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Abstract

Errors in hardware and software lead to vulnerabilities that can be exploited by attackers.
Proposed exploit mitigation techniques can be broadly categorized into two: software-only
techniques and techniques that propose specialized hardware extensions. Software-only
techniques can be implemented on existing hardware, but typically suffer from impractically
high overheads. On the other hand, specialized hardware extensions, while improving
performance, in practice require a long time to be incorporated into production hardware.
In this dissertation, we propose adapting existing processor features to provide novel and
low-overhead security solutions.

In the first part of the dissertation, we show how modern hardware features can be used
to provide efficient memory safety. One component of memory safety that has become
important in recent years is temporal memory safety. Temporal memory safety techniques
are used to detect memory errors such as use-after-free errors. This dissertation proposes a
temporal memory safety technique that takes advantage of pointer authentication hardware
to significantly reduce the memory and runtime overhead of traditional temporal safety
techniques. Providing complete memory safety on resource constrained devices is expensive,
therefore we propose software-based fault isolation (sandboxing) as an efficient alternative
to constrain attackers’ access to code and data in embedded systems. We show how we can
use the memory protection unit (MPU) hardware available in many embedded devices along
with a small trusted runtime to build a low-overhead sandboxing mechanism.

In the second part of the dissertation, we show how hardware performance counters
in modern processors can be used to detect rowhammer attacks. Our technique detects
rowhammer attacks by monitoring for high locality memory accesses out of the last-level
cache using hardware performance counters. The technique accurately detects rowhammer
attacks with a low performance overhead and without requiring hardware modifications.

x



Chapter 1

Introduction

In recent years it has become common to hear news stories such as ransomware attacks

forcing hospitals to shutdown [1], power plants being at risk due to software flaws [2] and

companies rolling out patches to stop major security bugs [3, 4]. Such stories typically begin

with software bugs such as memory corruption bugs. These bugs create vulnerabilities that

can be exploited by attackers to, for example, leak memory, escalate privilege or execute

arbitrary code. One of the most exploited software vulnerabilities are memory corruption

vulnerabilities.

1.1 Memory Corruption Vulnerabilities

Many programs including OS kernels and runtime environments are written in unmanaged

languages such as C and C++. While programs written with these languages can achieve

high performance, the fact that memory is managed by the programmer makes them prone

to memory corruption errors such as buffer overflow and use-after-free errors. These errors

have historically been one of the most exploited errors and still persist today. Figure 1.1

shows a study of the root causes of critical vulnerabilities for a five year period. The data

is compiled from [5]. From the graph we can see that memory corruption errors (buffer

overflow and use-after-free errors) are still the number one causes of critical vulnerabilities.

In 2017 alone, they made up more than 50% of the vulnerabilities.

Memory corruption errors are typically used as a basis for exploits such as control-flow

hijacking or data-oriented programming [6, 7]. Figure 1.2 shows how memory corruption

1
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Figure 1.1 Root Causes of Critical Vulnerabilities for the Past Five Years.

errors are used to mount an attack, taking control-flow hijacking attack as an example [8].

The first step of a control-flow hijacking attack is making a pointer go out-of bounds using a

buffer overflow vulnerability or accessing a dangling pointer by using a use-after-free error.

Assuming now the pointer points to a code pointer, we can use it to modify the value of the

code pointer so that the code pointer points to exploit code. Then using an indirect call, an

indirect branch or a return instruction, control is transferred to the exploit code. The exploit

code can be new code injected by the attacker or chained together using already existing

code (code gadgets). The exploit code typically starts a command shell to allow the attacker

to gain control of the system (i.e. to execute arbitrary code and access arbitrary data).

1.2 Memory Corruption Exploit Mitigations

Various defenses against memory corruption exploits have been proposed. These techniques

target the various stages of the exploit as shown on Figure 1.2. A group of techniques, called

memory safety techniques, target the root causes of the exploits - the memory corruption

2
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Figure 1.2 Control-flow Hijacking Attack and Mitigations. The figure shows the stages of
mounting a control-flow hijacking attack and the different mitigation techniques that have been
proposed. The mitigations target the different stages of the attack.

errors themselves. These techniques are categorized as spatial safety or temporal safety

techniques. Spatial safety techniques detect spatial errors such as buffer overflows [8].

This typically involves transforming code to include bounds checking instructions. Tem-

poral safety techniques detect temporal errors such as use-after-free errors using various

approaches [9, 10, 11, 12, 13, 14].

Enforcing complete memory safety would stop all memory-corruption-based attacks;

however, its performance overhead would be very high. For this reason, other techniques that

target the later stages of the control-flow hijacking attack have been proposed. Assuming

there is a potential memory corruption error, one thing that can be done is prevent the corrup-

tion of code pointers at the second stage on Figure 1.2. That is what Code Pointer Integrity

(CPI) does [15]. Other techniques attempt to hide the addresses of payload code or gadgets

by randomizing the locations of code and data. Address Space Layout Randomization

(ASLR) [16] is an example of such a technique.

Assuming the attacker knows the location of the payload code or gadgets, and they

can corrupt a code pointer, the next step is to jump to that code. This entails diverting the

execution from the control-flow defined by the source code. Control-flow Integrity (CFI)

solutions that enforce some policy regarding indirect control transfers can detect control-

3



flow hijacking attacks at this stage. If the attack makes it past this stage, the control-flow

hijacking attack is considered a success and the attacker is assumed to have some control

of the system. At this stage, higher-level defences such as Software-based fault Isolation

(sandboxing) can be used to confine the attacker’s access to code and data (i.e., the attacker

is only allowed to access code and data defined by an access control policy).

Typically, mitigations are implemented using software-only techniques. While software-

only techniques can be implemented on existing hardware, they suffer from high performance

overheads. For example, complete memory safety (i.e., a technique that provides both spatial

and temporal memory safety) has an average slow down of more than 2x [17]. To reduce the

overhead of software-only techniques, specialized hardware extensions have been proposed

( e.g. [18, 19, 20] ). Hardware extensions can significantly reduce the overhead, however

the techniques can not be used on existing hardware. In addition to this, in practice it takes

a long time for a hardware extension to be incorporated into production hardware. For

example, control-flow integrity (CFI) [21] is one of the most popular control flow security

techniques. Even though hardware support for CFI has been proposed as early as 2005, it is

only recently that Intel announced its plan to include hardware support for CFI in future

processors [22].

A middle ground in addressing the issue of high overhead in software-only techniques

and usability in specialized hardware extensions is adapting existing processor features.

Modern processors are rich with hardware features. For example, the x86 architecture

has introduced more than 20 ISA extensions since 2011 [23]. We can use these features

along with software techniques to design more practical security solutions without requiring

specialized hardware extensions.

4



1.3 Contributions of the Thesis

In this dissertation, we take the approach of adapting existing processor features to pro-

vide novel and practical security solutions. We present three works that demonstrate this

approach. In Chapter 2, we present an efficient temporal memory safety technique that uses

the pointer authentication feature in ARM processors. In Chapter 3, we present a technique

that uses memory protection unit hardware to provide an efficient sandboxing capability in

an embedded device. Finally, in Chapter 4, we show how we can detect rowhammer attacks

using hardware performance counters.

1.3.1 Efficient Temporal Memory Safety with Pointer Authentication

As mentioned in the previous section, temporal safety is the first line of defense against

use-after-free errors. Use-after-free errors occur when an object is accessed outside of the

time during which it was allocated (after the object has been freed). As shown on Figure 1.1,

they are among the top four critical vulnerabilities and have been consistently on the rise.

For example, from the year 2015 to 2017, the number of critical use-after-free errors has

increased by 8x. In the 2017 Pwn2Own hacking contest, more than half of the exploits used

a use-after-free vulnerability [24].

The Lock-and-key Temporal Safety Technique: A number of temporal safety tech-

niques have been proposed over the years [9, 10, 11, 12, 13, 14]. These techniques vary

from those that provide probabilistic protections to those that guarantee temporal safety with

varying degree of compatibility, complexity and performance overhead. One such technique

is the lock-and-key technique [9, 14, 25]. This technique assigns a key for each pointer to a

memory object, and a matching lock value to the object. On every access to the memory

object, a check is made to see if the lock and key values match. Access to the memory object

is allowed only if a pointer key matches that of the object lock. When a memory object is

deallocated, the lock value is changed, so that further accesses using dangling pointers will

5



be detected.

An important parameter that affects the performance of a lock-and-key technique is

metadata management (i.e, how lock and key metadata is stored and accessed). Two aspects

of metadata management are important:

(1) Granularity of metadata (i.e., pointer metadata vs. memory object metadata):

Previous lock-and-key defenses keep a key and lock pointer metadata for each pointer.

Typically, there are more pointers than memory objects in a program, therefore keeping

per-pointer metadata incurs higher memory overhead than keeping per-memory-object

metadata.

(2) How metadata is stored: Some techniques replace pointers with fat pointers [14, 25]

to store metadata. Fat pointers are structures that contain pointer metadata in addition to the

original pointer value. Fat pointers do not add much additional cache pressure compared to

regular pointers, however, they require extensive instrumentation of a program [26]. Other

techniques have proposed using disjoint metadata storage [9, 18]. One such approach is

using a direct-mapped shadow, where metadata is stored at a fixed offset from a pointer.

However, shadowing every pointer with this approach incurs a high memory overhead.

To reduce the memory footprint, CETS [9] uses a two-level trie data structure to store

per-pointer metadata. While this approach has better compatibility than the fat-pointer-based

approaches, the multiple loads required to access metadata incur a high runtime overhead.

Furthermore, the need to explicitly propagate metadata when a new pointer is derived from

an existing pointer makes code instrumentation complex. For example, function prototypes

need to be replaced with new prototypes that include metadata.

The lock-and-key technique is effective in detecting use-after-free errors, however previ-

ous proposals suffer from complex program instrumentation and high memory and runtime

overheads that arise from the way metadata is stored and accessed. In Chapter 2 of this

thesis, we propose PETS, a lock-and-key temporal safety technique that takes advantage

6



of the recently introduced pointer authentication feature in the ARM architecture [27] to

provide efficient temporal safety.

Pointer authentication stores a cryptographic hash of the pointer value, called a pointer

authentication code (PAC), in the unused bits of pointers. With PETS, PACs are used as

a replacement for keys. This way lock metadata is kept per memory object instead of per

pointer, reducing the metadata storage overhead. Furthermore, the relatively small metadata

means we can use a direct-mapped shadow to store lock pointer metadata resulting in faster

metadata access. Finally, because the key metadata is embedded in the pointer itself, passing

pointers as function arguments doesn’t require changes to the standard calling convention.

1.3.2 Efficient Software-based Fault Isolation for Embedded Devices

Embedded devices are exposed to the same memory corruption vulnerabilities that are

common in traditional computing systems [28, 29, 30]. To make matters worse, many

embedded systems lack fundamental code and data memory protection mechanisms that are

available in more powerful computing systems. For example, low-end embedded processors

typically do not include a memory management unit (MMU) to reduce cost and in some

cases to provide real-time execution time guarantees [31]. Therefore, low-end embedded

systems typically operate in a single address space with tightly-coupled software modules

(e.g., RTOS kernels, peripheral drivers, libraries, etc.) without any form of isolation between

modules. A bug in one software module can compromise the security of the whole system.

Previous works have proposed mechanisms to protect code and data in embedded sys-

tems, with varying degrees of security assurances and resource requirements. TrustLite [32]

proposed a hardware extension to provide isolation of trusted modules (Trustlets) from

untrusted code including an untrusted OS. While TrustLite provides strong data isolation

guarantees, it requires a hardware extension. Most importantly, it is hardly scalable as

the required area of the hardware extension grows linearly with the number of protected

modules (the area of the hardware extension matches that of the core for nine modules).
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Other works have proposed variants of software-based fault isolation (SFI) as a mech-

anism to isolate tightly-coupled software modules that share the same address space.

ARMor [33] uses SFI to sandbox non-critical code by performing binary rewriting to

put checks before store operations identified as being potentially unsafe. At runtime, it uses

a separate control stack to protect return addresses. Similarly, [34] and [35] use a separate

stack to protect return addresses. Other indirect control flow instructions are validated by

runtime checks. These software-based protection mechanisms are attractive as they don’t

require hardware changes. However, this reduced hardware requirement comes at the cost

of reduced performance and/or security. In order to reduce the overhead of the runtime

checks, the techniques only provide write protection. A malicious software can read and

leak sensitive data. In addition to this, the additional memory guard instructions result in

larger code sizes and higher performance overheads. As such, there is a need for a low-cost

mechanism that provides strong (read, write, and execution) protection.

In Chapter 3, we present uSFI, a low-cost code and data isolation mechanism for resource

constrained embedded devices. uSFI uses readily available hardware, memory protection

unit (MPU), along with static software analysis to provide stronger security guarantees

at a lower cost than previous efforts. MPU allows partitioning memory into regions and

assigning attributes and access permissions to each region. The MPU hardware enforces the

access permissions, therefore there is no need to instrument every memory access instruction,

eliminating the performance overhead associated with memory access checks. Further, uSFI

provides both read and write protection, guaranteeing stronger security than previous works.

1.3.3 Detecting Rowhammer Attacks with Hardware Performance
Counters

Rowhammer attacks exploit an electrical cross-talk property within the dense interconnect of

modern DRAMs (also known as DRAM disturbance errors). Kim, et al. [36] showed that by

repeatedly accessing a DRAM row referred to as an aggressor row, bits in adjacent DRAM
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rows (called victim rows) can be flipped. To flip bits, the aggressor row has to be accessed

100’s of thousands of times within a DRAM refresh period (typically 64ms). In order to

bypass the cache and quickly access the aggressor row, the authors used x86’s CLFLUSH

instruction. Subsequently, Seaborn and Dullien [37] demonstrated two attacks that use

rowhammering. The first attack used rowhammering to escape from the Native Client

sandbox by rowhammering a code segment and rewriting an already verified instruction. In

their second attack, they were able to gain read/write access to page table entries, essentially

gaining access to all physical memory. These attacks showed that DRAM disturbance errors

not only cause unexpected program behaviors or failures, but also present major security

risks.

A number of mitigation techniques for the rowhammer problem have been suggested for

both legacy and future systems. One technique that is currently in use is doubling DRAM

refresh rate (i.e. reducing the refresh period from 64ms to 32ms) [38, 39, 40]. By doing this

it is believed that there will not be sufficient time to generate enough DRAM row activations.

But as has been suggested previously [36] and as we will show in Chapter 4, 32ms is more

than sufficient to generate enough DRAM row activations to produce bit flips. A second

protection mechanism used against rowhammering-based attacks is limiting access to cache

flushing instruction CLFLUSH [37]. CLFLUSH allows quick access to DRAM by flushing

a specific cache line, and restricting this instruction makes rowhammering non-trivial. But

as we show in Chapter 4 and as shown by subsequent works [41, 42], rowhammering attack

can be implemented with ordinary load and store instructions without requiring a cache

flushing instruction.

There is a mention of the existence of protections against rowhammer errors on more

recent devices [43, 44]. The LPDDR4 specification and new DDR4 modules include a tar-

geted row refresh (TRR) capability designed to thwart rowhammer attacks. The mechanism

tracks the number of row activations within a fixed time window, and selectively refreshes

rows adjacent to a too-frequently accessed DRAM row. However, recent works have shown
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that DDR4 is also susceptible to rowhammer attacks [41, 45].

Finally, the architecture literature has seen a few rowhammer protection propos-

als [36, 46]. For example, one proposal utilizes probabilistic adjacent row activation (PARA)

to refresh the neighboring rows of any DRAM row access, with low probability [36]. The

idea behind this approach is that the many repeated DRAM row accesses required to hammer

a victim DRAM row will result in an early refresh of the victim row with extremely high

(cumulative) probability [36]. However, such solutions require the introduction of new

hardware, therefore wouldn’t protect existing systems.

In Chapter 4 of this dissertation, we show how we can detect rowhammer attacks on exist-

ing systems. We make the observation that rowhammer attacks require high-locality misses

out of the last-level cache. Therefore, it is possible to detect rowhammer attacks by monitor-

ing for locality of DRAM memory accesses. To determine the locality of DRAM memory

accesses, we use address sampling features provided by modern hardware performance

counters.

In summary, the dissertation makes the following contributions:

Using pointer authentication for efficient temporal safety: In Chapter 2, we make the

following contributions towards providing efficient temporal safety:

• We propose using pointer authentication for temporal safety. The proposed technique

we call PETS adapts the lock-and-key mechanism, but instead of keeping per-pointer

key metadata, it uses pointer authentication codes (PACs) embedded in the unused bits

of pointers. We show that this allows using direct-mapped shadow to store metadata

which improves performance compared to other lock-and-key techniques.

• We show how we can further improve the performance of PETS by using a low-fat

memory allocator. In this scheme, the lock pointer is encoded in the pointer value

itself, avoiding the need to store lock pointer metadata altogether.

• We evaluate PETS using SPECCPU2006 benchmarks and show that it has low runtime

overhead compared to previous work (average overhead of 57% for low-fat PETS).

In terms of memory overhead, we show that PETS has the least memory overhead
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compared to other temporal safety techniques.

Using memory protection unit for efficient and strong sandboxing: In Chapter 3, we

make the following contributions towards providing efficient sandboxing for embedded

systems:

• We present uSFI, a code and data protection mechanism for low-resource devices.

uSFI uses software analysis and widely available hardware support in embedded

processors (memory protection units) to provide low-cost code and data isolation

as well as I/O access control. Through the use of a specialized runtime and verifier,

uSFI maintains these protections without instrumenting memory access instructions or

indirect jumps, thus providing low-cost software module isolation even in the presence

of buggy or malicious privileged code (e.g., a compromised kernel).

