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Abstract 

 

Pyrolysis biofuels are an attractive near-term solution for reducing carbon 

emissions from vehicles including automobiles and jets while still being compatible with 

current engine technology. However, in order to be used as a “drop-in” fuel, bio-oil must 

be upgraded into biofuel by removing oxygen, increasing hydrocarbon chain lengths, and 

increasing energy density. Current catalytic processes rely on expensive noble metal 

catalysts, and/or are not sufficiently selective in their upgrading. Molybdenum carbide 

(Mo2C) is a low-cost, high surface area catalyst that is known to be active for hydrogenation 

and other relevant reactions and was identified as a promising candidate for use as a bio-

oil upgrading catalyst. The research undertaken in this dissertation aims to investigate 

methods to control the activity and selectivity of the Mo2C catalyst through adding 

promoter metals to the surface of the Mo2C catalyst.  Model compounds were selected to 

represent important properties of bio-oil; both acetic acid and crotonaldehyde were used as 

model compounds. Fe, Co, Ni, Cu, Ru, Rh, Pd, and K were screened as metal promoters 

of crotonaldehyde conversion. Rh, Pd, and Co did not significantly affect catalyst activity 

or selectivity. Ni, Cu, and K increased the selectivity to the isomerization product, while 

Fe increased the selectivity to the HDO products. K showed the highest selectivity to 

isomerization product, so it was selected for further study. A series of catalysts with 

increasing amounts of K promotion up to 1.1 equivalent monolayers on Mo2C were 



 

xvi 

 

synthesized via incipient wetness and tested for their activity and selectivity in acetic acid 

and crotonaldehyde conversion. K promotion increased selectivity to ketonization and 

isomerization products, respectively, and reached a maximum effect at 0.5ML. Similarly, 

K increased base site concentration on the Mo2C surface, and the change in base site 

concentration as found to correlate with the ketonization and isomerization products’ 

productivities. Consequently, the base site, thought to be an exposed negatively charged C 

atom or an Mo-O species, was proposed as the active site for dominant product formation 

on Mo2C. Additionally, K promotion was found to be an effective tool to control the base 

site density.  

In initial screening, Fe showed highest selectivity to HDO products, so it was 

selected for further study and to compare with K promotion.  A series of catalysts with 

increasing amounts of Fe promotion up to 1.1 equivalent monolayers on Mo2C were 

synthesized via incipient wetness (because it allowed to higher Fe promotion) and tested 

for their activity and selectivity in crotonaldehyde conversion. Fe promotion was found to 

decrease both acid and base site concentrations with more than 0.5ML of Fe, as well as 

crotonaldehyde conversion rates. Productivity of much products decreased, but 

correlations between active site concentrations and productivities showed which active site 

types were most predictive of a given product. The weak base site concentration was found 

to be predictive of (correlate with) productivity of butenes and butyraldehyde, and strong 

base site concentration was predicative of  C8+ products.  Though K and Fe promotion had 

opposite effects on the base site concentration, both sets of catalysts revealed that base sites 

were predictive of productivity of particular products. Overall, the contribution of this 

dissertation is that has shown how promoters (specifically, K and Fe) can be employed to 



 

xvii 

 

manipulate active site concentration on Mo2C support to control selectivity of bio-oil 

model compound upgrading.
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Introduction 

1.1. Motivation 

Quality of life has increased dramatically over the past two centuries on a global 

scale, as measured by changes in GDP, adult literacy rate, and life expectancy; world GDP 

is estimated to have increased almost 18-fold from 1820 to 2015 [1], global adult literacy 

rate is estimated to have increase more than 7 times between 1800 and 2016 [2,3], and the 

highest reported life expectancy in any national population almost doubled between 1840 

and 2010 [4]. These three indicators are used by the United Nations to estimate quality of 

life via their Human Development Index (HDI). At the same time, the United Nations 

estimated that the global population increased more than six times over between 1800 and 

2000, from under one billion to just over six billion people [5]. During that time, the 

world’s energy demands have, correspondingly, increased exponentially. Since virtually 

all the world’s energy demands are met by fossil fuels, annual global carbon emissions 

have increased at an exponential rate, as shown in Figure 1.1.  

Debate is ongoing regarding whether energy use is a cause of, or caused by, 

increased wellbeing and quality of life. Some scholars have theorized that increases in the 

quality of life were a direct consequence of the invention and adoption of energy-intensive 

technologies including steam engines, internal combustion engines, and electrical 

generators [6]. However, more recent analysis has shown that for industrial nations over 
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the time period 1980 to 2006, increases in energy consumption per capita did not  have a 

statistically significant correlation with  increases to that nation’s GDP per capita [7]. It 

may be that energy consumption aided, and aids, in improving quality of life as countries 

undergo drastic modernization of their economies, but that there are more marginal or no 

return on energy use in terms of quality of life improvements once an industrial economy 

is established.  

Either way, despite the earth’s natural carbon cycle having some carbon sinks, the 

emission of carbon has far outstripped the ability of the carbon sinks to manage (steady) 

the concentration of CO2 and other greenhouse gases in our atmosphere. This can be seen 

in the rise of atmospheric CO2 concentration since the onset of industrialization as shown 

in Figure 1.2. Human greenhouse gas emissions have been shown to be the cause of the 

increase in the CO2 concentration [8]. The rise in atmospheric CO2 concentrations has 

 
Figure 1.1 Annual global carbon emission changes over time [6].  

0

4,000

8,000

12,000

1800 1900 2000

C
ar

bo
n 

E
m

is
si

on
s 

(M
il

li
on

 m
et

ri
c 

to
ns

 p
er

 y
ea

r)

Year



 

3 

 

induced the greenhouse effect, which has and will continue to wreak havoc on our planet 

via global climate change. Climate change will lead to increases in global temperatures, 

the frequency of natural disasters, sea levels, and more [9]. Consequently, our society needs 

immediate- and long-term plans to reduce the concentration of carbon in the atmosphere; 

first by dramatically reducing carbon emissions, and perhaps eventually by capturing and 

sequestering  existing carbon in the atmosphere.  

In the near-term, this functionally means that we have an imperative to decarbonize 

our society. One option is to reduce or stop using energy-intensive and carbon-intensive 

technologies, including electricity and gasoline-powered transportation, which accounted 

for 25 and 14%, respectively, of global greenhouse gas emissions in 2010 [10]. Another 

option is to find ways to decarbonize while maintaining the high quality of life that people 

 
Figure 1.2. Atmospheric CO2 emissions over the past 400 millennia by direct 
measurement (–) and ice core reconstruction (–). 
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have come to expect. For example, developing low- or zero-carbon replacements for 

products already in use. In the realm of transportation, “drop-in” fuels refers to renewable, 

low-carbon fuels that can replace gasoline in current engine technologies such that they 

can “be added into the existing fuel infrastructure without any changes” [11]. Drop-in fuels 

fall under the broader category of “biofuels”, which is defined in the following section.  

The research undertaken in this dissertation was done with the goal of contributing 

to the body of knowledge surrounding the upgrading of drop-in biofuels, so that they may 

be expediently brought to market to contribute to a decrease in global CO2 emissions, and 

hopefully a slowing or reversal in the rate of increase of the atmospheric CO2 

concentration. 

 

1.2. Biomass, bio-oil, and biofuel 

Biofuel – or fuel made from living matter – production starts with its feedstock: 

biomass. Ultimately, biomass derives its energy from the sun. Photosynthesis converts light 

energy into chemical energy by producing carbohydrate molecules from water and CO2, 

which release O2 in the process. Consequently, all carbon (C) in biomass comes from CO2 

that was in the atmosphere at the time of the plant’s growth. This contrasts sharply with 

the C in fossil fuels, which has been sequestered and stored in the earth’s crust for a length 

of time on the order of millions of years, or even hundreds of millions, of years [12,13]. 

When biomass is combusted for use as a fuel, the C is released back into the atmosphere 

from which it was recently captured by the plant; when fossil fuels are combusted for use 

as a fuel, C is added back to the atmosphere for the first time since it was sequestered 

millions of years prior. Therefore, combustion of biomass “recycles” C already present in 
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the atmosphere, whereas combustion of fossil fuels adds more C to the atmosphere. In this 

way, replacing fossil fuels with biomass as an energy source is an attractive way to slow 

the growth of or stabilize the concentration of carbon in the atmosphere.  

However, there are additional considerations when evaluating the attraction of 

biofuels as a sustainable fuel and as an alternative to petroleum-based transportation fuels. 

For one, the process of converting biomass into a fuel uses energy, and the associated C 

emissions must be considered through lifecycle analysis (LCA) or other methods [14–17]. 

For example, C emissions associated with growing the biomass, transporting it to the 

biorefinery, and powering the bio-refinery must be considered; the C emissions from 

transporting the bio-oil from the biorefinery to the points of use (e.g. gas stations) are 

similar to those from distribution of petroleum-based fuels. One LCA simulated the 

production process of bio-gasoline from hybrid poplar and found that the process offered 

ca. 50% reduction in GHG compared to conventional gasoline [17]. Another consideration 

must be the C emissions associated with direct and indirect land use changes induced by 

an increased demand for biomass. Direct changes occur when land is converted to use for 

growing biomass for biofuels (e.g. deforestation, or conversion from food crops to fuel 

crops), and indirect changes occur when food crops are displaced and induce additional 

land-use changes. The C emissions associated with these changes are very difficult to 

predict and quantify, but some studies have suggested that biofuel use thus far has increased 

C emissions compared to the business-as-usual case [14,18]. However, essentially all 

biofuel production to date has been from corn ethanol, whereas this work focuses on fast 

pyrolysis biofuel.  

Biomass that is grown with the specific intent for use as a fuel is referred to as an 
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“energy crop.” An ideal energy crop will give a high yield per land area, be low energy and 

low cost to produce, and have low nutrient requirements. In the future, water will become 

a more limited natural resource, and it will become more important than an ideal energy 

crop be drought- and pest-resistant and have low water requirements [19]. There are a wide 

variety of biomass sources, and they can be generally divided into food, non-food, and 

aquatic crops (including algae). Biofuels made from these crops are referred to as “first 

generation,” “second generation,” and “third generation,” respectively. Currently, the most 

widely produced and used energy crops are food crops, or first-generation crops: corn (in 

the United States) and sugarcane (in Brazil). In 2000, crops grown for biofuel production 

accounted for ca. 3% of worldwide crop production by weight, and 1% of crop production 

by calories. Only 10 years later in 2010, just American maize and Brazilian sugarcane 

grown for biofuel production accounted for 6% of global crop production by weight and 

4% by calories [20]. Second generation crops include non-food energy crops like 

miscanthus and short rotation coppice, forestry products, agricultural residues including 

straw, and waste materials including waste wood and municipal solid waste.  

Biofuel production methods are generally divided into three categories: chemical, 

biochemical, and thermochemical. While all processes involve chemical transformations 

of the solid or liquid biomass into a liquid fuel, biochemical processes use the addition of 

biological organisms such as yeast, and thermochemical processes use heat (“thermo-” is 

the Greek prefix meaning “hot” or “heat”). Biodiesel is an example of a chemical biofuel, 

because the feedstock (typically vegetable oil) is converted via transesterification at or near 

ambient temperatures [21,22]. Bioethanol, the biofuel produced in the largest volume in 

the United States, is produced via a biochemical conversion process in which yeast is added 
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to convert the sugars and starches in the feedstock (typically cornstarch or sugarcane) to 

ethanol [23]. Pyrolysis biofuel is an example of a thermochemical biofuel that is produced 

at high temperature, atmospheric pressure, and in the complete absence of oxygen [24]. 

The work described herein focuses on the production of pyrolysis biofuel. 

Before pyrolysis, the biomass must be prepared via drying and pulverization. To 

reduce water in the bio-oil product, the biomass is typically dried in order to have less than 

10 wt% water. The particle size requirement depends on the reaction design, but must be 

on the order of magnitude of 1 mm [24]. An attractive aspect of fast pyrolysis is that it is 

very forgiving with the type of biomass feedstock; more than 100 different organic biomass 

types besides wood have been studied, including straw, olive pits, nut shells, miscanthus, 

sorghum, bark, sewage sludge, and leather waste [25].  
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After preparation, the biomass is fed to the reactor as show in Figure 1.3. In 

pyrolysis, three products are always produced: liquid, solids, and char. By manipulating 

the process conditions, including reaction time and temperature, the distribution of product 

types can be controlled. For “fast” pyrolysis, high temperature (near 500C) and short 

residence time (~1 second) favors the production of liquid (75 wt%) over solids (12 wt%) 

and char (13 wt%) and minimizes secondary reactions [26]. After reaction, the char is 

immediately removed via cyclones to prevent further cracking. The collected char accounts 

for ca. 25% of the energy of the biomass feed and can be combusted to supplement the 

energy demands of the production process, or collected and exported. The gas stream is 

then quenched, and the liquid (“bio-oil”) is recovered. The remaining gas flows through an 

electrostatic precipitator to collect any remaining aerosols in the gas stream, which is then 

 
Figure 1.3. Bubbling fluid bed reactor with electrostatic precipitator [14]. 
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added to the bio-oil. After, the gas stream can be recycled to the pyrolysis reactor. 

The bio-oil that is collected from fast pyrolysis is an organic mixture of C, H, O, 

N, S, and water as shown in Table 1.1, taken from [27]; in comparison to petroleum crude 

oil, it contains more oxygen and water by weight at the expense of C and H, and is relatively 

devoid of N and S impurities. Those elements are arranged in a complex mixture of more 

than 400 unique compounds, including aldehydes, ketones, hetero-aromatics, aliphatics, 

methoxys, alcohols, alkenes, dibenzenes, esters, benzyls, esters, and carboxylic acids [28–

30], as shown in Figure 1.4.  

Bio-oil has a higher heating value of 16-19 MJ/kg and contains high water and 

oxygen contents of 15-30 wt% and 35-40 wt%, respectively. This compares unfavorably 

to heavy fuel oil, which typically has a higher heating value of 40 MJ/kg and 0.1 wt% and 

1.0 wt% water and oxygen content, respectively. Also, bio-oil has high viscosity of 40-100 

cP at 50 C and low pH around 2.5 [31]. Its high viscosity makes the bio-oil difficult to 

store and process as a liquid, and the high acidity makes it corrosive and thermally unstable. 

Furthermore, the bio-oil will not mix with other hydrocarbon liquids, and therefore cannot 

 Petroleum crude  
oil (wt%) 

Pyrolysis bio-oil  
(wt%) 

C 83-86 55-65 
H 11-14 5-7 
O <1 30-50 
N <4 <0.1 
S <1 <0.05 

Water 0.1 20-30 
 
Table 1.1. Elemental composition and water content ranges of crude petroleum oils 
compared to pyrolysis bio-oils. 
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be blended with gasoline (as ethanol is in today’s infrastructure). 

Upon condensation and storage, the components of the bio-oil are in a non-

equilibrium state and continue to react, resulting in changes to the density, acidity, 

viscosity, average molecular weight, and chemical composition, even at room temperature 

[32]. Additional potential changes include loss of volatiles and phase separation [26].  

 

1.3. Biofuel and model compound upgrading 

Due to the unfavorable properties described above, bio-oil cannot be used directly 

as a drop-in transportation fuel. For bio-oil to be upgraded to a biofuel for use as a drop-in 

fuel, the upgrading must accomplish three main goals; oxygen must be removed via 

deoxygenation, the energy density must be increased via selective hydrogenation, and the 

chain lengths must be increased via carbon-carbon coupling.  

 
Figure 1.4. Composition ranges of pyrolysis bio-oil oxygenate functionalities correlated 
according to their lignocellulosic biomass source. The weight ranges are based on bio-oil 
analysis data reported by Milne et al [16,19].  
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In addition to improving the stability, upgrading can be employed to increase 

heating value, improve miscibility with other fuels, and reduce corrosiveness and viscosity. 

To upgrade the bio-oil, several physical, chemical, and catalytic upgrading methods can be 

employed. Physical upgrading methods include char residue removal (filtration), solvent 

addition, or emulsification with the support of surfactant [26,27,32]. Several chemical 

upgrading options are available as well, including aqueous phase processing, aqueous 

phase reforming, and esterification [26]. Catalytic upgrading is the most diverse of these 

categories; catalytic upgrading can be in-situ (added to the pyrolysis step) or ex-situ 

(performed after the pyrolysis step), and ex-situ upgrading can be performed before 

condensation (on the vapor product) or after (on the liquid product). In a 2015 techno-

economic report from the National Renewable Energy Laboratory and the Pacific 

Northwest National Laboratory, it was predicted that the both in situ and ex situ pyrolysis 

bio-oil could be produced for less than $3.50 per gallon of gasoline equivalent by 2022 

[33].  

When re-heated after condensation, bio-oil reacts rapidly and separates into solid 

residue (ca. 50 wt%) and a liquid fraction containing volatile organic compounds and water 

[26]. Therefore, any studies of pyrolysis upgrading must generate the bio-oil vapors in the 

laboratory instead of being manufactured off-site, transported as a liquid, and then re-

vaporized in the laboratory. An additional challenge of studying bio-oil upgrading is that, 

because of the immense number of molecules that are present in bio-oil, analysis 

techniques (predominantly gas chromatography) can generally only track changes in 

properties of the molecular components; for example, changes in the distribution of 

functional groups, average molecular size, energy density, and total acid number [34].  
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 For catalyst studies, a model compound is often employed which replicates key 

important properties of the bio-oil and allows careful study of chemical transformation, 

while still enabling comparison of catalyst performance in a lab setting. A good model 

compound will contain one or more functional groups that are prevalent in bio-oil vapor so 

that the intramolecular selectivity of catalytic upgrading can be studied. In addition, 

multiple model compounds may be co-fed to study intermolecular interactions and 

selectivity, while also approaching the complexity of studying the upgrading of whole bio-

oil. The most common model compounds that have been studied are lignin-derived 

phenolics including guaiacol, cresols, and anisole [35–41]. Other model compounds that 

have been studied include propanal and other C3 oxygenates [42], 1-octanol [43], and 

more. Ruddy et al. called for study of a wider array of model compounds, specifically citing 

acetic acid, hydroxyacetaldehyde, levoglucosan, and alkylated furans [27].  

This work uses both crotonaldehyde and acetic acid as bio-oil compounds. Acetic 

acid and crotonaldehyde were chosen as model compounds as they represent the simplest 

carboxylic acid and a simple aldehyde, respectively. They also each possess multiple 

functionalities, and can undergo a variety of transformations, allowing for multiple reaction 

pathways to be probed. In addition, aldehydes and carboxylic acids are prevalent in 

pyrolysis vapors (up to 13 and 25 wt%, respectively) [29]. Last, acids and aldehydes are 

the main sources of some of the most undesirable properties of bio-oil; acids are significant 

contributors to the corrosiveness of bio-oils, and aldehydes are significant contributors to 

the instability of bio-oil [27,44].  
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1.4. Molybdenum carbide catalyst 

Molybdenum carbide (Mo2C) is an example of an early transition metal carbide, in 

which carbon sits in interstitial vacancies sites of the molybdenum crystal lattice. The 

crystal structure of carbide materials is governed by both geometric and electronic factors. 

The Hägg rule is the geometric governor and predicts that a mixture of a metal and a non-

metal will form a simple structure if the ratio of the hard-ball radii of nonmetal to metal 

(rx/rM) is less than 0.59. This rule correctly predicts that Mo and C will form a simple 

structure since rC/rMo is 70 pm / 145 pm = 0.48 is less than 0.59 [45,46]. The electronic 

factor is governed by the Engel-Brewer theory of metals, which predicts that a mixture’s 

structure depends on the s-p electron count, and therefore on the mixing of the s-p orbitals 

of the carbon and the s-p-d band of the metal [45].   

Molybdenum carbide has two stable crystalline forms, commonly referred to as α-

MoC1-x and β-Mo2C. α- MoC1-x has an orthorhombic arrangement of metal atoms and 

carbon in the interstitial spaces, while β-Mo2C has a hexagonal close packed arrangement 

of metal atoms also with carbon in the interstitial spaces [47]. These structures are shown 

in Figure 1.5, taken from [48]. Because of the carbon insertion in the lattice, the Mo host 

 
Figure 1.5. Crystal structure of fcc α-MoC1-x (left) and hexagonal β-Mo2C (right).  
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lattice experiences an expansion, and the Mo2C structures have a larger metal-metal bond 

distances than metallic Mo.  

Catalysis interest in transition-metal carbides as catalytic materials arose from a 

1973 report by Levy and Boudart which found that tungsten carbide (WC) catalyzed the 

formation of water from hydrogen and oxygen at room temperature and the isomerization 

of 2,2-dimethylpropane to 2-methylbutane [49]. Previously, these reactions were only 

known to be catalyzed by Pt, Au, and Ir, which are all expensive noble metal catalysts, and 

neither are catalyzed by metallic tungsten. Levy and Boudart theorized that the noble-

metal-like catalytic properties of WC arose from changes to the electron distribution of W 

caused by the insertion of C, and its corresponding increased electronegativity.  

The WC that Levy and Boudart tested for the initial study of transition metal 

carbides was only 5 m2/g.  Since then, synthesis techniques based on temperature-

programmed reaction have been developed that enable synthesis of high surface area early 

transition metal carbides including Mo2C with surface area greater around 100 m2/g. 

[50,51]. Generally, a reductive carburizing gas source (often CH4/H2) flows over a metal 

oxide precursor as it is heated at a constant rate from room temperature to some target 

temperature. Because the structure of the parent metal oxide remains intact (the 

transformation is topotactic), the removal of the oxygen from the lattice leaves a significant 

micropore structure [45]. With such high surface area, early-transition metal carbides are 

a good candidate for use a catalyst support for other metals [51,52].  

Since their discovery as a catalytic material, early transition-metal carbides have 

been studied for their catalytic activity for reactions including hydrogenation of C2+ 

organics [53–55], dehydrogenation [56,57], isomerization [58], hydrodeoxygenation 
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[41,59], Fischer Tropsch reaction [60–62], and water-gas shift reaction [45].  

For bio-oil model compound upgrading, Mo2C has been studied for selective 

deoxygenation of aldehyde and alcohol model compounds (propanal, 1-propanol, furfural, 

and furfuryl alcohol) [42,63]. Ren et. al. found that hydrodeoxygenation (HDO) of 

propanal over Mo2C gave high (ca. 60%), stable selectivity to propylene during 300 min 

TOS. Their findings, taken from [42], are shared in Figure 1.6. 

