
Real-time Trajectory Planning to Enable Safe and
Performant Automated Vehicles Operating in

Unknown Dynamic Environments

by

Huckleberry Febbo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

at The University of Michigan
2019

Doctoral Committee:

Associate Research Scientist Tulga Ersal, Co-Chair
Professor Jeffrey L. Stein, Co-Chair
Professor Brent Gillespie
Professor Ilya Kolmanovsky

Huckleberry Febbo

febbo@umich.edu

ORCID iD: 0000-0002-0268-3672

c© Huckleberry Febbo 2019

All Rights Reserved

For my mother and father

ii

ACKNOWLEDGEMENTS

I want to thank my advisors, Prof. Jeffrey L. Stein and Dr. Tulga Ersal for their

strong guidance during my graduate studies. Each of you has played pivotal and

complementary roles in my life that have greatly enhanced my ability to

communicate.

I want to thank Prof. Peter Ifju for telling me to go to graduate school. Your

confidence in me has pushed me farther than I knew I could go.

I want to thank Prof. Elizabeth Hildinger for improving my ability to write well and

providing me with the potential to assert myself on paper.

I want to thank my friends, family, classmates, and colleges for their continual

support. In particular, I would like to thank John Guittar and Srdjan Cvjeticanin

for providing me feedback on my articulation of research questions and ideas. I will

always look back upon the 2018 Summer that we spent together in the Rackham

Reading Room with fondness. Rackham . . . oh Rackham . . .

I want to thank Virgil Febbo for helping me through my last month in Michigan.

Finally, I am grateful for the funding that the Automotive Research Center

provided to support my studies at the University of Michigan.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Dissertation organization . 8

II. Trajectory Planning in Dynamic Environments 9

2.1 Introduction . 9
2.2 Problem Formulation . 12
2.3 Results and Discussion . 19
2.4 Conclusion . 26

III. NLOptControl: A Modeling Language for Solving Optimal
Control Problems . 28

3.1 Introduction . 28
3.2 Software ecosystem . 34

3.2.1 Computational languages 34
3.2.2 Modeling optimization problems 35
3.2.3 Proposed software ecosystem 36

3.3 Scope of NLOptControl 37
3.3.1 Modeling OCPs . 38

iv

3.3.2 Nonlinear model predictive control 42
3.4 Numerical optimal control . 48

3.4.1 Numerical optimal control overview 48
3.4.2 Direct-collocation method overview 50
3.4.3 Direct-collocation methods in NLOptControl . . 51

3.5 Evaluation description . 59
3.5.1 Ease of use . 59
3.5.2 Benchmark . 59

3.6 Results . 64
3.6.1 Ease of use . 64
3.6.2 Speed . 65

3.7 Discussion . 67
3.8 Conclusions . 71

IV. Real-time Trajectory Planning for Automated Vehicle Safety
and Performance in Dynamic Environments 73

4.1 Introduction . 73
4.2 Mathematical Formulation 74

4.2.1 NMPC Framework 74
4.2.2 Optimal Control Problem 77

4.3 Evaluation Description . 86
4.3.1 Planners . 87
4.3.2 Environment Categories 88
4.3.3 Environments . 89
4.3.4 Hardware Platform and Software Stack 91

4.4 Results . 92
4.4.1 Performance and Solve-Times within EA 92
4.4.2 Safety and Solve-Times within EB 92
4.4.3 Safety and Solve-Times within EC 94
4.4.4 Execution Horizon and Obstacle Speed Analysis within

EC . 95
4.5 Discussion . 98
4.6 Conclusion . 103

V. Real-time Trajectory Planning for Automated Vehicle Safety
and Performance in Unknown Dynamic Environments 105

5.1 Introduction . 105
5.2 Methods . 108

5.2.1 Automated vehicle framework 108
5.2.2 Scope of this work 110
5.2.3 Perception algorithm 112
5.2.4 LiDAR model and collision detection 113
5.2.5 Plant model . 114

v

5.2.6 Planning algorithm 115
5.2.7 Local feedback controller 116

5.3 Evaluation Description . 117
5.3.1 Test track . 117
5.3.2 Performance and Safety Factors 117
5.3.3 Hardware Platform and Software Stack 120

5.4 Results . 120
5.5 Discussion . 126
5.6 Conclusions . 129

VI. Conclusion . 130

6.1 Contributions . 132
6.1.1 Publications, presentations, and workshops 136

6.2 Future research . 138

APPENDICES . 140

BIBLIOGRAPHY . 151

vi

LIST OF FIGURES

Figure

1.1 Comparison of trajectory planners illustrating the conceptual effect
that planner specifications have on performance and safety within a
given environment. 5

2.1 The 3 DoF vehicle model used in the optimal control problem formu-
lation [90] . 15

2.2 In Case 1, compared to the soft constraints approach, the hard con-
straints approach reduces the time-to-goal by 30%, number of itera-
tions by 11% , and optimization time by 60%. 21

2.3 This figure shows three traces for Case 1; vertical tire force, optimized
steering and optimized longitudinal velocity. 22

2.4 In Case 2, the hard and soft constraints approaches yield almost the
same trajectory and time-to-goal. However, compared to the soft con-
straints approach, using hard constraints reduces optimization time
by 99.1%. 24

2.5 This figure shows three traces for Case 2; vertical tire force, optimized
steering and optimized longitudinal velocity. 25

2.6 This figure demonstrates that if the soft constraints are not designed
properly, the vehicle may crash into an obstacle . This particular
example uses the SC1 formulation and illustrates the solution at t =
1.76 s. 27

3.1 Proposed software framework for nonlinear OCPs. 37
3.2 Output of allPlots(n) command after modeling and solving the

Bryson-Denham problem using NLOptControl. Section ?? in the
Appendices provides additional plots of the NLOptControl’s so-
lution to the Bryson-Denham problem compared to the analytical
solution, including the costates. 43

3.3 Nonlinear model predictive control framework available in NLOpt-
Control. 44

3.4 Closed-loop visualization of moon lander problem using NLOptCon-
trol. 49

3.5 Benchmark results NLOptControl and PROPT for the kinematic
bicycle problem, see Table 3.2 for legend explanation. 68

vii

4.1 Nonlinear model predictive control framework used to account for
non-negligible optimal control problem (OCP) solve-times. 75

4.2 3DoF dynamic vehicle model [91]. 79
4.3 Closed-loop comparison of PA, PB, and PC in EA. 93
4.4 Closed-loop comparison of PC and PD in EB. 94
4.5 Closed-loop comparison of PC and PD in EC 96
4.6 Zoomed in on Fig. 4.7 at 19.5 s . 97
4.7 Closed-loop comparison of PC and PD in EC 97
4.8 Effect that both the execution horizon and obstacle speed have on

the vehicle attaining the goal in EC for both PC and PD. 98
4.9 Effect of the execution horizon on both the maximum real-time factor

(left axis) and the probability-of-safety (right axis) in EC for both PC
and PD. 99

5.1 Hierarchical control structures used for automated vehicles 111
5.2 Estimating obstacle data using raw LiDAR data and the Kalman

filter-based perception algorithm [115] 113
5.3 Modeling the LiDAR, the obstacles, and collisions between the vehicle

and the obstacles using Gazebo . 114
5.4 High-fidelity HMMWV model in Chrono used to model the plant

[128]. 115
5.5 Animation showing (1) the current position, steering angle, longitu-

dinal speed and acceleration trajectories calculated with the planning
algorithm compared against the respective plant trajectories, and (2)
the planning solve times. 116

5.6 Test track that enables an evaluation of the Kalman-filter based per-
ception algorithm [115] . 118

5.7 Calculating the orientation error Θε and tracking error χε 119
5.8 Effect of obstacle size and speed on attaining the goal in both an

unknown and a known environment. 120
5.9 A case with a small obstacle traveling at moderate speeds, where the

goal is attained in both known and unknown environments. 121
5.10 A case with a large obstacle traveling at slow speeds, where the vehicle

attains the goal in an known environment, but not in an unknown
environment, because a non-optimal planning solution is determined. 122

5.11 A case with a medium sized obstacle traveling slowly, where the goal
is not attained in an unknown environment 123

5.12 A case with a medium sized obstacle traveling at moderate seeds,
where the goal is missed in an unknown environment, but attained
in an known environment . 124

5.13 A case with a small sized obstacle is moving at very slow seeds, where
an optimal solution is not determined in a known environment and
the vehicle crashes in the unknown environment 125

5.14 Effect that distance to the obstacle has on size estimates for various
obstacle speeds . 127

viii

5.15 Limited data due to radial nature of LiDAR, which becomes more
restricted as the obstacle gets closer 128

A.1 State, control, and costate trajectories using NLOptControl (with
30 LGR nodes) compared to the analytical optimal solution for the
Bryson Denham problem . 142

A.2 Closed-loop trajectories for moon lander problem compared to the
analytic solution . 143

A.3 State and control trajectories using NLOptControl (with 30 LGR
nodes) and PROPT (with 30 Chebyshev nodes) compared to the
analytic solution for moon lander problem 144

A.4 State and control trajectories using NLOptControl (with 4 intervals
and 10 LGR nodes) and PROPT (with 4 intervals and 10 Chebyshev
nodes) for the kinematic ground vehicle problem 145

ix

LIST OF TABLES

Table

1.1 Planner Specifications . 3
3.1 Landscape of direct-collocation-based optimal control software focus-

ing on their applications and properties. † indicates that the software
is too slow for use the on-line application. 29

3.2 Set of solvers tested . 61
4.1 Planners compared in the work . 87
B.1 Long MATLAB solve-times . 146
B.2 Vehicle Parameters . 146
B.3 Simulation Parameters for PA . 147
B.4 Environment for EA . 147
B.5 Environment for EC see Table. C.5 for Variable Descriptions 147
B.6 Control Effort . 148
B.7 Fisher’s exact test for attaining the goal for PC and PD in EC (p =

2.2× 10−16) . 148
C.1 LiDAR Parameters . 149
C.2 Chrono Model Parameters [117] . 149
C.3 Vehicle Parameters . 150
C.4 Planning Parameters . 150
C.5 Environment Parameters . 150

x

LIST OF APPENDICES

Appendix

A. Supplementary Material for Chapter III 141

B. Supplementary Material for Chapter IV 146

C. Supplementary Material for Chapter V 149

xi

ABSTRACT

Need for increased automated vehicle safety and performance will exist until control

systems can fully exploit the vehicle’s maneuvering capacity to avoid collisions with

both static and moving obstacles in unknown environments. A safe and performance-

based trajectory planning algorithm exists that can operate an automated vehicle

in unknown static environments. However, this algorithm cannot be used safely in

unknown dynamic environments; furthermore, it is not real-time. Accordingly, this

thesis addresses two overarching research questions:

1. How should a trajectory planning algorithm be formulated to enable automated

ground vehicle safety and performance in unknown dynamic environments?