• We implement uSFI for the widely used ARMv7-M architecture. Using the MiBench

embedded benchmarks suite and other real-world applications, we show that uSFI

has low code size and performance overheads. Moreover, we show that the fraction

of code that must be trusted in the system (i.e., the uSFI runtime) is a trivially small

fraction of the overall system code size. At 150 lines of code, the attack surface of our

trust management system can be easily analyzed and inspected to gain trust.

Using hardware performance counters to detect rowhammer attacks: In the last part

of this thesis, we show that current rowhammer mitigation techniques for existing systems

(i.e., disallowing cache flush instructions and doubling refresh rates) do not work. To that

end, we proposed a software-based rowhammer detector that uses existing performance

counter features. Specifically, we make the following contributions:

• We demonstrate the first CLFLUSH-free rowhammer attack, thereby thwarting efforts

to deter rowhammering by restricting access to the CLFLUSH instruction.

• We present ANVIL, a software-based rowhammer detector which protects existing

and future commodity DRAMs. We implement ANVIL using existing hardware

performance monitoring infrastructure. ANVIL works by monitoring the locality of

DRAM row accesses out of the last-level cache.
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• We implement ANVIL as a Linux kernel module that utilizes Intel architecture perfor-

mance monitoring capabilities to detect memory access locality. The detector uses a

multi-staged approach to reduce detector overheads, leading to an average slowdown

(for non-malicious programs) of about 1%, and worst-case slowdown of 3.2% for

SPEC2006 integer benchmarks. The detector is accurate, with no false negatives and

less than 1% false positives.

Dissertation Organization: The remainder of the dissertations is organized as follows.

In Chapter 2, an efficient temporal safety technique is discussed. Chapter 3 proposes an

efficient sandboxing mechanism for IoT-class devices. Chapter 4 details how hardware

performance counters can be used to detect rowhammer attacks. Finally, we conclude in

Chapter 5.
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Chapter 2

Pointer Authentication for Efficient
Temporal Memory Safety

2.1 Introduction

Temporal memory safety is one of the first line of defenses against memory corruption

exploits. It is used to detect temporal errors such as use-after-free errors. Use-after-free

errors occur when an object is accessed outside of the time during which it was allocated.

The code example below shows a use-after-free vulnerability that can be used to mount a

control-flow hijacking attack. The example is adapted from [10].

1 vo id (∗∗ p t r ) ( ) = m a l loc ( s i z e o f ( vo id ∗ ) ) ; / / A l l o c a t e s p a c e

2 ∗ p t r = &func1 ;

3 . . .

4 vo id (∗∗ n e w p t r ) ( ) ;

5 n e w p t r = p t r ; / / Copy p o i n t e r

6 . . .

7 f r e e ( p t r ) ; / / F r ee s p a c e

8 u s e r i n p u t = m a l loc ( . . . ) ; / / R e a l l o c a t e s p a c e

9 ∗ u s e r i n p u t = . . . / / O v e r w r i t e w i th i n p u t

10 (∗ n e w p t r ) ( ) ; / / Use−a f t e r −f r e e

Listing 2.1 Use-after-free Vulnerability Example

In the example ptr is a function pointer and points to the function func1. A copy of this

pointer is made and is assigned to new ptr on line 5. When the memory object is freed on
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line 5, new ptr becomes dangling. On line 8, the same memory object is reallocated and

populated with a user-defined input value. The function call on line 10 creates a control-flow

vulnerability because the address can be overwritten to an arbitrary value such as an ROP

gadget.

Temporal memory safety techniques are used to detect such vulnerabilities. In this

chapter, we show how modern processor features can be used to design an efficient temporal

memory safety technique.

2.2 Background

In this section we introduce the concepts that are relevant throughout the chapter. We start

by describing the lock-and-key technique - a popular temporal memory safety technique we

build up on, and then we discuss two features that we use to improve the performance of the

traditional lock-and-key technique.

2.2.1 The Lock-and-key Technique

A number of techniques known as temporal safety techniques have been proposed to protect

against use-after-free vulnerabilities. The related work section discusses in detail the differ-

ent kinds of temporal safety techniques. Here we will only describe one commonly used

technique, the lock-and-key technique [9], which this work builds up on.Figure 2.1(a,b,c)

demonstrates the lock-and-key technique. With this technique, each memory allocation

(memory object) is assigned a lock, and each valid pointer to that allocation is assigned a

matching key. On each access to the object, a check is made to make sure that the lock and

key values match. When the memory is deallocated, the lock value is incremented by one so

that checks will fail on subsequent references using dangling pointers.
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Figure 2.1 The Lock-and-Key Technique. The figure compares the traditional lock-and-key
technique with our proposed pointer-authentication-based technique (PETS). When a memory object
is allocated, it is assigned a lock. In the traditional technique, a matching key as well as a pointer to
the lock is kept as metadata for each pointer. In our technique, pointer authentication code (PAC)
values in the extra bits of pointers are used as a substitute to keys. In addition to this, only one lock
address metadata is kept per the minimum allocatable object size. When a new pointer is derived
from an old pointer, a PAC value is computed for the new pointer using the PACDA instruction.
On each memory dereference, the PAC value of a pointer is verified using the AUTDA instruction.
Finally, when the memory object is freed, the value of the lock is incremented by one.

2.2.2 ARM Pointer Authentication

In this work, we use pointer authentication to provide efficient temporal safety. Pointer

authentication is a security primitive introduced in ARMv8.3-A and is used to verify the

integrity of pointers [27]. It uses the unused bits in a pointer to store a cryptographic hash

of the pointer value called Pointer Authentication Code (PAC). The size of the PAC can

vary from 11 to 31 bits depending on the system configuration. For example on AArch64,

the Linux kernel uses a 39-bit virtual address space by default which allows for a 24-bit

PAC [27].

The PAC is computed as a truncated output of the QARMA block cipher [47] or an

implementation defined algorithm [48]. In this work we assume QARMA is used. As shown

in Figure 2.2, three inputs are used to compute the PAC: the pointer value, a 128-bit secret

15



64-bit Context 

128-bit Secret Key 

PAC Pointer

QARMA

11-31 bits

Figure 2.2 ARM Pointer Authentication – Computing the PAC. The PAC is computed as a
truncated output of the QARMA block cipher.

key and a 64-bit context value. The key is stored in internal registers and is not accessible by

user mode. The context value can be any user supplied value. In this work we use a memory

object lock value as the context value. The Pointer Authentication specification defines five

keys. Two keys (key A and key B) are used to compute PACs for data pointers and other

two key are used for instruction pointers. A fifth key is provided for a generic authentication

instruction.

The pointer authentication feature also provides instructions to compute and verify PAC

values. For our work, we use two pointer authentication instructions: PACDA and AUTDA.

The PACDA instruction computes and inserts a PAC for a data pointer using a context value

and data pointer key A, while the AUTDA instruction authenticates a data pointer using a

context value and data pointer key A [48]. If the authentication passes, the upper bits of

the pointer are restored to enable subsequent use of the pointer. If the authentication fails,

however, the upper bits are corrupted and any subsequent use of the pointer results in a

translation fault.

2.2.3 The Low-fat Memory Layout

In Section 2.3 we show how metadata can be kept to the minimum by using a low-fat

memory layout. The low-fat memory layout [49] subdivides a program’s virtual address

space into several regions. Each region is responsible for allocation of objects of a given

fixed size range. Figure 2.3 shows an example low-fat memory layout. On the figure region
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Figure 2.3 Low-fat Memory Layout. The low-fat memory layout subdivides a program’s virtual
address space into several regions. Region 0 is used for text and data segments, and a stack region is
used as program stack. Objects of a given size are allocated from a specific region. For example,
objects of size 32 bytes are allocated from region 2.

0 is reserved for program text and data segments, and a special region (stack region) is

assigned for the program stack. The rest of the regions contain sub-heaps for the low-fat

memory allocator. The low-fat memory allocator allocates objects of a given size from a

specific region. For example, suppose object sizes are restricted to be powers-of-two sizes,

and the minimum allocatable size is 16 bytes. In this case objects of size 1-16 bytes are

allocated from region 1, objects of size 17-32 bytes are allocated from region 2 and so on.

The low-fat memory layout allows for implicit encoding of object size information

in pointer values. The upper bits of a pointer indicate the region number which directly

corresponds to the size of the object the pointer references. In addition, the base pointer of

an object can be directly computed from any pointer to that object. This characteristics can

be used for efficient bounds checking [49].

In the next section we will show how a low-fat memory allocator can be used to further

reduce the overhead of our temporal safety technique.
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Figure 2.4 Metadata Storage and Access. The figure shows metadata storage for the two variants
of PETS and CETS. The first technique is for baseline PETS where one-level mapping is used to
map a memory object pointer to a lock pointer location. With this approach, two load operations
are required to get the lock value. The second technique is for PETS with low-fat allocator. This
technique doesn’t require storing a lock pointer, as the lock pointer is the same as the base pointer,
which is directly calculated from the pointer value. This approach requires only one load operation
to read the lock value. The last technique is used by CETS [9], which we catagorize as traditional
lock-and-key technique. CETS uses two-level lookup trie data structure to store metadata. With this
approach each metadata access requires four loads.

2.3 Pointer Authentication for Temporal Safety

Though effective, the traditional lock-and-key technique described in Section 2.2 incurs large

performance and memory overheads. In this work, we propose using pointer authentication

to reduce the performance and memory overhead of the traditional lock-and-key technique.

The proposed technique, which we call PETS, adapts the lock-and-key mechanism for

temporal safety, but instead of using explicit storage for keys, we propose using PACs

(Pointer Authentication Codes).

Allocation and Metadata Propagation: Figure 2.1 compares the traditional lock-and-

key technique with PETS. Similar to the traditional lock-and-key technique, each memory

allocation (memory object) is assigned a lock. When a pointer to that allocation is created

(using a memory allocation function such as malloc) a PAC value is computed and stored in

the unused bits of the pointer using the PACDA instruction (Figure 2.1(d)). This instruction

takes the pointer value and a 64-bit context value as inputs. We use the lock value as a
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context. When a new pointer is derived from an old pointer, for example through pointer

arithmetic, a PAC value is computed for the new pointer.

Pointer Dereference: On each pointer dereference, the PAC value of a pointer is verified

using the AUTDA instruction (Figure 2.1(e)). The AUTDA instruction computes a PAC

using the pointer value and the lock value and compares it with the PAC value stored in

the unused bits of the pointer. If the two PAC values do not match, the pointer is stale and

corrupted so that a translation fault is generated if the pointer is dereferenced

Deallocation: Finally, when the memory is deallocated, for example using free(), the lock

value is incremented, similar to the traditional lock-and-key technique (Figure 2.1(f)). On

subsequent accesses using a dangling pointer, PAC verification should fail since the lock

value has changed.

We explored two variants of PETS: PETS with shadow storage (we will refer to this

as baseline PETS for the rest of the paper) and low-fat PETS. Both variants use pointer

authentication; the only difference is the memory allocators they use. We discuss the two

variants in detail below.

2.3.1 PETS with Shadow Storage (Baseline PETS)

Baseline PETS uses the standard C library memory allocator (dlmalloc-based allocator).

Each heap memory object, regardless of the size of the object, keeps a 64-bit lock value.

In addition to this, a 64-bit pointer to the lock (lock pointer) is kept per the minimum

allocatable heap object. In our implementation the minimum size of a heap object is 32

bytes. Figure 2.4(a) shows how metadata is stored and accessed in the baseline PETS

implementation. We use one-level mapping to map a pointer value to its metadata (lock

pointer) location. With this mapping, the lock address is located at a fixed offset from the

pointer value. This way the lock pointer location can be calculated by a single shift and
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addition operations. On memory allocation, the memory allocator allocates metadata space

for the memory object if it is not already allocated and updates the value of the lock pointer

that corresponds to the new pointer.

The PETS compiler adds code to propagate metadata (including computing PAC) when-

ever a new pointer is derived from an old pointer. The code below shows the operations

performed on pointer propagation. The lock pointer is copied from the old pointer lock

pointer location to the new pointer lock pointer location. Then a PAC is computed for the

new pointer after loading the lock value.

1 / / Copy l o c k p o i n t e r

2 l o c k p t r a d d r = c o m p u t e l o c k p t r a d d r e s s ( o l d p t r )

3 o l d l o c k p t r = ∗ l o c k p t r a d d r

4 l o c k p t r a d d r = c o m p u t e l o c k p t r a d d r e s s ( n e w p t r )

5 ∗ l o c k p t r a d d r = o l d l o c k p t r

6 / / Compute PAC

7 l o c k = ∗ o l d l o c k p t r

8 PACDA new pt r , l o c k

Listing 2.2 Baseline PETS - Metadata Propagation Code

The PETS compiler also adds code to verify PAC values on every relevant load and

store as shown on the code below. The verification code first loads the lock that corresponds

to the pointer from the metadata location. If the lock matches the lock used during PAC

computation, then the verification should pass. When the memory object is freed, the

memory allocator increments the lock value.

1 / / Load l o c k and v e r i f y PAC

2 l o c k p t r a d d r = c o m p u t e l o c k p t r a d d r e s s ( p t r )

3 l o c k p t r = ∗ l o c k p t r a d d r

4 l o c k = ∗ l o c k p t r

5 AUTDA p t r , l o c k

Listing 2.3 Baseline PETS - PAC Verification Code
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2.3.2 Low-fat PETS

The baseline technique can be further optimized if a low-fat memory allocator is used instead

of a dlmalloc-based allocator. In this technique, similar to the baseline PETS, each heap

memory object keeps a 64-bit lock value at the base of the memory object (i.e. at the base

pointer). With low-fat memory layout the base pointer of a memory object can be calculated

from a pointer value, therefore there is no need to keep a lock pointer metadata. Figure 2.4(b)

shows how metadata is stored and accessed for the low-fat based PETS implementation. For

our implementation we used powers-of-two sizes for the heap objects with a minimum heap

object size of 16 bytes. With this implementation, the base pointer can be calculated by

fast logical shift and AND operations. The code below shows the operations for metadata

propagation. Unlike baseline PETS, there is no need to copy metadata during propagation:

only PAC computation for the new pointer is performed.

1 b a s e p t r = compute base po in ter ( n e w p t r )

2 l o c k = ∗ b a s e p t r

3 PACDA new pt r , l o c k

Listing 2.4 Low-fat PETS - Metadata Propagation Code

In addition to this, on pointer dereference, the lock value is directly loaded from the base

pointer, requiring only one load operation to read the lock value.

1 b a s e p t r = compute base po in ter ( p t r )

2 l o c k = ∗ b a s e p t r

3 AUTDA p t r , l o c k

Listing 2.5 Low-fat PETS - PAC Verification Code

As a comparison with the closest related work, Figure 2.4(c) shows the metadata storage

technique used by CETS [9], which we catagorize as traditional lock-and-key technique.

CETS uses two-level lookup trie data structure to store metadata. It stores key and lock

pointer metadata for each pointer. The upper x bits of a pointer address are used to index
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the primary trie structure and the lower y bits are used to index the secondary trie structure.

With this approach each metadata access requires four loads as opposed to only one load

operation for low-fat PETS.

As we will show in Section 2.5, the metadata storage and access technique significantly

affects the performance of the lock-and-key technique.

2.4 PETS Implementation

In this section, we discuss the implementation details of PETS. We describe the two

components of PETS: the PETS compiler instrumentation and the memory allocators.

2.4.1 PETS Compiler Instrumentation

PETS instruments code as described in Section 2.3. We implemented the compiler instru-

mentation with an LLVM [50] pass we call UAF detector pass. Algorithm 2.1 shows the

algorithm for UAF detector pass. The pass checks each instruction to determine whether it

is a pointer arithmetic instruction or a memory access instruction. For a pointer arithmetic

instruction, it inserts the code on Listing 2.2 or Listing 2.4 after the instruction, depending on

the variant of PETS used. Similarly, for a memory access instruction the code on Listing 2.3

or Listing 2.5 is inserted before the instruction.

Like mentioned earlier, stack use-after-free errors are rare, therefore PETS targets heap

use-after-free errors. For this reason, no instrumentation code is inserted if a pointer is

statically (at compile time) determined to point to the stack or global data. However, it is not

always possible to determine where a pointer points to at compile time, therefore code that

dynamically checks whether the pointer is within the bounds of the heap is inserted at the

beginning of the instrumentation code. In a typical address space layout, the heap is located

above the .bss section and below the stack, therefore the rest of the instrumentation code is

bypassed if the pointer is greater than or equal to the stack pointer, or it is less than the end
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Algorithm 2.1 Algorithm for UAF Detector Pass
1: procedure INSTRUMENTFUNCTION(Function F)
2: for Instruction I in F do
3: if pointerArithmeticInst (I) then
4: ptr← getSrcPtr(I)
5: if isGlobalVar (ptr) —— isStackVar (ptr) then
6: continue
7: instrumentPtrArithmetic (I) . Listing 1 or 3
8: else if memoryAccessInst (I) then
9: ptr← getAddress(I)

10: if isGlobalVar (ptr) —— isStackVar (ptr) then
11: continue
12: instrumentMemoryAccess (I) . Listing 2 or 4

of the .bss section (bss end) as shown below. PETS doesn’t need to know where the start or

the end of the heap is, therefore it is compatible with ASLR.