Chen et. al. reported that a mixture of anisole, m-cresol, guaiacol, and 1-2-

dimethoxybenzene had yields higher than 90% to the completely deoxygenated aromatics 

over Mo2C [41]. Mortensen et. al. found that Mo2C/ZrO2 gave decent selectivity for HDO 

for 1-octanol and phenol (70% and 37%, respectively) but that the catalyst deactivated 

during 76 time on stream (TOS) and selectivity decreased (to 37% and 19%, respectively) 

[43]. However, these selectivities are insufficient for cost-effective bio-oil upgrading, and 

higher selectivity needs to be achieved to encourage widespread adoption. One possibility 

is to develop selectivity control methods for controlling the selectivity of Mo2C catalysts. 

 

 
Figure 1.6. Selectivity of propanal with H2  over Mo2C.  



 

16 

 

1.5. Promoters for molybdenum carbide catalysts 

Mo2C was identified as a good candidate for a catalyst support because it can be 

synthesized with high surface area and has unique catalytic properties. Supporting metal 

promoters on the Mo2C support has been used at technique to control activity and 

selectivity. In an early report, Dubois et. al. found that supporting Cu on Mo2C decreased 

CO2 hydrogenation activity by ca. 10%  but increased selectivity to methanol by ca. 100% 

[64]. Soon after, Ledoux et. al. examined Co, Rh, Pd, Ru, Pt, and Ir for their effect on the 

n-hexane reaction with Mo2C and found that Pt, Ir, and Ru increased Mo2C activity up to 

ca. 3.5 times [65]. Woo et. al. applied the concept of alkali promotion, which had 

previously been shown effective for conventional Fischer Tropsch catalysts, to be an 

effective method for increasing Fischer Tropsch selectivity to linear alcohols with Mo2C 

[66]. Also for Fischer Tropsch reaction, Griboval-Constant et. al. reported that Co and Ru 

increased activity of Mo2C [67]. They found that Ru decreased the selectivity to alcohols, 

while Co increased the selectivity to higher hydrocarbons. However, Schaidle et. al. 

suggested these results may be due more to intrinsic activity of the Ru and Co than to 

synergistic interactions between the metal and support [68]. In all these cases, passivated 

Mo2C was used as the support, so the metals interacted with the oxide surface layer and 

not the native carbide surface.  

In other findings, metals were mechanically mixed with the Mo precursor before 

carburization, so a mixed carbide phase was created. Xiang et. al. found that Fe, Ni, and 

Co mixed with K/Mo2C shifted the selectivity of Fischer Tropsch reaction [69]. All three 

metals increased selectivity to hydrocarbons at the expense of alcohols, and the authors 

noted a corresponding decrease in the apparent activation energies of alcohol formation for 
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Ni and Co modified K/Mo2C. Of the hydrocarbons produced, the modifier metals 

decreased selectivity to methane and increased the selectivity to C2+ hydrocarbons. 

Similarly, of the alcohols produced, the metals decreased the selectivity to methanol and 

ethanol and increased the selectivity to C3+ alcohols.   

Another method of supporting metals on Mo2C catalysts was pioneered in our 

group. The metal promoter is supported on the native Mo2C support by aqueous wet 

impregnation of the native Mo2C, and then the supported metal catalyst is subjected to 

passivation [52,70]. Materials prepared by this method have been studied for their 

performance in methanol steam reforming [70,71], water gas shift (WGS) [72–75], Fischer 

Tropsch reaction [68], CO2 hydrogenation [76], deoxygenation [40], and more. For these 

reactions, metal addition to Mo2C by wet impregnation was found to affect the activity and 

selectivity of the catalysts and offers a promising way to tune the performance of Mo2C for 

particular applications.  

For WGS, wet impregnation of Mo2C with Pt was found to produce the highest 

rates compared to other Pt catalysts including Pt/Al2O3, Pt/TiO2, and Pt/CeO2 [73]. 

Schweitzer et. al. reported that there was a strong interaction between the Pt and Mo2C, 

and showed through a combination of extended X-ray absorption fine structure (EXAFS), 

X-ray absorption near edge structure (XANES), and density functional theory (DFT) 

results that the Pt formed “raft-like” particles on the Mo2C. In addition, for a series of 

Pt/Mo2C catalysts with increasing Pt loading, the perimeter sites of the Pt particles were 

found to be more highly predicative of the WGS rate than the surface sites. Consequently, 

the interface of the Pt particles and the Mo2C was identified as the location of the WGS 

active sites.  
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Wyvratt et. al. found that for WGS, Mo2C whose native surface had been 

impregnated with Pt gave TOF of an order of magnitude higher than catalyst whose 

passivated surface had been impregnated, and was not significantly different than the TOF 

of unpromoted Mo2C [72]. Using SEM, impregnation on the native surface was found to 

give rise to well-dispersed nanoscale Pt particles, while impregnation on the passivated 

surface gave large Pt particles with diameter of 19 ± 6 µm. In addition, the passivation 

layer was shown to inhibit the redox chemistry that typically governs the uptake of Pt onto 

Mo2C during wet impregnation. These two effects – particle size and redox behavior – 

were identified as the source of the activity differences between the catalysts.  

Baddour et. al. examined deoxygenation of a bio-oil model compound, guaiacol. 

They found that for Mo2C, wet impregnation of Pd, Ni, and Pt increased the selectivity to 

the fully hydrogenated product, cyclohexane [40]. The largest effect was seen for Pt as 

shown in Figure 1.7 (taken from [40]) , and the enhancement in hydrogenation selectivity 

 
Figure 1.7. Selectivity of guaiacol deoxygenation over metal-modified Mo2C catalysts.  
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was attributed to the increase in H* sites and a decrease in the acid-/H*-site ratio.  

 

1.6. Research goals and organization of the text 

The goal of this dissertation was to study the interplay between properties and 

performance of promoted molybdenum carbide catalysts for conversion reactions of bio-

oil model compounds, and to identify the mechanisms by which the promoter metals 

generated changes to the activity, selectivity, and stability. The three main goals were as 

follows: 

1. Evaluate a series of metals (Fe, Co, Ni, Cu, Rh, Pd, and K) for their 

promotion effects on Mo2C catalyst for bio-oil model compound conversion 

and to find periodic and group trends, and identify metals for further 

investigation 

2. Develop relationships between the amount of metal promotion (K and Fe) 

and the activity and selectivity for conversion of bio-oil model compounds 

with Mo2C 

3. Identify the role of active site densities in modulating the selectivity of 

metal-modified (K and Fe) Mo2C catalysts for bio-oil model compound 

upgrading 

This dissertation is organized into six chapters, and brief descriptions of each 

chapter are given below: 

 

Chapter 1: Introduction 

This chapter explains the motivation for this work and introduces the reader to 
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critical concepts that form the basis of the research including the process of converting 

biomass to bio-oil, the upgrading of that bio-oil into biofuel, catalysis and molybdenum 

carbide catalysts specifically, and the manner in which promoter metals are used to modify 

catalysts to control the upgrading of bio-oil into biofuel. 

 

Chapter 2: Metal/Mo2C catalysts for crotonaldehyde upgrading 

Some promoter metals (Ni, Cu, Fe, and K) were found to shift the selectivity of 

crotonaldehyde conversion when supported on Mo2C catalysts. In particular, Ni, Cu, and 

K increased the selectivity to the isomerization product, while Fe increased the selectivity 

to the HDO products. Meanwhile, Rh, Pd, and Co did not significantly affect catalyst 

activity or selectivity. K/Mo2C and Fe/Mo2C gave very low selectivity for butyraldehyde, 

suggesting that they have a high affinity for hydrogenation of the C=O bond.  

 

Chapter 3: Selectivity of biomass model compound upgrading over K-promoted 

Mo2C 

Since K was found to create the largest shift in selectivity to the isomerization 

product, it was investigated more carefully for its effect as a promoter for upgrading with 

Mo2C catalyst. For both acetic acid and crotonaldehyde model compounds, K promotion 

up to 0.5ML was found to shift selectivity to the ketonization and isomerization products, 

respectively. Beyond this amount of promotion, the effect of K was incremental and 

reversed for acetic acid and crotonaldehyde conversion, respectively. It was theorized that 

the change in effect of K promotion beyond 0.5ML up to 1.1ML was due to the difference 

in the way that K dispersed on the catalyst surface at high loadings compared to low 
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loadings.  

 

Chapter 4: Linking active site types and selectivity for K-promoted Mo2C 

Base, acid, and H* site concentrations on Mo2C and K/Mo2C catalysts were 

measured via temperature-programmed desorption (TPD) of CO2, NH3, and H2 probe 

molecules. K addition to Mo2C created base sites and eliminated acid and H* sites. Via 

deconvolution of the TPD spectra, the base and acid sites were further separated into weak 

and strong sites. The active site concentrations were correlated to the productivity of each 

product for acetic acid and crotonaldehyde conversion on K/Mo2C catalysts with K 

promotion from 0 to 1.1ML. Strong correlations suggested that active site was responsible 

for the formation of that product; base sites were identified as the active site for the 

dominant product at high K loadings (acetone for acetic acid conversion; 3-butenal for 

crotonaldehyde conversion).  

 

Chapter 5: Pathway of selectivity influence for transition versus alkali metals 

Iron, identified in chapter 2 as a promoter that shifted selectivity to HDO products, 

was investigated to determine the mechanism of promotion. Mo2C was promoted with Fe 

up to 1.1ML via incipient wetness, since wet impregnation does not allow for high loadings 

of Fe. Incipient wetness of small loadings of Fe was found to shift selectivity, 

 

Chapter 6: Summary and future work 

In this chapter, the work presentation in the dissertation is summarized and 

synthesized. Areas of future research are proposed that would deepen and strengthen the 
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results from this work.  
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Metal/Mo2C catalysts for crotonaldehyde upgrading 

2.1. Introduction 

The purpose of this chapter was to evaluate promoter metals for the effects they 

had on the activity, selectivity, and stability of Mo2C for crotonaldehyde conversion. The 

goal was also to identify possible periodic trends in these effects. Previous literature was 

used as a guide for the selection of which promoter metals to evaluate. Fe [1–4], Co [1,3–

6], Ni [3,4,7], Cu [1,4,7–10], Ru [5,6,11], Rh [6,11], and Pd [1,4,11] were selected because 

they have been studied as promoter metals on Mo2C and because they gave the chance to 

study both periodic and group trends. K [2,3,12–15] was selected as a representative 

promoter of alkali metal promoters, and because it has been studied extensively for 

dramatically shifting selectivity of other organic upgrading reactions including Fischer 

Tropsch reaction and WGS.  

Fe has been studied as both modifier and promoter of Mo2C. As a “modifier”, a 

substance is physically mixed with a catalyst or catalyst support, such that it is present in 

the bulk of the catalyst and not solely on the surface; this is in contrast to a “promoter” 

which is solely added to the catalyst or catalyst support surface. As a modifier, reports on 

the effects of Fe addition to K/Mo2C have been conflicting. Xiang et. al. reported that Fe 

addition (Fe/Mo=1/8) shifted selectivity from alcohols to hydrocarbons for the Fischer 

Tropsch reaction [3]; Wang et. al. reported that Fe addition to K/Mo2C improved selectivity 
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to alcohols while decreasing selectivity to hydrocarbons, and that the optimal ratio for this 

modification was Fe/Mo=1/14 [2]. Xiang only tested on Fe/Mo ratio, and Wang did not 

test ratios as large as 1/8, so this may explain the discrepancy. Fe/Mo2C prepared via wet 

impregnation was found to not appreciably change the rate or selectivity for Fischer 

Tropsch reaction [4]. Chen et. al prepared Fe(0.38ML)/Mo2C by incipient wetness of the 

native (unpassivated) Mo2C surface and showed that Fe promotion increased C2+ 

productivity for CO2 hydrogenation [1]. They proposed that the changes are due to Fe 

increasing the concentration of associative adsorption sites. A more thorough exploration 

of Fe promotion is given in Chapter 5. 

Co-modified K/Mo2C increased selectivity to C2+ alcohols and hydrocarbons for 

the Fischer Tropsch reaction [3]. Wet impregnation of 1 wt% Co on passivated Mo2C 

increased Fischer Tropsch activity and also was found to increase formation of C2+ 

hydrocarbons. [5]. The Mo2C and Co/Mo2C had very low BET surface areas (<10 m2 g-1) 

though, and therefore likely had minimal pore structures. Chen et. al reported that .39ML 

of Co added to Mo2C by incipient wetness increased C2+ productivity for CO2 

hydrogenation, but slightly less than Fe did [1]. Schaidle reported that Co added to Mo2C 

by wet impregnation was the only promoter in the series tested that was found to change 

rate and selectivity for Fischer Tropsch reaction; it depressed the product formation rate 

but increased selectivity to hydrocarbons and alcohols [6]. Wyvratt reported similar 

changes in Fischer Tropsch selectivity with wet impregnation of Mo2C with Co, but 

highlighted that the changes in selectivity are much less than expected, given that Co/SiO2 

is highly active for Fischer Tropsch reaction [16].  

Ni/Mo2C prepared via wet impregnation was found to not appreciably change the 



 

31 

 

rate or selectivity for Fischer Tropsch reaction [4]. Ni deposited on a Mo2C/Mo(110) 

substrate decreased total activity compared to C/Mo(110), but shifted selectivity from 

decomposition and methanation to reforming for ethanol reaction [7]. 1.4ML of Ni gave a 

bigger reduction in total activity and shift in selectivity than 0.7ML of Ni.  

Cu/Mo2C prepared via wet impregnation was found to not appreciably change the 

rate or selectivity for Fischer Tropsch reaction [4]. Cu deposited on a Mo2C/Mo(110) 

substrate shifted selectivity from decomposition and methanation to acetaldehyde 

formation for ethanol conversion [7]. 1.0ML of Cu did not shift the selectivity more than 

0.5ML, but it did reduce the total activity compared to Mo2C and 0.5ML of Cu addition. 

Ru/Mo2C prepared by incipient wetness of the passivated Mo2C surface increased 

rate and yield for n-hexane reforming compared to Mo2C, which was attributed to Ru 

enabling Mo reduction metallic Mo [11]. This is an insufficient justification, since Mo 

metal is not known to be active for this reaction. Ru/Mo2C prepared via wet impregnation 

was found to not appreciably change the rate or selectivity for Fischer Tropsch reaction 

[4]. Ru(1 wt%)/Mo2C prepared by wet impregnation of passivated Mo2C was observed to 

increase rate but decrease alcohol formation for Fischer Tropsch reaction [5].  The increase 

in rate was less than the change observed with Co promotion in the same study. However, 

Wyvratt found that Ru/Mo2C prepared by wet impregnation of native Mo2C did not 

increase rate or selectivity of Fischer Tropsch reaction up to 20 wt% Ru, which he 

attributed to deactivation of Ru when it is pretreated at high temperatures [16].  

Incipient wetness of Mo2C with Rh was found to substantially reduce the rate of n-

hexane reforming [11]. It was unclear whether the incipient wetness was performed on the 

native or passivated Mo2C surface; it was very likely the passivated surface. Rh 
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[6,11]/Mo2C prepared via wet impregnation was found to not appreciably change the rate 

or selectivity for Fischer Tropsch reaction [4]. 

Wet impregnation of Mo2C with Pd was found to increase CO2 conversion rate and 

production of methanol for liquid-phase CO2 hydrogenation, even though active sites (as 

measured by CO chemisorption) decreased [1]. Pd promotion of Mo2C by incipient wetness 

of the passivated Mo2C surface reduced the rate and yield for n-hexane reforming [11].  

A thorough investigation of K promotion is given in Chapter 3. 

The results from this chapter were used as a basis for selecting which promoter 

metals warranted further investigation in Chapters 3-5 with regard to the extent of the 

selectivity effects and the mechanism by which these selectivity effects occurred.  

 

2.2. Experimental Methods 

2.2.1 Catalyst Synthesis 

The Mo2C was synthesized by a previously reported temperature-programmed 

reaction (TPR) method [4]. Briefly, the ammonium paramolybdate precursor, 

(NH4)6Mo7O24·4H2O (Alfa Aesar, 81-83% as MoO3), was sieved to yield particles between 

125−250 μm. Then, 1.3 g of precursor was loaded into a vertical quartz reactor tube and 

supported on quartz wool, and then enclosed in a vertical programmable furnace. The 

precursor was heated in 400 mL min-1 of H2 gas from room temperature (RT) to 350 °C at 

5 °C min-1 and followed by a 12 h soak. The gas was then changed to 400 mL min-1 15% 

CH4/H2 and the precursor was heated to 590 °C at 2.7 °C min-1 followed by a 2 h soak. The 

reactor tube was then removed from the furnace and quenched to room temperature. For 

the preparation of Mo2C catalyst with no supported metal, the material was passivated in 
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20 mL/min of 1% O2/He flowed through the reactor for at least 6 hrs. 

Mo2C catalysts promoted with Fe, Co, Rh, and Pd were prepared via wet 

impregnation. Previous work has shown Mo2C can be promoted by wet impregnation with 

metal precursors that have high standard reduction potentials, that nitrate precursors tend 

to produce loadings closer to the nominal loading, and that electrostatic interactions may 

play a role in the promotion process [4,6].  Consequently, the metal precursors used were 

Cu(NO3)2•3H2O, Co(NO3)2•6H2O (Johnson Matthew), RhCl3 (Johnson Matthey), 

Ni(NO3)2•6H2O (Fisher Scientific, 99.0%), and Pd(NH3)4(NO3)2. First, 70 mL of deonized 

water was added to a glass container. Argon gas was bubbled through the water for at least 

15 min to remove any dissolved oxygen. Then, the target amount of metal precursor salt 

was added to the water, and Ar was bubbled through the water for at least 15 min. The 

target amount of metal precursor corresponded to a surface coverage of 10% of a 

monolayer of the Mo2C support, which has a surface area of 110 ± 20 m2 g-1 and is assumed 

to have 1019 sites m-2 [17]. Prior to passivation, the Mo2C catalyst (0.75 g) was transferred 

under Ar to the metal precursor solution. The powder was left in the solution overnight and 

Ar was continuously bubbled through the solution. Next, the material was transferred back 

into the vertical packed bed synthesis reactor without exposure to air. The samples were 

dried at 110°C for 2 hrs in 400 mL min-1 H2, and then reduced in 400 mL min-1 H2 at 450°C 

for 4 hrs. After being quenched to RT in flowing H2, the material was passivated in 20 mL 

min-1 of 1% O2/He for at least 6 hrs. 

Mo2C catalysts promoted with K, Fe, and Ru were prepared via incipient wetness 

because they are known to not deposit well onto Mo2C via wet impregnation [4,6]. The 

metal precursors were K2CO3 (Sigma Aldrich, 99.0%), RuCl3•3H2O (Alfa Aesar, 99.9%), 



 

34 

 

and Fe(NO3)3•9H2O (Fisher Scientific).  First, approximately 25 mL of deonized water was 

added to a small glass vial. Argon or nitrogen gas was bubbled through the water for at 

least 15 min to remove any dissolved oxygen. Then, the target amount of metal precursor 

salt was placed in a separate glass vial. The target amount of metal precursor corresponded 

to a surface coverage of 10% of a monolayer of the Mo2C support. Prior to passivation, the 

Mo2C powder was transferred under CH4/H2 blanket to an oxygen-free glovebox, along 

with the de-aerated water and the metal precursor salt. An amount of water equal to the 

pore volume of the Mo2C sample (130.4 μL g-1) was added to the metal salt, and the 

solution was shaken until the salt dissolved. The metal salt solution was added dropwise to 

the Mo2C with substantial stirring and agitation between each addition. Then, the powder 

was dried at 110°C for at least one hour in the oxygen-free environment. The material was 

transferred back into the vertical packed bed synthesis reactor in an oxygen-free 

environment and transferred back to the programmable furnace under an Ar blanket. The 

catalyst was dried at 110°C for 2 hrs in 400 mL min-1 H2, and then reduced in 400 mL min-

1 H2 at 450°C for 4 hrs. After being quenched to RT in flowing H2, the samples were 

passivated in 20 mL min-1 of 1% O2/He for at least 6 hrs. Catalysts will be referred to as 

M/Mo2C, where the M denotes the metal promoter.  

 

2.2.2 Physical Catalyst Characterization 

Powder X-ray diffraction (XRD) patterns were collected using a Rigaku 

MiniFlex600 diffractometer with a Cu Kα (λ = 1.54 nm) radiation source (40 kV, 15 mA) 

and a Ni filter. Diffraction patterns were collected in the 2θ range of 10-90° with a scan 

rate of 5° min-1 and a step size of 0.02. The materials were supported on a glass sample 
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holder with a 0.2 mm recessed sample area and were pressed into the recession with a glass 

slide to obtain a uniform z-axis height. Rietveld refinement was performed in JADE using 

reference patterns for orthorhombic β-Mo2C (JCPDF 00035-0787) and cubic α-MoC1−x 

(JCPDF 00-015-0457).  

The catalyst surface areas were measured by N2 physisorption using a 

Micromeritics ASAP 2020 Surface Area and Porosity Analyzer. Before these 

measurements, the materials were degassed under vacuum (<5 mmHg) at 350 °C for 4 h. 

The surface areas were determined using the Brunauer-Emmett-Teller (BET) method. 

Relative metal loading was determined using Inductively Coupled Plasma-Optical 

Emission Spectroscopy (ICP-EOS) with a Varian 710-ES. For each sample, 15 mg of 

catalyst material was dissolved in 3 mL of aqua regia (3:1 HCl:HNO3) for at least 24 hrs. 

Then, 1 mL of the solution was diluted with 13 mL of deionized water. The solution was 

analyzed by a Varian 710-ES ICP Optical Emission Spectrometer and compared to 

standard samples of Mo, Fe, Co, Rh, Pd, K, and Ni.  

 

2.2.3 Activity and Selectivity Measurements 

The crotonaldehyde conversion rate and selectivity measurements were carried out 

in a 10 mm O.D. quartz U-tube fixed bed reactor. For each experimental run, ca. 100 mg 

of catalyst sample was diluted with 200 mg of low surface area silicon carbide and 

supported on a quartz wool plug (~35mg) inside the reactor. The catalyst was diluted with 

inactive silicon carbide to maintain a constant bed height, minimize temperature gradients 

in the bed, and to avoid problems with axial dispersion. The reactor was maintained at 

atmospheric pressure throughout pre-treatment and reaction measurements.  
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Prior to the experiments, the catalysts were pretreated in 15% CH4/H2 at 590 °C for 

4 h.  Previous work has shown that this pretreatment removes the passivation layer on the 

surface of the catalyst and activates the catalyst [18]. The catalysts were then cooled to 150 

°C before being heated to 350 °C in UHP N2. Once at the initial reaction temperature, the 

feed gas mixture was introduced to the reactor. The catalyst was maintained at the initial 

temperature for 6 hrs to accommodate for catalyst deactivation, and then maintained at 

each sequential temperature (275°C, 325°C, 300°C, 350°C) for 3 hrs to allow the catalyst 

to stabilize. 

