose file, containing the estimation of the number of alleles, (N x M), and
O4: A file of consistent inheritance vectors (M rows).

6.1.8 Performance

GIGI-Quick was tested on the new Ryzen platform 1800X CPU, a general purpose
amd64 processor. We have tested it with a wide variety of pedigrees on both real
and simulated sequence data, from just a few individuals up to 189, which is a
very large pedigree. We measured several statistics while testing GIGI-Quick: the
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amount of memory and time used for the input splitting, output merging, and by
a single instance of GIGI that was run by GIGI-Quick. We report the maximum
memory and time of all instances.

Figure 5.2 shows how GIGI-Quick scales with the number of chunks (which is also
the number of threads used) on a single consumer CPU. Note that the processor has
8 cores, so using 9-16 threads shows gains from AMD’s simultaneous multithread-
ing (SMT), which is similar to Intel’s hyperthreading, but is not expected to have
large gains in speedup, 1.1x-1.2x going from 8 to 16 cores. The time and mem-
ory to run GIGI-Quick is directly inversely proportional to the number of chunks
(i.e. 8 chunks uses 1/8th of the memory and requires 1/8th of the computation)
as GIGI-Quick is data parallel but, running these threads concurrently introduces
a level of contention for L1-L.3 cache and bandwidth on the main memory bus that
bottlenecks CPU operations. If you have processors available on separate cluster
nodes, then the scaling is ideal (i.e. splitting in 8 chunks gives 8x speedup) but
you will have some additional overhead to transfer the data to the nodes and it is
not the most efficient cluster utilization, but does give the fastest time to comple-
tion. More details are given in the supplementary material. The time and memory
to split the files remains constant. The time to merge the files remains constant
as well but the memory is inversely proportional because the buffer is written to
disk after reading in each individual output file. It is noteworthy that the time
and memory to run GIGI are much more than for the splitting and merging steps,
which is not apparent from this plot. In our test runs of splitting input files into
up to 16 chunks on the Ryzen platform, running all instances of GIGI accounted
for more than 98.5 % of the clock time and more than 99.5% of the total memory use.

We modeled the memory use for GIGI with a linear regression model (memory=
a+ f1NM + (55) and found that we get good predictions of memory usage. The
values of the coefficients are, a: -20490, $1: 0.05799, and [5: 6164.00, all in kilobytes.
Using this information, we were able to add an additional running mode to GIGI-
Quick for users to run in an automatically queued manner for machines with less
memory. Given an amount of memory and a desired number of splits (C'), GIGI can
queue and run these jobs within the memory envelope in most cases by including
an additional buffer or five standard deviations over the predicted amount.

In this study, GIGI-Quick was tested on a 189-subject pedigree, which is very
large. GIGI-Quick also works on larger pedigrees, such as the Framingham ones.
The computational performance of GIGI-Quick conducted on the largest of the
Framingham pedigrees (7210 individuals) is expected to be comparable to what we
observed in our data because our pedigree is much deeper and is likely to have more
meiosis. Prior to GIGI [15] such pedigrees were a significant problem and novel
pedigree splitting was proposed just to run Merlin on Framingham pedigrees [13]
GIGI-Quick offers a number of useful features for running GIGI that address both
high and low end use cases. In scenarios where there are many threads on a node
they can all be utilized to get GIGI results more quickly. On the other end of
the spectrum, it is now possible using GIGI-Quick to run GIGI on machines that
previously would not have enough memory to do so. The design of GIGI-Quick
can also be built upon easily to adjust GIGI-Quick to particular high-performance
computing queue environments like SLURM, Torque, or PBS.
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6.2 GIGI2

6.2.1 Performance Improvements and New Features
Multithreading

GIGI2 offers a number of performance improvements over GIGI. GIGI2 allows multi-
threaded computation. By default, GIGI2 uses the number of available hardware
threads - 1. An optional flag —-threads in the parameter file allows the user to set
up the number of threads. If the user specifies the number of threads greater than
or equal to the number of hardware threads available, the default number of threads
is used to achieve optimal computation performance and hardware utilization.

Memory Usage and Management

Compared to GIGI, GIGI2 uses much less memory allowing it to run on computers
with limited memory resources. The amount of memory used by GIGI2 is reduced
by processing markers in batches. The size of a batch is the number of SNPs loaded
in the memory for processing. The batch size can be set in the parameter file
(--mbuffer). The default value is 10,000. Reducing the batch size to a very small
value will have impact on the performance as it will increase the number of time
consuming disk 1O operations.

Algorithmic Improvements

A major performance improvement in GIGI2 is accomplished by modifying the data
layout in memory and by using compressed edge IBD graphs for genotype imputa-
tion.