1 / / Bypass check i f p o i n t e r p o i n t s t o d a t a

2 / / i n t h e s t a c k o r d a t a s e c t i o n

3 i f ( p t r >= s t a c k p t r )

4 go to end

5 i f ( p t r < b s s e n d )

6 go to end

7 / / Res t o f i n s t r u m e n t a t i o n code

8 end :

Compiler Optimizations

The PETS compiler eliminates redundant pointer dereference checks similar to [9]. Given a

memory access instruction I that uses a pointer, if the instruction is dominated by an earlier

check of the pointer and there is no call to a free() function between I and the check, then no

check is inserted before I.

The PETS compiler doesn’t perform inter-procedural analysis to determine calls to free,

instead we conservatively assume any function call would potentially free any memory

object. With this approach we were able to remove a significant number of redundant check
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on some benchmarks as shown on Figure 2.5.

2.4.2 Memory Allocators

As detailed in Section 2.3, we evaluated two variants of PETS. The two variants use different

memory allocators.

Baseline PETS: The baseline PETS uses a dlmalloc-based memory allocator. For our

implementation, we modified the musl C library memory allocator. Specifically, we made

the following modifications:

• The chunk struct which maintains metadata for memory chunks (memory objects)

was modified to include a lock element.

• Memory allocation functions ( malloc, calloc, realloc) were modified to include a

routine that allocates metadata space and initializes the lock pointer value in the

metadata space.

• On free, the lock value for the corresponding chunk is incremented by 1.

During the memory allocation or freeing process, memory objects can be split or merged

together. The value of the lock in the memory object needs to account for these operations.

When a memory object is split into two, the new memory object inherits the lock value

of the parent memory object. When two memory objects are merged together, if the two

objects have different lock values, the larger lock value is taken as the lock value of the new

object. This insures that a lock value is never reset back to an older value.

Low-fat PETS: The low-fat PETS implementation uses a low-fat memory allocator. We

used a modified version of a low-fat allocator implementation provided at [51]. We config-

ured the allocator to use powers-of-two sizes. There are 30 possible heap object sizes with a

minimum allocation size of 16B and a maximum size of 8GB. There are 32 regions in total

including the stack region and region 0 which is used for code and data sections as shown

in Figure2.3. In our implementations, we assume a 39-bit virtual address space which is
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the default for the Linux kernel on AArch64 [27]. The most significant 5 bits are used to

indicate the memory object size. This leaves 34 bits to index a region.

With this setting the compute base pointer function on Listings 2.4 and 2.5 is imple-

mented as:

1 compute base po in ter ( p t r ) {

2 s i z e = p t r >> 34

3 mask = 0x7FFFFFFFF8 << s i z e

4 b a s e p t r = p t r & mask

5 r e t u r n b a s e p t r

6 }

We made the following modifications to the memory allocator to enable use-after-free

protection:

• A lock value is added at the base address of each allocation.

• On free, the lock value is incremented by 1.

2.4.3 Support for Multithreaded Applications

Multithreaded applications present a challenge for memory safety techniques. One issue is a

potential data race when accessing shared metadata structures. For example, CETS uses

a shared next key counter that is incremented whenever a memory object is allocated [9].

To avoid races, either accesses to the counter need to be synchronized or each thread need

to keep its own counter. PETS doesn’t have such issues because metadata is kept for each

memory object.

However there are situations where temporal safety might be violated if the multi-

threaded application is not properly synchronized. For example, between an address check

and a memory object access, another thread might free the memory object, resulting in

missed violation. PETS supports multithreaded programs without any change as long as the

programs are properly synchronized (i.e. they are data-race free).
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2.5 Experimental Evaluation

In this section we discuss the evaluation of PETS. We evaluated the runtime and memory

overheads of the two variants of PETS and compared them with other temporal safety

techniques. We start by detailing our setup for the evaluations.

2.5.1 Experimental Setup

Pointer Authentication Implementation

PETS makes use of the ARM pointer authentication extension. ARM pointer authentication

extension is a feature of the new ARMv8.3-A ISA specification. At the time of the writing of

this paper there were no hardware implementations that support ARMv8.3-A, therefore we

had to model the pointer authentication feature. Specifically we modeled the two instructions

used by our technique (i.e. PACDA and AUTDA instructions).

Correctness Evaluation: To evaluate the correctness of our technique (i.e. to verify that

programs behave correctly with PETS instrumentation), we modeled the two instructions in

the QEMU emulator [52]. We ran SPECCPU2006 benchmarks and verified the correctness

of the outputs.

Runtime Overhead Evaluation: To evaluate runtime overhead, we modeled PACDA

and AUTDA instructions in the gem5 cycle-accurate simulator [53]. In our gem5 model

we assumed there is a single separate functional unit that performs pointer authentication

related operations such as computing a PAC value as shown in Figure 2.2 and comparing

the result of a PAC computation with a PAC value stored in a pointer. We modeled the

PAC computation to take 8 cycles at a CPU frequency of 1.5 GHz based on the results of

QARMA encryption latency given at [47].

Our tests using the model in gem5 revealed that the contribution in runtime overhead of
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PAC computation and verification is negligible compared to the rest of PETS instrumentation

code (For example, on baseline PETS, there are two loads per memory access check). For

this reason and because running large benchmarks (such as SPECCPU2006 benchmarks)

to completion in a cycle-accurate simulator takes a very long time, runtime evaluations are

done on a real hardware by replacing PACDA and AUTDA instructions with NOPs.

PAC Size: In our implementations, we assume a 39-bit address space. That means there

are 24 bits for PACs. Each memory object has a separate 64-bit lock value which is incre-

mented whenever the memory object is freed. However due to the limited number of PAC

bits we essentially have a 24-bit entropy. It is possible to get collusions during the lifetime

of a memory object. The PETS memory allocator stops reallocating a memory object when

the lock value overflows.

Evaluation Platform

As mentioned earlier, our model of the pointer authentication instructions in the gem5

simulator showed that the effect of pointer authentication instructions on the performance of

the overall system is negligible. Therefore, all the evaluations in this section are performed

on a real hardware. Note that only runtime is affected by pointer authentication instructions

- memory overhead is not affected by the instructions.

Specifically we used the Xilinx ZCU102 evaluation board [54] for our evaluations. The

board includes four ARM Cortex-A53 cores with 32kB L1 instruction and data caches and a

1MB shared L2 cache. The board also includes a 4GB DDR4 DRAM.

Benchmarks: We used the C benchmarks from SPECCPU2006 for our evaluations. We

used the default -O2 optimization when compiling the benchmarks.
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Figure 2.5 Percentage of Redundant Memory Access Checks Removed by PETS Compiler
Optimization.
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Figure 2.6 PETS Runtime Overhead. The graph shows the runtime overhead of the two variants
of PETS for SPEC2006 benchmarks. In almost all benchmarks low-fat PETS performs better than
baseline PETS. Most of the overhead for PETS comes from memory access checks. We can see
a correlation between the overhead and the percentage of redundant checks removed shown on
Figure 2.5. The benchmarks with the highest overhead are the ones with the least optimization.
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2.5.2 Runtime Overhead:

We measured the runtime overhead of the two variants of PETS. For the evaluation, the

benchmarks were compiled with the redundant check optimization discussed in Section 2.4.

Figure 2.5 shows the percentage of redundant memory access checks removed by the

optimization. As shown in the figure, the optimization removed a significant number of

redundant checks.

Figure 2.6 shows the runtime overheads of the two variants of PETS as compared to a

baseline system without PETS instrumentation. As shown in the figure, lowfat-based PETS

performs better on all the benchmarks except libquantum and lbm. This is attributed to the

smaller number of loads per memory access checks for lowfat-based PETS. The two excep-

tions are due to the overhead of the low-fat memory allocator outweighing the overhead of

the instrumentation. We can see a correlation between the percentage of redundant checks

removed and the runtime overhead. Benchmarks that have the highest overheads (perlbench,

hmmer and sphinx3) are also the ones with the least optimization. In summary, low-fat

PETS has an average overhead of 57.12% while baseline PETS has an average overhead of

132.86%.

2.5.3 Memory Overhead

We also evaluated the physical memory overhead of PETs. Figure 2.7 shows the memory

overhead of the two variants of PETS. The memory overhead was calculated using readings

from the /proc/pid/status file in Linux by adding the peak resident set size (vmHWM), page

table entries size (VmPTE) and size of second-level page tables (VmPDE).

As shown on the figure, low-fat based PETS has a very low memory overhead averaging

at 1.9%. Most of the overhead for low-fat PETS comes from the low-fat allocator itself.

Baseline PETS has an average overhead of 28.4%. This is expected as 8-byte lock pointer

metadata is kept for every 32-byte memory object. Ideally, this would result in a memory
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Figure 2.7 PETS Memory Overhead. The graph shows the physical memory overhead for the
two variants of PETS. From the graph we can see that low-fat PETS has a very low memory overhead
as it almost entirely avoids using metadata. Note that h264ref has negative overhead for low-fat
PETS. This is attributed to the low-fat memory allocator being more efficient than the baseline
dlmalloc-based allocator.

overhead of 25%. The extra overhead comes from addition of a lock metadata per allocated

memory object and the associated object alignment requirement.

2.5.4 Comparison with other Temporal Safety Techniques

The related work section discusses in detail the pros and cons of related temporal safety

techniques, here we compare performance of PETS with some of these techniques. All

the other techniques were implemented and evaluated on an X86 system and on different

microarchitecture than ours, therefore we don’t do a direct comparison of runtime overhead.

However, we do a direct comparison of memory overhead as it is independent of architecture.

Comparison with CETS: CETS [9] is a lock-and-key technique that uses a disjoint meta-

data per pointer as shown on Figure 2.4. It is the closest work to PETS. CETS needs four

load operations per metadata access, while lowfat-PETS needs only one, therefore CETS is
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expected to have a higher runtime overhead as compared to PETS.

Table 2.1 compares memory overhead of low-fat-based PETS with CETS. The original

CETS paper doesn’t provide memory overhead results. We estimated the overhead of

CETS from the results given at the follow-up work SoftBoundCETS [17]. SoftBoundCETS

provides both temporal and spatial memory safety. It keeps four 64-bit values (lock, key,

base and bounds) as metadata per pointer while CETS keeps only two of the values (lock and

key). Therefore we estimated that temporal protection alone (CETS) contributes to at least

half of the memory overhead of SoftBoundCETS. The numbers for CETS in Table 2.1 are

half of that is given for SoftBoundCETS at [17]. The numbers for some of the benchmarks

are left blank since data is not available. From the table, we can see that low-fat PETS has

far lower memory overhead than CETS on almost all the benchmarks. The average overhead

for CETS for the benchmarks where data is available (92%) is much higher than even the

baseline PETS (28.4%).

Comparison with DangSan and DangNull: Another temporal safety technique keeps

track of all pointers to a memory object. When the memory object is deallocated, the

values of all pointers to that object are corrupted by for example setting the values to NULL.

DangSan [11] and DangNull [12] are such two techniques.

These techniques do not need to instrument pointer dereferences as the memory man-

agment unit (MMU) performs null checks in hardware. The overhead for these techniques

comes from traversing pointer tracking data structures during allocation and deallocation of

memory objects. This means these techniques have better runtime performance than PETS

on applications that do not allocate/deallocate memory frequently. However for benchmarks

that create 100s of millions of objects, such as perlbench, we expect PETS to perform better.

In terms of memory overhead, as shown on Table 2.1, DangNull’s and DangSan’s over-

head vary greatly depending on the benchmark, but overall lowfat-based PETS performs

much better (1.9% average overhead for low-fat PETS vs. 212% average for DangNull and
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Benchmark Memory Overhead (%)
Low-fat
PETS DangNull DangSan Oscar CETS

bzip2 0.07 0 0 0 -
gobmk 2.04 21 120 0 250
h264ref -6.90 373 16 10 190
hmmer 4.75 1700 30 33 -
lbm 0 0 1 0 40
libquant 0.23 0 2 5 0
mcf 0.20 0 62 0 -
milc 1.14 0 25 16 55
perlbench 8.44 - 380 225 -
sjeng -0.02 0 2 0 0
sphinx3 10.82 34.7 180 400 110

Table 2.1 Memory Overhead Comparison. The table compares the physical memory overhead
of low-fat PETS with other temporal safety techniques. From the table we can see that low-fat PETS
has by far the least overhead.

74% average for DangSan).

Comparison with Oscar: Oscar [10] is a recently proposed page-permission-based tem-

poral safety technique. Oscar doesn’t instrument code - its overhead originates from creating

shadow pages during allocations. For this reason, Oscar has low runtime overhead for appli-

cations that do not allocate memory frequently. However, PETS has much lower memory

overhead than Oscar (1.9% average for lowfat-PETS vs. 62% average for Oscar for the

benchmarks on Table 2.1).

In summary, low-fat PETS by far has the least memory overhead compared to the other

temporal safety techniques on Table 2.1. The runtime overhead of PETS is expected to be

lower than other lock-and-key techniques such as CETS.

2.6 Related Work

In this section we review previous work, focusing on temporal safety techniques.
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2.6.1 Temporal Safety Techniques

Table 3.6 categorizes the different temporal safety techniques based on the technique used

to provide protection against use-after-free errors and the type of metadata management

used. The categories are based on [26]. Below we discuss about the pros and cons of each

temporal safety and metadata management technique.

Lock-and-key: PETS is based on the lock-and-key temporal safety technique. The lock-

and-key technique can detect all use-after-free errors. The performance of a lock-and-key

techniques depends on the type of metadata management used. Safe-C [14] and W. Xu et

al [25] use fat pointers to store unique capabilities (similar to keys). CETS [9] and Watch-

Dog [18] use disjoint metadata space to store per-pointer lock and key. Both techniques

require a change in the calling convention if a pointer is used as an argument to a function, as

metadata need to travel with the pointer. With PETS on the other hand, PACs are embedded

in pointers, therefore there is no need to transform function declarations. In addition to this,

the use of per-memory-object metadata as opposed to per-pointer metadata makes PETS

more efficient than other lock-and-key techniques.

Dangling Pointer Tagging: One way of detecting dangling pointer dereferences is to

keep track of all pointers to a memory object and to corrupt the pointers, for example by

nullifying them, when the object is freed. Then subsequent dangling pointer dereferences

would result in address translation fault. Undangle [55], FreeSentry [13], DangNull [12] and

DangSan [11] use this technique. These techniques add instrumentation in code that maps a

newly created pointer to a memory object. FreeSentry and Dangsan use a two-level lookup

table to map the newly created pointer to a memory object. Then they record the address

of the pointer in a linked list associated with the memory object. When an object is freed,

the linked list associated with object is traversed to invalidate the pointers to that object.

DangNull is a similar techniques, but instead of multi-level shadow, it uses red-black tree
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to track point-to relations. These techniques do not need to instrument pointer deferences,

therefore have lower runtime overhead compared to lock-and-key techniques. However, on

applications that perform many allocations, their overhead can be high. Furthermore, as

shown in Table 2.1, the techniques are very memory intensive, especially on applications

that perform many allocations.

Page-permissions-based: Another temporal safety technique involves assigning new vir-

tual and/or physical pages for each allocation. On deallocation, the permissions on the virtual

pages are changed so that dangling pointer dereferences are detected through page faults.

The naive approach of assigning new physical pages for each allocation used by Electric

Fence [57] and PageHeap [58] has impracticality high physical memory overhead. To get

around this problem, D. Dhurjati et al [59] proposed using aliased virtual pages. In this

scheme, a new virtual page for each allocation is used, but instead of using a new physical

page, same physical page as the original program is used. On deallocation, individual virtual

pages corresponding to the freed object are disabled and are never remapped. One drawback

of this scheme is that applications with many allocations can exhaust physical memory

due to accumulation of data structures that the operating system maintains for disabled

virtual pages. Oscar [10] proposed using ”high water mark” when creating virtual shadows

and unmapping old shadows when a memory object is freed. This reduces the amount of

accumulated data structures.

Page-permission-based schemes in general do not require code instrumentation and do

not keep explicit metadata, therefore have better compatibility and low runtime overheads.

However, similar to dangling pointer tagging, allocation intensive applications can have

high runtime and memory overheads.

Probabilistic/ Memory-reuse Delay: Randomized memory allocators [63, 64] places

memory objects randomly across a heap such that the probability of a newly-free object

being reallocated is low. Probabilistic techniques can be attacked by deliberately making
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large allocations, therefore forcing reuse of freed objects.

Some memory error detection tools [60, 62, 65, 61] detect use-after-free errors by delay-

ing (putting the object in quarantine) reallocation of memory objects after they are freed.

They detect accesses to quarantined objects by disabling access to the objects or filling the

objects with patterns and looking for those patterns when memory is accessed. Detection

accuracy of delay-based techniques depends on how long a freed object stays in quarantine,

and do not guarantee detection of all use-after-free errors.

