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ABSTRACT

The emergence of self-driving cars provides an additional flexibility to the vehicle

controller, by eliminating the driver and allowing for control of the vehicle’s velocity.

This work employs constrained optimal control techniques with preview of position

constraints, to derive optimal velocity trajectories in a longitudinal vehicle following

mode. A framework is developed to compare autonomous driving to human driving,

i.e. the Federal Test Procedures of the US Environmental Protection Agency. With

just velocity smoothing, improvements by offline global optimization of up to 18%

in Fuel Economy (FE), are shown for certain drive cycles in a baseline gasoline

vehicle. Applying the same problem structure in an online optimal controller with

1.5 s preview showed a 12% improvement in FE. This work is further extended by

using a lead velocity prediction algorithm that provides inaccurate future constraints.

For a 10 s prediction horizon, a 10% improvement in FE has been shown.

A more conventional procedure for achieving velocity optimization would be the

minimization of energy demand at the wheels. This method involves a non-linear

model thus increasing optimization complexity and also requires additional informa-

tion about the vehicle such as mass and drag coefficients. It is shown that even though

tractive energy minimization has a lower energy demand than velocity smoothing,

smoothing works as well if not better when it comes to reducing fuel consumption.

These results are shown to be valid in simulation across three different engines rang-

ing from 1.2 L-turbocharged to 4.3 L-naturally aspirated. The implication of these

results is that tractive energy minimization requiring more complex control does not

work well for conventional gasoline vehicles. It is further shown that using reduced

order powertrain models currently found in literature for velocity optimization, can

result in worse FE than previous optimizations. Therefore, an easily implementable,

vehicle agnostic velocity smoothing algorithm could be preferred for drive cycle op-

timization.

xii



Employing these same velocity optimization techniques for a battery electric ve-

hicle (BEV) can increase battery range by 15%. It is further demonstrated that

eco-driving and regenerative braking are not complimentary and eco-driving is al-

ways preferred. Finally, power split optimization has been carried out for a fuel cell

hybrid, and it has been shown that a rule-based strategy with drive cycle preview

could match the global optimal results.

xiii



CHAPTER I

Introduction

Optimal control theory has been extensively employed in solving the classical

Goddard problem, of finding the optimal trajectory that minimizes fuel consumption

for the vertical climb of a rocket [5]. This problem from 1920 is suddenly relevant

again as, these rockets were autonomous or teleoperated by pilots that followed a

predefined optimal trajectory as advisory [6]. The growth of interest in autonomous

vehicles, where vehicle controllers have the added ability to drive a velocity trace

and not be dependent on driver commands, opens new frontiers in their velocity

optimization.

Automated vehicles have been envisioned since the Futurama exhibition organized

by General Motors (GM) in 1939 [7]. While the exhibition is remembered for initially

presenting the now achieved goal of designing a fast and safe network of highways,

engineers also presented the concept of an automated highway system. The first

steps towards testing self-driving cars on public highways have been conducted for

vehicle platooning over the last two decades. In the United States, under the National

Automated Highway System Consortium (NAHSC) project, actual road testing of

vehicle platoons were carried out where the lead vehicle operated by a driver was

followed by autonomous vehicles controlled by their own internal controllers [8]. In

Europe, a more recent similar exercise was conducted under the Safe Road Trains for

the Environment (SARTRE) program in 2009 [9]. The primary motivations for both

these projects was increased road safety by eliminating the driver and fuel economy

benefits from reduced aerodynamic drag coefficients.

Individual vehicles with the ability to drive by themselves have been explored

as well, with the Google self-driving car being the most well known attempt. The

company claims to have driven for more than 4 millonmiles autonomously, without

1
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an accident attributable to their vehicle control systems [10]. A 2014 survey of self

identified experts in vehicle automation found a median estimate of 2019 for when

vehicles would be able to drive themselves on freeways with a driver to take control

only if needed [11]. This thesis is being written in 2019 and to the best of the author’s

knowledge, a vehicle has yet to be launched on public roads without a safety driver.

However, in recent years for lower levels of autonomy, the electric vehicle manu-

facturer Tesla has launched it’s auto-pilot feature which allows for multiple vehicle

controls such as speed and steering simultaneously [12]. The company still advises

drivers to remain conscious of road conditions with the ability to immediately in-

tervene and supersede auto-pilot controls as needs arise. Recent announcements by

traditional manufacturers Ford [13] and GM [14] also point to a future where cars

with at least some high level of automation beyond adaptive cruise control would

inevitably be sold to the general public fairly quickly.

An analysis in 2017 [15] from a business standpoint concludes that autonomous

vehicles will disrupt the present automotive business and move consumers from self-

owned vehicles to riding as a service business model. The conclusion from that

analysis forecasted that autonomous vehicles will be the majority of the vehicles

on the road by 2030. However, a more realistic, if conservative view was taken in

the Feburary 2018 editorial of Society of Automotive Engineer’s (SAE) Automotive

Engineering issue. Quoting several experts in the field, editor Bill Visnic cautioned

against undue optimism and concluded it will be at least a decade’s wait before fully

autonomous vehicles hit the road [16]. Even if we are skeptical of both these opti-

mistic predictions, autonomous vehicles are the inevitable future of the automotive

industry.

Presently, the two major motivations driving the pursuit of individual autonomous

vehicles are 1) Safety and 2) Reduction of driver time wasted in traffic. Safety is a

major motivation given current trends that show, traffic accidents are already the

leading cause of deaths for children and young adults aged 5−29 years [17]. According

to a survey by the US Department of Transportation (DoT) the critical reason for a

vehicle crash can be attributed to the driver in 94% of vehicle crashes, indicating a

tremendous opportunity for potential accident reduction [18]. The second motivation

is driven by the productivity that is lost by vehicle drivers in commuting, as they

have to concentrate on driving and cannot be engaged in other activities [19].
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While the ease of driving in autonomous vehicles is certainly a desirable goal,

it could also lead to an increase in the overall vehicle miles driven and hence in-

crease the global environmental burden of transportation. An additional potential

drain resulting from autonomous driving applications are the energy costs of sen-

sors and on-board computers. A good LIDAR sensor such as the Velodyne, HD-L

64E, used extensively in autonomous vehicle applications, draws at an average of

approximately 60 W of electric power [20]. From some preliminary research, about

6 such units would be required for each vehicle. Additionally, the NVIDIA Xavier

AI supercomputer designed for implementation in autonomous driving applications,

and shown to have 75% less power demand than other such units, still draws ap-

proximately 20 W of constant power from operation [21]. According to my simple

derivation of these requirements, the cumulative electric energy demand from these

devices can be significant and can lead to an increase in battery energy demand of

2%, 4% and 6% over the US06, LA92 and UDDS drive cycles respectively, for a Tesla

Model S. Hence, the increase in power consumption due to vehicle automation has

to also be offset through some methods.

Having stated all of the above, a collateral benefit of autonomous vehicle tech-

nology is the elimination of the driver from the control loop. Now, the vehicle

velocity can be set to a desired level by the vehicle controller itself. There are sig-

nificant fuel economy benefits to be gained by driving optimal velocity traces that

reduce fuel consumption [22]. This thesis assesses the potential benefits of utiliz-

ing self-driving technology for fuel consumption. Improvements to fuel economy are

extremely important from a societal standpoint, as increased CO2 emissions due to

human activity have resulted in unprecedented concentration of green house gasses

(GHGs) in the atmosphere [23]. To mitigate the potentially catastrophic effects of

a warmer planet, significant cuts to present emission levels are required. Light duty

vehicles contribute approximately 60% of all transport related GHG emissions [24].

In Fig. 1.1 business-as-usual refers to the standards from 2012-2025 and then main-

taining the 2025 standards in the future. A 4.5% annual rate of improvement yields

GHG emissions closer to the IPCC projection to limit temperature rise to 2 C.

According to the emission standards set by the National Program on light-duty

vehicles from Model Year (MY) 2012-2025, the US Environmental Protection Agency

(EPA) predicts a 6 billion metric ton reduction through life cycles of vehicles sold
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Figure 1.1: EPA predictions for long term GHG emissions [1].

from 2012-2025 [1]. In their mid-term evaluation for the proposed rule [25], EPA

presents an optimistic view of being able to meet these standards at potentially

lower than initially projected costs through present technological pathways.

However, beyond the standards set for 2025, EPA projects a need for further

improvements in fuel economy to substantially reduce emissions further. As shown

in Fig. 1.1, billions of metric tons of GHGs can be reduced by improving Fuel

Economy (FE) after 2025.

1.1 Fuel Economy improvements with Autonomous Driving: Literature
Review

In the EPA mid term evaluation, while a number of improvements and potential

pathways for present technologies are mentioned, there is also an analysis of potential

future technologies that are presently either absent or not widespread. Automated

driving is thought of as an exciting future technology that has significant potential

for reducing fuel consumption. Clearly the potential for increasing fuel economy

through the use of computer generated drive cycles rather than human derived pedal

commands is significant. A recent comprehensive analysis of the benefits and disad-

vantages of autonomous vehicles warned policy makers ”..to consider early steps to

mitigate the negative outcomes and encourage the realization of its potential benefits
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[26].”

1.1.1 Eco-Driving Methods: Driver Implementation

According to the literature, improvements from 10% to 50% are possible through

drive cycle optimization. A comprehensive review of all extant eco-driving techniques

is offered in [27] covering eco-driving optimal control problems across conventional,

hybrid and electric vehicles. In the absence of autonomous driving, driver feedback

has been used to encourage eco-driving. It was shown very early on, in 1978, that

drivers could save fuel by manipulating vehicle speed [28]. In one study of 20 drivers,

an improvement of 6% was found in city driving and 1% in highway driving [29]. An-

other study tried to improve driver behavior for bus drivers and reported 10− 15%

savings in overall fuel consumption [30]. By applying eco-driving or trace smoothing

techniques while driving [31], a reduction of almost 33 million metric tons of CO2

has been predicted. All these cases assume a human driver and that driver’s imple-

mentation of eco-driving techniques. As the analysis in [32] concluded, the success

of eco-driving techniques depends most heavily on driver acceptance, unlike other

more technological improvements.

1.1.2 Eco-Driving Methods: Velocity Smoothing

By eliminating the driver and shifting to autonomous vehicles, the driver train-

ing step can be completely removed. In this implementation, the existing vehicle

platforms can be driven on better velocity profiles which would significantly improve

FE. The ultimate FE minimization can be achieved with 100% autonomous vehicle

penetration, where full traffic flow management will also be possible. Until then,

in the near future only a moderate penetration of autonomous vehicles is expected

where they can encounter other human driven vehicles. Hence, the lead vehicle ve-

locity needs to be taken into account while constructing the current optimal velocity

profile for an autonomous vehicle. Appropriate safety as well as traffic constraints

have also got to be applied such that the following distance is long enough to be safe

but at the same time not too long to allow for cut-ins from other lanes.

Looking at the literature for algorithm driven vehicles, authors in [33] used an

algorithm to match the speed of a preceding vehicle after a given prediction horizon.

While they were able to show more than a 50% improvement in FE with a 30 s

preview, in many drive cycles they showed a decrease in fuel economy, indicating
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no guarantees on optimality with their algorithm. Moreover, no distance constraints

were applied from the preceding vehicle thus leaving the autonomous vehicle liable

to crashes, rendering the algorithm unsuitable for practical application. A similar

attempt was made in [34] that reduced velocity fluctuations while following the UDDS

drive cycle, but in that case again no distance constraints were applied and the

autonomous vehicle would in some cases overshoot the UDDS vehicle or fall behind

by almost 300 m. Using a DP optimization for free flowing and constrained flow [35]

was able to achieve a 34% improvement in free traffic flow and 15.4% improvement

in constrained flow where a safety distance had to be maintained from the preceding

vehicle. However, no mention was made of the maximum distance from the preceding

vehicle. Also that work used offline optimization with the entire drive cycle preview

which is not practical.

For an online implementation, a Model Predictive Control (MPC) formulation

was used in [36], that showed an 8.8% reduction in fuel consumption with a 5 s

preview. However, those authors used their own drive cycles as the baseline and did

not show how the controller would perform under known and regulated conditions.

Additionally they employed a fixed distance constraint unlike in the real world where

the distance from the preceding vehicle depends upon the relative velocity. This

would result in awkward traffic patterns.

1.1.3 Eco-Driving Methods: Pulse and Glide (PnG)

Another velocity manipulation technique that delivers lower energy demand than

simple velocity smoothing is Pulse and Glide (PnG). This strategy, where the ve-

hicle velocity switches between acceleration and coasting, with the engine switched

off during coasting, was implemented in [37]. They reported between 33− 77% im-

provements in simulation as compared to a constant speed driving for a conventional

vehicle. The PnG strategy is only a theoretical concept for conventional vehicles

where the engine cannot be switched off in an automatic transmission while the ve-

hicle is in motion. But with actual experimental testing on a chassis dynomometer,

they report 24− 90% improvements in fuel economy. This work was carried forward

in [38] where instead of comparing to a constant velocity case, comparisons were

made between a benchmark LQ-based controller and PnG strategy in a vehicle fol-

lowing case. They reported improvements of up to 20% over the baseline. In [39]
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a mixture of car following strategies was shown to be the optimal method in min-

imizing fuel consumption. From an optimal control algorithm, the results showed

that the strategy shifted between constant speed and pulse and glide depending on

the speed of the preceding vehicle. When the speed was high, PnG was used while

for a low lead speed, constant speed cruising was used. While PnG has a lower en-

ergy demand than the previous cases, this method only works well in hybrid systems

where the engine can be shut off during coasting. Additionally, the lead vehicle in

all these cases has a constant speed, which is unreasonable for real world scenarios.

When a more naturalistic drive cycle was adopted in [38] a significant spread over

the uniform results was reported.

1.1.4 Eco-Driving Methods: Potential for Improvements

From the literature review, it is clear that significant improvements to FE can be

achieved using velocity trajectory optimization. Even relatively simple algorithms

were able to deliver substantial results. However, one reason for the considerable

deviations in results is the differing baselines of human driving. Traditionally, stan-

dard drive cycles from the US Environmental Protection Agency’s (EPA) such as

the UDDS, US06, LA92 etc are used to evaluate the fuel economy baseline. This

work will develop a framework to compare drive-cycles of autonomous vehicles to

human driving, as represented by the standard EPA drive cycles. The present EPA

fuel economy evaluation framework of using 1-D velocity traces to represent different

driving conditions will be preserved. Another issue with the literature, was the con-

straints imposed on the following distances, which were either absent [34], static [36]

or did not take into account a maximum distance [35]. For this work, the minimum

and maximum following distances, have been defined based on the lead vehicle speed.

These distances come from studies conducted by the US Department of Transporta-

tion of car following in a tunnel [2]. With the baseline framework set, this work will

then evaluate the benefits of velocity manipulation while navigating traffic.

The fuel economy results shown in this work come from simulations performed

in the Advanced Light-Duty Powertrain and Hybrid Analysis Tool (ALPHA), devel-

oped at the US Environmental Protection Agency (EPA). This well validated model

simulates a vehicle tracking any given 1 Hz velocity trajectory [3]. The forward

simulation software attempts to mimic vehicle testing on a chassis dyanomometer.
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A driver model within the software evaluates pedal position based on present and

future speed which is translated to an engine torque. This engine torque is converted

to a force on the wheels while accounting for the losses in the powertrain including

torque converter clutch and gear shifts. The force on the wheels along with road load

and aerodynamic drag on the vehicle is used to evaluate the acceleration and hence

the velocity of the vehicle. The software flags any velocity trajectory that cannot be

followed by the vehicle within the EPA defined limits of deviation and hence ensures

the feasibility of the velocity trajectory.

The vehicle selected for primary evaluation was a 2103 Ford Escape with a 1.6L

EcoBoost engine. This vehicle was extensively studied and validated for ALPHA

thus giving confidence to our simulation results. Moreover, the downsized boosted

engine is now an efficient engine technology that has increased its market share from

3% in 2008 to 22% in 2016 [4]. All gains shown would be over this already efficient

and commercialized engine.

All the optimized drive traces will also be simulated in ALPHA for an electric

vehicle, a 2013 Tesla Model S. The goal of this analysis is to show the potential

benefits of optimized drive traces in electric vehicles by reducing the battery energy

demand and thus offering a longer range for the same battery size. Additionally, we

can make comparisons with conventional vehicles to understand the relative benefits

of different strategies for varied powertrains and provide insight into which strategy

fits with which technology.

The last section of this work deals with the optimization of fuel cell hybrids [40]. A

complete scalable, Fuel Cell (FC) model is constructed that accounts for the parasitic

losses in cooling to maintain a relatively low (70 oC) FC temperature [41]. The FC

is hybridized with a battery and the optimization is for the power split between the

two power sources as well as for component sizing. In this manner optimal operating

points of the FC can be obtained as the hybrid vehicle traverses a velocity trajectory.

1.2 Modeling and Simulation

1.2.1 Fuel Economy Evaluation: Autonomous Vehicles

Human car following scenarios that approximate various traffic conditions have

been investigated extensively in traffic simulation literature [42]. In this field, the

Intelligent Driver Model (IDM) [43], which incorporates parameters for comfortable
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Time Headway T (s) Gap (car-length) Fuel Economy (MPG)
Difference From

Baseline UDDS (%)
0.90 1.00 27.6 -2.5
1.25 1.33 28.0 -1.1
1.70 1.80 28.3 0.0
2.50 2.67 28.6 +1.1
3.90 4.00 29.4 +3.9

Table 1.1: Comparison of fuel economy results of different following strategies

braking, speed-determined following distances and allowing for differences between

desired and actual following distances, was shown in [44] to have the least RMS

errors in predicting actual data. The tunable parameter for time headway T in IDM

determines how closely the lead vehicle is tracked as shown in Table 1.1. It can

be seen that with increasing, T , the following gap increases and in doing so, the

resulting fuel economy increases as well. The results are shown for vehicles following

the EPA’s Urban Dynamomemeter Driving Schedule (UDDS) test cycle. From the

fuel economy numbers mentioned in the legend, it is clear that aggressiveness or

lack thereof in following determines the fuel consumption to cover approximately the

same distance in the same time. In fact the FE of a standard UDDS for the given

vehicle is 28.3 MPG. An aggressive following of 0.9 s resulted in worse fuel economy

than the UDDS1, while a more relaxed following of 3.9 s resulted in an improvement

in FE over the UDDS. Therefore, we can conclude that an improved FE is not an

inevitable consequence of autonomous driving.

Even in human driving, the role of aggressive driving on FE was investigated in

a news report [45] which found a 31% difference between moderate and aggressive

driving. A more comprehensive investigation of driving behavior by the University

of Michigan Transportation Research Institute (UMTRI) found a 13% and 16% dif-

ference in fuel economy between the mean and the 10th and 90th percentile drivers

respectively. A total of 117 selected drivers over a period of more than a month

on similarly instrumented vehicles for the study [46]. These results indicate that a

simple adaptive cruise control (ACC) type of following strategy with an aggressive

time headway can actually perform worse than the lead vehicle. Clearly, we cannot

just assume that autonomous vehicles will improve FE beyond human driving but it

has to be encouraged.

1In this analysis we do not account for the reduction in aerodynamic drag that can be achieved with close vehicle
following
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1.2.2 Baseline Human Driving and Constraints

As mentioned in the Introduction, the primary motivation compelling car manu-

facturers to improve FE standards is the tightening regulatory control, and in this

context improving regulatory policies for autonomous driving strategies that improve

FE are crucial. As illustrated by Table 1.1, there is a trade-off between fuel con-

sumption and distance maintained from the preceding vehicle2. The figure shows

the following distance at different speeds for vehicles following a UDDS drive cycle

using the Intelligent Driver Model (IDM) by applying a range of time headways (T).

Hence the distance constraints have to be applied such that the autonomous vehicle

is both at a safe distance from the lead, and not so far behind that it results in other

vehicles cutting-in and hence abruptly changing the optimal velocity profile.

Another issue with evaluating autonomous vehicle’s fuel economy is to compare

it with human driving. The standard EPA drive cycles presently used to estimate

fuel economy provides a range of real world speed profiles for a host of different

traffic conditions. All these velocity traces have been derived from actual human

drivers navigating traffic. For example, the UDDS drive cycle was developed in 1971

when six drivers drove a given route in Los Angeles in the same car. According

to the authors in [47], five of them were remarkably similar. From these an actual

trace closest to the mean of all traces was selected as the UDDS. Similarly for the

development of the Highway Fuel Economy Test (HWFET), drivers were instructed

to follow traffic [48]. From these it can be concluded that the present drive cycle

used for FE evaluation are actual human drivers following traffic for different road

and speed conditions.

In the following sections a short summary of various topics raised in this thesis

are presented along with some results.

1.3 Hypothetical Lead

Using these drive cycles as baseline human driving, this work develops the concept

of a hypothetical lead (HL). This hypothetical lead can be generated from any given

test cycle that can simulate the traffic conditions and provide position constraints

for the following vehicle. These constraints can then be exploited by an autonomous

driving algorithm to achieve the highest possible fuel economy within them. For a

2Again without considering the reduction in aerodynamic drag
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consistent comparison to human driving, these EPA driving profiles would provide

an appropriate estimate of the benefits of autonomous driving.

With the valid assumption that these standard drive cycles are derived from fol-

lowing actual traffic conditions, to recreate those traffic conditions, an inverted form

of the IDM equations were used to determine the velocity profile of the hypothetical

lead. Here the follower vehicle velocity is assumed to be the input and the lead

velocity the output. The concept of the hypothetical lead and it’s derivations has

been presented in our ACC paper [49]. The hypothetical lead would thus represent

an approximation of all traffic conditions encountered by drivers of these standard

drive cycles. By following this hypothetical lead with optimization algorithms, a con-

sistent comparison can be made between humans and automated driving navigating

the same traffic conditions.

Apart from being able to simulate different traffic conditions as a lead velocity

trace, the hypothetical lead also provides us with the ability to define position con-

straints on the following autonomous vehicle. The position of the autonomous vehicle

is constrained by an upper bound, the closest the autonomous vehicle can get to the

lead, and a lower bound, the furthest distance it can fall behind the lead without

allowing cut-ins. The upper bound is defined as being 1 car length for every 10 MPH

and the lower bound as 4 ft/MPH. The upper bound is determined from a common

recommended safety distance [50] and the lower bound from the results presented

in a US Department of Transport study on traffic flow theory [2]. The lower bound

was further relaxed at low speeds of less than 20 MPH to reduce frequent starts and

stops as it can be assumed that cut-ins are reduced at lower speeds. Additionally,

following vehicles can ease to a slower stop when the preceding vehicle slows down.

The constraint framework in this way ensures that the autonomous vehicle has

to cover the same distance in the same time as human driving. The constraints

allow for velocity deviations from the human velocity trajectory. With the baseline

framework defined above, the constraints on the autonomous vehicles are the time

varying position constraints. Different optimization algorithms can be applied that

use the flexibility given by the upper and lower position constraint to optimize the

drive cycle so as to either drive a smoother trace or drive engine loads that are more

efficient.
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1.4 Velocity Profile Smoothing

The first step to optimizing the velocity trace of an autonomous vehicle as evi-

denced in the literature is velocity profile smoothing or trace smoothing. The idea of

trace smoothing is to minimize fluctuations in velocity, or in other words reduce the

total accelerations and decelerations as the vehicle moves through the constraints.

Applying this method, a better velocity profile than human driving can be found

without any information of vehicle characteristics such as mass or aerodynamic drag.

A section of the LA92 drive cycle with a smoothed profile is show in Fig. 4.1.

A simple double integral model was used for this optimization involving two states

of position and velocity and the acceleration as the input. The cost function in this

case was the square of the input, thus encompassing both the acceleration and decel-

eration. The simplicity of the model allowed for computational efficiency. Initially

an offline Dynamic Programming (DP) optimization was done to find the globally

optimal solution [51]. Using the DPM algorithm [52], the position and velocity in

time at minimal cost was found. While there is no direct involvement of vehicle

parameters in the above optimization, or any attempt to reduce energy demand,

a positive effect of reducing accelerations is a reduced propulsive or tractive power

demand from the engine thus reducing fuel consumption. The benefit of reduced

decelerations is smaller energy loss in braking. Therefore it was not surprising to

find that vehicle simulations on these optimized traces through ALPHA, yielded sig-

nificant improvements in fuel economy of up to 18% in the LA92 drive cycle. These

results serve as the upper bound on what is possible by trace smoothing for more

realistic online implementations.

Since in the previous optimization formulation, the model is linear with linear

constraints and a quadratic cost, it is ideal for online implementation in the Model

Predictive Control (MPC) framework. This methodology allows for forward opti-

mization given a preview of a reference signal or constraints. This work evaluated

the effectiveness of MPC given different previews. It was found that across all drive

cycles, with a 20 s prediction horizon, the MPC results matched those produced by

offline DP. However, 20 s is an unreasonably long prediction horizon and the FE with

prediction horizon is shown in figure 3.10. For very short prediction horizons, less

than 5 s, the optimized traces in MPCa showed a worse fuel economy than the base-
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Figure 1.2: Fuel economy using various horizons and cost functions in the MPC formulation

line UDDS. This was due to the position falling too close to the lower bound thus

forcing a high rate of acceleration that worsened fuel economy. To overcome this

problem, MPCp and MPCv were formulated to track the upper bound on position

and velocity of the lead respectively. As shown in the figure 3.10, for shorter predic-

tion horizons these performed better, but reference tracking limited their scope for

optimization with longer prediction horizons. For just a 1.5 s preview, an improve-

ment of up to 12% was found in the US06 drive cycle. This work was presented

at DSCC 2016 [53]. Extending this work further, an analysis has also been carried

out by using a prediction algorithm that provides inaccurate preview of lead veloc-

ity. With inaccurate predictions a for a 10 s preview a 10% improvement in FE was

shown.

1.5 Tractive Energy Minimization

After the straightforward optimization of the velocity trajectory was done to min-

imize velocity fluctuations while adhering to the position constraints, a logical next

step was to minimize the total energy demanded at the wheels while adhering to the

same position constraints. This follows from several similar examples in the litera-

ture where the minimization of fuel consumption is done indirectly by minimizing

the requested power [36, 54, 55]. It was hoped that by this logic minimizing the to-
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Figure 1.3:
Velocity profiles of a section of the original LA92 drive cycle and the optimized cycles.
The dashed lines show the velocity profiles of ALPHA simulations which is almost the
same as the given trajectories.

tal energy demanded at the wheels would result in an even lower fuel consumption.

However, the results were counter intuitive and it was found that while in some cases

the fuel economy did improve as compared to the acceleration optimization case, a

reduction of energy demand did not guarantee a reduction in fuel consumption.

The resulting velocity profile from tractive energy minimization for a part of the

LA92 drive cycle is shown in Fig. 4.1. Clearly, the energy minimization strategy

results in a Pulse and Glide (PnG) sort of profile discussed before. An initial high

acceleration is followed by a low rate of deceleration cruising. However, while the

total energy demand of the tractive energy minimization case reduces by 5.6% over

the velocity smoothing case, it results in a decrease of only 2.1% in fuel consumption.

For the section of the LA92 drive cycle shown in Fig. 4.1, the engine operating

regions are plotted in Fig. 4.3. The engine BSFC map is divided into 5 regions of op-

eration for analysis. The velocity smoothing case, due to lower rates of acceleration

operates more in region 2 where it consumes 9.8% more energy, and a correspond-

ing 10.7% more fuel than the tractive energy minimization case. The higher rates

of acceleration for tractive energy minimization with higher initial power demand
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Figure 1.4:
The engine operation points of the selected portion of the LA92 drive cycle is plotted
on the BSFC map. The solid red lines indicate the operating regions demarcated for
residence analysis. A positive number indicates a gain in power optimization over
acceleration optimization

forces the operating region into region 3 where it consumes 3.8% more energy and

therefore 4% more fuel than the velocity smoothing case. The problem occurs during

the cruising phase, where the acceleration optimized velocity undergoes moderate de-

celeration but the power optimization case undergoes very low rate of deceleration.

Here, the rate of deceleration is lower than the deceleration induced by drag forces

and hence it requires minuscule engine power. This operation at high speeds and low

torque is extremely inefficient and is found in region 5 where the power optimization

case consumes 4.2% more fuel for only a 0.4% extra energy. This behavior causes

the overall fuel consumption to increase even though the total energy demand is less

in the power optimization case.

The insight is counter intuitive and should be considered when power is taken as

a surrogate for fuel consumption. The non-linearity of the engine fuel map, coupled

with the forced operation at the low torque high speed regions significantly reduces

any gains found through a reduction in propulsion energy. This behavior is found

spanning different engine sizes including a further downsized as well as a much larger

4.3L engine. In the downsized engine for the power optimization case, the fuel

consumption was lower in some cases due to a lower torque range which forced the
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engine speed to increase and operate in more efficient regions. For the larger engine,

a more aggressive deceleration fuel cut-off strategy further compounded the losses,

switching this strategy off still showed similar behavior.

More intuitive results were found in the electric vehicle simulations. As compared

to a conventional engine the electric motor has a much flatter efficiency curve and

the absence of gears allows for more efficient operation even at the low rates of

deceleration. As an illustration, for the US06 drive cycle from 490− 560 s while the

conventional vehicle showed a 1% increase in fuel consumption for an 18% reduction

in power, the electric vehicle produced a 17% drop in battery energy consumed for

a 16% reduction in power. Additionally, in the power optimization case, it was seen

that battery energy recovered through regenerative braking was not proportional

to the reduction in braking energy. This behavior can be attributed to the more

aggressive braking in the power optimization case as compared to the acceleration

optimization case. This work has been accepted and is awaiting publication in the

special issue on Unmanned Mobile Systems (UMS) of the ASME Journal of Dynamic

Systems, Measurement and Control (JDSMC).