The data layout in the memory has been optimized to provide a better mem-
ory cache performance. Moreover, the layout facilitates a data access pattern that
improves data pre-fetching from the memory at hardware level.

Thomson used IBD graphs to calculate likelihoods from the observed individuals
and assigning genotypes to founder genome labels (FGLs) of the pedigree to find the
missing genotypes of unobserved individuals [104]. An IBD graph G(V, E) consists of
a set of nodes V representing FGLs to be resolved and a set of edges F representing
genotypes to be assigned to the given FGLs. An edge exists between two FGLs if a
genotype exists for the FGLs. For details see Thompson et al 2011 [104].

In GIGI2, the each edge is represented by a 32-bit variable with bits correspond-
ing to different alleles instead of a list of alleles in previous implementation. A bit
is set (having value 1) if an allele is present and reset (having a value 0) if the allele
is absent in a given genotype. For example, there are two alleles A and T for a
marker position corresponding to least significant two bits respectively. The geno-
types AA, AT and TT will be represented as 00000000 00000000 00000000 00000001,
00000000 00000000 00000000 00000011 and 00000000 00000000 00000000 00000010
respectively. This encoding uses of a single variable for multiple genotype represen-
tation enabling compression of genotypes. The major advantage of this encoding is
reduced memory usage along with reduced amount of data transfer between process
and memory, thus reducing the memory bandwidth usage.

The tests for checking of homozygosity and heterozygosity of a genotype x in
C++ are defined as:
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#define isHomozygous(x) ((x != 0) & (x == (x & -x)))
#define isHeterozygous(x) (x !'= (x & -x))

where, & is bitwise logical and operation. The above mentioned test only uses
bitwise operations, which do not use iterating over any list thus avoiding additional
memory accesses. These logical operations require only a single clock cycle, therefore
improving the computational throughput.

Imputing a Genomic Region of Interest

GIGI2 supports imputation of a set of SNPs in a genomic region specified by the
start and end positions of the region. This feature is important when one wants to
focus on a linkage analysis region instead of the whole chromosome. The genomic
region of interest can be specified by an optional flag ——drange in the parameter file
to specify the starting and ending location of dense markers to be imputed.

Reproducibility of Results

GIGI and GIGI2 imputation algorithm involves the use of a random number gen-
erator. When performing imputation in parallel, reproducibility of results may be
challenging due to the order of SNP processing. Unlike GIGI-Quick, GIGI2 always
generates the same imputation results for a given seed of the random number gen-
erator, which can be specified in the parameter file by an optional flag ——seed. The
results generated by GIGI2 would be different from GIGI and GIGI-Quick due to
different sequence of numbers generated by random number generator, which is also
expected by changing the random number generator seed in GIGI and GIGI-Quick.

Output Logging

GIGI2 generates a log file for each run containing the details of all operations along
with their timestamps. The log file contains all the messages printed on the screen
during program execution.

GIGI2 is written in C++. GIGI2 inputs are the same as GIGI except that GIGI
handles wide (rows are subjects) and long (rows are SNPs) formats, while GIGI2
only uses the long format. The long format is preferred whenever the number of
SNPs is much larger than the number of subjects. Nonetheless, we provide a utility
Wide2Long to convert the file format for backward compatibility. Another difference
is the parameter file. The GIGI2 parameter file is more flexible: the flags can be
ordered in any way, the user can specify the output file names, and many important
flags (representing new features) are introduced. Note that GIGI2’s output files are
exactly the same as GIGI.

GIGI2 offers a number of performance improvements over GIGI: (1) Multi-threading:
GIGI2 allows multi-threaded computation; (2) Memory Usage and Management:
Compared to GIGI, GIGI2 uses much less memory by processing markers in batches;
(3) Algorithm: A major performance improvement in GIGI2 is accomplished by
modifying the data layout in memory and by using compressed edge IBD graphs
for genotype imputation, which provides better memory cache performance and
high computation throughput, note that the differences between GIGI and GIGI2
are functionally equivalent but more efficient and the compressed data structure
is a losslessly compressed data representation. The outputs should be identical to
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that of GIGI excepting differences in which random numbers are used by GIGI vs.
GIGI2 due to threading, i.e. we would expect a GIGI run and a GIGI2 run to have
outputs as close to each other as running GIGI with two different seeds. We have
compared the output between GIGI and GIGI2 for chromosomes 2 and 22 of 189
member pedigree, and find that the mean Pearson correlation is > 0.9999 and
0.9998 respectively.; (4) Imputing a Genomic Region of Interest: GIGI2 supports
imputation of a set of SNPs in a genomic region specified by the start and end
positions of the region, which is important when one wants to focus on a linkage
analysis region instead of the whole chromosome; (5) Reproducibility of Results:
GIGI and GIGI2 imputation algorithm involves the use of random number generator
(RNG). Unlike GIGI-Quick, GIGI2 always generates the same imputation results for
a given RNG seed; and (6) Output Logging: GIGI2 generates a log file for each run
containing timestamped details of all operations. More details are available in the
online Supplementary Material file and at https://cse-git.qcri.org/eullah/
GIGIZ2.

