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ABSTRACT

Cloud computing has emerged as a key technology in many ways over the past

few years, evidenced by the fact that 93% of the organizations is either running

applications or experimenting with Infrastructure-as-a-Service (IaaS) cloud. Hence,

to meet the demands of a large set of target audience, IaaS cloud service providers

consolidate applications belonging to multiple tenants. However, consolidation of

applications leads to performance interference with each other as these applications

end up competing for the shared resources violating QoS of the executing tenants.

This dissertation investigates the implications of interference in consolidated cloud

computing environments to enable fairness in the execution of applications across

tenants. In this context, this dissertation identifies three key issues in cloud computing

infrastructures. We observe that tenants using IaaS public clouds share multi-core

datacenter servers. In such a situation, we identify that the applications belonging

to tenants might compete for shared architectural resources like Last Level Cache

(LLC) and bandwidth to memory, slowing down the execution time of applications.

This necessitates a need for a technique that can accurately estimate the slowdown in

execution time caused due to multi-tenant execution. Such slowdown estimates can

be used to bill tenants appropriately enabling fairness among tenants.

For private datacenters, where performance degradation cannot be tolerated, it

becomes critical to detect interference and investigate its root cause. Under such

circumstances, there is a need for a real-time, lightweight and scalable mechanism

that can detect performance degradation and identify the root cause resource which

xiii



applications are contending for (I/O, network, CPU, Shared Cache).

Finally, the advent of microservice computing environments, calls for a need to

rethink resource management strategies in multi-tenant execution scenarios. Specifi-

cally, we observe that the visibility enabled by microservices execution framework can

be exploited to achieve high throughput and resource utilization while still meeting

Service Level Agreements (SLAs) in multi-tenant execution scenarios. To enable this,

we propose techniques that can dynamically batch and reorder requests propagating

through individual microservice stages within an application.
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CHAPTER I

Introduction

The design choice of datacenters revolves around the use of homogeneous high-

performance hardware including SSDs for storage, high bandwidth network, CPUs

and compute heavy GPUs [123]. In this design style, a management service layer like

a hypervisor is provisioned for enabling efficient utilization of underlying infrastruc-

ture, streamlined processing of applications, and cost-effective growth of datacenters

resources [41, 65, 16, 118]. Such an approach unifies high-performance datacenter

resources together with state-of-the-art hypervisor technologies for optimizing the

execution of a wide variety of applications. An execution environment with such ca-

pabilities enables co-location of applications belonging to multiple tenants on a single

system, improving resource utilization of the entire datacenter.

However, co-location degrades the performance of users’ applications in many

situations [71, 37, 133, 27, 95, 97, 84, 103]. Hence, the issues germinating from co-

location might spawn a variety of problems creating an unfair execution scenario.

For example, tenants co-located in the same server in an Infrastructure-as-a-Service

public cloud might share microarchitectural resources like Last Level Cache (LLC)

and bandwidth to memory [71, 22, 103]. This situation slows down the execution of

these applications. As a result, such a slowdown will increase the cost incurred by

each tenant giving rise to an unfair execution scenario.
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Motivated by these limitations, there has been a wealth of prior work aiming to

improve the execution efficiency of datacenters [71, 37, 133, 27, 95, 97, 84, 103]. These

include a wide variety of hardware enabled approaches and software-based approaches

that are existing either as standalone runtime systems or integrated as a part of the

operating system/hypervisor. This dissertation argues that the key to enabling har-

monious application execution in consolidated datacenters is to realize a mechanism

for detecting, identifying, estimating and mitigating interference. Such a mechanism

should incur low-performance overhead, should be platform-agnostic, highly accurate

and should be compatible with previous, existing and future generation architectures.

Towards this end, we identify and characterize such unfair execution scenarios and

provide solutions categorically based on the nature and requirement of each datacen-

ter (public clouds, private datacenters, and serverless computing infrastructures).

1.1 Motivation

This section motivates the need for techniques to enable fairness in cloud com-

puting infrastructures. Towards this end, we compartmentalize challenges that exist

in current generation clouds based on the type of datacenter and provide solutions

based on the requirements of tenants utilizing a specific datacenter type.

1.1.1 Interference Estimation

Infrastructure as a Service (IaaS) cloud computing enables users to take advan-

tage of the computing resources under the pay-as-you-go scheme by paying an hourly

price per running application [11]. Customers renting IaaS public clouds now can

choose resource fragments at varying granularity – the number of virtual CPUs, the

amount of memory and storage size, based on their usage requirements. Cloud ser-

vice providers utilize virtualization to instantiate Virtual Machines (VMs) that hosts

tenant applications based on their requested configurations.

2



In light of the significant potential for improving resource utilization, cloud ser-

vice providers consolidate VMs belonging to different tenants into a single server.

This causes applications to slow down due to the sharing of specific architectural

resources like Last Level Cache (LLC) and DRAM bandwidth [71, 37, 133, 27, 79].

The increased execution time that applications are subjected due to slowdown reflects

directly on the price paid by the users under the pay-as-you-go scheme creating an

unfair pricing scenario in IaaS public clouds.

In order to enable fair pricing in public clouds, a solution is needed to quantify

slowdown of an application due to its co-runners [22, 104]. The slowdown is generally

quantified as the ratio of the execution time of an application when it is running along

with the co-runner to the ratio of the execution time of the application when it is

running alone. In this work, we design a runtime system that can accurately estimate

the slowdown exhibited by individual applications on shared cloud infrastructures.

1.1.2 Interference Detection and Mitigation

The design of private datacenters centers is centered around utilizing high-performance

hardware including SSDs for storage, high bandwidth network, CPUs and compute

heavy GPUs all in a single datacenter infrastructure. Such private datacenter infras-

tructures when coalesced with state of the art virtualization technologies offer users

with isolated fragments of high-performance computing resources suited for housing

a wide variety of applications.

However, there exist many situations where the performance of users applications

might be degraded [95, 97, 84, 103]. For example, in VSAN (Virtual Storage Area

Network), the virtual disks of a VM (Virtual Machine) are split into chunks which are

then replicated and distributed to multiple physical disks on different hosts in order

to provide high data availability. Under such circumstances, several VMs will end

up sharing the same physical disk, which may potentially lead to a noisy neighbor

3



scenario. In such a scenario, a VM running a particular I/O heavy workload, causing

significant contention with other VMs at disk I/O, will affect the neighboring VMs

latency/throughput.

Similarly, in many instances, hypervisor software may oversubscribe server re-

sources in order to increase resource utilization. In such situations, it is common

to observe CPU, Last Level Cache, Memory Bandwidth and Network contention

due to noisy neighbors. The effect of interference can be avoided by scheduling

potentially contentious VMs on different machines. However, this requires datacen-

ter providers/hypervisor software to identify problematic VMs (VMs that affect the

performance of co-running applications) and also to determine the root cause of con-

tention for each of the affected VMs.

In order to abstract private datacenter users from the effect of contention, we

need a solution to detect contention and investigate its root causes during runtime.

In other words, we need a system that can pinpoint an antagonistic VM and identify

the root cause resource at which contention occurs (CPU, I/O, Network, Storage).

In this work, we design a real-time system that utilizes system software telemetry

to detect contentious VMs and identify the root cause resource at which contention

occurs.

1.1.3 Guaranteeing QoS for Latency Critical Applications

Multi-tenant execution has been explored actively in the context of traditional

datacenters and cloud computing frameworks towards improving resource utilization.

Prior works that study multi-tenant execution have proposed to co-locate high prior-

ity latency sensitive applications with other low priority batch applications [71, 126].

However, multi-tenant execution in a serverless computing framework would operate

on a fundamentally different set of considerations/assumptions. Firstly, execution

scenarios in serverless computing frameworks house multiple latency critical appli-
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cations belonging to different tenants [47, 120]. This is uncommon in virtualized

public clouds where there is limited knowledge of the executing application. As a

result, guaranteeing user defined SLAs under such execution environments becomes

extremely difficult. Secondly, serverless computing framework is priority agnostic, in

contrast to traditional datacenters where batch applications are given low priority

while latency sensitive applications are given a higher priority. In a serverless com-

puting framework, meeting the service level agreements (SLA) of every individual

tenant is critical. Lastly, resource sharing in multi-tenant serverless execution sce-

narios happens at a microservice level granularity. This is in contrast to traditional

datacenters where resource sharing is characterized by contention at LLC, CPU, I/O,

and network.

These fundamentally unique characteristics of serverless computing frameworks

motivate us to rethink the design of runtime systems that drive multi-tenancy in such

frameworks. For this purpose, we design a system that enables consolidated execution

of queries belonging to multiple tenants in a serverless computing framework.

1.2 Enabling Fairness in multi-tenant Cloud Computing In-

frastructures

The goal of this dissertation is to enable fairness in multi-tenant cloud computing

infrastructures. This section gives a brief introduction of the techniques used for

enabling fairness in cloud computing infrastructures.

1.2.1 Caliper

Accurately estimating slowdown at runtime can be utilized to enable fair pricing

in IaaS public clouds. Towards this end, there have been many efforts that try to

estimate slowdown of applications at runtime [76, 31, 22, 40, 108, 126, 102, 84, 71].
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Prior software approaches [22, 40, 126, 108] utilize an online runtime system that

periodically pauses all the applications except one for a short time, thus allowing

the running application to monopolize the computing resources on the system during

those pause periods. The performance of the running application during such pause

periods is used to determine slowdown.

A few other hardware enabled approaches [76, 31, 30, 102] designed to estimate

slowdown are based on a methodology that aims at modeling interference bottom

up as an aggregate of interference across multiple processor subsystems. However,

this may prove to be prohibitively difficult as core counts increase and processor

architectures accrue performance improvement mechanisms that are ever larger in

number and complexity. These approaches leave several challenges that pose barriers

to its adoption:

1. Low accuracy: The most recent state-of-the-art technique addressing this

problem [22] neglects the notion of application phases and pauses co-

running applications periodically at millisecond granularity. This methodology

shows estimation errors of up to 40% leaving significant room for improvement

in accuracy.

2. High overhead: It has been reported that datacenter providers tolerate no

more than 1% to 2% degradation in performance to support dynamic monitoring

approaches in production [92]. However, the execution time overhead of the

state-of-the-art software interference estimation technique can be as significant

as 12% [22].

3. Non-reliable (or less scalable): The accuracy and the overhead of prior

approaches [22, 102, 40, 76, 31] deteriorate as the number of co-running appli-

cations increases. As the number of cores on modern servers keeps increasing,

deploying a technique that inadequately supports current and future levels of
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multi-tenancy would not be a preferred choice.

4. Priori knowledge: Another class of static techniques requires a priori [71, 37]

knowledge about all workloads and the profiling for each type of workload. This

requirement limits the types of workloads for which such a technique can be

applied and, more broadly, the kind of datacenters that can adopt the approach

(e.g., public clouds).

To overcome these challenges, we design a mechanism called micro-experiments –

short-lived measurements of application performance under different conditions – to

accurately estimate the interference experienced by applications due to performance

degradation. On top of this mechanism, we introduce Caliper to estimate slowdown

of an application at runtime with high accuracy and negligible overhead. To enable

Caliper, one of the most significant challenges is to accurately, efficiently, and con-

tinuously detect phases within applications. In this work, we design a solution to

identify all such phases by leveraging performance monitoring units (PMUs).

1.2.2 Interference Detection and Inestigation

Private clouds are critical for tenants that require high-performance datacenter

infrastructure. In such infrastructures, it becomes the responsibility of the cloud

service provider to abstract its users from noisy neighbors who contend for shared

resources. An important step towards solving this problem is to pinpoint each noisy

neighbor and the resource for which contention occurs. However, there exist three

major challenges while tackling the datacenter contention problem.

1. Absence of Apriori Application Profile. New applications are getting

executed in the cloud infrastructure, for which the datacenter operators do not

have any prior performance profile. This makes the Detection task challenging
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as there is no baseline performance to compare against to detect a change in

the QoS metric.

2. Multiple Sources of Contention. Different applications exert stress on

different subsystems of the stack (one application might only stress network

while other application might have a large number of I/O requests stressing

I/O system stack), requiring Investigation task to handle multiple sources of

contention.

3. Low Runtime Overhead. The technique needs to perform both these tasks

with very low-performance overhead in order to quickly adapt to the application

runtime environment.

Prior relevant body of work solves these challenges partially. Bubble-up [72] and

Cuanta [37] require a priori knowledge of application behavior restricting its appli-

cability in the Detection task. While Application Slowdown Model (ASM) [103],

Geiko [97], and Seawall [95] detect performance degradation, they are unable to iden-

tify the source of contention, restricting its applicability in the Investigation task.

Finally, the third category of work, Deepdive [84] and CPI2 [130], have very high

overhead in performing these two tasks, making it difficult to deploy them at runtime

systems.

To tackle these challenges, we present Proctor, a runtime system that continuously

monitors, automatically detects and investigates a wide range of performance issues

directly affect- ing the Quality of Service of VMs running in a cloud-scale datacenter,

with high accuracy and low-performance overhead.

1.2.3 Guaranteeing QoS at microservice computing frameworks

Improving the resource utilization of serverless computing infrastructures is a

critical and unsolved problem. There are several steps that we undertook towards
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identifying and solving this problem.

• Analysis of microservice execution scenarios. Our investigation observes the

key differences between traditional and microservice-based computing platforms –

primarily in the context of visibility into the underlying microservices that exist

providing exposure to application specific QoS metrics.

• Accurate estimation of completion time at individual microservice stages. We

provide insights towards building a model that could estimate with high accuracy

the completion time of individual requests at the different microservice stages and

hence, the overall time of completion.

• Guarantee end-to-end SLAs by exploiting stage level SLAs. By utilizing

the completion time predictions from the model, we derive individual stage SLAs

for each microservice/stage. We then combine this per-stage SLA requirement with

our understanding of end-to-end latency and slack. This enables an efficient request

scheduling mechanism towards the end goal of maximizing server throughput with-

out violating the end-to-end SLA.

Using these techniques, we built GrandSlam, a holistic runtime framework that

enables consolidated execution of queries belonging to multiple tenants in a serverless

cloud computing framework. GrandSlam does so by providing a prediction based on

identifying ”safe” consolidation to deliver satisfactory QoS (latency) while maximizing

throughput simultaneously.

1.3 Summary of Contributions

The specific contributions of this dissertation are as follows.

1. Caliper: This dissertation presents Caliper, a novel phase aware interference

estimation technique that is accurate, lightweight and can be used to estimate

slowdown of applications belonging to multiple tenants running in public clouds.
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This, in turn, can be utilized to enable fair pricing among tenants using IaaS

public clouds.

2. Proctor: This dissertation presents Proctor, a runtime system, continuously

monitors VMs in a datacenter to automatically detects and identify the sources

of contention, with low overhead and high accuracy. We envision Proctor as a

guide, that can direct the corrective measures for mitigating interference.

3. GrandSlam: This dissertation presents GrandSlam, a runtime system to guar-

antee SLAs among applications utilizing microservices in a serverless computing

platform. This enables an efficient request scheduling mechanism towards the

end goal of maximizing server throughput without violating the end-to-end SLA.
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CHAPTER II

Background and Related Work

In this Chapter, we give a background and survey the related literature to the

topics covered in this dissertation. These include prior efforts in estimating slowdown

due to interference online, as well as techniques that have been used to enable co-

location to improve datacenter server utilization and techniques to detect interference

due to contention at I/O, network, CPU and Last Level Cache.

2.1 Interference Estimation

There have been many prior studies to detect performance interference in a variety

aspects of architectural resources. We look first into the hardware enabled approaches

and then address the prior work that utilizes system and OS level approaches for

detecting interference.

Hardware techniques: There are several approaches that try to estimate

slowdown due to contention in shared caches, memory controller and bandwidth [83,

31, 105, 90]. Nesbit et al. employed the network fair queuing model in the memory

scheduler to meet the fairness [83]. Mutlu and Moscibroda focused on DRAM specific

architectural features such as row buffers and DRAM banks [76]. They utilized mem-

ory scheduling techniques to ensure the fairness between multiple threads. Ebrahimi

et al. extended the fairness problem in memory subsystems by including shared last
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level cache and memory bandwidth [31]. This work focused on the source incurring

performance interference and proposed throttling mechanism by controlling injection

rates of requests to alleviate the contention of shared resources. Suh et al. firstly

discussed the cache partitioning scheme to efficiently use the shared resources [105].

Qureshi et al. proposed utility based cache partitioning technique to achieve high

performance [90].

Software/Systems approaches: There are many efforts introducing software

frameworks and proposing the new designs of operating systems [37, 71, 126, 108,

82, 86, 68]. Q-Cloud measures the resource capacity for satisfying QoS in a dedi-

cated server called as a staging server and then performs placement decisions based

on choosing the right server that will be profitable to minimize interference [82]. To

accurately estimate the performance interferences without profiling on a dedicated

server, Bubble-up [71] and Cuanta [37] designed the synthetic workloads to under-

stand the degree of interference when co-locating applications. Meanwhile, Soares et

al. studied the concept of pollute buffer in shared last level caches to prevent filling the

shared caches as non-reusable data. Their work focused on improving the utilization

of shared caches through OS-level page allocation [98]. Zhuravlev et al. extended the

CPU scheduler to alleviate the some of the interferences. The goal of this work is to

schedule the threads by evenly distributing the load intensity to caches [133]. Blago-

durov et al. proposed that the scheduler needs to consider the effects of NUMA [21].

