
Semantic Feature Extraction Using Multi-Sense Embeddings and Lexical Chains

by

Terry L. Ruas

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer and Information Science)

in the University of Michigan-Dearborn
2019

Doctoral Committee:
Professor William Grosky, Chair
Assistant Professor Mohamed Abouelenien
Rajeev Agrawal, US Army Engineer Research and Development Center
Associate Professor Marouane Kessentini
Associate Professor Luis Ortiz
Professor Armen Zakarian

Terry L. Ruas

truas@umich.edu

ORCID iD 0000-0002-9440-780X

© Terry L. Ruas 2019

DEDICATION

To my father, Júlio César Perez Ruas, to my mother Vládia Sibrão de Lima Ruas, and

my dearest friend and mentor William Grosky.

This work is also a result of those who made me laugh, cry, live, and die, because if was

not for them, I would not be who I am today. . .

ii

ACKNOWLEDGEMENTS

First, I would like to express my gratefulness to my parents, who always encouraged me,

no matter how injurious the situation seemed. With the same importance, I am thankful to

my dear friend and advisor Prof. William Grosky, without whom the continuous support of

my Ph.D. study and related research, nothing would be possible. His patience, motivation,

and immense knowledge are more than I could ever have wished for. His guidance helped

me during all the time spent on the research and writing of this dissertation. I could not

have asked for better company throughout this challenge. If I were to write all the great

moments we had together, one book would not be enough.

Besides my advisor, I would like to thank the rest of my dissertation committee: Dr.

Mohamed Abouelenien, Dr. Rajeev Agrawal, Dr. Marouane Kessentini, Dr. Luis Ortiz,

and Prof. Armen Zakarian, for their insightful comments and encouragement, but also for

the hard questions which inspired me to widen my research from various perspectives.

My sincere thanks also goes to Prof. Akiko Aizawa, who was my supervisor during

my Ph.D. internship at the National Institute of Informatics (NII) in Tokyo, Japan. The

connections and experiences I had there were essential for my growth as a researcher.

Working in her lab helpedme polish andmaturemy researchwork, assistingme in becoming

a better scholar.

I also would like to thank my dear friend Edward Williams, the person who first

introduced me to the University of Michigan during a conference in Argentina in 2013. I

had a pleasure to share with him countless lunches and talks during my stay in the United

States. If was not for him, I would probably still be working in my previous job at IBM in

Brazil.

iii

I would like to leave a special appreciation to Charles Henrique Porto Ferreira, whom I

had the pleasure to work with during my last year as a doctoral student. His visit provided

stimulating discussions, great quality time, and an amazing perspective on how to conduct

research with integrity and organization. Anyone who has the opportunity to work with

him should feel honored.

Last, but not the least, I would like to thank my dear friends in Brazil, which I chose to

be my family. It would not be fair to list them risking leaving someone out. For this reason,

I express my gratitude to all of them, who directly and indirectly made my journey easier

during tough times.

Absque sudore et labore nullum opus perfectum est. . .

iv

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

ABSTRACT xv

CHAPTER

I. Introduction 1

1.1 Problem Context 2
1.2 Main Objectives 4
1.3 Dissertation Structure 5

II. Background and Related Work 7

2.1 Word Sense Disambiguation 7
2.1.1 Related Work in Word-Sense Disambiguation 9
2.1.2 Keyword Extraction and Related Work 10

2.2 Lexical Chains 12
2.2.1 Related Work in Lexical Chains 15

2.3 Word Embeddings 17
2.3.1 Multi-Sense Embeddings 20
2.3.2 Related Work in Word Embeddings 22
2.3.3 Related Work in Multi-Sense Embeddings 25
2.3.4 RelatedWork inDocument Classification and Embeddings 29

III. Exploring Multi-Sense Embeddings and Lexical Chains 32

v

3.1 Semantic Architecture Representation 32
3.2 Synset Disambiguation, Annotation, and Embeddings 34

3.2.1 Most Suitable Sense Annotation (MSSA) 35
3.2.2 Most Suitable Sense Annotation N Refined (MSSA-NR) 39
3.2.3 Most Suitable Sense Annotation - Dijkstra (MSSA-D) 42
3.2.4 From Synset to Embeddings (Synset2Vec) 43
3.2.5 Complexity Analysis 44

3.3 Extending Lexical Chains 45
3.3.1 Flexible Lexical Chains II (FLLC II) 49
3.3.2 Fixed Lexical Chains II (FXLC II) 52
3.3.3 From Lexical Chains to Embeddings (Chains2Vec) 53
3.3.4 Building Lexical Chains 54

IV. Experiments and Validation Tasks 59

4.1 Word Similarity Task 59
4.1.1 Training Corpus 59
4.1.2 Hyperparameters, Setup and Details 60
4.1.3 Benchmark Details for Word Similarity Task 63
4.1.4 No Context Word Similarity 65
4.1.5 Context Word Similarity 74

4.2 Further Discussions and Limitations on MSSA 77
4.3 Document Classification Task 80

4.3.1 Datasets Details 80
4.3.2 Machine Learning Classifiers 82
4.3.3 Word Embedding Models Characteristics 85
4.3.4 Document Embeddings Models Characteristics 86
4.3.5 Experiment Configuration 87
4.3.6 Document Classification Task Results 90
4.3.7 Lexical Chains Behavior Analysis 98

4.4 Further Discussions and Limitations on FLLC II and FXLC II 102

V. Final Considerations 106

5.1 Future Directions 111
5.1.1 Scientific Paper Mining and Recommendation 111
5.1.2 Related Work in Scientific Paper Mining and Recom-

mendation 114

VI. Early Findings and Contributions 119

6.1 Word Sense Disambiguation Techniques 119
6.1.1 Path-Based Measures: Wu & Palmer 119
6.1.2 Information Content-Based Measures: Jiang & Conrath 120
6.1.3 Feature-Based Measures: Tversky 120

vi

6.1.4 Hybrid Measures: Zhou 121
6.2 Best Synset Disambiguation and Lexical Chains Algorithms 122

6.2.1 Best Synset Disambiguation Algorithm (BSD) 124
6.2.2 Flexible Lexical Chains Algorithm (FLC) 128
6.2.3 Flexible to Fixed Lexical Chains Algorithm (F2F) 130
6.2.4 Fixed Lexical Chains Algorithm (FXLC) 131
6.2.5 Distributed Semantic Extraction Mapping 133
6.2.6 SemanticTermFrequency-InverseDocument Frequency

(TF-IDF) 134
6.3 Proof-Of-Concept Experiments 135

6.3.1 Semantic Extraction Based on Lexical Chains 136
6.3.2 Semantic Extraction - Reuters-21578 Benchmarking 139
6.3.3 Keyconcept Extraction through Lexical Chains 144

BIBLIOGRAPHY 148

vii

LIST OF TABLES

Table

3.1 Sentence example transformation from words into synset. 55
3.2 Sample of related synsets extracted from WordNet. 56
3.3 Lexical chains construction. 56
3.4 Fictional pre-trained synset embeddings model. 57
3.5 Vector average for lexical chains centroids. 57
3.6 Cosine similarity between lexical chains elements and their centroids. 58
3.7 Final chains for FLLC II and FXLC II algorithms. 58
4.1 Dataset token details. WD10 - English Wikipedia Dump 2010 (April);

WD18 - English Wikipedia Dump 2018 (January). 60
4.2 Spearman correlation score (ρ) for the RG65 benchmark. Highest results

reported in bold face. 68
4.3 Spearman correlation score (ρ) for the MEN benchmark. The results

of Chen et al. [32] and word2vec are reported in Mancini et al. [99]
(MSSG/NP-MSSG). Highest results reported in bold face. 69

4.4 Spearman correlation score (ρ) for the WordSim353 benchmark. Huang
et al. [73] results are reported in Neelakantan et al. [122] (MSSG/NP-
MSSG). Highest results reported in bold face. 71

4.5 Spearman correlation score (ρ) for the SimLex999 benchmark. Chen et al.
[32] and word2wec results are reported in Mancini et al. [99] (MSSG/NP-
MSSG). Highest results reported in bold face. 73

4.6 Spearman correlation score for the MC28 benchmark. Highest results
reported in bold face. 74

4.7 Spearman correlation score (ρ) for the SCWS benchmark. Huang et al.
[73] results are reported in Neelakantan et al. [122] (MSSG/NP-MSSG).
Highest results reported in bold face. 76

4.8 Technical details about the datasets after pre-processing 82
4.9 Grid-search configuration parameters. 84
4.10 Word embeddings used and their main characteristics. * For USE, Cer

et al. [29] report its training data as a collection of sources fromWikipedia,
web news, web question-answer pages discussion forums and Stanford
Natural Language Inference corpus. 85

viii

4.11 Classification accuracy for BOW approach against the proposed tech-
niques for each classifier and dataset. Values in bold represent the best
result of that row. Underlined values represent the best value for that
dataset. K-NN - K Nearest Neighbors; RF - Random Forest; LR - Logis-
tic Regression; SVM - Support Vector Machine; NB - Naïve Bayes. 92

4.12 Classification accuracy for word embeddings models against proposed
techniques for each classifier and dataset. Values in bold represent the
best result of that row. Underlined values represent the best value for that
dataset. K-NN - KNearest Neighbors; RF - Random Forest; LR - Logistic
Regression; SVM - Support Vector Machine; NB - Naïve Bayes. 94

4.13 Classification accuracy for document embeddings models against pro-
posed techniques for each classifier and dataset. Values in bold represent
the best result of that row. Underlined values represent the best value for
that dataset. K-NN - K Nearest Neighbors; RF - Random Forest; LR -
Logistic Regression; SVM - Support Vector Machine; NB - Naïve Bayes. 97

6.1 Toy Example I - Ignoring single occurrences of synsets. 134
6.2 Toy Example II - Considering single occurrences of synsets having a 0

relative distance from themselves. 134
6.3 Toy Example III - Considering single occurrences of synsets and first

synset of a chain having a 0 relative distance of themselves. 135
6.4 Wikipedia Dataset Details. 136
6.5 Experiments using lexical chains algorithms and traditional approaches. 138
6.6 Reuters-21578 Dataset topic distribution. 140
6.7 Sample Reuters-21578 (R8) Dataset topic distribution. 140
6.8 Silhouette values using Complete-Linkage for R8. 142
6.9 Silhouette values using Single-Linkage for R8. 142
6.10 Silhouette values using Average-Linkage for R8. 142
6.11 Distribution of synsets obtained through BSD and FLC. 145
6.12 MediaWiki categories sample. 146
6.13 Suggested synsets sample. 146

ix

LIST OF FIGURES

Figure

2.1 Skip-gram and CBOW architectures. The skip-gram predicts context
words given the current word, and CBOW predicts the word considering
its context [109] 19

3.1 System architecture for extracting semantic features using MSSA and
lexical chains algorithms. 33

3.2 System architecture of MSSA, MSSA-D and MSSA-NR. 36
3.3 MSSA-D illustration of the shortest path from w1 to w5 through their

respective word-senses. 42
3.4 System architecture for building lexical chains. 48
4.1 Workflow of document classification. 88
4.2 Document classification ranking considering BOW and lexical chains

techniques. 93
4.3 Document classification ranking considering state-of-the-art for word em-

beddings and lexical chains techniques. 95
4.4 Document classification ranking considering state-of-the-art for document

embeddings and lexical chains techniques. 98
4.5 Accuracy for fixed lexical chains for variable chunk size and number of

multiple recurrent passes for word embeddings models. 99
4.6 Accuracy for flexible lexical chains for multiple recurrent passes for word

embeddings models. 100
4.7 Accuracy for fixed lexical chains for variable chunk size and number of

multiple recurrent passes for document embbedings models. 101
4.8 Accuracy for flexible lexical chains for multiple recurrent passes for doc-

ument embeddings models. 102
6.1 BSID through FSID and LSID evaluation process. 127
6.2 Flexible Lexical Chains example construction diagram. 130
6.3 Flexible to Fixed Lexical Chains construction diagram. 131
6.4 Fixed Lexical Chains construction diagram. 133
6.5 Scatter plot between mean individual silhouette and Adjusted Rand Index

for proposed techniques (Table 6.5 data). 139
6.6 Consistency and Dissimilarity using Complete-Linkage for R8. 143
6.7 Consistency and Dissimilarity using Single-Linkage for R8. 143

x

6.8 Consistency and Dissimilarity using Average-Linkage for R8. 144
6.9 Keyword survey average rankings. 147
6.10 Keyword survey average correlations with keyword strengths. 148

xi

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ACL Association for Computational Linguistics

ACM Association for Computing Machinery

BOW Bag-of-Words

BSD Best Synset Disambiguation

BERT Bidirectional Encoder Representations from Transformers

biLM bidirectional Language Model

BoMW Bag-of-Meta-Words

BOWR Bag-of-Words-Raw

BOWN Bag-of-Words-WordNet

BOWS Bag-of-Words-Synsets

BOWB Bag-of-Words-Best

BSID Best SynsetID

CBOW Continuous Bag-of-Words

CNN Convolutional Neural Network

CRF Conditional Random Fields

CNN-MSSG Convolutional Neural Network Multi-Sense Skip-Gram

CWS Context Word Similarity

ELMo Embeddings from Language Models

F2F Flexible to Fixed Lexical Chains

xii

FCM Features Combination Meta-Word Model

FLC Flexible Lexical Chains

FSID Former SynsetID

FXLC Fixed Lexical Chains

FLLC II Flexible Lexical Chains II

FXLC II Fixed Lexical Chains II

GloVe Global Vectors

IC Information Content

IR Information Retrieval

LC Lexical Chains

LR Logistic Regression

IDC International Data Corporation

IEEE Institute of Electrical and Electronics Engineers

K-NN K-Nearest Neighbors

LDA Latent Dirichlet Allocation

LSID Latter SynsetID

ML Machine Learning

MWE Multiword Expressions

MeSH Medical Subject Headings

MSSA Most Suitable Sense Annotation

MSSA-D Most Suitable Sense Annotation - Dijkistra

MSSA-NR Most Suitable Sense Annotation - N Refined

MSSG Multi-Sense Skip-Gram

MT-DNN Multi-Task Deep Neural Network

NB Naïve Bayes

NIM Naïve Interval Meta-Word Model

NLP Natural Language Processing

xiii

NLU Natural Language Understanding

NLTK Natural Language Toolkit

NCWS No Context Word Similarity

NP-MSSG Non-Parametric Multi-Sense Skip-Gram

NASARI Novel Approach to a Semantically-Aware Representation of Items

OOV Out-of-Vocabulary

PI Principal Investigators

PV Paragraph Vectors

POC Proof-of-Concept

POS Part-of-Speech

Ph.D. Doctor of Philosophy

PV-DM Distributed Memory Model of Paragraph Vectors

PV-DBOW Distributed Bag-of-Words of Paragraph Vectors

RF Random Forests

RSS Recommender Systems

RIS Research Information Systems

RCV1 Reuters Corpus Volume I

skip-gram Continuous Skip-Gram

SANs Spreading Activation Networks

SPR Scientific Paper Mining and Recommendation

STM Semantic Topic Model

SVM Support Vector Machine

SCWS Stanford Context Word Similarity

tf-idf term frequency-inverse document frequency

USE Universal Sentence Encoder

WN WordNet

WSD Word Sense Disambiguation

xiv

ABSTRACT

The relationship between words in a sentence often tell us more about the underlying

semantic content of a document than its actual words individually. Natural language

understanding has seen an increasing effort in the formation of techniques that try to

produce non-trivial features, in the last few years, especially after robust word embeddings

models became prominent, when they proved themselves able to capture and represent

semantic relationships from massive amounts of data. These recent word embeddings

models represent words, sentences, and entire documents in a dense n-dimensional space

that can be used in any problem involving natural language text. Although, the new dense

vector representations indeed leverage the baseline in natural language processing arena,

they still fall short in dealing with intrinsic issues in linguistics, such as polysemy and

homonymy. Systems that make use of natural language at its core, can be affected by a

weak semantic representation of human language, resulting in inaccurate outcomes based

on poor decisions (e.g. tutoring systems, recommender systems, health companions).

In this subject, word sense disambiguation and lexical chains have been exploring

alternatives to alleviate several problems in linguistics, such as semantic representation,

definitions, differentiation, polysemy, and homonymy. However, little effort is seen in com-

bining recent advances in token embeddings (e.g. words, sentences, documents) with word

sense disambiguation and lexical chains. To collaborate in building a bridge between these

areas, this work proposes two collections of algorithms to extract semantic features from

large corpora as its main contributions. The first group of contributions is composed of three

xv

techniques, namely Most Suitable Sense Annotation (MSSA), Most Suitable Sense Annota-

tion - Dijkistra (MSSA-D), and Most Suitable Sense Annotation - N Refined (MSSA-NR).

These approaches are focused on disambiguating and annotating each word by its specific

sense, considering the semantic effects of its context. The algorithms in this category com-

bine the benefits of word embeddings, lexical structures, and word sense disambiguation in

a mutual self-improving system. While MSSAworks in a local context, trying to choose the

best representation for a word, MSSA-D adopts a global approach, in which it considers the

most similar word-senses from the first to the last word in a document. In MSSA-NR, we

propose a novel recurrent approach that can be applied to refine the semantic representation

results of either MSSA or MSSA-D. The second group offers another two new techniques,

called Flexible Lexical Chains II (FLLC II) and Fixed Lexical Chains II (FXLC II), which

derive the semantic relations between consecutive words in a document. These original

techniques’ target is to uncover the implicit semantic links between words using their lex-

ical structure, incorporating multi-sense embeddings, word sense disambiguation, lexical

chains, and the prior knowledge from lexical databases. In the FLLC II version, the se-

mantic lexical chains are assembled dynamically, as long as there is a semantic relation

that connects two adjacent words. In FXLC II, these semantic lexical chains are built using

pre-defined chunks, which will hopefully describe their semantic content.

A few natural language problems are selected to validate the contributions of this work,

in which our techniques outperform state-of-the-art systems. All the proposed algorithms

can be used separately as independent components or combined in one single system to

improve the semantic representation of words, sentences, and documents. Additionally,

they can also work in a recurrent form, refining even more their results.

xvi

CHAPTER I

Introduction

Semantic analysis is arguably one of the oldest challenges in Natural Language Pro-

cessing (NLP), still present in almost all its downstream applications, and many real-world

problems. Even among humans, the precise definition of semantics is not a consensus,

which leads to multiple interpretations of text, making computational semantics even more

challenging [136].

Despite being a classical problem, the popularity of semantic analysis continues to

draw the attention of many research projects in different areas of study, under the rubric

of semantic computing. For example, Grosky and Ruas [60] analyzed 2,872 multimedia

publications (e.g. papers, journals, reports) between 2005 and 2015, revealing an increas-

ing trend in publications involving semantics and contextual aspects in different areas of

multimedia. In these publications, methods applying different techniques try to capture

semantic characteristics of text documents using state-of-the-art approaches, such as latent

semantic analysis, word embeddings, machine learning, and artificial neural networks.

As we are aware, data production is reaching numbers never seen before in the world.

Documents being uploaded in online repositories, instant text messages, ubiquitous com-

puting, the internet itself, and many other channels are used every second, encouraging even

more this scenario. In 2013, we had reached the mark of 4.4 zettabytes (1021 bytes), by 2020

this number is expected to be close to 44 zettabytes, and in 2025 we have a forecast of 175

zettabytes, according to International Data Corporation (IDC) [138]. In fact, some reports

state that about 90% of all data available today was produced in the last two years [21].

1

Following the accelerated growth in data production, the need for developing methods

that are able to extract useful information from it has also become essential. More specif-

ically, Natural Language Understanding (NLU) is a real-world necessity for any intelligent

system willing to achieve true synergy between humans and machines. The race for such an

objective has become evident in the last few years, especially after robust word embeddings

models became prominent, when they proved themselves able to capture and represent se-

mantic relationships from massive amounts of data. Nevertheless, traditional models often

fall short in intrinsic issues of linguistics, such as polysemy and homonymy.

As a consequence of this accelerated data production, textual documents provide the

ideal scenario for semantic feature extraction methods. However, their large quantity also

brings certain difficulties in uncovering useful information underneath it. From a different

perspective, even though our ability to produce data has grown rapidly, our efficiency in

semantically analyzing it did not, which leads to what is called the semantic deficiency

gap [67, 151]. In this work, we contribute in trying to solve this problem by proposing new

techniques that will hopefully produce more robust semantic features to be used for solving

natural language problems.

1.1 Problem Context

The relationships between words in a sentence often tell us more about the latent

semantic content of a document than its individual words. Recent advances in the NLP

arena, more specifically those using word embeddings, try to incorporate semantic aspects

into their word vector representations by considering the context of words and how they

are distributed in a document collection. Unfortunately, the amount of data available does

not equal the semantic information we are currently able to extract. Even though word

embeddings techniques alleviate some problems (e.g scalability) of traditional count-based

methods, such as Bag-of-Words (BOW), they still fall short in properly dealingwith common

challenges in linguistics (e.g. polysemy, homonymy).

2

Extending the problem of identifying the relationships between words in a sentence

to entire documents, text classification provides a scenario even more challenging. Text

mining [15] is a sub-area of machine learning (ML) that intends to automatically extract

knowledge from text documents. Its usefulness can be extended to several areas in the NLP

domain, such as detecting spam emails [42, 68], authorship identification [72, 189], and text

summarization [7, 95]. Among these areas, text classification has received considerable

attention and has been the subject of several recent research topics [188, 82, 49, 50, 165].

In the document classification task, one has to create a model using features extracted

from a set of text data, often referred to as a training set, that is capable of inferring the

correct labels of unseen text documents. The success of this model depends on the balance

between accuracy and generalization of the basis approximation function and the quality

of the extracted features. Feature extraction from text data is a research topic all its own

in document classification, due to its unstructured nature, which provides an interesting

scenario for the proposed techniques in this work.

After recent contributions [109, 110, 130], word embeddings techniques have received

much attention in the NLP community. These approaches represent words or phrases as real

vectors which can be used to extract relationships between them. The overall performance

of these algorithms has demonstrated superior results in many different NLP tasks, such

as: chunking [39], meaning representation [20], machine translation [110], relation simi-

larity [74, 111], sentiment analysis [166], word-sense disambiguation (WSD) [26, 32, 120],

word similarity [31, 74, 122], and topic categorization [132].

Notwithstanding their robustness, however, most traditionalword embedding approaches

fail to deal with polysemy and homonymy problems [91]. Recently, researchers have been

trying to improve their representations by producing multiple vectors (multi-sense em-

beddings) based on the word’s sense, context, and distribution in the corpus [73, 140].

Another concern with traditional techniques is that they often neglect exploring lexi-

cal structures with valuable semantic relations, such as: WordNet (WN) [48], Concept-

3

Net [94], and BabelNet [121]. Some publications take advantage of these structures

and combine them into multi-sense vector representations, improving their overall per-

formance [74, 75, 91, 99, 133, 145].

In addition to ignoring valuable prior knowledge from lexical databases, traditional word

embeddings often neglect the semantic relationship between consecutive words (i.e. word

order) in their representation. As a response to the absence of word order, the construction of

lexical chains presents itself as a viable option [179, 58, 148, 149]. Lexical chains are defined

as sequences of related words delineating portions of text for a specific topic in a cohesive

manner [118]. A text in which its sentences are semantically connected often produces a

certain continuity in its ideas, providing good cohesion among its sentences. Cohesion,

which illustrates how well lexically or grammatically structured a text is, often occurs in

words close to each other in a text, especially those adjacent to one another [62]. Even

though the applicability of lexical chains is quite diverse, we see little work in combining

and comparing themwith recent advances in NLP, more specifically with word embeddings

[164, 58, 100].

The novelty of this work relies on the proposition of a complete modular recurrent pro-

cess that incorporates the benefits of WSD, multi-sense word embeddings, prior knowledge

from lexical databases, and lexical chains. Others have worked on these topics separately,

in rare occasions combining two areas (e.g. WSD and word embeddings, lexical chains

and word embeddings), but not with all of them nor with the same cohesion here proposed.

Details of the overall system architecture are discussed in Chapter III, in which we explain

the general idea of the main contributions proposed and how their constituent components

can also be used in a stand-alone fashion.

1.2 Main Objectives

The main objective in this work is to decrease the semantic deficiency gap between

natural language text and their real semantic content. For this, we propose a collection of

4

novel approaches that incorporate WSD, multi-sense word embeddings, semantic relations

from lexical databases, and lexical chains. This has been accomplished through five specific

objectives, as follows:

1. The development ofmultiple unsupervisedword sense disambiguation and annotation

algorithms. These help us to identify the most suitable word-sense of a given word

considering the influence of its immediate neighbors;

2. The development ofmultiple unsupervised algorithms to extract the semantic relations

between words in text documents. These relations are extracted by building lexical

chains in a dynamic or fixed manner;

3. A modular system combining the proposed algorithms in a single recurrent process.

The word sense disambiguation and lexical chains algorithms are designed to work

as stand-alone components or integrated as part of one end-to-end system;

4. The validation of the proposed techniques via particular NLP tasks, such as word

similarity, document classification, document retrieval, and keyword extraction tasks.

State-of-the-art benchmark systems are used as a form of comparison in each task;

and

5. A collection of lightweight multi-sense word embeddings models for the proposed

techniques. The generated models, which are at least 75% smaller than the compared

pre-trained models, are publicly available1 so they can be used in various natural

language problems.

1.3 Dissertation Structure

This dissertation is structured as follows.
1https://github.com/truas

5

Chapter II presents the necessary background for the comprehension of this dissertation.

This includes the topics of: WSD, lexical chains, and word embeddings. Besides the

introductory theory, this chapter also presents some of the related work in each field and

the NLP downstream tasks publications associated with them.

Chapter III brings the main contributions of this work, starting from a more general

perspective to amore detailed one. The overall architecture is presented and each component

is followed by a detailed explanation of its internal mechanisms and peculiarities. The early

versions of the proposed techniques are also included in Section 6.2.

Chapter IV contains the experiments performed to validate the proposed techniques in

the word similarity and document classification tasks. In addition, this chapter also includes

some deeper discussions about the performed experiments and exposes the main limitations

of each approach, while providing insights on how to mitigate them. The experiments for

document retrieval and keyword extraction, considering our early techniques, are described

in Section 6.3.

ChapterVdiscusses the final considerations about the proposed techniques, experiments,

and their most relevant constraints. Furthermore, solid future directions about this work and

how the main contributions presented can be applied in other problems are also explored.

Chapter VI presents the early versions and experiments of the proposed techniques in

Chapter III, and their respective related work.

6

CHAPTER II

Background and Related Work

This chapter presents the necessary background related to the main contributions of this

work. This includes the topics of: WSD, lexical chains, and word embeddings. Besides the

introductory concepts, this chapter also presents the related work in each field as well.

2.1 Word Sense Disambiguation

The meaning of a sentence in a document is more easily determined if its constituent

words exhibit cohesion with respect to their individual semantics. The multiple interpreta-

tions of words make it hard to provide a common definition for them, especially if all human

vocabulary is considered. Weaver [178] first introduces the problem of WSD as a language

translation issue, in which he states “[. . .] the obvious fact that a multiplicity of languages

impedes cultural interchange between the peoples of the earth, and is a serious deterrent to

international understanding”. Even in simple sentences, the multiple senses of a word can

bring high ambiguity into play. Let us consider the following sentence:

The good person likes the club.

it is not clear if the term club is related to the sense of baseball club, clubhouse, golf club,

or any other appropriate sense. Moreover, good and person suffer similar problems with

respect to their multiple meanings. Systems that are able to differentiate between the many

word senses, can leverage the semantic representation of words in any natural language

problem (e.g. document classification, sentiment analysis).

7

Mallery [98] describes WSD as an AI-complete problem. In other words, WSD has

the same difficulty of fundamental problems of artificial intelligence (AI) [175]. The

hardship in solving WSD problems comes from several aspects in linguistics, in which

two play an important role in computer science [120]: (i) word representation and (ii)

knowledge dependency. Word representation is related to how we represent all possible

word senses for each word, how granular a word sense should be, how to deal with the

recursive representation of a word sense definition, the domain-oriented versus unrestricted

nature of texts, etc. Knowledge dependency pertains to the prior knowledge of words and

how to properly represent their true meaning. In addition, the creation of lexical databases

is an expensive and time-consuming task [123], especially because each time the context

changes, a new disambiguation process must be considered. To this circumstance, Gale

et al. [54] give the name of knowledge acquisition bottleneck.

The association between senses and words has an important role in any task involving

WSD. Saying that, the bridge between knowledge representation and words can come from

different resources, such as lexical databases, machine-readable dictionaries, thesauri, raw

corpora, annotated corpus, ontologies, and collocation corpora [120]. Once the relation

betweenwords and their senses is considered, one has to decidewhich sense better represents

a word in a given circumstance. In this context, we suggest two broad groups in which

word senses are evaluated to better describe a word: (i) no word embeddings-based sense

disambiguation, and (ii) word embeddings-based sense disambiguation. In the first group

(i), two words are said to be similar (or dissimilar) given a specific metric [108]:

Path-based. Path-based approaches are represented by functions that describe how two

concepts are related (path and position) in the lexical database [181];

Information content-based. Information Content (IC) approaches assume that every word

sense has incorporated some amount of information. Similarity scores in this category

are calculated taking into account the IC for each word sense [77];

8

Feature-based. Feature-based measures do not specifically rely on a lexical database.

Instead, they use properties from a lexical structure to calculate their similarity

scores, such as glosses1 in WordNet [177]; and

Hybrid. Hybrid measures combine more than one approach. Similarity scores in this

category can use IC with feature-based measures, IC with path-based measures, and

other combinations [190].

In the second group (ii), are all techniques that use word embeddings during the WSD

process. The proposed techniques in Chapter III follow research segment (ii) and are

based in a multi-source knowledge representation, composed of raw corpora, annotated

corpora, and a lexical database. For more details on the metrics and references in group (i),

Section 6.1 provides an extensive explanation for each example above.

2.1.1 Related Work in Word-Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of selecting the most suitable word-sense

(i.e. meaning) of a given word in a specific context. Navigli [120] presents an extensive

study in the WSD arena, in which he proposes an unsupervised WSD algorithm based on

generating Spreading Activation Networks (SANs) from word senses of a thesaurus and

the relations between them. Meng et al. [108] explore the theory behind state-of-the-art

techniques for semantic similarity measures in four main categories: path length-based,

information content-based, feature-based, and hybrid measures. AlAgha and Nafee [5]

propose an approach to improve document clustering, exploring the semantic knowledge

offered in Wikipedia. The authors discuss this hypothesis, comparing the results using

WordNet and Wikipedia, claiming that the latter is more robust for finding the semantic

clusters.

In [134], several measures of similarities (e.g. normalized Google distance, normalized

compression distance, cosine distance, latent semantic similarity) are applied to catego-

1https://wordnet.princeton.edu/documentation/wngloss7wn

9

rize words, sentences, paragraphs, and documents according to their lexical and semantic

similarities. Bär et al. [6] present a detailed study on how several text similarity measures

work. They explore these measures in the context of the semantic text similarity task.

In their report, they propose an architecture that combines text similarity measures in a

unified classification framework. As part of their semantic evaluation and text reusability

detection, they argue that text similarity should not be considered a static entity. Instead,

one has to carefully define in which levels and perspectives two documents are similar or

not. In [170], they perform a comprehensive review of the methods related to XML-based

semi-structured semantic analysis and disambiguation. Although their work is more fo-

cused on XML, they provide an overview about the semantic disambiguation field as well,

covering traditional WSD methods, potential application scenarios that could benefit from

it (e.g. data clustering, semantic-aware indexing), and discuss current ongoing challenges

in the area.

Even though there are more references in theWSD arena, they incorporate word embed-

dings, in their core activity, to differentiate amongmultiple word senses. For this reason, it is

better to include these contributions after the word embeddings field is properly introduced

in Section 2.3.

2.1.2 Keyword Extraction and Related Work

The task of keyword extraction from documents can be done using several different

approaches (e.g. most frequent word, human tagging), including using semantic analy-

sis. Saratlija et al. [158] propose a fully unsupervised keyphrase extraction method to build

topic-related word clusters from documents’ keywords. These selected keywords are ex-

panded into valid lexical keyphrases with a reported accuracy of 44.5%. Hasan and Ng [65]

conduct a survey on state-of-the-art approaches for keyphrase extraction. They perform a

systematic evaluation and analysis of keyphrase extraction algorithms on standard datasets.

Their results show that, despite the robustness of traditional weighting schemes (e.g. tf-idf)

10

for keyphrase extraction, alternative approaches should not be ignored.

In [102], the authors develop an algorithm to extract keywords based on the co-

occurrence distribution of words from a single document. This is done without the need

of an actual corpus, in comparison to traditional term frequency-inverse document fre-

quency (tf-idf) approaches, in which they claim to achieve comparable results. Silva and

Lopes [163], use statistical and language independent methods to describe the core content

of documents, based on the automatic extraction of single words and Multiword Expres-

sions (MWE). They conclude that, by introducing the median of a word’s length for each

MWE and the preference for (2 or 4)-grams, the quality of documents, with respect to

precision and recall, increases approximately 11% and 9% respectively. Zhang et al. [187]

present a small survey relating lexical chains, semantic fields, and complex networks. The

latter approach allows for a deeper investigation via discourse coherence analysis, showing

encouraging results. In [12], a survey and categorization of keyword extraction methods

are presented, focusing on supervised, unsupervised, and graph-based approaches.

In the field of Semantic Topic Model (STM), Ercan and Cicekli [45] select the most

representative and significant sentences from a text to summarize them. Their approach

makes use of co-located lexical chains to better represent lexical cohesion clues and uses

them as the core representation of a text. The proposed summarization algorithm achieves

better results in comparison with other ones in the same category. In a more ambitious

approach, Chen and Lin [30] use Google similarity distance to measure keywords in web-

pages and find potential future terms to suggest to the user. Their methodology does not

require the user to type any keywords. Instead, they track what the user is searching for

based on the webpages recently browsed. This is accomplished with an average precision

and recall above 50%. In the medical arena, Jonnalagadda et al. [81] design a hybrid ap-

proach (i.e. supervised and unsupervised) for extracting clinical concepts from the i2b2/VA

corpus2. Their approach uses Conditional Random Fields (CRF) to extract information

2https://www.i2b2.org/NLP/DataSets/Main.php

11

from medical statements and estimates the relatedness between words in the corpus and the

training/testing corpora.

2.2 Lexical Chains

Lexical cohesion is more likely to occur between words close to each other in a text,

especially those contiguously ordered. The semantic similarity between these groups of

words is classified as a lexical chain [118]. Morris and Hirst [118] first introduced the

term lexical chains as an extension of lexical cohesion [62]. A text in which many of its

sentences are semantically connected often produces a certain degree of continuity in its

ideas, providing good cohesion among its sentences.

The definition used for lexical cohesion states that coherence is a result of cohesion, not

the other way around [28, 62]. In other words, cohesion is related with a set of words that

belong together due to some abstract or concrete relation. Coherence, in the other hand, is

more concerned with the actual meaning in the whole text [118]. In this work, we seek to

obtain lexical cohesion through the proposal of new algorithms for building lexical chains,

which will hopefully bring some coherence to a document representation. However, it is

important to mention that the very presence of lexical cohesion will not, by any means,

assure this document superior coherence in relation to another [105].

Halliday and Hasan [62] divide cohesion into two major categories: grammatical and

lexical cohesion. In grammatical cohesion, they include five general categories of cohesive

devices: reference, substitution, ellipsis and conjunction. Lexical cohesion, on the other

hand, is related to semantic construction of a text portion and groups: reiteration (i.e.

repetition, synonyms, superordinate and general words) and collocation. Where repetition

is a linguistic artifact to obtain lexical cohesion through the (near) duplication of words.

Synonyms are constructions (e.g. words, phrases) that can be replaced by others with

the same or similar meaning. Superordinates are words that represent a higher level of

abstraction, providing less specific information about something and are quite different

12

from synonyms since they cannot be easily switched in a document. General words refer

to a set of words where each word can be used to refer the same topic/event. Finally,

collocation is the juxtaposition of two or more words that are often used together in a

sentence (e.g. orthogonal projection, ice cream) [105].

As Halliday and Hasan [62] state, “Cohesion does not concern what a text means; it

concerns how the text is constructed as a semantic edifice”. In other words, cohesion is

related to the structure of a document through a semantic perspective.Morris andHirst [118]

define that lexical chains make use of these structures to compute, in a non-domain-specific

environment, the semantic context for interpreting words, concepts and sentences. While

lexical cohesion is more focused on the relationships of word pairs, lexical chains extend

this notion to a successive number of adjacent words. There are two main reasons why

lexical chains are important for computational text understanding systems [118]:

• They provide a feasible context to assist in the ambiguity and narrowing problems to

a specific meaning of a word; and

• They provide clues to determine coherence and discourse, thus a deeper semantic-

structural meaning of the text.

The method presented in [118] is the first to bring the concept of lexical cohesion to the

computational world via lexical chains. Using their intuition, they identify lexical chains in

text documents and build their structure considering [62] observations. For this task, they

consider five text documents, totaling 183 sentences from different and non-specific sources.

Repetitive words (e.g. high frequency words, pronouns, propositions, verbal auxiliaries)

are not considered as prospective chains elements, since they do not bring much semantic

value to the structure themselves.

Lexical chains are built according to a series of relationships between words in a text

document. In the seminal work of Morris and Hirst [118], they consider an external

thesaurus (Roget’s Thesaurus [143]) as their lexical database to extract these relations. A

13

lexical chain is formed by a sequence of words {w1, w2, . . . , wn} appearing in this order,

such that any two consecutive words wi, wi+1 possess the following properties3 [118]:

• Two words share one common category in their index;

• The category of one of these words points to the other word;

• One of the words belongs to the other word’s entry or category;

• Two words are semantically related; and

• Their categories agree to a common category.

As for the quality of a built chain, three factors can be considered to measure how strong

a lexical chain is [118]: reiteration, length, and density. Reiteration illustrates how often

a lexical chain occurs, the length is related to the number of tokens on it, and density is

the ratio of words in the lexical chain to the words in the text document. Since our main

objective is to evaluate how the proposed lexical chains perform in downstream tasks, we

leave the evaluation of their strength to a future opportunity.

We consider the five characteristics defined in [118] to build our lexical chains and

validate their quality in the document classification problem. These characteristics can be

observed in various text documents, especially in scientific/academic ones, where theories

and experiments have to be explained in great details through several different perspectives.

The very notion of cohesion is accepted as a good tool for text analysis to capture information

beyond pure syntax [157]. For example, in the sentence “the code in my programs is more

cohesive thanks to the new version of Java”, the set {code, programs, cohesion, Java}

expresses a successive chain of semantically related terms representing an association with

computers or programming languages. In a larger scope, other characteristics can be

explored, such as how the structural distribution of related chains, present in documents,

can be used to summarize and recommend related scientific papers.

