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ABSTRACT

During the modern synthesis, researchers merged insights from natural history, evolu-

tionary genetics, and paleontology to develop a cohesive theoretical foundation for evolu-

tionary theory. Since then, the rapid emergence of genomic resources has revolutionized

our understanding of evolutionary processes. Despite neontological successes, paleobi-

ology has lagged behind, due in part to perceived challenges in collecting and analyzing

morphological data. As a result, the earlier synthetic evolutionary view developed be-

tween neo- and paleontology has not kept pace with the current data-centric landscape. To

address these issues, I aim to integrate morphological data representing fossil and living

taxa into the modern evolutionary framework through the development of novel statis-

tical approaches that leverage sources of data previously thought to be unconventional.

These developments follow two main threads: 1) development of a statistical framework

through which to infer phylogeny among fossil taxa by merging increasingly large and

high-throughput quantitative morphological datasets with stratigraphic information, and 2)

developing empirical applications of new approaches to comprehensively examine long-

hypothesized but under-studied patterns in evolutionary rate throughout time, and mosaic

change by integrating morphological, stratigraphic, and developmental data.

xii



CHAPTER I

Introduction

1.1 Paleontology as evolutionary biology

Paleontology has long had a challenging relationship with evolutionary biology. In On

the Origin of Species, Darwin emphasized both the importance and unreliability of the

fossil record in providing a basis of empirical evidence for evolutionary theory. Darwin

argued that, while records of extinction and ‘transitional’ taxa can only be obtained from

fossil evidence, the fragmentary preservation of biological material often renders the rock

record inadequate in documenting detailed evolutionary change (Darwin 1859, Chapter

9). The tension between evolutionary theory and paleontology reflected in Darwin’s early

pessimism regarding the usefulness of the fossil record in understanding evolutionary pat-

terns and processes was perhaps indicative of a broader tendency among prominent 19th

century paleontologists, including Georges Cuvier and Richard Owen, to reject both pre-

and post-Darwinian evolutionary explanations. While the fields of evolutionary biology

and paleontology continued their growth after the publication of Origin, they followed

fairly isolated tracks. The Darwinian heritage in the growing field of evolutionary biol-

ogy was reflected by skepticism over the ability of fossils to address many evolutionary

questions. At the same time, paleontology grew into a geologic discipline that was primar-

ily developed as a tool to define, delimit, and associate major epochs within stratigraphic

1
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sequences.

By the 1920’s, evolutionary theory entered a phase of substantial maturation referred

to as the ‘modern synthesis’. This period was defined by the development of a mechanis-

tic basis for evolution that explained and expanded Darwinian concepts by merging them

with an understanding of Mendelian genetics at the population level. Researchers such as

Thomas Hunt Morgan, Sewall Wright, J.B.S Haldane, and R.A. Fisher incorporated math-

ematical models and experimental approaches to explain the emergence of evolutionary

patterns from fluctuations in allele frequencies within and between populations of organ-

isms. The modern synthesis movement culminated in the 1940’s, diffusing into more his-

torical and organismally-focused subdisciplines of biology, such as zoology and botany,

through the work of the researchers Ernst Mayr and G. L. Stebbins. These researchers

were more similar to naturalists such as Darwin, and sought to apply the concepts and

models from the population geneticists to understand broad patterns in the evolution of

taxa outside of a strictly theoretical or experimental context.

1.2 The emergence of paleontology as a biological science

It was during the modern synthesis that paleontology first 1 featured prominently as a

full participant in the formulation of evolutionary theory with the publication by George

Gaylord Simpson of his book Tempo and Mode in Evolution (Simpson 1944). Simp-

son was a vertebrate paleontologist who closely followed the development of the popula-

tion genetic work of the modern synthesis throughout the 1920’s and 1930’s and strongly

advocated for the formalization of a quantitative basis for paleontology. In Tempo and

Mode, Simpson analyzed fossil datasets to explore the ways in which evolutionary patterns

take shape over long timescales, demonstrating that rates of morphological evolution vary
1Although, for completeness, I should add that there was a movement toward an evolutionary paleobiology on the European conti-

nent, shaped most notably by Louis Dollo and Othenio Abel.
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throughout evolutionary time from near-stasis to rapid ‘quantum’ bursts. Simpson pro-

posed explanations for these fluctuations using population processes, developing a model

that explained the emergence of novel morphologies over paleontologic timescales as al-

ternating episodes of rapid selection and drift along an ‘adaptive landscape’, a metaphor

describing the fitness attributes of combinations of phenotypes borrowed from the popu-

lation geneticist Sewall Wright. By convincingly applying this model to the evolution of

fossil horses, Simpson provided a long-needed demonstration of both the ability for pa-

leontological data to bear on major evolutionary questions and the value of evolutionary

models in understanding patterns displayed by the fossil record.

Simpson’s explorations provided an important initial step toward demonstrating the im-

portant place of paleontology in modern evolutionary theory. However, his seminal work

participated alongside that of several contemporaries who were increasingly interested

in analyzing the fossil record in an evolutionary context. Although paleontology spent

most of its history before the 1920’s as a discipline distinct from evolutionary biology, the

growing consensus toward accepting Darwinian evolution and strong theoretical under-

pinnings provided by the early contributors to the modern synthesis marked an increased

interest among paleontologists in harnessing the fossil record to evaluate and propose new

evolutionary hypotheses. Norman Newell explained large scale patterns observed in the

invertebrate fossil record, such as directional trends in body size evolution (Newell 1949),

and periodic bursts in the rate of evolution (Newell 1952) using the evolutionary concepts

developed during the modern synthesis.

The work of evolutionary paleontologists such as Simpson and Newell from the 1930’s

through the 1950’s provided an initial injection of hope by giving early demonstrations of

the viability of paleontology as a subdiscipline of evolutionary biology. However, their

goals came to fruition more fully in the 1960’s and 1970’s with the maturation of their
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students and others following in their work. This generation of paleobiologists fully real-

ized the potential of the fossil record as a laboratory through which to both apply modern

evolutionary concepts derived through population genetics and develop new theoretical

contributions to evolutionary theory that were uniquely informed by the vast timescales

and empirical context available to paleontology. Many of the most influential and enlight-

ening concepts in post-synthesis evolutionary biology were developed by paleobiologists

during this time period, such as Eldredge and Gould’s ‘punctuated equilibria’ and Van

Valen’s ‘Red Queen’ hypothesis (Van Valen 1973; Gould and Eldredge 1977).

The ideas developed by researchers during this period simultaneously validated, ex-

tended, and challenged the views of evolutionary theory developed during the modern

synthesis. Encompassing and extending beyond Simpson and Newell’s application of

synthesis-era concepts to understanding the fossil record, new ideas emerging from pale-

ontologists suggested a much more complex picture of evolutionary theory (Gould 1980b,a).

These contributions collectively provided a full realization of the ability for paleontology,

now referred to as ‘evolutionary paleobiology’ to reflect the renewed evolutionary em-

phasis, to yield unique contributions to evolutionary theory. The transformed scope of

evolutionary biology through the renewed synthesis with the fossil record was validated

in 1984 with the prominent population geneticist and game theoretician John Maynard

Smith’s article in Nature, titled ‘Palaeontology at the High Table’ (Maynard Smith 1984).

In the article, Maynard Smith chastised previous generations of paleontologists, while cel-

ebrating the contributions of Gould and his contemporaries as heralding the emergence

of a new evolutionary synthesis wherein paleontology would be fully integrated into the

fold of modern evolutionary theory. Although the article may have given a slightly un-

fair treatment of past work, it marked a significant shift in the growth and acceptance of

paleobiology as an evolutionary discipline.
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1.3 The molecular revolution in evolutionary biology

Beginning the 1960’s, the field of evolutionary biology was reshaped by the emergence

and proliferation of molecular data that enabled the direct study of the evolution of bi-

ological molecules. Early studies, first using protein data and later incorporating DNA,

began to glean the complexity of evolutionary processes at the genomic level. While many

synthesis-era geneticists envisioned a fairly simple, atomized view of evolution where sin-

gle alleles become fixed as a consequence of natural selection or genetic drift, the emer-

gence of molecular data revealed more complicated patterns. For instance, molecular data

suggested many evolutionary changes at the molecular level were both selectively neu-

tral, and may even be ‘clock-like’ in the sense of maintaining a consistent substitution

rate (Zuckerkandl and Pauling 1965; Kimura et al. 1968). Protein data also showed ge-

netic variation in populations of both Drosophila and humans to be substantially higher

than previously suggested by Mendelian population genetics alone (Hubby and Lewon-

tin 1966; Lewontin 1967). This early promise for molecular data to contribute to a more

nuanced view of evolutionary theory grew rapidly with the emergence of DNA sequenc-

ing. Molecular data revolutionized existing disciplines such as systematics and population

genetics, and encouraged the development of new approaches, such as coalescent theory.

The diverse disciplines that were reshaped by the proliferation of molecular sequence

data were quickly united by their shared methodological foundation that was rooted from

the beginning in the emerging tools of statistical phylogenetics. While phylogenies were

first used as tools for the taxonomic classification of organisms (Sneath and Sokal 1962;

Hennig 1965), their usefulness in understanding evolutionary dynamics at both the popu-

lation (Felsenstein 1973a; Thompson 1975; Felsenstein 1981b) and interspecific (Cracraft

1974; Gingerich 1979a; Brooks 1981; Cracraft 1982) levels became quickly apparent. As
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the burgeoning field of molecular evolution developed, statistical phylogenetic methods,

based on parametric models of evolutionary change, rapidly developed and became heavily

preferred over previous ‘phenetic’ and cladistic approaches (Cavalli-Sforza and Edwards

1967; Felsenstein 1978, 1981a). Some of the key benefits to the use of parametric models

in phylogenetic inference included the ability to weigh alternative hypotheses using sta-

tistical criteria such as likelihood and to characterize evolutionary patterns and processes

using inferred model parameters, such as substitution rates. Many important questions

in molecular evolution were addressed by combining sequence datasets with increasingly

sophisticated parametric phylogenetic approaches.

The field of molecular evolution underwent another major shift that began in the early

2000’s with the emergence of next-generation sequencing (NGS). Instead of being con-

fined to the single genomic regions accessible through Sanger sequencing, NGS approaches

enabled researchers to examine evolutionary and phylogenetic patterns across entire genomes.

Combining NGS datasets with phylogenetic methods has facilitated many examinations of

evolutionary processes with previously unimaginable detail. For example, NGS data have

both revealed the extent and enabled the disentangling of discordance in the phylogenetic

signal displayed by different genes that occurs due to population processes (Maddison and

Knowles 2006; Fontaine et al. 2015; Pease et al. 2016). NGS data have also contributed

to an understanding of the importance of gene and whole genome duplication in shaping

patterns in phylogeny and molecular evolution among non-model organisms (Dehal and

Boore 2005; De Bodt et al. 2005; Cui et al. 2006; Smith et al. 2015, 2018a).

Although a comprehensive review of all of the insights and breakthroughs in evolution-

ary biology that have been facilitated by the synergistic emergence and growth of molec-

ular data and parametric phylogenetic approaches falls outside the scope of relevance for

this work, a key lesson from molecular evolution is the immense potential for advances in
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approaches to both the collection and analysis of data to drive revolutionary innovations

in our understanding of evolutionary processes.

1.4 A burgeoning revolution in evolutionary paleobiology?

The culmination of the theoretical contributions from evolutionary paleobiologists co-

incided with the rise of molecular evolution during the 1980’s. On the whole, the molec-

ular revolution has spurred massive changes in evolutionary biology since the publication

of John Maynard Smith’s welcoming of paleontology to the ‘high table’. Although pa-

leontology has remained a source of important concepts, the field has been limited in its

ability to empirically evaluate hypotheses in comparison to molecular evolution. While

there have been many important developments in both data collection and model-based

analysis, the potential for evolutionary paleobiology as a theoretical and empirical disci-

pline, akin to molecular evolution, has yet to be fully realized. However, recent advances

in the collection and public accessibility of morphologic datasets (Boyer et al. 2015, 2016;

Pomidor et al. 2016) hint at the potential for a data revolution in paleobiology.

As the availability of morphological datasets spanning increasingly large clades of fos-

sil and living taxa increases, methods for their analysis are quickly becoming a limiting

factor. The construction of molecular evolution over a methodological foundation derived

from statistical phylogenetics can provide an indication of the necessity moving forward

for a revitalized set of approaches for phylogenetic inference among fossil taxa. Although

the important place for phylogenetics in understanding the evolutionary dynamics that

have shaped the fossil records has long been recognized (Fisher 1991), paleontology has

been limited by antiquated cladistic approaches until very recently.

The strong sway held over paleontology by cladistic dogmatism has resulted at least

partially from the limitations in collecting morphologic data. Data matrices of manually-
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coded qualitative character states have long been the dominant medium of information in

paleontology. The emergence of geometric morphometrics in the 1980’s appeared promis-

ing (Rohlf and Marcus 1993). Although there was substantial optimism during this time

for the development of a fully statistical, quantitative framework for morphological phy-

logenetics (Felsenstein 1988), the following years witnessed substantial controversy over

the usability of quantitative traits generated through geometric approaches in phyloge-

netics (Zelditch et al. 1995; Adams and Rosenberg 1998; Rohlf 1998; Felsenstein 2002;

MacLeod 2002; Rohlf 2002). Since this time, new approaches to morphometrics have

reignited the potential for a data-rich future in morphology (Boyer et al. 2015, 2016; Po-

midor et al. 2016). However, new statistical phylogenetic approaches will be needed to

facilitate the growth of this new generation of morphological phylogenetics.

The fragmentary nature of the fossil record presents additional challenges for the de-

velopment of a new framework for paleobiology. The incomplete anatomical sampling of

many fossil taxa can create challenges in confidently reconstructing evolutionary relation-

ships from morphology alone. Although the past and emerging methodological advances

in morphology discussed above are likely to open many new possibilities in paleontologi-

cal research, incompleteness in the sampling of the fossil record will remain a substantial

challenge. One approach that has improved resolution of phylogeny among fossil taxa

in the past has been the addition of stratigraphic information when evaluating phyloge-

netic hypotheses (Gingerich 1974, 1979a; Fisher et al. 1994; Fisher 2008). These previ-

ous approaches, referred to as stratophenetics and stratocladistics, evaluated support for

phylogenetic trees by combining evidence from both morphologic and stratigraphic data,

ultimately selecting the tree that provided the best fit across both data types. The incor-

poration of these stratigraphic approaches, reimagined through a statistical lens, will be

important in developing a new data-rich era in evolutionary paleobiology.
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In this dissertation, I have aimed to develop a rebuilt statistical methodological foun-

dation for the next generation of evolutionary paleobiology. The new methods that I have

developed in the course of this work embrace two data sources that have been historically

unconventional to paleontology: quantitative traits and stratigraphic range data. Through

a combination of simulation-based pilot studies, development of new computational algo-

rithms and statistical approaches, and empirical case studies, I have attempted to provide

the groundwork for a new era of evolutionary paleobiology. Like the molecular revolution

of the 1980’s and 1990’s, this foundation is based on a new set of statistical phylogenetic

approaches. The first three chapters provide new computational phylogenetic methods for

quantitative traits and stratigraphic data. In the fourth and last chapter, I build upon these

developments to provide an example of how they may be harnessed to evaluate major

evolutionary questions throughout the fossil record.

While many previous contributions to analytical paleobiology have focused on the ma-

rine invertebrate record (Foote and Raup 1996; Wagner 1996; Solow and Smith 1997, for

example), the methods developed in the course of this dissertation are geared primarily

toward analysis of the terrestrial vertebrate fossil record. This is motivated in part by my

interests as a vertebrate paleontologist, but is also intended to provide a somewhat lim-

iting case, where the methods are structured to accommodate the poor sampling in the

vertebrate fossil record relative to the marine invertebrate record. Extending beyond this

extreme, I even provide a paleobotanical case study, by applying one of my methods to

fossil taxa from the grape family (Vitaceae). Nevertheless, although they show utility in

the poorly sampled records of vertebrates and plants, the methods that I have developed

here will also be applicable and useful in more densely sampled taxa.
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1.5 Chapter summaries

In chapter 2, I provide a pilot study using simulated data to evaluate the feasibility of

employing quantitative trait data in parametric phylogenetic inference. I use the trials on

simulated data as a launching point to advocate for a shift among the paleobiological com-

munity from emphasizing traditionally scored qualitative traits to continuous traits quanti-

fied using traditional or geometric morphometric methods. Such a shift would facilitate the

assembly of comprehensive datasets that reduce bias and subjectivity in manual character

coding and provide a more faithful and resolute representation of interspecific morpho-

logical variation. In some ways, the ability for quantitative traits to inform phylogeny is

self-evident. Their use was also commonplace in the pre-cladistics era of paleontology,

which developed a long tradition of reconstructing phylogeny by plotting (strato)phenetic

similarity in quantitative traits such as body size or molar width (Simpson 1944; Gingerich

1979b). However, my goal in this study was to 1) provide concrete documentation for their

utility in phylogenetic inference when placed in an evaluative, parametric framework and

2) use this demonstration as a basis to explore issues relating to the fidelity of phyloge-

netic information content and to construct a vision for a future of paleontology that is more

rigorous and efficient in its treatment of morphologic data.

In chapter 3, I present an implementation of a method for inferring fossil placements

and phylogeny from continuous traits. I also provide two empirical demonstrations of the

method, where I explore the ability of the method to infer the phylogenetic placements of

fossil taxa along an extant scaffolding. These empirical trials explore the performance of

the method on both geometric and traditional morphometric data representing the mam-

malian order Carnivora and the flowering plant family Vitaceae (grapes), respectively. In

addition to validating the implementation and evaluating the performance of different data
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types, I explore the utility of weighing the contribution of each trait based on its assessed

reliability. This weighing procedure is intended to separate phylogenetically reliable from

unreliable traits through the construction of a Bayesian prior, where traits that are not con-

sistent with the extant scaffolding are de-emphasized when inferring the positions of fossil

taxa. This procedure is designed to bolster the accuracy and confidence in the phylogenetic

placement of fossil taxa. Another major goal in this work was to provide a demonstration

for the advantages of gathering comprehensive quantitative morphologic datasets. Using

the procedures that I introduce in the chapter, the reliability of signal can be assessed ob-

jectively using an explicit reference point. This offers a procedural and epistemological

improvement over the construction and analysis of traditional cladistic datasets, where

sampling of traits is often biased (relative to a comprehensive sampling of all accessible

morphologic features) according to subjective judgments of their reliability.

In chapter 4, I designed and implemented a parametric reformulation of the strato-

cladistic approach to phylogenetic inference (Fisher et al. 1994; Fisher 2008). This ap-

proach was intended to faithfully reproduce the logic and goals of the original parsimony-

based stratocladistics within a maximum-likelihood (ML) statistical framework. The defin-

ing feature of my approach, like stratocladistics, is the merging of temporal and morpho-

logic evidence to select a best-supported tree that includes both collateral and ancestor-

descendant relationships. I applied this framework to develop a stronger understanding of

the evolutionary relationships among taxa within the hominin lineage. While paleoanthro-

pological hypotheses often consider direct ancestry between hominin species, the phylo-

genetic approaches that have been applied to hominins in the recent past have only con-

sidered collateral relationships. As a result, hominin relationships have remained highly

contentious, owing to the lack of statistical support for any of the detailed qualitative hy-

potheses proposed by paleoanthropologists and confusing patterns supported by previous
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phylogenetic analyses. The ML stratocladistic approach that I introduced provided strong

support for several ancestor-descendant hypotheses that align well with common qualita-

tive interpretations.

In chapter 5, I introduced a new procedure that reconstructs the mosaic patterns in

evolutionary disparity displayed by suites of continuous traits. I introduce and describe a

new method through which to interrogate large datasets of phenotypic traits to reveal the

shared and divergent patterns across anatomical regions that have driven their disparifica-

tion through time by identifying modules that display similar patterns in rate and disparity

across phylogenetic trees. By identifying this structure, the approach identifies specific

patterns in mosaic evolution that describe change in phenotypes throughout time. Us-

ing both simulated and empirical datasets, I demonstrate the capability of the approach

to identify mosaic evolution and consider the potential of the method to contribute to a

more detailed view of the diversity of patterns in phenotypic evolution across lineages and

throughout evolutionary time.

In this dissertation, I have aimed to produce a meaningful contribution toward the con-

struction of a renewed, computational, evolutionary paleobiology. I recognize that the

approaches that I have developed in the course of this work represent a skeletal fulfillment

toward this goal. However, I hope that the contributions presented in this dissertation will

contribute to a broader dialectic in their attempt to reconsider the ways in which we re-

construct macroevolutionary and phylogenetic patterns from the fossil record. Although

the generational task of developing and incorporating a new set of approaches and appli-

cations into the paleobiological mainstream is daunting, I feel that it will be necessary

in developing a renewed conceptual and theoretical synthesis between neontological and

paleontological evolutionary biology. Moving forward, many creative developments in

methods and empirical applications will surely unleash unprecedented insight into the dis-
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parate and complex patterns and processes that have shaped the tree of life.



CHAPTER II

Continuous Trait Phylogenetics

Preamble: The contents of this chapter have been published in Systematic Biology. The

published version appears as: Parins-Fukuchi, Caroline. Use of continuous traits can im-

prove morphological phylogenetics. Systematic Biology 67.2 (2018): 328-339.

2.1 Abstract

The recent surge in enthusiasm for simultaneously inferring relationships between ex-

tinct and extant species has reinvigorated interest in statistical approaches for modeling

morphological evolution. Current statistical methods use the Mk model to describe sub-

stitutions between discrete character states. Although representing a significant step for-

ward, the Mk model presents challenges in biological interpretation, and its adequacy in

modeling morphological evolution has not been well explored. Another major hurdle in

morphological phylogenetics concerns the process of coding discrete characters. The of-

ten subjective nature of discrete character coding can generate discordant results that are

rooted in individual researchers’ subjective interpretations. Employing continuous mea-

surements to infer phylogenies may alleviate some of these issues. Although not widely

used in the inference of topology, models describing the evolution of continuous characters

have been well examined, and their statistical behavior is well understood. Also, contin-

uous measurements avoid the substantial ambiguity often associated with the assignment

14
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of discrete states to characters. I present a set of simulations to determine whether use

of continuous characters is a feasible alternative or supplement to discrete characters for

inferring phylogeny. I compare relative reconstruction accuracy by inferring phylogenies

from simulated continuous and discrete characters. These tests demonstrate significant

promise for continuous traits by demonstrating their higher overall accuracy as compared

to reconstruction from discrete characters under Mk when simulated under unbounded

Brownian motion, and equal performance when simulated under an Ornstein-Uhlenbeck

model. Continuous characters also perform reasonably well in the presence of covariance

between sites. I argue that inferring phylogenies directly from continuous traits may ben-

efit efforts to maximize phylogenetic information in morphological datasets by preserving

larger variation in state space compared to many discretization schemes. I also suggest that

the use of continuous trait models in phylogenetic reconstruction may alleviate potential

concerns of discrete character model adequacy, while identifying areas that require further

study in this area. This study provides an initial controlled demonstration of the efficacy

of continuous characters in phylogenetic inference.

2.2 Introduction

The development and widespread adoption of statistical phylogenetic methods has rev-

olutionized disparate disciplines in evolutionary biology, epidemiology, and systematics.

Studies utilizing maximum-likelihood (ML) and Bayesian approaches have become the

preferred means to analyze molecular data, largely eclipsing parsimony and distance meth-

ods. Despite this, approaches which draw inference from morphological data have re-

mained comparatively underdeveloped (but see relevant discussion and citations below).