Also, there are numerous prior studies to solve the contention problems such as shared

last level cache and NUMA by scheduling virtual machines [6, 91, 69].

2.2 Interference Detection and Mitigation

In this section we discuss work relevant detection and mitigation of interference

causing application/VM behavior and diagnosing its root causes. We present related

work that attempts to mitigate CPU, I/O and network contention.
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VM Management: State-of-the-art VM management tools such as vSphere [41],

XenServer [124] or resource management tools utilized in IaaS public clouds like Mi-

crosoft Azure [67] and Amazon Web Services [11] performs VM placements naively

using primitive factors and metrics. For example, VMware’s Distributed Resource

Management (DRM) [39] takes into account factors like load balancing and power

management as factors for optimal placement of VMs. However, this is agnostic to-

wards performance issues due to disk failures, congestion in the network or contention

by neighboring VMs. Proctor can complement such systems by informing datacenter

providers information pertaining to problematic VMs and its root causes. This can

motivate smart VM placement strategies.

Contention Detection Techniques Major classes of contention detection tech-

niques focus on a particular aspect present in the system rather than providing an

integrated approach. Zhuravlev et al.extended the CPU scheduler to alleviate the

degree of interferences in a native system. The goal of this work is to schedule the

threads by evenly distributing the load intensity to caches[134]. Shieeh et.al [95]

tries to eliminate disk contention by utilizing a log-structured design for disk arrays.

Parda [38] and IOFlow [110] tries to address contention at the disk level by observ-

ing latency of I/O requests and re-ordering disk queues. Seawall [96], EyeQ [55]

and Hadrian [15] focus mainly on isolating interference in network in multi-tenant

environments. However, all these techniques fail to provide an integrated solution

for hyperconverged environments where contention exists at storage, network and in

CPUs.

A Priori Knowledge Another class of applications observe correlation between

various system parameters to detect performance issues in runtime and its root

causes [4][119][125][77][63]. Typically, these techniques leverage baseline performance

from a set of training applications and provide predictive solutions at runtime for un-

known applications. However, the hyper-parameters present in current day systems
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are too complex to create a generalized model for prediction. Moreover, in current

generation datacenters, we observe system configurations to be highly dynamic which

is directly reflected on the application’s performance. Hence, in addition to being ag-

nostic towards the nature of the application, it becomes mandatory for our solution

to be adaptable towards changing characteristics of system as well as newer systems.

2.3 Guaranteeing Response Latencies in Microservice Exe-

cution Frameworks

Prior literature on guaranteeing response latency fall into two primary categories:

Improving QoS without violating latency constraints, managing SLAs in multi-stage

applications.

2.3.1 Improving QoS without Violating Latency Constraints

Prior work on addressing response latency variation and providing quality of ser-

vice (QoS) guarantees have primarily been in the context of traditional datacen-

ters [111, 71, 126, 28, 70]. Bubble-Up [71] and Bubble-Flux [126] quantify contention

for last level cache capacity and memory bandwidth towards enabling co-location of

a latency critical application alongside batch applications. However, these techniques

prioritize the latency critical user-facing application and end up significantly hurting

the performance of the co-running batch applications. Paragon [28] and Whare-

Map [70] utilize runtime systems using machine learning techniques like collaborative

filtering and sensitivity analysis towards identifying the right amount of resources re-

quired for guaranteeing QoS in heterogeneous datacenters. However, these techniques

are designed for traditional datacenter applications like Memcached, Web Search etc.

There is some prior literature that attempts to estimate performance at co-located

situations in accelerator environments [56, 25, 24, 64, 5, 109, 113, 112]. Baymax [25]
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predicts the behavior of tasks executing in a GPU accelerator context. Prophet [24]

models the interference across accelerator resources in co-located execution scenarios.

However, neither of these techniques cater to the needs of a microservice execution

framework, as they do not tackle the challenge of providing solutions for guarantee-

ing latency for applications containing multiple stages. A small body of prior work

also focusses on batch processing OLD requests [43, 74]. In addition to that, none

of these techniques have attempted to perform dynamic batching which is critical

in improving the throughput when DNN based artificial intelligence applications are

being executed.

2.3.2 Managing SLAs in Multi-Stage Applications

Recent prior works have identified the advantages of architectures/applications

that are composed of multiple stages, especially its ease of deployment [53, 59, 115,

89, 48, 106, 54, 46, 32, 58]. Under such scenarios, support for multi-tenancy as

well as schemes to abstract users from the impact of multi-tenancy would be crit-

ical. However, explorations in this direction by companies such as Facebook [60],

Microsoft [53, 89] and academic institutions neglect multi-tenant execution scenar-

ios [116, 127]. However, the most relevant prior works that have looked into multi-

stage applications from the academic standpoint are as follows:

TimeTrader. [116] addresses the problem of meeting application specific latency

targets for multi request execution in Online Data Intensive applications (OLDIs).

Towards meeting that objective, they employ a mechanism that tries to reorder re-

quests that contain varying slack using merely an Earliest Deadline First schedul-

ing methodology. However, this technique assumes that the applications contain a

single processing stage and fails to acknowledge the intrinsic latency variance across

multiple stages. Hence, it deprioritizes requests assuming to contain relaxed latency

constraints, however, would be subjected to a bulk of compute at its later stages.
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This leads to diminished effectiveness in mitigating response latency for multi-stage

applications, as we quantitatively show in Section 5.3.

PowerChief. [127] seeks to identify the bottleneck stages present in multi-stage

voice and image based intelligent personal assisstant applications towards employing

dynamic voltage frequency scaling to boost partial execution stages. However, Pow-

erChief does not strive to guarantee SLAs at a user/request level. Furthermore, the

proposed solution is not generalized for a microservice execution framework which

handles requests from multiple tenants and focuses on a particular class of applica-

tions.
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CHAPTER III

Caliper: Interference Estimator for Multi-tenant

Environments Sharing Architectural Resources

One of the major drawbacks of datacenter co-location is the slowdown caused to

the execution of applications. Under such circumstances, it is essential to have the

ability to estimate the slowdown of applications accurately. Such slowdown estimates

could enable resource allocation of shared resources to each application in a slowdown

aware manner motivated towards providing strong Quality-of-Service (QoS) guaran-

tees. Also, in Infrastructure-as-a-Service (IaaS) clouds, such a mechanism could be

used to bill its customers appropriately based on the amount of slowdown that their

applications have been subjected to by the co-running applications [102, 22].

In this study, we design a mechanism called micro-experiments – short-lived mea-

surements of application performance under different conditions – to accurately esti-

mate the interference experienced by applications due to slowdown. On top of this

mechanism, we introduce Caliper to estimate slowdown of an application at runtime

with high accuracy and negligible overhead. A micro-experiment is a period during

which the performance of an application is abstracted from the interference incurred

by co-runners, using which an accurate estimate of its slowdown can be obtained.

One of the most crucial challenges while utilizing micro-experiments for estimating

the slowdown is to determine when micro-experiments should be performed. We ob-
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serve that interference does not change significantly within a single application phase.

Thus, the problem of identifying when to perform a micro-experiment boils down to-

wards identifying phases of applications at runtime while executing with co-runners.

Triggering a micro-experiment on the application at each of its phases once allows

the runtime to estimate co-runner interference with negligible overheads accurately.

To enable Caliper, one of the most significant challenges is to accurately, effi-

ciently, and continuously detect not only phases within applications but also phases

in application’s co-runners. In this work, we design a solution to identify all such

phases by leveraging performance monitoring units (PMUs). Since each application

has different sensitivities towards architectural resources, we identify the right set of

PMU types that can differentiate phase changes across a wide variety of unknown ap-

plications. We perform cross-validation on these selected PMU types on a spectrum

of application workloads to demonstrate generality.

With Caliper, we are able to estimate the slowdown at multi-tenant execution

scenarios accurately with a mean absolute error of 4% and negligible overhead of less

than 1% for a broad spectrum of workload scenarios when executing 16 applications,

making it readily deployable in current and future datacenters.

3.1 Motivation

In this section, we introduce key challenges that are present while co-locating

multiple batch applications in multi-core systems. We then illustrate the state-of-

the-art techniques that try to address these challenges and their limitations.

3.1.1 Multi-tenant Execution of Batch Applications

Modern computer systems host a wide range of applications of varying nature.

These applications are broadly classified into two types (1) batch applications and

(2) user-facing applications. Applications which are of batch type are throughput
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oriented and not user-facing. This type of application represents today’s workloads

that execute in datacenters and clouds. Consolidation of such applications to increase

the resource utilization of the system is a common trend [11, 13]. On the other hand,

another class of applications like Memcached and Web Search is latency critical/user-

facing and hence is required to meet strict Quality of Service (QoS) guarantees. As a

result, the consolidation of such latency critical applications with other applications

is generally avoided as co-location will affect the latency of these applications signif-

icantly [132, 1, 73]. These applications are typically housed in private datacenters or

run on dedicated machines that guarantee Service Level Agreements (SLAs).

Although the consolidation of batch applications onto a single server increases

the resource utilization, it has a direct impact on individual application performance.

State-of-the-art virtualization technologies try to provide performance isolation at

some levels. Current hypervisors perform:

1. Strict CPU reservations by disallowing sharing of CPU cores among different

applications [65, 16].

2. Statically partitioning DRAM memory and disk space among different applica-

tions [65, 16].

3. Static partitioning of I/O and network bandwidth proportionally among appli-

cations using SR-IOV [57, 87].

However, applications are still slowed down mainly due to contention at the last-

level cache (LLC) and main memory bandwidth. The resource contention at the

LLC and main memory bandwidth increases the overall memory access latency, sig-

nificantly slowing down the execution of different applications. Hence, it becomes

critical to identify and gauge the slowdown applications are subjected to when they

are housed at multi-tenant execution scenarios. As a major step towards solving this
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problem, prior approaches try to precisely estimate the amount of slowdown each

application which is subjected to in multi-tenant execution scenarios [102, 22].

3.1.2 Limitations of the State-of-the-art Approach

Broadly, state-of-the-art approaches that try to estimate slowdown are classified

into two different categories – static approaches that require a priori knowledge

about the applications executing and dynamic approaches which can perform

slowdown estimation for unknown applications. In this section, we enumerate the

limitations of the state-of-the-art static and dynamic approaches that try to solve

this problem.

3.1.2.1 Static Approaches

Prior static approaches like Bubble-Up [71] and Cuanta [37] have shown to be

effective at generating precise performance predictions at co-located execution sce-

narios with high accuracy. However, there exist several primary limitations of the

work, including requiring a priori knowledge of application behavior and the lack of

adaptability to changes in application dynamic behaviors. These limitations restrict

the possibility of deploying such static approaches for a variety of datacenter infras-

tructures which encounter unknown applications on a regular basis. (e.g., private

datacenters and public clouds)

3.1.2.2 Dynamic Approaches

Another class of prior works, that does not require a priori knowledge, has at-

tempted to estimate slowdown of applications due to shared cache capacity and/or

memory bandwidth interference [22, 126, 102]. The most recent prior work by Breslow

et al. [22] is software based that utilizes a technique called POPPA. The main motiva-

tion behind POPPA towards estimating slowdown is based on modeling interference
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as a ratio of solo and co-located execution performance. While co-located application

performance can be directly measured at runtime, it is challenging to estimate solo

performance of an application while running with co-runners simultaneously. Towards

obtaining an estimate of solo performance, POPPA periodically pauses all co-running

applications for a very short time except one application repeatedly at fixed time in-

tervals as depicted in Fig 3.1a. The pause periods allow it to monopolize system

resources and (briefly) match its solo performance. POPPA has several limitations

as it suffers severely from low accuracy and high overheads especially as the number

of application contexts increases.

On the other hand, there is a class of literature that has attempted to tackle the

problem of estimating slowdown at runtime by utilizing novel hardware to track appli-

cation interference among individual processor subsystems, which are taken together

to model the overall interference of the applications [76, 30, 31, 102]. The most re-

cent work by Subramanian et al. presents Application Slowdown Model (ASM). This

work is based on the hypothesis that performance of each application is proportional

to the rate at which it accesses the shared cache. Hence, in order to identify the

shared cache access rate, it maintains an auxiliary tag store for each application,

which tracks the state of the cache in a situation where the application would have

been running alone. Every application that is co-located within the system utilizes

this specialized hardware periodically in a round robin fashion to collect its corre-

sponding shared cache access rates, which in turn is utilized by ASM to estimate

its corresponding slowdown. One of the key limitations of ASM is that it requires

additional hardware support precluding it from being used as a solution on existing

commodity servers [76, 30, 31, 102, 101, 35, 34].

The combination of the poor accuracy, overhead, inadequate support for multi-

tenancy, deployability, requirement of additional hardware support significantly limits

the applicability of the prior approaches. Towards satisfying these shortcomings, we
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Bubble-Up [71] POPPA [22] ASM [102] FST [31] Caliper

Low overhead X X
No additional hardware X X X
No offline profile X X X
Estimation error 7% 45% 20% 30% 4%

Table 3.1: Comparison between Caliper and other interference estimation techniques

design a technique that can be deployed readily in production-grade datacenters.

Our technique can accurately estimate slowdown in executions scenar-

ios that encounter a wide class of unknown applications, unlike prior static

approaches [71, 37] that require a priori knowledge of the executing applications. Ta-

ble 3.1 presents a comparison between Caliper and sever other interference estimation

techniques.

Later in Section 3.5.3, we experimentally evaluate each of these scenarios to illus-

trate the shortcomings of the prior dynamic approaches [22, 102]. Then, we show how

our proposed phase aware interference estimation technique is able to estimate slow-

down accurately with negligible overhead even when the number of simultaneously

executing applications is up to 16 contexts as existing in modern datacenters.

3.2 Overview of Caliper

In this section, we describe Caliper, a runtime system for estimating interference

at multi-tenant execution environments.

Goal. The design goal of Caliper is to accurately estimate the slowdown of an

application at runtime. To achieve this, we need to gauge the performance of the

application running with co-runners, Perf(co−run), as well as the performance of the

application when it is running alone, Perf(solo−run). Using these quantities, the slow-

down of the applications can be easily estimated by the following Equation 3.1.
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slowdown = Perf(co−run)/Perf(solo−run) (3.1)

We have utilized Instructions Per Cycle (IPC) as the metric to quantify per-

formance. Perf(co−run) from equation 3.1 is the IPC of the application during co-

location and is directly measured when the application is running along with the

co-runners. Perf(solo−run) is the solo execution performance of the application. IPC

can be measured easily and cheaply on commodity processors. A wide body of prior

interference estimation techniques utilizes IPC as their primary metric to quantify

performance [102, 22, 40]. For even latency-sensitive applications, a prior study from

Google leveraged the CPI (Cycles Per Instructions) metric as a performance indica-

tor [131]. Although the metric may not be highly accurate for some applications, it

is used to only guide the performance estimation.

Approach. The primary objective of this study is to be able to precisely estimate

Perf(solo−run) even during the presence of co-runners. To achieve this goal, we in-

troduce a software technique, called micro-experiment. A micro-experiment is a

short-lived runtime period for a few milliseconds during which an experi-

ment is run to collect a measurement of interest. Our runtime system performs

micro-experiments by opportunistically pausing the execution of an application’s co-

runners for a small amount of time so that the resource contention is eliminated

temporarily in the system. The result of such a micro-experiment represents an ac-

curate estimate of the application’s solo execution performance and this estimation

along with Perf(co−run) (direct performance measurement of an application when it is

run together with other applications) can be used as a basis to obtain the slowdown

at runtime.

Challenges. To keep the cost of the estimation process low, we need to address a

key challenge. A recent prior study that periodically pauses co-running applications
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Figure 3.1: Interference estimation by POPPA [22] vs. Caliper

to estimate the performance degradation has been shown to cause non-negligible

overheads [22]. This is due to the following reasons:

1. Frequent pausing can disturb forward progress of the applications due to the

execution stalls.

2. Pausing an application evicts its entries present in hardware caches, TLBs,

BTBs, etc. This exacerbates the performance overhead problem.

3. As the number of cores in a server increases, more applications (or VMs) can

be housed in servers. Under such circumstances, periodically pausing every

co-running application will increase the effective time for which individual ap-

plications is paused. Hence, a naive technique like periodic pausing becomes an

unsuitable solution for operation at scale.

Thus, it is essential to identify when micro-experiments need to be triggered. In
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this study, we overcome this challenge by utilizing phase boundaries as the triggers for

conducting micro-experiments. The key observations that led towards utilizing phase

boundaries as triggers are as follows. First, the execution behavior of applications

does not drastically change within a single phase. This means that we do not need to

estimate slowdown by performing micro-experiments within a steady phase. Second,

we observe that the number of phase changes is not large in most applications, as

also observed by previous works [94, 29, 42]. The majority of applications have a

very few phases spanning over an execution time which range from a few minutes

up to half an hour [81]. It gives us an opportunity to opportunistically conduct our

micro-experiments technique so that we are able to avoid excessive pauses for the

common case where applications have very few phase changes.