2. How can such an algorithm be solved in real-time?

Safe trajectory planning for high-performance automated vehicles with both static

and moving obstacles is a challenging problem. Part of the challenge is developing

a formulation that can be solved in real-time while including the following set of

specifications: minimum time to goal, a dynamic vehicle model, minimum control ef-

fort, both static and moving obstacle avoidance, simultaneous optimization of speed

and steering, and a short execution horizon. This thesis presents a nonlinear model

predictive control-based trajectory planning formulation, tailored for a high mobility

multipurpose wheeled vehicle (HMMWV), that includes the above set of specifica-

tions. This formulation is tested then with various sets of these specifications in a

known dynamic environment. In particular, a parametric study relating execution

horizon and obstacle speed reveals that the moving obstacle avoidance specification

xii

is not needed for safety when the planner has a short execution horizon (≤ 0.375 s),

and the obstacles are slow (≤ 2.11m
s
). However, a moving obstacle avoidance spec-

ification is needed when the obstacles move faster, and this specification improves

safety without, in most cases, increasing solve-times. Overall, results indicate that

trajectory planners for high-performance automated vehicles should include the en-

tire set of specifications mentioned above unless a static or low-speed environment

permits a less comprehensive planner.

Then, this thesis combines this comprehensive planning algorithm with a suitable

perception algorithm to enable safe and performant control of automated ground vehi-

cles in unknown dynamic environments. A high-fidelity, ROS-based proving ground

with a 2D LiDAR model, in Gazebo, and a 145 degree of freedom model of the

HMMWV, in Chrono, is developed to combine these algorithms. Six-hundred tests,

realized with various obstacle speeds and sizes, are performed in this proving ground

in both known and unknown dynamic environments. Results from this comparison

demonstrate that operating in an unknown environment, as opposed to a known en-

vironment, significantly increases collisions, steering effort, throttle effort, braking

effort, orientation and tracking error, time to goal, and planner solve times. To avoid

this deterioration of safety and performance factors in unknown environments, the

use of more accurate perception systems should be explored. Ultimately, however,

these results demonstrate that the comprehensive trajectory planning formulation

developed in this thesis enables safe and performant control of automated vehicles in

unknown dynamic environments among small (≤ 2 m) obstacles traveling at speeds

up to high (20m
s
).

To solve this formulation in real-time, an open-source, direct-collocation-based

optimal control problem modeling language, called NLOptControl, is established

in this thesis. Results demonstrate that NLOptControl can solve the formulation

in real-time in both known and unknown environments. NLOptControl holds great

xiii

potential for not only improving existing off-line and on-line control systems but also

engendering a wide variety of new ones.

xiv

CHAPTER I

Introduction

Companies that are developing automated ground vehicles, such as Tesla, Cruise,

and Waymo, have Level 2 to Level 3 Automation [54]. Auto manufacturers such

as General Motors, Ford, BMW, and Audi are claiming that within the next five

years they will be manufacturing Level 4 to Level 5 automated ground vehicles [17].

However, research predicts that due to implementation requirements and cost, Level

5 automated ground vehicles will not become universal and affordable until the 2040

to 2050 time-frame [87]. Either way, it is clear that the ground vehicle transportation

system of the future is likely to be automated and must be both safe and performant.

A safe and performance-based trajectory planning algorithm was developed to

operate a high mobility multipurpose wheeled vehicle (HMMWV) in unknown static

environments [92]. However, this algorithm cannot be used safely in unknown dy-

namic environments; furthermore, it is not real-time. The primary focus of this

thesis is to introduce a trajectory planning algorithm that does not have these two

limitations.

Accordingly, this thesis addresses two overarching research questions:

1. How should a trajectory planning algorithm be formulated to enable automated

ground vehicle safety and performance in unknown dynamic environments?

2. How can such an algorithm be solved in real-time?

1

Trajectory planning algorithms are typically solved through a numerical optimal

control formulation [108]. These formulations have enabled moving obstacle avoidance

using either time-varying soft constraints [139] or using time-varying hard constraints

[71, 103, 138]. However, current hard constraints formulations [71, 103, 138] have

a safety limitation — they use a kinematic vehicle model, as opposed to a dynamic

vehicle model. This limitation can result in a collision because the planner can de-

termine a trajectory that the vehicle cannot physically follow [44, 45]. Moreover, for

a feasible solution, soft constraints do not ensure obstacle avoidance [139], but hard

constraints do. Therefore, for safety, trajectory planning algorithms should use hard

constraints in their formulation and a dynamic vehicle model [38].

Such comprehensive trajectory planning algorithms can be reliably solved using a

direct-collocation-based numerical optimal control method [92, 111, 125, 112, 73, 74,

64, 133, 44], but these methods often struggle to solve such algorithms in real-time

[38, 92, 5, 55]. A large part of this solve-time is spent evaluating the nonlinear func-

tions, which numerically approximate the continuous-time optimal control problem

and their corresponding derivatives. [38] and [92] evaluate these functions and their

derivatives in MATLAB using symbolic differentiation and analytic differentiation,

respectively. On the other hand, a numerical optimal control software tool, called

CasADi, uses the star-coloring method [52] and reverse automatic differentiation im-

plemented in C++, to exploit the sparse structure of the Hessian matrix that is born

from a numerical optimal control problem [3]. Research shows that CasADi solves a

robot trajectory planning problem in real-time [133]. However, CasADi is not easy to

use, because it requires its users to write the code for their selected direct-collocation

method, which can lead to errors in the code and large development time [83]. Thus,

this lack of an easy to use and fast numerical optimal control software tool makes

formulating comprehensive planning algorithms and solving them in real-time chal-

lenging. Fortunately, advances in computational languages [13], sparse automatic

2

Table 1.1: Planner Specifications

specification Description
S1 static obstacle avoidance
S2 minimum time-to-goal
S3 dynamic vehicle model
S4 minimum control effort
S5 simultaneously optimize speed and steering
S6 moving obstacle avoidance
S7 small execution horizon

differentiation methods [59, 121], and optimization modeling languages [30] provide a

unique opportunity to improve both the ease of use and the speed of direct-collocation-

based numerical optimal control methods. This thesis identifies these advances and

leverages them to help create a new optimal control modeling language called NLOpt-

Control to solve comprehensive trajectory planning algorithms in real-time. With

NLOptControl ready for use, the focus of this thesis shifts to back to developing

the automated vehicle trajectory planning algorithm.

In many high-performance automated vehicle applications, e.g., in unmanned air

vehicles (UAVs), unmanned ground vehicles (UGVs), and spacecraft, it is both desir-

able and challenging to plan safe trajectories in a dynamic environment. Part of this

challenge is incorporating the set of specifications listed in Table 1.1 into a real-time

planner, where real-time planning demands that the planner’s solve-times are all less

than the execution horizon. While trajectory planning systems that include subsets

of the specifications listed in Table 1.1 exist, a planner that consists of all of them

has not yet been developed.

Fig. 1.1 shows a conceptual scheme for comparing and developing trajectory

planners. This scheme illustrates the conceptual performance and safety of a vehicle

controlled using trajectory planners with different sets of specifications, operating

either in a static environment with a stationary obstacle (top four traces) or a dynamic

environment with a moving obstacle (bottom two traces). In all cases, the planning

3

and execution horizons are the same.

Static obstacle avoidance (S1, Table 1.1) is a baseline specification in many trajec-

tory planning systems, but is not, by itself, sufficient for either performance or safety.

Regarding safety, if the trajectory planner does not use a dynamic vehicle model (S3,

Table 1.1), a trajectory that the vehicle cannot follow may be determined [44]. Such

a trajectory may result in either a collision [44, 45] (Case A, Fig. 1.1) or some other

catastrophic event, such as rollover in the case of a ground vehicle [95]. Despite this,

some planners designed to avoid static obstacles for UAV applications [58] utilize a

kinematic vehicle model (Case A, Fig. 1.1). By utilizing a dynamic vehicle model

in trajectory planning, the actual vehicle can follow the prescribed trajectory more

accurately. Planners designed to avoid static obstacles with a dynamic vehicle model

(Case B, Fig. 1.1) exist for UGV applications [139]. However, the planner in Case B

does not have a minimum time-to-goal specification (S2, Table 1.1), which may result

in failure for certain applications. For instance, in racing applications [81, 136], plan-

ning without this specification will likely result in a lost race. In these applications,

the planner should include at least S1-S3 (Case C, Fig. 1.1), such that it can arrive

at the goal in less time than a planner with only the static obstacle avoidance and

dynamic vehicle model specifications. If minimizing fuel consumption and mechani-

cal wear are additional concerns, then the minimum control effort specification (S4,

Table 1.1) needs to be included in the planner as well. Planners with S1-S4 exist in

applications for UGVs [91] and UAVs [93, 101, 94]. A limitation of these planners is

that they do not optimize both speed and steering (S5, Table 1.1). Optimizing both

allows the vehicle to both slow down more quickly and turn more tightly (shown in

Case D, Fig. 1.1), thereby improving both performance and safety [92].