As a result, non-probabilistic tree inference methods have continued to be employed for

the phylogenetic analysis of morphological characters. Nonetheless, several landmark ad-
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vances in the development of statistical morphological phylogenetic methods have demon-

strated the benefits of further developing this framework. This will be particularly impor-

tant in the near future as burgeoning approaches enabling the rapid collection of morpho-

logical data may begin to outstrip methods through which to analyze them (Chang and

Alfaro 2015b,a). This may significantly alter and enhance our view of the tree of life, es-

pecially considering that the majority of macro-organisms, represented by fossil taxa, can

only be analyzsed from their morphology.

A foundational contribution in morphological phylogenetics has been the Mk model

of discrete trait evolution (Lewis 2001). This is a version of the Jukes-Cantor model of

nucleotide substitution generalized to accommodate varying numbers of character states

(Jukes and Cantor 1969). Extensions to this model accommodate biased sampling of par-

simony informative characters (Lewis 2001), rate heterogeneity between sites (Wagner

2012), and asymmetric transition rates (Ronquist and Huelsenbeck 2003; Wright et al.

2015). The deployment of this model has demonstrated the utility of statistical approaches

to morphological phylogenetics. Such approaches improve estimates of uncertainty over

non-probabilistic approaches, enable a clearer statement of modeling assumptions, and

enable branch length estimation. This has enabled a better understanding of much of the

fossil tree of life (Dávalos et al. 2014; Pattinson et al. 2014; Dembo et al. 2015). These ap-

proaches have also enabled the application of tip dating methods to the combined analysis

of extinct taxa represented by morphological data with extant taxa (Nylander et al. 2004;

Ronquist et al. 2012). These total evidence tip dating methods have been widely used

since their introduction, and are implemented in the BEAST (Bouckaert et al. 2014) and

MrBayes (Ronquist and Huelsenbeck 2003) packages. These have more clearly resolved

the timing of species divergences and relationships between fossil and living taxa (Wiens

et al. 2010; Wood et al. 2012; Lee et al. 2013, 2014, but see Arcila et al. 2015). Overall,
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probabilistic approaches to morphological phylogenetics appear to represent an improve-

ment in accuracy compared to cladistic methods, and are indispensable in their distinct

ability to allow the estimation of branch lengths and evolutionary rate. The benefits of a

statistical total-evidence framework as applied to fossil taxa will only become clearer as

more data become available and improved methods are developed (Pennell and Harmon

2013; Lee and Palci 2015).

Despite the these strides, discrete character models represent an imperfect solution in

their current usage. Although Bayesian inference under Mk appears to outperform parsi-

mony under certain conditions, error increases at high evolutionary rates (Wright and Hillis

2014). Also, under many circumstances, phylogenetic inference under the Mk model in-

cludes imprecision and uncertainty, both in simulations (O’Reilly et al. 2016) and empir-

ical studies (Lee and Worthy 2012; Dembo et al. 2015). Previous researchers have also

expressed concerns over the efficacy of model-based approaches in the presence of miss-

ing data (Livezey and Zusi 2007; O’leary et al. 2013). However, these have been assuaged

and any issues arising from missing data are likely not specific to probabilistic approaches

(Wright and Hillis 2014; Guillerme and Cooper 2016). Another potential issue is the

lack of clarity in interpreting the Mk model biologically. Although transition rates have

a strong theoretical and empirical basis in population genetics, their significance beyond

serving as nuisance parameters is less straightforward when applied to morphological data.

Discrete morphological characters may not undergo change in a manner analogous to nu-

cleotides, which are well understood to alternate between states repeatedly. Conversely,

many characters used for phylogenetic inference consist of single, parsimony informative

directional changes between taxa (Klopfstein et al. 2015). It is unclear how adequately

discrete Markov models describe such variation. The Mk model itself does not accom-

modate directional evolution, and previous researchers have questioned the adequacy of
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existing discrete character models (Ronquist et al. 2016). This is particularly important

when considering the importance of branch lengths in total evidence tip dating methods

discussed above, but may also be expected to mislead inference of topology.

Aside from the modeling concerns discussed above, discrete morphological charac-

ters present a non-trivial set of challenges to phylogenetics that are distinct from those

presented by molecular data. Perhaps foremost among these is disagreement between re-

searchers in the categorisation, ordering, and weighing of discrete character states (Farris

1990; Hauser and Presch 1991; Pleijel 1995; Wilkinson 1995). Despite extensive discus-

sion among comparative biologists, the interpretive nature of the process of character cod-

ing has continued to leave major palaenotological questions unresolved (Upchurch 1995;

Wilson and Sereno 1998; Bloch and Boyer 2002; Kirk et al. 2003).

Although continuous traits share with discrete traits a reliance on a pre-specified char-

acter concept, and so retain several the conceptual challenges in morphological analyses,

they may help to improve some of the most egregious challenges discussed above. They

can be collected more objectively than qualitative observations and do not require order-

ing of states. Their use in phylogenetic inference has been discussed among the earli-

est advancements in statistical phylogenetics (Cavalli-Sforza and Edwards 1967; Felsen-

stein 1973a), and their phylogenetic informativeness has been demonstrated empirically

(Goloboff et al. 2006; Smith and Hendricks 2013). Still, the use of continuous characters

for the inference of phylogenetic topology has remained uncommon, with methods for

their use in phylogenetics remaining relatively poorly examined beyond the foundational

works referenced above. Although many palaeontological studies incorporate continuous

measurements, they are binned into categories and analysed as discrete. However, since

fossil data are often scarce, it may be beneficial to maximise the amount of information

gleaned from available specimens by representing such variation in its entirety.
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Another potential benefit to inferring phylogeny from continuous characters is the

wealth of models developed in phylogenetic comparative methods to describe their evolu-

tion. Most comparative models of continuous trait evolution belong to the Gaussian class,

which are also well utilized in disparate fields such as physics, economics, and engineer-

ing. In comparative biology, they are used to describe stochastic Markovian movement

through continuous trait space along continuous time. This class of models includes Brow-

nian motion (BM) (Felsenstein 1973a, 1985; Gingerich 1993), Ornstein-Uhlenbeck (OU)

(Hansen 1997a; Butler and King 2004; Beaulieu et al. 2012), and Lévy processes (Landis

et al. 2013). Under BM, evolution is described as a random walk, with phenotypic change

being normally distributed with a mean displacement of zero, and variance σ2. OU mod-

els expand upon this by introducing terms producing a stabilizing force which stabilizes

movement around an optimal trait value, while Lévy processes contain terms producing

saltational jumps in character space, interspersed either by BM diffusion or stasis. Two

major benefits to Gaussian models in phylogenetics are their relatively straightforward in-

terpretability and the relative ease of deriving mathematical extensions to describe a range

of biological processes.

Given the existence of well understood and clearly interpretable models describing their

evolution, the use of continuous traits may offer several advantages over discrete charac-

ters in phylogenetic inference. However, their behaviour is not well understood when

applied to the inference of phylogenetic topology, and so further investigation is needed.

In addition, there are potential hurdles to their efficacy. Possibly foremost among these

is the widespread covariance between continuous measurements that is expected through

both genetic and morphometric perspectives (Lynch et al. 1998; Uyeda et al. 2015; Adams

and Felice 2014). Nevertheless, the expected magnitude in covariance among continuous

morphological measurements and the robustness of phylogenetic methods to this violation
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is not known. Furthermore, it is also generally reasonable to expect evolutionary covari-

ance between nucleotide sites, and phylogenetic methods that do not accommodate for this

are routinely applied to molecular data.

In this study, I carry out simulations to compare the relative performance of binary dis-

crete and continuous characters at reconstructing phylogenetic relationships. Simulations

of continuous characters were designed to reflect a range of scenarios that may influence

accuracy including overall evolutionary rate and matrix sizes. I also conduct inference

on continuous traits that have undergone correlated evolution, an important violation to

single-rate BM thought to be widespread in continuous character evolution.

2.3 Methods

2.3.1 Simulations

I generated a set of 100 pure birth trees using the Phytools package (Revell 2012a) in

R (R Core Team 2016), each containing ten taxa. All trees were ultrametric and generated

with a total length of 1.0 units for consistency in parameter scaling for trait simulations

(Fig. 2-1). These trees were used to simulate continuous characters evolving along an

unbounded BM process, again using Phytools. This is a Markovian process in contin-

uous time where the variance of the process can increase infinitely through time. This

differs from the BM σ2 parameter, which gives the variance in the amount of character

displacement at each draw, effectively describing the magnitude of the random BM walk

or a rate of character displacement. To assess performance across several biological sce-

narios, traits were simulated at σ2 parameterizations of 0.05, 0.5, 1.0, 1.5, and 3. Since the

process under which traits were simulated is unbounded, phylogenetic signal is expected

to remain consistent across rates (Revell et al. 2008), but different rates were chosen to

illustrate this consistency and to provide even comparison to discrete trait simulations.
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Discrete characters were simulated in the Phytools package (Revell 2012a) under an Mk

model with homogeneous transition probabilities. Traits were generated at transition rates

0.05, 0.5, 1.0, 1.5, and 3. All character matrices were generated without rate heterogeneity,

and include invariable sites (i.e. no acquisition bias).
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Figure 2.1: A) Exemplar true simulated tree. B) Tree inferred from 20 discrete characters simulated under
Mk from true tree. C) Tree inferred from 20 continuous characters simulated under Brownian motion. Blue
dots denote incorrect bipartitions.

Matrices containing 500 traits were generated and randomly subsampled to create

smaller sets of 20 and 100 characters to reflect a range of sampling depths. These were

chosen because many published morphological matrices fall within this range. The sub-

sampled matrix sizes were chosen to represent reasonably sized palaeontological datasets,

while the 500 trait matrices were tested to assess performance when data are abundant.

While such large datasets are uncommon in morphology, several studies have produced

character matrices of this size, and for continuous characters, it may be feasible to gener-
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ate such large datasets from morphometric data.

I also simulated continuous characters under an OU model parameterised without di-

rectional drift (θ = 0), and with the stabilizing (α) parameter set to yield the same phylo-

genetic half-life present in the binary Mk model used for comparison. For OU continuous

characters, phylogenetic half-life is defined by:

(2.1)
log(2)

α

and for binary discrete characters as:

(2.2)
log(2)

(q01+q10)

With q01 and q10 corresponding to the respective transition rates between binary character

states.

When phylogenetic half-life is set to be equal, phylogenetic constraint should be the

same between both sets of characters in the sense that they reach saturation over the same

timescale. This comparison examines whether either data source performs inherently bet-

ter when phylogenetic signal is held constant. These data were generated in matrices of

100 traits at an evolutionary rate of 0.5. Because the phylogenetic information content of

both sets of constrained traits should be the same, both sets are expected to perform sim-

ilarly. Nevertheless, this comparison provides a control by assessing whether unknown

differences in the behaviour of each model (or other properties of each method) them-

selves lead to any differences in reconstruction accuracy.

Data were also generated under a correlated BM process to mimic inference in the pres-

ence of multidimensionality. These datasets were constructed at covariance strengths of

0.1, 0.5, and 0.9 and covarying dimensions of 5 and 25 traits. These were chosen to repre-

sent situations where traits range from being loosely to tightly correlated to each another,
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and where the number of correlated dimensions is large to small. Although differing, these

values were chosen to loosely follow the scheme of Adams and Felice (2014).

2.3.2 Estimation of phylogenies and reconstruction accuracy

I estimated Bayesian phylogenetic trees under a single rate BM model for all sets

of continuous characters using RevBayes (Höhna et al. 2016). Trait likelihoods were

computed after Felsenstein (1973a, 1985). MCMC simulations were run for 150,000-

1,000,000 generations and checked manually for convergence using Tracer v1.6. Runs

were accepted when the effective sample size (ESS) for logged parameters exceeded 200.

Trees were inferred from discrete data in MrBayes version 3.2.6 (Ronquist and Huelsen-

beck 2003), simulating for 1,000,000 generations. Different programs were used because,

while MrBayes remains the standard in the field for Bayesian phylogenetic inference, its

current version does not implement likelihood functions for continuous character models.

So the continuous character approach needed to be developed in RevBayes, however, I pre-

ferred to remain with the standard and proven implementation where possible. For both

continuous and discrete characters, I incorporated a birth-death prior on node heights.

This was done to enable an even comparison of branch lengths obtained through both

methods that are scaled to time. Example configuration files for RevBayes and MrBayes

analyses are provided as supplementary data. Tree distributions were summarized using

TreeAnnotator version 2.4.2 (Rambaut and Drummond 2013) to yield maximum clade

credibility (MCC) topologies. MCC trees maximize the posterior probability of each in-

dividual clade, summarizing across all trees sampled during MCMC simulation. Once

summarised, all trees were rescaled to match inferred tree lengths to the true trees using

Phyx (https://github.com/FePhyFoFum/phyx).

I assessed topological accuracy from simulated trait data using the symmetric (Robinson-

Foulds) distance measure (Robinson and Foulds 1981), giving the topological distance
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between true trees and inferred trees. Symmetric distance is calculated as a count of the

number of shared and unshared partitions between compared trees. As such, the maximum

symmetric distance between two unrooted trees can be calculated as 2(N-3). These values

were then scaled to the total possible symmetric distance for interpretability. Additionally,

I measured error in branch length reconstruction using the branch length distance (BLD)

(Kuhner and Felsenstein 1994). This is calculated as the sum of the vector representing the

individual differences between the branch lengths of all shared bipartitions. The scale of

this value depends on the lengths of the trees under comparison. If trees of different lengths

are compared, BLD can be very high. However, in this study, all trees are scaled to a root

height of 1 to allow comparison of topological and internal branch length reconstruction

error. All distances were calculated using the DendroPy Python package (Sukumaran and

Holder 2010). Summary barplots were constructed using ggplot2 (Wickham 2016).

2.4 Results

2.4.1 Unconstrained and independently evolving continuous traits

Topological reconstruction error is lower overall for trees estimated from continuous

characters than from binary discrete (Fig. 2-2a, Fig 2-7a). For discrete characters, sym-

metric distance increases significantly at high evolutionary rates, likely due to saturation

and loss of phylogenetic signal. Distance also increases in discrete characters when rate is

very slow, due to lack of time for phylogenetic signal to develop. This pattern is similar

to that recovered by (Wright and Hillis 2014) in their test of Bayesian inference of Mk,

which revealed highest topological error at very low and high rates. As expected, contin-

uous characters perform consistently across rates because saturation cannot occur, even

at very fast rates. Because of the differing sensitivities of each data type to evolutionary

rate, topological error should also be compared using the most favourable rate class for
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discrete characters, 0.5 substitutions per million years (Fig. 2-2b, Supp. Fig. 2-1b). Even

at this rate, continuous reconstruction performs more consistently than discrete, with error

more tightly distributed around a slightly lower mean. A likely explanation is that discrete

characters retain less information that continuous characters. The small state space of the

binary character model likely causes phylogenetic signal to become saturated more quickly

at fast rates, and develop too slowly at slow rates than multi-state characters. BM and Mk

appear to perform fairly similarly in reconstructing branch lengths (Fig. 2-2). The pattern

across rates and matrix sizes is very similar between BLD and symmetric distances, with

the fastest rates producing the most error. This likely results from increased saturation at

fast rates, causing underestimation of hidden character changes.
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Figure 2.2: Topological error calculated as the proportion of maximum symmetric distance across trees
estimated from independently evolving continuous characters. A) Error averaged across all rates except for
the highest rate category, which resulted in the highest error when inferring under Mk. B) Error across all
matrix sizes and rates.

Matrix size has a major impact on tree reconstruction accuracy. Estimations from both

discrete and continuous traits improve substantially at each increasing matrix size (Fig.

2-2). Estimates from 20-character matrices possess fairly high error in both data types,
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with approximately 1 in 5 bipartitions being incorrectly estimated from continuous char-

acters, and 2 in 5 being incorrectly estimated from discrete data. Increasing matrix size to

100 traits improves accuracy significantly, with both data types estimating approximately

1 in 10 bipartitions incorrectly. Although at several rates, mean symmetric distance com-

pared between data types is close, continuous characters tend to be less widely distributed,

and thus appear to reconstruct trees with more consistent accuracy. When matrix size is

increased to 500 characters, both continuous and discrete characters are able to recover

phylogeny with very high accuracy, except for at very fast rates, where discrete characters

estimate approximately half of all bipartitions incorrectly on average.

2.4.2 Continuous traits evolving under selective constraint

Phylogenies inferred from continuous traits simulated under an OU model achieve vir-

tually identical performance to binary discrete characters simulated under the same phy-

logenetic constraint (Fig. 2-3). Both sets of characters display a very similar range of er-

ror, with approximately 15% of bipartitions estimated incorrectly on average. This result

demonstrates that any performance increases observed for continuous traits over discrete

traits result from differences in realised phylogenetic information.

2.4.3 Covarying continuous characters

Tree inference under BM appears relatively robust to the violation of co-evolving con-

tinuous characters. Although error is recognisably greater with strong covariance and

many trait dimensions, symmetric distance remains close to values from uncorrelated

traits at lower covariance strengths and/or fewer trait dimensions (Fig. 2-4). When cor-

related traits are of low dimensionality and covariance strength, reconstruction appears

to be nearly as accurate as uncorrelated traits, with all bipartitions estimated correctly

on average. As covariance strength and dimensionality are increased to intermediate val-
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ues, topological error increases such that between 0 and 17% of bipartitions are estimated

incorrectly, with a wider distribution than is present at the lowest values. Accuracy is

most diminished when covariance is strongest and dimensionality is largest, with most

reconstructions estimating between 17-29% of bipartitions incorrectly. Although statisti-

cal significance cannot be estimated for BLD and symmetric distance, estimation under

low to intermediate trait covariance appears at least qualitatively similar, albeit slightly

worse, to uncorrelated continuous and binary discrete characters. The decreases in accu-

racy observed can likely be attributed to the decrease in total information content caused

by covariance. This reduces the effective amount of data from which to draw inference.

This is reflected in the results, with higher covariances and dimensionalities reconstructing

trees with a similar magnitude of error as is shown for the 100 character datasets.

2.5 Discussion

The results demonstrate that phylogenetic reconstruction from continuous trait data

can provide a reasonable supplement or alternative to inference from discrete characters.

Continuous characters that are unconstrained and unbounded in their evolution outper-

form discrete characters, and perform equally well when constrained by selection. The

unconstrained traits’ resilience to high evolutionary rate is expected, because continuous

characters evolving under an unbounded and unconstrained BM process will continue to

increase in variance through time. Therefore, such characters are able to retain phyloge-

netic information at high evolutionary rates that may cause rampant saturation in discrete

characters (Fig. 2-4). Further work is needed in this area to investigate the extent to

which continuous characters are bounded and constrained in their evolution relative to dis-

crete characters. This will be especially important moving forward, as temporal variation

in evolutionary regimes and model parameters can interact in complex ways, sometimes
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extending the maintenance of phylogenetic signal through time (Revell et al. 2008). Al-

though continuous characters in empirical are undoubtedly constrained in their evolution,

the added information contained in continuous character datasets may lessen the extent of

saturation relative to discrete characters in practice.

The demonstration that performance becomes equal when the amount of phylogenetic

constraint is held constant between both data sources identifies the major source of the

performance increase observed in unconstrained BM traits compared to discrete traits.

The average amount of phylogenetic constraint exhibited by discrete and continuous traits,

however, is not well understood in empirical datasets. Conversely, the susceptibility of dis-

crete traits to the loss of phylogenetic signal at high evolutionary rates and deep timescales

has long been recognised (Hillis and Huelsenbeck 1992; Yang 1998). Although this ef-

fect is understood to affect molecular data, discrete morphological datasets may possess

increased susceptibility to this effect because of the frequent use of binary character cod-

ing schemes. Discrete characters constrained to fewer states increases signal loss at high

evolutionary rates due to increased levels of homoplasy, saturation, and lower informa-

tion content overall (Donoghue and Ree 2000). The extent to which continuous traits are

constrained in their evolution on average is not well understood. However, the results

here suggest that researchers would benefit in treating continuous traits as such and infer-

ring phylogenies under continuous trait models in order to maximise usable information

contained in datasets.

My results demonstrate that the fundamental issues in comparing continuous and dis-

crete traits are state space, selective constraint, and evolutionary boundedness. When se-

lective constraint in continuous characters occurs at levels which restrict phylogenetic sig-

nal with the same strength as binary characters, reconstruction accuracy is predictably

equal. Nevertheless, it is unclear the extent to which phylogenetic half-life in continu-
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ous and discrete traits tends to differ in empirical datasets. Continuous characters may

be expected to commonly evolve under some manifestation of selective constraint, but it

is unclear whether such effects typically mask phylogenetic signal to the same extent as

rapidly saturating binary traits.

Discrete traits with more than two states possess a significantly longer phylogenetic

half-life than binary characters, but could be supplanted by continuous characters in many

cases. Although empirical morphological datasets typically incorporate discrete charac-

ters with more than two states, these are typically fewer in number than binary coded

characters. Multi-state characters are also typically discretized codings of continuous

measurements. Such ”discrete” traits would be susceptible to the same selective forces

as their continuous counterparts, and so treatment of the multi-state partitions of morpho-

logical matrices as continuous can only increase the amount of phylogenetic information

contained within datasets. The tendency of morphological matrices to be predominantly

composed of binary characters should encourage further consideration of continuous traits

in future empirical and theoretical studies.

Error in branch length estimation was fairly high with the 20-trait matrices but de-

creased substantially when matrix size was increased to 100 traits. Although BM and

Mk achieve similar accuracy in estimating branch lengths in this study, careful thought

should continue to be applied when relying upon Mk branch length estimates in the fu-

ture. Branch length error may be higher when inferring under Mk from empirical datasets,

since many discrete morphological matrices are constructed to include only parsimony

informative characters. In these cases, characters are expected to have undergone only

single synapomorphic changes. Although the lack of invariable sites in datasets tailored

to parsimony is addressed through the ascertainment bias correction developed by (Lewis

2001), it is unclear how meaningfully the directional single character changes often ob-
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served in these datasets can inform evolutionary rates. This mode of change, which may

characterise much of discrete character evolution, differs from the population dynamics of

nucleotide substitution.

Although continuous traits may often follow covarying evolutionary trajectories in na-

ture, this appears to have a relatively minor impact on reconstruction. Accuracy was only

greatly lowered in the simultaneous presence of very high dimensionality and covariance

strength. Offering further support to the ability of continuous characters to reconstruct

phylogeny despite evolutionary covariance, Adams and Felice (2014) also report the pres-

ence of phylogenetic information in multidimensional characters, even when the number

of dimensions is greater than the number of taxa. Despite these generally positive find-

ings, it should be noted that inference may be misled if sampling is significantly biased

to include relatively small numbers of strongly correlated measurements. In these cases,

it would be beneficial to examine the correlation structure and information content of the

dataset to assess the amount of biased redundancy in signal.