Fig 3.1b illustrates how Caliper estimates the slowdown by using micro-experiments.

Whenever there is a phase change, we perform a micro-experiment by pausing all the

co-running applications giving an opportunity for the un-paused applications to elim-

inate the resource contention. Then, we are able to measure Perf(solo−run) for the

application without the resource contentions. However the most recent work that

ties to estimate slowdown during runtime [22], pauses the co-running applications

in a periodic fashion as shown in Fig 3.1a. We have conducted micro-experiments

using 75 milliseconds as a pause period. The parameter is empirically determined

in our testbed to monopolize architectural resources during that time. Section 3.5.2

talks in detail about the choice of our pause period. As a result, we can estimate the

slowdown with negligible overheads of less than 0.5% for most of the situations. We

will discuss the parameter sensitivity in the evaluation section.

While performing micro-experiments, our runtime estimates Perf(solo−run) of an

application at every phase boundary. We aggregate the estimation of slowdown at

every these individual phases of the application to calculate the slowdown for the

entire execution of the application as shown by Equation 3.2.

25



Perf(solo−run) =
IPC(1) × T(1) + IPC(2) × T(2) + ....+ IPC(n) × T(n)

T1 + T2....+ Tn
(3.2)

where, Perf(solo−run) is the estimated IPC of solo execution of an application,

IPC(i) is estimated IPC of solo execution of the application during phase i, T(i) is the

time for which the application remains in phase i and n is the total number of phases

in the application.

3.3 Application Phase Behaviors

In this section, we describe phase behaviors of applications in multi-tenant ex-

ecution environments. Traditionally, phases can be defined as intervals within the

execution of a program with similar behavior [42]. Phase changes typically manifest

themselves as observable changes in execution behavior of applications. Although

there have been many efforts to detect phase changes of a single application via per-

formance monitoring units (PMUs) [52, 94, 42, 29], it is challenging to precisely iden-

tify phase boundaries in multi-tenant environments. This is because the PMU-based

measurements of individual applications in multi-tenant environments are affected by

the behavior of co-running applications. Prior techniques are unreliable when multi-

ple applications are simultaneously running and hence cannot be directly applicable

to our runtime system.

3.3.1 Two Classes of Phase Changes

As a first step towards detecting phase changes in co-located environments, we

taxonomize phases detected by PMUs (e.g., as shifts in an application’s CPI) as falling

into one of two classes – endogenous phase changes that result from an application’s

innate behavior and exogenous phase changes that result from co-running applica-
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Figure 3.2: (a) Solo Execution of application. (b) Fluctuations in PMU type during
co-location. (c) Co-phase interference during co-location

tions. Thus, the goal of our runtime system is to accurately identify endogenous

phase changes while minimizing the detection of exogenous phase changes. This is

critical as exogenous phase changes are false positives incurring unnecessary micro-

experiments. It results in increasing the overhead of our runtime system. In the next

subsection, we investigate the causes of exogenous phase changes in further detail.

3.3.2 Characteristics of Exogenous Phase Changes

To study the characteristics of exogenous phase changes, we observe PMUs when

an application is executing along with its co-runners. Through these observations,

we identify two critical reasons contributing to exogenous phase changes.

Fluctuation. PMU-based measurements of a single phase are a set of discrete,

time series based, numerical quantities that lie between a range possessing minuscule

variation as shown in Fig 3.2 (a). However, in the presence of co-runners, PMU-based

measurements belonging to a single phase of the same application fluctuate a lot. In

such scenarios, some of the PMU-based measurements lie in the range of a different

phase, making it challenging to determine phase boundaries. Fig 3.2 (a) represents

the execution of an application when it is running alone. Fig 3.2 (b), represents the

execution of an application when it is executing along with a co-runner. From Fig 3.2

(b), we can clearly see that some PMU measurements from phase 1 lie in the range
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of the PMU measurements from phase 2 and vice versa. This makes it challenging

to identify phase boundaries. We have observed this phenomenon especially with

PMU measurements corresponding to micro-architectural entities like last-level cache

misses that are shared by multiple cores.

Co-phase interference. Phase changes in one application can cause changes to

other co-running applications. We call this phenomenon as co-phase interference.

Fig 3.2 (c), again represents the execution of an application when it is executing

along with a different co-runner. From Fig 3.2 (c), we can clearly see that the change

in PMU measurements corresponding to co-phase interference is difficult to be dis-

tinguished from endogenous phase changes.

Our goal here is to build a robust phase aware runtime system that detects en-

dogenous phase changes while minimizing the detection of exogenous phase changes.

This is because triggering micro-experiments during exogenous phase changes is un-

desired as they will result in increasing the performance overhead due to pausing of

co-runners.

3.4 Identifying Phase Changes during Co-location

The primary goal of Caliper’s phase detection approach is to detect endogenous

phases (true positives) while ignoring exogenous phases (false positives) at runtime.

For this purpose, we propose a PMU-based mechanism. The primary objective of our

mechanism is to identify the representative PMU types which accurately detect every

single endogenous phase change while neglecting all exogenous phases. In addition

to that, the extracted PMU types should be generic. In other words, it should be

able to detect endogenous phase changes even for an unknown application whose

phase behavior has not been witnessed before. For this purpose, we first assess each

PMU type, to detect phase changes for a training set of applications. We then cross

validate to examine its ability to detect endogenous phases and ignore exogenous
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Figure 3.3: Comparing phases during co-located execution with phases present in solo
execution

phases for unknown applications. This determines the generality of each PMU type.

Based on the ability of each PMU type, we choose the best PMU type.

The initial step in this process is to carefully choose our training set of appli-

cations to cover a wide range of contentiousness, sensitivity and phase changing

attributes [107]. The list of training applications is shown in the first column of

Table 3.2. We use astar as our training co-runner which is cross-validated in our

evaluation under section 4.4. The application astar from SPEC CPU2006 is known

to be both contentious and to have numerous and rapidly changing phases [107], which

can train our model to be resistant against both fluctuations as well as co-phase in-

terference. With these pointers, we undertake the following three-step approach to

extract the set of PMU types that can be utilized for phase detection.

(1) Comparing PMU measurements during co-run with solo execution. We

execute the training set of applications alone to obtain PMU measurements during

solo execution. We manually annotate the endogenous phases present in each of the

training set of applications.

We then collect PMU measurements for each application present in training set
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during co-location. By using the PMU measurements during co-location, we verify for

each PMU type its ability to detect endogenous phases by comparing the timestamps

corresponding to the actual phase changes that happen during solo execution (from

the annotated phases during previous step). This process is illustrated in Fig 3.3 as

we observe that the measurements for PMU A detect all the two endogenous phases

present which are confirmed by the annotated solo execution of the application. How-

ever, the measurements for PMU B could not detect any endogenous phase changes.

It just detects an exogenous phase change which is not desired. With the PMU C, it

detects only an endogenous phase chase, but misses the other endogenous phase. So,

the PMU type A is resilient for the application to detect phase changes in multi-tenant

environments. We performed above process for 18 different PMU types.

(2) Obtaining PMU scoreboard. We then quantify the effectiveness of each PMU

type that was successful in identifying phase changes during the previous step (1).

This quantification helps in selecting the best PMU type that detects every possible

phase change present in the system. This is done by obtaining the PMU scoreboard

which will be discussed in detail at Section 3.4.1.

(3) Selecting the final set of PMU types. From observing the best PMU type

for every single application present in the training set, we obtain a single set of PMU

type(s). Those PMU types can be utilized to detect phase changes across a diverse

class of application. We describe this step in the Section 3.4.2.

3.4.1 Obtaining PMU Scoreboard

The motivation of PMU scoreboarding is to quantify the effectiveness of each PMU

type. Using this quantification, we obtain a common set of PMUs that can work

effectively towards identifying phase changes. Our PMU scoreboarding quantifies

PMU types by gauging how steep change in PMU measurements are at each phase

boundary. We use a technique called step detection to quantify steepness at each
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Figure 3.4: Overview of PMU scoreboard technique

phase boundary. Fig 3.4 shows the overall flow for obtaining the PMU scoreboard.

Inputs. Application and training dataset of time series PMU measurements during

co-location.

Output. Threshold of separation (δ, described below) quantifying the steepness of

a PMU type at phase boundary for an application.

Objective function. To quantify the effectiveness of a PMU type we assess the

steepness magnitude expressed by PMU measurements during phase change (higher

variation means PMU type distinguishes phase boundaries significantly better).

Methodology. The steepness is obtained by performing the step detection scheme.

The step detection scheme is a process of finding abrupt changes in a time series

signal and internally uses a technique called finite difference method for identifying

abrupt changes. The fundamental hypothesis of finite difference method for identi-

fying abrupt changes is based on the fact that the absolute difference between sub-

sequent time-series measurements is very high at the exact point where the abrupt

changes occur.

Mathematically, the finite difference of a time series signal is the rate of change
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Workloads
PMU rank

1st 2nd 3rd

astar CPI branch L1-D load miss
bzip2 LLC store miss CPI L1-D load miss
cactusADM L1-D load miss L1-D load CPI
dealII CPI L1-D load branch
mcf L1-D load miss CPI LLC load
milc LLC store miss L1-D load branch
xalancbmk LLC store miss LLC load L1-D load
tonto L1-D load miss branch CPI

Table 3.2: PMU types ordered by their effectiveness

in the individual elements. We implement the finite difference method by perform-

ing pair wise difference of subsequent elements present in the time series using the

following formula :-

Y ′ =
Yj+1 − Yj

2∆T
Y ′j = Yj (for 1 < j < n− 1)

where Yj is the jth points present in the time series, n being the number of points,

∆T being the difference between the number of timestamps for time series values.

The result highlights the drastic change by showcasing a high value for Y ′. Figure 3.4

clearly illustrates this where we can see a sharp increase in the PMU measurement

at time T1 (at the point Y9 ). Its corresponding finite differential value is very high

at point Y ′8 , which is utilized to indicate a phase change at that timestamp T1.

Based on statistical analysis by prior studies, abrupt changes are defined as points

that are higher than three standard deviations above or below mean. The lowest

numerical value of each such abrupt change obtained by step detection is returned as

the threshold of separation δ for a PMU type that is being utilized to perform phase

detection for an application. For the example given at Fig 3.4, the value of δ is the

minimum of the value of δ1 and δ2.
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Figure 3.5: Phase changes triggered by PMU types when running with astar. Single
PMU type is insufficient to detect phase changes

3.4.2 Ranking and Selecting PMU Types

In order to choose appropriate PMU types for identifying endogenous phase changes,

we rank PMU types for every single application using the δ value (threshold of sepa-

ration) obtained from the PMU scoreboarding technique. From that, we choose the

PMU type that is capable of detecting endogenous phases across all the applications.

In this paper, we have shown the top 3 PMU types in Table 3.2 for each application

that are ranked using the δ value.

However, an observation from our training experiments whose results as depicted

in Table 3.2 shows that no single PMU type can detect phase changes across all

the training set of applications. In other words, there can be a situation where an

architectural resource that can detect phase changes on an application could fail

to detect phase changes completely on a different application. We illustrate this

hypothesis based on a real-world example.

Fig 3.5 shows an example where a single PMU type will not be able to identify

phase boundaries across two different applications. Each application requires different

PMU types to precisely detect phase changes. In other words, mcf requires L1-d load

misses while milc requires LLC store misses and vice versa fails. The x-axis indicates

the cumulative number of instructions executed as time progresses. The left y-axis

featured as yellow (diamond) line shows the CPI of the applications when running
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alone and the right y-axis and the blue (circle) and red (dashed) line show the selected

hardware performance monitors for the application when running with three instances

of astar as co-runners.

From Fig 3.5 (a), we find out that the PMU type, L1-d cache load misses, can

effectively detect phase changes of mcf in co-located environments. This is not true

for the application milc as the same PMU type L1-d cache load misses fails to detect

phase changes as shown in Fig 3.5 (b). These results motivate the need for multiple

PMU types to capture phase changes across a variety of applications. To achieve this,

we undertake an approach where we observe a set of architectural resources (CPI, LLC

store miss, and L1-D load miss) in contrast to a single resource. Moreover, to avoid

missing endogenous phase changes, we use a conservative approach to trigger a micro-

experiment even if one of the PMU types out of the three detects a phase change.

This is because failing to detect endogenous phase changes will significantly reduce

the accuracy in estimating IPC of solo execution. On the other hand, predicting a

non-existent phase change causes only negligible overheads when the occurrence of

such mispredictions is low.

3.4.3 Putting It All Together

As discussed, the final objective of Caliper is to estimate the slowdown of an

application during runtime accurately. Caliper performs micro-experiments, a short-

lived experiment to collect a measurement of interest, by opportunistically pausing

the execution of co-running applications for a small amount of time so that resource

contention can be temporarily eliminated in the system. The result of such a micro-

experiment represents an accurate estimate of the solo performance for the application

in that small period.

Performing micro-experiments frequently causes huge execution overheads. Hence,

it is essential to identify when micro-experiments need to be triggered. In this study,
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Processor Microarchitecture Kernel Hypervisor

Intel Xeon E5-2630 @2.4 GHz Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0
Intel Xeon E3-1420 @3.7 GHz Haswell 3.8.0 KVM-QEMU v2.0

Table 3.3: Experimental platforms

we overcome this challenge by utilizing phase boundaries as triggers for conducting

micro-experiments. This is because the execution behavior of applications does not

drastically change within a single phase. Hence a single micro-experiment for a phase

is sufficient to characterize the execution behavior of an application for that phase.

Adding to that, the number of phase changes is not many in most applications.

We utilize Performance Monitoring Units (PMUs) to detect phase changes during

runtime.

3.5 Evaluation

3.5.1 Methodology

Infrastructure. We evaluate Caliper on two commodity multicore systems sum-

marized in Table 5.2. We use Linux KVM as the hypervisor and run applications

on virtual machines (VMs) [65] because running virtual machines is a standard way

for cloud providers to isolate infrastructure among different customers. Hence our

infrastructural setup consists of co-locating multiple virtual machines (VMs) where

each VM belongs to a different user.

Each virtual machine has 4GB of main memory and 16GB disk. We use the

Ubuntu 12.04 distribution as guest operating systems with Linux kernel 3.11.0. There

is no change in the execution characteristics of the applications while executing them

using virtualized environments. We take advantage of perf tool to collect hardware

performance monitors while observing applications.

Applications. To evaluate the effectiveness of our technique, we use the bench-
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Benchmarks Class of applications AWS use cases [7]

Sirius Suite Machine learning NTT Docomo (voice recognition) [8]
DjiNN & Tonic Deep neural network PIXNET (facial recognition) [10]
SPEC 2006 General purpose & Scientific Penn State [9]
NPB Parallel computing workloads NASA NEX [13]

Table 3.4: Benchmark used in evaluation

marks from SPEC CPU 2006 [49] with ref inputs, NPB - NAS Parallel bench-

marks [14]. In addition to that, we execute emerging applications from SiriusSuite [45]

and DjiNN&Tonic suite [44] in batch mode. Sirius suite and DjiNN & Tonic suite

contain a class of applications which implement state-of-the-art machine learning and

computer vision algorithms. It has been a common trend to execute such applica-

tions in modern public clouds where multiple applications are oversubscribed in the

same server [7, 9, 10, 8]. We can clearly see that the benchmark suites that we

have utilized to evaluate Caliper are similar to the applications that are being ex-

ecuted in state-of-the-art public cloud computing environments (e.g., Amazon web

services [122]). Table 3.4 enumerates the applications, their description, input, ap-

plication domain and the respective suite from which the benchmarks are obtained.

Also, SiriusSuite [45] and DjiNN&Tonic suite [44] have stemmed into a startup that

builds conversational artificial intelligence systems for banking sector [2].

3.5.2 Caliper – Accuracy and Overhead

In this section, we evaluate the efficacy of Caliper. We discuss the accuracy in

estimating slowdown by Caliper and its overhead experimentally. Accuracy calcu-

lated by comparing the estimated slowdown from our runtime system with the actual

slowdown, a metric that is consistently followed by existing literature that focuses on

estimating slowdown [22, 30, 31, 102].

Fig 3.6 shows the accuracy when Caliper is trying to estimate slowdown when 4

applications are co-located on a single server. The experimental setup here consists
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Figure 3.6: Accuracy (in percentage error) of SPEC CPU2006, NAS Parallel Bench-
marks, Sirius Suite and Djinn&Tonic suite while estimating slowdown when 4 appli-
cations are co-located.

of four broad execution scenarios each based on the type of co-running application

that we have taken into consideration represented in the y-axis of Fig 3.6.

Single vCPU. The single-threaded benchmarks from SPEC CPU 2006, Sirius Suite,

Djinn&Tonic are evaluated where for each experiment the observed application exe-

cutes in a single VM pinned to a single vCPU. The PMU-based measurements are

collected from the vCPU at which the application is executing which directly corre-

sponds to the performance of the application.

Multiple vCPU. The multi-threaded benchmarks from NPB are evaluated where

for each experiment the observed application executes in a single VM pinned to two

vCPUs. Here, the performance of the application is the cumulative values of the

PMU-based measurements obtained from each vCPUs at which the application is

executing.

