
Using Large-Scale Empirical Methods to Understand Fragile
Cryptographic Ecosystems

by

David Adrian

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor J. Alex Halderman, Chair
Research Professor Peter Honeyman
Associate Professor Chris Peikert
Assistant Professor Florian Schaub

David Adrian

davadria@umich.edu

ORCID iD: 0000-0002-2187-2372

© David Adrian 2019

DEDICATION

To my grandfather, Richard Pollowy, who asked me to work hard and be successful.

ii

ACKNOWLEDGEMENTS

I am eternally grateful to my parents, Andrew and Margaret Adrian, for their unwavering support

and the privilege to be in a position where hard work can lead to success, as well as to my brother,

Alex Adrian. I’d like to thank my advisor, Professor J. Alex Halderman. I’ve learned tremendous

amount over the last five years, and I will never forget my time as your student. I’d also like to thank

Peter Honeyman and the rest of my commitee—Chris Peikert and Florian Schaub—for pushing

me towards the door. I am especially thankful to Zakir Durumeric, for all projects we worked on

together, and to Pat Pannuto—had we not lived together, I likely would have left the program. I

am similarly grateful to Bradford Campbell, Noah Klugman, and Kyle Lady for keeping me sane.

I appreciate the support and advice I received from Professors Prabal Dutta, and Brian Noble, as

well as the comradery and late nights with labmates and coauthors: Nimrod Aviram, Matt Bernhard,

Branden Ghena, Alex Holland, Will Huang, James Kasten, Deepak Kumar, Allison McDonald,

Ariana Mirian, Deepika Natarajan, Drew Springall, Ben VanderSloot, Eric Wustrow, and many

others. I credit Professor Robert Dick, and his students David Bild and Yue Liu, for opening up

the world of research to me in undergrad. I am thankful to many known friends and trusted agents:

Charlotte Campbell, Elson Liu, Lane Powell, and Ethan Stark; Adrienne Porter Felt, Emily Stark,

and Ryan Sleevi; Adam Goodman, Jon Oberheide, and Dug Song; Zach Lanier, Thomas Ptacek,

and George Tankersley; Bennett Black, Veronica Long, Kyle Schiller and Tristan Weber; Michael

Moore; and Dave Corcoran, Chris Dzombak, Brian Kelly, Andrew Sardone, and everyone at Censys.

The work in this dissertation was supported in part by the National Science Foundation and

the Alfred P. Sloan Foundation, with additional support from the Mozilla Foundation, Supermicro,

Google, Cisco, and the Morris Wellman Professorship.

Forever Go Blue!

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Techniques for Measuring Internet Cryptography 2
1.2 Measuring Diffie-Hellman . 4
1.3 Measuring Export Cryptography . 5

1.3.1 Attacks on RSA . 6
1.3.2 Attacks on Diffie-Hellman . 7
1.3.3 Attacks on Symmetric Cryptography 8

1.4 Empirical Cryptography . 9

II. Improving Measurement . 10

2.1 Introduction . 10
2.2 Related Work . 12
2.3 Performance Optimizations . 12

2.3.1 Address Generation Sharding 13
2.3.2 Blacklisting and Whitelisting 14
2.3.3 Zero-Copy NIC Access . 16

2.4 Evaluation . 17
2.4.1 Hit-rate vs. Scan-rate . 18
2.4.2 Complete Scans . 21
2.4.3 Comparison to Masscan . 21

iv

2.5 Applications . 23
2.6 Future Work . 24
2.7 Conclusion . 25

III. Measuring Diffie-Hellman . 26

3.1 Background . 29
3.1.1 Groups, orders, and generators 29
3.1.2 Diffie-Hellman Key Exchange 30
3.1.3 Discrete log algorithms . 30
3.1.4 Diffie-Hellman group characteristics 32
3.1.5 DSA Group Standardization 32
3.1.6 Small subgroup attacks . 33

3.2 TLS . 36
3.2.1 Small Subgroup Attacks in TLS 37
3.2.2 OpenSSL . 39
3.2.3 Other Implementations . 40
3.2.4 Measurements . 41

3.3 IPsec . 46
3.3.1 Small Subgroup Attacks in IPsec 47
3.3.2 Implementations . 50
3.3.3 Measurements . 52

3.4 SSH . 54
3.4.1 Small Subgroup Attacks in SSH 54
3.4.2 Implementations . 56
3.4.3 Measurements . 56

3.5 Factoring Group Orders of Non-Safe Primes 57
3.6 Discussion . 61

IV. Measuring Export-Grade Key Exchange . 65

4.1 Introduction . 67
4.2 Diffie-Hellman Cryptanalysis . 69
4.3 Attacking TLS . 70

4.3.1 TLS and Diffie-Hellman . 71
4.3.2 Active Downgrade to Export-Grade DHE 73
4.3.3 512-bit Discrete Log Computations 74
4.3.4 Active Attack Implementation 75

4.4 Nation-State Threats to DH . 76
4.4.1 Scaling NFS to 768- and 1024-bit DH 78
4.4.2 Is NSA Breaking 1024-bit DH? 81
4.4.3 Effects of a 1024-bit Break . 86

4.5 Recommendations . 87
4.6 Conclusion . 88

v

V. Measuring Export-Grade Symmetric Cryptography 90

5.1 Introduction . 91
5.2 Background . 94

5.2.1 PKCS#1 v1.5 encryption padding 94
5.2.2 SSL and TLS . 95
5.2.3 Bleichenbacher’s attack . 100

5.3 Breaking TLS with SSLv2 . 101
5.3.1 A generic SSLv2 oracle . 102
5.3.2 DROWN attack template . 103

5.4 General DROWN . 105
5.4.1 The SSLv2 export padding oracle 105
5.4.2 OpenSSL special DROWN oracle 107
5.4.3 TLS decryption attack . 107

5.5 Special DROWN . 109
5.5.1 The OpenSSL “extra clear” oracle 110
5.5.2 MITM attack against TLS . 112
5.5.3 The OpenSSL “leaky export” oracle 113

5.6 Extending the attack to QUIC . 115
5.6.1 QUIC signature forgery attack based on general DROWN . . . 116
5.6.2 Optimized QUIC signature forgery based on special DROWN . 120

5.7 Adaptations to Bleichenbacher’s attack 121
5.7.1 Success probability of fractions 121
5.7.2 Optimizing the chosen set of fractions 122
5.7.3 Rotation and multiplier speedups 123
5.7.4 Rotations in the general DROWN attack 124
5.7.5 Adapted Bleichenbacher iteration 125
5.7.6 Special DROWN MITM performance 126
5.7.7 Special DROWN with combined oracles 127
5.7.8 Implementing general DROWN with GPUs 128
5.7.9 OpenSSL SSLv2 cipher suite selection bug 129

5.8 Measurements . 129
5.8.1 Public key reuse . 133

5.9 Related work . 135
5.10 Discussion . 135

5.10.1 Implications for modern protocols 135
5.10.2 Lessons for key reuse . 136
5.10.3 Harms from obsolete cryptography 136
5.10.4 Harms from weakening cryptography 137

VI. Conclusion and Future Work . 139

6.1 TLS 1.3 . 139
6.2 Weaknesses from Export Cryptography 140
6.3 Generalizing DROWN . 143

vi

6.4 Applicability of Empirical Methods . 144

BIBLIOGRAPHY . 147

vii

LIST OF FIGURES

Figure

2.1 Sharding Visualization — This is a configuration with three shards (n = 3).
Shards 0,1,2 are initialized with starting addresses a0,a1,a2. Each arrow repre-
sents performing ai ·g3, a step forward by three elements in the permutation. . . 15

2.2 Hit-rate vs. Scan-rate — ZMap’s hit rate is roughly stable up to a scan rate of
4 Mpps, then declines linearly. This drop off may be due to upstreudegrm network
congestion. Even using PF RING, Masscan is unable to achieve scan rates above
6.4 Mpps on the same hardware and has a much lower hit rate. 19

2.3 Response Rate During Scans — This graph shows the rate of incoming SYN-
ACKs during 50-second scans. The peaks at the end (after sending finishes) at rates
above 7 Mpps indicate that many responses are being dropped and retransmitted
before being recorded by ZMap. 20

2.4 Comparing One and Two Machines — If we scan at 14 Mpps and use separate
machines for the sending and receiving tasks, the spike in the SYN-ACK rate
at 50 s disappears, indicating that fewer packets are dropped with the workload
spread over two machines. However, overall the two machine configuration
received only 4.3% more responses than with one machine, which suggests that
network packet loss accounts for the majority of the drop off at higher scan rates. 21

2.5 Address Randomization Comparison — These plots depict the first 1000 ad-
dresses of an Internet-wide scan selected by Masscan (left) and ZMap (right), with
the first and second octets mapped to the x and y coordinates. ZMap’s address
randomization is CPU intensive but achieves better statistical properties than the
cheaper approach used by Masscan, enabling valid sampling. We enhanced ZMap
to distribute address generation across multiple cores. 22

2.6 10 GigE Scan Traffic — An Internet-wide scan at full 10 GigE speed dwarfed all
other traffic at the university during this 24 hour period. At 14.23 Mpps, a single
machine running ZMap generated 4.6 Gbps in outgoing IP traffic and scanned
the entire public IPv4 address space in 4m29s. The massive increase in outbound
traffic appears to have caused elevated packet drop. Notable smaller spikes are
due to earlier experiments. 24

viii

4.1 Number field sieve for discrete log — This algorithm consists of a precomputa-
tion stage that depends only on the prime p and a descent stage that computes
individual logarithms. With sufficient precomputation, an attacker can quickly
break any Diffie-Hellman instances that use a particular p. 68

4.2 The Logjam attack — A man-in-the-middle can force TLS clients to use export-
strength DH with any server that allows DHE EXPORT. Then, by finding the
512-bit discrete log, the attacker can learn the session key and arbitrarily read or
modify the contents. Data f s refers to False Start application data that some TLS
clients send before receiving the server’s Finished message. 74

4.3 NSA’s VPN decryption infrastructure — This classified illustration published
by Der Spiegel [162] shows captured IKE handshake messages being passed to a
high-performance computing system, which returns the symmetric keys for ESP
session traffic. The details of this attack are consistent with an efficient break for
1024-bit Diffie-Hellman. 83

5.1 SSLv2 handshake — The server responds with a ServerVerify message di-
rectly after receiving an RSA-PKCS#1 v1.5 ciphertext contained in ClientMasterKey.
This protocol feature enables the attack. 96

5.2 TLS-RSA handshake — After receiving an encrypted premaster secret, the
server waits for an authenticated ClientFinished message. 98

5.3 SSLv2-based Bleichenbacher attack on TLS — An attacker passively collects
RSA ciphertexts from a TLS 1.2 handshake, and then performs oracle queries
against a server that supports SSLv2 with the same public key to decrypt the TLS
ciphertext. 118

ix

LIST OF TABLES

Table

2.1 Performance of Internet-wide Scans — We show the scan rate, the normalized
hit rate, and the scan duration (m:s) for complete Internet-wide scans performed
with optimized ZMap. 17

3.1 Common application behavior — Applications make a diverse set of decisions
on how to handle Diffie-Hellman exponents, likely due to the plethora of conflict-
ing, confusing, and incorrect recommendations available. 40

3.2 IPv4 non-safe prime and static exponent usage — Although non-safe primes
see widespread use across most protocols, only a small number of hosts reuse
exponents and use non-safe primes; these hosts are prime candidates for a small
subgroup key recovery attack. 42

3.3 TLS key exchange validation — We performed a 1% HTTPS scan in August
2016 to check if servers validated received client key exchange values, offering
generators of subgroups of order 1, 2 and 7. Our baseline DHE support number
counts hosts willing to negotiate a DHE key exchange, and in the case of g7,
if p− 1 is divisible by 7. We count hosts as “Accepted” if they reply to the
ClientKeyExchange message with a Finished message. For g7, we expect this
to happen with probability 1/7, suggesting that nearly all of the hosts in our scan
did not validate subgroup order. 42

3.4 HTTPS support for RFC5114 Group 22 — In a 100% HTTPS scan performed
in October 2016, we found that of the 12,835,911 hosts that accepted Diffie-
Hellman key exchange, 901,656 used Group 22. We were able to download
default web pages for 646,157 of these hosts, which we examined to identify
companies and products. 44

3.5 TLS Library Behavior — We examined popular TLS libraries to determine
which weaknesses from Section 3.1.6 were present. Reuse of exponents often
depends on the use of the library; the burden is on the application developer to
appropriately regenerate exponents. Botan and libTomCrypt both hardcode their
own custom groups, while GnuTLS allows users to specify their own parameters. 45

3.6 IPv4 top non-safe primes — Nine non-safe primes account for the majority of
hosts using non-safe primes. 45

x

3.7 IKE group support and validation — We measured support for RFC5114 DSA
groups in IKEv1 and IKEv2 and test for key exchange validation by performing a
series of 100% IPv4 scans in October 2016. For Group 23, gs is a generator of a
subgroup with order 3, and for Groups 22 and 24, gs is a generator of a subgroup
of order 7. 51

3.8 SSH validation — In a 1% SSH scan performed in February 2016, we sent
the key exchange values yc = 0,1 and p− 1. We count hosts as having ini-
tiated a handshake if they send a SSH MSG KEX DH GEX GROUP, and we count
hosts as “Accepted” if they reply to the client key exchange message with a
SSH MSG KEX DH GEX REPLY. 55

3.9 Full key recovery attack complexity — We estimate the amount of work re-
quired to carry out a small subgroup key recovery attack, and show the prevalence
of those groups in the wild. Hosts are vulnerable if they reuse exponents and fail
to check subgroup order. 58

3.10 Attacking RFC 5114 groups — We show the log of the amount of work in bits
required to perform a small subgroup key recovery attack against a server that
both uses a static Diffie-Hellman exponent of the same size as the subgroup order
and fails to check group order. 58

3.11 Distribution of orders for groups with non-safe primes — For groups for which
we were able to determine the subgroup order exactly, 160-bits subgroup orders
are common. We classify other groups to be likely DSA groups if we know that
the subgroup order is at least 8 bits smaller than the prime. 59

3.12 Group order factorization for common non-safe primes — We used the ellip-
tic curve method to factor (p−1)/2 for each of the non-safe primes we found
while scanning, as well as the mistyped OpenSSL “prime”. 60

4.1 Top 512-bit DH primes for TLS — 8.4% of Alexa Top 1M HTTPS domains
allow DHE EXPORT, of which 92.3% use one of the two most popular primes,
shown here. 72

4.2 Estimating costs for factoring and discrete log — For sieving, we give one
important parameter, which is the number of bits of the smoothness bound B. For
linear algebra, all costs for DH are for safe primes; for DSA primes with q of 160
bits, this should be divided by 6.4 for 1024 bits, 4.8 for 768 bits, and 3.2 for 512 bits. 77

4.3 Estimated impact of Diffie-Hellman attacks in early 2015 — We used Internet-
wide scanning to estimate the number of real-world servers for which typical
connections could be compromised by attackers with various levels of computa-
tional resources. For HTTPS, we provide figures with and without downgrade
attacks on the chosen ciphersuite. All others are passive attacks. 84

5.1 2048-bit Bleichenbacher attack complexity — The cost to decrypt one cipher-
text can be adjusted by choosing the set of fractions F the attacker applies to each
of the passively collected ciphertexts in the first step of the attack. This choice
affects several parameters: the number of these collected ciphertexts, the number
of connections the attacker makes to the SSLv2 server, and the number of offline
decryption operations. 110

xi

5.2 Required oracle queries — In Phase 1, the attacker queries the oracle until an
SSLv2 conformant ciphertext is found. In Phases 2–5, the attacker decrypts this
ciphertext using leaked plaintext. These numbers minimize total queries. In our
attack, an oracle query represents two server connections. 110

5.3 Summary of attacks — “Oracle” denotes the oracle required to mount each
attack, which also implies the vulnerable set of SSLv2 implementations. SSLv2
denotes any SSLv2 implementation, while “Special” denotes an OpenSSL version
vulnerable to special DROWN. 117

5.4 Hosts vulnerable to general DROWN — We performed Internet-wide scans to
measure the number of hosts supporting SSLv2 on several different protocols. A
host is vulnerable to DROWN if its public key is exposed anywhere via SSLv2.
Overall vulnerability to DROWN is much larger than support for SSLv2 due to
widespread reuse of keys. 119

5.5 Hosts vulnerable to special DROWN — A server is vulnerable to special DROWN
if its key is exposed by a host with the CVE-2016-0703 bug. Since the attack is
fast enough to enable man-in-the-middle attacks, a server is also vulnerable (to
impersonation) if any name in its certificate is found in any trusted certificate with
an exposed key. 131

5.6 Impact of key reuse across ports — Number of shared public keys among two
ports, in thousands. Each column states what number and percentage of keys from
the port in the header row are used on other ports. For example, 18% of keys used
on port 25 are also used on port 443, but only 4% of keys used on port 443 are
also used on port 25. 134

xii

ABSTRACT

Cryptography is a key component of the security of the Internet. Unfortunately, the process

of using cryptography to secure the Internet is fraught with failure. Cryptography is often fragile,

as a single mistake can have devastating consequences on security, and this fragility is further

complicated by the diverse and distributed nature of the Internet. This dissertation shows how to

use empirical methods in the form of Internet-wide scanning to study how cryptography is deployed

on the Internet, and shows this methodology can discover vulnerabilities and gain insights into

fragile cryptographic ecosystems that are not possible without an empirical approach. I introduce

improvements to ZMap, the fast Internet-wide scanner, that allow it to fully utilize a 10 GigE

connection, and then use Internet-wide scanning to measure cryptography on the Internet.

First, I study how Diffie-Hellman is deployed, and show that implementations are fragile and not

resilient to small subgroup attacks. Next, I measure the prevalence of “export-grade” cryptography.

Although regulations limiting the strength of cryptography that could be exported from the United

States were lifted in 1999, Internet-wide scanning shows that support for various forms of export

cryptography remains widespread. I show how purposefully weakening TLS to comply with

these export regulations led to the FREAK, Logjam, and DROWN vulnerabilities, each of which

exploits obsolete export-grade cryptography to attack modern clients. I conclude by discussing how

empirical cryptography improved protocol design, and I present further opportunities for empirical

research in cryptography.

Thesis Statement. Large-scale empirical methods allow us to observe fragility in how cryptogra-

phy is being used on the Internet, identify new vulnerabilities, and better secure the Internet in the

future.

xiii

CHAPTER I

Introduction

Cryptography is mathematical science. Cryptography research is often formal, and concerned

with proving the correctness of primitives and protocols, given some set of assumptions. Cryptogra-

phy is one of the only components of security that can be provably secure. As such, cryptography is

often considered to be one of the strongest components of security.

Yet historically, cryptography has been one of the most fragile aspects of security. This fragility

is often not because the underlying math was incorrect, or because the fundamental cryptographic

primitives were insecure, but because a single mistake in the implementation, configuration, or

protocol can have catastrophic effects on security without affecting the functional state of the system,

leading to communication channels that appear securely encrypted, but in fact offer little or no

security over plaintext. Security is lost in translation between the cryptographers and protocol

designers, and between protocol designers and implementers. The process of going from paper to

program, or from proof-of-concept to production, introduces mistakes and misunderstandings and

reveals incorrect assumptions. This leads to cryptographic failures and insecurity.

Cryptography is a key component in the security of the Internet. Unfortunately, the fragile nature

of cryptography can be compounded by the large-scale, distributed, and diverse nature of the Internet.

Any protocol can have many implementations, each of which may implement different subsets of

the protocol, or support different configurations. Many protocols are designed for “cryptographic

agility”, and so identical implementations may support different sets of underlying algorithms.

1

Devices that support modern cryptography may also support decades-old broken cryptography. This

leads to an Internet of fragile cryptographic ecosystems, consisting of diverse sets of clients and

servers, many of which use vulnerable or close-to-vulnerable cryptography.

To better use cryptography to secure the Internet, we need to understand what types of cryptog-

raphy are in use, and where mistakes are being made. We must understand which cryptographic

ecosystems are fragile, and which are resilient. To deploy new and stronger cryptography, we need

to validate our assumptions about the current cryptographic behavior of devices on the Internet, so

that we can identify which problems need to be solved, and prioritize their solutions. Large-scale

empirical methods allow us to observe fragility in how cryptography is being used on the Internet,

identify new vulnerabilities, and better secure the Internet in the future.

In this dissertation, I show how empirical measurements collected using Internet-wide scanning

provides insight into how cryptography is used to secure the Internet. First, I show contributions

made to the field of Internet measurement field itself via improved Internet-wide scanning. Second,

I measure the Internet’s resiliency to small subgroup attacks in finite-field Diffie-Hellman. Third, I

use empirical methods to show how 1990s-era export-grade encryption harmed the security of the

Internet for two decades.

1.1 Techniques for Measuring Internet Cryptography

Internet-wide scanning is a fundamental technique used for empirical study of cryptography.

Large-scale, horizontal port scanners such as ZMap [52] drastically reduce the barrier to entry

to leveraging network scan data at Internet scale, however port scanning alone is not a complete

solution. Using Internet-wide scanning to measure cryptography is a three step process:

1. Identify Hosts. There are ∼4B possible IPv4 addresses, however only a subset are listening

on any given L4 port. A single scan by ZMap or another large-scale, asynchronous L3/L4

scanner identifies which hosts have an input port open. For example, only ∼50M hosts

respond on TCP port 443 (HTTPS).

2. Measure Hosts. ZMap provides no application-layer information about a host. Furthermore,

2

hosts that respond on a standard port for some application-layer protocol might not actually be

configured to speak that protocol. For example, only∼38M of the∼50M hosts with TCP port

443 open are TLS servers. To collect cryptographic data, an application-layer scanner such as

ZGrab [170] must connect to all hosts found by ZMap and attempt a protocol handshake that

records the cryptographic state used for the connection.

3. Answer Questions. As is the case in any empirical science, the measurement data is ana-

lyzed to answer questions such as “What percentage of TLS servers support 512-bit Diffie-

Hellman?”. Tools such as Censys [47] allow researchers to ask questions about Internet-wide

scan data much faster and easier than by trawling through results from individual scans, each

of which can generate terabytes of data.

With current technology, Internet-wide scanning is useful for creating an aggregate understand-

ing of the Internet over time. However, it is not yet able to provide a global understanding of

individual hosts and networks. In §II, I discuss contributions to Internet-wide scanning that provide

a foundation to build a more accurate and complete picture of the Internet and I show improvements

to the ZMap scanner which enable it to operate at a full 10 Gbps line rate [3]. While ZMap enabled

the use of Internet-wide scanning accessible as a measurement method, this work moves towards

enabling hourly or real-time measurement of the cryptographic behavior of all Internet-connected

systems.

When originally introduced, ZMap was capable of saturating a 1Gbps uplink from a single host,

enabling an Internet-wide TCP SYN scan of IPv4 to be performed in forty-five minutes. However,

when used with a 10Gbps network interface, ZMap reached barely above the 1Gbps mark. The

required thread synchronization during address generation restricted the performance benefit of

threading, and limited the ability to leverage multi-core systems. Furthermore, the copy from user

space to kernel memory when sending a packet limited total throughput. Scanning at 10Gbps

requires sending nearly 15 million packets per second continuously, which allows for only 200

cycles per packet on a 3 GHz system.

I introduced performance improvements to address both of these constraints, and enable ZMap

3

to fully utilize a 10Gbps network link, bringing the total time for a TCP SYN scan of IPv4 to under

five minutes from a single host. While Internet-measurement is often used to provide coarse-grain

understanding of the shape of the Internet as a whole, improvements in measurement-collection

begin to move the field towards being able to continuously understand the behavior of individual

hosts, but at global scale.

1.2 Measuring Diffie-Hellman

Diffie-Hellman key exchange is one of the most common public-key cryptographic methods

in use in the Internet. In finite field Diffie-Hellman, Alice and Bob agree on a large prime p and

an integer g modulo p. Alice chooses a secret integer xa and transmits a public value gxa mod p;

Bob chooses a secret integer xb and transmits his public value gxb mod p. Both Alice and Bob

can reconstruct a shared secret gxaxb mod p, but the best known way for a passive eavesdropper

to reconstruct this secret is to compute the discrete log of either Alice or Bob’s public value.

Specifically, given g, p, and gx mod p, an attacker must calculate x.

Both g and p must be carefully selected to ensure that the discrete logarithm problem remains

hard, and that the key exchange is not vulnerable to small subgroup attacks. I used empirical

techniques to provide insight into the Diffie-Hellman group selection at Internet-scale, showing

that while a common recommendation is that p should be a “safe” prime such that p = 2q+1 for

some prime q, many implementations instead use non-safe “DSA” parameters with potentially

unsafe subgroups of order q [164]. Several standards, including NIST SP 800-56A [14] and

RFC 5114 [111], advocate the use of these parameters for Diffie-Hellman key exchange, and while

it is possible to use such parameters securely, additional validation checks are necessary to prevent

small-subgroup attacks. This is further evidence of a knowledge gap between researchers, protocol

designers, and implementers. Cryptographers have been aware of small subgroup attacks for two

decades [113], but this has not translated into reliable and consistent defenses being built into

protocols and implementations, likely due to the complexity of the trade-offs surrounding finite-field

parameter selection.

4

In §III, I discuss how we measured vulnerability to small subgroup attacks in the wild for

HTTPS, POP3S, SMTP with STARTTLS, SSH, IKEv1, and IKEv2, finding millions of hosts using

DSA and other non-“safe” primes for Diffie-Hellman key exchange, many of them in combination

with potentially vulnerable behaviors. Beyond simply using DSA primes, small subgroup attacks

require a number of complex, special conditions to go wrong in order to be feasible. While it seems

unlikely that any implementation would satisfy enough of these requirements to be vulnerable to an

attack, it also seemed unlikely that implementations would use non-safe primes for key exchange

in the first place. Empirical methods did not reveal an Internet-wide vulnerability, but rather an

Internet-wide case of accidental complexity and fragility. Given the amount of complexity exposed

by the underlying cryptographic APIs for Diffie-Hellman, it is remarkable that any implementation

was safe. Understanding the root causes of this complexity and confusion, and understanding how

it manifests on the Internet, enables better protocol design in the future.

1.3 Measuring Export Cryptography

The Department of State regulated cryptography in the United States during the 1990s. Cryptog-

raphy was covered by the International Traffic in Arms Regulations (ITAR), which broadly limited

the ability for US persons to “export” cryptography. Beginning in 1995, these regulations were chal-

lenged in court by Daniel J. Bernstein, who was attempting to publish the “Snuffle” cryptosystem.

The regulations were moved in 1996 from ITAR to the Export Administration Regulations (EAR),

under the control of the Department of Commerce [18]. Under EAR, “exported” cryptography

was limited to 40-bits of security for symmetric ciphers, and 512-bits for security for public-key

cryptography. Authentication strength (e.g. MAC length), was not regulated [53]. Despite these

limitations, there were major advances in secure channel protocol development during this time.

SSLv2 was designed and deprecated [82] in 1995. SSLv3 was created and standardized [62] by

1998, and subsequently renamed to TLS and moved into the purview of the IETF in 1999 [42].

All three of these protocol versions contained compliance mechanisms for the export regulations,

where the protocol was capable of negotiating the use of short “export-grade” parameters instead of

5

“modern” cryptography.

Following further litigation in Bernstein v. United States, the key length limitations from the

export regulations were removed in 1999, and future versions of TLS deprecated the process for

using “export-grade” cryptography. In §IV and §V, I discuss how measuring support for obsolete

cryptography that was designed to comply with these export regulations led to the discovery of

vulnerabilities in modern web browsers.

1.3.1 Attacks on RSA

In early versions of TLS, export compliance when using RSA key exchange was implemented

by limiting the length of the server-provided RSA key to 512-bits. In TLS, the RSA key used for key

exchange is usually extracted from the X.509 certificate used to authenticate the server. However,

this key is also used for non-export cryptography, and so is longer than the max 512-bits required to

comply with the export regulations. To indicate an export-complaint connection, TLS introduced

the RSA EXPORT ciphers. These ciphers indicate that the server must provide an additional “export-

grade” RSA key to be used for key exchange. In 2015, Beurdouche et al. showed that many TLS

implementations incorrectly accepted a server-provided RSA EXPORT key on non-export RSA

ciphers [20], leading to a downgrade attack against servers that support RSA EXPORT, denoted

FREAK.

We modified the ZMap [52] and ZGrab [170] toolchain to be able to scan for HTTPS servers that

support export RSA ciphers. To identify these servers, we implemented export RSA key exchange in

ZGrab. We then sent a ClientHello containing only RSA EXPORT ciphers to identify servers capable

of completing the handshake. At the time of disclosure on March 3, 2015, we found that 36.7%

of HTTPS servers with browser-trusted certificates supported RSA EXPORT ciphers. This was

unexpected, since no modern web client has offered export-grade ciphers in its default configuration

for over a decade. Prior to measuring support for export-grade RSA, the FREAK attack seemed far

less impactful, since conventional wisdom was that no server supported export-grade cryptography.

Interestingly, only 26.3% of all (trusted and untrusted) HTTPS servers were vulnerable overall,

meaning FREAK was more common among trusted hosts than untrusted hosts. FREAK saw a fast

6

patch rate, dropping to only 6.5% among trusted servers, and 11.8% among untrusted servers on

March 10, 2015, one week after disclosure. In May 2016, vulnerability to FREAK among hosts

with trusted certificates was only 1.68%.

We instrumented freakattack.com with a browser-check tool that tested users browsers for vul-

nerability to FREAK. To do so, we first implemented a variant of the attack consisting of a single test

server that would negotiate a non-export RSA cipher, but send an export RSA ServerKeyExchange

message. We created this implementation by extending our modifications to ZGrab. We added

Javascript to the FREAK website that attempted to connect to a subdomain running the test server,

and logged if the connection was successfully created. Between March 4 and March 7, 2015, we

logged 1,260,951 test connections, of which 223,481 (17.7%) were vulnerable to FREAK. This

client population is limited to people who visited the FREAK disclosure website, and is therefore

likely biased towards the technology and security community, and is not representable of all Internet

users. However, these results did show that even though Mozilla NSS was not vulnerable to FREAK,

of the 223,481 vulnerable clients, 15,591 (7.0%) identified as Firefox based on user-agent strings.

This is likely due to anti-virus or other endpoint security software that acts as a man-in-the-middle

for all TLS traffic being built against a vulnerable TLS library. We experimentally confirmed with

packet traces that enabling Avast Free Antivirus caused Firefox to become vulnerable to FREAK.

Later work by Durumeric et al showed systemic vulnerability to patched TLS attacks among var-

ious client-side TLS interception products [51]. This phenomenon was further observed when

attempting to distrust certificates signed with SHA-1. When Firefox stopped trusted certificates

signed using SHA-1 issued more recently than Dec 31, 2015, many users behind client-side TLS

interception software were unable to access the Internet, as the interception software was issuing

SHA-1 certificates locally to be able to inspect TLS connections [15].

1.3.2 Attacks on Diffie-Hellman

The TLS protocol contains export-grade Diffie-Hellman ciphers, denoted DHE EXPORT, which

use short 512-bit groups [42]. In §IV, I discuss Logjam, a protocol vulnerability in TLS, which

allows an attacker who can calculate 512-bit discrete logs to downgrade connections to export-grade

7

freakattack.com

Diffie-Hellman ciphers, and decrypt them. Similar to the FREAK attack [20], the Logjam attack is

only possible when the server supports DHE EXPORT ciphers. We used Internet-wide scanning to

determine support for these ciphers.

An individual TLS session using 512-bit Diffie-Hellman could be broken in 60,000 core-hours,

or 120 hours in parallel on commodity hardware simply by calculating a discrete log [2]. While

this is certainly insecure, at first glance it appears these connections have a small amount forward

secrecy, by virtue of using ephemeral Diffie-Hellman key, e.g. each connection would require

another 120 hours to be decrypted. This slow process would prohibit active attacks and limit the

risk to passive decryption after the fact.

In practice, while the algorithmic complexity of calculating discrete log is exponential, the bulk

of this computation is dependent solely on p, not the individual secrets xa and xb chosen by each

party. If many hosts use the same groups, then the precomputation cost may be amortized across all

the connections across these hosts, rather than requiring core-centuries per observed key exchange.

This raise an obvious empirical question: do many hosts share the same set of Diffie-Hellman

parameters, and what is the strength of the parameters? If many hosts were to support the same

weak parameters, then the computation could be amortized, and individual connections could be

broken in real-time, enabling active attacks. In fact, shared sets of parameters is what enables the

downgrade. In this case, empirical measurement showed that 80% of vulnerable hosts used the same

set of parameters, moving the Logjam attack from the theoretical towards the practical. While there

is a recent trend towards elliptic curve cryptography, prime-field based Diffie-Hellman remained

common in TLS until 2016, when both Firefox and Chrome removed it from their default cipher

suites as a result of our work.

1.3.3 Attacks on Symmetric Cryptography

For export compliance in SSLv2, rather than weaken key exchange, the protocol reduces the key

length used for the symmetric encryption. SSLv2 contains support for export symmetric ciphers,

which are seeded via only five bytes of key material encrypted using RSA PKCS#1 v1.5. In §V,

I introduce the DROWN attack, which exploits protocol vulnerabilities in SSLv2 surrounding

8

export-grade cryptography to attack TLS [12]. To be vulnerable to DROWN, a TLS server must

share a key with an SSLv2 server, or share a name with an SSLv2 server that has not patched the

“extra-clear” vulnerability [12, 38]. The SSLv2 protocol requires the server to send data to the

client that is derived from the shared secret, without first verifying that the client has possession

of the secret. When combined with the malleability of RSA, and a shortened five byte secret,

this culminates in a Bleichenbacher oracle that can be used to attack TLS 1.2. The SSLv2 oracle

need not be on the same host, or even the same protocol as the target—a mail server that supports

STARTTLS can be used to attack an HTTPS server. I further discuss measurements for SSLv2

support among both web and non-web protocols, and characterize the amplified DROWN attack

surface that stems from the cross-protocol nature of the attack.

1.4 Empirical Cryptography

Large-scale empirical methods allow us to observe fragility in how cryptography is being used

on the Internet, identify new vulnerabilities, and better secure the Internet in the future. In this

dissertation, I show how empirical measurements collected using Internet-wide scanning provide

insight into how cryptography is used to secure the Internet. I first show in Chapter II how Internet-

wide scanning and related network measurement technology can be used to measure cryptography,

and where we can improve it to measure cryptography better. I use Internet-wide scanning to

measure Diffie-Hellman in Chapter III. To show how empirical techniques can lead to the discovery

of new vulnerabilities, I discuss in Chapter IV and Chapter V how measuring cryptography designed

to comply with 1990s-era export regulations led to the discovery of new attacks against modern

clients, and how empiricism drove our understanding of the impact of these attacks. Finally, I look

forward in Chapter VI, and discuss some of the impact from empirical cryptography on protocol

design and the security of the Internet, and suggest where else empirical methods can be used for

cryptography research.

9

CHAPTER II

Improving Measurement

This chapter is adapted from a joint publication that originally appeared in the proceedings of

the 8th USENIX Workshop on Offensive Technology (WOOT ’14) [3].

We introduce optimizations to the ZMap network scanner that achieve a 10-fold increase in

maximum scan rate. By parallelizing address generation, introducing an improved blacklisting

algorithm, and using zero-copy NIC access, we drive ZMap to nearly the maximum throughput

of 10 gigabit Ethernet, almost 15 million probes per second. With these changes, ZMap can

comprehensively scan for a single TCP port across the entire public IPv4 address space in 4.5 minutes

given adequate upstream bandwidth. We consider the implications of such rapid scanning for both

defenders and attackers, and we briefly discuss a range of potential applications.

2.1 Introduction

In August 2013, we released ZMap, an open-source network scanner designed to quickly per-

form Internet-wide network surveys [52]. From a single machine, ZMap is capable of scanning

at 1.44 million packets per second (Mpps), the theoretical limit of gigabit Ethernet. At this speed,

ZMap can complete a scan targeting one TCP port across the entire public IPv4 address space in

under 45 minutes—a dramatic improvement compared to weeks [52] or months [54] required using

Nmap. Yet even at gigabit linespeed, ZMap does not utilize the full bandwidth of the fastest readily

available connections: 10 GigE uplinks are now offered by Amazon EC2 [10] and at a growing

number of research institutions.

10

In this paper, we scale ZMap to 10 GigE speeds by introducing a series of performance enhance-

ments. These optimizations allow scanning speeds that provide higher temporal resolution when

conducting Internet-wide surveys and make it possible to quickly complete complex multipacket

studies.

Scanning at 10 GigE linespeed necessitates sending nearly 15 Mpps continuously. For single-

packet probes such as SYN scans, this allows only 200 cycles per probe on a 3 GHz core. An L2

cache miss might incur a cost of almost 100 cycles, so it essential to make efficient use of both CPU

and memory. In order to generate and transmit packets at this rate, we introduce modifications that

target the three most expensive per-probe operations in ZMap:

1. Parallelized address generation. ZMap uses a multiplicative cyclic group to iterate over

a random permutation of the address space, but this becomes a bottleneck at multigigabit

speeds. We implement a mutex-free sharding mechanism that spreads address generation

across multiple threads and cores.

2. Optimized address constraints. Responsible scanning requires honoring requests from

networks that opt out, but over time this can result in large and complex blacklists. We

develop an optimized address constraint data structure that allows ZMap to efficiently cycle

through allowed targets.

3. Zero-copy packet transmission. ZMap sends Ethernet frames using a raw socket, which

avoids the kernel’s TCP/IP stack but still incurs a per-packet context switch. We switch to

using the PF RING Zero Copy (ZC) interface, which bypasses the kernel and reduces memory

bandwidth.

These enhancements enable ZMap to scan at 14.23 Mpps, 96% of the theoretical limit of

10 GigE. In order to confirm these performance gains, we completed a full scan of the IPv4 address

space in 4m29s—to our knowledge, the fastest Internet-wide scan yet reported.

The ability to scan at 10 GigE speeds creates new opportunities for security researchers. It allows

for truer snapshots of the state of the Internet by reducing error due to hosts that move or change

11

during the scan. Likewise, it enables more accurate measurement of time-critical phenomena, such

as vulnerability patching in the minutes and hours after public disclosure. On the other hand, it

raises the possibility that attackers could use 10 GigE to exploit vulnerabilities with alarming speed.

2.2 Related Work

Many network scanning tools have been introduced [52,74,95,109,116], although until recently

most were designed for scanning small networks. One of the most popular is Nmap [116], a highly

capable network exploration tool. Nmap is well suited for vertical scans of small networks or

individual hosts, but the original ZMap implementation outperformed it on horizontal Internet-wide

scans by a factor of 1300 [52]. Our enhancements to ZMap improve its performance by another

factor of ten.

ZMap is not the first Internet-wide scanner to use PF RING to send at speeds greater than

1 Gbps. Masscan, released in September 2013, also utilizes PF RING and claims the ability to

scan at 25 Mpps using dual 10 GigE ports—84% of the theoretical limit of dual 10 GigE [74]. We

present a more detailed comparison to Masscan in Section 2.4.3. While the Masscan team did not

have the facilities to perform live network tests at rates higher than 100,000 pps [74], we report

what we believe is the first Internet-wide scan conducted at 10 GigE speeds.

2.3 Performance Optimizations

ZMap achieves this performance based on a series of architectural choices that are geared

towards very large, high-speed scans [52]. It avoids per-connection state by embedding tracking

information in packet fields that will be echoed by the remote host, using an approach similar to

SYN cookies [17]. It eschews timeouts and simplifies flow control by scanning according to a

random permutation of the address space. Finally, it avoids the OS’s TCP/IP stack and writes raw

Ethernet frames.