2.5.1 Can using continuous characters benefit morphological phylogenetics?

Use of continuous traits has the benefit of reducing subjectivity in the construction of

data matrices in many cases. Categorizing qualitative characters often requires subjec-

tive interpretation. However, quantitative measurements can be taken without this source

of human error. This increased objectivity in the measurement of quantitative characters

would expand biologists’ capacity to assess statistical uncertainty. Although the likelihood

approaches to morphological phylogenetics enabled by the Mk model represent a major

step in this direction, discordance in tree estimates can still be attributed to differences in

qualitative categorization of variation by researchers. Translation of morphological obser-

vations into data that can be analysed can present serious complications in discrete charac-

ters. Steps such as the determination of whether or not to order states, the total number of
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states chosen to describe characters, and the assignment of character states can vary greatly

and often yield widely different results (Hauser and Presch 1991; Pleijel 1995; Wilkinson

1995; Hawkins et al. 1997; Scotland and Pennington 2000; Scotland et al. 2003; Brazeau

2011; Simões et al. 2017). Continuous measurements avoid many of these issues be-

cause they can be measured, by definition, objectively and quantitatively. In addition, they

may better describe variation than discrete characters. Several workers have suggested

that the majority of biological variation is fundamentally continuous (Thiele 1993; Rae

1998; Wiens 2001). Although continuous characters have long been employed in phylo-

genetic analysis, they are generally artificially discretised, either by applying thresholds to

interspecific measurements or through gross categorisations such as “large” and “small”.

The major disadvantage to this approach is the loss of valuable biological information.

Several researchers have condemned the use of continuous characters in phylogenetics,

arguing that intraspecific variation may be too great for clear phylogenetic signal to ex-

ist (Pimentcl and Riggins 1987; Chappill 1989). However, these arguments have been

largely undermined by studies demonstrating the phylogenetic informativeness of contin-

uous measurements (Goloboff et al. 2006; Smith and Hendricks 2013).

The expectation of correlated evolution between continuous characters has been a major

argument against their use in phylogenetic reconstruction in the past (Felsenstein 1985).

However, evolutionary covariance between sites is not a phenomenon that is restricted to

continuous morphological characters. Population genetic theory predicts tight covariance

between nucleotide sites under many conditions (e.g. Hill and Robertson 1968; Reich et al.

2001; Palaisa et al. 2004; Schlenke and Begun 2004; McVean 2007). Such covariance

has also been demonstrated among discrete characters (Pagel 1994), and so this concern

is not unique to continuous measurements but is shared by all phylogenetic approaches.

While it is difficult to assess the relative magnitude of sitewise covariance between contin-
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uous, discrete, and molecular data, examination of the correlation structure of traits may

be more straightforward in continuous characters using standard regressional techniques.

This would ease the identification of biased and positively misleading signal among con-

tinuous characters, enabling correction through common transformation approaches such

as principal components analyses or by weighting likelihood calculations by the amount

of overall variance contributed by covarying sets of characters.

The fundamentally continuous nature of many biological traits is supported by differ-

ential gene expression and quantitative trait loci mapping studies, which demonstrate their

quantitative genetic basis (Andersson et al. 1994; Hunt et al. 1998; Frary et al. 2000; Val-

dar et al. 2006). Nevertheless, there remain well known instances where traits are truly

discrete. Studies in evolutionary developmental biology have shown that many traits can

be switched on or off in response to single genes controlling genetic cascades (e.g. Wilkin-

son et al. 1989; Burke et al. 1995; Cohn and Tickle 1999). Characters used in phyloge-

netic analysis are also frequently truly discrete, representing qualitative categories (eg.,

presence/absence). These traits may be incorporated as separate partitions into integrated

analyses along with continuous measurements (Fig. 2-6). Such combined analyses can be

performed in RevBayes by adding a discrete trait model, such as Mk, and discrete charac-

ter data. In practice, this may improve inference from discrete characters alone, and would

represent a conceptual advance in its ability to treat all available data as faithfully as is pos-

sible. Doing so may improve upon existing paradigms, which group continuous variation

into multi-state discrete characters, potentially preserving more phylogenetic information.

An added benefit would be the greater flexibility in modelling the evolution of such traits

by making available all existing continuous trait models. An example RevBayes script for

a phylogenetic analysis combining continuous and discrete characters is available in the

supplement. Characters under the control of developmental expression pathways may also
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exhibit very deep phylogenetic signal (De Rosa et al. 1999; Cook et al. 2001). Thus, such

integrated analyses may enable the construction of large phylogenies from morphology by

use of datasets containing phylogenetic signal at multiple taxonomic levels.

Depending on the extent to which individual morphometric datasets are bounded and

constrained in their evolution, analysis of continuous characters may help to increase

phylogenetic information. Collecting morphometric measurements in many dimensions

may enable the assembly of datasets that are large in size compared to those comprised

of discrete characters alone. Although large collections of morphometric measurements

may be strongly covarying, analysis of the correlation structure of such datasets, as men-

tioned above, would enable correction for biased signal and may reveal additional phylo-

genetic information. This would signify a more data-scientific approach to morphologi-

cal phylogenetics by enabling researchers to dissect signal present in large morphometric

datasets rather than reconstruct relationships using carefully curated data matrices. Such a

paradigm shift would bring morphological phylogenetics closer in spirit to phylogenomic

studies and enable deeper biological inferences through co-estimation of species relation-

ships and dynamics in trait evolution. This would provide a firm phylogenetic backing to

morphometric studies, and potentially reinvigorate the field in a similar way to the previ-

ous merging of phylogenetics and genomics. Improved ability to infer phylogeny among

fossil taxa would also benefit molecular phylogenetics because the incorporation of fossils

into total evidence matrices can improve both inference of molecular dates and alleviate

long branch attraction (Huelsenbeck 1991; Wiens 2005; Ronquist et al. 2012). Though

further study is needed to measure the expected phylogenetic information content of both

continuous and discrete traits, all of the points discussed above should urge palaeontolo-

gists to give greater consideration to continuous traits in phylogenetic analysis of evolu-

tionary patterns and relationships. This may improve efficiency in the use of hard-won
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palaeontological data by maximizing the amount of information gleaned from specimens

and transform the field by facilitating new lines of questioning in palaeobiology.

And despite this optimistic tone, it should be noted that major work is still needed

to provide deeper understanding of the behaviour of continuous trait models when used

to infer phylogeny. It will be also important to gain a better understanding of expected

empirical properties of continuous and discrete characters. As is shown here, discrete and

continuous characters perform equally well when phylogenetic constraint is held constant,

but there still lacks a clear characterisation of the relative expected constraint found in

empirical datasets. As such, further work will be necessary to develop knowledge of the

relative phylogenetic information content expressed across data types.

Moving forward, several extensions to existing Gaussian trait models should be ex-

plored. For example, further work is needed to determine the extent and distribution of

rate heterogeneity between sites in continuous alignments. Since its presence has been

well documented in molecular and discrete morphological data, it is likely that such rate

heterogeneity is present in continuous measurements, and should be accommodated in

empirical studies. Since traits can evolve under a broad range of processes, the fit of al-

ternative models of continuous character evolution to empirical data and their adequacy in

describing variation among them should also be examined.

2.5.2 Is Mk a reasonable model for discrete character evolution?

Although likelihood approaches making use of the Mk model have been increasingly

adopted in morphological phylogenetics, it is unclear whether it provides a reasonable

approximation of the evolutionary process. Although there are explicit theoretical links

between Markov substitution models and population genetic processes (Jukes and Cantor

1969), such theory does not exist in morphology. It should also be noted that molecu-
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lar data are rarely modelled using the single parameter Jukes-Cantor model, with more

complex generalisations typically preferred (Felsenstein 1981a; Tavaré 1986). More so-

phisticated Markov processes can in principle be applied to morphological data, though

this is rarely done. Nonetheless, MrBayes and RAxML implement HKY and General

Time Reversible models, respectively, that can be applied to data with varying numbers of

states (Ronquist and Huelsenbeck 2003; Stamatakis 2006). More work is needed to exam-

ine the adequacy of the Mk model in describing discrete character evolution. Such work

will guide dataset assembly and the development of new model extensions. This is espe-

cially important in total-evidence tip dating methods employing Mk, as poor branch length

estimates may weaken the ability to infer branching times. Although presenting a unique

set of challenges, the use of continuous characters may alleviate some of issues concern-

ing model misspecification. Models describing their change have been demonstrated to

provide a reasonable description of character change resulting from several different mi-

croevolutionary processes (Hansen and Martins 1996). Further work is needed to address

the relative adequacy of discrete and continuous trait models in describing the evolution

of phenotypic data. In light of the results presented here, I suggest that continuous trait

models be favoured in phylogenetic analysis in cases where morphological variation can

be described quantitatively. Moving forward, deeper insight concerning the behaviour and

adequacy of both discrete and continuous character models will enable increasingly pow-

erful inferences to be drawn from morphological data. These issues will be of critical

importance as advances in data collection and fossil evidence usher in an age of unprece-

dented discovery in morphological phylogenetics.
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Figure 2.3: Topological error achieved after reconstructing trees from discrete traits simulated under Mk at
rate 0.5, and single rate Ornstein Uhlenbeck at rate 0.5 with no directional drift and constraint set equal to
the discrete characters.
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Figure 2.4: A) Topological error, calculated as proportion of maximum symmetric distance across trees
estimated from covarying continuous characters. B) Branch length distance (BLD) across trees estimated
from covarying continuous characters. Dimensions refers to the number of traits within covarying blocks.
Covariance strength refers to the strength of the correlation between covarying characters, with a value of 0
describing to complete independence and 1 describing perfect correlation.

a. b.

Figure 2.5: Discrete and continuous characters simulated A) at slow evolutionary rate and B) fast evolution-
ary rate. Y axis represents continuous phenotype. Changes in colour represent changes in discrete character
state. Note how continuous characters retain phylogenetic signal at fast rates, while discrete characters
saturate.
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Figure 2.6: A) True tree. B) Tree estimated from 50 discrete and 50 continuous characters C) Tree estimated
from 100 continuous characters simulated at rate 1.0 D) Tree estimated from 100 discrete characters sim-
ulated at rate 1.0. Blue dots signify incorrectly estimated bipartitions. The tree in panel b. was generated
by randomly subsampling the matrices used to generate trees C and D, and combining into a single matrix.
This matrix was analysed in RevBayes. An example script is provided in the supplement.
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Figure 2.7: Branch length distance (BLD) across trees estimated from independently evolving continuous
characters. A) BLD averaged across all rates except for the highest rate category, which resulted in the
highest error when inferring under Mk. B) BLD across all matrix sizes and rates.



CHAPTER III

Bayesian Placement of Fossils on Phylogenies Using Quantitative
Morphometric Data

Preamble: The contents of this chapter have been published in Evolution. The published

version appears as: Parins–Fukuchi, Caroline. Bayesian placement of fossils on phyloge-

nies using quantitative morphometric data. Evolution 72.9 (2018): 1801-1814.

3.1 Abstract

Jointly developing a comprehensive tree of life from living and fossil taxa has long

been a fundamental goal in evolutionary biology. One major challenge has stemmed from

difficulties in merging evidence from extant and extinct organisms. While these efforts

have resulted in varying stages of synthesis, they have been hindered by their dependence

on qualitative descriptions of morphology. Though rarely applied to phylogenetic infer-

ence, traditional and geometric morphometric data can improve these issues by generating

more rigorous ways to quantify variation in morphological structures. They may also fa-

cilitate the rapid and objective aggregation of large morphological datasets. I describe a

new Bayesian method that leverages quantitative trait data to reconstruct the positions of

fossil taxa on fixed reference trees composed of extant taxa. Unlike most formulations of

phylogenetic Brownian motion models, this method expresses branch lengths in units of

morphological disparity, suggesting a new framework through which to construct Bayesian

40
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node calibration priors for molecular dating and explore comparative patterns in morpho-

logical disparity. I am hopeful that the approach described here will help to facilitate a

deeper integration of neo- and paleontological data to move morphological phylogenetics

further into the genomic era.
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3.2 Introduction

The role of fossil data in reconstructing phylogeny among living organisms has long

been a central, yet contentious, topic in evolutionary biology. This has manifested over

the past decade in the rapid proliferation of ’total-evidence’ methods that seek to simulta-

neously reconstruct the relationships and divergence times between living and fossil taxa

using cladistic morphological matrices. These approaches, based upon probabilistic mod-

els of molecular and morphological character evolution, have increased understanding of

evolutionary tempo across large clades, and provide compelling evidence in favor of in-

corporating fossils in phylogenetic analyses (Pyron 2011; Ronquist et al. 2012). This can

benefit both paleo- and neontological studies by improving the accuracy and treatment

of uncertainty in estimation of divergence times and comparative dynamics (Slater et al.

2012; Guindon 2018).

A constant source of difficulty when jointly estimating phylogeny between living and

extinct organisms is the unavailability of molecular data in nearly all fossil taxa. As a

result, there has been a need to explore the compatibility of molecular with morpholog-

ical data to better understand the capability of fossil and extant species to reciprocally

inform reconstruction of phylogeny and divergence times. Previous work has sought to

determine whether the inclusion of molecular data representing extant species can im-

prove the reconstruction of relationships among fossils represented by morphology alone

(Wiens 2009; Wiens et al. 2010). The results of these studies suggest that the inclusion

of morphological characters comprising living and fossil species does not have a tendency

to decrease the accuracy of phylogenetic reconstructions, and can improve estimation of

fossil placements in well-behaved datasets. Expanding upon these observations, Berger

and Stamatakis (2010) have shown that methods placing fossils on fixed molecular phy-
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logenies can yield accurate results. Their study also shows that a scaffolding approach

can further improve fossil reconstructions by offering a straightforward means of filter-

ing through noise in morphological datasets by leveraging information from the molecular

reference topology.

Morphological data present other unique challenges important to phylogenetic analy-

sis. For example, morphological data are frequently susceptible to displaying biased or

misleading signal. Although discordance in morphological datasets may sometimes re-

flect biological processes such as convergent evolution, there is also frequently substantial

noise stemming from systematic error and poor preservation of fossil taxa. Systematic

sources of discordance often stem from the general practice of assigning discrete char-

acter states to taxa through qualitative assessment. The subjective nature of this process

can cause major irreconcilable disagreement between results achieved from different re-

searchers (Hauser and Presch 1991; Pleijel 1995; Wilkinson 1995; Hawkins et al. 1997;

Scotland and Pennington 2000; Scotland et al. 2003; Brazeau 2011; Simões et al. 2017).

As an added source of potential bias, these matrices are also frequently filtered to exclude

characters that researchers suspect to be homoplasious. However, since these judgments

are typically made subjectively, it may be of benefit to introduce a quantitative framework

to evaluate the reliability of morphological traits.

As another challenge, the discrete character matrices most commonly employed in phy-

logenentics can often be difficult to adequately model. At present, researchers employing

probabilistic methods generally use the so-called ‘Mk’ model (Lewis 2001). This is a

generalization of the Jukes-Cantor model of nucleotide substitution that accommodates

k possible character states. Although previous work based upon simulated data has sug-

gested that Mk-based approaches outperform parsimony (Wright and Hillis 2014), the ex-

tent and conditions under which this is the case in empirical datasets are unclear (Goloboff
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et al. 2017). Empirical datasets are also likely to depart significantly from the assump-

tions of the Mk model. This poor match between model assumptions and data can lead

to erratic results and high uncertainty in posterior estimates of divergence times (Ronquist

et al. 2016). Although recent studies have proposed more sophisticated models (Wright

et al. 2016), the standard symmetric Mk model remains in frequent use, and the sensitivity

of topological reconstruction to this frequent mismatch is fairly unclear at present.

For all of these reasons, continuous traits have been suggested as a potential alternative

(Felsenstein 1973a, 1988; MacLeod 2002). Nevertheless, their use has remained relatively

unexplored. In a previous study (Parins-Fukuchi 2018b), I explored through simulations

the relative performance of continuous and discrete traits in phylogenetic inference. I

found that continuous characters perform similarly to discrete characters when phyloge-

netic half-life is set to be equal, while exploring the possibility that continuous traits may

extend phylogenetic informativeness over some discretized character codings.

Traditional linear morphometric measurements have long been employed in morpho-

logical phylogenetics, but are typically discretized to more easily analyze them alongside

present-absence data. Several approaches have been proposed for the discretization of

quantitative morphological data (Thiele 1993; Wiens 2001). However, these can yield in-

consistent or misleading results (Rae 1998; Goloboff et al. 2006), and may in principle

reduce the amount of information in continuous datasets by binning fine-scaled variation

into shared discrete categories. As a result, it may often be preferable to analyze continu-

ous traits directly.

Tools that quantify morphological size and shape have the capacity to alleviate many

of the concerns relating to bias and subjectivity that occur with discrete characters. Ap-

proaches such as geometric morphometrics offer the potential to holistically incorporate

all dimensions of shape to inform phylogeny. The continuous state space of morphometric
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data might also increase the amount of information that can be extracted from morpholog-

ical datasets, which may be beneficial when analyzing poorly-sampled fossil data. Contin-

uous traits in general may engender benefits on two levels when available by 1) reducing

subjective bias often encountered when constructing discrete character matrices, and 2)

potentially preserving hard-won phylogenetic information over discretized character cod-

ings by representing the full range of observed interspecific variation. Although I explored

point 2 previously (Parins-Fukuchi 2018b), future studies will be needed to quantify the

extent to which this is the case in diverse empirical datasets.

As another source of continuous traits, geometric morphometric data have shown utility

in several previous phylogenetic studies using parsimony-based methods (González-José

et al. 2008a; Catalano et al. 2010; Smith and Hendricks 2013), but have not gained substan-

tial traction. This may be in part due to the lack of available tools to analyze continuous

trait data in a probabilistic framework. In addition, previous authors have raised con-

cerns about the use of morphometric data in phylogenetic analysis, based primarily upon

potential error stemming from covariance across characters and difficulties in parsing out

homologous interspecific variation from variation resulting from rotations in morphospace

(Felsenstein 2002). However, these concerns have been partially alleviated by the success

of other workers in reconstructing phylogeny from landmark coordinates that are derived

from truly homologous regions that have been properly aligned using Procrustes transpo-

sition (MacLeod 2001, 2002; Catalano et al. 2010; Goloboff and Catalano 2016).

The earliest studies investigating probabilistic methods of phylogenetic inference were

developed using continuous characters modeled under Brownian motion (BM) (Cavalli-

Sforza and Edwards 1967; Felsenstein 1973a). Due in part to the abundant discrete char-

acter data that became available with the emergence of DNA sequencing, these approaches

were quickly overshadowed in popularity by discrete trait approaches based upon Markov
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nucleotide substitution models. Continuous trait models have since gained significant pop-

ularity in phylogenetic comparative methods, but still are rarely used for phylogenetic

inference. As a result, few implementations exist, with only ContML in the PHYLIP

package and RevBayes providing such functionality (Höhna et al. 2016). However, the

PHYLIP implementation uses a very simple tree searching procedure. RevBayes is very

flexible, however, it is perhaps best suited to total-evidence analyses, where extant and

fossil taxa are estimated simultaneously. An alternative procedure involves fixing extant

relationships using the results of a molecular analysis, and estimating the positions of fos-

sil taxa along this scaffolding. Previously, Revell et al. (2015) described a method that

places individual taxa on phylogenies using quantitative data.The authors found that the

approach performed well, but the implementation developed for the study was restricted

to the placement of only extant and recently extinct taxa. In addition, the authors explored

only the placement of a single taxon at a time.

Although, like the Mk model, BM is fairly simplistic, it may offer a degree of flexibility

that improves its fit to empirical data in comparison to Mk. For instance, the Mk model

assumes that stationary frequencies of character states are equal, whereas BM assumes

that traits at the tip of a phylogeny are distributed according to a multivariate Gaussian

distribution, with a set of covariances defined by the topology and branch lengths. While

the Mk equilibrium assumption is violated in most empirical datasets, the BM assump-

tion of normality can often be justified by the central limit theorem. This suggests that,

even in cases where character state changes may better conform to a non-Gaussian distri-

bution over short timescales, these collapse into a Gaussian-like distribution over longer

timespans with many repeated draws. The standard phylogenetic BM model may still

be violated by patterns such as directional change, but the effect is not well understood.

Quantitative trait evolution might also proceed according to stasis and sudden jumps (Lan-
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dis et al. 2013), but the identifiablility between BM and more complicated models across

a tree when branch lengths are expressed in unit variance are not clear.

In this paper, I describe a new approach that places multiple fossils on molecular trees

using quantitative characters modeled under BM. Departing from Revell et al. (2015), the

phylogenetic BM model used here treats branch lengths in terms of morphological diver-

gence rather than time. This simplifies the estimation procedure, and allows morphological

disparity across taxa to be easily visualized across the resulting tree, similarly to molec-

ular phylograms. The approach here seeks to tackle some of the most pressing obstacles

associated with the use of traditional and geometric morphometric data in phylogenetic in-

ference. Using simulated data, I validate and explore the behavior of the implementation. I

also analyze empirical datasets representing the Vitaceae family of flowering plants (Chen

2009) and carnivoran mammals (Jones et al. 2015) comprised of traditional and geometric

morphometric measurements, respectively. The method uses Markov chain Monte Carlo

(MCMC) to infer the evolutionary placements of fossils and branch lengths.

3.3 Methods and Materials

3.3.1 Software

All fossil placement analyses were performed using the new software package cophy-

maru written in the Go language. The source code is publicly available as free software

at https://github.com/carolinetomo/cophymaru. This package estimates the positions of

fossil taxa on a user-specified reference tree of extant species using continuous traits con-

tained within a PHYLIP-formatted data file where each trait is separated by tabs. Examples

can be gleaned from the simulated and empirical data generated from this study, available

online.
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3.3.2 Brownian motion model

The approaches that I describe in this paper all rely upon the familiar BM model of

evolution (Butler and King 2004; O’Meara et al. 2006) . Under BM, traits are assumed

to be multivariate distributed, with variances between taxa defined by the product of their

evolutionary distance measured in absolute time and the instantaneous rate parameter (σ ):

(3.1) dX(t) = σdB(t)

where dX(t) is the time derivative of the change in trait X and dB(t) corresponding to

normally distributed random variables with mean 0 and variance dt. This leads to the

expectation that over time t,

(3.2) E(Xt) = X0

with

(3.3) Var(Xt) = σ2t

where X0 gives the trait value at t0.

The methods that I describe use a slightly different parameterization and likelihood

calculation than most conventional implementations used in modern phylogenetic com-

parative methods (PCMs). These generally construct a variance-covariance (VCV) matrix

from a dated, ultrametric phylogeny to calculate the likelihood of the data, assuming a

multivariate normal distribution (Butler and King 2004; O’Meara et al. 2006). Since these

methods treat the topology and branching times as known, the goal is typically to obtain
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the maximum likelihood estimate (MLE) of the rate parameter (σ2 ) to examine evolution-

ary rate across clades.

In typical usage, researchers employ phylogenetic BM models where branch lengths

are scaled to absolute time, and a rate parameter is estimated. Although it is possible to

simultaneously estimate divergence times and topology while analyzing continuous traits,

this requires the specification of a tree prior that can accommodate non-ultrametric trees

that include fossils. In addition, this approach would effectively perform morphological

dating using continuous traits. The behavior and feasibility of such a procedure is not

understood, and falls outside the scope of this article. Perhaps more importantly, this

would also create circularity when using the method to place fossils used as calibrations in

molecular dating. To overcome the need for simultaneously estimating divergence times

and fossil placements, the method estimates the product σ2t together. As a result, rate and

absolute time are confounded in the trait and tree models. Branch lengths, which reflect

the morphological disparity between taxa, are thus measured in units of morphological

standard deviations per site. This interpretation could be thought roughly of as a continu-

ous analogue to the branch lengths obtained from discrete substitution models. Similarly

to the discrete case, long branch lengths could reflect either a rapid rate of evolution or a

long period of divergence (in absolute time) along that lineage.