Individual cells in Fig 3.6 present the difference (error) in the estimated slowdown

versus the actual slowdown (Light is good and dark is bad). For each experiment,

we execute 3 instances of a single type of co-runner libquantum, mcf and milc,

simultaneously along with 1 instance of the application on the x-axis. The mix co-

runner is a mix of 3 different co-runners, libquantum, mcf, and milc, alongside

the applications on the x-axis. We have used libquantum, mcf and milc as co-

runners as from our experiments and through prior work [107], we found out that

these were the top 3 applications that exhibit significant activities towards shared
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architectural resources including last-level cache and memory bandwidth. Hence,

accurately estimating slowdown during the presence of such co-runners was a big

challenge for us[107]. Our experiments to estimate the accuracy of slowdown and

runtime overhead takes into account all the 4 applications executing in the system.

We run each benchmark three times and take the mean to minimize run to run

variability. We check to see if there is any phase change every second owing to

the observation that phases are consistent for a few seconds. During every phase

change, micro-experiments are performed for 75ms to eliminate resource contention

during observation. We obtain the value 75ms empirically by performing a sweep for

different quantities optimizing for reduced overhead and increased accuracy. Details

will be discussed later.

Accuracy. From Fig 3.6, we can see that Caliper shows very low error rates across

all the applications even when running with multiple instances of cache contentious

co-runners like libquantum. The average error rate when co-locating with such con-

tentious co-runners is around 4%. We observe that 95% of our applications have errors

less than 10% and the worst case error is 12% in our technique, whereas the worst case

error of prior techniques is up to 60% (details presented in Section 3.5.3 of evalua-

tion). We also observe that the error in estimating interference using Caliper remains

consistent regardless of the nature of the co-runners. This is indicative of two things

(1) accuracy with respect to detecting phases (2) precision of micro-experiments in

detecting per phase interference. In the next section, we discuss the importance of

having a robust phase detection methodology and its impact on the accuracy of of

estimating interference.

Overhead. To enable Caliper on production systems, we have to achieve low over-

heads so as to minimize the interference to running application on the servers. Ta-

ble 3.5 indicates the overhead that is incurred by Caliper while estimating slowdown.

We evaluate the overhead at the same experimental setup under which we had eval-
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Figure 3.7: Accuracy and overheads for Caliper under different pause periods.

SPEC NPB Sirius
Overhead Phase changes Overhead Phase changes Overhead Phase changes

(%) (per min) (%) (per min) (%) (per min)

main-app 0.65 1.58 0.35 0.38 0.25 0.20
colo-app 0.74 0.91 0.45 0.75 0.44 0.80

Table 3.5: Execution time overhead and number of phase changes

uated accuracy. From Table 3.5, we can clearly see that the overhead of the main

observed application, as well as the average overhead of the co-running applications,

remain less than 1% in most of the cases. On average, the overhead of Caliper’s run-

time system is around 0.6%. Similarly, we also see that the number of phase changes

per minute is also very less. On average, there is a single phase change per minute.

This indicates that each application is paused for a few hundred milliseconds every

minute making the overhead extremely negligible.

Sensitivity of the pause period. Towards obtaining an optimal pause period

for operating Caliper, we performed a sensitivity study. The results of this study is

shown in Fig 3.7. From figures 3.7a and 3.7a, we clearly observe two trends. First, the

accuracy of estimating slowdown increases as the pause periods increase up to 75ms.

Then there is no benefit in increasing the pause periods. Hence we have utilized 75ms

as an optimal pause period for our mechanism. Second, the overheads do not change

drastically as we increase the pause periods. This is because Caliper’s frequency at

which it pauses the co-runners is too low causing negligible impact in the execution

time overheads.
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Figure 3.8: Estimation error: Caliper vs. state-of-the-art software (POPPA [22]) and
hardware (FST [31], PTCA [30], ASM [102]) techniques for estimating interference

3.5.3 Comparison with Prior Work

Accuracy. Fig 3.8 shows the accuracy of Caliper as compared to the accuracy

of POPPA [22], FST [31], PTCA [30], and ASM [102] for the benchmarks present

in SPEC CPU 2006, NPB, Sirius suite and Djinn&Tonic suite. POPPA works by

periodically pausing all co-running applications except one for a very short time

at fixed time intervals. The aggregated performance of the applications during the

pause periods is the key measure by which slowdown is estimated. Through these

experiments, we can see that the estimation error is much lower for Caliper than

POPPA [22]. The mean error of POPPA is 13.23%. On the other hand, our technique

shows much lower error rates averaging around 3.77%.

It is challenging to estimate the slowdown when running with contentious co-

runners as they quickly pollute the shared last-level cache and excessively use the

shared memory bandwidth. One of the main reasons for POPPA’s poor accuracy is

that the pausing time (3.2ms) is too short to capture solo performance of an appli-

cation. This is because the shared cache would not be warmed up to be containing

the entire working set of the application which is to be measured. As a result, the

measured application would spend most of its pausing time filling in the shared cache,

giving much less time to observe how the application performs when it monopolizes

40



computing resources. On the other hand, Caliper performs micro-experiments which

pauses co-runners only when discovering phase boundaries. This enables us to ob-

serve the solo execution performance for a longer time without worrying much about

the overhead caused due to pausing for additional time. Hence, we are able to achieve

high accuracy in estimating slowdown at runtime.

We also observed that the state-of-the-art hardware enabled approaches towards

estimating slowdown [31, 30, 102] showed a high error rate. Just like the other soft-

ware approaches, state-of-the-art hardware enabled approaches utilizes cache access

rates of applications during solo execution time to determine slowdown of an appli-

cation. Cache access rates of applications during solo execution is again obtained by

periodically pausing co-running applications in a round robin fashion. Hence the lim-

itations of the prior software approaches hold good for the hardware approaches too.

The mean errors of POPPA, FST, PTCA, and ASM are 11.04%, 28.28%, 38.42% and

9.98% respectively. From these results, we were able to see that Caliper can outper-

form even the state-of-the-art hardware enabled approaches present in the literature.

Multi-tenancy. To evaluate the effectiveness of the state-of-the-art hardware or

software based approaches and Caliper towards supporting multiple tenants, we in-

crease the number of executing application contexts to 8 applications and 16 ap-

plications. Fig 3.8 shows the average accuracy of Caliper as compared to POPPA

for SPEC CPU2006 and NPB when co-locating with libquantum. We can see that

Caliper’s accuracy is around 3.95% when co-locating with 16 applications in contrast

to POPPA [22], FST [31], PTCA [30] and ASM [102] whose error is around 22%, 40%,

41% and 19% respectively. The low accuracy of the prior techniques is because as the

number of co-runners increases, the shared cache becomes much more polluted due to

the contention. POPPA even on such situations pauses for the same amount of time

which is too less for the shared last-Level cache to warm up so as to exhibit the per-

formance corresponding to solo execution. Hence, its slowdown estimation becomes
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Figure 3.9: Phase level behavior of Caliper for mcf and milc when running with co-
runners, 3 libquantum (a) and mcf (b), respectively. Micro-experiments are triggered
effectively at phase boundaries.

highly inaccurate. Similarly, hardware techniques perform sampling in a round robin

fashion using their proposed specialized hardware whose pressure increases as the

number of co-running application increases. However, Caliper utilizes a phase-aware

approach that performs micro-experiments at adequate amounts of time during the

right time to capture the solo execution characteristics of every phase accurately.

Phase analysis. Now, we try to visualize the effectiveness at which Caliper utilizes

its a robust phase detection technique in order to achieve high accuracy and low

overhead in estimating slowdown. Toward illustrating this, we analyze the phase

level behavior of a selected set of phasy applications to show Caliper’s capability

towards performing micro-experiments at every single phase change.

Firstly, we select two applications, mcf and milc to analyze the execution behav-

iors. These applications possess a significant number of phase changes. As co-runners,

we use libquantum and mcf, respectively. Fig 3.9 (a) shows the execution behavior

of mcf with respect to time. In each graph, the yellow line depicts the measured CPI

of the application when running alone and the red line shows the CPI estimated by

Caliper when the application is running with 3 instances of libquantum or mcf. We

can see that Caliper can effectively trace the phase changes. The closer the red line

is to the yellow line, the smaller the error. The error in estimating slowdown is 0.51%

over the entire run. For milc, Fig 3.9 (b) presents that our technique can effectively

trace all of its phase. The error while estimating slowdown is 2.52%.
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Figure 3.10: Overhead: Caliper vs. POPPA

Overhead. Fig 3.10 compares the overhead up to 16 application contexts for Caliper

and the state-of-the-art software approach POPPA. We can clearly see that as the

number of application context increases, the overhead of Caliper increases negligibly.

However, this is not the case for other software approaches. This is due to the fact

that, POPPA performs periodic pauses. As more applications are co-located, the

effective time for which applications are paused increases as POPPA need to pause

every application for the same amount of time for each of the co-runner. However,

Caliper pauses applications only during phase changes (which are comparatively in-

frequent). Hence, the overhead incurred by Caliper’s runtime system is lesser by an

order of magnitude.

Fig 3.11 illustrates the reasons behind POPPA’s higher execution time overhead.

Fig 3.11 (a) compares the performance of POPPA and Caliper in an environment

without any slowdown estimation runtime system. We can clearly see that the in-

creased execution time overhead of POPPA is due to the spikes present in CPI due to

frequent pausing of co-runners periodically by POPPA to estimate slowdown. How-

ever, Caliper performs micro-experiments rarely (once every phase). Hence, there

are no periodic spikes as seen in POPPA. Caliper’s execution time overhead also is

negligible.
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Figure 3.11: Performance of micro-architectural entities when POPPA’s runtime sys-
tems are being executed
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milc (4) gobmk(1) hmmer(1) perbench(1) astar(7) namd(1) pos(1) chk(1) calculix(118) dealII(132)

libquantum 0 0 0 0 2 0 0 0 257 49
mcf 6 0 2 0 3 1 1 1 412 98
milc 5 0 1 0 2 0 0 0 353 33
mix 2 0 1 0 2 0 1 1 251 98

Table 3.6: Number of false positives incured in Caliper runtime system. First row
contains the benchmarks and the respective number of endogenous phases present
in them. For example milc (8) means milc has 8 endogenous phases. First colunm
contains co-runners.

We have experimentally verified the reasons for the increased overhead and is

clearly shown in Fig 3.11 (b), (c), and (d), respectively. As POPPA performs periodic

pauses, it incurs addition warmup overheads for the micro-architectural components

present in the system. At the end of every pause period, the system refills the micro-

architectural components (cache, branch target buffer, TLB etc.) that would have

been flushed during its pause period. This gets translated directly into increased

execution time overhead.

Fig 3.11 (b), (c), and (d) illustrate the underlying causes for this phenomenon.

From Fig 3.11 (b), we can see that the cache misses increases whenever POPPA pauses

co-runners in the system. However, it remains on unaffected for Caliper reasoning

out its negligible overhead. Similarly, from Fig 3.11 (c) and (d), we can see that when

POPPA frequently pauses applications, branch misses and TLB (transition look aside

buffers) misses increases. This in on similar lines that micro-architectural components

like branch target buffer (BTB), TLBs are flushed out frequently during pausing by

POPPA. We can see that frequent pauses by POPPA increases the cache misses, TLB

misses and branch misses by 11.6%, 5.7% and 7% respectively thereby increasing the

runtime overhead of the execution of an application up to 10.5%. However, Caliper’s

overhead, as well as misses at the micro-architectural structures, remains less than

0.5%.

Table 3.6 illustrates the number of falsely detected phase changes by Caliper’s

runtime system. The first row in Table 3.6 shows the benchmarks for which we
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have evaluated this experiment. We have shown only ten benchmarks in this table

in the interest of space constraints. The numbers present in the bracket after the

benchmarks show the endogenous phase counts (true positives). The first column

shows the co-runners along which the benchmarks present in the first row have been

evaluated. Each cell in table 3.6 illustrates the number of falsely detected phases by

Caliper’s runtime system. From our experiments, we observed that the results for

most of the benchmarks were similar to gobmk, hmmer, namd, pos, chk. There was

just one phase, and Caliper was able to detect that phase. Additionally, detecting

false phases were a rare occurrence consuming negligible overheads. However, we had

a few interesting observations for the benchmarks calculix and dealII. The phases

of these applications are very irregular and contain spikes once every few seconds.

Each of these situations where spikes occur triggers a phase change resulting in a

larger number of false positives. Additionally, another interesting observation from

our experiments was that there were more false positives when mcf was a co-runner.

This is because mcf has many phase changes introducing many more false positives

due to co-phase interference. However, the frequency at which Caliper’s runtime

system triggers phase changes is so low that our overhead remains lesser than 1% for

most of the time.

3.5.4 Leveraging Caliper for Fair Pricing in Datacenters

Infrastructure-as-a-service (IaaS) clouds primarily use a pay-as-you-go pricing

model that charges users a flat hourly fee for running their applications on shared

servers. Customers renting IaaS public clouds now have the capability to choose re-

source fragments at varying granularity in terms of the number of virtual CPUs, the

amount of memory and storage size. Cloud service providers rely on virtualization to

isolate resource fragments belonging to each customer. However, in light of signifi-

cant potential for parallelism, cloud service providers co-locate applications belonging
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Figure 3.12: Comparison of fairness in pricing by Caliper with POPPA

to different users. Since the last-level cache and DRAM bandwidth remain shared

among applications running within a single server, applications are slowed down as

compared to when they run alone on the system. This increased execution time that

the application is subjected to reflects directly on the price paid by the users under

the pay-as-you-go scheme creating an unfair pricing scenario.

To enable fair pricing in public clouds, it is essential to estimate the performance

impact that co-running applications have on an application. Identifying slowdown at

runtime would be a very useful information in this regard as it would be an appropriate

indicator of influence of co-runners on an application. Hence, such a scheme can be

used as a critical substrate upon which any pricing scheme can be built. However,

such a scheme is highly dependent on the accuracy at which fairness is estimated.

Hence, achieving high accuracy in estimating slowdown becomes critical.

We compare the unfairness that is present while utilizing the hardware enabled

approaches for pricing with our approach. We define unfairness as the price by which

users are overcharged when they are executing their applications in IaaS public clouds.

We use the pricing model proposed by Toosi et al. [114] and apply the slowdown esti-

mation techniques along with it so as to calculate the resultant price. From Fig 3.12,

we can see that is able to price applications with 5X more fairness while pricing

users using their slowdown model as compared to the POPPA technique proposed in

Breslow et al. [22]
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CHAPTER IV

Proctor – Detecting and Investigating

Performance Interference in Shared Datacenters

Enterprise datacenters like VMWare, Microsoft, and Amazon often house thou-

sands of servers to service large-scale cloud applications across the globe. Cloud

computing is becoming more common every day and so improving utilization is of

critical importance in terms of improving cost and reducing the footprint of the dat-

acenters [117, 11, 67].

Over past few years, datacenter operators have switched to virtualization, a tech-

nique that encapsulates and abstracts applications from the physical hardware by

creating Virtual Machines (VM), that assists sharing of physical hardware by schedul-

ing multiple VMs on the same physical machine. State-of-the-art VM monitors, also

known as hypervisors, like Xen, Hyper-V and ESXi [124, 118] reserve fragments of

the physical server resources (like CPU core, DRAM storage etc) for each application

separately in a virtualized environment. This abstraction leads to better hardware

utilization, as multiple VMs can now be easily scheduled on the same physical ma-

chine.

However, virtualization does not provide complete performance isolation as VMs

still compete for non-reservable shared resources (like caches, network, I/O bandwidth

etc.), resulting in performance interference between the VMs, which can have signif-
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icant and unpredictable effects on the application performance. This unpredictable

performance is particularly problematic for user-facing applications that have strict

Quality of Service (QoS) requirements, forcing the datecenter operators to disable

co-location, reducing datacenter utilization. Therefore, data center operators need to

achieve the best of both worlds - satisfy strict QoS requirements while also keeping

server utilization high.

A suitable solution to mitigate the interference problem so that it can take correc-

tive measures later to meet QoS requirement while achieving good server utilization,

needs to perform two major tasks at runtime – Detection and Investigation. First,

when a performance intrusive VM is colocated with an application having strict QoS

requirement and negatively impacts its performance, the technique should be able

to detect this performance degradation. Second, once this performance intrusion

is detected, it is necessary to investigate the source of this contention (both the

performance-intrusive VM and the contended shared resource) to undertake useful

remediation.

In order to detect contention and mitigate the effect of interference, we present

Proctor [62], a runtime system that continuously monitors, automatically detects

and investigates a wide range of performance issues directly affecting the Quality

of Service of VMs running in a cloud scale datacenter, with high accuracy and low

performance overhead. For Detection, Proctor employs a Performance Degradation

Detector (PDD), that continuously monitors the performance metric of the executing

VMs, looking for abrupt changes in the QoS. PDD uses state-of-the-art noise removal

technique (median filtering algorithm) and step detection to detect a performance

anomaly, as opposed to previous work that requires a priori knowledge. For Investi-

gation, Proctor employs Performance Degradation Investigator (PDI), that identifies

the source of contention for a performance anomaly at runtime using online statistical

correlation analysis. The challenge here lies in performing investigation quickly as this

49



process is laborious and requires querying a database consisting of large amounts of

VM monitoring data. To tackle this challenge, PDD uses a robust sub-sampling tech-

nique that reduces the amount of the data that needs to be queried while accurately

detecting the source of contention.