For the reactant mixture, H2 and N2 both passed through mass flow controllers 

(Brooks 5850 and Omega FMA5400/5500 mass flow controllers, respectively) and then 

were mixed and passed through two sequential bubblers kept at 0°C. The first bubbler 

contained crotonaldehyde and the second was empty, in order to maintain a constant 

concentration of crotonaldehyde in the reactant mixture. The reactant mixture consisted of 

0.7 mol% crotonaldehyde, 4.2 mol% H2, and 95.1% N2 (50 mL min-1 total flow). The 

H2/carbon molar ratio (6) was chosen to achieve approximately 2 times the stoichiometric 

amount of H2 required for complete saturation and deoxygenation of crotonaldehyde to 

butane. The reactant mixture then flowed to the reactor, which was enclosed in a 

programmable furnace. 

The feed lines to the reactor and to the gas chromatograph were heated to 200°C to 

ensure that all feed and product components remained in the gas phase. The concentration 

of feed components and products were analyzed using an SRI 8610C gas chromatograph 

(GC) equipped with a thermal conductivity detector and a flame ionization detector.  

Selectivity, 𝑆௜, was defined as: 
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𝑆௜ =
𝐶௜

∑ 𝐶௝௝
 

where 𝐶௜ was the concentration of the product in the reactor effluent stream as measured 

by GC, and 𝑗 is the total number of products detected. Since the carbon number was the 

same for all products (4), the carbon selectivity is equal to the selectivity. 

 

2.3. Results 

2.3.1 Physical Catalyst Characterization 

X-ray diffractions results shown in Figure 2.1 indicate that all catalysts were 

confirmed to be of a mixture of α-MoC1-x and β-Mo2C carbide phases, with no detectable 

bulk oxide phase. Also, no peaks corresponding to the metal promoters were detected, 

suggesting they did not crystallize on the catalyst surface. This likely indicates that the 

metal promoters are well-dispersed on the catalyst surface, consistent with other findings 

[4]. BET surface area as determined with N2 physisorption measurements and the measured 

metal content from ICP are shown in Table 2.1. 
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2.3.2 Activity 

First, the Mears criterion Weisz-Prater criterion were evaluated to determine 
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Figure 2.1. X-ray diffraction spectra of metal/Mo2C and Mo2C catalysts. 

 
Table 2.1. Target and measured metal loadings, and surface areas of catalysts. 

Catalyst 
Monolayer 
Coverage 

(%) 

Target 
Loading 
(wt%) 

Measured 
Loading 
(wt%) 

Surface 
Area 

(m2/g) 
     

K/Mo2C 10 0.7 
 

135 
Fe/Mo2C 10 0.9 

 
69 

Co/Mo2C 10 1.0 1.0 ± 0.1 115 
Ni/Mo2C 10 1.0 

 
117 

Cu/Mo2C 10 1.1 0.8 ± 0.1 129 
Rh/Mo2C 10 1.7 0.6 ± 0.1 85 
Pd/Mo2C 10 1.8 

 
114 

Mo2C N/A N/A 
 

104 
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whether the effects of mass transfer and diffusion could be neglected. The Mears criterion 

is a dimensionless number which characterizes the effects of external mass transfer, and is 

a function of the measured rate of reaction, −𝑟஺
ᇱ(𝑜𝑏𝑠), the bulk density of the catalyst, 𝜌௕, 

the catalyst particle radius, 𝑅, the reaction order, 𝑛, the mass transfer coefficient, 𝑘஼, and 

the bulk reactant concentration, 𝐶஺௕: 

𝑀𝑅 =  
−𝑟஺

ᇱ(𝑜𝑏𝑠)𝜌௕𝑅𝑛

𝑘஼𝐶஺௕
 

In 1974, Mears suggested that when 𝑀𝑅 < 0.15, the effects of external mass transfer can 

be neglected [19]. −𝑟஺
ᇱ(𝑜𝑏𝑠) was experimentally observed; 𝜌௕, 𝑅, and 𝐶஺௕ were 

experimentally measured. 𝑘஼ is a function of the Sherwood number, 𝑆ℎ, the diffusivity, 

𝐷஺஻, and the catalyst particle radius, 𝑅. 𝐷஺஻ was calculated by the Fuller semi-empirical 

method [20]. 𝑆ℎ is a function of the Colburn J factor, 𝐽஽, Reynolds number, 𝑅𝑒, and 

Schmidt number, 𝑆𝑐: 

𝑆ℎ = (𝐽஽)(𝑅𝑒)(𝑆𝑐)ଵ ଷ⁄  

And 𝐽஽ can be determined from a correlation for mass transfer to a packed bed [21]: 

𝜙𝐽஽ = 0.453𝑅𝑒଴.ସହଷ 

The fluid viscosity was estimated as a mixture of H2 and N2 [22], since it was expected that 

the effects of crotonaldehyde (<1 mol %) would be negligible. For the experimental 

conditions studied, 𝑀𝑅 < 10ିହ for 𝑛 < 2, and thus, it can be assumed that the effects of 

external mass transfer are negligible.   

The Weisz-Prater criterion was calculated to determine whether the effects of 

internal diffusion could be neglected. The dimensionless number is a function of the 

measured rate of reaction, −𝑟஺
ᇱ(𝑜𝑏𝑠), the catalyst pellet density, 𝜌஼, the catalyst particle 
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radius, 𝑅, the effective diffusivity, 𝐷௘, and the surface reactant concentration, 𝐶஺௦: 

𝐶ௐ௉ =
−𝑟஺

ᇱ(𝑜𝑏𝑠)𝜌௖𝑅ଶ

𝐷௘𝐶஺௦
 

If the Weisz-Prater criterion is significantly less than 1, the effects of internal diffusion can 

be neglected [23]. −𝑟஺
ᇱ(𝑜𝑏𝑠) was experimentally observed; 𝜌௖ and 𝑅 were experimentally 

measured; 𝐶஺௦ was approximated as 𝐶஺௕ since the Mears criterion showed that external 

mass transfer effects were negligible. 𝐷௘ can be calculated from 𝜀, the void fraction, 𝐷஺஻, 

the diffusivity, and 𝜏, the tortuosity: 

𝐷௘ =
𝜀𝐷஺஻

𝜏
 

where 𝜀 is experimentally measured by N2 physisorption and 𝜏 is estimated from typical 

values for catalysts. For the experimental conditions studied, 𝐶ௐ௉ < 10ିହ for all cases, so 

it can be assumed that the effects of internal diffusion are negligible.  

Catalyst deactivation was analyzed for 6 hr TOS at 350 C. Normalized activity 

profiles for each catalyst were compared where: 

𝑎(𝑡) =
𝑟𝑎𝑡𝑒(𝑡)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑒
 

All catalysts showed significant deactivation during the deactivation period, losing 

63-82% of their initial activity, as shown in Figure 2.2. Mo2C, Rh/Mo2C, Co/Mo2C, and 

Pd/Mo2C all showed the least amount of deactivation, while Cu/Mo2C, Ni/Mo2C, and 

K/Mo2C showed the most significant deactivation. Each catalyst deactivation profile was 

fit to several known deactivation models in order to determine the applicability of various 
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deactivation mechanisms including linear, exponential, hyperbolic, and reciprocal models.   

 
Figure 2.2. Activity decay for crotonaldehyde conversion during initial time on stream 
for Mo2C (•), Rh/Mo2C (•), Co/Mo2C (•), Pd/Mo2C (•), Fe/Mo2C (•), Cu/Mo2C (•), 
Ni/Mo2C (•), and K/Mo2C (•). 

 
 

 
Figure 2.3. Activity a(t) data for Mo2C (•) as a function of time on stream with line 
regression results for linear (–), exponential (–), hyperbolic (–), and reciprocal decay 
models (–).  
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An example for Mo2C is shown in Figure 2.3. The forms of these models are given in Table 

2.2, and R2
adj and the fitted parameters are shown in Table 2.3. Here, 𝑘ௗ is the specific 

decay constant and 𝑡 is the time on stream. The exponential model was the best fit for the 

most catalysts (four), but hyperbolic gave the best fit overall, with R2
adj > 0.925 for all 

catalysts. Exponential decay has been attributed to deactivation by poisoning [24], while 

hyperbolic decay has been attributed to deactivation by sintering [21], and it is likely that 

both decay mechanisms play a role in the deactivation of all catalysts. For the catalysts that 

had stronger correlations with the exponential decay model (Mo2C, Co/Mo2C, Ni/Mo2C, 

and Pd/Mo2C) than the hyperbolic decay model, it may be that sintering is not as prevalent 

or significant as compared to the sintering of the other metals (K/Mo2C, Fe/Mo2C, 

Cu/Mo2C, and Rh/Mo2C). In particular, Cu and Fe are known to be sensitive to sintering 

above 300 C [1,6,25]. Interestingly, the only catalyst for which the best fit was not 

hyperbolic or exponential was K/Mo2C; the best fit for this catalysts was the reciprocal 

model, which is consistent with deactivation by carbon deposition, or coking [26,27]. This 

is surprising because potassium has previously been observed to stabilize Ni/Al2O3 

catalysts for steam reforming and FexOy catalysts for styrene synthesis by reducing coke 

formation [28–30]. 

 
 
Table 2.2. Nonlinear regression models for catalyst activity decay. 

Type Linear Exponential Hyperbolic Reciprocal 
Differential 

Form −
𝑑𝑎

𝑑𝑡
= 𝑘ௗ −

𝑑𝑎

𝑑𝑡
= 𝑘ௗ𝑎 −

𝑑𝑎

𝑑𝑡
= 𝑘ௗ𝑎ଶ −

𝑑𝑎

𝑑𝑡
= 𝑘ௗ𝐴଴

ଵ
ହ𝑎௠ 

Integral 
Form 

𝑎 = 1 − 𝑘ௗ𝑡 𝑎 = 𝑑ି௞೏௧ 𝑎 =
1

1 + 𝑘ௗ𝑡
 𝑎 = 𝐴଴𝑡ି௞೏ 
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Crotonaldehyde conversion rates were used to construct the Arrhenius plot shown 

in Figure 2.4 for Mo2C and Mo2C-based catalysts. Rh/Mo2C is the most active catalyst per 

surface area, and Ni/Mo2C are K/Mo2C are the least active catalysts per surface area. The 

apparent activation energies of the catalysts are approximately equal for all catalysts, as 

shown in  

Table 2.4. Pd/Mo2C and Mo2C have the smallest apparent activation energies, while 

Rh/Mo2C and Co/Mo2C have the highest apparent activation energies. These values  are 

 
Table 2.3. Results from nonlinear regression of activity data to four empirical decay 
rate laws.  

Catalyst 
Linear Exponential Hyperbolic Reciprocal 

R2
adj kd (hr-1) R2

adj kd (hr-1) R2
adj kd (hr-1) R2

adj kd (hr-1) A0 
Mo2C 0.91 0.13 0.97 0.20 0.94 0.28 0.70 0.24 0.70 
K/Mo2C 0.04 0.16 0.77 0.32 0.95 0.57 1.00 0.44 0.59 
Fe/Mo2C 0.60 0.15 0.91 0.27 0.98 0.44 0.81 0.26 0.59 
Co/Mo2C 0.98 0.12 0.98 0.16 0.93 0.22 0.76 0.27 0.78 
Ni/Mo2C 0.42 0.18 0.94 0.39 0.93 0.71 0.94 0.54 0.55 
Cu/Mo2C 0.55 0.17 0.94 0.33 0.96 0.58 0.90 0.43 0.58 
Rh/Mo2C 0.70 0.14 0.93 0.21 0.98 0.33 0.91 0.29 0.68 
Pd/Mo2C 0.76 0.15 0.96 0.26 0.94 0.42 0.86 0.39 0.66 

 

 
Table 2.4. BET surface areas and apparent activation energies of Mo2C catalysts. 

Catalyst Surface Area 
(m2/g) 

Apparent Activation  
Energy (kcal/mol) 

Mo2C 104 11 ± 2 
Rh/Mo2C 85 14 ± 2 
Co/Mo2C 115 15 ± 2 
Pd/Mo2C 114 11 ± 2 
Fe/Mo2C 69 12 ± 5 
Cu/Mo2C 129 12 ± 2 
Ni/Mo2C 117 12 ± 2 
K/Mo2C 125 12 ± 2 
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small but compare well to literature; Ammari et. al reported activation energy of 5.0 

kcal/mol for crotonaldehyde hydrogenation at 80°C on Pt/ZnO catalyst, and Raab and 

Lercher reported activation energies between 3.3 and 18.2 kcal/mol for crotonaldehyde 

hydrogenation with Pt-Ni/TiO2 catalysts also at 80°C [31,32].  

Rates were also analyzed when normalized by total catalyst weight, moles of Mo2C 

support, and moles of metal promoter. In all cases, there was still a range between all rates 

of at least two orders of magnitudes. Crotonaldehyde conversion rates normalized per mole 

of metal on catalyst surface is shown in Figure 2.5.  

 

 
Figure 2.4. Arrhenius plot for crotonaldehyde conversion of Mo2C (•), Rh/Mo2C (•), 
Co/Mo2C (•), Pd/Mo2C (•), Fe/Mo2C (•), Cu/Mo2C (•), Ni/Mo2C (•), and K/Mo2C (•). All 
conversion rates are normalized by catalyst surface areas.  
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2.3.3 Selectivity 

For all catalysts, four distinct products were observed via GC: butadiene, butene, 

butyraldehyde, and 3-butenal. Possible reaction pathways for observed and expected 

products are shown in Table 2.5. Butadiene and butene (both in blue) will be called HDO 

products because the overall reaction from crotonaldehyde to these products is HDO; 

butyraldehyde is referred to as a hydrogenation product; and 3-butenal is named as an 

isomerization product. Selectivity changed substantially during the initial TOS, as shown 

in the example for Mo2C in Figure 2.6. Butyraldehyde and 3-butenal undergo an induction 

 
 

 

Figure 2.5. Arrhenius plot for crotonaldehyde conversion of Rh/Mo2C (•), Co/Mo2C (•), 
Pd/Mo2C (•), Fe/Mo2C (•), Cu/Mo2C (•), Ni/Mo2C (•), and K/Mo2C (•). All conversion 
rates are normalized by moles of metal promoter on catalyst surface. 
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period, and selectivity increases during the deactivation phase, even as catalyst activity is 

decreasing. Meanwhile, butene and butadiene activity decrease during initial TOS in a 

similar trend as the overall conversion. A similar induction period was observed for all 

catalysts.  

 

Comparison of selectivity between different catalysts was made using the 

selectivity measured at 350°C after 6 hr TOS, computed from the average of the last three 

GC measurements taken. The selectivity results are shown in Figure 2.7 by increasing size 

of transition metal promoters with the alkali promoter added at the end. Rh/Mo2C, 

Pd/Mo2C, and Co/Mo2C did not give significantly different selectivity than Mo2C. 

Ni/Mo2C and Cu/Mo2C gave slightly increased selectivity for isomerization, while 

Fe/Mo2C gave increased selectivity for isomerization and HDO and very low selectivity to 

hydrogenation. K/Mo2C gave very increased selectivity for isomerization and 

hydrogenation while suppressing HDO. Overall, for each product type, Mo2C gave the 

Table 2.5. Possible primary and secondary reaction pathways of crotonaldehyde. 
Primary Reaction Pathways Reaction Class Equation 

   

→  Isomerization (17) 

+ 2H2 → + H2O Hydrodeoxygenation (HDO) (18) 

   

+ H2 →  Hydrogenation (19) 

+ H2 →  Hydrogenation (20) 

   
Secondary Reaction Pathways     

+ H2 →  Hydrogenation (21) 

+ H2 → + H2O Hydrodeoxygenation (HDO) (22) 

→ + H2O Dehydration (23) 
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highest selectivity to hydrogenation, Fe/Mo2C gave the highest selectivity to HDO 

products, and K/Mo2C gave the highest selectivity to isomerization products.  

 

 

 
Figure 2.6. Crotonaldehyde conversion (■) and carbon selectivity of butyraldehyde, 
butene, 3-butenal, and butadiene for Mo2C during deactivation period at 350 C. 
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2.4. Discussion 

For K, Co, Ni, Cu, and Pd promotion, the BET surface area was not statistically 

significantly different than the surface area of Mo2C, given the known range of BET 

surface area for Mo2C produced from the synthesis methods. Wyvratt similarly reported 

that low loadings of Co and Ni promotion of Mo2C did not change the surface area [16].  

For Fe and Rh, the small amount of promoter metal (.1 ML) reduced the surface area of 

Mo2C by ca. 20%. Fe promotion and its effects on surface area will be explored further in 

Chapter 5.  

Analysis of the deactivation profiles suggested that sintering and poisoning may 

each be sources of deactivation. Sintering is of particular concern because it is effectively 

 

Figure 2.7. Carbon selectivity for butadiene, butene, butyraldehyde, and 3-
butenal, products from crotonaldehyde conversion at 350°C after 6 hr TOS on Mo2C 
catalysts. 
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irreversible, and the initial activity cannot be regenerated. From the deactivation data, the 

mechanism of sintering cannot be determined, but would be a useful area for further 

research. Self-poisoning has been reported as a source of deactivation for crotonaldehyde 

hydrogenation over clay-supported Pt catalysts, and also for cinnamaldehyde (another α,β-

unsaturated aldehyde) hydrogenation over supported Cu catalysts [33,34]. In these cases, 

selectivity of products also changed drastically during initial deactivation, suggesting a 

buildup of an intermediate on the catalyst surface. Similar substantial changes are seen in 

the selectivity during deactivation of the Mo2C-supported catalysts, as shown in the 

example in Figure 2.6, strengthening the conclusion that self-poisoning is a source of 

deactivation for these catalysts. HDO products are initially formed at higher selectivities, 

so oxygen may be building up on the surface and preventing access to HDO sites, and in 

turn shifting the selectivity to non-deoxygenated products. Specifically, the HDO active 

sites may undergo self-poisoning by oxygen, allowing for increased productivity of 

hydrogenation and isomerization products over time.  

Changes in crotonaldehyde conversion rate, when normalized by surface area, were 

all within one order of magnitude. All promoter metals depressed the conversion rate, with 

the rates for Rh/Mo2C within error of the rates for Mo2C. In general, the period 5 promoter 

metals (Rh and Pd) experienced less reduction in conversion rate than the smaller promoter 

metals. This could be because the period 5 metals are physically larger than the period 4 

promoter metals, and either disperse differently on the surface or preferentially settle in 

larger pores. Though the period 5 metals are approximately twice as large as the period 4 

metals by molecular weight, recent work by Cordero et. al. suggests that the covalent 

atomic radius of Rh (1.42 Å) and Pd (1.39 Å) are only ca. 10% larger than Fe (1.32 Å l.s., 
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1.52 Å h.s.1), Co (1.26 Å l.s., 1.50 Å h.s.), and Ni (1.24 Å). Of course, the metals do not 

necessarily exist in their atomic state on the catalyst surface, and most likely exist in 

clusters or particles instead of as individual atoms. For the case of Pt/Mo2C, Pt was found 

to deposit in “raft-like” particle structures, mostly 20-40 Å in size [35]. And for low surface 

area Mo2C, it was hypothesized that large, heterogeneous Co particles form on the surface 

and reduce to metallic Co during pre-treatment [5]. The most obvious exception to the 

periodic trend was Co/Mo2C, which had rates with magnitude between Rh/Mo2C and 

Pd/Mo2C. Co and Fe may each exist in either low or high spin states, and this result is 

consistent with Co being predominantly in the h.s. state with larger radius, and Fe being 

predominantly in the l.s. state with smaller radius. Co(II) is known to be dominated by h.s. 

complexes.  

One reason that promoter metals may decrease the crotonaldehyde conversion rate 

is because they eliminate active sites on the surface of the catalyst; an increase in 

conversion rate would have instead suggested the promoter metals create new active sites 

on the surface. If promoter metals selectively eliminated or poisoned active sites, the 

selectivity would be different for the metal-promoted Mo2C catalysts compared to the base 

case, Mo2C catalyst.  

In fact, selectivity did change for some of the promoted catalysts. First, Co/Mo2C, 

Rh/Mo2C, and Pd/Mo2C did not have significantly different selectivities than Mo2C. This 

is a similar trend to that found for conversion rates, for which these three promoted catalysts 

                                                 

 

1 Low spin state (l.s.) and high spin state (h.s.) 
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had the most similar crotonaldehyde conversion rates to Mo2C. Together, this suggests that 

Co, Rh, and Pd do not synergistically interact with Mo2C to change the activity or 

selectivity. It is consistent with the hypothesis that these metals unselectively block active 

sites on the surface but do not contribute to any activity on the Mo2C surface. However, 

the metals themselves as Co/SiO2 [36], Rh/SiO2 [37], and Pd/SiO2 [38] are active for gas-

phase crotonaldehyde hydrogenation. When studied on various supports, Pd selectivity was 

very support-sensitive, giving highest selectivity to dibutyl ether and n-butyl alcohol 

depending on the support [38]. Consequently, it would be expected that these metals would, 

at the very least, provide additive activity, since they are known to be active. Further 

investigation is warranted to understand how these metals deposit on the Mo2C and what 

role (if any) they play in this reaction. 

Ni/Mo2C, Cu/Mo2C, and Ru/Mo2C, and K/Mo2C had increased selectivity to 

isomerization, mostly at the expense of hydrogenation selectivity. Fe/Mo2C showed very 

low selectivity to hydrogenation, with increased isomerization and HDO selectivity. Both 

K/Mo2C and Fe/Mo2C gave very low selectivity for butyraldehyde, suggesting that they 

have a high affinity for hydrogenating the C=O bond.  

 

2.5. Summary  

Selectivity was measured at four temperatures: 275°C, 300°C, 325°C, and 350°C. 