In a dynamic environment, while the trajectory planning specifications S1-S5 are

necessary for both performance and safety, they are not sufficient (see Case E, Fig.

1.1). To improve collision avoidance (i.e., safety) in a dynamic environment there

4

Figure 1.1: Comparison of trajectory planners illustrating the conceptual effect that
planner specifications have on performance and safety within a given environment.

5

are three possibilities: including a moving obstacle avoidance specification (S6, Table

1.1); including a small execution horizon specification (S7, Table 1.1); or including

both.

A moving obstacle avoidance specification accounts for the motion of the obsta-

cle over the planning horizon, which increases safety (see Case F, Fig. 1.1). This

specification has been implemented for applications in UGVs [103], UAVs [138], and

spacecraft [71]. These developments, however, have a limitation: they use a kinematic

vehicle model as opposed to a dynamic vehicle model; Case A, Fig. 1.1 depicts the

potential outcome of using a kinematic vehicle model. Our preliminary work [38] de-

veloped a planner with S1-S6 for a UGV application. This work, however, has several

limitations, three of which are: it does not investigate closed-loop performance and

safety; it assumes that the goal is within the LiDAR’s sensing range; and, finally,

the planner’s solve-times are, at best, nearly two orders of magnitude above real-time

(assuming an execution horizon of 0.5 s). Among other things, this chapter addresses

these three limitations.

A small execution horizon1 specification engenders a more reactive planner with

better obstacle avoidance capabilities. For instance, to avoid the collision in Case E

(Fig. 1.1), a smaller execution horizon can be used. Previous research [92] includes a

small execution horizon as well as S1-S5. While there is reason to expect that such a

planner may operate safely around slowly moving obstacles, this hypothesis has not

yet been tested. Therefore, this chapter also investigates, for the first time, whether

a system with S1-S5 and a small execution horizon can operate safely in a dynamic

environment for a range of obstacle speeds.

An major goal of this research is to develop a trajectory planning formulation that

has all of the specifications listed in Table 1.1. The motivation for this investigation

is the assumption that a planner with this set of specifications would represent an
1An execution horizon is described as "small" when reducing it does not improve safety within a

given environment.

6

improvement in both safety and performance over planners with less comprehensive

sets of specifications.

This work uses a nonlinear model predictive control (NMPC)-based trajectory

planner; this approach is also used in [58, 139, 93, 101, 94, 53, 92, 103, 138, 71].

Unfortunately, it is challenging to solve the proposed planning formulation in real-

time with a short execution horizon. For instance, the literature shows that GPOCS,

GPOPS-ii, and our custom software, all written in the MATLAB computation lan-

guage, are not fast enough for NMPC applications in aircraft [5], robot [55], and UGV

[92, 38] systems, respectively. As part of this work, NLOptControl’s [37] ability to

solve the proposed formulation in real-time with a short execution horizon is tested.

As an example, the trajectory planning formulation developed in this work is tailored

for an HMMWV but can be adapted to other vehicles as well. Together, this planner

and vehicle are referred to as a UGV.

Finally, to safely relax the known environment assumption, the planner developed

in this thesis must be combined with a perception algorithm that accurately predicts

obstacle motion using sensor data. A Kalman-filter-based perception algorithm was

recently developed that uses raw light detection and ranging (LiDAR) data to estimate

obstacle size, position, and velocity [115]. However, this perception algorithm [115]

has yet to be combined and tested with a planning algorithm. To combine and test

these planning and perception algorithms, this thesis develops a ROS-based proving

ground, called Michigan Autonomous Vehicles (MAVs), which uses a 2D LiDARmodel

in Gazebo and a 145 degree of freedom model of an HMMWV in Chrono. Results

from this proving ground statistically quantify the accuracy of the perception system,

which is the LiDAR sensor and perception algorithm combination. This quantification

is realized by comparing collision avoidance, tracking and orientation error, planner

solve-times, time to goal, steering effort, throttle effort, and braking effort in a known

environment to those in an unknown environment.

7

The ultimate goal of this thesis is enabling real-time trajectory planning for au-

tomated vehicle safety and performance in unknown dynamic environments.

1.1 Dissertation organization

Chapter II formulates and compares trajectory planning algorithms using each

hard and soft constraints to enable moving obstacle avoidance with a dynamic ve-

hicle model. Chapter III describes NLOptControl in detail and compares its ease

of use and speed to those of PROPT, a commercial optimal control software tool.

NLOptControl is then used in Chapter IV to solve the proposed trajectory plan-

ning formulation in real-time in a known environment. Chapter V relaxes the as-

sumption that the environment is known, which is made by Chapter IV, and tests

the proposed planning algorithm in a high-fidelity, simulation-based proving ground.

Finally, Chapter VI answers the overarching research questions and identifies the

notable contributions of this thesis.

8

CHAPTER II

Trajectory Planning in Dynamic Environments

2.1 Introduction

Avoiding collisions with obstacles is an important problem for mobile robots, au-

tonomous vehicles (AVs) and unmanned ground vehicles (UGVs). For computational

efficiency, control of these vehicles is often carried out using a hierarchical scheme

wherein a high-level path planner quickly generates a reference trajectory and then a

vehicle-level controller is employed to track the reference trajectory. In the literature

this hierarchical approach is refereed to as a two-level structure [43, 86]. However,

when it becomes necessary to push the vehicle to its dynamical limits by either mini-

mizing time-to-goal or maximizing progress-on-track, as in racing situations [135, 81]

or with military applications, the high-level path planner may create dynamically

infeasible trajectories because it often only considers simple vehicle dynamics. Addi-

tionally, collisions with obstacles may occur if the vehicle deviates from the reference

trajectory, because vehicle-level controllers do not generally constrain the vehicle to

avoid obstacles.

To mitigate these issues several researchers optimize the control commands for the

vehicle using a single-level structure [43, 86]. In a single-level structure, there is no

reference trajectory available to the vehicle-level controller. Instead, path planning

and vehicle-level control are carried out simultaneously. Thus, for a properly con-

9

strained system with an appropriate vehicle model, the trajectories generated for all

feasible solutions will be both dynamically feasible and collision free. Additionally,

when the goal of the optimization is to minimize time-to-goal or progress-on-track

and the problem is setup using a single-level structure, the entire state-space can be

explored and the control signals that push the vehicle to its dynamic limits can be

identified.

AVs and UGVs are often controlled using model predictive control (MPC) [7, 36,

46, 86, 89, 90, 139]. MPC is capable of controlling complex nonlinear systems bound

by nonlinear constraints and it works by optimizing the control signals using a model

of the system over a given prediction horizon and subsequently executing a portion

of these optimized signals.

Using a two-level structure, where the higher level is a path planner and at the

vehicle level MPC is used for path tracking, researchers controlled a sports vehicle to

drive autonomously at high speeds along a mountain road [81]. Additionally, MPC

has also been used to develop active steering algorithms to assist drivers in avoiding

obstacles [77], to limit the driver input inside a safe handling envelope [7], and to

stabilize a vehicle using an AV steering system [16]. In [77], authors compare the

performance of an MPC controller where the vehicle model is linearized at the begin-

ning of the prediction horizon with one where the vehicle model is linearized about

a reference trajectory over the entire prediction horizon, an approach often referred

to as linear time-varying MPC. In [7], authors develop an active steering algorithm

that optimizes the front lateral tire forces in lieu of steering angle to formulate a con-

vex optimization problem that can be solved quickly. In [16] authors introduced the

notion of using nonlinear MPC (NLMPC) to control the steering angle of a vehicle

along a reference trajectory. However, all of these optimizations utilize a two-level

structure and time-to-goal minimization or progress-on-track maximization are not

explicitly considered.

10

Compared to the two-level structure approach, there has been much less work

that focuses on controlling AVs and UGVs using a single-level structure, but favorable

results have been reported. In particular, researchers control 1 : 43 scale race cars in

highly nonlinear operating regimes while maximizing progress-on-track [86]. However,

[86] focused on small radio-controlled race cars, whereas this work focuses on large

vehicles such as a High Mobility Multipurpose Wheeled Vehicle (HMMWV) where

rollover is a major concern and must be accounted for in the constraints. In [89],

an NLMPC algorithm that uses a single-level structure is introduced that operates

a large AV in unstructured environments (without lanes or traffic rules) to optimize

the steering angle in order to minimize time-to-goal while avoiding static obstacles.

This work is extended to include the optimization of reference longitudinal speed in

addition to the steering angle in [90]. The obstacles, however, were still considered

to be static.

Using a single-level structure, Yoon et al. utilize soft constraints for moving

obstacle avoidance while considering the vehicle’s dynamical limits using NLMPC,

but this approach does not guarantee obstacle avoidance for a feasible solution and

the authors focused on a low speed vehicle with a short prediction horizon [139].

Obstacle avoidance can only be guaranteed for a feasible solution if it is implemented

using hard constraints.

In summary, a hard constraints approach to handling moving obstacles using a

single-level structure for large vehicles with significant dynamics has not yet been

investigated.

This work aims to fill this gap by developing an optimal control formulation that

uses hard constraints to avoid moving obstacles using a single-level structure based

on the prior effort in [88, 91, 89, 90]. It is assumed that an obstacle tracking and

detection algorithm such as the one developed in [113] is utilized, so that both the

shapes and time-varying positions of all obstacles are known. Additionally, the soft

11

constraints approach is also implemented into the algorithm and compared to the

hard constraints approach. It is shown that the hard constraints method both yields a

better obstacle avoidance performance and reduces optimization time when compared

to the soft constraints approach.