We perform a thorough evaluation of our platform on real systems across a wide

range of applications and commonly contended shared resources, demonstrating its

effectiveness in diagnosing performance issues at runtime, improving the performance

of the applications running in datacenter by up to 2.2×.

4.1 Background and Motivation

In this section, we provide the background for the performance interference for

different sources of contention, followed by the limitations of the prior work in solving

the problem of mitigating interference.

4.1.1 Sources of Contention

Although virtualization reserves fragments of machine resources for each applica-

tion individually, the VMs can still experience performance interference when multiple

VMs are colocated on the same physical machine. This happens because there are

a number of non-reservable resources that can be shared among VMs, that can have

significant and unpredictable effect on the VM performance. In datacenters, there are

mainly four such shared resources - I/O, CPU core, Network and Last Level Cache.

As an example, I/O contention can occur when guest operating system within

each VM is oblivious to the virtual nature of underlying disk and the existence of

neighboring VMs on the same machine. Under such situations, a single badly be-

haved application that continuously issues frequent I/O requests to a disk array can

disrupt the latency/throughput of every other application running over that array,

negatively impacting the performance of other VMs. Similarly, such performance
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intrusive behavior can happen at other hardware resources like CPU core, Network

and Last Level Cache.

4.1.2 Limitations of Prior Work

There exists several prior approaches that are specifically designed to mitigate

the effects of contention when multiple VMs are consolidated in a shared datacenter.

However, these approaches have some limitations that restrict their deployability in

a commercial datacenter. We have broadly classified them under the following three

categories based on their limitations towards solving the Detection and Investigation

problems.

1. Require A Priori Application Profile. Prior approaches like Bubble-Up

and Cuanta [37, 72] have been shown to be effective at generating a precise esti-

mation of performance degradation at co-located execution scenarios. However,

these techniques require a priori knowledge of application behavior restrict-

ing their deployability in datacenters that encounter unknown applications on

a regular basis (for eg., private datacenters and public clouds). Additionally,

these techniques are incapable of investigating the root cause of performance

intrusion. Therefore, this category is unsuitable to perform Detection and In-

vestigation tasks in datacenters that encounter unknown applications.

2. Incapable of Investigating Root Cause. Second category of prior ap-

proaches [103, 38], that do not require a priori knowledge, focus on investi-

gating a particular source of contention, unable to detect and mitigate the

performance interference caused by other shared resources. In addition, the

overhead incurred by these techniques in detecting performance degradation is

high because their methodology perturbs the execution of VMs periodically for

brief periods of time in order to profile application execution. Therefore, this

51



class of prior work is also unsuitable because of its high overhead in performing

Detection task and their disability to execute the Investigation task.

3. Performs VM Migration/Cloning. A third class of approaches, identifies

performance intrusion as well as its root causes. However, these techniques per-

form frequent VM migration and cloning, resulting in many drawbacks. First,

copying huge data across machines is time consuming and introduces additional

contention on the computing resources. Second, the overhead with respect to the

number of additional servers required to perform these techniques is very high.

Therefore, this category of prior work is also not suitable in shared datacenters

as they incur high overheads while executing the Detection and Investigation

tasks.

4.2 Overview of the Proposed Approach

To this end, we present Proctor [62], a runtime system that utilizes a two step

methodology to solve the Detection and Investigation tasks respectively. In this

section, we provide a high level overview of our technique along with the challenges

in designing Proctor components.

4.2.1 Goals and Challenges

Performing Detection. Proctor utilizes Performance Degradation Detector (PDD)

for this purpose. In contrast to prior approaches which affect the execution of ap-

plication by utilizing synthetic benchmarks like smashbench, PDD is an extremely

low overhead continuous monitoring infrastructure that observes individual VM QoS

metric to detect drastic variation in the numerical range of the QoS metrics. This

change would be an indication of an event that signifies performance degradation of

the application. To detect drastic variation in numerical range of metrics, we employ
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step detection – a signal processing technique that is utilized to find abrupt changes

in time series signals [85].

Challenges and Approach – However, the time series data obtained from system soft-

ware tools and performance counters is highly corrupted due to noise. The most

straightforward solution for such problems is to perform curve smoothing. However,

the most commonly used curve smoothing techniques, like exponential moving aver-

age and Kalman filter [121], are not effective in highlighting drastic changes in the

time series data. This is because they project drastic changes in QoS measurements

as a slow cumulatively occurring event, making it hard to detect the abrupt changes.

Hence, we used a technique called median filtering designed specifically to cater to

the step detection problem.

Performing Investigation. Once, PDD establishes the existence of performance

degradation, we utilize the Performance Degradation Identifier (PDI) to pinpoint

the exact source of contention (both VM and the shared resource the applications

are competing for). PDI uses correlation analysis for this purpose, finding correlation

between the hardware counter metrics of all the co-running VMs and the primary QoS

metric of the affected VM (as detected by PDD). High value of correlation co-efficient

for a particular metric provides sufficient evidence that the co-running VM and the

resource corresponding to that metric is the root cause of performance degradation.

Challenges and Approach – However, performing correlation analysis on large amounts

of HW performance counter data, which is collected at a second level granularity, is

computationally intensive, resulting in high performance overhead. To tackle this

problem, we sub-sample the performance counter data, reducing the amount of data

that is to be utilized to find the source of contention. A random sub-sampling method

can be utilized for this purpose. However, it becomes crucial that the obtained sample

should be a good representation of the population from which it is drawn, as biased

samples can lead to inaccuracy in performing Investigation. To address this challenge,
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Figure 4.1: Proctor System Architecture - a two-step process performing Detection
and Investigation to identify the root cause of performance interference [62]

we validate each sample by utilizing hypothesis testing techniques. As our time series

measurements do not follow the guassian curve, we use a non-parametric statistical

hypothesis testing technique called χ2 test to ensure that the sub-sampled data is a

good representation of the original performance counter data [130].

4.3 Proctor Architecture

Proctor is a dynamic runtime system that automatically detects performance in-

trusive VMs in the datacenters, their victims and the shared resource that is causing

contention, with high accuracy and low overhead. In order to achieve this, Proctor

utilizes a two step approach as shown in Figure 4.1. The first step, PDD, detects

performance degradation caused due to performance intrusive VMs. The second step

PDI, pinpoints the root cause by identifying the exact VM that is responsible for the

performance intrusion and the corresponding metric for which there is contention.

This section elaborates in detail the key components present in Proctor’s design.
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4.3.1 Performance Degradation Detector

Proctor utilizes (PDD) that operates in parallel with applications, continuously

monitoring and looking for performance anomalies in the dataceters at runtime. It

utilizes time series measurements of the primary QoS metric of each application ex-

ecuting inside a VM to detect drastic variation in the numerical range of metrics.

This drastic variation acts as an indication of an event that the performance of the

application has degraded significantly.

PDD employs a signal processing technique called step detection to detect these

abrupt changes in the application performance [85, 93]. However, time series perfor-

mance data of an application has high amount of noise, causing many false alarms if

step detection is applied naively. We use Median filtering algorithm [23] to reduce the

noise in the telemetry data, making PDD accurate in detecting performance anoma-

lies. In the next two subsections, we will elaborate on the step detection and median

filtering techniques.

4.3.1.1 Step Detection

Step detection is a process of finding abrupt changes in a time series signal [85, 93].

Using the time series measurements of the primary QoS metrics, we try to identify
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Figure 4.3: PDD Step Detection using Finite Difference Method

the exact timestamp at which abrupt changes occur in the numerical quantity of

primary QoS metric. An abrupt change is statistically defined as a point in time

where the statistical properties before and after this time point differ significantly.

This is clearly illustrated by Figure 4.2 where we can see a sharp increase in the QoS

metric at time t1. The role of PDD here is to detect such abrupt changes at runtime

and identify the exact timestamp at which such abrupt changes occur. We utilize

finite difference method for this purpose.

The fundamental hypothesis of finite difference method towards identifying abrupt

changes is based on the fact that the absolute difference between subsequent time

series measurements is very high at the exact point where the abrupt changes occur.

This can be utilized to highlight the timestamp at which these abrupt changes occur.

Mathematically, finite difference of a time series signal is the rate of change in

the individual elements in the time series. We implement finite difference method

by performing pair wise difference of subsequent elements present in the time series

using the following formula :-

Y ′ =
Yj+1 − Yj

2∆T
Y ′j = Yj (for 1 < j < n− 1)

where Yj is the jth points present in the time series, n being the number of points,

∆T being the difference between the X values of adjacent data points (difference in
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Figure 4.4: Comparison of detection accuracies (a) without noise removal, (b) with
exponential moving average and (c) with median filtering for the application TPC-C.
Median filtering algorithm detects abrupt changes in performance

the number of timestamps for time series values). The result highlights the drastic

change by showcasing a high value for Y ′. This is clearly illustrated by Figure 4.3

where we can see a sharp increase in the QoS metric at time t1 at the point Y9. Its

corresponding finite differential value is very high at point Y ′9 , which is utilized to

indicate performance degradation at that timestamp t1.

4.3.1.2 Noise Reduction

Naively applying step detection leads to large number of false positives because

of the noise in the time series measurements of QoS metric. For example, we directly

apply the step detection algorithm for TPC-C benchmark and show the detected
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performance anomalies in Figure 4.4a. The figure shows that there are large number

of false alarms.

In order to eliminate the noise present in the raw time series measurements, we

tried to utilize the state-of-the-art curve smoothing techniques like exponential mov-

ing average and kalman filter [66]. However, these techniques still show significantly

high number of false positives. This is because these techniques end up smooth-

ing out drastic changes in time series measurements, projecting them as a slow and

cumulatively occurring event as shown in Figure 4.4b, failing to detect the drastic

performance degradation.

To tackle this problem, we use median filtering for noise reduction as this technique

preserves drastic changes. Our implementation of median filter consists of a moving

window that selectively discard elements that are significantly higher than the median

within that window. This preserves drastic changes while also removing noise from

the time series measurement. Finally, Figure 4.4c shows the effectiveness of applying

median filtering for noise reduction, reducing number of false alarms and making

PDD highly accurate.

4.3.1.3 Obtaining QoS Measurements

The presence of virtualization in datacenter infrastructures introduces challenges

towards obtaining application specific QoS metrics. Applications often run as per-

formance black-boxes and adaptive services must infer application performance from

low-level information or rely on system-specific ad hoc methods. Although this is

not a challenge for CPU intensive batch applications and I/O intensive applications

as their respective QoS metrics can be obtained through performance counters and

system software tools, a class of user facing latency critical applications that run

as performance black-boxes, provide very little information about their current per-

formance and no information about their performance goals (eg. 99th percentile tail
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Name Description
load Input load of application
CPU util CPU utilization of app
page-faults Page faults per sec of app
context-switches Context switches per sec of app
n/w throughput Total bytes sent and received by network
cache-misses Total cache misses (L1,L2 and LLC)
I/O requests Total I/O requests ( read + write)
branch-misses No. of branch mispredictions of app

Table 4.1: List of metrics utilized for performing correlation with the primary QoS
metric to identify source of contention

latency). The primary goal in such situations is to offload the responsibility of provid-

ing time series measurements corresponding to the QoS metrics of an application to

the user. For this purpose we utilize the the Application Heartbeats framework [50]

which provides a simple, standardized way for applications to report their perfor-

mance/goals to external observers. These are enabled through API calls consisting

of a few functions that can be called from applications or through system software.

This is being utilized to track the progress of any executing application which is fed

into our proposed PDD for identifying performance intrusion during runtime.

4.3.2 Performance Degradation Investigator

Once PDD establishes the existence of performance degradation, Performance

Degradation Investigator (PDI) is invoked for further analysis which pinpoints per-

formance intrusive VMs and the major server resource that is causing the performance

degradation.

4.3.2.1 Correlation Based Root Cause Identification

PDI identifies performance intrusive VMs and the major server resource causing

contention by utilizing a correlation based root cause identification technique. The

primary objective of correlation based root cause identification is to highlight the root
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cause VM and the metrics corresponding to it that correlate highly with the primary

QoS metric of the affected VM. In order to obtain that, PDI utilizes the time series

measurements from each low level metric corresponding to the co-running VM and

tries to correlate them with the time series measurements of the affected VM’s primary

QoS metric. The metrics having the highest value of correlation coefficient are the

most highly likely indicators of resource contention and its corresponding VMs are

the most likely culprits for creating performance intrusion. The list of metrics that we

try to correlate is enumerated in Table 4.1. Our implementation of correlation tries to

obtain Pearson’s correlation coefficient [17]. However, performing correlation analysis

on the complete telemetry data causes high performance overhead. Therefore, we sub-

sample the complete dataset and reduce the time to find the source of contention.

4.3.2.2 Real Time Sub-sampling

One of the key challenges faced by Proctor while realizing a real time solution is the

large amount of telemetry data that needs to be queried, resulting in high performance

overhead. Hence, instead of performing correlation analysis on full telemetry data,

we utilize a sub-sampling technique where a sample from a large data is utilized as

input to PDI.

The key objective to be satisfied while realizing a sub-sampling technique is that

the statistical characteristics of the sample should be consistent with that of the

population. For example, measurements obtained from system software tools are

bound to contain extreme values (spikes) at a very low frequency. The sub-sample

that we collect should include these events as well. To ensure that, we perform a

hypothesis testing to check whether the random sample that we select is representative

enough of the population. If not, our hypothesis testing techniques repeats the process

by randomly selecting a sample till it is representative enough of the population.

Most widely used hypothesis testing techniques assume population to be normally
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distributed. However, based on our experiments we have observed that measurements

that come from system software tools and performance counters are highly deviated

from being normally distributed. Therefore, widely used parametric hypothesis test-

ing techniques like t-test and F-test are not suitable for our purpose.

Hence, we use non-parametric hypothesis testing approaches that are capable

of testing samples irrespective of their nature (being normally distributed). Unlike

parametric statistics which primarily utilize mean and variance for this purpose, non-

parametric statistics make no such assumptions on the probability distributions of the

variables being assessed. Therefore, we utilize Pearson’s Chi-Squared test for testing

whether a sample is representative of a population [128].

Chi-square χ2 test is a statistical test used to examine differences within cat-

egorical variables [128]. For time series data, we have taxonomized categories as

numerical ranges within which measurements from system software tools and per-

formance counters can fall into. In other words, we segregate the population data

into different categories where each category refers to a specific range of numerical

quantities. Subsequently, we classify the sample data also into the same categories as

the population. We now obtain the frequency of elements present in each category

for both the sample and population data. For the sample data to be acceptable,

the frequency of elements of the sample data in each category should be close to the

frequency of elements of the population data in the same category. Chi squared test,

compares the frequency of elements of sample and population data in every category

to determine the sample’s acceptability

Input. Frequencies of population measurements and sample measurements lying in

each range.

Output. Accept/Reject sample to be representative of a population.

Methodology. We undertake the following steps to perform Chi-square χ2 test.

1. We identify the frequency of entities that belong to every range for the sample
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Processor Microarchitecture Kernel Hypervisor
Intel Xeon E5-2630
@2.4 GHz

Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0

Intel Xeon E3-1420
@3.7 GHz

Haswell 3.8.0 KVM-QEMU v2.0

Table 4.2: Experimental platform where Proctor is evaluated

distribution.

2. To compare the frequency per range of the sample and population distribution,

we adopt the following methodology.

Null Hypothesis H0: Sample and Population distributions are similar

Hypothesis Test:

χ2 = (Population−Sample)2

Sample

3. We assess the significance level based on the size of the sample to accept/reject

the null hypothesis. Hence, if the null hypothesis is rejected we repeat the same

test with a different sample.

4.4 Evaluation

4.4.1 Methodology

Infrastructure. We evaluate Proctor on two commodity multicore processors sum-

marized in Table 5.2. We use system software tools iostat and netstat to obtain

network and disk specific performance metrics and linux perf tool to measure HW

counters. Performance telemetry is collected at a second level granularity using HW

counters.

Applications. Table 4.3 enumerates the applications, their description, input,

application domain and the respective suite from which they is obtained. We evaluate

Proctor on workloads, where each workload is a mix of 5 applications. We design these
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Application Description
Benchmark

Suite
QoS Metric

CPU /

LLC

lbm Fluid Dynamics

SPEC

CPU2006
IPC

libquantum Quantum Computing

omnetpp
Discrete Event

Simulation

sphinx3 speech recognition

CPU /

LLC

Naive Bayes Big data classification

Big Data

Bench
IPC

Sort Sort words from text

Grep Search words from text

Word Count Count words from text

Kmeans
Processing facebook

network

I/O

YCSB
Querying from Yahoo

dataset
OLTP

bench

I/O latency

and throughput

TPC-C
Querying from retail

database
I/O latency

TPC-H
Querying from business

database
I/O latency

Twitter Querying from tweets
I/O latency

and throughput

Network
Redis Key value store Redis Tail Latency

netperf
Network packet

generator
netperf

network

throughput

Table 4.3: Benchmarks which have been used to evaluate Proctor and its descriptions

workloads in a careful manner to study different types of resource contention. 4 out of

5 applications in a workload are chosen in a manner that they put stress on the four

shared resources - I/O, network, CPU core and LLC. Once these four applications

are executing, arrival of fifth application now causes contention for the resource it

uses heavily. Table 4.4 illustrates the workload mixes that we have considered in our

evaluation. Workloads are executed for a period of one hour where each application

63



Work
Load ID

App 1 -
Main app

App 2 -
Colo app

App 3 -
Colo app

App 4 -
Colo app

App 5 -
problematic app

Network WL1 Redis Search lbm Sort netperf

Disk
I/O

WL2 Twitter lbm Redis Sort YCSB
WL3 TPC - C libquantum Redis Grep Random I/O
WL4 YCSB sphinx3 Redis Word Count TPC - H
WL5 TPC - H lbm Redis K-Means YCSB

CPU
WL6 Naive Bayes libquantum Redis lbm Page Rank
WL7 Grep TPC-C Redis sphinx3 Sort
WL8 lbm TPC-H Redis Sort libquantum

LLC
WL9 omnetpp TPC-H Redis Word Count lbm
WL10 libquantum Random I/O Redis Grep povray
WL11 Redis povray Redis povray libquantum

Table 4.4: Workload scenarios that have been created from the benchmarks to eval-
uate Proctor

is introduced after a period of 12 mins.