1.6 Fuel Minimization

With the insights gained from the previous section, we need to accurately predict

the engine torque and engine speed so that the fueling rate can be directly interpreted

from the fuel map. It is especially important to determine the engine speed accurately

by correctly predicting the selected gear. To this end a simplified vehicle model was

built to perform DP optimization to minimize fuel consumption. Since some of the

power produced by the engine is lost during transmission to the wheels these losses

have to be modeled also. From a preliminary analysis, the engine fueling rate was

found to be linearly proportional to the wheel power for a selected gear. This is shown

in Fig. 1.5. Obviously this is an approximation and the model is being improved by

further study of losses in the torque converter and the gear box.

Apart from predicting engine power, the engine speed had to also be predicted

for finding the fueling rate. To characterize the engine speed accurately, the selected

gear has to be either estimated or entered externally. A gear shift map based on

engine torque and vehicle speed with hysteresis was developed for estimating gear

selection. This map showed good co-relation with the ALPHA gear selection for the
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Figure 1.5:
The fueling rate is shown to be an approximate linear function of the vehicle power for
a selected gear ratio

LA92 drive cycle which undergoes several gear shifts. From the comparison of results

generated by DP to those generated through ALPHA simulations, an estimation of

gear shift based on engine torque and vehicle speed was found to be more accurate

and hence the selected gear was added as another state. In the model, the vehicle

speed and torque would determine the selected gear which would govern the fuel

consumption. The DP optimization would from that point select vehicle speeds

that would minimize the total fuel consumption. Additionally, engine idling and

deceleration fuel cut-off were added to the model to improve prediction of fueling

rate.

With the above simplified vehicle model, the DP optimization was carried out on

the last 110 s of the US06 drive cycle. An additional state of gear and long com-

putational times to determine gear shifts slowed down the algorithm significantly

and therefore only short parts of a drive cycle could be analyzed. The drive cy-

cle generated by DP optimization was simulated using ALPHA. A 10% error was

shown in the MPG predicted by DP as compared to the ALPHA results. There is

scope for improvement in the vehicle model as mentioned before, especially in the

torque converter losses, to improve prediction accuracy of fueling rate. Clearly this

simplified model which takes into account gear switches, is not capable of modeling
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the powertrain dynamics well enough, for accurate determination of engine fueling

rate and therefore may lead to sub-optimal results. Hence, a more comprehensive

powertrain model was sought that could account for the losses and dynamics in the

powertrain as the engine torque and speed are transmitted to the wheels.

In a conventional vehicle with only a gasoline engine, the powertrain is very com-

plex as it includes the final drive, the gearbox and the torque converter clutch.

Constant efficiency losses can be modeled for the final drive and the gear box, but

there are significant dynamics involved with the torque converter clutch when it is

disengaged at lower gears and the impeller and turbine are not locked. The slipping

between the impeller and turbine significantly affects the engine speed and can thus

lead to very different fueling rates. Since modeling the conventional drive train is

very hard, first a simplified model of the electric drive train was constructed. The

problem however with a more comprehensive model is that it has several states which

makes the problem intractable in DP.

1.7 Electric Powertrain Modeling

An analysis of optimized velocities was also carried out for electric vehicles that

showed a 9.5% reduction in battery energy consumption while driving the optimized

cycle as compared to the standard drive cycle. The gains found in the electric ve-

hicle through reduced energy consumption were somewhat offset by a corresponding

decrease in battery recharging through regenerative braking. However, in all the

drive cycles the gains from more optimized accelerations outweighed the losses in

limited battery recharging which in any case are limited by motor and powertrain

efficiency. Further discussion on battery recharging for electric vehicles occurs later

in this work. In effect, the optimized drive traces showed a reduction in battery

energy demand to cover the same distance thus leading to an increased range. It is

understood that range anxiety is the leading cause of concern for electric vehicles

as limited battery capacity restricts EV range significantly. Moreover, slow charging

times compound the problem further, and increasing energy storage by enhancing

battery size becomes expensive. Considering all these issues, the analysis in this

work shows that by adopting a smoother driving cycle, the electric vehicle is able to

increase its range by 14.8% from 2.7 miles/kWh to 3.1 miles/kWh. This shows that

the benefits of trace smoothing are significant for electric vehicles as well.
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Figure 1.6:
For two downhill sections of the GEM drive cycle, the optimal trajectory is to swtich
off motor and cruise during downhill descent. The optimal strategy is not to brake and
utilize the regenerative braking capabilities.

For this work a backward model of the electric powertrain was built, which is

suitable for use in numerical optimization algorithms. The model assumes a point

mass vehicle and considers only longitudinal dynamics, which is appropriate for the

1-D drive cycles under consideration in this work. The input to the model is the

vehicle velocity and the electric motor power demand the output. As an electric

powertrain does not have variable gear ratios or a torque converter clutch, modeling

the drive train is comparatively simple. The final drive gear ratio and average final

drive efficiency were found from the ALPHA model of the Tesla S. This thesis also

used the same experimentally determined motor map as the ALPHA model to find

the motor efficiency for a given motor torque and speed. For any given velocity

trajectory, the results of electric powertrain model matched perfectly with ALPHA

predictions thus giving high confidence in the validity of the electric vehicle model.

Using this model, offline DP optimization was carried out to minimize electric

power demand at the motor. The constraints were similar to those applied previously

in following the hypothetical lead. Somewhat surprisingly, the results were similar

to those of wheel power minimization. The results are surprising because with the
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electric powertrain now allowed for regenerative braking where negative motor power

should reduce the cost function. However, the optimal solution does not seem to

exploit this feature.

To further investigate this phenomenon, road grades were introduced in the anal-

ysis. Under the EPA’s GEM program there exists a constant velocity grade changing

drive cycle that allowed us to find the optimal velocity profile as the electric vehi-

cle navigated the hill ascents and descents. In following the constant speed lead of

55 MPH, the optimal trajectory seemed to adhere to the well know principles of hill

climbing from [56], where, the optimal policy is to “increase speed while approaching

the base of the hill, and then allow the speed to drop off while climbing the hill ...

and reverse while descending.” This optimal policy does not utilize the regenerative

braking capabilities to recharge the battery in hill descent.

From the literature review, it seems that for vehicles that have a regenerative

capability, hill descent was always seen as an opportunity to recharge their battery.

Clearly this is not the optimal solution. It has been shown in our analysis that the

only time when the vehicle braked to utilize regenerative capabilities was when either

the position constraints had to be satisfied so vehicle velocity had to be reduced to

meet them, or the velocity constraints had to be satisfied, where the vehicle velocity

would increase beyond its limits. These cases were explored and explained in detail

in our CCTA 2018 submission [57].

The reason for not utilizing the regenerative capabilities is simply the efficiency

losses in converting mechanical power at the brakes to electrical power at the motor.

Even with a very high conversion efficiency of 90%, the round trip efficiency in

converting brake power back to propulsion power at the wheels would be 81%. It

was shown that if there were no efficiency losses, then the optimal policy did utilize

regenerative braking thus confirming our hypothesis.

1.8 Fuel Cell Hybrids

The last part of this thesis looks at the modeling and simulation of Fuel Cell (FC)

hybrid vehicles. From the work done so far in this thesis, the constrained velocity

trajectory optimization considers the powertrain dynamics of a conventional gasoline

vehicle as well as a battery electric vehicle. However, an optimization problem with

two power sources has not yet been considered, where the desired electric power
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Figure 1.7:
Optimal Fuel Cell operating points for a given velocity trajectory, for the global optimal
DP solution and constant power rule based. The difference in hydrogen consumption
between the two is only 0.07%

demand of the motor can be met with either a fuel cell or a battery or indeed with

a combination of both. The optimization challenge here is different as the battery’s

capacity is limited and optimal operating points of the fuel cell are sought. Moreover,

the FC polarization curve is affected by the FC temperature. The temperature can be

controlled by regulating the cooler fan speed, which parasitically draws some electric

power to operate. For higher power density FC stacks, a liquid cooled system is

required due to significantly higher heat generation. Additionally, the compressor

at the cathode input also draws some electric power but affects the FC polarization

curve. From this description it is clear that such optimization involves several states

and efficiency can be affected by several factors and parasitic losses.

As part of the initial analysis done in this thesis for a constant temperature FC

efficiency, it was found from DP optimization that the optimal policy is to discharge

the battery down to its minimum level, but operate the fuel cell at an almost constant

power as shown in Fig 1.7. Using this conclusion a simple rule-based strategy of

constant power FC operation showed only a 0.07% difference from the global optimal

solution. The value of the constant power provided by the FC was dependent on the

energy stored in the battery. The reason for this constant power operation was

simply that the FC efficiency decreased almost linearly with increasing power drawn

and hence the optimal policy was to draw as little power as possible. The only
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time this strategy did not work, was when the constant power demand was less

than the peak efficiency point as shown in Fig 1.7. In this case, the global optimal

solution was to switch between FC off and its peak efficiency point. The inclusion

of thermal effects by adding an air cooling system and the state of temperature, to

dynamically compute the FC efficiency, resulted in similar optimization. Now, the

FC operated at a higher power initially to quickly raise the temperature and then

descended to a constant power operation. During this period, the cooling fan also

operated at a constant power. Towards the end, the cooling fan switched off and let

the temperature of the FC rise slightly. These results were presented at SAE 2018

[58].

1.9 Thesis Organization

This thesis is organized as follows. Chapter II presents the concept of the Hy-

pothetical Lead vehicle, which serves as the baseline lead velocity trajectory for the

rest of this thesis. In Chapter III the optimization results from velocity smoothing

are shown. It also includes a full preview optimization using Dynamic Programming

and short accurate as well as inaccurate previews using Model Predictive Control.

Chapter IV presents the results from velocity optimization using more detailed and

vehicle specific models, with the conclusion that velocity smoothing can perform as

well if not better than more complex optimizations. The analysis for the electric

vehicle is presented in Chapter V, including velocity smoothing as well as velocity

optimization over varying road grades. Finally Chapter VI presents the optimization

results for minimizing fuel consumption in a Fuel Cell hybrid. Chapter VII is a short

note on the future work required to answer some of the open questions from the

conclusions of this thesis.

1.10 Contributions

It has been shown through the literature survey that a consistent fuel economy

measuring framework does not exist for autonomous vehicles. It’s been also shown

that while the main motivation driving autonomous vehicle development is safety

and driver comfort, to achieve significant reduction in CO2 emissions regulators will

need to compel autonomous drive cycles to be more efficient.

1. Hypothetical Lead: The first contribution of this work is to develop the con-
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cept of a Hypothetical Lead (HL). The HL provides a consistent framework for

regulators to assess the benefits of an algorithm-driven drive cycle over human

driving. It’s been shown that the HL can be derived from any of the present

EPA drive cycles, or even from any other drive cycle. Hence the HL allows for

comparison of well known human driving to any algorithm and understand their

impact. As stated before, this result motivates regulatory policy as well. This

work was presented at ACC 2016 [49].

2. Velocity Smoothing (Offline): Following on from the above work, the second

contribution is to take the constraints of the HL and optimize within them to

“smooth” the velocity trace by minimizing accelerations and decelerations. This

simple optimization, done offline using Dynamic Programming (DP), shows up

to an 18% increase in fuel economy. These results have been validated with dy-

namometer experiments, at the EPA’s testing facility. The FE improvements in

experiments are even better than in simulation and showed significant reduction

of up to 20% for CO2. Additionally, emissions are also reduced for the smoothed

velocity by 75% for NOx and 60% for CO. These results are presently under

preparation for submission.

3. Velocity Smoothing (Online): For online velocity smoothing, Model Predic-

tive Control (MPC) has been employed and shows up to 12% improvement with

just 1.5 s of accurate preview. The methods and results were presented at DSCC

2016 [53]. In a previous velocity prediction algorithm that provided inaccurate

prediction, a 10% improvement has also been shown. Additionally, from these

results, it’s been concluded that within the present formulation, prediction ac-

curacy in only the first few seconds is important for optimization. These results

are under preparation for submission.

4. Optimal Fuel Cost Function Evaluation: For the fourth contribution, this

work has tried to minimize the energy demand at the wheels while adhering to

the constraints of the HL. Interestingly, even with a significant reduction in en-

ergy demand over the previously smoothed velocity trace, there are some drive

cycles where the fuel consumption actually increases. The issue with energy

optimization is that it always results in a pulse and glide velocity trajectory

[54], where the glide portion of the trajectory has a minuscule energy demand.

However, due to the non-linear engine efficiency map and powertrain, the fuel
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required to traverse the glide portion is disproportionately high. Thus depend-

ing on the length of the glide, the overall fuel consumption can be higher as

compared to the smoothed velocity trace. Hence, use of velocity smoothing

from the previous work might work just as well, if not better than tractive en-

ergy minimization. These results have been found to be valid in simulation for

a further downsized as well as full size naturally aspirated 4.3 L Ecotec engine.

This is an important conclusion as trace smoothing is desirable for passenger

comfort but the pulse and glide trajectory has a lower energy demand at the

wheels. This work shows that perhaps there is no trade-off between passenger

comfort and fuel consumption. Therefore a simple linear model that does not

require vehicle specific information, and is easily solvable with quadratic solvers,

while also being more conducive for passenger comfort can be used for optimal

fuel solutions. This work has been accepted for publication in the special is-

sue on Unmanned Mobile Systems (UMS) of the ASME Journal of Dynamic

Systems, Measurement and Control (JDSMC).

5. Gasoline Vehicle Velocity Optimization: Continuing from the previous

work, when a more complex vehicle model to directly compute fueling rate is

introduced in the optimization it is found that the resulting FE is lower than

the previous two optimizations. This arises due to inaccuracy in the vehicle

model. Moreover, for a 120 s optimization, DP requires over 2 hours to complete.

When a more complex model is employed that shows only a 0.7% error in fuel

consumption from ALPHA, the increased number of states thus render DP

intractable. Hence for future work, a better optimization methodology has to

be used to deal with these additional states.

6. Electric Powertrain Velocity Optimization: Based on the previous results

it is clear that for fuel minimization, the entire powertrain dynamic model should

be included in the optimization algorithm. The problem is that, electric vehicles

have regenerative braking capabilities and it’s been found that the optimal cycle

does not include regenerative braking. This is true even for traversing road

grades, where downhill slopes offered an opportunity to brake and recharge the

battery, but the optimal policy is to avoid braking and increase speed with the

gravitational pull. This results in efficiency losses in battery recharging, so that

even a 90% motor efficiency was in effect 81% efficient round-trip. Hence the
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sixth contribution of this thesis is to show that different technologies may not

be harmonious and complementary. This is important for high level analyses

where improvements from different technologies are algebraically added but our

results show this not to be true. These results have been presented at CCTA

2018 [57].

7. Fuel Cell Hybrid Velocity Optimization: The final contribution of this

thesis is in the realm of Fuel Cell (FC) hybrids. This work shows, that fuel

cell efficiency is the main determining force in the optimal power split. For

all drive cycles studied, FC operates at a constant power while the battery is

discharged and charged in navigating the power variations. This allows for a

simple rule based solution that matches the global optimal results. Even in

charge sustaining mode, the optimal FC operation is either at it’s maximum

efficiency point or at zero power. Further it’s been shown that introduction

of thermal constraints on the FC do not change the constant power operation.

However, FC temperature constraints are important contributors to stack sizing

and battery thermal constraints to it’s discharge rate. Some of the initial results

were presented in [58], another paper is in preparation to present additional

results.



CHAPTER II

Hypothetical Lead Vehicle Trace

The regulation of fuel consumption and emissions around the world is based on

standard drive (SD) cycles. Several autonomous or simple eco-driving methods of

smoother driving and smaller acceleration and braking can violate the ± 2 MPH

speed deviation regulation from the SD and hence they are currently not counted

towards the vehicle fuel economy, even though they are acceptable from a traffic

pattern perspective, namely following a vehicle at a safe and reasonable gap. This

chapter develops and suggests a prototypical vehicle velocity versus time trajectory

that supersedes each SD cycle since the SD cycle is the vehicle trace from following a

vehicle with the prototypical velocity trace. The prototypical velocity trace is named

from now on as the Hypothetical Lead (HL) vehicle cycle. In essence, the HL cycle

recreates the traffic conditions followed by the drivers of the standard

drive cycles. In the following chapters we demonstrate the use of this HL cycle for

assessing the fuel economy benefits of autonomous following in relation to standard

test cycles and limits on the following distances to ensure that the different drive

traces follow the same prototypical traffic conditions in a reasonable and safe way for

real world applications. Thus ensuring that all reported Fuel Economy improvements

in thesis are over a human navigating those traffic conditions.

2.1 Introduction

Autonomous vehicles have been the focus of researchers for several decades and

there are several ideas in the literature regarding technologies that can be utilized to

implement automated driving. While a lot of research has been focused on the safety

aspects of autonomous driving with technologies to prevent collisions, lane departure

or blind spot crashes, autonomous technologies also can be used for decreasing fuel

26
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consumption of vehicles. Implementation of advanced vehicle following strategies to

optimize engine performance and fuel economy for autonomous vehicles could change

the way a light-duty autonomous vehicle negotiates traffic as compared to a human

negotiating the same traffic conditions. Unfortunately, the current certification of

vehicle fuel efficiency cannot account for such efficiency benefits so there is a lot

of interest in devising a methodology that will quantify the benefits with minimum

deviation from the existing rules [59].

Presently the US Environmental Protection Agency (EPA) and other regulatory

agencies around the world use pre-specified velocity versus time traces called standard

drive (SD) cycles to approximate how a driver navigates through different road types

and traffic conditions as shown schematically in the upper section of Fig. 1. Only a

± 2 miles per hour (MPH) deviation is allowed by the EPA from the standard velocity

trace for a valid test (Code of Federal Regulations, title 10, sec 86.115). Despite their

limitations in capturing every possible driving style or traffic, the standard drive

cycles are good approximations of a set of everyday driving conditions and are used

to compare the fuel consumption of various vehicles.

Given the importance of the SD cycles in the regulatory framework, many au-

tonomous longitudinal driving studies concentrate on intelligent following of a lead

vehicle that traces the SD cycles [60]. This would in theory increase the fuel efficiency

of the vehicle but it has been also shown that it can cause higher fuel consumption

under following conditions with very small deviation from the SD cycles. Hence,

the current trend of evaluating fuel consumption reduction in autonomous driving

by following a SD is re-examined and a new methodology is proposed. This chapter

suggests a new procedure to objectively compare a human driver to an autonomous

vehicle and quantify the fuel economy benefits of using autonomous driving tech-

nologies.

Vehicle following using eco-driving strategies are being encouraged amongst drivers

across the world, to help them improve fuel economy while driving in their daily lives.

These tips include maintaining an even driving pace, accelerating moderately from

2000 to 2500 RPM and anticipating traffic flow to avoid sudden starts and stops.

A conservative estimate of eco-driving benefits calculates a reduction of 33 million

metric tons of CO2 annually from being emitted into the atmosphere [31]. It is

reasonable to assume that vehicles with autonomous technologies would implement
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Figure 2.1:
Schematic describes the development of the hypothetical lead (HL) vehicle and the sec-
tions of the paper with an example of the HL trace used to evaluate the fuel consumption
of a particular following strategy.

such driving strategies to reduce fuel consumption and emissions.

As stated in the introduction, previous works have achieved 0.5%−10% reduction

in CO2, through Adaptive Cruise Control (ACC) acting between speeds of 18mph

and 100 mph in velocity profiles based on expert-rules derived by observing real-

world pilots [22]. While, [36] used an optimization algorithm that computed the

appropriate acceleration based on traffic conditions so as to improve fuel economy.

They were able to show a 8.8% reduction in fuel consumption. In [34] an optimization

algorithm was developed to reduce deviations in velocity and thus accelerations by

having a velocity preview. Fuel consumption reductions of up to 33% in a vehicle

powered by a standard SI engine was shown in simulations over the UDDS drive

cycle. However, in changing the SD the distance between the optimized cycle and

SD was very large, exceeding 300 m in some cases and overshooting the SD in some

cases as well. To avoid distances that are so large that other vehicles could cut-in

or too short to be safe rendering real-world implementation impractical one has to

impose constraints in the following scenario.

Unfortunately, there is a trade-off between the following distance and the fuel

consumed as shown in Table 2.1. The table shows the cases where vehicles were

trailing a vehicle executing the UDDS drive trace for different time headways. A car

length is assumed to be 4.5 m, a common safety limit is 1 car length per 10 MPH [50].

This entire simulation will be discussed in detail later, but it is worth noting that the

fuel consumption only matched for the vehicle following case with a Time Headway

of 1.7 s. However, the FE increased for larger headway, creating a confusion on what

should be considered as the baseline. If the SD cycle is the baseline itself, then a

lead velocity trace must be determined for the automated driving vehicle to follow.
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Table 2.1: Influence of time headway on fuel economy over the UDDS
Time Headway FE Change (%) Car Length/ 10 MPH

0.9 -2.5 1.00
1.25 -1.1 1.33
1.7 0 1.80
2.5 1.1 2.67
3.9 3.9 4.00
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FTP-72 as Lead Vehicle
T=0.90s 1.00 car length/10 MPH, MPG =27.6
T=1.25s 1.33 car length/10 MPH, MPG =28.0
T=1.70s 1.80 car length/10 MPH, MPG =28.3
T=2.50s 2.67 car length/10 MPH, MPG =28.6
T=3.90s 4.00 car length/10 MPH, MPG =29.4

Figure 2.2:
Comparison of fuel economy results predicted through the ALPHA model for 2013
Ford Escape with a 1.6L Ecoboost engine. Parameter T is the time headway that
a follower vehicle maintains from the lead vehicle. Smaller headway indicates more
aggressive following. Aggressiveness in following distances significantly changes the fuel
consumption. Standard FTP gives 28.3 MPG on the chosen vehicle that is 4.5 m long.

Further, the table clearly shows that increased fuel economy is not an inevitable

consequence of automated driving, hence regulators would want to encourage driving

algorithms that improve FE. The results of the table are visually displayed in Fig. 2.2,

where increasing gap results in an increased FE. The baseline FE of the FTP 72 is

28.3 MPG.

This chapter develops a hypothetical lead (HL) velocity trace from the standard

drive cycles to simulate the lead traffic conditions that can be followed by automated

driving algorithms to compare the differences between human and automated follow-

ing. Beyond the EPA testing procedures, this method can also be used to simulate

various autonomous technologies and optimization algorithms and evaluate the ben-

efits of using one over the other. Fig. 2.1 provides an overview of the paper and the

rationale for the analysis. Section 2.2 reviews the development of the standard drive

cycles. Section 2.3 analyzes vehicle following models while Section 2.4 describes the

development of the hypothetical lead vehicle from the inverted equations of a vehicle

following model.
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2.2 Background on Current EPA Fuel Economy Test Procedures

Current certification tests for fuel economy as carried out by the U.S. Environmen-

tal Protection Agency involve running all vehicles through standard drive cycles on

a chassis dynamometer (Code of Federal Regulations, title 10, sec 86.115). The first

drive cycle, the Federal Test Procedure (FTP), also called the Urban Dynamometer

Driving Schedule (UDDS), was developed by authorities in Los Angeles (LA) in 1971

trying to reduce smog in their city. They concluded that the morning drive to work

was the biggest contributor to the city’s smog and they wanted a test procedure so

that the vehicle emissions could be quantified and regulated. The authorities ap-

proximated the morning drive to work of an average LA driver by specifying a route

shown in Fig. 2.3, which combined different road speeds and traffic conditions.

Six drivers drove the trace, in the same car, with five producing remarkably similar

results. The actual trace closest to the mean of all traces was taken with minor

modifications to its length as the standard drive cycle [47]. The rationale was to find

a vehicle velocity trace that a driver executes while navigating through traffic. It was

assumed that to navigate through the given traffic scenario, the UDDS velocity profile

would have to be adopted for all vehicles and individual vehicle capabilities would

not change the velocity profile if driven by an average human. Similar methods were

used to develop other drive cycles such as Highway Fuel Economy Test (HWFET)

where drivers were instructed to follow traffic, i.e. pass as many vehicles as passed

them [61]. It must be kept in mind that human drivers generated all velocity traces

that were finally set as standard drive cycles.

2.3 Vehicle Following Model Implementation

In traffic simulation research, several car following models have been developed

to predict the speed of the trailing vehicle in the single lane case. Lefévre et al

[44] compared various parametric approaches that differently predicted the speed of

vehicle in a vehicle following mode for a given traffic condition. Of all the parametric

approaches, the mean average error and the root mean squared error was found to

be the least for the Intelligent Driver Model (IDM). Hence, the IDM was selected

as the vehicle following model for this paper. It uses a combination of safe time

headway and comfortable braking distance to compute the desired distance from the
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Figure 2.3: Route selected as the typical morning drive to work in Los Angeles in 1971.

lead vehicle and then the actual distance and speed to find the acceleration.

The model used in this thesis to evaluate fuel consumption over a drive-cycle is

the Advanced Light-Duty Powertrain and Hybrid Analysis Tool (ALPHA) model

developed at the US Environmental Protection Agency [3]. Any drive cycle in 1 Hz

resolution can be loaded into the program and the tool incorporates a driver model

that is able to track the velocity. The vehicle used is a 2013 Ford Escape with a 1.6L

EcoBoost engine [62].

While IDM does show the smallest error with actual traffic data compared to other

parametric approaches, there are still some driving characteristics of humans that

cannot be captured by the model. Humans change their driving pattern depending

on the traffic conditions. In our case, it is assumed that each standard driving

trace is created for a certain traffic pattern and hence changing the parameters

for each trace would capture this effect. Humans have other signals apart from

the speed of the front vehicle such as brake lights and perception of lead driver’s

intentions which allow them to react early. Additionally they have a perception

threshold and only significant changes in speed are determined by the follower vehicle

delaying their reaction. Early perception would cause the following driver to act

before the IDM would predict and the perception threshold would cause the driver

to act after the IDM predicts a response. From the experimental work done by
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Lefévre it can assumed that IDM misses the overshoots and undershoots but is a

reasonable approximation of what the driver would do. The RMS error was shown

to be about 0.25 m/s for a 1 s prediction horizon. In actual dynamometer testing, for

the UDDS an RMS error of 0.2 m/s was seen between the ALPHA model velocity

and the actual velocity trace driven by an experienced driver. This indicates an

acceptable error margin being given by the IDM equations.

The aforementioned IDM, described below was used to follow a vehicle executing

a drive cycle.

(2.1) dactual,k = sL,k − sF,k

(2.2) rk = vL,k − vF,k

(2.3) ddes,k = dmin + T × vF,k −
vF,k × rk

2×
√
amax × bcomf

(2.4) aF,k+1 = amax(1− (
vF,k
vmax

)4 − (
ddes,k
dactual,k

)2)

(2.5) bmax ≤ aF,k+1 ≤ amax

Table 2.2: Parameter Definitions
Parameter Name Parameter Definition UDDS

ddes Desired Gap (m) Calculated
dmin Minimum Gap at 0 velocity (m) 2
T Time Headway (s) 0.9
vL Lead vehicle speed (m/s) Calculated
vF Follower vehicle speed (m/s) Calculated
vmax Maximum vehicle speed (m/s) 45
r Relative speed of lead and follower vehicle (m/s) Calculated

amax Maximum acceleration (m/s2) 3.0
bcomf Comfortable deceleration (m/s2) 1.5
aF Acceleration of follower vehicle (m/s2) Calculated
bmax Maximum deceleration (m/s2) 3.0

Where the subscript L denotes the lead and F the follower. Parameter d is the

gap, s the displacement, v the velocity, a the acceleration, b the braking and r is the
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relative velocity. The value of each parameter (T , amax, bcomf and dmin) depends on

the velocity time trace of different drive cycles. Each standard drive cycle is said to

represent a particular type of road with the expected traffic conditions and hence

the speed, acceleration and braking.

To generate Fig 2.2, the standard drive cycle, in this case UDDS, is the lead

vehicle. The UDDS involves maximum acceleration and deceleration of 1.5 ms−2 and

−1.5 ms−2 respectively. Since drivers don’t tend to push the car to the limit the

maximum acceleration (amax) was chosen to be double the maximum acceleration

seen in the drive cycle. The comfortable braking (bcomf ) was kept the same as the

maximum braking of standard drive cycles and the maximum braking in IDM, double

of that. The minimum distance was kept at 2 m. An important assumption of the

selected model is that the reaction time and attention span of the driver are merged

to 1 s and used as the time step for the iterations. Prior work [42] shows that this is

reasonable. The parameters values for the UDDS case are given in Table 2.2.

The time headway (T ) can be varied to find the optimal gap that should be

maintained from the vehicle in front. The gap can be increased or decreased by

appropriately tuning T . The eco-driving strategies are implemented while keeping

in mind that that the gap between the lead vehicle and the follower vehicle has to

be long enough to ensure a safe braking distance but at the same time not too long

such that other vehicles can cut in and cause the autonomous vehicle to brake thus

negating the objective of maintaining an even driving pace.

A time headway of 0.9 s for the FTP drive cycle would achieve the desired gap

between the lead and the follower vehicle such that it is safe, does not allow cut-ins

and is good for traffic flow. However, the given velocity trace violated the ±2 MPH

for less than 2 s regulation on 15 occasions and still showed a worse fuel economy than

the UDDS drive cycle as shown in Fig 2.2. Close following made the follower vehicle

speed vary significantly as it tried to keep up with the lead vehicle and maintain a

safe distance. The RMS error between the standard drive cycle and the following

velocity trace was 0.4 ms−1. Increasing the time headway to 1.7 s produced a velocity

trace that matched closely with the standard cycle, did not violate the regulations,

showed an RMS error of 0.2 ms−1 and a fuel consumption that matched the UDDS.