Therefore, the novel and salient contributions of this work are:

1. Using hard constraints to avoid collisions with moving obstacles for a UGV

using a single-level optimal control structure,

2. Comparing soft constraints to hard constraints in current context.

The remainder of this chapter is organized as follows. Section 2.2 presents the

overall problem formulations for both hard constraints and soft constraints methods.

In Section 2.3 two examples are investigated that compare the hard and soft con-

straints methods. Finally, in Section 2.4 the work is summarized and conclusions are

given.

2.2 Problem Formulation

This work leverages the single-level optimal control problem (OCP) formulation

in [90] and modifies it to accommodate moving obstacles using the hard constraints

approach. As a benchmark, the soft constraints approach is also implemented. For

simplicity, these two approaches are compared by comparing the OCP solutions with-

out closing the loop.

12

The controller executes the solution from the following general OCP:

minimize
ξ, ζ, Tp

J = T (Tp) +

Tp∫
0

I [ξ (t) , ζ (t)] dt

 (2.1)

subject to ξ̇ (t) = V [ξ (t) , ζ (t)] (2.2)

ξmin (t) ≤ ξ (t) ≤ ξmax (t) (2.3)

ζmin (t) ≤ ζ (t) ≤ ζmax (t) (2.4)

F [ξ (Tp) , ξ (0)] ≤ 0 (2.5)

R [ξ (t)] ≤ 0 (2.6)

S [ξ (t)] ≤ 0 (2.7)

Tp ≤ Tp,max (2.8)

When Eq. (2.1) is minimized subject to the constraints in Eq. (2.2) - Eq. (2.8), the

optimal control vectors ζ, state vectors ξ, and prediction time Tp can be calculated.

In the following sections, these equations are expanded and described starting with

the constraints and finishing with the cost function.

There are several sets of constraints that are identical in both the hard constraints

and soft constraints approaches; the vehicle dynamics must be feasible (Eq. (2.2)),

both the state and control trajectories must lie within their respective bounds (Eq. (2.3)

and Eq. (2.4)), the vehicle must get to the goal (Eq. (2.5)), the vehicle must avoid

collisions with moving obstacles (Eq. (2.6)), the maneuver must be dynamically safe

(Eq. (2.7)), and the final prediction time must be less than Tp,max (Eq. (2.8)). The dif-

ference between the two approaches is the way that obstacle avoidance is implemented

and is described in detail below.

13

Eq. (2.2): Vehicle Dynamics

The level of model fidelity necessary in the model predictive controller for a large

UGV represented by a 14 Degree of Freedom (DoF) vehicle model is well captured by a

3 DoF vehicle model with nonlinear bounds on acceleration/deceleration, a nonlinear

tire model, and longitudinal load transfer [88]. The NLMPC vehicle model, governed

by the state space equation shown in Eq. (2.9), is leveraged within the OCP to

identify to control inputs over the prediction horizon.

ξ̇ = A (ξ) + Bζ (2.9)

where

A(ξ) =

U cosψ − (V + Lfωz) sinψ

U sinψ + (V + Lfωz) cosψ

ωz

ax

(Fy,f + Fy,r)/Mt − Uωz

(Fy,fLf − Fy,rLr)/Izz

0

0

and ξ =

x

y

ψ

U

V

ωz

δf

ax

BT =

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 and ζ =

γf
Jx

where the state and control vectors are ξ and ζ, respectively, ax and Jx represents the

longitudinal acceleration and jerk, respectively, γf is the steering rate, Mt is the total

vehicle mass, and Izz is the moment of inertia about the center of mass. As shown in

Fig. 2.1, ψ represents the heading angle, Lf and Lr represent the distances between

the front and rear axles to the center of mass, respectively, U and V represent the

longitudinal and lateral speeds, respectively, x and y describe the global position of

14

L f

L r

U
V

α f

α r

δ f

ω
z

F yf

F yr

x

y0

Ψ

Figure 2.1: The 3 DoF vehicle model used in the optimal control problem formulation
[90]

the center of the front axle, δf is the front steering angle, ωz is the yaw rate, Fy,f and

Fy,r represent the front and rear lateral tire forces, respectively, and finally, αf and

αr represent the front and rear tire slip angles, respectively.

Eq. (2.3)-Eq. (2.4): State and Control Bounds

γf and Jx are chosen as control variables to achieve smoother responses for δf

and ax, respectively. Additionally, γf and Jx are added to the optimization so that

they can be bounded at each instant in time (t) based off of the physical limits of the

vehicle:

γf,min ≤ γf (t) ≤ γf,max (2.10)

Jx,min ≤ Jx (t) ≤ Jx,max (2.11)

Nonlinear acceleration/deceleration bounds, determined by studying the acceler-

ation/deceleration limits of the 14 DoF plant model in the previous work [90], are

incorporated, which are a function of longitudinal vehicle speed:

ax,min [U (t)] ≤ ax (t) ≤ ax,max [U (t)] (2.12)

Additional bounds based off of both the vehicle limits and the desired vehicle

15

behavior are placed on x, y, U , ψ, and δf :

xmin ≤ x (t) ≤ xmax (2.13)

ymin ≤ y (t) ≤ ymax (2.14)

Umin ≤ U (t) ≤ Umax (2.15)

ψmin ≤ ψ (t) ≤ ψmax (2.16)

δf,min ≤ δf (t) ≤ δf,max (2.17)

There are no explicit restrictions on lateral speed or yaw rate.

Eq. (2.5): Final State Constraints

Constraints are also placed on the vehicle’s position (x, y) to be within a small

distance σ from the goal position (xg, yg) at Tp. Mathematically, these constraints

are expressed as:

xg − σ ≤ x (Tp) ≤ xg + σ (2.18)

yg − σ ≤ y (Tp) ≤ yg + σ (2.19)

Eq. (2.6): Moving Obstacle Avoidance using Hard Constraints

In the hard constraints approach, obstacle avoidance is guaranteed for the NLMPC

vehicle model for all feasible solutions, because hard constraints are added to insure

that the trajectories of the vehicle and the obstacles do not intersect over Tp. Obsta-

cles are represented as super-ellipses; thus, the following constraint is enforced on the

trajectory for each obstacle:

∣∣∣∣x(t)− xiobs(t)
e+m

∣∣∣∣P +

∣∣∣∣y(t)− yiobs(t)
f +m

∣∣∣∣P > 1

16

where xiobs(t) and yiobs(t) describe the global position of the center of the ith obstacle

at t, e and f describe the semi-major and semi-minor axes, respectively, P defines

the shape of the super-ellipse, and m is a safety margin that is added around each

obstacle to account for the size of the vehicle.

Eq. (2.7): Dynamical Safety Constraints

In order to provide the plant with a dynamically feasible path, the vehicle is

prevented from rolling over. Identical to [89, 90], this is done by constraining the

vertical tire force on the rear tires to be above a particular threshold, Fz,threshold.

Constraints are applied to the rear tires only due to the observation that, for the

specific vehicle considered, rear tires experience lift-off before the front tires [90].

Eq. (2.1): Cost Function

The cost function consists of four terms that are linearly combined and multiplied

by their respective weighing parameters wt, wψf
, wFz , and wcf.

J = wtTp+

wψf

Tp∫
0

[sin (ψg) (x− xg)− cos (ψg) (y − yg)]2 dt+

wFz

Tp∫
0

[
tanh

(
−Fz,rl − a

b

)
+ tanh

(
−Fz,rr − a

b

)]
dt+

wcf

Tp∫
0

[
wδδ

2
f + wγγ

2
f + wJJ

2
x

]
dt

(2.20)

The first term term minimizes Tp. For a feasible solution, Tp is also the time that

it takes for the vehicle to get to the goal. By minimizing this time, the vehicle is

effectively pushed towards its dynamical limits. The next term helps insure that the

vehicle passes the goal point (xg,yg) through a desired direction (ψg). The third term

17

in the cost function is a soft constraint on the vertical tire load that dissuades the

vehicle from operating too close to the threshold on the vertical tire load; a and b

are parameters. More information on the third term can be found in [90]. The final

term in the cost function penalizes the control effort of the vehicle over the entire

prediction horizon. wδ, wγ, and wJ are additional weighing terms on the steering

angle, steering rate and longitudinal jerk, respectively.

Moving Obstacle Avoidance using Soft Constraints

In this approach, the hard constraints on obstacle avoidance (Eqn. (2.6)) are

removed and an additional term SCi is added to the cost function (Eq. (2.20)) for

each obstacle to promote obstacle avoidance.

SCi = wobs

Tp∫
0

β(t, i)

(d(t, i) + ε)2
dt

with

d(t, i) =

√
(x(t)− xiobs(t))2 + (y(t)− yiobs(t))

2

where β(t, i) is a boolean that is set to unity if the vehicle is within a certain distance

of the obstacle. For circular obstacles (e = f and P = 2) β(t, i) is set to unity

if d(t, i) ≤ e + m. If the obstacle is not a circle, there is no analytical expression

to determine if the vehicle is outside of the obstacle and m, so d(t, i) is calculated

numerically as described below. If the vehicle is at least a distance of m from the

nearest point on the obstacle, then β(t, i) is set to zero. Finally, wobs is a weighing term

that promotes obstacle avoidance, and ε is a small number used to avoid singularities.