For most catalysts, the selectivity at different temperatures was not significantly different, 

so comparison of selectivity across catalysts was made for the initial selectivity at 350°C 

after 6 hrs TOS. Rh/Mo2C, Pd/Mo2C, and Co/Mo2C did not give significantly different 

selectivity than Mo2C. For Rh and Co, this agrees with other analysis, since deactivation 
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and rate data for these catalysts were also very similar to Mo2C. Ni/Mo2C and Cu/Mo2C 

gave slightly increased selectivity for 3-butenal, while Fe/Mo2C gave increased selectivity 

for 3-butenal and butene, and K/Mo2C gave very high selectivity for 3-butenal. K/Mo2C 

and Fe/Mo2C gave very low selectivity for butyraldehyde, suggesting that they have a high 

affinity for hydrogenation of the C=O bond.  
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Selectivity of biomass model compound upgrading over K-promoted 

Mo2C 

3.1. Introduction 

As demonstrated in the first chapter, some metal promoters of Mo2C can be used to 

manipulate the selectivity of bio-oil upgrading. Still, more highly selective catalysts are 

desired. To design more highly selective catalysts, this chapter seeks to understand the 

mechanism by which K changes the selectivity of upgrading. Then, this mechanistic 

understanding can be exploited to increase or repress that effect. The addition of alkali 

metals has been reported to significantly shift the selectivities of early transition metal 

carbide and nitride catalysts [1–3]. For several hydrogenation reactions, K addition to 

Mo2C has been shown to shift the selectivity from paraffins to olefins and reduce methane 

selectivity from >40% to ca. 20% at similar extents of conversion for CO hydrogenation at 

atmospheric pressure [1]. Solymosi and Bugyi reported that K addition to a Mo2C/Mo(100) 

surface increased the rate of adsorption and binding energy of CO2, a proxy for measuring 

the base site concentration [2]. Vo et al. also found that K addition to Mo2C/Al2O3 

increased base site concentration; the extent of this increase was greater than that for Na, 

Ce, or Co dopants [3]. Potassium addition has also been broadly evaluated as a modifier 

for other catalytic materials [4–6]. For example, alkali addition to an MgO catalyst 

increased the activity for 2-propanol conversion and shifted the selectivities for 
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dehydration and dehydrogenation products.  

Mo2C catalysts have been demonstrated to selectively deoxygenate biomass 

pyrolysis model compounds (e.g., alcohols, acids, and oxygenated aromatics) [7–15], but 

very little research has focused on modifying Mo2C to target selective hydrogenation and 

C-C bond formation.  

The focus of research described in this chapter was to determine the effect of K 

modification on the selectivity of Mo2C for reactions relevant to biomass pyrolysis vapor 

upgrading. Acetic acid and crotonaldehyde were chosen as model compounds as they 

represent a simple carboxylic acid and aldehyde, respectively, possess multiple 

functionalities, and can undergo a variety of transformations, allowing for multiple reaction 

pathways to be probed. In addition, aldehydes and carboxylic acids are prevalent in 

pyrolysis vapors (up to 13 and 25 wt%, respectively) [16] and contribute to the degradation 

and instability of bio-oils [9]. Here, we observed that the addition of K to Mo2C narrowed 

the product distributions for AA and CR upgrading in the presence of excess H2. 

 

3.2. Experimental Methods 

3.2.1 Catalyst Synthesis 

The Mo2C was synthesized by the methods described in Section 2.2.1. To avoid 

oxidation prior to K impregnation, the Mo2C was transferred in a 15% CH4/H2 atmosphere 

to a water-tolerant, oxygen-free glovebox (N2 atmosphere). Potassium was added to the 

Mo2C by incipient wetness using K2CO3 (Sigma Aldrich, 99%) solutions. The amount of 

K2CO3 was adjusted to correspond to the equivalent of 0.1, 0.3, 0.5, 0.7, and 1.1 equivalent 

monolayers (ML) of surface coverage, assuming a total site concentration of 1019 sites m-2 
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[17]. The catalyst was transferred back to the synthesis reactor under an Ar atmosphere. 

The resulting catalyst was dried at 110 °C for 2 h in H2, then reduced in H2 at 450 °C for 4 

h. After quenching to room temperature, the catalyst was passivated using a 1% O2/He 

mixture for at least 6 h. The catalysts were named based on the nominal amount of K 

addition (in terms of ML), so K(1.1ML)/Mo2C represents a Mo2C catalyst with 1.1 ML of 

K addition.  

MgO material (Sigma-Aldrich, ≥99% trace metal basis, 325 mesh) was crushed, 

and sieved to 125−250 μm. 

 

3.2.2 Physical Catalyst Characterization 

Powder X-ray diffraction (XRD) patterns and relative metal loadings were 

collected using the same methods described in Section 2.2.2.  

Nitrogen physisorption isotherms were collected on a Micromeritics 3Flex after 

degassing the sample at 350 C for 4 hours, and the free space was measured after analysis. 

Pore distributions were determined using non-local density functional theory for slit pore 

geometry based on the Heterogeneous Surface –  2D – Nonlocal Density Functional Theory 

model [18,19] by applying the algorithm in Micromeritics’ MicroActive software. The 

DFT data was fitted by LOESS, a generalization of the locally weighted scatterplot 

smoothing (LOWESS) method with α = 0.05. 

 

3.2.3 Activity and Selectivity Measurements 

Crotonaldehyde conversion experiments were performed in the same manner as 

described in Section 2.2.3.  
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The acetic acid conversion experiments were performed by Connor P. Nash at the 

National Renewable Energy Laboratory. These experiments were also performed in a flow 

reactor system equipped with a bubbler to introduce acetic acid vapor, and the reactor 

effluent was analyzed with a gas chromatograph. Ca. 50 mg of catalyst was mixed with ca. 

200 mg of quartz chips (300-425 µm, calcined prior to use in air at 500 °C for 12 h) and 

supported on a quartz wool plug in a quartz u-tube reactor. The diluent was used to mitigate 

axial dispersion and localized thermal effects, and to prevent channeling. Prior to the 

upgrading experiments, the Mo2C catalysts were pretreated in 15% CH4/H2 at 590 °C for 

4 h while the MgO was pretreated in 1% O2/He at 500 °C for 2 h. The catalysts were then 

cooled to 150 °C before being heated to 350 °C in 2.5% H2/He. The reaction mixture 

consisted of 0.4 mol% acetic acid, 2.4 mol% H2, and 97.2% He (ca. 55 mL min-1 total 

flow). The H2/carbon molar ratio (6) was chosen to achieve approximately 2 times the 

stoichiometric amount of H2 required for complete saturation and deoxygenation of acetic 

acid to ethane. The reactor was maintained at 350 °C for 6 h.  

The selectivities are reported as carbon selectivities: 

𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝒋 =
(𝒄𝒂𝒓𝒃𝒐𝒏 #)∗(𝒎𝒐𝒍𝒂𝒓 𝒓𝒂𝒕𝒆 𝒐𝒇 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏)𝒋

∑ (𝒄𝒂𝒓𝒃𝒐𝒏 #)∗(𝒎𝒐𝒍𝒂𝒓 𝒓𝒂𝒕𝒆 𝒐𝒇 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏)𝒂𝒍𝒍 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒔
     (3.1) 

The rates, including conversion rates and product formation rates, were normalized by the 

surface areas. Conversion rates were calculated by the difference in the concentration of 

the model compound before reaction versus during reaction: 

𝑪𝒐𝒏𝒗𝒆𝒓𝒔𝒊𝒐𝒏 𝒓𝒂𝒕𝒆 =
(𝑿 )∗(𝒏̇𝒊𝒏)

(𝒎𝒄𝒂𝒕)∗(𝑺𝑨𝒄𝒂𝒕)
        (3.2) 

where 𝑋 is the conversion of the model compound; 𝑛̇௜௡ is the molar flowrate of the model 

compound in the feed, as determined by vapor-liquid equilibrium; 𝑚௖௔௧ is the catalyst 
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loading in the reactor; and 𝑆𝐴௖௔௧  is the surface area of the catalyst. Product formation rates 

were calculated by the amount of product detected via GC: 

𝑷𝒓𝒐𝒅𝒖𝒄𝒕 𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒓𝒂𝒕𝒆 =
𝑪𝒐𝒖𝒕∗𝑽̇

𝒎𝒄𝒂𝒕∗𝑺𝑨𝒄𝒂𝒕
       (3.3) 

where 𝐶௢௨௧ is the concentration of the model compound in the reactor outlet; 𝑉̇ is the total 

volumetric flowrate through the reactor. Previous reports with the acetic acid reactor 

system have suggested the systematic standard error in selectivity values to be ±2% [7]; 

however, based on deviation from stoichiometric ratios of acetone/CO2, the data in this 

study may be as high as ±4%, as there were no significant quantities of CO detected to 

suggest reverse water gas shift reactions influenced the expected stoichiometric yields of 

acetone and CO2. Error bars represent 95% confidence interval, based on the determined 

standard error.  

 

3.3. Results 

3.3.1 Physical Catalyst Characterization 

X-ray diffraction patterns for the as-synthesized materials are shown in Figure 3.1. 

Rietveld refinement indicated that the catalysts were comprised of nearly equal amounts of 

cubic α-MoC1-x (x = ca. 0.5) and orthorhombic β-Mo2C ( 

Table 3.1). There are no apparent oxide peaks, indicating complete carburization of 

the precursor. Additionally, the handling and passivation procedures avoided bulk 

oxidation of the carbide during transfers between the reactor and the glovebox. The XRD 

patterns and the relative amounts of α-MoC1-x and β-Mo2C are comparable to those 

reported for catalysts produced using similar synthesis procedures [20,21]. Given the Mo:C 
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ratio, these materials will be referred to as Mo2C.  

The surface area of the parent Mo2C material was 108 m2 g-1 (Table 3.2). The 

addition of K caused a decrease in the surface area to as low as 31 m2 g-1 for the 

K(1.1ML)/Mo2C material. This decrease can be attributed almost entirely to a reduction in 

the micropore structure, as evidenced by the decreased in micropore volume and surface 

area shown in Table 3.2; the mesopore volume and surface areas are relatively similar 

across all K loadings. The pore volume distribution shown in Figure 3.2 elucidates that the 

main region for reduction in surface area is from the reduction in pores in the 10-20 Å 

Figure 3.1. X-ray diffraction patterns for (a) K(1.1ML)/Mo2C, (b) K(0.7ML)/Mo2C, (c) 
K(0.5ML)/Mo2C, (d) K(0.3ML)/Mo2C, (e) K(0.1ML)/Mo2C, and (f) Mo2C catalysts and 
peak positions for polycrystalline (g) orthorhombic β-Mo2C (JCPDF 00035-0787) and (h) 
cubic α-MoC1−x (JCPDF 00-015-0457). 
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region.   
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Figure 3.2. DFT pore volume distribution for Mo2C (–), K(0.1ML)/Mo2C (–), 
K(0.3ML)/Mo2C (–), K(0.5ML)/Mo2C (–), K(0.7ML)/Mo2C (–), and K(1.1ML)/Mo2C  
(–). 
 
Table 3.1. Reitveld refinement results for Mo2C-based catalysts. 

Catalyst 
α-MoC1−x 

(wt %) 
β-Mo2C 
(wt %) 

Mo2C 58.8 41.2 
K(0.1ML)/Mo2C 47.2 52.8 
K(0.3ML)/Mo2C 55.2 44.8 
K(0.5ML)/Mo2C 47.3 52.8 
K(0.7ML)/Mo2C 56.9 43.1 
K(1.1ML)/Mo2C 58.5 41.5 

 
Table 3.2. Measured metal content and surface area for all catalysts.   

BET 
Surface 

Area 
(m2 g-1) 

DFT 
Micropore 

Surface 
Area 

(m2 g-1) 

DFT 
Mesopore 
Surface 

Area 
(m2 g-1) 

DFT 
Micropore 
Volume 
(cm3 g-1) 

DFT 
Mesopore 
Volume 
(cm3 g-1) 

MgO 130  
Mo2C 125 80 25 0.037 0.095 

K(0.1ML)/ Mo2C 113 85 21 0.035 0.088 
K(0.3ML)/ Mo2C 76 59 20 0.021 0.077 
K(0.5ML)/ Mo2C 88 67 23 0.024 0.097 
K(0.7ML)/ Mo2C 58 39 21 0.013 0.102 
K(1.1ML)/ Mo2C 24 10 13 0.003 0.074 
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3.3.2 Activity  

Activity data for the first 6 hr TOS was fit to generalized power law expressions to 

better characterize the deactivation of the catalysts for both acetic acid and crotonaldehyde 

conversion. The generalized power law expressions model assumes that as the activity 

decays, it asymptotically approaches a non-zero value. As outlined by Fuentes [22], the 

model seeks to fit the deactivation data with the following equation: 

−
𝑑𝑎

𝑑𝑡
= 𝑄(𝑇, 𝐶)(𝑎 − 𝑎௦)௡ 

where 𝑎 is an activity parameter; 𝑄(𝑇, 𝐶) is a global kinetic term that is a function of 𝑇, 

temperature and 𝐶, reactant concentration; 𝑎௦௦ is the steady-state catalyst activity; and 𝑛 is 

the deactivation order. For a catalyst operated in a flow reactor under differential conditions 

in the kinetic regime with 𝑛 = 1: 

𝑙𝑛(𝑋 − 𝑋ௌ) = 𝑙𝑛 ൬൤
𝑊

𝐹
൨ 𝑁 − 𝑋ௌ൰ − 𝑄𝑡 

where 𝑋 is a measure of conversion; 𝑋ௌ is the steady-state measure of conversion; 𝑊 is a 

measure of the amount of catalyst; and 𝐹 is the molar flowrate of the limiting reactant (here, 

the model compound). For 𝑛 = 2: 

(𝑋 − 𝑋ௌ)ିଵ = ൬൤
𝑊

𝐹
൨ 𝑁 − 𝑋ௌ൰

ିଵ

+ ൬൤
𝑊

𝐹
൨ 𝑁൰

ିଵ

𝑄𝑡 

 which leads to, for 𝑛 = 1: 

𝑋 = ൬൤
𝑊

𝐹
൨ 𝑁 − 𝑋ௌ൰ exp(−𝑄𝑡) + 𝑋ௌ  

and for 𝑛 = 2: 
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𝑋 = ቎൬൤
𝑊

𝐹
൨ 𝑁 − 𝑋ௌ൰

ିଵ

+
𝑄𝑡

ቂ
𝑊
𝐹

ቃ 𝑁
቏

ିଵ

+ 𝑋ௌ 

Linear regression was performed to minimize the residuals of the data and the 

model for n=1 and n=2 for each catalyst. Results are shown in Table 3.4.  

Other studies with Mo2C catalysts have found varying results for long-term 

stability; Mortenson et. al. [23] found 1-octanol and phenol HDO conversion to decrease 

by ca. 50% after 76 hr TOS, while Ren et. al. [24] found acetone HDO activity and 

selectivity to have negligible changes after 18 hr TOS. Mo2C stability is often related to 

oxidation of the surface and bulk to MoO2, and additional investigations of the reaction 

 
 
Table 3.3. Regression results and R2 for GPLE model fits for the deactivation data of 
acetic acid upgrading with Mo2C-based catalysts.  

  
n=1 n=2 

[W/F]N XS Q1 R2 [W/F]N XS Q2 R2 

Mo2C 0.9 0.25 0.005 0.96 0.3 0.25 0.000 -0.96 

K(0.1ML)/Mo2C 0.9 0.19 0.014 0.97 0.5 0.19 0.011 0.76 

K(0.3ML)/Mo2C 0.4 0.03 0.024 0.90 0.1 0.03 0.001 0.66 

K(0.5ML)/Mo2C 0.4 0.09 0.011 0.89 0.1 0.09 0.003 0.19 

K(0.7ML)/Mo2C 0.4 0.15 0.005 0.97 0.2 0.15 0.000 -1.54 

K(1.1ML)/Mo2C 0.7 0.4 0.005 0.93 0.5 0.4 0.008 -1.23 

 
 
Table 3.4. Regression results and R2 for GPLE model fits for the deactivation data of 
crotonaldehyde upgrading with Mo2C-based catalysts.  

 n=1 n=2 
[W/F]N XS Q1 R2 [W/F]N XS Q2 R2 

Mo2C 1.00 0.23 0.012 0.95 1.00 0.23 0.04 0.74 
K(0.1ML)/Mo2C 0.61 0.14 0.014 0.90 1.00 0.17 0.16 0.83 
K(0.3ML)/Mo2C 0.23 0.06 0.014 0.82 0.49 0.07 0.25 0.96 
K(0.5ML)/Mo2C 0.23 0.10 0.012 0.89 1.00 0.11 0.58 0.90 
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conditions that promote or inhibit this oxidation are required. 

The consumption rates of acetic acid and H2 and acetic acid conversions over each 
catalyst at 6 h time on stream (TOS) at 350 C are presented in  
 

Table 3.5. Minima in the rates and conversions were observed for the 

K(0.3ML)/Mo2C catalyst, while the K(1.1ML)/Mo2C catalyst displayed the highest acetic 

acid consumption rate and an acetic acid conversion equal to the parent Mo2C catalyst. All 

the conversions over the Mo2C catalysts were less than 25%. 
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The crotonaldehyde and H2 consumption rates, and crotonaldehyde conversions are 

listed in Table 3.6. A minimum in the crotonaldehyde consumption rate was observed for 

the K(0.3ML)/Mo2C catalyst, while the maximum consumption rate occurred for the 

K(1.1ML)/Mo2C catalyst. This is the same trend that was observed for acetic acid 

upgrading. The H2 consumption rate could not be measured directly in this experimental 

setup but was estimated by accounting for the H2 needed to produce the products. The 

 
 
Table 3.5. Consumption rates and conversions for acetic acid conversion at 350 °C and 
3 h TOS for all catalysts. 

 
AA  

consumption rate  
(µmol m-2 min-1) 

H2  
consumption rate  
(µmol m-2 min-1) 

H2:AA  
consumption  

rate ratio 

Conversion 
(%) 

MgO 0.84 0.000 0.0 64 

Mo2C 0.34 0.97 2.8 23 

K(0.1ML)/Mo2C 0.37 0.035 1.0 17 

K(0.3ML)/Mo2C 0.025 0.065 2.6 1 

K(0.5ML)/Mo2C 0.23 0.087 0.4 9 

K(0.7ML)/Mo2C 0.60 0.000 0.0 21 

K(1.1ML)/Mo2C 1.2 0.047 0.0 23 
aSum of the carbon selectivity to CO, CH4, ethane, propane, and propylene.  
 
 
Table 3.6. Consumption rates and conversions of crotonaldehyde upgrading at 350 °C 
and 6 h TOS for all catalysts. 

Catalyst 
CR 

Consumption rate  
(µmol m-2 min-1) 

Estimated H2 
consumption rate  
(µmol m-2 min-1) 

H2:CR 
consumption 

ratio 

Conversion 
(%) 

MgO 0.61 0.17 0.28 16 
Mo2C 3.2 0.5 0.16 23 

K(0.1ML)/Mo2C 3.1 1.2 0.39 15 
K(0.3ML)/Mo2C 1.5 0.2 0.13 7 
K(0.5ML)/Mo2C 2.3 0.2 0.09 10 
K(0.7ML)/Mo2C 3.1 0.3 0.10 12 
K(1.1ML)/Mo2C 9.2 1.2 0.13 19 
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estimated H2 consumption rates reached a minimum for the K(0.3ML)/Mo2C catalyst; 

 

 

 

Figure 3.3. Arrhenius plot with crotonaldehyde consumption rate normalized by surface 
area (top) and by weight of Mo2C (bottom) of Mo2C (•), K(0.1ML)/Mo2C (•), 
K(0.3ML)/Mo2C (•), K(0.5ML)/Mo2C (•), K(0.7ML)/Mo2C (•), and K(1.1ML)/Mo2C (•).  
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however, unlike the acetic acid results, proceeded to increase to a maximum for the 

K(1.1ML)/Mo2C catalyst.  

The crotonaldehyde consumption rates between 275-350 C are shown in the 

Arrhenius plot in Figure 3.3. When normalized by surface area, the rates for Mo2C, 

K(0.1ML)/Mo2C, K(0.5ML)/Mo2C, and K(0.7ML)/Mo2C are essentially equal. The 

conversion rates for K(1.1ML)/Mo2C fall far above the rest, suggesting some enhancement 

effect on rate when K is above one full monolayer of promotion. When normalized by the 

amount (weight) of Mo2C in the catalyst, the rates still all fall within an order of magnitude. 

All rates for the promoted catalysts are less than those for unpromoted Mo2C, showing that 

for a given weight of Mo2C support, potassium promotion reduces intrinsic activity of the 

support. Since the rates are mostly equivalent on a surface area basis, and the N2 

physisorption results demonstrated that K promotion reduces surface area, it follows that 

the apparent reduction in intrinsic activity of the support is a consequence of reduced 

surface area; less Mo2C is exposed at the catalyst surface.  

 

3.3.3 Selectivity 

3.3.3.1 Acetic Acid Conversion 

Under the conditions used in this study, acetic acid could undergo several reaction 

pathways including gasification, DCO, decarboxylation, ketonization, dehydration, and 

HDO, as illustrated in Table 3.7. Secondary reaction pathways, including CH4 

decomposition, steam reforming, and water gas shift could also occur. For promoted Mo2C 

and promoted catalysts, acetaldehyde, acetone, ethylene, CO2, CO, CH4, ethane, propane 

and propylene were detected as products from acetic acid upgrading. The carbon 
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selectivities at 6 h TOS are presented in Table 3.8 and shown in Figure 3.4.  

Carbon selectivities as a function of TOS are illustrated for Mo2C and 

K(1.1ML)/Mo2C catalysts as representative in Figure 3.6. The parent Mo2C catalyst 

formed primarily acetaldehyde, while CO and CH4 also formed in significant quantities. 

The selectivity to acetaldehyde and acetone shifted dramatically with the addition of K, 

even for loadings as low as 0.1ML.  

Table 3.7. Possible primary and secondary reaction pathways of acetic acid. 
Primary Reaction Pathways Reaction Class Equation 

→ 2 CO + 2 H2 
Gasification (5) 

+ H2 → CO + CH4 + H2O 
Decarbonylation (DCO) (6) 

→ CO2 + CH4 
Decarboxylation (DCO) (7) 

2 → + CO2 + H2O 
Ketonization (KET) (8) 

+ H2 → + H2O 
Hydrodeoxygenation (HDO) (9) 

+ 2 H2 → + H2O 
Hydrodeoxygenation (HDO) (10) 

+ 2 H2 → + 2 H2O 
Hydrodeoxygenation (HDO) (11) 

→ + H2O 
Dehydration (12) 

→ 2 C + 2 H2O 
Dehydration (13) 

Secondary Reaction Pathways     
CH4 → C + 2 H2 Methane decomposition (14) 

CH4 + H2O → CO + 3 H2 Methane steam reforming (15) 
CO + H2O ↔ CO2 + H2 Water gas shift (16) 
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The molar productivities for acetaldehyde and acetone at 6 hr TOS are presented in 

Figure 3.5 to further exemplify the effect of K loading on acetic acid upgrading. The 

productivity to acetaldehyde decreased with K loading, while the productivity to acetone 

Table 3.8. Carbon selectivities (%) for acetic acid conversion at 350 °C and 3 h TOS 
for all catalysts. 