However, in this case the following distances were larger (1.8 car-lengths), and would

allow cut-ins. Increasing the time headway further reduced fuel consumption and for
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T = 3.9 s a 4% increase in MPG could be seen however, the following distances were

very large and the RMS error was 1.2 ms−1.

For the case where vehicles are made to follow the UDDS drive cycle, it was shown

that for T = 0.9 s, fuel consumption was more than the lead UDDS. Conversely for

larger following distances lower fuel consumption is observed. An autonomously

driven vehicle should be able to negotiate this trade off and achieve an optimal fuel

economy. Through this example we have seen that in an attempt to decrease fuel

consumption the regulations for speed are violated. Hence we need to determine

another methodology that can evaluate the reduction in fuel consumption by use of

self-driving algorithms that deviate in navigation through traffic from humans.

2.4 Hypothetical Lead Vehicle Profile

A systematic evaluation technique has to be developed that can objectively de-

termine the fuel economy benefits of self-driven cars. To do this we could turn back

to the rationale of the original standard drive cycles. These cycles were developed

as an approximation of how an average human driver would navigate through differ-

ent road and traffic conditions. The same thinking can also be used for evaluating

autonomous driving capabilities. Since the standard drive cycles were humans nav-

igating through traffic conditions, to find autonomous driving benefits we should

compare it to how a controller based off an optimization algorithm would navigate

through the same traffic conditions.

To recreate the traffic conditions for the standard drive cycles, this chapter in-

verted the IDM equations. By inverting the equations the velocity trace of the lead

vehicle being followed by the driver driving the standard drive cycles could be found.

It is important to note that the driver of the standard drive trace would not just

be following a single vehicle in a single lane but rather reacting to lane changes,

stop lights, stop signs etc. The standard drive cycles are a simplified trace and the

recreated traffic conditions are simplified single lane hypothetical lead vehicle veloc-

ity traces. Hence, the lead vehicle is essentially a hypothetical velocity trace that

drivers of the standard drive traces followed to produce their respective drive cycles.

Since we are trying to determine the velocity profile of the lead vehicle from the

follower vehicle data. The follower speed vF and acceleration aF are already known.

Considering a single time step of 1 s, we can write the velocities of the lead and
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follower vehicles as

(2.6) vL,k = sL,k − sL,k−1

(2.7) vF,k = sF,k − sF,k−1

Using the above equations, with equation 2.2, equation 2.1 the actual gap between

the lead and follower can be defined by equation 2.8, where sL,k−1 and sF,k−1 are

known but rk is unknown.

(2.8) dactual,k = sL,k−1 − sF,k−1 + rk

Then by rearranging equation 2.4 we get equation 2.9, where ddes,k and dactual,k are

unknown. Since the vehicles do not crash the desired and actual distance between

the vehicles is always positive.

(2.9)
ddes,k
dactual,k

=

√
1− aF,k+1

amax

−
(
vF,k
vmax

)4

Finally rearranging equation 2.3 gives equation 2.10, where rk and ddes,k unknown.

(2.10) rk = (dmin + T × vF,k − ddes,k)
2×

√
amaxbcomf

vF,k

Hence there are 3 equations and 3 unknowns. Substituting equations 2.8 and 2.9

into equation 2.10 produces equation 2.11 from which the relative velocity rk can be

determined

(2.11) rk =
dmin + T × vF,k − sL,k−1 − sF,k−1

√
1− aF,k+1

amax
−
(

vF,k+1

vmax

)4
2
√

amaxbcomf

vF,k
+

√
1− aF,k+1

amax
−
(

vF,k+1

vmax

)4
From the relative velocity the velocity of the lead vehicle can be found from

equation 2.2. The initial conditions are assumed to be vF (0) = vL(0) = aF (0) =

sL(0) = 0 and sF (0) = −dmin = −2.
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Figure 2.4: US06 Drive Cycle with the hypothetical lead vehicle trace

The equations can be applied to any naturalistic drive cycle to produce the hypo-

thetical lead drive traces. Specifically this process was carried out for five standard

drive cycles, UDDS, HWFET, LA92, US06 and SC03, to determine the traffic con-

ditions being followed by the driver of these traces. The parameter values are given

in Table 2.3. For this paper the following gap was kept at T = 0.9 s, which gives

a 1 car-length/10 MPH inter-vehicle distance. By this logic if the hypothetical lead

vehicle were to be followed by the IDM to mimic a human driver it would result

in the standard drive cycle. In the next sections of this thesis we will follow this

hypothetical lead with optimal control algorithms such that a consistent comparison

is possible between human and automated driving.

The HL vehicle trace resulting from the US06 drive cycle in shown in Fig. 2.4. As

mentioned before, 0.9 s time headway is close following hence, the actual SD cycle

is more aggressive than the HL in following. A magnified plot with the first 130 s of

the UDDS drive cycle is shown in Fig. 2.5, where the blue velocity trace of the HL,

is followed by the red dotted trace of the SD cycle. Again, the SD cycle due to close

following is more aggressive than the HL.
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Table 2.3: Parameter Value
Parameter Name UDDS US06 LA92 SC03 HWFET

dmin(m) 2 2 2 2 2
T (s) 0.9 0.9 0.9 0.9 0.9

vmax(m/s) 45 45 45 45 45
amax(m/s2) 3.0 6.0 4.0 6.0 3.0
bcomf (m/s2) 1.5 2.5 1.5 2.5 1.5
bmax(m/s2) 3.0 6.0 4.0 4.0 3.0
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Figure 2.5: First 130 s of the UDDS Drive Cycle with the hypothetical lead vehicle trace

2.5 Conclusions

The hypothetical lead vehicle provides a good baseline for comparing automated

driving with the vehicle executing an SD. The rationale of the method developed in

this thesis is that given the HL a human followed to produce the SD, how would

an autonomous vehicle with eco-driving capabilities follow the HL. To judge the fuel

consumption reduction by use of autonomous technologies the autonomous trace

produced through the vehicle following algorithm can be compared to the SD trace

thus giving a straightforward comparison under the same principles.



CHAPTER III

Velocity Smoothing

Constrained optimization control techniques with preview are designed in this

chapter to derive optimal velocity trajectories in longitudinal vehicle following mode,

while ensuring that the gap from the lead vehicle is both safe and short enough to

prevent cut-ins from other lanes. The hypothetical lead vehicle associated with the

Federal Test Procedures (FTP) [49] is used as an example of the achieved benefits

with such controlled velocity trajectories of the following vehicle. Fuel Consumption

(FC) is indirectly minimized by minimizing the accelerations and decelerations as the

autonomous vehicle follows the hypothetical lead. Implementing the cost function in

offline Dynamic Programming (DP) with full drive cycle preview showed up to a 17%

increase in Fuel Economy (FE). These results were validated with chassis dynamome-

ter testing, which additionally showed a significant reduction in emissions. Real time

implementation with Model Predictive Control (MPC) showed improvements in FE,

proportional to the prediction horizon. Specifically, 20 s preview MPC was able to

match the DP results. A minimum of 1.5 s preview of the lead vehicle velocity with

velocity tracking of the lead was required to obtain an increase in FE. Further, a

velocity prediction algorithm was used to predict 10 s future velocity of the lead as

input constraints to MPC. These predictions have inaccuracies, and based on the

results we conclude that using an accurate prediction in the 1st s is most important

for FE improvements under our formulation.

3.1 Introduction

Vehicle autonomy is steadily increasing and in the coming years several man-

ufacturers would offer vehicles with the capability for highly autonomous driving.

Presently, adaptive cruise control systems lack the ability to navigate through all

38
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traffic conditions and are recommended only at highway speeds for safe operations

[63]. However, autonomous vehicles at the very least would have longitudinal traffic

navigation capabilities at all speeds and traffic conditions. The navigation algorithms

for autonomous vehicles can be designed to improve their fuel economy (FE), as com-

pared to the FE obtained by a human driving through the same traffic conditions.

In [34] a set of linear equations were used to reduce the accelerations and decel-

erations. Both showed significant improvements in FE. However, these results are

obtained without imposing conditions on how far the follower vehicle could fall be-

hind the lead, resulting in possible cut-ins that would change the velocity. Hence

maintaining the appropriate gap between the vehicles is an important considera-

tion that limits the scope for trace smoothing. The authors in [36] compared a linear

quadratic and a Model Predictive Control (MPC) following algorithm, showing a fuel

consumption decrease of 8.8% if a 5s look-ahead capability is guaranteed. However,

the authors employed time-invariant constraints on position. These could result in

an awkward traffic pattern since real-world driving varies the following gap based on

the speed. Moreover, they did not use standard drive cycles and hence were unable

to show how the controller would perform in known and regulated conditions. Also

their baseline was not a human drive cycle but a LQR derived trajectory.

In this chapter, the Federal Test Protocols (FTP) and associated drive cycles are

considered using the hypothetical lead vehicle. The concept of a hypothetical lead

vehicle for any standard drive cycle was introduced in Chapter II. The idea was to

find the lead vehicle velocity trajectory followed by the driver of a standard drive

cycle. Autonomous vehicles could follow the same lead with various algorithms. This

method would allow for simulation of actual traffic conditions associated with the

Federal drive cycles and also provide a consistent comparison between how humans

follow traffic and how optimal controllers would follow the same traffic conditions.

Obviously any vehicle with automatic longitudinal control can employ these optimal

controls.

This chapter will develop optimal control algorithms that use the preview of the

hypothetical lead vehicle to chart a velocity trajectory for the autonomous vehicle.

The constraints on the autonomous vehicle are imposed by the position and speed of

the lead. The objective is to minimize fuel consumption of the autonomous vehicle

as it navigates through different traffic conditions, represented by different drive cy-
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Figure 3.1:
Position constraints to be applied on the following autonomous vehicle based on the
position and velocity of the hypothetical lead

cles. Fuel consumption is indirectly minimized by reducing energy consumed during

accelerations and energy loss in decelerations. The objective thus translates into a

constrained optimization problem.

To solve this optimization problem, Dynamic Programming (DP) and MPC have

been used. The DP method provides the benchmark for performance improvements

by solving the optimal control problem with a perfect knowledge of the future be-

havior [51]. Due to the high computational and prediction requirements, DP cannot

be used for real-time control of the autonomous vehicle. On the other hand MPC

is becoming a standard choice when dealing with multivariable, constrained systems

and can be used for real-time control [64] of the velocity trajectory, which can then

be used to evaluate FC.

The remainder of this chapter is organized as follows. Section 3.2 presents the

model of the vehicle and the problem statement. Section 3.3 shows the application

and results of DP for the vehicle following problem. Additionally, it reports the

experimental results from chassis dynamometer testing. Section 3.4 presents three

different formulations for MPC implementation and compares them. Section 3.5

utilizes a velocity prediction algorithm to feed inaccurate lead trajectories to MPC.

Section 3.6 is a short discussion on the results obtained and Section 3.7 concludes

the chapter.
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3.2 Model and Optimization Constraints

3.2.1 Model Description

In this chapter, the dynamics of the autonomous vehicle are described by a simple

point mass Linear Time-Invariant (LTI) model, with position p and velocity v as

states and acceleration a as the only input, namely

(3.1) xk+1 =

[
1 Ts

0 1

]
︸ ︷︷ ︸

A

xk +

[
0.5T 2

s

Ts

]
︸ ︷︷ ︸

B

uk

with Ts = 0.1s the sampling time, x = [xp xv]
′ = [p v]′ ∈ R2 completely measurable

and u = a ∈ R. The simple dynamics allow for fast online controller implementation.

The velocity state v can be used offline in the ALPHA model to estimate the Fuel

Consumption and hence the Fuel Economy of the vehicle. Define U and Xk as

polyhedral sets of constraints on inputs and states respectively, such that

U = {u ∈ R |umin ≤ u ≤ umax}(3.2a)

Xk = {x ∈ R2 | [xmin
p,k xmin

v ]′ ≤ xk ≤ [xmax
p,k xmax

v ]′}.(3.2b)

The model does not consider the engine, vehicle or powertrain dynamics and is a

general formulation applicable to all vehicle types. The resulting optimized velocity

trajectory is applied as an input to the ALPHA model [3] of a particular vehicle

for offline computation of fuel economy. The results for FE shown in this paper are

specific to the 2013 Ford Escape with a 1.6L EcoBoost R© engine [4]. The absolute

values of fuel economy would change for different vehicles with other powertrain and

engine configurations.

3.2.2 Velocity and Position Constraints

After defining the formulations for velocity smoothing, we shall now define the

constraints on the optimal control problems. The constraints on the drive cycle

optimization assumed in this thesis are time varying position limits based on the lead

vehicle’s velocity for safe and close following. These constraints are different from

the certification limits imposed by the EPA for their fuel economy testing. According

to their constraints only ±2 MPH deviation within 1 s from the certification velocity

trace is allowed. These constraints are very restrictive and in the case of autonomous
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vehicles the extra degree of freedom of staying within safe distance can be used. The

resulting profile would completely change from an average human thus resulting in

a very different velocity profile beyond the EPA limits.

Specifically, the gap between the lead and the following vehicles is constrained

by lower and an upper bound. The lower bound, a safety limit, is the closest dis-

tance that the follower vehicle can trail the lead vehicle. This is derived from being

one car length behind the lead vehicle for every 10 MPH, a common safety length

recommended [50]. The upper bound is the longest distance the autonomous vehi-

cle can fall behind the lead vehicle. This is derived from assuming a distance that

would prevent safe cut-ins from adjacent lanes and is kept at 2.7 m/m/s(4 ft/MPH).

The spacing function comes from results presented in a US Department of Transport

study on traffic flow theory [2] for vehicle following in a tunnel. The resulting table

is reproduced here in Fig. 3.2. The constraints applied in this thesis, are the most

aggressive following from the table.

The constraints are further relaxed at low speeds of less than 20 MPH to 10 ft/MPH.

Indeed, at such low speeds cut-ins are not expected and a longer gap reduces fre-

quent starts and stops, thus delivering better FE. Since the position constraints are

dependent on the lead vehicle’s states at that instant, these constraints are time

varying.

Fig. 3.1 shows the upper and lower bounds on position at different velocities of the

lead vehicle. Also, the constraints ensure that the autonomous vehicle has to cover

the same distance in the same time as the standard drive cycle. The constraints on

position and speed are selected according to

xmin
p,k = xL,k − vL,k L/10(3.3a)

xmax
p,k = xL,k −

vL,k dmax if vL,k < 20MPH

vL,k dmin otherwise
(3.3b)

xmin
v = 0(3.3c)

xmax
v = 40(3.3d)

where xL is the position of the lead vehicle, vL is the velocity of the lead vehicle, L

is one car length or 4.5 m, dmax is 3 m (10 ft) and dmin is 1.2 m (4 ft). The stationary
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Table 4.5 Macroscopic Flow Data

Speed Average Spacing Concentration Number of
(m/sec) (m) (veh/km) Vehicles

2.1 12.3 80.1 22

2.7 12.9 76.5 58

3.3 14.6 67.6 98

3.9 15.3 64.3 125

4.5 17.1 57.6 196

5.1 17.8 55.2 293

5.7 18.8 52.6 436

6.3 19.7 50 656

6.9 20.5 48 865

7.5 22.5 43.8 1062

8.1 23.4 42 1267

8.7 25.4 38.8 1328

9.3 26.6 37 1273

9.9 27.7 35.5 1169

10.5 30 32.8 1096

11.1 32.2 30.6 1248

11.7 33.7 29.3 1280

12.3 33.8 26.8 1162

12.9` 43.2 22.8 1087

13.5 43 22.9 1252

14.1 47.4 20.8 1178

14.7 54.5 18.1 1218

15.3 56.2 17.5 1187

15.9 60.5 16.3 1135

16.5 71.5 13.8 837

17.1 75.1 13.1 569

17.7 84.7 11.6 478

18.3 77.3 12.7 291

18.9 88.4 11.1 231

19.5 100.4 9.8 169

20.1 102.7 9.6 55

20.7 120.5 8.1 56

Figure 3.2: Table reproduced from [2] which shows the average vehicle spacing based on speed.
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distances are defined as 2 m as the lower bound and 15 m as the upper bound. The

time-invariant limits on the speed between 0− 90 MPH or 0− 40 m/s are reasonable

on almost all US roads [65].

In this thesis, the universal lead velocity trace vL was determined by introducing a

hypothetical lead vehicle. When followed by a human it results in EPA standard drive

cycles, and when followed by the optimization algorithms it results in the optimal

drive cycles. Through this approach, human and autonomous optimized driving can

be compared with the same baseline lead. The concept of the the hypothetical lead

and its derivation from the standard cycles are explained in detail in the previous

chapter II.

The acceleration and deceleration constraints are time-invariant. For this thesis

they have been derived from the standard drive cycles to be umin ≡ −6 m/s2, and

umax ≡ 6 m/s2. The same is true for the state xv or velocity v where vmin ≡ 0 m/s,

and vmax ≡ 40 m/s. Constraints on the state xp or position p however, are time

varying as the position of the autonomous vehicle is determined by the position and

velocity of the hypothetical lead and hence a speed dependent gap.

3.3 Dynamic Programming

The objective of this chapter is to indirectly minimize the FE of the autonomous

vehicle by minimizing its accelerations and decelerations. The optimal velocity tra-

jectory has to be computed while keeping the vehicle within the position constraints

governed by the lead vehicle. Assuming that all future references, constraints, and

disturbances are perfectly known, dynamic programming (DP) can be used to find

a non-causal, global-optimal input (acceleration) sequence that minimizes a defined

cost function [51]. In this work the input or the acceleration itself has to be min-

imized. The DP methodology would provide the minimum input, acceleration and

deceleration necessary to ensure that the vehicle adheres to its position constraints.

Despite its limitation as an offline technique, DP results serve as an upper bound

on FE improvements for the design of real-time control strategies. The formulation
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Figure 3.3: DP results with different discretization grid points.

is as follows

min.
u

Nf∑
k=1

‖uk‖22(3.4a)

s.t. xk+1 = Axk +Buk(3.4b)

uk ∈ U, xk ∈ Xk(3.4c)

where Nf is the final time-step, A, B are defined as in (5.2) and U, Xk are defined

as in (3.2), constraints on Xk are defined as in (3.3).

For this thesis the generic dynamic programming MATLAB R© function in [52]

has been used. It allows for constrained optimal control problems, such as the one

in (5.3). In this work, the states and the inputs are discretized into 201 grid points.

The same discretization is applied across all drive cycles. Increasing the discretiza-

tion grid points, can result in a better solution as the optimizer has more input points

to try. However, increasing the grid points also increases the computation time, and

even for this problem with just two states and one input, for a long drive cycle like

the LA92, it can result in a significantly long computation time. To consider this

trade-off, we tried increasing the number of grid points till significant further im-

provements were not observed. The results are shown in Fig. 3.3 where no difference

in the optimized velocity trajectory is observed when the number of grid points are
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Figure 3.4:
Comparison of standard US06 drive cycle with the DP optimized velocity profile. The
fueling rates are found from ALPHA model simulations [3].

increased from 201 to 301. All fuel economy values, including those of the SD cycles

are calculated by applying the velocity trajectory as an input to the ALPHA model.

3.3.1 Simulation Results

The resulting optimal velocity trajectory showed significant improvements in FE

for four US Environmental Protection Agency (EPA) drive cycles as presented in

Table. 3.2. A significant increase in FE was seen in US06 at 16.7% over the stan-

dard US06 drive cycle. Figure 3.4 shows velocity trajectory of the optimal trace as

compared to the standard EPA defined trace. It can be seen in the top left plot,

that the optimized drive cycle in purple is much smoother than the SD cycle. From

the top right plot, it is clear that the accelerations of the optimized cycle are much

lower than those of the SD cycle, which shows that the optimization objective is

achieved. The bottom left plot shows that the position constraints imposed on the

optimization were met by the DP algorithm. Finally, the bottom right plot shows

the reduction in fueling rate, over the drive cycle. Most notably, in the initial 100 s,

the optimized cycle is able to reduce the fueling rate significantly over the SD cycle

by lowering the acceleration. And also in the final 100 s, by avoiding the frequent ac-

celerations and decelerations. In the middle portion of the drive cycle, the persistent
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Figure 3.5:
EPA defined constraints on velocity required for a certifiable FE test. The DP optimized
velocity trajectories adhering to the velocity and position constraints respectively are
shown.

change in velocity was avoided, and this results in a trajectory that is favorable from

a passenger’s point of view. Hence, such a technology would be desirable from a con-

sumer perspective. In essence, the optimization by utilizing the entire gap between

the upper and lower bounds, DP is able to find the velocity trajectory with mini-

mal accelerations and decelerations while remaining close to the lead vehicle. The

absence of these acceleration spikes reduces fueling rates and leads to the significant

improvements in FE.

Also, Fig. 3.5 shows the EPA specified velocity bounds [66]. As mentioned before,

deviations in velocity during testing are allowed within these bounds. The exact

regulation is that at a particular time step, the maximum velocity is +2 MPH over

the maximum velocity within ±1 s and the minimum velocity is −2 MPH below the

minimum velocity within ±1 s. This is a fairly large bound as shown in Fig. 3.5. We

used these constraints to optimize the velocity and were able to achieve up to 8%

improvement in FE. Having said this, it is not possible for human drivers in real time

to be able to expertly navigate these bounds, as they don’t appear on the screen. This

is an academic exercise to show the possible improvements with a perfect controller.

Moreover, these velocity constraints originate from the original human driven drive

cycles and hence force the optimized velocity trajectory to adhere to human driving.

We argue, that the position constraints are better for the autonomous vehicle as it

allows for optimization within tangible bounds that are practically implementable.

The DP optimized velocity with the position constraints, violated the velocity bounds
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on several occasions as also shown in the figure.

3.3.2 Experimental Results

The simulation results for the DP optimization, stated above were also experimen-

tally validated at the US EPA’s Ann Arbor facility. The US EPA’s Nation Vehicle

and Fuel Emission Laboratory (NVFEL) is the certification site where the chassis

dynamometers are used to certify production vehicles for fuel economy and emission

ratings. The state of the art facility is run by the US EPA and the lab is ISO/IEC

17025:2005 accredited for emissions testing.

The test cell conditions are closely monitored and maintained to ensure consis-

tent testing environments. Fuel consumption is measured from the tailpipe carbon

emissions for greater accuracy. The vehicle considered in this study, the 2013 Ford

Escape with a 1.6L EcoBoost engine has been validated on the same experimental set

up against the ALPHA. The results were presented in [3]. Hence the dynamometer

calibrations have already been worked out and they apply a road load based on the

vehicle speed. A professional driver who drives the certification cycles drove for our

experiments as well, a separate screen outside the vehicle showed the present and

future speeds for the driver to follow. Since this was the certification facility, any

deviation outside the certifiable bounds would be automatically rejected.

All the experiments were completed with fully warmed-up conditions. The UDDS

was driven to warm up the vehicle (the engine and the transmission) before the

actual tests. The tests were conducted with the SD cycle, followed by the optimized

cycle, and followed again by the SD cycle. This procedure was repeated for all four

SD cycles considered in this chapter. The raw experimental data is presented in

Table 3.1.
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Table 3.1: Raw Experimental Results
EPA
Cycle Test

Fuel
Economy

THC
(mg)

CO
(mg)

NOx
(mg)

CO2
(mg)

CH4
(mg)

NOx
(mg)

PM
(mg)

UDDS Dyno 1 28.094 0.0229 0.5776 0.0249 315.9800 0.0040 0.0449 0.1124
UDDS Dyno 33.380 0.0072 0.2507 0.0102 266.3500 0.0027 0.0152 0.0288
UDDS Dyno 2 28.579 0.0158 0.4007 0.0223 310.9100 0.0037 0.0356 0.0579

US06 Dyno 1 25.415 0.0309 0.6999 0.0960 349.1700 0.0100 0.1185 0.2641
US06 Dyno 30.149 0.0141 0.2898 0.0246 294.8600 0.0087 0.0308 0.0924
US06 Dyno 2 25.107 0.0116 0.6267 0.1047 353.6500 0.0104 0.1066 0.1508

LA92 Dyno 1 25.957 0.0120 0.5247 0.0389 342.1900 0.0068 0.0447 0.0182
LA92 Dyno 32.656 0.0061 0.2054 0.0153 272.3400 0.0044 0.0174 0.0146
LA92 Dyno 2 25.945 0.0146 0.5056 0.0593 342.3700 0.0080 0.0667 0.0199

SC03 Dyno 1 27.458 0.0127 0.3381 0.0399 323.7400 0.0079 0.0455 0.0676
SC03 Dyno 33.168 0.0081 0.2099 0.0249 268.1200 0.0049 0.0285 0.0541
SC03 Dyno 2 27.647 0.0171 0.4207 0.0440 321.3600 0.0093 0.0527 0.0659

The results comparing the SD cycles are shown in Fig. 3.6. Here Dyno refers to

the results from actual dynamometer testing and ALPHA to the simualation results.

Specifically, Dyno 1 is the first SD cycle test and Dyno 2 the second SD cycle test.

It should be noted, that the x-axis starts at 22 MPG, thus clearly the simulation

software is able to perform well and the experimental and simulation results match

well. Since a driver drove both Dyno traces, there is some discrepancy between Dyno

1 and Dyno 2, however these are very small and the professional driver was able to

maintain consistency. These FE results match well with the ALPHA simulations

also shown with the gray bar. For the four, very different drive cycles that have

significantly varying accelerations and top speeds, ALPHA performed well for all.

This result validates the ALPHA model as a simulation tool.

The results comparing the optimized cycles are shown in Fig. 3.7. These results

from experiments show that the predicted improvements are better in actual exper-

imentation than what was predicted by simulation in all cases. This is a consistent

difference between the actual dynamometer testing and the ALPHA simulations. We

speculate that this is due to the high controller gains in the driver model, to ensure

that the SD cycles are accurately followed, however for these smoother cycles, they

overcompensate and increase the fueling rate beyond what an actual driver would

do. We know that the experimental trace would not deviate from the given drive

cycle by more than the EPA specified bounds of ±2 MPH. However, there is still

a wide range for the driver to exploit. In any case, the good correlation in the SD

cycles and the consistent trend in the optimized cycle, makes us believe that the
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Figure 3.8:
Experimental results showing changes in different parameters from the standard cycle
to the optimized one

simulation results are qualitatively correct. The experimental results validate our

conclusion that velocity smoothing can result in significant improvements over the

SD cycles, with improvements of up to 25% in experimentation.

A further benefit of using the US EPA’s vehicle dynamometer testing facilities

was the ability to access their bag emissions results. The emissions testing bench

confirms to Code of Federal Regulations (CFR) Title 40 part 86, part 1065, and part

1066. This regulation closely sets the testing equipment for it’s length, thickness,

insulation etc. The tailpipe emissions from the vehicle are diverted into bags for

analysis later. Since this is a bag analysis we can only get the integral results for the

whole drive cycle and not the time resolved continuous data, which would allow for

more insight.

The results for various emission gasses are shown in Fig. 3.8. The top left plot

shows the reduction in carbon di-oxide (CO2), the main greenhouse gas (GHG),

which we are trying to reduce. From the experimental results, we can show a reduc-

tion between 15− 20% in total CO2 emissions. To put this result in perspective, we

used a simple double integrator acceleration model which did not take into account

any of the vehicle’s parameters, and from an offline drive cycle optimization, we were

able to reduce CO2 by more than 15%. This result is less than the 33% shown in [31],
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but that evaluation was not based on actual experimental testing. Still, the signifi-

cant reduction in this global warming causing gas by automated eco-driving should

encourage regulators to coax implementations of these systems. The reductions came

about without any changes to the vehicle hardware, trip duration or length and were

shown to be valid over a range of road conditions and driving styles.

Amongst the other tailpipe emissions, the total hydrocarbon content (THC) re-

duced over 60% for the UDDS drive cycle and more than 30% for the US06 drive

cycle. In absolute terms, the maximum THC emissions were seen for the SC03 drive

cycle at 2.2 mg/mile, which is still almost half of the original 4.1 mg/mile for SD.

The optimization was only set for reducing the velocity deviations and not emissions

however, a significant decrease is observed. Similarly, the methane (CH4) and carbon

monoxide (CO) content also reduced significantly. Again the maximum emissions

were for the SCO3 drive cycle where the methane emissions reduced from 2.4 mg/mile

to 1.4 mg/mile; while the carbon monoxide emissions reduced from 105 mg/mile to

58 mg/mile. To remind the readers, CH4 is presently regulated at only 8 mg/mile

and CO at 1700 mg/mile, hence with the use of optimized automated driving, a steep

increase in emission reductions can be sought. The most dramatic reduction was in

the oxides of nitrogen (NOx) where the more than 70% reduction was seen in the

US06 drive cycle. And once again the maximum emissions were for the SC03 drive

cycle, where the NOx emissions reduced from 1.2 mg/mile to 0.7 mg/mile. Presently

NOx is regulated at only 300 mg/mile so a considerable reduction can be achieved.

The SC03 drive cycle was specifically designed for evaluating drive cycle emissions

with the A/C on. It has slow accelerations and deceleration bounded by ±2.5 m/s2

or ±5.6 MPH/s but they are sustained as shown in Fig. 3.9. These are somewhat

reduced by the optimization through DP, however, we found that the maximum emis-

sions in terms of mg/mile came from this drive cycle. This indicates that frequent

velocity changes lead to an increased emission, which is logical given that frequent

pedal tip-ins cause the air-fuel ratio to deviate from its set point. Even a slightly

deviant air-to-fuel ratio will considerably reduce the ability of the three-way catalyst

to cut emissions. The same logic applies for the reduction in emissions from the opti-

mized cycles as a reduction in velocity deviations results in a reduction in air-to-fuel

ratio deviations. Unfortunately, since our only data is bag emission based, we cannot

evaluate this speculation. A future study should use a time-resolved emissions bench
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Figure 3.9: SC03 drive cycle accelerations for the SD cycle and the optimized one

to understand the exact time locations of emission reduction.