To calculate d(t, i) for an elliptical obstacle, the initial approach, referred to as

SC1, was to find the nearest point to the vehicle on the edge of a rectangular grid of

query points enlarged around the obstacle by 1.2×m in both the x and y directions

18

similar to [139]. While this works for simple cases, this approach results in a lack

of information in the gradient function when the optimization is evaluating solutions

where the vehicle trajectory is within the grid of query points. This can result in

convergence on a solution that crashes into an obstacle even when there is another

feasible obstacle-free path. Therefore, in this work another approach, referred to

as SC2, was adopted wherein d(t, i) is calculated to the center of the obstacle, so

that there is gradient information available to the optimization; it is more costly

to drive through the middle of the obstacles than through the sides. In the cases

tested, SC2 was found superior to SC1 in terms of obstacle avoidance performance

and convergence speed, so the Results and Discussion section focuses on comparing

hard constraints to SC2 and only a small section is included that demonstrates how

SC1 can fail to highlight that the designer must be careful when building SCi.

Solving the OCP

The aforementioned continuous time OCP is transcribed into a nonlinear pro-

gramming problem using Euler’s Backward Difference method and solved using the

Interior Point Method implemented in IPOPT [4].

2.3 Results and Discussion

Demonstration of the hard constraints formulation developed in this work is pro-

vided using two scenarios that involve multiple moving obstacles. Comparisons to

the soft constraints approach are also included.

Case 1

In the first example, there are three circular obstacles; one is large and static,

another is medium size and moving left in front of the vehicle between the start and

goal points, and the last one is roughly the size of a HMMWV (called the small

19

obstacle for this case) and is moving in the direction from the start point to the

goal point. Both hard and soft constraints formulations identify feasible solutions,

albeit they are quite different as shown in Fig. 2.2. Using the soft constraints method

the vehicle overtakes the small obstacle to the right and maneuvers just to the left

of the large obstacle and to the right of the medium obstacle, whereas the hard

constraints method identifies a solution that overtakes the small obstacle to the left

and is able to maneuver to the left of both the medium and large obstacles. Thus

the hard constraints method is able to reduce time-to-goal by 30% compared to the

soft constraints approach. In Fig. 2.3, the vertical tire force, longitudinal speed and

steering angle traces are shown for both methods. Towards the end of the trajectories,

both vehicles are operated very close to their limit for minimum tire vertical load.

Another important consideration when comparing these optimizations is the op-

timization time. The optimization time was 0.74 and 1.83 min for the hard and soft

constraints methods, respectively, on a 2.9 GHz CPU. While neither one of these

times are considered to be fast enough for real-time experimentation, it is worth

noting that the optimizations were implemented in MATLAB for fast development

purposes, and an implementation in a compiled language can be expected to be sig-

nificantly more efficient. More importantly, the hard constraints method was able to

reduce the optimization time by 60% compared to the soft constraints approach.

Finally, it is noted that the soft constraints formulation converged on a local

minimum, as the solution obtained by the hard constraints method yields a smaller

objective function value also for the objective function used for soft constraints.

Case 2

In the second example, both algorithms are tested in a scenario with 17 moving

obstacles of various shapes (to represent cars, HMMWVs, and tanks) and speeds that

are moving horizontally between the vehicle starting and the goal points. Both the

20

Hard Constraints

150 200 250

x [m]

0

10

20

30

40

50

60

70

80

90

100

y
 [

m
]

Arrival time = 6.93 s

Final speed = 18.7 m/s

Init. speed = 15.0 m/s

Soft Constraints

150 200 250

x [m]

0

10

20

30

40

50

60

70

80

90

100

y
 [

m
]

Arrival time = 9.95 s

Final speed = 11.1 m/s

Init. speed = 15.0 m/s

Figure 2.2: In Case 1, compared to the soft constraints approach, the hard con-
straints approach reduces the time-to-goal by 30%, number of iterations by 11% ,
and optimization time by 60%.

21

Time (s)
0 1 2 3 4 5 6 7 8 9 10

V
e

rt
ic

a
l

T
ir

e
F

o
rc

e
 (

N
)

0

5000

10000

15000

Time (s)

L
o

n
g

it
u

d
in

a
l

 S
p

e
e

d
 (

m
/s

)

0

10

20

30

Time (s)

S
te

e
ri

n
g

(d
e

g
)

-20

0

20

Soft Constraints Rear Left

Soft Constraints Rear Right

Hard Constraint Rear Left

Hard Constraint Rear Right

min

Soft Constraints
Hard Constraint
min
max

Soft Constraints
Hard Constraints
min
max

100 1 2 3 4 5 6 7 8 9

100 1 2 3 4 5 6 7 8 9

Figure 2.3: This figure shows three traces for Case 1; vertical tire force, optimized
steering and optimized longitudinal velocity.

22

hard and soft constraints methods avoid all of the obstacles and successfully attain

the goal position as shown in Fig. 2.4. To complete the mission, both vehicles follow

very similar trajectories; this is likely due to the limited number of feasible paths for

this particular scenario. As a result, time-to-goal is the same for both approaches and

is 10 s. In Fig. 2.5, the vertical tire load, longitudinal speed and steering angle are

shown for both methods. Between about 2.5 s and 4 s, both vehicles are operating

at the minimum vertical load (set to 1000 N for these tests). This corresponds to the

extreme maneuvers that the vehicles make between Frame 2 and Frame 3 in the top

and bottom traces in Fig. 2.4 to avoid colliding with obstacles.

It is also noted that for both the hard and soft constraints cases the solution

identified is not feasible at the last step, because at the last time step the vehicle ac-

celerates above the maximum allowable acceleration in order to satisfy the constraint

that the vehicle is within a particular distance (σ) in both the x and the y directions

of the goal (Eq. (2.5)). This occurs only at the last time step and is an artifact of a

discretization with a fixed time step as part of the solution strategy. Our preliminary

investigations indicate that a variable time step implementation resolves this issue.

One of the major drawbacks of the soft constraints method is the amount of time

that it takes to complete the optimization, which is 364.5 min and two orders of

magnitude longer compared to the 3.21 min for the hard constraints formulation.

This is likely due to the fact that when solving this problem using the soft constraints

method for elliptical obstacles, there is no analytical expression for the distance from

the vehicle to the nearest point on the ellipse and a numerical solution for this distance

is needed. Without analytic expressions for the objective function, its gradient, the

constraints and their Jacobian, IPOPT typically takes much longer to converge.

Additionally, collision avoidance is not guaranteed for a feasible solution using soft

constraints. To demonstrate this, the formulation SC1 is used to find a solution in

Case 2. The optimization converges on a solution illustrated in Fig. 2.6 that drives

23

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 0
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
5

.0
0

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 2
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
5

.8
5

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 4
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 9
.3

4

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 6
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 5
.0

3

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 8
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 8
.6

7

g
o
a
l

o
b
st
a
cl
e
s

v
e
h
ic
le

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 1
0

.0
0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
1

.3
4

S
o

ft
 C

o
n

st
ra

in
ts

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 0
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
5

.0
0

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 2
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
5

.7
0

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 4
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
0

.7
5

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 6
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 4
.6

8

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 8
.0

0

 V
e

lo
ci

ty
 (

m
/s

)
=

 8
.3

1

X
 (

m
)

1
5
0

2
0
0

2
5
0

Y (m)

0

5
0

1
0
0

ti
m

e
 (

s)
 =

 1
0

.0
0

 V
e

lo
ci

ty
 (

m
/s

)
=

 1
1

.6
3

H
a

rd
 C

o
n

st
ra

in
ts

F
ig
ur
e
2.
4:

In
C
as
e
2,

th
e
ha

rd
an

d
so
ft

co
ns
tr
ai
nt
s
ap

pr
oa

ch
es

yi
el
d
al
m
os
t
th
e
sa
m
e
tr
aj
ec
to
ry

an
d
ti
m
e-
to
-g
oa

l.
H
ow

ev
er
,

co
m
pa

re
d
to

th
e
so
ft

co
ns
tr
ai
nt
s
ap

pr
oa

ch
,u

si
ng

ha
rd

co
ns
tr
ai
nt
s
re
du

ce
s
op

ti
m
iz
at
io
n
ti
m
e
by

99
.1
%
.

24

0 1 2 3 4 5 6 7 8 9 10

10

0

5000

10000

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

0 1 2 3 4 5 6 7 8

-20

0

20

9

Time (s)

V
e

rt
ic

a
l

T
ir

e
F

o
rc

e
 (

N
)

Time (s)

L
o

n
g

it
u

d
in

a
l

 S
p

e
e

d
 (

m
/s

)

Time (s)

S
te

e
ri

n
g

(d
e

g
)

Soft Constraints Rear Left

Soft Constraints Rear Right

Hard Constraint Rear Left

Hard Constraint Rear Right

min

Soft Constraints
Hard Constraint
min
max

Soft Constraints
Hard Constraints
min
max

Figure 2.5: This figure shows three traces for Case 2; vertical tire force, optimized
steering and optimized longitudinal velocity.

25

the vehicle into an obstacle at t = 1.76 s.

2.4 Conclusion

In this work, a hard constraints formulation is developed for moving obstacle

avoidance in a large autonomous ground vehicle. To this end, a 3 DoF vehicle model

is utilized in a single-level nonlinear optimization framework to find the optimal con-

trol signals (steering rate and longitudinal jerk) subject to constraints on both the

dynamical limits of the vehicle and obstacle avoidance. This formulation is bench-

marked against a soft constraints approach that also utilizes the same models, but

relaxes the hard constraints on obstacle avoidance and augments the cost function

with a term that promotes obstacle avoidance. Two comparative simulation case

studies are given. It is found that both algorithms successfully avoid colliding with

obstacles, however the proposed hard constraints formulation is deemed superior due

to both a faster convergence time in optimization as well as obstacle avoidance per-

formance. Future work includes: improvement of optimization times, identification

of obstacles based off of LiDAR data, prediction of obstacles future path, using the

14 DoF model to close the loop, and experimental validation.

26

X (m)

185 190 195 200 205 210 215

Y
 (

m
)

20

25

30

35

40

45

50

time (s) = 1.76

 Velocity (m/s) = 12.48

goal

obstacles

vehicle

Figure 2.6: This figure demonstrates that if the soft constraints are not designed
properly, the vehicle may crash into an obstacle . This particular example uses the
SC1 formulation and illustrates the solution at t = 1.76 s.