This architecture allows ZMap to exceed gigabit Ethernet linespeed on commodity hardware,

but there are several bottlenecks that prevent it from fully reaching 10 GigE speeds. ZMap’s address

generation is CPU intensive and requires a global lock, adding significant overhead. Blacklisting

12

ranges of addresses is expensive and scales poorly. Sending each packet requires a context switch

and unnecessary copies as packets are passed from userspace to the kernel and then to the NIC [65].

We implement optimizations that reduce each of these bottlenecks.

2.3.1 Address Generation Sharding

Address generation in ZMap is designed to achieve two goals. First, it avoids flooding destination

networks by ordering targets according to a pseudorandom permutation of the address space. Second,

it enables statistically valid sampling of the address space.

ZMap iterates over a multiplicative group of integers modulo p that represent 32-bit IPv4

addresses. By choosing p to be 232 + 15, the smallest prime larger than 232, we guarantee that

the group (Z/pZ)× is cyclic and that it covers the full IPv4 address space. ZMap derives a new

random primitive root g for each scan in order to generate new permutation of the address space.

The scanner starts at a random initial address a0 and calculates ai+1 = g ·ai mod p to iterate through

the permutation. The iteration is complete when ai+1 equals a0.

The most expensive part of this scheme is the modulo operation, which must be performed at

every step of the iteration. Unfortunately, the modulo operation cannot currently be performed by

multiple threads at once, because each address in the permutation is dependent on the previous—

calculating the next address requires acquiring a lock over the entire iterator state.

To remove this bottleneck and efficiently distribute address generation over multiple cores, we

extend ZMap to support sharding. In the context of ZMap, a shard is a partition of the IPv4 address

space that can be iterated over independently from other shards; assigning one shard to each thread

allows for independent, mutex-free execution. Each shard contains a disjoint subset of the group,

with the union of all the shards covering the entire group.

To define n shards, we choose an initial random address a0 and assign each sequential ad-

dress a j in the permutation to shard j mod n. To implement this, we initialize shards 1 . . .n with

starting addresses a0, . . . ,an−1, which can be efficiently calculated as a0 ·g0,...,n−1. To iterate, we

replace g with gn, which “skips forward” in the permutation by n elements at each step. Each

shard computes ai+1 = ai · gn mod p until reaching its shard specific ending address ae j . For

13

example, if there were three shards, the first would scan {a0, a3 = g3 ·a0, a6 = g3 ·a3, . . . , ae1},

second {a1, a4 = g3 ·a4, a7 = g3 ·a4, . . . , ae2}, and third {a2, a5 = g3 ·a0, a8 = g3 ·a5, . . . , ae3}.

We illustrate the process in Figure 2.1.

After pre-calculating the shard parameters, we only need to store three integers per shard: the

starting address a0, the ending address ae, and the current address ai. The iteration factor gn and

modulus p are the same for all shards. Each thread can then iterate over a single shard independently

of the other threads, and no global lock is needed to determine the next address to scan. Multiple

shards can operate within the same ZMap process as threads (the configuration we evaluate in this

paper), or they can be split across multiple machines in a distributed scanning mode.

Benchmarks To measure the impact of sharding in isolation from our other enhancements, we

conducted a series of scans, each covering a 1% sample of the IP address space, using our local

blacklist file and a 10 GigE uplink. Without sharding, the average bandwidth utilization over

10 scans was 1.07 Gbps; with sharding, the average increased to 1.80 Gbps, an improvement of

68%.

2.3.2 Blacklisting and Whitelisting

ZMap address constraints are used to limit scans to specific areas of the network (whitelisting)

or to exclude particular address ranges (blacklisting), such as IANA reserved allocations [85].

Blacklisting can also be used to comply with requests from network operators who want to be

excluded from receiving probe traffic. Good Internet citizenship demands that ZMap users honor

such requests, but after many scans over a prolonged time period, a user’s blacklist might contain

hundreds of excluded prefixes.

Even with complicated address constraints, ZMap must be able to efficiently determine whether

any given IP address should be part of the scan. To support 10 GigE linespeed, we implemented a

combination tree- and array-based data structure that can efficiently manipulate and query allowed

addresses.

The IPv4 address space is modeled as a binary tree, where each node corresponds to a network

prefix. For example, the root represents 0.0.0.0/0, and its children, if present, represent 0.0.0.0/1

14

Shard 1

Shard 2

𝑎1

𝑎0

𝑎3

Shard 0

𝑎2

𝑎4

𝑎5

𝑎6

𝑎7
𝑎8

𝑎9

𝑎10

𝑎11

𝑎12

𝑎13

𝑎14

𝑎15

Figure 2.1: Sharding Visualization — This is a configuration with three shards (n = 3). Shards
0,1,2 are initialized with starting addresses a0,a1,a2. Each arrow represents performing ai ·g3, a
step forward by three elements in the permutation.

15

and 128.0.0.0/1. Each leaf is colored either white or black, depending on whether or not the

corresponding prefix is allowed to be scanned. ZMap constructs the tree by sequentially processing

whitelist and blacklist entries that specify CIDR prefixes. For each prefix, ZMap sets the color of

the corresponding leaf, adding new nodes or pruning the tree as necessary.

Querying whether an address may be scanned involves walking the tree, beginning with the

most significant bit of the address, until arriving at a leaf and returning the color. However, a slightly

different operation is used during scanning. To make efficient use of the pseudorandom permutation

described above, we determine the number of allowed addresses n (which may be much smaller

than the address space if a small whitelist is specified) and select a permutation of approximately the

same size. We then map from this permutation of 1, . . . ,n to allowed addresses a1, . . . ,an. Each node

in the tree maintains the total number of allowed addresses covered by its descendants, allowing us

to efficiently find the ith allowed address using a simple recursive procedure.

As a further optimization, after the tree is constructed, we assemble a list of /20 prefixes that are

entirely allowed and reassign the address indices so that these prefixes are ordered before any other

allowed addresses. We then use an array of these prefixes to optimize address lookups. If there are

m /20 prefixes that are allowed, then the first m ·212 allowed addresses can be returned using only

an array lookup, without needing to consult the tree. The /20 size was determined empirically as a

trade off between lookup speed and memory usage.

2.3.3 Zero-Copy NIC Access

Despite ZMap’s use of raw Ethernet sockets, sending each probe packet is an expensive operation,

as it involves a context switch for the sendto system call and requires the scan packet to be

transferred through kernel space to the NIC [41, 148]. Even with our other enhancements, the high

cost of these in-kernel operations prevented ZMap from reaching above 2 Gbps. To reduce these

costs, we reimplemented ZMap’s network functionality using the PF RING ZC interface [139].

PF RING ZC allows userspace code to bypass the kernel and have direct “zero-copy” access to the

NIC, making it possible to send packets without any context switches or wasted memory bandwidth.

To boost ZMap to 10 GigE speeds, we implemented a new probe transmission architecture

16

on top of PF RING. This new architecture uses multiple packet creation threads that feed into a

single send thread. We found that using more than one send thread for PF RING decreased the

performance of ZMap, but that a single packet creation thread was not fast enough to reach line

speed. By decoupling packet creation from sending, we are able to combine the parallelization

benefits of sharding with the speed of PF RING.

In the original version of ZMap, multiple send threads each generated and sent packets via

a thread-specific raw Ethernet socket. We modify thread responsibilities such that each packet

creation thread iterates over one address generation shard and generates and queues the packets. In a

tight loop, each packet generation loop calculates the next index in the shard, finds the corresponding

allowed IP address using the address constraint tree, and creates an addressed packet in the PF RING

ZC driver’s memory. The packet is added to a per-thread single-producer, single-consumer packet

queue. The send thread reads from each packet queue as packets come available, and sends them

over the wire using PF RING.

To determine the optimal number of packet creation threads, we performed a series of tests,

scanning for 50 seconds using 1–6 packet creation threads, and measured the send rate. We find the

optimal number of threads corresponds with assigning one per physical core.

2.4 Evaluation

We performed a series of experiments to characterize the behavior of scanning at speeds greater

than 1 Gbps. In our test setup, we completed a full scan of the public IPv4 address space in 4m29s

on a server with a 10 GigE uplink. However, at full speed the number of scan results (the hit rate)

Scan Rate Hit Rate Duration

1.44 Mpps (≈1 GigE) 1.00 42:08
3.00 Mpps 0.99 20:47
4.00 Mpps 0.97 15:38
14.23 Mpps (≈10 GigE) 0.63 4:29

Table 2.1: Performance of Internet-wide Scans — We show the scan rate, the normalized hit rate,
and the scan duration (m:s) for complete Internet-wide scans performed with optimized ZMap.

17

decreased by 37% compared to a scan at 1 Gbps, due to random packet drop. We find that we can

scan at speeds of up to 2.7 Gbps before seeing a substantial drop in hit rate.

We performed the following measurements on a Dell PowerEdge R720 with two Intel Xeon

E5-2690 2.9 GHz processors (8 physical cores each plus hyper-threading) and 128 GB of memory

running Ubuntu 12.04.4 LTS and the 3.2.0-59-generic Linux kernel. We use a single port on a Intel

X540-AT2 (rev 01) 10 GigE controller as our scan interface, using the PF RING-aware ixgbe driver

bundled with PF RING 6.0.1. We configured ZMap to use one send thread, one receive thread, one

monitor thread, and five packet creation threads.

We used a 10 GigE network connection at the University of Michigan Computer Science and

Engineering division connected directly to the building uplink, an aggregated 2×10 GigE channel.

Beyond the 10 GigE connection, the only special network configuration arranged was static IP

addresses. We note that ZMap’s performance may be different on other networks depending on

local congestion and upstream network conditions.

We performed all of our experiments using our local blacklist file. Our blacklist, which elimi-

nates non-routable address space and networks that have requested exclusion from scanning [49],

consists of over 1,000 entries of various-sized network blocks. It results in 3.7 billion allowed

addresses—with almost all the excluded space consisting of IANA reserved allocations.

2.4.1 Hit-rate vs. Scan-rate

In our original ZMap study, we experimented with various scanning speeds up to gigabit Ethernet

line speed (1.44 Mpps) and found no significant effect on the number of results ZMap found [52].

In other words, from our network, ZMap did not appear to miss any results when it ran faster up to

gigabit speed.

In order to determine whether hit-rate decreases with speeds higher than 1 Gigabit, we performed

50 second scans at speeds ranging from 0.1–14 Mpps. We performed 3 trials at each scan rate.

As can be seen in Figure 2.2, hit-rate begins to drop linearly after 4 Mpps. At 14 Mpps (close

to 10 GigE linespeed), the hit rate is 68% of the hit rate for a 1 GigE scan. However, it is not

immediately clear why this packet drop is occurring at these higher speeds—are probe packets

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

H
it

R
at

e
(N

or
m

al
iz

ed
)

Speed (pps)

ZMap
Masscan

Figure 2.2: Hit-rate vs. Scan-rate — ZMap’s hit rate is roughly stable up to a scan rate of 4 Mpps,
then declines linearly. This drop off may be due to upstreudegrm network congestion. Even using
PF RING, Masscan is unable to achieve scan rates above 6.4 Mpps on the same hardware and has a
much lower hit rate.

dropped by the network, responses dropped by the network, or packets dropped on the scan host

due to ZMap?

We first investigate whether response packets are being dropped by ZMap or the network. In

the original ZMap work, we found that 99% of hosts respond within 1 second [52]. As such, we

would expect that after 1 second, there would be negligible responses. However, as can be seen in

Figure 2.3, there is an unexpected spike in response packets after sending completes at 50 seconds

for scans at 10 and 14 Mpps. This spike likely indicates that response packets are being dropped by

our network, NIC, or ZMap, as destination hosts will resend SYN-ACK packets for more than one

minute if an ACK or RST packet is not received.

In order to determine whether the drop of response packets is due to ZMap inefficiencies or

upstream network congestion, we performed a secondary scan in which we split the probe generation

and address processing onto separate machines. The send machine remained the same. The receive

machine was an HP ProLiant DL120 G7, with an Intel Xeon E3-1230 processor (4 cores with

hyperthreading) and 16 GB of memory, running Ubuntu 12.04.4 LTS and the 3.5.0-52-generic Linux

19

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50

R
at

e
(p

ps
)

Time (s)

1 Mpps
5 Mpps
7 Mpps

10 Mpps
14 Mpps

Figure 2.3: Response Rate During Scans — This graph shows the rate of incoming SYN-ACKs
during 50-second scans. The peaks at the end (after sending finishes) at rates above 7 Mpps indicate
that many responses are being dropped and retransmitted before being recorded by ZMap.

kernel.

As we show in Figure 2.4, this spike does not occur when processing response packets on

a secondary server—instead it closely follows the pattern of the slower scans. This indicates

that ZMap is locally dropping response packets. However, the split setup received only 4.3%

more packets than the single machine—not enough to account for the 31.7% difference between a

14 Mpps and a 1 Mpps scan. If a large number of response packets were dropped due to network

congestion, we would not have observed an immediate drop in responses—likely indicating that the

root cause of the decreased hit-rate is dropped probe packets.

It is not immediately clear where probe packets are dropped—it is possible that packets are

dropped locally by PF RING, are dropped by local routers due to congestion, or that we are

overwhelming destination networks. PF RING records locally dropped packets, which remained

zero throughout our scans, which indicates that packets are not being dropped locally. In order to

locate where packet drop is occurring on our network, we calculated the drop rate per AS and found

little AS-level correlation for packets dropped by the 10 GigE scans, which suggests that random

packet drop is occurring close to our network rather than at particular distant destination networks.

20

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50

R
at

e
(p

ps
)

Time (s)

One Machine
Two Machines

Figure 2.4: Comparing One and Two Machines — If we scan at 14 Mpps and use separate
machines for the sending and receiving tasks, the spike in the SYN-ACK rate at 50 s disappears,
indicating that fewer packets are dropped with the workload spread over two machines. However,
overall the two machine configuration received only 4.3% more responses than with one machine,
which suggests that network packet loss accounts for the majority of the drop off at higher scan
rates.

2.4.2 Complete Scans

We completed a full Internet-wide scan, allowing ZMap to operate at its full scan rate. This

scan achieved an average 14.23 Mpps—96% of the theoretical limit of 10 GigE, completing in

4 minutes, 29 seconds and achieving a hit rate that is 62.5% of that from a 1 GigE scan. We show a

comparison to lower speed scans in Table 2.1. As we discussed in the previous section, this decrease

is likely due to local network congestion, which results in dropped probe packets. However, more

investigation is deserved in order to understand the full dynamics of high-speed scans.

2.4.3 Comparison to Masscan

Masscan advertises the ability to emit probes at 25 Mpps using PF RING and two 10 GigE

adapters, each configured with two RSS queues—84% of linespeed for dual 10 GigE and 166%

of linespeed for a single 10 GigE adapter [74]. We benchmarked ZMap and Masscan using the

Xeon E3-1230 machine described above. In our experiments, we found that Masscan was able to

21

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 32 64 96 128 160 192 224 256

S
ec

on
d

O
ct

et

First Octet

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 32 64 96 128 160 192 224 256

S
ec

on
d

O
ct

et

First Octet

Figure 2.5: Address Randomization Comparison — These plots depict the first 1000 addresses
of an Internet-wide scan selected by Masscan (left) and ZMap (right), with the first and second
octets mapped to the x and y coordinates. ZMap’s address randomization is CPU intensive but
achieves better statistical properties than the cheaper approach used by Masscan, enabling valid
sampling. We enhanced ZMap to distribute address generation across multiple cores.

send at a peak 7.4 Mpps using a single-adapter configuration with two RSS queues, 50% of 10 GigE

linespeed. On the same hardware, ZMap is capable of reaching a peak 14.1 Mpps. While Masscan

may be able to achieve a higher maximum speed using multiple adapters, ZMap is able to fully

saturate a 10 GigE uplink with a single adapter.

Masscan uses a custom Feistel network to “encrypt” a monotonically increasing index to

generate a random permutation of the IPv4 address space [73]. While this is computation cheaper

than using a cyclic group, this technique results in poor statistical properties, which we show in

Figure 2.5. This has two consequences: first, it is not suitable for sampling portions of the address

space, and second, there is greater potential for overloading destination networks. This could

explain the discrepency in Figure 2.2 if Masscan targeted a less populated subnet.

Masscan and ZMap use a similar sharding approach to parallelize address generation and

distribute scans. Both programs “count off” addresses into shards by staggering the offsets of the

starting position of each shard within the permutation and iterating a fixed number of steps through

each of their permutations. In ZMap, this is implemented by replacing the iteration factor g with gn.

In Masscan, this is simply a matter of incrementing the monotonically increasing index by more

22

than one.

2.5 Applications

In this section, we consider applications that could benefit from 10 GigE scanning and remark

on the implications of high-speed scanning for defenders and attackers.

Scanning at faster rates reduces the blur introduced from hosts changing IP addresses by

decreasing the number of hosts that may be doubly counted during longer scans. This also increases

the ability to discover hosts that are only online briefly. Thus, the ability to complete scans in

minutes allows researchers to more accurately create a snapshot of the Internet at a given moment.

Similarly, the increased scan rate enables researchers to complete high-resolution scans when

measuring temporal effects. For example, while researchers were able to complete comprehensive

scans for the recent Heartbleed Vulnerability every few hours [50], many sites were patched within

the first minutes after disclosure. The ability to scan more rapidly could help shed light on patching

behavior within this critical initial period.

Faster scan rates also allow for a variety of new scanning-related applications that require

multiple packets, including quickly completing global trace routes or performing operating system

fingerprinting. Furthermore, the advancement of single-port scanning can be utilized to quickly

perform scans of a large number of ports, allowing scanning all privileged ports on a /16 in under

5 seconds and all ports in 5 minutes, assuming the attacker has sufficient bandwidth to the target.

The most alarming malicious potential for 10 GigE scanning lies in its ability to find and exploit

vulnerabilities en masse in a very short time. Durumeric et al. found that attackers began scanning for

the Heartbleed vulnerability within 22 hours of its disclosure [50]. While attackers have utilized bot-

nets and worms in order to complete distributed scans for vulnerabilities, recent work [49] has shown

that attackers are now also using ZMap, Masscan, and other scanning technology from bullet-proof

hosting providers in order to find vulnerable hosts. The increase in scan rates could allow attackers

to complete Internet-wide vulnerability scans in minutes as 10 GigE becomes widely available.

23

Figure 2.6: 10 GigE Scan Traffic — An Internet-wide scan at full 10 GigE speed dwarfed all other
traffic at the university during this 24 hour period. At 14.23 Mpps, a single machine running ZMap
generated 4.6 Gbps in outgoing IP traffic and scanned the entire public IPv4 address space in 4m29s.
The massive increase in outbound traffic appears to have caused elevated packet drop. Notable
smaller spikes are due to earlier experiments.

2.6 Future Work

We demonstrated that it is possible to perform Internet-wide scans at 10 GigE linespeed, but,

at least from our institutional network, we are unable to sustain the expected hit rate as scanning

approaches this packet rate. Further investigation is needed to understand this effect and profile

ZMap’s performance on other networks. One important question is whether the drop off is caused by

nearby network bottlenecks (which might be reduced with upgraded network hardware) or whether

it arises because such rapid scanning induces congestion on many distant networks—which would

represent an inherent limit on scan speed. It is also possible that there are a small number of remote

bottlenecks that cause the observed drop in hit rate at high speeds. In that case, identifying, profiling,

and removing these bottlenecks could improve performance.

40 GigE hardware currently exists, and 100 GigE is under development [166]. As these networks

become more widely available, it may be desirable to optimize and scale Internet-wide scanning to

even higher speeds.

24

2.7 Conclusion

In this work, we introduced enhancements to the ZMap Internet scanner that enable it to scan at

up to 14.2 Mpps. The three modifications we present—sharding, optimized address constraints, and

integration with PF RING ZC—enable scanning at close to 10 GigE linespeed. These modifications

are available now on experimental ZMap branches and will be merged into mainline ZMap.

With these enhancements, we are able to complete a scan of the public IPv4 address space in

4m29s. However, despite having a well provisioned upstream network, coverage in our experiments

drops precipitously when scanning faster than 4 Mpps. While further research is needed to better

characterize and reduce the causes of this drop off, it may be related to specific conditions on our

network.

As faster network infrastructure becomes more widely available, 10 GigE scanning will enable

powerful new applications for both researchers and attackers.

25

CHAPTER III

Measuring Diffie-Hellman

This chapter is adapted from a joint publication with Valenta et al. that originally appeared in the

proceedings of the 21st Network and Distributed System Security Symposium (NDSS ’17) [164].

In order for the discrete log problem mod p to be hard, Diffie-Hellman parameters must be

chosen carefully. A typical recommendation is that p should be a “safe” prime, that is, that

p = 2q+1 for some prime q, and that g should generate the group of order q modulo p. For p that

are not safe, the group order q can be much smaller than p. For security, q must still be large enough

to thwart known attacks, which for prime q run in time O(
√

q). A common parameter choice is

to use a 160-bit q with a 1024-bit p or a 224-bit q with a 2048-bit p, to match the security level

under different cryptanalytic attacks. Diffie-Hellman parameters with p and q of these sizes were

suggested for use and standardized in DSA signatures [128]. For brevity, we will refer to these

non-safe primes as DSA primes, and to groups using DSA primes with smaller values of q as DSA

groups.

A downside of using DSA primes instead of safe primes for Diffie-Hellman is that implemen-

tations must perform additional validation checks to ensure the key exchange values they receive

from the other party are contained in the correct subgroup modulo p. The validation consists of

performing an extra exponentiation step. If implementations fail to validate, a 1997 attack of Lim

and Lee [113] can allow an attacker to recover a static exponent by repeatedly sending key exchange

values that are in very small subgroups. We describe several variants of small subgroup confinement

26

attacks that allow an attacker with access to authentication secrets to mount a much more efficient

man-in-the-middle attack against clients and servers that do not validate group orders. Despite the

risks posed by these well-known attacks on DSA groups, NIST SP 800-56A, “Recommendations for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography” [14] specifically

recommends DSA group parameters for Diffie-Hellman, rather than recommending using safe

primes. RFC 5114 [111] includes several DSA groups for use in IETF standards.

We observe that few Diffie-Hellman implementations actually validate subgroup orders, in spite

of the fact that small subgroup attacks and countermeasures are well-known and specified in every

standard suggesting the use of DSA groups for Diffie-Hellman, and DSA groups are commonly

implemented and supported in popular protocols. For some protocols, including TLS and SSH, that

enable the server to unilaterally specify the group used for key exchange, this validation step is not

possible for clients to perform with DSA primes—there is no way for the server to communicate to

the client the intended order of the group. Many standards involving DSA groups further suggest

that the order of the subgroup should be matched to the length of the private exponent. Using shorter

private exponents yields faster exponentiation times, and is a commonly implemented optimization.

However, these standards provide no security justification for decreasing the size of the subgroup

to match the size of the exponents, rather than using as large a subgroup as possible. We discuss

possible motivations for these recommendations later in the paper.

We conclude that adopting the Diffie-Hellman group recommendations from RFC 5114 and

NIST SP 800-56A may create vulnerabilities for organizations using existing cryptographic imple-

mentations, as many libraries allow user-configurable groups but have unsafe default behaviors. This

highlights the need to consider developer usability and implementation fragility when designing or

updating cryptographic standards.

Our Contributions We study the implementation landscape of Diffie-Hellman from several

perspectives and measure the security impact of the widespread failure of implementations to follow

best security practices:

• We summarize the concrete impact of small-subgroup confinement attacks and small subgroup

27

key recovery attacks on TLS, IKE, and SSH handshakes.

• We examined the code of a wide variety of cryptographic libraries to understand their imple-

mentation choices. We find feasible full private exponent recovery vulnerabilities in OpenSSL

and the Unbound DNS resolver, and a partial private exponent recovery vulnerability for the

parameters used by the Amazon Elastic Load Balancer. We observe that no implementation

that we examined validated group order for subgroups of order larger than two by default

prior to January 2016, leaving users potentially vulnerable to small subgroup confinement

attacks.

• We performed Internet-wide scans of HTTPS, POP3S, SMTP with STARTTLS, SSH, IKEv1,

and IKEv2, to provide a snapshot of the deployment of DSA groups and other non-“safe”

primes for Diffie-Hellman, quantify the incidence of repeated public exponents in the wild,

and quantify the lack of validation checks even for safe primes.

• We performed a best-effort attempt to factor p−1 for all non-safe primes that we found in

the wild, using ˜100,000 core-hours of computation. Group 23 from RFC 5114, a 2048-bit

prime, is particularly vulnerable to small subgroup key recovery attacks; for TLS a full key

recovery requires 233 online work and 247 offline work to recover a 224-bit exponent.

Disclosure and Mitigations We reported the small subgroup key recovery vulnerability to

OpenSSL in January 2016 [152]. OpenSSL issued a patch to add additional validation checks

and generate single-use private exponents by default [38]. We reported the Amazon load balancer

vulnerability in November 2015. Amazon responded to our report informing us that they have

removed Diffie-Hellman from their recommmended ELB security policy, and have reached out

to their customers to recommend that they use these latest policies. Based on scans performed

in February and May 2016, 88% of the affected hosts appear to have corrected their exponent

generation behavior. We found several libraries that had vulnerable combinations of behaviours,

including Unbound DNS, GnuTLS, LibTomCrypt, and Exim. We disclosed to the developers

of these libraries. Unbound issued a patch, GnuTLS acknowledged the report but did not patch,

28

and LibTomCrypt did not respond. Exim responded to our bug report stating that they would

use their own generated Diffie-Hellman groups by default, without specifying subgroup order for

validation [56, 58]. We found products from Cisco, Microsoft, and VMWare lacking validation that

key exchange values were in the range (1, p−1). We informed these companies, and discuss their

responses in Section 3.2.4.

3.1 Background

3.1.1 Groups, orders, and generators

The two types of groups used for Diffie-Hellman key exchange in practice are multiplicative

groups over finite fields (“mod p”) and elliptic curve groups. We focus on the “mod p” case, so

a group is typically specified by a prime p and a generator g, which generates a multiplicative

subgroup modulo p. Optionally, the group order q can be specified; this is the smallest positive

integer q satisfying gq≡ 1 mod p. Equivalently, it is the number of distinct elements of the subgroup

{g,g2,g3, . . . mod p}.

By Lagrange’s theorem, the order q of the subgroup generated by g modulo p must be a divisor

of p− 1. Since p is prime, p− 1 will be even, and there will always be a subgroup of order

2 generated by the element −1. For the other factors qi of p− 1, there are subgroups of order

qi mod p. One can find a generator gi of a subgroup of order qi using a randomized algorithm: try

random integers h until h(p−1)/qi 6= 1 mod p; gi = h(p−1)/qi mod p is a generator of the subgroup.

A random h will satisfy this property with probability 1−1/qi.

In theory, neither p nor q is required to be prime. Diffie-Hellman key exchange is possible

with a composite modulus and with a composite group order. In such cases, the order of the full

multiplicative group modulo p is φ(p) where φ is Euler’s totient function, and the order of the

subgroup generated by g must divide φ(p). Outside of implementation mistakes, Diffie-Hellman in

practice is done modulo prime p.

29

3.1.2 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange allows two parties to agree on a shared secret in the presence of

an eavesdropper [44]. Alice and Bob begin by agreeing on shared parameters (prime p, generator g,

and optionally group order q) for an algebraic group. Depending on the protocol, the group may be

requested by the initiator (as in IKE), unilaterally chosen by the responder (as in TLS), or fixed by

the protocol itself (SSH originally built in support for a single group).

Having agreed on a group, Alice chooses a secret xa < q and sends Bob ya = gxa mod p.

Likewise, Bob chooses a secret xb < q and sends Alice yb = gxb mod p. Each participant then

computes the shared secret key gxaxb mod p.

Depending on the implementation, the public values ya and yb might be ephemeral—freshly

generated for each connection—or static and reused for many connections.

3.1.3 Discrete log algorithms

The best known attack against Diffie-Hellman is for the eavesdropper to compute the the private

exponent x by calculating the discrete log of one of Alice or Bob’s public value y. With knowledge

of the exponent, the attacker can trivially compute the shared secret. It is not known in general

whether the hardness of computing the shared secret from the public values is equivalent to the

hardness of discrete log.

The computational Diffie-Hellman assumption states that computing the shared secret gxaxb from

gxa and gxb is hard for some choice of groups. A stronger assumption, the decisional Diffie-Hellman

problem, states that given gxa and gxb , the shared secret gxaxb is computationally indistinguishable

from random for some groups. This assumption is often not true for groups used in practice; even

with safe primes as defined below, many implementations use a generator that generates the full

group of order p−1, rather than the subgroup of order (p−1)/2. This means that a passive attacker

can always learn the value of the secret exponent modulo 2. To avoid leaking this bit of information

about the exponent, both sides could agree to compute the shared secret as y2x mod p. We have not

seen implementations with this behavior.

30

There are several families of discrete log algorithms, each of which apply to special types of

groups and parameter choices. Implementations must take care to avoid choices vulnerable to any

particular algorithm. These include:

Small-order groups The Pollard rho [143] and Shanks’ baby step-giant step algorithms [155]

each can be used to compute discrete logs in groups of order q in time O(
√

q). To avoid being

vulnerable, implementations must choose a group order with bit length at least twice the desired bit

security of the key exchange. In practice, this means that group orders q should be at least 160 bits

for an 80-bit security level.

Composite-order groups If the group order q is a composite with prime factorization q = ∏i qei
i ,

then the attacker can use the Pohlig-Hellman algorithm [141] to compute a discrete log in time

O(∑i ei
√

qi). The Pohlig-Hellman algorithm computes the discrete log in each subgroup of order

qei
i and then uses the Chinese remainder theorem to reconstruct the log modulo q. Adrian et al. [2]

found several thousand TLS hosts using primes with composite-order groups, and were able to

compute discrete logs for several hundred Diffie-Hellman key exchanges using this algorithm. To

avoid being vulnerable, implementations should choose g so that it generates a subgroup of large

prime order modulo p.

Short exponents If the secret exponent xa is relatively small or lies within a known range of

values of a relatively small size, m, then the Pollard lambda “kangaroo” algorithm [144] can be used

to find xa in time O(
√

m). To avoid this attack, implementations should choose secret exponents to

have bit length at least twice the desired security level. For example, using a 256-bit exponent for

for a 128-bit security level.

Small prime moduli When the subgroup order is not small or composite, and the prime modulus

p is relatively large, the fastest known algorithm is the number field sieve [72], which runs in

subexponential time in the bit length of p, exp
(
(1.923+o(1))(log p)1/3(log log p)2/3

)
. Adrian et

al. recently applied the number field sieve to attack 512-bit primes in about 90,000 core-hours [2],

and they argue that attacking 1024-bit primes—which are widely used in practice—is within the

31

resources of large governments. To avoid this attack, current recommendations call for p to be at

least 2048 bits [14]. When selecting parameters, implementers should ensure all attacks take at least

as long as the number field sieve for their parameter set.

3.1.4 Diffie-Hellman group characteristics

“Safe” primes In order to maximize the size of the subgroup used for Diffie-Hellman, one can

choose a p such that p = 2q+ 1 for some prime q. Such a p is called a “safe” prime, and q is

a Sophie Germain prime. For sufficiently large safe primes, the best attack will be solving the

discrete log using the number field sieve. Many standards explicitly specify the use of safe primes

for Diffie-Hellman in practice. The Oakley protocol [137] specified five “well-known” groups for

Diffie-Hellman in 1998. These included three safe primes of size 768, 1024, and 1536 bits, and was

later expanded to include six more groups in 2003 [100]. The Oakley groups have been built into

numerous other standards, including IKE [79] and SSH [169].

DSA groups The DSA signature algorithm [128] is also based on the hardness of discrete log.

DSA parameters have a subgroup order q of much smaller size than p. In this case p−1 = qr where

q is prime and r is a large composite, and g generates a group of order q. FIPS 186-4 [128] specifies

160-bit q for 1024-bit p and 224- or 256-bit q for 2048-bit p. The small size of the subgroup allows

the signature to be much shorter than the size of p.

3.1.5 DSA Group Standardization

DSA-style parameters have also been recommended for use for Diffie-Hellman key exchange.

NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography” [14], first published in 2007, specifies that finite field

Diffie-Hellman should be done over a prime-order subgroup q of size 160 bits for a 1024-bit prime p,

and a 224- or 256-bit subgroup for a 2048-bit prime. While the order of the multiplicative subgroups

is in line with the hardness of computing discrete logs in these subgroups, no explanation is given

for recommending a subgroup of precisely this size rather than setting a minimum subgroup size or

using a safe prime. Using a shorter exponent will make modular exponentiation more efficient, but

32

the order of the subgroup q does not increase efficiency—on the contrary, the additional modular

exponentiation required to validate that a received key exchange message is contained in the correct

subgroup will render key exchange with DSA primes less efficient than using a “safe” prime for

the same exponent length. Choosing a small subgroup order is not known to have much impact on

other cryptanalytic attacks, although the number field sieve is somewhat (not asymptotically) easier

as the linear algebra step is performed modulo the subgroup order q. [2]

RFC 5114, “Additional Diffie-Hellman Groups for Use with IETF Standards” [111], specifies

three DSA groups with the above orders “for use in IKE, TLS, SSH, etc.” These groups were taken

from test data published by NIST [130]. They have been widely implemented in IPsec and TLS, as

we will show below. We refer to these groups as Group 22 (1024-bit group with 160-bit subgroup),

Group 23 (2048-bit group with 224-bit subgroup), and Group 24 (2048-bit group with 256-bit

subgroup) throughout the remainder of the paper to be consistent with the group numbers assigned

for IKE.

RFC 6989, “Additional Diffie-Hellman Tests for the Internet Key Exchange Protocol Version

2 (IKEv2)” [156], notes that “mod p” groups with small subgroups can be vulnerable to small

subgroup attacks, and mandates that IKE implementations should validate that the received value is

in the correct subgroup or never repeat exponents.

3.1.6 Small subgroup attacks

Since the security of Diffie-Hellman relies crucially on the group parameters, implementations

can be vulnerable to an attacker who provides maliciously generated parameters that change the

properties of the group. With the right parameters and implementation decisions, an attaker may be

able to efficiently determine the Diffie-Hellman shared secret. In some cases, a passive attacker

may be able to break a transcript offline.

Small subgroup confinement attacks In a small subgroup confinement attack, an attacker (either

a man-in-the-middle or a malicious client or server) provides a key-exchange value y that lies in

a subgroup of small order. This forces the other party’s view of the shared secret, yx, to lie in

the subgroup generated by the attacker. This type of attack was described by van Oorschot and

33

Wiener [165] and ascribed to Vanstone and Anderson and Vaudenay [11]. Small subgroup confine-

ment attacks are possible even when the server does not repeat exponents—the only requirement is

that an implementation does not validate that received Diffie-Hellman key exchange values are in

the correct subgroup.

When working mod p, there is always a subgroup of order 2, since p−1 is even. A malicious

client Mallory could initiate a Diffie-Hellman key exchange value with Alice and send her the

value yM = p−1≡−1 mod p, which is is a generator of the group of order 2 mod p. When Alice

attempts to compute her view of the shared secret as ka = ya
M mod p, there are only two possible

values, 1 and −1 mod p.

The same type of attack works if p−1 has other small factors qi. Mallory can send a generator

gi of a group of order qi as her Diffie-Hellman key exchange value. Alice’s view of the shared secret

will be an element of the subgroup of order qi. Mallory then has a 1/qi chance of blindly guessing

Alice’s shared secret in this invalid group. Given a message from Alice encrypted using Alice’s

view of the shared secret, Mallory can brute force Alice’s shared secret in qi guesses.

More recently, Bhargavan and Delignat-Lavaud [21] describe “key synchronization” attacks

against IKEv2 where a man-in-the-middle connects to both the initiator and responder in different

connections, uses a small subgroup confinement attack against both, and observes that there is a 1/qi

probability of the shared secrets being the same in both connections. Bhargavan and Leurent [23]

describe several attacks that use subgroup confinement attacks to obtain a transcript collision and

break protocol authentication.

To protect against subgroup confinement attacks, implementations should use prime-order

subgroups with known subgroup order. Both parties must validate that the key exchange values they

receive are in the proper subgroup. That is, for a known subgroup order q, a received Diffie-Hellman

key exchange value y should satisfy yq ≡ 1 mod p. For a safe prime, it suffices to check that y is

strictly between 1 and p−1.

Small subgroup key recovery attacks Lim and Lee [113] discovered a further attack that arises

when an implementation fails to validate subgroup order and resues a static secret exponent for

34

multiple key exchanges. A malicious party may be able to perform multiple subgroup confinement

attacks for different prime factors qi of p− 1 and then use the Chinese remainder theorem to

reconstruct the static secret exponent.

The attack works as follows. Let p−1 have many small factors p−1 = q1q2 . . .qn. Mallory, a

malicious client, uses the procedure described in Section 3.1.1 to find a generator of the subgroup

gi of order qi mod p. Then Mallory transmits gi as her Diffie-Hellman key exchange value, and

receives a message encrypted with Alice’s view of the shared secret gxa
i , which Mallory can brute

force to learn the value of xa mod qi. Once Mallory has repeated this process several times, she can

use the Chinese remainder theorem to reconstruct xa mod ∏i qi. The running time of this attack is

∑i qi, assuming that Mallory performs an offline brute-force search for each subgroup.

A randomly chosen prime p is likely to have subgroups of large enough order that this attack

is infeasible to carry out for all subgroups. However, if in addition Alice’s secret exponent xa is

small, then Mallory only needs to carry out this attack for a subset of subgroups of orders q1, . . . ,qk

satisfying ∏
k
i=0 qi > xa, since the Chinese remainder theorem ensures that xa will be uniquely

defined. Mallory can also improve on the running time of the attack by taking advantage of the

Pollard lambda algorithm. That is, she could use a small subgroup attack to learn the value of

xa mod ∏
k
i=1 qi for a subset of subgroups ∏

k
i=1 qi < xa, and then use the Pollard lambda algorithm

to reconstruct the full value of a, as it has now been confined to a smaller interval.

In summary, an implementation is vulnerable to small subgroup key recovery attacks if it does

not verify that received Diffie-Hellman key exchange values are in the correct subgroup; uses a

prime p such that p−1 has small factors; and reuses Diffie-Hellman secret exponent values. The

attack is made even more practical if the implementation uses small exponents.

A related attack exists for elliptic curve groups: an invalid curve attack. Similarly to the case we

describe above, the attacker generates a series of elliptic curve points of small order and sends these

points as key exchange messages to the victim. If the victim does not validate that the received point

is on the intended curve, they return a response that reveals information about the secret key modulo

different group orders. After enough queries, the attacker can learn the victim’s entire secret. Jager,

35

Schwenk, and Somorovsky [90] examined eight elliptic curve implementations and discovered two

that failed to validate the received curve point. For elliptic curve groups, this attack can be much

more devastating because the attacker has much more freedom in generating different curves, and

can thus find many different small prime order subgroups. For the finite field Diffie-Hellman attack,

the attacker is limited only to those subgroups whose orders are factors of p−1.

3.2 TLS

TLS (Transport Layer Security) is a transport layer protocol designed to provide confidentiality,

integrity and (most commonly) one-side authentication for application sessions. It is widely used to

protect HTTP and mail protocols.

A TLS client initiates a TLS handshake with the ClientHello message. This message includes

a list of supported cipher suites, and a client random nonce rc. The server responds with a Server-

Hello message containing the chosen cipher suite and server random nonce rs, and a Certificate

message that includes the server’s X.509 certificate. If the server selects a cipher suite using

ephemeral Diffie-Hellman key exchange, the server additionally sends a ServerKeyExchange

message containing the server’s choice of Diffie-Hellman parameters p and g, the server’s Diffie-

Hellman public value ys = gxs mod p, a signature by the server’s private key over both the client

and server nonces (rc and rs), and the server’s Diffie-Hellman parameters (p, g, and ys). The client

then verifies the signature using the public key from the server’s certificate, and responds with a

ClientKeyExchange message containing the client’s Diffie-Hellman public value yc = gxc mod p.