Another interesting note is that for the gasoline engine evaluated in this exper-

imental set-up, the reduced engine demand does not seem to have any impact on

the catalyst temperature. In diesel engines, where the catalyst temperature plays a

significant role in the after treatment system, it has been shown before that velocity

smoothing leads to higher emissions. Based on our results we don’t have to worry

about reducing catalyst temperature for a gasoline engine.

In this section, we have experimentally evaluated the simulation results from DP

to show that significant improvements are possible and our simulation model ALPHA

is valid. We have also shown that while emissions reduction was not an objective

of this optimization, by the very nature of our optimization, substantial decrease is

possible, even in the worst case of the SC03 drive cycle.

3.4 Model predictive control

Although DP provides the optimal solution, several reasons prevent its use for

online control such as the high computational burden and the complete knowledge

about the future behavior of the system. The Model Predictive Control (MPC)

methodology is becoming the standard technology to handle fast-sampled multi-

variable processes, especially in automotive, aerospace and power electronics con-

trol [64, 67, 68, 69]. This methodology solves a constrained, finite-horizon, optimal
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control problem, and by following the receding horizon policy it applies only the

current inputs to the system. At each sampling time the procedure is repeated and

a new open-loop optimal control problem is solved with a one-step shifted horizon.

Even if MPC drastically reduces the computational complexity with respect to DP,

the time required to solve the optimization problem is still considerable, especially

in high frequency sampled systems [70]. However, recent advances in convex and

embedded optimization are enabling fast online MPC implementations [71, 72, 73].

When dealing with LTI models in our case, quadratic cost function and affine

constraints, MPC simplifies to solving the following optimization problem at each

sampling instant

min
u

Ñp∑
i=1

‖Wx(xk+i|k − rk+i|k)‖22 + ‖Wuuk+i|k‖22(3.5a)

s.t. xk+i+1|k = Axk+i|k +Buk+i|k(3.5b)

xk|k = xk(3.5c)

uk+i|k ∈ U, xk+i|k ∈ Xk+i|k(3.5d)

where Ñp is the prediction horizon expressed in sampling instants, Wx and Wu are

square, diagonal, weight matrices, xk+i|k denotes the prediction of the variable x at

time k + i based on the information available at time k, and rk+i|k denotes the pre-

diction of the reference r to be tracked at time k + i, xk is the current state. The

influence of the prediction horizon, Np = Ñp.Ts expressed in seconds, to the optimal

velocity trajectory will be investigated along with three different MPC formulations.

All three formulations share the same linear prediction model and the same con-

straints, as defined in Eqs. (5.2) and (3.2), respectively. They differ from each other

for the cost function, and we will refer to them as

1. MPCa: penalty on acceleration;

2. MPCp: penalty on acceleration and position tracking;

3. MPCv: penalty on acceleration and velocity tracking.

MPCa can be considered as a reduced horizon version of the optimal control

problem (5.3), and its cost function is defined by the following weights:

MPCa ,

W a
x = diag [0 0]

W a
u = wa

u = 1
(3.6)
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Figure 3.10: Fuel economy using various horizons and cost functions in the MPC formulation

The length of the prediction horizon plays an important role in this control problem

as not only the dynamics of the model are predicted but also the constraints on the

states and the eventual reference trajectory. This means that long prediction horizons

are not only computationally demanding, but can even be infeasible depending on the

preview, look-ahead, and overall connectivity responsible for accurately predicting

the future behavior of the system. Indeed, in [74], it was shown that while velocity

trajectories for short prediction horizons can be predicted well for Np = 1.5 s, a good

accuracy for longer horizon is not very probable.

For autonomous driving it can be assumed that these predictions come from dif-

ferent methods such as vehicle to vehicle communication or from a traffic monitoring

system. Given different prediction horizons, this work evaluates the potential in-

crease in fuel economy. It must be stressed that for this section, perfect prediction

of constraints along the prediction horizon is assumed for all cases.

Fig. 3.10 shows that MPCa gives satisfactory results only for Np ≥ 6s. This

is a significantly long prediction horizon and would not be feasible. For shorter

prediction horizons Ns < 5 s, MPCa gives an FE that is even worse with respect to

the standard cycle. The reason is clarified in Fig. 3.11, which shows that without

enough prediction of the position constrains, MPCa keeps the vehicle too close to

the lower bound. This leads to acceleration spikes to keep the vehicle within the

bounds, decreasing the FE. Fig. 3.10 also shows that, as expected, the performance

of MPCa equals the one obtained with DP after a certain prediction horizon, i.e.

20s, as the two formulations are equivalent but for the prediction horizon. The RMS
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Figure 3.11:
Comparison of standard UDDS drive cycle with DP and MPCa velocity traces. Clearly
for MPCa with Np = 4s, at Time = 530, 605, 655 and 715 s the position is too close
to the lower bound and the MPCa controller applies significant acceleration to stay
within the bounds. These accelerations are less pronounced for the Np = 8s case and
absent in the DP case.

error between the velocity trajectory in DP and MPCa vary as 2.24 m/s for Np = 4 s,

1.26 m/s for Np = 8 s and 0.58 m/s for Np = 20 s thus showing how the MPCa results

approach the DP ones.

3.4.1 Model predictive control with tracking penalty

From the results of MPCa, the vehicle had to be prevented from falling too close

to the lower bound on position. Since the state vector is completely measurable, the

deviation from the position or velocity reference can be penalized to ensure that the

vehicle is within acceptable bounds. The MPC implementations, MPCp and MPCv

introduce two different tracking penalties in the cost function. It is straightforward

to verify that penalizing the velocity or position tracking error worsens the FE for

longer prediction horizons, where MPCa works well. However, as shown in Fig. 3.10,

the performance improvement for shorter prediction horizons is significant.

In MPCp, the position state is forced to track the upper bound of the position

constraints. This ensures that the position of the vehicle is far from the lower bound.

However, position tracking limits the ability of the controller to utilize the entire gap

between the bounds and minimize acceleration. An alternative is MPCv, where

the controller is forced to track the velocity of the lead vehicle. Tracking the lead

velocity would ensure that for short prediction horizons, the FE at least matches

that of the standard cycle. Additionally, acceleration optimization would increase
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Figure 3.12:
Comparison of standard UDDS drive cycle with two MPC filtered velocity traces where
the MPC has position tracking in the cost function. Clearly with increased predic-
tion horizon, the position tracking improves. However, the reduction in acceleration
between the two MPC cases is small leading to very slight improvement in FE

FE to a value beyond that of the standard cycle. The tradeoff between acceleration

optimization and velocity tracking by employing appropriate weights for different

prediction horizons are discussed below.

In MPCp the weights on the cost function are assumed to be

MPCp ,

W p
x = diag [wp

x 0]

W p
u = wp

u

(3.7)

whereas the weights for MPCv are such that

MPCv ,

W v
x = diag [0 wv

x]

W v
u = wv

u

(3.8)

Since the main objective is minimization of acceleration, the weights were chosen

such that wp
u > wp

x and wv
u > wv

x. This rule ensures that the penalty on tracking
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Table 3.2: Fuel Economy Improvements

Cycle Standard Cycle
FE (MPG)

DP MPCv Np = 1.5
FE
(MPG)

%
increase

FE
(MPG)

%
increase

UDDS 28.3 32 13.1 29.8 5.3
LA92 26 30.7 18.1 28.2 8.5
US06 24.5 28.6 16.7 27.4 11.8
SC03 27.7 31.8 14.8 29.2 5.4

is less than the penalty on high acceleration. In the proposed results, the weights

are tuned for each prediction horizon. For longer prediction horizons the tracking

accuracy can be reduced, thus giving freedom for higher acceleration minimization.

As an example, for the case Np = 1.5s the weights are wp
u = wa

u = 1, wp
x = 0.8 and

wv
x = 0.2.

Figure. 3.12 shows MPCp results for two prediction horizons, i.e. 4s and 8s. The

upper bound is closely tracked by both cases and the tracking performance increases

slightly as prediction horizon increases. The FE improves over the standard cycle

even for short prediction horizons. The close position tracking, however, reduces the

scope for optimization and hence the FE for both cases is nearly the same. Fig. 3.10

shows that for Np = 8 s, the MPCa has a much better FE than MPCp.

It was found that MPCv showed an even better FE than MPCp for short pre-

diction horizons. In Fig. 3.13 it can be seen that while staying within the position

constraints, MPCv had lower acceleration and engine torque demands than MPCa

and MPCp. Clearly the DP case with the entire drive cycle preview is the best for

FE. But, for Np = 1.5 s MPCv shows the best results compared to other possible

solutions. MPCv is therefore selected as our real-time following control implementa-

tion.

3.5 Impact of Prediction Quality on Performance

In the previous section, we evaluated MPC results based on perfect predictions,

however, that might not be possible in real life. Hence we would have to rely on some

imperfect predictions to compute optimal inputs further ahead in the horizon. For

imperfect future predicted velocities, we utilized the work in [75]. The authors here

developed an algorithm which takes into account the velocity of one or more lead

vehicles and predicts future velocity. In this thesis, a velocity trajectory of the HL

vehicle is required for the MPC implementation. To clarify the terminology between
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Figure 3.13:
Comparison of different drive cycles derived from following the hypothetical lead using
DP and MPC algorithms with different cost functions at Np=4s. The acceleration
profile of DP is the best followed by MPC with velocity tracking, MPC with position
tracking, the standard cycle and finally MPC without reference. This is reflected in
the the engine torque and correspondingly the fueling rate.



59

. . .
Lead 2HL Lead 1Autonomous Vehicle

MPC

Control Inputs

Prediction horizon = 10 s

Predictor
Target’s Future 

Speed (10 s)

Target’s current 

speed/location

Other leads’ current 

speed/location

Dedicated Short-Range Communication (DSRC)

Figure 3.14:
Schematic to show the autonomous vehicle with the hypothetical lead (HL). Future
velocity of HL is evaluated using past information of the HL and other lead vehicles
in front of it.

both works, HL, is the vehicle for which a velocity prediction is required so that it

can be followed by the autonomous vehicle, while the ‘lead vehicles’ are those present

in front of the HL1. Information of the lead vehicles are used to predict the velocity

of HL. Then the predicted velocity is used to predict the position constraints of the

autonomous vehicle, which feeds into MPC to optimize within those constraints.

Since the algorithm produces predictions with some inaccuracies, in this section

only the MPCa formulation is considered so as to avoid tracking inaccurate pre-

dictions. Also, as MPCa started to show better results only with a 10 s prediction

preview, the same horizon length will be used for prediction and MPC optimization.

3.5.1 Velocity Prediction Algorithm

The simulation case from [75] is used where it can be assumed that the dedicated

short-range communication (DSRC) messages are available. This implies that apart

from the past speed information from HL, the current speed of all connected leads

are also available. This information aids in the future velocity prediction of the lead

vehicle as changes in speed can be ascertained from traffic behavior ahead of the lead.

The algorithm works by using a linear regression to fit past and future velocities and

1Target vehicle in [75] is the same as the hypothetical lead in our case
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then using the coefficients to predict the future velocity of HL. As shown in Fig. 3.14,

the autonomous vehicle is optimally controlled by the MPC, which requires future

velocity prediction of the HL. The predictor algorithm is able to do that using the

past velocity of the HL as well as the lead vehicles in front of it.

(3.9) Xk =


1 tk−hk+1 − tk · · · (tk−hk+1 − tk)n
...

...
...

1 0 · · · 0
1 t̂k,1 · · ·

(
t̂k,1
)n

...
...

...
1 t̂k,lk · · ·

(
t̂k,lk

)n


}
Past}
Future

In equation 3.9, tk is the current time, hk the number of HL’s past speeds used at

tk, limited to maximum of 10. The number of columns in Xk is determined by the

order of the polynomial fit used. In this work we consider two cases with a linear

and a quadratic fit.

The coefficients βk can be determined using the weighted least squares estimation

as

(3.10) βk =
(
XT

k WkXk

)−1
XT

k Wkvk

where Wk is the weighting matrix and the vector vk has the speed data of the

predicted vehicle and the speed of lead vehicles collected at time tk:

(3.11) vk =
[
vHL
k−hk+1, · · · , vHL

k |vLk,1, · · · , vLk,lk
]T

Hence finally, the predicted velocity v̂k+f can be calculated by

(3.12) v̂k+f =
n∑

i=0

βi,k · (tk+f − tk)i

where tk+f is future time after a time step f .

3.5.2 Velocity Optimization using Predicted Lead Velocity

The velocity of the autonomous vehicle is optimized for 10 s, where the constraints

in the 1st second come from the actual velocity of HL and next 9 s come from the
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Table 3.3: Prediction Quality Performance
% Improvement over baseline SD

Cycle
Predicted

Perfect
Predicted

Linear
Predicted
Quadratic

Fixed
Velocity

Fixed
Acceleration

UDDS 3.5 0.7 1.4 -2.1 -0.7
US06 12.2 4.0 10.2 -2.0 9.8
LA92 9.2 -1.9 3.8 N/A 0.0

prediction algorithm. MPCa implements the optimal input for the next instant but

optimizes for the entire prediction horizon. Then the window shifts to the next 10 s

and MPC optimizes again. This procedure continues for the entire drive cycle. In

this first attempt only a single lead in front of the HL was assumed, and it was

also assumed that both the HL and Lead 1 from Fig. 3.14 were executing the same

velocity trajectory with a 1 s delay.

The baseline FE case is the SD cycle, which going back to Fig. 2.1 is obtained

when the HL is followed by the IDM algorithm. The results for velocity optimization

with prediction are shown in Table 3.3, where up to 10% improvement is possible

with a 10 s prediction horizon for the US06 drive cycle. This is quite close to the

12% improvement possible with perfect prediction. However, it should also be noted

that the drop in FE improvements with the predicted velocity as compared to perfect

lead velocity is significant for both the UDDS and LA92 drive cycles. In fact, for

the LA92 drive cycle, in the linear case, the MPC algorithm performs worse than

the baseline. To remind the readers, baseline IDM simply maintains a specified time

headway without any prediction of future lead velocities or optimal controls. Hence,

the inaccuracies in prediction can cause a worse performance than the baseline.

The prediction algorithm takes into account historic data of the hypothetical lead

and also vehicles ahead of it to fit linear and quadratic polynomials. It was found

that the fit with the quadratic polynomial performs better than the linear one, with

almost double the improvements for the three drive cycles considered. The reason

is that, the linear fits over-predicts future velocities, which in turn lowers the lower

bound as it is assumed that the HL is faster and so the position constraints are wider.

However, since the actual lead vehicle velocity is lower, the actual lower bound is

higher than predicted, which forces abrupt accelerations to stay within the bounds.

This phenomenon can be seen in Fig. 3.15, where left plot shows the velocity and

the right one the position. The blue line is the actual velocity of HL, and the red

lines coming from that are the predicted velocities of HL at every time step. Clearly,
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Figure 3.15:
Snapshot of optimized autonomous follower at 116 s. Clearly, the optimized trajectory
is outside the actual position bounds and therefore with new information at 117 s, the
optimized follower will have to accelerate to stay within the bounds

the predicted velocity is higher than the actual velocity. This makes the predicted

constraints to be wider than the actual constraints, as lower velocity means that the

following autonomous vehicle should be closer to HL. Hence, the red predicted lines

are always diverging away from the actual blue line in the position constraints plot.

Therefore, when MPC optimizes it assumes the lower bound to be lower than actual,

and future velocities are planned to stay within those predicted bounds. Hence, when

it plans for the future, the trajectory is within the expected bounds but outside of the

actual ones.The snapshot is at 115 s, where we know perfectly what the HL will do

at 116 s, so the MPC optimizes for the input vector for the next 10 s and implements,

the input for the next s. The optimized future trajectory which is not implemented is

shown with the black dotted lines. From the magnified plot of position constraints,

it is obvious that the predicted future position trajectory is outside of the actual

bounds. However, when the next step with new information, comes at 116 s, the

optimized autonomous follower has to accelerate to stay within the bounds. Hence,

in the velocity plot, the arrow points to the next velocity, which requires a steep

acceleration.

The resulting acceleration is awkward as HL is decelerating, while the following
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Figure 3.16:
Snapshot of optimized autonomous follower at 118 s. Now the optimized autonomous
follower is within the actual position constraints and hence further acceleration is not
required and the optimized trajectory further in the horizon can be realized

autonomous vehicle has to accelerate and then immediately decelerate. Perhaps,

a better designed bound might be able to avoid such a situation by allowing for

constraint violation through the introduction of slack. However, if the autonomous

vehicle is at the maximum position constraint, such as the case at 116 s, with inac-

curate future information, the autonomous vehicle will always accelerate when the

HL decelerates. This is how, inaccurate future information, reduces the optimiality

of the solution and resulting FE increases.

In Fig. 3.16, we have shown a snapshot at 117 s with the MPC optimized ve-

locity and position at 118 s. Here, it can be clearly seen in the magnified position

constraint plot, that the MPC optimized future trajectories shown with the black

dotted lines will stay within the actual constraints. Also, the future optimized veloc-

ity trajectory for the follower is decreasing, which is what we want. Hence, now even

with inaccurate future predictions, further accelerations are not required. Overall,

from Fig. 3.16, the reason for reduced FE with inaccurate predictions are the unde-

sirable accelerations. In this particular case, they occur, when the position of the

autonomous vehicle is right at the boundary and future MPC planning violates con-

straints. This was found to be true at other time instances too and was the primary
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Figure 3.17: Linear and quadratic fits for a selected section of the UDDS drive cycle

reason for increased fueling rate.

Since we could change the order of the polynomial for fitting, it was found that the

velocity prediction improved as the RMS error reduced from 2.35 m/s for the linear

case to 1.81 m/s for the quadratic case for the UDDS drive cycle. It can be seen in

Fig. 3.17 that the quadratic fit is able to predict the impending velocity decrease of

HL, much better than the linear fit. Therefore, it can also be seen that the optimized

follower does not accelerate as much in the quadratic fit and is able to reduce the

increased fueling rate from acceleration. This result was consistent with the rest of

the drive cycles and can be seen in Table. 3.3, where the predicted quadratic always

performs better than the predicted linear for all three drive cycles considered. Of

course, with the quadratic fit it can be clearly seen in Fig. 3.17 that the HL velocity

is under-predicted and actual velocity decreases at a slower rate. This would narrow

the predicted position constraints and reduce the space for optimization, which is

undesirable for optimality. Hence, these FE results are still below the ones obtained

with perfect prediction.

3.5.3 Improved Prediction Accuracy

So far, prediction with only 1 leading vehicle has been considered, however, the

prediction algorithm also allows for increasing the number of lead vehicles to increase
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Figure 3.18:
Increasing the number of lead vehicles does not improve FE, in fact it results in FE
falling significantly below the baseline

the information available to the regression. Referring back to Fig. 3.14, this would

involve increasing the number of lead vehicles in front of HL. For this analysis, we

assume that all vehicles are executing the UDDS drive cycle but with a time gap of

2 s and an initial distance gap of 4 m.

It was shown in the velocity prediction paper [75], that increasing the available

information reduces the average prediction error. Surprisingly, it was found that

increasing the number of lead vehicles had a negative effect on fuel economy im-

provement and some results were worse than baseline. The results for the UDDS

drive cycle are shown in Fig. 3.18, where after increasing the number of lead vehicles

beyond 3, FE actually drops below the baseline. These significant reductions in FE

come from sudden jerks in the velocity trajectory necessitated by inaccurate predic-

tion. Just like the previous case in Fig. 3.16 the autonomous vehicle falls too close

to the constraints and is forced to accelerate to avoid constraint violations.

The reason for falling too close to the constraints is that while the average predic-

tion accuracy improves significantly, the initial prediction accuracy worsens. Predic-

tion errors are shown in Fig. 3.19, where clearly while the prediction error in the 10th

second drops significantly for the 10 vehicle case, there is also a significant increase

in the prediction error for the 1st second. This leads to the assumption that accurate

short horizon prediction is more important than a longer horizon prediction. The as-

sumption makes sense as the optimization is updated every second and hence errors

much further in the horizon can be compensated for more easily than those earlier
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Figure 3.19:
The speed prediction error in the 1st second and the 10th second are shown for 1 vehicle
and 10 vehicles. Clearly, in the 1st second, the prediction error with 10 lead vehicles
increases significantly, while the prediction error drops significantly in the 10th second.

in the horizon.

To resolve the prediction inaccuracy, the weighting function Wk was used, to weigh

information of the leading vehicles differently. The weighting matrix can be defined

as a diagonal positive definite matrix where the parameters α and γ can be defined

by the user. The ith diagonal element of the matrix can be defined as

{Wk}i =
{
exp {α · (tk−hk+i − tk)} if 1 ≤ i ≤ hk

exp
{
−γ ·

(
t̂k,i−hk

)}
if hk + 1 ≤ i ≤ hk + lk.

(3.13)

The weighting matrix hence has two components, for the past information α and

for the future information from the lead vehicles γ. Since it is an exponential function,

information closer to the actual time step are weighed more than those further away

in the past or the future and the values of both parameters are selected between

0− 1. A parameter selection of 0 indicates that all information is used equally and

a parameter selection of 1 indicates that current information is weighed the highest

and future or past information significantly less.

The optimal weights can be found offline for a given objective, that is to find

the optimal α and γ to minimize prediction errors. Since the given objective was

to improve the predictions in the first second, using this optimization, it was found

that the optimal α was always 1 and the optimal γ was close to 1. These results

imply, that all the data of vehicles further in the lead should be almost ignored.

Hence, to meet the objective of reducing the prediction error in the 1st second only
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Figure 3.20: RMS Error at different prediction seconds for the unweighted and weighted cases

information of the immediate lead was used while the rest of the information from

other vehicles further ahead were ignored. The RMS errors for the unweighted and

weighted cases are shown in Fig. 3.20. For the unweighted cases, clearly the average

error with 10 vehicles is lower than the average error with 1 vehicle as already shown

before. But with the weighted case, the errors in prediction, with both 1 and 10

vehicles are almost the same for the prediction horizon. Predictably, this lead to

similar predictions as with just one lead vehicle. To summarize it can be concluded

that only the predicted information from the immediate lead is required for FE

improvements using the MPCa algorithm.

To further test the hypothesis of of the 1st second prediction being most important,

errors were artificially introduced in the prediction using an exponential function

where an error is added based on the prediction second. The resulting prediction

errors are shown in Fig. 3.21. Using this when the error bands are introduced in the

left plot, such that the RMS error in the 1st second is lower, while the RMS error in

the last second is the same as the baseline. The resulting error line is shown in solid

blue in Fig. 3.21. The solid red line is the case, where the error in the 1st second

is the same as the baseline, while the error in the final second is much lower. The

FE improvement results are indicated on the plots and clearly the blue line with the

smallest initial error has the best FE improvement of 3.2%. On the other hand, with
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Figure 3.21:
Artificially decreasing error in the first prediction second, still results in a lower FE
than with decreasing error in the last prediction second. Similar results are shown
with the reverse case

a significantly lower error further in the horizon, the red line only showed a 2.8%

improvement.

Now in the right plots if again errors are artificially introduced, such that the error

in the 1st second is is the same as the baseline but much higher in the final second

for the blue line, the resulting FE improvement is the exact same as the baseline.

Hence, significantly higher errors further in the prediction horizon did not affect the

FE. However, when errors were increased in the initial second of the red line case

but kept the same for the final second, again, the case with the smaller initial error

had a better optimization performance and a higher FE. Similar results for the US06

drive cycle are also plotted in Fig. 3.22 which showed similar behavior. The only

difference was that the optimization was more sensitive to prediction errors further

in the horizon, where in the left plot the red line performed much better than the

baseline and in the right plot, the blue line did much worse than the baseline.

Since it has been concluded that the only information required is that of the

hypothetical lead vehicle, other simpler prediction algorithms can also be employed

to feed the necessary information to our MPC. A constant acceleration and a constant

velocity simple prediction algorithms are also used. For the constant velocity case, it
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Figure 3.22:
Artificially decreasing error in the first prediction second, still results in a lower FE
than with decreasing error in the last prediction second. Similar results are shown
with the reverse case

is assumed that the velocity at a particular second will be constant for the next 10 s.

In the constant acceleration case, it is assumed that the current acceleration would

be held constant over the 10 s prediction horizon. The results for a selected portion of

the velocity trajectory is shown in Fig. 3.23. In this selected section, it appears that

the constant velocity case was better for optimization than the constant acceleration

one. However, from the overall results, using these algorithm, for the UDDS drive

cycle it was found that the FE of the resulting velocity trajectory was worse than

the baseline as reported in Table 3.2. And also, constant acceleration performed

better than constant velocity. For other drive cycles, the constant acceleration did

improve the FE over the baseline, however, it was always worse than the prediction

algorithms.

Therefore, it can be stated that accurate predictions are important for the MPC

algorithm and to increase the fuel economy. Hence, it makes sense that MPCv

with 1.5 s of perfect prediction was able to perform as well or better than with the

prediction algorithms.
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Figure 3.23:
Constant velocity and constant acceleration velocity predictions for a section of the
UDDS drive cycle

3.6 Discussion

The objective of this chapter was to find a controller that generates an optimal

velocity trajectory such that the acceleration is minimized. Table 3.2 shows the im-

provements in FE for both the DP and MPCv cases. Significant improvements were

shown in FE for the Dynamic Programming case between 13.1% and 18.1% indicat-

ing a potential for high gain in FE for autonomous vehicles that enable real time

optimization. Real-time implementation with MPCv controllers shows improvements

between 5.3% and 11.8%, for the shortest prediction horizon of 1.5 s. While obviously

not performing as well as DP, MPCv is able to improve upon the baseline. For very

long prediction horizons of Np ≥ 20 s, MPCa is able to match the DP results for

all the given cycles simulated in ALPHA for the selected vehicle. We then utilized

a velocity prediction algorithm to find the velocity of the hypothetical lead vehicle

and then use the predicted constraints for MPC. The results show that a lower RMS

error in prediction in the 1st second increased FE more than improved RMS error

later in the horizon.

The model used in the optimal controller was deliberately kept as a simple point

mass LTI acceleration model to generate the optimal velocity trajectory without con-



71

sidering the vehicle power train or engine dynamics. This was achieved by reducing

the total accelerations and decelerations while maintaining an acceptable distance

from the lead vehicle based on acceptable traffic patterns. This work shows that in

meeting the simple acceleration objectives, FE can also be increased while following

a hypothetical lead vehicle with a velocity profile associated with the federal test pro-

cedures [49]. An autonomous vehicle could have this FE objective along with other

safety and traffic flow objectives. Tailoring the FE optimization by minimizing fuel

consumption instead of the generic acceleration could result in even more benefits,

given that not all accelerations are equally fuel consuming. This optimization will

require engine and transmission data or models and

3.7 Conclusion

The results from this chapter shows the possibilities for improvement on present

vehicle technologies through autonomous driving. Offline DP results achieve up to

17% improvement in FE. Simulation of various MPC formulations with a reasonable

horizon length was able to achieve 12% improvement in FE. The velocity trajectories

that achieved these improvements in autonomous vehicles were significantly different

from the velocity profile of the standard cycles. The velocity difference was more

than what is currently allowed by regulations. In light of this work, regulators need

to reconsider the standard FE testing procedure that imposes a tight band around

the velocity trace to encourage use of algorithms that increase FE, acceptable from

both traffic and safety perspectives.



CHAPTER IV

Optimal Fuel Cost Function Evaluation

In the previous chapter, we explored one type of drive cycle optimization that

involves velocity smoothing. However, when the vehicle controllers are free to drive

their own velocities other optimization methods can also be employed. The optimiza-

tion objective in this thesis is to drive an optimal velocity trajectory that minimizes

fuel consumption. Two typical approaches to drive cycle optimization are velocity

smoothing and tractive energy minimization. The former reduces accelerations and

decelerations and hence it does not require information of vehicle parameters and

resistance forces. On the other hand, the latter reduces tractive energy demand at

the wheels of a vehicle. In this chapter, utilizing an experimentally validated full ve-

hicle simulation software, we show that for conventional gasoline vehicles the lower

energy velocity trajectory can consume as much fuel as the velocity smoothing case.

This implies that the easily implementable, vehicle agnostic velocity smoothing op-

timization can be used for velocity optimization rather than the non-linear tractive

energy minimization, which results in a pulse-and-glide trajectory.

4.1 Introduction

One approach to optimizing a drive cycle is velocity smoothing (reducing accel-

eration and deceleration) which improves passenger comfort by reducing jerk and

in turn reduces fuel consumption, but this method does not guarantee an absolute

minimum of fuel consumption [22, 34, 36]. This solution is attractive as it is inde-

pendent of vehicle characteristics such as vehicle mass, road load and aerodynamic

resistances. Moreover, the two state velocity model can be formulated as a simple

linear model with quadratic costs, allowing for faster computation. In our previous

chapter, we showed that this methodology can be effectively employed for online

72
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implementation with Model Predictive Control. Using just 1.5 s preview for some

drive cycles we could get as much as 66% of the improvements from an entire drive

cycle preview.