3.3.3 Computation of the likelihood

Rather than use the computationally expensive VCV likelihood calculation, I use the

reduced maximum likelihood (REML) calculation described by Felsenstein (1973). Full

derivations of the likelihood and algorithm are also given by Felsenstein (1981b) and

Freckleton (2012), and summarized briefly below. The tree likelihood is computed from

the phylogenetic independent contrasts (PICs) using a ‘pruning’ algorithm. In this proce-

dure, each internal node is visited in a postorder traversal, and the log- likelihood, Lnode is
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calculated as multivariate normal, with a mean equal to the contrast between the character

states, x1 and x2 at each subtending edge and variance calculated as the sum of each child

edge, v1 and v2:

(3.4) Lnode =
1
2
∗ log(2π)+ log(v1 + v2)+(x1 − x2)

2

v1 + v2

The PIC, xinternal , is calculated at each internal node and used as the character state repre-

senting the internal node during the likelihood computation at the parent node. The edge

length of the internal node, vinternal is also extended by averaging the lengths of the child

nodes to allow the variance from the tips to propagate from the tips to the root:

(3.5) xinternal =
(x1 ∗ v2)+(x2 ∗ v1)

v1 + v2

(3.6) vinternal = vinternal +
(v1 ∗ v2)

(v1 + v2)

The total log-likelihood of the tree, Ltree is calculated by summing the log-likelihoods

calculated at each of the n internal nodes.

(3.7) Ltree =
n

∑
node=1

Lnode

3.3.4 Priors

Since the estimation of branch lengths from continuous traits is relatively uncharted

territory in phylogenetics, I implemented and tested three different branch length priors

derived from the molecular canon: 1) flat (uniform), 2) exponential, and 3) a compound

Dirichlet prior after (Rannala et al. 2011). The compound Dirichlet prior also offers the
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option to set the scale of the expected tree length using the initial rough estimate of branch

lengths.

3.3.5 Markov-chain Monte Carlo

This method uses a Metropolis-Hastings (MH) algorithm (Hastings 1970) to simulate

the posterior distribution of fossil insertion points and branch lengths. Rearrangements of

the topological positions of fossil taxa are performed by randomly pruning and reinserting

a fossil taxon to generate a proposal. This is a specific case of the standard subtree pruning

and regrafting (SPR) move for unrooted tees (Fig. 3-1). In this procedure, the two edge

lengths that link the fossil to the rest of the tree are merged when the fossil tip is pruned,

while the edge upon which the tip is inserted is split into two. The move is described in

detail, along with a full derivation of the appropriate MH proposal ratio in Yang (2014,

p. 287). Branch lengths are updated both individually and by randomly applying a mul-

tiplier to subclades of the tree. MH proposal ratios for branch length updates follow the

derivations given for the the ’multiplier’ or ’proportional scaling’ move described by Yang

(2014, p. 225).

I re-implemented the approach used in the ContML program to generate an approx-

imate ML starting tree. These initial placements are achieved using stepwise addition.

Unlike ContML, this step successively adds fossils to the molecular guide tree, and so

only the fossil positions are estimated. Each fossil is individually inserted along all exist-

ing branches of the tree, with the insertion point that yields the highest likelihood retained.

At each step, MLEs of the branch lengths are computed using the iterative procedure in-

troduced by (Felsenstein 1981a). In this procedure, the tree is rerooted along each node.

PICs are calculated to each of the three edges subtending the new root, and are treated

as ’traits’ at the tips of a three-taxon tree. The MLE of each edge length of the pruned
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three-taxon tree (vi) is computed analytically using the expressions::

(3.8) ˆv1 j =

n
∑
j=1

(x1 j − x2 j)(x1 j − x3 j)

n

(3.9) ˆv2 j =

n
∑
j=1

(x2 j − x1 j)(x2 j − x3 j)

n

(3.10) ˆv3 j =

n
∑
j=1

(x3 j − x1 j)(x3 j − x2 j)

n

This process is iterated by successively rerooting on each node of the tree and calculat-

ing the branch lengths until their values and the likelihoods converge. Felsenstein (1981)

gives a more detailed explanation of the algorithm, along with a complete derivation of the

MLE branch length calculations.

Once an initial placement has been assigned for all of the fossils, the branch lengths

are optimized on the complete tree. These starting lengths can be used to inform branch

length priors used during MCMC simulation. One problem with interpreting the results

of the ML approach on their own is that it has a strong propensity to becoming trapped in

local optima. As a result, it should be interpreted cautiously, and not used without further

MCMC searching. In the applications here, the topologies achieved from this procedure

are used only to construct starting trees, while the branch lengths inform the specification

of branch length priors. This procedure allows straightforward construction of non-random

starting trees for the MCMC and priors that reflect the the dataset under analysis.
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3.3.6 Filtering for concordant sites

One major hurdle involved in the use of morphological data is their frequent tendency

to display noisy and discordant signal. This problem might be expected to manifest even

more intrusively in morphometric datasets than in discrete datasets, since traits are much

less likely to be excluded a priori on the basis of perceived unreliability. As a result, there

is a need to filter through noisy signal to favor more reliable sites. I developed a proce-

dure adapted from Berger and Stamatakis (2010) for this purpose. This computes a set of

weights based upon the concordance of each site with the reference tree. In this proce-

dure, the likelihood (Lref) of each site is calculated on the reference tree (excluding fossil

taxa). Next, the likelihood (Ln) of each site is calculated along each n of 100 phylogenies

generated randomly by successively grafting nodes in a stepwise manner until a full tree is

formed. Branch lengths are then assigned using uniform random draws. If the likelihood

of the site is higher along the reference tree than the current random tree, the weight of the

site is incremented by one. Thus, site j receives the integer weight:

(3.11)
−→
W int

j =
100

∑
n=1

δn j

where δn j = 1 if:

(3.12) Lre f > Ln

and δn j = 0 if:

(3.13) Lre f < Ln
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This yields a weight vector that is the same length as the character matrix, with each

site possessing a weight between 0 and 100. The sites are then weighted using one of

three schemes: 1) whole integer values, where the weight equals the value obtained from

equation 11, 2) a floating point value between 0 and 1, where the value generated from the

random comparison is divided by 100, and 3) a binary value where the weight is equal to 1

if the site displayed a higher likelihood in the reference tree than 95 or more of the random

trees, and 0 if less than 95:

(3.14)
−→
W binary

j = 1

if

(3.15)
−→
W int

j > 95

and

(3.16)
−→
W binary

j = 0

if

(3.17)
−→
W int

j < 95

After the weights are computed using the input guide tree, they are stored, and used in

all subsequent likelihood computations during MCMC simulations.

In application, I found that integer weighting caused poor MCMC mixing, and so the

floating and binary schemes are probably most practical in most cases. The poor mix-

ing achieved by the integer scheme is likely due to the large increase in the scale of the
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log-likelihoods. This causes nearly all proposals to be rejected, substantially reducing the

efficiency of the algorithm. In effect, the MCMC algorithm becomes a very inefficient hill-

climbing ML search, since only proposals that increase the likelihood are accepted. Since

it filters out discordant sites completely, the binary scheme enforces a harsher penalty

than the floating and integer schemes, and so might be of greatest use in particularly noisy

datasets. As an additional note, although these procedures share similar terminology to the

site weights calculated during parsimony analysis of multi-state characters, they differ in

their purpose. Parsimony site weights are intended to normalize the contribution of char-

acters with differing state spaces to the overall tree length. In contrast, the site weighting

approach deployed here is designed to decrease the contribution of sites that disagree with

the reference topology to the overall tree likelihood, instead highlighting signal taken to

be more reliable. As a result, the guide tree is used to identify sites that are most likely to

reliably inform fossil placements.

Although this procedure was originally implemented in an ML context, the applica-

tion here functions as a prior. By assuming that the molecular guide tree provides an

accurate view of extant species relationships, characters that appear to show significant

error, homoplasy, or reflect other processes yielding discordant signal, are filtered out or

de-emphasized. This procedure has the effect of increasing posterior support in datasets

possessing many discordant characters.The Bayesian framework offers a straightforward

means to interpret the resulting support values as standard posterior credibility estimates.

Nevertheless, the filtering approach, as any prior, should be applied thoughtfully, and com-

pared to results when the prior is not used.

3.3.7 Simulations

To explore the behavior of these approaches under different settings and validate the

implementation, I performed a set of simulations. From a single simulated tree, I pruned
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five “fossil” taxa and estimated their positions along the tree using 100 datasets of 50

characters simulated under BM. The tree was simulated under a birth-death model, with

a birth parameter of 1.0 and a death parameter of 0.5. The resulting tree conained 41

taxa, leaving a 36-taxon reference tree when the five fossils were pruned. To explore

the effect of conflicting and noisy signal, I also generated alignments consisting of 50

“clean” traits simulated along the true tree, and combined with sets “dirty” traits in in-

tervals of 10, 25, and 50 traits generated along random trees. All trait (clean and dirty)

simulations were performed using the “fastBM” function in the phytools package (Rev-

ell 2012a). All traits were simulated using a rate parameter of 1.0. Random trees were

generated by collapsing the true tree into a star topology using the ”di2multi” function,

which was randomly resolved using the ”multi2di” function. Branch lengths were then

assigned randomly by drawing from an exponential distribution with mean set to 1. The

simulated data sets, Newick trees, and all scripts used to generate them are available at

https://github.com/carolinetomo/fossil placement tests.

I restricted the simulations to a fairly small number of traits because this reflected a sim-

ilar size as the two empirical datasets. This level of sampling is fairly common among ex-

isting continuous datasets, which are often compiled from only one or two anatomical re-

gions (eg., “cranium”, “pelvis”, “leaf”). In the future, methods such as that described here

may encourage the assembly of more comprehensive quantitative morphometric datasets,

but at present, it seemed most sensible to examine the level of sampling expected from

existing datasets. Each simulated trait was evolved independently (ie. displaying no co-

variance with other sites). This is because 1) I showed in a previous study (Parins-Fukuchi

2018b) that sitewise covariance does not in and of itself significantly handicap reconstruc-

tions from continuous traits, and 2) because in this study I was primarily interested in ex-

amining the effect of inducing random noise without the potentially confounding effect of
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covariance. Although covariance has been expressed as a major concern in morphometric

phylogenetics (Felsenstein 1988, 2002), there is no reason to expect greater covariance be-

tween continuous traits than discrete traits, which, ideally, should describe similar aspects

of morphology. Nevertheless, a fairly common source of error in molecular phylogenetic

studies can occur when many sites exhibit shared misleading signal due to some legitimate

biological process. A similar effect may in principle occur in studies using continuous

morphological characters. And so, although continuous trait matrices may not necessarily

carry greater inherent risk toward being mislead by covariance across sites than studies

based on molecular and discrete morphological characters, careful analysis is important

to properly dissect the distribution of signal across character matrices to properly identify

biological and systematic sources of conflict and error.

These simulated datasets were then used to reconstruct the placements of the five fos-

sils. To explore the relative performance of weighting schemes, I performed reconstruc-

tions using both the binary and floating approaches. These were supplemented by anal-

yses of the noisy datasets without applying site weights. MCMC simulations were run

for 1,000,000 generations and checked to ensure that the effective sample sizes (ESS) ex-

ceeded 200. The exponential branch length prior was employed for the simulated data

with a mean of 1.0. To evaluate the accuracy of the placement method, I then calculated

the distances between the true and reconstructed fossil placements. This was calculated by

counting the number of nodes separating the true insertion branch from the reconstructed

insertion branch. These distances were divided by the largest possible distance between

two tips in the simulated tree to yield a measure of placement error falling between 0 and

1. Placement accuracy was evaluated using the maximum a posteriori (MAP) summaries

of tree distributions. MAP trees represent the single most sampled tree during the MCMC

run. Tree summary and placement distances were calculated using custom Python scripts.
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3.3.8 Empirical analyses

To assess the utility of the new approach in analyzing continuous morphological data,

I performed analyses on empirical datasets comprised of 1) linear measurements and pro-

portions, and 2) geometric morphometric data composed of 3-dimensional landmark coor-

dinates. These are two common sources of continuous trait data, and so were chosen to test

the method across different possible data types. In the cophymaru implementation of the

method, these characters are input as character matrices similar to those used to store dis-

crete traits, with homologous measurements arranged in columns, corresponding to rows

of taxa. In the case of the geometric morphometric data, each landmark coordinate repre-

sents a column, similarly to previous phylogenetic approaches that explicitly use geomet-

ric morphometric data (Catalano et al. 2010). Empirical character matrices, trace files, and

reference trees are all available online at https://github.com/carolinetomo/fossil placement tests.

I estimated the phylogenetic positions of fossils using a morphological matrix com-

prised of 51 continuous measurements gathered from pollen and seed specimens sampled

across 147 extant and 8 fossil Vitaceae taxa. These data were acquired from Chen (2009).

I constructed a guide tree for the extant taxa from 8 nuclear and chloroplast genes gathered

from Genbank using the PHLAWD system (Soltis et al. 2011). The sequence alignment

used to construct the guide tree is available in the online data supplement. Using this

scaffolding, I analyzed the morphological data to estimate the positions of the fossil taxa.

Individual runs were performed under all three branch length priors to assess stability

across models. All analyses were run for 30,000,000 generations and visually checked

for convergence. Analyses were performed with binary weights applied to the sites and

compared to an unweighted analysis. To ensure that MCMC runs were not trapped in local

optima, several redundant runs were performed under each combination of settings. For

each, the analysis with the highest mean likelihood was retained.
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To explicitly test the informativeness of geometric morphometric data in fossil place-

ment, I also performed analyses on a dataset of 33 3D landmark coordinates representing

46 extant and 5 extinct fossil carnivoran crania (Jones et al. 2015). A reference tree com-

posed of the 46 extant taxa was obtained from the data supplement of the original study.

These coordinates were subjected to Procrustes transposition using MorphoJ (Klingenberg

2011). This yielded a matrix where each character represented the aligned X, Y, or Z po-

sition of one landmark. These characters are ’aligned’ such that each column contains the

coordinates in one dimension of a single landmark occupied by each taxon. Although the

details surround the analytical approaches differ, this use of morphometric data is simi-

lar to that used in the method described by Catalano et al. (2010). The resulting traits

displayed phylogenetic signal, but the transposed coordinates showed very low disper-

sion (variance) on an absolute scale. Low variance can result in narrower peaks in the

MCMC surface, which causes difficulties in achieving MCMC convergence. To remedy

this, I scaled all of the traits to increase the absolute variance evenly across taxa evenly at

each site while maintaining the original pattern of relative variances across taxa using the

scale() function in R (R Core Team 2016). This procedure preserved the signal present

in the original dataset, since the relative distances between taxa remained the same. Final

analyses were performed on this transformed set of measurements. As with the Vitaceae

dataset, I analyzed the canid data under all three branch length priors, and performed sev-

eral runs, retaining the one with the highest mean likelihood. MCMC simulations were

run for 20,000,000 generations, and visually examined using Tracer v1.6 to assess conver-

gence. Both empirical datasets achieved large ESS values (over 1000) under all settings.

For both datasets, I used starting trees and branch lengths generated from the rough ML

method described above. Sites were weighted using the binary for the final analyses. Inter-

mediate analyses using unweighted and float-weighted sites were also performed, and are
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presented in the data supplement. Dirichlet priors were assigned alpha parameters of 1.0

and beta parameters specified as the total tree length of the ML starting tree. Exponential

branch length priors were assigned mean values of 1.0.

Since the empirical datasets were more complex than the simulated data, I summa-

rized the tree distributions as maximum clade credibility (MCC) summaries. These sum-

maries maximize the support of each clade. These were compared to the MAP estimates,

however, and yielded generally concordant placements (supplementary material). MCC

summaries were obtained using the SumTrees script that is bundled with the DendroPy

package (Sukumaran and Holder 2010). Branch lengths were summarized as the mean

across all sampled trees.

3.4 Results and Discussion

3.4.1 Simulations

Reconstructions of fossil placements from the simulated datasets showed that the method

is generally accurate in placing fossil taxa (Table 3-1). In the absence of noisy traits, re-

construction is nearly always correct, displaying 0.9% error on average. In the presence

of random noise, the reconstructions are fairly accurate under the binary scheme, except

when noise becomes severe. And although the procedure reconstructs fossil positions that

are quite distant in the worst case (50% error under the exponential prior with no weight-

ing scheme), application of the weighting procedures reduces placement error by over half,

even though the signal-to-noise ratio is quite high.

In the cophymaru implementation, the compound Dirichlet prior outperforms the ex-

ponential branch length prior on the simulated datasets. Placement error lower under the

compound Dirichlet in all but one of the comparisons. The improvement exhibited under

the compound Dirichlet is greatest when using the binary weighting scheme, resulting in
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a 6% reduction in error compared to exponential prior on the noisiest dataset. The im-

provement also increases with the noisiness of the simulated dataset, with the 50 clean+50

dirty dataset displaying the largest increase in placement accuracy when using the binary

weighting scheme. This result suggests that the compound Dirichlet branch prior com-

bined with binary weighting scheme may be the ideal mode through which to analyze

particularly noisy datasets.

Across both branch length priors, binary weighting shows improved accuracy over float

and unweighted analyses. However, despite the apparent advantage of binary weighting,

it is possible that the float weighting scheme could remain beneficial in cases where the

distribution of noise varies between different regions of trees. This is because the float

weighting scheme limits the contribution of noisy sites to the likelihood rather than entirely

excluding them. This possibility was not examined in this set of simulations, since the

dirty traits were generated to reflect completely random noise. However, in reality, noise

may be structured to display discordance in only certain taxa. In these cases, continuous

traits may display misleading signal among some subset of taxa, but correctly informative

signal among other subsets. Further work will be needed to determine the extent to which

weights calculated under the float weighting scheme vary when conflict is localized to

particular regions of the reference tree.

Overall, the simulations demonstrate the efficacy of the method for the phylogenetic

placement of fossils and provide a validation of the computational implementation. The

analysis of clean datasets shows that the method performs well, estimating fossil place-

ments with very low error when signal is clear. The adaptation of Berger and Stamatakis’

(2010) site weight calibration approach also appears to effectively filter through noisy

datasets to improve estimation. The binary weight calibrations appear particularly effec-

tive at dealing with rampant misleading random noise, improving accuracy by 2 to 20
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times depending on the relative proportion of signal and noise compared to unweighted

analyses. These results show promise toward the prospect of applying the method devel-

oped in this work to the analysis of large-scale morphometric datasets, where significant

noise might be expected. Although introducing noise decreases reconstruction accuracy,

the method performs predictably, and still manages to place fossils on average within the

correct neighborhood. However, when weighting schemes are applied, the performance

improves drastically, highlighting the promise of this method for the analysis of empirical

datasets.

dataset prior binary weights float weights

unweighted

50 clean Exp 0.009 0.012

0.009

50 clean Dir 0.009 0.009

0.012

50 clean + 10 dirty Exp 0.024 0.195

0.396

50 clean + 10 dirty Dir 0.021 0.189

0.390

50 clean + 25 dirty Exp 0.153 0.420

0.489

50 clean + 25 dirty Dir 0.120 0.402

0.501

50 clean + 50 dirty Exp 0.291 0.485

0.528
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dataset prior binary weights float weights

unweighted

50 clean + 50 dirty Dir 0.234 0.468

0.522

Table 3-1. Mean error when placing simulated fossils under the exponential and Dirich-

let branch length priors. Error is measured as the average number of nodes separating

reconstructed placements from their true positions across all 100 replicates of each dataset

divided by the maximum possible path length between nodes.

3.4.2 Vitaceae

Application of the fossil placement method to the Vitaceae dataset showed generally

positive results (Fig. 3-2). The weight calibration procedure revealed substantial noise

in the dataset, with 10-12 of 51 sites failing to favor the molecular reference tree over

the random trees at least 95% of the time across all runs. Despite this noise, the binary

weighting scheme appeared to adequately filter through this noise to generate biologically

reasonable results. Vitis tiffneyi, Parthenocissus clarnensis, and Ampelopsis rooseae all

share clades with the extant members of their respective genera. Palaeovitis paradoxa,

and Cissocarpus jackesiae, which represent genera with no extant species, both group

with separate, non-monophyletic groups of crown Cissus. Ampelocissus wildei placed

within crown Cissus, separated by only a node from Palaeovitis paradoxa. All six of these

taxa are stable in their placements, grouping within the same clades across runs, and when

both the exponential and empirical compound Dirichlet priors are applied.
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The remaining two fossils are unstable in their placements across branch length priors.

Ampelocissus parvisemina alternately occupies clades shared by crown Vitis or Nekemias

in the exponential and Dirichlet prior runs, respectively. This taxon shows poor support

under the exponential prior, and achieves higher posterior support under the compound

Dirichlet prior. Under the exponential prior, the Ampelocissus parvisemina placement

shows a 0.2 posterior probability, and increases to 0.62 under the Dirichlet prior (Fig. 3-

2). Similarly, Vitis magnisperma alternately resolves into clades shared by crown Cissus

and Ampelocissus under the exponential and Dirichlet priors, with posterior support values

of 0.23 and 0.54, respectively.

The simulations show that the compound Dirichlet prior achieves higher accuracy than

the exponential prior, especially when combined with the binary scheme and applied to

noisy datasets. If this observation can be extended to the empirical results, it is reason-

able to prefer the placements inferred for these two taxa under the compound Dirichlet

prior. This interpretation is supported by the greater stability and higher posterior support

observed under the compound Dirichlet branch length prior.

3.4.3 Carnivorans

Analysis of the carnivoran dataset also yielded generally reasonable results (Fig. 3-

3). The placements of Piscophoca pacifica, Acrophoca longirostris, Enaliarctos emlongii,

and Allodesmus agree with previous results (Amson and de Muizon 2014; Jones et al.

2015). The placement of Piscophoca pacifica and Acrophoca longirostris differs slightly

from the topology generated by Jones et al., placing the two taxa in a more nested posi-

tion. However, this placement is consistent with the results of Amson and Muison. Ena-

liarctos emlongii and Allodesmus resolve in positions identical to the topology used by

Jones and colleagues (2015). Pontolis magnus is more erratic in its placement, alternating

between placement at the center of the unrooted topology, or grouping with Vulpes and
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Otocyon. The latter placement is unlikely to be correct, because it places Pontolis mag-

nus within the Canidae family, while is canonically known as the only extant member of

family Odobenidae. Nevertheless, like the problem taxa in the Vitaceae example above,

the placement of Pontolis displays reassuringly weak support, both in terms of its poste-

rior density and in its tendency to group at the center of the tree. Interestingly, although

the placements of Enaliarctos emlongii and Allodesmus remain stable across runs, both

display weak support.
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In both datasets, placement under the exponential branch length prior yields conser-

vative estimates of uncertainty in the fossil placements, displaying generally low poste-

rior support, except when placements are exceptionally stable such as with Ampelocissus

wildei. This is especially important in ‘rogue’ taxa such as Vitis magnisperma. Branch

support under the compound Dirichlet prior is higher across several fossils in the Vitaceae

dataset. The positions of the six taxa with stable behavior (listed above) do not change

significantly under the compound Dirichlet compared to the exponential prior. Closer

examination is needed to better determine the significance of this apparent sensitivity of

posterior support measures to prior choice observed in Vitaceae. The carnivoran dataset

does not exhibit the same behavior, with both branch support and fossil placements similar

across priors.