The Diffie-Hellman shared secret Y = gxsxc mod p is used to derive encryption and MAC keys. The

client then sends ChangeCipherSpec and Finished messages. The Finished message contains a

hash of the handshake transcript, and is encrypted and authenticated using the derived encryption

and MAC keys. Upon decrypting and authenticating this message, the server verifies that the hash

of the transcript matches the expected hash. Provided the hash matches, the server then sends its

own ChangeCipherSpec and Finished messages, which the client then verifies. If either side

fails to decrypt or authenticate the Finished messages, or if the transcript hashes do not match, the

36

connection fails immediately [43].

TLS also specifies a mode of using Diffie-Hellman with fixed parameters from the server’s

certificate [142]. This mode is not forward secret, was never widely adopted, and has been removed

from all modern browsers due to dangerous protocol flaws [83]. The only widely used form of

Diffie-Hellman in TLS today is ephemeral Diffie-Hellman, described above.

3.2.1 Small Subgroup Attacks in TLS

Small subgroup confinement attacks A malicious TLS server can perform a variant of the small

subgroup attack against a client by selecting group parameters g and p such that g generates an

insecure group order. TLS versions prior to 1.3 give the server complete liberty to choose the group,

and they do not include any method for the server to specify the desired group order q to the client.

This means a client has no feasible way to validate that the group sent by the server has the desired

level of security or that a server’s key exchange value is in the correct group for a non-safe prime.

Similarly, a man in the middle with knowledge of the server’s long-term private signing key

can use a small subgroup confinement attack to more easily compromise perfect forward secrecy,

without having to rewrite an entire connection. The attack is similar to the those described by

Bhargavan and Delignat-Lavaud [21]. The attacker modifies the server key exchange message,

leaving the prime unchanged, but substituting a generator gi of a subgroup of small order qi for the

group generator and gi for the server’s key exchange value ys. The attacker then forges a correct

signature for the modified server key exchange message and passes it to the client. The client then

responds with a client key exchange message yc = gxc
i mod p, which the man-in-the-middle leaves

unchanged. The server’s view of the shared secret is then gxcxs
i mod p, and the client’s view of

the shared secret is gxc
i mod p. These views are identical when xs ≡ 1 mod qi, so this connection

will succeed with probability 1/qi. For small enough qi, this enables a man in the middle to use a

compromised server signing key to decrypt traffic from forward-secret ciphersuites with a reasonable

probability of success, while only requiring tampering with a single handshake message, rather than

having to actively rewrite the entire connection for the duration of the session.

Furthermore, if the server uses a static Diffie-Hellman key exchange value, then the attacker

37

can perform a small subgroup key-recovery attack as the client in order to learn the server’s static

exponent xs mod qi for the small subgroup. This enables the attacker to calculate a custom generator

such that the client and server views of the shared secret are always identical, raising the above

attack to a 100% probability of success.

Small subgroup key recovery attacks In TLS, the client must authenticate the handshake before

the server, by providing a valid Finished message. This forces a small subgroup key recovery

attack against TLS to be primarily online. To perform a Lim-Lee small subgroup key recovery

attack against a server static exponent, a malicious client initiates a TLS handshake and sends a

generator gi of a small subgroup of order qi as its client key exchange message yc. The server will

calculate Ys = gxs
i mod p as the shared secret. The server’s view of the shared secret is confined to

the subgroup of order qi. However, since gi and g generate separate subgroups, the server’s public

value ys = gx
s gives the attacker no information about the value of the shared secret Ys. Instead, the

attacker must guess a value for xs mod qi, and send the corresponding client Finished message. If

the server continues the handshake, the attacker learns that the guess is correct. Therefore, assuming

the server is reusing a static value for xs, the attacker needs to perform at most qi queries to learn

the server’s secret xs mod qi [113]. This attack is feasible if qi is small enough and the server reuses

Diffie-Hellman exponents for sufficiently many requests.

The attacker repeats this process for many different primes qi, and uses the Chinese remainder

theorem to combine them modulo the product of the primes qi. The attacker can also use the Pollard

lambda algorithm to reconstruct any remaining bits of the exponent [113].

We note that the TLS False Start extension allows the server to send application data before re-

ceiving the client’s authentication [108]. The specification only allows this behavior for abbreviated

handshakes, which do not include a full key exchange. If a full key exchange were allowed, the

fact that the server authenticates first would allow a malicious client to mount a mostly offline key

recovery attack.

38

3.2.2 OpenSSL

Prior to early 2015, OpenSSL defaulted to using static-ephemeral Diffie-Hellman values. Server

applications generate a fresh Diffie-Hellman secret exponent on startup, and reuse this exponent until

they are restarted. A server would be vulnerable to small subgroup attacks if it chose a DSA prime,

explicitly configured the dh->length parameter to generate a short exponent, and failed to set

SSL OP SINGLE DH USE to prevent repeated exponents. OpenSSL provides some test code for key

generation which configures DSA group parameters, sets an exponent length to the group order, and

correctly sets the SSL OP SINGLE DH USE to generate new exponents on every connection. We found

this test code widely used across many applications. We discovered that Unbound, a DNS resolver,

used the same parameters as the tests, but without setting SSL OP SINGLE DH USE, rendering them

vulnerable to a key recovery attack. A number of other applications including Lighttpd used the

same or similar code with non-safe primes, but correctly set SSL OP SINGLE DH USE.

In spring 2015, OpenSSL added explicit support for RFC 5114 groups [134], including the

ability for servers to specify a subgroup order in a set of Diffie-Hellman group parameters. When

the subgroup order is specified, the exponent length is automatically adjusted to match the subgroup

size. However, the update did not contain code to validate subgroup order for key exchange values,

leaving OpenSSL users vulnerable to precisely the key recovery attack outlined in Section 3.2.1.

We disclosed this vulnerability to OpenSSL in January 2016. The vulnerability was patched by

including code to validate subgroup order when a subgroup was specified in a set of Diffie-Hellman

parameters and setting SSL OP SINGLE DH USE by default [135]. Prior to this patch, any code using

OpenSSL for DSA-style Diffie-Hellman parameters was vulnerable to small subgroup attacks by

default.

Exim [57], a popular mail server that uses OpenSSL, provides a clear example of the fragile

situation created by this update. By default, Exim uses the RFC 5114 Group 23 parameters with

OpenSSL, does not set an exponent length, and does not set SSL OP SINGLE DH USE. In a blog

post, an Exim developer explains that because of “numerous issues with automatic generation of

DH parameters”, they added support for fixed groups specified in RFCs and picked Group 23 as

39

Application Crypto Short Exponent
Library Exponent Reuse

OpenSSH OpenSSL No No
Cerberus OpenSSL No Yes
GNU lsh GnuTLS No No
Dropbear LibTomCrypt No No
Lighttpd OpenSSL Yes No
Unbound OpenSSL Yes Yes
Exim OpenSSL Library Yes

dependent
Postfix OpenSSL No No

Table 3.1: Common application behavior — Applications make a diverse set of decisions on
how to handle Diffie-Hellman exponents, likely due to the plethora of conflicting, confusing, and
incorrect recommendations available.

the default [58]. Exim narrowly avoided being fully vulnerable to a key recovery attack by not

including the size of the subgroup generated by q in the Diffie-Hellman parameters that it passes

to OpenSSL. Had this been included, OpenSSL would have automatically shortened the exponent

length, leaving the server fully vulnerable to a key recovery attack. For this group, an attacker can

recover 130 bits of information about the secret exponent using 233 online queries, but this does not

allow the attacker to recover the server’s 2048-bit exponent modulo the correct 224-bit group order

q as the small subgroup orders qi are all relatively prime to q.

We looked at several other applications as well, but did not find them to be vulnerable to key

recovery attacks (Table 3.1).

3.2.3 Other Implementations

We examined the source code of multiple TLS implementations (Table 3.5). Prior to January

2016, no TLS implementations that we examined validated group order, even for the well-known

DSA primes from RFC 5114, leaving them vulnerable to small subgroup confinement attacks.

Most of the implementations we examined attempt to match exponent length to the perceived

strength of the prime. For example, Mozilla Network Security Services (NSS), the TLS library

used in the Firefox browser and some versions of Chrome [67, 138], uses NIST’s “comparable key

strength” recommendations on key management [14] to determine secret exponent lengths from

40

the length of the prime. [131] Thus NSS uses 160-bit exponents with a 1024-bit prime, and 224-bit

exponents with a 2048-bit prime. In fall 2015, NSS added an additional check to ensure that the

shared secret gxaxb 6≡ 1 mod p [126].

Several implementations go to elaborate lengths to match exponent length to perceived prime

strength. The Cryptlib library fits a quadratic curve to the small exponent attack cost table in the

original van Oorschot paper [165] and uses the fitted curve to determine safe key lengths [76]. The

Crypto++ library uses an explicit “work factor” calculation, evaluating the function 2.4n1/3(logn)2/3 [91].

Subgroup order and exponent lengths are set to twice the calculated work factor. The work factor

calculation is taken from a 1995 paper by Odlyzko on integer factorization [132]. Botan, a C++

cryptography and TLS library, uses a similar work factor calculation, derived from RFC 3766 [77],

which describes best practices as of 2004 for selecting public key strengths when exchanging

symmetric keys. RFC 3766 uses a similar work factor algorithm to Odlyzko, intended to model the

running time of the number-field sieve. Botan then doubles the length of the work factor to obtain

subgroup and exponent lengths [27].

3.2.4 Measurements

We used ZMap [52] to probe the public IPv4 address space for hosts serving three TLS-based

protocols: HTTPS, SMTP+STARTTLS, and POP3S. To determine which primes servers were

using, we sent a ClientHello message containing only ephemeral Diffie-Hellman cipher suites.

We combined this data with scans from Censys [47] to determine the overall population. The results

are summarized in Table 3.2.

In August 2016, we conducted additional scans of a random 1% sample of HTTPS hosts on the

Internet. First, we checked for nontrivial small subgroup attack vulnerability. For servers that sent us

a prime p such that p−1 was divisible by 7, we attempted a handshake using a client key exchange

value of g7 mod p, where g7 is a generator of a subgroup of order 7. (7 is the smallest prime factor

of p− 1 for Group 22.) When we send g7, we expect to correctly guess the PreMasterSecret

and complete the handshake with one seventh of hosts that do not validate subgroup order. In our

scan, we were able to successfully complete a handshake with 1477 of 10714 hosts that offered a

41

Number of hosts that use. . .

Protocol Scan
Date Total Hosts Diffie-Hellman Non-Safe

Primes
Static

Exponents
Static Exponents and

Non-Safe Primes

HTTPS 2/2016 40,578,754 10,827,565 1,661,856 964,356 309,891
POP3S 10/2015 4,368,656 3,371,616 26,285 32,215 25
SMTP 10/2015 3,426,360 3,036,408 1,186,322 30,017 932
SSH 10/2015 15,226,362 10,730,527 281 1,147 0
IKEv1 2/2016 2,571,900 2,571,900 340,300 109 0
IKEv2 2/2016 1,265,800 1,265,800 177,000 52 0

Table 3.2: IPv4 non-safe prime and static exponent usage — Although non-safe primes see
widespread use across most protocols, only a small number of hosts reuse exponents and use
non-safe primes; these hosts are prime candidates for a small subgroup key recovery attack.

Key Exchange Value Support DHE Accepted

0 mod p 143.5 K 87
1 mod p 142.2 K 4.9 K
−1 mod p 143.5 K 7.6 K
g7 mod p 10.7 K 1.5 K

Table 3.3: TLS key exchange validation — We performed a 1% HTTPS scan in August 2016 to
check if servers validated received client key exchange values, offering generators of subgroups
of order 1, 2 and 7. Our baseline DHE support number counts hosts willing to negotiate a DHE
key exchange, and in the case of g7, if p− 1 is divisible by 7. We count hosts as “Accepted” if
they reply to the ClientKeyExchange message with a Finished message. For g7, we expect this
to happen with probability 1/7, suggesting that nearly all of the hosts in our scan did not validate
subgroup order.

prime such that p−1 was divisible by 7, implying that approximately 96% of these hosts fail to

validate subgroup order six months after OpenSSL pushed a patch adding group order validation for

correctly configured groups.

Second, we measured how many hosts performed even the most basic validation of key exchange

values. We attempted to connect to HTTPS hosts with the client key exchange values of yc =

0 mod p,1 mod p,−1 mod p. As Table 3.3 shows, we found that over 5% of hosts that accepted

DHE ciphersuites accepted the key exchange value of−1 mod p and derived the PreMasterSecret

from it. These implementations are vulnerable to a trivial version of the small subgroup confinement

attacks described in Section 3.2.1, for any prime modulus p. By examining the default web pages

of many of these hosts, we identified products from several notable companies including Microsoft,

42

Cisco, and VMWare. When we disclosed these findings, VMWare notified us that they had already

applied the fix in the latest version of their products; Microsoft acknowledged the missing checks

but chose not to include them since they only use safe primes, and adding the checks may break

functionality for some clients that were sending unusual key exchange values; and Cisco informed

us that they would investigate the issue.

Of 40.6 M total HTTPS hosts found in our scans, 10.8 M (27%) supported ephemeral Diffie-

Hellman, of which 1.6 M (4%) used a non-safe prime, and 309 K (0.8%) used a non-safe prime and

reused exponents across multiple connections, making them likely candidates for a small subgroup

key recovery attack. We note that the numbers for hosts reusing exponents are an underestimate,

since we only mark hosts as such if we found them using the same public Diffie-Hellman value

across multiple connections, and some load balancers that cycle among multiple values might have

evaded detection.

While 77% of POP3S hosts and 39% of SMTP servers used a non-safe prime, a much smaller

number used a non-safe prime and reused exponents (¡0.01% in both protocols), suggesting that the

popular implementations (Postfix and Dovecot [48]) that use these primes follow recommendations

to use ephemeral Diffie-Hellman values with DSA primes.

Table 3.6 shows nine groups that accounted for the majority of non-safe primes used by hosts in

the wild. Over 1.17 M hosts across all of our HTTPS scans negotiated Group 22 in a key exchange.

To get a better picture of which implementations provide support for this group, we examined the

default web pages of these hosts to identify companies and products, which we show in Table 3.4.

Of the the 307 K HTTPS hosts that both use non-safe primes and reuse exponents, 277 K (90%)

belong to hosts behind Amazon’s Elastic Load Balancer [9]. These hosts use a 1024-bit prime with

a 160-bit subgroup. We set up our own load balancer instance and found that the implementation

failed to validate subgroup order. We were able to use a small-subgroup key recovery attack to

compute 17 bits of our load balancer’s private Diffie-Hellman exponent xs in only 3813 queries. We

responsibly disclosed this vulnerability to Amazon. Amazon informed us that they have removed

Diffie-Hellman from their recommended ELB security policy, and are encouraging customers to use

43

Company Product(s) Count

Ubiquiti Networks airOS/EdgeOS 272,690
Cisco DPC3848VM Gateway 65,026
WatchGuard Fireware XTM 62,682
Supermicro IPMI 42,973
ASUS AiCloud 39,749
Electric Sheep Fencing pfSense 14,218
Bouygues Telecom Bbox 13,387
Other — 135,432

Table 3.4: HTTPS support for RFC5114 Group 22 — In a 100% HTTPS scan performed in
October 2016, we found that of the 12,835,911 hosts that accepted Diffie-Hellman key exchange,
901,656 used Group 22. We were able to download default web pages for 646,157 of these hosts,
which we examined to identify companies and products.

the latest policy. In May 2016, we performed additional scans and found that 88% of hosts using

this prime no longer repeated exponents. We give a partial factorization for p−1 in Table 3.12;

the next largest subgroups have 61 and 89 bits and an offline attack against the remaining bits of a

160-bit exponent would take 271 time. For more details on the computation, see Section 3.5.

SSLeay [55], a predecessor for OpenSSL, includes several default Diffie-Hellman primes,

including a 512-bit prime. We found that 717 SMTP servers used a version of the OpenSSL 512-bit

prime with a single character difference in the hexadecimal representation. The resulting modulus

that these servers use for their Diffie-Hellman key exchange is no longer prime. We include the

factorization of this modulus along with the factors of the resulting group order in Table 3.12. The

use of a composite modulus further decreases the work required to perform a small subgroup attack.

Although TLS also includes static Diffie-Hellman cipher suites that require a DSS certificate, we

did not include them in our study; no browser supports static Diffie-Hellman [83], and Censys shows

no hosts with DSS certificates, with only 652 total hosts with non-RSA or ECDSA certificates.

44

Im
pl

em
en

ta
tio

n
R

FC
51

14
Su

pp
or

t
A

llo
w

sS
ho

rt
E

xp
on

en
ts

R
eu

se
sE

xp
on

en
ts

Va
lid

at
es

Su
bg

ro
up

M
oz

ill
a

N
SS

N
o

Y
es

,h
ar

dc
od

ed
N

o
g
≤

2
O

pe
nJ

D
K

N
o

Y
es

,u
se

s
m

ax
of

p
si

ze
/2

an
d

38
4

N
o

g
≤

2
O

pe
nS

SL
1.

0.
2

Y
es

Y
es

,i
fq

se
to

ri
fu

se
rs

et
s

a
sh

or
te

rl
en

gt
h

D
ef

au
lt

un
til

Ja
n

’1
6

Y
es

,a
s

of
Ja

n
’1

6
B

ou
nc

yC
as

tle
Y

es
N

o
A

pp
lic

at
io

n
de

pe
nd

en
t

g
≤

2
C

ry
pt

lib
N

o
Y

es
,u

se
s

qu
ad

ra
tic

cu
rv

e
ca

lc
ul

at
io

n
A

pp
lic

at
io

n
de

pe
nd

en
t

g
≤

2
lib

To
m

C
ry

pt
N

o
Y

es
,h

ar
dc

od
ed

A
pp

lic
at

io
n

de
pe

nd
en

t
N

o
C

ry
pt

oP
P

N
o

Y
es

,u
se

s
w

or
k

fa
ct

or
ca

lc
ul

at
io

n
A

pp
lic

at
io

n
de

pe
nd

en
t

N
o

B
ot

an
Y

es
Y

es
,u

se
s

w
or

k
fa

ct
or

ca
lc

ul
at

io
n

N
o

N
o

G
nu

T
L

S
A

pp
lic

at
io

n
de

pe
nd

en
t

Y
es

,r
es

tr
ic

ts
to

q
si

ze
(m

ax
25

6)
A

pp
lic

at
io

n
de

pe
nd

en
t

g
≤

2

Ta
bl

e
3.

5:
T

L
S

L
ib

ra
ry

B
eh

av
io

r—
W

e
ex

am
in

ed
po

pu
la

r
T

L
S

lib
ra

ri
es

to
de

te
rm

in
e

w
hi

ch
w

ea
kn

es
se

s
fr

om
Se

ct
io

n
3.

1.
6

w
er

e
pr

es
en

t.
R

eu
se

of
ex

po
ne

nt
s

of
te

n
de

pe
nd

s
on

th
e

us
e

of
th

e
lib

ra
ry

;t
he

bu
rd

en
is

on
th

e
ap

pl
ic

at
io

n
de

ve
lo

pe
rt

o
ap

pr
op

ria
te

ly
re

ge
ne

ra
te

ex
po

ne
nt

s.
B

ot
an

an
d

lib
To

m
C

ry
pt

bo
th

ha
rd

co
de

th
ei

ro
w

n
cu

st
om

gr
ou

ps
,w

hi
le

G
nu

T
L

S
al

lo
w

s
us

er
s

to
sp

ec
if

y
th

ei
ro

w
n

pa
ra

m
et

er
s.

G
ro

up
H

os
tC

ou
nt

s

So
ur

ce
Pr

im
e

Si
ze

Su
bg

ro
up

Si
ze

H
T

T
PS

SM
T

P
PO

P3
S

SS
H

R
FC

51
14

G
ro

up
22

10
24

16
0

1,
17

3,
14

7
14

5
86

0
A

m
az

on
L

oa
d

B
al

an
ce

r
10

24
16

0
27

7,
85

8
0

1
0

JD
K

76
8

16
0

14
6,

49
1

67
1

16
,5

15
0

JD
K

10
24

16
0

52
,7

26
2,

44
5

9,
51

0
0

R
FC

51
14

G
ro

up
24

20
48

25
6

3,
54

3
5

0
6

JD
K

20
48

22
4

98
2

12
20

0
E

ps
on

D
ev

ic
e

10
24

<
94

8
37

2
0

0
0

R
FC

51
14

G
ro

up
23

20
48

22
4

37
1

1,
14

0,
36

3
2

0
M

is
ty

pe
d

O
pe

nS
SL

51
2

51
2

49
7

0
71

7
0

0

O
th

er
N

on
-S

af
e

Pr
im

es
—

—
6,

36
6

41
,9

64
15

1
27

5
Sa

fe
Pr

im
es

—
—

9,
16

5,
70

9
1,

85
0,

08
6

3,
34

5,
33

1
10

,7
30

,2
46

To
ta

l
10

,8
27

,5
65

3,
03

6,
40

8
3,

37
1,

61
6

10
,7

30
,5

27

Ta
bl

e
3.

6:
IP

v4
to

p
no

n-
sa

fe
pr

im
es

—
N

in
e

no
n-

sa
fe

pr
im

es
ac

co
un

tf
or

th
e

m
aj

or
ity

of
ho

st
s

us
in

g
no

n-
sa

fe
pr

im
es

.

45

3.3 IPsec

IPsec is a set of Layer-3 protocols which add confidentiality, data protection, sender authenti-

cation, and access control to IP traffic. IPsec is commonly used to implement VPNs. IPsec uses

the Internet Key Exchange (IKE) protocol to determine the keys used to secure a session. IPsec

may use IKEv1 [79] or IKEv2 [99]. While IKEv2 is not backwards-compatible with IKEv1, the

two protocols are similar in message structure and purpose. Both versions use Diffie-Hellman to

negotiate shared secrets. The groups used are limited to a fixed set of pre-determined choices, which

include the DSA groups from RFC 5114, each assigned a number by IANA [99, 100, 111].

IKEv1 IKEv1 [79, 118, 140] has two basic methods for authenticated key exchange: Main Mode

and Aggressive Mode. Main Mode requires six messages to establish the requisite state. The

initiator sends a Security Association (SA) payload, containing a selection of cipher suites and

Diffie-Hellman groups they are willing to negotiate. The responder selects a cipher and responds

with its own SA payload. After the cipher suite is selected, the initiator and responder both transmit

Key Exchange (KE) payloads containing public Diffie-Hellman values for the chosen group. At

this point, both parties compute shared key materials, denoted SKEYID. When using signatures for

authentication, SKEYID is computed SKEYID= prf(Ni|Nr,gxixr). For the other two authentication

modes, pre-shared key and public-key encryption, SKEYID is derived from the pre-shared key and

session cookies, respectively, and does not depend on the negotiated Diffie-Hellman shared secret.

Each party then in turn sends an authentication message (AUTH) derived from a hash over SKEYID

and the handshake. The authentication messages are encrypted and authenticated using keys derived

from the Diffie-Hellman secret gxixr . The responder only sends her AUTH message after receiving

and validating the initiator’s AUTH message.

Aggressive Mode operates identically to Main Mode, but in order to reduce latency, the ini-

tiator sends SA and KE messages together, and the responder replies with its SA, KE, and AUTH

messages together. In aggressive mode, the responder sends an authentication message first, and the

authentication messages are not encrypted.

46

IKEv2 IKEv2 [98, 99] combines the SA and KE messages into a single message. The initiator

provides a best guess ciphersuite for the KE message. If the responder accepts that proposal and

chooses not to renegotiate, the responder replies with a single message containing both SA and

KE payloads. Both parties then send and verify AUTH messages, starting with the initiator. The

authentication messages are encrypted using session keys derived from the SKEYSEED value which

is derived from the negotiated Diffie-Hellman shared secret. The standard authentication modes use

public-key signatures over the handshake values.

3.3.1 Small Subgroup Attacks in IPsec

There are several variants of small subgroup attacks against IKEv1 and IKEv2. We describe the

attacks against these protocols together in this section.

Small subgroup confinement attacks First, consider attacks that can be carried out by an attack-

ing initiator or responder. In IKEv1 Main Mode and in IKEv2, either peer can carry out a small

subgroup confinement attack against the other by sending a generator of a small subgroup as its key

exchange value. The attacking peer must then guess the other peer’s view of the Diffie-Hellman

shared secret to compute the session keys to encrypt its authentication message, leading to a mostly

online attack. However, in IKEv1 Aggressive Mode, the responder sends its AUTH message before

the initiator, and this value is not encrypted with a session key. If signature authentication is being

used, the SKEYID and resulting hashes are derived from the Diffie-Hellman shared secret, so the

initiator can perform an offline brute-force attack against the responder’s authentication message to

learn their exponent in the small subgroup.

Now, consider a man-in-the-middle attacker. Bhargavan, Delignat-Lavaud, and Pironti [21]

describe a transcript synchronization attack against IKEv2 that relies on a small subgroup confine-

ment attack. A man-in-the-middle attacker initiates simultaneous connections with an initiator and

a responder using identical nonces, and sends a generator gi for a subgroup of small order qi to each

as its KE message. The two sides have a 1/qi chance of negotiating an identical shared secret, so an

authentication method depending only on nonces and shared secrets could be forwarded, and the

session keys would be identical.

47

If the attacker also has knowledge of the secrets used for authentication, more attacks are

possible. Similar to the attack described for TLS, such an attacker can use a small subgroup

confinement attack to force a connection to use weak encryption. The attacker only needs to

rewrite a small number of handshake messages; any further encrypted communications can then be

decrypted at leisure without requiring the man-in-the-middle attacker to continuously rewrite the

connection. We consider a man-in-the-middle attacker who modifies the key exchange message

from both the initiator and the responder to substitute a generator gi of a subgroup of small order

qi. The attacker must then replace the handshake authentication messages, which would require

knowledge of the long-term authentication secret. We describe this attack for each of pre-shared

key, signatures, and public-key authentication.

For pre-shared key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and IKEv2,

the man-in-the-middle attacker must only know the pre-shared key to construct the authentication

hash; the authentication message does not depend on the negotiated Diffie-Hellman shared secret.

With probability 1/qi, the two parties will agree on the Diffie-Hellman shared secret. The attacker

can then brute force this value after viewing messages encrypted with keys derived from it.

For signature authentication in IKEv1 Main Mode and in IKEv2, the signed hash transmitted

from each side is derived from the nonces and the negotiated shared secret, which is confined

to one of qi possible values. The attacker must know the private signing keys for both initiator

and responder and brute force SKEYID from the received signature in order to forge the modified

authentication signatures on each side. The communicating parties will have a qi chance of agreeing

on the same value for the shared secret to allow the attack to succeed. For IKEv1 Aggressive

Mode, the attack can be made to succeed every time. The responder’s key exchange message is

sent together with their signature which depends on the negotiated shared secret, so the man-in-the-

middle attacker can brute force the qi possible values of the responders private key xr and replace the

responder’s key exchange message with qxr
i , forging an appropriate signature with their knowledge

of the signing key.

For public key authentication in IKEv1 Main Mode, IKEv1 Aggressive Mode, and IKEv2, the

48

attacker must know the private keys corresponding to the public keys used to encrypt the ID and

nonce values on both sides in order to forge a valid authentication hash. Since the authentication

does not depend on the shared Diffie-Hellman negotiated value, a man-in-the-middle attacker must

then brute force the negotiated shared key once they receives a message encrypted with the derived

key. The two parties will agree on their view of the shared key with probability 1/qi, allowing the

attack to succeed.

Small subgroup key recovery attacks Similar to TLS, an IKE responder that reuses private

exponents and does not verify that the initiator key exchange values are in the correct subgroup

is vulnerable to a small subgroup key recovery attack. The most recent version of the IKEv2

specification has a section discussing reuse of Diffie-Hellman exponents, and states that “because

computing Diffie-Hellman exponentials is computationally expensive, an endpoint may find it

advantageous to reuse those exponentials for multiple connection setups” [99]. Following this

recommendation could leave a host open to a key recovery attack, depending on how exponent

reuse is implemented. A small subgroup key recovery attack on IKE would be primarily offline for

IKEv1 with signature authentication and for IKEv2 against the initiator.

For each subgroup of order qi, the attacker’s goal is to obtain a responder AUTH message, which

depends on the secret chosen by the responder. If an AUTH message can be obtained, the attacker

can brute-force the responder’s secret within the subgroup offline. This is possible if the server

supports IKEv1 Aggressive Mode, since the server authenticates before the client, and signature

authentication produces a value dependent on the negotiated secret. In all other IKE modes, the

client authenticates first, leading to an online attack. The flow of the attack is identical to TLS; for

more details see Section 3.2.

Ferguson and Schneier [59] describe a hypothetical small-subgroup attack against the initiator

where a man-in-the-middle attacker abuses undefined behavior with respect to UDP packet retrans-

missions. A malicious party could “retransmit” many key exchange messages to an initiator and

potentially receive a different authentication message in response to each, allowing a mostly offline

key recovery attack.

49

3.3.2 Implementations

We examined several open-source IKE implementations to understand server behavior. In

particular, we looked for implementations that generate small Diffie-Hellman exponents, repeat

exponents across multiple connections, or do not correctly validate subgroup order. Despite the

suggestion in IKEv2 RFC 7296 to reuse exponents [99], none of the implementations that we

examined reused secret exponents.

All implementations we reviewed are based on FreeS/WAN [61], a reference implementation of

IPSec. The final release of FreeS/Wan, version 2.06, was released in 2004. Version 2.04 was forked

into Openswan [136] and strongSwan [158], with a further fork of Openswan into Libreswan [112]

in 2012. The final release of FreeS/WAN used constant length 256-bit exponents but did not support

RFC 5114 DSA groups, offering only the Oakley 1024-bit and 1536-bit groups that use safe primes.

50

C
lie

nt
ke

y
ex

ch
an

ge
pu

bl
ic

va
lu

es
of

fe
re

d.
..

Pr
ot

oc
ol

G
ro

up
sO

ff
er

ed
Su

pp
or

t
1

m
od

p
−

1
m

od
p

g s
m

od
p

IK
E

v1
G

ro
up

22
33

2.
4

K
82

.6
K

78
.5

K
33

2.
4

K
G

ro
up

23
33

3.
4

K
82

.5
K

82
.5

K
33

3.
4

K
G

ro
up

24
37

9.
8

K
93

.9
K

95
.2

K
37

9.
8

K
B

as
el

in
e

(G
ro

up
s

2,
14

,2
2,

23
,2

4)
11

39
.3

K
–

–
–

IK
E

v2
G

ro
up

22
18

2.
1

K
55

3
55

3
18

1.
9

K
G

ro
up

23
18

1.
9

K
54

2
55

0
18

0.
1

K
G

ro
up

24
21

3.
0

K
22

45
21

73
20

0.
0

K
B

as
el

in
e

(G
ro

up
s

2,
14

,1
9,

20
,2

2,
23

,2
4)

12
03

.7
K

–
–

–

Ta
bl

e
3.

7:
IK

E
gr

ou
p

su
pp

or
ta

nd
va

lid
at

io
n

—
W

e
m

ea
su

re
d

su
pp

or
tf

or
R

FC
51

14
D

SA
gr

ou
ps

in
IK

E
v1

an
d

IK
E

v2
an

d
te

st
fo

rk
ey

ex
ch

an
ge

va
lid

at
io

n
by

pe
rf

or
m

in
g

a
se

rie
s

of
10

0%
IP

v4
sc

an
s

in
O

ct
ob

er
20

16
.F

or
G

ro
up

23
,g

s
is

a
ge

ne
ra

to
ro

fa
su

bg
ro

up
w

ith
or

de
r

3,
an

d
fo

rG
ro

up
s

22
an

d
24

,g
s

is
a

ge
ne

ra
to

ro
fa

su
bg

ro
up

of
or

de
r7

.

51

Openswan does not generate keys with short exponents. By default, RFC 5114 groups are not

supported, although there is a compile-time option that can be explicitly set to enable support for

DSA groups. strongSwan both supports RFC 5114 groups and has explicit hard-coded exponent

sizes for each group. The exponent size for each of the RFC 5114 DSA groups matches the subgroup

size. However, these exponent sizes are only used if the dh exponent ansi x9 42 configuration

option is set. It also includes a routine inside an #ifdef that validates subgroup order by checking

that gq ≡ 1 mod p, but validation is not enabled by default. Libreswan uses Mozilla Network

Security Services (NSS) [138] to generate Diffie-Hellman keys. As discussed in Section 3.2.3, NSS

generates short exponents for Diffie-Hellman groups. Libreswan was forked from Openswan after

support for RFC 5114 was added, and retains support for those groups if it is configured to use

them.

Although none of the implementations we examined were configured to reuse Diffie-Hellman ex-

ponents across connections, the failure to validate subgroup orders even for the pre-specified groups

renders these implementations fragile to future changes and vulnerable to subgroup confinement

attacks.

Several closed source implementations also provide support for RFC 5114 Group 24. These

include Cisco’s IOS [34], Juniper’s Junos [93], and Windows Server 2012 R2 [124]. We were

unable to examine the source code for these implementations to determine whether or not they

validate subgroup order.

3.3.3 Measurements

We performed a series of Internet scans using ZMap to identify IKE responders. In our analysis,

we only consider hosts that respond to our ZMap scan probes. Many IKE hosts that filter their

connections based on IP are excluded from our results. We further note that, depending on VPN

server configurations, some responders may continue with a negotiation that uses weak parameters

until they are able to identify a configuration for the connecting initiator. At that point, they might

reject the connection. As an unauthenticated initiator, we have no way of distinguishing this

behavior from the behaviour of a VPN server that legitimately accepts weak parameters. For a

52

more detailed explanation of possible IKE responder behaviors in response to scanning probes, see

Wouters [168].

In October 2016, we performed a series of scans offering the most common cipher suites and

group parameters we found in implementations to establish a baseline population for IKEv1 and

IKEv2 responses. For IKEv1, the baseline scan offered Oakley groups 2 and 14 and RFC 5114

groups 22, 23, and 24 for the group parameters; SHA1 or SHA256 for the hash function; pre-shared

key or RSA signatures for the authentication method; and AES-CBC, 3DES, and DES for the

encryption algorithm. Our IKEv2 baseline scan was similar, but also offered the 256-bit and 384-bit

ECP groups and AES-GCM for authenticated encryption.

On top of the baseline scans, we performed additional scans to measure support for the non-safe

RFC 5114 groups and for key exchange parameter validation. Table 3.7 shows the results of the

October IKE scans. For each RFC 5114 DSA group, we performed four handshakes with each host;

the first tested for support by sending a valid client key exchange value, and the three others tested

values that should be rejected by a properly-validating host. We did not scan using the key exchange

value 0 because of a vulnerability present in unpatched Libreswan and Openswan implementations

that causes the IKE daemon to restart when it receives such a value [37].

We considered a host to accept our key exchange value if after receiving the value, it continued

the handshake without any indication of an error. We found that 33.2% of IKEv1 hosts and 17.7%

of IKEv2 hosts that responded to our baseline scans supported using one of the RFC 5114 groups,

and that a surprising number of hosts failed to validate key exchange values. 24.8% of IKEv1 hosts

that accepted Group 23 with a valid key exchange value also accepted 1 mod p or −1 mod p as a

key exchange value, even though this is explicitly warned against in the RFC [137]. This behavior

leaves these hosts open to a small subgroup confinement attack even for safe primes, as described in

Section 3.1.6.

For safe groups, a check that the key exchange value is strictly between 1 and p−1 is sufficient

validation. However, when using non-safe DSA primes, it is also necessary to verify that the

key exchange value lies within the correct subgroup (i.e., yq ≡ 1 mod p). To test this case, we

53

constructed a generator of a subgroup that was not the intended DSA subgroup, and offered that as

our key exchange value. We did not find any IKEv1 hosts that rejected this key exchange value after

previously accepting a valid key exchange value for the given group. For IKEv2, the results were

similar with the exception of Group 24, where still over 93% of hosts accepted this key exchange

value. This suggests that almost no hosts supporting DSA groups are correctly validating subgroup

order.

We observed that across all of the IKE scans, 109 IKEv1 hosts and 52 IKEv2 hosts repeated

a key exchange value. This may be due to entropy issues in key generation rather than static

Diffie-Hellman exponents; we also found 15,891 repeated key exchange values across different IP

addresses. We found no hosts that used both repeated key exchange values and non-safe groups.

We summarize these results in Table 3.2.

3.4 SSH

SSH contains three key agreement methods that make use of Diffie-Hellman. The “Group 1”

and “Group 14” methods denote Oakley Group 2 and Oakley Group 14, respectively [169]. Both

of these groups use safe primes. The third method, “Group Exchange”, allows server to select

a custom group [64]. The group exchange RFC specifies that all custom groups should use safe

primes. Despite this, RFC 5114 notes that group exchange method allows for its DSA groups in

SSH, and advocates for their immediate inclusion [111].

In all Diffie-Hellman key agreement methods, after negotiating cipher selection and group

parameters, the SSH client generates a public key exchange value yc = gxc mod p and sends it to

the server. The server computes its own Diffie-Hellman public value ys = gxs mod p and sends it to

the client, along with a signature from its host key over the resulting shared secret Y = gxsxc mod p

and the hash of the handshake so far. The client verifies the signature before continuing.

3.4.1 Small Subgroup Attacks in SSH

Small subgroup confinement attacks An SSH client could execute a small subgroup confinement

attack against an SSH server by sending a generator gi for a subgroup of small order qi as its

54

Key Exchange Value Handshake Initiated Accepted

0 mod p 175.6 K 5.7 K
1 mod p 175.0 K 43.9 K
−1 mod p 176.0 K 59.0 K

Table 3.8: SSH validation — In a 1% SSH scan performed in February 2016, we sent the key
exchange values yc = 0,1 and p−1. We count hosts as having initiated a handshake if they send
a SSH MSG KEX DH GEX GROUP, and we count hosts as “Accepted” if they reply to the client key
exchange message with a SSH MSG KEX DH GEX REPLY.

client key exchange, and immediately receive the server’s key exchange gxs mod p together with

a signature that depends on the server’s view of the shared secret Ys = gxs
i mod p. For small qi,

this allows the client to brute force the value of xs mod qi offline and compare to the server’s

signed handshake to learn the correct value of xs mod qi. To avoid this, the SSH RFC specifically

recommends using safe primes, and to use exponents at least twice the length of key material derived

from the shared secret [64].

If client and server support Diffie-Hellman group exchange and the server uses a non-safe prime,

a man in the middle with knowledge of the server’s long-term private signing key can use a small

subgroup confinement attack to man-in-the-middle the connection without having to rewrite every

message. The attack is similar to the case of TLS: the man in the middle modifies the server group

and key exchange messages, leaving the prime unchanged, but substituting a generator gi of a

subgroup of small order qi for the group generator and gi for the server’s key exchange value ys.

The client then responds with a client key exchange message yc = gxc
i mod p, which the man in the

middle leaves unchanged. The attacker then forges a correct signature for the modified server group

and key exchange messages and passes it to the client. The server’s view of the shared secret is

gxcxs
i mod p, and the client’s view of the shared secret is gxc

i mod p. As in the attack described for

TLS, these views are identical when xs ≡ 1 mod qi, so this connection will succeed with probability

1/qi. For a small enough qi, this enables a man in the middle to use a compromised server signing

key to decrypt traffic with a reasonable probability of success, while only requiring tampering with

the initial handshake messages, rather than having to actively rewrite the entire connection for the

duration of the session.