Another approach is tractive energy minimization; here the penalized variable is

tractive or propulsion energy demand at the wheels, and hence is more closely related

to fuel consumption. Such an approach should in theory reduce fuel consumption

to beyond acceleration optimization [33, 76, 77] . In [54], a continuously variable

transmission (CVT) was assumed and engine torque minimized. However, as the

analytical solution in the same paper shows, the result of any energy optimization

strategy is a pulse and glide velocity trace. Indeed, in this chapter similar results

were shown for energy optimization. Any attempt at reducing the total energy

demand at the wheels will result in a pulse and glide operation, where an initial

heavy acceleration is followed by a steady speed or low rate deceleration gliding

before finally coming to a stop. A fuel optimization, where the fueling rate is a

linear function of propulsion power will also result in a similar optimized velocity

trajectory.

In the literature reviewed for this thesis, the comparison is always between human

and optimized driving, where improvements are so substantial that the gains derived

by the correct choice of the optimization function become obscure. Note here that

the reduction in fuel economy shown in this investigation can be as high as 18% for

the optimized drive cycles over the standard US Environmental Protection Agency

(EPA) drive cycles. However, between the two optimization techniques there is also a

difference in fuel consumption. This difference comes out only in comparison between

the two optimization problems with differing cost functions. Our work compares the

two approaches for various engine sizes in a conventional powertrain and also against

an all-electric powertrain, in time-varying position constrained simulations, to better

understand the characteristics of each optimization strategy.

It is common practice in the literature to assume that a reduction in propulsion

power or engine torque would yield a reduction in fuel consumption [77, 78, 55].

Translating vehicle power demand to an engine power demand is difficult for both

offline and online optimization as complex powertrain dynamics cannot be accurately

modeled without using a high fidelity software, which in turn increases computational

time. Hence, optimal control designers rely on simpler vehicle models. Several
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complex algorithms have been developed to minimize energy demand. Even when

an engine fueling map is included, important powertrain dynamics such as gear shift

strategy and torque converter clutch slipping are typically ignored. Hence the real

engine operation region is unknown to the optimizer and a pseudo tractive energy

minimization strategy is implemented.

This chapter, by utilizing full vehicle simulations from [3] shows that reduction

in tractive energy does not guarantee a reduction in fueling rate. These results

were shown to be valid across three different engine sizes in a conventional gasoline

powertrain. This result is fairly well known in the powertrain community, but its

implications on fuel efficient driving are not well understood. We show that velocity

smoothing that has a higher tractive energy demand, is able to match if not improve

fuel economy over tractive energy minimization.

We further utilize a simple powertrain model for direct minimization of fuel con-

sumption but by manipulating the power input. In doing this we show that due to

model mismatch, the resulting velocity trajectory has an even lower FE than the

previous two optimizations. Clearly, a more complex powertrain model is required,

however, such a model increased the number of states and due to the computational

size made DP intractable.

This paper is organized as follows: Section 4.2 introduces the drive cycle opti-

mization based on velocity smoothing and energy minimization. Section 4.3 explains

the urban and highway cycles chosen for this study and their optimized cycles. In

Section 4.4, a full vehicle simulation model used to evaluate fuel consumption is ex-

plained. Sections 4.5, 4.6, 4.7 and 4.8 provide detailed analysis of results obtained

from the full vehicle simulation over the optimized drive cycles for a 1.6 L down-

sized boosted engine, a further downsized engine, a full size 4.3 L engine and an

all-electric vehicle, respectively. The use of a vehicle powertrain model is discussed

Section 4.9 in A summary discussion on the implications of these results is presented

in Section 4.10, while the conclusions are noted in Section 4.11.

4.2 Optimal Control Problem

As mentioned earlier, improvements in velocity trajectory or driving patterns

result in the reduction in fuel consumption for autonomous vehicles. The two op-

timization objectives considered here are velocity smoothing and tractive energy
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minimization. The end objective of these velocity optimization approaches is to

minimize fuel consumption, hence the resulting optimal velocity trajectory will be

evaluated later in full vehicle simulations to determine individual fuel consumption.

In this section, the two approaches to optimizing drive cycles including the models,

cost-functions, constraints and optimization strategy used are provided in detail.

4.2.1 Velocity Smoothing by Acceleration and Deceleration Minimization

For velocity smoothing or minimizing the total acceleration and deceleration in

the velocity profile, the same formulation as the previous chapter III is utilized. A

simple point Linear Time-Invariant (LTI) model in [33] is adopted, with position

(xp) and velocity (xv) as states and acceleration (a) as the only input:

xp,k+1 = xp,k + xv,kTs + 0.5akT
2
s(4.1a)

xv,k+1 = xv,k + akTs(4.1b)

where Ts = 1 s is the sampling time. The optimization cost function chosen here is

the square of acceleration and deceleration. The sum of the cost function is mini-

mized, hence a smoother drive cycle is produced by minimizing the total changes in

velocity. Define A, Xp and Xv as polyhedral sets of constraints on inputs and states,

respectively. Thus, the optimal control problem is formulated as

min.
a

Nf−1∑
k=1

a2k(4.2a)

s.t. ak ∈ A, xp ∈ Xp, xv ∈ Xv(4.2b)

where Nf is the final time-step, and constraints Xp and Xv are defined later in

this section. The acceleration and deceleration constraints are time-invariant. For

this paper, they have been derived from the EPA drive cycles to be amin ≡ −6 m/s2,

and amax ≡ 6 m/s2. The same is true for the state of velocity xv where xmin
v ≡ 0

m/s, and xmax
v ≡ 40 m/s. Constraints on the state of position xp, however, are time

varying as the position of the autonomous vehicle is determined by the position and

velocity of a lead vehicle and hence a speed dependent gap. The cost function used

above is a squared term, ensuring that larger accelerations and decelerations are
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penalized more and hence it results in a smoother drive cycle. We shall now describe

the second approach to drive cycle optimization.

4.2.2 Tractive Energy Minimization

For the second approach of tractive energy minimization, the total propulsion

energy at the wheels is minimized. This optimization takes into account vehicle

characteristics such as road load coefficients and vehicle mass. The optimization,

however, does not take into account the internal powertrain dynamics such as the

engine fuel map and gear selection strategy. Instead, it is assumed that a minimiza-

tion of energy demand would lead to a reduction of fuel consumption which is a

common assumption in the literature as previously mentioned in the introduction.

To have the power demand at the wheels as the input, the acceleration term a in

Eq. (5.2) is calculated by the net force on the vehicle, by Newton’s Second Law of

Motion. The external resistive forces on the vehicle, the rolling and the aerodynamic

drag forces are modeled using the well known coast down parameters [79]. Detailed

description about this cost down test is given in Section 4.4. The model and cost

function for the second approach are given as follows:

xp,k+1 = xp,k + xv,kTs + 0.5
Pk − (A+Bxv,k + Cx2v,k)xv,k

M
T 2
s(4.3a)

xv,k+1 = xv,k +
Pk − (A+Bxv,k + Cx2v,k)xv,k

M
Ts(4.3b)

where P ∈ P is the total power delivered at the wheels by the engine; A, B and C

represent the road load coefficients determined from a vehicle coast down test [80];

and M is mass of the vehicle in kg. The total available power for propulsion and

braking is limited as Pmin ≡ −60 kW, and Pmax ≡ 60 kW; these are the minimum

and maximum power applied by the selected vehicle while executing the standard

US06 drive cycle. The formulation for the optimization is given by,

P+
k =

{
Pk if Pk > 0

0 if Pk ≤ 0
(4.4a)

min.
P

Nf−1∑
k=1

P+
k(4.4b)

s.t. Pk ∈ P, xp ∈ Xp, xv ∈ Xv(4.4c)
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Since the objective of this formulation is to minimize only the total tractive energy

and is not concerned with the braking energy, the cost function only considers the

positive input. In our previous work, we have shown that the optimal policy even

with regenerative braking is to avoid braking as much as possible as there are losses

in energy conversion [57]. This is unlike the previous case where both the positive

and negative input, i.e. the acceleration and braking were minimized for a smooth

velocity profile. Also, the cost function for the tractive energy minimization case

does not use a squared term, unlike the velocity smoothing case. This is because,

the attempt is to minimize the total energy demand at the wheels and instantaneous

high power demand is acceptable. For acceleration optimization where the objective

is velocity smoothing, the harsher acceleration and deceleration are penalized more

by using a squared term.

The constraints from Section 3.2.2 are applied in this chapter as well. And in

optimizing drive cycles, Dynamic Programming (DP) is considered in again in this

study [51]. Specifically, the DP formulation for the drive cycle optimization is solved

by using DPM function in [52].

4.3 Drive Cycle Optimization

In this section, the selected urban and highway drive cycles are described as well as

the reasons for their selection. We will then discuss the resulting optimized velocity

traces before switching to vehicle simulation results in the next section.

The urban drive cycle selected for this paper is the LA92 Dynamometer Driving

Schedule, as it has higher maximum speed and maximum acceleration/deceleration

as compared to the Urban Dynamometer Driving Schedule (UDDS). For similar

reasons, the US06 drive cycle was selected as the highway cycle over the Highway

Fuel Economy Driving Schedule (HWFET).

The selected drive cycles were optimized using the DP algorithm as mentioned

before with two approaches: velocity smoothing and tractive energy minimization.

A part of the resulting drive cycles are shown in Fig. 4.1 and they are explained as

follows. The standard drive cycle obtained from human driving has frequent changes

in velocity. On the other hand, the velocity smoothing algorithm produces a cycle

with gentler propulsion and braking thus beneficial to passenger comfort.

The tractive energy minimization case, however, shows very interesting behavior.
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Figure 4.1:
Velocity trajectories of the standard LA92 drive cycle with the velocity smoothing
and tractive energy minimized trajectories. The solid lines show the desired velocity
trajectory while the dashed lines show the actual trajectory traversed by the vehicle in
ALPHA simulations. Clearly all velocity trajectories are reasonable and can be achieved
in full vehicle simulations.

The initial acceleration is very harsh, followed by a very low power cruising phase

which also features low rates of deceleration before finally decelerating to complete

the hill1. This result is very similar to pulse and glide [37] and previous analytical

solutions have also predicted that pulse and glide results in least energy consumption

[38]. Another attempt at engine torque minimization in [54] also resulted in a pulse

and glide velocity profile. In effect, any attempt at tractive energy minimization

results in a pulse and glide velocity profile.

4.4 Full Vehicle Simulation

To assess the impact of the optimized drive cycles on fuel consumption, a full vehi-

cle simulation model is required. In this study, the Advanced Light-Duty Powertrain

and Hybrid Analysis (ALPHA) tool was used. The ALPHA model was developed

by the US EPA for full vehicle simulation over a drive cycle with the stated aim of

evaluating the fuel economy of the vehicle. The ALPHA is a physics-based, forward-

looking, detailed vehicle simulator built on MATLAB/Simulink environment.

The input to the model is any velocity trace in time and a driver system integrated

within the model utilizes feedforward and feedback control schemes to maintain the

desired speed. Detailed description of ALPHA is provided in [3]. This model has

1A section of drive cycle featuring an acceleration, cruising and braking in sequence is referred to as a velocity
hill for this thesis
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shown to be robust over a range of very different drive cycles and has physics based

models for different components, thus leading to a high confidence in the resulting

fuel economy numbers. In published validation for different standard EPA drive

cycles, the maximum reported error in fuel economy was 2% against experiments

[81].

This simulation model is of a higher fidelity than the models used for optimization,

as it takes into account the inertial and other delays in the engine and powertrain

while executing a velocity change, thus ensuring that simulated vehicle velocity is

realistic. Detailed engine, transmission and vehicle systems within the model pro-

vide a sophisticated and comprehensive method of estimating fuel efficiency as the

modeled vehicle traverses a drive cycle.

The model also accounts for the rolling and aerodynamic resistances. This is

accomplished by utilizing the well-known vehicle coast down test, where the vehicle

is sped up to a high speed of 80 MPH and then put in neutral and allowed to slow

down by the various road and aerodynamic drag forces [79]. The resulting velocity

decrease over short time periods can be translated to an absorbed power using the

kinetic energy equation. From there, the drag force at each velocity is found and fit

using the linear least squares method to obtain the coefficients A, B, and C, of the

following equation:

(4.5) F = A+Bv + Cv2

where, F is the drag force, and v the velocity at the force. This method is

used to simulate the drag forces in a chassis dynamometer test as well. We use these

experimentally determined parameters in Eq. (4.3) for calculating the resistive forces

[80]. The software is simply evaluating the fuel required to maintain a given velocity

trajectory.

For the drive cycles simulated in this thesis, the driver model in ALPHA was

able to achieve desired speeds very accurately. The root mean squared (RMS) error

between the desired and actual velocity traces for the velocity smoothed LA92 drive

cycle was only 0.12 m/s and the mean absolute error (MAE) was only 0.09 m/s. For

the tractive energy minimized cycle, the RMS error was 0.17 m/s and MAE was

0.08 m/s. Considering that the average speed for LA92 was 11.0 m/s, these small
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Figure 4.2:
The velocity trajectories of the standard LA92 drive cycle along with the velocity
smoothing and tractive energy minimized trajectories. Clearly the optimized trajec-
tories are much smoother than the standard cycle and avoid frequent accelerations and
decelerations.

errors show that ALPHA is able to simulate the velocity accurately and also that a

vehicle is capable of traversing these optimized velocity traces. Fig. 4.1 shows the

close following of the simulated velocity trajectories to the desired trajectory.

The results from vehicle simulations presented in Sections 4.5, 4.6, and 4.7 indicate

that the drive cycle found from tractive energy optimization can in some cases lead

to higher fuel consumption than that found through velocity smoothing. Previous

comparisons were made between standard and optimized cycles, where these smaller

differences were obscured by the significant reduction in fuel consumption. Hence the

remainder of the chapter will focus on comparisons between the two optimized drive

cycles. For comparisons with the standard cycles, readers are referred to chapter III.

The findings of this work would aid future work on the choice of the cost function

when the full fuel optimal computation cannot be performed in real time and a

simplified metric might be needed. The results obtained in this chapter are computed

through full vehicle simulations in a well validated ALPHA model. The simulation

results are explained in detail in the following sections.
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Table 4.1: LA 92 drive cycle optimization results
Standard Cycle Velocity Smoothing Tractive Energy Minimization

Fuel Economy [MPG] 26.0 30.7 30.6
Tractive Energy [MJ] 9.93 8.03 7.48

4.5 Case Study I: Downsized Boosted Engine

In this section full vehicle simulation results and analysis are detailed for both

urban and highway cycles. The baseline vehicle is a 2013 Ford Escape powered by

a 1.6 L Ford EcoBoost engine. The low-displacement boosted engine is considered,

as it is a commercially available advanced technology that delivers high efficiency in

typical federal test procedures.

4.5.1 LA 92 Drive Cycle Optimization

The complete LA92 drive cycle with both the optimized cycles is shown in Fig. 4.2.

Clearly both the optimized drive cycles are much smoother than the standard cycle

as they are able to utilize the flexibility in position constraints to avoid frequent

accelerations and decelerations. This smoothing of the drive cycle significantly re-

duces the fuel consumption of the vehicle as it traverses the velocity trajectory. As

shown in Table 4.1, while the fuel economy of the standard LA92 cycle is 26.0 MPG,

those for the velocity smoothing and tractive energy minimization trajectories are

30.7 MPG and 30.6 MPG, respectively. This produces almost an 18% increase in fuel

economy, showing the significant benefits of optimized driving.

However, the small difference in fuel economy between the two optimized drive

cycles is interesting. One would assume that a reduction in total tractive energy

demand at the wheels would have resulted in a reduction of fuel consumption when

compared with the plain velocity smoothed method. It turned out that, in a com-

parison between the two optimized cycles, a 6.9% reduction in total tractive energy

at the wheels conversely results in a 0.3% increase in fuel economy.

To understand this phenomenon, a particular velocity hill from 850 − 950 s was

studied closely. In Fig. 4.1, at 850 s, the power optimization case applies a 76%

higher instantaneous propulsion power leading to an 80% increase in fuel consump-

tion. However, for the entire event from 850 − 950 s, the overall propulsion energy

is reduced by 5.6%. The corresponding fuel consumption reduces by only 2.1%.

Clearly a decrease in total tractive energy demand did not lead to a correspondingly
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Figure 4.3:
The engine operation points of the selected portion from 850 s to 950 s of the LA92 drive
cycle is plotted on the BSFC map [4]. The solid red lines indicate the operating regions
demarcated for residence analysis. A positive number indicates a gain in tractive energy
optimization over velocity smoothing.

proportional decrease in fuel consumption.

The underlying cause for this difference can be explained by Fig. 4.3 which shows

the engine operating points in the selected region. The reasons for smaller reduction

in fuel consumption are not clear from operating points alone and so the map is

divided into several regions, where the energy demand and fuel consumption within

the confines of the region can be calculated. The regions are created as approximate

zones of operation in different modes as follows:

1. Region 1: the low speed high power region which is only visited during transient

fast accelerations.

2. Region 2: the approximate region of operation for the acceleration optimization

case where the power demand is relatively smaller.

3. Region 3: the region with higher power potential than region 2, that is accessed

by the higher power demand of the tractive energy optimization case.

4. Region 4: the region of operation for engine idling.

5. Region 5: the low torque high speed region, which is accessed while decelerating

slowly, where the vehicle speed is high and the tractive power demand almost



83

negligible. When the vehicle decelerates at a higher rate, brakes have to be

applied and there is no tractive power demand.

Within a region, a positive number indicates a higher energy demand or fuel

consumption for the tractive energy minimization case while a negative number, a

higher energy or fuel demand for the velocity smoothing case. In Region 2, velocity

smoothing is more active and demands a 9.8% higher total energy supplied by a 10.7%

higher fuel consumption. The high power demand of tractive energy minimization

pushes the operating points into Region 3, where the tractive energy minimization

case demands a 3.8% higher energy at a 4% higher fuel consumption. Between

these two regions a net energy reduction of 6% leads to a net fuel consumption

reduction of 6.7%. The higher reduction of fuel consumption is due to a greater

engine efficiency as indicated by the brake-specific fuel consumption (BSFC) map in

region 3 as compared to Region 2. The gains between Region 2 and 3 are as expected

for tractive energy minimization due to the pulse and glide strategy.

The overall reduced fuel efficiency gain can be understood from operation in Re-

gion 5. Here a 0.4% increase in energy consumption leads to a 4.2% increase in fuel

consumption for the tractive energy minimization case. In this region a small increase

in energy demand causes a very large increase in fuel consumption as the operating

region is extremely inefficient. The reason for operating in this region is explained

by Fig. 4.4. At about 925 s, the vehicle starts decelerating in the traditional ‘glide’

portion of the pulse and glide strategy, and the tracive power demand is almost zero.

However, at this high speed cruising, the tractive energy minimization case reduces

speed at a lower rate of deceleration than the velocity smoothing case. The low rate

of deceleration still has a very small positive tractive power demand. Due to the high

speeds, this demand can only be met by operating in the highly inefficient region 5

of Fig. 4.3.

It must be noted that any energy minimization algorithm would result in almost

a pulse and glide like operation. Hence the resulting velocity trace would contain

some form of gliding, which in this case is the velocity segment of low power cruising,

where a slight positive engine torque is required to propel the vehicle. However, this

slight positive power demand leads to significant increase in fuel consumption due to

the engine inefficiencies.

Broadening the analysis from the selected region to the entire LA92 drive cycle,
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Figure 4.4:
The vehicle velocity and acceleration are plotted for the selected portion of the LA92
drive cycle from 840 − 970 s. The tractive power at the wheels and the engine power
are also shown. During the phase of low rate of deceleration, the engine is either idling
or providing limited power. The plots for engine torque and engine speed show that at
these points, the engine operates at high speed and low torque which is highly inefficient.

the pulse and glide trace for tractive energy minimization is seen for all velocity hills.

This concurs with the results from literature mentioned before. To show the impact

of the low power cruising, the drive cycle was divided into 5 modes based on the

acceleration and power demand of the vehicle as shown in Table 4.2.

1. Acceleration: The mode of acceleration encompasses regions where vehicle ac-

celeration as well as vehicle power demand are greater than zero.

2. Deceleration: Similarly for deceleration, it is the cases where both the acceler-

ation as well as vehicle power are less than zero.

3. Low Rates Deceleration: These are the points where the acceleration is less than

zero but the vehicle power demand is zero or higher. In these cases, even though

the vehicle is decelerating, a slight torque is applied in the engine to maintain

the required slowly decreasing velocity.

4. Inertial Acceleration: The inertial acceleration region is the short durations

where even though the vehicle power is negative, inertia maintains a positive

acceleration.

5. Vehicle Idling: Finally the engine idling region is where both acceleration and

power are equal to zero.
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Table 4.2:
Comparison between optimized drive cycles in different modes for LA92 and US06 drive
cycles. US06 results are in parentheses.

Mode
Velocity

Smoothing
Fuel (g)

Energy
Minimization

Fuel (g)

Percentage
Difference

Velocity
Smoothing

Energy (MJ)

Energy
Minimization
Energy (MJ)

Percentage
Difference

Velocity
Smoothing
Time (s)

Energy
Minimization

Time (s)

Percentage
Difference

Acceleration
acceleration>=0
vehicle power>0

751.12
(605.61)

680.60
(541.88)

-7.7
(-8.0)

7.44
(6.87)

6.73
(6.15)

-8.9
(-8.1)

736.1
(343.58)

648.42
(295.42)

-6.1
(-3.3)

Deceleration
acceleration<=0
vehicle power<0

73.37
(11.35)

80.33
(19.45)

0.7
(1.0) N/A N/A N/A

529.98
(124.54)

411.14
(102.26)

-8.2
(-1.6)

Low Rate Deceleration
acceleration<0

vehicle power>=0

78.00
(178.53)

123.59
(221.16)

5.0
(5.3)

0.59
(1.99 )

0.75
(2.34)

2.0
(3.9)

124.98
(122.50)

239.08
(178.84)

7.9
(3.9)

Inertial Acceleration
acceleration>0

vehicle power<=0

2.92
(0.77)

1.00
(0.13)

-0.2
(-0.1) N/A N/A N/A

13.66
(3.62)

5.12
(0.68)

-0.6
(-0.2)

Vehicle Idling
acceleration=0

vehicle power=0

6.78
(1.94)

28.44
(5.56)

2.4
(0.5) N/A N/A N/A

35.32
(10.80)

136.28
(27.84)

7.0
(1.2)

Total
912.19

(798.20)
913.96

(788.18)
0.2

(-1.3)
8.03

(8.86)
7.48

(8.49)
-6.9

(-4.2)
1440

(605.04)
1440

(605.04)
0.0

(0.0)

From Table 4.2, it is clear that during acceleration the energy optimization case

demands 8.9% less tractive energy, which translates to a 7.7% reduction in fuel

consumption. On the other hand during low rates of deceleration, the energy op-

timization case demands only 2.0% more power but due to the inefficient engine

operating regions where this power comes from, the increase in fuel consumption is

5.0%. Another major contributor to the increased fuel consumption is the engine

idling mode. Here the energy minimization case spends 7% more time, resulting in

2.4% higher fuel consumption.

The above analysis explains for the entire drive cycle, that the presence of these

gliding regions increases fuel consumption substantially for slightly higher energy

demand and thus lower the overall fuel economy of the energy optimization case.

This difference in fuel consumption is significant only in the comparison between

the two optimized drive cycles. In case of the standard cycle the difference in fuel

economy is 18% and hence the increased fuel consumption at inefficient regions gets

obscured.

4.5.2 US06 Drive Cycle Optimization

The standard and optimized US06 drive cycles are shown in Fig. 4.5. For the

US06, the optimized cycles showed a 17% improvement over the standard cycle.

However, in this case, the energy minimized drive cycle had a better fuel economy

than the velocity smoothed one. Over the US06 drive cycle, the tractive energy

demand was reduced by 4.2% and the fuel economy by 1.4% as shown in Table 4.3.

The interesting results were found in shorter sections of the drive cycles demarcated

by the solid vertical lines in Fig. 4.5. In the first section from 0 s to 131 s the energy
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Figure 4.5:
Velocity traces for the standard
and optimized US06 drive cycles.
As expected for the energy min-
imization cycle, higher rates of
acceleration, long periods of low
deceleration cruising and short
high deceleration are observed.
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Figure 4.6:
Velocity traces for the selected
portions of the standard and op-
timized US06 drive cycles and
the ALPHA simulated velocities.
The three time periods of 490 −
525 s, 525− 540 s and 540− 560 s
are demarcated in the plot.

Table 4.3: US06 Drive Cycle optimization results
Standard Cycle Acceleration Minimization Tractive Energy Minimization

Fuel Economy [MPG] 24.4 28.5 28.9
Tractive Energy [MJ] 9.96 8.86 8.49

demand was reduced by 11.1% but the fuel by only 3.5%. In the second section from

131 s to 490 s the total energy demand decreased by only 1.9% and the corresponding

fuel consumption by 0.6%. The most important case was the last section where even

though the total power demand reduced by a significant 18.1% the fuel consumption

increased by 0.2%.

To illustrate the difference between minimizing tractive energy and minimizing

fuel, three consecutive parts of the US06 drive cycle are chosen as 490− 525 s, 525−
540 s and 540 − 560 s. The results for each of the parts are presented in Table 4.4.

Interestingly, in the first case, a reduction in energy demand leads to an increase in

fuel consumption; in the second case, a similar reduction in energy leads to a slight

reduction in fuel consumption; finally for the third case, a significant reduction in

energy demand does not lead to a proportional reduction in fuel consumption.

The difference in results is explained in Fig. 4.7, where the engine map is divided

into 10 equally spaced grids. For reference, regions similar to the ones in Fig. 4.3

are also demarcated. The difference in energy demand as well as fuel consumption

between velocity smoothing and tractive energy minimization are shown in each of

those grids as squares and circles respectively.
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Figure 4.7:
Three consecutive parts of US06 drive cycle with the operating regions demarcated. A
pink square and a green circle shows a higher energy and fuel demand respectively for
the velocity smoothing case, while a black square and a yellow circle shows a higher
energy and fuel demand respectively for the tractive energy minimization case. The
size of the square and circle are proportional to the percentage gain over the other drive
cycle.

1. The width of a square is proportional to the percent difference in energy demand

in that grid. A pink square indicates a higher energy demand for the velocity

smoothing case while a black square indicates a higher energy demand for the

energy optimization case.

2. The radius of a circle is proportional to the percent difference in fuel consumed

in that grid. A green circle indicates a higher fuel consumption for the velocity

smoothing case while a yellow circle a higher fuel consumption for the energy

optimization case. Different colors are necessary to show positive and negative

differences.

Clearly in all cases Region 5 is where all the gains from the tractive energy mini-

mization are lost. The tiny black dot indicates a slightly higher power demand and

large concentric yellow circle shows the much higher fuel consumed. The length of

operation in the high speed low torque zone dictates the increase in fuel consump-

tion and can explain the contradictory results of the three selected parts. For all

three selected cases the continued operation in the low torque high speed domain

can be clearly seen in Fig. 4.7 with black dots indicating more power sought in those

regions by the energy optimization case. This occurs when the vehicle velocity is

decreasing at a very low rate of deceleration between 505 − 525 s, 535 − 540 s and

550−555 s. The elevated fuel consumption based on the length of operation in these

low efficiency regions reduces all gains made from lowered energy demands. Hence

the non-linearity of the engine map plays a significant role in determining the overall

fuel consumption.
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Table 4.4: US06 Drive Cycle optimization results for selected 3 parts
490 - 525 s 525 - 540 s 540 - 560 s

Fuel Economy Difference [%] -2.3 0.97 2.3
Tractive Energy Difference [%] 12.1 12.0 36.8

4.6 Case Study II: Further Downsized Engine

In the previous section the optimized cycles were simulated for the baseline engine

which was already a downsized boosted engine. However, the optimized drive cycles

had a much lower power demand than the standard drive cycles. The maximum

engine power demanded for a standard US06 drive cycle was 93.6 kW, while those

for the velocity smoothed and energy minimization ones were 60.8 kW and 47.1 kW

respectively. Clearly a smaller engine with lower peak power could be used to meet

the demands of these optimized drive cycles.

Since the ALPHA model was built at the EPA to account for a range of engine

loads, it also has a function that provides the capability to generate fuel consumption

maps by varying the engine size. Details of the function are provided in [82], where

it takes into account the changes in heat transfer, friction and knock sensitivity as an

engine is downsized. The 1.6L Escape engine was downsized to 75% of the original

maximum power and the drive traces simulated through ALPHA. With a smaller

engine, and a reduced torque range, the difference in operation between the velocity

smoothing and energy optimization velocity traces were studied.

It was found that between the two drive cycles at a same reduction of power, for

the entire drive cycle the smaller engine showed a 2.3% decrease in fuel consumption

as compared to 1.3% in the standard engine. The cause of the reduction in the energy

minimization case was however, not from the absence of operation in the inefficient

regions. In fact the reason was that at some acceleration events the smaller engine

operated in more efficient regions.

In Fig. 4.8 the difference in vehicle speeds between velocity smoothing and energy

minimization are shown. Engine operation regions for acceleration from 75−90 s are

also plotted on the respective engine maps in Fig. 4.8. The plots clearly show that

the smaller engine has a higher engine speed as compared to the standard engine for

the power optimization case. The limited torque range for the smaller engine drives

the operating region to a higher speed to generate the same amount of power. This

forces the engine to operate in more efficient regions. The result does make sense
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Figure 4.8:
US06 drive cycle for a production 1.6L EcoBoost engine and a downsized version of
the engine. For the downsized case, the available torque is reduced and to generate
equivalent power, a higher engine speed is required. The full-size engine fuel maps are
experimentally determined from [4].
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as the smaller engine is able to meet the comparatively smaller peak power demand

more efficiently. However, this approach of further downsizing the engine does not

overcome operation in the inefficient regions during the low deceleration cruising that

still occur and increase fuel consumption for the energy minimization case.