3.4.4 Continuous vs discrete morphological characters

Previous work investigating the degradation of phylogenetic signal over time has im-

plied that continuous traits can benefit over discrete traits under certain circumstances

(Revell et al. 2008). In principle, methods that analyze continuous traits directly are prefer-

able over those that bin continuous variation into discrete categories (Goloboff et al. 2006),

due to their avoidance of error stemming from discretization schemes (Rae 1998), and po-

tential to better preserve information that can be gleaned from morphological datasets

(Parins-Fukuchi 2018b). Nevertheless, depending on the type of continuous data that are

used, the incorporation of features that can be uniquely described qualitatively, such as the

loss and gain of structures, may be helpful. It would be straightforward to combine such

discrete information into the morphometric framework described here. As progress in this

area develops, it will be important to better understand the behavior of different sources

of morphological data at different timescales, and the most appropriate ways to combine,

model, and gather such datasets.
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Although the performance of this new approach on simulated and empirical data ap-

pears generally promising, there are several caveats to consider in its use. When applying

this method to geometric morphometric data, authors should be cautious to properly align

landmark coordinates using Procrustes transformation to remove the effects of rotation in

3D space as a source of variation. In addition, as is shown by the simulations, when the

signal-to-noise ratio becomes high, the weighting procedure performs significantly less

accurately than when the amount of noisy/misleading signal is lower. Further work will

be needed to assess the source of this discrepancy, and the possibility of additional steps

that fortifies the approach when noise becomes high. The weighting procedure also may

become more complicated in cases where a reliable scaffolding tree cannot be estimated

due to genealogical discordance, or where signal displayed by the quantitative traits is

shaped by such discordance (Mendes et al. 2018). This could in principle be accommo-

dated in future extensions to the method by relaxing the number of topologies accepted as

scaffolding trees, or by extending the model to accommodate such discordance.

Despite the potential utility in phylogenetics, there may be cases where useful phylogenetically-

informative characters cannot be extracted from geometric morphometric data. This may

be the case when any of the concerns stated by Felsenstein (2002) cannot be overcome,

or when geometrically-defined characters exhibit inconsistent or weak signal, such as was

found by Smith and Hendricks (2013) when using a semi-landmark geometric method to

capture morphological variation in Conus snails. In these cases, it may be necessary to

resort to using traditional linear measurements and proportions, or qualitative characters.

Finally, there are cases where fossils may simply present weak information due to short-

comings in geologic and taxonomic sampling. When this is occurs, it is unlikely that any

greater certainty in their placement can be achieved except by adding data.
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3.4.5 Comparison to other approaches

The method that I describe here differs substantially from existing approaches to the

phylogenetic placement of fossil taxa. Although it is most similar to the fossil placement

method developed by Revell et al. (2015), it extends their approach in several important

ways. For instance, my approach does not require that branch lengths be scaled to time,

simplifying the estimation procedure. In addition, the implementation here allows for the

estimation of long extinct fossil taxa. Finally, the adaptation of Berger and Stamatakis’

approach to filtering character matrices can improve upon the accuracy achieved from ex-

isting methods. The method described here also differs from recent ’total-evidence’ meth-

ods that seek to simultaneously estimate both extinct and extant relationships. Although

total-evidence methods are useful tools in the phylogenetic canon, splitting the estimation

process into stages may be beneficial in certain datasets, and better suited to certain ques-

tions. For instance, the approach here may be used to generate priors for the placement of

fossil calibrations in node dating. A new method has been developed that accommodates

uncertainty in the phylogenetic placement of node calibrations in Bayesian molecular dat-

ing (Guindon 2018), which could, in principle, be combined with my fossil placement

approach, by using posterior support of fossil calibrations as the prior probabilities in the

dating analysis.

It is also worth noting that the method that I describe here would be straightforward

to implement in existing phylogenetics packages, such as RevBayes, and adapted to a

total-evidence framework. Although RevBayes does not feature a native implementation

of the model that I describe, including the data-filtering approach, adapting the present

procedure to this framework may be useful in addressing certain biological questions.

This may include an exploration of the feasibility of incorporating continuous data into

total-evidence morphological clock analyses (Zhang et al. 2016) .
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Moving forward, it will be important to explore the behavior of this method when ap-

plied to morphometric data collected under a variety of approaches and sampling schemes.

The success of the weight calibrations on the simulated and empirical datasets suggests

the possibility of applying the method to very large morphometric datasets by providing a

means to filter through the noise that may occur when sampling densely across taxa and or-

gans. Such a framework would facilitate the development of a more data-centric approach

to morphological phylogenetics that reduces common sources of bias in morphological

datasets by filtering data matrices statistically rather than through subjective judgement.

This would encourage an exploration of conflict and concordance in signal through quan-

titative data analysis rather than by attempting to filter subjectively at the stage of data

collection. One major gap in the approach presented here concerns the assumption that

all continuous traits under analysis evolve under a shared rate. In the empirical analyses

performed above, I rescaled the traits at each site so that the variance is set to be equal.

However, it will be important to explore model extensions that accommodate rate hetero-

geneity across characters. This has been done in continuous characters to positive effect

by Schraiber et al. (2013) using a Gamma site-rate model, and adapting this or alternative

approaches to modeling rate heterogeneity (Huelsenbeck and Suchard 2007) will be a key

priority in future extensions the method.

3.4.6 Conclusions

The method described here provides a new means for biologists to reliably and con-

fidently place fossils in the tree of life. Although the simulated and empirical analyses

show several imperfections and a need for further refinement of these methods, the over-

all accuracy and conservative assessment of uncertainty displayed in the examples appear

encouraging. As molecular phylogenetics advances in its use of genomic data to answer

fundamental questions across the tree of life, it will be important for morphological phylo-
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genetics and paleontology to keep pace. Analysis of morphometric data using the approach

shown here will help to improve issues surrounding subjectivity in character collection,

and will help morphological datasets to scale better in the genomic era. New advances

in the collection of morphometric data, combined with refinements to the approach devel-

oped here will better equip morphology to speak to major outstanding questions across the

tree of life.
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Figure 3.1: Random fossil prune and regraft procedure.
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Figure 3.2: Vitaceae fossil placements inferred under the compound Dirichlet branch length prior. Fossil
taxa and branches are highlighted in red. Values following fossil tip labels indicate posterior support for
placement. Topology is summarized from the posterior using the set of maximally credible clades (MCC).
Figure displays only the clade containing all 6 fossils.
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Figure 3.3: Fossil placements inferred from the carnivoran dataset using the compound Dirichlet prior.
Placements are displayed as the maximum clade credibility summary of the posterior distribution of trees.
Branch lengths represent morphological disparity. Values trailing fossil tip names display posterior support.



CHAPTER IV

Phylogeny, Ancestors, and Anagenesis in the Hominin Fossil Record

Preamble: This chapter has been accepted for publication in an upcoming issue of Pale-

obiology. The manuscript will appear as: Parins–Fukuchi, Caroline, Elliot Greiner, Laura

M. MacLatchy, and Daniel C. Fisher. Phylogeny, ancestors, and anagenesis in the hominin

fossil record. (2018)

4.1 Abstract

Probabilistic approaches to phylogenetic inference have recently gained traction in

paleontological studies. Because they directly model processes of evolutionary change,

probabilistic methods facilitate a deeper assessment of variability in evolutionary pattern

by weighing evidence for competing models. Although phylogenetic methods used in

paleontological studies have generally assumed that evolution proceeds by splitting clado-

genesis, extensions to previous models help explore the potential for morphological and

temporal data to provide differential support for contrasting modes of evolutionary diver-

gence. Recent methodological developments have integrated ancestral relationships into

probabilistic phylogenetic methods. These new approaches rely on parameter-rich models

and sophisticated inferential methods, potentially obscuring the respective contributions of

data and models. In this study, we describe a simple likelihoodist approach that combines

probabilistic models of morphological evolution and fossil preservation to reconstruct both

74
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cladogenetic and anagenetic relationships. By applying this approach to a dataset of fossil

hominins, we demonstrate the capability of existing models to unveil evidence for an-

agenesis presented by morphological and temporal data. This evidence was previously

recognized by qualitative assessments, but largely ignored by quantitative phylogenetic

analyses. For example, we find support for directly ancestral relationships in multiple

lineages: Sahelanthropus is ancestral to later hominins; Australopithecus anamensis is an-

cestral to Au. afarensis; Au. garhi is ancestral to Homo; H. antecessor is ancestral to

H. heidelbergensis, which in turn is ancestral to both H. sapiens and H. neanderthalen-

sis. These results show a benefit of accommodating direct ancestry in phylogenetics. By

so doing, quantitative results align more closely with previous qualitative expectations.

Keywords: anagenesis, phylogenetics, morphology, paleontology, hominin

4.2 Introduction

Phylogenetic methods that employ parametric evolutionary models, such as the Lewis

Mk model (Lewis 2001) have recently begun to emerge as important tools for address-

ing paleobiological issues at macroevolutionary timescales. Probabilistic approaches ap-

pear promising in their performance relative to earlier cladistic methods and offer several

important advantages. These include their tendency to increase the clarity with which

models are specified and their ability to weigh evidence under competing evolutionary

models using modern inferential machinery. While probabilistic approaches have long

been dominant in molecular phylogenetics, their application to morphological datasets re-

mains immature. One topic that has only recently been addressed in parametric approaches

to phylogenetic inference has been the incorporation of paleobiological evolutionary pat-

terns, such as budding cladogenesis and anagenesis.

Traditional approaches usually depict evolutionary relationships in terms of branching,
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or in paleobiological terms, splitting cladogenesis. However, when analyzing the fossil

record, it is often desirable to entertain hypotheses where taxa occurring earlier in time are

directly ancestral to taxa that occur later in time. The presence of such directly ancestral

taxa is expected in the fossil record (Foote and Raup 1996), and is central to identification

of paleobiological patterns such as budding cladogenesis and anagenesis. Characterization

of evolutionary mode by distinguishing splitting cladogenesis from budding and anagen-

esis in the fossil record is fundamental to many paleobiological studies (Simpson 1944;

Stanley 1979; Levinton 2001). Although the significance of budding, anagenesis, and di-

rect ancestry has been fiercely debated (Gould and Eldredge 1977; Gould 1980a; Levinton

and Chris 1980; Gingerich 1985), these patterns have all been observed in the fossil record

and can greatly impact inferences of evolutionary processes (MacLeod 1991; Soul and

Friedman 2017). This may be particularly important when constructing and testing hy-

potheses of phylogenetic relationships, where accommodation of direct ancestry, whether

as budding cladogenesis or anagenesis, may improve accuracy and yield insights other-

wise unattainable (Gingerich 1979a; Fox et al. 1999; Aze et al. 2011; Strotz and Allen

2013; Aze et al. 2013).

These issues are particularly relevant in taxa such as hominins (humans and all other

taxa more closely related to humans than to chimpanzees), where hypotheses of direct an-

cestry are often constructed and entertained qualitatively. Discerning human evolutionary

patterns is a focus traceable to Darwin (1871), and ancestry is almost certainly more fre-

quently proposed (even if informally) for clusters of hominin fossils than for those from

other taxonomic groups. Nonetheless, there are few formal routes for recognizing this

status based on statistical evaluations of morphological traits.

Despite the importance of directly ancestral relationships in the fossil record their role

in phylogenetic reconstruction has remained under-explored. Stratocladistic methods were
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developed in part to explore use of temporal occurrence data to test hypotheses of direct

ancestor-descendant relationship (Fisher 2008). As a non-parametric approach, strato-

cladistics uses the criterion of maximum parsimony (MP) to minimize both the number of

homoplasious character changes and unsampled stratigraphic intervals implied by topolo-

gies that include both bifurcating and serially linked segments of phyletic lineages. Sev-

eral authors have expressed objections both to the use of temporal data in phylogenetic

inference and the capability of available data to adequately test ancestral and collateral

relationships between species (Smith 2000). Nevertheless, direct ancestors are expected

to occur in the fossil record (Smith 2000), and the integration of temporal data has been

shown to improve reconstruction accuracy over that of morphological analyses alone (Fox

et al. 1999). In addition, those earlier criticisms, which have been frequently raised by

proponents of cladistic methodologies, are also less relevant when placed in the context of

modern probabilistic approaches. While cladistics operates at the level of cladograms, both

stratocladistics and recent probabilistic approaches reconstruct phylogenetic trees (Fisher

et al. 1994; Fisher 2008). This renders earlier criticism of temporal data largely irrelevant

given the current landscape of phylogenetic methodology. As such, it stands to reason

that probabilistic approaches are remiss when they fail to accommodate the possibility of

ancestor-descendant relationships between taxa occurring at different times.

Two early attempts to explicitly extend the intent and logic of stratocladistics into para-

metric methods using maximum-likelihood (ML) (Huelsenbeck and Rannala 1997; Wag-

ner 1998), showed strong potential, but did not fulfill all of the goals of stratocladistics,

such as identifying direct ancestors. A more recent set of methods combine morpho-

logical, fossil preservation, and lineage diversification models to infer relationships and

lineage divergence times in a Bayesian context (Pyron 2011). This framework has been

extended to explicitly accommodate ancestor-descendant relationships by modeling lin-
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eage diversification and fossil preservation processes (Stadler 2010; Bapst and Hopkins

2017; Gavryushkina et al. 2017), in particular through use of the ‘Fossilized Birth-Death’

(FBD) process (Heath et al. 2014). The FBD process models lineage diversification using

speciation, extinction, and fossil preservation parameters and so is very similar to previous

‘birth-death-sampling’ (BDS) models (Foote 1997, for example), but is usually estimated

in a Bayesian context as an informative prior.

Although these approaches have been shown to be useful, several outstanding questions

remain regarding their application to the fossil record. These methods have been largely

developed for use in epidemiological systems, where they are used to model molecular

sequence evolution along single lineages. Although these systems are useful models of

patterns in the fossil record, their sampling is often incomplete, and so they may some-

times call for different approaches in practice. Several a posteriori time-scaling (APT)

approaches, such as cal3, that accommodate ancestor-descendant relationships also exist

(Bapst 2013). These apply divergence times to unscaled cladograms that have been in-

ferred from character data alone using a model similar to the FBD process. Although both

Bayesian and APT approaches have been shown effective when applied to fossil taxa, there

has been limited discussion of the statistical properties and identifiability of model param-

eters such as speciation and extinction rates given incomplete fossil sampling. One more

straightforward question regards the extent to which morphological data alone can provide

evidence for direct ancestor-descendant relationships without modeling abstract lineage

diversification parameters such as speciation or extinction rates. This may be especially

important in clades with gap-prone fossil records, such as many lineages of terrestrial

vertebrates. These taxa may possess less information from which to infer speciation and

extinction parameters, and so a characterization of the evidence for hypotheses of direct

ancestry provided by morphology alone will be important in the continued development
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of parametric approaches for phylogenetic inference in fossil species.

In this study, we describe an approach to phylogenetic inference that combines models

of stratigraphic preservation and morphological evolution to reconstruct time-scaled phy-

logenies and distinguish between anagenesis and cladogenesis using ML and the Akaike

Information criterion (AIC). This approach seeks to simplify existing methods, such as

the APT and FBD approaches described above, to clearly identify the signal for directly

ancestral relationships presented by morphological data alone. Unlike more complex ap-

proaches, ours seeks only to identify information in morphological and temporal data that

establishes differential support for ancestor-descendant and bifurcating relationships. As

a result, our approach explicitly relies on models of morphological evolution and strati-

graphic preservation rather than on models of lineage diversification.

We demonstrate the utility of our approach using the hominin fossil record. Hominins

are a particularly compelling taxon for a case study. Although cladistic methods have been

applied to hominin evolution (Delson et al. 1977; Chamberlain and Wood 1987; Strait et al.

1997; Irish et al. 2013), prior authors’ exclusive focus on bifurcating relationships has pre-

cluded the study of direct ancestry except in cases where character polarity and specimen

sampling have been carefully considered (Kimbel et al. 2006). This limitation has been

a major detriment to paleoanthropological studies, where direct ancestry has often been

considered to be especially important. The hominin fossil record has more recently been

examined in a parametric context (Dembo et al. 2015, 2016). However, these results still

contain ambiguities and do not consider the possibility of direct ancestry. As a result,

phylogenetic results have often conflicted with qualitative interpretations of hominin rela-

tionships. For instance, this divide occurs in previous treatments of Homo heidelbergensis

and Homo antecessor. Previous studies have alternatively suggested that either Homo

heidelbergensis or Homo antecessor are directly ancestral to Homo sapiens and Homo ne-
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anderthalensis (Mounier et al. 2009), while others have disagreed that Homo antecessor

is ancestral to Homo heidelbergensis (Stringer 2012). Others have suggested that Homo

heidelbergensis is either a chronospecies directly ancestral to H. neanderthalensis, or di-

rectly ancestral to both H. sapiens and H. neanderthalensis (Rightmire 1998; Rosas and

De Castro 1998; Stringer 2012). This uncertainty is underscored by the suggestion that

cladistic methods and data are unreliable in their ability to describe hominin evolutionary

patterns and history (Collard and Wood 2000).

For our empirical exploration, we borrowed a morphological supermatrix from the lit-

erature (Dembo et al. 2015, 2016). Our analysis identified several areas of direct ancestry

in hominins, demonstrating cases where temporal data both corroborate and refute results

achieved using morphology alone. We recognize that increasingly thorough compilation

of morphological data and new fossil discoveries is likely to continue to revise and re-

fine current understanding of hominin evolution. Nevertheless, our approach sheds light

on the capabilities of existing models and data to accommodate anagenesis and budding

cladogenesis without relying on abstract diversification parameters. Moving forward, ap-

plication of our method in hominins provides general demonstration of the importance

of accommodating directly ancestral relationships in phylogenetic methods to generate

deeper understanding of evolutionary patterns in the fossil record.

4.3 Methods and materials

4.3.1 Use of terms

We use the term ‘ancestor’ modelled loosely after (Gingerich 1979b). Ancestors identi-

fied through our method represent taxa that display character states that are not sufficiently

differentiated from those of a taxon occurring later in time to warrant assignment to a sepa-

rate lineage. Operationally, we consider anagenesis as any evolutionary change occurring
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along these serially linked phyletic lineage segments. Strictly speaking, these instances

might alternatively represent budding cladogenesis if new fossil evidence shows greater

temporal overlap between ancestral and descendant taxa than is currently known. How-

ever, the gap-prone nature of much of the hominin fossil record complicates the ability to

develop a precise mechanistic view of speciation patterns. Since candidate direct ances-

tors typically do not overlap in their temporal ranges with close relatives, it was simpler to

consider all direct ancestors as connected to their descendants through ‘anagenesis’ (again,

given the lack of evidence for budding patterns in the stratigraphic record). Nevertheless, it

would be straightforward to apply our approach to clades where putative ancestors overlap

with putative descendants.

4.3.2 Inference of ML topology

Our approach evaluates the likelihood of candidate topologies using probabilistic mod-

els of fossil preservation and morphological evolution (Huelsenbeck and Rannala 1997;

Lewis 2001). We perform a semi-automated tree search by calculating the likelihoods of

these models on a set of candidate topologies. This approach tests hypotheses of direct an-

cestry by combining branches with non-overlapping ranges and comparing cladogenetic

and anagenetic models using the AIC. All code developed for these analyses is publicly

available and implemented in the mandos package (www.github.com/carolinetomo/mandos).

4.3.3 Identification of a fully-bifurcating ML tree

Our approach has yet to be implemented with a fully automated tree searching algo-

rithm, so we combine semi-automated rearrangements with manual perturbations to search

for the ML topology. This is done by exploring tree-space surrounding a starting tree es-

timated from morphological characters alone. In this study, we obtained a ML starting

tree using RAxML, version 8.2.11, using the Mk model of morphological evolution (Sta-
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matakis 2014). The morphological data were separated into partitions according to the

number of possible states (i.e., binary, trinary, etc.) and analyzed under separate mod-

els. This partitioning scheme was maintained for all subsequent morphological likelihood

calculations, including those used below in the AIC comparisons. We then performed a

series of nearest neighbor interchange (NNI) and subtree pruning and regrafting (SPR)

operations. These yielded a set of 1700 candidate topologies from which we identified the

fully-bifurcating topology best supported by both morphologic and stratigraphic data. This

tree provided a starting point drawn from both morphologic and stratigraphic lines of evi-

dence. From here, we explored ancestor-descendant relationships using the model-testing

approach described below.

Modeling stratigraphic preservation. Stratigraphic likelihoods were calculated under a

homogeneous Poisson process of geologic preservation. When applied to phylogenetics,

inference under this model has been shown to accurately recover simulated phylogenetic

relationships (Huelsenbeck and Rannala 1997). The likelihood function is derived from a

Poisson process as the probability of observing the first occurrence (o f ), last occurrence

(ol) and number (no) of occurrences in the stratigraphic record given some origination and

extinction time (t f and tl , respectively) and preservation rate (λ ). These likelihoods are

calculated independently for each (i) of b total lineages and multiplied to yield the overall

tree likelihood:

(4.1) L̂ =
b

∏
i=1

(oi
f −oi

l)
ni

o−2λ ni
oe−λ (ti

f−ti
l )

(ni
o −2)!

This equation reaches its maximum as branching and extinction times approach the first

and last occurrences in the fossil record, and so the likelihood is maximized across the tree

when the total amount of unsampled time implied by the topology is minimized. Although
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this approach differs from stratocladistic parsimony in its treatment of occurrence data as

continuous rather than discrete, this property causes the preservation model to behave as

a statistical formalization of the stratigraphic parsimony debt calculations undertaken in

parsimony-based stratocladistic analyses. We estimate lineage origination and termina-

tion times along with preservation rate using multivariate numerical optimization routines

implemented in SciPy (Jones et al. 2016). When combined with morphological data and

models of character evolution, this approach represents a comprehensive extension of tra-

ditional stratocladistics based entirely on probabilistic models.

Identification of anagenesis. Using the bifurcating topology with the highest likelihood

under both stratigraphic and morphologic models, we manually identified a set of poten-

tial ancestor-descendant relationships. To explore a more comprehensive range of both

anagenetic and cladogenetic arrangements, we also extensively perturbed results manu-

ally and compared likelihoods. Although a fully-automated tree searching approach will

ultimately be desirable in future versions of our method, our approach to tree-searching is

similar to those used in previous stratocladistic studies. Starting with the fully bifurcating

tree, we identified putative ancestor-descendant arrangements by collapsing each branch

with a temporal range beginning earlier than the range represented by its sister lineage.

We isolated each putative episode of anagenesis and compared the morphologic and strati-

graphic likelihoods of anagenetic and cladogenetic arrangements using AIC scores. This

was required because cladogenetic nodes assume one more parameter than anagenetic

nodes (i.e., the branch length or node height connecting the new lineage), and so bifur-

cating trees contain more parameters than anagenetic trees. Comparison of AIC scores

enables a comparison of the relative quality of models with different numbers of parame-

ters. AIC score is calculated from the number of model parameters (k), and the likelihood

(L):
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(4.2) AIC = 2k−2log(L)

More complex models almost always have higher likelihoods than simpler models be-

cause added parameters allow a better fit to slight deviations in the data. Since they rep-

resent a more parameter-rich phylogenetic model, likelihoods from fully bifurcating trees

are not directly comparable to ancestor-descendant trees. AIC scores represent the amount

of information lost by a model when representing data, with lower scores being indicative

of models that preserve a greater amount of information. AIC accommodates differences

in parameter count between models by penalizing the addition of new parameters, seeking

to optimize the trade-off between improvements in model fit associated with added param-

eters and the loss of statistical power that results from over-parameterization. In our use,

AIC facilitates comparison of phylogenetic models of differing dimensions by penalizing

the addition of branches that are better explained through an anagenetic pattern. The pa-

rameter count, k, for each phylogeny is calculated by summing the number of estimated

branch lengths for each tree with the number of parameters used in the partitioned Mk

substitution model.