2.7 Chapter Summary

In this chapter, we presented PETS, a temporal safety technique that utilizes authenticated

pointers to reduce the space used for metadata storage. PETS adopts the lock-and-key

temporal safety technique, but instead of storing key metadata for a pointer in memory,

PETS stores it in the unused bits of the pointer itself. This reduces the total metadata stored

in memory allowing for fast metadata access. PETS has better compatibility and lower

memory and runtime overheads compared to previous lock-and-key techniques, and has the

least memory overhead compared to other temporal safety techniques. PETS thereby brings

the lock-and-key technique a step closer to being used as a practical runtime use-after-free

detection mechanism.
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Chapter 3

Efficient Software Fault Isolation for
IoT-Class Devices

3.1 Introduction

Embedded devices are everywhere, with low-end embedded devices being used in many

critical systems such as medical, industrial, and automotive applications. With the Internet-

of-Things (IoT) promising as much as 30 billion connected devices by 2020, the security of

low-end embedded devices has become a major concern. The rising number of devices along

with increased connectivity has immensely exacerbated the attack surface of this class of

devices, making them a genuine target of interest for saavy attackers. Two recent examples

of this trend include the Jeep remote kill attack [66] and the Mirai IoT-based botnet [67].

While the exposure to attacks is increasing, the security mechanisms in these systems re-

main mediocre due to the tight resource (e.g., computing power and memory size) and price

constraints. Recent works have shown that embedded devices suffer from the same memory

corruption vulnerabilities that have plagued traditional computing systems [28, 30, 29].

In [30] a stack overflow vulnerability inside an ARM Cortex-R4 processor embedded in a

Wi-Fi chip was used to execute arbitrary code and ultimately take over a mobile device by

Wi-Fi proximity alone.

Low-end embedded systems typically operate in a single address space with tightly-

coupled software components (e.g., RTOS kernels, peripheral drivers, libraries, etc.) without

any form of isolation between software components. These software components often
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come from different chip, sensor and I/O device vendors, which ultimately raises serious

questions as to whether or not these devices can be trusted. Software modules might contain

bugs or even malicious code that could be used to compromise the security of the whole

system. Consequently, there is a great need to provide IoT-class devices with low-cost,

reliable protections against widely employed attacks, such as memory corruption and code

injection.

In this chapter, we leverage the rudimentary memory protection support found in mod-

ern IoT-class microcontrollers to build a low-profile, low-overhead, flexible sandboxing

mechanism that can provide isolation between tightly-coupled software modules. With our

approach, named uSFI, only the trust management code need to be trusted. Through the use

of a static verifier and monitored inter-module transitions, module code at all privilege levels

(including the kernel) is able to run uninstrumented and untrusted code. We implemented

uSFI on an ARMv7-M based processor, both bare metal and running the freeRTOS kernel,

and analyzed the performance using the MiBench embedded benchmark suite and two

additional highly detailed applications. We found that performance overheads were minimal,

with at most 1.1% slowdown, and code size overheads were also low, at a maximum of 10%.

In addition, our trusted code base was trivially small at only 150 lines of code.

The remainder of this chapter is organized as follows. In Section 3.2, we outline the

threat model for this work. Section 3.3 discusses the details of uSFI system architecture.

Section 3.4 details our implementation of uSFI for the ARMv7-M architecture. In Sec-

tion 3.5, we evaluate uSFI using representative embedded benchmarks and other real-world

applications. In Section 3.6, we discuss related work in the area of software-based fault

isolation and embedded device security, and finally we draw conclusions in Section 3.7.
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3.2 Threat Model

The goal of uSFI is to protect the code and data of software modules from being leaked or

corrupted by other compromised or malicious modules. In a uSFI-enabled system, software

modules (library code, drivers, etc.) are untrusted (i.e., they might contain software bugs or

malicious code that lead to compromised execution). Modules can execute any code within

their sandbox, including attacker selected code gadgets [6, 68].

A compromised module will try to execute attacker code by overwriting code memory,

executing data, or forming gadgets out of existing code. Furthermore, a corrupted module

will try to corrupt the data memory or read sensitive data such as encryption keys from the

memory of other modules. Finally, a compromised module will try to gain elevated access

to I/O to gain access to a remote controller or leak sensitive information.

Unlike other low-end fault isolation systems, we assume the kernel is not trusted. Simi-

larly, the system compiler is not trusted, instead a trusted verifier is used to verify module

code generated by the compiler. The uSFI verifier and the uSFI runtime are the only trusted

software components. We assume the underlying hardware is trusted. Finally, we also

assume there is a trusted bootloader that verifies and loads binaries at system startup.

3.3 uSFI System Architecture

The goal of uSFI is to protect code and data from untrusted software modules. Untrusted

software modules include core modules, third party libraries, drivers, and operating system

kernels. This is achieved by sandboxing modules in their own security domain and using a

well-defined interface for cross-domain procedure calls. In this section, we provide details

of the uSFI architecture.

A uSFI-enabled system has two components: a trusted runtime and untrusted modules.

The uSFI runtime is the only trusted component in the system, and it has access to the entire

memory and sole access to the memory protection resources. Software modules, including
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Figure 3.1 uSFI System Components. A uSFI-enabled system is composed of a trusted runtime
and sandboxed untrusted modules. Modules might include drivers, libraries and user applications. In
an embedded system that uses an RTOS kernel, the kernel is also considered untrusted (i.e., it can
not read/write system configuration and control resources, and modules’ memory). Each module has
its own code and data regions. A module can only access its own data or other modules’ public data.
In addition to this, a module can only access peripherals assigned to it. Sandboxing of modules is
facilitated by the use of readily available Memory Protection Unit (MPU) hardware. An MPU allows
partitioning memory into regions and assigning attributes and access permissions to each region.

the kernel and drivers, are all untrusted. A module represents a single security domain

with its own code, data and peripheral memory regions. Figure 3.1 illustrates this isolation

capability. A module can only execute code that resides in its code region, and it can only

access data belonging to itself or public data in other modules. Furthermore, a module can

only access peripherals assigned to it.

3.3.1 Module Privilege Levels

Typically code running at privileged level (e.g., kernel code) has access to all system re-

sources including system control and configuration resources. In a uSFI-enabled system,

however, even a privileged code module is sandboxed such that it only has access to memory

regions assigned to it. This is achieved by adding a third privilege level, restricted-privileged

level, in addition to privileged and unprivileged levels. In the restricted-privileged level, a

module has access to privileged instructions, but its memory access is still restricted such

that it cannot compromise the uSFI runtime. As such, it has no access to the memory
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management resource as well as other modules’ memory regions.

There are currently multiple ways to achieve this restricted-privileged access level. The

first method is to augment memory load and store instructions inside a privileged module

with address check instructions. Another method is to force all untrusted software to operate

at the unprivileged level and call trusted privileged code when privileged operations are

needed. Unfortunately, both of these methods incur significant performance overheads.

uSFI, on the other hand, uses a novel approach that takes advantage of unprivileged memory

access instructions. With this approach, a privileged module is forced to use unprivileged

memory access instructions that grant access to only the memory that the uSFI runtime

permits it to access, instead of allowing carte blanche memory access with privileged loads

and stores. These unprivileged instructions perform the same operations as privileged load

and store instructions except that the MPU continues to enforce uSFI delineated memory

access domains. This method incurs negligible performance overheads.

Through the use of a static binary verification mechanism, the restricted-privileged

module (e.g., an RTOS kernel) is not allowed access to memory configuration registers;

however, it still can perform many privileged tasks without requiring the trusted uSFI run-

time’s help. For example, in the ARMv7-M architecture, a widely used architecture in

embedded devices, a restricted-privileged module will have access to system instructions

(MSR and MRS instructions). These instructions are used to read and write special purpose

registers. For example, use of these instructions can enable, disable or change interrupt

priorities through access to the BASEPRI register. There are, however, a few cases where a

restricted-privileged module needs the help of the uSFI runtime. In particular when context

switching between tasks. In such cases, the module issues a supervisor call to the runtime to

request the required service.

To summarize, there are three privilege levels in a uSFI-enabled system: privileged,

unprivileged and restricted-privileged. Only the uSFI runtime runs at the privileged level.

Modules run in either unprivileged or restricted-privileged levels. This approach ensures that
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Table 3.1 uSFI Privilege Levels and Allowed Access. The table shows the three privilege levels
in a uSFI-enabled system and the accesses allowed at each privilege level. The uSFI runtime code
is the only software that runs in privileged level. Modules can only have either unprivileged or
restricted-privileged privilege levels.

Access Type
Privilege Levels

Privileged Unprivileged
Restricted-
privileged

Module’s memory Accessible Accessible Accessible

Other modules’
private memory

Accessible Inaccessible Inaccessible

System control
block

Accessible Inaccessible Inaccessible

System
instructions

Accessible Inaccessible Accessible

even if a privileged code such as an RTOS kernel is compromised, other modules’ memory

is safe from being leaked or altered by privileged malicious code. Table 3.1 shows what

accesses are allowed under each privilege level. An unprivileged module only has access

to its own memory and other modules’ public data. A restricted-privileged module has

additional access to system instructions, but it can not access system control resources such

as MPU configuration registers and other modules’ private memory.

3.3.2 Memory Isolation

uSFI protects module memory from compromised or malicious modules. To achieve this, it

uses a Memory Protection Unit (MPU) hardware available in many embedded processors.

The MPU divides the memory map into regions and defines access permissions and memory

attributes for each region. In a uSFI-enabled system, the memory map is divided into two

parts: uSFI memory and module memory. uSFI memory is a small portion of the memory

map used by the uSFI runtime. This portion of memory is inaccessible by any of the modules.

The rest of memory (module memory) is freely accessible by the corresponding module

code. Each module memory region is divided into code, stack, read-only data, private and
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Table 3.2 Access Permission Configuration for Module Memory Regions. The table shows MPU
access permission configuration for an active module. The module region is configured to be ac-
cessible by both privileged (the uSFI runtime) and the currently active unprivileged code. Data and
peripheral regions are non-executable (NX). Other modules’ regions are left unconfigured, which
makes them accessible by only the uSFI runtime.

Module Memory
Region

Unprivileged/Privileged
Permissions

Code RO, X
Read-only Data RO, NX
Stack RW, NX
Data RW, NX
Peripherals RW, NX

public data (bss, data and heap), and peripheral regions.

In a uSFI enabled system, only a single module is active at a time. Inter-module calls

are managed by the uSFI runtime. On the invocation of a new module’s function, the MPU

configuration is changed to reflect the access permissions of the new module. Table 3.2

shows the access permission configuration for each region of the active module. As shown in

the table, each region has distinct permission requirements. Data is not executable, therefore

all data regions (i.e., read-only data, stack and data) are configured as non-executable (NX).

The module regions are configured to be accessible by privileged and unprivileged code, i.e.,

the active module and the uSFI runtime have access to these regions. The active module

only has access to the configured regions. Other modules’ regions (unconfigured regions)

are made inaccessible to non-privileged code by use of the MPU hardware.

3.3.3 uSFI Compiler and Verifier

uSFI is composed of a uSFI compiler with a verifier and a uSFI runtime. The uSFI compiler

generates a binary that conforms to the constraints discussed below. Figure 3.2 shows the

steps of generating a binary in a uSFI-enabled system. A programmer specifies module

configurations for each module through a uSFI API. The configurations include the module
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Figure 3.2 uSFI Compiler and Verifier. The figure shows the process of generating a binary and
MPU configurations in a uSFI-enabled system. Module configurations are provided for each module
through the uSFI API and include the module number, the privilege level of the module and the
peripheral access permissions of the module. The uSFI compiler uses the configuration information
to allocate memory to modules in module memory. The compiler also generates MPU register
configurations to be used by the uSFI runtime. A uSFI verifier ensures that the compiler-generated
binary satisfies the restrictions set on module instructions.

number, privilege level, peripheral access permissions, and entry function. Based on this

information, the compiler selects module memory region sizes and allocates regions to

modules. The compiler also generates MPU configurations to be used by the uSFI runtime.

After compilation, a static verifier ensures that the generated binary satisfies restrictions

set by uSFI. The restrictions depend on the privilege level of the module and are listed

below:

1) Modules can only issue supervisor calls that are assigned to them: Modules issue

supervisor calls when they want to make cross-module procedure calls. To keep cross-

module call overhead low, the uSFI runtime keeps the amount of checks required during

module transition to the minimum. Modules are identified by a unique module number.

When a module wants to call a function in a different module, it issues a supervisor call with

the callee’s module number as an argument. The runtime identifies the module to switch

to using this number. However, it doesn’t check the source of the call. It is up to the uSFI

verifier to make sure that modules issue only allowed supervisor calls (i.e., supervisor calls

with the right module numbers).
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Instruction0 Instruction1

Illegal Instruction

16 bit 16 bit 16 bit
Original 

Instruction 

Illegal
Instruction 

Example (a): Illegal store instruction from two legal                              
instructions 

LSL       r8, r9, r2
MOVS r0, #0x11    strb r2, [r2, r1, LSL #1]

Instruction0

16 bit 16 bit
Original 

Instruction 

Illegal 
Instruction

Illegal
Instruction 

Example (b): Illegal supervisor call instruction   
from store instruction 

STR sp, [rn, 0xFXX]  SVC XX

Where XX = 8-bit hexadecimal value, 
rn = Register value

(a) (b)

NOPFix
Instruction0 Instruction1

Example (c): New instruction sequence after fixing    
the sequence in example (a)

LSL       r8, r9, r2
NOP
MOVS r0, #0x11

Example (d): New instruction sequence after fixing    
the sequence in example (b)

STR sp, [rn, 0xFXX] MOV rt, 0xF
LSL    rt, rt, #8
ADD  rt, 0xXX                                                     
STR sp, [rn, rt]

Fix: Convert the 32-bit instruction to a set of equivalent                     
16-bit instructions 

(c) (d)

Figure 3.3 Potential Illegal Instructions and How to Fix Them. The figure shows how instructions
that violate uSFI restrictions can be formed, and how the uSFI compiler fixes them by taking the
ARMv7-M architecture as an example. In (a) a 32-bit illegal instruction is formed by jumping into
the middle of a 32-bit instruction and combining it with the next 16-bit instruction. Example (a)
shows how this can be used to execute an illegal store operation in a restricted-privileged module. To
fix this, the uSFI compiler simply inserts a NOP instruction between the two instructions, as shown
in (c). (b) shows how a 16-bit instruction is formed by jumping into the middle of a 32-bit instruction.
This can be used to execute an arbitrary supervisor call as shown in example (b). The uSFI compiler
fixes this by replacing the 32-bit instruction into 16-bit instruction sequence, as shown in (d).

2) Privileged modules can access memory using only unprivileged (and thus MPU

checked) memory access instructions: In a uSFI-enabled system all code except the

uSFI runtime has restricted access to memory. To enforce this, modules with a restricted-

privileged level can not use privileged load and store instructions.

In a uSFI-enabled system the uSFI compiler is not part of the trusted computing base.

The compiler is expected to generates code that satisfies the above restrictions by ensuring

that all code is discoverable at compile time. However, the correctness of the code doesn’t

solely rely on the rather large compiler. Instead, compiler generated code has to be vetted by
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PC: LDR rt, [PC + offset]
.
.
.
PC + offset: Embedded Data

MOVT rt, Embedded Data[31:16]
MOVW rt, Embedded Data[15:0]

Figure 3.4 PC-relative Load Instruction and its Conversion to Safe Move InstructionsThe figure
shows how the uSFI compiler removes data embedded in the code segment by taking the ARMv7-M
architecture as an example. In the original code a PC-relative load instruction loads data embedded
in the code segment. This code is unsafe since illegal instructions can be formed by jumping into the
embedded data. The uSFI compiler removes the embedded data by replacing the load instruction
with two 16-bit immediate move instructions.

the trusted verifier before it is ready for execution. The vetting process ensures that all code

is discoverable at compile time (i.e., it is impossible to form new unexpected instructions at

runtime).

In modern architectures, it is possible to form new instructions at runtime that are not

observed at compile time through code gadgets that jump into the middle of code and data.

For example, in the ARMv7-M architecture this can happen in two ways. First, due to the

variable instruction encoding in the ARMv7-M architecture, it is possible to jump into the

middle of an instruction and form new instructions. ARMv7-M uses the Thumb-2 instruction

set which supports both 32-bit and 16-bit instructions [69]. Instructions are stored half-word

(16 bits) aligned and 16-bit and 32-bit instructions can be intermixed freely. Therefore it is

possible to form illegal instructions at runtime by: 1) executing two 16-bit instructions as a

single 32-bit instruction, or 2) jumping into the middle of a 32-bit instruction and executing

the lower half of the instruction.

Figure 3.3 illustrates this potential vulnerability, and our remedy to prevent it from

creating illegal code sequences. In Figure 3.3 (a) an example is given on how an illegal

store instruction can be constructed by jumping into the middle of a 32-bit instruction and

combining it with the next 16-bit instruction. Assuming the code resides inside a module

with a restricted-privilege level, this violates the second restriction stated above. Figure 3.3

(b) provides an example that shows how an arbitrary system call can be formed by jumping

into the middle of a legal 32-bit instruction. This violates the first restriction stated above.
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Figure 3.3 (c) and (d) show how the uSFI compiler fixes these potential violations. To fix

scenario (a), a NOP instruction is inserted between the two 16-bit instructions. The sce-

nario in (b) is fixed by replacing the 32-bit instruction with an equivalent 16-bit instruction

sequence.

Another avenue to generate illegal instructions is through data embedded in code mem-

ory. This occurs when using PC-relative addressing to access data. In PC-relative addressing,

the data to be loaded is located in the code region at a fixed offset from the program counter.