27

CHAPTER III

NLOptControl: A Modeling Language for Solving

Optimal Control Problems

3.1 Introduction

Optimal control software packages that implement direct-collocation methods are

used in a number of off-line [111, 125, 112, 73, 74, 64] and on-line [133, 44] applications

as summarized in Table 3.1. The primary function of these packages is to directly

transcribe a human modeler’s formulation of an optimal control problem (OCP) into a

nonlinear programming problem (NLP). A key challenge with this process is enabling

human modelers (i.e., users) to easily formulate new and complex problems while

producing an NLP that can be quickly solved by an external NLP solver. However,

current direct-collocation-based optimal control software packages are generally either

fast or easy to use, but not both. Thus, these package are not well suited for non-

expert users trying to formulate complex problems for on-line applications, wherein

speed is critical. Therefore, there is a need for a direct-collocation-based optimal

control software package that is both fast and easy to use. In this chapter, an approach

to bridging this gap is presented and incorporated into a new, open-source optimal

control modeling language called NLOptControl [37].

As seen in Table 3.1, some of the most well-known optimal control software pack-

28

Applications
Off-line On-line Properties

Software C
he
m
ic
al

Sp
ac
e
ve
hi
cl
e

M
ed
ic
al

A
ir
ve
hi
cl
e

G
ro
un

d
ve
hi
cl
e

R
ob

ot

O
pe
n-
so
ur
ce

Ea
sy

to
us
e

Fa
st

GPOPS-ii [111] [111, 125] [55]† 7 3 7

PROPT [112] [112] [112] 7 3 7

GPOCS [73] [5]† 3 3 7

DIDO [74] [5]† 7 7 7

ACADO [44] 3 7 3

CasADi [64] [133] 3 7 3

Custom [92, 38]† 7 7 7

NLOptControl [37] 3 3 3

Table 3.1: Landscape of direct-collocation-based optimal control software focusing on
their applications and properties. † indicates that the software is too slow for use the
on-line application.

ages (GPOPS-ii , PROPT , DIDO) are closed-source and often require a licensing-

fee. These drawbacks limit their research value, since they are not freely available to

the entire research community, results may be difficult to reproduce, and if the details

of the underlying algorithms cannot both be seen and modified, then open validation

and development of the these algorithms is not possible [120, 8]. Fortunately, several

noteworthy open-source optimal control software packages exist. For completeness,

this chapter does not limit its discussions to these open-source packages.

Optimal control packages with an algebraic syntax that closely resembles the Bolza

form of OCPs [78] are categorized as easy to use. It is noted that there are other

design features that affect ease of use; for instance, not having a built-in initialization

algorithm [11] reduces ease of use, but these aspects of ease of use are not addressed in

this chapter. Table 3.1 shows that this work categorizes the direct-collocation-based

optimal control software packages GPOPS-ii [111], PROPT [112] and GPOCS [119]

as easy to use and CasADi [3] and DIDO [123] as not easy to use.

For ease of use, modeling languages should have a syntax that closely resembles the

29

class of problems for which they have been designed. Modeling languages like AMPL

and GAMs are not embedded in a pre-existing computational language, which allows

for syntactical flexibility, when developing them. However, this approach (1) makes

development of the modeling language difficult and time-consuming, and (2) does not

directly expose users to the breath of features available in a computational language

such as C++ orMATLAB. For these reasons, modeling languages are often embedded

in a pre-existing computational language.

It can be difficult to establish a syntax for the modeling within the syntactical con-

fines of a pre-existing computational language. To overcome this issue, operator over-

loading can be used. For instance, a multiple-shooting method based optimal control

software package called ACADO [65] uses operator overloading to allow its user to de-

fine an OCP using symbolic expressions that closely resemble the actual mathematical

expressions of the problem. However, a naive implementation of operator overloading

can lead to performance issues [96]. Additionally, Moritz Dielhl, a researcher who

developed ACADO and MUSCOD-II, later acknowledges that, ACADO Toolkit [65],

DIRCOL [137], DyOS [124], and MUSCOD-II [29] restrict the problem formulations,

particularly for users not involved with the development of these tools [3]. The above

acknowledgment is included in a chapter [3] that introduces CasADi. CasADi allows

users to formulate OCPs with fewer restrictions that ACADO. However, CasADi re-

quires that users write the code for the transcription methods. Transcription methods

are a general class of numerical methods used to approximate continuous-time OCPs;

a direct-collocation method is a type of transcription method. CasADi lets users to

code their own transcription methods to avoid creating a "black box" OCP solver

that is only capable of solving restrictive formulations, as with ACADO. While this

approach may be pedagogically valuable for users, it can lead to bugs and long de-

velopment time [83] and it makes CasADi ’s syntax not closely resemble OCPs. For

these reasons, this chapter does not categorize CasADi as easy to use. On similar

30

grounds, DIDO is not categorized as easy to use.

For safety in on-line applications, the trajectory needs to be provided to the plant

in real-time. An on-line optimal control example is a nonlinear model predictive

control (NMPC) problem. Real-time is achieved when the NLP solve-times are all

less than the chosen execution horizon. Otherwise, the low-level controllers will not

have a trajectory to follow. Despite the need for small solve-times (i.e., speed), several

implementations of direct-collocation methods within the MATLAB computational

language are not able to achieve solve-times that are less than the execution horizon

for a number of NMPC applications. As seen in Table 3.1, GPOCS, GPOPS-ii, and

custom MATLAB software are not fast enough for NMPC applications in aircraft

[5], robot [55], and UGV [92, 38] systems, respectively. On the other hand, CasADi,

which is written in C++, is fast enough for an NMPC application in a robot system

[133]. Given this practical limitation, this chapter will now discuss why some direct-

collocation-based optimal control packages are fast while others are slow.

As seen in Table 3.1, this work categorizes GPOPS-ii, PROPT, GPOCS, and

DIDO as slow and CasADi as fast. If a package uses sparse automatic differentiation

methods implemented in a computation language that approaches the speeds of C, it

is categorized as fast; the reasoning for this categorization is explained below.

The main algorithmic step in direct method based numerical optimal control is

solving the NLP. The solve-time for this step consists of two major parts: (1) the time

spent running optimization algorithms within the NLP solver, and (2) the time spent

evaluating the nonlinear functions and their corresponding derivatives. Fortunately,

low-level algorithms, which are available within several prominent NLP solvers, such

as KNITRO [18], IPOPT [4], and SNOPT [56], can be used to reduce the time asso-

ciated with running the optimization algorithms. The second component is discussed

here in terms of current direct-collocation-based optimal control software packages.

The speed of direct-method-based optimal control software depends on the speed

31

of the differentiation method within the computational language in which it is im-

plemented. GPOPS-ii uses a sparse finite difference method [110] to calculate the

derivatives using the MATLAB computational language. However, finite difference

methods, like the sparse finite difference method, are not only slow, but they are

also inaccurate [130]. In addition to this, the dynamically-typed MATLAB com-

putational language is typically slow in comparison to statically-compiled languages

such as C and Fortran. Since GPOPS-ii uses a slow differentiation method within

a relatively slow computational language, it is categorized as slow. PROPT uses ei-

ther symbolic- or forward-automatic differentiation to calculate the derivatives using

MATLAB. While PROPT ’s methods are more accurate and generally faster than

finite difference methods, they do not exploit the sparse structure of the Hessian ma-

trices that is born from a direct-collocation method, like the sparse finite difference

method in GPOPS-ii. Given this computational limitation and the slow speed of

MATLAB, this chapter considers PROPT to be slow as well. On the other hand,

CasADi uses the star-coloring method [52] to exploit the sparse structure of the Hes-

sian matrix and reverse automatic differentiation implemented in C++ [3]. Since

CasADi employs a differentiation methods that is well suited for the sparse struc-

ture of the Hessian matrix and it is implemented in a fast computational language,

CasADi is categorized as fast. On similar grounds, this chapter identifies GPOCS

and DIDO as slow.

In sum, there is no direct-collocation-based optimal control software package is

both fast and easy to use. CasADi is fast, but not easy to use; and GPOPS-ii,

PROPT, and GPOCS are easy to use, but not fast. Thus, there is a need for a

package that is both fast and easy to use.

This chapter investigates an approach for improving both speed and ease of use

of optimal control software. As described in detail in Section 3.2, this approach

uses recent advances in computational languages and differentiation methods in con-

32

trast to the computational languages and differentiation methods used by current

direct-collocation-based optimal control software. Additionally, also unlike current

direct-collocation-based optimal control software packages, this approach extends an

optimization modeling language to include syntax for modeling OCPs. More specifi-

cally, this approach is as follows:

Approach

• For ease of use and speed, NLOptControl is embedded in the fast, dynamically-

typed Julia programming language [13].

• For increased ease of use, NLOptControl extends the JuMP optimization

modeling language [30], which is written in Julia, to include a natural syntax

for modeling OCPs in Bolza form.

• For increased speed, NLOptControl uses the acrylic-coloring method [59] to

exploit sparsity in the Hessian matrix and reverse-automatic differentiation

through the ReverseDiffSparse package [121], which is also written in Julia.

Therefore, this work addresses the following research question: Can the above outlined

approach improve speed and ease of use of direct-collocation-based optimal control

software? This question is answered by comparing NLOptControl’s speed and ease

of use to those of PROPT.

NLOptControl was released as a free, open-source software package in the sum-

mer of 2017 [37]. Since then, the literature has shown that NLOptControl is fast

and easy to use. For speed, NLOptControl was leveraged to solve complex tra-

jectory planning problems for an unmanned ground vehicle system in real-time —

solving these types of problems in real-time using MATLAB was not feasible in prior

work [92, 38]. For ease of use, NLOptControl was used to create a new opti-

mal control based learning algorithm [85] without any help from the developers of

NLOptControl.