55

Small subgroup key recovery attacks Since the server immediately sends a signature over the

public values and the Diffie-Hellman shared secret, an implementation using static exponents and

non-safe primes that is vulnerable to a small subgroup confinement attack would also be vulnerable

to a mostly offline key recovery attack, as a malicious client would only need to send a single key

exchange message per subgroup.

3.4.2 Implementations

Censys [47] SSH banner scans show that the two most common SSH server implementations

are Dropbear and OpenSSH. Dropbear group exchange uses hard-coded safe prime parameters

from the Oakley groups and validates that client key exchange values are greater than 1 and less

than p−1. While OpenSSH only includes safe primes by default, it does provide the ability to add

additional primes and does not provide the ability to specify subgroup orders. Both OpenSSH and

Dropbear generate fresh exponents per connection.

We find one SSH implementation, Cerberus SFTP server (FTP over SSH), repeating server

exponents across connections. Cerberus uses OpenSSL, but fails to set SSL OP SINGLE DH USE,

which was required to avoid exponent reuse prior to OpenSSL 1.0.2f.

3.4.3 Measurements

Of the 15.2 M SSH servers on Censys, of which 10.7 M support Diffie-Hellman group exchange,

we found that 281 used a non-safe prime, and that 1.1 K reused Diffie-Hellman exponents. All

but 26 of the hosts that reused exponents had banners identifying the Cerberus SFTP server. We

encountered no servers that both reused exponents and used non-safe primes.

We performed a scan of 1% of SSH hosts in February 2016 offering the key exchange values of

yc = 0 mod p,1 mod p and p−1 mod p. As Table 3.8 shows, 33% of SSH hosts failed to validate

group order when we sent the key exchange value p−1 mod p. Even when safe groups are used,

this behaviour allows an attacker to learn a single bit of the private exponent, violating the decisional

Diffie-Hellman assumption and leaving the implementation open to a small subgroup confinement

attack (Section 3.2.1).

56

3.5 Factoring Group Orders of Non-Safe Primes

Across all scans, we collected 41,847 unique groups with non-safe primes. To measure the

extent to which each group would facilitate a small subgroup attack in a vulnerable implementation,

we attempted to factor (p− 1)/2. We used the GMP-ECM [172] implementation of the elliptic

curve method for integer factorization on a local cluster with 288 cores over a several-week period

to opportunistically find small factors of the group order for each of the primes.

Given a group with prime p and a generator g, we can check whether the generator generates

the entire group or generates a subgroup by testing whether gqi ≡ 1 mod p for each factor qi of

(p− 1)/2. When gqi ≡ 1 mod p, then if qi is prime, we know that qi is the exact order of the

subgroup generated by g; otherwise qi is a multiple of the order of the subgroup. We show the

distribution of group order for groups using non-safe primes in Table 3.11. We were able to

completely factor p− 1 for 4,701 primes. For the remaining primes, we did not obtain enough

factors of (p−1)/2 to determine the group order.

Of the groups where we were able to deduce the exact subgroup orders, several thousand had a

generator for a subgroup that was either 8, 32, or 64 bits shorter than the prime itself. Most of these

were generated by the Xlight FTP server, a closed-source implementation supporting SFTP. It is not

clear whether this behavior is intentional or a bug in an implementation intending to generate safe

primes. Primes of this form would lead to a more limited subgroup confinement or key recovery

attack.

Given the factorization of (p−1)/2, and a limit for the amount of online and offline work an

attacker is willing to invest, we can estimate the vulnerability of a given group to a hypothetical

small subgroup key recovery attack. For each subgroup of order qi, where qi is less than the online

work limit, we can learn qi bits of the secret key via an online brute-force attack over all elements

of the subgroup. To recover the remaining bits of the secret key, an attacker could use the Pollard

lambda algorithm, which runs in time proportional to the square root of the remaining search space.

If this runtime is less than the offline work limit, we can recover the entire secret key. We give work

estimates for the primes we were able to factor and the number of hosts that would be affected by

57

Work (bits) HTTPS MAIL SSH

Exponent Online Offline Groups Hosts Groups Hosts Groups Hosts

160 20 30 3 2 3 7 0 0
160 30 45 517 1,996 1963 1,143,524 11 10
160 40 60 3,701 8,495 13,547 1,159,853 109 68
224 20 30 0 0 0 0 0 0
224 30 45 2 2 14 16 0 0
224 40 60 307 691 1039 1,141,840 3 1
256 20 30 0 0 0 0 0 0
256 30 45 0 0 1 1 0 0
256 40 60 42 478 180 1,140,668 0 0

Table 3.9: Full key recovery attack complexity — We estimate the amount of work required to
carry out a small subgroup key recovery attack, and show the prevalence of those groups in the wild.
Hosts are vulnerable if they reuse exponents and fail to check subgroup order.

Group Exponent Size Online Work Offline Work

Group 22 160 8 72
Group 23 224 33 47
Group 24 256 32 94

Table 3.10: Attacking RFC 5114 groups — We show the log of the amount of work in bits
required to perform a small subgroup key recovery attack against a server that both uses a static
Diffie-Hellman exponent of the same size as the subgroup order and fails to check group order.

such a hypothetical attack in Table 3.9.

The DSA groups introduced in RFC 5114 [111] are of particular interest. We were able to

completely factor (p−1)/2 for both Group 22 and Group 24, and found several factors for Group

23. We give these factorizations in Table 3.12. In Table 3.10, we show the amount of online and

offline work required to recover a secret exponent for each of the RFC 5114 groups. In particular,

an exponent of the recommended size used with Group 23 is fully recoverable via a small subgroup

attack with 33 bits of online work and 47 bits of offline work.

58

Pr
im

e
E

xa
ct

O
rd

er
K

no
w

n
E

xa
ct

O
rd

er
U

nk
no

w
n

lg
(p
)

16
0

bi
ts

22
4

bi
ts

25
6

bi
ts

30
0

bi
ts

lg
(p
)
−

8
lg
(p
)
−

32
lg
(p
)
−

64
U

nl
ik

el
y

D
SA

L
ik

el
y

D
SA

51
2

3
0

0
0

5
0

0
76

0
43

76
8

4
0

0
4

2,
68

5
0

0
22

0
1,

40
2

10
24

29
0

0
0

32
3

94
4

17
6

1,
55

9
26

,8
81

20
48

0
1

1
0

0
0

0
1,

12
8

4,
89

0
30

72
0

0
0

0
0

5
0

9
15

2
40

96
4

0
0

0
0

0
0

20
18

3
81

92
0

0
0

0
0

0
0

0
1

O
th

er
0

0
0

0
0

0
0

40
0

15

Ta
bl

e
3.

11
:D

is
tr

ib
ut

io
n

of
or

de
rs

fo
r

gr
ou

ps
w

ith
no

n-
sa

fe
pr

im
es

—
Fo

rg
ro

up
s

fo
rw

hi
ch

w
e

w
er

e
ab

le
to

de
te

rm
in

e
th

e
su

bg
ro

up
or

de
re

xa
ct

ly
,1

60
-b

its
su

bg
ro

up
or

de
rs

ar
e

co
m

m
on

.W
e

cl
as

si
fy

ot
he

rg
ro

up
s

to
be

lik
el

y
D

SA
gr

ou
ps

if
w

e
kn

ow
th

at
th

e
su

bg
ro

up
or

de
ri

s
at

le
as

t8
bi

ts
sm

al
le

rt
ha

n
th

e
pr

im
e.

59

Fa
ct

or
ed

So
ur

ce
C

om
pl

et
el

y?
O

rd
er

Fa
ct

or
iz

at
io

n

R
FC

51
14

G
ro

up
22

Y
es

2
^
3
*
7
*
d
f
*
1
8
3
a
8
7
2
b
d
c
5
f
7
a
7
e
8
8
1
7
0
9
3
7
1
8
9
*
2
2
8
c
5
a
3
1
1
3
8
4
c
0
2
e
1
f
2
8
7
c
6
b
7
b
2
d
*
5
a
8
5

7
d
6
6
c
6
5
a
6
0
7
2
8
c
3
5
3
e
3
2
e
c
e
8
b
e
1
*
f
5
1
8
a
a
8
7
8
1
a
8
d
f
2
7
8
a
b
a
4
e
7
d
6
4
b
7
c
b
9
d
4
9
4
6
2
3
5
3
*
1
a
3
a
d
f
8

d
6
a
6
9
6
8
2
6
6
1
c
a
6
e
5
9
0
b
4
4
7
e
6
6
e
b
d
1
b
b
d
e
a
b
5
e
6
f
3
7
4
4
f
0
6
f
4
6
c
f
2
a
8
3
0
0
6
2
2
e
d
5
0
0
1
1
4
7
9
f
1
8
1
4
3
d
4
7
1

a
5
3
d
3
0
1
1
3
9
9
5
6
6
3
a
4
4
7
d
c
b
8
e
8
1
b
c
2
4
d
9
8
8
e
d
c
4
1
f
2
1

R
FC

51
14

G
ro

up
23

N
o

3
^
2
*
5
*
2
b
*
4
9
*
9
d
*
5
e
9
a
5
*
9
3
e
e
1
*
2
c
3
f
0
5
3
9
*
1
3
6
c
5
8
3
5
9
*
1
a
3
0
b
7
3
5
8
d
*
3
3
5

a
3
7
8
e
b
0
d
*
8
0
1
c
0
d
3
4
c
5
8
d
9
3
f
e
9
9
7
1
7
7
1
0
1
f
8
0
5
3
5
a
4
7
3
8
c
e
b
c
b
f
3
8
9
a
9
9
b
3
6
3
7
1
e
b
*
2
2
b
b
e
4
b
5
7
3

f
6
f
c
6
d
c
2
4
f
e
f
3
f
5
6
e
1
c
2
1
6
5
2
3
b
3
2
1
0
d
2
7
b
6
c
0
7
8
b
3
2
b
8
4
2
a
a
4
8
d
3
5
f
2
3
0
3
2
4
e
4
8
f
6
d
c
2
a
1
0
d
d
2
3
d
2
8
d
3

8
2
8
4
3
a
7
8
f
2
6
4
4
9
5
5
4
2
b
e
4
a
9
5
c
b
0
5
e
4
1
f
8
0
b
0
1
3
f
8
b
0
e
3
e
a
2
6
b
8
4
c
d
4
9
7
b
4
3
c
c
9
3
2
6
3
8
5
3
0
a
0
6
8
e
c
c
4
4
a

f
8
e
a
3
c
c
8
4
1
3
9
f
0
6
6
7
1
0
0
d
4
2
6
b
6
0
b
9
a
b
8
2
b
8
d
e
8
6
5
b
0
c
b
d
6
3
3
f
4
1
3
6
6
6
2
2
0
1
1
0
0
6
6
3
2
e
0
8
3
2
e
8
2
7
f
e
b
b
7

0
6
6
e
f
e
4
a
b
4
f
1
b
2
e
9
9
d
9
6
a
d
f
a
f
1
7
2
1
4
4
7
b
1
6
7
c
b
4
9
c
3
7
2
e
f
c
b
8
2
9
2
3
b
3
7
3
1
4
3
3
c
e
c
b
7
e
c
3
e
b
b
c
8
d
6
7
e
f
4

4
1
b
5
d
1
1
f
b
3
3
2
8
8
5
1
0
8
4
f
7
4
d
e
8
2
3
b
5
4
0
2
f
6
b
0
3
8
1
7
2
3
4
8
a
1
4
7
b
1
c
e
a
c
4
7
7
2
2
e
3
1
a
7
2
f
e
6
8
b
4
4
e
f
4
b

R
FC

51
14

G
ro

up
24

Y
es

7
*
d
*
9
f
5
*
2
2
a
c
f
*
b
d
9
f
3
4
b
1
*
8
c
f
8
3
6
4
2
a
7
0
9
a
0
9
7
b
4
4
7
9
9
7
6
4
0
1
2
9
d
a
2
9
9
b
1
a
4
7
d
1
e
b
3
7
5
0

b
a
3
0
8
b
0
f
e
6
4
f
5
f
b
d
3
*
1
5
a
d
f
e
9
4
9
e
b
b
2
4
2
e
5
c
d
0
9
7
8
f
a
c
1
b
4
3
f
d
b
d
2
e
5
b
0
c
5
f
4
8
9
2
4
f
b
b
d
3
7
0
1
9
5
c
0
e

b
2
0
5
9
6
d
9
8
a
d
0
a
9
e
3
f
d
9
8
8
7
6
4
1
3
d
9
2
6
f
4
1
a
8
b
9
1
8
d
2
e
c
4
b
0
1
8
a
3
0
e
f
e
5
e
3
3
6
b
f
3
c
7
c
e
6
0
d
5
1
5
c
f
4
6
a
f
5
f

a
c
f
3
b
b
3
8
9
f
6
8
a
d
0
c
4
e
d
2
f
0
b
1
d
b
b
9
7
0
2
9
3
7
4
1
e
b
6
5
0
9
c
6
4
e
7
3
1
8
0
2
2
5
9
a
6
3
9
a
7
f
5
7
d
4
a
9
c
0
d
9
4
4
5
2
4
1
f
5

b
c
d
b
d
c
5
0
5
5
5
b
7
6
d
9
c
3
3
5
c
1
f
a
4
e
1
1
a
8
3
5
1
f
1
b
f
4
7
3
0
d
d
6
7
f
f
e
d
8
7
7
c
c
1
3
e
8
e
a
4
0
c
7
d
5
1
4
4
1
c
1
f
4
e
5
9
1
5
5

e
f
1
1
5
9
e
c
a
7
5
a
2
3
5
9
f
5
e
0
2
8
4
c
d
7
f
3
b
9
8
2
c
3
2
e
5
c
5
1
d
b
f
5
1
b
4
5
f
4
6
0
3
e
f
4
6
b
a
e
5
2
8
7
3
9
3
1
5
c
a
6
7
9
7
0
3
c
1
f

f
c
f
3
b
4
4
f
e
3
d
a
5
9
9
9
d
a
a
d
f
5
6
0
6
e
b
8
2
8
f
c
5
7
e
4
6
5
6
1
b
e
8
c
6
a
8
6
6
3
6
1

A
m

az
on

L
oa

d
N

o
2
*
3
*
5
*
e
d
b
*
1
8
1
a
c
5
d
b
f
e
5
c
e
1
3
b
*
1
8
a
a
3
4
9
8
5
9
e
9
e
9
d
e
0
9
b
7
d
6
5
*
9
4
1
4
a
1
8
a
7
b
5
7
5
e
8
f
4

B
al

an
ce

r
2
f
6
c
b
2
d
b
c
2
2
e
b
1
f
c
2
1
d
4
9
2
9
*
2
d
e
9
f
1
1
7
1
a
2
4
9
3
d
4
6
a
3
1
d
5
0
8
b
6
3
5
3
2
c
d
f
8
6
d
2
1
d
b
6
f
5
0
f
7
1
7
7
3
6
f
c
4

b
0
b
7
2
2
8
5
6
a
5
0
4
e
d
4
9
1
6
e
0
4
8
4
f
e
4
b
a
5
f
5
f
4
a
9
f
f
f
2
8
a
1
2
3
3
b
7
2
8
b
3
d
0
4
3
a
e
c
3
7
c
4
f
1
3
8
f
f
d
5
8
f
e
7
a
8
c
3
c

1
e
9
3
c
b
5
2
b
e
5
2
7
3
9
5
e
4
5
d
b
4
8
7
b
6
1
d
a
a
d
d
e
d
9
c
8
e
c
3
5

M
is

ty
pe

d
O

pe
nS

SL
Y

es
5
*
b
*
a
9
b
4
6
1
e
1
6
3
6
f
4
b
5
1
e
f
*
1
8
5
1
5
8
3
c
f
5
f
9
f
7
3
1
3
6
4
e
4
a
a
6
c
d
c
2
c
a
c
4
f
0
1
*
3
f
0
b
3
9
c
a
c
f
c
0
8
6

51
2

“P
ri

m
e”

Fa
ct

or
s

d
f
4
b
a
f
4
6
c
7
f
a
7
d
1
f
4
d
f
e
1
8
4
f
9
d
2
2
8
4
8
3
2
5
a
9
1
c
5
1
9
f
7
9
0
2
3
a
4
5
2
6
d
8
3
6
9
e
8
6
b

M
is

ty
pe

d
O

pe
nS

SL
Y

es
2
^
1
3
*
3
^
3
*
5
^
2
*
1
1
^
2
*
2
6
9
*
2
9
5
*
4
d
5
*
9
7
c
3
*
9
a
c
f
e
7
*
8
c
d
d
0
e
1
2
8
f
*
3
8
5

51
2

O
rd

er
Fa

ct
or

s
b
5
6
4
e
e
c
d
6
1
3
5
3
6
8
1
8
f
9
4
9
*
1
4
6
d
4
1
0
9
2
3
e
9
9
9
f
8
c
2
9
1
0
4
8
d
c
6
f
e
f
f
c
e
b
f
8
b
9
e
9
9
e
e
c
9
a
4
d
5
8
5
f
8
7
4
2
2

e
4
9
b
3
9
3
2
5
6
c
2
3
c
9

Ta
bl

e
3.

12
:G

ro
up

or
de

r
fa

ct
or

iz
at

io
n

fo
r

co
m

m
on

no
n-

sa
fe

pr
im

es
—

W
e

us
ed

th
e

el
lip

tic
cu

rv
e

m
et

ho
d

to
fa

ct
or

(p
−

1)
/

2
fo

re
ac

h
of

th
e

no
n-

sa
fe

pr
im

es
w

e
fo

un
d

w
hi

le
sc

an
ni

ng
,a

s
w

el
la

s
th

e
m

is
ty

pe
d

O
pe

nS
SL

“p
ri

m
e”

.

60

3.6 Discussion

The small subgroup attacks require a number of special conditions to go wrong in order to be

feasible. For the case of small subgroup confinement attacks, a server must both use a non-safe

group and fail to validate subgroup order; the widespread failure of implementations to implement

or enable group order validation means that large numbers of hosts using non-“safe” primes are

vulnerable to this type of attack.

For a full key recovery attack to be possible the server must additionally reuse a small static

exponent. In one sense, it is surprising that any implementations might satisfy all of the require-

ments for a full key recovery attack at once. However, when considering all of the choices that

cryptographic libraries leave to application developers when using Diffie-Hellman, it is surprising

that any protocol implementations manage to use Diffie-Hellman securely at all.

We now use our results to draw lessons for the security and cryptographic communities, provide

recommendations for future cryptographic protocols, and suggest further research.

RFC 5114 Design Rationale Neither NIST SP 800-56A nor RFC 5114 give a technical justifica-

tion for fixing a much smaller subgroup order than the prime size. Using a shorter private exponent

comes with performance benefits. However, there are no known attacks that would render a short

exponent used with a safe prime less secure than an equivalently-sized exponent used with in a

subgroup with order matched to the exponent length. The cryptanalyses of both short exponents

and small subgroups are decades old.

If anything, the need to perform an additional modular exponentiation to validate subgroup

order makes Diffie-Hellman over DSA groups more expensive than the safe prime case, for identical

exponent lengths. As a more minor effect, a number field sieve-based cryptanalytic attack against a

DSA prime is computationally slightly easier than against a safe prime. The design rationale may

have its roots in preferring to implicitly use the assumption that Diffie-Hellman is secure for a small

prime-order subgroup without conditions on exponent length, rather than assuming Diffie-Hellman

with short exponents is secure inside a group of much larger order. Alternatively, this insistence

61

may stem from the fact that the security of DSA digital signatures requires the secret exponent

to be uniformly random, although no such analogous attacks are known for Diffie-Hellman key

exchange. [129] Unfortunately, our empirical results show that the necessity to specify and validate

subgroup order for Diffie-Hellman key exchange makes implementations more fragile in practice.

Cryptographic API design Most cryptographic libraries are designed with a large number of

potential options and knobs to be tuned, leaving too many security-critical choices to the developers,

who may struggle to remain current with the diverse and ever-increasing array of cryptographic

attacks. These exposed knobs are likely due to a prioritization of performance over security.

These confusing options in cryptographic implementations are not confined to primitive design:

Georgiev et al. [70] discovered that SSL certificate validation was broken in a large number of

non-browser TLS applications due to developers misunderstanding and misusing library calls. In

the case of the small subgroup attacks, activating most of the conditions required for the attack will

provide slight performance gains for an application: using a small exponent decreases the work

required for exponentiation, reusing Diffie-Hellman exponents saves time in key generation, and

failing to validate subgroup order saves another exponentiation. It is not reasonable to assume

that applications developers have enough understanding of algebraic groups to be able to make

the appropriate choices to optimize performance while still providing sufficient security for their

implementation.

Cryptographic standards Cryptographic recommendations from standards committees are often

too weak or vague, and, if strayed from, provide little recourse. The purpose of standardized groups

and standardized validation procedures is to help remove the onus from application developers

to know and understand the details of the cryptographic attacks. A developer should not have to

understand the inner workings of Pollard lambda and the number field sieve in order to size an

exponent; this should be clearly and unambiguously defined in a standard. However, the tangle of

RFCs and standards attempting to define current best practices in key generation and parameter

sizing do not paint a clear picture, and instead describe complex combinations of approaches

and parameters, exposing the fragility of the cryptographic ecosystem. As a result, developers

62

often forget or ignore edge cases, leaving many implementations of Diffie-Hellman too close to

vulnerable for comfort. Rather than provide the bare minimums for security, the cryptographic

recommendations from standards bodies should be designed for defense-in-depth such that a single

mistake on the part of a developer does not have disastrous consequences for security. The principle

of defense-in-depth has been a staple of the systems security community; cryptographic standards

should similarly be designed to avoid fragility.

Protocol design The interactions between cryptographic primitives and the needs of protocol

designs can be complex. The after-the-fact introduction of RFC 5114 primes illustrates some of

the unexpected difficulties: both IKE and SSH specified group validation only for safe primes, and

a further RFC specifying extra group validation checks needed to be defined for IKE. Designing

protocols to encompass many unnecessary functions, options, and extensions leaves room for

implementation errors and makes security analysis burdensome. IKE is a notorious example of a

difficult-to-implement protocol with many edge cases. Just Fast Keying (JFK), a protocol created as

a successor to IKEv1, was designed to be an exceedingly simple key exchange protocol without the

unnecessarily complicated negotiations present in IKE [4]. However, the IETF instead standardized

IKEv2, which is nearly as complicated as IKEv1. Protocols and cryptosystems should be designed

with the developer in mind—easy to implement and verify, with limited edge cases. The worst

possible outcome is a system that appears to work, but provides less security than expected.

To construct such cryptosystems, secure-by-default primitives are key. As we show in this paper,

finite-field based Diffie-Hellman has many edge cases that make its correct use difficult, and which

occasionally arise as bugs at the protocol level. For example, SSH and TLS allow the server to

generate arbitrary group parameters and send them to the client, but provide no mechanism for the

server to specify the group order so that the client can validate the parameters. Diffie-Hellman key

exchange over groups with different properties cannot be treated as a black-box primitive at the

protocol level.

Recommendations As a concrete recommendation, modern Diffie-Hellman implementations

should prefer elliptic curve groups over safe curves with proper point validation [19]. These groups

63

are much more efficient and have shorter key sizes than finite-field Diffie-Hellman at equivalent

security levels. The TLS 1.3 draft includes a list of named curves designed to modern security

standards [145]. If elliptic curve Diffie-Hellman is not an option, then implementations should

follow the guidelines outlined in RFC 7919 for selecting finite field Diffie-Hellman primes [71].

Specifically, implementations should prefer “safe” primes of documented provenance of at least

2048 bits, validate that key exchange values are strictly between 1 and p−1, use ephemeral key

exchange values for every connection, and use exponents of at least 224 bits.

64

CHAPTER IV

Measuring Export-Grade Key Exchange

65

This chapter is adapted from a joint publication that originally appeared in the proceedings of

the 22nd ACM Conference on Computer and Communications Security (CCS ’15) [2]. After the

discovery of the FREAK attack by Beurdouche et al. [20], there were many questions raised about

the security of other export cryptography in TLS, and if other types of weakened cryptography

were similarly opening up modern clients to vulnerability. In addition to “export-grade” RSA, the

TLS protocol contained export Diffie-Hellman (DHE EXPORT) ciphers through version 1.0 [42]. In

this chapter, we investigate the security of export-grade Diffie-Hellman in TLS, and measure its

prevalence on the Internet, in order to determine if decades-old weakened cryptography remains

relevant to the security of the Internet today.

First, we present Logjam, a novel flaw in TLS that lets a man-in-the-middle downgrade connec-

tions to export-grade Diffie-Hellman. To carry out this attack, we implement the number field sieve

discrete log algorithm. After a week-long precomputation1 for a specified 512-bit group, we can

compute arbitrary discrete logs in that group in about a minute. We find that 82% of vulnerable

servers use a single 512-bit group, allowing us to compromise connections to 7% of Alexa Top

Million HTTPS sites. In response, major browsers have changed to reject short groups.

We further investigate the security of Diffie-Hellman key exchange as used in popular Internet

protocols and find it to be less secure than widely believed. We go on to consider Diffie-Hellman

with 768- and 1024-bit groups. We estimate that even in the 1024-bit case, the computations are

plausible given nation-state resources. A small number of fixed or standardized groups are used by

millions of servers; performing precomputation for a single 1024-bit group would allow passive

eavesdropping on 18% of popular HTTPS sites, and a second group would allow decryption of traffic

to 66% of IPsec VPNs and 26% of SSH servers. A close reading of published NSA leaks shows

that the agency’s attacks on VPNs are consistent with having achieved such a break. We conclude

that moving to stronger key exchange methods should be a priority for the Internet community.

1Except where otherwise noted, the experimental data and network measurements for this chapter were
obtained in early 2015.

66

4.1 Introduction

Diffie-Hellman key exchange is a popular cryptographic algorithm that allows Internet protocols

to agree on a shared key and negotiate a secure connection. It is fundamental to protocols such as

HTTPS, SSH, IPsec, SMTPS, and other protocols that rely on TLS. Many protocols use Diffie-

Hellman to achieve perfect forward secrecy, the property that a compromise of the long-term keys

used for authentication does not compromise sessions keys for past connections. We examine how

Diffie-Hellman is commonly implemented and deployed with common protocols and find that, in

practice, it frequently offers less security than widely believed.

There are two reasons for this. First, a surprising number of servers use weak Diffie-Hellman

parameters or maintain support for obsolete 1990s-era “export-grade” crypto. More critically, the

common practice of using standardized, hard-coded, or widely shared Diffie-Hellman parameters

has the effect of dramatically reducing the cost of large-scale attacks, bringing some within range of

feasibility today.

The current best technique for attacking Diffie-Hellman relies on compromising one of the

private exponents (a, b) by computing the discrete logarithm of the corresponding public value

(ga mod p, gb mod p). With state-of-the-art number field sieve algorithms, computing a single

discrete log is more difficult than factoring an RSA modulus of the same size. However, an adversary

who performs a large precomputation for a prime p can then quickly calculate arbitrary discrete

logs in that group, amortizing the cost over all targets that share this parameter. Although this fact is

well known among mathematical cryptographers, it seems to have been lost among practitioners

deploying cryptosystems. We exploit it to obtain the following results:

Active attacks on export ciphers in TLS We introduce Logjam, a new attack on TLS by which a

man-in-the-middle attacker can downgrade a connection to export-grade cryptography. This attack

is reminiscent of the FREAK attack [20] but applies to the ephemeral Diffie-Hellman ciphersuites

and is a TLS protocol flaw rather than an implementation vulnerability. We present measurements

that show that this attack applies to 8.4% of Alexa Top Million HTTPS sites and 3.4% of all HTTPS

67

servers that have browser-trusted certificates.

To exploit this attack, we implemented the number field sieve discrete log algorithm and carried

out precomputation for two 512-bit Diffie-Hellman groups used by more than 92% of the vulnerable

servers. This allows us to compute individual discrete logs in about a minute. Using our discrete

log oracle, we can compromise connections to over 7% of Top Million HTTPS sites. Discrete logs

over larger groups have been computed before [28], but, as far as we are aware, this is the first time

they have been exploited to expose concrete vulnerabilities in real-world systems.

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Figure 4.1: Number field sieve for discrete log — This algorithm consists of a precomputation
stage that depends only on the prime p and a descent stage that computes individual logarithms.
With sufficient precomputation, an attacker can quickly break any Diffie-Hellman instances that use
a particular p.

Risks from common 1024-bit groups We explore the implications of precomputation attacks

for 768- and 1024-bit groups, which are widely used in practice and still considered secure. We

estimate the computational resources necessary to compute discrete logs in groups of these sizes,

concluding that 768-bit groups are within range of academic teams, and 1024-bit groups may

plausibly be within range of nation-state adversaries. In both cases, individual logarithms can be

quickly computed after the initial precomputation.

We then examine evidence from published Snowden documents that suggests NSA may already

be exploiting 1024-bit Diffie-Hellman to decrypt VPN traffic. We perform measurements to

understand the implications of such an attack for popular protocols, finding that an attacker who

could perform precomputations for ten 1024-bit groups could passively decrypt traffic to about 66%

of IKE VPNs, 26% of SSH servers, and 24% of popular HTTPS sites.

Mitigations and lessons In response to the Logjam attack, mainstream browsers have implemented

68

a more restrictive policy on the size of Diffie-Hellman groups they accept, and Chrome has

discontinued support for finite field key exchanges. We further recommend that TLS servers disable

export-grade cryptography and carefully vet the Diffie-Hellman groups they use. In the longer term,

we advocate that protocols migrate to elliptic curve Diffie-Hellman.

4.2 Diffie-Hellman Cryptanalysis

Diffie-Hellman key exchange was the first published public-key algorithm [44]. In the simple

case of prime groups, Alice and Bob agree on a prime p and a generator g of a multiplicative

subgroup modulo p. Then each generates a random private exponent, a and b. Alice sends

ga mod p, Bob sends gb mod p, and each computes a shared secret gab mod p. While there is also

a Diffie-Hellman exchange over elliptic curve groups, we address only the “mod p” case.

The security of Diffie-Hellman is not known to be equivalent to the discrete logarithm problem,

but computing discrete logs remains the best known cryptanalytic attack. An attacker who can find

the discrete log x from y = gx mod p can easily find the shared secret.

Textbook descriptions of discrete log can be misleading about the computational tradeoffs, for

example by optimizing for computing a single discrete log. In fact, as illustrated in Figure 4.1, a

single large precomputation on p can be used to efficiently break all Diffie-Hellman exchanges

made with that prime.

Diffie-Hellman is typically implemented with prime fields and large group orders. In this case,

the most efficient discrete log algorithm is the number field sieve (NFS) [72,92,154]. The algorithm

has four stages with different computational properties. The first three steps are only dependent on

the prime p and comprise most of the computation.

First is polynomial selection, in which one finds a polynomial f (z) defining a number field

Q[z]/ f (z) for the computation. This parallelizes well and is only a small portion of the runtime.

In the second stage, sieving, one factors ranges of integers and number field elements in batches

to find many relations of elements, all of whose prime factors are less than some bound B (called

B-smooth). Sieving parallelizes well, but is computationally expensive, because we must search

69

through and attempt to factor many elements.

In the third stage, linear algebra, we construct a large, sparse matrix consisting of the coefficient

vectors of prime factorizations we have found. This stage can be parallelized in a limited fashion,

and produces a database of logarithms which are used as input to the final stage.

The final stage, descent, actually deduces the discrete log of the target y. We re-sieve until we

find a set of relations that allow us to write the logarithm of y in terms of the logarithms in the

precomputed database. Crucially, descent is the only NFS stage that involves y (or g), so polynomial

selection, sieving, and linear algebra can be done once for a prime p and reused to compute the

discrete logs of many targets.

The numerous parameters of the algorithm allow some flexibility to reduce time on some

computational steps at the expense of others. For example, sieving more will result in a smaller

matrix, making linear algebra cheaper, and doing more work in the precomputation makes the final

descent step easier.

Standard primes Generating safe primes2 can be computationally burdensome, so many im-

plementations use standardized Diffie-Hellman parameters. A prominent example is the Oakley

groups [137], which give “safe” primes of length 768 (Oakley Group 1), 1024 (Oakley Group 2),

and 1536 (Oakley Group 5). These groups were published in 1998 and have been used for many

applications since, including IKE, SSH, Tor, and OTR.

When primes are of sufficient strength, there seems to be no disadvantage to reusing them.

However, widespread reuse of Diffie-Hellman groups can convert attacks that are at the limits of an

adversary’s capabilities into devastating breaks, since it allows the attacker to amortize the cost of

discrete log precomputation among vast numbers of potential targets.

4.3 Attacking TLS

TLS supports Diffie-Hellman as one of several possible key exchange methods, and prior

to public disclosure of the attack, about two-thirds of popular HTTPS sites supported it, most

2An odd prime p is safe when (p−1)/2 is prime.

70

commonly using 1024-bit primes. However, a smaller number of servers also support legacy “export-

grade” Diffie-Hellman using 512-bit primes that are well within reach of NFS-based cryptanalysis.

Furthermore, for both normal and export-grade Diffie-Hellman, the vast majority of servers use a

handful of common groups.

In this section, we exploit these facts to construct a novel attack against TLS, which we call the

Logjam attack. First, we perform NFS precomputations for the two most popular 512-bit primes on

the web, so that we can quickly compute the discrete log for any key exchange message that uses

one of them. Next, we show how a man-in-the-middle, so armed, can attack connections between

popular browsers and any server that allows export-grade Diffie-Hellman, by using a TLS protocol

flaw to downgrade the connection to export-strength and then recovering the session key. We find

that this attack with our precomputations can compromise connections to about 7.8% of HTTPS

servers among Alexa Top Million domains.

4.3.1 TLS and Diffie-Hellman

The TLS handshake begins with a negotiation to determine the crypto algorithms used for

the session. The client sends a list of supported ciphersuites (and a random nonce cr) within

the ClientHello message, where each ciphersuite specifies a key exchange algorithm and other

primitives. The server selects a ciphersuite from the client’s list and signals its selection in a

ServerHello message (containing a random nonce sr).

TLS specifies ciphersuites supporting multiple varieties of Diffie-Hellman. Textbook Diffie-

Hellman with unrestricted strength is called “ephemeral” Diffie-Hellman, or DHE, and is identified

by ciphersuites that begin with TLS DHE *.3 In DHE, the server is responsible for selecting the

Diffie-Hellman parameters. It chooses a group (p,g), computes gb, and sends a ServerKeyExchange

message containing a signature over the tuple (cr,sr, p,g,gb) using the long-term signing key from

its certificate. The client verifies the signature and responds with a ClientKeyExchange message

containing ga.

3New ciphersuites that use elliptic curve Diffie-Hellman (ECDHE) are gaining in popularity, but we focus
exclusively on the traditional prime field variety.

71

Source Popularity Prime

Apache 82% 9fdb8b8a004544f0045f1737d0ba2e0b

274cdf1a9f588218fb435316a16e3741

71fd19d8d8f37c39bf863fd60e3e3006

80a3030c6e4c3757d08f70e6aa871033

mod ssl 10% d4bcd52406f69b35994b88de5db89682

c8157f62d8f33633ee5772f11f05ab22

d6b5145b9f241e5acc31ff090a4bc711

48976f76795094e71e7903529f5a824b

(others) 8% (463 distinct primes)

Table 4.1: Top 512-bit DH primes for TLS — 8.4% of Alexa Top 1M HTTPS domains allow
DHE EXPORT, of which 92.3% use one of the two most popular primes, shown here.

To ensure agreement on the negotiation messages, and to prevent downgrade attacks, each

party computes the TLS master secret from gab and calculates a MAC of its view of the handshake

transcript. These MACs are exchanged in a pair of Finished messages and verified by the recipients.

Export-grade Diffie-Hellman To comply with 1990s-era U.S. export restrictions on cryptography,

SSL 3.0 and TLS 1.0 supported reduced-strength DHE EXPORT ciphersuites that were restricted to

primes no longer than 512 bits. In all other respects, DHE EXPORT protocol messages are identical

to DHE. The relevant export restrictions are no longer in effect, but many servers maintain support

for backwards compatibility.

To understand how HTTPS servers in the wild use Diffie-Hellman, we modified the ZMap [52]

toolchain to offer DHE and DHE EXPORT ciphersuites and scanned TCP/443 on both the full public

IPv4 address space and the Alexa Top 1M domains. The scans took place in March 2015. Of

539,000 HTTPS sites among Top 1M domains, we found that 68.3% supported DHE and 8.4%

supported DHE EXPORT. Of 14.3 million IPv4 HTTPS servers with browser-trusted certificates,

23.9% supported DHE and 4.9% DHE EXPORT.

While the TLS protocol allows servers to generate their own Diffie-Hellman parameters, just two

512-bit primes account for 92.3% of Alexa Top 1M domains that support DHE EXPORT (Table 4.1),

and 92.5% of all servers with browser-trusted certificates that support DHE EXPORT. The most

popular 512-bit prime was hard-coded into many versions of Apache; the second most popular is

72

the mod ssl default for DHE EXPORT.

4.3.2 Active Downgrade to Export-Grade DHE

Given the widespread use of these primes, an attacker with the ability to compute discrete logs

in 512-bit groups could efficiently break DHE EXPORT handshakes for about 8% of Alexa Top 1M

HTTPS sites, but modern browsers never negotiate export-grade ciphersuites. To circumvent this,

we show how an attacker can downgrade a regular DHE connection to use a DHE EXPORT group,

and thereby break both the confidentiality and integrity of application data.

The attack, which we call Logjam, is depicted in Figure 4.2 and relies on a flaw in the way TLS

composes DHE and DHE EXPORT. When a server selects DHE EXPORT for a handshake, it proceeds

by issuing a signed ServerKeyExchange message containing a 512-bit p512, but the structure of this

message is identical to the message sent during standard DHE ciphersuites. Critically, the signed

portion of the server’s message fails to include any indication of the specific ciphersuite that the

server has chosen. Provided that a client offers DHE, an active attacker can rewrite the client’s

ClientHello to offer a corresponding DHE EXPORT ciphersuite accepted by the server and remove

other ciphersuites that could be chosen instead. The attacker rewrites the ServerHello response to

replace the chosen DHE EXPORT ciphersuite with a matching non-export ciphersuite and forwards

the ServerKeyExchange message to the client as is. The client will interpret the export-grade tuple

(p512,g,gb) as valid DHE parameters chosen by the server and proceed with the handshake. The

client and server have different handshake transcripts at this stage, but an attacker who can compute

b in close to real time can then derive the master secret and connection keys to complete the

handshake with the client.

There are two remaining challenges in implementing this active downgrade attack. The first

is to compute individual discrete logs in close to real time, and the second is to delay handshake

completion until the discrete log computation has had time to finish.

73

Figure 4.2: The Logjam attack — A man-in-the-middle can force TLS clients to use export-
strength DH with any server that allows DHE EXPORT. Then, by finding the 512-bit discrete log,
the attacker can learn the session key and arbitrarily read or modify the contents. Data f s refers
to False Start application data that some TLS clients send before receiving the server’s Finished
message.

4.3.3 512-bit Discrete Log Computations

We modified CADO-NFS [160] to implement the number field sieve discrete log algorithm and

applied it to the top two DHE EXPORT primes shown in Table 4.1. Precomputation took 7 days for

each prime, after which computing individual logarithms requires a median of 70 seconds.

Precomputation As illustrated in Figure 4.1, the precomputation phase includes the polynomial

selection, sieving, and linear algebra steps. For this precomputation, we deliberately sieved more

than strictly necessary. This enabled two optimizations: first, with more relations obtained from

sieving, we eventually obtain a larger database of known logarithms, which makes the descent faster.

Second, more sieving relations also yield a smaller linear algebra step, which is desirable because

sieving is much easier to parallelize than linear algebra.