With data embedded in the executable code region, it is possible to form illegal instructions

by jumping into the code-segment embedded data. The uSFI compiler deals with this poten-

tial vulnerability by excising all data from the code segment. With our baseline compiler

(LLVM), code-segment embedded data is limited to immediate values for register loads. The

compiler deals with potential violations by simply replacing the instructions with other safe

instructions. For example, in the ARMv7-M architecture PC-relative load instructions can

be replaced by two immediate move instructions, as shown in Figure 3.4. The replacement

does not incur any performance overhead as the two move instructions take the same amount

of time to execute as a single load instruction

Algorithm 3.2 Algorithm for uSFI Verifier
1: procedure VERIFYBINARY(Binary)
2: size of binary← sizeof(Binary) . Binary size in bytes
3: IP← 0 . Byte index
4: while IP < (size of binary−2) do
5: Inst16← Binary[IP : IP+2] . 16-bit instruction
6: Inst32← Binary[IP : IP+4] . 32-bit instruction
7: if disallowed instruction(Inst16) then
8: offending IP← IP
9: offending inst← Inst16

10: return false
11: if disallowed instruction(Inst32) then
12: offending IP← IP
13: offending inst← Inst32
14: return false
15: IP← IP+2
16: return true
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Algorithm 3.2 shows the pseudo-code for the uSFI verifier. The algorithm is specific

to the ARMv7-M architecture. The verifier scans through the compiled binary and checks

all possible 16-bit and 32-bit instructions for potential code violations. The check takes

O(2n) time, where n is the number of half-words (16 bits) within the code. Once a binary

is verified, it is signed to prevent potential tampering. We assume a bootloader verifies the

binary signature on system startup.

3.3.4 uSFI Runtime

The second component of uSFI, the uSFI runtime, manages modules at runtime. The re-

sponsibilities of the runtime include handling the switch between modules and handling

interrupts/exceptions. The runtime keeps a list of modules and their configurations. The

configurations include the value of the stack pointer for the module, MPU configurations,

and privilege levels of the module. The runtime also keeps a list of exported functions and

their entry points for each module. These are functions that can be called from within other

modules.

Inter-module Function Calls One of the tasks of the uSFI-runtime is to handle the switch

between modules. A switch between modules is required when a module wants to call an

exported function in another module. At compilation, the uSFI compiler installs gateway

functions in each module to facilitate module switches. The gateway function is an entry

point to a module. Modules interact with the runtime through supervisor calls. A supervisor

call takes an argument that indicates what the caller is requesting. When a module is created

it is assigned a module number. During cross-module function calls, the module number is

used as an argument to a supervisor call to indicate the callee’s module.

Figure 3.5 shows the steps involved in inter-module function calls. In the figure function

foo A in module A wants to call the exported function bar B in module B. In (1) Module A

passes a pointer to function bar B in register rx. Then it issues a supervisor call, with module
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foo_A:
…
rx = &bar_B
SVC Module_B
…

Module A

Mod_B_gateway:
CALL *rx:
SVC EXIT

bar_B:
…

Return 
…

SVC_Handler:
check = Address_Check (rx)

if (check == PASS):
Save return address
Save MPU configuration
Reconfigure MPU
Switch stack
JMP Mod_B_gateway

else:
CALL error_handler

Module B

uSFI Runtime

SVC_Handler:
Restore return address
Restore MPU configuration
Switch stack

Return 

uSFI Runtime

1
2

34

Figure 3.5 Inter-module Function Call. The figure shows the steps involved in calling functions
across modules. In the figure, module A wants to call the function bar B in module B. In (1) Module
A issues a supervisor call with SVC number of module B as an input to the uSFI runtime after
passing a pointer to function bar B in register rx. The uSFI runtime verifies the function pointer. If
the check passes, the runtime saves the return address and the MPU configurations of module A and
changes the MPU configuration to enable memory regions of module B. Then the runtime switches
the stack and jumps to the gateway function in module B (2). At the end of execution of function
bar B, module B issues an exit supervisor call to the uSFI runtime (3). The uSFI runtime restores the
stack and MPU configurations of Module A and transfers control back to module A (4).

number of module B as an argument, to the uSFI runtime. (Note that from a programmer’s

perspective this is a regular function call; the supervisor call instruction and the assignment

to register rx are automatically inserted by the uSFI compiler). The uSFI runtime verifies

that the function pointer points to a function exported by module B. If the check passes,

the runtime saves the return address and the MPU configurations of module A. Then, after

changing the MPU configuration to enable memory regions of module B and switching the

stack, control is transferred to the gateway function in module B (2). At the end of execution

of function bar B, module B issues an exit supervisor call to the uSFI runtime (3). Finally,

the uSFI runtime restores the stack and MPU configurations of module A and transfers

control back to module A (4).
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Module A

Interrupt_Handler:
.
.
.

SVC EXIT

Interrupt_Service_Routine:
Save return address
JMP Interrupt_Handler

Module A

uSFI Runtime

SVC_Handler:
Restore return address
Return 

uSFI Runtime

1 2

34

.

.

.

Figure 3.6 uSFI Interrupt Handling. The figure shows the interrupt handling process in a uSFI-
enabled system. When an interrupt occurs, control is transfered to the interrupt service routine in
the uSFI runtime. The runtime saves the return address for the interrupt and invokes an interrupt
handler routine assigned by a module. Normally interrupt service routines run in privileged mode.
Therefore, the runtime changes the privilege level before the module routine is invoked. Once the
module interrupt handler finishes execution, it issues a supervisor call to the runtime, which then
transfers control back to the module instruction where the interrupt occurred.

Interrupt/Exception Handling Interrupt handling is performed by the uSFI runtime. The

uSFI API allows modules to assign their own interrupt handler routines to certain events.

Figure 3.6 shows the interrupt handling process in a uSFI-enabled system. In the figure, an

interrupt occurs while module A is executing. As a result, control is transfered to an interrupt

service routine in the uSFI runtime. This routine sets the right privileges, saves the return

address and calls an interrupt handler routine assigned by the module. All module interrupt

service routines end with a supervisor call instruction. At the end of a module interrupt

service routine, an exit supervisor call is issued to the uSFI runtime. In the supervisor call

handler, the uSFI runtime restores the return address to module A and transfers control back

to module A.
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3.4 uSFI Implementation

In this section we discuss our implementation of the uSFI architecture. We implemented

uSFI for the ARM Cortex-M based microcontrollers that use the ARMv7-M architecture.

The ARMv7-M architecture is a widely used architecture in embedded processors. Al-

though the discussion in this section is specific to ARMv7-M architecture, it also applies to

ARMv7-R and the new ARMv8-M/R architectures.

3.4.1 MPU Configuration

For our implementation, we used Cortex-M4 based microcontrollers, although the tech-

niques described here work for all ARM Cortex-M and Cortex-R processors. The MPUs in

these microcontrollers allow configuring up to eight memory regions (region 0 to region

7). Region 0 to region 5 are used for code, read-only data, stack, private data (bss, data and

heap), and public data, respectively. The remaining three regions are used for peripheral

access control. Note that we don’t need to explicitly configure any region for the uSFI

runtime or inactive modules since any region not included in the configuration is treated as a

background region and can only be accessed by privileged code (i.e., uSFI runtime).

Embedded devices typically include multiple peripherals. uSFI provides fine-grained

peripheral access control by granting modules access to only the peripherals they need.

Peripherals in microcontrollers are typically memory-mapped, therefore peripheral access

can be controlled by using the MPU. In microcontrollers with eight MPU regions, three of

the regions are used to provide peripheral access control. In this case, the peripheral memory

region is divided into three regions. Cortex-M4 MPUs allow further subdividing of each

region into eight equal-sized sub-regions. This approach allows up to 24 distinct peripheral

regions that can be enabled or disabled to provide fine-grained peripheral access control.

Two MPU registers need to be configured for each module region. These are the MPU

Region Base Address Register (MPU RBAR) and the MPU Region Attribute and Size Reg-
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Figure 3.7 uSFI Compiler Implementation. The uSFI compiler is implemented as an LLVM pass
and an assembly rewriter. The LLVM pass assigns code and data sections to modules based on
configurations provided by a programmer. In addition to this, the pass installs gateway functions in
each module to facilitate cross-module function calls. The assembly rewriter converts cross-module
function call instructions to supervisor call instructions, and makes sure the restrictions listed in
Section 3.3 are satisfied by rewriting potentially illegal instructions and removing embedded data in
code sections.

ister (MPU RASR). MPU RBAR defines a region’s start address. MPU RASR defines a

region’s size and memory attributes, and enables the region and its sub-regions. MPU

register configurations for module stack and peripheral regions are obtained at compile time.

Start address and sizes of code and data regions are not known until link time, and therefore

MPU register configurations for module code and data regions are resolved at link time.

3.4.2 uSFI Compiler and Verifier

The uSFI compiler is implemented as an LLVM [50] compiler pass and an assembly rewriter.

Figure 3.7 shows the compilation process. The LLVM pass identifies module functions and

assigns them code sections in such a way that all functions of a module belong to the same

code section. This ensures that a module’s code occupies contiguous code memory. Module
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data (read-only, initialized and uninitialized data) is also assigned sections in data memory.

In addition to assigning sections, the LLVM pass also installs a gateway function in each

module as shown in Figure 3.5.

Assembly rewriting is used to replace calls to exported functions with supervisor call

(SVC) instructions that invoke the uSFI runtime. Register r4 is used to pass a pointer to the

exported function as shown in Figure 3.5. Assembly rewriting is also used to replace all

module load and store instructions with unprivileged load and store instructions. Finally,

the modified assembly is linked using the gcc linker (ld) with a linker script describing

how code and data sections are positioned in physical memory. Module code and data are

assigned contiguous regions in memory. uSFI runtime code and data is placed at a fixed,

known address in physical memory. The start addresses and sizes of each regions, which are

used by the uSFI runtime to configure the MPU, are obtained from the linker.

We implemented a verifier using the radare2 reverse-engineering framework [70]. We

tested the verifier on unmodified binaries (compiled with the gcc compiler) from the

MiBench benchmark suite [71], and unsurprisingly there were illegal supervisor call in-

structions. These instructions were found embedded in the code-segment data as shown in

Figure 3.3. We found such illegal instructions in four of the benchmarks (qsort, basicmath,

rijndael and mbedtls). Embedded data was removed and PC-relative load instructions were

replaced by immediate move instructions to ensure that these illegal sequences could not be

invoked.

3.4.3 uSFI Runtime

The uSFI runtime is a small code written in C and assembly with the bulk of the code

implementing a supervisor call (SVC) handler. It has a total size of less than 150 lines of C

and assembly statements. The runtime keeps a list of module MPU register configurations

and exported functions with their entry points for each module. It also has a stack that it

uses to save and restore MPU register configurations on module switches. The runtime code
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and data memory can not be accessed by any module. Furthermore, the MPU configuration

registers, and the Nested Vectored Interrupt Controller (NVIC) can only be accessed by

the uSFI runtime. This restriction is achieved by making the uSFI runtime code the only

privileged software component in the system.

Modules can call exported functions in other modules. During cross-module function

calls, function arguments are passed through registers, and when necessary, through the

stack. ARM uses registers r0 to r3 to pass function arguments; therefore for most cases

passing arguments through registers is sufficient. In the rare case of more than four function

arguments, the stack is used to pass the additional arguments. In this case, uSFI copies the

additional arguments to the stack of the callee’s module. In addition to this, uSFI clears

registers during module switches to prevent data leaks. Each module includes a public data

region that is accessible by all modules. This region is used to pass larger data to other

modules.

3.5 Experimental Evaluation

We evaluated uSFI using representative embedded benchmarks. We used two develop-

ment boards for our evaluations: STMicroelectronics’s NUCLEO-F446RE development

board [72], and NXP’s FRDM-K64F development board [73]. The NUCLEO-F446RE

board uses a microcontroller with an ARM Cortex-M4 processor, 512KB flash memory, and

128KB RAM. The FRDM-K64F board uses a microcontroller with an ARM Cortex-M4

processor, 1MB flash memory, and 256KB RAM. During our evaluation, we evaluated code

size and performance overheads of uSFI, as well as the trusted code size for the original

runtime and a hardened version with many additional runtime checks.
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3.5.1 Code Size Overhead

We evaluated the overhead in module code size using benchmarks from the MiBench embed-

ded benchmark suite [71], mbed TLS library [74] and the FreeRTOS kernel [75], a widely

used embedded RTOS. There are two sources of code size overhead in uSFI. First, there is

minor overhead when replacing PC-relative load and arithmetic operations in module code.

PC-relative loads (16-bit instructions) are replaced with two immediate move instructions

(32-bit each) as shown in Figure 3.4. 32-bit immediate arithmetic operations are replaced

with immediate move instructions followed by register arithmetic operations. The other

source of code size overhead is when replacing ”ordinary” load and store instructions with

unprivileged load and store instructions in restricted-privileged modules.”Ordinary” memory

access instructions are typically 16-bit instructions in the ARMv7-M architecture, while

unprivileged memory access instructions are 32-bit instructions.

Table 3.3 shows the code size overhead for benchmarks from MiBench, mbed TLS

library, and the FreeRTOS kernel. The mbedtls benchmark tests all the cryptographic oper-

ations in the mbed TLS library. Except for FreeRTOS, all benchmarks are running as an

unprivileged module (i.e., the benchmarks use ”ordinary” load and store instructions). The

FreeRTOS kernel is used to evaluate the code size overhead of using unprivileged load and

store instructions. Normally the kernel runs in privileged level, and therefore it has access

to the entire system memory. But in a uSFI-enabled system, it runs in restricted-privileged

level (i.e., it doesn’t have access to task memory). The last row in Table 3.3 shows the code

size overhead of sandboxing the FreeRTOS kernel.

In the table rijndael has a relatively higher code size overhead among the unprivileged

benchmarks. This is due to the large number of PC-relative loads of the same pointers to

s-box tables. FreeRTOS has a relatively larger code size overhead since unprivileged load

and store instructions are twice as large as the ordinary memory access instructions. Overall,

compared to the total size of the flash memory in the devices, the additional code size is

small.
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Table 3.3 Code Size Overhead. The table shows the code size overhead of replacing PC-relative
load and arithmetic operations to remove data embedded in code memory. Here each benchmark
except FreeRTOS is assumed to be running as an unprivileged module. FreeRTOS is running as a
restricted-privileged module, i.e., in addition to not having access to PC-relative load and arithmetic
operations, it uses unprivileged memory access instructions.

Benchmark
Original

Code Size
(Bytes)

Additional
Code Size

(Bytes)
% Overhead

dijkstra 11388 576 5.1
susan 51092 406 0.8
basicmath 22880 806 3.5
bitcount 9248 280 3.0
qsort 18572 744 4.0
stringsearch 17484 130 0.7
rijndael 41904 3224 7.7
sha 8676 232 2.7
blowfish 16512 560 3.4
FFT 18008 410 2.3
CRC32 7388 228 3.1
mbedtls 362736 2682 0.7

FreeRTOS 45360 4272 9.6

The results shown in Table 3.3 are obtained by naively removing all embedded data

from code memory. Although the overhead is small, it can be further reduced to a negligible

size by selectively removing embedded data, i.e., remove only data that can potentially be

used to form illegal instructions as discussed in Section 3.3. Finally, it is important to note

that there is no performance overhead inside the sandboxes, since instructions (in particular

loads/stores and indirect jumps) are not instrumented in any fashion.

3.5.2 Performance Overhead

We also measured performance overhead of uSFI using other highly detailed real-world

applications. To measure execution cycles, we used the Data Watchpoint and Trace Unit

(DWT) facility available on ARM Cortex-M4 processors [76]. DWT provides clock cycle
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Figure 3.8 ARM Wearable Reference Design Step Analysis Application. The figure shows a block
diagram and flow chart of a step analysis application used to evaluate performance overhead of uSFI.
The application periodically samples sensor data, calculates walking and running steps and displays
the result on a display. In (a) the different modules of the application are shown. The Minar Event
Scheduler is a scheduler in ARM’s mbedOS. Myotest Library Feeder and Myotest Library are step
analysis libraries from Myotest. The UI Framework is a user interface library.

measurements among other things.

The performance overhead in uSFI comes from module switches during cross-module

function calls as shown in Figure 3.5. Overall, it takes 210 cycles to call a function in a

different module and 150 cycles to return from the call. To evaluate the effect of module

switching on applications’ overall performance, we used two applications: a step analysis

test application from ARM’s Wearable Reference Design (WRD) [77] and an HTTPS file

Download application [78].

3.5.3 Case Study 1: Step Analysis

The step analysis application periodically samples sensor data from accelerometer and

gyroscope sensors, and calculates walking and running steps. The result is displayed on a

matrix LCD. Figure 3.8 shows a block diagram of the application. The application has three

major components. The minar event scheduler is a non-preemptive event scheduler from

mbedOS 3. The myotest library along with myotest library feeder is a step analysis library
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Figure 3.9 Software Modules for HTTPS File Download Application. The figure shows the various
software components of the second test case application. Here each component is running in its
individual sandbox.

from Myotest [79]. The UI framework provides an interface to the matrix LCD display.

We evaluated the application using the NUCLEO-F446RE development board operating at

120MHz. As a sensor input we used a dataset of 14,255 samples of sensor data provided by

Myotest. The output from the application is captured through one of the UART ports on the

board.

Sandboxing can be applied at different levels for different components of an application.

We measured the performance overhead of sandboxing for two cases. In the first case only

the myotest library (with the feeder) was sandboxed. In the second case two sandboxes were

used; one for the myotest library, and another for the UI framework. Table 3.4 shows the

results for the two cases. The table compares the two results with a baseline implementation

where no application components are sandboxed. As can be observed from the table, the

overhead of sandboxing the modules is small. This can be attributed to the low sampling

rate of the sensors (sampling is done every 10ms) as compared to the processing speed of

the processor. This is typical in many embedded systems applications that utilize sensors.