6.2.2 Results

We extensively tested GIGI2 on several pedigrees and two chromosomes (i.e., 2 and
22, one of the largest and smallest, respectively) on two hardware platforms: a gen-
eral purpose amd64 processor (Ryzen 1800X) and a Cray XC40-AC supercomputer
with Intel Xeon Haswell cores. These were used for comparisons between GIGI2,
GIGI-Quick, and GIGI with the same input data. These comparisons were quanti-
fied in terms of speedup, runtime, and memory usage. The speedup is the ratio of
elapsed time required for GIGI (or GIGI-Quick) to that required by GIGI2.

The performance of GIGI2 is shown in Fig. 6.3a-e with respect to: (a) the pedigree
size, (b) the number of IV realizations, (c) the total number of SNPs to be imputed,
(d) the number of threads used, and (e) the batch size of SNPs to be processed. We
compared the performance of GIGI2 to GIGI-Quick and GIGI for various numbers of
threads (Fig. 6.3f). The results can be summarized as follows: GIGI2 scales linearly
(directly proportional) with (a) the pedigree size, (b) the number of IV realizations,
(c) the number of SNPs to be imputed, and (d) the number of threads. The mem-
ory usage increases with batch size while the runtime slightly decreases because of
the increase in the number of thread synchronizations. Thread synchronization is
required to save the results after processing each batch (Fig. 6.3e). Finally, we com-
pared the performance of GIGI2 and GIGI-Quick, which uses GIGI, for imputation.
As shown in Figure 6.3f, on one thread, the speedup of GIGI2 is 28x compared to
GIGI. On 8 threads, the speedup of GIGI2 reaches 131x (Note that GIGI cannot be
run on multiple threads). The memory usage of GIGI2 is 35x (one thread) and 32x
(8 threads) less than GIGI’s memory usage. Compared to GIGI-Quick, which can
be run on multiple threads, the speedup of GIGI2 was always ; 22x and memory
usage is at least 34x less.

6.2.3 Availability
Git
GIGI2 is available at https://cse-git.qcri.org/eullah/GIGI2. It is free and

open source.
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Server

GIGI2 available as a webserver at https://imputation.qcri.org/, based on the
same framework as the Michigan Imputation Server [25].

Docker

GIGI2 is made available as a docker container at https://hub.docker.com/r/
kkunji/gigi2/, which can make results more reproducible and allow integration
into Kubernetes clusters or other cloud computing clusters for anyone that needs
to run it at massive scale. Further instructions for using the docker container are
available at the given link above.