3Where category, indexes, and pointers are attributes in the lexical database considered.

14

The proposed algorithms (Chapter III) explore how these lexical cohesive characteristics,

presented in [62, 118], can be extended, considering sets of cognitive synonyms, instead of

just words. The next section presents some of the related work that apply and extend lexical

chains in various scenarios.

2.2.1 Related Work in Lexical Chains

The use of lexical chains in NLP tasks (e.g. text similarity, word sense disambiguation,

document clustering) has been widely studied in the literature. In [7], lexical chains

are used to produce summaries from texts. They propose a technique based on four

steps: segmentation of original text, construction of lexical chains, identification of strong

chains, and extraction of significant sentences. Their results show improvements for both

precision and recall, when compared to Microsoft Summarizer. Silber and McCoy [162]

also investigate text summarization, but their approach for constructing the lexical chains

runs in linear time, in comparison with [7], which does not.

Some authors use WordNet to improve the search and evaluation of lexical chains. Bu-

danitsky and Hirst [24, 25] compare several measurements of semantic distance and relat-

edness using lexical chains in conjunction with WordNet. Their study concludes that the

similarity measure of Jiang and Conrath [77] presents the best overall result. Moldovan and

Novischi [115] study the use of lexical chains for finding topically related words for ques-

tion answering systems. This is done considering the glosses for each synset4 in WordNet.

According to their findings, topical relations via lexical chains improve the performance

of question answering systems when combined with WordNet. In [71], they explore the

benefits of using WordNet to improve document clustering based on an explicit matching

between terms found in the text and the lexical database. They improve their clustering re-

sults incorporating background knowledge into the representation of documents. McCarthy

et al. [103] present a methodology to categorize and find the most predominant synsets in

4Set of synonyms [1]

15

unlabeled texts using WordNet. Different from traditional approaches (e.g. BOW), they

consider relationships between terms not occurring explicitly. They obtained a WSD preci-

sion of 64% on all noun-tasks related against the baseline (SemCor5 and SENSEVAL26).

In [159], WordNet is used for document clustering, exploring the benefits of incorpo-

rating hypernyms and synonyms into their approach. However, they reported poor results

when using only Part-of-Speech (POS) tags for document clustering. Pedersen et al. [127]

propose WordNet::Similarity, an application developed in Perl to calculate the relatedness

of concepts via WordNet through different measures of similarity. Ercan and Cicekli [44]

explore the effects of lexical chains in the keyword extraction task through a supervised

machine learning perspective. Their methodology obtains superior results when consider-

ing a decision tree induction algorithm, based on lexical chains and text-only features. Guo

and Diab [61] hypothesize that if the semantics of words are known in advance (i.e. prior

knowledge), it is possible to get a better statistical inference concerning a document’s overall

idea. Their STM approach combines explicit semantic information and word distribution

information, presenting better results than traditional Latent Dirichlet Allocation (LDA)

models.

In more recent works, Pradhan et al. [134] apply several measures of similarities (e.g.

normalized Google distance, normalized compression distance, cosine distance, latent se-

mantic similarity) to categorize sentences, words, paragraphs, and documents according to

their lexical and semantic similarities. Their integrated approach, combining kernel-based

and cosine-based similarity, provides better results if compared to the traditional cosine sim-

ilarity. Wei et al. [179] combine lexical chains and WordNet to extract a set of semantically

related words from texts, and use them for clustering. Their approach uses an ontological

hierarchical structure to provide a more accurate assessment of similarity between terms

during the WSD task.

While covering many aspects in the lexical chains arena, the current literature still

5http://web.eecs.umich.edu/m̃ihalcea/downloads.html#semcor
6http://www.hipposmond.com/senseval2/Results/guidelines.htm#rawdata

16

presents opportunities for expansion. Most authors rely on machine learning techniques

to improve their semantic extraction, which are highly dependent on the available corpus.

Others ignore the context-effect present within the text. The meaning of a word is directly

affected by its surroundings, so the textual neighborhood of a word should be used to decide

what is its best semantic representation. Moreover, prior knowledge from external lexical

databases have much to offer with respect to semantic relationships besides trivial artifacts,

such as hypernyms and hyponyms.

Those inspecting lexical chains often build them usingwords individually, or using some

common/direct synonym. Although these are interesting approaches, they are only focused

on the word itself, leading to an alternative BOW representation. Semantic and contextual

aspects are difficult to extract, but important elements of effective human communication

to track. In the last eleven years, the interest in these topics, and their contributions

to traditional approaches, have been increasing among distinct scientific communities.

In [60], 2,872 records (e.g. papers, journals) in the multimedia field are examined revealing

an increasing number of articles exploring semantic and contextual aspects in different

areas as a common trend. Finally, little effort is seen in combining the benefits of word

embeddings and lexical chains, which could leverage the semantic representation of textual

documents.

2.3 Word Embeddings

The distributed representation of words from documents has received substantial atten-

tion from the NLP community in the last few years, especially after the extremely popular

word2vec approach was proposed [109, 110]. However, the idea that words with similar

contexts should have similar meanings goes back to the 20th century in the Distributional

Hypothesis [64]. Later, the presence of these words would be described using count-based

methods (e.g. BOW [155]). Due to its simplistic and naivemethodology, the BOWapproach

has some drawbacks, such as data sparsity, loss of word order, and high dimensionality, to

17

name a few. Bengio et al. [13] try to solve the latter problem (dimensionality) proposing a

neural probabilistic language model that learns a representation while keeping a compact

probability distribution of word sequences through back-propagation [153]. Collobert and

Weston [33] later define a faster general single Convolutional Neural Network (CNN) ar-

chitecture, showing that multitask learning and semi-supervised learning can improve the

generalization in shared tasks, such as: POS tagging, morphological segmentation, named

entity recognition, and word similarity. Besides these, other language prediction models

are also popular in the NLP community [20, 174, 176, 191].

The fundamental objective in word embeddings techniques is to find word representa-

tions in a vector space that will improve the performance in solving various natural language

problems. Two techniques deserve special attention in this scenario, calledContinuous Skip-

Gram (skip-gram) and Continuous Bag-of-Words (CBOW) [109, 110]. In the skip-gram

training model, one uses an input word to predict its context, while in the CBOW variation

the converse happens, in which given a context the model tries to find the most probable

word to appear. Figure 2.1 shows an example of both architectures in a high-level per-

spective. The input and output layers are one-hot encoded, and have the same number of

dimensions. However, the projection layer, usually significantly smaller than the vocabulary

size, can be of any dimension desired.

The values used to encode each dimension of the vector are the weights used in the

activation function in the artificial neural network. The training objective of the skip-gram

is to maximize the log probability in Equation 2.1 [110].

1

T

T∑
t=1

∑
−c≤j≤c, j 6=0

log p(wt+j|wt) (2.1)

where c is the size of the context window (considering wt as the center) and p(wt+j|wt) is

defined using the softmax function in Equation 2.2.

18

ProjectionInput Output

𝑤𝑡−2

Skip-gram CBOW

ProjectionInput Output

𝑤𝑡−1

𝑤𝑡+1

𝑤𝑡+2

𝑤𝑡−2

𝑤𝑡−1

𝑤𝑡+1

𝑤𝑡+2

𝑤𝑡 𝑤𝑡

Figure 2.1: Skip-gram and CBOW architectures. The skip-gram predicts context words
given the current word, and CBOW predicts the word considering its context [109]

.

p(wO|wI) =
exp(v′wO

>vwI
)∑W

w=1 exp(v′w
>vwI

)
(2.2)

where vw and v′w are the input and output vector representation of w respectively and W

is the size of the vocabulary considered. However, as W increases, it is not feasible to

calculate Equation 2.2. Morin and Bengio [116] propose a binary tree representation for

the output layer with the W words as its leaves, resulting in an effective approximation

of the softmax function, called hierarchical softmax. Thus p(wO|wI) can be redefined as

Equation 2.3 shows [110].

p(w|wI) =

L(w)−1∐
j=1

σ([[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
>vwI

) (2.3)

19

where n(w, j) is the j-th node on the path from the root to w and L(w) the length of this

path, for n(w, 1) = root and n(w,L(w)) = w; ch(n) is a fixed child of node n and [[x]]

is 1 if x is true and -1 on the contrary; σ(x) = 1/(1 + exp(−x)). Additionally, vw has

one representation for w and one representation v′n for every inner node n of the binary

tree. This approximation implies that ΣW
w=1p(w|wI) = 1, so the computation of p(wO|wI)

is proportional to L(wO), which is no greater than logW . Mikolov et al. [110] use a binary

Huffman tree to calculate the hierarchical softmax because of its assignments for short codes

to frequent words, resulting in a more efficient training step. An alternative to hierarchical

softmax is the negative sampling, described in [110]. The methodology used in CBOW is

somehow similar to the one used for skip-gram, but instead of starting with a word w to

predict its surroundings, we would consider the context to derive a target word.

Even though the traditional word2vec technique is robust enough in representing words

in a vector space, the proposed techniques in Chapter III make use of a multi-sense notation.

Thus, if for a given word there are multiple synonyms (polysemy), we want to represent all

of those that are somehow related with the overall meaning of the document.

2.3.1 Multi-Sense Embeddings

In a standard single n-dimensional vector representation as word2vec, there will be

just one embedding for each token to calculate any similarity measure between them. In a

multi-vector representation, each word is associated with a set of senses, each with a vector

representation. Hence, the similarity of theseword-senses need to be calculated in a different

way. Both representations make use of several benchmarks to evaluate their performance in

NLP tasks (e.g. word similarity, document similarity). These benchmarks can be grouped

into two categories: with or without context information. In the first category, a similarity

score is given for two words in isolation, without any extra information about them. In

the second category, each word is presented with a sentence to better help contextualize its

semantic content.

20

Considering the multi-vector representation, Reisinger and Mooney [140] propose two

metrics: AvgSim andMaxSim. In AvgSim, the word similarity is calculated considering the

average similarity of all word-senses for the pair, as shown in Equation 2.4.

AvgSim(u,w) =
1

NM

N∑
i=1

M∑
j=1

d(e(u, i), e(w, j)) (2.4)

where u and w are the words to be compared; N andM are the total number of available

senses for u and v, respectively; d(e(u, i), e(w, j)) is the similarity measure between the

word-sense embeddings sets, denoted as e(u, i) and e(w, j), between the ith sense of word

u and jth sense of word w. In MaxSim, the similarity is the maximum value among all

pairs of word-sense embeddings, as illustrated in Equation 2.5. In this work, we consider

the cosine similarity as the default similarity measure between any two vectors.

MaxSim(u,w) = max
1≤i≤N,1≤j≤M

d(e(u, i), e(w, j)) (2.5)

Reisinger and Mooney [140] also propose AvgSimC and MaxSimC. These take into

account the similarity of two words when their context is available. In this scenario, the

context is represented as sentences in which the target words are used. For tasks with

this setup, two words are evaluated with respect to their similarity and each of them has a

sentence illustrating their use. Both AvgSimC andMaxSimC are described in Equations 2.6

and 2.7 respectively.

AvgSimC(u,w) =
1

NM

N∑
i=1

M∑
j=1

P (u, cu, i) P (w, cw, j) d(e(u, i), e(w, j)) (2.6)

MaxSimC(u,w) = d(ek(u, i), ek(w, j)) (2.7)

where P (u, cu, i) = d(e(u, i), cu) is defined as the similarity of the ith sense of word u

with its context cu. The context cu is obtained by averaging all vectors of the words in the

21

sentence where u is used. Different from single word vector representations, our model

produces vectors for each word-sense, so when we calculate the average vector of cu, we

need only to consider all available word-sense vectors. ek(u, i) = argmaxd(e(u, i), cu) is

the maximum similarity obtained among all word-senses e(u, i), with respect to its context

cu. All these terms are defined analogously for w and j as well. It is important to mention

that the context defined for AvgSimC and MaxSimC are not related with the sliding context

window presented in our approach (Section 3.2, or the sliding window in word2vec).

Huang et al. [73] also defend that word representations should be discriminated consid-

ering their surrounding words (local context) and their role in the entire document (global

context). Their training model produces two vector types, one representing each word-sense

and another for the word in the entire document, evaluated through LocalSim andGlobalSim

respectively [122]. Unlike [73, 122], our approach does not produce global vectors during

the training step, only local ones. Therefore, to obtain a global representation of a word,

we average all word-sense vectors of u and w available to calculate their similarity, as

Equation 2.8 shows.

GlobalSim(u,w) = d(µ̌(u, i), µ̌(w, j)) (2.8)

where µ̌(u, i) and µ̌(w, j) represent the average of all word-sense vectors for u and w. As

for LocalSim, we can use the original MaxSimC instead, since they work under the same

assumptions [140].

2.3.2 Related Work in Word Embeddings

It is undeniable that word2vec’s contributions with continuous skip-gram and CBOW

from Mikolov et al. [109, 110] brought a legion of new publications to NLP, or more

specifically, to the word embeddings field. Its popularity is due to, among other things, its

efficient log-linear neural network language model and its low dimensionality vector repre-

sentation. Both approaches produce vector representations of words, and those with similar

22

contexts tend to have similar values. This theory is firstly introduced in the Distributional

Hypothesis [64] and later refined by Firth [52], which states that “a word is characterized

by the company it keeps”. In the CBOW training model, one tries to predict a word given its

neighboring context, while skip-gram does the converse, predicting the context given a tar-

get word. As influential as word2vec, Global Vectors (GloVe) [130] builds a co-occurrence

matrix of the words in a corpus, which is based on word frequency. While word2vec is

focused on fixed context windows to derive its vectors, GloVe takes advantage of a global

perspective. As for their results, both word2Vec and GloVe present similar results in various

NLP tasks [161, 75, 34]. Our approaches make use of word2vec’s predictive model to train

a disambiguated corpus into specific word-sense vectors that can be applied to several NLP

tasks. This allows us to deal with one of the most important problems in traditional word

embeddings techniques, the one vector representation per word property.

Extending word2vec’s techniques (skip-gram and CBOW), Paragraph Vectors (PV) is

an unsupervised framework that learns continuous distributed vector representations for

any size of text portion (e.g. phrases, paragraphs, documents) [87, 36]. This technique

alleviates the inability of word2vec to embed documents as a unique object. Differently

than word2vec, PV produces a fixed length n-dimensional vector representation for each

entire textual segment, instead of just the words in the corpus. Le and Mikolov [87]’s

algorithm is also available in two different forms: Distributed Bag-of-Words of Paragraph

Vectors (PV-DBOW) and Distributed Memory Model of Paragraph Vectors (PV-DM). The

PV-DBOW works with the same principle as the skip-gram model, in which one tries to

predict the context given a targetword. In this approach, the contextwords are not considered

as input, but instead, the model predicts words randomly sampled from the paragraph in the

output. For this reason, there is no need to keep track of the word vectors of the context,

causing this model to store less data. The PV-DM training model is similar to the CBOW

approach in which the context is used to predict a target word. However, in both training

models, an extra feature vector representing the text segment (called paragraph-id) is added

23

to the context sliding window. The paragraph-id and word vectors are then averaged or

concatenated to predict the target word. This forces the model to remember the missing

words from the context when performing the prediction of these words. The paragraph-id

vector is shared throughout the entire document for each sliding window, representing the

meaning of the document as a whole.

Following the opposite direction of paragraph vectors, some publications move from

a direct document representation to a sub-word one. In fastText [17], they extend the

skip-gram model by proposing a word representation obtained from a sum of the n-grams

of its constituent sub-word vectors. For example, using n = 3, the word kiwi would be

represented as {ki, kiw, iwi, wi} and the word kiwi itself, as a special case. Adopting

a similar method, Peters et al. [131] propose to represent words from their constituent

characters with Embeddings from Language Models (ELMo). ELMo uses a two layer deep

bidirectional Language Model (biLM) with character convolutions as a linear function of

their internal states. Due to its architecture, ELMo does not keep word vectors in their

models, but only characters. This allows ELMo to handle any Out-of-Vocabulary (OOV)

words, since its vectors are computed as an average of all biLM layers. More recently, the

Universal Sentence Encoder (USE) [29] is proposed with two encoding models to represent

any text as vectors, one focused on accuracy (transformer architecture) and the other on

inference (deep averaging network). The former builds a sub-graph that uses attention

mechanisms to compute the context representations of words in a text, considering their

ordering and identity. The latter, average words and bi-grams embeddings, which are later

used in a feed-forward deep neural network to produce new embeddings. In Section 4.3 we

compare our proposed techniques, trained in a simple word2vec implementation, against

the aforementioned state-of-the-art word embeddings models.

Encouraged by the robustness of word embeddings, Oele and Noord [124] combine

word-sense, context, and word-definition embeddings to support their disambiguation sys-

tem. They extend Lesk’s algorithm [89] in two different scenarios using AutoExtend [145]

24

as their embedding training algorithm, the first using a distributional thesauri, and the

second using WordNet hierarchical structure. In [129], they propose a multi-stage system

that learns single vector word representations, calculates word similarity graphs, infers

word-senses using ego-network clustering, and aggregates word vectors with their prospec-

tive word-sense vectors. In contrast to these approaches, we use only single vector word

embeddings to support our disambiguation process a single time. Once our annotated

corpus is trained using a traditional word embeddings implementation, we can perform our

disambiguation step considering the specific word-sense embeddings directly. In addition,

we do not rely on any extra parameters, other than those required in a standard word2vec

implementation. The WSD technique proposed in Section 3.2 is inspired by Ruas and

Grosky [148] approach, which produces word-sense representations for a given word based

on its context. Even though disambiguation is a crucial component in our techniques, the

presented experiments and discussions focus more on how the combination of WSD and

word embeddings can be mutual beneficial in the word similarity and document classifica-

tion tasks [75]. We do have future plans to compare our WSD technique with alternative

methods and see how this affects the overall experimental results in Sections 4.1 and 4.3,

but for now this is beyond our scope. For more details of the WSD field, we suggest [120]’s

survey, in which supervised, unsupervised, and knowledge-based approaches are discussed

in depth.

2.3.3 Related Work in Multi-Sense Embeddings

Nearly all publications using single vector word embeddings suffer from the same

problem, in that words having multiple senses are represented through a unique vector.

In other words, polysemy and homonymy are not handled properly. For example, in the

sentence “This club is great!” it is not clear if the term club is related to the sense of

baseball club, clubhouse, golf club, or any other sense. Systems that use standard word

embeddings, like word2vec or GloVe, will most likely represent all possible meanings for

25

the term club in one single dimensional vector. Section 2.3.1 provides more information on

how multi-sense embeddings are used and measured in NLP tasks.

Some researchers try to solve this representation limitation producing separate vectors

for each word-sense. Even though the number of publications in this area is still small,

their early findings demonstrate encouraging results in many NLP challenges [91]. As

explained in Section 2.3.1, [73, 140] are one of the earliest publications that discuss multi-

sense embeddings and how to properly measure them. Huang et al. [73] introduce a neural

network language model capable of distinguishing the semantics of words, considering their

global (entire document) and local (surrounding words) contexts. Reisinger and Mooney

[140] follow a probabilistic approach to produce a multi-prototype vector space model,

using word-sense discovery to evaluate a word’s context. They set a number,K, of clusters

to represent the different contexts where the word is used. We, on the other had, combine the

prior knowledge of WordNet and word embeddings to extract the many meanings of a word

in an unsupervised manner. Since we produce a vector representation for each word-sense,

the global meaning of a word in a document is the average of all senses for that word. This

way, we do not need to rely on cluster parameters, which would increase the complexity of

our approach. Trask et al. [173] extend [73]’s model by leveraging supervised NLP labels,

instead of relying on unsupervised clustering techniques to produce specific word-sense

vectors. We follow a similar idea and let the words define their own senses according to

the context where they are located. However, our approach also takes advantage of the

lexical structure in WordNet, which helps us to identify the implicit relationships between

the words. In addition, our model’s results can be fed into a word embeddings technique and

re-used to improve itself recurrently, with respect to the disambiguation and embeddings

steps (Section 3.2.2).

Other techniques also take advantage of probabilistic models to learn their own rep-

resentation for each sense. Tian et al. [172] design an efficient expectation maximization

algorithm integrated with the skip-gram model to avoid the issues of clustering-based ap-

26

proaches. Neelakantan et al. [122] propose a modification for the skip-gram model in which

they introduce the Multi-Sense Skip-Gram (MSSG). Their technique performs word-sense

discrimination and embedding simultaneously, improving its training time. In the MSSG

version, they assume a specific number of senses for each word, while in the Non-Parametric

Multi-Sense Skip-Gram (NP-MSSG) this number varies, depending on the word. As in the

NP-MSSG model, our approach also does not limit the number of word-senses for each

word, but we use a CBOW implementation instead of the skip-gram training model to pro-

duce our word-sense embeddings. We also take advantage of WordNet’s semantic network

to help our system to better identify the possible senses for each word. Other publications

expand pre-trained single word embeddings to obtain word-sense vectors [80, 133].

In multi-sense embeddings approaches the use of lexical resources to improve their

performance in NLP tasks is quite common. WordNet7, ConceptNet8 and BabelNet9 are

examples of popular choices to help obtain more refined word-sense vectors. Based on Ba-

belNet, the system of Iacobacci et al. [74] learns word-sense embeddings for word similarity

and relation similarity tasks, moving from a word to a sense embedding representation. Our

choice for WordNet is supported by its open source policy under any circumstances, which

as in ConceptNet, is very attractive. However, WordNet is fully integrated with the Natural

Language Toolkit (NLTK) in Python, which is heavily used in the implementation of our

proposed techniques, making its choice preferable over other lexicographic resources, for

now. Rothe and Schütze [145, 146] also use WordNet in their AutoExtend to produce token

embeddings from a set of synonyms (i.e. synsets) and lexemes, using a pre-existing word

embeddings model. Similar to our model, their approach is independent of any word-type

representation, so it can be easily translated to other learning techniques. They assume that

a word can be represented by the sum of its lexemes, so their methodology puts words,

lexemes, and synsets in the same vector space. As in [145], we explore the use of synsets as

7https://wordnet.princeton.edu
8http://conceptnet.io
9https://babelnet.org

27

well, but beyond that we take into account their respective glosses10, which is not considered

in their model and aggregates solid information to the disambiguation process. As a result,

our semantic representation obtains better results when the context is available in the word

similarity task (Section 4.1.5). In the iterative version of MSSA (Section 3.2.2), we can also

use our produced vectors to improve the disambiguation step. Additionally, our annotated

corpus is self-contained with respect to its representation in the lexical database. In other

words, from the annotation results or the word embeddings model keys, one can retrieve

the lexeme, synset, word or any other information available in WordNet for a specific word

(Section 3.2.4).

Continuing with the multi-sense embeddings approaches, Camacho-Collados et al. [27]

propose a powerful semantic vector representation called NASARI which is extended to

a multilingual scenario. Their system uses BabelNet as a lexical database and provides

vector representations of concepts in several different languages in a unified semantic

space. This approach combined with all lexicons incorporated in BabelNet gives NASARI

a robust architecture. As in our approach, SensEmbed [74] produces word-sense vectors

based on a disambiguated and annotated corpus. However, their disambiguation process

relies on Babelfy [117], which combines WSD and entity linking to build a dense graph

representation of sense candidates of each word, using BabelNet as a backbone. More

recently, Mancini et al. [99] associate words to the most connected senses in a sentence to

produce their embeddings. In their approach, sentences are parsed and only word-senses

with more than a certain number of connections with other words in the same sentence are

selected. These connections illustrate the relationships (edges) between synsets (nodes) in

BabelNet. In the end, both word and sense embeddings are represented in the same vector

space. Differing from all these approaches, we only rely on the training corpus available

for the disambiguation step in combination with WordNet. No other multi-lexicographic

databases are used nor extra hyperparameters considered to incorporate external information

10https://wordnet.princeton.edu/documentation/wngloss7wn

28

about the word-sense. In addition, our techniques (Sections 3.2.1 and 3.2.3) produce word-

sense embeddings that can be used to improve the WSD process in a recurrent manner

(Section 3.2.2).

The system of Chen et al. [32] performs WSD on the words and uses them to learn

word-sense representations from the relevant occurrences through two approaches: L2R

(left to right) and S2C (simple to complex). In L2R, they disambiguate words from left

to right, whereas S2C selects only word-senses that reach a certain similarity threshold to

represent a word. We believe that considering just one order in the disambiguation step or

only specific word-senses leads to a poor and biased representation of semantics. In MSSA,

we explore the contextual effects of all senses available for a word and its neighbors in a

bi-directional fashion. This prevents us from ignoring possible candidates even if they are

not that frequent in the text. Chen et al. [31] use WordNet’s glosses to produce word-sense

vectors via a CNN, which are used as input into an MSSG variant. Their approach uses the

sentence in the glosses as positive training data and replaces random words (controlled by

a parameter) to create negative training data, in order to minimize a ranking loss objective.

Our technique, on the other hand, takes a much simpler approach, averaging the vectors

of all the words in the glosses and using this representation to disambiguate word-sense

candidates. In addition, there is no extra training or hyperparameter adjustments other than

those required in a standard word2vec implementation.

2.3.4 Related Work in Document Classification and Embeddings

In a different direction, some researchers [43, 83, 53, 165] try to improve the quality of

pre-trained word embedding models instead of generating a specific model for each training

corpus. Sinoara et al. [165] propose to enhance document embeddings representations,

gathering knowledge from different word embedding models. As a pre-processing step,

they use Babelfy [117] to transform each word in a dataset into synsets, which have their

vectors retrieved from a pre-trained embeddings model obtained from NASARI [27]. In

29

case their NASARI embeddings model does not have a vector for a specific synset, they look

for it in a traditional pre-trained word2vec model. The main idea behind their approach is

to use NASARI as a multilingual word embeddings model, allowing them to work with any

kind of language covered in this model. They compare their approach against the traditional

word2vec model, LDA [16], and classic BOW. Their reported results show an incremental

improvement over the baselines on the document classification task. Our approach for

lexical chains (Section 3.3), only uses one word embeddings model to produce its vectors,

which is obtained directly from the corpus in where they are derived. Moreover, our

lexical chains connect multiple words that share a common semantic relation in a sentence,

reducing the number of tokens that need to be embedded.

In [53], they propose a technique to generate document representations called Bag-of-

Meta-Words (BoMW). To build the BoMW they represent each document as an average

of its constituent word vectors, which are obtained through a pre-trained word embeddings

model (e.g. word2vec, GloVe). Then, they map each vector into a different feature space

and sum the vectors from this new space to represent the document. They propose two

approaches for the mapping, namely Naïve Interval Meta-Word Model (NIM) and Features

Combination Meta-Word Model (FCM). The former is based on the discretization of

features from the initial word embedding, while the latter clusters related features under the

same group. They compare their results on three datasets against BOW, neural networks

models (e.g. convolutional neural network, recurrent neural networks), and an average

of word embedding models. Their approach shows an improvement in accuracy over the

baselines on the document classification task.

Some techniques make use of context information in the document to incorporate

semantic aspects into traditional word embeddings models. In [83], they build content tree

word embeddings that captures local information from the words in a document. Their word

vectors are calculated as a weighted average of a word’s vector and its immediate parent.

They assume that the context, represented by a word parent node, has influence over its

30

neighboring words. The insertion of a new word into an existing content tree only happens

if there is a high correlation between all nodes in that tree and the new word. Enríquez

et al. [43] explore the complementary information of BOW and word2vec to represent their

document. Their technique is based on a simple voting system that averages the confidence

values returned from BOW and word2vec to classify a document either in a negative or

positive class. They conclude that BOW provides the best representation over word2vec,

while their combination improves the overall results.

To the best of our knowledge, this is the first work that combines lexical chains and

word embeddings applied to the document classification problem. We expect the proposed

algorithms to produce a robust semantic representation through the use of WSD and lexical

chains. Furthermore, our lexical chains are built using the most relevant synset attributes

in the lexical database, as opposed to just hypernyms and hyponyms, commonly used in the

literature [5, 6, 179, 58, 100, 164]. The main idea is to bring the semantic relations of lexical

chains to traditional word embeddings techniques, leveraging their vector representation

and improving the overall result in NLP problems, such as word similarity and document

classification.

31

CHAPTER III

Exploring Multi-Sense Embeddings and Lexical Chains

The meanings of words in a text are largely dependent on their context in the document

in which they appear, just as particular situations serve as connections to interpret human

personality. The meaning of a sentence in a document is more easily determined if its

constituent words exhibit cohesion with respect to their individual semantics. In this

chapter, we present the proposed techniques and algorithms for finding the degree of

cohesion among words and documents in three different layers, as follows. Section 3.1

provides an overview for the entire system and how its internal components connect with

each other. In Sections 3.2 and 3.3 the constituent elements for the proposed architecture

are explored in depth for a better understanding of their particular strengths and weaknesses.

3.1 Semantic Architecture Representation

The overall architecture proposed in this work consists in extracting semantic features

from a collection of documents, to help solve problems involving NLU. The entire scenario

is composed of four major stages, as Figure 3.1 shows: Most Suitable Sense Annota-

tion (MSSA) algorithms, Lexical Chains (LC) algorithms, model generation, and natural

language problems. TheMSSA algorithms (Section 3.2) are responsible for disambiguating

and annotating each word according to their most suitable sense, considering the effects of

their neighboring words. As a result, a given word corpus is transformed into a specific

synset corpus. In the lexical chains algorithms (Section 3.3), the produced synset corpus

32

is used as an input so that the semantic relations between synsets can be extracted. During

the model generation step, the output of both MSSA and the lexical chains algorithms are

used to train a synset embeddings model in a word2vec implementation, so that synset and

lexical chains vectors can be produced. Finally, the vector representation of synsets and

lexical chains are used as features to solve NLP tasks, such as word similarity and document

classification.

MSSA

MSSA-D

+

MSSA-NR

+

FLLC II

FXLC IIOriginal
Word
Corpus

Synset
Corpus

Synset
Corpus

Flexible-Chain (Synset)

Corpus

Fixed-Chain (Synset)

Corpus

Natural
Language
Problems

Lexical Chains
Algorithms

Model
Generation

MSSA
Algorithms

Recurrent
Approach

Figure 3.1: System architecture for extracting semantic features using MSSA and lexical
chains algorithms.

The MSSA step is comprised of three techniques: Most Suitable Sense Annotation

(MSSA), Most Suitable Sense Annotation - Dijkistra (MSSA-D), and Most Suitable Sense

Annotation - N Refined (MSSA-NR). These combine the benefits of word embeddings and

word-sense disambiguation in amutual self-improving system. The approaches in this phase

can make use of two types of embeddings, word-based (black) or synset-based (yellow). In

addition, the prior knowledge from an external lexical database is also incorporated in the

process. For the lexical chains step, two other algorithms are proposed, called: Flexible

Lexical Chains II (FLLC II) and Fixed Lexical Chains II (FXLC II). While the former

works with a synset-based embeddings model (blue) and a lexical database (gray), the latter

can work with any kind of pre-trained embeddings model (blue, yellow, black), as long as it

33

matches its input representation. The lexical chains algorithms find the semantic relations

between consecutive tokens in a dynamic way (FLLC II) or a pre-defined structured manner

(FXLC II).

Themodel generation activity can be performed using any of the outputs produced during

each stage in the proposed techniques. Using a standard word embeddings implementation

(e.g. word2vec, GloVe) a synset-based vector representation is obtained and can be used

recurrently in any of the previous processes.

For each technique, specific NLP downstream tasks are selected to validate the proposed

algorithms. The MSSA variations are first tested in a word similarity task (Section 4.1),

and the ones with the best performance are carried out to be evaluated in the document

similarity task, along with the LC algorithms (Section 4.3). Additional experiments for the

early versions of the proposed techniques can be found in Section 6.3.

The next sections of this chapter are used to explain in detail the proposed approaches

and their internal components.

3.2 Synset Disambiguation, Annotation, and Embeddings

The main idea of our process is to have a modular system with two independent tasks:

(i) disambiguation followed by annotation, and (ii) token embeddings training. This con-

figuration allows us to incorporate more robust techniques in the future, especially for

the training step. The disambiguation and annotation module require nothing more than

a lexical database, and a compatible token embeddings model to transform word-based

documents into word-sense-based documents. As for the embeddings training module, any

word embeddings algorithm that can represent tokens in a vector space is suitable. In the

following sections we explain the details of our approach, illustrated in Figure 3.2.

In the first task, we process a collection of articles (documents) from two Wikipedia

Dumps to transform each word in the corpus into a synset using WordNet as our lexi-

cal resource [48, 112]. This is done through one of the proposed algorithms: MSSA

34

(Section 3.2.1), MSSA-NR (Section 3.2.2), or MSSA-D (Section 3.2.3). In the second

task, we use a word2vec implementation [109, 110] to train this synset corpus and obtain

n-dimensional vectors for each word-sense (multi-sense embeddings).

In their initial form, both MSSA and MSSA-D use Google News vectors1 to help

disambiguate the word-senses in the corpus. MSSA works locally, trying to choose the best

representation for a word, given its context window. MSSA-D on the other hand, has a more

global perspective, since it considers the most similar word-senses from the first to the last

word in a document.

For the word embeddings training module. Once the synset embeddings models are

available, we can feed them to the system again, using the output vectors from the previous

pass, and improve the disambiguation step in either the MSSA or the MSSA-D algorithms,

relieving them from the original Google News vectors’ dependency. We call this approach

MSSA-NR, whereN is the number of feedback iterations used. This recurrent characteristic

is not explored in any of the related works (Section 2.3) nor the compared systems in the

experiments (Section 4.1). Different from other systems [32, 31, 145], our method has

only one training phase and does not rely on any extra hyperparameters, other than those

required in the original word2vec implementation. In addition, since all proposed MSSA

approaches are performed in the raw text directly and prior to any training model, they can

be easily incorporated into any NLP pipeline, independently of the task. In other words,

MSSA would work the same way as any common pre-processing activity (e.g stemming,

stopwords removal, lowercase).

3.2.1 Most Suitable Sense Annotation (MSSA)

As Ruas and Grosky [148] present, each evaluated word wi takes into consideration its

context, represented by its surrounding neighboring words, wi−1 and wi+1, as Algorithm 1

shows. We also useWordNet as our lexical database to extract all synsets from each word in

1https://code.google.com/archive/p/word2vec/

35

MSSA

MSSA-D

+

MSSA-NR

+

Original
Word
Corpus

Synset
Corpus

Synset
Corpus

Word
Embeddings
Algorithms

Natural
Language
Problems

Model
Generation

MSSA
Algorithms

Recurrent
Approach

Figure 3.2: System architecture of MSSA, MSSA-D and MSSA-NR.

the text, but unlike [148], our algorithm works for any word and POS mapped in WordNet,

not just for nouns. In our approach, all text is first pre-processed, normalizing all tokens

in lowercase, removing punctuation, html tags, numbers, common English stopwords, and

discarding all words not present inWordNet. The list of common stopwords used is obtained

directly through the NLTK library in Python. After this initial data cleaning, we extract

all pairs of synsets and glosses for each word wi in a sliding context window of 3 words

(lines 3:13). Our context sliding window is similar to the one used in CBOW [109], which

uses the context to predict a given word. However, since our algorithm considers all synsets

fromwi,wi−1, andwi+1, we currently limit thisword contextwindow to restrict the necessary

number of comparisons, so as to infer the most suitable meaning for wi. It is in our plans

to incorporate a larger context without compromising the overall performance for this step.

Next, after removing common English stopwords from the glosses, we retrieve and average

the embeddings from the remaining tokens in each gloss, whichwe call gloss-average-vector,

using Google News pre-trained vectors2. If there are no remaining tokens in the gloss or no

2https://code.google.com/archive/p/word2vec/

36

vectors in the model, an empty vector will be assigned for that synset-gloss pair. However,

this scenario is very unlikely, since the words in the glosses have their vector extracted

from a model trained on a huge corpus. This process is done for all synset-glosses for each

element sc (current_candidates), sf (former_candidates), and sl (latter_candidates)

(lines 15:18), whereM ,N and P represent the total number of available synset-glosses per

synset, respectively. After the gloss-average-vectors for each synset in a particular position

of the sliding window are obtained, we calculate the cosine similarity of all synsets of the

current_candidates against those of the former_candidates and the latter_candidates,

returning the synset for current (in each case) with the highest score, as lines 19 and 20

describe. Finally, we add the synset with the highest value to our list of tokens, in order

to represent this occurrence of wi in our new synset corpus (line 21). It is important to

mention that the first and the last words in our corpus are treated differently (lines 8 and 11),

since they do not have a complete context window available, similar to the sliding context

window in word2vec.

37

Algorithm 1Most Suitable Sense Annotation (MSSA)
Require: d = {wi, ..., wn} : wi ∈ lexical database (WordNet)

Require: tm = trained word embedding model

Require: ld = lexical database

1: function MSSA(d, tm, ld)

2: list_of_tokens = ∅

3: for i = 0 to n do

4: current = synset-glosses(wi, ld)

5: if i 6= 0 ∧ i 6= n then

6: former = synset-glosses(wi−1, ld)

7: latter = synset-glosses(wi+1, ld)

8: else if i = 0 then

9: former = ∅

10: latter = synset-glosses(wi+1, ld)

11: else

12: former = synset-glosses(wi−1, ld)

13: latter = ∅

14: current_candidates = ∅, former_candidates = ∅ and latter_candidates = ∅

15: for sc ∈ {current}, sf ∈ {former} and sl ∈ {latter} do . where 0 ≤ c ≤M ,

0 ≤ f ≤ N and 0 ≤ l ≤ P

16: Add gloss-avg-vec(sc, tm) to current_candidates

17: Add gloss-avg-vec(sf , tm) to former_candidates

18: Add gloss-avg-vec(sl, tm) to latter_candidates

19: u = argmaxsc1{cosine-similarity(current_candidates,former_candidates)}

20: w = argmaxsc2{cosine-similarity(current_candidates,latter_candidates)}

21: Add the synset (sc1 or sc2) with the highest produced cosine similarity to list_of_tokens

22: return list_of_tokens

38

In the initial configuration, we use Google News vectors as our standard word em-

beddings model (tm in lines 15:18), which is trained over 100 billion words and contains

300-dimensional vectors for 3 million unique words and phrases [110]. This approach can

also work recurrently, using the current synset embeddings to be fed back into our system,

so that in the next iteration we use our previously calculated vectors of synsets to disam-

biguate the word-senses in the corpus. In this modality, it is not necessary to calculate the

gloss-average-vector for each synset-gloss again, since we can use the synset embeddings

directly to disambiguate our training corpus.