3.5.4 Case Study 2: HTTPS File Download

The second application we tested is an example application for the mbed TLS library. The

application downloads a file from an HTTPS server and looks for a specific string in that file.

The application runs on ARM’s mbedOS embedded operating system. Figure 3.9 shows the
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Table 3.4 Execution Cycles for the Step Analysis Application. The table shows execution cycles
for the step analysis application for three cases. In the baseline application all components of the
application execute in the same security domain. In uSFI 1 only the Myotest library is sandboxed,
while in the case of uSFI 2 both the Myotest library and the UI framework are sandboxed.

Baseline uSFI 1 uSFI 2
Total Number of
Module Switches

0 42765 43778

Additional Clock
Cycles

0 15395400 15760080

Total Clock Cycles 1434843597 1448689953 1449054633
% Overhead 0 1.07 1.10

different software components of the application. Each software component is contained in

its own sandbox. We used the NUCLEO-F446RE development board operating at 120MHz

for the test.

The baseline application (without uSFI) takes on average 3.2 seconds to execute. With

uSFI enabled, an average of 3276 module switches were recorded. Each module switch

takes 3us at 120MHz clock frequency. This results in an average overhead of only 0.31%

overhead. Most of the overhead comes from the Ethernet driver which is invoked every 1ms.

3.5.5 Trusted Code Size

We also measured the code size of the trusted uSFI runtime. The runtime has a code size of

only 1.2kB, resulting in a very small attack surface. To make the runtime even more resilient

to potential attacks, we then hardened it by manually inserting bounds checking instructions

before critical operations. The code size grew to only 1.4kB.

To see the effect of the hardened runtime on the performance of applications, we run

the step analysis application with the hardened runtime. The maximum runtime overhead

increased only very slightly to a modest 1.3%.
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3.6 Related Work

In this section we review previous works, focusing on embedded systems security, particu-

larly code and data isolation.

3.6.1 Software-based Fault Isolation

Wahbe et al. [80] introduced software-based fault isolation as a more efficient way of

providing isolation between tightly-coupled software modules within the same address

space. This is a cheaper alternative to placing modules in separate address spaces and using

Remote Procedure Calls (RPC) to call into each other. To lock down modules within their

fault domains, SFI inserts address checking instructions before every unsafe instruction.

Since then several works have proposed using variants of SFI for different applications

and platforms [81, 82, 83]. Native Client (NaCl) [81] uses SFI to allow running native

C/C++ code within a web browser. NaCl sets constraints on untrusted binaries and uses a

validator to make sure these constraints are met. A follow-up work [82] extends support of

NaCl to x86-64 and ARM platforms. XFI [83] combines SFI and Control-Flow Integrity

(CFI) techniques to protect host environments (e.g., kernel, web browser) from corruption

by modules that operate within the same address space as the host environment. Example

modules include drivers and DLLs.

ARMlock [84] proposes efficient fault isolation for the ARM architecture by using

memory domain support available on ARM mobile processors. In a similar fashion, our

work uses hardware support to reduce the performance overhead of sandboxing. However,

unlike uSFI, ARMlock targets mobile processors and assumes the kernel is trusted.

3.6.2 Sandboxing in Embedded Devices

Several works have proposed hardware and software techniques to provide isolation in

embedded devices. TrustLite [32] and Tytan [85] propose a hardware extension, Execution-
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Aware Memory Protection Unit (EA-MPU), to provide isolation of trusted modules from

untrusted code including untrusted OS. Similarly uSFI assumes the OS kernel is untrusted,

but doesn’t require any hardware changes. Furthermore, Trustlite uses static hardware con-

figuration table to configure the EA-MPU , which means the area overhead grows quickly

with the number protected modules. This limits the number of protected modules that can

be supported. By allowing a small trusted runtime to configure the MPU, uSFI can support

unlimited number of software modules.

Other line of research has looked at software-only solutions to isolate software modules.

ARMor [33] uses SFI to sandbox non-critical code. It uses binary rewriting to put checks

before store operations identified as being potentially unsafe. At runtime, It uses a separate

control stack to protect return addresses. Similarly, [34] and [35] use a separate stack to

protect return addresses. Other indirect control flow instructions are validated by runtime

checks. To reduce the overhead of the runtime checks, these techniques only provide write

protection. In addition to this, the added memory guard instructions result in large code size

and performance overhead. uSFI provides both memory read and write protections with

negligible inner sandbox performance overhead.

ARM mbed uVisor [86] is a software hypervisor that creates independent secure domains

called boxes. Like uSFI, uVisor uses the MPU to provide isolation and access control to

peripherals. However, there are some important differences between uSFI and uVisor. First,

in uVisor MPU configurations are tied to process switches, i.e., MPU configuration changes

are done at process context switches. This makes isolation between tightly-coupled software

modules expensive. The only way to provide isolation between tightly-coupled components

with uVisor is to put the two components in separate boxes, and use synchronous remote

procedure calls (RPCs) to call into each other’s boxes. But RPCs require process switches,

which means that many cycles are wasted while waiting for the switch. This makes uVisor

unsuitable to provide isolation between tightly-coupled software modules. On the other hand,

in a multi-process system with uSFI, module switches and process switches are separate,
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allowing inter-module calls to be serviced immediately.

Another important difference between uSFI and uVisor is that an RTOS integrated with

uVisor runs with the same privilege as uVisor. That means the RTOS has access to MPU

configuration registers and process memory. On the other hand, in a uSFI-enabled system

only the uSFI runtime has access to MPU configuration registers. Privileged code such as

an RTOS is sandboxed using non-privileged memory access instructions.

Another protection recently added to embedded devices is ARM TrustZone [87]. Trust-

Zone allows partitioning software into secure and normal worlds and provides isolation

between the two. Software in the secure world can access memories in both secure and

normal worlds, while normal software can only access normal world (non-secure) memo-

ries. TrustZone provides new instructions that facilitate switching between the secure and

non-secure states.

While both uSFI and ARM TrustZone provide software isolation, there is an impor-

tant difference between the two. TrustZone has only two security domains (secure and

non-secure), and therefore it can not provide fine-grained isolation between tightly-coupled

modules. On the other hand, uSFI allows as many security domains as are needed. In

addition to this, the TrustZone feature is available on the upcoming devices that support the

ARMv8-M architecture, while uSFI can also be deployed on older devices as long as they

have memory protection units (e.g., devices with ARMv7-M and ARMv7-R architecture).

Some recent works have proposed other mechanisms that enhance the security of em-

bedded devices. Clements et al. [88] proposes privilege overlays to limit the time that a

bare metal program executes at the privileged level to only operations that require privileged

level. It uses a compiler and manual annotation to identify operations that require privileged

level and insert supervisor call instructions to elevate privilege. The work also proposes a

modified safe stack to defend against control-flow hijacking attacks. nesCheck [89] uses

whole-program static analysis and dynamic checking instrumentation to provide memory

safety for programs written in nesC, a dialect of the C language optimized for resource
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constrained embedded devices. C-FLAT [90] provides remote attestation of an embedded

system application’s control-flow path using TrustZone as a trust anchor. Sancus [91]

proposes a hardware extension to provide remote attestation of code running on embedded

platforms that allow mutually distrusting parties to run their software modules on the same

node. In Sancus only the hardware is trusted.

3.7 Chapter Summary

In this chapter we presented uSFI, a low-cost code and data isolation mechanism for resource

constrained embedded devices. uSFI uses the memory protection unit (MPU) hardware

available in many embedded devices along with static software analysis to provide stronger

security guarantees at a lower cost than previous work. In a uSFI-enabled system, an

application is composed of sandboxed modules. Modules, including privileged modules

(e.g., RTOS kernel), are untrusted. Only a static binary verifier and a small runtime are

trusted. uSFI doesn’t require any hardware changes and incurs only 10% code size overhead

and roughly a 1% performance overhead on representative applications.
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Chapter 4

Detecting Rowhammer Attacks with
Hardware Performance Counters

4.1 Introduction

Errors in DRAM devices have been studied for many years. A significant number of studies

have revealed reliability issues in DRAM devices ranging from transient errors due to cosmic

rays and alpha particles, to permanent errors caused by manufacturing defects and device

wear-out [92, 93, 94, 95]. Though researchers have shown the potential security implications

of these types of errors [96, 97], the unpredictability and low frequency of occurrences of

these errors have made their exploitations less practical.

Recent studies, however, have revealed that disturbance errors in DDR3 and DDR4

DRAM devices pose a major threat for system security [36, 37, 41]. One form of disturbance

errors called rowhammering allows the manipulation of data in a DRAM row by repeatedly

accessing (or “hammering”) adjacent rows. Errors caused by rowhammering are highly

reproducible, making them an ideal target for exploitations.

Recent work by Google’s Project Zero [37] has shown how to leverage rowhammer-

induced bit-flips as the basis for security exploits that include malicious code injection and

memory privilege escalation. Being an important security concern, industry has attempted to

defend against rowhammer attacks. Deployed defenses employ two strategies: (1) doubling

the system DRAM refresh rate and (2) restricting access to the CLFLUSH instruction that

attackers use to bypass the cache to increase memory access frequency (i.e., the rate of
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rowhammering).

In this chapter we demonstrate that such defenses are inadequate; We show a rowhammer

attack that does not require the CLFLUSH instruction. This attack bypasses the cache by

manipulating cache replacement state to allow frequent misses out of the last-level cache to

DRAM rows of our choosing. We also show from our experiments that, using the CLFLUSH

instruction, it is possible to generate bit flips even if the DRAM refresh rate is increased to

4x.

To protect existing systems from more advanced rowhammer attacks, we develop a

software-based defense, ANVIL, which successfully thwarts rowhammer attacks on existing

systems. ANVIL detects rowhammer attacks by tracking the locality of DRAM accesses

using existing hardware performance counters. Our detector identifies the rows being fre-

quently accessed (i.e., the aggressors), then selectively refreshes the nearby victim rows by

reading from them to prevent bit flips. Experiments on the SPEC2006 benchmarks show that

ANVIL has less than a 1% false positive rate and an average slowdown of 1%. ANVIL is

low-cost and robust, and our experiments make a strong case that it is an effective approach

for protecting existing and future systems from even advanced rowhammer attacks.

4.2 Breaking Current Mitigation Techniques

Multiple techniques have been proposed to protect existing systems from DRAM disturbance

errors. Currently deployed mitigation techniques include doubling the DRAM refresh rate

and disallowing cache flush instruction. In this section we show that these techniques are

insufficient to guarantee protection from rowhammer exploits. First we show that a refresh

period of 32ms is sufficient time to implement a rowhammer attack. Then we show that it is

possible to implement a rowhammer attack without using the CLFLUSH instruction.
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Hammer Minimum Number Time to

Technique of DRAM Row first
Accesses bit flip

Single-Sided
400K 58 ms

with CLFLUSH
Double-Sided

220K 15 ms
with CLFLUSH
Double-Sided

220K 45 ms
without CLFLUSH

Table 4.1 Rowhammer Attack Characteristics: The measured performance of three rowhammer
techniques, i.e., single and double-sided hammering and with/without CLFLUSH to flush the cache.
The experiments are run on a Ubuntu-based Sandy Bridge laptop and a 4GB DDR3 DRAM module.
The table gives the total number of DRAM row accesses each attack variant is able to produce in
64ms and the time until the first bit-flip.

4.2.1 Rowhammering under a Double Refresh Rate

After DRAM disturbance errors and their security implications were widely recognized, a

number of vendors published BIOS updates that double the rate at which DRAM cells are

refreshed [39, 40]. By refreshing the DRAM cells more frequently, it is believed that there is

insufficient time to carry out a rowhammer attack. We perform experiments on a commodity

platform that show that this belief is indeed false. Even when refresh intervals are reduced

to 32ms, it is still possible for a malicious program to cause bit flips by repeatedly accessing

two rows adjacent to a victim row using a hammering technique dubbed double-sided

rowhammering [37]. Table 4.1 lists our experimental results for three rowhammer attacks.

We perform experiments on a system with an Intel core i5-2540M processor (Sandy Bridge)

and a 4GB DDR3 DRAM module while running Ubuntu 14.04 LTS. As shown in the results

of Table 4.1, it is possible to employ double-sided row hammering using the CLFLUSH

instruction to flip bits in only 15ms on our DDR3 module—well below the 32ms window of

deployed defenses.

Sequence (a) in Figure 4.1 shows the access sequence used to implement our double-

sided rowhammer attack using CLFLUSH instructions. The attack involves three rows:

Rows 0 and 2 are the aggressor rows, and Row 1 is the victim row. The aggressor rows are
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repeatedly activated to increase the discharge rate in the victim row. The attack works by

first accessing an address in Row 0 (i.e., A0(row0)); Then an address in Row 2 (A1(row2)) is

accessed. After each access, a CLFLUSH instruction is used to flush all levels of cache

thereby ensuring the next access goes directly to the DRAM. This sequence is repeated N

number of times; for our experiments the minimum value of N was equal to 110k to see a

bit flip.

Given the results of our experiment, one might suggest further increases in refresh rate.

The problem with this approach, in general, is that increasing the refresh rate comes at the

cost of increased power and reduced DRAM throughput—as refresh commands compete

with software-requested memory accesses. Going from a 64ms refresh period to the 15ms

required to protect our DRAM—others may be more sensitive to hammering—requires over

a 4x increase in refresh power and throughput overhead. Also, as DRAM continues to move

to smaller feature sizes, the vendors will have to lower the refresh rate more to account for

increased density (i.e., future DRAM will likely be more susceptible to rowhammering at

the cell level).

4.2.2 Rowhammering without the CLFLUSH instruction

Modern processors include multiple levels of cache for faster access of frequently used

data. It is common to have three or more levels of cache with the last-level cache capable of

storing megabytes of data. In order to repetitively open and close a DRAM row, memory

access to that DRAM row must miss on all cache levels and the DRAM row buffer. One way

to achieve this is to use cache flushing instructions like CLFLUSH on the x86 architecture.

Previous works on exploiting the rowhammer problem all used the CLFLUSH instruction to

bypass caches. One counter measure that has been taken to thwart CLFLUSH based attacks

is to disallow the CLFLUSH instruction [37]. Such measures thwart rowhammmer attacks

based on cache flushing, but we show that it is possible to implement a rowhammer attack

without using cache flush instructions.
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Figure 4.1 Memory Access Patterns for CLFLUSH-based & CLFLUSH-free Double-sided
Rowhammer Attacks: In (a), a CLFLUSH instruction is used to flush caches after accessing ag-
gressor DRAM rows Row 0 and Row 2. This sequence of operations is repeated N times. In our
experiments the minimum value of N observed was 110K. In (b) the CLFLUSH instructions are
replaced with sequences of memory accesses that force misses in the L3 cache at addresses that map
to aggressor Row 0 and aggressor Row 2. This is done by accessing conflicting data that belong to
the same cache set as the aggressor row addresses. A0: address in aggressor row 1 and maps to set
X; A1: address in aggressor row 2 and maps to set Y; X1, X2, ... X12: addresses that map to cache
set X and evict A0;Y1, Y2, ... Y12: addresses that map to cache set Y and evict A1.

Rowhammering in the presence of caches: One way to force a miss from a cache with-

out using the CLFLUSH instruction, is to evict previously accessed data by accessing

conflicting data that belongs to the same cache set. To accomplish this, an eviction set that

contains addresses that belong to the same cache set is created. Then the addresses are

accessed one after the other to force eviction of a particular data element from the cache.

If the access sequence is cleverly designed to manipulate the cache eviction policy, it is

possible to precisely control which addresses hit in the cache and which addresses miss

the cache and make it to main memory. This minimizes the delay between subsequent

target misses. By repetitively evicting data from a target address and then re-accessing it,

corresponding DRAM rows can be activated. Nonetheless, there are significant challenges in
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devising efficient address reference streams that can implement a rowhammer attack. First,

last-level caches in modern processors have high associativity, usually 8-way to 16-way.

Because each way can hold the address of the aggressor row, we must generate at least as

many conflicting memory accesses as there are ways. Therefore, many memory accesses

are required to evict a cache block, which slows down the hammering process. A second

problem is that replacement policies used on real hardware are not true LRU (and vendors

usually do not publicly disclose them). This means that access patterns that assume true

LRU replacement policy do not often result in misses on the required target addresses.

Missing on the exact target addresses is important as creating extraneous memory acceses

dramatically decreases the rate of hammering.

Demonstration of the attack: In this Section we will describe how we were able to

surpass the challenges mentioned above to do CLFLUSH-free rowhammering. For our

demonstration we use a processor with an Intel Sandy Bridge micro-architecture. The

processor has three levels of cache. The last-level cache is an inclusive, shared, physically

indexed 12-way cache. It is an inclusive cache, such that it is enough to evict a word from

the last-level cache to bypass the whole cache hierarchy.