 Acetaldehyde Acetone CO2 Ethylene CO CH4 Othera 
MgO 0 79 21 0 0 0 0 
Mo2C 57 6 2 7 14 10 4 

K(0.1ML)/Mo2C 40 30 11 2 9 7 1 
K(0.3ML)/Mo2C 28 49 16 1 0 4 2 
K(0.5ML)/Mo2C 14 65 19 0 0 2 0 
K(0.7ML)/Mo2C 8 69 20 0 2 1 0 
K(1.1ML)/Mo2C 6 72 20 0 1 1 0 

aSum of the carbon selectivity to CO, CH4, ethane, propane, and propylene.  
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increased. Thus, the productivity data are consistent with the increase in selectivity to 

 
Figure 3.4. Carbon selectivities (%) of AA upgrading for acetone (•), CO (•), 
acetaldehyde (•), and CO2 (•) at 350 °C with increasing K coverage of Mo2C catalyst. 
Data were taken at 6 h time on stream. Error bars represent 95% confidence interval. 
 
 

 
Figure 3.5. Molar productivity from acetic acid conversion of acetone (•), CO2 (•), 
acetaldehyde (•), and ethylene (•) at 350 °C with increasing K coverage of Mo2C 
catalyst and (○) carbon balance. Data were taken at 6 h. Error bars represent 95% 
confidence interval. 
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acetone not being solely due to a decrease in the production of acetaldehyde, but rather 

from a combination of higher acetone production and lower acetaldehyde production. In 

general, HDO reaction pathways, such as those to form acetaldehyde and ethylene, are 

preferred because reactant oxygen is removed as H2O and carbon is not lost to light gas 

products. Interestingly, increasing the K loading shifted the dominant reaction pathway 

from HDO to ketonization while also minimizing C-C bond cleavage. That is, K promotion 

reduced the DCO activity as indicated by the decrease in selectivity to CO and CH4, 

whereas DCO was a significant reaction pathway over the parent Mo2C catalyst.  

 

3.3.3.2 Crotonaldehyde Conversion 

Under the conditions used in this study, crotonaldehyde could undergo several 

primary and secondary reaction pathways as previously discussed in Chapter 2. For 

promoted Mo2C and promoted catalysts, butadiene, butenes, butyraldehyde, and 3-butenal 

Figure 3.6. TOS carbon selectivity and conversion of (a) Mo2C and (b) 
K(1.1ML)/Mo2C for acetic acid upgrading for acetone (•), CO2 (•), acetaldehyde 
(•), ethylene (•), and other (•). Error bars represent 95% confidence interval, 
based on the determined standard error of ±4%. 
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were detected as products from crotonaldehyde upgrading. The carbon selectivities to these 

products are illustrated in Figure 3.7 and shown in Table 3.9. 3-Butenal was the dominant 

product for all the catalysts, although its selectivity reached a maximum for the 

K(0.3ML)/Mo2C catalyst. 3-Butenal is indicative of structural isomerization, which has 

been previously reported to occur over Mo2C catalysts [25–27], and has often been 

associated with the presence of both carbide and oxide domains. In experiments where 

crotyl alcohol and butyraldehyde were separately co-fed with H2 to the catalyst, 3-butenal 

only formed from crotyl alcohol, suggesting that crotyl alcohol may have been an 

intermediate.  

 In general, selectivities to the butenes and butadiene decreased with increasing K 

addition, while selectivities to butyraldehyde, a hydrogenation product, increased with K 

addition, with the exception of the K(0.1ML)/Mo2C catalyst. For example, the sum of the  

butenes and butadiene selectivities decreased from 27% for Mo2C to 4% for the 

K(0.3ML)/Mo2C catalyst, indicating that low K loadings resulted in a significant decrease 

in deoxygenation (i.e., C-O cleavage), similar to that observed for acetic acid.    

The crotonaldehyde upgrading molar productivities at 6 h TOS are presented in 

 
Table 3.9. Carbon selectivities (%) of crotonaldehyde upgrading at 350 °C and 6 h TOS 
for all catalysts. 

 Butadiene Butenes1 Butyraldehyde 3-Butenal 
MgO 0 4 20 76 
Mo2C 2 25 6 67 

K(0.1ML)/Mo2C 11 16 27 46 
K(0.3ML)/Mo2C 0 4 7 88 
K(0.5ML)/Mo2C 0 5 10 85 
K(0.7ML)/Mo2C 0 5 14 81 
K(1.1ML)/Mo2C 2 8 25 64 
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Figure 3.9. The productivities for all products increased with K loadings above 0.3ML, 

 
Figure 3.7. Carbon selectivities (%) crotonaldehyde for 3-butenal (•), butyraldehyde 
(•), butenes (•), and butadiene (•) at 350 °C with increasing K coverage of Mo2C 
catalyst. Data were taken at 6 h time on stream. Error bars represent 95% confidence 
interval. 

 

 

Figure 3.8. Molar productivity from crotonaldehyde conversion of 3-butenal (•), 
butyraldehyde (•), butene (•), and butadiene (•) at 350 °C with increasing K coverage of 
Mo2C catalyst and (○) carbon balance. Data were taken at 6 h. Error bars represent 95% 
confidence interval. 
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although the productivities for 3-butenal and butyraldehyde increased more significantly. 

An increase in the butene, butadiene and butyraldehyde productivities implies an overall 

increase in the hydrogenation activity. We propose that K creates new types of active sites; 

if K were poisoning active sites important to the reaction mechanism, the productivity of 

at least one product would decrease. This hypothesis will be explored further in the 

following chapter. For crotonaldehyde upgrading, K does not appear to affect the available 

reaction pathways; instead it appears to promote isomerization and hydrogenation.  
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Figure 3.9. TOS carbon selectivity of (c) Mo2C and (d) K(1.1ML)/Mo2C for 
crotonaldehyde upgrading for 3-butenal (•), butyraldehyde (•), butene (•), and butadiene 
(•). Error bars represent 95% confidence interval, based on the determined standard 
error of ±4%. 



 

77 

 

3.4. Discussion 

K was found to be an effective method of eliminating micropore structure in Mo2C 

catalyst, while still preserving the majority of the mesopore structure. K promotion has 

been found to similarly result in decreased surface area and decreased porosity for other 

catalysts including Fe/Mn catalysts and fused magnetite catalysts [28,29]. In these cases, 

it was hypothesized the presence of K induces greater crystallite sizes of the supporting 

catalyst during calcination which leads to decreased surface area; the Mo2C catalyst were 

not calcined, but crystallite size could have increased during reduction in H2 after incipient 

wetness of K. For K, reduction in surface area increased with K promotion. Therefore, 

either K is also physically blocking pores and therefore an increase in K increases the 

amount of blockage; or increase in K promotion increased the degree of structural change. 

This relationship between the pore structure and K promotion could be a useful tool to 

employ in size-selective upgrading reactions when the micropore sites need to be 

selectively eliminated. 

In fitting the deactivation profiles to the GPLE model, n=1 was the best overall fit 

for the Mo2C and K/Mo2C catalysts for both acetic acid and crotonaldehyde upgrading. 

The order of deactivation has been found to be an indicator for the mechanism of the 

deactivation [30,31]. First-order decay (n=1) was the clear best fit for acetic acid 

upgrading, given that the R2 values were all positive and greater than 0.89. For acetic acid 

upgrading, the fitted [W/F]N values trended closely with steady-state conversion, and was 

therefore considered a function of catalyst activity. In contrast, the deactivation constant 

Q1 (a larger Q1 indicates faster deactivation to the steady-state value), trended very 

differently than steady-state conversion and appeared to be independent of catalyst activity. 
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Instead, Q1 could be a function on K loading. The rate of deactivation, Q1, initially 

increased with K loading up to 0.3ML and then, upon further K loading, decreased and 

returned to the same deactivation rate observed on Mo2C. In Chapter 2, the deactivation 

profile of K(0.1ML)/Mo2C was found to have a very strong correlation (R2 = 1.00) to a 

reciprocal model, which indicated deactivating by coking. One possibility is that coking is 

related to the K particle size, and therefore the amount of K-Mo2C interface; at loadings 

below 0.5ML, the K was likely well-dispersed on the surface, while at K loadings above 

0.5ML, the K species may have agglomerated on the surface.  

The best model fit (n=1 or n=2) was less clear for crotonaldehyde upgrading, in 

which first-order and second-order were both the best for some catalysts. For both n=1 and 

n=2, the fitted [W/F]N values trended closely with steady-state conversion, similarly to the 

trend observed for acetic acid. Also, for both first- and second-order models, the 

deactivation constants Q1 and Q2 appeared to be independent of catalyst activity, and 

instead were likely a function of K loading. 

For acetic acid upgrading, the H2 consumption rate could be directly measured, and 

was a good first clue as to the change in mechanism with K promotion. H2 consumption 

was dramatically reduced with just 0.1ML of K, suggesting a difference in the dominant 

reaction pathways between the parent Mo2C and K/Mo2C materials. As can be seen in 

Table 3.8 and Figure 3.4, catalysts with low and zero H2 consumption rates still generated 

HDO products; this could be a result of H2 generated in situ from other reactions such as 

gasification, and/or the H2 consumption was below the detection limit of the analytical 

equipment. 

The selectivity to acetaldehyde and acetone shifted dramatically with the addition 
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of K, even for loadings as low as 0.1ML. As the K loading was increased, the selectivity 

to acetaldehyde decreased, with a concomitant increase in acetone selectivity. The shift in 

selectivity from acetaldehyde to acetone and CO2, was independent of acetic acid 

consumption rate (Table 3.5), and thus indicates that the primary reaction pathway shifted 

from HDO to ketonization as a result of K addition. In order to compare catalyst 

performance to a basic catalyst, MgO, was also evaluated.  

The productivity to acetaldehyde decreased with K loading, while the productivity 

to acetone increased. Thus, the productivity data are consistent with the increase in 

selectivity to acetone not being solely due to a decrease in the production of acetaldehyde, 

but rather from a combination of higher acetone production and lower acetaldehyde 

production. In general, HDO reaction pathways, such as those to form acetaldehyde and 

ethylene, are preferred because reactant oxygen is removed as H2O and carbon is not lost 

to light gas products. Interestingly, increasing the K loading shifted the dominant reaction 

pathway from HDO to ketonization while also minimizing C-C bond cleavage. That is, K 

modification reduced the DCO activity as indicated by the decrease in selectivity to CO 

and CH4. As mentioned earlier, DCO was a significant reaction pathway over the parent 

Mo2C catalyst.  

As shown in Table 3.8 and Table 3.9, the MgO catalyst performed similarly to the 

K(1.1ML)/Mo2C for both acetic acid and crotonaldehyde upgrading. For acetic acid, MgO 

favored the ketonization reaction pathway exclusively, and for crotonaldehyde, MgO 

favored isomerization and hydrogenation products. MgO is a known base catalyst, and the 

fact that high loadings of K caused Mo2C to have selectivity more similar to MgO suggests 

that K addition increases basicity of the catalyst. This will be explored further in Chapter 
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4. 

 

3.5. Summary  

The addition of K to Mo2C had a dramatic effect on the selectivities for acetic acid 

and crotonaldehyde upgrading in temperature ranges of interest for catalytic upgrading of 

biomass pyrolysis vapors. For acetic acid, the addition of K resulted in high selectivities 

for ketonization while subverting the HDO and DCO reaction pathways. For 

crotonaldehyde, the addition of K increased the selectivities to isomerization products 

while HDO and hydrogenation-dehydration reactions were diminished. This effect reached 

a maximum in selectivity between 0.5 and 0.7 ML of K. 
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Pathway of selectivity influence for transition versus alkali metals 

4.1. Introduction 

From the results in Chapter 3, K promotion is known to be an effective method of 

controlling selectivity for bio-oil model compound conversion on Mo2C. However, the 

products that increased in selectivity with K promotion were not necessarily the most 

“desired” product. For example, 3-butenal is a more preferred compound than 

crotonaldehyde because coupling products from 3-butenal are more linear than coupling 

products from crotonaldehyde; the double bond shifts from between two internal C atoms 

to the being on the end of the carbon chain. However, 3-butenal is not deoxygenated or nor 

has increased energy density. In order to be able to tune selectivity to the most desired 

products, this chapter aims to identify a link between catalyst properties and performance, 

so that selectivity can be controlled for further optimization.  

As suggested in Chapter 3, selectivity changes with K promotion may be due to K’s 

effect on Mo2C active site concentrations. Mo2C catalysts have been shown to possess 

multiple types of surface active sites. Various studies have described acid, base, and 

metallic sites on Mo2C [1–18]. Surface sites can be quantified in a variety of ways including 

pulse chemisorption, temperature-programmed desorption (TPD), FTIR, test reactions 

(including in situ titration), and more.  

In pulse chemisorption, the catalyst is exposed to small doses of a probe molecule 
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that is known to adsorb on a particular type of active site. The amount of probe molecule 

that does not adsorb is monitored by spectroscopic or chromatographic techniques. When 

the catalyst surface is saturated with the probe molecule, the following doses will not be 

fully adsorbed, and the amount of probe molecule detected per pulse equal to the previous. 

The metallic character of Mo2C has been measured via CO pulse chemisorption [2–6] and 

H2 pulse chemisorption [5–7]. 

For TPD, the catalyst is saturated with a probe molecule. It is then exposed to a 

flowing inert gas, with the goal of desorbing any physisorbed probe molecule, and leaving 

the chemisorbed probe molecules on the surface. The catalyst is then heated at a constant 

rate, and the amount of probe molecule that desorbs during heating is detected by 

spectroscopic of chromatographic techniques, and quantified. In TPD with co-adsorption, 

before heating, the catalyst is saturated with a second probe molecule that is known to 

adsorb on a different active site; the inert gas purge is repeated before the catalyst is heating 

[19]. TPD with co-adsorption addresses two weaknesses of TPD: (1) it more accurately 

accounts for induction effects on catalysts with multiple types of active sites and (2) 

ensures that not sites are double-counted. The total acid character of Mo2C has been 

quantified via NH3 [1,7,8]; n-propylamine [2,9,10,20], iso-propylamine [3], and 

ethylamine [11] TPD of Mo2C have been used to distinguish between Lewis and Brønsted 

acidity. The metallic character of Mo2C has been measured with H2 TPD [8,12]. CO2 TPD 

has been used to quantify basic sites on Mo2C [1,8,12–14].  

FTIR offers another way of quantifying active sites. A probe molecule is adsorbed 

onto the surface, and the position and size of the FTIR bands are quantified to determine 

site concentration. This method avoids challenges with TPD that can hamper interpretation 
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including the potential of convection lag, diffusive lag, particle concentration gradient, bed 

concentration gradient, readsorption at infinite flow rates, and readsorption (more in 

Section 4.3.1). Pyridine FTIR [15,16] has been employed to quantify acid site densities of 

Mo2C, but only for Mo2C on a support. For Mo2C/Al2O3, only Lewis acidity was detected 

(no Brønsted acidity), but the authors believed those acid centers to be on the Al2O3 and 

not on the Mo2C. 

In situ site titration is another method available to quantify active sites. For this 

method, a known site poison with high specificity is introduced to the catalyst on-stream 

during reaction. The change in productivity is monitored as it decreases, and this is used to 

calculate the total adsorption of the site poison, which is representative of the active site 

concentration. For Mo2C, Brønsted acid sites have been measured by in situ 2,6-di-tert-

butylpyridine (DTBP) titration during isopropanol dehydration [17,18]. 

While these methods provide the ability to quantify the catalyst’s site 

concentrations, it does not necessarily provide information on the identity of the active 

sites. Multiple theories have been offered to describe the base site identity on Mo2C. One 

theory is that charge transfer from the Mo to the C results in negative charge on the C 

which is the location of the base sites on the Mo2C surface [1]. DFT work has further 

suggested that C defect in α-Mo2C results in an electron “trap” with increased electron 

density, which may be the source of Lewis base sites [21]. In other work, a Mo–O species 

has been theorized as the base site [17]. In terms of their function, base sites on Mo2C have 

been shown to catalyze dehydrogenation [1]. 

Bej et. al. proposed that charge transfer from the Mo to the C results in electron 

deficiency, and a corresponding positive charge, on the Mo that is the location of the acid 
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site [1]. Weak acid sites on Mo2C have also been attributed to O, both by O2 exposure and 

incomplete removal of hydroxyl groups during pretreatment [7,17]. Mechanistically, acid 

sites on Mo2C have been found to be active for dehydrogenation, cracking, isomerization, 

dealkylation, and dehydration reactions [1,2]. 

Metallic sites, often identified as H-adsorption or H* sites, have been attributed 

variously to exposed Mo and/or C atoms [3,4,7]. These metallic sites on Mo2C have been 

credited for hydrogenation and hydrogenolysis activity [2].  

When studied on Al2O3 support, K promotion with KNO3 and KI was found to 

increase the basicity of the catalyst up to 35 wt% [22,23]. K addition to VOx/Al2O3 catalyst 

was determined to decrease acidity and increase basicity; acid sites were removed and 

replaced by base sites which formed from coordination with surface vanadia species [24].  

Alkali promoters have proven to be an effective way to manipulate the balance of 

active sites on the surface of heterogeneous catalysts. Group IA metals were found to 

increase the density of medium- and high-strength base sites for MgO [25].  

For MoC1-x, Vo et al. reported that total acid sites decreased with K and Na 

promotion, while total base sites increased [8]. Ardakani and Smith found that while 1% K 

doping of Mo2C/HY catalyst did not affect the total acidity, it increased the Lewis acidity 

and decreased the Brønsted acidity [9].  

Alkali promoters can affect the active sites on the catalyst surface via electronic 

and/or geometric factors. Electronically, the alkali promoter can influence the electron 

density of the metal. Studies of K on Ru(001) with Photoemission of Adsorbed Xenon 

atoms (PAX) found that K exhibits relatively short-range electronic effects, up to ca. 6 Å 

[26]. On Mo2C, potassium has been found to increase the electron density of the Mo surface 



 

88 

 

atoms [27]. More specifically, Xiang et. al. found that K acted as an electronic promoter 

on β-Mo2C and affected the relative amounts of Mo in various oxidation states, while K 

interaction with α-Mo2C was much weaker and did not significantly affect distribution of 

oxidation states [28].  

Geometrically, it may physically block active sites on the surface. For a Ru silica 

catalyst, the geometric effect was determined to be the predominant mechanism by which 

an alkali promoter affected the selectivity of Fischer-Tropsch reaction [29].  

 

4.2. Experimental Methods 

4.2.1 Catalyst Synthesis 

Catalysts were synthesized by the same manner described in Section 3.2.1. 

 

4.2.2 Catalyst Characterization 

The acid and base site concentrations were measured by temperature programmed 

desorption (TPD) using a Micromeritics AutoChem 2920 Automated Catalyst 

Characterization System equipped with a Pfeiffer Vacuum Quadstar GSD-301 mass 

spectrometer (MS). NH3 and CO2 were used as probe molecules to characterize the acid 

and base sites, respectively. Approximately 100 mg of catalyst was loaded into the U-tube 

quartz reactor. The Mo2C and K/Mo2C catalysts were pretreated in 15% CH4/H2 at 590 °C 

for 4 h, and the MgO was pretreated in 1% O2/He at 500 °C for 2 h. The catalysts were 

then treated in UHP He at the respective pretreatment temperatures for 30 min to remove 

any physisorbed species before being cooled to 40 °C. The sample was then saturated with 



 

89 

 

the probe molecule by flowing 50 mL min-1 of either CO2 or NH3 for 2 h. The gas was then 

switched to UHP He for 1 h to remove the physisorbed species. The samples were heated 

to 800 °C at 10 °C min-1 and the desorbed molecules were measured using the MS. The 

signals for CO2 (m/z=44) or NH3 (m/z=16) were calibrated after every experiment to 

account for changes in the baseline vacuum pressure. Peak areas were integrated and 

converted to adsorbed moles with response factors obtained via the calibration. A sample 

loop of known volume (500 µL) was used to calibrate the MS responses and quantify the 

amount desorbed from the catalyst surface. An adsorption stoichiometry of one NH3 and 

CO2 molecule per acid and base site, respectively, was assumed. 

The CO2-TPD and NH3-TPD spectra for the Mo2C catalysts were deconvoluted into 

peaks that were 30% Lorentzian and 70% Gaussian with a linear baseline using the peak 

fitting software CasaXPS. The number of peaks used in the fits was chosen to achieve a 

good fit (residual RMS <3% of the maximum, as detailed in Table S1) between the TPD 

curve (y୧) and the fitted curve (yො୧) while minimizing the number of peaks required. The 

residual RMS were determined using the following: 

residual RMS =ට
∑ (𝒚ෝ𝒊ି𝒚𝒊)𝟐𝒏

𝒊స𝟏

𝒏
      (1) 

The full-width-half-maxima (FWHM) of each peak were constrained so that the FWHM 

of each peak was constant for all TPD spectra of the same probe molecule. After fitting, 

the coefficients of determination (R2) and correlation coefficients (r) were determined for 

each set of peak areas. The peak maximum was identified as the temperature at which the 

envelope of the deconvoluted peaks reached a maximum. 

The H* site concentrations were measured by H2-TPD using an Altamira AMI-390 
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equipped with a thermal conductivity detector (TCD). Catalyst samples (ca. 10-40 mg) 

were loaded into a 1/4 in. quartz U-tube reactor and analyzed using the TPD system. The 

Mo2C and K/Mo2C catalysts were pretreated in 15% CH4/H2 at 590 °C for 4 h. The carbides 

were then cooled to 40 °C in 15% CH4/H2 and saturated with 5% H2/Ar at 30 mL min-1 for 

1 h. The MgO was pretreated in 10% O2/He at 500 °C for 2 h then cooled in 10% O2/He to 

40 °C, purged with UHP Ar at 25 mL min-1 for 1 h before being saturated with 5% H2/Ar 

at 30 mL min-1 for 1 h. Excess and/or physisorbed H2 was removed by holding the sample 

at 40 °C for 5 min in flowing UHP Ar at 25 mL min-1. The samples were heated to 500 °C 

at 15 °C min-1 in flowing UHP Ar (25 mL min-1), followed by a 30 min hold at 500 °C. A 

sample loop of known volume (100 µL) was used to calibrate the TCD response for 5% 

H2/Ar and quantify the amount of H2 desorbed from the catalyst surface. An adsorption 

stoichiometry of two H* sites per H2 molecule desorbed was assumed. The peak maximum 

was identified as the temperature at which the signal reached a maximum.  