3.2.2 Most Suitable Sense Annotation N Refined (MSSA-NR)

As mentioned earlier, once we have trained our model based on synset tokens, we can

use these output synsets vectors directly for another pass of our algorithm, bypassing the

gloss-average-vector calculation. As we do not need to calculate the gloss-average-vector

for each recurrence after the first one, each future pass will take less time than the first

pass. We hypothesize that using a disambiguated and granular embeddings training model

will produce a more refined one. The algorithm for this approach is similar to the one

presented in Section 3.2.1, so we are still using the same cleaned training corpus composed

of Wikipedia articles, but some of the steps are slightly different.

We identify this recurrent approach as MSSA-NR, where N represents the number

of feedback iterations used. Algorithm 2 starts in a similar fashion to Algorithm 1, as

we also use WordNet as our lexical database and still work with the same sliding context

window for the words. The main difference occurs between lines 3 and 13, where, since

our embeddings consist of synsets, we do not need to extract the pairs of synset-glosses

and calculate the gloss-average-vector for each synset. Instead, we just extract all synsets

available in WordNet for wi (current), wi−1 (former), wi+1 (latter) and directly retrieve

their respective vector embeddings from the synset model trained (lines 3:13), where Q, R

and S represent their total number of available synsets per word. Since MSSA-NR is using

39

an embeddings model on the same corpus on which it was first generated, all the words will

have at least one synset mapped, so there is no risk of not finding a vector for a given word-

sense. After we retrieve the vector values for all synsets in the sliding window, we calculate

the similarity of current_candidates against former_candidates and latter_candidate,

returning the synsets for current_candidates with the highest value in each case (lines 19

and 20). As in MSSA, we also select the synset with the highest score to represent wi in

our new synset corpus (line 21)

Because we are using the word-sense embeddings from our previous pass, senses that

never were selected to represent any word in the original corpus will not have a vector

representation in our model. As a consequence, in the next iteration, these word-senses do

not have to be verified, since they were not embedded in the first place. The hope is that, over

many passes, the non-used word-senses are dropped and results will converge to some stable

synset-value representation of our corpus. This will also contribute to a faster processing

time, if compared to the plain MSSA approach, considering that the number of word-senses

is reduced on each pass until it stabilizes. We can stop the process after a finite number of

passes, when we are satisfied that the results do not change much, or when the cost incurred

for running another pass of the algorithm is too high to justify another disambiguation and

annotation round. More details about the overall complexity are provided in Section 3.2.5.

40

Algorithm 2Most Suitable Sense Annotation N Refined (MSSA-NR)
Require: d = {wi, ..., wn} : wi ∈ lexical database (WordNet)

Require: tsm = trained synset embedding model

Require: ld = lexical database

1: function MSSA-NR(d, tsm, ld) . where d - document containing words wn, tsm - trained

synset embedding model, ld - lexical data base

2: list_of_tokens = ∅

3: for i = 0 to n do

4: current = synsets(wi, ld)

5: if i 6= 0 ∧ i 6= n then

6: former = synsets(wi−1, ld)

7: latter = synsets(wi+1, ld)

8: else if i = 0 then

9: former = ∅

10: latter = synsets(wi+1, ld)

11: else

12: former = synsets(wi−1, ld)

13: latter = ∅

14: current_candidates = ∅, former_candidates = ∅ and latter_candidates = ∅

15: for sc ∈ {current}, sf ∈ {former} and sl ∈ {latter} do . where 0 ≤ c ≤ Q,

0 ≤ f ≤ R and 0 ≤ l ≤ S

16: Add synset-vec(sc, tsm) to current_candidates

17: Add synset-vec(sf , tsm) to former_candidates

18: Add synset-vec(sl, tsm) to latter_candidates

19: u = argmaxsc1{cosine-similarity(current_candidates,former_candidates)}

20: w = argmaxsc2{cosine-similarity(current_candidates,latter_candidates)}

21: Add the synset (sc1 or sc2) with the highest produced cosine similarity to list_of_tokens

22: return list_of_tokens

41

3.2.3 Most Suitable Sense Annotation - Dijkstra (MSSA-D)

We also propose another variation for the MSSA algorithm, in which we model the

documents in the corpus as a graphDock(N,E), whereDock is the set of k documents; N

is the set of nodes, represented as word-senses (synsets) andE is the set of edges associating

two nodes in document k. Inspired byDijkstra’s algorithm [40], we use amodified version of

it to minimize the overall cost of moving from one node (synset) to another, for all the words

in the document. The weights on the edges are the cosine distance (1 - cosine similarity)

between the gloss-average-vector of two sequential word-senses. All the steps in theMSSA-

D design are the same as the ones presented in Section 3.2.1 for MSSA (Algorithm 1), with

the exception that there is no sliding context window for the disambiguation part. Different

from MSSA, in MSSA-D we analyze the disambiguation problem globally, looking for the

shortest distance from one word-sense to the next. Figure 3.3 illustrates a toy example of

five words in which the highlighted path has the lowest cost, considering their word-senses

ωn,m, where n is the associated word position and m its respective sense. In the end, the

objective of this algorithm is the same as the ones presented in Sections 3.2.1 and 3.2.2,

transforming a training corpus composed by words into a corpus of synsets to be trained in

word2vec.

25

MSSA - D

University of Michigan - Dearborn

ଵ,ଵ

ଵ,ଶ

ଵ,ଷ

ସ,ଵ

ସ,ଶ

ସ,ଷ

ଶ,ଵ

ଷ,ଵ

ଷ,ଶ

ହ,ଵ

ହ,ଶ

Figure 3.3: MSSA-D illustration of the shortest path from w1 to w5 through their
respective word-senses.

As in MSSA, it is also possible to apply the MSSA-NR recurrent methodology into

MSSA-D and reuse the produced synset embeddings instead of the Google News vectors.

42

Considering this approach, there is, again, no need to calculate the gloss-average-vector for

each word-sense. Instead, we can directly use the synset vectors available. In Section 4.1,

we describe the different setups used in our experiments to explore all of our techniques.

3.2.4 From Synset to Embeddings (Synset2Vec)

After all words are properly processed into synsets, we use them as input in a word2vec

implementation with CBOW as the training algorithm. This choice is justified, due to its

popularity among the compared systems, with its reported superiority in performance, and

its ability in capturing the context of words in large datasets [17, 109, 185, 186].

In all MSSA variations, the goal is to transform a word-based document into a synset-

based one. This will allow us to properly represent a word with multiple senses. Since the

disambiguation step might consider all the senses of a word, its cost grows rapidly with the

size of the documents and number of available senses per word. For a small to medium

size training corpus, this is not a barrier, but for larger ones, such as a Wikipedia Dump

used in our paper, this can demand a high amount of processing time. On the other hand,

the number of tokens to be trained in word embeddings algorithms is reduced, since only

words that exist in WordNet are considered. In addition, the disambiguation process only

needs to be executed once and it can be done in parallel for all MSSA techniques. Once the

annotated synset training corpus is performed, one can use it in any desired activity, such as

word similarity, document classification, text summarization, and train a word embeddings

model.

To keep our vectors interpretable - as pointed out in [125] - across different platforms,

we represent each word token as a key in the following format: word#

synset_offset#pos, whereword is theword itself, normalized in lowercase; synset_offset

is an 8 digit, zero-filled decimal integer that corresponds to a unique word-sense, and pos

is a part-of-speech tag (e.g. n for nouns, v for verbs, a for adjective, s for adjective satellite

43

and r for adverb)3. Since we have independent tasks for annotation and word embeddings

training, if more robust techniques are proposed in the future, we can easily incorporate

them.

3.2.5 Complexity Analysis

In this section we provide a detailed explanation on how to compute the average time

complexity of each of our algorithms, MSSA, MSSA-NR, and MSSA-D.

For each of these algorithms, we have the same pre-processing step; namely, to associate

a vector with each gloss in the current version of WordNet. However, this is done only once

per WordNet version. In the current version of WordNet, assume that there are S synsets,

each having one gloss. For a synset Si, let gi be the number of words in its gloss, after

eliminating common English stopwords. Then the average number, G, of words/gloss is

described as G = (gi+···+gS)
S

. The vector associated with each word in a gloss is assumed to

be the Google News vector (i.e. pre-trained word embeddings model) associated with that

word and we assume that this vector can be found in θ(1) time. Given the Google vectors

for each word in a given gloss, the vector associated with this gloss is just the average of the

vectors from the pre-trained model. Thus, for synset Si, the time complexity of computing

the vector associated with its gloss is θ(gi). We then have that the time complexity for

computing the vectors associated with all glosses in WordNet is θ(gi + · · ·+ gS) = θ(SG).

ConsideringMSSA, let us calculate the time complexity of computing the disambiguated

synset corpus from the original one. LetW be the number of words in the corpus. There are,

on the average 2.89 synsets per word in WordNet4. Thus, 2.89W is a good approximation

for the number of synsets processed by our algorithm. Given that each synset has one gloss

vector and defining gvi as the number of gloss vectors processed for word wi of the corpus,

we then get that (gv1 + · · · + gvW) = 2.89W . Based on lines 14:21 in Algorithm 1, the

number of processed vectors are illustrated in Equation 3.1.

3https://wordnet.princeton.edu/documentation/wndb5wn
4https://wordnet.princeton.edu/documentation/21-wnstats7wn

44

(gv1gv2 + gv2(gv1 + gv3) + gv3(gv2 + gv4) + gvW−1(gvW−2 + gvW)+

(gvW−1gvW) ≤ (gv1 + · · ·+ gvW)2 ≤ 2.892W 2 = θ(W 2)

(3.1)

Thus, we computeO(W 2) cosine measures overall in the computation of the corresponding

synset corpus. Assuming that w2v (word2vec) is the running time of the standard approach

to calculate the Google vectors using the CBOW approach, we have that the time complexity

of MSSA is O(W 2) + w2v.

Now, let us consider MSSA-NR. By the argument above, it is seen that the first

pass of MSSA-NR has time complexity O(W 2) + w2v. For each succeeding pass, we

follow the same process as above, but with the synset vectors from the previous pass

replacing the corresponding gloss vector. In this case, for N passes, the time complexity is

O(NW 2) +N ∗ w2v.

Finally, for MSSA-D, the underlying graph has V vertices and E edges. As shown

above, 2.89W is a good approximation for the number synsets processed by our algorithm.

Thus, V = 2.89W . Realizing that gvi is also equal to the number of synsets processed for

word wi of the corpus, we have that the number of edges can be described as Equation 3.2

shows.

E = gv1gv2 + gv2gv3 + . . . gvW−1gvW + (gvW−1gvW)

≤ (gv1 + · · ·+ gvW)2 ≤ 2.892W 2
(3.2)

Thus, since the time complexity of Dijkstra’s Algorithm is O(V 2), O(V 2 + E log V) or

O(E + V log V), depending on its implementation, we have that the time complexity of

MSSA-D is O(W 2).

3.3 Extending Lexical Chains

As explained in Section 2.2.1, lexical chains are built according to a series of relation-

ships between words in a text document. In the seminal work ofMorris and Hirst [118], they

45

consider an external thesaurus (Roget’s Thesaurus [143]) as their lexical database to extract

these relations. A lexical chain is formed considering a sequence of words {w1, w2, . . . , wn}

appearing in this order, such that any two consecutive words wi, wi+1 possess the following

properties5 [118]:

• Two words share one common category in their index;

• The category of one of these words points to the other word;

• One of the words belongs to the other word’s entry or category;

• Two words are semantically related; and

• Their categories agree to a common category.

As for the quality of a built chain, three factors can also be considered to measure

how strong a lexical chain is [118]: reiteration, length, and density. Reiteration illustrates

how often a lexical chain occurs, the length is related to the number of tokens on it, and

density is the ratio of words in the lexical chain to the words in the text document. Since

our main objective is to evaluate how the proposed lexical chains perform in a downstream

task, we leave the calculation of their strength to future work. Thus, we consider the five

characteristics defined in [118] to build our lexical chains and validate their quality in the

document classification problem.

In this collection of algorithms, we propose a novel approach to capture the semantic

relationship between tokens from a text. Our techniques combine the use of word embed-

dings, lexical chains, and the prior knowledge of lexical databases, to derive the relations

between words. This is done through two algorithms: Flexible Lexical Chains II (FLLC II)

(Section 3.3.1) and Fixed Lexical Chains II (FXLC II) (Section 3.3.2). Both algorithms

are inspired by the approaches proposed in [148, 149]. While the lexical chains explored

in [148, 149] consider only one POS (nouns) and hypernyms, ours, on the other hand, are

5Where category, indexes, and pointers are attributes in the lexical database considered.

46

able to deal with any POS tag, incorporate word embeddings, and also include 19 other

lexical synset attributes (e.g. hyponyms, meronyms) from the English WordNet [48]. As a

result, we leverage the semantic representation of words, sentences, paragraphs, and entire

documents through the use of lexical chains.

The main goal of FLLC II and FXLC II is to represent a collection of words using their

semantic values in a more concise and robust way. Even though FLLC II and FXLC II

outputs are the same, they explore different aspects when capturing the lexical cohesion in

a text. In the FLLC II version, the semantic sets (lexical chains) are assembled dynamically

according to the semantic content of each token evaluated and the relationship with its

adjacent neighbors. As long as there is any semantic affinity (i.e. a semantic relation that

connects two words in a lexical database) they should be integrated into one single entity

that represents a single concept. If a word without any semantic affinity with the current

chain being built presents itself, a new lexical chain must be started so a new concept can be

captured. On the other hand, in the FXLC II approach text documents are broken down into

pre-defined chunks, with C words each, that will hopefully describe the semantic content

of them. Different from the FLLC II algorithm, the FXLC II technique groups a certain

number of words into the same structure, regardless of the existence of semantic affinity or

not.

An overview for the lexical chains process is illustrated in Figure 3.4. In both cases,

FLLC II and FXLC II, the constructed chains are represented through one of their con-

stituent elements, which is selected considering their vector representation in a pre-trained

token embeddings model (e.g. word2vec). Later, we feed the output of our techniques into

a word embeddings algorithm which produces a lexical chain embeddings model that is

used in the document classification task.

The FLLC II and FXLC II techniques are, at their core, reducing the number of valid ele-

ments (words) in a document. Given the aforementioned characteristics, we can classify the

FLLC II algorithm as a soft-dimension reduction technique, while FXLC II is characterized

47

FLLC II

FXLC IISynset
Corpus

Flexible-Chain (Synset)

Corpus

Fixed-Chain (Synset)

Corpus

Word
Embeddings
Algorithm

Natural
Language
Problems

Lexical Chains
Algorithms

Model
Generation

Figure 3.4: System architecture for building lexical chains.

as a hard-dimension reduction one. Another important difference between the proposed

techniques is with respect to their databases and how they are used. FLLC II chains are gen-

erated using a lexical database (e.g. WordNet) and a pre-trained token embeddings model

represented by the gray and blue diagrams in Figure 3.4 respectively. While the former is

responsible for providing the semantic relationship between the tokens in the document, the

latter helps us to decide which token will represent our chain. In both algorithms, the blue

diagram represents a trained synset embeddings model6. In the FXLC II technique, since

we do not group tokens directly considering their semantic affinity, we do not require a lex-

ical database with word relationships, such as WordNet. Instead, we just need a compatible

pre-trained token embedding model, with respect to the document being processed, to build

our chains. Therefore, FXLC II can be exported to other scenarios using any pre-trained

token embeddings model (e.g. words, synsets, xml-tags), as long as it contains the same

token elements from the documents. In the next sections, both techniques are explored in

depth, followed by a simple toy example illustrating their operation.

6A word embedding algorithm using a synset corpus.

48

3.3.1 Flexible Lexical Chains II (FLLC II)

The FLLC II algorithm works building semantic sequences of words (or any other

tokens) that present any level of semantic similarity between them. The decision of in-

corporating, or not, a new word into a chain is dynamic and based on 19 lexical synset

attributes extracted from WordNet [48].

We extend Ruas and Grosky [148] flexible chain algorithm to use all POS and also incor-

porate word embeddings containing the vector representation of the tokens in a document

d. As illustrated in Algorithm 3, we require a document represented as synsets [1], a lexical

database (e.g. WordNet, BabelNet) ld, and a pre-trained synset embeddings model tsm. To

transform a word-based document into a synset-based one, we apply the MSSA algorithm

(Section 3.2). In a few words, the MSSA algorithm works disambiguating a given word,

with respect to its word-senses and considering the effect of its immediate neighbors.

Once we have all the words in a document represented as synsets, we start building our

flexible chains from the first to the last token. Initially, we start our current chain using S1

(first synset in the document) to initialize the synset list that will be used to represent the

current chain, named current_chain.synsets, and a set of related synsets that are used

to map the semantic relation between consecutive synsets, called current_chain.related

(lines 3:4). The synsets retrieved in get_related_syns(Si, ld) (including Si) form a collec-

tion of 19 synset attributes in the lexical database ld, which in our case is WordNet.

For each new synset evaluated, Si, we extract their related synsets (including Si),

called new_rel, and verify if there are any common synsets with the related synsets in

the chain being built (current_chain.related) (lines 5:7). In case the intersection be-

tween current_chain.related and new_rel is not empty, we add Si and new_rel to

current_chain.synset and current_chain.related respectively (lines 8:9). Otherwise,

it means there are no common related synsets between the current chain and Si, so we

understand that the current chain must be proper represented and added to the list of flexible

chains (line 11). Thus, we find the synset with the highest cosine similarity against the

49

average of all synset vectors in current_chain.synsets. The average of all synsets in

current_chain.synsets is calculated considering a pre-trained synset embeddings model

(tsm) for the function get_best_rep(current_chain.synset, tsm). The synset embedding

model (tsm) used is produced using the entire English Wikipedia Dump from 2010 [160]

parsed into synsets through the MSSA algorithm in a word2vec implementation. After

representing and including the current chain in the list of flexible chains we start to build

a new chain, but now considering Si (lines 12:13), the same method we use to start our

algorithm.

After we iterate over all synsets in d, we also verify if there is any element in the current

chain that was not added yet to our flexible chains list (line 14). This step mitigates the

problem in which all synsets are combined in one single chain or the last synset Sn in

the document is semantically related to the current chain being built. At the end of the

FLLC II algorithm, we return a list of synsets, that represent all the lexical chains found in

a document d (line 16).

50

Algorithm 3 Flexible Lexical Chain II Algorithm (FLLC II)
Require: d = {S1, . . . , Sn} : Si ∈ ld

Require: tsm = trained synset embedding model

Require: ld = lexical database

1: function FLLC II(d, tsm, ld)

2: flexible_chains_list = ∅

3: current_chain.synsets = [S1]

4: current_chain.related = {get_related_syns(S1, ld)}

5: for i = 2 to n do

6: new_rel = {get_related_syns(Si, ld)}

7: if current_chain.related ∩ new_rel not ∅ then

8: Add Si to current_chain.synsets

9: Add new_rel to current_chain.related

10: else

11: Add get_best_repr(current_chain.synset, tsm) to flexible_chains_list

12: current_chain.synsets = [Si]

13: current_chain.related = {get_related_syns(Si, ld)}

14: if current_chain.synsets not ∅ then

15: Add get_best_repr(current_chain.synsets, tsm) to flexible_chains_list

16: return flexible_chains_list

The proposed algorithm for flexible chains improves its predecessor [148] in several

aspects. First, we consider all POS when building our chains, instead of just nouns.

Second, in addition to hypernyms, we also consider 18 additional attributes in WordNet for

each synset evaluated (total of 19). This is also an improvement from most lexical chains

systems, that often focus on hypernyms, hyponyms, and meronyms only. Third, our version

of lexical chains uses the transfer knowledge from an external training task using word

embeddings learned from the entire English Wikipedia.

51

3.3.2 Fixed Lexical Chains II (FXLC II)

The same way as in the FLLC II algorithm (Section 3.3.1), the FXLC II technique also

builds its chains using a list of synsets. However, the FXLC II algorithm has a more general

approach, as shown in Algorithm 4. The lexical chains in FXLC II are defined beforehand

and do not require an explicit semantic relation between its synsets. In other words, we

enforce the number of synsets for each chain (chunk) throughout the document. Each chunk

can be considered to be an average of its constituent synsets, thus resulting in an abstracted

document.

We extend Ruas and Grosky [149] algorithm for fixed chains to all POS and incorporate

word embeddings containing the vector representation of the tokens in our document. In

order to maintain consistency between our algorithms and experiments, we also use the

MSSA algorithm (Section 3.2) to produce a list of synsets out of a given document d. Once

we have a document d represented as synsets, we create a new document representation

called chunked_document, which is composed of chunks Cj of size cs (line 2).

Analogous to Algorithm 3, we also find the synset to represent each fixed lexical chain

Cj in chunked_document (line 5). To find the synset with the highest cosine similarity

against the average of all synset vectors in Cj we consider a pre-trained synset embeddings

model (tsm) for the function get_best_repr(Cj, tsm). We add each synset Si in Cj , for

the highest cosine similarity value, to our list of fixed chains, which is returned at the end

of the FXLC II algorithm (line 6).

52

Algorithm 4 Fixed Lexical Chains II Algorithm (FXLC II)
Require: d = {S1, . . . , Sn} : Si ∈ ld

Require: cs = chunk size for each lexical chain

Require: tsm = trained synset embedding model

1: function FXLC II(d, cs, tsm)

2: chunked_document = split(d, cs)

3: fixed_chains_list = ∅

4: for j = 1 to length(chunked_document) do

5: Add get_best_repr(Cj , tsm) to fixed_chains_list

6: return fixed_chains_list

The proposed technique for fixed chains also surpasses its predecessor [149] in some

aspects. As in the FLLC II algorithm, we also consider all POS when building our chains,

rather than just nouns. In addition, the FXLC II technique does not rely on traditional

distance measures [177, 89, 181, 141, 77, 88, 93] to calculate how far our synsets are from

each other to represent each chunk. Instead, based on the information provided by synset

vectors, derived from Wikipedia, we find the closest semantic candidate in a chain with

respect to all its inner elements.

Since the FXLC II approach ignores the semantic affinity between synsets and groups

them for each chunk Cj , this approach can be extended to other document representations

as well. Therefore, as long as the pair document-tokens and word embedding model have

the same representation, FXLC II can be applied. We leave this investigation for future

projects.

3.3.3 From Lexical Chains to Embeddings (Chains2Vec)

After our documents are transformed into lexical chains representations, which are also

composed of synsets, we use them as input in a word2vec implementation. These documents

integrate our external corpus that is used to produce a word embeddings model based on

53

synsets of lexical chains.

The main idea concerning FLLC II and FXLC II is to obtain a better semantic rep-

resentation for words from a large collection of documents that will hopefully generalize

well enough to be applied to any NLP downstream task or real-world problem. In order to

keep our vectors easy to interpret to other systems using synsets, we also represent each

token in our corpus using the same format as the one in Section 3.2.4, when using the

MSSA technique: word#synset_offset#pos, where word is the word itself, normalized

in lowercase; synset_offset is an 8 digit, zero-filled decimal integer that corresponds to

a unique word-sense, and pos is a part-of-speech tag (e.g. n for nouns, v for verbs, a for

adjective, s for adjective satellite and r for adverb)7. Since we are using an equivalent

notation, the synset embeddings models produced with FLLC II and FXLC II results can

be incorporated in other systems with the same format as well.

For now, we currently explore the document classification task, but we believe that our

chains can also be applied in other domains. Originally, the MSSA vectors were generated

targeting the word similarity task, but we also use and extend them to the document

classification task. In the following section, we provide a toy example of how FLLC II and

FXLC II are used to produce our lexical chains.

3.3.4 Building Lexical Chains

Considering the algorithms introduced in Sections 3.3.1 and 3.3.2 we provide an illus-

trative example of how our lexical chains are built. Let us consider the following sentence:

Beets, carrots, and potatoes are grandma and grandpa’s favorite dish for lunch!

As explained in Algorithms 3 and 4, we require a document composed of synsets to

build our lexical chains. Before extracting the most suitable synset for each relevant token,

we lowercase all the words, remove all punctuation and common English stopwords. After

7https://wordnet.princeton.edu/documentation/wndb5wn

54

pre-processing the sentence, we end up with the following list of tokens {beets, carrots,

potatoes, grandma, grandpa, favorite, dish, lunch}. Next, we apply the MSSA algorithm

(Section 3.2) to obtain the proper synset for each word in that list, as shown in Table 3.1.

To make our toy example clearer, we reference the synsets for each word using the notation

in row Filtered Synset Sentence. For each synset Synset(‘word.pos.number’) we name it as

word.pos.number, where word is the word itself, pos is the part-of-speech tag used, and

number is the synset number in WordNet.

Table 3.1: Sentence example transformation from words into synset.

Type Sentence

Original Sentence Beets, carrots, and potatoes are grandma and grandpa 's favorite dish
for lunch!

Pre-Processed Sentence {beets, carrots, potatoes, grandma, grandpa, favorite, dish, lunch}

Synset Sentence
{Synset(‘beet.n.02’), Synset(‘carrot.n.03’), Synset(‘potato.n.01’),
Synset(‘grandma.n.01’), Synset(‘grandfather.n.01’),
Synset(‘favorite.n.01’), Synset(‘dish.n.02’), Synset(‘lunch.n.01’)}

Filtered Synset Sentence {beet.n.02, carrot.n.03, potato.n.01, grandma.n.01, grandfather.n.01,
favorite.n.01, dish.n.02, lunch.n.01}

Once we have a specific synset for each token, we can start to build our chains. For the

FLLC II algorithm, we extract all related synsets from each synset in the Filtered Synset

Sentence (Table 3.1). The related synsets are other synsets extracted from 19 attributes in

WordNet [1], such as hypernyms, homonyms, and meronyms to name a few. In Table 3.2,

we illustrate some of the extracted synsets, in which a “-” represents the absence of a related

synset.

In Table 3.2, it is possible to notice that some synsets have an overlap with respect to

their related synsets. For example, the synsets {beet.n.02, carrots.n.03, potatoes.n.01} have

root_vegetable.n.01 as a common relation, which provides a semantic connection between

them. The same characteristic is also present when considering grandparent.n.01 for the

synsets {grandma.n.01, grandfather.n.01}. For the cases where there are no common

related synsets, a new chain must be built, as in the case of favorite.n.01, which has no

55

Table 3.2: Sample of related synsets extracted from WordNet.

Main Synsets Related Synset 01 Related Synset 02 Related Synset 03

beet.n.02 root_vegetable.n.01 sugar_beet.n.02 beetroot.n.01
carrot.n.03 carrot.n.02 root_vegetable.n.01 -
potato.n.01 baked_potato.n.01 french_fries.n.01 root_vegetable.n.01
grandma.n.01 grandparent.n.01 nan.n.01 -
grandfather.n.01 grandparent.n.01 - -
favorite.n.01 choice.n.01 - -
dish.n.02 nutriment.n.01 meal.n.01 ingredient.n.03
lunch.n.01 meal.n.01 business_lunch.n.01 -

semantic relation with any of its adjacent neighbors. For the FXLC II algorithm, we take

a different approach and group the synsets according to an arbitrary chunk size cs. In

Table 3.3, we illustrate how the lexical chains are grouped for the FLLC II and FXLC II

algorithms, considering cs = 3 for the latter. The chains are tagged in order and according

to the algorithm used, where (A) represents the chains from FLLC II and (B) the chains

from FXLC II. In case cs is greater than the number of available synsets in the document,

that chain will be smaller.

Table 3.3: Lexical chains construction.

Lexical Chain Type Lexical Chain

A - FLLC II {A1:{beet.n.02, carrot.n.03, potato.n.01}, A2:{grandma.n.01, grandfather.n.01},
A3:{favorite.n.01}, A4:{dish.n.02, lunch.n.01}}

B - FXLC II {B1:{beet.n.02, carrot.n.03, potato.n.01}, B2:{grandma.n.01, grandfather.n.01,
favorite.n.01}, B3:{dish.n.02, lunch.n.01}}

Now that we have grouped the possible synsets to represent our chains, let us assume

we have a pre-trained synset embeddings model for all the tokens in our corpus. For the

sake of simplicity, our model has only five dimensions as Table 3.4 shows.

The next step is to represent each lexical chain considering the vectors of its inner

elements. Two tasks are necessary to find the best representation for our chains: (i)

calculate the average for each sub-chain, considering their vector values, in Table 3.3 and

(ii) select the synset with the highest cosine similarity within each sub-chain with respect

to their average calculated in (i). Table 3.5 shows the average vector calculated for each

56

Table 3.4: Fictional pre-trained synset embeddings model.

Synsets Dim-01 Dim-02 Dim-03 Dim-04 Dim-05

beet.n.02 0.926 0.620 -0.278 -0.380 0.717
carrot.n.03 -0.525 0.361 0.839 -0.989 -0.420
potato.n.01 -0.675 -0.172 1.000 0.964 0.868
grandma.n.01 0.159 -0.795 0.663 0.405 0.617
grandfather.n.01 -0.035 0.469 -0.183 0.659 0.361
favorite.n.01 0.121 0.581 -0.603 0.148 0.046
dish.n.02 0.667 -0.257 -0.379 0.300 0.723
lunch.n.01 -0.874 0.458 0.945 0.717 0.314

sub-chain in Table 3.3.

Table 3.5: Vector average for lexical chains centroids.

Lexical Chain Type Centroid Dim-01 Dim-02 Dim-03 Dim-04 Dim-05

A - FLLC II

A1 -0.091 0.270 0.520 -0.135 0.388
A2 0.062 -0.163 0.240 0.532 0.489
A3 0.121 0.581 -0.603 0.148 0.046
A4 -0.104 0.101 0.283 0.509 0.519

B - FXLC II
B1 -0.091 0.270 0.520 -0.135 0.388
B2 0.082 0.085 -0.041 0.404 0.341
B3 -0.104 0.101 0.283 0.509 0.519

Table 3.6 shows the cosine similarity between the elements of each chain and their

respective average synset vector (centroid). Bold values represent the highest similarity

value for that centroid with respect to a specific synset in the sub-chain. The closer to 1, the

most similar a synset is to its centroid, and a better candidate to represent a chain it is. On

the other hand, the closer to 0, the most dissimilar a synset is to its centroid, and the worst

candidate it is. It is no surprise that if a chain is composed of one synset that synset will

have the value of 1.0.

In Table 3.7 we show the resulting lexical chains for both FLLC II and FXLC II algo-

rithms considering the highest cosine similarity values from Table 3.6. Even though this

illustrates a simple example, we can see how the configuration of our chains can change

depending on how their synsets are organized. In FLLC II the chain {grandma.n.01,

grandfather.n.01} has grandma.n.01 as a representative since it has the highest cosine sim-

57

Table 3.6: Cosine similarity between lexical chains elements and their centroids.

FLLC II FXLC II
| Synset Centroid CosineSim Synset Centroid CosineSim

beet.n.02 A1 0.264 beet.n.02 B1 0.264
carrot.n.03 A1 0.509 carrot.n.03 B1 0.509
potato.n.01 A1 0.578 potato.n.01 B1 0.578
grandma.n.01 A2 0.815 grandma.n.01 B2 0.420
grandfather.n.01 A2 0.572 grandfather.n.01 B2 0.882
favorite.n.01 A3 1.000 favorite.n.01 B2 0.341
dish.n.02 A4 0.365 dish.n.02 B3 0.365
lunch.n.01 A4 0.746 lunch.n.01 B3 0.746

ilarity value. However, when considering FXLC II, the synset favorite.n.01 gets merged to

{grandma.n.01, grandfather.n.01} as a result of the selected chunk size. Thus, grandfa-

ther.n.01 is chosen as a new synset representative for our chain based on its cosine similarity

value.

Table 3.7: Final chains for FLLC II and FXLC II algorithms.

Lexical Chain Type Lexical Chain

FLLC II {potato.n.01, grandma.n.01, lunch.n.01}
FXLC II {potato.n.01, grandfather.n.01, lunch.n.01}

Once the synset input corpus is transformed to either flexible or fixed lexical chains, we

feed them into a word2vec implementation, as described in Section 3.3.3. As a result, we

produce a synset (chains) embeddings model that can be used in any NLP downstream task.

For the lexical chains algorithms, we explore the document classification task to validate

our techniques, detailed in Section 4.3.

58

CHAPTER IV

Experiments and Validation Tasks

For each core contribution presented in Chapter III, specific NLP downstream tasks

are selected to validate the proposed algorithms. The MSSA algorithms are applied in the

word similarity task for six different datasets and compared against more than 15 word

embeddings techniques. As for the lexical chains algorithms, the document classification

task is explored considering six state-of-the-art approaches and six benchmark datasets. For

the variations of MSSA with the best results in the word similarity task, we also include

them in the document classification experiments, thus, providing a more detailed scenario

to compare the proposed techniques under the same circumstances.

4.1 Word Similarity Task

We design a series of experiments for the word similarity task to evaluate how our algo-

rithms compare against other approaches in the literature. In the next sections, we present

and discuss the main characteristics of the training corpus, benchmarks, and compared

systems.

4.1.1 Training Corpus

We apply the MSSA algorithms to two datasets as a training process, transforming their

words into synsets using the English WordNet 3.0 [48], also known as Princeton WordNet,

as our lexical database. The datasets are Wikipedia Dumps consisting of wiki articles from

59

April 2010 (WD10) [160] and January 2018 (WD18). Table 4.1 shows the details for both

training corpora after they are cleaned (Section 3.2.1).

Table 4.1: Dataset token details. WD10 - English Wikipedia Dump 2010 (April); WD18 -
English Wikipedia Dump 2018 (January).

POS
Words (106) Synsets

WD10 WD18 WD10 WD18

Nouns 299.41 463.31 55731 56546

Verbs 130.14 161.96 11975 12237

Adverbs 27.25 31.17 3091 3056

Adjectives 75.77 104.03 15512 15798

Total 532.57 760.47 86309 87637

4.1.2 Hyperparameters, Setup and Details

Once all words in the training corpora are processed into synsets, we use a word2vec

implementation to produce our synset embeddings. The hyperparameters for the word

embeddings training are set as follows: CBOW for the training algorithm, window size of

15, minimum word count of 10, hierarchical softmax, and vectors size of 300 and 1000

dimensions. If not specified, all the other hyperparameters are used with their default

values1. Our system is implemented in Python 3.6, with NLTK 3.2.5 and using the gensim

3.4.0 [137] library.

In our experiments, we evaluate our approach with several systems, described in Sec-

tions 4.1.4 and 4.1.5, using two different training corpora (WD10 and WD18) for the word

similarity task. In a second-level analysis, we also explore the properties of our models

separately, over different perspectives. For WD10, we discuss the effects of the number

of iterations on our recurrent model MSSA-NR, with −N ranging from 0 to 2, where

N = 0 characterizes the initial scenario using Google News vectors (MSSA) andN ≥ 1 the

iterative one (synset vectors), as illustrated in Figure 3.2. For WD18, we investigate which

1https://radimrehurek.com/gensim/models/word2vec.html

60

of our representations of word-senses performs better, the one considering a local context

(MSSA) or the global one (MSSA-D). The comparison of our recurrent model (MSSA-NR)

against the MSSA-D algorithm is not explored in the proposed experiments, but we plan to

include it in future work. However, to analyze how our synset embeddings are affected by

the timestamp difference in the Wikipedia snapshots, we do compare the results of MSSA

for both training corpora, WD10 and WD18. The standard number of dimensions used in

our experiment is 300, with no specific label for MSSA, and 1000, which is indicated with

−T next to the algorithm’s name.

The differences betweenmetric names, benchmarks, datasets and hyperparametersmake

it difficult to perform a direct comparison between all available systems. We try to alle-

viate this situation by explaining the reason behind our choices for the components in our

architecture. In the disambiguation step, we use WordNet [48] as our lexical database, due

to its robustness and popularity for this task. Princeton WordNet (or English WordNet) is

the most used resource for WSD in English and it is available in more than 70 different

idioms [120]. WordNet is also free of charge (for any purpose), can be accessed without

any restriction, and is fully integrated with NLTK in Python, making its use preferable over

other lexicographic resources, at least for now.

As for the word training embeddings step, we chose word2vec [110] over other popular

techniques, such as GloVe [130], fastText [17], and ELMo [131] because of word2vec’s

resource-friendly implementation, popularity, and robustness in several NLP tasks [74,

75, 91, 99, 133, 145]. In addition, GloVe embeddings are based on the co-occurrence

probabilities of the words in a document encoded in a word-context co-occurrence matrix

(counting), while word2vec’s embeddings are built using prediction models (CBOW or

skip-gram), which are closer to our objective. While GloVe requires the entire matrix to

be loaded into memory, making its consumption of memory RAM quadratic in its input

size, word2vec works with linear memory usage, facilitating the training part of our system.

As for fastText, its approach uses word substrings (n-grams) to produce embeddings, in

61

addition to complete words, as in word2vec. The results comparing word2vec and fastText

(without n-grams) models are almost equivalent, but some claim that fastText exhibits better

performance in syntactic tasks, in comparison with word2vec, which is more adequate for

semantic representations [76]. Since our model is focused on the semantic aspects of each

word-sense and WordNet is not able to provide valid synsets for many of the produced

n-grams (e.g. kiwi - kiw, iwi), word2vec is a natural choice. In ELMo, they compute their

word vectors as the average of their characters representations, obtained through a two-layer

biLM. This would bring even more granularity to the sub-word embeddings proposed

in fastText, as they consider each character in a word has their own n-dimension vector

representation. Another factor that prevents us from using ELMo, for now, is its expensive

training process2. We also consider the recently published USE [29] from Google, but their

implementation does not allow it to be trained in a new corpus such as ours (synset-based),

only to use their pre-calculated vectors.

For the training corpora, WD10 [160] is commonly used in many systems [31, 73,

74, 91, 97, 122] and WD18 is introduced as a variation in our experiments to analyze the

behavior of our own approaches.

Recent publications have pointed out some problems (e.g. model overfitting, subjectiv-

ity) in using word similarity tasks to evaluate word embeddings models [14, 47]. We try to

mitigate this situation by carefully illustrating some aspects, such as the general idea of the

proposed architecture, a detailed description of the components used in the system, the train-

ing corpus specification, hyperparameters’ definitions, and comparison of our approaches

in different training scenarios. We also apply our models to the most popular benchmarks

available, without changing their original structure, and categorize all referenced results

according to the correct metrics (AvgSim, AvgSimC, MaxSim, MaxSimC/LocalSim, and

GlobalSim) defined in seminal publications [73, 140]. Unfortunately, many authors do not

describe either what exact metric they use in their experiments, nor specify which one is

2https://github.com/allenai/bilm-tf

62

used in their referenced results. It is common to notice systems being compared under

different scopes; this and other issues make our evaluation harder for some specific systems.

We try to alleviate such situations, providing as many details as possible for the experiments,

metrics, and artifacts used.