One way to create an eviction set is to directly use physical addresses and select memory

addresses with the same set-index bits. But since Intel does not publicly disclose physical

address to cache set mapping, some reverse engineering is required. Previous work in this

area has revealed the mapping for the Intel Haswell microarchitecture [98]. Seaborn [99]

discovered that the Sandy Bridge micro-architecture used a slightly modified version of this

mapping. In our eviction set we have one address that belongs to a row (which we call an

aggressor address). Since our cache is a 12-way cache, we need 13 addresses in the eviction

set: 12 conflicting addresses and the aggressor address. We create an eviction set by first

picking the aggressor address and then using its physical address to find 12 more addresses

with matching cache set mapping. On our Intel Sandy Bridge machine, bits 6 to 16 of the
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physical addresses are used to map to last-level cache sets. Furthermore, the last-level cache

is organized into slices [100], with one slice per processor core. Conflicting addresses will

have the same cache slice and cache set-index bits.

The next step is to create an efficient memory access pattern that has a high probability

of misses on the aggressor address. Creating such a pattern requires knowing the cache

replacement policy of the micro-architecture. Since this is not publicly disclosed, we had to

reverse engineer the replacement policy. We did this by generating a high miss-rate pattern

that cyclically accesses the 13 addresses, and using performance counters (particularly the

last-level cache miss counter) to determine whether each access was a cache hit or a cache

miss. Then we correlate the performance counter results with results from different cache

replacement policy simulators that we built. Our results show that one of the replacement

algorithms Sandy Bridge favors (it uses more than one) is Bit Pseudo-LRU (Bit-PLRU)

which is similar to the Not Recently Used (NRU) replacement policy [101]. In Bit-PLRU,

each cache line in a set has a single MRU (Most Recently Used) bit. Every time a cache line

is accessed, its MRU bit is set. When the last MRU bit is set, the other MRU bits in the set

are cleared.

A time efficient access pattern misses the last-level cache only on the aggressor address

and one additional conflicting address, and hits on the rest of addresses in the eviction set.

This works by always driving the aggressor address to the least recently used position in the

replacement state. Sequence (b) in Figure 4.1 outlines the access pattern we used for our

CLFLUSH-free double-sided rowhammer attack. This attack is similar to the CLFLUSH-

based attack except here the CLFLUSH instructions are replaced with memory accesses

that drive the two aggressor DRAM row addresses to the least recently used (LRU) position

in the L3 cache and subsequently evict them, thereby ensuring their next access goes to

the aggressor DRAM rows. In Figure 4.1b, address A0(row0,setx) belongs to Row 0 in the

DRAM, and SetX in the L3 cache. Address A1(row2,sety) belongs to Row 2 in the DRAM,

and Sety in the L3 cache. The two addresses constitute the aggressor addresses. First, data
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at address A0(row0,setx) is accessed. Then 10 addresses (X1(setx) to X10(setx)) that belong to

Setx are accessed to put A0(row0,setx) to the LRU position of the L3 cache. Then, when data

from address X11(setx) is accessed, data at Address A0(row0,setx) is evicted from the L3 cache.

The next 9 accesses (X1(setx) to X9(setx)) hit in the L3. Then, after data at address X12(setx)

is accessed, address X11(setx) is put to the LRU position and subsequently replaced by data

at address A0(row0,setx). This access sequence is repeated N times, with only two addresses

(A0(row0,setx) and X11(setx)) missing for each iteration. In sety, a similar access pattern is

used to miss only from addresses A1(row2,sety) and Y 11(sety). Using this technique, accesses

to Row 0 and Row 2 will always access the DRAM.

Access to the last-level cache on Sandy Bridge takes 26 to 31 cycles [100]. Considering

a DRAM access latency of 150 cycles, the access pattern in sequence b) in Figure 4.1 takes

an estimated (29*20) + (2*150) = 880 cycles. On our test machine, which runs at a nominal

frequency of 2.6GHz, this access pattern takes approximately 338 nanoseconds. This allows

up to 190K double-sided hammers with-in a 64ms refresh period. This is enough to produce

a flip on our test DRAM module—which only requires 110k accesses to produce a bit flip.

Table 4.1 compares the minimum number of DRAM row accesses and the corresponding

time required to produce a bit flip for CLFLUSH-based and CLFLUSH-free attacks for our

test DRAM modules. Double-sided, CLFLUSH-based row hammering is the most aggres-

sive of the three. It is also worth noting that a double-sided CLFLUSH-free rowhammering

can produce bit flips faster than single-sided CLFLUSH based hammering.

It is interesting to note that if both of the protection mechanisms detailed in this section

were used in tandem (i.e., double refresh plus restricted access to CLFLUSH), such a system

would still today have a measure of protection against rowhammer attacks, including those

detailed in this chapter. As shown in Table 4.1, we are unable to yet rowhammer memory

in less than 32ms without use of the CLFLUSH instruction. While we are unaware of any

systems that combine these two protection measures, one that did would likely only acquire a

temporary measure of protection against novel rowhammer attacks. We continue to optimize
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the performance of our CLFLUSH-free attack, and if we are able to reduce its time-to-first

bit flip by an additional 13ms, the combined protections will no longer work. Recognizing

the tenuous nature of today’s rowhammer protections, we feel a better approach to protect

systems is to provide in situ mechanisms that detect and subsequently defeat rowhammer

attacks.

In summary, current techniques used to protect systems from rowhammer attacks are

insufficient. We show that reducing DRAM refresh period to 32ms is not sufficient as

faster rowhammer attacks are possible using double-sided rowhammering in as little at

15ms. Moreover, by manipulating the LRU chain of the last-level cache, enough DRAM

row activations can be performed in a single refresh cycle to flip bits, without using the

CLFLUSH instruction.

4.3 Software-Based Rowhammer Detection and
Protection

As Section 4.2 shows, currently deployed rowhammer defenses are insufficient. What is

needed is a more robust solution that can detect hammering activity in time to protect any

potential victim rows. In this section, we introduce a software technique that uses existing

hardware performance counters in commercial processors to detect hammering activity and

perform selective refresh on potential victim rows.

4.3.1 Detecting Rowhammer Attacks

Rowhammering relies on repetitively accessing an aggressor DRAM row within a single

refresh cycle. We make the observation that this fundamentally requires accesses to the

aggressor rows to miss on all cache levels. This reveals two identifying characteristics of

rowhammering: high cache miss rate and high temporal locality of DRAM row accesses.

This is in contrast to general memory access patterns where high locality results in high
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cache hit rates. As such, it is straightforward to discriminate between rowhammer attacks

and non-malcious programs by looking at DRAM access patterns and rate.

Another property of rowhammer attacks is high bank locality. DRAM disturbance errors

occur due to repeated opening and closing of a row. When a row is accessed, it is opened

and its data is transferred to a row-buffer. Subsequent accesses to the same row are served

by the row-buffer. In order to close the row, a different row located in the same bank must

be accessed. Therefore, a rowhammer attack involves repeatedly accessing at least two

rows within the same bank—otherwise the row buffer would prevent the hammering. This

bank locality property can be used to differentiate between ”real” row hammering and false

positives that are caused by thrashing access patterns observed in some applications.

To minimize the performance impact of rowhammer detection, we propose a two-stage

detection mechanism. In the first stage, we monitor the last-level cache miss rate. If this rate

is high enough to successfully implement a rowhammer attack, the second stage samples

the physical addresses of the memory accesses that miss from the last-level cache. If the

samples reveal DRAM row accesses with high temporal locality, then the detector signals

this as a potential rowhammer attack. To reduce the possibility of false positives, the detector

also verifies that the samples have bank locality. If there is enough bank locality among

samples, then a protection phase follows.

4.3.2 Protecting Potential Rowhammer Victims

When the detector identifies potential rowhammering activity, it identifies the potential

victim DRAM rows. Victim rows are adjacent to (above and below) identified aggressor

rows. To protect the victim rows we refresh them by reading a word from them. Reading

from a row opens that row which has the effect of refreshing cells in the row [36]. This

approach does not incur significant performance penalties even in the case of false positives.
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Figure 4.2 Software-Based Rowhammer Attack Detector: ANVIL is a kernel module. It gets
last-level cache miss count and memory access samples from hardware performance counters. By
combining sampled virtual address information and process descriptor structures, samples of DRAM
row accesses are obtained. ANVIL then checks the samples for high locality that suggests potential
rowhammer activity. Upon detection of potential rowhammer activity, ANVIL performs selective
read operations to refresh victim DRAM rows.

4.3.3 ANVIL: A Linux-Based Rowhammer Protection Mechanism

To demonstrate the protection mechanism, we built ANVIL, a Linux kernel module that

prevents all known forms of rowhammer attacks. The module uses hardware performance

counters found in modern processors to get memory access information, such as the ad-

dresses of loads and stores and the miss rate of the last-level cache. Specifically, we

used performance counters found in Intel microprocessors with Sandy Bridge and later

microarchitectures. AMD also provides similar capabilities required for our implementa-

tion [102]. In this section we provide details of our implementation. We start by reviewing

the performance counter features used in our implementation.
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Load Latency Performance Monitoring Facility: The Load Latency performance mon-

itoring facility is part of Intel’s Performance Event Base Sampling (PEBS) feature. PEBS

uses a debug store mechanism and a performance monitoring interrupt to store a set of

architectural states [103]. The load latency facility measures latency of a load operation

from the load’s first dispatch until final data writeback from the memory subsystem. The

load operation is sampled probablistically by hardware. If the latency of the sampled load

operation exceeds a latency value specified by a dedicated programmable register, the

operation is tagged to carry the following information:

• Load data virtual address

• Data source

• Latency value

When the next event categorized as a precise event (e.g. ”load retired”, ”store retired”)

occurs, the last update of the load information is written to a PEBS record which then can

be read by software. By setting the latency threshold to match last level cache miss latency,

it is possible to sample last-level cache misses. The data source information confirms the

source of the load operation.

Precise Store Facility : The Precise Store facility complements the Load Latency facility

by providing additional information about sampled store operations. When a precise event

occurs, hardware samples the virtual address and data source of the next store that retires.

Similar to the Load Latency event, data source information can be used to determine the

store was a miss.The precise store facility is replaced with the Data Address Profiling facility

on Intel’s Haswell and later microarchitectures [103]. This facility profiles load and store

memory events similar to the other facilities, but has support for more events like DRAM

access events. While we could implement ANVIL with either performance counter, we use

the Precise Store facility for our implementation since it allows our rowhammer detection

mechanism to support older micro-architectures.

In addition to the previously mentioned facilities, we utilize the last-level cache miss
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counter to monitor the last-level cache miss rate.

Rowhammer Detection: Figure 4.2 shows the process of detecting a rowhammer activity

in ANVIL. In the first stage of the detection phase, the last-level cache miss count event

(LONGEST LAT CACHE.MISS) is used to measure the last-level cache miss rate. The

miss rate is calculated by reading the last-level cache miss count for a time duration of tc. If

this rate is beyond a last-level cache miss threshold (LLC MISS THRESHOLD), the second

stage of the detector is triggered. The last-level cache miss threshold is set by considering

the minimum cache miss rate that is enough to cause bit-flips within a single refresh period.

As will be described in the next section we set this value based on our empirical observations.

The value can be easily changed to adapt to other systems.

In the second stage, ANVIL samples virtual addresses for a time duration of ts

using Load Latency (MEM TRANS RETIRED.LOAD LATENCY) and Precise Store

(MEM TRANS RETIRED. PRECISE STORE) events. The load latency facility allows

sampling of loads that have latency beyond a preset clock cycle value. We set the clock

cycle value to match last-level cache miss latency so that we only sample loads that miss in

the last-level cache. The counter also provides information about the source of the sample,

therefore we can ensure the load accessed DRAM. The precise store facility is used to

sample stores. It also provides information about the source of a store operation. Which

facility to use for sampling is selected based on a count of retired memory load operations

that missed from the last-level cache (MEM LOAD UOPS MISC RETIRED LLC MISS)

for a time duration of tc. ANVIL compares this value with the total number of last-level

cache misses for that duration. If load operations account for more than 90% of all misses

then only loads are sampled. On the other hand, if load operations account for less than

10% of all misses, only stores are sampled. For the remaining cases, both stores and loads

are sampled. Load and store sampling rates are adjustable. For our experiments, we used

a sampling rate of 5000 samples per second which gives an average of 30 samples for a
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sampling duration of 6ms. The second stage also samples the process descriptor (task struct)

of the process that generated the memory access. This structure is used to determine the

physical address and DRAM row of the memory access in combination with the sampled

virtual address.

At the end of sampling, sampled DRAM row accesses are sorted and the sample distribu-

tion is analyzed to identify high DRAM row locality. DRAM row locality is determined by

considering the number of samples, the number of last-level cache misses for the sampling

duration and the required last-level cache miss rate for a successful rowhammr attack. For

each row that has high DRAM locality, a check is made to see if there are other row access

samples from the same DRAM bank. If the cumulative of samples of the other row accesses

from the same DRAM bank is high enough, then there is a potential rowhammer attack

occurring.

Rowhammer Protection: Once ANVIL detects potential hammering activity, we use the

physical addresses of the identified aggressor rows to determine potential victim rows. The

kernel module was pre-configured using a reverse engineered physical address to DRAM

row and bank mapping scheme. We also make the assumption that sequentially numbered

rows are physically adjacent. Two potential victim rows are considered for each potential

aggressor row: rows that are directly above and below each potential aggressor row (our

approach easily extends to N adjacent rows). ANVIL performs a single read operation

per victim row to refresh its value. The number of selective read operations performed

on a potential victim row is low enough (once every tc + ts in the worst case) that it has

little effect on performance of non-hammering applications, even if they experience a high

incidence of false positive detection. Also, it is not possible for an attacker to use the

selective refresh mechanism to rowhammer DRAM rows adjacent to the potential victim

row since the selective read rate is well below the minimum access rate for a rowhammer

attack. After performing a selective refresh, ANVIL starts the detection process again.
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ANVIL Limitations: Although effective, ANVIL’s detection mechanism has some limi-

tations. The ANVIL detection mechanism wouldn’t be able to detect rowhammer attacks in

some scenarios. For example, since ANVIL relies on CPU performance counters, it wouldn’t

be able to detect attacks that use direct memory access (DMA) [104]. Similarly, trusted

execution environments, such as Intel’s SGX, do not allow observation of program char-

acteristics using performance counters. Attacks that originate from an SGX enclave [105]

would not be detected by ANVIL.

4.4 Experimental Evaluation

In this section we evaluate accuracy and performance of our software detection mechanism.

All tests are conducted on a system with an Intel Core i5-2540M processor and Ubuntu

14.04 LTS with Linux kernel version 4.0.0.

4.4.1 Benchmark Applications

We use several benchmark programs for our evaluations. To evaluate rowhammer detection

accuracy, we use two rowhammer attacks. The first is a CLFLUSH-based double-sided

rowhammer attack, CLFLUSH hammer, adapted from [106]. The second application is

CLFLUSH-free double-sided rowhammer attack, CLFLUSH-free hammer, used to demon-

strate our CLFLUSH-free attack in Section 2. We also measure the slowdown incurred

on non-malicious programs using SPEC2006 integer benchmarks [107] and analyze our

detection algorithm’s sensitivity to potential future attacks.

4.4.2 Rowhammer Detection Characteristics

We first evaluate ANVIL’s ability to detect rowhammer activity. The evaluation is done

for scenarios where the test machine is heavily and lightly loaded. To emulate heavy load,

we run the rowhammering applications along with memory-intensive applications (mcf,
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LLC MISS THRESHOLD 20K
Miss Count Duration (tc) 6ms
Sampling Duration (ts) 6ms

Table 4.2 Rowhammer Detector Parameters to Evaluate Accuracy of Rowhammer Detection

libquantum and omnetpp running at the same time) from the SPEC2006 integer benchmark

suite. The detector parameters used for our evaluation are given on Table 4.2.

The time values are selected to be low enough so that any rowhammering activity can

be detected with enough time to deploy protection. With this setting, hammering activity

can be detected within 12 milliseconds. The last-level cache miss threshold value was

experimentally found by considering the minimum number of memory accesses required

to cause a DRAM bit flip. In our experiments the minimum number of memory accesses

that caused a flip was 220K for CLFLUSH-based double-sided rowhammering attack. In

order to achieve this many activations within a refresh period of 64ms, a minimum of 20.6K

activations must occur within 6ms. Therefore, we will use 20K misses in 6ms as a threshold

value for the first stage of detection.

Table 4.3 shows the result of rowhammering detection for applications CLFLUSH hammer

and CLFLUSH-free hammer under heavy and light load. For both attacks, the table shows

the average time to detect a rowhammer attack within a 64ms refresh cycle in which rowham-

mering was occurring. The table also lists the average selective refresh rate, which are

refreshes that occur when the rowhammer detector identifies potential DRAM victim rows.

As seen in these results, ANVIL is quite responsive, with response times well within a single

refresh cycle, and with only slight increases in response time due to a heavy loaded system.

In addition the selective refresh rates are low, but sufficient for multiple refreshes within a

single refresh cycle for any detected victim row. The low selective refresh rate ensures that

a clever attacker cannot use the selective refresh to hammer other DRAM rows. Finally, it is

good to note that our detector stopped all rowhammering, resulting in zero bit flips for all of

the attacks.
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Benchmark
Average Time Refreshes Total Bit

to Detect per 64ms Flips
CLFLUSH

12.8 ms 12.35 0
(Heavy Load)

CLFLUSH
12.3 ms 10.3 0

(Light Load)
CLFLUSH-free

35.3 ms 4.53 0
(Heavy Load)

CLFLUSH-free
22.85 ms 5.10 0

(Light Loaded)

Table 4.3 Rowhammer Detection Result for Rowhammering Programs: The table shows the
average time before a rowhammer activity is detected and the rate of selective refreshes performed.