74

For the polynomial selection and sieving steps, we used idle time on 2000–3000 CPU cores in

parallel. Polynomial selection ran for about 3 hours (7,600 core-hours). Sieving ran for 15 hours

(21,400 core-hours). This sufficed to collect 40 M relations of which 28 M were unique, involving

15 M primes of at most 27 bits.

From this data set, we obtained a square matrix with 2.2 M rows and columns, with 113 nonzero

coefficients per row on average. We solved the corresponding linear system on a 36-node cluster

using the block Wiedemann algorithm [35, 161]. Using unoptimized code, the computation finished

in 120 hours (60,000 core-hours).

The experiment above was done with CADO-NFS in early 2015. As of 2017, release 2.3

of CADO-NFS [160] performs 20% faster for sieving, and drastically faster for linear algebra,

since 9,000 core-hours suffice to solve the same linear system on the same hardware. In total, the

wall-clock time for each precomputation was slightly over one week in 2015, and is reduced to

about two days with current hardware and more recent software.

Descent Once this precomputation was finished, we were able to run the final descent step to

compute individual discrete logs in about a minute. We implemented the descent calculation in a

mix of Python and C. On average, computing individual logarithms took about 70 seconds, but the

time varied from 34 to 206 seconds on a server with two 18-core Intel Xeon E5-2699 CPUs. For

purposes of comparison, a single 512-bit RSA factorization using the CADO-NFS implementation

takes about 4 days of wall-clock time on the computer used for the descent [160].

4.3.4 Active Attack Implementation

The main challenge in performing this attack is to compute the shared secret gab before the

handshake completes in order to forge a Finished message from the server. With our descent

implementation, the computation takes an average of 70 seconds, but there are several ways an

attacker can work around this delay:

Non-browser clients Different TLS clients impose different time limits, after which they kill the

connection. Command-line clients such as curl and git have long or no timeouts, and we can

75

hijack their connections without difficulty.

TLS warning alerts Web browsers tend to have shorter timeouts, but we can keep their connections

alive by sending TLS warning alerts, which are ignored by the browser but reset the handshake

timer. For example, this allows us to keep Firefox TLS connections alive indefinitely.

Ephemeral key caching Many TLS servers do not use a fresh value b for each connection, but

instead compute gb once and reuse it for multiple negotiations. For example, F5 BIG-IP load

balancers will reuse gb by default. Microsoft Schannel caches gb for two hours—this setting is

hard-coded. For these servers, an attacker can compute the discrete log of gb from one connection

and use it to attack later handshakes.

TLS False Start Even when clients enforce shorter timeouts and servers do not reuse values for

b, the attacker can still break the confidentiality of user requests that use TLS False Start. Recent

versions of Chrome, Internet Explorer, and Firefox implement False Start, but their policies on

when to enable it vary. Firefox 35, Chrome 41, and Internet Explorer (Windows 10) send False Start

data with DHE. In these cases, a man-in-the-middle can record the handshake and decrypt the False

Start payload at leisure.

4.4 Nation-State Threats to DH

The previous sections demonstrate the existence of practical attacks against Diffie-Hellman

key exchange as currently used by TLS. However, these attacks rely on the ability to downgrade

connections to export-grade crypto. In this section we address the following question: how secure

is Diffie-Hellman in broader practice, as used in other protocols that do not suffer from downgrade,

and when applied with stronger groups?

76

Si
ev

in
g

L
in

ea
rA

lg
eb

ra
D

es
ce

nt

lo
g 2

B
co

re
-y

ea
rs

ro
w

s
co

re
-y

ea
rs

co
re

-t
im

e

R
SA

-5
12

29
0.

3
4.

2M
0.

03
Ti

m
in

gs
w

ith
de

fa
ul

tC
A

D
O

-N
FS

pa
ra

m
et

er
s.

D
H

-5
12

27
2.

5
2.

2M
1.

1
10

m
in

s
Fo

rt
he

co
m

pu
ta

tio
ns

in
th

is
pa

pe
r;

m
ay

be
su

bo
pt

im
al

.

R
SA

-7
68

37
80

0
25

0M
10

0
E

st
.b

as
ed

on
[1

01
]w

ith
le

ss
si

ev
in

g.

D
H

-7
68

36
4,

00
0

24
M

92
0

43
ho

ur
s

D
at

a
fr

om
[1

02
,T

ab
le

1]
.

R
SA

-1
02

4
42

≈
1,

00
0,

00
0
≈

8.
7B

≈
12

0,
00

0
C

ru
de

es
tim

at
e

ba
se

d
on

co
m

pl
ex

ity
fo

rm
ul

a.

D
H

-1
02

4
40

≈
5,

00
0,

00
0
≈

0.
8B

≈
1,

10
0,

00
0

30
da

ys
C

ru
de

es
tim

at
e

ba
se

d
on

fo
rm

ul
a

an
d

ou
re

xp
er

im
en

ts
.

Ta
bl

e
4.

2:
E

st
im

at
in

g
co

st
sf

or
fa

ct
or

in
g

an
d

di
sc

re
te

lo
g

—
Fo

rs
ie

vi
ng

,w
e

gi
ve

on
e

im
po

rta
nt

pa
ra

m
et

er
,w

hi
ch

is
th

e
nu

m
be

ro
fb

its
of

th
e

sm
oo

th
ne

ss
bo

un
d
B

.F
or

lin
ea

ra
lg

eb
ra

,a
ll

co
st

s
fo

rD
H

ar
e

fo
rs

af
e

pr
im

es
;f

or
D

SA
pr

im
es

w
ith

q
of

16
0

bi
ts

,t
hi

s
sh

ou
ld

be
di

vi
de

d
by

6.
4

fo
r1

02
4

bi
ts

,4
.8

fo
r7

68
bi

ts
,a

nd
3.

2
fo

r5
12

bi
ts

.

77

To answer this question we must first examine how the number field sieve for discrete log scales

to 768- and 1024-bit groups. As we argue below, 768-bit groups in relatively widespread use are

now within reach for academic computational resources. Additionally, performing precomputations

for a small number of 1024-bit groups is plausibly within the resources of nation-state adversaries.

The precomputation would likely require special-purpose hardware, but would not require any

major algorithmic improvements. In light of these results, we examine several standard Internet

security protocols—IKE, SSH, and TLS—to determine their vulnerability. Although the cost of

the precomputation for a 1024-bit group is several times higher than for an RSA key of equal size,

a one-time investment could be used to attack millions of hosts, due to widespread reuse of the

most common Diffie-Hellman parameters. Finally, we apply this new understanding to a set of

recently published documents to evaluate the hypothesis that the National Security Agency has

already implemented such a capability.

4.4.1 Scaling NFS to 768- and 1024-bit DH

Estimating the cost for discrete log cryptanalysis at larger key sizes is far from straightforward

due to the complexity of parameter tuning. We attempt estimates up to 1024-bit discrete log based

on the existing literature and our own experiments but further work is needed for greater confidence.

We summarize all the costs, measured or estimated, in Table 4.2.

DH-768: Completed in 2016 At the time of disclosure, the latest discrete log record was a 596-bit

computation. Based on that work, and on prior experience with the 768-bit factorization record in

2009 [101], we made the conservative prediction that it was possible, as explained in §4.2, to put

more computational effort into sieving for the discrete log case than for factoring, so that the linear

algebra step would run on a slightly smaller matrix. This led to a runtime estimate of around 35,000

core-years, most of which was spent on linear algebra.

This estimate turned out be overly conservative, for several reasons. First, there have been

significant improvements in our software implementation (see §4.3.3). In addition, our estimate did

not use the Joux-Lercier alternative polynomial selection method [92, §2.1], which is specific to

78

discrete logs. For 768-bit discrete logs, this polynomial selection method leads to a significantly

smaller computational cost.

In 2016, Kleinjung et al. completed a 768-bit discrete log computation [102]. While this is a

massive computation on the academic scale, a computation of this size has likely been within reach

of nation-states for more than a decade. This data is mentioned in Table 4.2.

DH-1024: Plausible with nation-state resources Experimentally extrapolating sieving param-

eters to the 1024-bit case is difficult due to the tradeoffs between the steps of the algorithm and

their relative parallelism. The prior work proposing parameters for factoring a 1024-bit RSA key

is thin and we resort to extrapolating from asymptotic complexity. For the number field sieve,

the complexity is exp
(
(k+o(1))(logN)1/3(log logN)2/3), where N is the integer to factor or the

prime modulus for discrete log and k is an algorithm-specific constant. This formula is inherently

imprecise, since the o(1) in the exponent can hide polynomial factors. This complexity formula,

with k = 1.923, describes the overall time for both discrete log and factorization, which are both

dominated by sieving and linear algebra in the precomputation. Evaluating the formula for 768- and

1024-bit N gives us estimated multiplicative factors by which time and space will increase from the

768- to the 1024-bit case.

For 1024-bit precomputation, the total time complexity can be expected to increase by a

factor of 1220 using the complexity formula, while space complexity increases by its square root,

approximately 35. These ratios are relevant for both factorization and discrete log since they have

the same asymptotic behavior. For DH-1024, we get a total cost estimate for the precomputation of

about 6M core-years.

The time complexity for each individual log after the precomputation should be multiplied by

L21024(1.206)/L2768(1.206) ≈ 86, where k = 1.206 follows from [63]. This last number does not

correspond to what we observed in practice and we attribute that to the fact that the descent step has

been far less studied.

In practice, it is not uncommon for estimates based merely on the complexity formula to be off

by a factor of 10. Estimates of Table 4.2 must therefore be considered with due caution.

79

For 1024-bit descent, we experimented with our early-abort implementation to inform our

estimates for descent initialization, which should dominate the individual discrete log computation.

For a random target in Oakley Group 2, initialization took 22 core-days, and yielded a few primes

of at most 130 bits to be descended further. In twice this time, we reached primes of about 110

bits. At this point, we were certain to have bootstrapped the descent and could continue down to

the smoothness bound in a few more core-days if proper sieving software were available. Thus we

estimate that a 1024-bit descent would take about 30 core-days, once again easily parallelizable.

Costs in hardware Although several millions of core-years is a massive computational effort,

it is not necessarily out of reach for a nation-state. At this scale, significant cost savings could

be realized by developing application-specific hardware given that sieving is a natural target for

hardware implementation. To our knowledge, the best prior description of an ASIC implementation

of 1024-bit sieving is the 2007 work of Geiselmann and Steinwandt [69]. Updating their estimates

for modern techniques and adjusting parameters for discrete log allows us to extrapolate the financial

and time costs.

We increase their chip count by a factor of ten to sieve more and save on linear algebra as above

giving an estimate of 3M chips to complete sieving in one year. Shrinking the dies from the 130 nm

technology node used in the paper to a more modern size reduces costs as transistors are cheaper at

newer technologies. With standard transistor costs and utilization, it would cost about $2 per chip

to manufacture after fixed design and tape-out costs of roughly $2M [114]. This suggests that an

$8M investment would buy enough ASICs to complete the DH-1024 sieving precomputation in

one year. Since a step of descent uses sieving, the same hardware could likely be reused to speed

calculations of individual logarithms.

Estimating the financial cost for the linear algebra is more difficult since there has been little

work on designing chips that are suitable for the larger fields involved in discrete log. To derive

a rough estimate, we can begin with general purpose hardware and the core-year estimate from

Table 4.2. Using the 300,000 CPU core Titan supercomputer it would take 4 years to complete the

1024-bit linear algebra stage (notwithstanding the fact that estimates from Table 4.2 are known to be

80

extremely coarse, and could be optimistic by a factor of maybe 10). Titan was constructed in 2012

for $94M, suggesting a cost of $0.5B in supercomputers to finish this step in a year. In the context

of factorization, moving linear algebra from general purpose CPUs to ASICs has been estimated

to reduce costs by a factor of 80 [68]. If we optimistically assume that a similar reduction can be

achieved for discrete log, the hardware cost to perform the linear algebra for DH-1024 in one year

is plausibly on the order of tens of millions of dollars.

To put this dollar figure in context, the FY 2012 budget for the U.S. Consolidated Cryptologic

Program (which includes the NSA) was $10.5 billion4 [66]. The 2013 budget request, which priori-

tized investment in “groundbreaking cryptanalytic capabilities to defeat adversarial cryptography

and exploit internet traffic” included notable $100M+ increases in two programs under Cryptanalysis

& Exploitation Services: “Cryptanalytic IT Systems” (to $247M), and the cryptically named “PEO

Program C” (to $360M) [66].

4.4.2 Is NSA Breaking 1024-bit DH?

Our calculations suggest that it is plausibly within NSA’s resources to have performed number

field sieve precomputations for a small number of 1024-bit Diffie-Hellman groups. This would

allow them to break any key exchanges made with those groups in close to real time. If true, this

would answer one of the major cryptographic questions raised by the Edward Snowden leaks: How

is NSA defeating the encryption for widely used VPN protocols?

Virtual private networks (VPNs) are widely used for tunneling business or personal traffic across

potentially hostile networks. We focus on the Internet Protocol Security (IPsec) VPN protocol using

the Internet Key Exchange (IKE) protocol for key establishment and parameter negotiation and the

Encapsulating Security Payload (ESP) protocol for protecting packet contents.

IKE There are two versions, IKEv1 and IKEv2, which differ in message structure but are concep-

tually similar. For the sake of brevity, we will use IKEv1 terminology [99].

Each IKE session begins with a Phase 1 handshake in which the client and server select a

Diffie-Hellman group from a small set of standardized parameters and perform a key exchange to

4The National Science Foundation’s budget was $7 billion.

81

establish a shared secret. The shared secret is combined with other cleartext values transmitted by

each side, such as nonces and cookies, to derive a value called SKEYID. When authenticated with a

pre-shared key (PSK) in IKEv1, the PSK value is incorporated into the derivation of SKEYID.

The resulting SKEYID is used to encrypt and authenticate a Phase 2 handshake. Phase 2

establishes the parameters and key material, KEYMAT, for protecting the subsequently tunneled

traffic. Ultimately, KEYMAT is derived from SKEYID, additional nonces, and the result of an optional

Phase 2 Diffie-Hellman exchange.

NSA’s VPN exploitation process Documents published by Der Spiegel describe NSA’s ability

to decrypt VPN traffic using passive eavesdropping and without message injection or man-in-the-

middle attacks on IPsec or IKE. Figure 4.3 illustrates the flow of information required to decrypt

the tunneled traffic.

82

Figure 4.3: NSA’s VPN decryption infrastructure — This classified illustration published by
Der Spiegel [162] shows captured IKE handshake messages being passed to a high-performance
computing system, which returns the symmetric keys for ESP session traffic. The details of this
attack are consistent with an efficient break for 1024-bit Diffie-Hellman.

83

Vu
ln

er
ab

le
se

rv
er

s,
if

th
e

at
ta

ck
er

ca
n

pr
ec

om
pu

te
fo

r
..

.

al
l5

12
-b

it
gr

ou
ps

al
l7

68
-b

it
gr

ou
ps

on
e

10
24

-b
it

gr
ou

p
te

n
10

24
-b

it
gr

ou
ps

H
T

T
PS

To
p

1M
w

/a
ct

iv
e

do
w

ng
ra

de
45

,1
00

(8
.4

%
)

45
,1

00
(8

.4
%

)
20

5,
00

0
(3

7.
1%

)
30

9,
00

0
(5

6.
1%

)
H

T
T

PS
To

p
1M

11
8

(0
.0

%
)

40
7

(0
.1

%
)

98
,5

00
(1

7.
9%

)
13

2,
00

0
(2

4.
0%

)
H

T
T

PS
Tr

us
te

d
w

/a
ct

iv
e

do
w

ng
ra

de
48

9,
00

0
(3

.4
%

)
55

6,
00

0
(3

.9
%

)
1,

84
0,

00
0

(1
2.

8%
)

3,
41

0,
00

0
(2

3.
8%

)
H

T
T

PS
Tr

us
te

d
1,

00
0

(0
.0

%
)

46
,7

00
(0

.3
%

)
93

9,
00

0
(6

.5
6%

)
1,

43
0,

00
0

(1
0.

0%
)

IK
E

v1
IP

v4
–

64
,7

00
(2

.6
%

)
1,

69
0,

00
0

(6
6.

1%
)

1,
69

0,
00

0
(6

6.
1%

)
IK

E
v2

IP
v4

–
66

,0
00

(5
.8

%
)

72
6,

00
0

(6
3.

9%
)

72
6,

00
0

(6
3.

9%
)

SS
H

IP
v4

–
–

3,
60

0,
00

0
(2

5.
7%

)
3,

60
0,

00
0

(2
5.

7%
)

Ta
bl

e
4.

3:
E

st
im

at
ed

im
pa

ct
of

D
iffi

e-
H

el
lm

an
at

ta
ck

s
in

ea
rl

y
20

15
—

W
e

us
ed

In
te

rn
et

-w
id

e
sc

an
ni

ng
to

es
tim

at
e

th
e

nu
m

be
r

of
re

al
-w

or
ld

se
rv

er
s

fo
rw

hi
ch

ty
pi

ca
lc

on
ne

ct
io

ns
co

ul
d

be
co

m
pr

om
is

ed
by

at
ta

ck
er

s
w

ith
va

ri
ou

s
le

ve
ls

of
co

m
pu

ta
tio

na
lr

es
ou

rc
es

.F
or

H
T

T
PS

,w
e

pr
ov

id
e

fig
ur

es
w

ith
an

d
w

ith
ou

td
ow

ng
ra

de
at

ta
ck

s
on

th
e

ch
os

en
ci

ph
er

su
ite

.A
ll

ot
he

rs
ar

e
pa

ss
iv

e
at

ta
ck

s.

84

When the IKE/ESP messages of a VPN of interest are collected, the IKE messages and a small

amount of ESP traffic are sent to the Cryptanalysis and Exploitation Services (CES) [60, 86, 162].

Within the CES enclave, a specialized “attack orchestrator” attempts to recover the ESP decryption

key with assistance from high-performance computing resources as well as a database of known

PSKs (“CORALREEF”) [60,86,162]. If the recovery was successful, the decryption key is returned

from CES and used to decrypt the buffered ESP traffic such that the encapsulated content can be

processed [60, 157].

Evidence for a discrete log attack The ability to decrypt VPN traffic does not necessarily indicate

a defeat of Diffie-Hellman. There are, however, several features of the described exploitation process

that support this hypothesis.

The IKE protocol has been extensively analyzed [32, 121] and is not believed to be exploitable

in standard configurations under passive eavesdropping attacks. Absent a vulnerability in the key

derivation function or transport encryption, the attacker must recover the decryption keys. This

requires the attacker to calculate SKEYID generated from the Phase 1 Diffie-Hellman shared secret

after passively observing an IKE handshake.

While IKE is designed to support a range of Diffie-Hellman groups, our Internet-wide scans

(§4.4.3) show that the vast majority of IKE endpoints select one particular 1024-bit DH group

even when offered stronger groups. Conducting an expensive, but feasible, precomputation for this

single 1024-bit group (Oakley Group 2) would allow the efficient recovery of a large number of

Diffie-Hellman shared secrets used to derive SKEYID and the subsequent KEYMAT.

Given an efficient oracle for solving the discrete logarithm problem, attacks on IKE are possible

provided that the attacker can obtain the following: (1) a complete two-sided IKE transcript, and

(2) any PSK used for deriving SKEYID in IKEv1. The available documents describe both of these

as explicit prerequisites for the VPN exploitation process outlined above and provide the reader

with internal resources available to meet these prerequisites [86].

Of course, this explanation is not dispositive and the possibility remains that NSA could defeat

VPN encryption using alternative means. A published NSA document refers to the use of a router

85

“implant” to allow decryption of IPsec traffic indicating that the use of targeted malware is possible.

This implant “allows passive exploitation with just ESP” [86] without the prerequisite of collecting

the IKE handshake messages. This indicates that it is an alternative mechanism to the attack

described above.

The most compelling argument for a pure cryptographic attack is the generality of the NSA’s

VPN exploitation process. This process appears to be applicable across a broad swath of VPNs

without regard to endpoint’s identity or the ability to compromise individual endpoints.

4.4.3 Effects of a 1024-bit Break

In this section, we use Internet-wide scanning to assess the impact of a hypothetical DH-1024

break on IKE, SSH, and HTTPS. Our measurements, performed in early 2015, indicate that these

protocols would be subject to widespread compromise by a nation-state attacker who had the

resources to invest in precomputation for a small number of 1024-bit groups.

IKE We measured how IPsec VPNs use Diffie-Hellman in practice by scanning a 1% random

sample of the public IPv4 address space for IKEv1 and IKEv2 (the protocols used to initiate an

IPsec VPN connection) in May 2015. We used the ZMap UDP probe module to measure support for

Oakley Groups 1 and 2 (two popular 768- and 1024-bit, built-in groups) and which group servers

prefer. Of the 80K hosts that responded with a valid IKE packet, 44.2% were willing to negotiate

a connection using one of the two groups. We found that 31.8% of IKEv1 and 19.7% of IKEv2

servers support Oakley Group 1 (768-bit) while 86.1% and 91.0% respectively supported Oakley

Group 2 (1024-bit). In our sample of IKEv1 servers, 2.6% of profiled servers preferred the 768-bit

Oakley Group 1 and 66.1% preferred the 1024-bit Oakley Group 2. For IKEv2, 5.8% of profiled

servers chose Oakley Group 1, and 63.9% chose Oakley Group 2.

SSH All SSH handshakes complete either a finite field or elliptic curve Diffie-Hellman exchange.

The protocol explicitly defines support for Oakley Group 2 (1024-bit) and Oakley Group 14 (2048-

bit) but also allows a server-defined group to be negotiated. We scanned 1% random samples of the

public IPv4 address space in April 2015. We find that 98.9% of SSH servers support the 1024-bit

86

Oakley Group 2, 77.6% support the 2048-bit Oakley Group 14, and 68.7% support a server-defined

group.

During the SSH handshake, the server selects the client’s highest priority mutually supported key

exchange algorithm. To estimate what servers will prefer in practice, we performed a scan in which

we mimicked the algorithms offered by OpenSSH 6.6.1p1, the latest version of OpenSSH. In this

scan, 21.8% of servers preferred the 1024-bit Oakley Group 2, and 37.4% preferred a server-defined

group. 10% of the server-defined groups were 1024-bit, but, of those, nearly all provided Oakley

Group 2 rather than a custom group.

Combining these equivalent choices, we find that a nation-state adversary who performed NFS

precomputations for the 1024-bit Oakley Group 2 could passively eavesdrop on connections to

3.6M (25.7%) publicly accessible SSH servers.

HTTPS DHE is commonly deployed on web servers. 68.3% of Alexa Top 1M sites support DHE,

as do 23.9% of sites with browser-trusted certificates. Of the Top 1M sites that support DHE, 84%

use a 1024-bit or smaller group, with 94% of these using one of five groups.

Despite widespread support for DHE, a passive eavesdropper can only decrypt connections that

organically agree to use Diffie-Hellman. We estimate the number of sites for which this will occur

by offering the same sets of ciphersuites as Chrome, Firefox, and Safari. Approximately 24.0%

of browser connections with HTTPS-enabled Top 1M sites (and 10% with browser-trusted sites)

will negotiate DHE with one of the ten most popular 1024-bit primes; 17.9% of connections with

Top 1M sites could be passively eavesdropped given the precomputation for a single 1024-bit prime.

4.5 Recommendations

In this section, we present concrete recommendations to recover the expected security of

Diffie-Hellman.

Transition to elliptic curves. Transitioning to elliptic curve Diffie-Hellman (ECDH) key exchange

avoids all known feasible cryptanalytic attacks. Current elliptic curve discrete log algorithms do

not gain as much of an advantage from precomputation. In addition, ECDH keys are shorter and

87

computations are faster. We recommend transitioning to elliptic curves; this is the most effective

solution to the vulnerabilities in this paper. We note that in August 2015, the NSA announced that

it was planning to transition away from elliptic curve cryptography for its Suite B cryptographic

algorithms and would replace them with algorithms resistant to quantum computers [127]. However,

since no fully vetted and standardized quantum-resistant algorithms exist currently, elliptic curves

remain the most secure choice for public key operations.

Increase minimum key strengths. To protect against the Logjam attack, server operators should

disable DHE EXPORT and configure DHE ciphersuites to use primes of 2048 bits or larger. Browsers

and clients should raise the minimum accepted size for Diffie-Hellman groups to at least 1024 bits

in order to avoid downgrade attacks.

Don’t deliberately weaken crypto. The Logjam attack illustrates the fragility of cryptographic

“front doors”. Although the key sizes originally used in DHE EXPORT were intended to be tractable

only to NSA, two decades of algorithmic and computational improvements have significantly

lowered the bar to attacks on such key sizes. Despite the eventual relaxation of crypto export

restrictions and subsequent attempts to remove support for DHE EXPORT, the technical debt induced

by the additional complexity has left implementations vulnerable for decades. Like FREAK [20],

our attacks warn of the long-term debilitating effects of deliberately weakening cryptography.

4.6 Conclusion

We find that Diffie-Hellman key exchange, as used in practice, is often less secure than widely

believed. The problems stem from the fact that the number field sieve for discrete log allows an

attacker to perform a single precomputation that depends only on the group, after which com-

puting individual logarithms in that group has a far lower cost. Although this is well known to

cryptographers, it apparently has not been widely understood by system builders. Likewise, many

cryptographers did not appreciate that a large fraction of Internet communication depends on a few

small, widely shared groups.

A key lesson is that cryptographers and creators of practical systems need to work together more

88

effectively. System builders should take responsibility for being aware of applicable cryptanalytic

attacks. Cryptographers should involve themselves in how crypto is actually being applied, such

as through engagement with standards efforts and software review. Bridging the perilous gap that

separates these communities will be essential for keeping future systems secure.

89

CHAPTER V

Measuring Export-Grade Symmetric Cryptography

This chapter is adapted from a joint publication with Aviram et al. that originally appeared

in the proceedings of the 25th Usenix Security Symposium in 2016 [12]. FREAK [20] and

Logjam [2] showed that the mere existence of obsolete cryptography can harm the security of

modern cryptographic clients. Conventional wisdom was that the server should support as much

cryptography as possible for maximum backwards compatibility, while modern clients could slowly

trim out obsolete and insecure algorithms. This advice appears to have been actively harmful.

While the export-grade cryptography in TLS was limited to key exchange, symmetric cryptogra-

phy was also limited to 40-bits of security under EAR [53]. This type of export-grade symmetric

cryptography is present in SSLv2. However, since SSLv2 has an improperly authenticated hand-

shake, it was designed, deployed, and deprecated inside of one year. Despite its short life, in this

chapter we investigate support for SSLv2 to see if it is truly dead. We go on to investigate if

the export-grade cryptography from this legacy protocol is a harmless vestige, or if it is actively

dangerous to modern clients. We find that SSLv2 can be used to attack modern TLS, and we

empirically show the danger of this attack.

We present DROWN, a novel cross-protocol attack on TLS that uses a server supporting SSLv2

as an oracle to decrypt modern TLS connections. We introduce two versions of the attack. The

more general form exploits multiple unnoticed protocol flaws in SSLv2 to develop a new and

stronger variant of the Bleichenbacher RSA padding-oracle attack. To decrypt a 2048-bit RSA TLS

90

ciphertext, an attacker must observe 1,000 TLS handshakes, initiate 40,000 SSLv2 connections, and

perform 250 offline work. The victim client never initiates SSLv2 connections. We implemented the

attack and can decrypt a TLS 1.2 handshake using 2048-bit RSA in under 8 hours, at a cost of $440

on Amazon EC2. Using Internet-wide scans, we find that 33% of all HTTPS servers and 22% of

those with browser-trusted certificates are vulnerable to this protocol-level attack due to widespread

key and certificate reuse.

For an even cheaper attack, we apply our new techniques together with a newly discovered

vulnerability in OpenSSL that was present in releases from 1998 to early 2015. Given an unpatched

SSLv2 server to use as an oracle, we can decrypt a TLS ciphertext in one minute on a single

CPU—fast enough to enable man-in-the-middle attacks against modern browsers. We find that 26%

of HTTPS servers are vulnerable to this attack.

We further observe that the QUIC protocol is vulnerable to a variant of our attack that allows an

attacker to impersonate a server indefinitely after performing as few as 217 SSLv2 connections and

258 offline work.

We conclude that SSLv2 is not only weak, but actively harmful to the TLS ecosystem.

5.1 Introduction

TLS [43] is one of the main protocols responsible for transport security on the modern Internet.

TLS and its precursor SSLv3 have been the target of a large number of cryptographic attacks in

the research community, both on popular implementations and the protocol itself [122]. Prominent

recent examples include attacks on outdated or deliberately weakened encryption in RC4 [6],

RSA [20], and Diffie-Hellman [2], different side channels including Lucky13 [5], BEAST [46], and

POODLE [125], and several attacks on invalid TLS protocol flows [20, 22, 40].

Comparatively little attention has been paid to the SSLv2 protocol, likely because the known

attacks are so devastating and the protocol has long been considered obsolete. Wagner and Schneier

wrote in 1996 that their attacks on SSLv2 “will be irrelevant in the long term when servers stop

accepting SSL 2.0 connections” [167]. Most modern TLS clients do not support SSLv2 at all. Yet

91

in 2016, our Internet-wide scans find that out of 36 million HTTPS servers, 6 million (17%) support

SSLv2.

A Bleichenbacher attack on SSLv2. Bleichenbacher’s padding oracle attack [25] is an adaptive

chosen ciphertext attack against PKCS#1 v1.5, the RSA padding standard used in SSL and TLS. It

enables decryption of RSA ciphertexts if a server distinguishes between correctly and incorrectly

padded RSA plaintexts, and was termed the “million-message attack” upon its introduction in 1998,

after the number of decryption queries needed to deduce a plaintext. All widely used SSL/TLS

servers include countermeasures against Bleichenbacher attacks.

Our first result shows that the SSLv2 protocol is fatally vulnerable to a form of Bleichenbacher

attack that enables decryption of RSA ciphertexts. We develop a novel application of the attack

that allows us to use a server that supports SSLv2 as an efficient padding oracle. This attack is

a protocol-level flaw in SSLv2 that results in a feasible attack for 40-bit export cipher strengths,

and in fact abuses the universally implemented countermeasures against Bleichenbacher attacks to

obtain a decryption oracle.

We also discovered multiple implementation flaws in commonly deployed OpenSSL versions

that allow an extremely efficient and much more dangerous instantiation of this attack.

Using SSLv2 to break TLS. Second, we present a novel cross-protocol attack that allows an

attacker to break a passively collected RSA key exchange for any TLS server if the RSA keys are

also used for SSLv2, possibly on a different server. We call this attack DROWN (Decrypting RSA

using Obsolete and Weakened eNcryption).

In its general version, the attack exploits the protocol flaws in SSLv2, does not rely on any

particular library implementation, and is feasible to carry out in practice by taking advantage

of commonly supported export-grade ciphers. In order to decrypt one TLS session, the attacker

must passively capture about 1,000 TLS sessions using RSA key exchange, make 40,000 SSLv2

connections to the victim server, and perform 250 symmetric encryption operations. We successfully

carried out this attack using an optimized GPU implementation and were able to decrypt a 2048-bit

RSA ciphertext in less than 18 hours on a GPU cluster and less than 8 hours using Amazon EC2.

92

We found that 11.5 million HTTPS servers (33%) are vulnerable to this attack, because many

HTTPS servers that do not directly support SSLv2 share RSA keys with other services that do. Of

servers offering HTTPS with browser-trusted certificates, 22% are vulnerable.

We also present a special version of DROWN that exploits flaws in OpenSSL for a more efficient

oracle. It requires roughly the same number of captured TLS sessions as the general attack, but

only half as many connections to the victim server and no large computations. This attack can be

completed on a single core on commodity hardware in less than a minute, and is limited primarily

by how fast the server can complete handshakes. It is fast enough that an attacker can perform

man-in-the-middle attacks on live TLS sessions before the handshake times out, and downgrade a

modern TLS client to RSA key exchange with a server that prefers non-RSA cipher suites. Our

Internet-wide scans suggest that 79% of HTTPS servers that are vulnerable to the general attack, or

26% of all HTTPS servers, are also vulnerable to real-time attacks exploiting these implementation

flaws.

Our results highlight the risk that continued support for SSLv2 imposes on the security of

much more recent TLS versions. This is an instance of a more general phenomenon of insufficient

domain separation, where older, vulnerable security standards can open the door to attacks on newer

versions. We conclude that phasing out outdated and insecure standards should become a priority

for standards designers and practitioners.

Disclosure. DROWN was assigned CVE-2016-0800. We disclosed our attacks to OpenSSL

and worked with them to coordinate further disclosures. The specific OpenSSL vulnerabilities

we discovered have been designated CVE-2015-3197, CVE-2016-0703, and CVE-2016-0704. In

response to our findings, OpenSSL has made it impossible to configure a TLS server in such a way

that it is vulnerable to DROWN. Microsoft had already disabled SSLv2 for all supported versions of

IIS. We also disclosed the attack to the NSS developers, who have disabled SSLv2 on the last NSS

tool that supported it and have hastened efforts to entirely remove the protocol from their codebase.

In response to our disclosure, Google will disable QUIC support for non-whitelisted servers and

modify the QUIC standard. We also notified IBM, Cisco, Amazon, the German CERT-Bund, and

93

the Israeli CERT.

5.2 Background

In the following, a||b denotes concatenation of strings a and b. a[i] references the i-th byte in

a. (N,e) denotes an RSA public key, where N has byte-length `m (|N| = `m) and e is the public

exponent. The corresponding secret exponent is d = 1/e mod φ(N).

5.2.1 PKCS#1 v1.5 encryption padding

Our attacks rely on the structure of RSA PKCS#1 v1.5 padding. Although RSA PKCS#1

v2.0 implements OAEP, SSL/TLS still uses PKCS#1 v1.5. The PKCS#1 v1.5 encryption padding

scheme [94] randomizes encryptions by prepending a random padding string PS to a message k

(here, a symmetric session key) before RSA encryption:

1. The plaintext message is k, `k = |k|. The encrypter generates a random byte string PS, where

|PS| ≥ 8, |PS|= `m−3− `k, and 0x00 6∈ {PS[1], . . . ,PS[|PS|]}.

2. The encryption block is m = 00||02||PS||00||k.

3. The ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first computes m = cd mod N. Then it checks

whether the decrypted message m is correctly formatted as a PKCS#1 v1.5-encoded message. We

say that the ciphertext c and the decrypted message bytes m[1]||m[2]||...||m[`m] are PKCS#1 v1.5

conformant if:

m[1]||m[2] = 0x00||0x02

0x00 6∈ {m[3], . . . ,m[10]}

If this condition holds, the decrypter searches for the first value i > 10 such that m[i] = 0x00. Then,

it extracts k = m[i+1]|| . . . ||m[`m]. Otherwise, the ciphertext is rejected.

94

In SSLv3 and TLS, RSA PKCS#1 v1.5 is used to encapsulate the premaster secret exchanged

during the handshake [43]. Thus, k is interpreted as the premaster secret. In SSLv2, RSA PKCS#1

v1.5 is used for encapsulation of an equivalent key denoted the master key.

5.2.2 SSL and TLS

The first incarnation of the TLS protocol was the SSL (Secure Socket Layer) protocol, which

was designed by Netscape in the 90s. The first two versions of SSL were immediately found to

be vulnerable to trivial attacks [163, 167] which were fixed in SSLv3 [62]. Later versions of the

standard were renamed TLS, and share a similar structure to SSLv3. The current version of the

protocol is TLS 1.2; TLS 1.3 is currently under development.

An SSL/TLS protocol flow consists of two phases: handshake and application data exchange. In

the first phase, the communicating parties agree on cryptographic algorithms and establish shared

keys. In the second phase, these keys are used to protect the confidentiality and authenticity of the

transmitted application data.

The handshake protocol was fundamentally redesigned in the SSLv3 version. This new hand-

shake protocol was then used in later TLS versions up to TLS 1.2. In the following, we describe the

RSA-based handshake protocols used in TLS and SSLv2, and highlight their differences.

The SSLv2 handshake protocol.

The SSLv2 protocol description [82] is less formally specified than modern RFCs. Figure 5.1

depicts an SSLv2 handshake.

A client initiates an SSLv2 handshake by sending a ClientHello message, which includes a

list of cipher suites csc supported by the client and a client nonce rc, termed challenge. The server

responds with a ServerHello message, which contains a list of cipher suites css supported by the

server, the server certificate, and a server nonce rs, termed connection ID.

The client responds with a ClientMasterKey message, which specifies a cipher suite supported

by both peers and key data used for constructing a master key. In order to support export cipher

suites with 40-bit security (e.g., SSL RC2 128 CBC EXPORT40 WITH MD5), the key data is divided

into two parts:

95

SSLv2
Client

SSLv2
Client

SSLv2
Server
SSLv2
Server

ClientHello:
cs

C
, r

C

ClientMasterKey: cs,
mk

clear
, enc

pk
(mk

secret
)

(Client-) Finished

ServerVerify

(Server-) Finished

master_key = mk
clear

 || mk
secret

ServerHello:
cert, cs

S
, r

S

Figure 5.1: SSLv2 handshake — The server responds with a ServerVerify message directly after
receiving an RSA-PKCS#1 v1.5 ciphertext contained in ClientMasterKey. This protocol feature
enables the attack.

96

• mkclear: A portion of the master key sent in the ClientMasterKey message as plaintext

(termed clear key data in the SSLv2 standard).

• mksecret : A secret portion of the master key, encrypted with RSA PKCS#1 v1.5 (termed

secret key data).

The resulting master keymk is constructed by concatenating these two keys: mk=mkclear||mksecret .

For 40-bit export cipher suites, mksecret is five bytes in length. For non-export cipher suites, the

whole master key is encrypted, and the length of mkclear is zero.

The client and server can then compute session keys from the reconstructed master key mk:

server write key= MD5(mk||“0”||rc||rs)

client write key= MD5(mk||“1”||rc||rs)

The server responds with a ServerVerify message consisting of the challenge rc encrypted

with the server write key. Both peers then exchange Finished messages in order to authenticate

to each other.

Our attack exploits the fact that the server always decrypts an RSA-PKCS#1 v1.5 ciphertext,

computes the server write key, and immediately responds with a ServerVerify message. The

SSLv2 standard implies this message ordering, but does not make it explicit. However, we observed

this behavior in every implementation we examined. Our attack also takes advantage of the fact

that the encrypted mksecret portion of the master key can vary in length, and is only five bytes for

export ciphers.

The TLS handshake protocol. In TLS [43] or SSLv3, the client initiates the handshake with a

ClientHello, which contains a client random rc and a list of supported cipher suites. The server

chooses one of the cipher suites and responds with three messages, ServerHello, Certificate,

and ServerHelloDone. These messages include the server’s choice of cipher suite, server nonce

rs, and a server certificate with an RSA public key. The client then uses the public key to encrypt a

newly generated 48-byte premaster secret pms and sends it to the server in a ClientKeyExchange

message. The client and server then derive encryption and MAC keys from the premaster secret

97

TLS
Client
TLS

Client
TLS

Server
TLS

Server

ClientHello: r
c

ServerHello: r
s

Certificate: pk
enc

ServerHelloDone

ClientKeyExchange:
enc

pk
(pms)

ChangeCipherSpec

(Client-) Finished

ChangeCipherSpec

(Server-) Finished

PremasterSecret = pms

Figure 5.2: TLS-RSA handshake — After receiving an encrypted premaster secret, the server
waits for an authenticated ClientFinished message.

98

and the client and server random nonces. The details of this derivation are not important to

our attack. The client then sends ChangeCipherSpec and Finished messages. The Finished

message authenticates all previous handshake messages using the derived keys. The server responds

with its own ChangeCipherSpec and Finished messages.