The results presented in Sections 4.1.4 and 4.1.5 are organized in three blocks for each

benchmark (Tables 4.2:4.7), divided by a double break line and ordered as follows:

1. Single-sense embeddings: traditional word embeddings where all word-senses are

collapsed into one vector representation per word. Approaches that concatenate a

word vector with their senses are also included;

2. Multi-sense embeddings: each word-sense has a specific vector representation.

Approaches that have a vector for both the word and their senses separately are also

included;

3. MSSA embeddings: all our proposed models, for multi-sense embeddings.

With the exception of MSSG [122], Chen et al. [32], and Convolutional Neural Network

Multi-Sense Skip-Gram (CNN-MSSG) [31], which are trained using the skip-gram model,

all the compared systems either use CBOWor an independent approach of word embeddings

(e.g. GloVe). Results not reported in the referenced authors are marked as “-” for the given

metrics.

All proposed algorithms (MSSA, MSSA-D, MSSA-NR) and generated models used in

this paper are available in a public repository3.

4.1.3 Benchmark Details for Word Similarity Task

The experiments are divided into two major categories, based on the datasets’ charac-

teristics: No Context Word Similarity (NCWS) and Context Word Similarity (CWS). All

datasets are widely used in the word similarity task for the compared systems. The former

3https://github.com/truas/MSSA

63

(1 to 5) groups’ benchmarks that provide similarity scores for word pairs in isolation, while

the latter (6) provides a collection of word pairs with their similarity scores accompanied

with sentence examples of their use. These sentences are used to illustrate a context where

each word compared is applied. The benchmarks used are described as follows:

1. RG65: 65 noun pairs. The similarity scale ranges from 0 to 4 [152];

2. MC28: 28 pairs of nouns that were chosen to cover high, intermediate, and low levels

of similarity in RG65. This is the same set of words in MC30 [113], except for two

words not present in WordNet. The similarity scale ranges from 0 to 4 [141];

3. WordSim353: 353 noun pairs divided into two sets of English word pairs, the first

set with 153 word pairs and the second with 200 [51]. The original dataset is later

re-organized [3], claiming that this dataset does not make any distinction between

similarity and relatedness. We use the original version published [51]. The similarity

scale ranges from 0 to 10;

4. MEN: 3,000 word pairs, randomly selected from words that occur at least 700 times

in the ukWaC and Wacky corpora4 combined, and at least 50 times in the ESP Game.

The similarity scale ranges from 0 to 50 [23];

5. SimLex999: 666 noun-noun pairs, 222 verb-verb pairs, and 111 adjective-adjective

pairs. the similarity scale ranges from 0 to 10 [69]; and

6. SCWS - Stanford Context Word Similarity: 2,003 word pairs and their sentential

contexts, consisting of 1328 noun-noun pairs, 399 verb-verb pairs, 140 verb-noun, 97

adjective-adjective, 30 noun-adjective, 9 verb-adjective, and 241 same-word pairs.

The similarity scale ranges from 0 to 10 [73].

We try to keep our basic configuration as close as possible to recent previous publica-

tions, so we consider the cosine similarity as our distance measure and report the Spearman

4http://wacky.sslmit.unibo.it/doku.php?id=corpora

64

correlation value (ρ) in our experiments. To guarantee a common scenario between all

benchmarks, we normalized their similarity scale to an interval of [-1, 1]. Very few publica-

tions report results for both Spearman and Pearson correlation values, so we adopt only the

former to minimize the differences between our comparisons. Thus, more systems can be

included in the word similarity task experiments. The results reported in our experiments,

for all model variations, have high significant Spearman order correlation, with a p− value

under 0.001, another characteristic that most publications often do not mention.

4.1.4 No Context Word Similarity

In this section, we evaluate our model against popular approaches available for 5 bench-

marks datasets: RG65, MEN, WordSim353, SimLex999 and MC28. We compare our

results with: Chen et al. [32], Retro (using Glove with 6 billion words and WordNet with

all synsets) [46], Huang et al. [73], SensEmbed [74] (400 dimensions), SW2V (variations

using BabelNet andWordNet with UMBC andWikipedia Dump from 2014) [99], word2vec

(using UMBC and WD14) [99], word2vec [110], MSSG and NP-MSSG (for 50 and 300

dimensions) [122], GloVe (using 6 and 42 billion words) [130], Pruned-TF-IDF [139], and

DeConf [133]. If not specified, the compared systems use low-dimensional vectors with

300 dimensions each. All of them also use cosine similarity to calculate the distance of

words in each benchmark, except for SensEmbed, which uses the Tanimoto distance [169]

for their vector comparison. The Tanimoto coefficient is commonly used for binary at-

tributes in vectors, while cosine similarity is applied mainly to non-binary vectors, when

their magnitudes are not relevant. In addition, SensEmbed also introduces what they call

a graph vicinity factor, an argument created to adjust the final similarity score based on

the information only present in BabelNet. Even though NASARI [27] achieves impressive

results, its comparison with most systems is compromised since they use ad-hoc variations

of the traditional benchmarks in their original report. When considering the SimLex999

benchmark, only the noun-noun pairs are evaluated, discarding the other POS (verb-verb

65

and adjective-adjective). Alternative versions for the MC28 and WordSim353 benchmarks

are also used, even though the original versions are more common in the literature. For

MC28, they consider its earlier version MC30 [113], while for WordSim353 they consider

the similarity dataset described in [3]. These and other minor aspects would make the

comparison against other systems more restrictive and unrealistic. Thus, we leave their

results out of our experiments.

Tables 4.2 and 4.3 show the results of MSSA against several models for the RG65

and MEN benchmarks, respectively. In both experiments, SensEmbed and DeConf-Sense

present the highest results for the AvgSim and MaxSim metrics, followed by one of our

models. SensEmbed builds its vectors using BabelNet as its disambiguation backbone,

through Babelfy. BabelNet is composed of several different resources5, including specific

lexicons (e.g. GeoNames, Wikiquote, Microsoft Terminology). After the disambiguation

step, they train a word2vec model with 400 dimensions. As mentioned above, they also

introduce what is called a graph vicinity factor, a coefficient that combines the structural

knowledge from BabelNet’s semantic network and the distributional representation of sense

embeddings. This factor multiplies AvgSim (Equation 2.4) and GloSim (Equation 2.8)

scores to re-adjust the similarity measure [74]. DeConf-Sense, as in our models, relies

on less resources to produce its word-sense embeddings. Their approach uses traditional

single-sense embeddings (e.g. Google News Vectors) and divides them into separate word-

sense vectors according to WordNet’s semantic network. Also, they use the Personalized

PageRank [66] to calculate the semantic relatedness between two synsets in their core [133].

All multi-sense embeddings systems surpass single-sense ones, in which, for the GloSim

metric, MSSA-2R-T and MSSA (WD10) have the highest results for RG65 and MEN

datasets.

Even though our models do not perform as well as DeConf-Sense for MaxSim, our

approach is able to be trained recurrently, improving the quality of its vectors. In RG65,

5https://babelnet.org/about

66

we start with ρ = 0.857 for MSSA (WD10) and move to ρ = 0.872 with MSSA-1R, for the

MaxSim as shown inTable 4.2. We try to increase the number of iterations, but unfortunately

MSSA-2R does not produce better vectors as one would expect. Further investigation is

necessary to evaluate if MSSA-2R reached its limit or is stuck in a local maximum. Since

the disambiguation step is costly for us, at this point, we leave the exploration of more

iterations for future experiments. If this process is performed in parallel, we can increase

and investigate higher values for N (e.g. 5, 10, 100). The comparison with SensEmbed is

compromised since their model has many differences with the others, including the metric

used. However, even using a simpler lexical database (WordNet) our models obtained

competitive ρ values for MSSA-1R, MSSA-T, and MSSA-2R-T.

The increase of dimensionality seems to have a positive effect in most word embeddings

models, including ours. WD10 and WD18 models present improvements when each of

their models is compared with its 1000-dimensional version, as Tables 4.2 (RG65) and 4.3

(MEN) show. For WD10, the increase, is on average, 1.61% for both benchmarks in total,

while forWD18 it is 0.48% for RG65 and 0.28% forMEN. Looking only at MSSA, it is hard

to affirm that more words would necessarily represent a better result, for if that were true,

Glove-42B and Retro-G6B in Table 4.3 should have more competitive scores, since they are

trained over 42 and 6 billion words, respectively. The performance of WD18 for MSSA and

MSSA-D is not clear for the global and local contextual aspects, since their results do not

improve consistently for all metrics. However, MSSA does obtain better scores for RG65

and MEN. We do fine-tune the hyperparameters of these models in non-reported results,

but this just reinforces the findings of [14, 47] with respect to model overfitting for specific

benchmarks. For this reason, we keep the same configuration between our models among

all experiments so we can evaluate how well they generalize.

The results reported for the SW2V algorithm [99] in Table 4.3 (MEN), show an inter-

esting behavior with respect to the lexical database used. Their ρ varies no more than 0.01

when we compare the models using the same corpus (UMBC or WD14), which indicates

67

Table 4.2: Spearman correlation score (ρ) for the RG65 benchmark. Highest results
reported in bold face.

Models Avg Max Glo
Sim Sim Sim

GloVe-42B - - 0.829
GloVe-6B - - 0.778

Retro-G6B - - 0.767
Retro-G6B-WN - - 0.842

word2vec - - 0.754

DeConf-Sense - 0.896 -
DeConf-Word - 0.761 -

SensEmbed 0.871 0.894 -

SW2V-Shallow - 0.740 -
SW2V-Babelfy - 0.700 -

MSSA(WD10) 0.779 0.857 0.830
MSSA-1R(WD10) 0.795 0.872 0.825
MSSA-2R(WD10) 0.814 0.869 0.858
MSSA-T(WD10) 0.783 0.878 0.845
MSSA-1R-T(WD10) 0.825 0.871 0.856
MSSA-2R-T(WD10) 0.822 0.878 0.859
MSSA(WD18) 0.828 0.794 0.821
MSSA-D(WD18) 0.801 0.826 0.817
MSSA-T(WD18) 0.776 0.847 0.816
MSSA-D-T(WD18) 0.795 0.839 0.835

that the BabelNet (-BN) variation is as robust as WordNet (-WN) to capture the semantic

relationships in this dataset. This finding is also present in our results as well, as our ρ score

fluctuates around the same range with a slightly superior performance for MSSA (WD18),

with ρ = 0.769.

In Table 4.4 (WordSim353), all results perform worse than the single-sense embeddings

of GloVe [130] for the GloSim metric. However, to reach this score they process 42

billion tokens, while, when considering just 6 billion tokens, its performance decreases

13.30%. We, on the other hand, with a little less than 540 million tokens for WD10, can

obtain superior results with MSSA-2R andMSSA-2R-T. Even though Pruned-TF-IDF [139]

follows with a competitive ρ score, their model does not use low-dimensional vectors,

68

Table 4.3: Spearman correlation score (ρ) for the MEN benchmark. The results of Chen
et al. [32] and word2vec are reported in Mancini et al. [99] (MSSG/NP-MSSG). Highest

results reported in bold face.

Models Avg Max Glo
Sim Sim Sim

Retro-G6B - - 0.737
Retro-G6B-WN-All - - 0.759

word2vec(UMBC) - 0.750 -
word2vec(WD14) - 0.720 -

Chen et al.(2014) - 0.620 -

DeConf-Sense - 0.786 -
DeConf-Word - 0.732 -

SensEmbed 0.805 0.779 -

SW2V-BN-UMBC - 0.750 -
SW2V-WN-UMBC - 0.760 -
SW2V-BN-WD14 - 0.730 -
SW2V-WN-WD14 - 0.720 -

MSSA(WD10) 0.751 0.745 0.760
MSSA-1R(WD10) 0.781 0.751 0.790
MSSA-2R(WD10) 0.777 0.737 0.788
MSSA-T(WD10) 0.778 0.753 0.785
MSSA-1R-T(WD10) 0.783 0.747 0.791
MSSA-2R-T(WD10) 0.785 0.744 0.795

MSSA(WD18) 0.745 0.769 0.775
MSSA-D(WD18) 0.768 0.716 0.765
MSSA-T(WD18) 0.769 0.749 0.776
MSSA-D-T(WD18) 0.772 0.717 0.767

which makes its direct comparison problematic. In addition, their model relies on several

parameter adjustments (e.g. pruning cutoff, featureweighting, number of prototypes, feature

representation). In contrast, our model works independently of any parameters other than

those required in a word2vec implementation.

For the MaxSim metric we observe that our initial model MSSA(WD18) obtains equal

results when compared to SensEmbed, and better results when considering SW2V in their

two forms, −Shallow and −Babelfy. Because of our model’s simplicity we highlight

MSSA(WD18) instead of SensEmbed for this metric. SW2V and SensEmbed models use

69

BabelNet in their disambiguation process, while ours only uses WordNet, which BabelNet

incorporates completely. In addition, most of our models for WD10 andWD18 also present

superior scores against SW2V-Babelfy.

Undermore similar characteristics,MSSGandNP-MSSGmodels of [122] present closer

results to our systems for both AvgSim and GloSim, as Table 4.4 shows. They also produce

multi-sense embeddings, based on word-senses that are learnt jointly with the word vector

itself. MSSG and NP-MSSG only differ in the number of senses a word can have, which is

similar to what we accomplish with MSSA. Their training time of 6 hours for MSSG-300d

and 5 hours for NP-MSSG are comparable with our synset embeddings (Section 3.2.4) step.

However, unlike MSSA, which requires a disambiguation process prior to the embeddings

one, their model does these tasks at the same time and with strong competitive results.

For GloSim, MSSG-300d and NP-MSSG-300d present ρ of 0.692 and 0.691 respectively,

while MSSA-T (WD18) and MSSA-D-T has values of 0.692 and 0.693, respectively. This

shows that, as for the amount of words processed, the number of dimensions does not

necessarily provide better results. In general, our models using 300 dimensions obtain

better performance than those with a higher dimensionality. The same behavior is observed

when we consider the Spearman values using AvgSim for MSSG-300d, MSSA-1R-T, and

MSSA-D-T. Wihtin the same dimensionality, the results decrease when we move from the

base to the first iteration in MSSA-NR (i.e. from N = 0 to N = 1), but they improve

for the second iteration (N = 2). Now, considering the same iteration pass, for different

dimensions (300 and 1000d), we perform slightly worse, as Table 4.4 shows.

As explained in Section 4.1.3, theWordSim353 benchmark is composed of two separate

datasets, the first with 153 word pairs and the second with 200. According to Agirre et al.

[3], this benchmark conflates two distinct aspects of linguistics: similarity and relatedness.

Thus, some authors [74, 99] take this into account and use the updated version of this

dataset. In Table 4 of [74], they report their results for the WordSim353 dataset without any

distinction or reference to the structure split in [3], so we assume they are making use of the

70

original version proposed in [51]. Our expectation for the global model (MSSA-D) context

superiority is not achieved for theWordSim353 dataset. If we only analyze the performance

of both MSSA (WD18) and MSSA-D, we observe the inconsistency of the results, with

the former approach showing better results than the latter, for MaxSim and GloSim. It is

in our plans to investigate which subcategory can be better explored in our models for this

benchmark, but for now, we keep WordSim353 as one single set, so more systems can be

compared.

Table 4.4: Spearman correlation score (ρ) for the WordSim353 benchmark. Huang et al.
[73] results are reported in Neelakantan et al. [122] (MSSG/NP-MSSG). Highest results

reported in bold face.

Models Avg Max Glo
Sim Sim Sim

GloVe-42B - - 0.759
GloVe-6B - - 0.658

Retro-G6B - - 0.605
Retro-G6B-WN-All - - 0.612

Huang et al. (2012) 0.642 0.228

MSSG-50d 0.642 - 0.606
MSSG-300d 0.709 - 0.692
NP-MSSG-50d 0.624 - 0.615
NP-MSSG-300d 0.686 - 0.691

Pruned-TF-IDF - - 0.734

SensEmbed 0.779 0.714 -

SW2V-Shallow - 0.710 -
SW2V-Babelfy - 0.630 -

MSSA(WD10) 0.725 0.702 0.727
MSSA-1R(WD10) 0.711 0.661 0.712
MSSA-2R(WD10) 0.730 0.662 0.737
MSSA-T(WD10) 0.712 0.669 0.721
MSSA-1R-T(WD10) 0.708 0.666 0.716
MSSA-2R-T(WD10) 0.729 0.667 0.737
MSSA(WD18) 0.663 0.714 0.712
MSSA-D(WD18) 0.708 0.626 0.702
MSSA-T(WD18) 0.694 0.637 0.692
MSSA-D-T(WD18) 0.702 0.623 0.693

The last two NCWS benchmarks, SimLex999 and MC28, are particularly challenging,

71

for distinct reasons. For SimLex999, in Table 4.5, we identify a consistent improvement

with respect to the increase in dimensionality between models of the same configuration

using WD10, but not for WD18. Results using the recurrent models (MSSA-NR) and their

1000-dimensional versions also present consistent improvement for WD10. However, on

average our models perform poorly regardless of their configuration for all metrics, while

DeConf-Sense holds the best results for MaxSim. The average Spearman correlation values

for this dataset seems to be low in all publications, rarely surpassing ρ = 0.50. Even in

our unreported models, we do not have satisfactory results. The same behavior is observed

when we try to apply our model in no-nouns dominant benchmarks, such as: YP130 [183]

and SimVerb3500 [57]. For the former, our Spearman scores achieve on average ρ = 0.563

(Avgsim), while for the latter, ρ = 0.243 (MaxSim). Our suspicion is that our models, as

with most compared systems, are not robust enough to deal with datasets of this nature (i.e.

mainly, not nouns). It seems verbs, adjectives, and adverbs-based benchmarks need a more

specific approach to deal with their characteristics properly. As in Table 4.3 (MEN), the

results of the SW2V algorithm [99] for the MaxSim metric presents little or no variation in

their ρ score, when considering the same training corpus under different lexical databases,

as Table 4.5 (SimLex999) shows. Likewise, our MSSA trained in the WD18 corpus obtains

the best results among our models.

ForMC28, reported in Table 4.6, the lack of recent publicationsmakes it hard to draw any

strong conclusions about compared models. We do obtain the same results as SensEmbed,

but with a much simpler architecture and less resources, since all of our algorithms only

use WordNet as its lexical resource. If we examine the Association for Computational

Linguistics (ACL) state-of-the-art Wiki6 we obtain the third best result considering the

human upper bound as the gold standard. Since MC28 is a subset of RG65, our models

present similar results, but with slightly better values on average, for both the WD10 and

WD18 training corpora.

6https://aclweb.org/aclwiki/MC-28_Test_Collection_(State_of_the_art)

72

Table 4.5: Spearman correlation score (ρ) for the SimLex999 benchmark. Chen et al. [32]
and word2wec results are reported in Mancini et al. [99] (MSSG/NP-MSSG). Highest

results reported in bold face.

Models Avg Max Glo
Sim Sim Sim

word2vec(UMBC) - 0.390 -
word2vec(WD14) - 0.380 -

Chen et al.(2014) - 0.430 -

DeConf-Sense - 0.517 -
DeConf-Word - 0.443 -

SW2V-BN-UMBC - 0.470 -
SW2V-WN-UMBC - 0.450 -
SW2V-BN-WD14 - 0.430 -
SW2V-WN-WD14 - 0.430 -

MSSA(WD10) 0.427 0.368 0.396
MSSA-1R(WD10) 0.438 0.369 0.405
MSSA-2R(WD10) 0.440 0.369 0.408
MSSA-T(WD10) 0.456 0.393 0.432
MSSA-1R-T(WD10) 0.468 0.394 0.441
MSSA-2R-T(WD10) 0.469 0.385 0.439

MSSA(WD18) 0.375 0.438 0.404
MSSA-D(WD18) 0.401 0.351 0.374
MSSA-T(WD18) 0.460 0.389 0.430
MSSA-D-T(WD18) 0.425 0.372 0.391

In all benchmarks, except SimLex999, our proposed models give competitive results

within the top three positions. Considering the MaxSim and GloSim metrics, we report ei-

ther the first or second highest Spearman correlation values in all experiments. Our models

are strongly based on the context surrounding the word we disambiguate, so we believe that

the more information about a word’s surroundings we have, the more accurate our repre-

sentations will be. Nonetheless, our models perform very well when applied to benchmarks

considering the similarity of word pairs without any extra context information. In addition,

we are able to obtain better results than several systems based onmore complex architectures

and lexical databases. MSSA’s single training phase minimizes the hyperparameter adjust-

ments to the word2vec implementation only, which makes it easier to replicate. Moreover,

73

Table 4.6: Spearman correlation score for the MC28 benchmark. Highest results reported
in bold face.

Models Avg Max Glo
Sim Sim Sim

GloVe-42B - - 0.836
GloVe-6B - - 0.727

SenseEmbed - 0.880 -

MSSA(WD10) 0.833 0.862 0.842
MSSA-1R(WD10) 0.825 0.883 0.843
MSSA-2R(WD10) 0.829 0.849 0.847
MSSA-T(WD10) 0.845 0.888 0.875
MSSA-1R-T(WD10) 0.841 0.883 0.862
MSSA-2R-T(WD10) 0.801 0.866 0.836

MSSA(WD18) 0.775 0.799 0.792
MSSA-D(WD18) 0.835 0.807 0.829
MSSA-T(WD18) 0.796 0.834 0.818
MSSA-D-T(WD18) 0.801 0.833 0.821

our modular configuration displays an appealing layout for us to apply the systems that

obtain the best results throughout the experiments for the word similarity task. Considering

the NCWS category, MSSA shows superior results over MSSA-D, making us suspect that

a local context sliding window seems to be more adequate to extract semantic features of a

corpus to build their embeddings. As in other compared systems, we also observe that the

increase of dimensionality is most likely to improve the overall performance for the word

similarity task, but this is not always true. The increase of dimensionality usually adds

more computational time to the word embeddings step, which might not be worth the effort,

given the small differences when compared to lower-dimensional vector models.

4.1.5 Context Word Similarity

In this section the results of AutoExtend (Synsets) [145] and CNN-VMSSG [31] are

also incorporated. For the Stanford Context Word Similarity (SCWS) benchmark, we do

not report the results for the MaxSim metric, since almost all publications do not explore

them as well. As explained in Section 4.1.3, the SCWS dataset provides word pairs, their

74

similarity score, and a given specific context for each word in a sentence, alleviating dubious

interpretations [73].

Table 4.7 shows DeConf [133], NP-MSSG-300d [122] and MSSA (WD10) with the

highest Spearman correlation values, in descending order for AvgSim. However, when

considering MaxSimC and GloSim, the results of MSSA-1R and MSSA(WD10) give state-

of-the-art scores, respectively. It seems that the extra information about a word’s context

indeed helps our model to better select a word-sense, but using all the remaining metrics for

the word similarity task does not produce good results. CNN-VMSSG presents the second

highest results for MaxSimC and GloSim after our models, but their approach relies on two

training steps, one for the CNN part and one for the MSSG, instead of just one training step,

like ours. Since in our disambiguation step MSSA looks for a word-sense with the highest

similarity of its word (wi) against its neighbors (wi−1 and wi+1), the score obtained in a

metric that reflects the maximum similarity of a word-sense, given its sentence context, is

expected. This encourages us to apply our models to tasks in which sentences are compared,

instead of just words. Thus we extend our work for document classification problems, where

each entity (document) has a collection of tokens to build their embeddings.

The increase in the word-vector dimensionality has the same behavior as in previous

experiments for the NCWS datasets, with the exception of MSSA (WD18) which has an

increase of almost 8% on its score for AvgSim, if compared with MSSA-D. The recur-

rent model (MSSA-NR), considering the WD10 corpus, and the global context approach

(MSSA-D) for WD18, seem to have little in the overall score when compared with their

initial models (MSSA).

For AvgSimC, our models do not present competitive results, while DeConf andMSSG-

300d are able to produce top scores. Since our approach is oriented towards the higher

similarity between word-senses and their context, perhaps a different scheme to select

prospective word-senses could improve our system. It would also be interesting to apply the

top-ranked algorithms to our model and compare their performance for all metrics. Most

75

of the published results do not report their findings for all metrics in [73, 140], making

their direct comparison arduous. DeConf is designed to use pre-trained single dimensional

vectors to produce their multi-sense embeddings, so our approach is not easily applicable,

as we produce a vector for each word-sense directly. NP-MSSG [122] and SW2V [99] on

the other hand, offer the necessary flexibility to use our annotated corpus to produce new

embeddings.

Table 4.7: Spearman correlation score (ρ) for the SCWS benchmark. Huang et al. [73]
results are reported in Neelakantan et al. [122] (MSSG/NP-MSSG). Highest results

reported in bold face.

Models Avg Avg Max Glo
Sim SimC SimC Sim

GloVe-42B - - - 0.596
GloVe-6B - - - 0.539

AutoExtend 0.626 0.637 - -

Chen et al. (2014) 0.662 0.689 - 0.642

CNN-VMSSG 0.657 0.664 0.611 0.663

DeConf-Sense 0.708 0.715 - -

Huang et al. (2012) 0.628 0.657 0.261 0.586

MSSG-50d 0.642 0.669 0.492 0.621
MSSG-300d 0.672 0.693 0.573 0.653
NP-MSSG-50d 0.640 0.661 0.503 0.623
NP-MSSG-300d 0.673 0.691 0.598 0.655

Pruned-TF-IDF 0.604 0.605 - 0.625

SensEmbed - 0.624 0.589 -

MSSA(WD10) 0.667 0.581 0.637 0.667
MSSA-1R(WD10) 0.660 0.581 0.639 0.659
MSSA-2R(WD10) 0.665 0.593 0.631 0.665
MSSA-T(WD10) 0.659 0.590 0.617 0.664
MSSA-1R-T(WD10) 0.655 0.594 0.623 0.658
MSSA-2R-T(WD10) 0.661 0.604 0.617 0.664

MSSA(WD18) 0.593 0.569 0.639 0.651
MSSA-D(WD18) 0.640 0.557 0.613 0.640
MSSA-T(WD18) 0.649 0.588 0.617 0.654
MSSA-D-T(WD18) 0.638 0.570 0.597 0.639

76

4.2 Further Discussions and Limitations on MSSA

In this section, we try to provide a deeper discussion about the main aspects of our

techniques, while pointing out their strengths and limitations. We also present alternatives

that can be taken into account to mitigate these limitations.

Themain objective of our algorithms is to properly transformword-based documents into

synset-based ones that can be used in systems or tasks dealing with semantic representation

at some level. For this, we use WordNet to identify possible word-senses of a given word.

Unfortunately, this forces us only to work with formal texts (i.e. free of colloquial English,

slang and typos). Traditional word embeddings techniques are derived directly from the raw

text, which can be either an advantage or disadvantage, depending on which task is selected

for its validation. If we move to a document classification task for documents based on

informal text collections (e.g. user comments in a blog, movies reviews), our approaches

would probably work poorly. On the other hand, we believe if the documents considered

make use of formal English (e.g. scientific paper abstracts, news articles) our techniques

might be adequate.

Another aspect is WordNet structure itself, with respect to the number of its available

synsets and its idiom-version. Currently, in version 3.0., WordNet has 155,287 unique

strings mapped, with 117,659 synsets, leaving a reasonable amount of words out, if we

consider the entire English vocabulary. An alternative lexical database to be considered

is BabelNet [121], which is composed of several different resources7 (including WordNet)

and specific lexicons (e.g. GeoNames8, Wikiquote9, Microsoft Terminology10). Since we

are using the English version of WordNet (also known as Princeton WordNet) our system

currently does not apply to other languages in its current version. The language aspect

is not a barrier to BabelNet since it is a multilingual lexical database. However, it is

7https://babelnet.org/about
8http://verbs.colorado.edu/ mpalmer/projects/verbnet.html
9https://www.wikiquote.org
10http://www.microsoft.com/Language/en-US/Terminology.aspx

77

important to mention that there are other idiom versions11 of WordNet available [1] that can

be incorporated in our techniques.

From the experiments presented in Sections 4.1.4 and 4.1.5, we notice that our tech-

nique is very sensitive to the presence of verbs and adjectives POS, as Table 4.5 shows.

Even though, we do not explicitly report the results obtained using YP130 [183] and

SimVerb3500 [57] datasets, our overall performance for these are not satisfactory. How-

ever, when using datasets that provide context to the words being evaluated (SCWS), our

techniques show competitive results (Table 4.7). This encourages us to explore tasks in

which we can use larger context to support our decision, such as document classification,

sentiment analysis, and plagiarism detection.

Our modular and flexible architecture (Figure 3.2), provides an interesting setup that

can be applied to any expert system using natural text as its input. This is because the

disambiguation and annotation steps work as a pre-processing phase, and can be applied

to the raw text directly, in order to obtain a more precise semantic representation for a

given word. Nevertheless, since MSSA considers all word-senses available in WordNet,

it might not be the best option for very large training sets. In our experiments, it takes us

approximately four full days to transform all documents in the English Wikipedia Dump of

2010 [160] in their synset versions. However, if available, one can parallelize the processing

of the words into synsets since our MSSA, MSSA-NR, and MSSA-D are performed on a

document level, individually. Moreover, the word to synset transformation task only needs

to be performed once. After the annotated synset training corpus is derived, one can use it in

any activity (e.g. NLP tasks, word embeddings training models). In addition, since words

that do not exist in WordNet are automatically discarded, this reduces the time of any word

embeddings technique applied to the translated training corpus. As with the experiments

in Section 4.1, this can lead to good or bad results, depending on the datasets used for

validation.
11http://globalwordnet.org/wordnets-in-the-world/

78

Differing from MSSA, which evaluates all senses for each word and requires the cal-

culation of gloss vectors, the MSSA-NR algorithm only considers the word-senses that are

actually embedded, in the first place. Therefore, the non-used word-senses are dropped,

reducing the amount of comparisons required for each context window. In this case, the

average complexity for MSSA-NR is smaller than the one in MSSA. Approaches like

MSSG [122] fix the number of possible word-senses available and obtain a faster disam-

biguation process than MSSA. The gain in speed however, comes with a price of removing

word-senses that could provide a better semantic representation for words.

During our experiments, we can observe that MSSA-D is highly affected by the number

of words in a document, probably because of its global search. Dijkstra’s algorithm does

perform a blind search for all the available paths in the graph, that goes from the word-senses

of the first word to the last. MSSA and MSSA-NR, on the other hand, have a local search

approach and deal with the word-senses inside each context window, one at a time. Thus

their processing time is, at some level, dependent on the number of word-senses in the

context.

In our pipeline, we train a synset vector representation model from scratch, so we

do not take advantage of pre-trained models (e.g. Google News, GloVe). Approaches

like [133, 145] follow this direction and do save some time in the disambiguation task.

However, they are not able to produce their own vector representation directly from the

training corpus. In addition, their approaches require some parameter tuning, adding a

certain complexity to the system as a whole. In contrast, our techniques can be applied

directly to any training corpus, resulting in a new representation that can be transferred

to several different problems. For example, we can apply the MSSA to better represent

sentences provided to chat bots in support systems and improve the quality of their answers.

Additionally, MSSA, MSSA-NR, and MSSA-D are completely unsupervised, so they do

not rely on any parameters other than those required in a word embeddings algorithm.

Finally, another important aspect explored in our approach is the recurrent aspect of

79

MSSA-NR. To the best of our knowledge, the ability to iteratively use the produced synset

vectors to improve the word sense disambiguation task and provide a more refined synset

annotation is not explored in any of the compared systems. This opens many new directions

on how word embeddings and word sense disambiguation can mutually benefit from each

other.

4.3 Document Classification Task

In this section, we explain all details and constraints in which our experiments for docu-

ment classification are performed, so one can reproduce them as close to our configuration

as possible. First, we describe the different aspects of each dataset used, their characteris-

tics, references, and availability. Second, we provide an accurate description of the chosen

metrics, machine learning classifiers, and hyperparameters adopted. In addition, we also

include the procedures considered to fine-tune all classifiers and discuss the main aspects

of state-the-art systems compared to our proposed techniques.

4.3.1 Datasets Details

Our experiments consider 6 different datasets with specific characteristics which impose

a particular challenge on each classification. Among these datasets, 4 of them represent

benchmark datasets widely used on text classification problems and the other 2 are extracted

from scientific papers abstracts in biology. Table 4.8 describes the main characteristics of

each dataset.

Ohsumed. This dataset is composed of medical scientific paper abstracts of MEDLINE

from 1991 [79]. 56,984 documents are unevenly divided into 23 classes, so some

categories have more documents than others. The labels of this corpus are Medical

Subject Headings (MeSH) from the cardiovascular diseases group. This dataset also

has several different versions available, so we choose the one in which all documents

80

are about cardiovascular diseases12.

20Newsgroups. This dataset is another well-known collection in text classification prob-

lems [85, 114, 78]. 18,846 documents are split into 20 categories (e.g. sport, religion,

computer) with a different number of documents in each category. We consider the

“bydate” organization13, in which the original dataset containing 20,000 documents

has some duplicates and headers removed.

Reuters-21578. This dataset is one of the most popular datasets in the text classification

task. 12,902 documents composed of news articles from the Reuters Newswire from

1987 are divided into 90 classes. However, we select the largest 10 categories in the

dataset, resulting in 9,980 documents in total14.

BBC. This dataset is composed of news from the BBC News website from 2004 to

2005 [59]. 2,225 documents are divided into five topic areas (e.g. sports, news,

politics). Several different versions are available for this dataset, but we use the raw

text files one15.

ScyGenes. This corpus is composed of abstracts of scientific papers about the yeast Sac-

charomyces cerevisiae [106, 107]. This is a small, but well curated dataset with 1,114

documents divided into 7 categories. Each category represents the name of a gene of

this yeast.

ScyClusters. This dataset is a variation of the ScyGenes corpus and composed of papers

containing the yeast Saccharomyces cerevisiae [106, 107]. 1,655 abstracts are divided

into 7 categories as well. However, its categories are organized in a different fashion,

representing a cluster of the genes with the same biological function.

12http://disi.unitn.it/moschitti/corpora.htm
13http://qwone.com/ jason/20Newsgroups/
14http://disi.unitn.it/moschitti/corpora.htm
15http://mlg.ucd.ie/datasets/bbc.html

81

Table 4.8: Technical details about the datasets after pre-processing

Corpus Subject #docs #classes #tokens #synsets

Ohsumed Medical abstracts 56984 23 64154 36395
20Newsgroups News 18846 20 129782 43413
Reuters-21578 News 9980 10 24273 21747
BBC News 2225 5 29126 29151
ScyClusters Biological abstracts 1655 7 13265 11428
ScyGenes Biological abstracts 1114 7 10553 10045

Table 4.8 shows the technical aspects of each dataset with respect to their theme, number

of documents, classes, tokens, and synsets. We use the term tokens instead of words because

some features do not represent a proper word itself. As an example, let us consider the token

housd that does not represent an English word, but it is included in the dataset. Techniques

that rely on proper syntax are not able to process typos and malformed word-tokens, but

recent word embeddings models, such as ELMo [131] and USE [29] can handle these

issues. Column #synsets shows the number of synsets generated applying the MSSA

algorithm (Section 3.2). As a result, the number of synsets is different when compared to

the number of tokens, and in most cases, it is smaller. This happens because not every token

(e.g. housd) is represented in WordNet, which forces them to be dropped since no semantic

relation can be extracted.

4.3.2 Machine Learning Classifiers

In order to validate the consistency and robustness of the techniques, we consider

five classifiers in our experiments. These classifiers are chosen among the most popular

ones in the document classification arena: K-Nearest Neighbors (K-NN), Support Vector

Machine (SVM), Logistic Regression (LR), Random Forests (RF), and Naïve Bayes (NB).

K-Nearest Neighbors [4] is a simple yet efficient classifier that uses the K closest data

points to decide the label of a new unseen instance. K-NN is considered a lazy

algorithm since it does not learn any function from the training data, but instead, it

memorizes the characteristics of it.

82

Support Vector Machine [35] is a popular classifier applied in text categorization. SVM

has a good generalization of the training dataset when combined with a proper kernel

choice. The basic idea behind SVM’s algorithm is to find the best hyperplane that

better separates the data, after applying a series of transformations to it. These trans-

formations are intended to represent the current data points in a higher-dimensional

space, in the hope that, due to data sparsity in high dimensions, a hyperplane might

be able to properly separate them.

Logistic Regression classifier [104] applies a linear combination of weighted input vari-

ables to predict the output. The main idea is to find a probabilistic relationship

between the input features so they can be used to predict the output with the largest

probability. Considering the text classification problem, the input variables are the

features of documents (usually words) and the output labels their labels. During the

training phase, the logistic classifier goal is to learn the best values for the weights of

the inputs. Later, these input weights are used on the features of the test documents

to predict their labels.

Random Forests [22] creates a collection of decision trees that will together find the

classification for a data point. Each decision tree will create rules upon the input

variables to decide their label. The main idea behind Random Forests is to combine

several simple decision trees into a single classifier to define the final label.

Naïve Bayes [114] is a simple probabilistic algorithm that assumes its variables are condi-

tionally independent. Hence, it calculates the probability of a document to belong to

a specific class, based on the conditional independence of its features.

All classifiers have several parameters that need to be fine-tuned to provide the best

configuration possible for each technique. For this reason, we perform an extensive grid-

search on the training corpus to find out themost suitable hyperparameters for each classifier.

With the exception of Reuters-21578 and 20Newsgroups, all data sets do not include a

83

training and test split, so we applied k-fold-cross-validation for k equals to 10 (10-fold-

CV). Table 4.9 shows the grid search configuration considered. Each final classification is

performed considering the best hyperparameters found.

Table 4.9: Grid-search configuration parameters.

Classifier Parameter Range

K-NN neighbors 1, 5, 15, 25 . . . 95

Logistic
Regression

solver newton-cg, lbfgs, sag, saga
maximum iteration 500, 1000, 1500
multi-class ovr, multinomial
tolerance 0.01, 0.001, 0.0001, 0.00001

Support
Vector
Machine

kernel linear, radial bases function, polynomial
gamma 0.01, 0.001, 0.0001, 0.0001
polynomial degree 1, 2, 3, 4, 5, 6, 7, 8, 9
C 1, 10, 100

Random
Forest

number of estimators 100, 325, 550, 775, 1000
maximum features auto, sqrt
maximum depth 10, 32, 77, 100, None
minimum samples split 2, 5, 10
minimum samples leaf 1, 2, 4

We evaluate ourmodels in the text classification task through their classification accuracy

as metric. Accuracy measures how many documents were correctly classified during the

task. This metric is defined as shown in Equation 4.1.

Accuracy =
total number of correct predictions

total number of predictions
(4.1)

The classification results are obtained considering either 10-fold-CV or training and

test split, depending on the availability for the dataset. The classification performance for

all machine learning classifiers and datasets are also validated in the Friedman test and

Nemenyi’s post-hoc test for a p-value of less than 0.05, certifying the statistical significance

of our experiments [37].