33

The remainder of this chapter is organized as follows. Section 3.2 further describes

NLOptControl’s approach to bridging the research gap. Section 3.3 describes the

classes of off-line and on-line OCPs that can be solved using NLOptControl. Sec-

tion 3.4 provides a brief background on numerical optimal control and a mathematical

description of the direct-collocation methods implemented within NLOptControl.

Section 3.6 provides an example that compares NLOptControl’s ease of use against

PROPT ’s and benchmarks NLOptControl’s speed against PROPT. Section 3.7 an-

swers the research question and discusses further implications. Finally, Section 3.8

summarizes the work and draws conclusions.

3.2 Software ecosystem

Advances in computational languages, optimization modeling languages, and dif-

ferentiation methods and tools made it possible to create NLOptControl. This

section describes these software advances and shows how they can be leveraged to

create a modeling language for a class of optimization problems.

3.2.1 Computational languages

Direct-collocation based optimal control software packages are embedded in either

a statically- or a dynamically typed computational language. Dynamically typed lan-

guages enable users to quickly develop and explore new concepts, yet they are typically

slow; statically typed languages sacrifice the user’s productivity for speed. Recently,

however, a dynamically typed computing language called Julia has become a popu-

lar alternative to the computing languages that the current optimal control software

packages are embedded in. It has become popular, because it allows users to write

high-level code that closely resembles their mathematical formulas, while producing

low-level machine code that approaches the speed of C and is often faster than For-

tran [13]. The claim that Julia is not only fast, but also easy to use, motivates the

34

investigation presented in this chapter. Specifically, this chapter investigates the abil-

ity of the Julia computational language to improve speed and ease of use for optimal

control software.

3.2.2 Modeling optimization problems

In the late 1970’s, researchers using optimization software were more concerned

with the need to improve the software’s ease of use than its speed [40]. Eventually, this

concern led to the development a number of optimization modeling languages, such

as GAMS [122] and AMPL [41]. The role of an optimization modeling language is to

translate optimization problems from a human-friendly language to a solver-friendly

language [132, 42]. In other words, optimization modeling languages do not solve

optimization problems; they focus on modeling problems at a high-level and passing

optimization problems to external low-level solvers, which are the NLP solvers and the

differentiation tools in the context of this work. Similarly, in this work, the high-level

problem is the NLP, given in Eqn. 3.1 - Eqn. 3.3 (i.e., the NLP model) as

minimize
z∈Rn

f(z) (3.1)

subject to g(z) ≤ 0 (3.2)

h(z) = 0 (3.3)

where the objective function f : Rn → R, with n defined as the number of design

variables; the inequality constraints g : Rn → Re; and the equality constraints h :

Rn → Rq, are all assumed to be twice-continuously differentiable functions [4, 10].

A number of standard optimization problem classes do not fit readily into the NLP

model. In addition to this, translating these standard problem classes into the NLP

model can require significant work. Thus, for users interested in simply modeling these

standard problem classes, and not translating these problems into an NLP model, the

35

NLP model should be extended to include higher-level modeling languages for these

standard problem classes. However, most optimization modeling languages are not

designed to be extended in this fashion [42]. Because of this limitation, both the

speed and ease of use of optimal control packages have suffered. GPOCS, GPOPS-

ii, and PROPT are slow because the sparse-automatic differentiation methods —

typically available through an optimization modeling language — are not available in

MATLAB ; so, these packages use less efficient differentiation methods. Additionally,

since these packages are not built upon an existing NLP modeling language, the API

tends to be overly flexible, which can lead to modeling errors [65].

JuMP [96], a recent optimization modeling language that is embedded in the fast,

dynamically-typed Julia programming language [13], is designed to be extended to

include new classes of optimization problems. JuMP extensions include: parallel

multistage stochastic programming [66], robust optimization [31], chance constraints

[97], and sum of squares [84]. Moreover, JuMP provides an interface for both the

KNITRO and IPOPT NLP solvers as well the ReverseDiffSparse differentiation tool.

ReverseDiffSparse [121] is also embedded in the Julia programming language and uti-

lizes reverse automatic differentiation with the acrylic-coloring method [51] to exploit

sparsity in the Hessian matrices. Research shows that the acrylic-coloring method is

faster than the star-coloring method [51], which was used in the CasADi package [3].

These advances are leveraged to create an optimal control modeling language called

NLOptControl.

3.2.3 Proposed software ecosystem

Fig. 5.1 presents NLOptControl’s software ecosystem and its function as an op-

timal control software package. In terms of this ecosystem, it is: embedded in Julia;

extends JuMP to provide a natural syntax for modeling OCPs; leverages ReverseDiff-

Sparse; and interfaces with KNITRO, IPOPT, and potentially other solvers to solve

36

Figure 3.1: Proposed software framework for nonlinear OCPs.

the automatically formulated NLP problem. To use NLOptControl, users need

only formulate their OCP into a syntax-based model of the OCP. This model is then

approximated using one of the direct-collocation methods implemented in NLOpt-

Control, which at the time of this writing include: the Euler’s backwards, the

trapezoidal, and the Radau collocation methods. After the model has been approx-

imated, the software ecosystem solves this approximation to determine an optimal

trajectory. This trajectory can then be followed using low-level controllers to control

the plant for either an off-line or on-line tasks.

3.3 Scope of NLOptControl

NLOptControl is designed for modeling OCPs and solving them for either off-

line or on-line applications. This section shows the types of problems that NLOpt-

Control can model, and demonstrates NLOptControl’s visualization capabilities

and salient design features for on-line applications (e.g., NMPC problems).

37

3.3.1 Modeling OCPs

An important class of optimization problems is the OCP. NLOptControl models

single-phase, continuous-time, OCP in a Bolza form [78] that is tailored for NMPC

problems and adds slack constraints on the initial and terminal states as

minimize
x(t),u(t),x0s,xf s

tf
M(x(t0 + tex), t0 + tex, x(tf), tf)

+

tf∫
t0+tex

L(x(t), u(t), t) dt

+ws0x0s + wsfxf s (3.4)

subject to
dx
dt

(t)− F (x(t), u(t), t) = 0 (3.5)

C(x(t), u(t), t) ≤ 0 (3.6)

x0 − x0tol ≤ x(t0 + tex) ≤ x0 + x0tol (3.7)

xf − xftol ≤ x(tf) ≤ xf + xftol (3.8)

xmin ≤ x(t) ≤ xmax (3.9)

umin ≤ u(t) ≤ umax (3.10)

tfmin
≤ tf ≤ tfmax (3.11)

x0 − x(t0 + tex) ≤ x0s (3.12)

x0 + x(t0 + tex) ≥ x0s (3.13)

xf − x(tf) ≤ xf s (3.14)

xf + x(tf) ≥ xf s (3.15)

where t0 is the fixed initial time, tex is the fixed execution horizon that is added to

account for the non-negligible solve-times in NMPC applications, tf is the free final

time, t is the time, x(t) ∈ Rnst is the state, with nst defined as the number of states,

and u(t) ∈ Rnctr is the control, with nctr as the number of controls. xs0 ∈ Rnst and

38

xsf ∈ Rnst are optional slack variables for the initial and terminal states, respectively.

The objective functional includesM : Rnst×R×Rnst×R→ R and L : Rnst×Rnctr×

R→ R, which are the Mayer and Lagrangian terms, respectively. Here ws0x0s+wsfxf s

is added to the Bolza form to accommodate slack variables on the initial and terminal

conditions; this term is described in detail later in this section. x0s ∈ Rnst and

xf s ∈ Rnst are vectors of weight terms on the slack variables for the initial and final

state constraints. F : Rnst ×Rnctr ×R→ Rnst and C : Rnst ×Rnctr ×R→ Rp denote

the dynamic constraints and the path constraints, respectively; p is the number of

path constraints. x0 ∈ Rnst and xf ∈ Rnst denote the desired initial and final states,

respectively. x0tol ∈ Rnst and xftol ∈ Rnst establish tolerances on the initial and final

state, respectively. Constant upper and lower bounds on the state, control, and final

time are included with Eqn. 3.9, Eqn. 3.10, and Eqn. 3.11, respectively. Finally,

NLOptControl adds Eqn. 4.9 - Eqn. 4.12 to the Bolza form for optional slack

constraints on the initial and terminal states.

NLOptControl is embedded in the Julia language and specializes JuMP ’s syntax

to better suit the domain of optimal control. JuMP leverages Julia’s syntactic macros

[13] to enable a natural algebraic syntax for modeling optimization problems, without

sacrificing performance or restricting problem formulations [96]. NLOptControl

extends JuMP to include syntax for modeling OCPs in Boltza form in Eqn. 4.1 –

Eqn. 3.11, with the option of including slack constraints on the initial and terminal

states through Eqn. – Eqn. .

For a basic example of this syntax, NLOptControl is now used to model the

39

Bryson-Denham problem, which is given in mathematical form as

minimize
a(t)

1

2

1∫
0

a(t)2dt

subject to v̇(t) =a(t), ẋ(t) =v(t), x(t) ≤ 1

12

v(0) =− v(1) = 1, x(0) =x(1) = 0

The define() function is used to create a model object and define Eqn. 3.7 - Eqn.

3.10 as

n = define(numStates = 2, numControls = 1, X0 = [0.,1.], XF =

↪→ [0.,-1.], XL = [0.,NaN], XU = [1/12,NaN], CL = [NaN,NaN], CU

↪→ = [NaN,NaN])

where n is an object that holds the entire optimal control model, numStates and

numControls are the number of states and controls, X0 and XF are arrays of the

initial and final state constraint, XL and XU are arrays of any lower and upper state

bounds, NaN indicates that a particular constraint is not applied, and CL and CU are

an arrays of any lower and upper control bounds.