The two main details relevant to our attacks are:

• The premaster secret is always 48 bytes long, independent of the chosen cipher suite. This is

also true for export cipher suites.

• After receiving the ClientKeyExchange message, the server waits for the ClientFinished

message, in order to authenticate the client.

5.2.2.1 Real-world protocol support

TLSv1.0 is the most commonly supported protocol version, according to several surveys. The

SSL Labs SSL Pulse survey [146] reports that 98.6% of about 140,000 popular TLS/SSL-enabled

web sites supported TLSv1.0 in January 2016. 72.0% supported TLSv1.2. Support for SSLv2 was

at 9.3%, and SSLv3 was at 29%. Mayer et al. [120] performed Internet-wide surveys of SMTP,

IMAP, and POP3 between April and August 2015, and found that support for SSLv2 support was as

high as 41.7% of servers for SMTP on port 25 and as low as 3.7% of IMAP servers on port 143.

Support for TLSv1.0 was nearly universal on these ports, varying from 91.6% on port 25 to 98.9%

on port 143.

Bowen [29] collected 213 million SSL/TLS client hellos and user agent strings from connections

to popular sites, of which 183,000 (0.09%) client hellos supported SSLv2. All of these client hellos

also supported at least TLSv1.0.

Holz et al. [84] performed passive monitoring to collect information about 16 million SSL/TLS

connections during one week in July-August 2015. They did not report any numbers for SSLv2, and

stated in personal communication that they did not observe any SSLv2 connections in their dataset.

99

5.2.3 Bleichenbacher’s attack

Bleichenbacher’s attack is a padding oracle attack—it exploits the fact that RSA ciphertexts

should decrypt to PKCS#1 v1.5-compliant plaintexts. If an implementation receives an RSA

ciphertext that decrypts to an invalid PKCS#1 v1.5 plaintext, it might naturally leak this information

via an error message, by closing the connection, or by taking longer to process the error condition.

This behavior can leak information about the plaintext that can be modeled as a cryptographic

oracle for the decryption process. Bleichenbacher [25] demonstrated how such an oracle could be

exploited to decrypt RSA ciphertexts.

Algorithm. In the simplest attack scenario, the attacker has a valid PKCS#1 v1.5 ciphertext c0 that

they wish to decrypt to discover the message m0. They have no access to the private RSA key, but

instead have access to an oracle O that will decrypt a ciphertext c and inform the attacker whether

the most significant two bytes match the required value for a correct PKCS#1 v1.5 padding:

O(c) =

1 if m = cd mod N starts with 0x0002

0 otherwise.

If the oracle answers with 1, the attacker knows that 2B≤m≤ 3B−1, where B = 28(`m−2). The

attacker can take advantage of RSA malleability to generate new candidate ciphertexts for any s:

c = (c0 · se) mod N = (m0 · s)e mod N

The attacker queries the oracle with c. If the oracle responds with 0, the attacker increments s and

repeats the previous step. Otherwise, the attacker learns that for some r, 2B≤ m0s− rN < 3B. This

allows the attacker to reduce the range of possible solutions to:

2B+ rN
s

≤ m0 <
3B+ rN

s

The attacker proceeds by refining guesses for s and r values and successively decreasing the size

100

of the interval containing m0. At some point the interval will contain a single valid value, m0.

Bleichenbacher’s original paper describes this process in further detail [25].

Countermeasures. In order to protect against this attack, the decrypter must not leak information

about the PKCS#1 v1.5 validity of the ciphertext. The ciphertext does not decrypt to a valid message,

so the decrypter generates a fake plaintext and continues the protocol with this decoy. The attacker

should not be able to distinguish the resulting computation from a correctly decrypted ciphertext.

In the case of SSL/TLS, the server generates a random premaster secret to continue the handshake

if the decrypted ciphertext is invalid. The client will not possess the session key to send a valid

ClientFinished message and the connection will terminate.

5.3 Breaking TLS with SSLv2

In this section, we describe our cross-protocol DROWN attack that uses an SSLv2 server as

an oracle to efficiently decrypt TLS connections. The attacker learns the session key for targeted

TLS connections but does not learn the server’s private RSA key. We first describe our techniques

using a generic SSLv2 oracle. In Section 5.4, we show how a protocol flaw in SSLv2 can be used to

construct such an oracle, and describe our general DROWN attack. In Section 5.5, we show how an

implementation flaw in common versions of OpenSSL leads to a more powerful oracle and describe

our efficient special DROWN attack.

We consider a server accepting TLS connections from clients. The connections are established

using a secure, state-of-the-art TLS version (1.0–1.2) and a TLS RSA cipher suite with a private key

unknown to the attacker.

The same RSA public key as the TLS connections is also used for SSLv2. For simplicity, we

will refer to the servers accepting TLS and SSLv2 connections as the same entity.

Our attacker is able to passively eavesdrop on traffic between the client and server and record

RSA-based TLS traffic. The attacker may or may not be also required to perform active man-in-the-

middle interference, as explained below.

The attacker can expect to decrypt one out of 1,000 intercepted TLS connections in our attack

101

for typical parameters. This is a devastating threat in many scenarios. For example, a decrypted

TLS connection might reveal a client’s HTTP cookie or plaintext password, and an attacker would

only need to successfully decrypt a single ciphertext to compromise the client’s account. In order

to collect 1,000 TLS connections, the attacker might simply wait patiently until sufficiently many

connections are recorded. A less patient attacker might use man-in-the-middle interference, as in

the BEAST attack [46].

5.3.1 A generic SSLv2 oracle

Our attacks make use of an oracle that can be queried on a ciphertext and leaks information

about the decrypted plaintext; this abstractly models the information gained from an SSLv2 server’s

behavior. Our SSLv2 oracles reveal many bytes of plaintext, enabling an efficient attack.

Our cryptographic oracle O has the following functionality: O decrypts an RSA ciphertext c

and responds with ciphertext validity based on the decrypted message m. The ciphertext is valid

only if m starts with 0x0002 followed by non-null padding bytes, a delimiter byte 0x00, and a

master key mksecret of correct byte length `k. We call such a ciphertext SSLv2 conformant.

All of the SSLv2 padding oracles we instantiate give the attacker similar information about a

PKCS#1 v1.5 conformant SSLv2 ciphertext:

O(c) =

mksecret if cd mod N = 00||02||PS||00||mksecret

0 otherwise.

That is, the oracle O(c) will return the decrypted message mksecret if it is queried on a PKCS#1

v1.5 conformant SSLv2 ciphertext c corresponding to a correctly PKCS#1 v1.5 padded en-

cryption of mksecret . The attacker then learns `k + 3 bytes of m = cd mod N: the first two

bytes are 00||02, and the last `k + 1 bytes are 00||mksecret . The length `k of mksecret varies

based on the cipher suite used to instantiate the oracle. For export-grade cipher suites such

as SSL RSA EXPORT WITH RC2 CBC 40 MD5, k will be 5 bytes, so the attacker learns 8 bytes of m.

102

5.3.2 DROWN attack template

Our attacker will use an SSLv2 oracle O to decrypt a TLS ClientKeyExchange. The behavior

of O poses two problems for the attacker. First, a TLS key exchange ciphertext decrypts to a 48-byte

premaster secret. But since no SSLv2 cipher suites have 48-byte key strengths, this means that

a valid TLS ciphertext is invalid to our oracle O . In order to apply Bleichenbacher’s attack, the

attacker must transform the TLS ciphertext into a valid SSLv2 key exchange message. Second, O is

very restrictive, since it strictly checks the length of the unpadded message. According to Bardou et

al. [13], Bleichenbacher’s attack would require 12 million queries to such an oracle.1

Our attacker overcomes these problems by following this generic attack flow:

0. The attacker collects many encrypted TLS RSA key exchange messages.

1. The attacker converts one of the intercepted TLS ciphertexts containing a 48-byte premaster

secret to an RSA PKCS#1 v1.5 encoded ciphertext valid to the SSLv2 oracle O .

2. Once the attacker has obtained a valid SSLv2 RSA ciphertext, they can continue with a

modified version of Bleichenbacher’s attack, and decrypt the message after many more oracle

queries.

3. The attacker then transforms the decrypted plaintext back into the original plaintext, which is

one of the collected TLS handshakes.

We describe the algorithmic improvements we use to make each of these steps efficient below.

5.3.2.1 Finding an SSLv2 conformant ciphertext

The first step for the attacker is to transform the original TLS ClientKeyExchange message c0

from a TLS conformant ciphertext into an SSLv2 conformant ciphertext.

For this task, we rely on the concept of trimmers, which were introduced by Bardou et al. [13].

Assume that the message m0 = c0
d mod N is divisible by a small number t. In that case, m0 ·

1See Table 1 in [13]. The oracle is denoted with the term FFF.

103

t−1 mod N simply equals the natural number m0/t. If we choose u≈ t, and multiply the original

message by u · t−1, the resulting number will lie near the original message: m0 ≈ m0/t ·u.

This method gives a good chance of generating a new SSLv2 conformant message. Let c0

be an intercepted TLS conformant RSA ciphertext, and let m0 = cd
0 mod N be the plaintext. We

select a multiplier s = u/t mod N = ut−1 mod N where u and t are coprime, compute the value

c1 = c0se mod N, and query O(c1). We will receive a response if m1 =m0 ·u/t is SSLv2 conformant.

As an example, let us assume a 2048-bit RSA ciphertext with `k = 5, and consider the fraction

u = 7, t = 8. The probability that c0 · u/t will be SSLv2 conformant is 1/7,774, so we expect to

make 7,774 oracle queries before obtaining a positive response from O . §5.7.1 gives more details

on computing these probabilities.

5.3.2.2 Shifting known plaintext bytes

Once we have obtained an SSLv2 conformant ciphertext c1, the oracle has also revealed the

`k+1 least significant bytes (mksecret together with the delimiter byte 0x00) and two most significant

0x0002 bytes of the SSLv2 conformant message m1. We would like to rotate these known bytes

around to the right, so that we have a large block of contiguous known most significant bytes

of plaintext. In this section, we show that this can be accomplished by multiplying by some

shift 2−r mod N. In other words, given an SSLv2 conformant ciphertext c1 = me
1 mod N, we can

efficiently generate an SSLv2 conformant ciphertext c2 = me
2 mod N where m2 = s ·m1 ·2−r mod N

and we know several most significant bytes of m2.

Let R = 28(k+1) and B = 28(`m−2). Abusing notation slightly, let the integer m1 = 2 ·B+PS ·

R+mksecret be the plaintext satisfying me
1 = c1 mod N. At this stage, the `k-byte integer mksecret is

known and the `m− `k−3-byte integer PS is not.

Let m̃1 = 2 ·B+mksecret be the known components of m1, so m1 = m̃1 +PS ·R. We can use this

to compute a new plaintext for which we know many most significant bytes. Consider the value:

m1 ·R−1 mod N = m̃1 ·R−1 +PS mod N.

104

The value of PS is unknown and consists of `m− `k−3 bytes. This means that the known value

m̃1 ·R−1 shares most of its `k +3 most significant bytes with m1 ·R−1.

Furthermore, we can iterate this process by finding a new multiplier s such that m2 = s ·m1 ·

R−1 mod N is also SSLv2 conformant. A randomly chosen s < 230 will work with probability

2−25.4. We can take use the bytes we have already learned about m1 to efficiently compute such an s

with only 678 oracle queries in expectation for a 2048-bit RSA modulus. §5.7.3 gives more details.

5.3.2.3 Adapted Bleichenbacher iteration

It is feasible for all of our oracles to use the previous technique to entirely recover a plaintext

message. However, for our SSLv2 protocol oracle it is cheaper after a few iterations to continue using

Bleichenbacher’s original attack. We can apply the original algorithm proposed by Bleichenbacher

as described in Section 5.2.3.

Each step obtains a message that starts with the required 0x0002 bytes after two queries in

expectation. Since we know the value of the `k +1 least significant bytes after multiplying by any

integer, we can query the oracle only on multipliers that cause the (`k +1)st least significant byte

to be zero. However, we cannot ensure that the padding string is entirely nonzero; for a 2048-bit

modulus this will hold with probability 0.37.

For a 2048-bit modulus, the total expected number of queries when using this technique to fully

decrypt the plaintext is 2048∗2/0.37≈ 11,000.

5.4 General DROWN

In this section, we describe how to use any correct SSLv2 implementation accepting export-

grade cipher suites as a padding oracle. We then show how to adapt the techniques described in

Section 5.3.2 to decrypt TLS RSA ciphertexts.

5.4.1 The SSLv2 export padding oracle

SSLv2 is vulnerable to a direct message side channel vulnerability exposing a Bleichenbacher

oracle to the attacker. The vulnerability follows from three properties of SSLv2. First, the server

immediately responds with a ServerVerify message after receiving the ClientMasterKey mes-

105

sage, which includes the RSA ciphertext, without waiting for the ClientFinished message that

proves the client knows the RSA plaintext. Second, when choosing 40-bit export RC2 or RC4 as the

symmetric cipher, only 5 bytes of the master key (mksecret) are sent encrypted using RSA, and the

remaining 11 bytes are sent in cleartext. Third, a server implementation that correctly implements

the anti-Bleichenbacher countermeasure and receives an RSA key exchange message with invalid

padding will generate a random premaster secret and carry out the rest of the TLS handshake using

this randomly generated key material.

This allows an attacker to deduce the validity of RSA ciphertexts in the following manner:

1. The attacker sends a ClientMasterKey message, which contains an RSA ciphertext c0 and

any choice of 11 clear key bytes for mkclear. The server responds with a ServerVerify

message, which contains the challenge encrypted using the server write key.

2. The attacker performs an exhaustive search over the possible values of the 5 bytes of the

master key mksecret , computes the corresponding server write key, and checks whether

the ServerVerify message decrypts to challenge. One value should pass this check; call it

mk0. Recall that if the RSA plaintext was valid, mk0 is the unpadded data in the RSA plaintext

cd
0 . Otherwise, mk0 is a randomly generated sequence of 5 bytes.

3. The attacker re-connects to the server with the same RSA ciphertext c0. The server responds

with another ServerVerify message that contains the current challenge encrypted using

the current server write key. If the decrypted RSA ciphertext was valid, the attacker can

use mk0 to decrypt a correct challenge value from the ServerVerify message. Otherwise,

if the ServerVerify message does not decrypt to challenge, the RSA ciphertext was

invalid, and mk0 must have been random.

Thus we can instantiate an oracle OSSLv2-export using the procedure above; each oracle query

requires two server connections and 240 decryption attempts in the simplest case. For each oracle

call OSSLv2-export(c), the attacker learns whether c is valid, and if so, learns the two most significant

106

bytes 0x0002, the sixth least significant 0x00 delimiter byte, and the value of the 5 least significant

bytes of the plaintext m.

5.4.2 OpenSSL special DROWN oracle

We discovered a vulnerability present in OpenSSL versions prior to March 4, 2015 that allows

a client to improperly provide cleartext key bytes for non-export ciphers. Affected servers will

substitute these bytes for bytes from the encrypted key. This allows a client to successively learn

a byte at a time of an encrypted key by brute forcing only 256 possibilities for each query. For

a non-export 128-bit cipher suite such as SSL RC4 WITH MD5, the attacker learns 19 bytes of the

decrypted message. We describe this vulnerability in more detail in § 5.5.1. A client can then

construct a Bleichenbacher oracle from this behavior by validating the ServerVerify message

against the candidate key provided in the clear key data, resulting in no brute-force computation.

5.4.3 TLS decryption attack

In this section, we describe how the oracle described in Section 5.4 can be used to carry out a

feasible attack to decrypt passively collected TLS ciphertexts.

As described in Section 5.3, we consider a server that accepts TLS connections from clients

using an RSA public key that is exposed via SSLv2, and an attacker who is able to passively observe

these connections.

We also assume the server supports export cipher suites for SSLv2. This can happen for two

reasons. First, the same server operators that fail to follow best practices in disabling SSLv2 [163]

may also fail to follow best practices by supporting export cipher suites. Alternatively, the server

might be running a version of OpenSSL prior to January 2016, in which case it is vulnerable to the

OpenSSL cipher suite selection bug described in Section 5.8, and an attacker may negotiate a cipher

suite of his choice independent of the server configuration.

The attacker needs access to computing power sufficient to perform a 250 time attack, mostly

brute forcing symmetric key encryption. After our optimizations, this can be done with a one-time

investment of a few thousand dollars of GPUs, or in a few hours for a few hundred dollars in the

107

cloud. Our cost estimates are described in Section 5.7.8.

5.4.3.1 Constructing the attack

The attacker can exploit the SSLv2 vulnerability following the generic attack outline described

in Section 5.3.2, consisting of several distinct phases:

0. The attacker passively collects 1,000 TLS handshakes from connections using RSA key

exchange.

1. They then attempt to convert the intercepted TLS ciphertexts containing a 48-byte premaster

secret to valid RSA PKCS#1 v1.5 encoded ciphertexts containing five-byte messages using

the fractional trimmers described in Section 5.3.2.1, and querying OSSLv2-export. The attacker

sends the modified ciphertexts to the server using fresh SSLv2 connections with weak

symmetric ciphers and uses the ServerVerify messages to deduce ciphertext validity as

described in the previous section. For each queried RSA ciphertext, the attacker must perform

a brute force attack on the weak symmetric cipher. The attacker expects to obtain a valid

SSLv2 ciphertext after roughly 10,000 oracle queries, or 20,000 connections to the server.

2. Once the attacker has obtained a valid SSLv2 RSA ciphertext c1 = me
1, they use the shifting

technique explained in Section 5.3.2.2 to find an integer s1 such that m2 = m1 · 2−40 · s1 is

also SSLv2 conformant. § 5.7.4 contains more details on this step.

3. The attacker then applies the shifting technique again to find another integer s2 such that

m3 = m2 ·2−40 · s2 is also SSLv2 conformant.

4. They then search for yet another integer s3 such that m3 · s3 is also SSLv2 conformant.

5. Finally, the attacker can continue with our adapted Bleichenbacher iteration technique de-

scribed in Section 5.3.2.3, and decrypts the message after an expected 10,000 additional

oracle queries, or 20,000 connections to the server.

108

6. The attacker can then transform the decrypted plaintext back into the original plaintext, which

is one of the 1,000 intercepted TLS handshakes.

The rationale behind the different phases. Bleichenbacher’s original algorithm requires a

conformant message m0, and a multiplier s1 such that m1 = m0 · s1 is also conformant. Naı̈vely,

it would appear we can apply the same algorithm here, after completing Phase 1. However, the

original algorithm expects s1 to be of size about 224. This is not the case when we use fractions for

s1, as the integer s1 = ut−1 mod N will be the same size as N.

Therefore, our approach is to find a conformant message for which we know the 5 most

significant bytes; this will happen after multiple rotations and this message will be m3. After finding

such a message, finding s3 such that m4 = m3 · s3 is also conformant becomes trivial. From there,

we can finally apply the adapted Bleichenbacher iteration technique as described in §5.7.5.

5.4.3.2 Attack performance

The attacker wishes to minimize three major costs in the attack: the number of recorded

ciphertexts from the victim client, the number of connections to the victim server, and the number

of symmetric keys to be brute forced. The requirements for each of these elements are governed

by the set of fractions to be multiplied with each RSA ciphertext in the first phase, as described in

Section 5.3.2.1.

Table 5.1 highlights a few choices for F and the resulting performance metrics for 2048-bit RSA

keys. Appendix 5.7 provides more details on the derivation of these numbers and other optimization

choices. Table 5.2 gives the expected number of Bleichenbacher queries for different RSA key sizes,

when minimizing total oracle queries.

5.5 Special DROWN

We discovered multiple vulnerabilities in recent (but not current) versions of the OpenSSL

SSLv2 handshake code that create even more powerful Bleichenbacher oracles, and drastically

reduce the amount of computation required to implement our attacks. The vulnerabilities, designated

CVE-2016-0703 and CVE-2016-0704, were present in the OpenSSL codebase from at least the

109

Optimizing For Ciphertexts |F | SSLv2 Connections Offline Work

offline work 12,743 1 50,421 249.64

offline work 1,055 10 46,042 250.63

compromise 4,036 2 41,081 249.98

online work 2,321 3 38,866 251.99

online work 906 8 39,437 252.25

Table 5.1: 2048-bit Bleichenbacher attack complexity — The cost to decrypt one ciphertext can
be adjusted by choosing the set of fractions F the attacker applies to each of the passively collected
ciphertexts in the first step of the attack. This choice affects several parameters: the number of these
collected ciphertexts, the number of connections the attacker makes to the SSLv2 server, and the
number of offline decryption operations.

Key size Phase 1 Phases 2–5 Total Queries Offline Work

1024 4,129 4,132 8,261 250.01

2048 6,919 12,468 19,387 250.76

4096 18,286 62,185 80,471 252.16

Table 5.2: Required oracle queries — In Phase 1, the attacker queries the oracle until an SSLv2
conformant ciphertext is found. In Phases 2–5, the attacker decrypts this ciphertext using leaked
plaintext. These numbers minimize total queries. In our attack, an oracle query represents two
server connections.

start of the repository, in 1998, until they were unknowingly fixed on March 4, 2015 by a patch [97]

designed to correct an unrelated problem [36]. By adapting DROWN to exploit this special case,

we can significantly cut both the number of connections and the computational work required.

5.5.1 The OpenSSL “extra clear” oracle

Prior to the fix, OpenSSL servers improperly allowed the ClientMasterKey message to contain

clear key data bytes for non-export ciphers. When such bytes are present, the server substitutes

them for bytes from the encrypted key. For example, consider the case that the client chooses

a 128-bit cipher and sends a 16-byte encrypted key k[1],k[2], . . . ,k[16] but, contrary to the proto-

col specification, includes 4 null bytes of clear key data. Vulnerable OpenSSL versions will

construct the following master key:

[00 00 00 00 k[1] k[2] k[3] k[4] . . . k[9] k[10] k[11] k[12]]

This enables a straightforward key recovery attack against such versions. An attacker that has

110

intercepted an SSLv2 connection takes the RSA ciphertext of the encrypted key and replays it in non-

export handshakes to the server with varying lengths of clear key data. For a 16-byte encrypted

key, the attacker starts with 15 bytes of clear key, causing the server to use the master key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1]]

The attacker can brute force the first byte of the encrypted key by finding the matching

ServerVerify message among 256 possibilities. Knowing k[1], the attacker makes another con-

nection with the same RSA ciphertext but 14 bytes of clear key, resulting in the master key:

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 k[1] k[2]]

The attacker can now easily brute force k[2]. With only 15 probe connections and an expected

15 · 128 = 1,920 trial encryptions, the attacker learns the entire master key for the recorded

session.

As this oracle is obtained by improperly sending unexpected clear-key bytes, we call it the Extra

Clear oracle.

This session key-recovery attack can be directly converted to a Bleichenbacher oracle. Given a

candidate ciphertext and symmetric key length `k, the attacker sends the ciphertext with `k known

bytes of clear key data. The oracle decision is simple:

• If the ciphertext is valid, the ServerVerify message will reflect a master key consisting of

those `k known bytes.

• If the ciphertext is invalid, the master key will be replaced with `k random bytes (by

following the countermeasure against the Bleichenbacher attack), resulting in a different

ServerVerify message.

This oracle decision requires one connection to the server and one ServerVerify computation.

After the attacker has found a valid ciphertext corresponding to a `k-byte encrypted key, they

recover the `k plaintext bytes by repeating the key recovery attack from above. Thus our oracle

OSSLv2-extra-clear(c) requires one connection to determine whether c is valid. After `k connections,

the attacker additionally learns the `k least significant bytes of m. We model this as a single oracle

111

call, but the number of server connections will vary depending on the response.

5.5.2 MITM attack against TLS

Special DROWN is fast enough that it can decrypt a TLS premaster secret online, during a

connection handshake. A man-in-the-middle attacker can use it to compromise connections between

modern browsers and TLS servers—even those configured to prefer non-RSA cipher suites.

The MITM attacker impersonates the server and sends a ServerHello message that selects a

cipher suite with RSA as the key-exchange method. Then, the attacker uses special DROWN to

decrypt the premaster secret. The main difficulty is completing the decryption and producing a valid

ServerFinished message before the client’s connection times out. Most browsers will allow the

handshake to last up to one minute [2].

The attack requires targeting an average of 100 connections, only one of which will be attacked,

probabilistically. The simplest way for the attacker to facilitate this is to use JavaScript to cause

the client to connect repeatedly to the victim server, as described in Section 5.3. Each connection

is tested against the oracle with only small number of fractions, and the attacker can discern

immediately when he receives a positive response from the oracle.

Note that since the decryption must be completed online, the Leaky Export oracle cannot be

used, and the attack uses only the Extra Clear oracle.

5.5.2.1 Constructing the attack

We will use SSL DES 192 EDE3 CBC WITH MD5 as the cipher suite, allowing the attacker to

recover 24 bytes of key at a time. The attack works as follows:

0. The attacker causes the victim client to connect repeatedly to the victim server, with at least

100 connections.

1. The attacker uses the fractional trimmers as described in Section 5.3.2.1 to convert one of the

TLS ciphertexts into an SSLv2 conformant ciphertext c0.

2. Once the attacker has obtained a valid SSLv2 ciphertext c1, they repeatedly use the shifting

112

technique described in Section 5.3.2.2 to rotate the message by 25 bytes each iteration,

learning 27 bytes with each shift. After several iterations, they have learned the entire

plaintext.

3. The attacker then transforms the decrypted SSLv2 plaintext into the decrypted TLS plaintext.

Using 100 fractional trimmers, this more efficient oracle attack allows the attacker to recover

one in 100 TLS session keys using only about 27,000 connections to the server, as described in

§5.7.6. The computation cost is so low that we can complete the full attack on a single workstation

in under one minute.

5.5.3 The OpenSSL “leaky export” oracle

In addition to the extra clear implementation bug, the same set of OpenSSL versions also contain

a separate bug, where they do not follow the correct algorithm for their implementation of the

Bleichenbacher countermeasure. We now describe this faulty implementation:

• The SSLv2 ClientKeyExchange message contains the mkclear bytes immediately before the

ciphertext c. Let p be the buffer starting at the first mkclear byte.

• Decrypt c in place. If the decryption operation succeeds, and c decrypted to a plaintext of a

correct padded length, p now contains the 11 mkclear bytes followed by the 5 mksecret bytes.

• If c decrypted to an unpadded plaintext k of incorrect length, the decryption operation

overwrites the first j = min(|k|,5) bytes of c with the first j bytes of k.

• If c is not SSLv2 conformant and the decryption operation failed, randomize the first five

bytes of p, which are the first five bytes of mkclear.

This behavior allows the attacker to distinguish between these three cases. Suppose the attacker

sends 11 null bytes as mkclear. Then these are the possible cases:

1. c decrypts to a correctly padded plaintext k of the expected length, 5 bytes. Then the following

master key will be constructed:

113

[00 00 00 00 00 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

2. c decrypts to a correctly padded plaintext k of a wrong length. Let r be the five random bytes

the server generated. The yielded master key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] k[4] k[5]]

when |k| ≥ 5. If |k|< 5, the server substitutes the first |k| bytes of c with the first |k| bytes of

k. Using |k|= 3 as an example, the master key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 k[1] k[2] k[3] c[4] c[5]]

3. c is not SSLv2 conformant, and hence the decryption operation failed. The resulting

master key will be:

[r[1] r[2] r[3] r[4] r[5] 00 00 00 00 00 00 c[1] c[2] c[3] c[4] c[5]]

The attacker detects case (3) by performing an exhaustive search over the 240 possibilities for r, and

checking whether any of the resulting values for the master key correctly decrypts the observed

ServerVerify message. If no r value satisfies this property, then cd starts with bytes 0x0002.

The attacker then distinguishes between cases (1) and (2) by performing an exhaustive search over

the five bytes of k, and checking whether any of the resulting values for mk correctly decrypts the

observed ServerVerify message.

As this oracle leaks information when using export ciphers, we have named it the Leaky Export

oracle.

In conclusion, OSSLv2-export-leaky allows an attacker to obtain a valid oracle response for all

ciphertexts which decrypt to a correctly-padded plaintext of any length. This is in contrary to the

previous oracles OSSLv2-extra-clear and OSSLv2-export, which required the plaintext to be of a specific

length. Each oracle query to OSSLv2-export-leaky requires one connection to the server and 241 offline

work.

Combining the two oracles.

The attacker can use the Extra Clear and Leaky Export oracles together in order to reduce

the number of queries required for the TLS decryption attack. They first test a TLS conformant

114

ciphertext for divisors using the Leaky Export oracle, then use fractions dividing the plaintext with

both oracles. Once the attacker has obtained a valid SSLv2 ciphertext c1, they repeatedly use the

shifting technique described in Section 5.3.2.2 to rotate the message by 25 bytes each iteration while

choosing 3DES as the symmetric cipher, learning 27 bytes with each shift. After several iterations,

they have learned the entire plaintext, using 6,300 queries (again for a 2048-bit modulus). This

brings the overall number of queries for this variant of the attack to 900+16∗4+6,300 = 7,264.

These parameter choices are not necessarily optimal. We give more details in §5.7.7.

5.6 Extending the attack to QUIC

DROWN can also be extended to a feasible-time man-in-the-middle attack against QUIC [89].

QUIC [33, 150] is a recent cryptographic protocol designed and implemented by Google that

is intended to reduce the setup time to establish a secure connection while providing security

guarantees analogous to TLS. QUIC’s security relies on a static “server config” message signed

by the server’s public key. Jager et al. [89] observe that an attacker who can forge a signature on a

malicious QUIC server config once would be able to impersonate the server indefinitely. In this

section, we show an attacker with significant resources would be able to mount such an attack

against a server whose RSA public keys is exposed via SSLv2.

A QUIC client receives a “server config” message, signed by the server’s public key, which

enumerates connection parameters: a static elliptic curve Diffie-Hellman public value, and a validity

period. In order to mount a man-in-the-middle attack against any client, the attacker wishes to

generate a valid server config message containing their own Diffie-Hellman value, and an expiration

date far in the future.

The attacker needs to present a forged QUIC config to the client in order to carry out a successful

attack. This is straightforward, since QUIC discovery may happen over non-encrypted HTTP [78].

The server does not even need to support QUIC at all: an attacker could impersonate the attacked

server over an unencrypted HTTP connection and falsely indicate that the server supports QUIC.

The next time the client connects to the server, it will attempt to connect using QUIC, allowing the

115

attacker to present the forged “server config” message and execute the attack [89].

5.6.1 QUIC signature forgery attack based on general DROWN

The attack proceeds much as in Section 5.3.2, except that some of the optimizations are no

longer applicable, making the attack more expensive.

The first step is to discover a valid, PKCS conformant SSLv2 ciphertext. In the case of TLS

decryption, the input ciphertext was PKCS conformant to begin with; this is not the case for the

QUIC message c0. Thus for the first phase, the attacker iterates through possible multiplier values

s until they randomly encounter a valid SSLv2 message in c0 · sd . For 2048-bit RSA keys, the

probability of this random event is Prnd ≈ 2−25; see Section 5.3.2.

Once the first SSLv2 conformant message is found, the attacker proceeds with the signature

forgery as they would in Step 2 of the TLS decryption attack. The required number of oracle queries

for this step is roughly 12,468 for 2048-bit RSA keys.

Attack cost. The overall oracle query cost is dominated by the 225 ≈ 34 million expected queries

in the first phase, above. At a rate of 388 queries/second, the attacker would finish in one day; at a

rate of 12 queries/second they would finish in one month.

For the SSLv2 export padding oracle, the offline computation to break a 40-bit symmetric key

for each query requires iterating over 265 keys. At our optimized GPU implementation rate of 515

million keys per second, this would require 829,142 GPU days. Our experimental GPU hardware

retails for $400. An investment of $10 million to purchase 25,000 GPUs would reduce the wall

clock time for the attack to 33 days.

Our implementation run on Amazon EC2 processed about 174 billion keys per g2.2xlarge

instance-hour, so at a cost of $0.09/instance-hour the full attack would cost $9.5 million and could

be parallelized to Amazon’s capacity.

116

Protocol Attack Type Oracle SSLv2 Connections Offline Work See §

TLS Decrypt SSLv2 41,081 250 5.4.3
TLS Decrypt Special 7,264 251 5.5.3
TLS MITM Special 27,000 215 5.5.2
QUIC MITM SSLv2 225 265 5.6.1
QUIC MITM Special 225 225 5.6.2
QUIC MITM Special 217 258 5.6.2

Table 5.3: Summary of attacks — “Oracle” denotes the oracle required to mount each attack,
which also implies the vulnerable set of SSLv2 implementations. SSLv2 denotes any SSLv2
implementation, while “Special” denotes an OpenSSL version vulnerable to special DROWN.

117

TLS
Client
TLS

Client

Attack
Algorithm

Attack
Algorithm

TLS
Server
TLS

Server

ClientHello

ServerHelloCertificateServerHelloDone

ClientHello

ServerHello

ClientMasterKey

ClientHello
Finished

CertificateFinished

ServerHelloDone

Record TLS 1.2 handshake

Chosen-ciphertext attack

...
SSLv2
Server
SSLv2
Server

Bleichenbacher Oracle

Break 40-bit
encryption

Break 40-bit
encryption

c
RSA

c'
RSA

c
RC2

k
RC2 m?

ServerVerify

ClientKeyExchange

Figure 5.3: SSLv2-based Bleichenbacher attack on TLS — An attacker passively collects RSA
ciphertexts from a TLS 1.2 handshake, and then performs oracle queries against a server that
supports SSLv2 with the same public key to decrypt the TLS ciphertext.

118

A
ny

ce
rt

ifi
ca

te
Tr

us
te

d
ce

rt
ifi

ca
te

s

Pr
ot

oc
ol

Po
rt

SS
L

/T
L

S
SS

L
v2

su
pp

or
t

Vu
ln

er
ab

le
ke

y
SS

L
/T

L
S

SS
L

v2
su

pp
or

t
Vu

ln
er

ab
le

ke
y

SM
T

P
25

3,
35

7
K

93
6

K
(2

8%
)

1,
66

6
K

(5
0%

)
1,

08
3

K
19

0
K

(1
8%

)
68

6
K

(6
3%

)
PO

P3
11

0
4,

19
3

K
40

4
K

(1
0%

)
1,

76
4

K
(4

2%
)

1,
78

7
K

23
0

K
(1

3%
)

1,
03

1
K

(5
8%

)
IM

A
P

14
3

4,
20

2
K

47
3

K
(1

1%
)

1,
75

9
K

(4
2%

)
1,

78
1

K
22

3
K

(1
3%

)
1,

02
2

K
(5

7%
)

H
T

T
PS

44
3

34
,7

27
K

5,
97

5
K

(1
7%

)
11

,4
44

K
(3

3%
)

17
,4

90
K

1,
74

9
K

(1
0%

)
3,

93
1

K
(2

2%
)

SM
T

PS
46

5
3,

59
6

K
29

1
K

(8
%

)
1,

43
9

K
(4

0%
)

1,
64

1
K

40
K

(2
%

)
94

9
K

(5
8%

)
SM

T
P

58
7

3,
50

7
K

42
3

K
(1

2%
)

1,
46

4
K

(4
2%

)
1,

65
7

K
13

3
K

(8
%

)
98

6
K

(5
9%

)
IM

A
PS

99
3

4,
31

5
K

85
3

K
(2

0%
)

1,
83

5
K

(4
3%

)
1,

90
9

K
26

0
K

(1
4%

)
1,

11
9

K
(5

9%
)

PO
P3

S
99

5
4,

32
2

K
88

4
K

(2
0%

)
1,

91
9

K
(4

4%
)

1,
97

4
K

30
4

K
(1

5%
)

1,
19

1
K

(6
0%

)

(A
le

xa
To

p
1M

)
44

3
61

1
K

82
K

(1
3%

)
15

2
K

(2
5%

)
45

6
K

38
K

(8
%

)
10

9
K

(2
4%

)

Ta
bl

e
5.

4:
H

os
ts

vu
ln

er
ab

le
to

ge
ne

ra
lD

R
O

W
N

—
W

e
pe

rf
or

m
ed

In
te

rn
et

-w
id

e
sc

an
st

o
m

ea
su

re
th

e
nu

m
be

ro
fh

os
ts

su
pp

or
tin

g
SS

Lv
2

on
se

ve
ra

ld
iff

er
en

tp
ro

to
co

ls
.A

ho
st

is
vu

ln
er

ab
le

to
D

R
O

W
N

if
its

pu
bl

ic
ke

y
is

ex
po

se
d

an
yw

he
re

vi
a

SS
L

v2
.O

ve
ra

ll
vu

ln
er

ab
ili

ty
to

D
R

O
W

N
is

m
uc

h
la

rg
er

th
an

su
pp

or
tf

or
SS

L
v2

du
e

to
w

id
es

pr
ea

d
re

us
e

of
ke

ys
.

119

5.6.2 Optimized QUIC signature forgery based on special DROWN

For targeted servers that are vulnerable to special DROWN, we are unaware of a way to combine

the two special DROWN oracles; the attacker would have to choose a single oracle which minimizes

his subjective cost. For the Extra Clear oracle, there is only negligible computation per oracle

query, so the computational cost for the first phase is 225. For the Leaky Export oracle, as explained

below, the required offline work is 258, and the required number of server connections is roughly

145,573. Both oracles appear to bring this attack well within the means of a moderately provisioned

adversary.

Mounting the attack using Leaky Export. For a 2048-bit RSA modulus, the probability of a ran-

dom message being conformant when querying OSSLv2-export-leaky is Prnd ≈ (1/256)2∗(255/256)8∗

(1− (255/256)246)≈ 2−17. Therefore, to compute cd when c is not SSLv2 conformant, the attacker

randomly generates values for s and tests c · se against the Leaky Export oracle. After roughly

217 ≈ 131,000 queries, they obtain a positive response, and learn that cd · s starts with bytes 0x00

02.

Naı̈vely, it would seem the attacker can then apply one of the techniques presented in this work,

but OSSLv2-export-leaky does not provide knowledge of any least significant plaintext bytes when the

plaintext length is not at most the correct one. Instead, the attacker proceeds directly according to

the algorithm presented in [13]. Referring to Table 1 in [13], OSSLv2-export-leaky is denoted with the

term FFT, as it returns a positive response for a correctly padded plaintext of any length, and the

median number of required queries for this oracle is 14,501. This number of queries is dominated

by the 131,000 queries the attacker has already executed. As each query requires testing roughly

241 keys, the required offline work is approximately 258.

Future changes to QUIC. In addition to disabling QUIC support for non-whitelisted servers,

Google have informed us that they plan to change the QUIC standard, so that the “server config”

message will include a client nonce to prove freshness. They also plan to limit QUIC discovery to

HTTPS.

120

5.7 Adaptations to Bleichenbacher’s attack

5.7.1 Success probability of fractions

For a given fraction u/t, the success probability with a randomly chosen TLS conformant

ciphertext can be computed as follows. Let m0 be a random TLS conformant message, m1 = m0 ·u/t,

and let `k be the expected length of the unpadded message. For s = u/t mod N where u and t are

coprime, m1 will be SSLv2 conformant if the following conditions all hold:

1. m0 is divisible by t. For a randomly generated m0, this condition holds with probability 1/t.

2. m1[1] = 0 and m1[2] = 2, or the integer m · u/t ∈ [2B,3B). For a randomly generated m0

divisible by t, this condition holds with probability

P =

3−2 · t/u for 2/3 < u/t < 1

3 · t/u−2 for 1 < u/t < 3/2

0 otherwise

3. ∀i ∈ [3, `m− (`k +1)],m1[i] 6= 0, or all bytes between the first two bytes and the (k+1) least

significant bytes are non-zero. This condition holds with probability (1−1/256)`m−(`k+3).