84

4.3.3 Word Embedding Models Characteristics

This section presents the main characteristics and details of the compared systems used

in the document classification task (Section 4.3.6). In total, we compare our techniques

against 6 state-of-the-art approaches that use transfer learning at some level in their im-

plementation. Table 4.10 summarizes the algorithms used in our experiments, named:

Latent Dirichlet Allocation (LDA) [16], word2vec [110], Global Vectors (GloVe) [130],

fastText [17], Universal Sentence Encoder (USE) [29], Embeddings from Language Mod-

els (ELMo) [131], Most Suitable Sense Annotation - N Refined (MSSA-NR) [150] for N

equal to 1 (M1R), FLLC II, using the M1R synset output corpus (FL-1R), and FXLC II,

with a chunk size equal to 2 and using the M1R synset corpus (FX2-1R).

Table 4.10: Word embeddings used and their main characteristics. * For USE, Cer et al.
[29] report its training data as a collection of sources from Wikipedia, web news, web

question-answer pages discussion forums and Stanford Natural Language Inference corpus.

Algorithm Main Characteristics Training Corpus Dimensions

LDA Probability distribution Wikipedia Dump 2010 300

word2vec Continuous Bag-of-Words (CBOW) Google News 300

GloVe Word-word co-occurrence matrix Wikipedia Dump 2014 + Gigaword 5 300

fastText Skip-gram Wikipedia Dump 2017 + UMBC 300

USE Deep Average Network Various sources* 512

ELMo Bidirectional Long Short Term Memory 1 Billion Word Benchmark 1024

M1R Most Suitable Sense Annotation - NR Wikipedia Dump 2010 300

FL-1R Flexible Lexical Chains II + CBOW Wikipedia Dump 2010 (M1R) 300

FX2-M1R Fixed Lexical Chains II + CBOW Wikipedia Dump 2010 (M1R) 300

Our experiments are set up to use the same baseline structure, in which they transform

each word in our documents into a vector representation using an external word embeddings

trained model as a dictionary. Once we obtain these word vectors, we average them to

represent the entire document as one single entity. The compared systems in our experiments

can be categorized into two major groups: (i) pre-trained word embeddings models and (ii)

85

explicitly trained word embeddings models. In the first category (i), we use models that are

accessed directly as a black-box: word2vec16, GloVe17, fastText18, USE19, and ELMo20. In

the second group (ii), we train the word embeddings models from scratch, for the following

techniques: LDA, M1R, FL-1R, and FX2-1R. With the exception of USE and ELMo,

that only provide their pre-trained models with 1024 and 512 dimensions respectively, all

other techniques have a 300 dimension word vector representation. The training corpus

considered and the other parameters for our trainedword embeddingsmodels are the same as

the ones described in Section 4.1.2. We also compare our techniques with a BOW approach

in a separate experiment using the same classifiers and the original datasets (i.e. words).

In addition to the presented models explored in the document classification task, we also

include variations of our techniques under a different scope to evaluate their characteristics

more carefully.

4.3.4 Document Embeddings Models Characteristics

We also compare our proposed approaches against techniques that provide document

embeddings explicitly. In order to maintain a standard structure between our experiments,

we consider the same datasets described in Section 4.3.1 for the document classification task.

For this scenario, we use the same training corpus inwhich the experiments consideringword

embeddings are performed (Wikipedia Dump from 2010). However, instead of obtaining

the document representation through a word2vec training model, we consider a PV [87]

implementation, also referenced as doc2vec. We compare the document-based version of

our techniques (M1R, FL-1R, and FX2-1R) against three baselines, named: PV-DBOW,

ELMo, and USE. The PV-DBOW is produced considering the raw words from our external

corpus (WD10), which are also used to derive the vectors for our techniques. Different from

16https://code.google.com/archive/p/word2vec/
17https://nlp.stanford.edu/projects/glove/
18https://fasttext.cc/docs/en/english-vectors.html
19https://tfhub.dev/google/universal-sentence-encoder/2
20https://tfhub.dev/google/elmo/2

86

the word embeddings representation in which we average the constituent word vectors to

represent a document, ELMo and USE are modified to produce document vectors directly.

In other words, for each Wikipedia article used as an input, we produce document vectors

of fixed length.

Since the training process for entire documents uses a specific encoder, the hyperpa-

rameters considered are also different from a traditional word2vec implementation. The

PV-DBOW (word base corpus), M1R, FL-1R, and FX2-1R resulting corpora are trained

considering: negative sampling of 10−5, PV-DBOWtrainingmodel, window size of 15, min-

imumcount of 5, 300 dimensions, trainedword-vectors in skip-gram fashion (dbow_words),

averaged word vectors (dm_mean), and 30 epochs. Parameters not mentioned use the de-

fault values in the gensim21API. As for ELMo andUSE, we access their pre-trainedmodels

in the same way as Section 4.3.3 describes, but we encode the documents entirely. Since

the focus of this task is on word embeddings, we do not include the main characteristics

of PV in Table 4.10, but their results for the document classification task are detailed in

Table 4.13.

4.3.5 Experiment Configuration

We divide our experiments into two distinct perspectives, the first for document classi-

fication (Section 4.3.6) and the second for lexical chains behavior analysis (Section 4.3.7).

In the first perspective, we present the results for all variations of our models against a

traditional BOW approach. In this scenario, we are able to analyze the different chunk sizes

for our lexical chains and how the recurrent characteristic of MSSA affects our built lexical

chains. This evaluation also supports the choice of which of our models’ configuration

should be selected for the comparison against state-of-the-art systems. Thus, we compare

our techniques (FL-1R, FX2-1R) with different word and document embeddings approaches

that also use transfer learning. In the second experiment perspective, we provide a deeper

21https://radimrehurek.com/gensim/models/doc2vec.html

87

assessment on how our techniques behave for each dataset used. The idea is to provide a

different perspective on two specific aspects: (a) chunk size for the FXLC II variations and

(b) the effects of the recurrent models from MSSA in both, FLLC II and FXLC II.

All proposed models are evaluated considering the document classification task for

the datasets presented in Section 4.3.1. The same pre-processing steps are performed in

all datasets and techniques, so we can guarantee more consistency and uniformity in our

experiments. For pre-processing, we lowercase all words in the document and remove all

common English stopwords using the PyPi library (v. 2018.7.23). Each document is then

represented as the average of its constituent word vectors using a word embeddings model,

or directly, using the entire document for the document embeddings variation. Averaging

the word vectors of a document to obtain its representation is a common strategy adopted

in several publications in the document classification task [87, 36, 86, 165].

Figure 4.1 presents a high-level perspective of the entire process during the classification

task in our experiments. For each document in a corpus, we retrieve its word vectors from

a pre-trained word embeddings model, average them, and build a document vector. Next,

we feed them to several machine learning classifiers and evaluate their accuracy. The same

process is performed when considering the document embeddings. While the compared

systems derive vectors directly from the words in each dataset, our proposed techniques

require a disambiguated synset corpus. Thus, two additional steps prior to the machine

learning classifiers are necessary. First, we disambiguate the words from each document to

obtain their respective synsets, using the MSSA algorithm. Second, using the lexical chains

models (FLLC II and FXLC II) created from WD10, we derive the synset vectors.

Words

Corpus

Synsets

Corpus Document Vectors

Machine Learning input Accuracy

Results
MSSA

Technique
Flexible / Fixed

chains model Classification

State-of-the-art models

Figure 4.1: Workflow of document classification.

88

We compare our findings against classical and state-of-the-art word embedding tech-

niques that consider transfer knowledge in their approach. For traditional word embed-

dings techniques, we use LDA [16], word2vec [109], and GloVe [130]. For the state-

of-the-art word embedding techniques, we include three other approaches, named fast-

Text [17], USE [29], and ELMo [131]. As for traditional document embeddings, we use

PV-DBOW [87], ELMo [131], and USE [29] to compare with our techniques, considering

the details described in Section 4.3.4. Furthermore, we also provide a comparison of our

results against a traditional BOW technique, which relies only on statistical information of

the training corpus. Even though BOW does not necessarily use transfer learning from a

prior task, it is probably the most used technique to represent a collection of documents

in NLP. In addition, the BOW technique suffers from the curse of dimensionality with

respect to the number of words in the considered vocabulary. In this manner, depending on

the size of the dataset, its adoption might not be suitable. To mitigate the dimensionality

problem and allow a fair comparison among the compared systems, we created a BOW

representation considering the top 300 features (words), ordered by term frequency, and

applying tf-idf as its weighting scheme [128]. The only two models that do not follow this

vector representation are ELMo and USE, with 1024 and 512 dimensions respectively.

Another important step when using document embeddings through a PV implemen-

tation (i.e. doc2vec) is the generation of document vectors for unseen data when using

gensim. Different from word2vec, that either retrieves or not an n-dimensional vector for a

given word, PV tries to infer its vectors for each document using its pre-trained model. In

other words, we can say there are two training steps when considering doc2vec: (i) external

document embeddings training and (ii) inferred task oriented embeddings. The former,

follows the same training steps pattern as word2vec with respect to its specific parameters

(Section 4.3.4). As for the latter, we produce a vector representation for an unseen doc-

ument based on the pre-trained model obtained in (i) using the routine infer_vectors in

gensim [137]. Thus, specific hyperparameters have to be adjusted. Our inferred vectors,

89

for each document in the datasets used for the document classification task, are produced

with the following hyperparameters: alpha = 10−4, min_alpha = 10−6, and 300 epochs.

These values are based on extensive empirical experiments studying the correlation between

their values and the accuracy in sample datasets. We justify the choice of PV-DBOW over

PV-DM because of its superiority in the semantic similarity task [86]. All training models

using doc2vec (gensim version of PV) consider the same hyperparameter configuration.

Attributes not mentioned are used with their default values in gensim22.

4.3.6 Document Classification Task Results

Tables 4.11 and 4.12 present the results of our experiments considering the document

classification task for the word embeddings techniques. Table 4.13 illustrates the results

using the document embeddings setup. The results are organized as follows. Each block

illustrates the results applying all classifiers in a specific dataset. Each column represents a

different word/document embeddings model benchmark to compare against our techniques.

Values in bold represent the best results in a row and underlined values the best results in a

column for a specific dataset.

As explained in Section 3.3, our proposed techniques are built considering a synset

corpus, which for the presented experiments is obtained through the MSSA algorithm. In

one variation of MSSA, called MSSA-NR, it is possible to control the number of times a

produced synset embeddings model is used to refine the disambiguation step. Thus, we can

generate a more robust semantic representation that can be used to train a new enhanced

synset embeddings model. InMSSA-NR, we consider 0 ≤ N ≤ 2, whereN represents how

many iterations the recurrent process is performed. For the FXLC II algorithm (Section

3.3.2), we also consider the sizes of 2, 4, and 8 for the number of synsets in each chain

(chunk_size). In order to evaluate the best configuration for the proposed techniques,

we first compare them with a traditional BOW with a tf-idf weighting scheme of 300

22https://radimrehurek.com/gensim/models/doc2vec.html

90

dimensions. We keep only 300 dimensions so all models can be compared under similar

constraints. The focus of our approaches and all compared systems is towards transfer

learning from an external corpora, scalability, and dense vector representations; none of

which BOW shares. BOWneeds to be executed directly in the training corpus, it has a sparse

representation, with respect to the considered vocabulary, and does not generalize well in

real-world scenarios where many OOV words might lead to poor results. Therefore, instead

of using BOW as direct compared system, we use it as a guide to assist us in evaluating

which of our approaches should be investigated in details agaisnt state-of-the-art systems.

As Table 4.11 shows, BOW sustains good results for ScyGenes, and a few for Scy-

Clusters. This behavior seems reasonable since ScyGenes and ScyClusters are the smallest

datasets considered. These datasets might contain unique keywords among their categories,

resulting in a good classification for the BOW approach. On the other hand, as the number

of documents increases, our semantic embedding representations start to overcome BOW.

We believe this is due to the number of existing words in the corpora; BOW is unable to

extract features that lead to a better classification. When considering the largest datasets,

our techniques start to improve their results. If we consider each row on Table 4.11, FLLC II

and FXLC II together present a better accuracy score in 23 out of 30 cases. Among all of

these results, we can observe that FXLC II with a chunk size of 2 and FLLC II built over

MSSA-1R have the majority of the best results, named FX2-1R and FL-1R respectively.

Thus, we use FX2-1R and FL-1R to compare against the other state-of-the-art models using

word embeddings.

Table 4.11 can be represented in a different perspective to highlight the results of our

lexical chains. In Figure 4.2, we show the number of times each technique obtains the

best results for a given classifier and dataset. As previously mentioned, the techniques

using FXLC II with chunk_size = 2 obtain higher results than the other variations. More

specifically, the ones consideringMSSA-NR forN = 1 comprise one third of the top-ranked

results, thus supporting their choice for comparison with state-of-the-art techniques. The

91

Table 4.11: Classification accuracy for BOW approach against the proposed techniques for
each classifier and dataset. Values in bold represent the best result of that row.

Underlined values represent the best value for that dataset. K-NN - K Nearest Neighbors;
RF - Random Forest; LR - Logistic Regression; SVM - Support Vector Machine; NB -

Naïve Bayes.

BOW FL-0R FL-1R FL-2R FX2-0R FX2-1R FX2-2R FX4-0R FX4-1R FX4-2R FX8-0R FX8-1R FX8-2R

Ohsumed 0.3486 0.4402 0.4412 0.4389 0.4383 0.4416 0.4399 0.4326 0.4376 0.4316 0.4174 0.4252 0.4186

K-NN 0.3187 0.3953 0.3967 0.3936 0.4007 0.4023 0.4012 0.3940 0.3993 0.3986 0.3832 0.3890 0.3847
RF 0.3486 0.3407 0.3397 0.3380 0.3486 0.3540 0.3495 0.3462 0.3505 0.3483 0.3381 0.3419 0.3374
LR 0.3441 0.4123 0.4169 0.4151 0.4283 0.4196 0.4182 0.4097 0.4137 0.4148 0.4032 0.4084 0.4024
SVM 0.3364 0.4402 0.4412 0.4389 0.4383 0.4416 0.4399 0.4326 0.4376 0.4316 0.4174 0.4252 0.4186
NB 0.1662 0.3091 0.3065 0.3079 0.3157 0.3218 0.3224 0.3097 0.3199 0.3158 0.3005 0.3075 0.3069

20Newsgroups 0.5458 0.7135 0.7147 0.7167 0.7151 0.7272 0.7196 0.7066 0.7168 0.7059 0.6980 0.6990 0.7106

K-NN 0.4316 0.6312 0.6329 0.6298 0.6353 0.6447 0.6371 0.6333 0.6377 0.6321 0.6175 0.6251 0.6224
RF 0.5458 0.6701 0.6742 0.6642 0.6706 0.6802 0.6792 0.6722 0.6706 0.6749 0.6601 0.6689 0.6595
LR 0.5252 0.7067 0.7147 0.7131 0.7151 0.7272 0.7187 0.7066 0.7168 0.7059 0.6980 0.6986 0.7069
SVM 0.5096 0.7135 0.7114 0.7167 0.7035 0.7192 0.7196 0.6994 0.7115 0.7038 0.6974 0.6990 0.7106
NB 0.3946 0.5860 0.5884 0.5890 0.5821 0.5916 0.5839 0.5883 0.5928 0.5834 0.5755 0.5817 0.5801

Reuters-21578 0.8683 0.8719 0.8726 0.8719 0.8701 0.8708 0.8664 0.8672 0.8690 0.8672 0.8586 0.8633 0.8644

K-NN 0.8378 0.8558 0.8554 0.8539 0.8489 0.8518 0.8493 0.8443 0.8468 0.8425 0.8328 0.8410 0.8428
RF 0.8561 0.8543 0.8525 0.8504 0.8522 0.8550 0.8532 0.8492 0.8558 0.8540 0.8407 0.8443 0.8428
LR 0.8683 0.8698 0.8726 0.8676 0.8672 0.8708 0.8637 0.8622 0.8644 0.8647 0.8540 0.8607 0.8626
SVM 0.6232 0.8719 0.8640 0.8719 0.8701 0.8637 0.8664 0.8672 0.8690 0.8672 0.8586 0.8633 0.8644
NB 0.7718 0.8116 0.8120 0.8044 0.7937 0.7980 0.7998 0.7973 0.8027 0.7987 0.7923 0.7962 0.7933

BBC 0.9524 0.9784 0.9784 0.9771 0.9775 0.9757 0.9784 0.9771 0.9766 0.9771 0.9744 0.9753 0.9739

K-NN 0.9097 0.9604 0.9600 0.9627 0.9627 0.9573 0.9627 0.9595 0.9623 0.9650 0.9627 0.9591 0.9609
RF 0.9421 0.9645 0.9667 0.9636 0.9686 0.9703 0.9667 0.9667 0.9667 0.9649 0.9658 0.9654 0.9672
LR 0.9524 0.9784 0.9784 0.9753 0.9757 0.9757 0.9784 0.9757 0.9766 0.9748 0.9730 0.9753 0.9739
SVM 0.9510 0.9780 0.9771 0.9771 0.9775 0.9766 0.9775 0.9771 0.9753 0.9771 0.9744 0.9748 0.9717
NB 0.9137 0.9474 0.9456 0.9465 0.9447 0.9469 0.9501 0.9402 0.9469 0.9461 0.9452 0.9411 0.9452

ScyClusters 0.6997 0.6930 0.6822 0.6827 0.6990 0.6936 0.6991 0.6738 0.6723 0.6833 0.6749 0.6625 0.6669

K-NN 0.6470 0.6430 0.6165 0.6340 0.6283 0.6400 0.6424 0.6146 0.6322 0.6216 0.6061 0.6085 0.6162
RF 0.6997 0.5975 0.5940 0.5885 0.6077 0.6073 0.6065 0.6053 0.5968 0.6077 0.5908 0.5830 0.5914
LR 0.6616 0.6845 0.6822 0.6827 0.6990 0.6936 0.6916 0.6670 0.6711 0.6833 0.6693 0.6506 0.6669
SVM 0.6610 0.6930 0.6701 0.6815 0.6802 0.6905 0.6991 0.6738 0.6723 0.6678 0.6749 0.6625 0.6681
NB 0.5329 0.5354 0.5385 0.5324 0.5233 0.5329 0.5348 0.5069 0.5154 0.5311 0.4955 0.5059 0.5051

ScyGenes 0.9767 0.8474 0.8521 0.8457 0.8502 0.8456 0.8420 0.8394 0.8494 0.8411 0.8160 0.8330 0.8294

K-NN 0.9094 0.7829 0.7750 0.7783 0.7856 0.7903 0.7731 0.7551 0.7758 0.7785 0.7461 0.7675 0.7642
RF 0.9767 0.7727 0.7603 0.7597 0.7756 0.7659 0.7674 0.7612 0.7694 0.7711 0.7549 0.7624 0.7523
LR 0.9309 0.8454 0.8521 0.8457 0.8502 0.8456 0.8420 0.8394 0.8494 0.8411 0.8160 0.8330 0.8294
SVM 0.9282 0.8474 0.8475 0.8450 0.8494 0.8402 0.8413 0.8279 0.8402 0.8267 0.8100 0.8213 0.8234
NB 0.9229 0.6858 0.6895 0.6967 0.7021 0.7047 0.7048 0.6894 0.7083 0.7001 0.6803 0.6860 0.6866

fact that FXLC II for chunk_size = 8 does not give the best results in all circumstances tells

us that the dimensionality reduction in these cases loses too much semantic information for

the classification task.

92

BOW FL-0R FL-1R FL-2R FX2-0R FX2-1R FX2-2R FX4-0R FX4-1R FX4-2R FX8-0R FX8-1R FX8-2R

7

4 4

1

2

7

5

0

2

1

0 0 0

N
u
m
b
er

of
b
es
t
re
su
lt
s

Figure 4.2: Document classification ranking considering BOW and lexical chains
techniques.

In Table 4.12, we present the best results of our Chains2Vec embedding models against

state-of-the-art techniques that also use word embeddings. Considering the Ohsumed

dataset, our approaches outperform all the other techniques for all classifiers baselines,

which have a considerably inferior result. The Ohsumed text collection represents a difficult

real-world scenario because of its size, number of classes, and constituent words [184]. In

this dataset, our fixed lexical chains of size 2 (FX2-1R) achieves the best results for all

classifiers. For the 20Newsgroups dataset, our techniques overcome the baselines for the

K-NN, RF and NB, while fastText is superior considering LR and SVM.

In a similar manner to the BOW rank in Figure 4.2, we also provide a comparison of our

proposed techniques against state-of-the-art ones. Figure 4.3 illustrates how many times

each approach is able to achieve the best results considering all classifiers and datasets. In

21 out of 30 experiments (70%), MSSA and the lexical chains algorithms outperform the

compared systems. In particular, FX2-1R achieves the highest score in 16 of the 21 cases.

We believe that the recent word embeddings techniques, such as USE and ELMo perform

poorly because of their ability to handle any possible input, even OOV words. Approaches

that work with more significant features are able to provide a better semantic representation.

Additionally, the produced synset embeddings models produced through our techniques

are at least 75% smaller than the other systems, with 250MB only. GloVe is the smallest,

93

Table 4.12: Classification accuracy for word embeddings models against proposed
techniques for each classifier and dataset. Values in bold represent the best result of that

row. Underlined values represent the best value for that dataset. K-NN - K Nearest
Neighbors; RF - Random Forest; LR - Logistic Regression; SVM - Support Vector

Machine; NB - Naïve Bayes.

LDA word2vec GloVe fastText USE ELMo M1R FL-1R FX2-1R

Ohsumed 0.2262 0.4223 0.4136 0.4324 0.3009 0.4172 0.4357 0.4412 0.4416

K-NN 0.2138 0.3822 0.3731 0.3912 0.3009 0.3209 0.3975 0.3961 0.4023
RF 0.1689 0.3302 0.3258 0.3447 0.2899 0.2851 0.3411 0.3397 0.3540
LR 0.2262 0.3981 0.4136 0.4171 0.2792 0.4172 0.4185 0.4169 0.4196
SVM 0.2056 0.4223 0.3286 0.4324 0.2542 0.3194 0.4357 0.4412 0.4416
NB 0.0558 0.2820 0.2771 0.2785 0.1947 0.1865 0.3118 0.3065 0.3218
20Newsgroups 0.6340 0.7110 0.7153 0.7485 0.6476 0.6895 0.7201 0.7147 0.7272

K-NN 0.5013 0.5737 0.5425 0.6134 0.5588 0.4574 0.6320 0.6329 0.6447
RF 0.6340 0.6300 0.6386 0.6794 0.6476 0.5389 0.6753 0.6742 0.6802
LR 0.5498 0.6657 0.7152 0.7288 0.5447 0.6895 0.7167 0.7147 0.7272
SVM 0.5388 0.7110 0.7153 0.7485 0.5171 0.4981 0.7201 0.7114 0.7192
NB 0.4624 0.4426 0.4133 0.5104 0.4401 0.2677 0.5895 0.5884 0.5916
Reuters-21578 0.8260 0.8805 0.8830 0.8802 0.8278 0.8780 0.8719 0.8726 0.8708

K-NN 0.7919 0.8680 0.8640 0.8593 0.8267 0.8436 0.8568 0.8554 0.8518
RF 0.8260 0.8561 0.8619 0.8536 0.8278 0.8281 0.8550 0.8525 0.8550
LR 0.7875 0.8698 0.8776 0.8705 0.7370 0.8751 0.8651 0.8726 0.8708
SVM 0.8041 0.8805 0.8830 0.8802 0.7951 0.8780 0.8719 0.8640 0.8637
NB 0.6024 0.7740 0.8224 0.8034 0.7725 0.7603 0.8009 0.8120 0.7980

BBC 0.9552 0.9708 0.9784 0.9766 0.9672 0.9743 0.9780 0.9784 0.9766

K-NN 0.9304 0.9591 0.9622 0.9618 0.9577 0.9497 0.9596 0.9600 0.9573
RF 0.9552 0.9532 0.9631 0.9663 0.9672 0.9573 0.9681 0.9667 0.9703
LR 0.9241 0.9478 0.9690 0.9681 0.9370 0.9649 0.9766 0.9784 0.9757
SVM 0.9295 0.9708 0.9784 0.9766 0.9474 0.9743 0.9780 0.9771 0.9766
NB 0.8680 0.9218 0.9483 0.9469 0.9442 0.9195 0.9501 0.9456 0.9469

ScyClusters 0.4814 0.6410 0.6391 0.6645 0.4966 0.6612 0.7027 0.6822 0.6936

K-NN 0.4137 0.5919 0.5903 0.5777 0.4835 0.5675 0.6267 0.6165 0.6400
RF 0.4814 0.5479 0.5469 0.5890 0.4966 0.5317 0.5889 0.5940 0.6073
LR 0.3692 0.5879 0.6168 0.6162 0.3475 0.6612 0.6839 0.6822 0.6936
SVM 0.3439 0.6410 0.6391 0.6645 0.3439 0.3650 0.7027 0.6701 0.6905
NB 0.2362 0.4769 0.5185 0.4790 0.3910 0.4670 0.5373 0.5385 0.5329

ScyGenes 0.6104 0.7988 0.7961 0.8301 0.6460 0.8761 0.8556 0.8521 0.8456

K-NN 0.4573 0.7085 0.7120 0.7281 0.6105 0.7480 0.7866 0.7750 0.7903
RF 0.6104 0.6849 0.7363 0.7308 0.6460 0.7423 0.7649 0.7603 0.7659
LR 0.3488 0.6346 0.7746 0.7477 0.3044 0.8509 0.8556 0.8521 0.8456
SVM 0.3471 0.7988 0.7961 0.8301 0.2442 0.8761 0.8538 0.8475 0.8402
NB 0.3766 0.6326 0.6743 0.6249 0.5725 0.7028 0.6977 0.6895 0.7047

94

with 1GB and word2vec (Google News) is the largest with 3.5GB. In the case of document

embeddings (PV-DBOW), the models trained using raw words for WD10 have more than

6.3GB.

LDA word2vec GloVe fastText USE ELMo M1R FL-1R FX2-1R

0
1

6

2

0
1

3
2

16

N
u
m
b
er

o
f
b
es
t
re
su
lt
s

Figure 4.3: Document classification ranking considering state-of-the-art for word
embeddings and lexical chains techniques.

Considering the Reuters-21578 dataset, GloVe achieves the best results in 4 out of

5 classifiers. This finding makes sense if we consider how GloVe uses a co-occurrence

approach to build its vectors. Several documents in this dataset are composed of short

phrases, which prevents our techniques from deriving a good semantic representation. As a

consequence, our chains end upwith poor accuracy. However, we are still able to outperform

techniques that can embed any given token, such as ELMo and USE. On BBC, the synset

embedding models present the highest accuracy in 4 of the 5 classifiers, in which our lexical

chains representation has the best scores for RF and LR. The documents composing BBC

dataset are extracted from BBC News articles and are written using formal and cohesive

English, which is beneficial to us. A cohesive text structure contributes to the semantic

representation in our techniques since they rely on the lexical information from onWordNet.

Finally, on ScyClusters and ScyGenes datasets our lexical chains show superior results

95

in 7 out of 10 experiments. If we consider word2vec and FX2-1R, for the K-NN classifier,

our technique shows an improvement of 15% and 9% for the ScyClusters and ScyGenes

datasets respectively. These results suggest that the semantic relations extracted through

our algorithms indeed improve the quality of a standard word embeddings technique. As in

the BBC and Oshumed datasets, ScyClusters and ScyGenes are also composed of formal,

cohesive and typo-free English documents. As a result, the synset techniques, especially

the proposed ones, are able to properly extract the semantic relations within the documents.

A natural direction after training the many variations of our techniques, through a

word2vec implementation, is to explore different embeddings algorithms. For this, as

explained in Section 4.3.4, we use a PV-DBOW [87] implementation to obtain the document

vectors from our synset corpus. USE and ELMo are alsomodified so they can provide vector

representations of documents in the datasets directly (i.e. without the need of averaging all

its constituent words vectors). As Table 4.13 shows, our techniques do not generalize as

well as in word2vec. In fact, most of the best results are achieved with a vanilla PV-DBOW

implementation, evenwhen considering the datasets inwhich our techniques present the best

results for the word embeddings experiments (i.e. Oshumed, 20Newsgroups, ScyClusters,

and ScyGenes).

In a overall perspective, if we consider MSSA-NR, FLLC II, and FXLC II (chunk

size of 2 and 4) we do achieve the highest accuracy when comparing with USE and

ELMo, as Figure 4.4 illustrates. However, this is not a fair comparison since we are

using four variations to justify our results, while the others are being evaluated as single

techniques. The experiments using document embeddings techniques give us two broad

directions to pursue: (i) explore the behavior of our techniques using character/sub-word

level embeddings (e.g. fastText, USE, ELMo) and (ii) improve/modify the current versions

of MSSA, FLLC II, and FXLC II to a document level structure. On top of that, we also

contemplate other NLP task that we want to explore, such as sentiment analysis, text

summarization, and plagiarism detection.

96

Table 4.13: Classification accuracy for document embeddings models against proposed
techniques for each classifier and dataset. Values in bold represent the best result of that

row. Underlined values represent the best value for that dataset. K-NN - K Nearest
Neighbors; RF - Random Forest; LR - Logistic Regression; SVM - Support Vector

Machine; NB - Naïve Bayes.

PV-DBOW USE ELMo M1R FL-1R FX2-1R FX4-1R

Ohsumed 0.4344 0.4001 0.4067 0.4283 0.4289 0.4275 0.4190

K-NN 0.4103 0.3822 0.3266 0.3949 0.3946 0.3966 0.3908
RF 0.3213 0.3330 0.2903 0.3189 0.3195 0.3202 0.3075
LR 0.4274 0.3760 0.4017 0.4215 0.4211 0.4207 0.4138
SVM 0.4344 0.4001 0.4067 0.4283 0.4289 0.4275 0.4190
NB 0.2681 0.2885 0.2157 0.2541 0.2564 0.2613 0.2568

20Newsgroups 0.7558 0.7551 0.7097 0.7162 0.7164 0.7246 0.7226

K-NN 0.6614 0.7494 0.5610 0.6011 0.6024 0.6107 0.5901
RF 0.7178 0.7460 0.6193 0.6707 0.6678 0.6830 0.6687
LR 0.7523 0.7551 0.7097 0.7162 0.7141 0.7181 0.7203
SVM 0.7558 0.7490 0.6968 0.7154 0.7164 0.7246 0.7226
NB 0.4180 0.7190 0.4932 0.3981 0.3951 0.3935 0.4021

Reuters-21578 0.8654 0.8575 0.8808 0.8615 0.8604 0.8600 0.8485

K-NN 0.8403 0.8442 0.8600 0.8406 0.8493 0.8424 0.8381
RF 0.8449 0.8421 0.8550 0.8500 0.8557 0.8550 0.8485
LR 0.8432 0.8496 0.8790 0.8295 0.8306 0.8317 0.8353
SVM 0.8654 0.8575 0.8808 0.8615 0.8604 0.8600 0.8625
NB 0.6490 0.8026 0.8249 0.6411 0.6340 0.6372 0.6458

BBC 0.9753 0.9735 0.9748 0.9762 0.9771 0.9762 0.9744

K-NN 0.9645 0.9560 0.9559 0.9556 0.9574 0.9578 0.9551
RF 0.9744 0.9677 0.9708 0.9686 0.9690 0.9677 0.9677
LR 0.9753 0.9726 0.9748 0.9739 0.9730 0.9757 0.9744
SVM 0.9748 0.9735 0.9739 0.9762 0.9771 0.9762 0.9721
NB 0.9537 0.9591 0.9564 0.9430 0.9385 0.9407 0.9416

ScyClusters 0.5686 0.4960 0.5418 0.5938 0.5873 0.5892 0.6054

K-NN 0.5244 0.4484 0.4204 0.5476 0.5502 0.5511 0.5511
RF 0.5134 0.4337 0.4380 0.5188 0.5141 0.5097 0.4851
LR 0.5599 0.4326 0.5418 0.5684 0.5691 0.5715 0.5667
SVM 0.5686 0.4960 0.5284 0.5938 0.5873 0.5892 0.6054
NB 0.4767 0.3862 0.3133 0.4826 0.4916 0.4964 0.4970
ScyGenes 0.8597 0.6333 0.7926 0.8505 0.8502 0.8450 0.8198

K-NN 0.7766 0.5766 0.5633 0.7596 0.7507 0.7551 0.7457
RF 0.7813 0.5819 0.6167 0.7627 0.7546 0.7479 0.7398
LR 0.8227 0.5531 0.7926 0.8156 0.8092 0.7920 0.7839
SVM 0.8597 0.6333 0.7635 0.8505 0.8502 0.8450 0.8198
NB 0.6875 0.5176 0.5331 0.6671 0.6697 0.6640 0.6632

97

PV-DBOW USE ELMo M1R FL-1R FX2-1R FX4-1R

11

6

4

1

2

3

2

N
u
m
b
er

o
f
b
es
t
re
su
lt
s

Figure 4.4: Document classification ranking considering state-of-the-art for document
embeddings and lexical chains techniques.

4.3.7 Lexical Chains Behavior Analysis

In this section, we provide a deeper investigation of our proposed techniques and

all the details of their internal configuration. We still keep the same machine learning

classifiers and datasets to maintain consistency in our comparisons. The main idea is to

provide a different perspective on how the chunk size of our fixed chains and the recurrent

aspect of the models, in which they are based, influence our results. We also provide the

same findings for the flexible chains algorithms and for the lexical chains trained using a

PV-DBOW implementation. The results in Figures 4.5 and 4.6 show the accuracy over the

different variations of our approaches for the six datasets and five classifiers for the word

embeddings training model. Figures 4.7 and 4.8 show the same perspective, but considering

the document embeddings training model.

For the FXLC II technique, in Figure 4.5, we can see that all models built considering

the MSSA-1R (-1R) synset corpus and model present an improvement if compared with

their base version (-0R). This means that the refined representation of MSSA-NR indeed

improve the quality of the vectors obtained through our chains. However, the same behavior

98

is not true when we perform the recurrent model again (-2R). Even though there is a

variation considering the number of iterations in the recurrent model, our fixed chains seem

to be more sensitive to the change in their chunk size. In fact, if we consider each block

separately (vertical dashed lines), the accuracy for each fixed chain size remains quite stable.

Nevertheless, moving from 2 to 8 synsets per chain, the loss of information seems to greatly

affect our techniques. In other words, the chunk size parameter in our algorithm is inversely

proportional to the quality of semantic representation of our chains. Thus, resulting in a

decrease in accuracy when we move from 2 to 8 synsets per chain.

K -NN Random Forest Logistic Regression SVM Naive Bayes

A
cc
ur
ac
y
%

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

30

35

40

45

(a) Ohsumed.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

60

65

70

(b) 20Newsgroups.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

80

82

84

86

(c) Reuters-21578.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

94

95

96

97

98

(d) BBC.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

50

55

60

65

70

(e) ScyClusters.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

F
X
8-
0R

F
X
8-
1R

F
X
8-
2R

70

75

80

85

(f) ScyGenes.

Figure 4.5: Accuracy for fixed lexical chains for variable chunk size and number of
multiple recurrent passes for word embeddings models.

We also provide the same perspective analysis considering the FLLC II technique, shown

in Table 4.6. Since the only configuration applied to the flexible chains is the recurrent

aspect, we have a simpler scenario if compared to the FXLC II alternative. However,

99

K -NN Random Forest Logistic Regression SVM Naive Bayes

A
cc
ur
ac
y
%

F
L
-0
R

F
L
-1
R

F
L
-2
R

30

35

40

45

(a) Ohsumed.

F
L
-0
R

F
L
-1
R

F
L
-2
R

60

65

70

(b) 20newsgroups.

F
L
-0
R

F
L
-1
R

F
L
-2
R

80

82

84

86

(c) Reuters-21578.

F
L
-0
R

F
L
-1
R

F
L
-2
R

95

96

97

98

(d) BBC.

F
L
-0
R

F
L
-1
R

F
L
-2
R

55

60

65

70

(e) ScyClusters.

F
L
-0
R

F
L
-1
R

F
L
-2
R

70

75

80

85

(f) ScyGenes.

Figure 4.6: Accuracy for flexible lexical chains for multiple recurrent passes for word
embeddings models.

the behavior with respect to the recurrent characteristics remains the same, in which little

variation in accuracy is perceived. It seems that the enclosed cost of iteratively applying

MSSA-NR is only interesting for N=1. Another common aspect for both techniques is the

stability concerning the machine learning classifiers. For both, FLLC II and FXLC II, the

best results are always between logistic regression and SVM, independent of the dataset,

change of chunk size, and recurrence iteration.

The same behavior analysis for the lexical synset corpus trained over a PV-DBOW

approach is also included, as Figures 4.8 and 4.8 show. In this analysis we do not depict

any of the results of FXLC II for chunk size of 8 because of its poor performance in the

document classification experiments for the word embeddings models (Table 4.12). The

behavior of fixed chains for document embeddings in Figure 4.7 follows a similar pattern to

the ones using word embeddings training models (Figure 4.5), with respect to the recurrent

100

approach MSSA-NR. The accuracy seems to improve when we move from N = 0 to 1, but

decrease when we perform a second iteration in the algorithm. In addition, the size of the

chain seems to affect negatively their semantic representation, in which chains with chunk

size of 2 have better performance than those with size of 4. Most datasets present similar

characteristics with their word embeddings pair results, except for the ScyGenes dataset,

which improves its results when its chunk size and recurrent iteration are increased. In fact,

ScyGenes is the only dataset that improves all its results, for every classifier in the second

iteration for the lexical chains (-2R). However, the obtained accuracy for ScyGenes is still

inferior to its word embeddings pair.

K -NN Random Forest Logistic Regression SVM Naive Bayes

A
cc
ur
ac
y
%

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

25

30

35

40

(a) Ohsumed.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

40

50

60

70

(b) 20Newsgroups.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

65

70

75

80

85

(c) Reuters-21578.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

94

95

96

97

98

(d) BBC.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

50

55

60

(e) ScyClusters.

F
X
2-
0R

F
X
2-
1R

F
X
2-
2R

F
X
4-
0R

F
X
4-
1R

F
X
4-
2R

65

70

75

80

85

(f) ScyGenes.

Figure 4.7: Accuracy for fixed lexical chains for variable chunk size and number of
multiple recurrent passes for document embbedings models.

As for the flexible chains behavior, considering the document embeddings technique

we see little or no significant difference against their word embeddings pair, as Figure 4.8

101

shows. The number of iterations does not seem to affect the construction of flexible chains

to the point where great improvements are perceived. In other words, the cost incurred for

running another pass in the training corpus is too high to justify another disambiguation and

annotation step. Finally, the performance in the machine learning classifiers between chains

trained in word and document embeddings seem to maintain certain stability, in which

logistic regression and SVM provide the best results for all variations of our techniques.

K -NN Random Forest Logistic Regression SVM Naive Bayes

A
cc
ur
ac
y
%

F
L
-0
R

F
L
-1
R

F
L
-2
R

25

30

35

40

(a) Ohsumed.