Under the Poisson preservation model, stratigraphic likelihood predictably improves

when unsampled time implied by the phylogeny is reduced, and so the acceptance of

ancestor-descendant arrangements also requires the support of morphology. We accom-

modated direct ancestry using a novel calculation of morphological likelihood where the

probability of transitioning from an observed, rather than an uncertain, parental character

state to a single or multiple descendant character states is calculated under the Mk model

(Fig. 4-1). This calculation differs from that used on multi-furcating nodes. Since the

sequences at internal nodes representing unobserved taxa are unknown, the likelihood of
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Figure 4.1: Comparison between anagenetic and cladogenetic trees. A) Likelihoods are calculated on bifur-
cating arrangements using the standard ‘pruning algorithm’. B) Direct ancestor likelihood calculation.

character data at the tips is typically calculated by summing over all possible states at

each unobserved internal node (Felsenstein 1981a). However, when dealing with direct

ancestry, the sets of character states at some internal nodes are known and the marginal

likelihoods for states absent in the ancestor are necessarily 0. In these cases, the likelihood

is calculated as the conditional probability of observing the set of traits at the tips given the

set of traits possessed by the putative ancestor. Ancestor-descendant arrangements are only

accepted when there has been a sufficiently small amount of character change. This pro-

cedure resembles model testing procedures used to reconstruct ancestral DNA sequences,

which compare conditional likelihoods of different permutations of character states at an-

cestral nodes (Yang et al. 1995). A similar effect could also be achieved by fixing the

branch length leading to the putative ancestor to zero and performing the standard pruning

algorithm. Although the two calculations are equivalent, our approach treats direct ances-

try explicitly in the likelihood calculation and tree representation. Like stratocladistics, this

use of probabilistic models of character change enables morphology to occupy a central

role in identifying direct ancestors. As a result, this approach can, in principle, be ap-
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plied without temporal data. A demonstration and test of this method using simulated data

is provided in the data supplement (https://github.com/carolinetomo/hominin anagenesis).

These preliminary validations of the implementation show that the approach identifies di-

rect ancestors correctly, even when rates of change are very uneven across taxa. However,

the approach can incorrectly prefer arrangements where a taxon with a low rate of mor-

phologic change relative to its sister taxon is collapsed into a directly ancestral position.

This result demonstrates the importance of surveying broadly across the anatomy when

constructing character matrices and the key role played by temporal data in constraining a

set of possible ancestor-descendant relationships.

4.3.4 Stratigraphic and morphologic datasets

We performed our analysis on a supermatrix of 391 discrete craniodental characters

compiled by Dembo and colleagues (Dembo et al. 2015, 2016). We removed all ambigu-

ous character states, as researchers did not identify whether these were truly ambiguous

or polymorphic. While ambiguous character codings are unlikely to provide significant

phylogenetic information, existing Markov models of discrete character evolution do not

accommodate polymorphism. We excluded the taxa Kenyanthropus platyops and Homo

naledi from the present analysis. The features that are diagnostic of K. playtyops have been

suggested to result from taphonomic distortion resulting from matrix expansion, rather

than from true biological differences (White 2003). Thus, we omitted this taxon in hopes

of shedding greater light on the remaining, more widely accepted hominin taxa. Homo

naledi was omitted because the data provided in the original study yielded an ML topology

placing H. naledi as sister to H. sapiens. Although the phylogenetic affinity of H. naledi

is a major outstanding question in paleoanthropology, the confusing signal presented by

the H. naledi data, which are relatively recently acquired and therefore represent less well-

studied fossils overall, reduced our confidence in the ability of this dataset to resolve its
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placement. Therefore, to avoid any confounding effects from the potential unreliability of

the H. naledi data, we performed our analyses on the remaining subset of the data after H.

naledi was removed. This enabled us to explore the phylogenetic relationships between

better-known hominins.

We surveyed the literature to obtain the observed temporal range of each taxon in con-

tinuous time. Reported radiometric dates for the oldest and youngest fossils were taken

as the first and last observations. Some specimens are ambiguous in their taxonomic as-

signment; these were excluded from the analysis. We also gathered the number of total

occurrences as the number of localities where each taxon has been identified as listed by

MacLatchy et al. (2010), and supplemented these with additional localities identified in

the literature. Cases where multiple specimens belonging to the same taxon have been

identified at a single locality were treated as single occurrences. Although we recognize

the potential ambiguity in delineating between sites, localities, and occurrences, we at-

tempted to coarsely characterize the total number of occurrences using the number of sites

at which each taxon occurs. This approach is more likely to underestimate the number of

occurrences than overestimate them, which we expect to yield more conservative statisti-

cal support for competing topologies under the preservation model. A comprehensive list

of the sites used to define temporal ranges for all taxa is provided in the supplement.

4.4 Results and Discussion

4.4.1 Anagenesis in the hominin fossil record

Our analysis yielded evidence for several instances of anagenesis in the hominin fos-

sil record (Fig. 4-2). Our analysis reconstructed Australopithecus anamensis as directly

ancestral to Au. afarensis. This result agrees with broad acceptance of Au. anamensis

and Au. afarensis as phyletically linked chronospecies (Leakey et al. 1995; Ward et al.



88

2001; Kimbel et al. 2006). Although our analysis recovered Ar. ramidus as sister to the

anagenetic Au. anamesis-Au. afarensis branch, the morphological data did not support the

collapse of Ar. ramidus. Nevertheless, Ar. ramidus possessed poor character sampling in

the matrix, and so its placement should be regarded as tentative. Sahelanthropus tchaden-

sis is recovered as a direct ancestor to the rest of the hominin clade. This result should also

be treated cautiously due to the small number of characters recovered for analysis of this

portion of the phylogeny, but it is in line with with Sahelanthropus’ status as the oldest

recognized hominin (Brunet et al. 2002; Guy et al. 2005; Zollikofer et al. 2005).
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Figure 4.2: Phylogenetic relationships between hominin species. A) Reconstruction with the best AIC score
when temporal data are considered alongside morphological data and anagenesis is accommodated. B, C)
Areas of the tree inferred from morphology alone that differ from panel A. Both regions display misleading
results when anagenesis is not considered. This is reflected in the improvement in AIC observed in the
preferred anagenetic topology. Silhouettes obtained from phylopic.org.

Consistent with an early appraisal (Asfaw et al. 1999), our final analysis inferred Au.

garhi to be directly ancestral to the Homo clade (Fig. 4-2a). This conflicts with cladistic

analyses that placed Au. garhi as outgroup to Au. africanus, Paranthropus, and Homo
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(Strait and Grine 1999). However, when anagenesis is not considered and phylogeny is in-

ferred from morphology alone, we recover the same placement for Au. garhi as the cladis-

tic result (Fig. 4-2b). Like the example above, this may reflect the constraint that strictly

bifurcating methods impose on phylogenetic reconstructions among fossil taxa. However,

preference for Au. garhi as ancestral to Homo is weak, with an AIC score (9264.3) that is

only slightly better than that of the Au. garhi outgroup hypothesis (9271.11).
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Figure 4.3: AIC scores calculated for each possible arrangement between H. sapiens, H. neanderthalensis,
and H. heidelbergensis.
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Our results also better reconcile quantitative and qualitative interpretations of the evolu-

tionary relationships (involving potentially some combination of direct ancestry and collat-

eral connections) among the Homo species leading to modern humans and Neanderthals.

Paleoanthropologists have variously interpreted Homo heidelbergensis as either: 1) a di-

rect ancestor to both Neanderthals and modern humans (Rightmire 1998; Mounier et al.

2009; Stringer 2012; Buck and Stringer 2014), or 2) a chronospecies leading to Nean-

derthals (Rosas and De Castro 1998). However, quantitative phylogenetic analysis has

placed H. heidelbergensis as sister to Neanderthals (Dembo et al. 2015). Our ML result

based on morphological characters alone places H. heidelbergensis as sister to H. sapiens.

However, AIC support improves substantially when H. heidelbergensis is collapsed to rep-

resent a direct ancestor that preceded the split between modern humans and Neanderthals

(Fig. 4-3). We also uncover one other instance of anagenesis in this clade. Opinions are

divided as to whether H. antecessor represents a direct ancestor of later hominin species

or is an evolutionary dead end (De Castro et al. 1997; Stringer 2012; Dembo et al. 2015),

but our results provide support for combining H. antecessor and H. heidelbergensis into a

single lineage. This suggests a long episode of anagenetic evolution immediately prior to

the divergence between modern humans and Neanderthals.

Overall, our reconstruction of relationships among later species of Homo immediately

preceding and encompassing modern humans and Neanderthals supports the hypothesis

that H. heidelbergensis is directly ancestral to both modern humans and Neanderthals.

This result differs from the hypothesis supported by the analysis performed by Dembo

and colleagues (Dembo et al. 2015), and is instead more consistent with an earlier ex-

ploratory statistical analysis (Mounier et al. 2009), and with the position frequently sug-

gested by paleoanthropologists (Rightmire 1998; Mounier et al. 2009; Stringer 2012; Buck

and Stringer 2014). While previous phylogenetic analyses have yielded results that equiv-
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ocate or disagree with the common interpretation of H. heidelbergensis as the last common

ancestor of modern humans and Neanderthals, our analysis shows that the consideration

of direct ancestry can generate statistical support for phylogenetic results that conform

more closely to positions generated through researchers’ subjective interpretations and

exploratory data analyses. This finding supports a general argument against the use of

cladistic and phylogenetic methods that are restricted to bifurcating relationships in fossil

taxa, where the possibility of variability in evolutionary mode (i.e., occurrence of both

anagenesis and cladogenesis) is at odds with an assumption that evolution proceeds by

cladogenesis alone (Fig. 4-2).

Our results differ markedly from previous phylogenetic studies seeking to reconstruct

hominin phylogeny using probabilistic and cladistic methods. In key regions of the tree,

results achieved under our method reveal support for hypotheses more consistent with

many qualitative interpretations of hominin relationships, demonstrating the importance

of explicitly accommodating anagenesis in the phylogenetic reconstruction of fossil taxa.

This may explain some of the historical difficulty in reconciling paleontological interpreta-

tions of hominin relationships with cladistic results. For instance, Dembo and colleagues’

results are inconsistent with earlier suggestions that Au. anamensis and Au. afarensis

are chronospecies differentiated through anagenesis. However, by considering ancestor-

descendant relationships and incorporating temporal data, our analysis reveals that a linked

Au. anamensis-Au. afarensis lineage is the arrangement most strongly supported by

the data. Generally, this suggests that cladograms and strictly bifurcating phylogenies

may be inadequate when describing evolutionary relationships between fossil taxa, and so

ancestor-descendant relationships should be considered during topological inference. Fur-

ther, we argue that explicit testing of ancestor-descendant relationships is important even

in cases where bifurcating trees are not wholly misleading, as their omission precludes
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us from considering the full range of possible evolutionary scenarios. Although previous

studies addressing hominin phylogeny using probabilistic methods represent a significant

step forward in weighing alternative evolutionary hypotheses, we suggest that their phylo-

genetic reconstructions have suffered from methodological limitations that were not gen-

erally perceived. We suggest that overcoming these limitations can provide a substantial

step forward in closing the gap between the paleobiologists’ interpretations and previous

cladistic and phylogenetic results. In particular, we show through our analyses that the

apparent discordance between quantitative and qualitative assessments of evolutionary re-

lationships can be reconciled by extending phylogenetic models to explicitly accommodate

anagenesis.

4.4.2 Ancestors, anagenesis, and evolutionary processes

Our method does not seek to distinguish between speciation modes at a mechanistic

level. As noted by Fisher (2008), overlap between the extinction and origination times

of taxon pairs does not necessarily preclude an ancestor-descendant relationship. In-

stead, it is possible for ancestral and descendant lineages to coexist. This reality com-

plicates the identification and evolutionary interpretation of ancestor-descendant relation-

ships from temporal data alone. Doing so requires diversification and preservation models

that contain additional parameters that quantify completeness of the fossil record. Such

models are currently implemented in the cal3 time-scaling method, which seeks to distin-

guish between splitting, budding, and anagenesis from a cladogram with a fixed topology

(Bapst and Hopkins 2017). Our approach is distinct both theoretically and operationally

from cal3, instead relying most heavily on morphological evidence to weigh the likeli-

hood of ancestor-descendant relationships without considering the completeness of fossil

sampling. At the population level, one might expect some temporal overlap between an-

cestral and descendant taxa undergoing anagenetic change, especially if the participants
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are widely distributed geographically (for additional remarks on the relevance of biogeo-

graphic data see Fisher 1994, pp. 158-164, and Fisher 2008, p. 380). As a result, even

if the temporal ranges corresponding to taxa identified as ancestor-descendant pairs are

discovered to underestimate slightly the time of coexistence, the inference may simply

highlight the fuzziness in the taxonomic placement of fossils belonging to lineages under-

going continuous transformation and in discerning between anagenesis and evolutionary

budding given incomplete sampling (Fig. 4-4). This interpretation is consistent with pre-

vious authors’ treatment of temporal ranges when identifying anagenesis between taxa,

which has allowed a period of overlap between putative ancestor-descendant pairs (Aze

et al. 2011; Strotz and Allen 2013; Aze et al. 2013).

Under our method, ancestor-descendant relationships might be interpreted either as

true anagenesis (i.e., a single population undergoing gradual transformation), or as some

form of budding cladogenesis. Previous researchers have argued that true anagenesis is

rare compared to budding when analyzing the fossil records of densely-sampled marine

invertebrate lineages using more complex preservation models (Bapst and Hopkins 2017).

Nevertheless, we suggest that distinction between these two modes may often be impos-

sible in terrestrial vertebrate lineages with large sampling gaps. For example, our results

among early hominin species include multiple inferred direct ancestors, but the large gaps

in stratigraphic sampling throughout this region of the tree hamper the ability to determine

whether these relationships represent true anagenesis or budding that has been obfuscated

by poor sampling.

As employed here, our method makes no attempt to distinguish between budding and

anagenesis by extending lineage durations using BDS models. Although temporal data

occupy an important place in our approach, they are largely used as a guide to constrain

the set of possible ancestors and descendants and to provide additional insight when mor-
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phological data are equivocal. Coarsely speaking, our approach focuses on patterns in

morphological differentiation and lineage disparification, while approaches such as cal3

model lineage diversification. FBD models employed in Bayesian analyses weigh both

morphological data and diversification parameter estimates and so combine elements of

both approaches. Further empirical and simulation-based work is needed to determine the

differences in behavior between methods that test ancestor-descendant relationships in a

BDS/FBD framework, and ours. We speculate that their relative accuracy may depend

largely on the completeness of sampling in the rock record and the correlation strength be-

tween morphological change and lineage diversification, although other factors may also

be important.

The scales at which phylogenetic data are sampled may further complicate mechanistic

evolutionary interpretations. Morphological character matrices often lack samples across

the entire stratigraphic range of each taxon, so in the absence of evidence to the contrary,

analysts often assume morphological stasis within lineages. It is therefore often impossible

to observe gradual morphological change within and between taxa. These considerations

might cause anagenetic relationships identified here to represent either true anagenesis

or some form of ‘pseudo-anagenesis’, where stratigraphic and morphological data appear

consistent with anagenesis but the persistence of the ancestor has not been sampled. The

ancestor-descendant relationships identified by our method may be interpreted in several

ways. As sampled, these results may be roughly conceived as anagenesis in the sense

that the mode of evolutionary change between taxa is indistinguishable from evolution

occurring along a single lineage, depending upon the completeness of sampling and the

degree to which morphological disparity correlates with true biological species diversity.

This interpretation is consistent with historical usage by paleobiologists (Gingerich 1979b;

Levinton 2001). Thus, our approach seeks to reveal the extent to which existing cladistic
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and temporal data can provide evidence for non-branching evolutionary modes and does

not seek to resolve conceptual issues that may stem from incomplete sampling, lineage

diversification, or population-level evolutionary change. Regardless of the fine-scale evo-

lutionary interpretation, failure to accommodate phyletic change and ancestor-descendant

relationships when inferring phylogenetic relationships can generate views of evolutionary

history that are positively misleading in the sense that inaccurate results do not improve

with added data.

4.4.3 Some practical methodological considerations

Concerns regarding the accuracy of probabilistic approaches have been raised, stem-

ming from the reliance of these methods on the overly simplistic Lewis Mk model of mor-

phological evolution (Goloboff et al. 2018b). These critics advocate the use of cladistic

methods, arguing that Markov models inadequately capture the complexities of morpho-

logical evolution. Although we agree that existing substitution models oversimplify these

processes, our results suggest that the accommodation of ancestor-descendant hypotheses

in probabilistic methods can improve the fidelity of phylogenetic reconstructions, even

when Lewis Mk is used as the underlying model of morphological change. As a result,

concerns regarding the adequacy of existing morphological substitution models may be

partially alleviated by considering hypotheses of direct ancestry. This is supported by sim-

ulation work showing that stratocladisics outperforms cladistics in topology reconstruc-

tion (Fox et al. 1999). Further exploration is needed to demonstrate more thoroughly the

limitations of our new approach, which builds upon stratocladistics by incorporating the

benefits of probabilistic analyses, including 1) more explicit statements of the assumptions

involved, and 2) the ability to weigh competing models using modern inferential criteria.

The method we describe seeks to enhance understanding of the fossil record by explic-

itly testing support for existing hypotheses of direct ancestry while attempting to make
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simpler assumptions than stratocladistics or recently developed Bayesian methods. Al-

though Bayesian implementations that employ the FBD model also seek to identify di-

rect ancestry (Zhang et al. 2016), they often struggle to parse through complex signals

to choose between competing ancestor-descendant and collateral hypotheses (Luo et al.

2018). Although future extensions to those approaches may improve their response in this

context, we view our approach as a foundational, minimally complex framework for ex-

ploring the behavior of probabilistic models when evaluating support for direct ancestry in

temporal and morphological data. As such, our method should be viewed as a complement

to, rather than a simplification of, existing Bayesian approaches. Our method encourages

examination of the informativeness of the data without the increased complexity of as-

sessing prior probabilities conditioned upon models of linage diversification. Thus, our

method differs from both existing Bayesian and parametric APT approaches by explicitly

omitting diversification parameters and instead placing morphological data in a central role

when evaluating hypotheses of direct ancestry. In doing so, temporal data help to delineate

the set of possible ancestors and play an important role in measuring the fit of candidate

trees to the observed stratigraphic record. Our method does not seek to reconstruct di-

versification processes, and instead focuses on identifying hypotheses that best describe

only the information contained within morphological and temporal datasets. Assessment

of information contained within datasets and tests of hypotheses can also be achieved us-

ing Bayesian approaches (Lewis et al. 2016), but likelihoodist approaches such as ours

streamline these procedures by reducing complications presented by prior probabilities.

Although Bayesian methods can be beneficial in certain circumstances, our method

simplifies identification of anagenetic hypotheses using evolutionary and stratigraphic

models. We observe that the likelihood surface surrounding certain nodes may possess

low peaks, which likely results from sparse sampling and relatively low information in
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the morphological characters. Since Bayesian approaches often average results across this

surface, it is possible that they may fail to capture those relationships best supported by

the data by including information from weakly supported hypotheses. This is of greater

concern in paleontological than neontological data because the increased abundance of

molecular data is often likely to result in more clearly defined peaks in the likelihood sur-

face. In cases where information is sparse, likelihoodist approaches such as ours offer

the benefit of filtering through noisy and equivocal signal to reveal the hypothesis best

supported by the data. Although these benefits are also achievable through Bayesian ap-

proaches, additional caution must be taken to select priors that do not dominate weakly

informative data. In addition, careful thought should be given when summarizing the pos-

terior/likelihood surface. Averaging across a relatively flat surface might yield poor results

(Yang and Zhu 2018), while the comparison of individual point estimates, as is done here,

may more clearly shed light on best supported models while clearly contrasting this sup-

port relative to competing models. Moving forward, further extensions to our method that

more clearly evaluate uncertainty across the likelihood surface will be useful.

4.4.4 How can we proceed?

Anagenesis and splitting cladogenesis were most pertinent to our analysis of hominin

evolution, and the straightforward dichotomy between these simplified the assumptions

and interpretation of our tests. Our approach may need to explicitly accommodate budding

before being applied to groups with very dense fossil records. However, the assumptions

required, which may often include morphological stasis within lineages, may make ap-

plication to some phylogenetic datasets impractical. This is especially true in cases such

as hominins, for which the fossil record implies large sampling gaps, and characters rep-

resentative across stratigraphic ranges are often sampled from only a single individual.

Expansions of our approach through implementation of new models will further test the
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implications of existing paleontological datasets for reconstructing complex evolutionary

and geologic processes over deep timescales. We hope that the example provided here

will encourage integration of more diverse evolutionary modes into phylogenetic methods

yielding better explanations of temporal patterns in critical parts of life’s history.

As we emphasize above, the approach described here should be viewed as an attempt

to explore the capability of phylogenetic methods to identify the signature of direct an-

cestry using existing models to interrogate morphological and stratigraphic data. In doing

so, we acknowledge that there are many complicated biological and geological factors that

could be incorporated into this framework. For instance, previous researchers have accom-

modated heterogeneity in fossil preservation rates across time and among lineages (Foote

1997, 2001). There have also been several concerns raised in the literature regarding the

adequacy of existing models of discrete trait evolution to inform complex evolutionary

scenarios (Goloboff et al. 2017; Brown et al. 2017). Alternative models that use continu-

ous characters may help to improve some of these issues (Parins-Fukuchi 2018b). Moving

forward, elaborations making use of new data sources and models will only continue to

improve resolution of evolutionary patterns in the fossil record.

Finally, we acknowledge that our empirical results beg qualification. In particular, we

expect that future studies will generate a more comprehensive and authoritative view of ho-

minin evolution as improved data continue to become available. For instance, although we

are currently cautious about making strong statements concerning the ancestral position of

Sahelanthropus using this dataset, additional information may resolve this issue. This may

be the case for several other areas of the hominin tree, which may be better resolved as

temporal and taxonomic gaps in sampling are better filled by new discoveries. In addition,

we concede the possibility that more comprehensive automated tree searching routines

may reveal support for hypotheses that we failed to consider under our semi-automated
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approach. Therefore, instead of providing an authoritative view of hominin evolution,

our study provides a springboard for future studies by showing that the accommodation

of anagenesis can improve our view of the processes and relationships underpinning the

evolution of fossil taxa. Nevertheless, due to the improved support and congruence of

hypotheses that explicitly consider ancestor-descendant relationships, we recommend that

future phylogenetic studies in hominins avoid methods that only consider bifurcating rela-

tionships. Future studies that build upon existing work in other taxa will also be important

to better characterize the extent to which this suggestion can be generalized across the

tree of life. Although the accommodation of directly ancestral relationships is especially

relevant in hominin taxa, for which hypotheses of anagenesis have been long entertained

through qualitative anatomical assessment, these results may also be important in other

taxa. Further empirical work will be needed to develop a better understanding of the ex-

tent to which the consideration of direct ancestors can improve resolution of evolutionary

patterns throughout the fossil record.
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Figure 4.4: A) Speciation mode interpreted as budding when sampling is complete. B) Incomplete strati-
graphic sampling may create an inability to distinguish between anagenesis and budding when sampling is
sparse.