 

4.3. Results 

4.3.1 Evaluating TPD Dimensionless Numbers 

Demmin and Gorte derived six dimensionless numbers which can be used to 

identify potential effects of convection lag, diffusive lag, particle concentration gradient, 

bed concentration gradient, readsorption at infinite flow rates, and readsorption at low flow 

rates for temperature-programmed desorption [30], as shown in Table 4.2. Most parameters 

necessary for the calculations of the dimensionless numbers are experimentally 

determined, observed, or measured, as shown in Table 4.1. The particle diffusion 

coefficients, 𝐷௉, of NH3 and CO2 in He were calculated the same way as the effective 
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diffusivity for the Weisz-Prater criterion, described in Section 2.3.2. The bed dispersion 

coefficient, 𝐷஻, is a function of the superficial velocity, 𝑢଴, the catalyst particle radius, 𝑅, 

the bed porosity, 𝜀஻, and the Peclet number, 𝑃𝑒: 

𝐷஻ =
2𝑢଴𝑅

𝜀஻𝑃𝑒
 

And 𝑃𝑒 is calculated from an empirical correlation [31]: 

𝑃𝑒 =
0.3

𝑅𝑒 ∙ 𝑆𝑐
+

0.5

1 + 3.8(𝑅𝑒 ∙ 𝑆𝑐)ିଵ
 

 

 
Table 4.1. Parameters used to analyze dimensionless parameters associated with 
temperature-programmed desorption, and their associated values for the experiments 
described in this work. 

𝜀஻ bed porosity 0.69 
𝜀௉ particle porosity 0.33 
𝛽 heating rat 10 K sec-1 

𝑄 carrier flow rate 50 mL min-1 

𝑇௙ final temperature 800 °C 
𝑇଴ starting temperature 40 °C 
𝑁 number of particles in bed 2800 
𝑅 particle radius 62.5 μm 
𝐿 bed length 2 mm 
𝑉 bed volume 230 mm3 
𝛼 particle surface area < 110 m2 g-1 

𝜌 particle density 2085 kg m-3 
𝑠 sticking coefficient < 1 
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The dimensionless numbers for convective lag, diffusive lag, particle concentration 

gradients, and bed concentration gradients were calculated to be less than the ideal 

requirements of 0.01, 0.01, 0.05, and 0.1, respectively, confirming that the observed effects 

are not expected. However, the dimensionless numbers associated with readsorption at 

infinite and low flow rates were both calculated to be significantly larger than the ideal 

requirement of 1. While the dimensionless numbers associated with readsorption are both 

greater than the requirement, they do not change significantly with different catalysts. In 

particular, only 𝛼 will change, and will nominally decrease with increasing amounts of 

potassium deposited on the catalyst. Thus, at increasing potassium loadings, readsorption 

is expected to become less significant, though the change is expected to be negligible. 

  

 
Table 4.2. Dimensionless numbers associated with temperature-programmed 
desorption, based on [1]. 

Parameter Definition Observed effect Value 
Ideal 

requirement 
𝜀஻𝑉𝛽

𝑄൫𝑇௙ − 𝑇଴൯
 Residence time 

of carrier gas 
Convective lag .002 < 0.01 

𝜀௉𝑅ଶ𝛽

𝐷௉൫𝑇௙ − 𝑇଴൯
 

Time constant for 
diffusion out of an 
individual particle 

Diffusive lag 2E-8 < 0.01 

𝑄𝑅

4𝜋𝑅ଶ𝑁𝐷௉
 

[carrier-gas flow rate]: 
[diffusion rate] 

Particle 
concentration 

gradients 
0.001 <0.05 

𝑄𝐿ଶ

𝑉𝐷஻
 

[carrier-gas flow rate]: 
[axial mixing] 

Bed concentration 
gradients 

0.05 <0.1 

𝛼𝜌𝑠𝐹𝑅ଶ

𝜋𝐷௉
 

[adsorption rate]: 
[diffusion rate] 

Readsorption at 
infinite flow rate Max: 2x10

8
 <1 

𝛼𝜌𝑠𝐹𝑉(1 − 𝜀஻)

𝑄
 

[adsorption rate]: 
[carrier-gas flow rate] 

Readsorption at 
low flow rate Max: 1x10

4
 <1 
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4.3.2 Active Site Concentration Measurements 

CO2-TPD and NH3-TPD profiles are shown in Figure 4.1. CO and CO2 also 

desorbed at temperatures above 700 °C, consistent with previous reports which suggested 

that these products were due to decomposition of the Mo2C [1]. The amounts of CO2, NaH3, 

and H2, desorbed at temperatures below 540, 450, and 450 °C, respectively, were quantified 

for each material. The amounts were converted to site concentrations and are listed in Table 

4.5 and illustrated in Figure 4.3.  
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Figure 4.1. CO2-TPD (left) and NH3-TPD (right) profiles of (a) MgO, (b) Mo2C, (c) 
K(0.1ML)/ Mo2C, (d) K(0.3ML)/ Mo2C, (e) K(0.5ML)/Mo2C Mo2C (f) K(0.7ML)/ Mo2C, 
and (g) K(1.1ML)/ Mo2C catalysts where M.S. signal has been normalized by the surface 
area of the catalysts. Peak maxima temperatures are listed for strong and weak 
deconvoluted peaks for each TPD. Dash lines represent peak maxima temperature of 
deconvoluted peaks for Mo2C. 
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Deconvolution of the CO2-TPD spectra indicated the presence of four peaks with 

maxima between 83-94 °C, 123-140 °C, 212-232 °C, and 298-348 °C, as shown in Figure 

4.2. The deconvolution matched well to the TPD spectra, as evidenced by low residuals 

compared to the maximum, as shown in Table 4.3. The site concentrations derived from 

the deconvolution are listed in Table 4.4. The areas of the two low-temperature peaks (red 

and green) correlated and were therefore considered to be identified with the same site 

type. The sites associated with the red and green peaks are designated as weak base sites. 

The areas of the two high-temperature peaks (purple and blue) also correlated; similarly, 

the sites corresponding to the purple and blue peaks are designated as strong base sites. 

The resulting concentrations of weak and strong base sites are shown in Table 4.5. The 

peak maxima for the first peak generally shifted to lower temperatures with increasing K 

loading up to 0.7ML. In addition, the weak base site concentrations increased with K 

addition. Trends for the strong base sites were not a clear function of K, but their 

concentrations did appear to decrease to 0.3ML K and then increase up to 1.1ML K. The 

weak base sites accounted for ca. 14% of the total base sites on Mo2C and ca. 79% for the 

K(1.1ML)/Mo2C material. 
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Characteristic NH3-TPD profiles are also shown in Figure 4.1. Below 500 °C, the 

signal at m/z=16 was independent of that at m/z=28, suggesting that the peak was due to 

NH3 and not to CO or CO2. Based on this observation, the signal at m/z=16 was assigned 

to NH3. There was no evidence for desorption of other N-containing species; m/z=14 did 

not reveal desorption peaks for N2. Deconvolution of the NH3-TPD resulted in three peaks 

with maxima between 100-119 °C, 146-165 °C, and 200-275 °C. The peak concentrations 

 
Table 4.3. Residual RMS of recorded TPD vs the deconvolution pattern. RMSE% is a 
scale-independent error from residual RMS divided by the maximum value. 

 

CO2 NH3 

Residual 
RMS  

൬
molecules

cmଶ ∙ K
൰ 

Max 

൬
molecules

cmଶ ∙ K
൰ 

Residual 
RMS 
Max 

Residual 
RMS  

൬
molecules

cmଶ ∙ K
൰ 

Max 

൬
molecules

cmଶ ∙ K
൰ 

Residual 
RMS 
Max 

Mo2C 5.60E+10 1.66E+09 3.0% 5.25E+10 8.09E+08 1.5% 
K(0.1ML)/ Mo2C 4.36E+10 5.59E+08 1.3% 4.88E+10 7.59E+08 1.6% 
K(0.3ML)/ Mo2C 3.61E+10 1.00E+09 2.8% 4.91E+10 6.93E+08 1.4% 
K(0.5ML)/ Mo2C 1.06E+11 2.59E+09 2.4% 2.17E+10 3.09E+08 1.4% 
K(0.7ML)/ Mo2C 9.17E+10 2.33E+09 2.5% 2.93E+10 4.55E+08 1.6% 
K(1.1ML)/ Mo2C 3.55E+11 8.43E+09 2.4% 4.41E+10 9.12E+08 2.1% 

 

Table 4.4. Base and acid site concentrations for each deconvoluted peak. 

Catalyst 

Site Concentration  
(1014 molecules cm-2) 

Base 
Peak 1 

Base 
Peak 2 

Base 
Peak 3 

Base 
Peak 4 

Acid 
Peak 1 

Acid 
Peak 2 

Mo2C 0.03 0.06 0.18 0.11 0.09 0.11 
K(0.1ML)/Mo2C 0.03 0.06 0.17 0.14 0.07 0.11 
K(0.3ML)/Mo2C 0.06 0.13 0.07 0.04 0.08 0.08 
K(0.5ML)/Mo2C 0.18 0.31 0.10 0.05 0.03 0.03 
K(0.7ML)/Mo2C 0.15 0.42 0.09 0.05 0.04 0.05 
K(1.1ML)/Mo2C 0.52 0.97 0.18 0.16 0.06 0.10 
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corresponding to those peaks are shown in Table 4.4. The areas of the two low-temperature 

peaks (red and green) correlated strongly; sites associated with these peaks were designated 

as weak acid sites. The higher-temperature peak (purple) was assigned to strong acid sites. 

The corresponding site concentrations for weak and strong acid sites are displayed in Table 

4.5 and are in good agreement with values reported in literature for Mo2C [1].  

As shown in Table 4.5, approximately 32% of the total acid sites on Mo2C were 

weak, while weak acid sites accounted for 84% of the total acid sites for the 

K(1.1ML)/Mo2C material. The strong acid site concentration decreased linearly with K 

addition up to K(0.5ML)/Mo2C, at which point the strong acid sites were virtually 

eliminated, while the weak acid site concentration decreased with a minimum observed on 

the K(0.5ML)/Mo2C catalyst (0.06 x 1014 molecules cm-2), and then increased with further 

K loading. This trend resembles that for the strong base sites, which also decreased with K 

addition and then increased with further K addition.  
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Figure 4.2. Deconvolution of CO2-TPD (left) and NH3-TPD profiles (right) of (a) MgO, 
(b) and (h) Mo2C, (c) and (i) K(0.1ML)/Mo2C, (d) and (j) K(0.4ML)/ Mo2C, (e) and (k) 
K(0.5ML)/ Mo2C, (f) and (l) K(0.7ML)/ Mo2C, and (g) and (m) K(1.1ML)/ Mo2C
catalysts. Deconvoluted peaks (peak maxima are noted in °C with corresponding colors, 
and dashed lines represent the peak maxima of Mo2C), background, and residual 
(difference between raw spectrum and fit) are shown for all the Mo2C catalysts. The M.S. 
signal has been scaled so that the profiles are of the same height for ease of viewing 
(scaling factors are listed below figure labels). 
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Table 4.5. Base, acid, and H* site concentrations for the various catalysts.  

Catalyst 

Site Concentration  
(1014 molecules cm-2) 

Weak 
 Base 
[%] 

Strong 
Base 
[%] 

Total 
Base 

Weak 
Acid 
[%] 

Strong 
Acid 
[%] 

Total 
Acid 

H* 

MgO   1.04     
Mo2C 0.05 

[13] 
0.33 
[87] 

0.38 0.20 
[32] 

0.42 
[68] 

0.62 0.36 

K(0.1ML)/Mo2C 0.10 
[25] 

0.30 
[75] 

0.41 0.15 
[34] 

0.29 
[66] 

0.43 0.27 

K(0.3ML)/Mo2C 0.19 
[63] 

0.11 
[37] 

0.30 0.15 
[50] 

0.15 
[50] 

0.30 0.07 

K(0.5ML)/Mo2C 0.50 
[78] 

0.14 
[22] 

0.64 0.06 
[67] 

0.03 
[33] 

0.09 0.12 

K(0.7ML)/Mo2C 0.54 
[75] 

0.18 
[25] 

0.71 0.09 
[82] 

0.02 
[18] 

0.11 0.19 

K(1.1ML)/Mo2C 1.7 
[79] 

0.44 
[21] 

2.1 0.15 
[83] 

0.03 
[17] 

0.19 0.09 

 

 
Table 4.6. Ratios of catalyst active site concentrations. 

Catalyst 
Ratio of Site Concentrations 

Base:Acid Acid:H* Base:H* 
MgO    
Mo2C 0.6 1.8 1 
K(0.1ML)/Mo2C 0.9 1.6 2 
K(0.3ML)/Mo2C 1 4.9 5 
K(0.5ML)/Mo2C 7 0.7 5 
K(0.7ML)/Mo2C 7 0.6 4 
K(1.1ML)/Mo2C 10 2.1 20 
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Characteristic H2-TPD profiles are shown in Figure 4.4. The peak maxima were 

between 101 and 137 °C. In general, the temperature of the peak maximum decreased with 

K loading suggesting that the addition of K weakened the overall strength of the H* sites. 

The amounts of desorbed H2 are listed in Table 4.5. While all K-modified catalysts showed 

a decreased concentration of H* sites compared to the Mo2C, the trend as a function of K 

concentration is less clear and seems vary from low K loadings (<0.5ML) to high K 

loadings (>0.5ML). The overall reduction in H* site concentration is consistent with 

previous reports that alkali addition inhibits hydrogen adsorption [32]. Assuming a total 

site concentration of 1015 cm-2, the H* sites account for 0.3-1.7% of the surface sites on the 

Mo2C based catalysts.  
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Figure 4.3. Site concentrations of base (•), acid (•), and H* sites (•) on the surface of Mo2C 
catalysts with increasing K coverage. Error bars represent 95% confidence interval. 
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4.3.3 Linking Active Sites Concentrations to Selectivity 

The addition of K had a significant impact on the acetic acid and crotonaldehyde 

upgrading selectivities. Relationships between the selectivities and site concentrations 

were assessed by correlating concentrations of the acid, base, and H* sites with the 

productivities. An example for 3-butenal productivity from crotonaldehyde upgrading is 

shown in Figure 4.5. The Pearson product-moment correlation coefficient (r) and the 

coefficient of determination (R2 = r2) were calculated for all pairings of site types and 

products from both acetic acid and crotonaldehyde upgrading, and the R2 values are shown 

in Table 4.7. A positive relationship (r > 0) conveys that the productivity increases as the 

site concentration increases; for this analysis, the product-site pairings with r < 0 were 
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Figure 4.4. H2-TPD profiles of (a) Mo2C, (b) K(0.1ML)/Mo2C, (c) K(0.3ML)/Mo2C, (d) 
K(0.5ML)/Mo2C, (e) K(0.7ML)/Mo2C, and (f) K(1.1ML)/Mo2C catalysts where TCD 
signal has been normalized by the surface area of the catalysts. Dashed line marks the 
temperature of the peak maximum for Mo2C. Some spectra have been scaled for ease of 
viewing; scaling factor is noted on the figure. 
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discounted because it conveys that new sites of the given type do not lead to an increase in 

productivity.  

 

The R2 values quantify the linearity of the relationship between the productivity 

and site concentration. A strong correlation (high R2) between a specific site type and 

productivity suggests that the productivity is linearly related to the site concentration, and 

therefore a given change in site concentration produces a standard change in the 

productivity. Essentially, a high R2
 represented a more constant turnover frequency of the 

given product on the given site type. A weak correlation (low R2) suggested that the product 

and site type were not mechanistically related. Colloquially, the R2 represents the 

percentage of the change in productivity that can be attributed to the site concentration. 

Here, R2 > 0.70 are taken to be significant, in the sense that the given site type is worthy 

 
Figure 4.5. Correlations between site concentration of weak base (○), strong base (•), weak 
acid (○), strong acid (•), and H* sites (■) with the 3-butenal productivity.  
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of further investigation as playing a significant role in that product’s productivity.  

For acetic acid upgrading, seven pairings of products and site types were found to 

have R2 > 0.70. Strong acid sites and total acid sites both correlated with acetaldehyde and 

CO. Total base sites correlated with acetone and CO2, and weak base sites correlated well 

with acetone. CO2 and acetone and both ketonization products, so their productivities are 

not independent. 

For crotonaldehyde upgrading, four pairing of products and site types were found 

to have R2 > 0.70. Total base sites correlated well with 3-butenal and butyraldehyde 

productivity, weak base sites correlated strongly with 3-butenal productivity, and strong 

base sites correlated well with butene productivity.  

 

 

4.4. Discussion 

Potassium addition increased the base site concentration while also causing an 

 
Table 4.7. Correlations between productivity of each product and acid, H*, and base site 
concentrations for Mo2C and K/Mo2C catalysts. 

  AA Correlations 

Product 
Weak Acid 

Sites 
Strong Acid 

Sites 
Total Acid 

Sites 
H* Sites 

Total Base 
Sites 

Weak Base 
Sites 

Strong Base 
Sites 

Acetaldehyde 0.38 0.76 0.71 0.69 0.07 0.15 0.15 
Acetone 0.06 0.22 0.20 0.00 0.79 0.73 0.44 

CO2 0.06 0.18 0.16 0.00 0.72 0.64 0.48 
CO 0.40 0.75 0.72 0.67 0.08 0.16 0.13 
  CR Correlations 

Product 
Weak Acid 

Sites 
Strong Acid 

Sites 
Total Acid 

Sites 
H* Sites 

Total Base 
Sites 

Weak Base 
Sites 

Strong Base 
Sites 

Butadiene 0.11 0.12 0.12 0.12 0.01 0.00 0.23 
Butenes 0.47 0.34 0.39 0.34 0.17 0.08 0.80 

3-Butenal 0.56 0.04 0.41 0.51 0.89 0.94 0.30 
Butyraldehyde 0.03 0.06 0.02 0.04 0.74 0.66 0.67 
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overall weakening in the base site strength. In the CO2-TPD spectra, the peak maxima for 

the first peak generally shifted to lower temperatures with increasing K loading up to 

0.7ML. This change cannot be explained by mass transfer limitations or readsorption in 

the catalyst bed as investigated in the previous section, and indicates an overall weakening 

of these base sites, or a destabilization of the CO2 absorbed on the base sites due to 

repulsive forces associated with the increased CO2 surface coverage. 

The base site concentration decreased marginally upon addition of small amounts 

of K (<.3ML) but then increased with larger amount of K. However, the relative amounts 

of weak and strong base sites changed even with small amounts of K. One possibility is 

that at loadings below 0.5ML, the K is well-dispersed on the surface and weakens both the 

weak and strong acid sites, essentially converting a portion of the strong sites to weak sites 

and eliminating some weak sites. With K loadings above 0.5ML, the K species may have 

agglomerated on the surface, and the agglomerations are either less efficient at weakening 

and eliminating base sites, or the agglomerations could themselves be the source of 

additional (predominantly weak) base sites. Frusteri et. al. similarly found that K increased 

the deactivation constant for K promotion of Ni/MgO catalyst [33].  

The total base site concentrations correlated strongly and positively with the 

production of acetone (and its co-product, CO2) and 3-butenal for acetic acid and 

crotonaldehyde upgrading, respectively. The acetone and 3-butenal formation rates 

correlated strongly with the weak base site concentrations, but correlated only modestly or 

weakly with the strong base site concentrations. Therefore, the weak base sites appeared to 

catalyze the formation of acetone and 3-butenal from acetic acid and crotonaldehyde, 

respectively. Note that these correlations were much stronger than the correlations between 
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acetone and 3-butenal for acetic acid and crotonaldehyde upgrading, respectively, and acid 

or H* site concentrations. Consequently, the increase in formation of these dominant 

products (i.e., acetone/CO2, 3-butenal) was more likely associated with the formation of 

base sites rather than the poisoning of acid sites or H* sites. Base sites have previously 

been observed to promote double-bond isomerization, and Hattori found that butene 

isomerization is initiated through abstraction of the allylic H by the base site [34].  

Potassium addition also had a significant effect on catalyst acidity; specifically, the 

percentage of total acid sites that were weak sites increased with increasing K loading. 

Potassium has been previously reported to dilute or poison acid sites on catalysts, including 

for Mo2C/HY [35], HZSM-5 [36], and Mo-V-Sb [37]. In the case of Mo-V-Sb, the decrease 

in acid sites resulted in a shift in selectivity during propane oxidation.  

The strong acid and total acid concentrations correlated moderately and positively 

(r>0) with the acetaldehyde and CO formation rates for acetic acid upgrading, suggesting 

that total acid sites – specifically strong acid sites – played a role in the HDO and DCO 

reactions. This finding is in agreement with the acid:H* site ratio being a key parameter 

for controlling product selectivity during biomass pyrolysis vapor upgrading [7,38,39], and 

further suggests that the ratio of strong acid sites to H* sites may be more descriptive. The 

acid and H* site concentrations only weakly correlated with each other, suggesting that 

these sites are largely independent. For crotonaldehyde upgrading, the weak acid and total 

acid site concentrations correlated well with the butene and 3-butenal formation rates.  

In general, increased K loadings increased the base site concentrations and 

decreased the acid and H* site concentrations. The ratio of the total base sites to the acid 

sites increased from 0.9 for Mo2C to 10 for the K(1.1ML)/Mo2C material, and the ratio of 
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total base sites to the H* sites increased from 2 for Mo2C to 40 for the K(1.1ML)/Mo2C 

material (Table 4.6). The acid and H* site concentrations decreased with K addition – at 

similar rates – and therefore the total acid:H* ratios were relatively constant with K 

addition; however, the ratio of strong acid sites to H* sites varied considerably. It should 

be noted that the total acid:H* site ratio for Mo2C reported in Table 4.6 is lower than 

previous reports [7], which is attributed to a difference in pretreatment conditions (H2 at 

400°C vs. CH4/H2 at 590°C). Previous reports regarding the HDO of acetic acid indicate 

that higher acid:H* ratios give rise to higher decarbonylation selectivities [38]. It is 

possible that H2 and NH3 titrated some of the same sites and/or that the acid and H* sites 

are associated with each other on the surface of Mo2C catalysts. However, as will be 

discussed later, it is unlikely that a significant portion of H2- and NH3-titrated sites are 

directly associated with each other.  

The correlation results also aid in explaining the low activity observed over the 

K(0.3ML)/Mo2C material in acetic acid upgrading experiments. The low activity of the 

K(0.3ML)/Mo2C sample in acetic acid upgrading experiments can be explained by (1) the 

decrease in strong acid site concentration and H* site concentration (Table 4.5) resulting 

in less activity for HDO and DCO reaction pathways, and (2) an insufficient concentration 

of weak base sites found on materials with greater K loading. Thus, the K(0.3ML)/Mo2C 

did not have a high enough concentration of active sites (acid/H* or base sites) to convert 

acetic acid to products, resulting in the low observed activity. It is important to note that 

these data do not speak to the intrinsic activity of each site type, as the upgrading 

experiments were not run under differential conversion conditions. Further research is 

needed to determine whether the intrinsic activity of each active site type changes with K 
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loading, or whether the productivities and reactant consumption rates are strictly dependent 

on the number of available active sites. 