4.4.3 Performance Evaluation

We evaluated the slowdown incurred by ANVIL by analyzing the execution of non-malicious

applications from the SPEC2006 integer benchmark suite. We used the parameters listed

on Table 4.2 for the evaluation. In addition to this experiment, we compare the perfor-

mance overhead of ANVIL with that incurred by doubling DRAM refresh rate. For these

evaluations our baseline is an unprotected system with a refresh period of 64ms.

Figure 4.3 shows relative execution times for ANVIL-protected system relative to our

baseline. The ANVIL-protected system has peak and average overheads of 3.18% and

1.17%, respectively. Most of the performance overhead by ANVIL is attributed to the low

last-level cache miss rate threshold. libquantum, omnetpp, mcf and Xalancbmk crossed the

last-level cache miss threshold 95% to 99% of the time. On the other extreme, h264ref,

gobmk, sjeng and hmmer crossed the threshold less than 10% of the time. This indicates

that sampling of addresses in the second stage of the detection phase contributes to al-

most all of the performance overhead. Clearly, the overheads of continuously running

ANVIL’s rowhammer detection are very low. Low enough to protect existing systems from

rowhammer attacks, and likely low enough to obviate the need for dedicated hardware-based

rowhammer protection mechanisms in future systems.
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Figure 4.3 ANVIL’s Impact on Non-Malicious Programs: The Figure shows execution times
for selected benchmarks on ANVIL-enabled system and a system with doubled DRAM refresh rate.
The values shown are normalized to execution time without ANVIL and at a single refresh period.

Table 4.5 shows the false positive rate for the SPEC2006 integer benchmarks. The

rate is measured as the average number of superfluous selective refreshes per second. The

number of false positives is low enough that selective refresh of rows has negligible effect

on performance.

4.4.4 Comparison with Increased Refresh Rate

As we have shown in Section 2, doubling DRAM refresh rate is not sufficient to prevent

all rowhammering attacks. Equally important is the execution time and power overhead

incurred by the increased refresh rate. Previous studies have shown that increasing refresh

rate reduces parallelism in the memory subsystem, affecting overall system performance

[108, 109]. Figure 4.3 shows performance overhead of doubling DRAM refresh rate as com-

pared with our software protection mechanism. ANVIL’s performance overheads are only

marginally larger (on average) than doubling the refresh rate, while providing a significantly

higher level of protection against rowhammer attacks, as demonstrated in Section 2. As can

81



Benchmark Refreshes/sec
astar 0.10
bzip2 1.05
gcc 0.71

gobmk 0.19
h264ref 0.00
hmmer 0.00

libquantum 0.06
mcf 0.01

omnetpp 0.02
perlbench 0.00

sjeng 0.00
Xalancbmk 0.05

Table 4.4 Rate of False Positive Refreshes: The table shows rate of superfluous refreshes for
SPEC2006 integer benchmarks while running under ANVIL.

be observed, memory intensive applications like mcf suffer most from doubling DRAM

refresh rate thus, their performance benefits greatly from the use of ANVIL’s protection.

4.4.5 Robustness to Potential Future Rowhammer Attacks

As the density of DRAM devices increase, DRAM cells become more susceptible to dis-

turbance errors. It is then expected that for future DRAM devices, rowhammer attacks

will be possible with less DRAM row activations. An attacker might take advantage of

this to evade detection by our software protection mechanism by: 1) Activating DRAM

aggressor rows at a high rate such that rowhammer attacks will be faster than they can be

detected by the protection mechanism. 2) Spreading out fewer DRAM row activations over

a refresh period such that the last-level cache miss rate stays below the last-level cache miss

threshold. Our detection mechanism can cope with both situations by adjusting the detector

parameters listed on Table 4.2. To evaluate the effect that more nimble future attacks have

on the performance of non-malicious programs, we consider a future scenario where bit flips
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can occur with 110K DRAM row accesses (i.e., half the number of accesses that produced

flips on our experiments).

Figure 4.4 examines the performance impact on a subset of the SPEC2006 benchmarks

for three cases. The benchmarks are selected to be representatives of the memory access

characteristics of SPEC2006 benchmark suit. ANVIL-baseline is our baseline detector with

parameters as given on Table 4.2. ANVIL-heavy considers the case where the 110K DRAM

row accesses can occur within 7.5ms (i.e., half the time we observed for our experiments).

For this case values of tc and ts are set to 2ms while the value of the last-level cache miss

threshold remains unchanged at 20K. The third case, ANVIL-light, considers a situation

where the 110K DRAM row accesses are spread out across a refresh period of 64ms (i.e.,

half the number of accesses purposely spread out maximally). For this case values of ts and tc

are set to 6ms, and the last-level cache miss threshold is halved to 10K. As seen in Figure 4.4,

ANVIL has room to grow if future rowhammer attacks become more aggressive. Overheads

do grow to detect these more nimble attacks, but only slightly. Increasing the last-level miss

sample period to 2ms has the larger performance impact, which is expected as this is the

first-stage mechanism, whose performance overheads are experienced continuously.

Table 4.5 shows false positive refresh rates due to false positives for ANVIL-light and

ANVIL-heavy. Though both configurations show an increase in false positive rates than

ANVIL-baseline, they do not incur significant overheads.

4.5 Related Work

Previous works have studied exploitation and prevention of the rowhammer vulnerability. In

this section, we detail currently known attacks and possible mitigations.
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Figure 4.4 Sensitivity of Execution Overheads to Potential Future Attacks: The Figure com-
pares normalized execution times for selected benchmarks running on ANVIL-enabled system with
three configurations. ANVIL-Heavy is configured to have the highest sampling rate while ANVIL-Light
has the lowest last-level cache miss threshold.

Benchmark
Refreshes/sec Refreshes/sec
(ANVIL-light) (ANVIL-heavy)

bzip2 1.61 1.09
gcc 7.12 1.88

gobmk 0.28 0.84
libquantum 0.13 0.08
perlbench 0.06 0.00

Table 4.5 Rate of False Positive Refreshes for ANVIL-Heavy and ANVIL-Light: The table
shows false positive rates for selected SPEC2006 integer benchmarks while running under two
ANVIL configurations. ANVIL-Heavy has a relatively small sampling period which reduces the
probability of misses with high address locality on non-malicious applications. On the other hand,
ANVIL-light allows more samples for a longer sampling period thus resulting in a relatively larger
false positive rate.

4.5.1 Rowhammer Vulnerability and Its Exploitation

Even if the rowhammer vulnerability on modern DRAMs has been known by manufacturers

since at least 2012 [36], the first detailed experimental study was published in 2014 by

Yoongu Kim, et. al [36]. Their study shows that bits in a DRAM row (the victim row) can

be flipped by repeatedly accessing adjacent rows in the same bank (the aggressor rows). The

authors used x86’s CLFLUSH instruction to bypass the cache and enable frequent references
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directly to DRAM.

Leveraging the early attack demonstrations, Seaborn and Dullien [37] demonstrated

two security exploits that take advantage of rowhammer-induced bit flips. Their first attack

bypasses Google’s Native Client (NaCl) sandboxing system. NaCl is a software sandbox,

integrated with the Chrome browser, that allows secure execution of untrusted client side

applications and plug-ins. NaCl works by carefully scanning code for illegal code operations

at load time (e.g., system calls or arbitrary indirect jumps), and by funneling all I/O opera-

tions through a security analyzer. The NaCl rowhammer attack works by having a securely

loaded NaCl application hammer its own code segment until an illegal arbitrary code jump

sequence is formed, then the application jumps to the middle of an instruction where illegal

operations can be formed from validated code. Note that the attack is changing code that has

been verified and deemed safe. Since the instructions are modified at the hardware level, the

sandbox will not be aware of any of these changes. The author’s current proof-of-concept

implementation can take advantage of 13% of the possible bit flips within an instruction.

Seaborn and Dullien’s second attack takes advantage of the bit flips to bypass the mem-

ory page protection mechanism of a Linux system running on x86-64 [37]. The attack works

by filling physical memory with page tables for a single process, by repeatedly mmap()’ing

a file into its memory. This repeated file mapping sprays the memory with PTEs that are

used to translate the newly mmap()’ed virtual addresses. By rowhammering the memory

with page tables, there is a non-trivial probability that a PTE will be changed to point to a

physical page containing a page table, thereby giving the application access to its own page

tables. This will give the attacker full R/W permission to a page table entry, which in effect

results in access to all of physical memory.

Even if all of the exploits mentioned above rely on CLFLUSH instruction in x86, the

attack we presented in Section 2 demonstrated how rowhammer attacks can be launched

without the use of any cache line flush instruction. Another CLFLUSH-free rowhammer at-

tack announced in July 2015 showed that it is possible to cause flips from within a JavaScript
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application running in a browser [42]. It is important to note that our CLFLUSH-free attack

was completed in May 2015.

4.5.2 Rowhammer Mitigations

In this section, we detail both software and hardware techniques that have been proposed

and deployed to protect against data corruption and security exploits due to rowhammering.

Protections for Legacy Systems

Software Patches: To date, two open source projects have released patches in response

to the security vulnerabilities explained above. Google’s NaCl sandbox was patched to

disallow the use of CLFLUSH instruction by applications running inside it. The attack

mechanism we presented in Section 2 defeats this protection and enables malicious applica-

tions to effectively hammer rows without using CLFLUSH (or any other explicit cache flush

instructions).

Recently, the Linux kernel was updated to disallow the use of the pagemap interface from

the user space, as a measure to make it more difficult to do double-sided rowhammering

in Linux-based systems. This change prevents malicious applications from analyzing the

physical address space to launch targeted attacks. However, this attack still leaves room for

potential attacks that rely on side-channel information to make inferences about the physical

memory layout. Furthermore, certain attacks such as the NaCl sandbox escape attack can be

implemented by repeatedly picking two random addresses without having any knowledge of

the physical address mapping.

Doubling Refresh Rate: Some vendors published BIOS updates that double DRAM

refresh rates(i.e. halving the refresh interval from 64ms to 32ms) [38, 39, 40]. Doubling

the refresh rate reduces the amount of time an attacker has to mount an attack, since the

discharging of a rowhammer’ed bit must be completed within one refresh cycle. However,
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our empirical studies show that it is still possible to induce bit flips through double-sided

hammering even when the refresh period is as low as 16ms. Further increases in refresh

rates would have significant effects on system performance and energy consumption [36].

Protections for Future Systems

Currently available hardware-based reliability features are not capable of mitigating DRAM

disturbance errors. Error Correcting Codes(ECC) protection, aside from being expensive,

is capable of repairing single-bit flips only. Furthermore, ECC will turn the problem of

bit-flips into denial of service if the system has to deal with machine check exceptions every

time a flip is detected [37].

Due to the inability of current memory controllers and memory modules to deal with

rowhammer attacks, multiple hardware enhancements have been proposed. The possibility

of having an activation counter for each row in a DRAM module has been considered in

literature [46, 36]. However, due to the high overhead of maintaining and updating per-row

counters, other alternatives have been recommended.

Probabilistic row refreshing has been proposed as an alternative to per-row counters

[46, 36]. In this technique, when activation command is sent to a row, a random number

generator is used to decide if adjacent row has to be refreshed. Since requests to rows that

are being hammered will be encountered very frequently, there is a high probability that it

will trigger a refresh.

Project Armor [33] introduces an extra buffer that will cache data from rows with re-

peated activation commands. By servicing requests to hammered rows from the extra buffer,

Armor DRAM prevents rows from being accessed repeatedly.

Processor and memory manufacturers are also deploying products with capabilities to

perform targeted row refreshes. The current LPDDR4 standard and recent DDR4 modules

support targeted refresh of potential victim rows [43, 44]. Intel has published patents on

memory controllers that support targeted row refresh [110]. The memory controllers are
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designed to identify repeated reads to a row. However, the actual physical placement of

rows can differ among different manufacturers. Hence, the controller only transmits the row

that is being repeatedly accessed, and the memory module is responsible for refreshing the

victim rows based on its internal structure.

It is important to note that the mitigation techniques for existing systems (i.e., doubling

refresh rate and removing access to CLFLUSH) are shown to be ineffective in this work.

We are able to implement the rowhammer attack in a 32ms double-rate refresh cycle, and

we can also rowhammer DRAMs without access to the CLFLUSH instruction. While newly

proposed hardware enhancements can protect future systems from rowhammer attacks, a

software solution is still necessary to protect current hardware. As such, in this chapter

we detail a low-cost software-based rowhammer detector that thwarts attacks with little

performance impact. It is our claim that these protections are appropriate both for existing

and future designs.

4.6 Chapter Summary

In this chapter we systematically analyzed a security vulnerability found in commodity

DRAM chips referred to as rowhammer. Rowhammer attacks use the CLFLUSH instruction

to accomplish hammering by bypassing processor caches and repeatedly accessing memory.

We demonstrated that existing mitigation techniques such as doubling refresh rates

and disallowing CLFLUSH instructions are not sufficient—we showed that it possible to

rowhammer in as little as 15ms. We also showed the first CLFLUSH-free rowhammer attack

that does not require special cache flushing instructions, therefore expands the rowham-

mering attack surface. As an alternative protection mechanism, we designed, implemented

and evaluated ANVIL, the first software-based defense that protects against rowhammer

attacks. Our defense leverages the insight that rowhammer memory access patterns are

fundamentally different from those of normal applications. Compared to prior approaches,
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ANVIL is more effective, has lower cost, is readily deployable and is adaptable due to

its software-based approach. Experiments with a diverse set of benchmarks on a real sys-

tem showed that ANVIL has an average slowdown of 1% and less than 1% false positive

detections, while protecting against all tested rowhammer attacks.
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Chapter 5

Conclusion

In this dissertation, we showed how modern hardware features can be leveraged to provide

novel and efficient system security solutions. In the first part of the dissertation we showed

how we can improve the performance of memory safety techniques using existing hardware

features. Chapter 2 presented an efficient temporal memory safety technique that takes

advantage of pointer authentication feature. Our proposed technique uses the unused bits

of a pointer to store metadata. This reduces the memory required to store metadata while

allowing faster metadata access. Our technique reduces the memory overhead by 90% as

compared to a software-only solution. In Chapter 3, we presented an efficient sandboxing

mechanism for low-end embedded systems. This mechanism uses a widely-available mem-

ory protection unit hardware along with a small runtime to provide efficient sandboxing

mechanism. It doesn’t require any hardware changes and incurs a performance overhead of

a little more than 1%.

In the second part of the dissertation, we presented a novel technique to detect rowham-

mer attacks using existing hardware performance counter features. Our technique doesn’t

require any hardware changes and has an average slowdown of only 1%.

5.1 Future Directions

We expect processors to continue adding new features, presenting opportunities to provide

efficient solutions to problems not addressed in this dissertation. However, there are many

opportunities to expand on the solutions presented on this dissertation. We list a few below.
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Complete memory safety: Currently, PETS (presented in Chapter 2) only detects tem-

poral errors such as use-after-free errors. As discussed in Chapter 1, to provide complete

memory safety, we need to address the problem of spatial memory safety as well. An inter-

esting future work would be extending PETS to provide spatial memory safety as well. In

particular, Low-fat PETS, a version of PETS that uses a low-fat memory allocator, can easily

be extended to support spatial safety without requiring any additional metadata storage.

Spatial safety techniques typically involve checking the bounds of memory accesses. Since

the low-fat memory layout allows implicitly storing the size and base address information

of a buffer, bounds checking can be performed from a pointer value alone [49]. Bounds

checking can be added on top of the current checks done by PETS.

Leveraging CPU features in other temporal safety techniques: PETS is based on the

lock-and-key temporal safety technique. However, as discussed in Chapter 2, there are

other approaches of providing temporal safety. One approach is the page-permission-based

approach [10, 59]. Oscar [10] assigns new virtual pages for each memory allocation. On

free, the corresponding virtual pages are made inaccessible by changing their permissions.

Dangling pointer accesses are then detected through page faults. Even though this approach

has a lower performance overhead as compared to the lock-and-key technique, applications

that allocate/deallocate memory frequently can experience a high performance overhead.

Part of the overhead comes from the system calls when creating and disabling shadow

pages [10]. These expensive system calls can be avoided by using hardware features such as

Intel’s Protection Keys [103]. These features allow assigning page-permissions to virtual

pages in user mode, obviating the need for system calls.

Addressing other Vulnerabilities/Challenges: Existing hardware features can also be

adopted to address other security challenges not discussed in this dissertation. They can

be used to either improve performance of existing solutions or provide new approaches.

One area of interest is side-channels. Some works have already proposed new ways of
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using existing processor features to defend against timing side-channel attacks [111, 112].

However, there are other types of side-channels not addressed by these solutions, such

as speculative execution [113, 114]. It would be interesting to explore ways of providing

protections against such types of side-channels using existing processor features.

Program anomaly detection is another security technique that can benefit from existing

processor features. Program anomaly detection is a general technique that identifies ab-

normal program behaviours (i.e. behaviours that do not fit into normal program behaviors)

caused by attacks. Anomaly detection typically involves collecting and analyzing program

traces. Collecting program traces can be accelerated by using hardware features such as

Intel PT [115]. In addition to this, there is a growing interest in using microarchitectural

characteristics of programs for anomaly detection [116, 117]. ANVIL, presented in Chap-

ter 4 of this dissertation, is also an example of anomaly detection using microarchitectural

characteristics. Modern hardware performance counters are equipped with features that

provide detailed microarchitectural characteristics of programs. Leveraging these features

to detect other attacks would be an interesting future work.
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