4.4.2 Proctor Accuracy

We first evaluate end to end accuracy of Proctor in detecting and investigating

the source of contention. In this experiment, we execute all the workloads and check

whether Proctor is able to detect and identify the source of contention correctly. The

findings of this experiment are presented in Figure 4.5, showing the true positive

and the false positive rates across our workloads.True positives are the situations

during which Proctor identifies performance intrusion when it exists. False positives

are the situations during which Proctor identifies performance intrusion when there

aren’t any. In this graph, false positives represent the percentage of falsely identified

metrics compared to the total number of metrics present.

We observe that Proctor detects the interference and investigates its root cause

for all the workloads, whenever a performance intrusive VM is introduced into the

system, as shown by 100% true positives. In additional, Proctor shows low false

positive rate with an average of 8% across our workloads. This experiment show

that Proctor is accurate in detecting and investigating the source of a performance
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Figure 4.5: Percentage of true and false positives while utilizing Proctor to detect
performance issue and identify its root cause.

anomaly, and is fully capable of guiding the remediation techniques for mitigating

the performance interference. We now show evaluate the two components of Proctor

in more detail.

4.4.3 Detection of Performance Interference

In this section, we evaluate the accuracy and performance of Proctor Performance

Degradation Detector (PDD).

Accuracy. One of the main reasons for Proctor’s accuracy is its robustness in

performing the Detection task by PDD. The median filtering technique is highly

effective in minimizing the false positives in detecting performance intrusion. Here, we

compare the false positive rate for median filtering against state-of-the-art exponential

moving average curve smoothing technique. In this experiment, we measure the false

positives for both the techniques just for detecting the performance anomaly across all

our workloads. The findings of this experiment are presented in Figure 4.6, showing

the number of false positives for both the techniques.

The figure shows that the average number of false positives is around 10× lesser

for median filtering as compared to exponential moving average. This is because

exponential moving averages are highly affected by extreme values, as described in
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Section 4.3.1.2, misinterpreting such noisy events as the performance degradation

events. However, median filtering discards such extreme values, thereby reducing the

error rate.

Performance. The computational time required for PDD is extremely negligi-

ble. The functionalities can be broken down into performing two tasks :- 1) a single

subtraction per second per VM for performing step detection and 2) sorting and dis-

carding outliers once in every 30 seconds per VM for performing median filtering.

Therefore, PDD has minimal performance impact on VM performance.

4.4.4 Investigating the Performance Degradation

In this section, we evaluate the efficiency of Proctor’s Performance Degradation

Investigator, in pinpointing the root cause of performance degradation, towards iden-

tifying both the VM causing the performance degradation (referred to as contentious

VM) and the shared resource for which the applications are competing. In this ex-

periment, we execute each workload with the Proctor runtime system, enabling PDI

to investigate performance anomalies. Here, we first show how the QoS metric of

VMs affected on the arrival of a contentious VM. The QoS metric of the contentious

VM would correlate with the QoS metric of the affected VM. Second, we enumerate

the correlation coefficients obtained from correlating the HW performance counter

measurements of the contentious VM and the QoS metric of the affected VM. Due

to lack of space, we show the results for only 4 workloads, covering the four shared

resources most commonly contended in datacenters - Network, I/O, CPU and Last

level cache (LLC). The findings of this experiment are presented in 4.7. We show

all the five applications only for workload WL1, but show only the contentious and

affected VMs for the rest of the workloads for clarity. We now present the evaluation

for each source of contention in detail.

Network Contention. We use setup present in WL1 to study network contention,
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Figure 4.6: Number of falsely identified performance degradation scenarios when
exponential moving average/median filtering is utilized to remove noise before step
detection
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Figure 4.8: Root cause metrics identified by Proctor.

where contentious VM is executing netperf and the affected VM is executing the

application redis. Therefore, we expect a high correlation between the QoS metric

of VMs executing redis and netperf. Figure 4.7a illustrates this correlation, showing

the QoS metrics for all the five applications in the workload. We observe that the

QoS lines represented by Redis and netperf are highly correlated having a correlation

coefficient of 0.97, while the correlation coefficient of the QoS metric of redis with

other the QoS metric of the other CPU bound applications is very low.

Further, Figure 4.8a shows the correlation coefficients obtained by correlating the

QoS metric of redis, the affected VM with HW performance counter measurements

collected for the contentious VM netperf. Since netperf puts significant stress on the

network, we observe that the correlation coefficient for network throughput is highest,

giving substantial evidence that network is the shared resource for which the two VMs

are competing for.

Interestingly, we also observe high correlation for the cache misses and the context
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switches. Upon further investigation, we found the when netperf starts executing,

its CPU based telemetry like cache misses and context switches start giving non-

zero measurements compared to zero measurements when it was idle. This directly

correlates with the primary QoS metric of the affected VM. As Proctor only looks

at the most correlated metric (network throughput in this case), these false positives

are ignored while performing the investigation.

I/O Contention. We use the scenario exhibited by WL2 to study Disk I/O con-

tention. Here, Twitter, an I/O latency critical application, is being affected and

Yahoo Cloud Serving Benchmark (YCSB) is the contentious application both run-

ning in virtualized environments. Therefore, we expect the QoS metric of YCSB to

correlate with QoS metric of Twitter application.

We show this correlation in Figure 4.7b. YCSB, being an I/O intensive appli-

cation, increases the latency of the Twitter drastically. This is because the I/O

requests of the throughput intensive I/O applications pollute the I/O queue present

in the disk, increasing the access time of the latency critical I/O applications. There-

fore, we observe high correlation coefficient of 0.87 between the QoS metrics of YCSB

and Twitter application.

Since both are I/O critical applications, sending a large number of disk requests,

we expect the I/O to the be shared resource that VMs are competing for. Figure 4.8b

shows this investigation where the disk accesses are highly correlated with the QoS

of the Twitter application. In this manner, PDI correctly identifies the contentious

VM and the shared resource for I/O intensive applications.

CPU Core Sharing. We use the setup present in WL6 for studying contention

due to CPU core sharing. In this workload, Naive Bayes is the affected VM and Page

Rank is the contentious VM. When a VM executing Naive Bayes is consolidated with

a VM executing Google Page Rank in the same physical core, the IPC of Naive Bayes

is affected as both of them are CPU intensive and end up time sharing the CPU core.
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In this case, we expect a high correlation between the QoS metrics of Naive Bayes

and Page Rank applications. We illustrate this interference in Figure 4.7c, showing a

high correlation between the QoS metric of Naive Bayes and Google Page Rank. We

observe a correlation coefficient of 0.83 in this case.

Similarly, Figure 4.8c shows the metrics correlating with Naive Bayes’ QoS when

it shares the CPU core with Page Rank algorithm. We observe that context switches,

a by-product of CPU core contention, show high correlation.

Interestingly, we also observe that the cache misses show high correlation. This is

because when VMs share physical cores, in addition to core resources, they share all

private and shared caches as well. This leads to a high correlation between primary

QoS of the affected VM with the cache misses of the contentious VM. Again, PDI

only looks at the shared resource with the highest correlation and ignore cache misses.

LLC Contention. We use the experimental setup present in WL9 to study LLC

contention, where omnetpp is the affected application and lbm is the contentious

application. In this scenario, both the applications are cache sensitive and compete

for last level cache. Figure 4.7d shows the effect of the arrival of lbm on the QoS

of omnetpp application. We observe that when omnetpp is consolidated with a VM

executing libquantum in the same server, its primary QoS metric (IPC) drops sub-

stantially, resulting in a very high correlation coefficient of 0.93.

Further, we use PDI to investigate the source of contention. Figure 4.8d shows

that cache misses of contentious VM have a high correlation with the QoS of affected

VM. This is expected as both the applications are cache intensive. PDI’s correlation

coefficient is able to tell that the cache misses of LLC for libquantum correlates with

primary QoS metric of omnetpp.

No Contention. Another interesting experimental setup was conducted to verify if

PDD is successful in disregarding false positives when there is no contention. WL10

illustrates a scenario where all the applications do not interfere with each other’s
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Figure 4.9: No. of Proctor servers required to handle 12800 VMs

performance. In such scenarios, PDD did not trigger a performance degradation at

all. This shows the robustness of our technique in disregarding false positives.

These experiments show that PDI is accurate in investigating the source of con-

tention across a wide range of shared resources.

4.4.5 Scalability

One of the key goals of Proctor is to provide a datacenter wide solution towards

identifying performance intrusion. In this section, we study how Proctor scales in a

large datacenter. In particular, we evaluate the benefits of subsampling when scaled

and show that there is a minimal loss in the accuracy of detecting performance in-

trusive VMs when a sub-sampled data is utilized by Proctor.

For this evaluation, we simulate an environment similar to a datacenter setup

capable of executing up to 12800 VMs simultaneously while utilizing 2560 nodes. For

this experiment, we collect telemetry data obtained from multiple executions runs

for the workload scenarios enumerated in 4.3. We then extrapolate the telemetry to

obtain data nearly equivalent to the amount of data that is being collected at large-

scale data centers. PDI then queries the large-scale telemetry data to identify the
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source of contention. In this experiment, we start with no sampling and then increase

the rate of subsampling, calculating the number of servers required to address the PDI

requests from 12800 VMs. The findings of this experiment are presented in Figure 4.9,

showing the impact of subsampling on datacenter resources (left y-axis).

Our baseline utilizes live telemetry (no sampling) to investigate the root cause of

performance intrusion. We observe that the size of telemetry data for 12800 VMs that

have been executing for an hour is around 91 GB. The baseline requires 50 servers (2%

of production datacenters) to keep up with the requests of 12800 VMs. To reduce

the amount of data required for the investigation, PDI uses a robust subsampling

technique, that significantly reduces the server resource requirements. As shown

in the figure, Proctor at 20% sampling requires only 15 machines, as compared to

50 machines with no sampling. This number reduces to just 6 machines with 4%

sampling.

However, aggressive sampling can result in inaccurate results. We show the effect

of sampling rate on accuracy error in Figure 4.9 (right y-axis), where accuracy error is

measured from the difference between the correlation coefficients obtained by querying

the sampled data and corrletaion coefficient obtained from the original data. As shown

in the Figure, no sampling has zero error. We observe that subsampling results in

low error in the investigation process, increasing the error to just 5% and 8% for 20%

and 4.5% samples respectively. In addition, this error gets masked because the VM

or the metric having maximum correlation coefficient stays the same before and after

sampling. We observe diminishing benefits with more aggressive sub-sampling rate.

Hence, we utilize 6.5% sampling as a final parameter for our experiments as it was

the sweet spot optimizing for low error and server count overhead.
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Figure 4.10: Performance improvement due to Proctor runtime system

4.4.6 Putting It All Together

The key use case of Proctor’s detection and investigation technique is mitigate

VMs that are subjected to performance intrusion. In this section, we demonstrate the

benefits brought by Proctor towards this regard. For this study, we couple Proctor’s

detection and investigation methodology with a simple mitigation technique that

migrates the contentious application to another core/physical disk/network channel if

Proctor detects a performance anomaly. Our baseline is a system with no performance

degradation detection and identification mechanism. Speedup is calculated as the

ratio of QoS of the application when its performance is degraded with the QoS of the

application after Proctor mitigates the performance intrusive VM at the point when

PDD detects intrusion. The findings of this experiment are presented in Figure 4.10,

showing the speedup achieved by Proctor for the affected VM as compared to baseline.

We are able to see that in every situation, the presence of Proctor is able to improve

the QoS of the affected VMs. For example, Proctor improves the performance of I/O

and network intensive workloads on an average of about 2×. This is due to the fact

that the latency of I/O intensive workloads are highly affected in many cases due to

intrusion. In situations when CPU cores are being shared, IPC is affected minimum

2×. This is primarily due to context switch overhead when two applications share the
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same CPU core. On an average, we observe that the presence of Proctor improves

the performance of datacenters by 2.2×.
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CHAPTER V

GrandSLAm: Guaranteeing SLAs for Jobs at

Microservices Execution Framework

Multi-tenant execution has been explored actively in the context of traditional

datacenters and cloud computing frameworks towards improving resource utiliza-

tion [71, 126, 28, 104]. Prior studies have proposed to co-locate high priority latency-

sensitive applications with other low priority batch applications [71, 126]. However,

multi-tenant execution in a microservice based computing framework would operate

on a fundamentally different set of considerations/assumptions since resource sharing

can now be viewed at a micro-service granularity rather than at an entire application

granularity.

Figure 5.1b illustrates an example scenario in which an end-to-end intelligent per-

sonal assistant (IPA) application shares microservice instances with an image based

querying application. Each of these applications is constructed as an amalgamation of

different microservices (or stages). In such a scenario, requests corresponding to both

the IPA and image querying applications share the natural language understanding

(Stage 2) and question answering (Stage 3) microservices. As a result, the execution

load in these particular microservices increases, thereby causing the latency of query

execution in stages 2 and 3 to increase. This increase in latency at specific stages

affects the end-to-end latency of the IPA application, thereby violating service level
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Figure 5.1: Sharing microservice instances between Image Querying and Intelligent
Personal Assistant applications using microservices execution framework

agreements. This phenomenon is illustrated by Figures 5.1c and 5.1a. The x-axis

represents the number of requests served while the y-axis denotes latency. Horizontal

dotted lines separate individual stages. As can be seen, the QoS violation for the

image querying application 5.1a is small, whereas the IPA application suffers heavily

from QoS violation. However, our understanding of resource contention need not

stop at such an application granularity, unlike traditional private data centers. It can

rather be broken down into contention at the microservice granularity, which makes

resource contention management a more tractable problem.
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This fundamentally different characteristic of microservice environments motivates

us to rethink the design of runtime systems that drive multi-tenancy in microservice

execution frameworks. Specifically, even in virtualized private data centers, consol-

idation of multiple latency critical applications is limited as such scenarios can be

performance intrusive. In particular, the tail latency of these latency critical applica-

tions could increase significantly due to the inter-application interference from sharing

the last level cache (LLC) capacity and memory bandwidth [71, 126, 132, 73]. Even

in a private datacenter, there is limited visibility into application specific behavior

and QoS which makes it hard to even determine the existence of such performance

intrusion. As a result, cloud service providers would not be able to meet SLAs in such

execution scenarios that co-locate multiple latency critical applications. In stark con-

trast, the execution flow of requests through individual microservices is much more

transparent.

We observe that this visibility creates a new opportunity in a microservice-based

execution framework and can enable high throughput from consolidating the execu-

tion of multiple latency critical jobs, while still employing fine grained task manage-

ment to prevent SLA violations. In this context, satisfying end-to-end QoS merely

becomes a function of meeting disaggregated partial SLAs at each microservice stage

through which requests belonging to individual jobs propagate. However, focusing on

each microservice stage’s SLAs standalone misses a key opportunity, since we observe

that there is significant variation in the request level execution slack among individual

requests of multiple jobs. This stems from the variability that exists with respect to

user specific SLAs, which we seek to exploit.

In this study, we propose GrandSLAm [61], a holistic runtime framework that en-

ables consolidated execution of requests belonging to multiple jobs in a microservice-

based computing framework. GrandSLAm does so by providing a prediction based

on identifying safe consolidation to simultaneously deliver satisfactory QoS (la-
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tency) while maximizing throughput. GrandSLAm exploits the microservice exe-

cution framework and the visibility it provides, to build a model that can estimate

the completion time of requests at different stages of a job with high accuracy. It

then leverages the prediction model to estimate per-stage SLAs using which it 1) en-

sures end-to-end job latency by reordering requests to prioritize those requests with

low computational slack, 2) batches multiple requests to the maximum extent pos-

sible to achieve high throughput under the user specified latency constraints. It is

important to note that employing each of these techniques standalone does not yield

effective QoS and SLA enforcement. An informed combination of request re-ordering

with a view of end-to-end latency slack and batching is what yields effective QoS

enforcement, as we demonstrate later in the paper.

Our evaluations on a real system deployment of a 6 node CPU cluster coupled with

graphics processing accelerators demonstrates GrandSLAm’s capability to increase

throughput of a datacenter by up to 3× over the state-of-the-art request execution

schemes for a broad range of real-world applications. We perform scale-out studies

as well that demonstrate increase throughput while meeting SLAs.