The rate of crotonaldehyde upgrading to butadiene did not correlate strongly with 

any site type. This could be because (1) another uncharacterized site type is responsible for 

the formation of butadiene, (2) it is an intermediate and its relationship to a characterized 

site type is confounded, or (3) its formation depends on some combination of active sites. 

A similar mechanism could explain the formation of butenes, which correlated modestly 

with acid and H* site concentrations, but only weakly with total base and weak base site 

concentrations.  

Previous literature reports using X-ray photoelectron spectroscopy (XPS) to study 

electronic effects of K promotion on carbide surfaces suggest K acts as an electron donor 

and transfers a portion of its electron density to the Mo and C atoms of the carbide surface. 

Specifically, these studies have shown that addition of K increased the number of reduced 

surface Mo atoms (Mo0 or Moδ+, 0 < δ < 2) [40]. DFT results have sought to quantify this 

charge transfer, and found that for β-Mo2C(001) (surface Mo with subsurface C layers) 

promoted with 1/8 surface coverage of K, the surface Mo atoms had an increase in electron 

density of 0.02 electrons [27]. These results help explain how the presence of K on Mo2C 

surface affects active site concentrations on the support; K clusters may be active site 

locations, but K also electronically affects Mo2C, and by extension, the site types on the 

Mo2C. 

In addition to implicating base sites in the conversion of crotonaldehyde to 3-

butenal over the potassium modified Mo2C, results presented in this chapter provide 

insights regarding the overall reaction pathways. Based on results for the conversion of 
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crotonaldehyde, butyraldehyde and crotyl alcohol, a proposed reaction pathway is 

illustrated in Figure 4.6. Recall that, under conditions similar to those used for the 

crotonaldehyde experiments, crotyl alcohol produced 3-butenal, butyraldehyde, butadiene 

and butenes while butyraldehyde produced butenes and butadiene. Crotyl alcohol 

formation was not detected during crotonaldehyde hydrogenation, perhaps due to its 

reactivity. 

At least two site types for the K/Mo2C catalysts are proposed, one for C=O and 

C=C hydrogenations and hydrodeoxygenation (HDO), and another for isomerization. 

Mo2C is known to be active for both types of reactions [41–45]. The addition of small 

amounts of potassium to Mo2C appears to affect primarily the hydrogenation and HDO 

reactions. The consequence is an increase in butyraldehyde production and a shift in HDO 

products from butenes to butadiene. Further increases in the potassium loading resulted in 

a significant suppression of the HDO activity and butyraldehyde production, and an 

enhancement in the isomerization activity (recall correlation between potassium and 3-

butenal formation). The results are consistent with deactivation of the HDO and 

hydrogenation sites, and an increase in the concentration of basic, isomerization sites. 
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4.5. Summary  

Through TPD of NH3 and CO2 probe molecules, K was shown to increase basic site 

concentration and decrease acid and H* site density on Mo2C catalysts. Specifically, the K 

created weak base sites and eliminated strong acid sites. Through correlating the active site 

concentrations with productivity of each product, it was shown that the increase in base 

sites was responsible for the increase in productivity of the dominant products (acetone for 

acetic acid upgrading, 3-butenal for crotonaldehyde upgrading) at high K loadings. 
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Pathway of selectivity influence for transition versus alkali metals 

5.1. Introduction 

Results from Chapter 2 showed that, of the promoter metals tested, Fe gave the 

highest selectivity for deoxygenation products. Consequently, the focus of this chapter was 

to elucidate the mechanism by which iron promotes deoxygenation. Iron has long been 

used a promoter metal for organic catalytic reactions, and has been found to exert effects 

of various type and magnitude depending on the reaction phase and the model compound 

size [1]. For example, Fe promotion of a Pt catalyst for the gas-phase hydrogenation of 

acrolein (MW = 56.06) , a small molecule, caused only a small shift in selectivity (from 

ca. 2% to ca 8%) [2]. The shift was more significant for crotonaldehyde (MW = 70.09), 

and even more significant for 3-methyl-crotonaldehyde (MW = 84.12). This particular 

effect was attributed to the increasing steric hindrance, with methyl group addition, of 

adsorption through the carbonyl group. Similar trends were observed for other promoters 

including Ti, V, Ga, Ge, and Sn, but the differences between model compounds was most 

pronounced for Fe. For cinnamaldehyde, a much larger molecule (MW = 132.16), Fe 

promotion of a Pt catalysts for liquid-phase hydrogenation caused a large shift in selectivity 

(from ca. 70% to ca. 90%) [3]. Iron has also been incorporated into bimetallic catalysts. 

Adding Fe to a Ni/SiO2 catalyst decreased the overall rate, but increased 2-methylfuran 

selectivity of furfural conversion at similar levels of conversion [4].  
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Iron-based catalysts have been used as effective HDO catalysts for bio-oil model 

compounds. Fe/SiO2 was used as a selective HDO catalyst for guaiacol HDO, and rate was 

found to be proportional the available iron surface for different Fe loadings [5]. At 25 min 

TOS, the Fe/SiO2 catalyst gave selectivity to benzene and toluene over 75% but became 

much less selective with more TOS. For these catalysts, coke deposition was observed at 

the interface of the Fe and the support, suggesting that the interface was the location of the 

active sites for HDO. Fe/C was used as selective catalysts for guaiacol HDO [6]. Fe/C was 

found to have lower activity than precious metal catalysts, but high selectivity to 

unsaturated and non-ring-opened products such as benzene, toluene, and phenol.  

Previous work has shown that Fe promotion may affect the overall acidity of a 

catalyst. Sikabwe and White reported that decreased the Lewis acidity of surface carbenium 

ions on sulfated zirconia as a result of Fe promotion accounted for the difference in 

reactivities between the unpromoted and promoted sulfated zirconia catalysts [7]. In 

contrast, Chen et. al concluded that Fe promotion of a sulfated zirconia increased the 

density and strength of surface acid sites, as determined by 31P MAS NMR and adsorbed 

trimethlyphosphine oxide [8]. For nitrogen-doped carbon-supported iron catalysts, Li et. 

al. determined via NH3 TPD that iron loading introduced Lewis acid sites, and by CO2 TPD 

that no base sites were present on the catalyst surface [9]. Shen et. al demonstrated that Fe 

doping of Mn-Ce/TiO2 non-linearly increased the amount of NH3 that desorbed during 

TPD [10]. They did not tie these results to acid sites or overall acidity, but they imply that 

acid character of the catalyst increased with Fe doping. However, the authors did not 

normalize the reported results by surface area, and there is insufficient data reported to so 

do precisely. Visual estimation of TPD area from provided figures coupled with reported 
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surface area measurements of catalysts suggest that acid site density did increase 

monotonically with Fe doping. Noh et. al. found that the change in basicity with Fe3O4 

promotion varied by support [11]. Adding Fe3O4 to Ce-ZrO2 and Si-ZrO2 decreased the 

density of base sites, but adding Fe3O4 to ZrO2 increased the density of base sites. In this 

catalytic system, the oxygen vacancy sites were proposed as the active sites for dehydration 

of ethylbenzene. 

 

5.2. Experimental Methods 

5.2.1 Catalyst Synthesis 

The Mo2C was synthesized by the methods described in Section 2.2.1 for incipient 

wetness. Incipient wetness was selected instead of wet impregnation so that higher loadings 

of Fe could be achieved; the maximum loading of Fe achievable via wet impregnation is 

<2% [12]. To avoid oxidation prior to Fe impregnation, the Mo2C was transferred in a 15% 

CH4/H2 atmosphere to a water-tolerant, oxygen-free glovebox (N2 atmosphere). Iron was 

added to the Mo2C by incipient wetness using Fe(NO3)3 (Sigma Aldrich Iron(III) nitrate 

nonahydrate, ≥99.95% trace metals basis) solutions. The amount of Fe(NO3)3 was adjusted 

to correspond to the equivalent of 0.1, 0.5, and 1.1 equivalent monolayers (ML) of surface 

coverage, assuming a total site concentration of 1019 sites m-2 [13]. The catalyst was 

transferred back to the synthesis reactor under an Ar atmosphere. The resulting catalyst 

was dried at 110 °C for 2 h in H2, then reduced in H2 at 450 °C for 4 h. After quenching to 

room temperature, the catalyst was passivated using a 1% O2/He mixture for at least 6 h. 

The catalysts were named based on the nominal amount of Fe addition (in terms of ML), 

so Fe(1.1ML)/Mo2C represents a Mo2C catalyst with 1.1 ML of Fe addition.  
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5.2.2 Catalyst Characterization 

Powder X-ray diffraction (XRD) patterns and relative metal loadings were 

collected using the same methods described in Section 2.2.2. N2 physisorption isotherms 

were collected using the same methods described in 3.2.2. Crotonaldehyde conversion 

experiments were performed in the same manner as described in Section 2.2.3. The catalyst 

was maintained at the initial temperature for 9 hrs to accommodate for catalyst 

deactivation, and then maintained at each sequential temperature (275°C, 325°C, 300°C, 

350°C) for 3 hrs to allow the catalyst to stabilize. 

 

5.3. Results 

5.3.1 Physical Catalyst Characterization 

X-ray diffraction patterns for the as-synthesized materials are shown in Figure 5.1. 

There are no apparent oxide peaks, indicating complete carburization of the precursor. 

Additionally, the handling and passivation procedures avoided bulk oxidation of the 

carbide during transfers bet ween the reactor and the glovebox.  

The surface area of the parent Mo2C material was 124.9 m2 g-1 (Table 5.1). The 

addition of just 0.1ML Fe caused a decrease in the surface area, though further Fe addition 

had a minimal and inconsistent effect on the surface area. The lowest surface area was 

measured as 64.4 m2 g-1 for the Fe(0.5ML)/Mo2C material. The decrease in surface area 

affected the micropore and mesopore structures similarly. As seen in Table 5.1, the 
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percentage of surface area attributed to the micropore area (76 ± 3 %) and mesopore area 

(24 ± 3 %) is very similar for all Mo2C and Fe/Mo2C catalysts. This is further evidenced 

in the pore distribution shown in Figure 5.2. Therefore, Fe seemed to reduce surface area 

Figure 5.1. X-ray diffraction patterns for (a) Fe(1.1ML)/Mo2C, (b) Fe(0.7ML)/Mo2C, (c) 
Fe(0.5ML)/Mo2C, (d) Fe(0.1ML)/Mo2C, and (e) Mo2C catalysts and peak positions for 
polycrystalline (f) orthorhombic β-Mo2C (JCPDF 00035-0787) and (g) cubic α-MoC1−x 

(JCPDF 00-015-0457). 
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by non-specifically reducing both micropores and mesopores. 

Table 5.1 BET Surface area and DFT pore volumes for all catalysts.  

 
Nominal 

Fe 
Loading 
(wt %) 

Nominal 
Fe 

Coverage 
(ML) 

BET  
Surface  

Area 
(m2 g-1) 

DFT 
Micropore 

Area 
(m2 g-1) 

[%] 

DFT 
Mesopore 
Surface 

Area 
(m2 g-1) 

[%] 

Mo2C 0.0 0 124.9 
80.0 
[76] 

24.8 
[24] 

Fe(0.1ML)/Mo2C 0.9 0.1 78.5 
57.0 
[78] 

15.9 
[22] 

Fe(0.5ML)/Mo2C 4.6 0.5 64.4 
44.1 
[73] 

16.3 
[27] 

Fe(0.7ML)/Mo2C 6.3 0.7 69.2 
51.9 
[79] 

13.4 
[21] 

Fe(1.1ML)/Mo2C 9.5 1.1 71.4 
52.5 
[75] 

17.7 
[25] 

 

 
Figure 5.2. DFT pore volume distribution for Mo2C (–), Fe(0.1ML)/Mo2C (–), 
Fe(0.5ML)/Mo2C (–), Fe(0.7ML)/Mo2C (–), and Fe(1.1ML)/Mo2C (–). 
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5.3.2 Active Site Concentrations 

NH3-TPD profiles are shown in Figure 5.5, and are scaled so that the area under the 

TPD profile is representative of the acid site concentration of that catalyst. The acid site 

concentrations are plotted in Figure 5.3. The acid site concentration increases slightly with 

0.1ML of Fe, but then decreases with increasing amounts of Fe up to 0.7ML and appears 

to remain relatively constant with additional Fe of 1.1ML. At 1.1ML of Fe, the acid site 

concentration is approximately cut in half compared to the concentration for Mo2C. 

 

CO2-TPD profiles are shown in Figure 5.5, and are scaled in the same way as the 

NH3-TPD profiles. The CO2-TPD concentrations are shown in Figure 5.3. The trend of 

total base site concentration follows closely with that of the acid site concentrations; the 

 
Figure 5.3. Site concentrations of base (•) and acid sites (•) on the surface of Mo2C 
catalysts with increasing Fe coverage. Error bars represent 95% confidence interval. 
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concentration increases slightly with 0.1ML of Fe, but then decreases with increasing 
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Figure 5.5. NH3-TPD profiles of (a) Mo2C, (b) Fe(0.1ML)/Mo2C, (c) Fe(0.5ML)/Mo2C 
Mo2C (d) Fe(0.7ML)/Mo2C, and (e) Fe(1.1ML)/Mo2C catalysts where M.S. signal has 
been normalized by the surface area of the catalysts. 
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Figure 5.5. CO2-TPD profiles of (a) Mo2C, (b) Fe(0.1ML)/Mo2C, (c) Fe(0.5ML)/Mo2C 
Mo2C (d) Fe(0.7ML)/Mo2C, and (e) Fe(1.1ML)/Mo2C catalysts where M.S. signal has 
been normalized by the surface area of the catalysts.  
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amounts of Fe up to 0.7ML. However, it appears to continue to decrease with 1.1ML Fe. 

The overall decrease in base site concentration from Mo2C to Fe(1.1ML)/Mo2C is larger 

than the decrease for acid site concentration.  

From the CO2-TPD profiles, it is clear that the profiles are constructed of multiple 

distinct peaks, and therefore the TPD profiles were deconvoluted for deeper analysis. The 

CO2-TPD spectra were deconvoluted into peaks that were 30% Lorentzian and 70% 

Gaussian with a linear baseline using the peak fitting software CasaXPS, and the 

deconvolution is shown in Figure 5.7. Three peaks were selected because it was the 

minimum number necessary to achieve a good fit. First, each peak was fit with three peaks 

and optimized without constraints using the peak fitting software, and the FWHMs were 

noted. The full-width-half-maxima (FWHM) of each peak were then constrained so that 

the FWHM of each peak was constant for all TPD spectra; the FWHM represented the 

average of the FWHMs of the peaks when they were not constrained. After fitting, the 

correlation coefficients (r) were determined for each set of peak areas, and all were less 

than 0.6. Since no one peak’s area was well-correlated with another peak’s area, the three 

peaks were each considered independent adsorption sites. The first, second, and third peaks 

will be referred to as weak, medium, and strong base sites, respectively. The peak position 

for each peak was identified as the temperature of the maximum of that peak and are 

displayed in Table 5.2. The site concentrations are presented in Table 5.3 and plotted in 

Figure 5.6. 



 

122 

 

 

The medium-strength base sites account for the majority (69%) of the Mo2C base 

site concentration and changes in the medium-strength base site concentration are the main 

driver of the changes to the total base site concentration; in contrast, the weak and strong 

base site concentrations are relatively invariant with Fe loading. The peak location of all 

Table 5.2. Peak location (C) of deconvoluted peaks for Fe/Mo2C catalysts, and the 
correlation coefficient of the peak locations and the ML of Fe.  

 
 
 

Weak 
Base 

Medium 
Base 

Strong 
Base 

Mo2C 113 200 299 
Fe(0.1ML)/Mo2C 112 182 274 
Fe(0.5ML)/Mo2C 98 171 267 
Fe(0.7ML)/Mo2C 97 181 239 
Fe(1.1ML)/Mo2C 94 160 229 

R2 0.87 0.73 0.89 
 

Table 5.3. Site concentrations of the deconvoluted base site types for the Fe/Mo2C 
catalysts.  

Catalyst 

Site Concentration  
(1014 molecules cm-2) 

Weak 
 Base 
[%] 

Medium 
Base 
[%] 

Strong 
Base 
[%] 

Total 
Base 

Total 
Acid 

Mo2C 0.07 
[18] 

0.24 
[59] 

0.09 
[23] 

0.41 0.31 

Fe(0.1ML)/Mo2C 0.08 
[17] 

0.34 
[72] 

0.05 
[11] 

0.47 0.45 

Fe(0.5ML)/Mo2C 0.02 
[7] 

0.28 
[81] 

0.04 
[13] 

0.35 0.33 

Fe(0.7ML)/Mo2C 0.04 
[17] 

0.11 
[51] 

0.07 
[32] 

0.23 0.19 

Fe(1.1ML)/Mo2C 0.03 
[20] 

0.06 
[45] 

0.04 
[35] 

0.12 0.18 
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three peaks do not monotonically decrease with Fe promotion, but the peak locations do 

mostly decrease with Fe promotion, and there is good correlation (all R2 > 0.70) between 

peak location and nominal Fe loading for all three peaks. Consequently, Fe is shown to 

typically lead to a decrease in the peak location temperature for all three peaks. The strong 

base sites were found to have the largest change in peak location with Fe loading, and 

therefore the three peaks all desorbed within a smaller range with increasing Fe promotion. 

Decreasing desorption temperature is indicative of decreasing strength of the sites, 

suggesting that all three sites were weakened with Fe loading, that the strong base sites 

experienced the most change in site strength with Fe loading, and that the strengths of all 

three base site types became more similar in strength with Fe loading.  

  

   

 
Figure 5.6. Site concentrations of weak (•), medium (•), strong (•), and total (•) base sites 
on the surface of Mo2C catalysts with increasing Fe coverage. Error bars represent 95% 
confidence interval. 
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Figure 5.7. Deconvoluted CO2-TPD profiles of (a) Mo2C, (b) Fe(0.1ML)/Mo2C, (c) 
Fe(0.5ML)/Mo2C (d) Fe(0.7ML)/Mo2C, and (e) Fe(1.1ML)/Mo2C catalysts. 
Deconvoluted peaks are shown in green, red, and blue, and residuals (difference between 
raw spectrum and fit) are displayed below each TPD. The M.S. signals have been scaled 
so that the profiles are of the same height for ease of viewing. Dashed lines represent the 
peak maxima of Mo2C). 
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5.3.3 Activity 

Catalyst deactivation was analyzed for 9 hr TOS at 350 C. Normalized activity 

profiles for each catalyst were compared where: 

𝑎(𝑡) =
𝑟𝑎𝑡𝑒(𝑡)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒
 

Catalyst deactivation profiles are shown in Figure 5.8. Each profile was fit to 

several known deactivation models in order to determine the applicability of various 

deactivation models including linear, exponential, hyperbolic, and reciprocal models. The 

forms of these models are given in Chapter 2, and R2
adj and the fitted parameters are shown 

in Table 5.4. Here, 𝑘ௗ is the specific decay constant and 𝑡 is the time on stream. The best 

fit for all catalysts (R2
adj > 0.98) was the reciprocal model, which is consistent with 

deactivation by carbon deposition, or coking [14,15].  
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Activity and conversion measurements for the catalysts are shown in Table 5.5, and 

show a reduction in the crotonaldehyde consumption rate of up to ca. 60% with 1.1ML of 

Fe promotion on Mo2C from the parent Mo2C material. The trend is not monotonic, and 

the rate decreases with 0.1ML Fe promotion but increases with 0.5ML Fe promotion, 

 
Figure 5.8. Catalyst deactivation profiles for Mo2C (–), Fe(0.1ML)/Mo2C (–), 
Fe(0.5ML)/Mo2C (–), Fe(0.7ML)/Mo2C (–), and Fe(1.1ML)/Mo2C (–). 
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Table 5.4. Results from nonlinear regression of activity data to four empirical decay 
rate laws. 

 
Linear Exponential Hyperbolic Reciprocal 

R2
adj kd (hr-1) R2

adj kd (hr-1) R2
adj kd (hr-1) R2

adj kd (hr-1) A0 

Mo2C 0.70 0.08 0.92 0.28 0.92 0.54 0.98 0.64 0.71 

Mo2C/(0.1ML) 0.62 0.09 0.89 0.33 0.82 0.59 0.99 0.75 0.71 

Mo2C/(0.5ML) 0.35 0.06 0.73 0.45 0.94 1.21 1.00 0.47 0.36 

Mo2C/(0.7ML) 0.49 0.02 0.68 0.18 0.88 0.53 0.98 0.46 0.28 

Mo2C/(1.1ML) 0.58 0.02 0.80 0.24 0.96 0.79 1.00 0.55 0.23 
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though the rate is still less than that for the parent Mo2C catalyst. The Fe(0.1ML)/Mo2C 

activity results were repeated and showed good agreement between the two runs 

(crotonaldehyde consumption rate ± 3%), and the average results are reported. 

 

 

5.3.4 Selectivity 

For Fe/Mo2C catalysts, eight distinct product groups were detected. As in previous 

chapters, butadiene, butene, 3-butenal, and butyraldehyde were detected. In addition, 

products with GC higher retention times were identified that constituted up to ca. 30% of 

the carbon selectivity. These higher retention time products were separated into four 

product groupings and identified by their retention times, such that higher retention times 

indicated larger molecular weight and polarity; these product groups are P24, P26, P28, 

and P35. These product groups are likely C8 and C12 products that arise from coupling of 

crotonaldehyde or C4 products. Formation of C8s from crotonaldehyde hydrogenation has 

been previously reported to form compounds such as 2,4,6-octatrienal and has been 

suggested to occur via dimerization, polymerization, condensation, and aldol condensation 

[16–19].  

 
Table 5.5. Crotonaldehyde consumption rate and conversions for the Mo2C and 
Fe/Mo2C catalysts after 9 hr TOS at 350 C.  