4. m1[`m−`k] = 0: the (`k+1)st least significant byte is 0. This condition holds with probability

1/256.

Using the above formulas for u/t = 7/8, the overall probability of success is P = 1/8 ·0.71 ·

0.37 · 1/256 = 1/7,774; thus the attacker expects to find an SSLv2 conformant ciphertext after

testing 7,774 randomly chosen TLS conformant ciphertexts. The attacker can decrease the number

of TLS conformant ciphertexts needed by multiplying each candidate ciphertext by several fractions.

Note that testing random s values until c1 = c0 · se mod N is SSLv2 conformant yields a success

probability of Prnd ≈ (1/256)3 ∗ (255/256)249 ≈ 2−25.

121

5.7.2 Optimizing the chosen set of fractions

In order to deduce the validity of a single ciphertext, the attacker would have to perform a

non-trivial brute-force search over all 5 byte master key values. This translates into 240 encryption

operations.

The search space can be reduced by an additional optimization, relying on the fractional

multipliers used in the first step. If the attacker uses u/t = 8/7 to compute a new SSLv2 conformant

candidate, and m0 is indeed divisible by t = 7, then the new candidate message m1 = m0/t · u is

divisible by u = 8, and the last three bits of m1 (and thus mksecret) are zero. This allows reducing

the searched master key space by selecting specific fractions.

More generally, for an integer u, the largest power of 2 by which u is divisible is denoted by

v2(u), and multiplying by a fraction u/t reduces the search space by a factor of v2(u). With this

observation, the trade-off between the 3 metrics: the required number of intercepted ciphertexts, the

required number of queries, and the required number of encryption attempts, becomes non-trivial to

analyze.

Therefore, we have resorted to using simulations when evaluating the performance metrics for

sets of fractions. The probability that multiplying a ciphertext by any fraction out of a given set

of fractions results in an SSLv2 conformant message is difficult to compute, since the events are

in fact inter-dependent: If m ·16/15 is conforming, then m is divisible by 5, greatly increasing the

probability that m ·4/5 is also conforming. However, it is easy to perform a Monte Carlo simulation,

where we randomly generate ciphertexts, and measure the probability that any fraction out of a

given set produces a conforming message. The expected required number of intercepted ciphertexts

is the inverse of that probability.

Formally, if we denote the set of fractions as F , and the event that a message m is conforming

as C(m), we perform a Monte Carlo estimation of the probability PF = P(∃ f ∈ F : C(m · f)), and

the expected number of required intercepted ciphertexts equals 1/PF . The required number of

oracle queries is simply 1/PF · |F |. Accordingly, the required number of server connections is

2 · 1/PF · |F |, since each oracle query requires two server connections. And as for the required

122

number of encryption attempts, if we denote this number when querying with a given fraction

f = u/t as E f , then E f = Eu/t = 240−v2(u). We further define the required encryption attempts when

testing a ciphertext with a given set of fraction F as EF = ∑ f∈F E f . Then the required number of

encryption attempts in Phase 1 for a given set of fractions is (1/PF) ·EF .

We can now give precise figures for the expected number of required intercepted ciphertexts,

connections to the targeted server, and encryption attempts. The results presented in Table 5.1 were

obtained using the above approach with one billion random ciphertexts per fraction set F .

5.7.3 Rotation and multiplier speedups

For a randomly chosen s, the probability that the two most significant bytes are 0x0002 is 2−16;

for a 2028-bit modulus N the probability that the next `m− `k−3 bytes of m2 are all nonzero is

about 0.37 as in the previous section, and the probability that the `k +1 least significant delimiter

byte is 0x00 is 1/256. Thus a randomly chosen s will work with probability 2−25.4 and the attacker

expects to try 225.4 values for s before succeeding.

However, since the attacker has already learned `k +3 most significant bytes of m1 ·R−1 mod N,

for `k ≥ 4 and s < 230 they do not need to query the oracle to learn if the two most significant

bytes are SSLv2 conformant; they can compute this themselves from their knowledge of m̃1 ·R−1.

They iterate through values of s, test that the top two bytes of m̃1 ·R−1 mod N are 0x0002, and

only query the oracle for s values that satisfy this test. Therefore, for a 2048-bit modulus they

expect to test 216 values offline per oracle query. The probability that a query is conformant is then

P = (1/256)∗ (255/256)249 ≈ 1/678, so they expect to perform 678 oracle queries before finding

a fully SSLv2 conformant ciphertext c2 = (s ·R−1)ec1 mod N.

We can speed up the brute force testing of 216 values of s using algebraic lattices. We are

searching for values of s satisfying m̃1R−1s < 3B mod N, or given an offset s0 we would like to find

solutions x and z to the equation m̃1R−1(s0 + x) = 2B+ z mod N where |x|< 216 and |z|< B. Let

123

X = 215. We can construct the lattice basis

L =

−B Xm̃1R−1 m̃1R−1s0 +B

0 XN 0

0 0 N

We then run the LLL algorithm [110] on L to obtain a reduced lattice basis V containing vectors

v1,v2,v3. We then construct the linear equations f1(x,z) = v1,1/B · z+ v1,2/X · x+ v1,3 = 0 and

f2(x,z) = v2,1/B · z+ v2,2/X · x+ v2,3 = 0 and solve the system of equations to find a candidate

integer solution x = s̃. We then test s = s̃+ s0 as our candidate solution in this range.

detL = XZN2 and dimL = 3, thus we expect the vectors vi in V to have length approximately

|vi| ≈ (XZN2)1/3. We will succeed if |vi|< N, or in other words XZ < N. N ≈ 28`m , so we expect

to find short enough vectors. This approach works well in practice and is significantly faster than

iterating through 216 possible values of s̃ for each query.

In summary, given an SSLv2 conformant ciphertext c1 = me
1 mod N, we can efficiently generate

an SSLv2 conformant ciphertext c2 = me
2 mod N where m2 = s ·m1 ·R−1 mod N and we know

several most significant bytes of m2, using only a few hundred oracle queries in expectation. We can

iterate this process as many times as we like to continue generating SSLv2 conformant ciphertexts

ci for which we know increasing numbers of most significant bytes, and which have a known

multiplicative relationship to our original message c0.

5.7.4 Rotations in the general DROWN attack

After the first phase, we have learned an SSLv2 conformant ciphertext c1, and we wish to shift

known plaintext bytes from least to most significant bits. Since we learn the least significant 6

bytes of plaintext of m1 from a successful oracle OSSLv2-export query, we could use a shift of 2−48 to

transfer 48 bits of known plaintext to the most significant bits of a new ciphertext. However, we

perform a slight optimization here, to reduce the number of encryption attempts. We instead use a

shift of 2−40, so that the least significant byte of m1 ·2−40 and m̃1 ·2−40 will be known. This means

that we can compute the least significant byte of m1 ·2−40 · s mod N, so oracle queries now only

124

require 232 encryption attempts each. This brings the total expected number of encryption attempts

for each shift to 232 ∗678≈ 241.

We perform two such plaintext shifts in order to obtain an SSLv2 conformant message, m3

that resides in a narrow interval of length at most 28`−66. We can then obtain a multiplier s3 such

that m3 · s3 is also SSLv2 conformant. Since m3 lies in an interval of length at most 28`−66, with

high probability for any s3 < 230, m3 · s3 lies in an interval of length at most 28`m−36 < B, so we

know the two most significant bytes of m3 · s3. Furthermore, we know the value of the 6 least

significant bytes after multiplication. We therefore test possible values of s3, and for values such

that m3 · s3 ∈ [2B,3B), and (m3 · s3)[`m−5] = 0, we query the oracle with c3 · se
3 mod N. The only

condition for PKCS conformance which we haven’t verified before querying the oracle is the

requirement of non-zero padding, which holds with probability 0.37.

In summary, after roughly 1/0.37 = 2.72 queries we expect a positive response from the oracle.

Since we know the value of the 6 least significant bytes after multiplication, this phase does not

require performing an exhaustive search. If the message is SSLv2 conformant after multiplication,

we know the symmetric key, and can test whether it correctly decrypts the ServerVerify message.

5.7.5 Adapted Bleichenbacher iteration

After we have bootstrapped the attack using rotations, the original algorithm proposed by

Bleichenbacher can be applied with minimal modifications.

The original step obtains a message that starts with the required 0x0002 bytes once in roughly

every two queries on average, and requires the number of queries to be roughly 16`m. Since we

know the value of the 6 least significant bytes after multiplying by any integer, we can only query

the oracle for multipliers that result in a zero 6th least significant byte, and again an exhaustive

search over keys is not required. However, we cannot ensure that the padding is non-zero when

querying, which again holds with probability 0.37. Therefore, for a 2048-bit modulus, the overall

expected number of queries for this phase is roughly 2048∗2/0.37 = 11,070.

125

5.7.6 Special DROWN MITM performance

For the first step, the probability that the three padding bytes are correct remains unchanged. The

probability that all the intermediate padding bytes are non-zero is now slightly higher, P1 = (1−

1/256)229 = 0.41, yielding an overall maximal success probability P = 0.1 ·0.41 · 1
256 = 1/6,244

per oracle query. Since the attacker now only needs to connect to the server once per oracle query,

the expected number of connections in this step is the same, 6,243. Phase 1 now yields a message

with 3 known padding bytes and 24 known plaintext bytes.

For the remaining rotation steps, each rotation requires an expected 630 oracle queries. The

attacker could now complete the original Bleichenbacher attack by performing 11,000 sequential

queries in the final phase. However, with this more powerful oracle it is more efficient to apply a

rotation 10 more times to recover the remaining plaintext bits. The number of queries required in

this phase is now 10 ·256/0.41≈ 6,300, and the queries for each of the 10 steps can be executed in

parallel.

Using multiple queries per fraction. For the OSSLv2-extra-clear oracle, the attacker can increase

their chances of success by querying the server multiple times per ciphertext and fraction, using

different cipher suites with different key lengths. They can negotiate DES and hope the 9th least

significant byte is zero, then negotiate 128-bit RC4 and hope the 17th least significant byte is zero,

then negotiate 3DES and hope the 25th least significant is zero. All three queries also require the

intermediate padding bytes to be non-zero. This technique triples the success probability for a

given pair of (ciphertext, fraction), at a cost of triple the queries. Its primary benefit is that fractions

with smaller denominators (and thus higher probabilities of success) are now even more likely to

succeed.

For a random ciphertext, when choosing 70 fractions, the probability of the first zero delimiter

byte being in one of these three positions is 0.01. Hence, the attacker can use only 100 recorded

ciphertexts, and expect to use 100∗70∗3 = 21,000 oracle queries. For the Extra Clear oracle, each

query requires one SSLv2 connection to the server. After obtaining the first positive response from

the oracle, the attacker proceeds to phase 2 using 3DES.

126

5.7.7 Special DROWN with combined oracles

Using the Leaky Export oracle, the probability that a fraction u/t will result in a positive response

is P = P0 ∗P3, where the formula for computing P0 = P((m · u/t)[1,2] = 00||02) is provided in

§5.7.1, and P3 is, for a 2048-bit modulus:

P3 = P(0x00 6∈ {m3, . . . ,m10}∧

0x00 ∈ {m11, . . . ,m`})

= (1−1/256)8 ∗ (1− (1−1/256)246) = 0.60

(5.1)

Phase 1. Our goal for this phase is to obtain a divisor t as large as possible, such that t|m. We

generate a list of fractions, sorted in descending order of the probability of resulting in a positive

response from OSSLv2-export-leaky. For a given ciphertext c, we then query with the 50 fractions in

the list with the highest probability, until we obtain a first positive response for a fraction u0/t0.

We can now deduce that t0|m. We then generate a list of fractions u/t where t is a multiple of t0,

sort them again by success probability, and again query with the 50 most probable fractions, until a

positive answer is obtained, or the list is exhausted. If a positive answer is obtained, we iteratively

re-apply this process, until the list is exhausted, resulting in a final fraction u∗/t∗.

Phase 2. We then query with all fractions denominated by t∗, and hope the ciphertext decrypts to

a plaintext of one of seven possible lengths: {2,3,4,5,8,16,24}. Assuming that this is the case, we

learn at least three least significant bytes, which allows us to use the shifting technique in order to

continue the attack. Detecting plaintext lengths 8, 16 and 24 can be accomplished using three Extra

Clear oracle queries, employing DES, 128-bit RC4 and 3DES, respectively, as the chosen cipher

suite. Detecting plaintext lengths 2, 3, 4 and 5 can be accomplishing by using a single Leaky Export

oracle query, which requires at most 241 offline computation. In fact, the optimization over the key

search space described in Section 5.3.2.1 is applicable here and can slightly reduce the required

computation. Therefore, by initiating four SSLv2 connections and performing at most 241 offline

work, the attacker can test for ciphertexts which decrypt to one of these seven lengths.

127

In practice, choosing 50 fractions per iteration as described above results in a success probability

of 0.066 for a single ciphertext. Hence, the expected number of required ciphertexts is merely

1/0.066 = 15. The expected number of fractions per ciphertext for phase 1 is 60, as in most cases

phase 1 consists of just a few successful iterations. Since each fraction requires a single query to

OSSLv2-export-leaky, the overall number of queries for this stage is 15∗60 = 900, and the required

offline computation is at most 900∗241 ≈ 251, which is similar to general DROWN. For a 2048-bit

RSA modulus, the expected number of queries for phase 2 is 16. Each query consists of three queries

to OSSLv2-extra-clear and one query to OSSLv2-export-leaky, which requires at most 241 computation.

Therefore in expectancy the attacker has to perform 245 offline computation for phase 2.

5.7.8 Implementing general DROWN with GPUs

The most computationally expensive part of our general DROWN attack is breaking the 40-bit

symmetric key, so we developed a highly optimized GPU implementation of this brute force attack.

Our first naı̈ve GPU implementation performed around 26MH/s, where MH denotes the time

required for testing one million possible values of mksecret . Our optimized implementation runs at a

final speed of 515MH/s, a speedup factor of 19.8.

We obtained our improvements through a number of optimizations. For example, our original

implementation ran into a communication bottleneck in the PCI-E bus in transmitting candidate keys

from CPU to GPU, so we removed this bottleneck by generating key candidates on the GPU itself.

We optimized memory management, including storing candidate keys and the RC2 permutation

table in constant memory, which is almost as fast as a register, instead of slow global memory.

We experimentally evaluated our optimized implementation on a local cluster and in the cloud.

We used it to execute a full attack of 249.6 tested keys on each platform. The required number of

keys to test during the attack is a random variable, distributed geometrically, with an expectation

that ranges between 249.6 and 252.5 depending on the choice of optimization parameters. We treat a

full attack as requiring 249.6 tested keys overall.

Hashcat. Hashcat [80] is an open source optimized password-recovery tool. The Hashcat

developers allowed us to use their GPU servers for our attack evaluation. The servers contain a total

128

of 40 GPUs: 32 Nvidia GTX 980 cards, and 8 AMD R9 290X cards. The value of this equipment is

roughly $18,040. Our full attack took less than 18 hours to complete on the Hashcat servers, with

the longest single instance taking 17h9m.

Amazon EC2. We also ran our optimized GPU code on the Amazon Elastic Compute Cloud (EC2)

service. We used a cluster composed of 200 variable-price “spot” instances: 150 g2.2xlarge

instances, each containing one high-performance NVIDIA GPU with 1,536 CUDA cores and 50

g2.8xlarge instances, each containing four of these GPUs. When we ran our experiments in

January 2016, the average spot rates we paid were $0.09/hr and $0.83/hr respectively. Our full

attack finished in under 8 hours including startup and shutdown for a cost of $440.

5.7.9 OpenSSL SSLv2 cipher suite selection bug

General DROWN is a protocol flaw, but the population of vulnerable hosts is increased due

to a bug in OpenSSL that causes many servers to erroneously support SSLv2 and export ciphers

even when configured not to. The OpenSSL team intended to disable SSLv2 by default in 2010,

with a change that removed all SSLv2 cipher suites from the default list of ciphers offered by the

server [133]. However, the code for the protocol itself was not removed in standard builds and

SSLv2 itself remained enabled. We discovered a bug in OpenSSL’s SSLv2 cipher suite negotiation

logic that allows clients to select SSLv2 cipher suites even when they are not explicitly offered by

the server. We notified the OpenSSL team of this vulnerability, which was assigned CVE-2015-3197.

The problem was fixed in OpenSSL releases 1.0.2f and 1.0.1r [133].

5.8 Measurements

We performed Internet-wide scans to analyze the number of systems vulnerable to DROWN. A

host is directly vulnerable to general DROWN if it supports SSLv2. Similarly, a host is directly

vulnerable to special DROWN if it supports SSLv2 and has the extra clear bug (which also implies

the leaky export bug). These directly vulnerable hosts can be used as oracles to attack any other host

with the same key. Hosts that do not support SSLv2 are still vulnerable to general or special DROWN

if their RSA key pair is exposed by any general or special DROWN oracle, respectively. The oracles

129

may be on an entirely different host or port. Additionally, any host serving a browser-trusted

certificate is vulnerable to a special DROWN man-in-the-middle if any name on the certificate

appears on any other certificate containing a key that is exposed by a special DROWN oracle.

We used ZMap [52] to perform full IPv4 scans on eight different ports during late January

and February 2016. We examined port 443 (HTTPS), and common email ports 25 (SMTP with

STARTTLS), 110 (POP3 with STARTTLS), 143 (IMAP with STARTTLS), 465 (SMTPS), 587

(SMTP with STARTTLS), 993 (IMAPS), and 995 (POP3S). For each open port, we attempted

three complete handshakes: one normal handshake with the highest available SSL/TLS version;

one SSLv2 handshake requesting an export RC2 cipher suite; and one SSLv2 handshake with a

non-export cipher and sixteen bytes of plaintext key material sent during key exchange, which we

used to detect if a host has the extra clear bug.

We summarize our general DROWN results in Table 5.4. The fraction of SSL/TLS hosts that

directly supported SSLv2 varied substantially across ports. 28% of SMTP servers on port 25

supported SSLv2, likely due to the opportunistic encryption model for email transit. Since SMTP

fails-open to plaintext, many servers are configured with support for the largest possible set of

protocol versions and cipher suites, under the assumption that even bad or obsolete encryption is

better than plaintext [31]. The other email ports ranged from 8% for SMTPS to 20% for POP3S and

IMAPS. We found 17% of all HTTPS servers, and 10% of those with a browser-trusted certificate,

are directly vulnerable to general DROWN.

130

A
ny

ce
rt

ifi
ca

te
Tr

us
te

d
ce

rt
ifi

ca
te

s

Pr
ot

oc
ol

Po
rt

SS
L

/T
L

S
Sp

ec
ia

lD
R

O
W

N
or

ac
le

s
Vu

ln
er

ab
le

ke
y

SS
L

/T
L

S
Vu

ln
er

ab
le

ke
y

Vu
ln

er
ab

le
na

m
e

SM
T

P
25

3,
35

7
K

85
5

K
(2

5%
)

89
6

K
(2

7%
)

1,
08

3
K

30
5

K
(2

8%
)

39
8

K
(3

7%
)

PO
P3

11
0

4,
19

3
K

39
7

K
(9

%
)

94
6

K
(2

3%
)

1,
78

7
K

48
5

K
(2

7%
)

67
4

K
(3

8%
)

IM
A

P
14

3
4,

20
2

K
45

7
K

(1
1%

)
96

9
K

(2
3%

)
1,

78
1

K
49

8
K

(3
0%

)
69

0
K

(3
9%

)
H

T
T

PS
44

3
34

,7
27

K
4,

02
9

K
(1

2%
)

9,
08

9
K

(2
6%

)
17

,4
90

K
2,

52
3

K
(1

4%
)

3,
79

3
K

(2
2%

)
SM

T
PS

46
5

3,
59

6
K

33
4

K
(9

%
)

76
5

K
(2

1%
)

1,
64

1
K

43
0

K
(2

6%
)

63
0

K
(3

8%
)

SM
T

P
58

7
3,

50
7

K
34

5
K

(1
0%

)
79

2
K

(2
3%

)
1,

65
7

K
48

2
K

(2
9%

)
66

7
K

(4
0%

)
IM

A
PS

99
3

4,
31

5
K

89
2

K
(2

1%
)

1,
07

3
K

(2
5%

)
1,

90
9

K
60

2
K

(3
2%

)
79

2
K

(4
2%

)
PO

P3
S

99
5

4,
32

2
K

89
7

K
(2

1%
)

1,
10

8
K

(2
6%

)
1,

97
4

K
64

1
K

(3
2%

)
83

5
K

(4
2%

)

(A
le

xa
To

p
1M

)
44

3
61

1
K

22
K

(4
%

)
52

K
(9

%
)

45
6

K
33

K
(7

%
)

85
K

(1
9%

)

Ta
bl

e
5.

5:
H

os
ts

vu
ln

er
ab

le
to

sp
ec

ia
lD

R
O

W
N

—
A

se
rv

er
is

vu
ln

er
ab

le
to

sp
ec

ia
lD

R
O

W
N

if
its

ke
y

is
ex

po
se

d
by

a
ho

st
w

ith
th

e
C

V
E-

20
16

-0
70

3
bu

g.
Si

nc
e

th
e

at
ta

ck
is

fa
st

en
ou

gh
to

en
ab

le
m

an
-in

-th
e-

m
id

dl
e

at
ta

ck
s,

a
se

rv
er

is
al

so
vu

ln
er

ab
le

(to
im

pe
rs

on
at

io
n)

if
an

y
na

m
e

in
its

ce
rt

ifi
ca

te
is

fo
un

d
in

an
y

tr
us

te
d

ce
rt

ifi
ca

te
w

ith
an

ex
po

se
d

ke
y.

131

OpenSSL SSLv2 cipher suite selection bug.

We discovered that OpenSSL servers do not respect the cipher suites advertised in the SSLv2

ServerHello message. That is, a malicious client can select an arbitrary cipher suite in the

ClientMasterKey message, regardless of the contents of the ServerHello, and force the use

of export cipher suites even if they are explicitly disabled in the server configuration. To fully

detect SSLv2 oracles, we configured our scanner to ignore the ServerHello cipher list. The

cipher selection bug helps explain the wide support for SSLv2—the protocol appeared disabled, but

non-standard clients could still complete handshakes.

Widespread public key reuse. Reuse of RSA key material across hosts and certificates is

widespread [81, 84]. Often this is benign: organizations may issue multiple TLS certificates

for distinct domains with the same public key in order to simplify use of TLS acceleration hardware

and load balancing. However, there is also evidence that system administrators may not entirely

understand the role of the public key in certificates. For example, in the wake of the Heartbleed

vulnerability, a substantial fraction of compromised certificates were reissued with the same public

key [50].

There are many reasons why the same public key or certificate would be reused across different

ports and services within an organization. For example a mail server that serves SMTP, POP3,

and IMAP from the same daemon would likely share the same TLS configuration. Additionally,

an organization might choose to purchase a single wildcard TLS certificate, and use it on both

web servers and mail servers. Public keys have also been observed to be widely shared across

independent organizations due to default certificates and public keys that are shipped with networked

devices and software, improperly configured virtual machine images, and random number generation

flaws.

The number of hosts vulnerable to DROWN rises significantly when we take RSA key reuse

into account. For HTTPS, 17% of hosts are vulnerable to general DROWN because they support

both TLS and SSLv2 on the HTTPS port, but 33% are vulnerable when considering RSA keys used

by another service.

132

Special DROWN. As shown in Table 5.5, 9.1 M HTTPS servers (26%) are vulnerable to special

DROWN, as are 2.5 M HTTPS servers with browser-trusted certificates (14%). 66% as many

HTTPS hosts are vulnerable to special DROWN as to general DROWN (70% for browser-trusted

servers). While 2.7 M public keys are vulnerable to general DROWN, only 1.1 M are vulnerable to

special DROWN (41% as many). Vulnerability among Alexa Top Million domains is also lower,

with only 9% of domains vulnerable (7% for browser-trusted domains).

Since special DROWN enables active man-in-the-middle attacks, any host serving a browser-

trusted certificate with at least one name that appears on any certificate with an RSA key exposed by

a special DROWN oracle is vulnerable to an impersonation attack. Extending our search to account

for certificates with shared names, we find that 3.8 M (22%) hosts with browser-trusted certificates

are vulnerable to man-in-the-middle attacks, as well as 19% of the browser-trusted domains in the

Alexa Top Million.

5.8.1 Public key reuse

Reuse of RSA keys among different services was identified as a huge amplification to the number

of services vulnerable to DROWN. Table 5.6 describes the number of reused RSA keys among

different protocols. The two clusters 110-143 and 993-995 stick out as they share the majority of

public keys. This is expected, as most of these ports are served by the same IMAP/POP3 daemon.

The rest of the ports also share a substantial fraction of public keys, usually between 21% and 87%.

The numbers for HTTPS (port 443) differ as there are four times as many public keys in HTTPS as

in the second largest protocol.

133

Po
rt

25
(S

M
T

P)
11

0
(P

O
P3

)
14

3
(I

M
A

P)
44

3
(H

T
T

PS
)

46
5

(S
M

T
PS

)
58

7
(S

M
T

P)
99

3
(I

M
A

PS
)

99
5

(P
O

P3
S)

25
1,

11
5

(1
00

%
)

33
1

(3
2%

)
31

8
(3

2%
)

19
6

(4
%

)
40

3
(4

7%
)

30
7

(4
8%

)
36

9
(3

3%
)

32
1

(3
2%

)
11

0
33

1
(3

0%
)

1,
04

4
(1

00
%

)
79

5
(7

9%
)

15
2

(3
%

)
33

7
(3

9%
)

22
2

(3
5%

)
81

9
(7

2%
)

87
7

(8
7%

)
14

3
31

8
(2

9%
)

79
5

(7
6%

)
1,

00
3

(1
00

%
)

14
9

(3
%

)
32

1
(3

8%
)

22
0

(3
5%

)
87

8
(7

8%
)

75
5

(7
5%

)
44

3
19

6
(1

8%
)

15
2

(1
5%

)
14

9
(1

5%
)

4,
57

9
(1

00
%

)
12

9
(1

5%
)

94
(1

5%
)

17
5

(1
6%

)
15

1
(1

5%
)

46
5

40
3

(3
6%

)
33

7
(3

2%
)

32
1

(3
2%

)
12

9
(3

%
)

85
7

(1
00

%
)

46
3

(7
3%

)
39

6
(3

5%
)

36
4

(3
6%

)
58

7
30

7
(2

8%
)

22
2

(2
1%

)
22

0
(2

2%
)

94
(2

%
)

46
3

(5
4%

)
63

7
(1

00
%

)
25

9
(2

3%
)

22
9

(2
3%

)
99

3
36

9
(3

3%
)

81
9

(7
8%

)
87

8
(8

8%
)

17
5

(4
%

)
39

6
(4

6%
)

25
9

(4
1%

)
1,

13
1

(1
00

%
)

85
9

(8
5%

)
99

5
32

1
(2

9%
)

87
7

(8
4%

)
75

5
(7

5%
)

15
1

(3
%

)
36

4
(4

2%
)

22
9

(3
6%

)
85

9
(7

6%
)

1,
01

0
(1

00
%

)

Ta
bl

e
5.

6:
Im

pa
ct

of
ke

y
re

us
e

ac
ro

ss
po

rt
s—

N
um

be
ro

fs
ha

re
d

pu
bl

ic
ke

ys
am

on
g

tw
o

po
rt

s,
in

th
ou

sa
nd

s.
E

ac
h

co
lu

m
n

st
at

es
w

ha
t

nu
m

be
ra

nd
pe

rc
en

ta
ge

of
ke

ys
fr

om
th

e
po

rt
in

th
e

he
ad

er
ro

w
ar

e
us

ed
on

ot
he

rp
or

ts
.F

or
ex

am
pl

e,
18

%
of

ke
ys

us
ed

on
po

rt
25

ar
e

al
so

us
ed

on
po

rt
44

3,
bu

to
nl

y
4%

of
ke

ys
us

ed
on

po
rt

44
3

ar
e

al
so

us
ed

on
po

rt
25

.

134

5.9 Related work

TLS has had a long history of implementation flaws and protocol attacks [5,6,23,46,50,125,147].

We discuss relevant Bleichenbacher and cross-protocol attacks below.

Bleichenbacher’s attack. Bleichenbacher’s adaptive chosen ciphertext attack against SSL was

first published in 1998 [25]. Several works have adapted his attack to different scenarios [13, 88,

103]. The TLS standard explicitly introduces countermeasures against the attack [43], but several

modern implementations have been discovered to be vulnerable to timing-attack variants in recent

years [123, 171]. These side-channel attacks are implementation failures and only apply when the

attacker is co-located with the victim.

Cross-protocol attacks. Jager et al. [89] showed that a cross-protocol Bleichenbacher RSA

padding oracle attack is possible against the proposed TLS 1.3 standard, in spite of the fact that

TLS 1.3 does not include RSA key exchange, if server implementations use the same certificate for

previous versions of TLS and TLS 1.3. Wagner and Schneier [167] developed a cross-cipher suite

attack for SSLv3, in which an attacker could reuse a signed server key exchange message in a later

exchange with a different cipher suite. Mavrogiannopoulos et al. [119] developed a cross-cipher

suite attack allowing an attacker to use elliptic curve Diffie-Hellman as prime field Diffie-Hellman.

Attacks on export-grade cryptography. Recently, the FREAK [20] and Logjam [2] attacks

allowed an active attacker to downgrade a connection to export-grade RSA and Diffie-Hellman,

respectively. DROWN exploits export-grade symmetric ciphers, completing the export-grade

cryptography attack trifecta.

5.10 Discussion

5.10.1 Implications for modern protocols

Although the protocol flaws in SSLv2 enabling DROWN are not present in recent TLS versions,

many modern protocols meet a subset of the requirements to be vulnerable to a DROWN-style

attack. For example:

135

1. RSA key exchange. TLS 1.2 [43] allows this.

2. Reuse of server-side nonce by the client. QUIC [33] allows this.

3. Server sends a message encrypted with the derived key before the client. QUIC, TLS 1.3 [145],

and TLS False Start [108] do this.

4. Deterministic cipher parameters are generated from the premaster secret and nonces. This is

the case for all TLS stream ciphers and TLS 1.0 block ciphers.

DROWN has a natural adaptation when all three properties are present. The attacker exposes

a Bleichenbacher oracle by connecting to the server twice with the identical RSA ciphertexts and

server-side nonces. If the RSA ciphertext is PKCS conformant, the server will respond with identical

messages across both connections; otherwise they will differ.

5.10.2 Lessons for key reuse

DROWN illustrates the cryptographic principle that keys should be single use. Often, this

principle is primarily applied to keys that are used to both sign and decrypt, but DROWN illustrates

that using keys for different protocol versions can also be a serious security risk. Unfortunately, there

is no widely supported way to pin X.509 certificates to specific protocols. While using per-protocol

certificates may help defend against passive attacks, an active attacker could still leverage any

certificate with a matching name.

5.10.3 Harms from obsolete cryptography

Recent years have seen a significant number of serious attacks exploiting outdated and obsolete

cryptography. Many protocols and cryptographic primitives that were demonstrated to be weak

decades ago are surprisingly common in real-world systems.

DROWN exploits a modification of an 18-year-old attack against a combination of protocols and

ciphers that have long been superseded by better options: the SSLv2 protocol, export cipher suites,

and PKCS #1 v1.5 RSA padding. In fact, support for RSA as a key exchange method, including

136

the use of PKCS #1 v1.5, is mandatory even for TLS 1.2. The attack is made more severe by

implementation flaws in rarely used code.

Our work serves as yet another reminder of the importance of removing deprecated technologies

before they become exploitable vulnerabilities. In response to many of the vulnerabilities listed

above, browser vendors have been aggressively warning end users when TLS connections are

negotiated with unsafe cryptographic parameters, including SHA-1 certificates, small RSA and

Diffie-Hellman parameters, and SSLv3 connections. This process is currently happening in a

piecemeal fashion, primitive by primitive. Vendors and developers rightly prioritize usability and

backward compatibility in standards, and are willing to sacrifice these only for practical attacks.

This approach works less well for cryptographic vulnerabilities, where the first sign of a weakness,

while far from being practically exploitable, can signal trouble in the future. Communication

issues between academic researchers and vendors and developers have been voiced by many in the

community, including Green [75] and Jager et al. [87].

The long-term solution is to proactively remove these obsolete technologies. There is movement

towards this already: TLS 1.3 has entirely removed RSA key exchange and has restricted Diffie-

Hellman key exchange to a few groups large enough to withstand cryptanalytic attacks long in the

future. The CA/Browser forum will remove support for SHA-1 certificates this year. Resources such

as the SSL Labs SSL Reports have gathered information about best practices and vulnerabilities in

one place, in order to encourage administrators to make the best choices.

5.10.4 Harms from weakening cryptography

Export-grade cipher suites for TLS deliberately weakened three primitives to the point that they

are now broken even to enthusiastic amateurs: 512-bit RSA key exchange, 512-bit Diffie-Hellman

key exchange, and 40-bit symmetric encryption. All three deliberately weakened primitives have

been cornerstones of high-profile attacks: FREAK exploits export RSA, Logjam exploits export

Diffie-Hellman, and now DROWN exploits export symmetric encryption.

Like FREAK and Logjam, our results illustrate the continued harm that a legacy of deliberately

weakened export-grade cryptography inflicts on the security of modern systems, even decades after

137

the regulations influencing the original design were lifted. The attacks described in this paper

are fully feasible against export cipher suites today. The technical debt induced by cryptographic

“front doors” has left implementations vulnerable for decades. With the slow rate at which obsolete

protocols and primitives fade away, we can expect some fraction of hosts to remain vulnerable for

years to come.

138

CHAPTER VI

Conclusion and Future Work

This dissertation shows that it is both possible, useful, and interesting to study cryptography

empirically. In this section, I draw from each of the case studies presented, and discuss how

cryptography should and has moved forward. I also discuss how measuring cryptography fits into

the larger theme of data-driven, empirical security.

6.1 TLS 1.3

Empirical cryptography informed future protocol design in addition to improving the current

security of the Internet. TLS 1.3 [145] was standardized in August, 2018 and has been informed by

the failings of TLS 1.2 [106, 107, 151] over the past ten years. Many of the recommendations from

prior chapters are followed in TLS 1.3.

Named Groups. TLS 1.3 unifies parameters selection between elliptic curve and finite field

Diffie-Hellman. It removes support for custom DHE groups, and instead provides a method to select

from a preset list of groups. Each of the predefined groups has a minimum length of 2048 bits, and

uses a safe prime [71].

Limiting RSA. RSA key exchange was removed entirely. For signatures, RSA PKCS#1 v1.5

was removed in favor of RSA PSS, which limits Bleichenbacher-style attacks [16]. Removing

support for malleable PKCS#1 v1.5 signatures prevents DROWN-like oracles. In recent years,

the Bleichenbacher attack has evolved into a class of attacks. Within TLS, defending against

139

Bleichenbacher-style attacks has evolved into a cat-and-mouse game in which individual vulnera-

bilities such as ROBOT [26] and CAT [149] are patched, while new ways of constructing oracles

are discovered. It appears there simply may be no safe PKCS#1 v1.5 implementations. Bleichen-

bacher attacks will likely continue to be discovered, but TLS 1.3 should entirely avoid this class of

vulnerability.

Explicit Verification. TLS 1.3 introduces the CertificateVerify message. Similar to key exchange

in SSH [169], the CertificateVerify contains a signature over the protocol transcript from the long-

term private key of the remote peer extracted from the X.509 certificate for that peer. This explicitly

binds the state of the connection to key. Had a similar mechanism been present in TLS 1.2 and

earlier, attacks such as FREAK and Logjam, where the attacker breaks the session secret without

compromising the long-term secret, would not be possible.

New Dangers. DROWN oracles were only possible in SSLv2 because, unlike TLS, the server

sends secret-derived data to the client, before verifying the client actually possesses the secret. In

TLS 1.2, the client sends its Finished message first. This changes in TLS 1.3, where the server

sends encrypted Certificate messages prior to verifying the client possesses its key exchange secret.

Furthermore, TLS 1.3 introduces 0-RTT mode in which the client sends application data in the

first flight, and the server sends application data before receiving the ClientFinished message. As

noted in the RFC, this is not forward secret and provides no anti-replay guarantees [145]. While

this clearly has application layer concerns, if an application is vulnerable to replay attacks, it is

also one of several necessary conditions for DROWN-like attacks. This will likely be a source of

vulnerability in the future, however the extent of the vulnerability remains to be seen.

6.2 Weaknesses from Export Cryptography

In this section, we distill our experiences from measuring export cryptography into concrete

recommendations for technologists and policymakers. We also examine open questions raised while

investigating the impact of export cryptography.

Limit Complexity. Each of FREAK, Logjam, and DROWN were fundamentally caused by the

140

complexity of supporting multiple paths from the initiation of a connection through the completion

of the handshake. Complexity in a protocol is not a result of having many rules that define the

protocol, but instead stems from having many exceptions to the rules, or by having inconsistent rules.

Protocol designers should strive to simplify the handshake process in future protocols, such that it

can be more easily examined and implemented. This also lowers the barrier to formal verification

of the protocol, which provides an extra level of reassurance that the protocol lacks fundamental

issues.

Cryptographic standards are often vague, or leave many knobs to be tuned by the developer,

for the sake of being performant and extensible. These options are often confusing, and leave a

large onus on the developer to understand the cryptographic details of RSA or algebraic groups.

This phenomenon is not solely limited to cryptographic APIs, Georgiev et al. discovered that

SSL certificate validation was broken in a large number of non-browser TLS applications due to

developers misunderstanding and misusing library calls [70].

Writers of cryptographic standards should work to limit complexity, and design protocols with

the developer in mind. Protocols should be designed to limit the number of ways the implementation

can make a mistake. Mistakes should be easy to identify, and result in a failure to complete a

handshake or communicate, rather than create subtle differences that fundamentally flaw security,

but are hard to detect. Furthermore, any cryptographic action performed in a protocol should have

enough contextual information that it cannot be repurposed for use in another protocol.

Weakened Cryptography. Every form of cryptography that was weakened to comply with the

legacy export regulations has now been exploited to attack modern cryptography. Both types of

weakened key exchange were exploited in 2015: export RSA public-key cryptography was exploited

by FREAK, and export Diffie-Hellman was exploited by Logjam. The remaining form of weakened

cryptography, export symmetric ciphers, was exploited by DROWN. Any protocol implementing

both export and non-export cryptography has an imbalance: there must exist some mechanism to

select between these two types of cryptography, and this mechanism must require the use of strong

cryptography to prevent attackers from downgrading the connection to use the weakened form of

141

cryptography.

The security of TLS and export cryptography have been fundamentally linked. Export cryp-

tography is a unique constraint with a dangerous goal: weaken cryptography, without weakening

cryptography. Internet measurement techniques show us that the export regulations weakened

protocol design to the point where the regulations are directly harmful to the security of the Internet

today. These empirical techniques show that these attacks are not theoretical, leveraging protocols

that have long-since disappeared, but instead are a dark side of backwards compatibility, harming

real users today. Although the regulations went out of effect by 1999, the cryptography remains. At

their respective times of disclosure, 36.7% of IPv4 HTTPS hosts were vulnerable to FREAK, 4.9%

were vulnerable to Logjam, and 26% were vulnerable to DROWN. In all cases, empirical research

enabled the full understanding of the effects and impacts of these issues.

FREAK, Logjam, and DROWN provide comprehensive evidence that the legacy regulations

of the 1990s harmed the security of users on the Internet today. The technical results show that

purposefully weakened cryptography should be avoided, as support legacy protocols is often

maintained in order to provide backwards compatibility. Beyond that, historical evidence suggests

that we simply do not know how to weaken some portion of cryptography, with weakening all other

cryptography. While export cryptography is not the same as a backdoor, nor as a “secure golden

key”, current empirical technological evidence suggests that cryptography is fragile enough as is,

and that any form of deliberate change to enable more parties to have access to plaintext ultimately

weakens cryptography for everyone.