5.1 Analysis of Microservices

This section investigates the performance characteristics of applications utitlizing

microservice execution frameworks. By utilizing the findings of our investigation, we

develop a methodology that can accurately estimate completion time for any given

request at each microservice stage prior to its execution. This information becomes

beneficial towards safely enabling fine-grained request consolidation when microser-

vices are shared among different applications under varying latency constraints.
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Figure 5.2: Increase in latency/throughput/input size as the sharing degree increases

5.1.1 Performance of Microservices

In this section, we analyze three critical factors that determine the execution time

of a request at each microservice stage: (i) Sharing degree (ii) Input size (iii)

Queuing Delay. For this analysis, we select a microservice that performs image

classification (IMC).

Sharing Degree. Sharing degree defines the granularity at which requests belonging

to different jobs/applications are batched together for execution. A sharing degree of

one means that the microservice processes only one request at a time. This situation

arises where a microservice instance restricts sharing its resources among requests

belonging to other jobs. Requests under this scheme can achieve low latency at

the cost of low resource utilization. On the other hand, a sharing degree of thirty

indicates that the microservice merges thirty requests into a single batch. Increasing

the sharing degree has demonstrated to increase the occupancy/throughput of the

underlying computing platform (especially for GPU implementations). However, it

has a direct impact on the latency of the executing requests as the first request arriving

at the microservice would end up waiting until the arrival of the 30th request (when

the sharing degree is 30). Figures 5.2a and 5.2b illustrate the impact of sharing degree

on latency and throughput. The inputs that we have used for studying this effect is a

set of images of dimension 128x128. The horizontal axes on both figures 5.2a and 5.2b

represent the sharing degree. The vertical axis in figure 5.2a and figure 5.2b represents
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latency in milliseconds and throughput in requests per second respectively. From

figures 5.2a and 5.2b we can clearly see that the sharing degree improves throughput.

However, it affects the latency of execution of individual requests as well.

Input size. Second, we observe changes in the execution time of a request by varying

its input size. As the input size increases, additional amounts of computation would

be performed by the microservices. Hence input sizes play a key role in determining

the execution time of a request. To study this using the image classification (IMC)

microservice, we obtain request execution times for different input sizes of images

from 64x64 to 256x256. The sharing degree is kept constant in this experiment.

Figure 5.2c illustrates the findings of our experiment. We observe that as input sizes

increase, execution time of requests increase. We also observed similar performance

trends for other microservice types.

Queuing delay. The last factor that affects execution time of a requests is queuing

delay. This is experienced by requests waiting on previously dispatched requests to

be completed.

From our analysis, we observe that there is a linear relationship between the

execution time of a request, sharing degree and input size respectively. Queuing

delay can be easily calculated at runtime based on execution sequences of requests

and the estimated execution time of the preceding requests. From these observations,

we conclude that there is an opportunity to build a highly accurate performance

model for each microservice that our microservice execution framework can leverage

to enable sharing across jobs. Further, we also provide capabilities that can control

the magnitude of sharing at every microservice instance. These attributes can be

utilized simultaneously for preventing SLA violations due to microservice sharing

while optimizing for datacenter throughput.
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5.1.2 Execution Time Estimation Model

Accurately estimating the execution time of a request at each microservice stage is

a crucial as it drives the entire microservice execution framework. Towards achieving

this, we try to build a model that calculates the estimated time of completion (ETC)

for a request at each of its microservice stages. The ETC of a request is a function

of its compute time on the microservice and its queuing time ( time spent waiting

for the completion of requests that are scheduled to be executed before the current

request).

ETC = Tqueuing + Tcompute (5.1)

We use a linear regression model to determine the Tcompute of a request, for each

microservice type and the input size, as a function of the sharing degree.

Y = a+ bX (5.2)

where X is the sharing degree (batch size) which is an independent variable and Y

is the dependent variable that we try to predict, the completion time of a request. b

and a are the slope and intercepts of the regression equation. Tqueuing is determined

as the sum of the execution times of the previous requests that need to be completed

before the current request can be executed on the microservice which can directly be
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determined at runtime.

Data normalization. A commonly followed approach in machine learning is to

normalize data before performing linear regression so as to achieve high accuracy.

Towards this objective, we rescale the raw input data present in both dimensions in

the range of [0, 1], normalizing with respect to the min and max, as in the equation

below.

x′ =
x−min (x)

max (x)−min (x)
(5.3)

We trained our model for sharing degrees following powers of two to create a pre-

dictor corresponding to every microservice and input size pair. We cross validated

our trained model by subsequently creating test beds and comparing the actual val-

ues with the estimated time of completion by our model. Figure 5.3 shows the error

rate that exists in predicting the completion time, given a sharing degree for different

input sizes. For the image based microservices, the input sizes utilized are images of

dimensions 64, 128 and 256 for small, medium and large inputs, respectively. These

are standardized inputs from publicly available datasets whose details are enumer-

ated in Table 5.1. As can be clearly observed from the graph, the error in predicting

the completion time from our model is around 4% on average. This remains consis-

tent across other microservices too whose plots are not shown in the figure to avoid

obscurity.

The estimated time of completion (ETC) obtained from our regression models

is used to drive decisions on how to distribute requests belonging to different users

across microservice instances. However, satisfying application-specific SLAs becomes

mandatory under such circumstances. For this purpose, we seek to exploit the vari-

ability in the SLAs of individual requests and the resulting slack towards building

our request scheduling policy. Later in section 5.2.2 and 5.2.3, we describe in detail

the methodology by which we compute and utilize slack to undertake optimal request
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distribution policies.

5.2 GrandSLAm Design

This section presents the design and architecture of GrandSLAm [61], our pro-

posed runtime system for moderating request distribution at microservice execution

frameworks. The goal of GrandSLAm is to enable high throughput at microservice

instances without violating application specific SLAs. GrandSLAm leverages the exe-

cution time predictions from ETC to determine the amount of execution slack different

jobs’ requests possess at each microservice stage. We then exploit this slack informa-

tion for efficiently sharing microservices amongst users to maximize throughput while

meeting individual users’ Service Level Agreements (SLAs).
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5.2.1 Building Microservice Directed Acyclic Graph

The first step in GrandSlam’s execution flow is to identify the pipeline of microser-

vices present in each job. For this purpose, our system takes the user’s job written

in a high-level language such as Python, Scala, etc. as an input 1 in Figure 5.4

and converts it into a directed acyclic graph (DAG) 2 of microservices. Here, each

vertex represents a microservice and each edge represents communication between

two microservices (e.g., RPC call). Such DAG based execution models have been

widely adopted in distributed systems frameworks like Apache Spark [129], Apache

Storm [51] etc. Building a microservice DAG is an offline step that needs to be per-

formed once before GrandSLA’s runtime system starts distributing requests across

microservice instances.

5.2.2 Calculating Microservice Stage Slack

The end-to-end latency of a request is a culmination of the completion time of

the request at each individual microservice stage. Therefore, in order to design a

runtime mechanism that provides end-to-end latency guarantees for requests, we take

a disaggregated approach. We calculate the partial deadlines at each microservice

stage which every request needs to meet at so that end-to-end latency targets are

not violated. We define this as microservice stage slack. In other words, microservice

stage slack is defined as the maximum amount of time a request can spend at a

particular microservice stage. Stage slacks are allocated offline after building the

microservice DAG, prior to the start of the GrandSLAm runtime system.

Mathematically slack at every stage is determined by calculating the proportion of

end-to-end latency that a request can utilize at each particular microservice stage.

slack =
Lm

La + Lb · · ·+ Lm + . . .
× SLA (5.4)
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where Lm is the latency of job at stage m and La, Lb . . . are the latency of the same

job at the other stages a, b . . . respectively. Figure 5.5 illustrates the proportion of

time that should be allocated at each microservice stage for varying batch sizes, for

a real world application called Pose Estimation for Sign Language. We can clearly

see from figure 5.5 that the percentage of time a request would take to execute the

Sequence Learning stage is much higher than the percentage of time the same request

would take to execute the Activity Pose stage. Hence, requests are allocated stage

level execution slacks proportionally.

5.2.3 Dynamic Batching with Request Reordering

GrandSLAm’s final step is orchestrating requests at each microservice stage based

on two main objective functions (i) meeting end-to-end latency (ii) maximizing through-

put. For this purpose, GrandSLAm tries to execute every request that is queued up

at a microservice stage in a manner at which it simultaneously maximizes the sharing

degree while meeting end-to-end latency guarantees. Here, GrandSLAm undertakes

two key optimizations: 1 Request Reordering and 2 Dynamic batching as depicted

in Figure 5.6. GrandSLAm through these optimizations tries to maximize through-

put. However, it keeps a check on the latency of the executing job by comparing slack

possessed by every request (calculated offline as described at 5.2.2) with its execution
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time estimates obtained from the model described at Section 5.1.2.

Request reordering. Slack based request reordering is performed at each microser-

vice instance by our runtime system. The key objective of our request reordering

mechanism is to prioritize the execution of requests with lower slack as they possess

much tighter completion deadlines. Hence, our GrandSLAm runtime system reorders

requests at runtime that promotes requests with lower slack to the head of the exe-

cution queue. The request reordering mechanism in Figure 5.6 illustrates this with

an example. Each rectangle is a request present in the microservice execution and

the number in each rectangle illustrates its corresponding slack value. On the left,

it shows the status before reordering and on the middle, it shows the status after

reordering.

Algorithm 1 Dynamic batching algorithm

1: procedure DynBatch(Q) . Queue of requests
2: startIdx = 0
3: Slackq = 0
4: executed = 0
5: len = length(Q)
6: while executed ≤ QSize do . All are not batched
7: window = 0
8: partQ = Q[startidx : length]
9: window = getMaxBatchSizeUnderSLA(partQ, Slackq)

10: startIdx = startIdx + window
11: Slackq = Slackq + latency
12: executed = executed + window
13: end while
14: end procedure
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Dynamic batching. At each microservice, once the requests have been reordered

using slack, we identify the largest sharing degree (actual batch size during execution)

that can be employed such that each request meets its stage level SLAs. Such a safe

identification of the largest sharing degree is done by comparing the allocated slack

obtained by the process described in Section 5.2.2 with the slack estimation model

described in Section 5.1.2.

Algorithm 1 summarizes the dynamic batching approach that we employ. The

input to the algorithm is a queue of requests sorted by their respective slack values.

Starting from the request possessing the lowest slack value we traverse through the

queue increasing the batch size. We perform this until increasing batch size violates

the sub-stage SLA of individual requests present in the queue. We repeat the request

reordering and dynamic batching process continuously as new incoming requests ar-

rive from time to time. Figure 5.6 shows how the dynamic batching is used in our

system from the middle part to the right part.

5.2.4 Slack Forwarding

While performing slack based request scheduling in multi-stage jobs, we encounter

a common scenario. At the end of each microservice stage, there is some slack that

remains unused for a few requests. We reutilize this remaining slack, by performing

slack forwarding, wherein we carry forward the unused slack on to the subsequent mi-
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Type Application Input Sizes Output Network Type Layers Parameters

Image Services

Image Classification (IMC)

64X64, 128X128
and 256 X 256 images

Probability of an object Alexnet CNN 8 15M
Face Detection (FACED) Facial Key Points Xception CNN 9 58K
Facial Recognition (FACER) Probability of a person VGGNet CNN 14 40M
Human Activity Pose (AP) Probability of a pose deeppose CNN 8 40M
Human Segmentation (HS) Presence of a body part VGG16 CNN 16 138M

Speech Services
Speech Recognition (ASR)

52.3KB, 170.2KB audio
Raw text NNet3 DNN 13 30M

Text to Speech (TTS) Audio output WaveNet DNN 15 12M

Text Services

Part-of-Speech Tagging (POS)

text containing 4-70
words per sentence

Words part of speech eg. Noun SENNA DNN 3 180K
Word Chuncking (CHK) Label Words as begin chunk etc. SENNA DNN 3 180K
Name Entity Recognition (NER) Labels words SENNA DNN 3 180K
Question Answering (QA) Answer for question MemNN RNN 2 43K
Sequence Learning (SL) Translated text seq2seq RNN 3 3072

General Purpose
Services

NoSQL Database (NoSQL) Directory input Output of Query N/A N/A N/A N/A
Web Socket Programmig (WS) Text, image Data communication N/A N/A N/A N/A

Table 5.1: Summary of microservices and their funcationality

CPU/GPU config Microarchitecture

Intel Xeon E5-2630 @2.4 GHz Sandy Bridge-EP
Intel Xeon E3-1420 @3.7 GHz Haswell
Nvidia GTX Titan X Maxwell
GeForce GTX 1080 Pascal

Table 5.2: Experimental platforms

croservice stages. In many scenarios, such a technique ends up deprioritizing requests

that had higher priorities in previous stages. This shuffles the queueing time across

requests, as they propagate through the execution stages. By the time requests reach

the last stage, their cumulative compute and queuing delay (end-to-end delay) be-

comes fairly consistent meeting the microservice-specific SLA. Figure 5.7 exemplifies

the case where the unused slack in the ASR stage can be forwarded into the next

microservice stage.

5.3 Evaluation

In this section, we evaluate GrandSLAm’s policy and also demonstrate its effec-

tiveness in meeting service level agreements (SLAs), while simultaneously achieving

high throughput in datacenters that house microservices.
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Application Description Microservice DAG

1. IPA-Query
Provides answers to queries that
are given as input through voice.

ASR→NLP→QA

2. IMG-Query
Generates natural language descri-
ptions of the images as output.

IMG→NLP→QA

3. POSE-Sign
Analyzes interrogative images
and provides answers.

AP→NLP→QA→SL

4. FACE-Security
Scans images to detect the presence
of identified humans.

FACED→FACER

5. DETECT-Fatigue
Detects in real time the onset
of sleep in fatigued drivers.

HS→AP→FACED→FACER

6. Translation Performs language translation. SL QA NoSQL

Table 5.3: Applications used in evaluation

5.3.1 Experimental Environments

Infrastructure. We evlauate GrandSLAm on a testbed consisting of 100 docker

containers. Each container has a single 2.4 GHz CPU core, 2GB of RAM and

runs Ubuntu 16.10. Executing applications using accelerators has been a common

trend [45, 44, 80, 25, 24, 89, 78]. Hence, we evaluate GrandSLAm on both CPU

and GPU platforms as enumerated in Table 5.2. We setup a topology of services and

processes according to that of IBM Bluemix [36]. In other words, each microservice

executes on containerized execution environments. We use docker containers for this

purpose.

Microservice types. Table 5.1 show the list of microservices that we have uti-

lized in our experiments. POS, CHK and NER microservices utilize the kernels

from Djinn&Tonic [43] suite which in turn uses SENNA [26]. Similarly, ASR mi-

croservice utilizes kernels from Djinn&Tonic suite [43], which in turn uses Kaldi [88].

IMC, FACED, FACER, AP, HS, QA and SL microservices are implemented using

Tensorflow framework version 1.0 [3]. Using these microservices we build a

wide range of applications as shown in Table 5.3. These applications cover a vari-

ety of domains incuding Natural Language Processing, Computer Vision and Secu-

rity [19, 45, 44, 99, 18, 33, 100, 20, 12].
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Workload App1 App2 App3 App4 Shared microservices

WL1 IMG-Query FACE-Security DETECT-Fatigue POSE-Sign QA, FACED, FACER, AP
WL2 IPA-Query POSE-Sign Translation NLU, QA
WL3 I/O -IPA-Query I/O-Sign I/O-Translation NLU, NoSQL

Table 5.4: Workload scenarios
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Figure 5.8: Comparing the effect of different components present in GrandSLAm’s
policy

Load generator/Input. To evaluate the effectiveness of GrandSLAm, we design

a load generator that submits user requests following a Poisson distribution that

is widely used to mimic cloud workloads [75]. The effect of performance degradation

at multi-tenant execution scenarios is luminous extensively at servers handling high

load. Hence, our experiments are evaluated at scenarios in datacenters where the

load is high. Such a distribution has been used by several prior works on multi-stage

applications [127, 116, 106]. The SLA that we use for each application is obtained

and calculated from the methodology proposed by PowerChief [127]. Table 5.4 shows

the workload table and the microservices that are shared when they are executed

together. For each microservice request we have evaluated our methodology using

inputs that correspond to data that is available from open source datasets.
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5.3.2 Achieving Service Level Agreements (SLAs)

First, we evaluate the effectiveness of GrandSLAm in achieving Service Level

Agreements (SLAs) for the workload scenarios enumerated in Table 5.4. For this

purpose, we incrementally introduce reordering and batching over the baseline system

and try to study its effects on the percentage of SLA violations.

5.3.2.1 Reducing SLA violations

For this experiment, we deployed a docker container instance for each microser-

vice type. Communication across microservice instances within the cluster happens

through web sockets. Under this experimental setup, we first obtain the % of re-

quests violating SLA under a baseline scheme which executes requests (i)in a first-

in-first-out (FIFO) fashion (ii)without sharing the microservices. Subsequently, we

introduce a request re-ordering scheme that executes requests in an Earliest Deadline

First (EDF) fashion to compare it with the baseline system. Similarly, we also exe-

cute requests in where requests share microservice instances to see how it improves

performance. Lastly, we compare GrandSLAm with these schemes to instantiate its

effectiveness. Our experiment keeps the input load constant at fixed Requests per

Second (RPS) while comparing each policy.