F
L
-0
R

F
L
-1
R

F
L
-2
R

40

50

60

70

(b) 20newsgroups.

F
L
-0
R

F
L
-1
R

F
L
-2
R

65

70

75

80

85

(c) Reuters-21578.

F
L
-0
R

F
L
-1
R

F
L
-2
R

94

95

96

97

98

(d) BBC.

F
L
-0
R

F
L
-1
R

F
L
-2
R

50

52

54

56

58

(e) ScyClusters.

F
L
-0
R

F
L
-1
R

F
L
-2
R

65

70

75

80

85

(f) ScyGenes.

Figure 4.8: Accuracy for flexible lexical chains for multiple recurrent passes for document
embeddings models.

4.4 Further Discussions and Limitations on FLLC II and FXLC II

In this section, we try to provide a deeper discussion about the main aspects of our

lexical chains techniques, pointing out their strengths, and limitations, while discussing

alternatives that can be taken into account to alleviate them.

102

The main objective of the proposed lexical chains algorithms is to represent synset-

token documents through the use of different types of lexical chains. For the FLLC II

technique (Section 3.3.1), we use WordNet to identify how the synsets in our documents

are semantically connected. This imposes the condition that only relationships mapped

in WordNet [1] can be considered, which might not reflect the true semantic value in a

document. Other lexical databases, such as ConceptNet [94] and BabelNet [121] might

provide alternative structures for the synsets. However, ConceptNet does not assume that

words are classified in sets of synonyms, which would require drastic changes in our

algorithm. On the other hand, BabelNet uses a similar synset structure to WordNet that

could be explored. BabelNet also integrates different resources23 (including WordNet).

Unfortunately, because of their proprietary license, BabelNet’s access is not as facilitated

as ConceptNet and WordNet. It is important to mention that, for research purposes,

BabelNet indexes can be downloaded upon an application request to their company. The

application requires affiliation to a research institution or a Ph.D. student status, besides the

non-commercial nature of the project.

One might point out that the proposed techniques only use a simple word2vec imple-

mentation to embed the synset corpora produced in FLLC II and FXLC II. Although this

brings an interesting perspective, we decided to validate our algorithms using a straightfor-

ward method before moving to more complex ones, such as fastText [17], ELMo [131], and

USE [29]. In fastText they propose to learn word representations as a sum of the n-grams of

its constituent sub-words. This can lead to a large number non-existent tokens in WordNet,

thus our approaches would not take advantage of these extra computations. In ELMo, the

sub-word issue is even stronger since their words vectors are a linear combination of their

characters. This would create even more noise for us, and they would not be relevant for

the WordNet lexical structure. Another factor that prevents us from using ELMo, for now,

is its expensive training process24. Closer to the word2vec technique and probably easier

23https://babelnet.org/about
24https://github.com/allenai/bilm-tf

103

to incorporate, GloVe [130] is also considered, but since it works building a co-occurrence

matrix of words, our training corpus would make its memory consumption infeasible at

the moment. In addition, we also examined the recently published USE [29], but their

implementation only allows us to retrieve word vectors from their pre-calculated model,

not train a new corpus. We note that we are emphasizing the use of new word embeddings

techniques since experiments with document embeddings approaches show discouraging

results so far (Section 4.3.6).

The synsets used to build our chains and embeddingsmodels are based on properEnglish.

For that reason, our approaches do not generalize that well for documents containing

informal English (e.g. colloquial text, slang). An option to mitigate the lack of matches

between document tokens and the embeddings model is to incorporate multiple pre-trained

word embeddings, similar to what Sinoara et al. [165] adopt. However, this can lead to

an overhead as large as the extra pre-trained models considered. This alternative would

compromise the lightweight representation of our models. Additionally, if several word

embeddings models have the same word, a ranking system would be required to order

multiple occurrences of the same words.

Even thoughwe incorporate asmuch as 19 semantic features inWordNet for the FLLC II

algorithm (Section 3.3.1), there are still relationships that can be explored. Nevertheless,

during the early stages of our research, many synset’s attributes (related_synsets in Algo-

rithm 3) did not return any associated synset. By decreasing the number of related synsets

we achieve better performance during the construction of our flexible chains. In addition to

the number of attributes, we do not explore deeper levels of relations for each attribute (e.g.

hypernyms of hypernyms). In other words, for each synset in the related synsets we do not

investigate their own related synsets.

During our experiments in Section 4.3, we noticed that the best results are obtained

with datasets composed of abstracts of papers. These results reinforce the strength of

our technique on corpora composed of well-written English. Even so, we still have good

104

performance on other datasets that are composed of news from websites. In 20Newsgroups

for example, we have 3 out of 5 best results. During our investigations on the experiments

against BOW, we understand that our performance tends to decrease when we use large

chunk size chains. A possible explanation may be because with larger fixed chains we have

a great dimensionality reduction and consequently, we may be losing too much information

in the process.

105

CHAPTER V

Final Considerations

In this work, we propose a collection of algorithms capable of extracting semantic

features from natural language text using lexical chains and multi-sense embeddings. These

techniques come to alleviate the semantic deficiency gap between data production and

consumption, which increases on a daily basis. Two different aspects are explored with the

proposed algorithms. The first is concerned with the disambiguation and representation of

words given the influence of its immediate neighbors. The second concerns in extracting

the semantic relationships between consecutive words dynamically or using pre-defined

chunks. While Most Suitable Sense Annotation (MSSA), Most Suitable Sense Annotation

- N Refined (MSSA-NR), and Most Suitable Sense Annotation - Dijkistra (MSSA-D) are

focuses on the former aspect, Flexible Lexical Chains II (FLLC II) and FXLC II target the

second one.

In MSSA, we automatically disambiguate and annotate any text corpus using a sliding

context window for each word. We explore how single vector representation limitations can

be mitigated if MSSA is applied using a traditional word2vec implementation, producing

more robust multi-sense embeddings with minimum hyperparameters tuning. Similarly,

MSSA-NR works in a recurrent manner, using pre-trained synset embeddings models in

the disambiguation process, instead of a traditional word-based one. While MSSA and

MSSA-NR work locally in their sliding context window, MSSA-D annotates its word-

senses in a global perspective. MSSA-D produces its word-senses with the objective of

minimizing the cost (i.e cosine distance) of moving from the first word to the last one in the

106

text document.

For FLLC II, our lexical chains are built with the assistance of a lexical database (i.e.

WordNet) to extract the relations among the constituent synsets of a document. Addition-

ally, FLLC II is able to handle any POS and considers 19 synset attributes from WordNet.

In FXLC II, we pre-define a specific number of synsets for each lexical chain. The defined

semantic space guarantees the dimensional reduction of our document representation with

respect to the number of its synsets. In other words, while FLLC II offers a dynamic ap-

proach in capturing the different ideas in a text, FXLC II assumes a more strict methodology

and enforces a limit in the number of synsets for each chain, representing text documents

more efficiently.

Considering the word similarity task, we perform an extensive comparison with many

recent publications and categorize their results according to standard metrics. During the

bibliographic review, some shortcomings with respect to the experiments setup, particularly

considering the metrics available, are evident in recent contributions in the area. Most

publications focus on one or two metrics at the same time, ignoring the others. Hence, it

is hard to confirm the superiority of one system over another. However, we try to mitigate

this, comparing systems with the greatest number of similarities we can find.

The combination between the proposed MSSA algorithms and word2vec achieves solid

results in 6 different benchmarks: RG65, MEN, WordSim353, SimLex999, MC28, and

SCWS. In our recurrent model (MSSA-NR), we explore how we can build and improve

the produced synset embeddings model iteratively. Word similarity is a downstream task

and somewhat independent of whether the produced word-sense embeddings converge or

not. Therefore, we believe specific experiments to study the values of our embeddings are

still necessary to fully understand their behavior. The other group of our models, using

global (MSSA-D) and local (MSSA) context information are also used to build synset

embeddings. The former approach finds the most similar word-senses from the first to

the last word in a document, while the second approach looks for the most suitable synset

107

given a defined sliding window. Initially, we thought that MSSA-D would produce the best

results on average, since it considers the whole document globally. However, if we analyze

the results of WD18 only, this is not entirely true. Most of our experiments shows that

MSSA obtains better results when compared to MSSA-D. Apparently, features of the local

context window are more powerful than those globally obtained. We also confirm that a

dimensional increase in the synset embeddings training model proves more effective than a

change in the approach itself, but at the cost of some extra computation time. The simplicity

of our model makes its use attractive, while the independent components of its architecture

allows its extension to other NLP tasks beyond word similarity.

Currently, all MSSA techniques consider a sliding context window of +/- 1 tokens,

unigrams or non-stemmed words, but we intend to pursue some extensions, such as keeping

common n-grams, having a flexible context sliding window size for MSSA, and different

weighting schemes for the context analysis. We will pursue a weighting scheme whereby

context words closer to the target word-sense have more importance. In addition, we plan

to evaluate higher levels of our recurrent model (MSSA-NR). This seems to be a more

certain path to follow than just increasing the dimensionality for each scenario. We also

want to explore new alternatives to build semantic representations using MSSA as their

base. Finally, we also would like to integrate MSSA with the best-ranked systems evaluated

throughout our experiments in the word similarity task.

Since all proposed MSSA techniques are performed on the raw text directly and prior to

anyword embeddings trainingmodel, they can easily be incorporated into anyNLP pipeline,

independent from the problem or task. This opens new alternatives to different real-world

problems and systems that make use of natural language text as their input. In particular,

some would directly benefit from a better semantic representation, especially in the expert

systems arena. In monitoring social media activity, one could use MSSA to improve the

quality of the processed comments about a certain company or product and evaluate its

digital reputation (e.g. customer surveys). In chat-bots, MSSA can help intelligent systems

108

to comprehend human textual interaction, leading us to a more human-like perception in

general services (e.g. tutoring systems, automated health system, technical support). In the

same direction, virtual digital assistants that are able to differentiate the nuances in a human

discourse can definitely provide a better service with respect to the need and characteristics

required from its users. Another interesting option, closer to academia, would be to explore

the semantic signature between authors in scientific papers and Principal Investigators (PI)

in research grants. The correlation between scientific papers and research grants awarded

would help us to identify more relevant features that lead authors to a high productivity

in their careers. In the recommender systems field, more specifically in scientific paper

recommendation, one can use our semantic annotation to explore characteristics in articles

other than title, abstract, and keywords only. The inner sections of a paper (e.g. introduction,

related work, conclusions) are rich in content and would much benefit from our algorithms.

In general, any system that requires more semantic features in order to support the decision

making process can benefit from the proposed techniques in this work.

The proposed lexical chains techniques are compared against a traditional BOW ap-

proach and an additional six state-of-the-art techniques for the document classification task:

LDA, word2vec, PV-DBOW, GloVe, fastText, USE, and ELMo. In order to explore the

stability of our systems, we evaluate all techniques on six distinct datasets with specific

characteristics, which impose a particular challenge on each classification. Furthermore,

we consider five machine learning classifiers in our experiments so we can guarantee our

findings are not bound to one specific classification method.

The document classification task shows that the proposed techniques for building lexical

chains leverage the semantic representation offered in word embeddings. As Table 4.12

demonstrates, FLLC II and FXLC II also often improve the results of MSSA and traditional

word2vec, which are used as a building block for both of them. As we use MSSA in the

document classification problem, we believe the proposed lexical chains can also be trans-

ferred to other NLP downstream tasks that also require a refined semantic representation,

109

such as sentiment analysis, text summarization, and plagiarism detection.

An interesting aspect of our architecture (Figure 3.4) is that all components can use a

synset embeddings model in their representation process. That being said, once a synset

embeddings model is produced, using the results from FLLC II or FXLC II, we can feed it

back to our algorithms and create a more refined output. In this scenario, both techniques

(FLLC II and FXLC II) will have their chain representation affected at some level. This

is because the values provided using the new synset embeddings models might lead to a

different synset closer to the average chain vector (get_best_rep) calculated (i.e centroid).

The idea is to apply the recurrent aspect of MSSA-NR to the lexical chains approaches.

Currently, we use MSSA-NR results to build our chains, but we do not explore the reuse of

the produced synset chains embeddings models over multiple iterations. We believe after

many passes, the representation of our chains will get more accurate, better defined, and

stable.

Considering that the FLLC II and FXLC II outputs (i.e. synset chain corpus) follow

an identical format for their token identification, we can also use them recurrently. If the

produced lexical chains corpus is used as input, two distinct behaviors are expected. For

the FLLC II algorithm, since the lexical chains are built using synset relationships from the

lexical database, their structure will not change. The reason behind this is because once

the flexible chains are represented, there is no lexical relationship connecting two separate

chains, otherwise they would be placed together to begin with. However, in the FXLC II

algorithm, for each iteration we use the output chain synset corpus as an input, the shape

and the representation of these chains will drastically change. This behavior is expected

if we consider that every time FXLC II is executed, the input corpus is reduced according

to chunk size adopted. In case FXLC II is performed enough times, one might even end

up with a single synset representing the entire corpus. Needless to say, by doing so, it is

also expected that on each iteration, the semantic representation for the FXLC II technique

produces a more a general output. The input-output recurrence, as for the synset model

110

embeddings, give us interesting directions to explore in future work.

In this work, we chose to embed our MSSA and lexical chains algorithms using a

word2vec implementation. However, as explained in Chapter IV, recently published em-

beddings techniques (e.g. fastText, USE, ELMo) bring new perspectives into play. We

believe our proposed system of combiningWSD, lexical chains and embeddings algorithms

can leverage the semantic features in these neural network models. We intend to investigate

how new bidirectional transformer language models (biLM) can be used in conjunction

with our proposed techniques for lexical chains. In particular, three actors show promising

findings in the NLP arena that call for our attention, namely ELMo [131], Bidirectional

Encoder Representations from Transformers (BERT) [38], and Multi-Task Deep Neural

Network (MT-DNN) [96].

5.1 Future Directions

Planning the next steps of this work, a preliminary study on the field of scientific paper

mining and recommendation is provided in this section. The idea is to use this material as

a starting point and find real world applications in which the developed techniques can be

applied.

5.1.1 Scientific Paper Mining and Recommendation

As explained in Chapter I, data production is increasing in a daily basis. In 2025, the

forecast is already of 175 zettabytes and it will probably increase in the next couple of years.

In academia, this scenario also follows a similar trend. ELSEVIER1 uploads approximately

420,000 records per year, with more than 130 million publications and 30,000 e-books in

its archive. The Institute of Electrical and Electronics Engineers (IEEE)Xplorer2 uploads,

every month, around 20,000 new publications and its archive holds more than 4 million

1https://www.elsevier.com
2http://ieeexplore.ieee.org/

111

records among journals, conference proceedings and e-books. With more than 100,000

members, the Association for Computing Machinery (ACM)3 is the largest scientific and

educational computing society, with more than 50 journals and 170 conferences. All these

groups contribute to the information explosion, which makes it harder to stay up-to-date

with the most recent advances in any area of science. The task of reading a paper and

associating it with similar ones is a tedious and time-consuming exercise, one that every

scholar must go through in order to become familiar with a new field, or to stay on top of

recent discoveries. This challenge becomes more obvious when the investigated field of

research has many publications or the state-of-the-art of the field is yet not well-formed.

Nonetheless, there are information systems (e.g. Mendeley4, Scopus5) that try to

facilitate this task, suggesting similar articles based on user preferences and history. These

systems make use of several different approaches to relate similar records considering

explicit features, such as authors and co-authors, publication year and keyword list, title

and keywords, abstract and title, and many other combinations. All these features can be

directly extracted from publications, or their metadata (e.g. Research Information Systems

(RIS)), using techniques such as string-matching, BOW and tf-idf. In fact, tf-idf is used in

approximately 70% of the current weighting schemes in scientific paper recommendation

systems [9]. Others explore the likelihood of pairs of terms co-occurring together in a

corpus or some variation of n-grams (e.g. uni-gram, bi-gram, tri-gram) to group similar

articles based on their words. Some explore these aspects through machine learning and/or

probabilistic methods to infer related records. Simply calculating the probability of any

given pair of words to occur, or expanding the synonyms in both corpus and query, does not

extract the meaning behind the content embedded in a document. More specifically, string-

based techniques often fail to obtain implicit semantic characteristics from documents. Our

techniques try to provide semantic features that can help to relate the dominant interpretation

3http://www.acm.org
4https://www.mendeley.com
5https://www.elsevier.com/solutions/scopus

112

between many scientific documents. In addition, these features can be used to improve

the quality of how to measure scientific production, increasing the number of co-related

characteristics in the data mining process.

Given the necessity to explore non-obvious data relationships, one should be aware

that, (i) words can have different meanings, even though they are written the same way;

(ii) context is important, and one word can affect another at the semantic level, and (iii)

sometimes an idea is represented through a series of word-events that work as a concrete

semantic representation of the entire intentional concept. In other words, the whole is much

more than the sum of the parts, which in this case is represented through consecutive words.

The approaches presented in Chapter III extract semantic features of natural language text

considering all three points, (i), (ii), and (iii). Thus, providing the perfect scenario to apply

our proposed techniques.

The concern of properly measuring science is not a XXI century problem. This is

first discussed in the mid 1950’s by Garfield [55]. The task of measuring science, or

Scientometrics, has its origins in the translation of the term “Naukometrija”[119]. Most

researchers associate the modern use of Scientometrics to Price [135], but as Garfield

[56] states, referencing his own work from 1955: “Let me remind you of some historical

facts. Price’s “Science Since Babylon” (Price, 1961) was published 6 years after my 1955

paper in Science (Garfield, 1955)([55]). The first edition of Little Science, Big Science

appeared 2 years later in 1963. The opening page is called a “prologue to a science of

science”. If Derek was aware of my paper, he did not cite it then.”. In any case, the problem

of measuring scientific publications through its many features (e.g. number of citations,

number of publications, authors) brings several questions into play, especially about the

impact of those publications in the scientific community. Among the many questions

present in the field, some relate to topics presented in this work: Is it possible to better

analyze and recommend scientific papers based on its semantic features? Is it possible use

semantic features to identify hidden patterns in this context? We believe that the answer for

113

these questions is yes.

Bollacker et al. [18] propose the field of scientific paper recommender systems with

the CiteSeer Project. This is a branch inside Recommender Systems (RSS), which can be

defined as a collection of applications and algorithms designed to assist users in the process

of decision making, offering support or suggestions to them [142]. These systems have a

significant impact in industry and in our lives, such as Amazon6, Google7, Netflix8, and

Spotify9. Such systems are so profitable that Netflix, in 2009, granted a prize of one millon

US dollars to anyone who could improve its recommender system 10%.

The problem of recommending products can be easily applied to other areas. For exam-

ple, in suggesting scientific papers to scholars, articles are the products to be recommended

to consumers (i.e. users). Bollacker et al. [18] make this clear when they point to the

accelerated growth in the number of published research items. The difficulty of selecting

relevant publications is only getting harder and requires the assistance of robust techniques.

More specifically, they say that “A problem in the search for current relevant published

research is the exponential growth of the literature. The Web makes literature easier to

access, but ease of publication encourages an increased publication rate. Additionally,

Web based research publications tend to be poorly organized (each institution or researcher

may have his or her own organizational scheme), and are spread throughout the Web.”.

This just illustrates the accelerated data production issue (Chapter I), and how important it

is to develop techniques that can handle such matters in a non-superficial approach.

5.1.2 Related Work in Scientific Paper Mining and Recommendation

Since the first paper on Scientific Paper Mining and Recommendation (SPR) sys-

tems [18], the number of articles in this field has grown abruptly. In 2013, Beel et al.

[10] release a quantitative literature survey in which 176 research articles about scientific

6https://www.amazon.com/
7https://www.google.com/
8https://www.netflix.com/
9https://www.spotify.com/

114

paper recommendation are evaluated. According to Beel et al. [10], 19% of these articles

are not compared against a formal baseline. Their analysis includes several perspectives,

such as: system quality (e.g. accuracy, user satisfaction), evaluation methods, baselines,

datasets, and etc. Their conclusions show that there are no consensus on how to evaluate

and compare scientific paper recommender approaches.

Later, Beel et al. [9] improve their survey from 2013 with a more detailed study. In

their updated article, 216 papers are evaluated, showing that 55% of the recommendation

approaches apply content-based filtering; 18% use collaborative filtering, and 16% graph-

based recommendation. The remaining is distributed among stereotyping, item-centric

recommendations, and hybrid recommendations. According to their survey, many SPR sys-

tems never leave their research project status. Considering findings from 24 recommender

systems [9], 8 are still in the prototype stage, 4 offline, 5 are not maintained, and 7 are in

used in production. Along with their survey, they also show the most productive authors

in the area of scientific paper recommendation, in which C. Lee Giles10 is number one, A.

Geyer-Schulz11 is number two, M. Hahsler12 number three, and J. Beel13 is number four.

They again conclude that currently, there is no consensus about what is the most effective

and promising approach used for SPR. The lack of details in the algorithms, evaluation

criteria, dataset variation, poor experimental design, and neglected quality measures, are

some of the possible aspects that contribute to this outcome. Beel and Dinesh [8] discuss

their team’s experiences, over the six years preceding 2017, regarding their challenges in

building, operating and researching three scientific article recommender systems in the

digital libraries and reference management context. Their report not only shows their ac-

complishments, but also the reasons why several of their experiments failed according to

their expectations.

In [11], they investigate the problems of choice overload associated with the difficulty

10http://clgiles.ist.psu.edu/index.shtml
11https://em.iism.kit.edu/team/show_person.php?id=7
12http://michael.hahsler.net
13https://www.tcd.ie/research/profiles/?profile=beelj

115

of decision making for scientific paper recommendation in digital libraries. They conduct

empirical experiments with the GESIS’s digital library Sowiport14, in which they conclude

that the average number of click recommendations increase with the number of items

available, but not proportionally. In other words, users might feel overloaded by the

number of choices rather quickly. Boratto et al. [19] discuss the current limits in the area of

content-based recommender systems and propose an architecture to build semantics-aware

content-based recommendation systems.

Paraschiv et al. [126] create and apply a semantic annotation model on a dataset com-

posed of 519 proposal abstracts in an attempt to provide semantic relevant documents as

results for information retrieval systems. Their methodology uses social network analysis

metrics to compare the generated ranking through two models, one based semantic simi-

larity and the other on co-authorship networks. In [84], they implement and compare two

content-based techniques (tf-idf and word embeddings) for paper-to-paper recommendation

using PUBMED15 abstracts between 2010 and 2015. According to their results, the ap-

proach using word embeddings is the most accurate in comparison with a more traditional

tf-idf approach.

Exploring semantic and bibliometric elements, Rollins et al. [144] proposeManuscript

Matcher to suggest scientific papers considering the user’s title, abstract and citations to

perform its recommendations. In their satisfaction survey, with 2,800 users, Manuscript

Matcher achieves a 65% overall positive evaluation. In an attempt to outperform recom-

mendation systems of articles based on keywords, Achakulvisut et al. [2] develop a tool

called Science Concierge16, to recommend papers based on their content. This system

takes into consideration the user’s vote for relevant and irrelevant documents. They use

a corpus of 15,000 posters from the Society for Neuroscience Conference17 2015, which

14http://sowiport.gesis.org/
15https://www.ncbi.nlm.nih.gov/pubmed/
16https://github.com/titipata/science_concierge
17https://www.sfn.org/annual-meeting/neuroscience-2015

116

they claim to process within 10ms. ArnetMiner18 [168], extracts and mines academic

information for the user using a probabilistic approach to tackle the name ambiguity prob-

lem. Their system creates semantic-based profiles of researchers, integrates academic data

from different sources, analyzes, and discovers patterns from this researcher social network.

Currently, their system keeps track of more than 127 million researchers, summing up

approximately 232 million publications. Other recommender systems (e.g. Mr. Dlib19,

Bibtip20, Mendeley21, Docear22) are also discussed in [9].

Xia et al. [182] propose a recommendation method which incorporates information on

common author relations among articles. Their main motivation is that researchers often

search published items from the same author. They use two features: the ratio of the total

number of pairwise articles with common author relations to the total number of all pairwise

articles for a researcher, and the ratio of the number of occurrences of the most frequent

author in articles to the total number of articles for a researcher. Using this approach, they

obtain better results than a traditional random walk.

The area of SPR presents a very complex scenario, in which multiple fields (e.g.

NLP, machine learning, scientometrics, statistics) work together to achieve the same goal,

better recommendation of scientific papers. According to Beel et al. [9], most of these

approaches fall in one of the following categories: stereotyping, content-based filtering,

collaborative filtering, graph-based, global relevance and hybrid. Currently, there is no

consensus about which are the most used, effective, and promising approaches in the SPR

field. This situation happens, mainly, because of poor experimental design, with respect to

the techniques, datasets, and evaluations used [9]. We believe that the techniques proposed

in this work (Chapter III) have much to contribute in extracting semantic features, through

word embeddings, word-sense disambiguation, and lexical chains, to be applied to the

18http://www.arnetminer.org
19http://mr-dlib.org/
20http://www.bibtip.com/en
21https://www.mendeley.com/
22http://www.docear.org/

117

scientific paper recommendation problem. Since our systems are carefully evaluated, the

next step of our research is to move forward to real-world problems and applications.

118

CHAPTER VI

Early Findings and Contributions

This chapter presents the early versions and experiments of the proposed techniques in

Chapter III, and their respective related work.

6.1 Word Sense Disambiguation Techniques

This section presents more information about WSD techniques that do not rely on word

embeddings to measure the similarity or dissimilarity between two words. Meng et al. [108]

provide more details for the word similarity measures in these sections.

6.1.1 Path-Based Measures: Wu & Palmer

Path-based approaches are represented through functions that describe how two concepts

are related (path and position) in the lexical database. Wu and Palmer [181]’s similarity

measure is calculated considering the positions of synsets ci and cj in the lexical database

in relation to the position of the lowest common subsumer between them, as Equation (6.1)

shows.

simWP (ci, cj) =
2 ∗ depth(lcs(ci, cj))

len(ci, cj) + 2 ∗ depth(lcs(ci, cj))
(6.1)

where ci and cj represent the synsets for the words wi and wj; len(ci, cj) is the length of

the shortest path from synset ci to synset cj in the lexical structure; lcs(ci, cj) is the lowest

119

common subsumer (e.g. hypernym) of synset ci and synset cj; and depth(ck) is the length

of the path to synset ck from the root entity (i.e. initial synset).

6.1.2 Information Content-Based Measures: Jiang & Conrath

IC approaches assume that every synset incorporates some amount of information.

Similarity scores in this category are calculated taking into account the IC for each synset,

in which similar synsets will share more common information than different ones. Jiang

and Conrath [77] use the semantic distance between two synsets ci and cj to obtain their

semantic similarity, as Equation (6.2) illustrates.

disJC(ci, cj) = (IC(ci) + IC(cj))− 2 ∗ IC(lcs(ci, cj)) (6.2)

where ci and cj represent the synsets for words wi and wj; lcs(ci, cj) is the lowest common

subsumer (e.g. hypernym) of synset ci and synset cj; and IC(ck) is the information content

calculated for ck. In this measure, the similarity score is the opposite of the semantic

distance, calculated in Equation (6.2). The IC for every synset can be either estimated

manually or obtained via pre-computed index1 [108].

6.1.3 Feature-Based Measures: Tversky

Feature-basedmeasures do not specifically rely on the lexical database nor the subsumers

of their synsets. Instead, they use properties from the lexical structure to calculate their

similarity scores, such as glosses in WordNet. These measures assume that the more

common features two synsets have, and the less uncommon ones they have, the more similar

these synsets are. Tversky [177] suggests that semantic similarity is not reciprocal, and thus,

that features between subclasses (e.g hyponyms) and superclasses (e.g. hypernyms) should

have different contributions to the similarity evaluation, as Equation (6.3) shows.

1http://wn-similarity.sourceforge.net/

120

simTversky(ci, cj)
|ci ∩ cj|

|ci ∩ cj|+ k ∗ |ci/cj|+ (k − 1) ∗ |cj/ck|
(6.3)

where ci and cj represent the synsets for words wi and wj; k is a constant adjustable and

k ∈ [0, 1].

6.1.4 Hybrid Measures: Zhou

Hybrid measures combine more than one approach, such as those presented so far.

Similarity scores in this category can use IC with feature-based measures, IC with path-

based measures, and other combinations as well. Some use more than two approaches, such

as [41], which incorporates synsets, neighborhood, and semantic features. Zhou et al. [190]

calculate their similarity measure based on multiple weighting factors, path characteristics,

and IC, as Equation (6.4) shows.

simZhou(ci, cj) = 1− k ∗ (
log(len(ci, cj)

log(2 ∗ (deepmax − 1))
)− (1− k) ∗ ((IC(ci)+

(IC(cj)− 2 ∗ IC(lcs(ci, cj))/2)

(6.4)

where ci and cj represent the synsets for words wi and wj; k is a constant adjustable and

k ∈ [0, 1]; IC(cp) is the information content calculated for cp; lcs(ci, cj) is the lowest

common subsumer (e.g. hypernym) of synset ci and synset cj; len(ci, cj) is the length of

the shortest path from synset ci to synset cj in the lexical structure; and deepmax is the

distance of the deepest synset in the structure.

In the early versions of the algorithms in Chapter III, the aforementioned similarity

measures and others [92, 88, 141, 93] were carefully examined. The description and

experiments for the initial prototypes of our algorithms are presented in Sections 6.2 and 6.3

respectively.

121

6.2 Best Synset Disambiguation and Lexical Chains Algorithms

Using a combination of diverse types of lexical chains, we develop a text document

representation that can be used for semantic document retrieval. Four different semantic

representation models are proposed: (i) Best SynsetID (BSID), (ii) Flexible Lexical Chains

(FLC), (iii) Flexible to Fixed Lexical Chains (F2F) and (iv) Fixed Lexical Chains (FXLC).

For now, let us define a synset of a word as a set of synonyms for that word, and a hypernym

of a word as a set of more general synonyms for that word [48].

In (i) we propose an extension ofWSD techniques, in which we extract the best semantic

representation of a word, considering the influence of its immediately neighboring words.

The motivation for this technique is to prevent that words end up with an inadequate

representation, given its multiple synonyms and the effects of its neighbors.

The second type (ii), uses the previous representation to build variable-sized lexical

chains that delineate all concepts in a document. Though the algorithm has its complexities,

the underlying idea behind the algorithm is quite simple. Proceeding linearly through the

text, we convert each successive word to its semantic representation using (i). In parallel, as

long as succeeding synsets share some semantic similarity, they will be part of the same set

(chain), otherwise a new one must be created to capture a new idea. To illustrate the FLC

algorithm, consider the sentence “the dog and the cat run with the child and her mom in

the park this Summer” as an example. After cleaning the data and applying the Best Synset

Disambiguation (BSD) algorithm, we only keep the following list {dog, cat, child, mom,

park, summer}. The chain starts with BSID(dog) as the first element and ID representing

the chain under construction (current chain), and evaluates the BSID(cat), which has the

hypernym carnivore in common, so BSID(cat) is incorporated into the current chain and

BSID(carnivore) is set as the ID for the current chain. Next, the ID representing the chain

being constructed (BSID(carnivore)) is evaluated with the next BSID(child), which has the

hypernym organism in common. The BSID(child) is incorporated into the current chain

and BSID(organism) is set as the new ID for this chain. Next, since BSID(mom) has a

122

hypernym in common (organism) with the current chain, BSID(mom) is also incorporated

and the ID representing the chain under construction remains unchanged. The BSID(park)

and BSID(summer) are not incorporated to the chain, as they do not share any common

hypernym other than WN’s root itself (i.e. entity). They also do not have any hypernym in

common among themselves, forcing them to have their own single-synset-chain, resulting

in the following structure {{dog, cat, child, mom}, {park}, {summer}}, where {organism},

{park} and {summer} represent each flexible chain, respectively.

In (iii), we develop an algorithm to transform FLC (ii) into a fixed size structure chain.

We want to mitigate the problem of two or more long flexible chains being separated by

single-synset-chain occurrences. All flexible chains in this step have an ID (FLCID) that

is assigned to all BSIDs integrating the chain under construction. For example, let us

consider the flexible chains {{dog, cat, puppy}, {park}, {summer}, {dog, cat, puppy}}

represented using the synset IDs {{animal}, {park}, {summer}, {animal}}. These IDs are

propagated to the BSIDs of the original chain, resulting in the following chain {{animal,

animal, animal}, {park}, {summer}, {{animal, animal, animal}}, which will be processed

into fixed structures. For this task, we divide the BSIDs, represented by FLCIDs, in sets

of four units. Considering our example, the new fixed chains have the following structure

{{animal, animal, animal, park}, {summer, animal, animal, animal}}. Both, the first and

second chains, have the synset animal as the dominant interpretation, therefore the IDs for

these fixed chains are readjusted to {{animal}, {animal}}. In our experiments (Section 6.3),

the set size of four provides the most diverse set of chains.

Finally, in (iv), we investigate how fixed lexical structures can be derived directly from

a document’s semantic representation (i). In this algorithm we divide the BSIDs, for every

document, in chunks of size n (cn), and evaluate what is the synset that best represents each

one of these chunks. As in the previous approach (iii), the size of four synsets is chosen,

so both techniques can be better compared. For each chain cn, we extract all hypernyms

(including the initial synsets) from all the BSIDs in each chunk and select the dominant

123

synset to represent the entire chain. If there is no dominant BSID, we select the deepest one

in the chain using the root of WordNet as the start point. In case there are more than one,

one synset us selected randomly, since all of them could represent the given chain. It is

important to mention that, hypernyms beyond a certain threshold are not considered in our

approach. The closer the root we get, the more common our synsets become, contributing

poorly to the semantic diversity of our chains. Therefore, hypernyms with depth below five

[71] are discarded.

All these approaches are used to construct high-dimensional vectors corresponding to

the document’s semantic structure, which are compared with traditional techniques, such as

BOW and tf-idf. In the next sections, all cases related to the proposed algorithms will be

discussed in detail.

6.2.1 Best Synset Disambiguation Algorithm (BSD)

Prior to constructing lexical chains, we need to capture the most adequate representation

for the meaning of words in a document. This is done using and extendingWSD algorithms.

The product of this task provides what we call a BSID, a higher level of abstraction for all

the words in the document, which will be used to build our lexical chains. For this, we

follow the definition of lexical chains [118]. The terms used to build our lexical chains are

represented through the most suitable semantic value of a word, also known as BSID.

The semantic representation of words is obtained using a lexical database, which in

our case is WordNet [48]. WordNet provides a complex structure for the words and their

relationships through several different semantic hierarchies. The following, is a brief

summary of definitions used in WordNet, necessary to understand our work on WSD and

lexical chains:

• Lemma - the lowercase word found in WordNet structure. The base form of a word;

• Synonym - a one-to-many mapping from concepts to words;

124

• Gloss - consists of a brief definition or sentence use of a synset;

• Synset - a set of cognitive synonyms (one or more) of a given word that share common

meaning;

• Synset ID - a unique ID that represents the entire synset;

• Sense - the elements in each synset;

• Hypernym - a more general abstraction of a synset, corresponding to a-kind-of

relationship. A human is a kind of a mammal, so mammal is the hypernym;

• Hyponym - a more specific abstraction of a synset, the opposite of hypernyms;

• Meronym - constitutes a “part of ” relationship. A hand is part of an arm;

• Least Common Subsumer - the most specific synset in the hypernym hierarchy

which is an ancestor of given synsets

• Root - initial synset in WN, called entity.

Most publications in the lexical chains field try to build these structures considering

only the words within the document, some use an auxiliary annotated corpus for learning,

while others use the most common synset for each word (i.e. the first synset in WordNet for

each words). Our approach considers the effects of immediate neighbors for each term wi

evaluated, using all synsets available in the structure and their hypernyms. For each word

wi, with i = 1, 2, . . . , n there are 0 or more synsets available in WN. In our approach,

only nouns within WordNet are considered, so the remaining are discarded. The current

version of WordNet used in this project (3.0) has approximately 117,000 synsets, divided

into four major categories: 81,000 noun synsets, 13,600 verb synsets, 19,000 adjective

synsets, and 3,600 adverb synsets. Since the number of nouns compose almost 70% of

all information available in WordNet, we choose to work with this category of synsets.

125

In addition, nouns allow us to explore interesting relationships between synsets, such as:

hypernyms, hyponyms, meronyms, etc.

We represent the BSID of a word wi analyzing the effects of its predecessor (wi−1) and

successor (wi+1), called Former SynsetID (FSID)(wi)) and Latter SynsetID (LSID)(wi))

respectively. FSID(wi) and LSID(wi) are selected based on the score obtained in all

possible combinations between all available synsets of the pairs (wi, wi−1) and (wi, wi+1).

The synsets for wi with the highest similarity value in comparison with wi−1 and wi+1

will be represented as FSID(wi) and LSID(wi) respectively. Algorithm 5 illustrates how

FSID(wi) and LSID(wi) are extracted.

Algorithm 5 Former SynsetID (FSID) and Latter SynsetID (LSID) extraction through
WSD.
Require: d = {wi, ..., wn} : wi ∈ lexical database (WordNet)
1: function Extract FSID and LSID(d) . for d - document containing words wn

2: FSID_LSID_list = ∅
3: for i = 0 to n do
4: Apply WSD algorithm between (wi, wi−1) and (wi, wi+1)
5: Set (FSID(wi), FSID(wi−1)) as the pair of synsets with the highest score, using (wi, wi−1)
6: Set (LSID(wi), LSID(wi+1)) as the pair of synsets with the highest score, using (wi, wi+1)
7: Add (FSID(wi), LSID(wi)) to FSID_LSID_list
8: return FSID_LSID_list

The similarity value is calculated for all synsets available for each word evaluated and

in the end, every word wi holds two prospective synsets (FSID(wi) and LSID(wi)), which

represent the synsets with the highest similarity score. These are used to produce the BSID

for (wi).

The semantic similarity score can be calculated using several different types of mea-

sures. Meng et al. [108] divide these measures into four main categories: path based, IC

based, feature based and hybrid methods. Each one of these categories have several ways

of calculating the similarity score (Section 6.1).

After the FSID and LSID for each word wi is found, it is necessary to find the BSID for

this givenword. This algorithmmitigates that wordswithmultiplemeanings (i.e. polysemy)

end up with a bad representation, thus a two-level disambiguation process is performed. In

126

20

II. Best Synset Disambiguation Algorithm (BSD) [Ruas and Grosky, 2017]

wi-1 wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7

Wi+3

SID_31
SID_32
SID_33

…

Wi+4

SID_41
SID_42
SID_43

…

Wi+2

SID_21
SID_22
SID_23

…

FORMER SID
FSID(Wi+3)

LATTER SID
LSID (Wi+3)

BEST SID
BSID (Wi+3)

Jiang &
Conrath

Jiang &
Conrath

Figure 6.1: BSID through FSID and LSID evaluation process.

the first level, we apply a known WSD technique to obtain prospective pairs of synsets with

the highest score considering the context of each word. In th second level, we extend the

concept of WSD to synsets so the most suitable synset between FSID and LSID is chosen.