Snap

GIGI2 is made available as a snap/snapcraft package. Snap is a linux packaging
format, analogous to Debian packages (.deb) or Redhat packages (.rpm), etc..., but
is more OS agnostic and has support for push updates. This makes it possible on
some more recent Linux distributions (e.g. Ubuntu 18.04) to install GIGI2 with
a single line, for instance: ‘snap install gigi2’ Snaps are quite strictly confined by
default. When installing the snap as above it is likely that the snap will only be
able to write data to your home directory. Snaps use interfaces of plugs and slots
to determine the permissions for the app. To view the permissions for an app, e.g.
gigi2, you can run ‘snap interfaces gigi2’ and the output should show two plugs and
which slots they are connected to. These two plugs from gigi2 are gigi2:home and
gigi2:removable-media. The first allows reading and writing from the user’s home
directory, the second for reading and writing to drives mounted to /mnt and /media.
It is likely that gigi2:home is already connected to the system slot :home. The plug
gigi2:removable-media will not be connected by default, to connect this plug one
can run ‘snap connect gigi2:removable-media :removable-media’ and then /mnt and
/media drives should be read and writable. Some situations require less confinement
as snaps do not yet support fine grained permissions for them. One such situation is
when a user’s home is located on an NFS drive or generally if they need to write to
a location not currently supported with a snap interface. In these cases the GIGI2
snap can be installed without confinement via ‘snap install —-devmode gigi2’ and will
be able to read and write anywhere the user normally can as per standard unix file
permissions and/or a domain controller. Note that following standard snap naming
conventions the executable is called with ‘gigi2’ instead of GIGI2 and the utility for
converting genotype files is called with ‘gigi2.wide2long’ instead of ‘Wide2Long.’
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Impact of Pedigree Size on GIGI2 (30 Threads Impact of IV Realizations on GIGI2 (30 Threads)
p g °
~
o 4 re N
> 43 { |
°|(a) ¥ =1 (b) ils
s o |
S Aal o’ o
3 ; Frg
5] . o "
e =] @
7 ; & ©° -/ S @
2 ; 2 Py L
3 3 = 3 ¥z
% e —=— Runtime > 35 o | —=— Runtime >
EQg o --8-  Memory g £ ©° E --8- Memory ,§ E
S S| [} 1S [}
S 2o = S e =
"4 Lo X < # o
8 ? s" K
=
o . o~ R=}
= E/ ° E
=1 o
S+ Fo : o o
° T T T T T e T T T T T
0 50 100 150 200 1000 2000 3000 4000 5000
Pedigree Size IV Realizations
Impact of Dense Marker % on GIGI2 (30 Threads; Impact of Threads on GIGI2
P
o ]
SV —
~1(c) : (d) tlg
_-O” -9
©
o / e /
2 IR
- ' g /l [ §
_ | / S A /
[ =] o ~
= o
3 - g ¥
£ 3 —=— Speedup =
©o i =
g n @ g
p=3
T < " 0 - / o
S M&
N / o
o . I S
g B o - o
T T T T T T T T T T T
20 40 60 80 100 0 5 10 15 20 25 30
Dense Marker % Threads
Impact of ——mbuff on Memory Usage (30 Threads) GIGI2 vs GIGI-Quick (using GIGI)
< | o o
: L < |
“(e) - 21(f) T
o P N IN N / -8
L e T F gy gy B R P P, ISl R <
— =]
o '/
o -Q o
N © 8 7 -/ 7§
i @
z, 8 - -
32 2 531 =
Y —=— Runtime || o > k] / o
g o ~a- Memory [ g o4 . —=— GIGI2 Speedup LS g
€ S 53 ZIN / ~e-- GIGI2 Memory Q35
& = - —A—  GIGI-Quick Speedup =
< | o | -4~ GIGI-Quick Memory
o L 8 < 8
o . S
N o |
o N
2 4 Lo P - S g @ B @ A8 |
T T T T T T T T T T T T T T
5000 10000 15000 20000 25000 30000 1 2 3 4 5 6 7 8
mbuff Threads

Figure 6.3: Performance of GIGI2 and comparison with GIGI and GIGI-Quick:
(a) GIGI2 runtime and memory usage by pedigree size (i.e., 16, 36, 92, 152,
189) on 30 threads, (b) GIGI2 runtime and memory for various IV realizations on
30 threads, (c) GIGI2 runtime vs. percent of dense markers on chromosome 2
(2,402,346 SNPs) imputed on 30 threads, (d) GIGI2 speedup and memory for
different numbers of threads, (e) GIGI2 runtime and memory usage for different
batch sizes on 30 threads, (f) GIGI2 and GIGI-Quick speedup and memory rela-
tive to GIGI for different numbers of threads. The computational characteristics
of each figure: chromosome 2 was used for all figures except for figure (a) and
(f) where chromosome 22 was used; The 189-member pedigree was used for
all figures except figure (a); 5000 |V realizations were used for all figures except
figure (a) and (f); a Cray supercomputer was used for figures (a-e) and a Ryzen
1800X processor for figure (f).
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Conclusion

Our new imputation programs, GIGI-Quick and GIGI2, successfully impute geno-
types in significantly less time than the original implementation, GIGI, by itself. Our
most recent contribution, GIGI2, manages to perform much better than our slightly
older GIGI-Quick approach. GIGI-Quick introduced a number of new features uti-
lizing constraints available on most unix-based systems. GIGI2 is able to impute
genotypes for very large pedigrees and millions of SNPs at least 25 times faster than
GIGI. GIGI2 is now, by far, the fastest and most efficient available family-based
imputation tool. GIGI2 was able to impute a pedigree of 189 members on chromo-
some 2 (2,402,346 SNPs) in 10.11 hours on a single thread compared to 17 days
needed by GIGI. Moreover, on 8 threads, GIGI2 required 1.5 hours compared to
2.4 days needed by GIGI-Quick. GIGI2 also offers new features and functionality
over the original GIGI. For instance, imputing for only a selected range of markers.
Finally, GIGI-Quick and GIGI can actually be used together. By replacing calls to
the original GIGI in GIGI-Quick with calls to GIGI2, GIGI-Quick can then be used
to run GIGI2 in a distributed fashion on large supercomputing clusters. This option
requires some setup though and is likely only of interest to those that need to run
very large pedigrees many many times over.
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