Figure 5.8 shows the results of this experiment. From figure 5.8a we can clearly see

that for a given workload, almost all of the requests violate SLAs under the baseline

and reordering policies. However, the effect is much amortized when requests are

grouped together in batches. This is because batching can improve the overall latency

of a multitude of requests [43] collectively. This is clearly evident from the percentage

of requests violated under baseline+dynamic batching policy. GrandSLAm utilizes

best of both the policies where it ends up having a low percentage of requests that

violate SLA.
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Figure 5.9: Comparing the cumulative distribution function of latencies for prior
approaches and GrandSLAm.
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5.3.3 Comparing with prior techniques

Prior approaches which try to solve this problem are categorized based on their

respective (i) batching policies for aggregating requests and (ii) slack calculation poli-

cies for reordering requests. Most relevant work use a no-batching policy where

they do not batch multiple requests. Djinn&Tonic [43] utilizes a static batching

policy where they used a fixed batch size for all applications. However, we pro-

pose a dynamic batching technique which varies the batch size based on the slack

available for each request. Again, with respect to slack calculation policy, prior ap-

proaches [129, 51] utilize a equal division slack allocation (ED) policy which

equally divides slack across individual microservice stages. Certain other approaches

utilize a first-in-first-out policy while most approaches utilize earliest deadline

first (EDF) slack allocation policy [116, 106]. However, we propose a slack calcu-

lation policy which allocates slack taking into account the intrinsic variation present

in the execution time of different computational stages. This is clearly explained in

Section 5.2.2.

We derive 4 baselines on equal division policy. ED-NB(equal division no batch)

disables batching, ED-30 and ED-50 statically fix batch size to 30 and 50 respec-

tively, and ED-DNB(equal division dynamic batch) utilizes the dynamic batching

approach proposed by GrandSLAm along with the ED policy. We also derive 4 base-

lines on using earliest deadline first policy: EDF-NB, EDF-30, EDF-50 and EDF-

DNB respectively. EDF-NB disables batching, EDF-30 and EDF-50 statically fix

batch size to 30 and 50 while EDF-DNB utilizes the dynamic batching proposed by

GrandSLAm. GrandSLAm’s policy is abbrevated as GS in our graphs.

5.3.3.1 Reordering Requests based on Slack

In this subsection, we quantify the effectiveness of GrandSLAm’s slack calculation

and reordering policy by comparing it with ED and EDF. We illustrate this using the
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cumulative distribution function (CDF) of latencies, as shown in Figure 5.9. We have

used the same experimental setup where the configuration of the input load and the

number of microservice instances remains constant.

Figures 5.9a, 5.9b, 5.9c and 5.9d compare the CDF of the policies EDF dynamic

batch (EDF-DYN), EDF constant batch size 50 (EDF-50), ED constant batch size 50

ED-50, and ED dynamic batching (ED-DYN) respectively with GrandSLAm(GS. The

horizontal axis denotes time. The vertical axis denotes the CDF of the percentage

of requests executed at a particular time. The dashed lines correspond to the target

SLAs that individual applications are subjected to meet. For each figure, the graph

in the left portrays the CDF of the baseline techniques (EDF-DYN, EDF-50, ED-

DYN, and ED-30) and the graph in the right portrays the CDF of GrandSLAm. The

green shaded portion illustrates the leftover slack at the final stage when requests

execute before the deadline. The red shaded portion illustrates slack violation when

requests execute after the deadline has passed. In an ideal case, both green and

red portions should be minimized. In other words, requests should be reordered and

batched in such a way that it neither passes the deadline nor executes way ahead

of the deadline. Executing way ahead of the deadline restricts requests with lower

slack to stall creating a situation where other requests end up violating SLAs. In an

ideal situation, slack remaining should be transferred to the requests who are about

to violate slack. From these graphs, we draw the following conclusion. As shown

in figures 5.9a, 5.9b, 5.9c and 5.9d requests reordering policies proposed by prior

literature creates a situation where a few requests execute much before the expected

deadline while other requests end up violating the SLAs.

Figures 5.9a and 5.9b compares EDF with with GrandSLAm. EDF’s slack al-

location policy for each request is agnostic to the intrinsic variation present in the

microservice execution stages within an application. Hence, in many instances, it

underestimates execution times of requests and performs aggressive batching. As a

94



result of this, some requests complete their execution well ahead of the latency targets

while other requests end up violating SLAs. GrandSLAm, on the other hand, avoids

this situation by allocating slack that is proportional to the time that would be taken

at each stage. GrandSLAm performs judicious batching while limiting aggressive

batching by introducing sub-stage SLAs. This is clearly illustrated in Figure 5.9a.

Pose and IPA are two applications present in WL2. Under EDF’s policy, we see that

the requests corresponding to the Pose application complete well ahead of time (as

shown in the green patch). However, a substantial number of requests corresponding

to the IPA violate SLAs(as shown in the red patch). GrandSLAm, on the other hand,

carefully reallocates slack among applications. Hence, the execution of requests with

abundant slack is stalled until just before the deadline thereby allowing requests with

less amount of slack to be executed, preventing them from violating SLAs. The can

clearly be seen in figure 5.9a as the amount of green and red patches are much lesser

for GrandSLAm. A similar phenomenon can be witnessed for EDF’s static batching

policy with batch size 50, as illustrated in Figure 5.9b.

Figures 5.9c and 5.9d compare ED dynamic and static batching with GrandSLAm.

The major drawback of the ED technique lies in its inability to gauge the slack that

should be allocated in each stage. This is clearly illustrated in Figures 5.9c and 5.9d.

In many cases, it wrongly allocates more slack to requests that do not require it, while

depriving other requests that actually need slack. This introduces additional queuing

time, thereby violating the SLA for a substantial amount of requests. This could

be avoided if slack is being distributed judiciously across requests. GrandSLAm is

cognizant of this need and hence, predicts the appropriate amount of compute time

required for each stage and allocates slack proportionally.
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Figure 5.10: Comparing the latency of workloads under different policies. Grand-
SLAm has the lowest average and tail latency.

5.3.3.2 Dynamic batching for latency reduction

In order to study the effects of dynamic batching, we compare GrandSLAm with

all our baseline policies. Figures 5.10 and 5.11 illustrate the results of this experiment.

In Each stacked bar in Figure 5.10a and 5.10b represents the average latencies and

the tail latencies of the applications respectively. The policies in each figure are or-

dered starting from ED-NB followed by ED-30, ED-50, ED-DYN, EDF-NB, EDF-30,

EDF-50, EDF-DYN concluding with GrandSLAm as GS respectively. GrandSLAm

is distinctively distinguished from other bars by hatching it with slanting lines. The

color in the stacked graph corresponds to either queuing latency experienced at any

stage or the compute latency at individual microservice stages. The different compo-

nents of this plot are stacked breaking the end-to-end latency as queuing latency or

compute stage delay over time (which is why there is a queuing latency stack after

each stage). As can be seen in Figure 5.10a, GrandSLAm achieves the lowest latency

across all policies. GrandSLAm is able to meet the required SLA for almost every

request, as compared to prior policies that violate SLAs for several of these requests.

We draw the following insights into why prior policies are ineffective in meeting SLAs.

No batching techniques. The latency of requests is completely dominated by the
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Figure 5.11: Percentage of requests violating SLAs under different schemes

queueing latency when employing techniques that don’t perform batching, namely

ED-NB and EDF-NB. Hench, such policies are undesirable.

Static batching techniques. In view of the clear disadvantage when requests are

not batched, statically batching them is one of the simplest policies that can be

employed to improve throughput. However, latencies and SLAs could be compromised

if they are not batched judiciously.

Assigning a large fixed batch size for execution can critically violate the latency

of many requests within that particular batch. Let us take WL1 for example. From

Figure 5.10a and 5.10b we see that employing a fixed batch size (batch size 50) under

EDF policy violates SLA only by a small proportion. However, it violates the SLA

for most requests present in the workload. This can be seen in Figure 5.11 where

the percentage of violations for WL1 under ED-50 goes up to 60%. This is caused

because of using a large batch size resulting in a situation where every request ends

up violating the SLA especially at the last stage of the application. This is because a

fixed batch size is not aware of the latencies and slack of requests that are executing

at a point in time. This is an unfavorable outcome especially for applications that

require strict latency targets.

To remediate this, employing smaller batch sizes could be viewed as a favorable

solution. However, smaller batch sizes can be conservative, thereby not being able to

exploit the potential opportunities where aggressive batching can increase throughput

while still meeting the latency constraints. Furthermore, small batch sizes could
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also cause excessive queuing. Specifically, when requests are grouped with small

batch sizes, the first few batches might have low queuing delays. However subsequent

batches of requests would end up waiting for a substantial period of time for the

execution of prior batches of requests to complete, thereby affecting the end-to-end

latency. This increase in queueing latency at the later stages can be clearly seen in

situations created by WL2 (from figure 5.10a and 5.10b ) where policies ED-30 and

EDF-30 violates SLAs both in terms of average latencies as well as tail latencies.

Additionally, many requests also violate SLAs as queuing becomes a huge problem

due to large batch sizes. This can be seen in figure 5.11. These observations strongly

motivate a dynamic batching policy where batch sizes are determined online, during

runtime, depending upon each application’s latency constraints.

Dynamic batching. Equal Division dynamic batching, Earliest Deadline First dy-

namic batching and Grand Slam determines appropriate batch sizes during runtime.

The difference between these three policies is the way by which they compute slack.

Once slack is computed, the largest batch size which accommodates all the requests

without violating its slack is obtained during runtime. For Equal Division dynamic

batching, slack for each request is a fair share from the SLA for each stage in the end-

to-end pipeline. For instance, for an application consisting of 3 stages, each request of

that application is estimated to have a slack of 33% of the SLA at each stage. Earliest

Deadline first approach, however, undertakes a greedy approach wherein the slack for

each request of an application at each stage is the remaining time the request pos-

sesses before it would end up violating the SLA. GrandSLAm is unique and distinct

from all these mechanisms. We adopt the methodology elaborated in Section 5.2.2

that is cognizant of the volume of computation each individual stage performs.

In Figures 5.10a and 5.10b we clearly see that both Equal Division dynamic batch-

ing and Earliest Deadline First dynamic batching perform poorly. This is due to the

following reasons. First, the policy that Earliest Deadline First (EDF) utilizes to
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determine the appropriate batch size for a set of requests is a greedy policy. EDF

dynamically selects batch sizes for the requests aggressively until there is remaining

slack. Although this can be beneficial for traditional datacenter applications where

execution can only be thought of as single stage and monolithic, such an approach

performs poorly at microservice execution framework that possesses multistage exe-

cution pipelines. This is due to the fact that when requests reach the final stages of

execution, they have a limited amount of slack, which in turn restricts the amount of

batching possible to avoid potential SLA violations due to excessive batching. Such

a policy has two key downsides, First, it increases the queuing time for subsequent

requests thereby increasing the of those requests. This has a negative impact espe-

cially on the tail latency of applications as shown in figure 5.10b. Second, it becomes

difficult to identify the exact individual stage that was the causing this bottleneck. As

a result, the command center will perform non-optimal remediations where unwanted

instances would be scaled up leading to high resource utilization. This is experimen-

tally validated in section 5.3.4.2. Third, equal division dynamic batching introduces a

fair share of sub-stage SLA for each stage. This can restrict microservices from batch-

ing aggressively at a single stage. It can also identify the exact microservice instance

that was responsible for end-to-end SLA violation. Such a policy, on the one hand,

can address the high tail latency problem that exists in the Earliest Deadline First’s

aggressive and greedy dynamic batching approach. However, on the other hand, it

neglects the fact that the computation time at each stage is very different. Hence, in

many scenarios, it does not exploit the full benefits of batching for stages that have

high slack. For example, during the final stage in WL2 shown in figure 5.10a and

figure 5.10b, if all the requests have been batched, the percentage of requests that

would have violated slack would be much lower. However, the equal division policy

cannot exploit this opportunity resulting in an increased latency of requests.

GrandSLAm. Our technique, on the other utilizes a hybrid approach by exploiting
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Figure 5.12: Throughput gains from GrandSLAm

the advantages of dynamic batching as well as enabling sub stage cut off slacks.

GrandSLAm utilizes a weighted sub-stage SLA slack based on the computational

requirements of each stage and an online dynamic batching technique. As a result,

GrandSLAm is able to outperform all prior approaches and achieve a much lower

average and tail latency as shown in figures 5.10a and 5.10b.

5.3.4 GrandSLAm Performance

In this section, we evaluate GrandSLAm’s capability in increasing datacenter

throughput and server utilization, while guaranteeing Service Level Agreements (SLAs)

for the workload scenarios enumerated in Table 5.4.

5.3.4.1 Throughput Increase

In this section, we demonstrate the throughput benefits of GrandSLAm, as com-

pared to the state-of-the-art techniques at scale-out environments. We compare the

different execution policies by constructing a real-time simulational experimental

setup consisting of a 1000 node CPU and GPU enabled cluster. As executing AI

applications in accelerator platforms is becoming more common, we try to evaluate

our technique at both CPU and GPU platforms. For GPU based experiments the

executing workloads do not utilize the CPU and are executed only in the GPU de-
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vice and vice versa. Additionally, to mimic scale out execution scenarios, we collect

performance telemetry of workload scenarios for multiple execution runs. We then

extrapolate the performance telemetry to obtain data nearly equivalent to the amount

of data being collected at large scale datacenter. On top of that, we build a simula-

tion infrastructure that mimics GrandSLAm’s execution model at a larger scale. We

also we fix our application specific SLA, instance count and the server configuration

across experimental runs. We ensure that every request executing across the end-to-

end pipeline meets the latency constraints. Under such situations, we observe the

throughput gains corresponding to each execution policy.

Figure 5.12 illustrates the throughput gains of GrandSLAm compared to state

of the art execution policies. Each bar represents the average number of Requests

executed per Second (RPS) across all the applications and workload scenarios enu-

merated in Table 5.4, normalized to the average QPS of GrandSLAm. We normalize

with respect to GrandSLAm since the best prior technique is different for the CPU

and GPU systems. We clearly see that GrandSLAm outperforms other execution poli-

cies. The graph on the left is the average throughput for executing the workloads on

a CPU cluster while the graph on the right illustrates the results of the same experi-

ment on a GPU platform. An interesting observation consistent across both CPU and

accelerator platforms is that the static batching techniques consistently outperform

the dynamic batching techniques. This is because, dynamic batching, for instance, in

the context of time trader, aggressively batches requests initially. However, requests

get stalled during the terminal stages resulting in decreased throughput. On the con-

trary, equal division misjudges the proportion of slack that is to be allocated. As a

result, the policy restricts aggressive batching during scenarios where latency does

not take a hit. This results in low throughput. On an average we obtain up to 3×

performance on the GPU platform and around 2.2× performance on the CPU server

cluster, over the best prior mechanism.
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Figure 5.13: Decrease in number of servers due to GrandSLAm

5.3.4.2 Reduced Overheads due to Decreased Instance Propagation

In this section, we illustrate the decrease in the number of microservice instances

when employing GrandSLAm’s execution policy. Under fixed latency and throughput

constraints, we try to obtain the number of microservice instances of each type that

is required for executing the workloads enumerated in Table 5.4 in a scale-out fashion

similar to section 5.3.4.1.

Figure 5.13 compares the instance count for GrandSLAm and prior works. The

top graph corresponds to CPU performance while the bottom graph corresponds to

GPU performance. We can see that GrandSLAm reduces instance count significantly

on both the CPU and GPU platforms. Additionally, GrandSLAm’s instance count

reduction is higher on the GPU platform. This is intuitive as GPUs are devices that

are optimized to provide high throughput. Overall, we conclude that GrandSLAm

is able to effectively meet SLAs while achieving high throughput at low instance

counts.
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CHAPTER VI

Conclusion

Cloud-scale datacenter management systems utilize virtualization in multi-tenant

execution scenarios to provide performance isolation while maximizing the utilization

of the underlying hardware infrastructure. However, virtualization does not provide

complete performance isolation as Containers/Virtual Machines (VMs) still compete

for non-reservable shared resources. This becomes highly challenging to address in

datacenter environments housing tens of thousands of VMs, causing degradation in

application performance. This dissertation tries to address this problem for pro-

duction datacenters by providing solutions based on the type of datacenter and the

requirements of the tenants that are utilizing the datacenter.

First, I conduct an analysis of performance interference in a multi-core datacen-

ter server to characterize the impact in performance due to sharing of architectural

resources. Based in that I designed a runtime system to estimate performance degra-

dation of applications running in datacenter servers. Second, I compartmentalize

performance interference based on the type of architectural resource for which ap-

plications are contending. Subsequently, I design a mechanism that can detect and

identify the source of interference at a tenant level and at the specific resource level.

Lastly, I explore and identify an important problem due to multi-tenant execution in

microservice execution framework. With that, I design a runtime system to guarantee
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SLAs among applications utilizing microservices in a serverless computing platform.

This has proved to be useful especially for microservices executing DNN based ma-

chine learning algorithms in serverless framework.
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