Segregating international and domestic cryptography does not make sense in context of the

Internet. Users are mobile, and traffic often travels through multiple countries en route to any given

website. With the advent of CDNs, websites that may traditionally have been hosted in the United

States are now cached and accessible in a distributed fashion across the entire world. Assigning

different encryption to users based on nationality is not feasible on an open Internet.

142

6.3 Generalizing DROWN

The DROWN attack further exploited export-grade cryptography with an additional novel

insight: Bleichenbacher oracles need not be present in the target protocol under attack, so long as

the key is shared between the two protocols. Modern TLS servers were at risk if they shared a key

with an SSLv2 server. While DROWN was caused by export cryptography, and uses a cryptographic

vulnerability in one protocol to attack another protocol, the cross-protocol methodology can be

extended to other TLS attacks, and to simple key compromise.

Reusing TLS keys across multiple protocols, such as HTTPS, SMTP, and IMAP, leads to

an increased attack surface. Beyond DROWN, the TLS protocol has a fundamentally cross-

protocol attack surface. X.509 certificates are not bound to any particular protocol or port. A key

compromised on a single protocol can be utilized to attack other protocols. The compromise need

not be due to a TLS protocol vulnerability, and could simply be due to a remote code execution

exploit.

Beyond key compromise, specific vulnerabilities in the TLS protocol and older implementations

can be utilized in a cross-protocol context to attack users of a web service without explicitly

compromising the private key. This is best shown by the DROWN vulnerability, in which the mere

existence of an SSLv2 host that shared a key with a TLS host enabled decryption of otherwise

secure TLS connections using modern cryptography. Even if distinct services, such as mail and

web servers, use different keys, so long as they share any name on the certificate, the transport-

layer security against active attackers for all connections to that name are limited to the weakest

TLS implementation or configuration for that name. Wildcard certificates slightly complicate this

process; an exploitable wildcard certificate could be used to attack multiple names.

Traditionally web-based padding oracle attacks, such as POODLE [125], or the AES-NI padding-

oracle in OpenSSL [39], non-web servers can be further exploited by active attackers targeting

web users. The attacker can rewrite the TCP connection to an alternative port, and fill-in any

pre-handshake protocol dialogue (e.g. by sending an EHLO or STARTTLS command in SMTP).

Future work can use Internet-wide scanning to determine the prevalence of key and name reuse

143

between HTTPS and non-web TLS protocols, and characterize cross-protocol vulnerability to

known padding oracle attacks. This would be an empirical upper bound for the increase in attack

surface from considering TLS exploits in a cross-protocol context.

6.4 Applicability of Empirical Methods

Empirical methods provide a way to answer questions and work towards solutions of problems

that were previously left unsolvable under the guise of “backwards compatability”. Measurements

from Chrome influenced the design of version negotiation for TLS 1.3 [159], measurements of

STARTTLS support lead to new techniques for mail transport security [48, 115, 117], and studying

browser HTTPS errors led to increased proportions of successful connections [1].

Empirical methods can be used in cryptographic research beyond measuring the cryptography

used for secure channels. Empirical methods allow us to understand if the cryptography in use is as

strong as the theory says it should be. Monitoring of cryptocurrency networks has been to shown to

be a reliable method for deanonymizing users [24,104], including networks in which the transactions

are not simply pseudonymous, but utilize zero-knowledge proofs for strong anonymity [96,153]. The

X.509 ecosystem has come under greater scrutiny for misissuance under the Baseline Requirements,

CA/Browser Forum, and Certificate Transparency [105]. We should continue this trend, and

measure gossip implementations for Certificate Transparency as they are deployed to determine

their effectiveness. Similarly, as post-quantum cryptography is standardized, we not only have

the opportunity to standardize cryptography that is less fragile than existing cryptography, but

we have a new opportunity to empirically understand new cryptography as it is adopted. TLS

1.3 offers a similar opportunity for measuring the adoption of new cryptography, but is only a

revision to an existing cryptographic protocol, rather than a new class of primitives. Chrome

has already performed some initial measurement surrounding the feasibility of introducing new

post-quantum key exchanges based on the New Hope scheme [8, 30]. This scheme informed the

design of FrodoKEM [7], which is a candidate for standardization by NIST.

Unfortunately, empirical cryptography, and more broadly, empirical security, is often out of

144

reach of non-researchers. Security analysts and system administrators can leverage Internet-wide

scanning data and certificate transparency logs (the same data used for empirical cryptography) to

identify their own assets, track bad actors, and monitor for phishing sites, but collecting this data

is often out of reach, due to the quantity, velocity, and cost of collecting the data. Access to a full

Internet-wide perspective if often limited to large organizations with large security teams.

As empirical techniques such as Internet-wide scanning and passive network monitoring improve,

can we extend measurement from aggregations and ecosystems to understanding the behavior of

individual hosts at global scale? Can we track individual hosts appearing and disappearing, and

map changes to configuration in real-time?

As we approach being able to index devices in the same way we can index web pages, the

barrier to entry for utilizing a global perspective to empirically study cryptography will decrease,

and this decrease will come with improved access to network security data. For cryptography, this

means future protocols can be designed to solve problems experienced by current protocols, with a

turnaround time of less than the decade it took to design TLS 1.3. For security, it means an increase

in the use of data to show that an organization’s security posture is improving or degrading, and the

ability for all defenders to have the same network perspective and data as a targeted attacker. Fully

understanding an organizations exposure requires strong empirical techniques. An attacker only

needs to leverage an Internet-wide perspective once to find a vulnerable asset, but defenders need to

constantly understand their exposure. You cannot improve cryptography that you do not know is in

use. You cannot defend what you do not know you own.

Empirical techniques inform defenders about the existence and scale of problems, but they are

no substitute for preventing problems before they happen in the first place. Any cryptographic

parameter that can be measured in a handshake is a parameter that could be wrong and a source of

vulnerability. Protocols such as Wireguard [45] have no cryptographic configuration beyond the key

in use. If a peer presents the wrong key, the connection will fail to open. Beyond key generation,

there is no way to misconfigure the cryptographic security of a Wireguard host. This suggests that

cryptography that is easily examined via Internet-wide scanning may be some of the most fragile

145

cryptography. Ultimately, leveraging secure development practices and building security-by-default

into more systems will push the envelope towards a more secure Internet. We should work towards

improving security on all fronts, not just in ways we know how to measure.

146

BIBLIOGRAPHY

All URLs available on The Wayback Machine at December 5, 2018 or earlier.

[1] Mustafa Emre Acer, Emily Stark, Adrienne Porter Felt, Sascha Fahl, Radhika Bhargava,

Bhanu Dev, Matt Braithwaite, Ryan Sleevi, and Parisa Tabriz. Where the wild warnings

are: Root causes of chrome https certificate errors. In ACM Conference on Computer and

Communications Security (CCS), 2017.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,

J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,

Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann.

Imperfect forward secrecy: How Diffie-Hellman fails in practice. In ACM Conference on

Computer and Communications Security (CCS), October 2015.

[3] David Adrian, Zakir Durumeric, Gulshan Singh, and J. Alex Halderman. Zippier ZMap:

Internet-wide scanning at 10 Gbps. In USENIX Workshop on Offensive Technologies (WOOT),

2014.

[4] William Aiello, Steven M Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, Angelos D

Keromytis, and Omer Reingold. Just fast keying: Key agreement in a hostile internet.

Transactions on Information and System Security (TISSEC), 7(2):242–273, 2004.

[5] Nadhem J Al Fardan and Kenneth G Paterson. Lucky Thirteen: Breaking the TLS and DTLS

record protocols. In IEEE Symposium on Security and Privacy (Oakland), 2013.

[6] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering, and

Jacob C.N. Schuldt. On the security of RC4 in TLS. In USENIX Security Symposium, 2013.

147

[7] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael Naehrig,

Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan, Douglas Stebila, Karen Easterbrook,

and Brian LaMacchia. FrodoKEM: Learning with errors key encapsulation. Technical report,

National Institute of Standards and Technology (NIST), 2017.

[8] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key

exchange: A New Hope. In USENIX Security Symposium, 2016.

[9] Amazon Elastic Load Balancer, 2016. https://aws.amazon.com/elasticloadbalancing/.

[10] Amazon EC2 Instance Types, 2016. http://aws.amazon.com/ec2/instance-types/.

[11] Ross Anderson and Serge Vaudenay. Minding your p’s and q’s. In ASIACRYPT, 1996.

[12] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens

Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper,

Shaanan Cohney, Susanne Engels, Christof Paar, and Yuval Shavitt. DROWN: Breaking TLS

with SSLv2. In USENIX Security Symposium, 2016.

[13] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Graham Steel,

and Joe-Kai Tsay. Efficient padding oracle attacks on cryptographic hardware. In Interna-

tional Cryptology Conference (CRYPTO), 2012.

[14] Elaine B Barker, Don Johnson, and Miles E Smid. Sp 800-56a. recommendation for pair-wise

key establishment schemes using discrete logarithm cryptography (revised). NIST Special

Publications, 2007.

[15] Richard Barnes. Man-in-the-middle interfering with increased security, 2016. https://blog.

mozilla.org/security/2016/01/06/man-in-the-middle-interfering-with-increased-security/.

[16] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures—How to sign

with RSA and Rabin. In EUROCRYPT, 1996.

[17] D. J. Bernstein. SYN cookies, 1996. http://cr.yp.to/syncookies.html.

[18] Daniel J. Bernstein. Summary of the case status, 2016. https://cr.yp.to/export/status.html.

[19] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve

cryptography, 2014. https://safecurves.cr.yp.to/.

148

https://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/ec2/instance-types/
https://blog.mozilla.org/security/2016/01/06/man-in-the-middle-interfering-with-increased-security/
https://blog.mozilla.org/security/2016/01/06/man-in-the-middle-interfering-with-increased-security/
http://cr.yp.to/syncookies.html
https://cr.yp.to/export/status.html
https://safecurves.cr.yp.to/

[20] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,

Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A

messy state of the union: Taming the composite state machines of TLS. In IEEE Symposium

on Security and Privacy (Oakland), 2015.

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Alfredo Pironti. Verified contributive

channel bindings for compound authentication. In Network and Distributed System Security

Symposium, 2015.

[22] Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo Pironti, and

Pierre Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing authentication

over TLS. In IEEE Symposium on Security and Privacy (Oakland), 2014.

[23] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks: Breaking authen-

tication in TLS, IKE, and SSH. In Network and Distributed System Security Symposium

(NDSS), February 2016.

[24] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation of clients

in Bitcoin P2P network. In ACM Conference on Computer and Communications Security

(CCS), 2014.

[25] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA

encryption standard PKCS #1. In International Cryptology Conference (CRYPTO), 1998.

[26] Hanno Böck, Juraj Somorovsky, and Craig Young. Return of Bleichenbacher’s oracle threat

(ROBOT). In USENIX Security Symposium, 2018.

[27] Botan, 2016. https://github.com/randombit/botan.

[28] Cyril Bouvier, Pierrick Gaudry, Laurent Imbert, Hamza Jeljeli, and Emmanuel Thomé. New

record for discrete logarithm in a prime finite field of 180 decimal digits, 2014. http://

caramel.loria.fr/p180.txt.

[29] Peter Bowen. TLS client data, 2015. https://cabforum.org/pipermail/public/2015-December/

006507.html.

149

https://github.com/randombit/botan
http://caramel.loria.fr/p180.txt
http://caramel.loria.fr/p180.txt
https://cabforum.org/pipermail/public/2015-December/006507.html
https://cabforum.org/pipermail/public/2015-December/006507.html

[30] Matt Braithwaite. Experimenting with post-quantum cryptography, 2016. https://security.

googleblog.com/2016/07/experimenting-with-post-quantum.html.

[31] Wolfgang Breyha, David Durvaux, Tobias Dussa, L. Aaron Kaplan, Florian Mendel, Christian

Mock, Manuel Koschuch, Adi Kriegisch, Ulrich Pöschl, Ramin Sabet, Berg San, Ralf

Schlatterbeck, Thomas Schreck, Alexander Würstlein, Aaron Zauner, and Pepi Zawodsky.

Better crypto: Applied crypto hardening, 2016. https://bettercrypto.org/static/applied-crypto-

hardening.pdf.

[32] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange

protocol. In International Cryptology Conference (CRYPTO), 2002.

[33] Wan-Teh Chang and Adam Langley. QUIC crypto, 2014. https://docs.google.com/document/

d/1g5nIXAIkN Y-7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/edit?pli=1.

[34] Cisco. Security for VPNs with IPsec configuration guide, 2016. http://

www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec conn vpnips/configuration/xe-3s/

sec-sec-for-vpns-w-ipsec-xe-3s-book.html.

[35] D. Coppersmith. Solving linear equations over GF(2) via block Wiedemann algorithm.

Mathematics of Computation, 62(205):333–350, January 1994.

[36] CVE-2015-0293. MITRE CVE-ID CVE-2015-0293., 2015. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2015-0293.

[37] CVE-2015-3240. MITRE CVE-ID CVE-2015-3240., 2015. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=2015-3240.

[38] CVE-2016-0701. MITRE CVE-ID CVE-2016-0701., 2016. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=2016-0701.

[39] CVE-2016-2107. MITRE CVE-ID CVE-2016-2107., 2016. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=2016-2107.

[40] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of TLS implementations. In USENIX

Security Symposium, 2015.

150

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://bettercrypto.org/static/applied-crypto-hardening.pdf
https://bettercrypto.org/static/applied-crypto-hardening.pdf
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit?pli=1
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_vpnips/configuration/xe-3s/sec-sec-for-vpns-w-ipsec-xe-3s-book.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0293
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2015-3240
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2015-3240
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0701
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-0701
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-2107
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2016-2107

[41] L. Deri. Improving passive packet capture: Beyond device polling. In System Administration

and Network Engineering Conference (SANE), 2004.

[42] T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, 1999.

[43] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. IETF

RFC 5246, 2008.

[44] Whitfield Diffie and Martin E Hellman. New directions in cryptography. Transactions on

Information Theory, 22(6):644–654, 1976.

[45] Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In Network and

Distributed System Security Symposium (NDSS), 2017.

[46] Thai Duong and Juliano Rizzo. Here come the xor ninjas, 2011. http://netifera.com/research/

beast/beast DRAFT 0621.pdf.

[47] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Halderman.

A search engine backed by Internet-wide scanning. In ACM Conference on Computer and

Communications Security (CCS), 2015.

[48] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Kurt Thomas, Vijay Eranti,

Nicholas Lidzborski, Elie Bursztein, Michael Bailey, and J. Alex Halderman. Neither snow

nor rain nor MITM; An empirical analysis of email delivery security. In ACM Internet

Measurement Conference (IMC), 2015.

[49] Zakir Durumeric, Michael Bailey, and J. Alex Halderman. An Internet-wide view of Internet-

wide scanning. In USENIX Security Symposium, August 2014.

[50] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer,

Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman. The

Matter of Heartbleed. In ACM Internet Measurement Conference (IMC), 2014.

[51] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie Bursztein,

Michael Bailey, J. Alex Halderman, and Vern Paxson. The security impact of HTTPS

interception. In Network and Distributed System Security Symposium (NDSS), 2017.

151

http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://netifera.com/research/beast/beast_DRAFT_0621.pdf

[52] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap: Fast Internet-wide scanning

and its security applications. In USENIX Security Symposium, August 2013.

[53] Category 5 - Telecommunications and “Information Security”, 2001. https://cr.yp.to/export/

ear2001/ccl5-pt2.pdf.

[54] Peter Eckersley and Jesse Burns. An Observatory for the SSLiverse. In DEF CON, 2010.

[55] Young Eric. SSLeay, 1995. ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/SSL.eay/

SSLeay-0.5.1a.tar.gz.

[56] Bug 1837 - small subgroup attack, 2016. https://bugs.exim.org/show bug.cgi?id=1837.

[57] Exim Internet mailer, 2015. http://www.exim.org/.

[58] Exim TLS Security, DH and standard parameters, 2016. https://lists.exim.org/lurker/message/

20161008.231103.c70b2da8.en.html.

[59] Niels Ferguson and Bruce Schneier. A cryptographic evaluation of IPsec. Technical report,

Counterpane Internet Security, 2000.

[60] Fielded capability: End-to-end VPN SPIN 9 design review. Media leak. http://www.spiegel.

de/media/media-35529.pdf.

[61] FreeS/WAN, 2016. http://www.freeswan.org/.

[62] Alan Freier, Philip Karlton, and Paul Kocher. The Secure Sockets Layer (SSL) Protocol

Version 3.0. IETF RFC 6101, 2011.

[63] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A kilobit hidden

SNFS discrete logarithm computation. In EUROCRYPT, 2017.

[64] M. Friedl, N. Provos, and W. Simpson. Diffie-Hellman group exchange for the Secure Shell

(SSH) transport layer protocol. IETF RFC 4419, 2006.

[65] Francesco Fusco and Luca Deri. High speed network traffic analysis with commodity

multi-core systems. In ACM Internet Measurement Conference (IMC), November 2010.

[66] FY 2013 congressional budget justification. Media leak, 2013. http://cryptome.org/2013/08/

spy-budget-fy13.pdf.

[67] Sean Gallagher. Google dumps plans for OpenSSL in Chrome, takes own Boring road,

152

https://cr.yp.to/export/ear2001/ccl5-pt2.pdf
https://cr.yp.to/export/ear2001/ccl5-pt2.pdf
ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/SSL.eay/SSLeay-0.5.1a.tar.gz
ftp://ftp.pl.vim.org/vol/rzm1/replay.old/libraries/SSL.eay/SSLeay-0.5.1a.tar.gz
https://bugs.exim.org/show_bug.cgi?id=1837
http://www.exim.org/
https://lists.exim.org/lurker/message/20161008.231103.c70b2da8.en.html
https://lists.exim.org/lurker/message/20161008.231103.c70b2da8.en.html
http://www.spiegel.de/media/media-35529.pdf
http://www.spiegel.de/media/media-35529.pdf
http://www.freeswan.org/
http://cryptome.org/2013/08/spy-budget-fy13.pdf
http://cryptome.org/2013/08/spy-budget-fy13.pdf

2014. http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-

openssl-in-chrome-takes-own-boring-road/.

[68] Willi Geiselmann, Hubert Kopfer, Rainer Steinwandt, and Eran Tromer. Improved routing-

based linear algebra for the number field sieve. In Information Technology: Coding and

Computing, 2005.

[69] Willi Geiselmann and Rainer Steinwandt. Non-wafer-scale sieving hardware for the NFS:

Another attempt to cope with 1024-bit. In EUROCRYPT, 2007.

[70] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly

Shmatikov. The most dangerous code in the world: Validating SSL certificates in non-browser

software. In ACM Conference on Computer and Communications Security (CCS), 2012.

[71] Daniel Gillmor. Negotiated finite field Diffie-Hellman ephemeral parameters for TLS. IETF

RFC 7919, 2015.

[72] Daniel M Gordon. Discrete logarithms in GF(p) using the number field sieve. Journal of

Discrete Math, 6(1), 1993.

[73] Robert Graham. Masscan: Designing my own crypto, 2013. http://blog.erratasec.com/2013/

12/masscan-designing-my-own-crypto.html.

[74] Robert Graham. Masscan: The entire Internet in 3 minutes, 2013. http://blog.erratasec.com/

2013/09/masscan-entire-internet-in-3-minutes.html.

[75] Matthew Green. Secure protocols in a hostile world. In Conference on Cryptographic

Hardware and Embedded Systems (CHES), 2015.

[76] Peter Gutmann. Cryptlib, kg dlp.c, 2010. http://www.cypherpunks.to/∼peter/cl343 beta.zip.

[77] Orman H., Purple Streak Dev., Hoffman P., and VPN Consortium. Determining strengths for

public keys used for exchanging symmetric keys. IETF RFC 3766, 2004.

[78] Ryan Hamilton. QUIC discovery, 2016. https://docs.google.com/document/d/

1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#.

[79] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF RFC 2409, 1998.

[80] Hashcat. http://hashcat.net.

153

http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-boring-road/
http://arstechnica.com/information-technology/2014/07/google-dumps-plans-for-openssl-in-chrome-takes-own-boring-road/
http://blog.erratasec.com/2013/12/masscan-designing-my-own-crypto.html
http://blog.erratasec.com/2013/12/masscan-designing-my-own-crypto.html
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://www.cypherpunks.to/~peter/cl343_beta.zip
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
https://docs.google.com/document/d/1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/edit#
http://hashcat.net

[81] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining your

Ps and Qs: Detection of widespread weak keys in network devices. In USENIX Security

Symposium, August 2012.

[82] Kipp Hickman and Taher Elgamal. The SSL protocol, 1995. https://tools.ietf.org/html/

draft-hickman-netscape-ssl-00.

[83] Clemens Hlauschek, Markus Gruber, Florian Fankhauser, and Christian Schanes. Prying open

Pandora’s box: KCI attacks against TLS. In USENIX Workshop on Offensive Technologies

(WOOT), 2015.

[84] Ralph Holz, Johanna Amann, Olivier Mehani, Matthias Wachs, and Mohamed Ali Kâafar.

TLS in the wild: an Internet-wide analysis of TLS-based protocols for electronic communi-

cation. In Network and Distributed System Security Symposium (NDSS), 2016.

[85] IANA. IPv4 address space registry, 2014. http://www.iana.org/assignments/ipv4-address-

space/ipv4-address-space.xml.

[86] Intro to the VPN exploitation process. Media leak. http://www.spiegel.de/media/media-

35515.pdf.

[87] Tibor Jager, Kenneth G Paterson, and Juraj Somorovsky. One bad apple: Backwards

compatibility attacks on state-of-the-art cryptography. In Network and Distributed System

Security Symposium (NDSS), 2013.

[88] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. Bleichenbacher’s attack strikes

again: Breaking PKCS#1 v1.5 in XML encryption. In European Symposium on Research in

Computer Security (ESORICS), 2012.

[89] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On the security of TLS 1.3 and QUIC

against weaknesses in PKCS#1 v1.5 encryption. In ACM Conference on Computer and

Communications Security (CCS), 2015.

[90] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. Practical invalid curve attacks on TLS-

ECDH. In European Symposium on Research in Computer Security (ESORICS), 2015.

154

https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.spiegel.de/media/media-35515.pdf
http://www.spiegel.de/media/media-35515.pdf

[91] Walton Jeffrey. Crypto++, 2015. https://github.com/weidai11/cryptopp/blob/

48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029.

[92] Antoine Joux and Reynald Lercier. Improvements to the general number field sieve for

discrete logarithms in prime fields. A comparison with the Gaussian integer method. Mathe-

matics of Computation, 72(242):953–967, 2003.

[93] Juniper TechLibrary. VPN feature guide for security devices, 2016. http://www.juniper.net/

documentation/en US/junos15.1x49/topics/reference/configuration-statement/

security-edit-dh-group.html.

[94] B. Kaliski. PKCS #1 : RSA Encryption Version 1.5. IETF RFC 2313, 1998.

[95] Dan Kaminsky. Paketto simplified (1.0), 2002. http://dankaminsky.com/2002/11/18/77/.

[96] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An empirical analysis

of anonymity in Zcash. In USENIX Security Symposium, 2018.

[97] Emilia Käsper. Fix reachable assert in SSLv2 servers. OpenSSL patch, March 2015. https://

github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756.

[98] C. Kaufman. Internet Key Exchange (IKEv2) protocol. IETF RFC 4306, 2005.

[99] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange Protocol

Version 2 (IKEv2). IETF RFC 7296, 2014.

[100] Tero Kivinen and Markku Kojo. More modular exponential (MODP) Diffie-Hellman groups

for Internet Key Exchange (IKE). IETF RFC 3526, 2003.

[101] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé,

Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne Osvik,

Herman te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA

modulus. In International Cryptology Conference (CRYPTO), 2010.

[102] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke.

Computation of a 768-bit prime field discrete logarithm. In EUROCRYPT, 2017.

[103] Vlastimil Klima, Ondrej Pokornỳ, and Tomáš Rosa. Attacking RSA-based sessions in

SSL/TLS. In Conference on Cryptographic Hardware and Embedded Systems (CHES), 2003.

155

https://github.com/weidai11/cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029
https://github.com/weidai11/cryptopp/blob/48809d4e85c125814425c621d8d0d89f95405924/nbtheory.cpp#L1029
http://www.juniper.net/documentation/en_US/junos15.1x49/topics/reference/configuration-statement/security-edit-dh-group.html
http://www.juniper.net/documentation/en_US/junos15.1x49/topics/reference/configuration-statement/security-edit-dh-group.html
http://www.juniper.net/documentation/en_US/junos15.1x49/topics/reference/configuration-statement/security-edit-dh-group.html
http://dankaminsky.com/2002/11/18/77/
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756
https://github.com/openssl/openssl/commit/86f8fb0e344d62454f8daf3e15236b2b59210756

[104] Philip Koshy, Diana Koshy, and Patrick McDaniel. An analysis of anonymity in Bitcoin

using P2P network traffic. In Financial Cryptography and Data Security (FC), 2014.

[105] Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle Beck, David

Adrian, Joshua Mason, Zakir Durumeric, J. Alex Halderman, and Michael Bailey. Tracking

certificate misissuance in the wild. In IEEE Symposium on Security and Privacy (Oakland),

2018.

[106] Watson Ladd. Another irina bug in tls, 2015. https://www.ietf.org/mail-archive/web/tls/

current/msg16360.html.

[107] Watson Ladd. While we’re patching, 2015. https://www.ietf.org/mail-archive/web/tls/current/

msg15424.html.

[108] A. Langley, N. Modadugu, and B. Moeller. Transport Layer Security (TLS) False Start. IETF

RFC 7918, 2016.

[109] Robert E. Lee. Unicornscan, 2014. http://unicornscan.org.

[110] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.

Mathematische Annalen, 261:515–534, 1982.

[111] M Lepinski and S Kent. Additional Diffie-Hellman groups for use with ietf standards. IETF

RFC 5114, 2008.

[112] Libreswan, 2016. https://libreswan.org/.

[113] Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes

using a prime order subgroup. In International Cryptology Conference (CRYPTO), 1997.

[114] Mark Lipacis. Semiconductors: Moore stress = structural industry shift. Technical report,

Jefferies, 2012.

[115] Brandon Long. Transparency report: Protecting emails as they travel across the web, 2014.

https://googleblog.blogspot.com/2014/06/transparency-report-protecting-emails.html.

[116] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning. Insecure, USA, 2009.

156

https://www.ietf.org/mail-archive/web/tls/current/msg16360.html
https://www.ietf.org/mail-archive/web/tls/current/msg16360.html
https://www.ietf.org/mail-archive/web/tls/current/msg15424.html
https://www.ietf.org/mail-archive/web/tls/current/msg15424.html
http://unicornscan.org
https://libreswan.org/
https://googleblog.blogspot.com/2014/06/transparency-report-protecting-emails.html

[117] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman, and J. Jones. SMTP MTA Strict

Transport Security (MTA-STS). IETF RFC 8461, 2018.

[118] Douglas Maughan, Mark Schertler, Mark Schneider, and Jeff Turner. Internet security

association and key management protocol ISAKMP. IETF RFC 2408, 1998.

[119] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel. A

cross-protocol attack on the TLS protocol. In ACM Conference on Computer and Communi-

cations Security (CCS), 2012.

[120] Wilfried Mayer, Aaron Zauner, Martin Schmiedecker, and Markus Huber. No need for black

chambers: Testing TLS in the e-mail ecosystem at large. Technical report, SBA Research,

2015.

[121] C. Meadows. Analysis of the Internet key exchange protocol using the NRL protocol analyzer.

In IEEE Symposium on Security and Privacy (Oakland), 1999.

[122] Christopher Meyer and Jörg Schwenk. SoK: Lessons learned from SSL/TLS attacks. In

International Workshop on Information Security Applications, 2013.

[123] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel, and

Erik Tews. Revisiting SSL/TLS implementations: New Bleichenbacher side channels and

attacks. In USENIX Security Symposium, 2014.

[124] Microsoft Windows Networking Team. VPN interoperability guide for Windows Server 2012

R2, 2014. https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-

guide-for-windows-server-2012-r2/.

[125] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: exploiting the

SSL 3.0 fallback, 2014. https://www.openssl.org/∼bodo/ssl-poodle.pdf.

[126] Mozilla bug tracker, November 2015. https://bugzilla.mozilla.org/show bug.cgi?id=1160139.

[127] National Cryptographic Solutions Management Office. Cryptography today, 2015.

https://web.archive.org/web/20150905185709/https://www.nsa.gov/ia/programs/

suiteb cryptography/.

157

https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-guide-for-windows-server-2012-r2/
https://blogs.technet.microsoft.com/networking/2014/12/26/vpn-interoperability-guide-for-windows-server-2012-r2/
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=1160139
https://web.archive.org/web/20150905185709/https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://web.archive.org/web/20150905185709/https://www.nsa.gov/ia/programs/suiteb_cryptography/

[128] National Institute of Standards and Technology (NIST). FIPS PUB 186-4: Digital signature

standard. Federal Information Processing Standards Publications (FIPS PUBS), 2013.

[129] Nguyen and Shparlinski. The insecurity of the digital signature algorithm with partially

known nonces. Journal of Cryptology, 15(3):151–176, 2002.

[130] Finite field cryptography based samples. NIST Cryptographic Standards and Guidelines.

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/KS FFC All.pdf.

[131] NSS Team. NSS dh.c, 2016. https://hg.mozilla.org/projects/nss/file/tip/lib/freebl/dh.c.

[132] Andrew M. Odlyzko. The future of integer factorization. Technical report, AT&T Bell

Laboratories, 1995. http://www.dtc.umn.edu/∼odlyzko/doc/future.of.factoring.pdf.

[133] OpenSSL change log. https://www.openssl.org/news/changelog.html#x0.

[134] OpenSSL changes, 2015. https://www.openssl.org/news/cl102.txt.

[135] OpenSSL security advisory [28th Jan 2016], 2016. https://www.openssl.org/news/secadv/

20160128.txt.

[136] Openswan, 2016. https://www.openswan.org/.

[137] H. Orman. The Oakley key determination protocol. IETF RFC 2412, 1998.

[138] Overview of NSS, 2015. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/

Overview.

[139] Introducing PF RING ZC, 2014. http://www.ntop.org/pf ring/introducing-pf ring-zc-zero-

copy/.

[140] D Piper. The Internet IP security domain of interpretation for ISAKMP. IETF RFC 2407,

1998.

[141] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing logarithms

over GF(p) and its cryptographic significance. Transactions on Information Theory, 24(1),

1978.

[142] W Polk, R Housley, and L Bassham. Algorithms and identifiers for the internet X.509 public

key infrastructure. IETF RFC 3279, 2002.

158

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/KS_FFC_All.pdf
https://hg.mozilla.org/projects/nss/file/tip/lib/freebl/dh.c
http://www.dtc.umn.edu/~odlyzko/doc/future.of.factoring.pdf
https://www.openssl.org/news/changelog.html#x0
https://www.openssl.org/news/cl102.txt
https://www.openssl.org/news/secadv/20160128.txt
https://www.openssl.org/news/secadv/20160128.txt
https://www.openswan.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Overview
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/
http://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/

[143] John M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathematics,

15(3):331–334, 1975.

[144] M. J. Pollard. Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology, 2000.

[145] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. IETF RFC 8446,

2018.

[146] Ivan Ristić. SSL pulse, 2016. https://www.trustworthyinternet.org/ssl-pulse/.

[147] Juliano Rizzo and Thai Duong. The CRIME attack. In EKOparty Security Conference, 2012.

[148] Luigi Rizzo, Luca Deri, and Alfredo Cardigliano. 10 Gbit/s line rate packet processing using

commodity hardware: Survey and new proposals. http://luca.ntop.org/10g.pdf.

[149] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and Yuval Yarom.

The 9 lives of Bleichenbacher’s CAT: New cache attacks on TLS implementations. Technical

report, Weizmann Institute, 2018.

[150] Jim Roskind. QUIC design document, 2013. https://docs.google.com/a/chromium.org/

document/d/1RNHkx VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[151] Joseph Salowey. RSA-PSS in TLS 1.3, 2016. https://www.ietf.org/mail-archive/web/tls/

current/msg19358.html.

[152] Antonio Sanso. OpenSSL key recovery attack on dh small subgroups, 2016. http://blog.

intothesymmetry.com/2016/01/openssl-key-recovery-attack-on-dh-small.html.

[153] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In

IEEE Symposium on Security and Privacy (Oakland), 2014.

[154] Oliver Schirokauer. Virtual logarithms. Journal of Algorithms, 57(2):140–147, 2005.

[155] Daniel Shanks. Class number, a theory of factorization, and genera. In Symposia in Pure

Math, 1969.

[156] Y Sheffer and S Fluhrer. Additional Diffie-Hellman tests for the Internet Key Exchange

protocol version 2 (IKEv2). IETF RFC 6989, 2013.

[157] SPIN 15 VPN story. Media leak. http://www.spiegel.de/media/media-35522.pdf.

159

https://www.trustworthyinternet.org/ssl-pulse/
http://luca.ntop.org/10g.pdf
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/a/chromium.org/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://www.ietf.org/mail-archive/web/tls/current/msg19358.html
https://www.ietf.org/mail-archive/web/tls/current/msg19358.html
http://blog.intothesymmetry.com/2016/01/openssl-key-recovery-attack-on-dh-small.html
http://blog.intothesymmetry.com/2016/01/openssl-key-recovery-attack-on-dh-small.html
http://www.spiegel.de/media/media-35522.pdf

[158] strongSwan, 2016. https://www.strongswan.org/.

[159] Nick Sullivan. Why TLS 1.3 isn’t in browsers yet, 2017. https://blog.cloudflare.com/

why-tls-1-3-isnt-in-browsers-yet/.

[160] The CADO-NFS Development Team. CADO-NFS, an implementation of the number field

sieve algorithm (Release 2.3.0), 2017. http://cado-nfs.gforge.inria.fr/.

[161] E. Thomé. Subquadratic computation of vector generating polynomials and improvement of

the block Wiedemann algorithm. Journal of Symbolic Computation, 33(5):757–775, 2002.

[162] TURMOIL VPN processing. Media leak. http://www.spiegel.de/media/media-35526.pdf.

[163] S. Turner and T. Polk. Prohibiting secure sockets layer (SSL) version 2.0. IETF RFC 6176,

2011.

[164] Luke Valenta, David Adrian, Antonio Sanso, Shaanan Cohney, Joshua Fried, Marcella

Hastings, J. Alex Halderman, and Nadia Heninger. Measuring small subgroup attacks against

Diffie-Hellman. In Network and Distributed System Security Symposium (NDSS), 2017.

[165] Paul C Van Oorschot and Michael J Wiener. On Diffie-Hellman key agreement with short

exponents. In EUROCRYPT, 1996.

[166] Steven J. Vaughan-Nichols. Here comes the 100 GigE Internet, 2010. http://www.zdnet.com/

blog/networking/here-comes-the-100gige-internet/334.

[167] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In USENIX Workshop

on Electronic Commerce, 1996.

[168] Paul Wouters. 66% of VPN’s are not in fact broken, 2015. https://nohats.ca/wordpress/blog/

2015/10/17/66-of-vpns-are-not-in-fact-broken/.

[169] T. Ylonen and C. Lonvick. The Secure Shell (SSH) transport layer protocol. IETF RFC 4253,

2006.

[170] ZGrab, 2014. https://github.com/zmap/zgrab.

[171] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant side-

channel attacks in PaaS clouds. In ACM Conference on Computer and Communications

Security (CCS), 2014.

160

https://www.strongswan.org/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
http://cado-nfs.gforge.inria.fr/
http://www.spiegel.de/media/media-35526.pdf
http://www.zdnet.com/blog/networking/here-comes-the-100gige-internet/334
http://www.zdnet.com/blog/networking/here-comes-the-100gige-internet/334
https://nohats.ca/wordpress/blog/2015/10/17/66-of-vpns-are-not-in-fact-broken/
https://nohats.ca/wordpress/blog/2015/10/17/66-of-vpns-are-not-in-fact-broken/
https://github.com/zmap/zgrab

[172] P. Zimmermann et al. GMP-ECM, 2012. https://gforge.inria.fr/projects/ecm.

161

https://gforge.inria.fr/projects/ecm

	Title Page
	Identifier
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Techniques for Measuring Internet Cryptography
	Measuring Diffie-Hellman
	Measuring Export Cryptography
	Attacks on RSA
	Attacks on Diffie-Hellman
	Attacks on Symmetric Cryptography

	Empirical Cryptography

	Improving Measurement
	Introduction
	Related Work
	Performance Optimizations
	Address Generation Sharding
	Blacklisting and Whitelisting
	Zero-Copy NIC Access

	Evaluation
	Hit-rate vs. Scan-rate
	Complete Scans
	Comparison to Masscan

	Applications
	Future Work
	Conclusion

	Measuring Diffie-Hellman
	Background
	Groups, orders, and generators
	Diffie-Hellman Key Exchange
	Discrete log algorithms
	Diffie-Hellman group characteristics
	DSA Group Standardization
	Small subgroup attacks

	TLS
	Small Subgroup Attacks in TLS
	OpenSSL
	Other Implementations
	Measurements

	IPsec
	Small Subgroup Attacks in IPsec
	Implementations
	Measurements

	SSH
	Small Subgroup Attacks in SSH
	Implementations
	Measurements

	Factoring Group Orders of Non-Safe Primes
	Discussion

	Measuring Export-Grade Key Exchange
	Introduction
	Diffie-Hellman Cryptanalysis
	Attacking TLS
	TLS and Diffie-Hellman
	Active Downgrade to Export-Grade DHE
	512-bit Discrete Log Computations
	Active Attack Implementation

	Nation-State Threats to DH
	Scaling NFS to 768- and 1024-bit DH
	Is NSA Breaking 1024-bit DH?
	Effects of a 1024-bit Break

	Recommendations
	Conclusion

	Measuring Export-Grade Symmetric Cryptography
	Introduction
	Background
	PKCS#1 v1.5 encryption padding
	SSL and TLS
	Real-world protocol support

	Bleichenbacher's attack

	Breaking TLS with SSLv2
	A generic SSLv2 oracle
	DROWN attack template
	Finding an SSLv2 conformant ciphertext
	Shifting known plaintext bytes
	Adapted Bleichenbacher iteration

	General DROWN
	The SSLv2 export padding oracle
	OpenSSL special DROWN oracle
	TLS decryption attack
	Constructing the attack
	Attack performance

	Special DROWN
	The OpenSSL ``extra clear'' oracle
	MITM attack against TLS
	Constructing the attack

	The OpenSSL ``leaky export'' oracle

	Extending the attack to QUIC
	QUIC signature forgery attack based on general DROWN
	Optimized QUIC signature forgery based on special DROWN

	Adaptations to Bleichenbacher's attack
	Success probability of fractions
	Optimizing the chosen set of fractions
	Rotation and multiplier speedups
	Rotations in the general DROWN attack
	Adapted Bleichenbacher iteration
	Special DROWN MITM performance
	Special DROWN with combined oracles
	Implementing general DROWN with GPUs
	OpenSSL SSLv2 cipher suite selection bug

	Measurements
	Public key reuse

	Related work
	Discussion
	Implications for modern protocols
	Lessons for key reuse
	Harms from obsolete cryptography
	Harms from weakening cryptography

	Conclusion and Future Work
	TLS 1.3
	Weaknesses from Export Cryptography
	Generalizing DROWN
	Applicability of Empirical Methods

	Bibliography