For the selected period of 0 − 130 s, the energy minimization case shows a 1.3%

reduction in fuel consumption for the standard engine but a 2.3% reduction in fuel

consumption for the smaller engine. Similar effects were observed in the period of

130−490 s a 1.8% reduction in power resulted in a 0.6% reduction in fuel consumption

for a full size engine but a double or 1.2% reduction in the smaller engine. Again

the reason for improvement was more efficient operation during the acceleration

phase. The effect was particularly visible in the last 40 s of the drive cycle where

the full engine showed a 5.9% reduction in fuel consumption but the small engine

a significantly higher 9.6% reduction. However, it must be noted that the gain in

fuel consumption is not proportional and the inefficient operation at low rates of

deceleration remains for all cases.

After exploring the downsized engine in this section we shall now show simulation

results for the full-size engine in Case Study III as it traverses the two optimized

drive cycles.

4.7 Case Study III: Naturally Aspirated Full Size Engine

To understand whether the conclusions on tractive energy optimization were spe-

cific to turbo-charged engines or would hold for naturally aspirated ones as well, in

this section a 4.3 L Chevrolet Silverado Ecotec engine map was used to run the op-

timized drive traces. This particular engine is used to power large Chevrolet pick-up

trucks and does incorporate an aggressive deceleration fuel cut-off strategy.

It was interesting to observe that the aggressive cut-off actually affected the veloc-

ity smoothing case more positively than the energy minimization one. For the entire

US06 drive cycle the total tractive energy demand reduced by 4.1% but the reduction

in total fuel consumption was only 0.1%. As shown in Fig 4.9, the higher rates of

deceleration allow for longer durations of fuel cut-off in the acceleration optimization

case. On the other hand for power optimization, the low rates of deceleration that

require very small amounts of engine power reduces the duration through which the

fuel cut-off can be initiated, thus increasing fuel consumption. In the period shown
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Figure 4.9:
US06 drive cycle for a the 4.3L Chevrolet Ecotec engine. The low power cruising in the
power optimization case reduces the cylinder deactivation time and hence increases the
fuel consumption.

in Fig. 4.9, the fuel cut-off occurs for 19.3% of the time for velocity smoothing and

only 7.8% of the time for energy minimization. Hence for that period, a reduction

of only 0.2% is achieved in fuel consumption, even though the total energy required

decreased by 10.8%.

Obviously, there was no explicit term for deceleration fuel cut-off in either of the

optimization cases but the point of running these drive cycles with this technology

is to highlight the several ways in which fuel consumption might not be proportional

to energy demand. Any optimization to reduce fuel by minimizing energy demand

has to take into account the effect of these technologies and how they change fuel

consumption. Another important point is the low rate of deceleration that is the

main culprit in increasing fuel consumption. While these cases require a very low

amount of power to traverse, they disproportionately consume large amounts of fuel
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to operate in these regions.

By disabling the fuel cut-off strategy for this large engine, the effect of only

changes in the drive cycle could be studied. It was found that the decrease in fuel

consumption for the entire drive cycle in the power optimization case was now 0.5%

as compared to 0.1% with the cut-off enabled. The improvement can be attributed

to a higher increase in fuel consumption in the acceleration optimization case with

idle fuel consumption instead of a complete fuel cut-off. The corresponding increase

in the energy minimization case was obviously smaller as the length of time fuel

cut-off was engaged was less in this case.

The reason for much lower decrease in fuel consumption of 0.5% as compared to

the 1.6L EcoBoost which showed a 1.3% decrease is during the period of 490− 560 s.

Recalling that this is the region with longest operation at the low torque - high speed

range, it can be understood that the fueling rate is much higher for this large engine

and it leads to significantly higher fuel consumption. An interesting technology that

can be applied in this case would be cylinder deactivation which can be engaged if the

desired engine torque is below 150 Nm and engine speeds are between 100−250 rad/s.

In the previous three sections, this paper covered the engine performance of three

different engine sizes, encompassing almost all the engine displacements available

commercially for light duty vehicles. The three case studies showed that energy

minimization leads to a pulse and glide operation, and for conventional vehicles

powered by an internal combustion engine, the glide portion operates in a highly

inefficient region of engine operation consuming a disproportionately higher fuel thus

lowering the overall fuel economy. While the above analysis hold true due to the fuel

map of a conventional vehicle, for an all electric vehicle powered by only an electric

motor should always show a reduction in energy consumption with a reduction in

energy demand. This assumption was tested in the next section.

4.8 Case Study IV: Electric Vehicles

Since the issues with minimizing energy not leading to a minimization of fuel

consumption were derived from the non linear fuel map and low power cruising

causing the engine to operate in inefficient regions, electric vehicles were analyzed

to understand their behavior. The electric motor efficiency map is much flatter

and does not include enormous efficiency penalties at high speed and low torque
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Figure 4.10:
Distribution of efficiency of operating points and demanded power from both the con-
ventional engine and the electric motor.

as compared to a conventional engine. This should mean a proportional gain for

the power optimization case. On the other hand electric vehicles have regenerative

braking which ensures that some of the lost energy is regained through braking.

These effects are studied in this section. Simulations were carried out using the

ALHPA model for a 2013 Tesla Model S.

From 0−130 s of the US06 drive cycle it was found that a 9.7% decrease in tractive

energy was accompanied by a 9.0% decrease in total battery energy demand. As

expected the battery discharge demand was 12% less indicating a greater gain in

energy consumption than energy demand due to operation in more efficient regions.

However, there was lesser battery charging in the power optimization case of −3.0%

which lead to a net battery demand of 9.0%. Even though the drive cycles operated

in the low torque high speed region, the slight change in efficiency did not decrease

the overall gain in the energy minimization case.

The velocity smoothing case did have a much higher braking power demand, and

some of this was regained by the charging of the battery. But the regained charge

was much less as compared to the discharge during propulsion, leading to a net gain

for the energy minimization case. In all cases studied it was found that the battery

energy regained in braking was not proportional to the braking energy. The more

aggressive braking in the power optimization case was able to regain more energy
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Figure 4.11:
Equivalent power in fuel and battery as supplied to the engine and motor respectively
for the selected portion of the US06 drive cycle. The fuel power is much higher due to
the maximum 35% efficiency in a conventional engine.

through regen braking than the acceleration optimization case even though the total

braking energy was much larger for the latter.

Figure 4.10 shows the distribution of operating points in engine and motor effi-

ciency and the power demand from the engine and motor. Looking at the efficiency

distribution it can be seen that both the engine and the motor operate for longer

periods of time in less efficient regions for the power optimization case. However,

to compare the efficiencies of a conventional engine to an electric motor, both have

been normalized. As expected, the maximum engine efficiency is around 35% for the

1.6L EcoBoost, but the electric motor has a maximum efficiency of almost 90%. So

while the shapes of distribution are very similar between the two, due to the much

lower efficiency of the engine, the inefficient regions are far worse than the motor.

This leads to a smaller increase in battery energy consumption for the motor.

In the case of the power demand, it can be seen that the conventional engine has a

far higher demand for low power between 1−3 kW, than the electric motor where this

demand is comparatively less. This discrepancy can be explained by the lack of gears

in an electric vehicle, where the motor speed directly commands the engine speed

without several transmission losses. In Fig. 4.11, the increased demand of fueling

power as compared to the battery power for the 490− 560 s of the US06 drive cycle

is shown. The inefficiency of the engine forces the required fuel power to be much

higher than the equivalent battery power. During the low speed deceleration and
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idling it can be clearly seen that fuel power required is much higher. The maximum

to idling fuel power ratio is 6.5. On the other hand, the electric motor is able to

operate with much lower demands of battery power, proportional to the wheel power

demand. The maximum to idling battery power ration is 12.9 indicating almost

double the efficiency during the phases of low rate deceleration. Moreover, it is much

easier for the motor to go to a zero power case than a conventional engine and a part

of the braking energy can also be recovered.

For these reasons the electric vehicle showed a straightforward proportional de-

crease in battery energy demand for a decrease in wheel energy request on account

of a energy minimized drive cycle. Some of these gains were overturned due to regen

braking and energy regained in the velocity smoothing case owing to its substantially

higher braking energy. Still, the more aggressive gains in the tractive energy mini-

mization case was able to reduce the deficit, and in all cases the net battery energy

consumed was always lower for energy minimization. This shows that the tractive

energy minimization strategy works much better for an electric vehicle where a reduc-

tion in battery power consumption can be guaranteed unlike a conventional vehicle

where this cannot be conclusively stated.

4.9 Fuel Minimization

Till now we have used a surrogate for minimizing the fuel consumption, instead

of going through the vehicle powertrain and minimizing it directly. In Fig. 4.12 we

analyzed the fuel economy for different cruising speeds, driving for 500 s at constant

speed. The fuel economy and other results listed are only for the period that the

vehicle is cruising. These simulations were again performed in the ALPHA model

for a 2013 Ford Escape with a 1.6L EcoBoost Engine. Seven different speeds from

12 − 18 m/s were analyzed in simulations. The gear shift strategy, selected gear 4

for speeds between 12 − 14 m/s and gear 5 for the higher speeds from 16 − 18 m/s.

The fuel economy results are expected and are listed for individual speed in the plot.

And also shown are the constant power lines on the engine map.

From 12− 14 m/s, all speeds are in gear 4 and occupy a lower torque and higher

speed region. It is observed that as the speed increases the fuel economy reduces.

This is explained by the fact that as the speed increases the power demand increases

and the slight increase in efficiency cannot compensate for it. As the speed increased
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Figure 4.12:
Trapezoidal velocity traces are shown with equal constant velocity cruising duration.
On the right BSFC map, the engine operating point at the different constant velocity
cruising and FE are shown.

further to 16 m/s the gear shift strategy increases the selected gear to gear 5 thus

taking the engine operating point to a much more efficient region. This significantly

improves fuel economy compared to 15 m/s results. Again with increasing speed the

fuel economy reduces.

The point of this plot is to show that several factors contribute to the eventual

fuel economy of the vehicle and also the region of engine operation. The goal is

to go to a low speed and high torque region as the efficiency is higher here, as is

clearly shown in the results above. By changing the calibration or gear shift strategy

(perhaps modifying the powertrain) it could have been ensured that the simulator

would select gear 4 for 15 m/s and operate the engine in the more efficient region.

The number of gears also determine where the engine is operated.

To ensure that the engine is operated in the more efficient regions would be beyond

the scope of simply the velocity planning algorithm. However, with the preview and

use of DP in optimizing the velocity planning, the future engine power demand can

modulated such that the engine operates only at its highest efficiency. From the

results in Fig. 4.12, it is clear that constant cruising at 18 m/s actually produces a

better fuel economy than constant cruising at 12 m/s, therefore if this information
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Figure 4.13: Gear shifting strategy with hysteresis based on the optimal BSFC operating points

was available to the optimizer, it would be able meet the position constraints better

and also further reduce the fuel economy.

For this process, we utilized a vehicle model using a linear correlation between the

power demand at the wheels and the power demand in the engine. This simple co-

relation has been used in the literature before. We already know the power demand

at the wheels Pk from the equation 4.3. The engine power can be determined from

equation 4.6, where the parameters a1 and a2 are determined from Linear Least

Squares fitting of ALPHA results. The parameter values are listed in Table. 4.9.

Peng,k = a1 × Pk + a2(4.6a)

Since we know the vehicle speed and engine power, we can now determine the

engine speed and torque by equation 4.7.

ωeng,k =
xv,k ×GRfd ×GRgear,k

rtire
(4.7a)

τeng,k =
Peng,k

ωeng,k

(4.7b)

where, GRfd is the final drive gear ratio, listed in Table. 4.9, GRgear,k is the

selected gear ratio at time k and rtire the radius of the vehicle’s tire also listed in
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Table 4.5: Vehicle Model Parameters
Parameter Value
a1 1.09 ×10−3

a2[W ] 1.724
GRfd 3.21
rtire[m] 0.337

Figure 4.14: Validation of gear map with ALPHA results

Table.4.9. Now the engine speed ωeng and engine torque τeng are computed. The

fueling rate in the engine is determined by the fuel map that we appropriated from

the ALPHA model. This formulation requires the continuous computation of the

gear, which has to selected at every time step. A simple gear map as with hysteresis,

as shown in Fig. 4.13 was used to determine upshifts and downshifts. Based on the

optimal operating points a shift strategy was devised, that matched fairly well with

the ALPHA results. The gear map validation is shown in Fig. 4.14 where even for a

highly variable drive cycle like the LA92, our gear map was able to select the correct

gear for most cases.

Using the more complex vehicle model added an extra state of gear into the opti-

mization which significantly increases the computation time in DP. This increase was

so significant that optimizing for only the last 100 s of the US06 drive cycle required

6 hours. This is clearly infeasible for actual drive cycles like the UDDS which are

1372 s long. What was interesting, was that even for this short optimization, based
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on the vehicle model in DP, the resulting FE was 22.5 MPG. However, when the op-

timized trajectory was simulated in ALPHA, the resulting FE was only 19.8 MPG.

This implies that our simple vehicle model was not able to capture the powertrain

dynamics and resulted in an FE that was 12% lower in full vehicle simulation.

Moreover, for the last 120 s of the US06 drive cycle, the FE from velocity smooth-

ing and tractive energy minimization are 20.5 MPG 20.9 MPG respectively. So not

only did the inaccurate vehicle model reduce FE in optimization, it reduced it below

the other simpler optimizations. Inaccuracy in the model causes DP to over predict

the improvements. In reality, the FE results from ALPHA simulations are worse

than the FE found from previous optimizations. Hence, if full vehicle optimization is

to be done, then a more accurate model should be used. However, with an increase

in states, the vehicle model was already very complex and computation time for a

120 s optimization was over 6 hours.

For the complete powertrain, a schematic is shown in Fig. 4.15 to determine

the fueling rate from the current and desired speed. There are two prongs to this

approach, one to find the engine torque and the second to determine the engine

speed. For the torque, based on the difference between the current and desired

speed, a driver model determines the required driver torque. Then from the driver

torque, a pedal map is used to compute the pedal torque which can be translated to

the desired engine torque. For the engine speed, the current speed is converted to the

synchronizer speed from the final drive gear ratio and the turbine speed based on the

synchronizer slipping. Then using the equations of the torque converter clutch, based

on whether they are engaged or disengaged, the impeller or the engine speed can be

determined. On the other side, the commanded engine torque translated through

the powertrain on to the wheels, the force on the wheels and hence the acceleration

can be computed for the vehicle speed in the next time step.

This full vehicle model increased the number of states to 6 with position, velocity,

selected gear, the torque converter clutch state, impeller and synchronizer speed.

In offline simulation, this model matched the ALPHA results very well, showing

only a 0.7% error in total fuel consumption for the US06 drive cycle and 0.6% error

for the LA92 drive cycle. However, the complexity was too much for optimization

and computation time made this problem intractable. Clearly, the simplest velocity

smoothing algorithm can deliver as good or even better results than the more complex
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Figure 4.15: Full vehicle model schematic

optimizations with detailed vehicle models.

4.10 Discussion

From the literature review, it is clear that the fuel minimization problem is ad-

dressed, either as a simple energy minimization at the wheels or by using a linear

function of wheel power that estimates fuel. In both cases, the energy at the wheel

is minimized. It was analytically shown in [54] that such minimization results in a

pulse and glide velocity trajectory. Therefore, it is not surprising that whatever the

assumed model might be, most attempts at velocity manipulation for minimum fuel

consumption lead to a pulse and glide velocity trajectory. Similarly, in this chapter,

minimizing the power demand at the wheels, resulted in a pulse and glide velocity

trajectory. This result is consistent with those presented in the literature.

The main contribution of this chapter is twofold. First, the fuel economy improve-

ment achieved by the two optimization approaches is compared and analyzed rigor-

ously. Second, the effectiveness of the approaches for different powertrain options,

i.e., downsized turbo-charged engine, further downsized engine, naturally aspirated

engine, and all-electric vehicles is investigated. The comparison in this paper reveals

that velocity smoothing works as well, or better in some cases than tractive energy

minimization for conventional gasoline vehicles. A well-validated ALPHA model is
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used to evaluate the fuel economy of both drive cycles. The detailed comparative

analysis of the resulting velocities as shown in Fig. 4.3 clearly reveals the differences.

As an optimization problem, the tractive energy minimization case with the cost

function as the tractive energy demanded at the wheels, reduces it over the velocity

smoothing case. However, a similar reduction of fuel consumption reduction was not

found. Utilizing ALPHA’s detailed simulation, it was shown that during the gliding

phase, to maintain the optimal velocity, a slightly higher energy demand led to a

significantly higher fuel consumption. This was due to the engine efficiency at the

high speed low torque operating points which wipes out all the gains from the lower

energy demand.

The significance of this result, is that a simple optimal control problem with a

linear model and quadratic costs could deliver comparable results to a more complex

nonlinear optimization requiring more computational time and power. For instance,

the cloud based DP algorithm in [76] can be replaced by a quadratic programming

solver that can be implemented online; or the nonlinear function in the formulation

used in [77] can be replaced by a linear function to reduce the computational burden.

This method would significantly simplify the optimal control problem in [78].

Further, the resulting pulse and glide profile can be unsatisfactory from a passen-

ger comfort point of view. Hence, in the literature, implementation of pulse and glide

has to manipulate the optimal velocity to account for passenger comfort [54]. The

switching in [38] can be implicitly removed in the velocity smoothing formulation

delivering superior smoothness. Therefore, it is much easier to persuade customers

to implement the velocity smoothing algorithm that does both, improve passenger

comfort without compromising on fuel economy. It should be noted that these results

are only valid in a conventional gasoline vehicle and as shown are not valid for an

electric vehicle.

4.11 Conclusion

From the initial attempt at minimizing fuel consumption by minimization of en-

ergy demand at the wheels, this work has shown that in some cases the assumption

might not hold. The energy minimization algorithm, decreased the total energy by

initially applying a high power at the start of any velocity hill and then moving to

a low power cruising mode. This ensured a lesser energy demand than the velocity
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smoothing case under all circumstances. However, the presence of the low power

cruising part forced the engine to operate in an inefficient low torque - high speed

region, significantly increasing fuel consumption for a slight demand of power. This

behavior was observed in a larger as well as smaller engine. Additional technologies

such as deceleration fuel cut-off reduced the gains from energy minimization further.

Finally in a comparison with electric vehicles, owing to the more efficient electric

motor and a lack of gears, it was shown that reducing energy demand at the wheels

guaranteed a decrease in battery energy consumption.

From this work it is clear that the easily solvable velocity smoothing algorithm,

which does not require any vehicle information and is more conducive for passenger

comfort can deliver almost the same improvements as a more complex energy mini-

mization algorithm. Hence, in a conventional vehicle the engine operating region has

to be taken into account while reducing propulsion power to result in a proportional

decrease in fuel consumption.



CHAPTER V

Electric Vehicle Analysis

Eco-driving via velocity trajectory optimization and regenerative braking can both

reduce the energy demand of an electric vehicle (EV). However, eco-driving can

save more energy than can be recovered via regenerative braking due to the total

roundtrip efficiency of the motor/generator. The optimal velocity trajectory would

always avoid braking if the constraints allow. This chapter initially analyzes the

battery energy consumption results for the velocity smoothed cycles to show a bat-

tery range extension of over 15%. Further, this chapter investigates energy optimal

velocity profiles for various electric ground vehicles over varying road grades, where

the autonomous vehicles can adjust their velocity trajectory. The optimal velocity

trajectories, numerically obtained from Dynamic Programming, significantly reduce

the total energy demand by the motor compared to a constant cruising operation for

the same travel distance and time. The optimized velocity trajectories, thus increase

vehicle range without a change in battery size or trip time.

5.1 Introduction

The analysis carried out for all the previous chapters was for a conventional vehicle

with an advanced downsized boosted engine. All fuel economy improvements shown

were for the particular vehicle and engine. However, velocity smoothing in essence

reduces the energy demand from a power source. This works well for a conventional

vehicle where the energy demand from the engine and hence the fuel consumption

gets significantly lowered. The same principle can also be applied for electric vehicles

too by reducing the energy demand from the battery. In reducing the battery energy

demand, the same distance can be covered with by consuming less battery charge

and thus increase the range of the vehicle. The issue with velocity smoothing with

103
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regards to electric vehicle is the ability to recharge the battery by use of regenerative

braking. Velocity smoothing would reduce the scope for the optimized cycle to

recharge the battery in braking. The net effect of velocity smoothing where the

battery discharging is lowered due to lower energy demand and battery charging is

lowered due to smaller braking are analyzed in this section.

The electric vehicle analyzed in this section is the Tesla Model S, modeled in

ALPHA [3] by the U.S. EPA. Just like the conventional vehicle, the ALPHA model

in this case takes the input of the drive cycle and simulates a vehicle run over that

drive cycle. The entire vehicle is modeled in the program giving simulation results

from the motor operating points down the powertrain into the transmission, final

drive and vehicle resistance. The ALPHA model provides comprehensive vehicle

data at every point in the powertrain which will aid in the analysis of the battery

energy consumption and where the gains are being made due to the smoother drive

cycles.

5.2 LA 92 Drive Cycle Analysis

Starting with the LA92 drive cycle, which is a high speed modern urban cycle that

represents traffic conditions in today’s world most accurately, it was found that the

MPGe of the optimized drive cycle was 12.4% higher than the MPGe of the standard

LA92 drive cycle. MPGe or miles per gallon equivalent is established by the EPA

to convert electric energy to gasoline energy in terms of normalizing cost. That is,

from the MPGe numbers a customer would be able to understand their fuel costs.

The conversion is 33.7 kWh of electricity is equal to 1 gallon of gasoline. So for our

case, the MPGe of the standard cycle is 91.1 while for the optimized cycle is 102.4.

The percentage increase of 12.4% is smaller than for the conventional vehicle where

it was 15.3% over the optimized drive cycle. A part of the gains in energy saving

during acceleration is lost during deceleration where the standard cycle recharges its

batteries more than the optimized drive cycle.

A 13.2% decrease in propulsion energy over the total braking and propulsion

energy translates to a 19.6% decrease in battery discharging. Or in other words

the motor consumes 19.6% less battery energy due to the savings in energy on the

standard drive cycle. However, a 12.4% decrease in braking energy over the total

braking and propulsion energy leads to a 8.4% less battery charging. Hence in net
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Figure 5.1:
Motor Torque and Motor Current distribution for LA92 drive cycle while traversing the
standard and optimized velocity traces. The optimized trace clearly has a lower torque
demand that is further reflected in lower motor current. This trend was observed for
both positive (propulsion) and negative (braking) sides

effect the optimized LA92 drive cycle consumes 11.2% less battery energy. This when

translated to MPGe leads to an improvement of 12.4%.

The improvements in MPGe can be directly attributed to the lowered power

demand for the optimized drive cycle. As shown in Fig. 5.1, the motor torque distri-

bution for the optimized drive cycle is much narrower than the standard cycle. For

the positive motor torque, the acceleration and consequently the propulsion power

demand being less reduces the motor torque for the optimized cycle. Reduced motor

torque translates to smaller motor current, as can be seen in Fig. 5.1, thus reducing

the battery discharging. On the other hand, for the braking side, the standard cycle

undergoes more and harsher negative motor torque than the optimized one. This

increases the negative motor current and therefore charges the battery more. Hence

the reduced battery discharging in the optimized drive cycle is somewhat offset by

reduced battery discharging. However, it was found that the net effect for the LA92

drive cycle was favorable to the optimized cycle as indicated by the numbers above.

An interesting result of the optimization of the drive cycles is the reduction of

frequent accelerations and decelerations by applying a constant, slower acceleration

velocity trajectory. These are able to meet the position constraints and at the same

time minimize the total accelerations and decelerations. In Fig. 5.2, two such events

are shown where the standard cycle undergoes acceleration, deceleration and another

acceleration while the optimized cycle is able to traverse the distance at a smaller rate
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of acceleration. In both these cases, during the deceleration event, the standard cycle

is able to recharge its battery to some extent. At 29 s, the start of the acceleration

profile the difference in battery energy between the standard and optimized drive

cycle is 7.3 kJ. At 43 s, the end of the deceleration for the standard cycle, the

difference is −1.3 kJ, indicating that the optimized cycle had used more battery

energy. But at the end of final deceleration at 65 s, the battery energy difference

was 25.9 kJ thus showing that overall from 29− 65 s the optimized cycle used a net

18.6 kJ of energy less than the standard cycle.

Extending this further, at 85 s, another point at the end of a deceleration in the

standard cycle, the difference in battery energy is 29.6 kJ, while at the end of the

profile at 115 s, it is 113 kJ. A net gain of 87.1 kJ of energy in the velocity profile from

65 − 115 s. Hence, we can conclude that while for an electric vehicle, the presence

of extra deceleration does increase the battery recharging, a net reduction in energy

demand at the wheels leads to a net smaller demand from the batteries. In fact on

exploring this phenomenon further, this conclusion can be further validated. At the

times 73.7 s and 91.8 s the standard and optimized drive cycles both have almost

the same velocities. However, in between, the standard cycle undergoes a period

of rapid acceleration followed by sharp deceleration and again a rapid acceleration.

On the other hand, the optimized drive cycle slowly increases its speed in the same

time period. In this period, the propulsion energy demand was 84.4 kJ higher for

the standard cycle leading to a 95.8 kJ higher energy discharge from the batteries.

While the braking energy was 80.7 kJ higher for the standard cycle leading to only

a 40.3 kJ higher battery charging. The net effect being that almost similar increases

in propulsion and braking energy resulted in less than half the increase in battery

charging as compared to discharging.

This can be attributed to the efficiency in both converting braking energy at

the wheels to negative motor torque as well as the efficiency in converting negative

motor torque to battery charge. While for battery discharging the average motor

efficiency for both cycles was 92.7%, and powetrain efficiency was 95.1%. In braking

the powertrain efficiency or the efficiency in converting braking power to negative

motor power was only 65.4%. The sharp drop in efficiency in utilizing the braking

power is primarily responsible for the lower battery recharging in braking. The

effect gets further compounded by the low efficiency in battery charging which was
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Figure 5.2:
Velocity traces for the standard and optimized drive cycles in the first 120 s of LA92
drive cycle, with the Battery Energy consumed in that time period. Between the solid
black lines the standard cycle accelerates, decelerates and accelerates again at a high
rate while the optimized cycle accelerates slowly to reach the same velocity. In this
period the optimized cycle consumes 55.5 kJ less battery energy.

found to be only 76.4% in the given time period. These efficiency results further

validate the conclusion that the optimized drive cycle, reducing total accelerations

and decelerations is better even for an electric vehicle with regen braking capability

and can reduce the battery energy consumed over a drive cycle. These results are

however different for a conventional vehicle without the ability to recover braking

energy.

A common criticism of the MPGe number released by the EPA is that it does

not convey the range of an electric vehicle. This is valid, as for an electric vehicle

with a limited battery pack, the range that it covers becomes a very important

factor. As indicated earlier, due to the reduced demands of energy in the optimized

cycle the battery energy consumption undergoes reduction for the same distance

covered. This would increase the range of the vehicle under the same conditions

with the same battery pack size but only through optimal driving. The vehicle

covers about 2.7 miles/kWh for the standard cycle while increasing its range to cover

3.1 miles/kWh. An average of 0.4 miles/kWh extra can be covered with an optimized
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Figure 5.3:
MPGe for different velocity traces found using a range of prediction horizons with
different MPC formulations for the UDDS drive cycle. The constant black and purple
lines indicate the MPGe for the standard and DP optimized drive traces. For shorter
prediction horizons, MPC without tracking does not work at all and tracking has to be
introduced to improve results exactly like the conventional vehicle. Velocity tracking
performs better than position tracking, but with longer prediction, the no tracking case
improves MPGe significantly

cycle or a 14.8% increase in range with the same battery capacity. For electric

vehicles, a significant range increase through optimized drive cycles represents an

exciting opportunity outside of the battery technology. Range anxiety has been one

of the major negative attributes of electric vehicles and a simple algorithm to increase

range without any changes to existing vehicle technology can improve acceptability

of these vehicles.

5.3 UDDS Drive Cycle Analysis

Similar to the analysis for the conventional vehicle, the DP results are only offline

optimal solutions when the velocity trajectory of the entire lead vehicle is known.

This is not acceptable for a real world implementation where only a few seconds

of preview can be got for the lead. The MPC formulations and resulting velocity

trajectories have been explained previously, this section deals with the electric vehicle

energy consumption in traversing those trajectories.

For the DP optimized UDDS drive cycle, the improvement in MPGe is 10.4% for

the optimized drive cycle over the standard cycle. A 10.8% reduction in propulsion
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power demand leads to a 17.2% reduction in battery discharge. While a 10.6% lower

braking power translates to a 7.7% lower battery charging. The net reduction in

battery energy consumed is 9.5% which amounts to an 8.8% improvement in range.

For the online implementation using MPC optimization, the results for the UDDS

drive cycle were very similar to those found with the conventional vehicle. For the

MPC optimization without any tracking, at short prediction horizons of less than

6 s, the MPGe was lower than that of the standard drive cycle. With increasing

prediction horizon, the MPGe increased steadily.

For shorter prediction horizon with position tracking, it was found that the MPGe,

improved dramatically from 1.5 s prediction horizon to 2 s prediction horizon and

then was slightly decreasing with increased prediction horizon. For 1.5 s, the propul-

sion power was only 2.3% lower and braking 2.2% lower, resulting in a net 2.7%

lower battery energy consumption. On the other hand for 2 s prediction horizon, the

propulsion power is much lower by 3.2% awhile the braking power is 3.1% lower. As

discussed earlier, the efficiency in converting battery power to wheel power in propul-

sion is much higher than the reverse of converting braking power at the wheels to

battery charge. Hence in this case the net battery energy consumption is 3.2% lower.