For the task of selecting a representative between FSID and LSID, we propose the BSD

algorithm. Three cases are considered prior to its selection: (a) if FSID(wi) and LSID(wi)

are equal, thenBSID(wi) = FSID(wi) = LSID(wi); (b) the lowest common subsumer between

FSID(wi) and LSID(wi), not beyond a given a depth threshold; and (c), if (b) produces an

empty set, the deepest synset among FSID(wi) and LSID(wi) is chosen. In case both have

the same depth, one is chosen randomly. In (b), we use the depth of 6 (root being the initial

point) as the limit to look for common hypernym extraction, which can be adjusted for more

detailed or general abstractions. This value is obtained through a series of experimental tests

considering factors like: execution time, diversity of synsets, diversity of chains, specificity

of synsets, and others. Figure 6.1 illustrates the process of obtaining prospective candidates

for BSID(wi) (red rectangle) based on FSID(wi) and LSID(wi).

After these components are produced, the choice for the most suitable representation

(BSID(wi)) is initialized as shown in Algorithm 6.

As we traverse the graph in WordNet, for the lowest common subsumer extraction (b),

we consider the first hypernym on each level, for each synset. Since WordNet organizes its

127

Algorithm 6 Best Synset Disambiguation (BSD) Algorithm.
Require: FSID_LSID_list = {(FSID(wi), LSID(wi)), ..., (FSID(wn), LSID(wn))} : wi ∈ d, lex-

ical database (WordNet)
1: function Extract Best SynsetID(d) . for d - document containing words wn

2: BSID_list = ∅
3: for i = 0 to n do
4: Apply WSD algorithm between (wi, wi−1) and (wi, wi+1)
5: if FSID(wi) ≡ LSID(wi) then
6: BSID(wi) = FSID(wi) = LSID(wi)
7: else
8: Set hypernym cut-off for (FSID(wi), LSID(wi))
9: Extract the set of HFSID(wi) for all hypernyms of FSID(wi

10: Extract the set of HLSID(wi) for all hypernyms of LSID(wi

11: Let γ = the lowest common subsumer betweenHFSID(wi) andHLSID(wi) using a defined
cut-off

12: if γ is Not ∅ then
13: BSID(wi) = γ
14: else
15: depth1 = depth(HFSID(wi))
16: depth1 = depth(HLSID(wi))
17: if (depth1 == depth2) then
18: BSID(wi) = Random(HFSID(wi), HLSID(wi))
19: else
20: BSID(wi) = argmaxsc1{depth(HFSID(wi), HLSID(wi))}
21: Add BSID(wi) to BSID_list
22: return BSID_list

synsets from most to least frequent usage, and we are generalizing the concepts as we move

towards the root, it is only natural that we extract a hypernym that will provide the most

diffused element with respect to its frequency in the lexical database. In other words, the

first hypernym in every upper level will provide greater probability of an intersection with

another synset when we build our lexical chains.

6.2.2 Flexible Lexical Chains Algorithm (FLC)

Once all words are annotated with their respective BSID, we can build our lexical

chains, which are also used to extract semantic features from documents. To the best

of our knowledge, this routine introduces a novel approach, constructing a parameterized

flexible lexical chain, considering an adaptive structure of synsets based on multilevels of

hypernyms.

We introduce an algorithm called Flexible Lexical Chains (FLC), which extracts these

128

chains, evaluating whether a new synset of a word wi or its hypernyms, present lexical

cohesion among themselves and the current chain under construction. If the evaluated

synset has semantic affinity with the chain being built, then this new synset is incorporated

to the chain. Otherwise, a newchain is initialized to capture the next semantic representation.

As Algorithm 7 shows, first, we begin a new FLC inserting the first synset for word

w1, from the text into an initial chain structure, calling this first chain FLC(NCh), where

NCh is equal to 1 and BSID(w1) is the synset ID representing the FLC (FLCID(NCh)).

For each following synset, BSID(wi), where i ∈ [2, n], we verify if BSID(wi) is equal to

FLCID(NCh). If they are the same, we just add BSID(wi) into the current chain. In case

they are not the same, we need to investigate if there is any semantic relationship shared

between BSID(wi) and FLCID(NCh). This is done through the extraction of all hypernyms

from BSID(wi) and FLCID(NCh), called α and β respectively.

Next, we choose the lowest common subsumer (hypernym), called γ, between α and

β given a certain cut-off. In our approach, this value is also a parameter that can be

changed accordingly. This threshold is to avoid the relatedness between α and β being

too general, since all noun synsets in WordNet are connected to the root entity. During

experimental tests, depth values below 5 or 4 resulted in non-useful chains for our purposes,

confirming Hotho et al. [71] findings. If γ does not exist, it means that BSID(wi) and

FLCID(NCh) are not semantically related, so the current chain does not absorb the current

BSID(wi). As a result, a new FLC must be initialized so the new lexical cohesion can be

captured. In case γ does exist, BSID(wi) is included into the current FLC and the synset

representing it is updated, considering the synset in γ.

Figure 6.2 illustrates how words in a text would compose a flexible lexical chain in a

pictorial way. Every wi represents the BSID(wi) obtained using the BSD algorithm, while

Sj is the FLCID for each chain.

129

Algorithm 7 Flexible Lexical Chain (FLC) Algorithm.
Require: BSID_list = {BSID(wi), ..., BSID(wn)} : wi ∈ d, lexical database (WordNet) . for

i = 1, ..., n
1: function Extract Flexible Lexical Chains(d) . for d - document containing synsets BSID(wn)
2: Set NCh = 1
3: Define FLC(NCh) as the initial flexible lexical chain, containing only BSID(w1)
4: Set BSID(w1) as synset representative of FLC(NCh); FLCID(NCh) = BSID(wn)
5: for i = 2 to n do
6: if BSID(wi) == FLCID(NCh) then
7: Add BSID(wi) to FLC(NCh)
8: else
9: Extract the set α of all hypernyms BSID(wi)
10: Extract the set β of all hypernyms FLCID(NCh)
11: if γ = ∅ then
12: NCh = NCh+ 1
13: Define FLC(NCh) as the next flexible lexical chains, containing only BSID(wi) and

re-initialize FLCID(NCh) to BSID(wi)
14: else
15: Add BSID(wi) to FLC(NCh)
16: Set FLCID(NCh) = γ
17: return FLC(j) . for j = {1, ..., NCh}

III-B. Flexible to Fixed Lexical Chains Conversion (F2F)

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12 wi+13

23

S1 S1 S1 S2 S3 S4 S4 S4 S4 S2 S1 S2 S2 S1

S1 S4 S2 Sn

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12 wi+13

S1 S2 S3 S4 S2 S1 S2 S1

Figure 6.2: Flexible Lexical Chains example construction diagram.

6.2.3 Flexible to Fixed Lexical Chains Algorithm (F2F)

Another proposed algorithm is to produce fixed lexical chains from FLC. For this task,

after all FLC are produced, we convert these flexible chains into fixed structures ones.

After pairs of words and synsets are arranged, we divide the document into chunks of

size k with respect to the number of synsets, represented as cwk. Each chunk corresponds

to a fixed chain. For each cwk, we extract the synset that appears most often in the chunk,

called θ, and assign it to represent cwk. If there is more than one synset or all synsets have

the same frequency, θ is chosen randomly, as Algorithm 8 shows. In Figure 6.3 we provide

a pictorial representation of the process, where each fixed lexical chain is represented using

a single synset.

The total number of synsets used in our overall document representation is the union

over all documents of the synsets representing all the fixed lexical chains in that docu-

130

Algorithm 8 Flexible to Fixed Lexical Chain (F2F) Algorithm.
Require: FLC_list = {BSID(wi), ..., BSID(wn)} : wi ∈ d,lexical database (WordNet) . for

i = 1, ..., n
1: function Extract Flexible to Fixed Lexical Chains(d) . for d - document containing synsets
BSID(wn)

2: for i = 1 to n do
3: Set synset(wi) = p . where wi occurs in FLC(k) and p = FLCID(k)
4: Split d into fixed-sized chunks of k words each . d = FLC_list
5: F2F_list = ∅
6: for cwj = 1 to NChunks do . where j = {1, ..., NChunks}
7: Let {wj,1, ..., wj,k} be the number of word occurrences in chunk cwj

8: Let θ = {synset(wj,1), ..., synset(wj,k)} . for a given chunk cwj

9: Represent chunk cwj by the dominant synset of θ, dominant(θ)
10: if dominant(θ) = ∅ then
11: dominant(θ) = Random(θ) . where a random synset is selected from chunk cwj in θ
12: Add dominant(θ) to F2F_list
13: return F2F_list

III-B. Flexible to Fixed Lexical Chains Conversion (F2F)

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12 wi+13

23

S1 S1 S1 S2 S3 S4 S4 S4 S4 S2 S1 S2 S2 S1

S1 S4 S2 Sn

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12 wi+13

S1 S2 S3 S4 S2 S1 S2 S1

Figure 6.3: Flexible to Fixed Lexical Chains construction diagram.

ment. Call this value NSynsets. Let the synsets used in our document representation be

syn1, syn2, . . . , synNSynsets.

6.2.4 Fixed Lexical Chains Algorithm (FXLC)

We also propose an algorithm called Fixed Lexical Chains (FXLC), which extracts lexi-

cal chains given a pre-defined number of chunks directly derived from the BSID annotation.

Different than the previous algorithm (F2F), FXLC does not use any pre-processed lexical

chains. Its construction is entirely based on BSIDs for each word wi. We develop this

technique to compare which lexical chain structure would present better results, the one

derived from FLC or the one obtained directly from BSIDs.

131

As Algorithm 9 shows, for each chain cd, we extract all hypernyms (including the

initial synsets) from all the synsets and call this set λ. Since each chain must be properly

represented, only dominant synsets (appearing in at least half of cd), β, are considered.

If there is no dominant synset in the chain, λ is selected instead. Let δ be either λ or β,

depending on the preceding condition. Next, we choose a subset of δ, called ε, of those

synsets that are not too close to the root (entity) in WordNet. This is to prevent providing a

too general synset for our chains. If ε is empty, all synsets in δ are considered instead. Let

Ω be either δ or ε, depending on the preceding condition.

Algorithm 9 Fixed Lexical Chain (FXLC) Algorithm.
Require: BSID_list = {BSID(wi), ..., BSID(wn)} : wi ∈ d,lexical database (WordNet) . for

i = 1, ..., n
1: function Extract Fixed Lexical Chains(d) . for d - document containing synsets BSID(wn)
2: Split d into fixed-sized chunks of k words each, named Chunks_list . where
Chunks_list = {ci, ..., cj}, with ci = {BSID(wp), ..., BSID(wk)} for 0 < i < jand0 < p, k < i

3: FXLC_list = ∅
4: for d = 1 to t do
5: Select the set λcd of all hypernyms from each chain cd . where cd ∈ Chunks_list
6: Select the set β of all synsets that appear in at least half of cd
7: if β = ∅ then
8: δ = λcd
9: else
10: δ = β
11: Perform cut-off items in δ based on a chosen limit, producing ε
12: if ε = ∅ then
13: ω = δ
14: else
15: ω = ε
16: Extract the set α of all maximally occurring synsets in ω
17: Select the set γ of maximally deepest synsets in alpha
18: Add a random synset from γ to FXLC_list
19: return FXLC_list

Then, from Ω we extract all maximally occurring synsets, α. We then construct γ, a

subset of synsets that occur at the deepest level of α. If α has more than one synset, the

synset to represent the initial chain cd is then a random synset from α. Since we already

limit the search to the hypernyms, to guarantee a certain level of generality, now we want

to maintain the semantic value within each fixed chain. Figure 6.4 provides a pictorial

example of FXLC result.

132

III-B. Flexible to Fixed Lexical Chains Conversion (F2F)

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12 wi+13

24

S1 S1 S1 S2 S3 S4 S4 S4 S4 S2 S1 S2 S2 S1

S1 S2 S3 S4

wi wi+1 wi+2 wi+3 wi+4 wi+5 wi+6 wi+7 wi+8 wi+9 wi+10 wi+11 wi+12wi+13

S1 S2 S3 S4 S2 S1 S2 S1

Figure 6.4: Fixed Lexical Chains construction diagram.

6.2.5 Distributed Semantic Extraction Mapping

Once all the words in the documents are properly transformed into semantic vector

representations, either using BSD, FLC, FXLC or F2F, we can explore how these vectors

can be used. We propose to work with distances between the produced synsets to extract the

semantic signature embedded in each document. The choice for the relative distance, instead

of the actual position, is justified because of its invariance independently of a document

length. The distances between these obtained synsets is used to define in which bins, in a

histogram representing each document, it is located.

Considering a document d. For each 1 ≤ i ≤ NSynsets, we define h(d, i) to be

the histogram of relative distances between consecutive occurrences of syni in document

d. Note that the number of bins of h(d, i) and h(e, j) are the same for any 2 documents

d, e, and synsets i, j. Also, for h(d, i), if syni does not occur in document d, then the

histogram consists of all 0’s. Document d is then represented as a normalized concatenation

of h(d, syn1), h(d, syn2), . . . , h(d, synNSynsets).

We note that synsets occurring once present a problem regarding their distance, so

we treat them in two ways: we either ignore them or not. To make sure these issues are

covered, we explore three variations considering the distances of synsets for each kind

of chain: (I) ignoring single occurrences of synsets, (II) considering single occurrences

of synsets as having a 0 relative distance from themselves and (III) considering single

occurrences of synsets and the first synset of a chain as having a 0 relative distance from

themselves. An example for each approach is shown in Tables 6.1, 6.2, and 6.3 respectively.

In these examples, we use five documents divided into 4 segments (bins) for the same

vector of synsets in each document. Initially, all bins are initialized with 0 and based on

133

the distance of identical synsets (considering the given approach) we find in which bin this

synset-distance belongs.

Each bin is represented as a half-closed, half open set of relative distance ranges. Bin

1 corresponds to the set [0,0.25), bin 2 to the set [0.25,0.5), bin 3 to the set [0.5,0.75), and

bin 4 to the set [0.75,1). Since each distance occurring in a synset string of length n is

at most n − 1, the largest relative distance possible is (n − 1)/n, which approaches to 1,

as n → ∞. Synsets that do not occur in a string will have 0’s in all bins. In Table 6.1,

synsets that only occur once are ignored, while Table 6.2 and Table 6.3 consider synsets

occurring once and the first synset in a chain respectively. In a nutshell, what our approach

does is to characterize the spatial distribution of synsets in a document using a histogram

to keep track of those synsets using their relative distances. Needless to say, this process is

normalized so longer/shorter documents are not biased.

Table 6.1: Toy Example I - Ignoring single occurrences of synsets.

Doc Sequence of Synsets Raw Distances 4-Bin Histogram Representation

1 S1S2S2S4S2S3S1 S1 < 6 >,S2 < 1, 2 >,S3 <>,S4 <> < 0, 0, 0, 1 > | < 1, 1, 0, 0 > | < 0, 0, 0, 0 > | < 0, 0, 0, 0 >

2 S3S4S3S2S3 S1 <>,S2 <>,S3 < 2, 2 >,S4 <> < 0, 0, 0, 0 > | < 0, 0, 0, 0 > | < 0, 2, 0, 0 > | < 0, 0, 0, 0 >

3 S1S2S1S4S4S1S3S3S4S3S2S1 S1 < 2, 3, 6 >,S2 < 9 >,S3 < 1, 2 >,S4 < 1, 4 > < 1, 1, 1, 0 > | < 0, 0, 0, 1 > | < 2, 0, 0, 0 > | < 1, 1, 0, 0 >

4 S4S3S3 S1 <>,S2 <>,S3 < 1 >,S4 <> < 0, 0, 0, 0 > | < 0, 0, 0, 0 > | < 0, 1, 0, 0 > | < 0, 0, 0, 0 >

5 S4S1S1S3S1S2S4S3S2 S1 < 1, 2 >,S2 < 3 >,S3 < 4 >,S4 < 6 > < 2, 0, 0, 0 > | < 0, 1, 0, 0 > | < 0, 1, 0, 0 > | < 0, 0, 1, 0 >

Table 6.2: Toy Example II - Considering single occurrences of synsets having a 0 relative
distance from themselves.

Doc Sequence of Synsets Raw Distances 4-Bin Histogram Representation
1 S1S2S2S4S2S3S1 S1 < 6 >,S2 < 1, 2 >,S3 < 0 >,S4 < 0 > < 0, 0, 0, 1 > | < 1, 1, 0, 0 > | < 1, 0, 0, 0 > | < 1, 0, 0, 0 >
2 S3S4S3S2S3 S1 <>,S2 < 0 >,S3 < 1, 1 >,S4 < 0 > < 0, 0, 0, 0 > | < 1, 0, 0, 0 > | < 0, 2, 0, 0 > | < 1, 0, 0, 0 >
3 S1S2S1S4S4S1S3S3S4S3S2S1 S1 < 2, 3, 6 >,S2 < 9 >,S3 < 1, 2 >,S4 < 1, 4 > < 1, 1, 1, 0 > | < 0, 0, 0, 1 > | < 2, 0, 0, 0 > | < 1, 1, 0, 0 >
4 S4S3S3 S1 <>,S2 <>,S3 < 1 >,S4 < 0 > < 0, 0, 0, 0 > | < 0, 0, 0, 0 > | < 0, 1, 0, 0 > | < 1, 0, 0, 0 >
5 S4S1S1S3S1S2S4S3S2 S1 < 1, 2 >,S2 < 3 >,S3 < 4 >,S4 < 6 > < 2, 0, 0, 0 > | < 0, 1, 0, 0 > | < 0, 1, 0, 0 > | < 0, 0, 1, 0 >

6.2.6 Semantic Term Frequency-Inverse Document Frequency (TF-IDF)

With all chains properly represented, one could simply apply a normal count of words

(e.g. BOW) to the obtained synsets and use the most frequent semantic representation.

134

Table 6.3: Toy Example III - Considering single occurrences of synsets and first synset of
a chain having a 0 relative distance of themselves.

Doc Sequence of Synsets Raw Distances 4-Bin Histogram Representation
1 S1S2S2S4S2S3S1 S1 < 0, 6 >,S2 < 0, 1, 2 >,S3 < 0 >,S4 < 0 > < 1, 0, 0, 1 > | < 2, 1, 0, 0 > | < 1, 0, 0, 0 > | < 1, 0, 0, 0 >
2 S3S4S3S2S3 S1 <>,S2 < 0 >,S3 < 0, 1, 1 >,S4 < 0 > < 0, 0, 0, 0 > | < 1, 0, 0, 0 > | < 1, 2, 0, 0 > | < 1, 0, 0, 0 >
3 S1S2S1S4S4S1S3S3S4S3S2S1 S1 < 0, 2, 3, 6 >,S2 < 0, 9 >,S3 < 0, 1, 2 >,S4 < 0, 1, 4 > < 2, 1, 1, 0 > | < 1, 0, 0, 1 > | < 3, 0, 0, 0 > | < 2, 1, 0, 0 >
4 S4S3S3 S1 <>,S2 <>,S3 < 0, 1 >,S4 < 0 > < 0, 0, 0, 0 > | < 0, 0, 0, 0 > | < 1, 1, 0, 0 > | < 1, 0, 0, 0 >
5 S4S1S1S3S1S2S4S3S2 S1 < 0, 1, 2 >,S2 < 0, 3 >,S3 < 0, 4 >,S4 < 0, 6 > < 3, 0, 0, 0 > | < 1, 1, 0, 0 > | < 1, 1, 0, 0 > | < 1, 0, 1, 0 >

However, as for terms, a synset that appears very often in the corpus can bias the final result

in a information retrieval system. To mitigate such a problem, we extend the concept of

the traditional tf-idf to the synsets obtained from BSD, FLC, FXLC, and F2F algorithms.

Equation (6.5) shows how the relevance of each synset is calculated [156].

xij = tfij ∗ log(
n

nj

) (6.5)

whereX is our corpus, xij is the weight of feature j (synset) in document i, tfij is the synset

frequency of j in i; n is the number of documents inX , and nj is the number of documents

inX that contain the synset j. The log(n
nj

) term represents the inverse document frequency

part in tf-idf. Whissell and Clarke [180] discuss several alternatives (e.g. Okapi BM25) that

can be applied to Equation (6.5) for normalizing tf-idf.

6.3 Proof-Of-Concept Experiments

To assess the proposed techniques in Section 6.2, we create a corpus of 30 distinct

documents from Wikipedia2 as a Proof-of-Concept (POC). These are distributed equally

in three major categories: dogs, computers and sports. The html files of these pages are

saved and parsed, so common English stopwords (e.g. a, an, the) are removed. Although

this seems, ostensibly, a modest dataset, the amount of information extracted from these

documents is quite large. The combined documents present a total of 216,514 words in

2https://www.wikipedia.org/

135

their html files, of which 68,836 are mapped into WordNet. For this dataset, 32.62% of the

words have at least one synset match inWordNet, which contains multiple senses. Table 6.4

shows the details of our dataset.

Table 6.4: Wikipedia Dataset Details.

Wikipedia
Category

Number of Docu-
ments

Number of
Words

Nouns Matched in
WN

Avg. of Nouns in
WN (%)

Dogs 10 48,650 16,239 34.37
Computers 10 79,332 24,331 31.11
Sports 10 88,532 28,266 32.38

Total 30 216,514 68,836 32.62

Two experimental categories are developed in order test our proposed algorithms (Sec-

tion 6.2). The first concerns how semantic extraction via lexical chains can be used in

Information Retrieval (IR). The second explores how semantic features, such as key-

concepts, can be suggested as keywords for documents based on their meaning. Both

experiments do not rely on human supervision, but instead, make use of the semantic

content of each document in the corpus.

6.3.1 Semantic Extraction Based on Lexical Chains

As explained in Algorithm 5, during the pre-processing step, we only keep the nouns

for each document that a synset match in WordNet. After pre-processing the data (e.g.

lowercase, stopwords removal), our corpus has a total of approximately 216K words, of

which 68K (nouns) have a match in WN, as Table 6.4 shows.

For our synset experiments, the number of synsets in our term/document matrix ranges

between 1284 and 7490 elements. In addition, the documents considered in this experiments

have, on average, 7,200 words each, which can produce a considerable large dataset to

process.

After all datasets are properly cleaned, we extract the BSID representation (Sec-

tion 6.2.1), which is used as a base for all our lexical chains scenarios (FLC, FXLC,

136

and F2F). Once all flexible lexical chains are extracted from the documents, they are used

to map fixed lexical chain structures, and to create the corresponding semantic vector repre-

sentations. We also derive FXLC directly from the BSID vectors, using a fixed chain size,

as shown in Section 6.2.4.

In our experiments, we validate our various approaches in a clustering task, using 256

bins for our synset-based techniques. As mentioned previously, we have documents from 3

major categories, so we perform a variant of K-Means clustering for K = 3 and evaluate

the resulting clusters using both theAdjusted Rand Index and theMean Individual Silhouette

values. The former metric is a measure of similarity between two clusters. We compare

the derived clusters to the ground truth clusters, consisting of all the dog documents, all

the computer documents, and all the sport documents. The latter metric sees how well

the clusters are designed, determining whether documents in the same cluster are close

together, while documents in different clusters are far apart.

We use spherical K-Means clustering [70], as this technique considers cosine dis-

tance [63, 154] rather than Euclidean distance. To validate the proposed algorithms,

we also design, implement, and extend traditional approaches for document similarity,

such as: BOW with all words (except common stopwords) in the documents (Bag-

of-Words-Raw (BOWR)), BOW with only matched nouns in WordNet (Bag-of-Words-

WordNet (BOWN)), BOW with the first synset match (commonly used) in WordNet (Bag-

of-Words-Synsets (BOWS)), and BOW with the BSID (Bag-of-Words-Best (BOWB)) ex-

tracted from the BSD. Since the traditional approaches are variation of counts, only one

bin is considered for these histograms.

Table 6.5 provides a summary of all experiments performed, while Figure 6.5 shows a

scatter plot of these results. These results show that various permutations of our general

approach worked better than traditional ones, of which four of our approaches stand out.

Considering the results presented in Figure 6.5, some observations can be made:

• Three out of the four results with perfect clustering are from our techniques. Two

137

Table 6.5: Experiments using lexical chains algorithms and traditional approaches.

Label Algorithm Adjusted Rand Index Mean Individual Silhouette
A Pure Flex–Method III 1 0.1908
B Pure Flex–Method II 1 0.1775
C BOW-N–Nouns in Wordnet 1 0.1757
D BOW-B–Best Synsets 1 0.1686
E Flex-2-Fixed–Method I 0.8981704 0.3964
F Flex-2-Fixed–Method III 0.8981704 0.3878
G BOW-R–Raw Words 0.8981704 0.1591
H Flex-2-Fixed–Method II 0.8066667 0.3578
I BOW-S–WordNet First Synset 0.6671449 0.1542
J Pure Flex–Method I 0.6590742 0.1826
K Pure Fixed–Method I 0.6044735 0.2137
L Pure Fixed–Method III 0.5165853 0.2734
M Pure Fixed–Method III 0.40252 0.2743

of these perfect clusterings use FLC (considering their variations) while the third

perfect clustering results from the proposed methodology of finding the best synset

representation for a document (Section 6.2.1);

• The only perfect clustering result which is on the Pareto front (not dominated by

another result), is the one using the third approach in Section 6.2.5 (III) for extracting

flexible chains;

• The clustering with the maximum silhouette value results from our first approach in

Section 6.2.5 (I) to our technique for extracting F2F chains. This clustering is also

on the Pareto front; and

• The only clusterings on the Pareto front result from our techniques.

In this experiment, we explore how extracted semantic features can aid in document

retrieval tasks. Furthermore, we present several contributions on how these features can be

extracted to formmore robust lexical chains. First, we explore and extend the notion ofWSD

and how to represent words, considering the effect of their immediate neighbors in their

meaning BSID. Second, we propose three new algorithms: (a) a newmethodology to create

variable length size semantic chains (FLC), (b) an algorithm to derive fixed lexical structures

138

A

BC

D

E

F

G

H

I

J

K

LM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.3 0.5 0.7 0.9 1.1

M
e
a
n

 I
n

d
iv

id
u

a
l

S
il

h
o
u

et
te

Adjusted Rand Index

Figure 6.5: Scatter plot between mean individual silhouette and Adjusted Rand Index for
proposed techniques (Table 6.5 data).

(FXLC) directly from semantic representations and (c) a new approach to transform variable

length size semantic chains into fixed parameterized structures (F2F). Third, we provide

different alternatives to construct the semantic dispersion over a document (Section 6.2.5).

To establish a comparison with the proposed approaches we compare them with traditional

ones, such as BOW and a few of its variations. Our findings show that several of our

approaches achieve superior results.

6.3.2 Semantic Extraction - Reuters-21578 Benchmarking

In this set of experiments we want to verify if the use of lexical chains, based on

our semantic representation, provides good results in cluster evaluation for a well-known

dataset, named Reuters-21578 [90]. This dataset, has been used as a baseline for text

evaluation for many years in the text classification community. Reuters Corpus Volume

I (RCV1) is composed of 21578 records (train and test) distributed in 17 categories, as

shown in Table 6.6

As Table 6.6 shows, the documents in each topic are not distributed uniformly, which

139

Table 6.6: Reuters-21578 Dataset topic distribution.

Topics Train Test Other Total

0 1828 280 8103 10211
1 6552 2581 361 9494
2 890 309 135 1334
3 191 64 55 310
4 62 32 10 104
5 39 14 8 61
6 21 6 3 30
7 7 4 0 11
8 4 2 0 6
9 4 2 0 6
10 3 1 0 4
11 0 1 1 2
12 1 1 0 2
13 0 0 0 0
14 0 2 0 2
15 0 0 0 0
16 1 0 0 1

Total 9603 3299 8676 21578

does not promote a good environment for our techniques. So, a sample corpus, called

Reuters-R83 (R8), is used instead. This corpus has a total of 7,674 records, where 5,485

are for training and 2,189 for testing. These documents are reorganized into 8 (eight)

different classes, as Table 6.7 shows. Since our approach does not rely on machine learning

techniques, we only use the documents in the test division group.

Table 6.7: Sample Reuters-21578 (R8) Dataset topic distribution.

Class Train Test Total

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51
interest 190 81 271
money-fx 206 87 293
ship 108 36 144
trade 251 75 326

Total 5485 2189 7674

To evaluate howwell our lexical chains illustrate the given clusters, we use the Silhouette

3https://www.cs.umb.edu/ smimarog/textmining/datasets/

140

evaluation [147] through aMatLab [101] implementation. First, we apply the F2F algorithm

for the 3 different scenarios discussed in Section 6.2.5, and also obtain the BOWR, BOWN,

BOWS, and BOWB for R8. Second, after extracting the semantic vector representation,

based on the relative distances of synsets, we calculate the similarity of all pair of documents

di and dj based on the cosine distance illustrated in Equation 6.6.

cos(di, dj) =

−→
di •
−→
dj

‖di‖ ∗ ‖dj‖
(6.6)

where dk is a vector representation of a document k; • represents the dot product between

documents di and dj; and ‖dk‖ denotes the norm of a vector dk.

The silhouette is calculated for K number of clusters, where K ∈ [2, 10] with optimal

value being the number of classes available in Table 6.7 for Klist equals to 8. In addition,

the clusters are calculated using three different criteria [167]:

• Complete-Linkage: The maximum distance between elements of each cluster;

• Single-Linkage: The minimum distance between elements of each cluster; and

• Average-Linkage: The mean distance between elements of each clusters.

The silhouette value ranges from -1 to 1, where a high value indicates that the object is

well matched to its own cluster and poorlymatched to neighboring clusters and a lower value

otherwise. Tables 6.8, 6.9, and 6.3.2, show the results for the Silhouette values considering

complete, single, and average linkage respectively. We also apply tf-idf to all F2F types (I,

II, and III) for 8 and 1 bins. All tables follow the same label structure in which they are

described as F2F [T][NB], where F2F is the algorithm applied, T represents the type of

semantic mapping (Section 6.2.5) and NB the number of bins. For the BOWR, BOWN,

BOWS and BOWB only tf-idf is applied. In all results, with the exception of BOWR for

K = 2 using a Single-Linkage criteria (Table 6.9), our techniques present the best results.

141

Considering K = 8, which is the optimal number of clusters, our approaches outperform

the traditional ones.

Table 6.8: Silhouette values using Complete-Linkage for R8.

Klist
TFIDF N_TFIDF TFIDF

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B
2 0.676151 0.686307 0.692830 0.709832 0.748315 0.68264 0.688285 0.751098 0.621004 0.663514 0.725597 0.723823 0.716519
3 0.647674 0.644507 0.638558 0.636677 0.707231 0.619227 0.653755 0.687085 0.607775 0.636916 0.675335 0.679655 0.651138
4 0.648212 0.622400 0.648059 0.565860 0.682106 0.626394 0.651444 0.640624 0.657077 0.663896 0.611431 0.585153 0.587824
5 0.581421 0.592337 0.629298 0.546278 0.620196 0.565927 0.635662 0.603084 0.616786 0.645666 0.605293 0.616073 0.604827
6 0.505711 0.555967 0.542279 0.557926 0.585092 0.532517 0.569278 0.579201 0.623257 0.627896 0.577291 0.581066 0.575648
7 0.514248 0.541449 0.529408 0.545692 0.563665 0.522126 0.579578 0.577095 0.573614 0.575313 0.590608 0.595462 0.577846
8 0.518504 0.527968 0.507091 0.564807 0.501073 0.513813 0.566298 0.520971 0.561005 0.565438 0.572945 0.584377 0.549457
9 0.510619 0.547094 0.537580 0.561090 0.483368 0.548587 0.537850 0.513657 0.536961 0.560868 0.561792 0.516203 0.536522

10 0.530594 0.538165 0.537276 0.542777 0.497052 0.544803 0.544536 0.524776 0.506360 0.582179 0.494155 0.513052 0.553762

Table 6.9: Silhouette values using Single-Linkage for R8.

Klist
TFIDF N_TFIDF TFIDF

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B
2 0.650568 0.602427 0.589385 0.469210 0.469210 0.518770 0.509838 0.432166 0.525504 0.433753 0.502739 0.534758 0.576733
3 0.588101 0.570857 0.527785 0.488958 0.488958 0.588379 0.621737 0.506146 0.618863 0.609221 0.580751 0.590981 0.583023
4 0.567827 0.544725 0.532246 0.537467 0.537467 0.634043 0.584709 0.496142 0.656657 0.631710 0.620261 0.610911 0.625833
5 0.515514 0.455132 0.515499 0.531870 0.531870 0.621357 0.561739 0.507846 0.644333 0.634186 0.617114 0.609967 0.589761
6 0.505577 0.504164 0.529438 0.549661 0.549661 0.552643 0.572941 0.483117 0.565215 0.508525 0.571690 0.547034 0.537042
7 0.506185 0.512772 0.509743 0.543066 0.543066 0.582054 0.531042 0.514974 0.517026 0.460308 0.582275 0.515976 0.529703
8 0.489722 0.531081 0.523103 0.511094 0.511094 0.528449 0.523812 0.502321 0.529891 0.496979 0.535289 0.520520 0.528266
9 0.468483 0.539251 0.516185 0.524173 0.524173 0.547048 0.503592 0.503695 0.513297 0.519579 0.477582 0.522089 0.490709

10 0.487594 0.544297 0.482526 0.531379 0.531379 0.558379 0.490613 0.508039 0.508070 0.531477 0.490551 0.514298 0.493155

Table 6.10: Silhouette values using Average-Linkage for R8.

Klist
TFIDF N_TFIDF TFIDF

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B
2 0.598647 0.661578 0.661315 0.647147 0.715684 0.627734 0.649585 0.706731 0.629435 0.636651 0.735324 0.732316 0.723169
3 0.611935 0.653283 0.605236 0.586738 0.609604 0.589331 0.601001 0.640710 0.599209 0.627902 0.683099 0.662566 0.674607
4 0.560659 0.640616 0.563835 0.536996 0.542805 0.621032 0.471991 0.584110 0.631419 0.647137 0.646876 0.624824 0.550412
5 0.476527 0.603320 0.555955 0.556171 0.566415 0.590858 0.463545 0.562018 0.578493 0.652388 0.551679 0.573486 0.526791
6 0.498018 0.569913 0.517900 0.533697 0.557727 0.540020 0.471812 0.524059 0.558378 0.629871 0.519074 0.575352 0.540394
7 0.512231 0.541034 0.500372 0.533219 0.580348 0.539035 0.499073 0.547631 0.597666 0.549291 0.518087 0.542776 0.526717
8 0.564515 0.549948 0.512154 0.519097 0.555763 0.556021 0.518117 0.531699 0.569601 0.545941 0.495236 0.502994 0.520076
9 0.526056 0.525604 0.481923 0.519352 0.565741 0.551700 0.547723 0.523991 0.599621 0.527052 0.469230 0.496032 0.506958

10 0.509048 0.523073 0.464020 0.498003 0.520587 0.557523 0.565371 0.547010 0.586796 0.517534 0.470974 0.515166 0.516708

Still considering the same dataset (R8), we also produce the hierarchical cluster (i.e.

dendogram) based on the cosine similarity after applying our techniques. Two measures

are extracted from these experiments [171]: consistency and dissimilarity. The former

compares the height of each link in a cluster with the heights of neighboring links below it

in the tree. This value is expressed as the inconsistency coefficient, so the lower the value,

the better the consistency. The latter, represents the cophenetic distance (i.e. distance of

two clusters or height) between two objects. This coefficient measures how faithfully a

142

dendrogram preserves the pairwise distances between the original unmodeled data points.

For this metric, a value close to 1 represents a good result. Figures 6.6, 6.7, and 6.8 show

our results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B

Traditional TFIDF N_TFIDF TFIDF

Hierarchical Clustering - Complete - R8

Dissimilarity Inconsistency

Figure 6.6: Consistency and Dissimilarity using Complete-Linkage for R8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B

Traditional TFIDF N_TFIDF TFIDF

Hierarchical Clustering - Single - R8

Dissimilarity Inconsistency

Figure 6.7: Consistency and Dissimilarity using Single-Linkage for R8.

The labels for these experiments follow the same structure as the previous one for the

Silhouette value. Considering complete (Figure 6.6) and average (Figure 6.8) linkage, all

our results, for both dissimilarity and consistency, outperform traditional approaches. More

specifically, for tf-idf - F2F28B, F2F38B in complete linkage; and for tf-idf - F2F28B,

F2F38B and N_tf-idf - F2F28B, F2F38B we obtain values above 0.90 for dissimilarity.

For single linkage (Figure 6.7) however, our approaches only perform better for consistency.

143

0

0.2

0.4

0.6

0.8

1

1.2

BOWR BOWN BOWS BOWB F2F18B F2F28B F2F38B F2F18B F2F28B F2F38B F2F11B F2F21B F2F31B

Traditional TFIDF N_TFIDF TFIDF

Hierarchical Clustering - Average - R8

Dissimilarity Inconsistency

Figure 6.8: Consistency and Dissimilarity using Average-Linkage for R8.

The partial results, in these early experiments, support the use of our proposed ap-

proaches to extract and use semantic features in document retrieval, clustering, and classi-

fication tasks.

6.3.3 Keyconcept Extraction through Lexical Chains

Another contribution of our research is in the keyword extraction problem. We explore

the use of the BSD (Section 6.2.1) and FLC (Section 6.2.2) algorithms to suggest keywords

for documents based on their semantic features. In these experiments, we use the POC

dataset discussed in Section 6.3. We reduce our corpus to the synsets produced using

BSD and FLC. Next, we rank them multiplying their quantity to the weight value obtained

through tf-idf (Section 6.2.6). Table 6.11 shows the number of synset obtained per document

in each category. It also shows the average of unique synsets per document category.

It is evident that the number of synsets obtained through BSD are far more numerous,

if compared to those produced using FLC. The reason is because in the former, we are

analyzing separate words, considering only the concepts within its immediate surroundings

(predecessor and successor). In the latter, the chains are tracking the continuity of more

broad ideas, so the groups of synsets are clustered into a more common concept, which, in

144

Table 6.11: Distribution of synsets obtained through BSD and FLC.

BSD FLC
Docs Dogs Computers Sports Dogs Computers Sports

Doc_01 627 1458 1546 152 364 368
Doc_02 461 526 1477 91 113 365
Doc_03 1229 382 924 281 95 214
Doc_04 687 793 1007 161 185 260
Doc_05 535 1276 1136 126 318 268
Doc_06 608 1336 346 143 379 82
Doc_07 693 578 911 156 119 226
Doc_08 978 501 161 229 96 396
Doc_09 1285 1205 1473 335 301 382
Doc_10 677 1453 1018 161 349 242

Average 778 951 1000 184 232 280

turn, is represented in a single synset. In other words, BSD produces fine grained results

with one synset per existing word in WordNet, while FLC provides general abstractions

reducing to total number of synsets in a document.