Crotonaldehyde 
Consumption Rate 

(µmol sec-1 m-2) 

Conversion 
(%) 

Mo2C 1.09 16.2 
Fe(0.1ML)/Mo2C 0.71 13.2 
Fe(0.5ML)/Mo2C 0.91 14.0 
Fe(0.7ML)/Mo2C 0.68 11.2 
Fe(1.1ML)/Mo2C 0.46 7.9 
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Productivity results are displayed in Figure 5.10. The Fe(0.1ML)/Mo2C activity 

results were repeated and showed good agreement between the two runs (carbon selectivity 

± 3%), and the average results are reported. Butadiene, butene, and butyraldehyde 

productivity decreased Fe promotion, and an exponential model gave good fits (R2 = 0.96, 

0.98, and 0.99, respectively). The productivities of these three products correlated strongly 

with another; Butadiene productivity correlated with butyraldehyde and butene 

productivity (R2 = 0.98 and 0.98, respectively). P24, P26, and P28 productivities also 

decreased significantly with 0.1ML promotion, but these did not fit well to a linear or 

exponential decay model. 3-Butenal productivity was slightly decreased with 0.1ML of Fe 

promotion but returned to values similar to that on the native Mo2C for >.1 ML Fe 

promotion. P35 was not observed to form on the parent Mo2C, increased productivity with 

slight Fe promotion and reached a maximum for .5ML, and then decreased upon further Fe 

Figure 5.9. Carbon productivity for Mo2C and Fe/Mo2C catalysts at 350 C after 9 hr 
TOS.  
 

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06

0.0 0.5 1.0

P
ro

du
ct

iv
it

y 
(m

ol
es

 C
4

m
in

-1
m

-2
)

Nominal Fe (ML)

Butadiene

Butene

3-Butenal

Butyraldehyde

P24

P26

P28

P35



 

129 

 

promotion. 

Carbon selectivity results are reported in Figure 5.9. Butadiene selectivity was 

relatively constant for all catalysts. Butene and butyraldehyde selectivity decreased linearly 

(R2 = 0.94 and 0.97, respectively) with Fe promotion. The correlation coefficient of the 

butene and butyraldehyde selectivities was 0.995. 3-Butenal selectivity increased linearly 

(R2 = 0.99) with Fe promotion; P26 and P28 selectivities were virtually eliminated with Fe 

promotion. P24 selectivity decreased with small amounts of Fe promotion but was 

otherwise insensitive to Fe promotion. P35 selectivity was greatly enhanced with Fe 

promotion but was otherwise insensitive to Fe promotion. 

 

Figure 5.10. Carbon selectivity for Mo2C and Fe/Mo2C catalysts at 350 C after 9 hr 
TOS.  
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5.3.5 Linking Active Sites and Productivity 

First, changes in active site concentration were compared to changes in the overall 

crotonaldehyde consumption rate. While the acid and base site concentrations both reach a 

maximum at 0.1ML Fe, the rate decreases with 0.1ML Fe, then has a slight rebound in rate 

for .5ML before being further depressed with more Fe promotion. The site concentrations 

and overall consumption rates do not trend together, and therefore there is not a constant 

turnover frequency of crotonaldehyde on the total active site concentration, or on the 

individual (acid and base) site concentrations.  

Next, individual product productivity and measurements of active site 

measurements are considered. It is clear that some of these pairings of parameters follow 

similar trends. For Fe/Mo2C catalysts, all active site types generally decrease with Fe 

promotion, and the productivity of butadiene, butene, butyraldehyde, P24, P26, and P28 

followed a similar trend. However, this cursory analysis does not allow for particular 

products to be attributed to particular active site types. For a given product, the productivity 

was plotted as a function of a given active site concentration, and the correlation coefficient 

(R2) was determined for that pairing.  

These plots are shown in Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14, 

and the R2 results are given in Table 5.6. As discussed in Chapter 4, the R2 quantifies the 

linearity of the turnover frequency; if the productivity change was perfectly proportional 

to the change in site concentration, the R2 would be 1. Colloquially, the R2 represents the 

percentage of the change in productivity that can be attributed to the site concentration. 

Here, R2 > 0.70 are taken to be significant, in the sense that the given site type is worthy 

of further investigation as playing a significant role in that product’s productivity.  
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Figure 5.11.  Correlation plot between product productivity and weak, medium-strength, 
strong base sites and acid sites over Mo2C and Fe/Mo2C catalysts.  
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Figure 5.12.  Correlation plot between product productivity and weak, medium-strength, 
strong base sites and acid sites over Mo2C and Fe/Mo2C catalysts.  
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Figure 5.13.  Correlation plot between product productivity and weak, medium-strength, 
strong base sites and acid sites over Mo2C and Fe/Mo2C catalysts.  
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Figure 5.14.  Correlation plot between product productivity and weak, medium-strength, 
strong base sites and acid sites over Mo2C and Fe/Mo2C catalysts.  
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Eight product and site couplings were found to have R2 > 0.70. Only weak base, 

strong base, and total base sites were found to have significant correlations, suggesting that 

acid and medium base sites were not monofunctional sites for any of the products. Six of 

the eight detected product groups (Butadiene, butene, butyraldehyde, P24, P26, and P35) 

were found to have significant correlations with a site concentration, suggesting that 3-

butenal and P28 are either formed on a site type that was not measured, or are formed 

bifunctionally on multiple site types whose concentrations change independent of one 

another. For butene, butyraldehyde, and butadiene, the correlation with total base site 

concentration were each stronger than that for weak base site concentration. At this point, 

it is inconclusive whether the weak base site is the specific active site for the butene, 

butyraldehyde, and butadiene production, or whether all base sites play a role in their 

formation.  

 

Table 5.6. Correlations between rate of productivity of each product and site 
concentrations for Mo2C and Fe/Mo2C catalysts.  

Total  
Acid Sites 

Weak  
Base Sites 

Medium 
Base Sites 

Strong  
Base Sites 

Total  
Base Sites 

Butadiene 0.56 0.63 0.64 0.31 0.84 
Butene 0.51 0.74 0.54 0.37 0.78 

3-Butenal 0.44 0.47 0.21 0.04 0.23 
Butyraldehyde 0.47 0.71 0.52 0.41 0.76 

P24 0.09 0.44 0.15 0.74 0.36 
P26 0.00 0.25 0.02 0.81 0.14 
P28 0.17 0.58 0.20 0.63 0.43 
P35 0.03 0.22 0.03 0.72 0.01 
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5.4. Discussion 

Small amounts (.1ML) Fe promotion of Mo2C reduced surface area of Mo2C, but 

higher amounts of Fe did not further reduce the surface area of Mo2C. In addition, the 

reduction in surface area was found to be attributed to a proportional reduction in 

micropore and mesopore surface area. This is a different trend than that observed for K 

promotion in Chapter 3, in which K specifically reduced the micropore surface area of the 

Mo2C; Fe did not appear to preferentially reduce the micropore structure, but instead 

unselectively reduced the micropore and mesopore structures. Since Fe crystallites were 

not observed in XRD, the Fe is likely well-dispersed on the surface. Since the reduction in 

surface area is approximately equal across all Fe loadings, it in unlikely that Fe is physically 

blocking pores; if this were true, surface area should decrease further with additional 

promotion. Instead, Fe could be inducing a structural change in the catalyst during 

reduction – perhaps an increase in crystallite size – that reduces surface area but is not 

sensitive to amount of promotion. 

Total acid and base site concentrations were found to trend together with Fe 

promotion (correlation = 0.85); both site concentrations increased with .1ML of Fe and 

reached a maximum, but then decreased upon further Fe promotion. However, the base site 

concentration of the parent Mo2C is not statistically different from that of the 

Fe(0.1ML)/Mo2C and Fe(0.5ML)/Mo2C catalysts. Therefore, the base site concentration 

remained essentially constant with up to 0.5ML Fe promotion but decreased with 0.7ML 

and 1.1ML Fe promotion. Still, the concentration of the medium-strength base site of 

Fe(0.1ML)/Mo2C was significantly different (higher) than that of the parent Mo2C, and 

then decreased with further Fe promotion. The medium-strength base sites accounted for 
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most of the total base sites, so this trend was important. At low and medium loadings, Fe 

preferentially deposited on and/or block medium-strength base sites. In one report on the 

effect of Fe promotion on acid and base properties, Kurokawa et. al. found that 3 wt % Fe 

promotion of MgO catalyst slightly reduced base site concentration and created acidic 

domains while also shifting selectivity of dehydrogenation and dehydration of isopropyl 

alcohol [20]. Since the authors did not report results for different Fe loadings, it is difficult 

to compare the trends found for Fe promotion on Mo2C.  

The acid site concentrations of Mo2C and Fe(0.5ML)/Mo2C were statistically equal, 

while the acid concentration of Fe(0.1ML)/Mo2C was higher. Kurokawa suggested that the 

Fe ion sitting on the surface may itself be the location of the acid site [20]. Reports of the 

acidity of Fe supported on SiO2, an amphoteric support, are conflicting though; Yu et. al 

reported Fe/SiO2 (0.1 wt%) had no measurable acidity by NH3 TPD [21], while Ates found 

the amount of NH3 desorbed during TPD increased with Fe up to 0.90 wt% for Fe/SiO2 

[22]; if Fe domains on the Mo2C surface are the acid site location, it may take on this 

property from its electronic interaction with the support. 

Through non-linear regression of the activity during initial TOS, Fe/Mo2C catalysts 

were found to match well to the reciprocal deactivation model, which is known to indicate 

deactivation by carbon deposition, or coking. This contrasts with findings in Chapter 2 for 

Fe(0.1ML)/Mo2C catalyst prepared by incipient wetness, which was found to match best 

to the exponential model of decay, which is associated with deactivation by poisoning. The 

implication is that the impregnation method of Fe on Mo2C affects the deactivation 

mechanism. Comparing thermogravimetric analysis (TGA) results of post-reaction 

samples of Fe/Mo2C prepared by wet impregnation and incipient wetness could be used to 
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confirm the degree to which coking contributes to deactivation of each. 

Except for 0.1 ML of Fe promotion, crotonaldehyde consumption rate decreased 

linearly with Fe promotion. With 0.1ML of Fe, the crotonaldehyde consumption rate fell 

between that of Fe(0.5ML)/Mo2C and Fe(0.7ML)/Mo2C. As mentioned, the 0.1ML 

measurements were repeated and good agreement was found between runs. This dip in 

activity can be attributed to a dip in productivity of 3-butenal, as shown in Figure 5.9. In 

addition, Fe(0.1ML)/Mo2C also falls in a transition region where P35 productivity is 

increasing with Fe promotion, and butene, butyraldehyde, P24, P26, and P28 productivity 

is decreasing. The rate of P35 productivity increase is not outweighed by the rate of 

productivity decrease of the other products, and this discrepancy further contributes to the 

suppressed crotonaldehyde consumption rate at 0.1ML.  

Butene, butadiene, and butyraldehyde, all hydrogenated C4 products, were highly 

correlated in their productivity (and selectivity). It follows that they are all formed on the 

same active site, or that they form as secondary products of one another, such that changes 

in the productivity of the primary product directly affect the productivity of the secondary 

product(s). In Chapter 4, butene was proposed to form from butadiene, which formed from 

butyraldehyde for K/Mo2C catalysts. Productivity of all products except 3-butenal and P35 

was observed to decrease with Fe promotion. Butyraldehyde, butadiene, and butene 

productivity was observed to decrease exponentially with Fe promotion (R2 > 0.89). In 

another report, CO hydrogenation activity  on Ni/SiO2 was found to decrease exponentially 

with K promotion, but the authors did not comment on the significance of the decay model 

[23]. Exponential decay does offer an interesting clue as to the mechanism of productivity 

decrease. Small additions of Fe reduce productivity much more than medium and large 
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additions of Fe, which rules out the possibility that Fe geometrically blocking individual 

active sites linearly proportional to the amount of Fe addition. A possibility arises: Small 

additions of Fe disperse well on the surface and block active sites, but at higher loadings, 

Fe did not disperse as well and instead of creating more Fe domains, the size of the Fe 

domains increased. Then, the marginal decrease to surface (hydrogenation active sites) 

coverage decreased with medium and high Fe loadings, but more height was added to the 

Fe domains.  

A remaining question though, is how Fe creates changes in the catalyst surface to 

induce these changes in productivity and selectivity, and which are the relevant active 

site(s). Through correlating active site concentrations with productivity, weak base sites 

and strong base sites were found to correlate with the productivity of one or more product. 

This is a non-obvious finding; total acid, total base, and medium-strength base site 

concentrations were more affected by Fe promotion on an absolute site concentration basis 

and the changes in concentration seemed to clearly be a function of Fe promotion. 

However, the range in percent change in site concentration between the parent Mo2C and 

Fe-promoted catalysts was similar for all site types. For example, medium-strength base 

site concentration changed by up to 76% with Fe promotion (1.1ML), and weak base 

concentration changed by up to 66% (0.1ML). Consequently, there was a wide and 

consistent range of site concentrations for the correlations. Site concentrations were more 

valuable if they were well-distributed within the range; an even distribution of 

concentrations combined with a strong correlation strengthens the conclusion that the site 

type and product are related. The following statistic was used to quantify the “evenness of 

spread”: 
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𝑠𝑝𝑟𝑒𝑎𝑑 =
𝜎ௗ

𝜇ௗ
 

where 𝑑 is the set of values that consists of the differences in site concentration when they 

are sorted in in ascending order, 𝜎ௗ is the standard deviation of that set, and 𝜇௦ is the mean 

value of that set. A higher value indicates unevenness in spread, and a lower value indicates 

more evenly spaced data. Weak base sites and strong base sites had high spreads. Ideally, 

catalysts would be synthesized that fell in the “middle” region, with weak base site 

concentration between 0.04 and 0.07 x 1014 molecules cm-2, and strong base site 

concentration between 0.05 and 0.07 x 1014 molecules cm-2 to further confirm the high 

correlation between these active site types and productivity.  

 

  However, with the range of weak base site concentrations that were measured in 

this set of catalysts, weak base sites were found to correlate with butene and butyraldehyde, 

which also were found to have exponentially decreasing productivity with Fe promotion. 

As theorized above, the exponential decrease could be related to an exponential change in 

active sites due to changing dispersion with Fe loading. Those active sites are proposed to 

be the weak base sites.  

 
Table 5.7 Spread of active site type concentrations.  

 Spread 

Total Acid Sites 0.96 
Weak Base Sites 1.01 
Medium Base Sites 0.55 
Strong Base Sites 0.82 
Total Base Sites 0.34 
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5.5. Summary  

A series of Fe/Mo2C catalysts were evaluated for their activity and selectivity in 

crotonaldehyde conversion and compared to the performance of Mo2C. All catalysts were 

found to have deactivation profiles that matched best to a reciprocal model, which was 

indicative of coking. Fe promotion decreased the per-surface area rate, though the decrease 

was not a monotonic function of Fe promotion. Total base site concentration was 

intransient with Fe up to 0.5ML, and then decreased upon further promotion. Acid site 

concentration increased with 0.1ML Fe, but then decreased with further promotion. 

Productivity decreased exponentially with Fe promotion for butadiene, butenes, and 

butyraldehyde, which was proposed to be a consequence of changing Fe dispersion and 

particle size with Fe promotion. Through correlations between site concentrations and 

productivity, weak base and strong base sites were identified as active sites responsible for 

changing selectivity on Fe/Mo2C catalysts. 
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Summary and Future Work 

6.1. Summary and Conclusions 

This dissertation investigated Mo2C and Mo2C-supported catalysts for use in 

upgrading reactions with bio-oil model compounds. The metal promoters on Mo2C were 

examined as a method of controlling the activity and selectivity of the conversion of the 

model compounds in the presence of H2. The main goal was to identify metal promoters 

that could be used to control the activity and selectivity of upgrading reactions, to identify 

the catalyst properties that were predicative of the activity and selectivity, and then to 

develop relationships between the properties and catalyst performance. By developing such 

a relationship, the work in this dissertation could be used to design highly selective 

catalysts for bio-oil upgrading.  

Fe, Co, Ni, Cu, Rh, Pd, and K were investigated as promoters of Mo2C for their 

activity and selectivity in crotonaldehyde conversion. Rh, Pd, and Co did not significantly 

affect catalyst selectivity, but Ni, Cu, and K increased the selectivity to the isomerization 

product, while Fe increased the selectivity to the HDO products. The period 5 promoter 

metals (Rh and Pd) experienced less reduction in crotonaldehyde consumption rate than 

the smaller promoter metals. K/Mo2C and Fe/Mo2C gave very low selectivity for 

butyraldehyde, suggesting that they have an affinity for hydrogenation of the C=O bond.  

The largest increase in isomerization selectivity was observed with the K-promoted 
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Mo2C. While isomerization is not typically a desirable catalyst in bio-oil upgrading, 

controlling (reducing) its selectivity is desirable. Both acetic acid and crotonaldehyde were 

used as model compounds, and K promotion up to 0.5ML was found to increase selectivity 

to the ketonization and isomerization products, respectively. With additional K promotion, 

the increase in selectivity was incremental acetic acid conversion, and slight reversed for 

crotonaldehyde conversion, respectively. The change in effect with K promotion beyond 

0.5ML may have been due to the changes in K dispersion on the catalyst surface at high 

loadings compared to low loadings.  

Catalyst characteristics that may be the driver of catalyst performance were 

investigated for K/Mo2C catalysts. Base, acid, and H* site concentrations were measured 

via TPD of CO2, NH3, and H2 probe molecules. Base sites increased with K promotion, 

while acid and H* sites decreased with K promotion. The TPD spectra were deconvoluted 

to quantify the relative contribution of weak and strong sites for acid and base sites. The 

active site concentrations were correlated to the productivity of each product to determine 

whether a site type’s concentration was a predictor of productivity for a particular product. 

Strong correlations (high R2) suggested that site type was responsible for the formation of 

that product. Through this correlation, base sites were identified as the active site for the 

dominant product at high K loadings (acetone for acetic acid conversion; 3-butenal for 

crotonaldehyde conversion).  

Catalyst characteristics were then compared with the catalyst performance of 

Fe/Mo2C catalysts. Fe was added to Mo2C in amounts up to 1.1ML via incipient wetness, 

which was found to decrease overall catalyst activity and shift selectivity.  
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6.2. Future Work in Current Research Areas 

Based on the conclusions of this dissertation, there are three directions in which to 

follow up on this work. The first would be to apply more extensive characterization to the 

active site types on Mo2C-supported catalysts. The second would be to perform upgrading 

in more realistic conditions. And third, investigate differences in performance between 

catalysts prepared by wet impregnation versus incipient wetness.  

In this work, active site types were quantified via TPD of probe molecules after the 

catalyst was pre-treated in the same manner as before activity and selectivity 

measurements. However, additional characterization techniques for active site types could 

be applied to further describe the sites. These techniques can be divided into ex situ and in 

situ techniques. Ex situ techniques are applied in non-reactive environments; TPD of probe 

molecules is an ex situ technique. For example, TPD of n-propylamine and ethylamine 

could be used to differentiate between Lewis and Brønsted acid site concentrations [1,2].  

Fourier-transform infrared spectroscopy (FTIR) with probe molecules, including pyridine, 

can also be used to distinguish Lews and Brønsted aciditiy [3]. In situ techniques are 

applied in a reactive environment, while the upgrading reaction takes place. Site poisons 

could be fed to the reactor such that a particular site type is selectively titrated, similar to 

experiments performed by Sullivan et. al. [4]. The productivity of products that are formed 

on that site type will decrease to zero. Additional kinetic information can be gleaned from 

this type of experiment, including more precise turnover frequencies. Both in situ and ex 

situ characterization should be combined with density functional theory (DFT) modeling 

to conclusively identify the identity of the acid and base sites on modified Mo2C surfaces.  
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Another area this research could take would be to determine the applicability of this 

work’s findings in more realistic upgrading conditions. First, model compounds or a 

mixture thereof could be mixed with other molecules present in bio-oil, especially water. 

As described in Chapter 1, bio-oil vapor contains a high percentage of water. Mo2C has 

mostly been found to be unstable in hydrated reactive environments, deactivating after 

short TOS [5]. Theoretical work has suggested this may be due to water preferentially and 

reversibly binding to Mo surface sites [6]. It would be useful to study whether promoters 

can be used to prevent deactivation in hydrated upgrading environments. Second, the work 

could be applied to whole bio-oils. As described in Chapter 1, there are experimental 

challenges to studying whole bio-oil upgrading studies that result in model compounds 

being very attractive for study. However, since this research project was undertaken, there 

have been advancements in developing and commercializing lab-scale pyrolysis reactors 

to generate bio-oil vapors. For example, Frontier Lab produces a tandem microreactor (Rx-

3050TR) and CDS Analytical makes the CDS 5200 HPR, can send effluent gases directly 

to a GC-MS [7,8]. The findings of this work could be broadened by studying the effect of 

promoted Mo2C catalysts on whole bio-oil vapors instead of just model compounds.  

One more area to pursue would be follow up on observed differences between 

promoted Mo2C catalysts prepared by wet impregnation versus incipient wetness. Research 

undertaken in Chapter 5 was inspired by findings in Chapter 2 that suggested Fe promotion 

of Mo2C via wet impregnation increased HDO activity. However, Fe/Mo2C prepared by 

incipient wetness was found to have very different selectivity. Previous work in our group 

has compared catalytic performance of wet impregnation on the native versus the 

passivated Mo2C [9], but has not directly compared catalysts prepared with wet 
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impregnation and incipient wetness at similar loadings. Very good dispersion is achieved 

with wet impregnation that is likely not matched with incipient wetness techniques, and 

could be the source of the difference [10,11]. Another possible difference is that the 

promoter metal interacts with the surface differently in wet impregnation versus incipient 

wetness. X-ray photoelectron spectroscopy (XPS) of the could help elucidate this 

difference. It would be best to compare the wet impregnation and incipient wetness 

catalysts before reduction, after reduction, and after passivation 

 

6.3. Research Thrusts in New Areas 

A significant barrier to the replacement of gasoline or get fuel with biofuel as a 

carbon-reduction strategy is that bio-oil upgrading typically requires the addition of H2. 

And currently, commercial biofuel upgrading processes often employ H2 derived from 

natural gas because it is much cheaper than sustainably-sourced H2 [12]. A 2005 report 

from the National Energy Technology Laboratory applied lifecycle analysis (LCA) to 

estimate that H2 produced from liquid natural gas (with carbon capture and sequestration) 

had a global warming potential of 62.5 CO2e/MJ (32.8 CO2e/MJ) [13]. Replacing H2 from 

natural gas with H2 from sustainable sources is one possible opportunity to reduce the 

carbon emission from bio-oil upgrading. H2 can be produced from water electrolysis, or 

even via steam reforming of pyrolysis bio-oil [14,15]. With an eye toward minimizing the 

overall carbon emissions from biofuel production, the focus of catalytic upgrading studies 

should shift focus to methods that minimize or eliminate the consumption of H2.  

One example of an upgrading method that minimizes H2 consumption is 

electrocatalytic hydrogenation 
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