CHAPTER V

Detecting Mosaic Evolutionary Patterns in Phenotypic Disparity

Preamble: The contents of this chapter are currently in review. It appears in preprint

as: Parins-Fukuchi, Caroline. Detecting mosaic patterns in phenotypic disparity. BioRxiv

DOI: 423228

5.1 Abstract

Understanding the complex patterns underlying phenotypic diversification across the

tree of life has long been a fundamental aim in evolutionary biology. The modern evo-

lutionary synthesis was characterized by the integration of disparate biological fields to

better understand the diverse processes that drive phenotypic change. The centrality of the

‘mosaic’ evolutionary patterns that emerge from these diverse processes is a key feature

of post-synthesis thought. Despite this fundamental importance, researchers have been

limited in their ability to explore such complex patterns in nature analytically. However,

recent advances in data collection provide new potential for investigating broad patterns

shaping variation across the tree of life. These possibilities emphasize the need for new

comparative approaches that will facilitate the examination of mosaic change. In this

study, I introduce a novel comparative framework that accommodates the mosaic evo-

lutionary processes that shape whole organisms. The approach recasts the comparative

method to harness patterns in phenotypic disparity to identify macroevolutionary suites of

101
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continuous traits. Through demonstrations on simulated and empirical data, I demonstrate

the utility of this new framework. This framework offers a first step toward evaluating

mosaic variability comprehensively across whole organisms—an integrating goal of the

modern synthesis.

5.2 Introduction

Characterizing the ways in which phenotypic disparity and evolutionary rates differ

across lineages and throughout time has long been a central goal in evolutionary biol-

ogy. Shifts in the rate of phenotypic change often coincide with the rapid diversification

and ecological innovation of diverse lineages (Rabosky and Adams 2012; Rabosky et al.

2013). In addition, studying fluctuations in the tempo of evolutionary change can shed

light on our knowledge of important evolution processes, such as adaptation and evolu-

tionary constraint. A more recent body of work has focused on the development and

application of phylogenetic comparative methods (PCMs) that identify patterns of pheno-

typic change using phylogenies (Harvey and Pagel 1991; Hansen 1997a; Butler and King

2004; O’Meara et al. 2006; Eastman et al. 2011; Beaulieu et al. 2012). Modern PCMs

enable researchers to infer shifts in evolutionary rate, constraint, and disparity throughout

time by applying stochastic models of trait evolution to comparative phenotypic data using

phylogenetic trees. These approaches have helped to answer important questions concern-

ing the tempo and mode of phenotypic evolution across deep timescales (Harmon et al.

2003; Scales et al. 2009; Harmon et al. 2010; Rohlfs et al. 2013; Slater 2013).

Paleobiological and comparative studies have typically examined univariate evolution-

ary patterns. This has perhaps grown from the tendency of early foundational work to

document evolutionary patterns using single key traits, such as molar shape (Simpson

1944; Gingerich 1974). Although often limiting the ability to ask detailed evolutionary
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questions at broad scales, this framework has been effectively leveraged to alternately ex-

plore specific case studies (Scales et al. 2009), or general questions using single gross

morphological traits, such as body mass, as an approximation for overall phenotypic vari-

ation (Harmon et al. 2003; Beaulieu et al. 2007; Harmon et al. 2010; Burbrink and Pyron

2010; Rabosky et al. 2013; Zanne et al. 2014; Bokma et al. 2015; Landis and Schraiber

2017).

Despite these past successes, a central goal in post-synthesis evolutionary biology has

been to evaluate patterns across anatomical regions and at different phenotypic levels.

Such broad investigations require approaches that can accommodate multiple characters.

Recent contributions have explored multivariate approaches that enable the analysis of

multiple traits simultaneously (Adams 2014). These enable inference of trait models com-

monly employed in univariate PCMs among high-dimension data. Another set of methods

statistically evaluates correlated evolutionary change between multiple traits along a phy-

logenetic tree (Revell and Harmon 2008; Caetano and Harmon 2018). These methods will

be critical extensions to PCMs moving forward, given the current influx of large, publicly

available databases of morphology (Boyer et al. 2016), and emerging approaches for the

rapid, algorithmic quantification of variation from digital specimen images (Boyer et al.

2015; Pomidor et al. 2016).

One aspect that has been under-explored in a comparative analytical context has been

the tendency for distinct subsets of traits to display unique patterns in evolutionary rate and

relative disparity. The historical focus on univariate analysis in PCMs and paleobiology

may have contributed to a general lack of recognition of the diversity of evolutionary pat-

terns that can combine to organismal body plans. Nevertheless, mosaic evolution has been

a fundamental concept in evolutionary biology since the modern synthesis in its acknowl-

edgement of the reality that anatomical regions are often exposed to natural selection at
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differing magnitudes and directions at different times (Stebbins 1983). The mosaic concept

dates to Dollo (Gould 1970), and has frequently been invoked qualitatively as a key factor

driving divergent morphological adaptation in different anatomical regions across lineages

(De Beer 1954; Cracraft 1970; Mayr 1970; Gould 1977b; Stanley 1979). Although exam-

ination in a quantitative context has been limited overall, several key studies have shown

that mosaic patterns explain the emergence of important traits in diverse case studies, such

as structural variation in the brain across mammals (Barton and Harvey 2000), phenotypic

and genomic diversity across angiosperms (Stebbins 1984), and the defining suite of mor-

phological characters displayed by the hominin lineage (McHenry 1975; Gould 1977a;

Holloway and Post 1982).

In addition to being of fundamental biological interest, mosaic patterns have long been

argued to present unique challenges when inferring phylogeny from morphological char-

acters (Farris 1971). This concern has recently been reasserted by Goloboff and colleagues

(2018), who suggest that heterogeneity in relative disparity, as measured by phylogenetic

branch lengths, displayed across separate suites of morphological characters can confound

phylogenetic inference from morphological traits using Bayesian and maximum likelihood

approaches. These concerns parallel the conclusions of important recent studies that vali-

date the prevalence of mosaic patterns in paleobiological and comparative data by manu-

ally testing the variability in evolutionary mode that can occur across large morphological

datasets (Hopkins and Lidgard 2012; Felice and Goswami 2018). These studies demon-

strate the urgent need for overdue extensions to existing uni- and multivariate PCMs that

accommodate mosaic patterns in large phenotypic datasets. Methods that separate traits

according to overall rate have long been available for phylogenetic inference (Yang 1996;

Schraiber et al. 2013). However, these approaches do not adequately address mosaic pat-

terns, which focus more on heterogeneity in relative disparity across lineages rather than
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absolute rate. Despite the importance, there has not yet been a computational approach

that algorithmically partitions traits according to their patterns in disparity.

In this paper, I present a novel method that identifies suites of continuous traits display-

ing shared patterns in disparity to reconstruct the mosaic trends that have shaped organ-

ismal phenotypes. The mosaic character suites identified by the approach are defined by

partitions of traits that are best explained by shared phylogenetic branch lengths, measured

in units of average disparity, along a fixed topology. The phylogenetic models underlying

the construction of mosaic character suites, by representing the accummulation of disparity

across lineages, thus provide information on relative rates of evolution. After introducing

the method, I evaluate its performance using simulated data. I also present an analysis of

an empirical dataset of developmental ossification times complied by Rose (2003). This

dataset has previously been leveraged to explore mosaic heterogeneity in evolutionary pat-

tern (Germain and Laurin 2009; Laurin 2014) and so is well suited as an empirical test of

the method that I introduce here.

5.3 Methods and Materials

5.3.1 Code and data availability

The approach described below is implemented in a program called greedo. It is avail-

able freely on Github at (links are available from the journal office). All analyses on

simulated and empirical data were performed using this program. Scripts and data used

for the simulated and empirical analyses are also available on Github (links available from

journal office).

5.3.2 Partitioning traits into mosaic suites

The method described here combines several unsupervised learning strategies to parti-

tion traits into separate mosaic character suites, with each possessing its own set of phy-
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logenetic branch lengths expressed in units of disparity. These strategies are applied in

sequence (Fig. 5-1), with the goal of identifying the configuration that yields the lowest

AIC score.

Figure 5.1: Search procedure to identify mosaic suites.

Each mosaic character suite that defines the classification model contributes to the like-

lihood independently. The log-likelihoods of each of the traits belonging to character suite

j are calculated under the associated branch lengths and added to yield an independent log-

likelihood. The log-likelihood of the trait matrix, LLclassification, is calculated by summing

the log-likelihoods of all k character suites:

(5.1) LLclassi f ication =
k

∑
j=1

LL j

5.3.3 Tree model

Each mosaic character suite of the classification model is defined by a phylogeny where

the topology is fixed, but its branch lengths are free to vary and calculated from the con-

stituent traits. Branch lengths are expressed in units of disparity and are calculated using

a Brownian model of evolution. The distribution underlying the traits belonging to each

partition are assumed to be multivariate Gaussian, with variances between taxa defined by

the product of their evolutionary distance measured in absolute time and the instantaneous

rate parameter (σ2). The phylogenetic comparative methods literature often estimates σ2



107

alone by assuming a fixed timescale given by branch lengths that have been scaled to ab-

solute time using a molecular clock model. However, here the absolute times are assumed

to be unknown, and the rate and time parameters are confounded with one another. Thus,

branch lengths are expressed in units of average morphological disparity, or variance per

trait.

This parameterization differs from the typical use of stochastic continuous trait mod-

els in comparative studies. Traditional approaches generally start by applying single rate

(clock-like) Brownian models to chronograms, comparing the fit to more complex models.

For instance, σ2 is sometimes allowed to vary locally in distinct subclades to yield ‘multi-

rate’ BM models (O’Meara et al. 2006; Eastman et al. 2011; Thomas and Freckleton

2012). Expanding upon this, more parameter rich models have also been developed, such

as Ornstein-Uhlenbeck (OU) (Hansen 1997b) and jump-diffusion (JD), or Lévy, processes

(Landis et al. 2012). OU models expand upon standard BM by introducing a term, α ,

that generates a stabilizing force that constrains movement around an optimal trait value,

while JD processes contain terms describing the frequency of jumps in character spaces.

OU models are often used similarly to multi-rate BM, by allowing optimal trait values to

vary across the tree (Butler and King 2004; Beaulieu et al. 2012). JD models relax single-

rate BM by allowing sudden jumps in mean trait values (Eastman et al. 2013; Landis and

Schraiber 2017).

The parameterization of the tree and branch lengths used here is continuous equivalent

to that encountered in phylograms reconstructed from molecular and discrete morpho-

logical data. These express branch lengths in units of substitutions per site by similarly

confounding the rate and time parameters. As used here, this approach has several bene-

fits over the more common comparative approaches described above. Although it may be

possible in principle to develop a similar approach that assigns traits to suites associated
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with separate OU models fit to chronograms with different adaptive regimes, or best ex-

plained by distinct BM and JD processes, the tree model used here captures much of the

same information (Fig. 5-2), while drastically simplifying inference from both a statistical

and computational standpoint. While multi-rate BM, OU, and JD models are often aimed

to describe explicit evolutionary processes, such as environmental adaptation or quantum

evolution, they may simply improve model fit over simpler models by accommodating

heterogeneity in disparity accumulated across the tree. Several studies have demonstrated

substantial limitations in the ability to identify the extended OU model parameters using

typical comparative datasets (Ho and Ané 2014; Cressler et al. 2015; Cooper et al. 2016),

complicating the use and evolutionary interpretability of these models in empirical studies.

The likelihood is calculated in a recursion from the tips to the root after Felsenstein

(1973). Full derivations of the likelihood and algorithm are also given by Felsenstein

(1981b) and Freckleton (2012), and summarized briefly here. The tree likelihood is com-

puted from the phylogenetic independent contrasts (PICs) using a ‘pruning’ algorithm.

Each internal node is visited in a postorder traversal, and the log-likelihood, Lnode is cal-

culated as univariate Gaussian, with a mean equal to the contrast between the character

states, x1 and x2 at each subtending edge and variance calculated as the sum of each child

edge, v1 and v2:

(5.2) Lnode =
1
2
∗ log(2π)+ log(v1 + v2)+(x1 − x2)

2

v1 + v2

The PIC, xinternal, is calculated at each internal node and used as the character repre-

senting the internal node during the likelihood computation at the parent node. The edge

length of the internal node, vinternal is also extended by averaging the lengths of the child

nodes.



109

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5
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Figure 5.2: Fitting increased disparity observed in taxa T2 and T3. A) Single rate BM fit to a chronogram
assumes clock-like evolution, ignoring both positive jumps in disparity and stasis. B) Expressing branch
lengths in units of disparity under the phylogenetic Brownian parameterization used here captures both in-
creased disparity and stasis. C) Fitting multiple Brownian rates or shifts in adaptive optima or D) assuming
the presence of a single jump in optimum trait value may explain the same pattern with more model pa-
rameters. Note that panels B, C, and D all display similar information, while panel A assumes clock-like
evolution.

(5.3) xinternal =
(x1 ∗ v2)+(x2 ∗ v1)

v1 + v2

(5.4) vinternal = vinternal +
(v1 ∗ v2)

(v1 + v2)

The total log-likelihood of the tree, Ltree is calculated by summing the log-likelihoods

calculated at each of the n internal nodes.
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(5.5) Ltree =
n

∑
node=1

Lnode

Branch lengths are estimated by iteratively solving the analytical solution to the max-

imum likelihood (ML) branch lengths for a 3-taxon star topology. In this procedure, the

tree is treated as unrooted. Picking a single internal node, PICs are calculated to each of

the three connected branches. These are treated as ‘traits’ at the tips of a three-taxon tree.

The edge lengths of the pruned tree (vi) are then computed analytically using the MLE so-

lutions for a three taxon tree (Felsenstein 1981). This procedure is performed on all of the

internal nodes. This process is iterated until the branch lengths and the likelihoods con-

verge, yielding a local optimum of the likelihood function. The algorithm and derivation

of the 3-taxon ML solutions are given a detailed explanation by Felsenstein (1981).

5.3.4 Search procedure

All traits start in a single shared partition. From here, traits that exhibit an improved

likelihood in their own partition compared to their current placement are split into their

own cluster. A penalty is imposed that is proportional to the difference in size between

the existing partitions, as measured in the number of constituent traits. This functions

similarly to a Dirichlet process prior by forcing traits to prefer belonging to partitions

with a larger number of traits. This constraint is designed to prioritize traits with strongly

divergent signal and to discourage overfitting of the clustering model. As a result, only

traits with a strong preference for the new component over the existing component are

selected. This step is repeated either until the number of occupied categories reaches a

user-specified maximum threshold, or there are no more traits left to separate.

From here, the problem is temporarily recast as a finite mixture model, with the number

of components corresponding to the user-specified value. First, membership weights are
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calculated for each trait-component pair as the probability of the trait (xi) belonging to

each j of K components. This value is calculated for each component as the proportion

of the likelihood of xi (Lij) under the corresponding set of branch lengths relative to the

summed likelihoods of xi under all K components.

(5.6) P(xi|Kj) =
Li j

K
∑

k=1
Lik

Expectation-maximization (EM) (Dempster et al. 1977) is performed to update the mix-

ture weights and the branch length parameters. The branch lengths associated with each

component are updated as part of the mixture model, with each site in the matrix con-

tributing to the branch lengths in each component according to the weights defined above.

During this step, the model could be thought of as a variation of a typical multivariate

Gaussian mixture model, where the covariance matrix is constrained to reflect the struc-

ture of a phylogenetic tree, since the phylogenetic Brownian model yields a multivariate

Gaussian likelihood function.

Once the mixture model has been updated for several iterations, the components are

broken into hard clusters, with the assignment for each site chosen to be the component

with the maximum mixture weight. This arrangement is then reduced in an agglomerative

manner. At each step of this procedure, the pair of components that results in the great-

est improvement in AIC, calculated using the classification likelihood defined above, is

merged. This hierarchical merging continues until either the AIC score cannot be further

improved, or only a single component is left. The entire procedure is then repeated from

this reduced configuration for a user-specified number of iterations.
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5.3.5 Stochastically varying mosaic patterns

To examine the strengths and shortcomings of the method in detecting multiple suites of

traits that vary stochastically, I performed tests using simulated datasets. A single topology

of 20 taxa was simulated under a pure-birth model. For each partition of continuous traits,

a new set of branch lengths was generated by drawing randomly from either a gamma or

exponential distribution, then simulated under Brownian motion. The rate parameter of

the Brownian process was set to 1 across the entire tree so that the matrices reflected the

scale and heterogeneity of rates resulting from the altered branch lengths. Each trait matrix

contained a single partition simulated under the original ultrametric branch lengths. The

randomly drawn branch lengths were intended to mimic the differing rates of evolution

that can be experienced by different lineages during evolutionary divergence, with the ul-

trametric branch lengths reflecting clock-like evolution. This procedure resulted in highly

complex simulated datasets that tested the ability of the method to detect mosaic structure

of high dimensionality. All trees and traits were simulated using the phytools package in

R (Revell 2012b).

Using this procedure, datasets comprised of 2, 3, and 4 partitions of 50 continuous

traits each were generated. All traits were rescaled to a variance of 1. I ran greedo on

these datasets to attempt to reconstruct these partitions. The maximum number of clusters

for these runs was set to half the number of traits in each matrix.

5.3.6 Power analysis and detection of relative rate shifts

I performed another simulation experiment to evaluate the statistical power and lim-

its of the method under more controlled conditions. To evaluate the performance of the

method computationally, I expanded the size of the simulated trees to 100 taxa. In this

trial, I simulated datasets using a procedure modeled after Eastman et al. (2011). First,
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I simulated 100 unique pure-birth trees. I then altered the branch lengths to all be equal,

with the trees scaled to a total height of 1. This yielded a set of 100 ‘equal rates’ trees that

displayed uniform disparity across all branches. To simulate heterogeneity in evolutionary

pattern, I then randomly selected once clade in each of the 100 trees, and multipled the

branch lengths by factors of 8, 16, 32, and 64. Like in the tests performed by Eastman

et al. (2011), these rates were inherited across the entire clade. Clades randomly chosen

for shifts were constrained to those containing at least 10, and no more than 90, terminal

taxa. This resulted in a set of 400 ‘rate shift’ trees of differing magnitude. I then com-

piled datasets by simulating 50 traits on the trees with equal branch lengths and the trees

displaying rate shifts, respectively, with the goal to ascertain the ability of the method to

separate traits displaying a shift in rate from those simulated under uniform rates. The

400 resulting datasets contained 100 traits, half of which were simulated along an equal

rates tree, and the other half along a rate shift tree of one of the four shift magnitudes.

To examine the prevalence of type 1 error, I also simulated datasets of 100 traits along

each of the equal branch length trees to test whether the method correctly identified only

one suite of traits. Like above, all traits were scaled to a variance of 1 to ensure that the

method was correctly identifying heterogeneous patterns in relative disparity, rather than

finding heterogeneity reflected in empirical variance, which would unfairly bias results in

its favor. This step was also performed in the test described below.

5.3.7 Distinguishing rate shifts among covarying traits

In nature, many continuous traits are expected to covary. Such covariance has been

suggested as a challenge to phylogenetic analyses (Felsenstein 1988) by increasing com-

plexity and bias in morphological datasets. To test the behavior of my approach when

detecting mosaic patterns among traits that form covarying modules, I performed an ad-

ditional experiment. I simulated covarying datasets along the 16x and 64x rate shift trees
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generated above. Again, 50 traits each were simulated along the equal lengths and rate

shift trees, respectively, but with the traits separated into two covarying sets of 25 traits.

These were compiled into datasets of 100 traits, displaying two distinct evolutionary pat-

terns (equal and shifted rates), and four separate covarying modules. To examine the effect

of covariance on type 1 error, I also simulated datasets of 100 traits along the equal rates

trees, as above, but separated into four covarying modules. The strength of covariance is

likely to affect results, and so data were simulated at correlational intervals of 0.1 (weak),

0.5 (moderate), and 0.9 (strong). Since the approx‘ach introduced here does not explic-

itly model evolutionary or phenotypic integration, this test examined the extent to which

these common patterns confound the identification of mosaic patterns in relative disparity.

All simulated datasets were generated using the ‘fastBM()’ function in phytools (Revell

2012a).

5.3.8 Evaluation of reconstruction accuracy

I used the adjusted Rand index (ARI) to evaluate the accuracy of the inferred partition-

ings (Hubert and Arabie 1985) against the true partitionings. The RI measures congruence

by counting the pairs of elements that either occupy the same or different clusters in both

of the two clusterings, and calculating the proportion of this value relative to all of the

possible permutations of elements. As a result, the RI can range from 0, indicating total

disagreement, and 1, indicating total agreement. The ARI corrects for the propensity for

elements to be randomly placed within the same cluster, with a value of 0 indicating a

result indistinguishable from a random assignment of elements, and 1 indicating complete

congruence. The metric takes negative values when a clustering is worse than random.
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5.3.9 Empirical analysis

To examine the performance of the method on empirical data, I analyzed a dataset

comprised of the ossification sequences of 21 cranial bones sampled across 21 taxa ob-

tained from Laurin (2014), initially assembled by Rose (2003). Laurin identified suites

of traits displaying distinct phylogenetic patterns using an ‘evolutionary’ principal com-

ponent analysis (PCA) and also performed a distance-based hierarchical clustering of the

data, making these data well-suited to a test of the method introduced here. I was inter-

ested in evaluating the ability of my new approach to detect patterns in relative, rather than

absolute, rates across lineages, and so I standardized the variance between the traits to 1.

The tree presented in the original study was obtained from the authors and used to perform

the comparative analyses here.

5.4 Results and Discussion

5.4.1 Simulated stochastically varying rates

The method is generally able to recover the structure of the simulated datasets. The

number of inferred mosaic suites is usually correct, and ARI values are typically well

above random. The two-partition analyses are very accurate, with high ARI values, and

nearly always correctly identifying the correct number of clusters. The three- and four-

partition analyses were less accurate, but still yield results much higher than random, and

typically recovering the correct number of character suites. ARI indices achieved for the

three- and four- partition analyses are similar to results from simulated data using general

Gaussian clustering approaches, such as Gibbs sampling under a Dirichlet process (Dahl

2006).

Despite the generally encouraging results from the simulated data, the trend toward

decreasing accuracy when components are added suggests: 1) a limitation of the method in
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Figure 5.3: A) Adjusted Rand indices across reconstructions of simulated datasets. B) Number of clusters
resulting from analyses of simulated data. Barplots are stacked to represent the proportion of replicates that
resulted in k character suites. All violin and barplots are separated by true number of simulated character
suites.

adequately exhausting the search space of component assignments or 2) a limitation in the

power of the approach to detect subtle, stochastically varying differences in branch-wise

evolutionary disparity. It may be helpful to initialize the analysis using results obtained

from a less intensive approach, such as the evolutionary PCA developed by Laurin (2014).

5.4.2 Relative rate shifts in independently evolving traits

The method performs well in distinguishing traits evolved under a single rate shift

from those under equal rates (Figs. 4a and 4b). The most subtle rate shift (8x faster)

is detectable in most of the datasets, although mean accuracy is slightly lower than the

2-suite datasets tested above. This difference is due to decreased power in detecting this
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more subtle heterogeneity. The method underfits the model in 8x rate shift datasets 30% of

the time, by assigning all of the traits to a single shared character suite (Fig. 5-4b). Power

to detect mosaic structure increases with the magnitude of the shift, with the 16x datasets

correctly binning the traits into two character suites 95% of the time. The 32x and 64x

datasets always correctly identify the number of character suites. Accuracy also increases

with the strength of the rate shift. While ARI values in the 8x dataset are all acceptably

high, reconstruction error approaches zero as the magnitude of the rate shifts are increased

to 64x.