At 4 s prediction horizon, the drive cycle becomes even smoother, but the drop in

battery recharging is less than the decrease in battery charging and this results in

a slightly lower reduction of battery energy consumption. With the increasing pre-

diction horizons, it can be seen that the propulsion and braking power are almost

the same. The difference in these drive cycles was explained previously in that the

tracking of the position constraint becomes better and after a certain increase in

prediction horizon, no further improvements can be made. In any case, for all the

results of MPGe for MPC with position tracking, the difference in less than 1 MPGe,

which is insignificant. Hence we can conclude that for electric vehicles, MPC with

position tracking can reduce battery energy consumption even at very low prediction

horizons of 1.5 s.

Finally for MPC implementation with velocity tracking, the results are again

similar to those found with the conventional vehicle. The MPGe increases with

increasing prediction horizon, except at 4 s horizon, where the increase is higher

than the trend. This behavior was observed in the conventional vehicle too and

was explained by the weight tuning between tracking and acceleration optimization.
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Figure 5.4:
Probability distribution of the motor power and motor efficiency in propulsion for the
standard and optimized US06 drive cycles. While from previous results it was assumed
that the optimized US06 trace would operate for longer at lower motor power, the
interesting result is in the motor efficiency. Operating at lower power reduces the
motor efficiency.

For all other cases, there is a steady decline in propulsion power demand which

reduces the discharge demand. On the other hand, the braking power also reduces

but the increase in battery charging is not proportional thus decreasing the net

battery energy consumption. These result in an increasing MPGe with increasing

prediction horizon. Again, the velocity tracking MPC was found to be better than

the position tracking one to decrease battery energy consumption and delivers a 5.1%

improvement in MPGe, even at the lowest 1.5 s prediction horizon.

5.4 US06 Drive Cycle Analysis

The US06 drive cycle has the highest rates of acceleration and highest speeds out

of all the standard EPA drive cycles. This is a fast highway cycle that undergoes

very high speeds of almost 80 MPH, with frequent accelerations and decelerations

demanding very high power from the motor but also replenishing the batteries with

the frequent braking. With the US06 drive cycles having the highest power demand

of all EPA test cycles, all vehicles are geared to meet these high requirements. Fig. 5.4

shows the probability distribution of the motor power and motor efficiency for both

the standard as well as the optimized drive cycles. Clearly the maximum as well as



111

average motor power demanded from the optimized cycles is much less as compared

to the standard cycle. This indicates a scope to reduce the size of the electric

machine and hence the weight of the vehicle further reducing the power demand for

propulsion. Moreover, as the distribution of motor efficiency indicates, the optimized

cycle operates for longer periods at low efficiency points. This occurs as the motor

has been scaled to meet much higher power requirements. By reducing the size of

the motor, the power demand of the drive cycle can be delivered with a higher motor

efficiency, thus further reducing the battery discharge. The present simulation tools

do not allow for reducing the size of the motor and studying its impacts but the

results clearly show a the potential.

During the analysis of the LA92 drive cycle it was stated that the energy recovery

in braking was far less efficient than energy use in propulsion thus even at the same

reduction of propulsion and braking energy, the net battery energy consumption was

always less for the optimized drive cycle. However, two interesting points came up

for the US06 drive cycle where the battery charge for the standard cycle was more

than that of the optimized cycle.

The first time this happened was at 85 s, here the battery SOC was 0.863 for the

standard cycle as compared to 0.862 for the optimized drive cycle. While the differ-

ence is negligible, the fact that they were so close after 85 s of driving was explored

further. For the cost function minimized by DP, in the given period from 0 − 85 s,

the cost reduced from 2.56 to 1.43. Specifically the total acceleration in that time

reduced from 3.5×103 m/s to 3.2×103 m/s, an 8.6% reduction. However, this reduc-

tion in acceleration did not translate into reduction in total propulsion energy. In

fact the total propulsion energy was 1.57 MJ for the standard cycle, lower than the

optimized cycle where it was 1.70 MJ. The difference being a 4.4% higher propul-

sion energy demand in the optimized cycle. This higher energy demand increased

the battery discharge by 6.1% that resulted in the higher battery energy consump-

tion while in the optimized cycle. However, the particular point must be closely

observed, in Fig. 5.5, the velocity traces of both drive cycles are shown. Clearly the

standard cycle undergoes a braking event at that point while the optimized cycle is

still increasing its speed at a low rate of acceleration. This behavior while reducing

the total acceleration does increase the total propulsion power. as is also shown in

Fig. 5.5.



112

80 100 120 140 160 180 200

0

10

20

30

40

80 100 120 140 160 180 200

0.85

0.855

0.86

0.865

Figure 5.5:
Selected portion of US06 drive cycle where the SOC for the optimized cycle is higher
in some cases than the standard cycle.

Again the peculiar case where the battery SOC is higher for the standard cycle

happens at 185.1 s. A higher battery consumption for the optimized drive cycle

185 s into the trace was again explored. Unlike the previous case, here the total

propulsion energy was less for the optimized cycle. In this instance the closeness in

battery energy came from the energy gained through braking. Just before 185.1 s,

the standard cycle undergoes a significant braking event while the optimized cycle

accelerates slowly. This additional braking increases the difference in total braking

energy between the two cycles to 341 kJ. At that instant the difference in total

propulsion energy is 170 kJ, around half of the braking energy and hence the battery

SOC despite the inefficient energy recovery in braking is almost the same for both

cases. At 185.1 s, the difference in battery discharging is 128.0 kJ while the difference

in battery charging is −128.2 kJ between the standard and optimized cycles.

Having stated the above two examples where the despite the reduction in accel-

eration and deceleration, the battery SOCs are able to converge, it is important to

state a caveat. Both instances occurred at the end of a deceleration event where

the two phenomenon increased the SOC for the standard cycle. First the obvious

battery recharging happened with the braking events and this was compounded by
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the optimized cycle still undergoing an acceleration which increased its propulsion

power as compared to the standard cycle. The combination of these forces produced

similar SOC results almost 185 s into the drive cycle. However, since the optimized

cycle was still accelerating, it is reasonable to assume that the standard cycle would

have to undergo a succeeding acceleration as well. Indeed, at 185.1 s the difference

in battery energy consumed is only −0.01% but by 214 s this difference increases to

7.6%. Thus with this example we can restate the conclusion that the net effect of

the optimized cycle will always reduce the total battery energy consumption.

However, the finding that a reduction in acceleration does not lead to a decrease

in propulsion power demand is also important. That results indicates that a further

reduction in energy consumption is possible if the objective function reduced the total

energy demand at the wheels. Another finding is the influence of braking, while the

efficiency in converting braking energy to battery charge is much lower than the

reverse, it does have an effect and lowers the improvements in energy consumption.

The phenomenon is further studied in future work by changing the optimization

procedure and introducing a different cost function.

5.5 Road Grade Variation

Prior optimal energy management solutions for electric vehicles have been found

for flat roads in both online and offline implementations [83, 84]. However, changing

road grades adds an additional gradient force acting for and against the vehicle. In

[56], the authors used Pontryagin’s Minimum Principle to solve the optimal velocity

trajectory of a vehicle traversing a hill. They concluded that the optimal velocity was

to “increase speed while approaching the base of the hill, and then allow the speed to

drop off while climbing the hill ... and the reverse while descending.” Similar results

have been proposed for the traversing of road grades by trucks [85] and conventional

vehicles [86].

The optimal power management strategy over changing road grades have also

been considered for Plug-in-Hybrid Electric Vehicles (PHEV) in [87, 88]. It was

found that the proposed optimal solution required additional engine torque when

climbing a hill, while during hill descent regenerative braking was used to recharge

the battery. The analysis in [89] shows that inclusion of road grade information

improves fuel economy for an HEV but does not mention the velocity characteristics
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Figure 5.6:
Three different vehicle cases are considered in this paper with varying power to weight
ratios. The first two cases are run for EPA’s GEM drive cycle while Case III is run
over steeper military grades. For each case, three different constraints are applied all
of which force the optimal velocity to traverse the given distance in the same time as
constant speed lead. Regenerative braking was observed as part of the optimal solution
only in cases where constraints were imposed. The motor energy demand reduction
over the baseline for the optimized cycles are also shown in bold.

or changes in hill climbing strategy leading to those improvements. When finding

the optimal power split for a constant speed drive through a changing road grade,

the authors in [90] proposed that battery energy is used while climbing up the hill

and recharged while descending similar to findings in the previous studies.

The conclusion from the literature review is that the period of hill descent is

an opportunity to generate electricity for storage using the regenerative braking

system. However, the regenerative braking system is not 100% efficient and there

are losses during energy conversion. In all these cases, it is assumed that a certain

proportion of the vehicle kinetic energy will be lost in braking, and hence some of that

energy can be recovered by regenerative braking. On the other hand, if we consider

optimal velocity trajectory implementation for autonomous vehicles, then the highest

possible efficiency is sought. Hence, braking will be avoided as far the constraints

allow, even in hill descent. This paper finds the optimal velocity trajectory while

traversing road grades for electric vehicles, through offline globally optimal solutions

using dynamic programming. A summary of the case studies and constraints are

presented in Fig. 5.6
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5.6 Electric Powertrain Model

For this chapter, the electric powertrain model was built utilizing a backward

looking scheme, suitable for use in numerical optimization algorithms. The model

assumes the vehicle to be a point mass and only includes longitudinal dynamics. The

vehicle parameters include the road load and aerodynamic drag coefficients as well

as the tire radius and the final drive gear ratio. For the powertrain, an average final

drive efficiency is assumed and an experimentally derived motor map calculates the

power conversion efficiency. The parameters are listed in Table 5.1. Forces acting on

the vehicle are as follows,

Fa = Mua(5.1a)

Fg = Msg sin(tan−1(
β

100
))(5.1b)

Fd = A+Bv + Cv2(5.1c)

where a is the vehicle acceleration, β the gradient percentage and v the vehicle

velocity. Equation 5.1a) computes the acceleration force, 5.1b) the gradient force

and 5.1c) the resistance drag forces. The powertrain model to determine the motor

power is as follows

ωm =
v GRfd

rtire
(5.2a)

τ =
(Fa + Fg + Fd) rtire

GRfd ηfd
(5.2b)

τm =

{
min (φ1 (ωm) , τ) if τ ≥ 0

max (φ2 (ωm) , τ) if τ < 0
(5.2c)

Pm = f (τm, ωm)(5.2d)

where ωm is the motor speed, τm the motor torque and Pm the electric power of

the motor. The functions φ1 and φ2 determine the maximum and minimum torques

allowed by the motor. At low speeds, the maximum torque is limited by the peak

torque and at higher speeds it is limited by the peak power of the motor. The

function f computes the electric power demand of the motor from an experimentally

derived motor map. The electric powertrain model used is reasonable, as it showed
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Table 5.1: Vehicle Parameters
Name Parameter Case I Case II Case III

Static Mass (kg) Ms 2041 4082 453.6
Dynamic Mass (kg) Mu 2294 4588 453.6

Static Road load (N) A 194 388 13.6
Dynamic Road Load (N/(m/s)) B 1.97 1.97 0.07
Aerodynamic Load (N/(m/s)2) C 0.36 0.36 0.17

Final Drive Gear Ratio GRfd 9.73 9.73 7.54
Tire Radius (m) rtire 0.35 0.35 0.28

Final Drive Efficiency ηfd 0.96 0.96 0.96
Velocity Range (m/s) (vmin, vmax) (0,40) (0,40) (0,22)

Acceleration Range (m/sˆ2) (amin, amax) (-6,6) (-6,6) (-6,6)
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Figure 5.7:
The efficiency of the regenerative braking system is determined by the powertrain and
generator efficiency. Also, braking power beyond the generator torque and power limits,
shown by the thick black solid line is dissipated as heat, which reduces efficiency further
at high loads and speeds.

only a 0.18% normalized RMS error in motor electric power demand, from simulation

results of an experimentally validated high fidelity model [3].

Utilizing the model, a 2-D map of the regenerative braking efficiency can be

generated as shown in Fig. 5.7. The efficiency is of converting mechanical power at

the wheels to electric power in the generator. The generator capacity is limited and

is shown by the thick black solid line in the figure, beyond which additional power

is dissipated as heat.

5.7 Optimal Control Problem

While the autonomous self-driving cars and unmanned robots give an additional

flexibility to control and optimize the vehicle velocity, constraints should still be
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considered based on the traffic requirements. Three different constraints are applied

in this chapter as shown in Fig. 5.6.

The first constraint case is simply a constant speed cruising where the autonomous

vehicle maintains a constant speed while traversing the given road grade. This is our

baseline case and is referred to as the standard cycle or constraint I.

The second constraint case, constraint II is the same traffic constraints imposed

before in Section 3.2.2.

The final constraint case, constraint III enforces a fixed time duration for the

autonomous vehicle to cover the given distance. Here, the autonomous vehicle has

to cover the distance in the same time as the constant speed baseline without the

previous time varying position constraints. This is the most lenient constraint and is

most relevant for the military application where the distance and time are set based

on the mission. It must be noted that all three cases have the same travel time and

velocity optimizations are made within those strict time durations.

Utilizing this concept, the simplified electric vehicle model was used to optimize

the velocity trajectory by minimizing motor power demand within reasonable traffic

constraints and vehicle limits. The problem is defined in Eq. 5.3

min.
Pm

Nf−1∑
k=0

Pm,k(5.3a)

s.t. ak ∈ (amin, amax)(5.3b)

vk ∈ (vmin, vmax)

sk ∈
(
smin
k , smax

k

)
k = 0, . . . , Nf − 1,

where Nf is the final time-step, and ak, vk and sk are the instantaneous vehicle

acceleration, speed and position respectively.

The above cost function minimizes the motor electric energy demand for an electric

powertrain. When considering a hybrid powertrain, fuel consumption minimization

is more important and significant efficiency gains can be made by changing engine

operating points affecting the overall efficiency of the system. Hence, we stress that

the results are only valid for vehicles with an electric motor as the only propulsion

source.
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Figure 5.8:
The vehicle velocity for the constant velocity 55 MPH standard cycle of constraint I and
the distance constrained optimized cycle of constraint II are plotted on the left y-axis.
The altitude is shown on the right y-axis. The distance constrained optimal velocity
was able to reduce the motor energy demand by 3.2% over the constant velocity case.

5.8 Results and Discussion

The drive cycle was optimized through the Dynamic Programming (DP) algo-

rithm. DP is a numerical method which computes a set of inputs that minimize a

given cost function [51]. In our case, we use the DP implementation in the DPM

function [52] to minimize the motor electric power demand, which includes regener-

ative braking. The DP formulation has one input of vehicle power and two states of

position and velocity. Input power is limited between ±20 kW and is discretized with

201 points. The constraints for state of position are time varying for constraint II

given by Eq. 3, while for constraint III it is time invariant with a hard constraint for

the final time step, to ensure that the autonomous vehicle covers the given distance.

The state of speed is constrained between 0 and the maximum speed of the given

vehicle. Both states are discretized with 201 points. As mentioned before, the cost

function is the electric power demand of the motor where negative power demand

from regenerative braking reduces the cost.

The optimization was carried out for three case studies with different vehicle

masses varying the power to weight ratio from 44− 110 W/kg. A schematic diagram

of the different case studies and optimization constraints is shown in Fig. 5.6.
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5.8.1 Case Study I : Tesla Model S as an EV

The vehicle parameters for the Tesla Model S were found from dynamometer ex-

periments at the US EPA’s National Vehicle and Fuel Emissions Laboratory (NVFEL)

listed in Table 1. Under the US EPA’s Greenhouse Gas Emission Model (GEM) a

varying road grade profile has been developed. The standard cycle completes the

given GEM grade at a constant speed of 55 MPH. Utilizing the given road grades,

the optimal velocity while traversing these road grades were sought through DP.

When optimizing for motor energy, the DP optimization was constrained by main-

taining a reasonable following distance to the constant velocity lead. Reductions are

seen in the electric motor power demand of the optimal drive cycle. The resulting

velocity profile and the road grade are shown in Fig. 5.8.

The optimized cycle for constraint II showed a 3.2% reduction in energy consump-

tion over the standard cycle operating at constant speed. These improvements came

by allowing for changes in speed, similar to the previous studies on optimal velocity

profiles over road grades. Vehicle velocity increased at the base of a hill and reduces

as the vehicle climbs and on descent the vehicle velocity increases. Optimized mo-

tor power followed the standard one for the most part, except for some deviations

at steeper road grades. The main difference was seen during hill descent, where the

motor shuts off instead of braking and generating electricity through the regenerative

braking system.

To study this phenomenon more closely, the hill descent from 7− 8.1 km was an-

alyzed in the left plots of Fig. 5.9. During a long hill descent, the optimized cycle

followed the motor power of the standard cycle except for two instances. Between

7.2 − 7.3 km, the motor shuts off thus reducing speed slightly below the constant

speed. Later as the standard cycle brakes to maintain speed after 7.6 km, the opti-

mized cycle shuts off the motor again and allows for an increase in speed. At 7.77

and 7.85 km the motor applies short bursts of power to increase the speed further

before shutting off again to reduce speed. At 8.02 km the motor goes back to the

standard operation to maintain speed. Through the deviations the motor was able

to save about 3.6% in total electric energy for the observed distance.

Similar behavior was observed during the longer 2 km descent from 16 − 18 km

shown in the right plots of Fig. 5.9. The motor shuts off at times which slightly

reduced speed, but at the steeper descent, it either shut off or provided short bursts of
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Figure 5.9:
Magnified plots of the vehicle velocity and motor power while the vehicle descends
downhill. In both constraint cases, while the constant speed standard cycle brakes
to maintain speed on the negative gradient, the optimal policy is to avoid braking
and coast. When the negative slope is low, the vehicle velocity reduces but when the
negative slope increases, the vehicle velocity increases as well.

power instead of braking which led to an increase in speed. As the descent became less

steep, the motor remained off allowing the vehicle speed to reduce the constant speed

before returning to standard operation. Again by these deviations, the motor was

able to save 35.2% energy as compared to the baseline. The increased improvements

for this segment are due to the steeper descent, which provided more opportunity

for coasting during the optimized cycle as well as the longer distance which required

more tractive energy for the baseline.

Interestingly, the optimized trajectory during descent did not utilize regenerative

braking at all, and instead utilizes gravitational force to increase the kinetic energy

of the vehicle. The vehicle is sometimes propelled forward by the motor to increase

velocity beyond the acceleration from the negative gradient. These results occur
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Figure 5.10:
The plot on the left shows the motor power and vehicle velocity with time varying
tight constraints of constraint II, while the plot on the right shows the case with only
the initial and final constraints of III are applied. Due to the tight constraints on
the left, the double mass case brakes to meet them while on the right the velocity is
allowed to increase more.

despite regenerative braking power being a negative cost in DP. The optimal solu-

tion found by DP indicates that coasting with the motor shut off is preferred over

regenerative braking. This can be explained by the efficiency losses in converting

mechanical power to electricity and back to mechanical power, thus even with very

high conversion efficiency, the round-trip efficiency is lower.

5.8.2 Case Study II: Heavier Mass EV

While the regenerative braking efficiency is determined by the generator charac-

teristics, the absolute braking force is governed also by the mass of the vehicle. To

understand the effects of a higher mass requiring a greater braking force, the mass

of the vehicle was doubled in simulations as listed in Table 1, without changing the

motor size. In comparison between the standard and double mass, the velocity pro-
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files are similar as shown in the left plots of Fig. 5.10 the only difference being the

magnitude of the motor power. But again, the optimal policy prefers shutting off the

motor rather than braking to recover energy through regen except for one instance

around 17 km. The particular velocity profile during the long hill descent shows that

for the double mass case II, the motor power becomes negative. This implies that

the regenerative braking system is being used.

We speculate regenerative braking is only being used to avoid violating the dis-

tance following constraint. To confirm our speculation, we loosened the strict con-

straints imposed on the previous optimization. The above simulations were carried

out utilizing the leader-follower scheme, but in these cases, we can remove the time

varying constraints and only apply the initial and final distance constraints while also

constraining the arrival time to that of the constant speed case. This is constraint

case III.

Again, even without time varying constraints, the optimal policy is to coast rather

than brake to regenerate power. It is shown in the right plots of Fig. 5.10 that even

with the doubled mass, removing the tighter position constraints allowed the double

mass to avoid braking and increase its speed to beyond that of the standard mass.

Hence as speculated, braking was initiated only to meet the given constraints on

position and not to recover energy.

5.8.3 Case Study III: Proposed Light Weight Military Robot

Since the previous results with the Tesla S simulations show that the optimal

policy while traversing grades is to coast rather than brake, yielding a significant re-

duction in electric energy demand, it poses an interesting question for lighter vehicles

traversing steeper hills. It was shown that the only time the optimal DP policy used

regenerative braking was with the double mass vehicle where the velocity increase

during descent had to be curbed by braking. In this case, we consider a lighter ve-

hicle, a small 1000 lb autonomous military robot. The robot is powered by a series

hybrid system incorporating a fuel cell and a battery, such that the propulsion is

provided only by the electric motor. Hence it can be assumed to have the same

electric powertrain as our previous cases. An efficiency map based on the downsized

motor of the Nissan Leaf was used as the power source for the robot. The vehicle

parameters are listed in Table 1.
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Figure 5.11:
When the DP optimization is carried out for the small 1000 lb robot in case III, opti-
mized velocity trajectory obtained through constraint III shows a reduction of 24.2%
over the constant speed standard cycle of constraint I.

These robots are meant to be used on in rugged environments which are much

steeper than the GEM grades used previously in this paper. The ChurchvilleB mil-

itary drive cycle was used for demonstration of the optimal algorithm with peak

grades of 30% [91]. Further, these steeper grades with a much higher negative gradi-

ent force would also test our hypothesis of regenerative braking being avoided. Since

the vehicle is operated autonomously off road, only the constraint III case on total

trip tip time was considered for optimization.

Selected distance segments of the results are shown in Fig. 5.11, where the optimal

velocity deviates significantly from the constant velocity case by following the optimal

principles of hill climbing. These deviations reduced electric energy demand for the

motor by 24.2%. The motor results are interesting and different from those of the

Tesla as the maximum velocity of the robot is limited to 22 m/s. In the left plots
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of Fig. 5.11 from 3 − 3.5 km, the optimized cycle does not use the motor but the

robot velocity does not violate the limit. On the other hand in the right plots, with

a much steeper drop, the robot has to apply regenerative braking to maintain the

velocity within the constraints. Applying brakes leads to negative motor power and

regenerative braking. But the reason behind applying brakes was to stay within the

velocity constraints and not use regenerative braking, otherwise even in the left plots

brakes would have been applied.

These results have interesting implications for the battery sizing of these robots

as these are powered by a hybrid fuel cell system. The results prove that for the

unmanned case, where the velocity can be controlled, the optimal policy in traversing

the road grades is to avoid regenerative braking due to the low round-trip efficiency.

This implies that a large battery to store the regenerated electricity is not required

and an appropriate battery size that meets other requirements of the robot would

suffice.

Having stated this, it is important to note that the above conclusions are drawn

only for unmanned robots where the velocity can be controlled to drive an optimal

path. Moreover, as was shown in the ChurchvilleB cycle, there are some cases where

the robot velocity can increase to beyond operational limits and brakes have to be

engaged. In these instances, having the capability to store regenerated braking power

would reduce fuel demand.

5.9 Case IV: 100% Efficiency in Regeneration

Till now our conclusion is that the optimal policy is to avoid regenerative braking

during hill descent, and the reason for doing so is assumed to be due to the low

round-trip efficiency of the system. To verify this assumption, we simulate a case

with 100% round-trip regeneration efficiency. In this case, we assume that all braking

power will be converted to electricity and back to propulsive power. This is done by

removing the powertrain and motor efficiencies. Simulation results for motor power

in Fig. 5.12 clearly show that with full recovery, regenerative braking is preferred

during the hill descent. The plots record several periods of braking to reduce vehicle

velocity and recover energy. This result validates our assumption and shows that

only with no round-trip efficiency losses regenerative braking is a part of the optimal

path.
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Figure 5.12:
If the round-trip regeneration efficiency is assumed to be 100%, the optimal policy
does include several braking events while descending downhill.

However, the generator efficiency is an important consideration in the analysis.

For example, if the powertrain and generator efficiency were included for the results

from the 100% round-trip efficient case, the motor electricity demand would increase

by 4% over the previously determined optimal path. The reason for this loss is simply

that even with a high efficiency of 90% in the motor/generator, the overall efficiency

in regeneration is 81%. Hence while regenerative braking is useful in utilizing force

that would otherwise be dissipated as heat, the low efficiency of the system means

that in the optimal path, braking should be avoided altogether.

5.10 Conclusions

The optimal velocity trajectory to reduce the motor electric energy demand was

investigated in this paper. While traversing varying road grades, the optimal so-

lutions were shown to avoid braking as far as the constraints allowed and not use
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the regenerative braking system. These results were replicated for lighter robots on

much steeper road grades. It was shown that only with unrealistic 100% efficient

power recovery, regenerative braking was a part of the optimal solution.

While regenerative braking and eco-driving are both methods for range extension

of EVs, the former should only be utilized to meet vehicle limitations or traffic

constraints. Utilizing the motor energy minimization strategy, significant energy

reductions up to 24% were shown for changing road grade which translates into a

corresponding increase in range. In other words, a significant increase in driving

range can be achieved without increasing battery size.



CHAPTER VI

Fuel Cell Vehicles

The optimization in this chapter is the power split in a Fuel Cell hybrid vehicle

for military applications. Military vehicles are typically armored, hence the open

surface area for heat rejection is limited. Hence, the cooling parasitic load for a

given heat rejection can be considerably higher and important to consider upfront in

the system design. Since PEMFCs operate at low temp, the required cooling flow is

larger to account for the smaller delta temperature to the air. We will apply scalable

physics-based models of the fuel cell stack and a balance of plant that includes a re-

alistic parasitic load from cooling integrated with existing models of the lithium ion

battery. This model allows the combined optimization that captures the dominant

trends relevant to component sizing and system performance. The baseline optimal

performance is assessed using dynamic programming for a reduced order model, by

assuming a static cooling load required to maintain the stack at the operating tem-

perature with peak efficiency. Pseudo-spectral optimization methods, which enable

fast computation even for larger number of states in the model is then used to con-

sider the additional control of the cooling system. For scaling of the battery in the

hybrid system we can use a modular approach, adding cells in parallel and series. If

the fuel cell operates always with net power above the peak efficiency point, a simple

rule based strategy can nearly recover the optimal fuel consumption achieved with

dynamic programming.

6.1 Introduction

In the previous chapter on electric vehicle optimization, we found the optimal

velocity trajectories that reduces the power demand from the motor. In this last

chapter, we will investigate the optimal power split in a Fuel Cell (FC) hybridized

127
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with a lithium ion battery that powers a vehicle similar to the one modeled previously.

In this chapter, we don’t manipulate the drive cycle, instead we focus on optimizing

the power split between the Fuel Cell and the battery for a given motor power

demand.

The army has been investigating the use of hydrogen as a battlefield fuel to enable

silent mobility. In addition, hydrogen fuel can be produced in theater by electrolysis

of water or reforming hydrocarbon fuels. Proton Exchange Membrane Fuel Cells

(PEMFCs) are a promising alternative to internal combustion engines for this task

due to their silent operation, low heat signature ( 70oC operating temperature), and

higher efficiency (peak near 50%). Fuel cell systems are typically hybridized with a

lithium ion battery pack to help filter the load demand and support the power draw

of the auxiliary balance of plant components such as pumps and blowers during

startup and shutdown.

Air-cooled stacks are attractive for systems with lower power density and those

below about 5kW. The reduction in system mass and complexity is beneficial for

portable applications, as opposed to transportation systems where power density is

critical to reduce the system volume. For higher power density systems, liquid cool-

ing provides the necessary heat rejection from the stack. In the air-cooled systems

considered here, the cathode airflow is also used to cool the cell and regulate temper-

ature. The flow rates for cooling are typically greater than 20x of the stoichiometry

needed for the hydrogen oxidation reaction. In this case, the air blower is the main

parasitic load in the balance of plant, and should be considered in the control design

to obtain the energy optimal power split.

In the following sections, the system model is presented including the stack po-

larization curve, for which the slow dynamic of fuel cell temperature is considered

as a dynamic state. The battery is represented by a single dynamic state, its state

of charge (SOC). Next the optimal power split for several military drive cycles are

investigated using dynamic programming and a static fuel cell efficiency by assuming

the fuel cell is able to operate at the ideal temperature. Finally, the dynamic stack

cooling requirements are considered to maintain fuel cell temperature and again the

optimal power split is calculated using pseudo-spectral co-location methods to enable

the computation with a larger number of states and inputs in the model. Compar-

isons with the optimum power split based on the static efficiency map and rule based
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power split strategies are presented.

6.2 System Models

As stated previously, the vehicles under consideration are a small packbot robot

[92]. The nature of the surveillance missions are such that the path and terrain are

well defined, so in this work we can consider a known vehicle trajectory and optimize

the power split over a given profile power [93].

6.2.1 Fuel Cell Model

The fuel cell voltage, and hence power can be parameterized by the operating

temperature, Tfc, current Ifc, and oxygen partial pressure in the cathode PO2,ca .