Once the keyword candidates are obtained (in decreasing order, based on their tf-idf

values), we analyze the top-5 ones through a survey comparing them with the document-

category defined in eachWikipedia article (ground truth). These categories are implemented

considering MediaWiki4, which adds an automated listing to represent and incorporate a

given webpage to a subject area, which can be found at the bottom of every Wikipedia

article.

The main objective of this experiment is to evaluate whether keywords obtained through

our proposed techniques can represent the essential concepts in an given article. Thus, we

create a range with scores varying from 1 (strongly disagree) to 5 (strong agree) to assess

the quality of the suggested keywords. This experiment is performed through a survey

answered by members of our department which consist of 8 people (1 Full Professor, 4

Ph.D. candidates, 2 Ph.D. students and 1 M.S. student).

Tables 6.12 and 6.13 show a sample of how the participants correlate the categories

4https://en.wikipedia.org/wiki/MediaWiki

145

Table 6.12: MediaWiki categories sample.

Document Key 01 Key 02 Key 03 Key 04 Key 05

Doc_X Computer
hardware Electronics

Doc_Y Computer
programming Computers

Doc_Z Linux 1991 software Computing
platforms

Cross-platform
software

Finnish
inventions

in MediaWiki (Table 6.12) and the ones suggested through our algorithms (Table 6.13),

respectively. They are asked to compare and score the values for matching documents in

both groups, the ground truth and the suggested keywords. The exercise in our survey is

done for each document (30 Wikpedia articles), considering the first 5 synsets for the BSD

and FLC approaches. A total of 300 records are assessed per participant, which provides

2,400 final evaluations in the entire survey.

Table 6.13: Suggested synsets sample.

Synset ID Type Doc
SID-06321054-N intensifier,intensive Doc_X
SID-06566077-N software,software_program,computer_software Doc_X
SID-00928947-N programming,programing,computer_programming Doc_X
SID-05650820-N language,speech Doc_X
SID-05996646-N discipline,subject,subject_area,subject_field Doc_X
SID-05847438-N algorithm,algorithmic_rule,algorithmic_program Doc_X
SID-03642806-N laptop,laptop_computer Doc_Y
SID-03699975-N machine Doc_Y
SID-07739125-N apple Doc_Y
SID-09840217-N baron,big_businessman,business_leader,king Doc_Y
SID-13645010-N horsepower,HP,H.P. Doc_Y
SID-13699442-N dram, Doc_Z
SID-09752246-N Aries,Ram Doc_Z
SID-13912992-N constriction,bottleneck,chokepoint Doc_Z
SID-03744276-N memory,computer_memory,storage Doc_Z
SID-06198876-N devices Doc_Z

For each document in our corpus and a given keyword, we compute a mean rating

over all survey participants. For this experiment, we found 5 keywords per document and

perform a weighted average over the 5 mean ratings we have computed, where the weights

146

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Dogs Computers Sports All Documents

BSD FLC

Figure 6.9: Keyword survey average rankings.

correspond to the tf-idf associated with each of the five keywords.

In Figure 6.9, we show the average of the results over each of the three categories of

our corpus (i.e. documents of dogs, computers, sports), so we can capture a more robust

outcome from our participants. We also show, in Figure 6.10, the correlation between

the individual tf-idf values for each proposed keyword and the average score given by the

human reviewers. We see that the correlation is higher for the BSD approach than for the

FLC approach, and that the average correlation is high.

The BSD algorithm produces better results in capturing the main concepts for all

document categories, when compared to the FLC algorithm. As mentioned previously,

BSD provides synsets with more details, which results more precise keywords. FLC, on the

other hand, provides more general abstractions, that do not perform as well as the previous

technique. An example of this situation is document D6, the sixth document concerning

Dogs. The BSD method has the words kennel and doghouse, while the FLC approach

suggests the words building and edifice.

In this experiment we explore how semantic features can be extracted and used for

keyword suggestion. Instead of relying solely on syntax analysis, statistical approaches

or annotated corpora, we apply multiple techniques that use semantic representation to

recommend possible keywords. This representation is obtained through two of our proposed

147

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dogs Computers Sports All Documents

BSD FLC

Figure 6.10: Keyword survey average correlations with keyword strengths.

techniques, BSD and FLC. Both consider the context surrounding each word to better

represent the meaning underlying the text itself. While the former provides a more detailed

extraction of synsets, the latter captures more general aspects discussed in the corpus.

148

BIBLIOGRAPHY

[1] (2010). Princeton University "About WordNet." WordNet. Princeton University.

[2] Achakulvisut, T., Acuna, D. E., Ruangrong, T., and Kording, K. (2016). Science
Concierge: A fast content-based recommendation system for scientific publications.
PLoS ONE, 11(7):1–11.

[3] Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., and Soroa, A. (2009).
A study on similarity and relatedness using distributional and wordnet-based ap-
proaches. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, NAACL ’09, pages 19–27, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

[4] Aha, D.W., Kibler, D., andAlbert, M.K. (1991). Instance-based learning algorithms.
Machine Learning, 6(1):37–66.

[5] AlAgha, I. and Nafee, R. (2014). An Efficient Approach For Semantically-Enhanced
Document Clustering By Using Wikipedia Link Structure. International Journal of
Artificial Intelligence & Applications, 5(6):53–62.

[6] Bär, D., Zesch, T., and Gurevych, I. (2015). Composing measures for computing text
similarity.

[7] Barzilay, R. and Elhadad, M. (1997). Using lexical chains for text summariza-
tion. Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization,
17(48):10–17.

[8] Beel, J. and Dinesh, S. (2017). Real-world recommender systems for academia: The
pain and gain in building, operating, and researching them [long version]. CoRR,
abs/1704.00156.

[9] Beel, J., Gipp, B., Langer, S., and Breitinger, C. (2015). Research-paper recom-
mender systems: A literature survey. Int. J. Digit. Libr., 17(4):305–338.

[10] Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., and Nürnberger, A.
(2013). Research paper recommender system evaluation: A quantitative literature
survey. In Proceedings of the International Workshop on Reproducibility and Repli-
cation in Recommender Systems Evaluation, RepSys ’13, pages 15–22, New York,
NY, USA. ACM.

149

[11] Beierle, F., Aizawa, A., and Beel, J. (2017). Exploring choice overload in related-
article recommendations in digital libraries. CoRR, abs/1704.00393.

[12] Beliga, S. (2014). Keyword extraction: a review of methods and approaches. Uni-
versity of Rijeka, Department of Informatics, Rijeka, pages 1–9.

[13] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155.

[14] Berg-Kirkpatrick, T., Burkett, D., and Klein, D. (2012). An empirical investigation
of statistical significance in nlp. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, EMNLP-CoNLL ’12, pages 995–1005, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[15] Berry, M. and Kogan, J. (2010). Text Mining: Applications and Theory. Wiley
InterScience. Wiley.

[16] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022.

[17] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146.

[18] Bollacker, K. D., Lawrence, S., and Giles, C. L. (1998). Citeseer: An autonomous
web agent for automatic retrieval and identification of interesting publications. InPro-
ceedings of the Second International Conference on Autonomous Agents, AGENTS
’98, pages 116–123, New York, NY, USA. ACM.

[19] Boratto, L., Carta, S., Fenu, G., and Saia, R. (2017). Semantics-aware content-
based recommender systems: Design and architecture guidelines. Neurocomputing,
254(Supplement C):79 – 85. Recent Advances in Semantic Computing and Person-
alization.

[20] Bordes, A., Glorot, X., Weston, J., and Bengio, Y. (2012). Joint learning of words
and meaning representations for open-text semantic parsing. In In Proceedings of
15th International Conference on Artificial Intelligence and Statistics.

[21] Brandtzæg, P. B. (2013). Big data, for better or worse: 90% of world’s data generated
over last two years. Online. SINTEF.

[22] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[23] Bruni, E., Boleda, G., Baroni, M., and Tran, N.-K. (2012). Distributional semantics
in technicolor. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Volume 1, ACL ’12, pages 136–145,
Stroudsburg, PA, USA. Association for Computational Linguistics.

150

[24] Budanitsky, A. and Hirst, G. (2001). Semantic distance in WordNet: An exper-
imental, application-oriented evaluation of five measures. In Proceedings of the
Workshop on WordNet and Other Lexical Resources, Second Meeting of the North
American Chapter of the Association for Computational Linguistics (NAACL-2001),
pages 29–24, Pittsburgh, PA.

[25] Budanitsky, A. and Hirst, G. (2006). Evaluating wordnet-based measures of lexical
semantic relatedness. Comput. Linguist., 32(1):13–47.

[26] Camacho-Collados, J., Pilehvar, M. T., and Navigli, R. (2015). A unifiedmultilingual
semantic representation of concepts. In ACL (1), pages 741–751. The Association
for Computer Linguistics.

[27] Camacho-Collados, J., Pilehvar, M. T., and Navigli, R. (2016). Nasari: Integrating
explicit knowledge and corpus statistics for a multilingual representation of concepts
and entities. Artif. Intell., 240:36–64.

[28] Carrell, P. L. (1982). Cohesion is not coherence. TESOL Quarterly, 16(4):479–488.

[29] Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R. S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y., Strope, B., and Kurzweil, R.
(2018). Universal sentence encoder. CoRR, abs/1803.11175.

[30] Chen, P.-I. and Lin, S.-J. (2010). Automatic keyword prediction using google simi-
larity distance. Expert Systems with Applications, 37(3):1928 – 1938.

[31] Chen, T., Xu, R., He, Y., and Wang, X. (2015). Improving distributed representation
of word sense via wordnet gloss composition and context clustering. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, pages 15–20.
The Association for Computational Linguistics.

[32] Chen, X., Liu, Z., and Sun, M. (2014). A unified model for word sense representation
and disambiguation. In EMNLP, pages 1025–1035. ACL.

[33] Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th International Conference on Machine Learning, ICML ’08, pages 160–167,
New York, NY, USA. ACM.

[34] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., andBordes, A. (2017). Supervised
learning of universal sentence representations from natural language inference data.
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing.

[35] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

151

[36] Dai, A. M., Olah, C., and Le, Q. V. (2015). Document embedding with paragraph
vectors.

[37] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J.
Mach. Learn. Res., 7:1–30.

[38] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding.

[39] Dhillon, P. S., Foster, D., and Ungar, L. (2011). Multi-view learning of word
embeddings via cca. In Advances in Neural Information Processing Systems (NIPS),
volume 24.

[40] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer.
Math., 1(1):269–271.

[41] Dong, H., Hussain, F. K., and Chang, E. (2009). A Hybrid Concept Similarity Mea-
sure Model for Ontology Environment, pages 848–857. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[42] Drucker, H., Wu, D., and Vapnik, V. N. (1999). Support vector machines for spam
categorization. Trans. Neur. Netw., 10(5):1048–1054.

[43] Enríquez, F., Troyano, J. A., and López-Solaz, T. (2016). An approach to the use of
word embeddings in an opinion classification task. Expert Systems with Applications,
66:1 – 6.

[44] Ercan, G. and Cicekli, I. (2007). Using lexical chains for keyword extraction.
Information Processing & Management, 43(6):1705 – 1714. Text Summarization.

[45] Ercan, G. and Cicekli, I. (2008). Lexical cohesion based topic modeling for summa-
rization. In Computational Linguistics and Intelligent Text Processing, 9th Interna-
tional Conference, CICLing 2008, Haifa, Israel, February 17-23, 2008, Proceedings,
pages 582–592.

[46] Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E. H., and Smith, N. A. (2015).
Retrofitting word vectors to semantic lexicons. In HLT-NAACL, pages 1606–1615.
The Association for Computational Linguistics.

[47] Faruqui, M., Tsvetkov, Y., Rastogi, P., and Dyer, C. (2016). Problems with evaluation
of word embeddings using word similarity tasks. CoRR, abs/1605.02276.

[48] Fellbaum, C., editor (1998). WordNet: an electronic lexical database. MIT Press.

[49] Ferreira, C. H. P., de França, F. O., and de Medeiros, D. M. R. (2018a). Combining
multiple views from a distance based feature extraction for text classification. In 2018
IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil,
July 8-13, 2018, pages 1–8.

152

[50] Ferreira, C. H. P., de Medeiros, D. M. R., and de França, F. O. (2018b). Dcdistance:
A supervised text document feature extraction based on class labels.

[51] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and
Ruppin, E. (2002). Placing search in context: The concept revisited. ACM Trans.
Inf. Syst., 20(1):116–131.

[52] Firth, J. R. (1957). A synopsis of linguistic theory 1930-55., volume 1952-59. The
Philological Society, Oxford.

[53] Fu, M., Qu, H., Huang, L., and Lu, L. (2018). Bag of meta-words: A novel
method to represent document for the sentiment classification. Expert Systems with
Applications, 113:33 – 43.

[54] Gale, W. A., Church, K. W., and Yarowsky, D. (1992). A method for disambiguating
word senses in a large corpus. Computers and the Humanities, 26(5/6):415–439.

[55] Garfield, E. (1955). Citation indexes for science: A new dimension in documentation
through association of ideas. Science, 122(3159):108–111.

[56] Garfield, E. (2009). From the science of science to scientometrics visualizing the
history of science with histcite software. J. Informetrics, 3(3):173–179.

[57] Gerz, D., Vulić, I., Hill, F., Reichart, R., and Korhonen, A. (2016). SimVerb-3500:
A Large-Scale Evaluation Set of Verb Similarity. In EMNLP.

[58] Gonzales, A. R., Mascarell, L., and Sennrich, R. (2017). Improving word sense
disambiguation in neural machine translation with sense embeddings. In Bojar,
O., Buck, C., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M.,
Jimeno-Yepes, A., Koehn, P., and Kreutzer, J., editors, Proceedings of the Second
Conference on Machine Translation, WMT 2017, Copenhagen, Denmark, September
7-8, 2017, pages 11–19. Association for Computational Linguistics.

[59] Greene, D. andCunningham, P. (2006). Practical solutions to the problem of diagonal
dominance in kernel document clustering. In Proc. 23rd International Conference
on Machine learning (ICML’06), pages 377–384. ACM Press.

[60] Grosky, W. I. and Ruas, T. L. (2017). The Continuing Reinvention of Content-Based
Retrieval: Multimedia Is Not Dead. IEEE MultiMedia, 24(1):6–11.

[61] Guo,W. andDiab,M. (2011). Semantic topicmodels: Combiningword distributional
statistics and dictionary definitions. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, pages 552–561, Edinburgh,
Scotland, UK. Association for Computational Linguistics.

[62] Halliday, M. A. K. and Hasan, R. (1976). Cohesion in english. Longman Group,
London.

153

[63] Han, E.-H. S. and Karypis, G. (2000). Centroid-Based Document Classification:
Analysis and Experimental Results, pages 424–431. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[64] Harris, Z. (1954). Distributional structure. Word, 10(23):146–162.

[65] Hasan, K. S. and Ng, V. (2010). Conundrums in unsupervised keyphrase extrac-
tion: Making sense of the state-of-the-art. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters, COLING ’10, pages 365–373,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[66] Haveliwala, T. H. (2002). Topic-sensitive pagerank. In Proceedings of the 11th
International Conference on World Wide Web, WWW ’02, pages 517–526, New
York, NY, USA. ACM.

[67] Hein, A. M. (2010). Identification and bridging of semantic gaps in the context of
multi-domain engineering. Abstract.

[68] Heydari, A., Tavakoli, M. a., Salim, N., and Heydari, Z. (2015). Detection of review
spam. Expert Syst. Appl., 42(7):3634–3642.

[69] Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. Computational Linguistics.

[70] Hornik, K., Feinerer, I., Kober, M., and Buchta, C. (2012). Spherical k-means
clustering. Journal of Statistical Software, Articles, 50(10):1–22.

[71] Hotho, A., Staab, S., and Stumme, G. (2003). Wordnet improves text document
clustering. In Proc. of the SIGIR 2003 Semantic Web Workshop, Toronto, Canada.

[72] Houvardas, J. and Stamatatos, E. (2006). N-gram feature selection for authorship
identification. In Euzenat, J. and Domingue, J., editors, Artificial Intelligence:
Methodology, Systems, and Applications, pages 77–86, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[73] Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). Improving word
representations via global context and multiple word prototypes. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 873–882, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[74] Iacobacci, I., Pilehvar, M. T., and Navigli, R. (2015). Sensembed: Learning sense
embeddings for word and relational similarity. In ACL (1), pages 95–105. The
Association for Computer Linguistics.

[75] Iacobacci, I., Pilehvar, M. T., and Navigli, R. (2016). Embeddings for word sense
disambiguation: An evaluation study. In ACL (1). The Association for Computer
Linguistics.

154

[76] Jain, J. (2016). Fasttext and gensim word embeddings. Online.

[77] Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity based on corpus statistics
and lexical taxonomy. CoRR, cmp-lg/9709008.

[78] Joachims, T. (1997). A probabilistic analysis of the rocchio algorithm with tfidf for
text categorization. In Proceedings of the Fourteenth International Conference on
Machine Learning, ICML ’97, pages 143–151, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

[79] Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the 10th European Conference on
Machine Learning, ECML’98, pages 137–142, Berlin, Heidelberg. Springer-Verlag.

[80] Johansson, R. and Piña, L. N. (2015). Embedding a semantic network in a word
space. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Denver,
United States, May 31 âĂŞ June 5, 2015, pages 1428–1433.

[81] Jonnalagadda, S., Cohen, T., Wu, S. T.-I., and Gonzalez, G. (2012). Enhancing
clinical concept extraction with distributional semantics. Journal of Biomedical
Informatics, 45(1):129–140.

[82] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016). Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759.

[83] Kamkarhaghighi, M. and Makrehchi, M. (2017). Content tree word embedding for
document representation. Expert Systems with Applications, 90:241 – 249.

[84] Kazemi, B. and Abhari, A. (2017). A comparative study on content-based paper-to-
paper recommendation approaches in scientific literature. In Proceedings of the 20th
Communications & Networking Symposium, CNS ’17, pages 5:1–5:10, San Diego,
CA, USA. Society for Computer Simulation International.

[85] Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the
Twelfth International Conference on Machine Learning, pages 331–339.

[86] Lau, J. H. and Baldwin, T. (2016). An empirical evaluation of doc2vec with practical
insights into document embedding generation. Proceedings of the 1st Workshop on
Representation Learning for NLP.

[87] Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and
documents.

[88] Leacock, C. and Chodorow, M. (1998). Combining local context and WordNet
similarity for word sense identification. In Fellbaum, C., editor, WordNet: An
Electronic Lexical Database, pages 265–283. MIT Press.

155

[89] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictio-
naries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th
Annual International Conference on Systems Documentation, SIGDOC ’86, pages
24–26, New York, NY, USA. ACM.

[90] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new benchmark
collection for text categorization research. J. Mach. Learn. Res., 5:361–397.

[91] Li, J. and Jurafsky, D. (2015). Do multi-sense embeddings improve natural language
understanding? In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1722–1732. Association for Computational
Linguistics.

[92] Li, Y., Bandar, Z. A., and McLean, D. (2003). An approach for measuring semantic
similarity between words using multiple information sources. IEEE Trans. on Knowl.
and Data Eng., 15(4):871–882.

[93] Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings
of the Fifteenth International Conference on Machine Learning, ICML ’98, pages
296–304, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[94] Liu, H. and Singh, P. (2004). Conceptnet: A practical commonsense reasoning
tool-kit. BT Technology Journal, 22(4):211–226.

[95] Liu, L., Lu, Y., Yang, M., Qu, Q., Zhu, J., and Li, H. (2017). Generative adversarial
network for abstractive text summarization.

[96] Liu, X., He, P., Chen, W., and Gao, J. (2019). Multi-task deep neural networks for
natural language understanding.

[97] Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). Topical word embeddings. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
pages 2418–2424. AAAI Press.

[98] Mallery, J. C. (1988). Thinking about foreign policy: Finding an appropriate role
for artificially intelligent computers. In Master’s thesis, M.I.T. Political Science
Department.

[99] Mancini,M., Camacho-Collados, J., Iacobacci, I., andNavigli, R. (2017). Embedding
words and senses together via joint knowledge-enhanced training. In CoNLL, pages
100–111. Association for Computational Linguistics.

[100] Mascarell, L. (2017). Lexical chains meet word embeddings in document-level
statistical machine translation. In Webber, B. L., Popescu-Belis, A., and Tiedemann,
J., editors, Proceedings of the Third Workshop on Discourse in Machine Translation,
DiscoMT@EMNLP 2017, Copenhagen, Denmark, September 8, 2017, pages 99–
109. Association for Computational Linguistics.

156

[101] MATLAB (2017). version 9.2.0 (R2017a). The MathWorks Inc., Natick, Mas-
sachusetts.

[102] Matsuo, Y. and Ishizuka, M. (2003). Keyword extraction from a single document
using word co-occurrence statistical information. In Proceedings of the Sixteenth
International Florida Artificial Intelligence Research Society Conference, pages 392–
396. AAAI Press.

[103] McCarthy, D., Koeling, R., Weeds, J., and Carroll, J. (2004). Finding predominant
word senses in untagged text. In Proceedings of the 42Nd Annual Meeting on Asso-
ciation for Computational Linguistics, ACL ’04, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[104] McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, Second Edition.
Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series.
Chapman & Hall.

[105] Mcgee, I. (2009). Traversing the lexical cohesion minefield. ELT J, 63(3):212–220.

[106] Medeiros, D. M. R. and Carvalho, A. C. P. L. F. (2004). Gene clusters analysis using
text mining. In WOB - Third Workshop on Bioinformatics, pages 141–144, Brasília
- DF. SBC.

[107] Medeiros, D. M. R. and Carvalho, A. C. P. L. F. (2005). Applying text mining and
machine learning techniques to gene clusters analysis. In ICCIMA ’05: Proceedings
of the Sixth International Conference on Computational Intelligence and Multimedia
Applications (ICCIMA’05), pages 23–28, Washington, DC, USA. IEEE Computer
Society.

[108] Meng, L., Huang, R., and Gu, J. (2013). A Review of Semantic Similarity Measures
in WordNet. International Journal of Hybrid Information Technology, 6(1):1–12.

[109] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

[110] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

[111] Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic regularities in continuous
space word representations. In HLT-NAACL, pages 746–751.

[112] Miller, G. A. (1995). Wordnet: A lexical database for english. COMMUNICATIONS
OF THE ACM, 38:39–41.

[113] Miller, G. A. and Charles, W. G. (1991). Contextual correlates of semantic similarity.
Language & Cognitive Processes, 6(1):1–28.

157

[114] Mitchell, T. M. (1997). Machine learning, International Edition. McGraw-Hill
Series in Computer Science. McGraw-Hill.

[115] Moldovan, D. and Novischi, A. (2002). Lexical chains for question answering. In
Proceedings of the 19th International Conference on Computational Linguistics -
Volume 1, COLING ’02, pages 1–7, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

[116] Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In AISTATS. Society for Artificial Intelligence and Statistics.

[117] Moro, A., Raganato, A., and Navigli, R. (2014). Entity linking meets word sense
disambiguation: a unified approach. TACL, 2:231–244.

[118] Morris, J. and Hirst, G. (1991). Lexical cohesion computed by thesaural relations as
an indicator of the structure of text. Computational Linguistics, 17:21–48.

[119] Nalimov, V. and Mul’chenko, Z. (1969). Measurement of Science, Study of the
Development of Science as an Information Process. Machine aided translation of
Naukometriya.

[120] Navigli, R. (2009). Word sense disambiguation: A survey. ACM Comput. Surv.,
41(2):10:1–10:69.

[121] Navigli, R. and Ponzetto, S. P. (2012). Babelnet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. Artif.
Intell., 193:217–250.

[122] Neelakantan, A., Shankar, J., Passos, A., and McCallum, A. (2014). Efficient non-
parametric estimation of multiple embeddings per word in vector space. In EMNLP,
pages 1059–1069. ACL.

[123] Ng, H. T. (1997). Getting serious about word sense disambiguation.

[124] Oele, D. and Noord, v. G. (2018). Simple Embedding-Based Word Sense Dis-
ambiguation. In Proceedings of the 9th 9th Global Wordnet Conference, Nanyang
Technological University (NTU), Singapore. Association for Computational Linguis-
tics.

[125] Panchenko, A. (2016). Best of both worlds: Making word sense embeddings inter-
pretable. In Chair), N. C. C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M.,
Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., and Piperidis, S., edi-
tors, Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European Language Resources Association
(ELRA).

[126] Paraschiv, I. C., Dascalu, M., Trausan-Matu, S., Nistor, N., Oca, A. M. M. D.,
and McNamara, D. S. (2017). Semantic similarity versus co-authorship networks:
A detailed comparison. In 21st International Conference on Control Systems and
Computer Science (CSCS), pages 566–570. IEEE Xplorer.

158

[127] Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet::similarity: Mea-
suring the relatedness of concepts. In Demonstration Papers at HLT-NAACL 2004,
HLT-NAACL–Demonstrations ’04, pages 38–41, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

[128] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[129] Pelevina, M., Arefyev, N., Biemann, C., and Panchenko, A. (2016). Making sense of
word embeddings. In Proceedings of the 1st Workshop on Representation Learning
for NLP, pages 174–183.

[130] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for
word representation. In EMNLP, volume 14, pages 1532–1543.

[131] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettle-
moyer, L. (2018). Deep contextualized word representations. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 2227–
2237.

[132] Pilehvar, M. T., Camacho-Collados, J., Navigli, R., and Collier, N. (2017). Towards
a seamless integration of word senses into downstream nlp applications. CoRR,
abs/1710.06632.

[133] Pilehvar, M. T. and Collier, N. (2016). De-conflated semantic representations. In
EMNLP, pages 1680–1690. The Association for Computational Linguistics.

[134] Pradhan, N., Gyanchandani, M., and Wadhvani, R. (2015). Article: A review on text
similarity technique used in ir and its application. International Journal of Computer
Applications, 120(9):29–34. Full text available.

[135] Price, D. J. d. S. (1961). Science since Babylon / Derek de Solla Price. Yale
University Press New Haven, enl. ed. edition.

[136] Putnam, H. (1970). Is semantics possible? Metaphilosophy, 1(3):187–201.

[137] Řehůřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

[138] Reinsel, D., Gantz, J., and Rydning, J. (2018). The digitaliztion of the world from
edge to core.

159

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[139] Reisinger, J. and Mooney, R. (2010a). A mixture model with sharing for lexical
semantics. In Proceedings of the 2010 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP ’10, pages 1173–1182, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[140] Reisinger, J. and Mooney, R. J. (2010b). Multi-prototype vector-space models of
word meaning. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
HLT ’10, pages 109–117, Stroudsburg, PA, USA. Association for Computational
Linguistics.

[141] Resnik, P. (1995). Using information content to evaluate semantic similarity in a
taxonomy. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 1, IJCAI’95, pages 448–453, San Francisco, CA, USA.Morgan
Kaufmann Publishers Inc.

[142] Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Systems
Handbook, pages 1–35. Springer US, Boston, MA.

[143] Roget, P. M. (1979). Roget’s International Thesaurus (Harper Colophon Books).
HarperCollins Publishers.

[144] Rollins, J., McCusker, M., Carlson, J., and Stroll, J. (2017). Manuscript matcher:
A content and bibliometrics-based scholarly journal recommendation system. In
BIR@ECIR, volume 1823 of CEUR Workshop Proceedings, pages 18–29. CEUR-
WS.org.

[145] Rothe, S. and Schütze, H. (2015). Autoextend: Extending word embeddings to
embeddings for synsets and lexemes. In ACL (1), pages 1793–1803. The Association
for Computer Linguistics.

[146] Rothe, S. and Schütze, H. (2017). Autoextend: Combining word embeddings with
semantic resources. Computational Linguistics, 43(3):593–617.

[147] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Mathematics,
20(Supplement C):53 – 65.

[148] Ruas, T. and Grosky, W. (2017a). Keyword Extraction Through Contextual Semantic
Analysis of Documents. In Proceedings of the 9th International Conference on
Management of Emergent Digital EcoSystems, Bangkok. ACM Press.

[149] Ruas, T. and Grosky, W. (2018). Semantic Feature Structure Extraction from Doc-
uments Based on Extended Lexical Chains. In Proceedings of the 9th 9th Global
Wordnet Conference, Nanyang Technological University (NTU), Singapore. Associ-
ation for Computational Linguistics.

[150] Ruas, T., Grosky, W., and Aizawa, A. (2019). Multi-sense embeddings through a
word sense disambiguation process. Pre-Print.

160

[151] Ruas, T. and Grosky, W. I. (2017b). Keyword extraction through contextual semantic
analysis of documents. In Chbeir, R., Kawtrakul, A., Grosky, W. I., and Ouni, A.,
editors, Proceedings of the 9th International Conference on Management of Digital
EcoSystems, MEDES 2017, Bangkok, Thailand, November 07-10, 2017, pages 150–
156. ACM.

[152] Rubenstein, H. and Goodenough, J. B. (1965). Contextual correlates of synonymy.
Commun. ACM, 8(10):627–633.

[153] Rumelhart, D. E., Hinton, G. E., andWilliams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323:533–536.

[154] Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[155] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620.

[156] Salton, G. and Yang, C. S. (1973). On the specification of term values in automatic
indexing. Journal of Documentation., 29(4):351–372.

[157] Sanders, T. and Pander Maat, H. (2006). Cohesion and Coherence: Linguistic
Approaches. In Quirk, R., editor, Encyclopedia of Language & Linguistics, pages
591–595. Elsevier, London.

[158] Saratlija, J., Šnajder, J., and Dalbelo Bašić, B. (2011). Unsupervised Topic-Oriented
Keyphrase Extraction and Its Application to Croatian, pages 340–347. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[159] Sedding, J. and Kazakov, D. (2004). Wordnet-based text document clustering. In
Proceedings of the 3rd Workshop on RObust Methods in Analysis of Natural Lan-
guage Data, ROMAND ’04, pages 104–113, Stroudsburg, PA, USA. Association for
Computational Linguistics.

[160] Shaoul, C. and Westbury, C. (2010). The westbury lab wikipedia corpus.

[161] Shi, T. and Liu, Z. (2014). Linking glove with word2vec.

[162] Silber, H. G. and McCoy, K. F. (2000). Efficient Text Summarization Using Lexical
Chains. Proceedings of the ACM Conference on Intelligent User Interfaces, pages
252–255.

[163] Silva, J. and Lopes, G. (2010). Towards automatic building of document keywords.
In Proceedings of the 23rd International Conference on Computational Linguistics:
Posters, COLING ’10, pages 1149–1157, Stroudsburg, PA, USA. Association for
Computational Linguistics.

161

[164] Simov, K. I., Boytcheva, S., and Osenova, P. (2017). Towards lexical chains for
knowledge-graph-based word embeddings. In RANLP, pages 679–685. INCOMA
Ltd.

[165] Sinoara, R. A., Camacho-Collados, J., Rossi, R. G., Navigli, R., and Rezende,
S. O. (2019). Knowledge-enhanced document embeddings for text classification.
Knowledge-Based Systems, 163:955 – 971.

[166] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts,
C. (2013). Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for
Computational Linguistics.

[167] Székely, G. J. and Rizzo, M. L. (2005). Hierarchical clustering via joint between-
within distances: Extending ward’s minimum variance method. J. Classification,
22(2):151–183.

[168] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. (2008). Arnetminer:
Extraction and mining of academic social networks. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and DataMining, KDD
’08, pages 990–998, New York, NY, USA. ACM.

[169] Tanimoto, T. (1957). An elementary mathematical theory of classification and
prediction. Ibm internal report 17th, IBM.

[170] Tekli, J. (2016). An overview on xml semantic disambiguation from unstructured text
to semi-structured data: Background, applications, and ongoing challenges. IEEE
Trans. Knowl. Data Eng., 28(6):1383–1407.

[171] Thompson, C. and Shure, L. (2017). Hierarchical Clustering;[User’s Guide]. The
MathWorks Inc.

[172] Tian, F., Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E., and Liu, T.-Y. (2014).
A probabilistic model for learning multi-prototype word embeddings. In COLING
2014, 25th International Conference on Computational Linguistics, Proceedings
of the Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland, pages
151–160.

[173] Trask, A., Michalak, P., and Liu, J. (2015). sense2vec - A fast and accurate method
for word sense disambiguation in neural word embeddings. CoRR, abs/1511.06388.

[174] Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple and
general method for semi-supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL ’10, pages 384–394,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[175] Turing, A. M. (1950). I. Computing Machinery and Intelligence. Mind,
LIX(236):433–460.

162

[176] Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector spacemodels
of semantics. CoRR, abs/1003.1141.

[177] Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327–352.

[178] Weaver, W. (1949). Translation. In Locke, W. N. and Boothe, D. A., editors,Machine
Translation of Languages, pages 15–23. MIT Press.

[179] Wei, T., Lu, Y., Chang, H., Zhou, Q., and Bao, X. (2015). A semantic approach for
text clustering usingwordnet and lexical chains. Expert Syst. Appl., 42(4):2264–2275.

[180] Whissell, J. S. and Clarke, C. L. A. (2011). Improving document clustering using
okapi bm25 feature weighting. Information Retrieval, 14(5):466–487.

[181] Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings
of the 32Nd Annual Meeting on Association for Computational Linguistics, ACL ’94,
pages 133–138, Stroudsburg, PA, USA. Association for Computational Linguistics.

[182] Xia, F., Liu, H., Lee, I., and Cao, L. (2016). Scientific Article Recommendation:
Exploiting CommonAuthor Relations andHistorical Preferences. IEEETransactions
on Big Data, 2(2):101–112.

[183] Yang, D. and Powers, D. M. W. (2006). Verb similarity on the taxonomy of wordnet.
In In the 3rd International WordNet Conference (GWC-06), Jeju Island, Korea.

[184] Yang, Y. (1999). An evaluation of statistical approaches to text categorization.
Information Retrieval, 1:69–90.

[185] Yao, Y., Li, X., Liu, X., Liu, P., Liang, Z., Zhang, J., and Mai, K. (2017). Sensing
spatial distribution of urban land use by integrating points-of-interest and google
word2vec model. Int. J. Geogr. Inf. Sci., 31(4):825–848.

[186] Yu, M. and Dredze, M. (2014). Improving lexical embeddings with semantic knowl-
edge. In ACL (2), pages 545–550.

[187] Zhang, M., Yang, H., Ji, D., Teng, C., and Wu, H. (2013). Discourse Coherence:
Lexical Chain, Complex Network and Semantic Field, pages 756–765. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[188] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks
for text classification. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

[189] Zheng, R., Li, J., Chen, H., and Huang, Z. (2006). A framework for authorship iden-
tification of online messages: Writing-style features and classification techniques. J.
Am. Soc. Inf. Sci. Technol., 57(3):378–393.

[190] Zhou, Z., Wang, Y., and Gu, J. (2008). New model of semantic similarity measuring
in wordnet.

163

[191] Zou, W. Y., Socher, R., Cer, D. M., and Manning, C. D. (2013). Bilingual word
embeddings for phrase-based machine translation. In EMNLP, pages 1393–1398.

164

	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	 I. Introduction
	1.1 Problem Context
	1.2 Main Objectives
	1.3 Dissertation Structure

	 II. Background and Related Work
	2.1 Word Sense Disambiguation
	2.1.1 Related Work in Word-Sense Disambiguation
	2.1.2 Keyword Extraction and Related Work

	2.2 Lexical Chains
	2.2.1 Related Work in Lexical Chains

	2.3 Word Embeddings
	2.3.1 Multi-Sense Embeddings
	2.3.2 Related Work in Word Embeddings
	2.3.3 Related Work in Multi-Sense Embeddings
	2.3.4 Related Work in Document Classification and Embeddings

	 III. Exploring Multi-Sense Embeddings and Lexical Chains
	3.1 Semantic Architecture Representation
	3.2 Synset Disambiguation, Annotation, and Embeddings
	3.2.1 Most Suitable Sense Annotation (MSSA)
	3.2.2 Most Suitable Sense Annotation N Refined (MSSA-NR)
	3.2.3 Most Suitable Sense Annotation - Dijkstra (MSSA-D)
	3.2.4 From Synset to Embeddings (Synset2Vec)
	3.2.5 Complexity Analysis

	3.3 Extending Lexical Chains
	3.3.1 Flexible Lexical Chains II (FLLC II)
	3.3.2 Fixed Lexical Chains II (FXLC II)
	3.3.3 From Lexical Chains to Embeddings (Chains2Vec)
	3.3.4 Building Lexical Chains

	 IV. Experiments and Validation Tasks
	4.1 Word Similarity Task
	4.1.1 Training Corpus
	4.1.2 Hyperparameters, Setup and Details
	4.1.3 Benchmark Details for Word Similarity Task
	4.1.4 No Context Word Similarity
	4.1.5 Context Word Similarity

	4.2 Further Discussions and Limitations on MSSA
	4.3 Document Classification Task
	4.3.1 Datasets Details
	4.3.2 Machine Learning Classifiers
	4.3.3 Word Embedding Models Characteristics
	4.3.4 Document Embeddings Models Characteristics
	4.3.5 Experiment Configuration
	4.3.6 Document Classification Task Results
	4.3.7 Lexical Chains Behavior Analysis

	4.4 Further Discussions and Limitations on FLLC II and FXLC II

	 V. Final Considerations
	5.1 Future Directions
	5.1.1 Scientific Paper Mining and Recommendation
	5.1.2 Related Work in Scientific Paper Mining and Recommendation

	 VI. Early Findings and Contributions
	6.1 Word Sense Disambiguation Techniques
	6.1.1 Path-Based Measures: Wu & Palmer
	6.1.2 Information Content-Based Measures: Jiang & Conrath
	6.1.3 Feature-Based Measures: Tversky
	6.1.4 Hybrid Measures: Zhou

	6.2 Best Synset Disambiguation and Lexical Chains Algorithms
	6.2.1 Best Synset Disambiguation Algorithm (BSD)
	6.2.2 Flexible Lexical Chains Algorithm (FLC)
	6.2.3 Flexible to Fixed Lexical Chains Algorithm (F2F)
	6.2.4 Fixed Lexical Chains Algorithm (FXLC)
	6.2.5 Distributed Semantic Extraction Mapping
	6.2.6 Semantic Term Frequency-Inverse Document Frequency (TF-IDF)

	6.3 Proof-Of-Concept Experiments
	6.3.1 Semantic Extraction Based on Lexical Chains
	6.3.2 Semantic Extraction - Reuters-21578 Benchmarking
	6.3.3 Keyconcept Extraction through Lexical Chains

	BIBLIOGRAPHY