5.4.3 Relative rate shifts in covarying traits

Evolutionary covariance across traits has a detectable, but not overwhelmingly dele-

terious effect on the capability of the approach in categorizing the number of character

suites present in the data (Figs. 4c and 4d). When the simulated modules weakly covary

(0.1), the method performs comparably to the independently evolving examples. However,

accuracy decreases with the strength of the covariance, with reconstruction being notably

less accurate in the strongly covarying datasets. This decrease in accuracy at high levels

of covariance can be explained by the tendency for the approach to overfit the datasets by

inferring the presence of more than two character suites in 59% of cases (Fig. 5-4d).

5.4.4 Type 1 error

As with the multi-rate covarying examples above, the method has a tendency to overfit

datasets that display high levels of covariance. Nevertheless, the method fits the data

correctly in the presence of no and weak covariance (Fig. 5-6). As with above, results

generated from datasets suspected to display particularly high levels of covariance should

be inspected to ensure that mosaic suites are not overly similar in their resultant branch

lengths. As a more immediately tenable alternative to full multivariate estimation, future
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extensions would allow the ability for users to specify covarying modules of traits using

a conventional approach (Goswami and Finarelli 2016), to ensure that strongly covarying

sets of traits are placed together. And nevertheless, even in the absence of these tools, it

should be noted that the extremely high and rampant levels of covariance that were needed

to induce overfitting in both the type 1 and type 2 tests may be unlikely in certain types of

empirical datasets.

5.4.5 Empirical analysis

Four separate runs each yielded different partitionings into two mosaic suites. All ar-

rangements overlap in their assignments, and the AIC scores are all close to one another.

To visualize the overall support for the categorization of each trait across partitionings, I

calculated the AIC weight of each model (Burnham and Anderson 2002). The AIC weight

of model i, wi can be interpreted as its probability of being the best model among a set of

K candidates.

(5.7) wi =
Lrel

i
K
∑

k=1
Lrel

k

where Li
rel is the relative likelihood of model i:

(5.8) Lrel
i = exp(−0.5(AICi −AICmin))

These weights were used to visualize the the strengths of the support connecting traits

across all the four best partitionings in a graph (Fig. 5-2b). An edge was drawn between

traits i and j if they occurred in the same component in any of the four results, with a weight

given by the summed AIC weights of all of the configurations where i and j occur in the

same character suite. The maximum weight possible is 1.0, when traits i and j share a suite
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in all of the configurations. The resulting graph suggests that traits 0, 1, 2, 17, and 20 all

form a suite, with the rest of the traits sharing a separate suite. This result is very close to

the pattern reconstructed by Laurin (2014) using an ‘evolutionary PCA’ approach, differing

only in the assignment of the stapes. This is likely because the approach developed by

Laurin seeks to join traits that display similar values in phylogenetic independent contrasts

(PICs), and so focuses on patterns similar to the phylogenetic Brownian likelihood model

used here.

In his original study, Laurin (2014) also performed an exploratory hierarchical clus-

tering of the ossification times and found substantial differences in structure as compared

to that revealed by his evolutionary PCA approach. This discordance occurs because the

the PCA considers covariance between PIC values, while the hierarchical clustering only

reflects shared similarity in absolute value. Like the original study, the results here differ

substantially from the pattern resulting from the exploratory hierarchical clustering per-

formed by Laurin, instead aligning very closely to the PCA approach. This is reassuring

for the performance of my method, as Laurin considered the evolutionary PCA to yield

the correct answer, and the hierarchical clustering to demonstrate the inadequacy of raw

similarity in delimiting meaningful patterns (Laurin, pers. comm.). Although they differ

in the specific criteria used to identify character suites, the similarity in results between

my and Laurin’s method are not surprising. Laurin’s PCA method identifies structure

from patterns in covariance that have been corrected for phylogenetic non-independence,

whereas my method identifies a minimally complex set of models, defined by phylogenies

with non-negative branch lengths. The trees describing each suite in my method may be

thought of as representing disparity between taxa as patristic distances. And so, although

they differ in formulation and statistical paradigm, both approaches share overlap in their

treatment of phenotypic variation.
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5.4.6 Utility in transcriptomic studies

In addition to morphological phenotypes, the method described here may be useful

in identifying mosaic suites among molecular phenotypic traits, such as normalized gene

expression levels. Expression data have been increasingly examined in a comparative,

phylogenetic context, but previous studies have not had a meaningful way in which to

partition sets of genes. As a result, researchers typically fall back on methods such as

binning all genes expressed in the transcriptome together into a single analysis (Chaix et al.

2008), binning genes based upon functional pathways (Schraiber et al. 2013), and using

non-phylogenetic clustering approaches (Brawand et al. 2011). The method described

here may benefit such studies by identifying the major axes of variation in evolutionary

pattern across transcriptomic datasets.

5.4.7 Utility to phylogenetic comparative methods

By identifying suites of characters that display similar patterns in disparity across lin-

eages, my approach seeks to integrate existing work that takes a broad view of the tempo

and mode of phenotypic evolution with under-examined patterns in mosaic evolution. Al-

though the tendency for different traits to evolve according to different patterns is expected

and well documented (Stanley 1979; Stebbins 1984), there has not yet been an approach

that explicitly incorporates phylogeny to reveal the complex mosaic of patterns in diver-

gence underlying the evolution of phenotypes. The analyses of simulated and empirical

data showed the capability of my new method to identify biologically meaningful suites

of continuous traits that reflect differences in their patterns in disparity across taxa.

Although Brownian motion is often interpreted in comparative analyses as a neutral

process of phenotypic change reflecting genetic drift (e.g., Butler and King 2004) occur-

ring under a single rate, the parameterization used in my approach is more general. As in
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previous approaches (Felsenstein 1981), rate and time are confounded with one another.

As a result, a long branch representing high disparity to adjacent lineages could reflect

either a fast rate, or a long time of divergence. As a result, a tree with heterogeneity in

branch lengths could express variation in evolutionary rates across lineages, or tips that

were sampled at different points in time. Since phenotypic disparity can be generated by

a broad range of processes at the population level, the phylogenetic Brownian model used

here does not assume that the traits are selectively neutral. By representing branch lengths

in terms of phenotypic disparity, my method is able to capture much of the same informa-

tion from the data that is sought by more parameter-rich PCMs (Fig. 5-2). As a result,

the approach could be form an analytical basis for delimiting suites of traits evolving un-

der distinct evolutionary regimes, such as those found manually by Hopkins and Lidgard

(2012). The suites recovered using this method could then be placed into a context more

similar to existing PCMs by mapping the disparity branch lengths to a time-scaled phy-

logeny. This would enable the exploration of absolute rates throughout time, facilitating

the exploration of patterns in a framework similar to existing PCMs.

Previous studies have shown that morphological (Lynch 1990) and gene expression

phenotypes (Yang et al. 2017) often display patterns in rate that are not easily distinguish-

able from conservative evolutionary forces such as genetic drift and stabilizing selection.

Nevertheless, comparative analysis of key traits used in classic studies (Simpson 1944;

Gingerich 1983, 1993) have shown that certain features can show substantial variation in

rate across lineages that can provide crucial evolutionary insights. As phenotypic datasets

increase in scale, it may become increasingly likely for the signature underlying interest-

ing patterns in tempo and mode to become swamped by large numbers of conservatively

evolving traits. By separating traits according to their implied patterns in disparity, the

approach introduced will help to identify less conservatively evolving traits that may be of
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particular interest for more detaileds comparative analyses.

5.4.8 Utility for phylogenetic inference and divergence time estimation

In addition to being comparatively interesting in their own right, the mosaic suites

identified by my approach will be useful in methods for inferring phylogeny and diver-

gence times. Several recent articles have demonstrated the strong potential for continuous

traits as an alternative to discrete traits when reconstructing phylogeny (Parins-Fukuchi

2018b,a) and divergence times (Alvarez-Carretero et al. 2018). Despite these successes,

one persistent issue in morphological phylogenetics more generally has been the difficulty

in accommodating the expected heterogeneity in branch lengths across traits. This has

been argued to be a foundational limitation to model-based approaches by cladists when

demonstrating the prevalence of these patterns across empirical datasets (Goloboff et al.

2018a). Error stemming from the effect of mosaic branch lengths may be expected to ex-

hibit an even greater effect on divergence time estimation, which depends on calculating

rates from branch-wise patterns in disparity.

Although long postulated to be a problem in phylogenetic inference, there has not yet

been a computational approach that delimits suites of traits displaying similar patterns in

branch lengths. The approach introduced here, if implemented in existing approaches for

phylogenetic reconstruction and divergence time estimation, would help to alleviate this

source of error. Identifying suites of traits based on patterns in relative evolutionary rate

may also provide a framework through which to separate clock-like characters from those

displaying more erratic patters. Filtering character data based on conformity to clock-like

patterns improves divergence time estimation in molecular data (Smith et al. 2018b), and

so would also be beneficial in morphological data.
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5.4.9 Overfitting, covariance, and the true number of clusters

The approach that I introduce here does not explicitly model covariance among charac-

ters. However, when data are simulated as sets of strongly covarying modules, the method

infers multiple character suites, despite having been evolved along the same set of branch

lengths. This result should not be taken to suggest that the method is well-suited to identi-

fying covarying modules of traits in addition to the mosaic suites that it seeks to discover.

Instead, users should be aware that particularly high levels of covariance may lead to slight

overfitting, by erroneously splitting up mosaic suites into multiple categories. Ideally, fu-

ture extensions to this method will explicitly take covariance into account by incorporating

older or recent approaches to identifying evolutionary covariance across multiple contin-

uous traits (Felsenstein 1973b). And despite the error encountered at high levels of co-

variance, the method performs well in the presence of this common pattern by correctly

inferring the co-occurrences of traits in the same cluster, despite the fact that suites may be

broken up in more extreme cases. As a result, this behavior is biased in a direction that is

preferable when attempting to infer the number of clusters in a dataset, which is generally

either unknown, or ambiguous. While it is simple to manually combine clusters that have

been overfit due to bias, underfitting causes users to miss potentially valuable structure in

the data.

The ‘overfitting’ effect observed in the simulation experiment is predictable. The

method that I introduce here is fundamentally a clustering method in design and imple-

mentation. Identification of the ‘correct’ number of clusters can often become a philo-

sophical problem when analyzing complex datasets, such as the covarying modules that

comprise mosaic suites above (Hennig 2015). Although multiple modules may be evolved

according the same pattern in branch lengths, stochastic variation between separate instan-

tiations of random walks may create real differences in the resulting evolutionary signal
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between them. This stochastic effect, compounded by the large number of highly cor-

related traits within each covarying module, (Fig. 5-8c) generates strongly informative

signal favoring precise differences from the generating set of branch lengths. Put simply

for the user, larger and more strongly covarying modules of traits will increase the prob-

ability of encountering this effect. However, this behavior might be viewed as a benefit,

by demonstrating the method’s ability to detect small differences from covarying data that

result from stochastic variation in macroevolutionary processes. Researchers who are in-

terested in both macroevolutionary patterns and morphological integration should employ

my method in conjunction with an approach explicitly designed to recover integration pat-

terns. This is because the simulations demonstrate that, although the method can identify

strongly covarying modules, it will miss weak and moderate covariance among traits. This

property is implied within the aims of the method, and so researchers should be thoughtful

in parsing through these issues.

5.4.10 Morphological integration, mosaic evolution, and geometric morphometrics

The method that I have introduced here is designed to identify shared mosaic patterns in

evolutionary disparity, or relative rates across lineages. This aim is related to, but distinct

from, an existing body of literature that aims to identify correlational patterns in mor-

phological integration and modularity (Olson and Miller 1958; Cheverud 1982; Goswami

2006; Goswami et al. 2009). The mosaic suites identified by this study are a superset

of the modules identified in typical morphological integration studies (Fig. 5-8). Strong

covariance between traits implies the presence of a shared underlying pattern of macroevo-

lutionary disparity (Fig. 5-8c) (Felice et al. 2018). However, as is demonstrated by the

simulation experiment performed here, independent modules of covarying traits may share

macroevolutionary patterns. This has also been demonstrated empirically by Felice and

Goswami (2018) in avian cranial modules, by revealing both mosaic and shared patterns
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between integrated modules. Although the method that I present here is capable of ‘ac-

cidentally’ discovering covarying modules of traits by overfitting biased patterns that re-

sult from strong and rampant covariance, future extensions of the method should more

rigorously explore this interaction. One avenue would be to incorporate extensions to

the likelihood model that explicitly account for covariance among traits (Adams 2014;

Alvarez-Carretero et al. 2018). Alternatively, it would be more immediately managable to

apply the approach to data that have already been explored for integration. This would en-

able the algorithmic exploration of mosaic patterns among a large number of pre-identified

covarying modules of traits, as has been done previously to infer phylogeny and mosaic

evolution from geometric data (González-José et al. 2008b; Felice and Goswami 2018).

This step will be important when applying the method to geometric morphometric data,

which are often collected to exhibit high levels of integration and covariance, but may be

less necessary when exploring patterins in data that represent higher-level morphological

structures, such as the Laurin ossification dataset explored here, or large sets of linear mea-

surements and shape ratios. Emerging methods that algorithmically segment CT scans of

whole organisms (Dunmore et al. 2018) and quantify shape differences in specimen im-

ages often provide a small number of independent metrics for each recovered segment

(Pomidor et al. 2016). The method introduced here would be useful in harnessing such

data to identify mosaic patterns across the entire organisms. s

5.4.11 Scale and rate

The approach described here seeks to identify suites of traits sharing similar patterns in

relative evolutionary disparity across lineages. Continuous traits displaying greater empir-

ical variances will display higher absolute rates of evolution when modeled under Brown-

ian motion. As a result, I normalized the variances of the datasets used in the simulation
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experiments and empirical case study. Nevertheless, alteration of the scale of continuous

traits may often change the interpretation of results, and so should be performed thought-

fully. In cases where phenotypes are quantified using a single, shared set of units, such as

with geometric morphometric data, standardization of the variances across traits erases in-

formation characterizing absolute evolutionary rate. In such carefully constructed datasets,

including the matrix of developmental sequences used in the empirical example above, re-

searchers may wish to quantify differences in absolute evolutionary rate across characters.

For instance, using the same dataset, Germain and Laurin (2009) demonstrated substantial

variability in absolute rate across traits. Study of absolute and relative rates can each yield

unique insights into evolutionary processes, and so the scaling of traits should be consid-

ered carefully. I did not explore inference of heterogeneity in absolute rates here because

it is an easier clustering problem, and thus would have been an overly favorable test of the

method that I introduced. In addition, approaches that identify heterogeneity in absolute

rate have been well explored in the molecular phylogenetics literature (Yang 1996), and

successfully ported to continuous traits (Schraiber et al. 2013).

5.4.12 Choice of information criteria

In the analyses performed here, I exclusively used the AIC, in lieu of the corrected

version, AICc, and the Bayesian Information Criterion (BIC). Previous authors have sug-

gested that the AICc should be generally preferred to the uncorrected version (Burnham

and Anderson 2002). My preference for the AIC was driven by several factors. The num-

ber of clusters is generally completely unknown prior to the analysis, and perhaps more

importantly, there is generally no single ‘true’ clustering underlying the mosaic evolution-

ary patterns sought by the method. As a result, it might generally be preferable in the

context of addressing comparative questions to identify a small number of spurious com-
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ponents in the final configuration than to ignore important biological variation that could

be missed due to the steeper penalty imposed by the AICc. The analyses here support

this justification. The simulated analyses show that, when AIC is used, overestimating the

number of components is not a major problem (Fig. 5-2). In addition, the results of the em-

pirical analysis suggest that more coherent patterns emerge when several well-supported

configurations are averaged. If spurious partitions are encountered in some arrangements,

averaging over the results should generally reveal reasonably strong connections between

points occupying overfit components.

Although BIC has been used successfully to select the number of components in mix-

ture models (Fraley and Raftery 1998), I preferred the behavior and basis of AIC for these

analyses. BIC assumes that the true model is within the set of candidate models, and

so can be sensitive to model-misspecification (Wagenmakers and Farrell 2004). This as-

sumption is incompatible with the goals of my method, which does not seek to identify

a single ‘true’ configuration, but instead characterize the major axes of heterogeneity in

disparity across lineages. This goal is more consistent with AIC, which simply seeks to

identify the model that yields the lowest amount of information loss relative to the dataset.

Despite my preference for AIC in the analyses presented here, AICc or BIC may be more

appropriate in other situations. As such, researchers should be thoughtful in their choice

of information criterion when performing the approach introduced here.

5.5 Conclusions

While there have been fundamental and seminal works sketching out major historical

trends in morphological disparification, most offer only a glimpse into the diversity of

patterns that shape separate anatomical regions and operate at different phenotypic levels

that extend from the gene to the environment. Although a foundational concept in post-
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synthesis evolutionary biology, researchers have been limited in their ability to explore mo-

saic evolution by both the difficulty in assembling comprehensive phenotypic datasets, and

the lack of computational methods to handle comparative problems of significant breadth.

Emerging approaches that can quantify morphology across entire organisms along with

the increasing availability of large-scale transcriptomic and environmental datasets offer

the unprecedented opportunity to develop a synthetic evolutionary picture that includes

complex mosaic patterns operating at separate phenotypic levels and timescales. Methods

like the one introduced here will be critical to these developments by facilitating the re-

construction of diverse mosaic patterns that have shaped evolutionary variation at different

phenotypic levels across the tree of life, fulfilling the promises of the modern synthesis.
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Figure 5.4: A) Adjusted Rand indices from reconstruction of datasets comprised of mosaic suites with
one simulated under equal rates across branches, and the other displaying a randomly placed rate shift at
magnitudes of 8, 16, 32, and 64. B) Stacked barplots to show the frequency that each of k clusters are
inferred from the simulated datasets. C) and D) show the same metrics as above, summarized from datasets
containing simulated covarying modules of characters.
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Figure 5.5: Type 1 error. Reconstructions show no type 1 error when traits are evolved independently, or
display weak covariance. Type 1 error increases at moderate and high levels of covariance, as the method
overfits biased patterns to place covarying modules in superfluous mosaic suites.
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Figure 5.6: A-D) Four best configurations with AIC scores. E) Weighted graph calculated by summing the
AIC weights associated with the each model to form edges and edge weights. All graphs were drawn using
the ”lgl” format implemented in igraph.
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CHAPTER VI

Conclusion

The work contained within this dissertation is intended as a series of sketches outlining

some potential methodological and conceptual directions for an evolutionary paleobiol-

ogy for the genomic era. Far from being complete, my aim in the preceding chapters

was to provide some fundamental methological and conceptual tools that can help to fa-

cilitate the development of a modern computational evolutionary paleobiology. Although

retaining many rough edges in implementation, I feel that the work here can provide a

useful methodological groundwork for a paleontological data revolution that synthesizes

high-throughput quantitative morphologic data, stratigraphy, and development.

6.1 Paths forward

Methods for the algorithmic quantification of variation in morphology have experi-

enced substantial recent advances (Boyer et al. 2015; Pomidor et al. 2016). However,

the field has yet to reach a critical mass in the usage of these new approaches. In addi-

tion to highlighting the obvious benefits of facilitating the rapid, objective construction

of large morphologic datasets, increased adoption of these approaches will undoubtedly

reveal substantial challenges and gaps. For instance, while public repositories for 3D

specimen data are experiencing increased use (Boyer et al. 2016), public quantitative mor-

phologic datasets that maintain clear ontology of traits remain scarse. In addition, as these

133
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new sources of data increase, they will surely demand many new methodological advances.

Although the development of analytical approaches that accommodate emerging sources

of ‘high-throughput’ morphologic data is a recurrent motivating theme throughout this dis-

sertation, traditional morphologic and morphometric techniques will remain highly valu-

able. For example, in chapter 3, while the Carnivoran geometric morphometric land-

marks adequately informed the placement of fossil taxa, the linear ratios measured pro-

vided higher information and confidence. If this pattern proves to be common, linear

measurement will remain an important tool when assembling continuous datasets for phy-

logenetic analyses. Despite these likely challenges moving ahead, I remain convinced that

the further development of a quantitative, statistical phylogenetic framework will yield

substantial growth, facilitating a renewed synthesis of paleontological and neontological

theory fit for the 21st century.

6.2 Concluding remarks

When designing and developing the work contained in this dissertation, my goal was to

provide a somewhat comprehensive conceptual and methodological foundation for a more

data-rich future in paleontology. While the completion of this task is surely a generational

goal that will demand the input of many researchers, this dissertation is aimed to provide

a set of initial, minimally complex approaches intended as a nudge in the ‘right direction’.

While the years in which I have developed these works have witnessed the proliferation of

new, increasingly complex parametric approaches to phylogenetic inference in analytical

paleobiology, my goals were somewhat distinct from most of this emerging body of work.

Instead of emphasizing increased model complexity, I sought to encourage a re-evaluation

of the foundational sources of information that we use to assess phylogeny and more com-

plicated evolutionary dynamics. In my role as a parametric data scientist, I also sought



135

to investigate the information presented by these unconventional data sources when eval-

uated as nakedly as is possible. From that starting point, I attempted, such as in chapter 5,

to extend the models and computational approaches in ways that accommodate the most

pressing sources of heterogeneity in comparative pattern.

The approaches introduced in the course of this dissertation were designed to further

the goals toward a ‘next-generation’ of evolutionary paleobiology. Since John Maynard

Smith’s welcoming of the field to the high table, the molecular revolution in evolutionary

biology has left paleontology comparatively limited in its ability to generate sweeping

empirical insights. The continuing construction of a new methodological foundation that

accommodates emerging sources of data unconventional to traditional paleontology will

be essential as our field climbs its way to the high table of the genomic era.
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Dávalos, L. M., Velazco, P. M., Warsi, O. M., Smits, P. D., and Simmons, N. B. 2014.

Integrating incomplete fossils by isolating conflicting signal in saturated and non-

independent morphological characters. Systematic Biology, 63(4): 582–600.

De Beer, G. R. 1954. Archaeopteryx lithographica: A study based upon the British Mu-

seum specimen. Trustees of the British Museum.

De Bodt, S., Maere, S., and Van de Peer, Y. 2005. Genome duplication and the origin of

angiosperms. Trends in ecology & evolution, 20(11): 591–597.

De Castro, J. B., Arsuaga, J. L., Carbonell, E., Rosas, A., Martınez, I., and Mosquera, M.

1997. A hominid from the lower pleistocene of atapuerca, spain: possible ancestor to

neandertals and modern humans. Science, 276(5317): 1392–1395.

De Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll,

S. B., and Balavoine, G. 1999. Hox genes in brachiopods and priapulids and protostome

evolution. Nature, 399(6738): 772–776.

Dehal, P. and Boore, J. L. 2005. Two rounds of whole genome duplication in the ancestral

vertebrate. PLoS biology, 3(10): e314.

Delson, E., Eldredge, N., and Tattersall, I. 1977. Reconstruction of hominid phylogeny:

a testable framework based on cladistic analysis. Journal of Human Evolution, 6(3):

263–278.

Dembo, M., Matzke, N. J., Mooers, A. Ø., and Collard, M. 2015. Bayesian analysis of

a morphological supermatrix sheds light on controversial fossil hominin relationships.

Proceedings of the Royal Society B, 282(1812): 20150943.



143
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