In the case of an air breathing PEMFC, we can assume the oxygen partial pressure

is the same as ambient conditions, or 0.21 atm. Fuel cell polarization curves are

typically functions of the current density i =
Ifc
Afc

, where Afc is the stack active area

in cm2. An empirical relationship for the cell voltage is then given by

(6.1)

Vcell = E0,rev(Tfc)+
RTfc
nF

log

(
pH2

√
pO2

pH2O

)
−2RTfc

F
sinh−1

(
Iloss + I

2Ioc

)
−IRion+Bc log

(
1− I
Imax

)
The theoretical open circuit potential E(Tfc, P ) is given by the Nernst equation

[40],

(6.2) E(Tfc, P ) =
4G(Tfc)

nF
= 1.256− 2.26× 10−4 × T

Where 4G(T ) is the temperature dependent Gibbs free energy.

The value of the parameters in the polarization curve can be found in Table 6.2.1.

The fuel cell polarization curve and net power are plotted in Fig. 6.1. The fuel cell

voltage varies slightly, decreasing with temperature as shown. The optimal stack

operating temperature for the Ballard 1020ACS Stack was found experimentally in

[94], however the authors did not consider the parasitic loss of the fan. The effect of

increased membrane resistance due to drying at high temperatures, and flooding at

low temperature are not included in the present model [95, 96], should be considered

in subsequent work.

The fuel cell heat generation is given by
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Table 6.1: Fuel Cell Parameters
Parameter Value
AFC [cm2] 150
mCp 100
iloss [A] 0.001
iOC [A] 0.7
Bc 0.12
α 0.5
Rmb [ohm] 0.05
R [J/molK] 8.314
F [C/mol] 96,485
RB [ohm] 0.18
Np 3
Ns 8
Qb [Ah] 1.875

(6.3) Qgen = (Eth − Vcell)IfcNcells

Where Ncells is the number of series cell in the stack and Eth = 1.256 V. The

fuel cell stack temperature dynamics can be modeled by the following differential

equation,

(6.4) mCp
dTfc
dT

=
Qgen

Ncells

−Qcool

Where mCp is the heat capacity of a single cell and the cell heat removal rate,

Qcool, is given as a function of the per cell flow rate,

(6.5) Qcool =
1

h
(Tfc − Tamb)

(
Wair

Ncells

) 1
1.35

where Wair is the total stack air cooling rate in SLPM, and Tamb is the ambient

temperature of the cooling air. The heat transfer coefficient h = 26 is approximated

from the data in operation manual for the Ballard Mark 1020 fcs stack assumed for

this simulation.

Finally, electrical power required for the cooling fan can be calculated from the

following empirical fan curve,

(6.6) Pcool =

(
k1 + k24Pca

Wair

Ncells

)
Ncells
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Figure 6.1:
Fuel cell polarization curve and power output per cell normalized by cell active area.
The fuel cell output power increases with current, and peaks when the voltage drops
below a critical value.

Where the constants k1 = 1 and k2 = 10−3 describe the base electrical power

of the fan and the work required to overcome the pressure drop across the stack,

4Pca (Pa), for a given flow rate Wair (SLPM).The pressure drop across the stack,

4Pca is given by

(6.7) 4Pca = f
4L

Dh

(
1

2
ρairU

2

)
' 4.65U

Where f is the friction factor, and fRe = 14.2 for a square cross section [97],

L = 60 mm is the channel length Dh = 0.66 mm is the hydraulic diameter, ρair is

the air density. The velocity of air in the cathode channels U can be related to

the flow rate Wair by, U = Wair

NcellsACS60×103
where ACS = 125 mm2 is the total cross

sectional area of the channels. At 100 SLPM of air flow per cell the channel velocity

is around 13.3 m/s. Under these assumptions, a pressure drop of 50 Pa is predicted

by equation 6.7 and a power consumption of 6 W is required for the fan, or 14% of

the peak cell power (43 W). The Reynolds number Re = UDh

vair
' 430U , indicates that

laminar flow is a reasonable assumption for the cathode air channels below about

35 SLPM/cell.

Since the fuel cell generates significant heat, requiring a large cooling flow rate,
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Figure 6.2:
Fuel cell system efficiency including power to drive the fan and regulate the stack at a
given temperature assuming an ambient temperature of 25oC. The black dashed line
indicates the optimum efficiency line for the system as a function of net power and the
corresponding stack temperature. The white region in the lower right hand corner of
the figure is the set of net power and temperature for which steady state operation
is infeasible. That is the cooling power is greater than the stack output at these low
temperatures and high operating current.

the model should account for the auxiliary loads for the cooling systems. The system

efficiency defined as

(6.8) η =
Pfc − Pcool

IfcEthNcells

Where the stack power is the power per cell multiplied by the number of series

connected cells in the stack,

(6.9) Pfc = IfcVcellNcells

The auxiliary loads, Pcool , are non-zero, even at zero fuel cell gross output power,

therefore the system efficiency is low for small net fuel cell power as shown in Fig. 6.2.

Hence, the low power operation, below 10% of the peak power should be avoided,

similar to idle condition in internal combustion engines. The system is representative

of the NREL targets for FC efficiency given in [98], where the maximum efficiency

is at 25% of the maximum load. Also shown in Fig. 6.2 is the optimum efficiency
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as a function of fuel cell net power, representing the corresponding steady state

temperature which yields that efficiency. We can approximate the fuel cell efficiency

from this steady state line and that curve is used as the baseline efficiency of the

fuel cell for the initial optimization study. The fuel cell manufacture also specifies

a maximum temperature of 70 oC, which is used as a constraint in our optimization

routines.

6.2.2 Battery Model

A simple one-state OCV-R type battery model is assumed, where the open circuit

voltage is assumed to be a linear function of SOC for simplicity. The cell voltage is

given by

(6.10) Vb = Ns (VOC(SOC)− IbRb)

current and SOC is the battery state of charge given by the following differential

equation.

(6.11)
d

dt
SOC =

Ib
3600Qb

where Qb is the battery capacity in Ah and Voc is the battery open circuit voltage,

assumed to be a linear function of SOC without loss of generality for simplicity

(6.12) VOC(SOC) = (Vmax − Vmin)SOC + Vmin

Where Vmin = 3 V and Vmax = 4.2 V are the cell minimum and maximum voltage.

The battery current Ib, can be determined from the power by

(6.13) Ib =
VOC(SOC)−

√
VOC(SOC)2 − 4RbPb

NpNs

2Rb

where

(6.14) Pb = Pload + Pcool + Pfc
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6.2.3 Component Sizing

The main system design parameters are the number of battery cells and series

connected fuel cells, which we call the sizing problem. The base system design can be

determined from the simple rule based strategy in equation 6.14, where the total trip

energy is divided between the battery and fuel cell. The number of series connected

FCs for the base system design is Ncells = 3, chosen to put the average fuel cell output

power near the peak system efficiency, and the number of batteries in series Ns = 8

and parallel Np = 3 were chosen to meet the remaining load requirements. The

battery temperature should also be considered as a design requirement, with a not

to exceed temperature, which would limit the choice of cells based on their internal

resistance or number of cells in parallel. The topic of battery temperature will be

addressed later in this chapter. In general, increasing the number of battery cells

would lower the pack resistance and I2R losses which cause heating of the battery.

However, the increased cell count comes with a weight penalty that increases the

mobility power compromising fuel efficiency [99].

6.3 Optimal Control Strategy

6.3.1 Dynamic Programming

To find the optimal split between the battery and fuel cell that minimizes fuel

consumption in the fuel cell, dynamic programming (DP) is used in this paper. The

Bellman Principle for minimizing a given cost function is the basis for DP [51]. For

implementation of the DP algorithm, the open source software DPM is utilized which

can handle the non-linear fuel cell model [52]. The algorithm produces an optimal

input sequence which that will minimize our given cost function of fuel consumption,

which is proportional to the stack current.

(6.15) J =

∫
WH2 =

∫
IfcNfcMH2

2F

The DP was set up with one input of fuel cell power and one state of battery SOC.

In this way, the optimal FC power could be determined while adhering to the battery

SOC constraints as well as minimizing hydrogen consumption. Within the model,

once the FC power is determined, the corresponding current and voltage were found
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Figure 6.3:
Optimal power split between the fuel cell and battery for a given power demand as
shown above. Three different SOC ranges are shown that limit the battery energy to
approximately full, half and quarter.

by interpolating on the polarization curve. Only the initial part of the polarization

curve up to maximum fuel cell power is considered in the interpolation.

The remaining power demand of the drive cycle is to be met by the battery. The

maximum battery power is limited by the resistance and the open circuit voltage

which depends on the battery SOC. These are regulated in DP using the infeasibility

conditions. Hence, from the battery power, the battery current can be determined

which updates the battery SOC for the next time step.

Since DP is a numerical method the optimal results depend on the discretization.

For this problem, the boundary line method was used that ensures all feasible inputs

are considered by predetermining the boundary line between feasible and infeasible

spaces [100]. For discretization, the input and state grids were increased till an

optimal solution was found and using finer grids did not improve the optimal solution.

For a one state, one input problem, DP is computationally quite efficient and can

determine the solution fairly quickly, within a few minutes. On the other hand,

increasing states or inputs can exponentially increase computation time.
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6.3.2 Dynamic Programming Results

The DP results for the optimal power split is shown in Fig. 6.3. The simulations

for a given power demand were carried out for three different ranges of battery

SOC which limited battery energy to approximately full, half and a quarter of the

total battery capacity to isolate the impact of changing pack resistance. As can

be seen clearly, as the battery energy reduces, the power demand from the fuel

cell increases, as expected. But surprisingly, the optimal fuel cell power is shown

to be almost constant for a given battery energy. The variation in load demand

was handled completely by the battery, while the fuel cell supplied almost constant

power. This behavior was replicated across 6 different drive cycles with significantly

varying power demand as well. In all cases, the final SOC was constrained between

the limits given below but the optimal SOC trajectory always ended up discharging

the battery energy as much as possible.

The almost straight line behavior could, therefore, be approximated with a simple

rule-based solution which we define as follows

(6.16) FCenergy = Totalenergy −Batteryenergy

(6.17) FCpower =
FCenergy

TripT ime

For the cases shown in Fig. 6.3, the difference between the fuel consumption from

DP is given in the table below

Clearly, the simple rule-based solution is able to match the optimal DP solution

quite well for all cases and therefore, the simple rule given in equation 6.16,6.17 can

quickly determine the optimal power split between the two power sources.

The reason for the fuel cell power being almost constant across the power demand

is due to the relatively linear fuel cell efficiency with respect to fuel cell power as

shown in Fig 6.4.

From Fig. 6.4, it is clear that switching between different fuel cell powers, changes

the fuel cell efficiency linearly and therefore, a constant FC power would be the

approximate mean power and by extension a mean efficient point. Hence, overall the

fuel consumption is almost the same.
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Figure 6.4:
Operating points of the fuel cell on the efficiency curve for different battery energy with
a 3 cell stack.

6.3.3 Efficiency Results

While the optimal control strategy can be easily approximated with a simple rule-

based solution, the optimal sizing of different components also plays a major role in

determining energy losses due to inefficient energy conversion in the fuel cell. Fig. 6.5

shows the distribution of various components. The useful electric energy produced

in the FC and the efficiency losses are shown separately. Clearly, with the quarter

battery even when the sum of battery and fuel cell power is the same, there is a

slight increase in the cooling power. This increase in cooling power occurs due to a

higher current in the fuel cell required to meet the higher power demand. However,

the significant increase in total energy is caused by the increased efficiency losses in

hydrogen conversion. These efficiency differences come from stack efficiency and not

the power lost to cooling load. As is clear in Fig. 6.4, the quarter battery operates

at the lower end of the efficiency curve.

6.3.4 Charge Sustaining

Till now we have only explored the charge depleting case, where the battery SOC

end is constrained at a lower level than the start so that the battery can be depleted.

Now we will optimize the power split using DP for the charge sustaining case, where
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Figure 6.5: Energy demand from different components for full and quarter battery

the start and end of battery SOC are fixed at the same level. Using this formulation,

the net battery energy will remain constant or become negative as there are energy

conversion losses. However, we have already shown that significant gains in the fuel

cell efficiency can be obtained by operating at an efficient point, hence the battery

can be utilized for changing the operating point of the fuel cell.

When the optimization was run for the charge sustaining case, again we saw a

constant power operation for the fuel cell while the variability in the power demand

was handled by the battery. The FC operating point is somewhere at the average

power point hence when the demanded total power is less than the FC power, the

battery is charged. In this way the battery goes through the same charge-discharge

cycles and end up at the same SOC at the end.

The World Harmonized Light Vehicle Test Procedure (WLTP) drive cycle is an

interesting velocity profile as the power demand varies significantly over time, unlike

the previous case mentioned in this thesis [101]. Hence, now we find the optimal

power split with a significantly varying power demand. Even with the significant

variations, the FC ends up operating at almost its maximum efficiency point or

being shut off. Again, this occurs because significant efficiency gains are possible

at the maximum operating point of the FC. We have shown the results for the

charge sustaining case in Fig. 6.6, where the during extended periods of zero power
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Figure 6.6: Charge Sustaining case for the highly variable WLTP drive cycle

demand, the FC operates at its highest efficiency point and uses this power to charge

the battery. Since this is the optimal result obtained through DP, it clearly means

that charging the battery and then using this energy later in the drive cycle with all

the associated conversion losses, is most efficient.

Therefore, we have shown that even for a drive cycle with a highly variable power

demand and the charge sustaining case, the optimal power split, still tries to op-

erate the FC at a constant power, if possible maximum efficiency point. Another

optimization was carried out where the power demand from the WLTP cycle was

halved. In this case, it can be clearly seen in Fig. 6.7, that the extended periods of

battery charging are now avoided. The peak SOC is only at 0.365, as this is enough

to navigate the last portions of the drive cycle. Obviously, the Fuel Cell behavior

is unrealistic as their are penalties involved in start up and shut down which would

reduce these frequent switches. Such a penalty should be included in future work.

6.3.5 Lower Power Demand

The constant power FC operation results were shown for only the cases, where

the fuel cell operates in a region where the power is greater than the peak efficiency

point. In the cases where the fuel cell power demand was around the20 W (7 W/cell),

the power demand would change due to the non-linear efficiency curve.
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Figure 6.7: Charge Sustaining case for WLTP with half power demand.

The optimal power split in navigating such a trajectory is shown below in Fig. 6.8.

In this example, the optimal strategy for the fuel cell is to switch between zero fuel

cell power and a constant power that corresponds to the maximum efficiency point.

All negative power in the power trajectory is absorbed in the battery to recharge it,

while during positive power demand, the fuel cell power is almost constant except

for some points. The reason for operation at a higher power is due to limited battery

energy despite long charging, where the battery power has to be supplemented by

less efficient higher fuel cell power.

Now since the change in efficiency is significantly different and non-linear, the

simple rule-based solution from equation 6.17. is not able to match the DP results

at all and shows a 20.9% higher hydrogen consumption. The increased consumption

of hydrogen is due to operation in the less efficient operating points of the fuel cell

where the losses due to auxiliary loads significantly reduce efficiency. The results are

shown in Fig. 6.8.

Fig. 6.8 shows the operating points of the DP optimization and the rule-based

constant fuel cell power case. While the figure does not show the time of operation,

we can confirm from the figure that the maximum time of operation is spent at the

maximum efficiency point of 25− 30 W. As explained before some operating points

move into the higher fuel cell power at slightly lower efficiency. At all other times, the
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Figure 6.8:
Optimal power split between the battery and fuel cell for traversing the Churchill B
cycle with the given power demand and the optimal operating points of the Fuel Cell
found from DP with the constant operating point of the rule-based solution.

Table 6.2: Battery to trip energy ratio. Average dynamic efficiency and H2 consumption.

Battery Capacity
Battery to Trip
Energy Ratio Average Eff

FC average
Power [W] H2 Consumed (g)

Full (1.9 Ah)
90-10%

0.6751 54.6722 33.5243 1.1220

Half
90-50% 0.3631 49.0459 65.6476 2.4536

Half
10x Rb 0.3375 48.2568 68.4135 2.5934

Quarter
90-70% 0.1876 42.1410 83.4637 3.6386

Quarter
Nfc=7 0.1877 54.4481 83.6864 2.8158

fuel cell is switched off. The constant power case operates at almost half the power

and a much lower efficiency. In doing so, it is also switched on during the regions

of negative power demand thus it burns hydrogen in a less efficient manner to only

charge the battery. The final battery SOC is same between the DP and rule-based

solution, but hydrogen demand for the rule-based is significantly higher.

6.4 Optimal Control Strategy - Thermal Effects

In the previous results, we see that using a simple rule-based strategy produces

a solution that nearly replicates the optimal solution found using DP if the fuel cell
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power demand is more than 30 W (10W/cell). However, our results were based on a

fixed approximation of auxiliary loads, without considering the actual temperature

of the fuel cell (only the power required to maintain the optimal temperature for

a given load). In the next section, we address the fuel cell thermal dynamics and

control of the cooling fan to account for the actual losses from the cooling system as

the fuel cell heats up producing useable electric power.

Including a thermal model for our problem provides more realistic answers for the

optimal power split. The thermal model has two effects

1. Fuel cell temperature affects the polarization curve thus altering the fuel cell

efficiency

2. Maintaining a temperature involves a cooling load which can be accounted for

by the heat rejection model

The system efficiency to maintain a given temperature at a given current is shown

in Fig. 6.2. The efficiency curve is similar to the NREL curve as the fuel cell efficiency

increases up to 10 W/cell and then starts to decrease with increasing net power

draw. Also, with increasing temperature, the fuel cell stack efficiency increases till

the optimal temperature and then falls significantly due to the increased airflow

required to cool the cell and the additional resistive losses due to drying of the

membrane. From the efficiency contour shown in Fig. 6.2, we can see that the

fuel cell system is most efficient at low loads between 5 − 15 W/cell and medium

temperatures between 45 − 65 oC. The portion shown in white is the region of

negative steady-state efficiency. This means that at these points, the cooling load to

maintain the temperature in steady state is higher than the power produced by the

fuel cell. Transient operation during warmup occurs here, but without using the fan

to maintain temperature a high efficiency can be achieved at these operation points.

6.4.1 Trajectory Optimization using GPOPS

The issue with including a thermal model is that it increases the model inputs

to two by adding the input of cooling air flow and the number of states to two by

adding the state of fuel cell temperature. DP is very sensitive to these dimensions,

and problems which could previously be solved in a few minutes now require a com-

putation time of a few hours. Hence, a more efficient optimization algorithm was

sought.



143

Figure 6.9:
Optimal system trajectory for a medium sized battery. The fuel cell and battery delivery
roughly equal power to the load.

Pseudo spectral methods that use a direct collocation method to approximate a

state using a global polynomial are used for these optimizations [102]. In particular,

the commercially available GPOPS software, that utilizes the Legendre-Gauss-Radau

(LGR) points for the approximation was used in this paper [103]. The model lay-

out for GPOPS is very similar to DP and has been shown to approximate the DP

solutions quite well [104]. The main advantage of using GPOPS is that it is able to

reduce computation time significantly from hours to a few 100 s.

The results for the optimal power split and control of the fan are shown in Fig. 6.9

and 6.10 for three distinct simulation cases highlighted in Table 6.4 corresponding

to the Half (50−90%SOC) and Quarter (70−90%SOC) battery simulations, where

the final SOC was increased to reduce the available battery energy. The ratio of the

battery to trip energy is a useful figure of merit for battery sizing. Fig. 6.9 shows

the results for a medium sized battery, the battery trip to energy ratio for the half-

sized battery about 0.347, requiring 66% of the energy to come from the fuel cell,

however, due to IR losses in the battery, the actual energy is a little bit higher for

highly dynamic cycles.

Since the battery resistance is relatively low compared to the fuel cell, the tran-

sients of the load power are mostly handled by the battery. The fuel cell operates
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Figure 6.10:
Optimal system trajectory for a small battery (quarter sized). Even for this relatively
small battery, the optimal solution tends to avoid charging the battery with a mono-
tonically decreasing SOC profile. Since the stack operating temperature is near the
limit, the cooling flow cannot be decreased at the end of the cycle. When the fuel cell
stack is resize as shown in the right plot from 3 to 7, the cooling requirements reduce
and allow the cell to operate at the peak efficiency point.

near constant power, with slightly higher power in the initial phase when the tem-

perature is low, and the efficiency is relatively high (compared to the steady state

efficiency) since the fan does not need to operate to cool the cell. At the end of

the cycle, again the cooling rate is decreased to save energy, permitting the cell to

warm slightly nearing the peak allowable temperature. In future work, the shutdown

requirements, including purging will be included in the optimization to capture their

impact on energy utilization and final SOC.

The quarter battery simulation shown in Fig. 6.10 shows very poor system effi-

ciency as the FC is required to handle a higher fraction of the load and hence operates

at higher temperatures. Increasing the number of cells in the FC stack from 3 to 7

reduces the power per cell and brings the stack operating power back near the peak

efficiency point as shown in Fig. 6.10. This highlights the importance of combined

battery and FC stack sizing for plug-in hybrid vehicle applications even where the

battery energy is less than half of the total trip energy.
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Figure 6.11: Schematic of Fuel Cell with battery thermal states included

6.5 Battery Thermal Results

Till now this work has only considered the thermal effects of the fuel cell. However,

the battery discharging current also releases heat and causes an increase in battery

temperature. This phenomenon is observed in this section. We use a single state

battery thermal model to track temperature of the battery and impose limits in

the optimization, on the maximum battery temperature. Now the optimal control

problem includes the additional state of battery temperature and must account for

that in the optimization as shown in the schematic in Fig. 6.11.

Here we employed some made-up power demand profiles, to understand the effect

of including battery thermal dynamics in the optimization. The results are shown in

Fig. 6.12, where the in the middle plot an additional battery temperature state TBatt

is also tracked. In the first instance, the battery could not be discharged completely.

This was because the battery temperature rose to its maximum value. The opti-
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Figure 6.12:
After the addition of the battery thermal state, an additional constraint is imposed
on the maximum battery temperature. Within the optimization, rising battery tem-
perature prevents a complete battery discharge.

Table 6.3: Increasing trip time, with increasing trip energy demand
Trip
Time [s] H2 Consumed

Trip
Energy [Wh]

Battery
Energy [Wh]

Batt/Trip energy
Ratio

Mean Efficiency
Fuel Cell

700 0.37 41.26 32.72 0.79 49.57
1400 1.69 82.52 43.05 0.52 49.97
2100 3.37 123.78 47.22 0.38 48.90

mization ensured that the rate of battery temperature increase was steady, and the

maximum temperature is reached only at the end of the drive cycle. Meanwhile, the

battery power was gradually reducing and the fuel cell power gradually increasing at

a steady slope. Clearly, in this case even if the battery had enough stored energy, it

could not be expended for the completion of these profiles.

To explore further we repeated the same profile twice and thrice, thus doubling

and tripling the trip duration respectively. With a longer duration to cover, a larger

part of the stored battery energy could be used towards powering the motor. This

was because the FC, operating power right from the start was higher than in the

short profile, thus allowing a lower current in the battery and a lower temperature

rise. In the trade-off between extracting higher power from the battery in exchange

for higher heating, the optimization pulls lower power for a longer time for maximum

discharge.
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Figure 6.13:
Final battery temperature constraints are raised to 90 oC. In the left plot with final
SOC at 0.5, the battery is discharged to its maximum level without hitting the tem-
perature constraints. On the right plot with the final SOC at 0.1, the battery cannot
be discharged as it hits the maximum temperature constraint.

Having said this, in all three cases, the battery is not completely discharged.

Moreover, as the trip duration increases, the hydrogen consumption increases sig-

nificantly, and the battery to trip energy ratio decreases as shown in Table 6.5. It

is clear that only a slight increase in battery energy is possible and the higher trip

energy demand is met by increased FC power. Also from the last column showing

the mean efficiency, we can see that efficiency losses in the FC were not responsible

for increased hydrogen consumption.

Further simulations were carried out with an increase in the battery temperature

constraint to 90 oC as shown in Fig. 6.13. In the left plot, the minimum SOC level

is kept at 0.5, thus the battery is able to discharge completely without hitting the

maximum temperature constraint. Additionally, the constant power operation of

the FC is also maintained. However, in the right plot, when the minimum SOC

constraint is lowered to 0.1, the battery is not able to discharge completely and hits

its temperature constraints. Now we see a power split, where the battery power

reduces slowly, while the FC power correspondingly increases.
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6.6 Conclusions

This work highlights the importance of combined sizing and power split for PEMFC

hybrid systems. In the case simulated here, the low battery resistance resulted in a

nearly constant FC power output when using a simple 1-state battery model with

static FC efficiency and dynamic programming. The significant loss in efficiency in

FC ensures that the optimal solution is to switch between the maximum efficiency

point and FC off. All load leveling was done by the battery. Including the dynam-

ics of FC temperature resulted in an improvement in system efficiency, due to the

reduced cooling requirement during stack warmup as compared to the rule-based

strategy and dynamic programming results with a static FC model. The rule-based

strategy, however, can be effective when the fuel cell operates with powers above the

peak system efficiency, where the efficiency decreases gently with increasing power

and is almost linear. The effects of battery temperature and battery thermal limits

were also considered.



CHAPTER VII

Conclusions and Future Work

While the scepticism is justified as far as around the practicability of fully au-

tonomous vehicles in the near future, the hype surrounding it’s imminent introduc-

tion has died down. For now, sophisticated technologies that have been developed

for lower levels of vehicle autonomy that serve as a sort of Adaptive Cruise Control

(ACC) system. These systems are increasingly being sold as standard equipment

in mid-size sedans in the United States. With their focus on preventing road acci-

dents, we can expect further liability, economic and regulatory efforts to popularize

these systems. The velocity optimization improvements explored in this thesis are

all applicable for an ACC type implementation.

This work develops a framework for measuring the Fuel Economy (FE) of self-

driving algorithms as a close approximation of present testing. This framework will

assist regulators in developing testing procedures to for evaluating current and up-

coming algorithms. It has been already shown that FE improvements are not an in-

evitable consequence of autonomous driving. But applying the framework developed

in this thesis present compelling arguments for implementation of those algorithms,

especially ones that reduce CO2 emissions.

Within this framework, velocity smoothing has demonstrated significant bene-

fits in terms of the FE improvement and emissions reduction possible, with offline

optimization using full preview. These results have been validated with chassis dy-

namometer testing at the closely regulated laboratory of the US EPA. It was shown

in simulation that with a limited accurate preview of just 1.5 s, most of the FE bene-

fits can be retained. And further with an inaccurate preview for 10 s using a velocity

prediction algorithm, it could still deliver up to 10% increase in FE. These improve-

ments have come about by using a simple, easily implementable double integrator

149
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model, that does not require detailed vehicle characteristics. Additionally, it’s been

shown that minimization of velocity deviations is also desirable from a passenger

comfort perspective. These findings show that, ACC with such MPC optimization

can and should be implemented.

Further, this work has evaluated the tractive energy minimization problem, which

has been analytically shown to result in a pulse and glide velocity trajectory. It was

shown in simulation that while this trajectory has a lower power demand at the

wheels, due to the high speed low torque demand of the glide portion of this drive

cycle, a disproportionately high fueling rate is demanded. This wipes out all the

gains of a lower energy demand over the drive cycle and results in almost the same

FE as velocity smoothing. Moreover, since these trajectories are undesirable from a

passenger comfort perspective they should not be implemented.

This work also finds that the impact of velocity smoothing on electric vehicles has

also been improved as the modified velocity trajectory technique has increased the

battery range by 15%. More interestingly, this work showed that there is a trade-off

between eco-driving and regenerative braking as methods for range extension in a

battery electric vehicle, and using these techniques in combination doesn’t add up.

Finally, these optimization techniques have been applied to optimize the power

split in a Fuel Cell (FC) hybridized with a Lithium Ion battery. Optimization showed

that due to the relatively low resistance of the battery in comparison to the FC, load

leveling was done by the battery while FC operated at constant power, if the power

demand was greater than the peak efficiency point. These results hold even for the

charge sustaining case and even with the introduction of FC thermal states. FC

sizing was an important factor in reducing the cooling power demand and balance

of plant component sizing was also investigated. The only constraint imposed was

a battery temperature limit due to battery discharging and this forces increased FC

operation without full battery discharge.

Overall, this work has explored a large range of optimization possibilities for

minimization of fuel consumption for algorithm driven vehicles. It has conceived of a

framework to evaluate fuel consumption, and within that framework has implemented

optimization for a range of gasoline engine sizes, electric vehicles and a fuel cell

hybrid.
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7.1 Future Work

The work in this thesis has raised some questions that require further investiga-

tion. These are listed below:

7.1.1 Co-optimization

It was shown that for fuel consumption minimization an accurate model of the

vehicle’s powertrain is required for effective optimization. However, an accurate

powertrain model significantly increases the number of states and computational

complexity involved in processing it. An analysis is required on a powertrain to

understand these significant losses and effectively reduce the order for optimization

effectively. On the other hand, a better optimization technique might be applied

such as pseudospectral methods which could reduce computational time by adopting

approximations. This work can also be extended to include other technologies such

as cylinder deactivation or discreet engine operating modes like HCCI which have a

better efficiency albeit for a limited power range.

7.1.2 Platoon Formation

This thesis did not address the problem of drag co-efficient reduction as this would

require CFD modeling of various platoon formation. However, there is also additional

opportunities for optimization of an ideal platoon formation that locates different size

vehicles in the formation such that the overall fuel consumption of the entire group is

reduced. For example, an electric vehicle might drive more aggressively to cover for

vehicles powered by large gasoline engines, in order to reduce their drag coefficients.

7.1.3 Liquid Cooled Fuel Cells

The work on Fuel Cell hybrids only explored an air cooled fuel cell stack with

limited thermal states for the FC and battery. However, this work can be extended to

study a liquid cooled stack by adding a physics-based model of membrane hydration

and flooding to guide the optimal power split. Such an optimization should consider

a full model coupling including dynamic membrane water content, stack temperature

and channel humidity.
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