The dynamic constraints in Eqn. 4.2 are then added to the model through the

dynamics function as

dynamics!(n, [:(x2[j]), :(u1[j])])

where the ! character indicates that the model object n is being modified by the

function. The elements of the array :(x2[j]) and :(u1[j]) represent v(t) and

a(t); by default the state and control variables are x1,x2,.. and u1,u2,.., but

they can be changed. Differential equations must be passed within an array of Julia

expressions (i.e., [:(),:(),...,:()]), and the index [j] must be appended to the

state and control variables. j is used within NLOptControl to index particular

time discretization points ∈ [t0 + tex, tf].

40

The next step is to indicate whether or not the final time tf is a design variable

using the configure function as

configure!(n; (:finalTimeDV => true))

where (:finalTimeDV=>true) indicates that the final time is a design variable,

which is the case for the Bryson-Denham problem. Additional options can be passed

to the configure function. However, this chapter is not a tutorial; for a tutorial see

NLOptControl’s documentation [37].

At this point, any path constraints in Eqn. 4.3 can be added to the model using

JuMP ’s @NLconstraint macro. However, these constraints are not needed for this

example.

Next, the objective function in Eqn. 4.1 is added to the model. To accommodate

for a Lagrangian term, NLOptControl provides the integrate function—similar

to the dynamics function, an expression must be passed and the [j] syntax must be

appended to all state and control variables. For the Bryson-Denham, the objective

functional is modeled as

obj = integrate!(n, :(0.5*u1[j]^2))

The JuMP macro @NLobjective is used to add the objective functional to the

model as @NLobjective(n.ocp.mdl,Min,obj). This problem is solved by passing

the model n to the optimize function as

optimize!(n)

Visualization NLOptControl allows users quickly plot the solutions to their

problems. For plotting —by default— NLOptControl leverages GR [63] as a

backend, but it can be configured to utilize matplotlib [72] instead. The command

allPlots(n) plots the solution trajectories for the states, controls, and costates1.
1if n.s.ocp.evalCostates is set to true

41

Invoking this command to visualize the solution to the Bryson-Denham problem that

is modeled above produces Fig. 3.2.

3.3.2 Nonlinear model predictive control

Fig. 4.1 depicts two ways that NLOptControl can be used to solve OCPs for

NMPC applications; Fig. 3.3a neglects control delays and Fig. 3.3b accounts for

them. This section describes these figures and discusses the design features that help

NLOptControl users tackle NMPC problems.

Fig. 3.3a has three main components: the OCP, the plant, and the initialization

block. Three inputs G, E , and x0 are provided to the OCP to produce u(t); u(t) can

be either a reference trajectory or control signals for the plant. In the case that u(t)

is a reference trajectory, then low-level controllers are added to the plant to allow it

to track the trajectory.

Description: 3.3.1. Goal information G includes the final desired state of the plant,

which may not be equal to xf . For instance, in an automated vehicle trajectory plan-

ning system, the goal range may be outside of the sensing range. In this case, the

final desired state xf may be near the boundary of the sensing range.

Description: 3.3.2. Environment information E includes any transient data. For

example, this data may include the obstacle data that helps establish the constraints

on obstacle avoidance for automated vehicle navigation problems.

The plant can be either physical or virtual, but in either case is provided by

the user. Because time can typically be allocated to initialize NMPC problems, the

initialization block permits users to warm start their optimization problems so that

the initial on-line solve time is much smaller. After initialization, at t0, the first

control signal u(t) is sent to the plant and the first on-line OCP is solved. Each time

an OCP-solve starts, t0 is reset to the current time. An issue with this scheme is that

42

Figure 3.2: Output of allPlots(n) command after modeling and solving the Bryson-
Denham problem using NLOptControl. Section ?? in the Appendices provides
additional plots of the NLOptControl’s solution to the Bryson-Denham problem
compared to the analytical solution, including the costates.

43

(a) Neglecting control delay ts.

OCP Plant

ts�
u(t)

Initilization

G, E

x0a

(b) Accounting for control delay ts using a fixed execution horizon tex and a state prediction
block.

OCP Plant

State
Prediction

tex�
u(t)

Initilization

U0

G, E

x0a
x0

Figure 3.3: Nonlinear model predictive control framework available in NLOptCon-
trol.

it does not take into account the solve time (i.e., control delay ts). That is, the initial

state of the OCP is constrained to be the current state of the plant x0 at the initial

time t0, so by the time the OCP has been solved ts has elapsed, and the plant will

have evolved to a new state. If this control delay is small relative to the time scale

of the dynamics, then neglecting it will not compromise the robustness. However, if

the control delay is relatively large, then it cannot be neglected.

Fig. 3.3b illustrates an approach that accounts for these control delays. This

approach adds a block that predicts the plant state at the current time plus a fixed

execution horizon t0 + tex. The execution horizon tex can be chosen based on the a

heuristic upper limit on the solve times; often solve times do not change drastically

when solved in a receding-horizon with varying parameters for the initial conditions

and path constraints. This approach avoids having to predict individual solve times

ts.

44

NLOptControl provides various functionality tailored for solving NMPC prob-

lems. The remainder of this section simultaneously describes these features and pro-

vides an example that uses NLOptControl to formulate an OCP and solve it in a

receding horizon. To this end, consider the moon lander OCP [99], which is given in

without slack constraints in Eqn. 3.16 as

minimize
a(t), tf

tf∫
0

a(t)dt

subject to ẋ(t) = v(t), v̇(t) = a(t)− g

x(t0) = 10, x(tf) = 0

v(t0) = −2, v(tf) = 0

0 ≤ x(t) ≤ 20, −20 ≤ v(t) ≤ 20

0 ≤ a(t) ≤ 3, 0.001 ≤ tf ≤ 400

(3.16)

where the x(t) is the altitude, v(t) is the speed, a(t) is the thrust, g = 1.5 is the local

gravitational acceleration, tf is the final time. The objective is to minimize the thrust

of the spaceship given the dynamic constraints, event constraints, control constraints,

and final time constraints. Listing. III.1 shows the code needed to solve Eqn. 3.16 as

an MPC problem. Line 1 creates a model n of the OCP with the initial and terminal

state constraints, and the constant upper and lower bounds on the state and control

variables. As is, the model n has low-tolerance hard constraints on the initial and

terminal state conditions. However, these low-tolerance hard constraints can lead to

infeasible problems and longer solve-times, especially when the loop is closed. That is,

when the control drives the plant into an infeasible state space, an infeasible problem

is engendered [127]; and typically, the solve-times increase as the problems become

less-feasible. Therefore, an ability to easily adjust these low-tolerance constraints

to high-tolerance hard constraints is desirable. As seen in Line 2, NLOptControl

45

Listing III.1: NLOptControl code needed to formulate and solve the moon lander
as an MPC problem.
n = define(numStates = 2, numControls = 1, X0 = [10., -2], XF =

↪→ [0., 0.], CL = [0.], CU = [3.])
2 defineTolerances!(n; X0_tol = [0.01, 0.005], XF_tol = [0.01,

↪→ 0.005])
dynamics!(n,[:(x2[j]),:(u1[j]-1.5)])

4 configure!(n; (:finalTimeDV => true), (:xFslackVariables => true)
↪→ , (:x0slackVariables => true))

obj = integrate!(n,:(u1[j]))
6 @NLobjective(n.ocp.mdl, Min, obj + 100*(n.ocp.x0s[1] + n.ocp.x0s

↪→ [2] + n.ocp.xFs[1] + n.ocp.xFs[2]))
initOpt!(n)

8 defineMPC!(n; tex = 0.2, predictX0 = true)
function IPplant(n, x0, t, U, t0, tf)

10 spU = linearSpline(t, U[:,1])
f = (dx, x, p, t) -> begin

12 dx[1] = x[2]
dx[2] = spU[t] - 1.5

14 end
return DiffEqBase.solve(ODEProblem(f, x0, (t0, tf)), Tsit5()),

↪→ [spU]
16 end
defineIP!(n, IPplant)

18 simMPC!(n)

enables this feature through the defineTolerances function. X0_tol and XF_tol

are arrays that set the tolerances on the initial x0tol and final states xftol , respectively.

When going from low- to high-tolerance hard constraints on the initial and ter-

minal states, slack constraints should also be added. Because, when using these

high-tolerance constraints without slack constraints, there is nothing pushing the ini-

tial and terminal states away from the edge of the infeasible region. Thus, infeasible

problems are just as likely to occur. Adding slack constraints on the initial and

terminal state constraints helps to mitigate these infeasible problems. Before slack

constraints are added to the model, slack variables must be added. The size of a slack

variable corresponds to the size of the respective constraint violation [79]. As seen in

46

Line 4, NLOptControl allows such slack variable to be added using the configure

↪→ function. (:xFslackVariables=>true) and (:x0slackVariables=>true)

adds slack variables on the initial and final state constraint, respectively. Both the

objective of the moon lander problem and the slack constraints are added to model

as on Line 6. n.ocp.x0s and n.ocp.xFs are arrays holding the slack variables on

the initial and terminal states, respectively, and all of the terms in ws0 and wsf (in

Eqn. 4.1) are set to 100—these weights are set large enough such that the respective

constraint violations are nearly zero. On Line 7, NLOptControl warm starts the

optimization using the initOpt function; the initialization block in Fig. 4.1 captures

this step.

The defineMPC function adds several basic settings to the model n. tex is the

value of the fixed execution horizon and predictX0 is a bool, which, when set to

true, indicates that the the framework in Fig. 3.3b is used. Thus, a prediction of

the initial state needs to be made either by the user or using an internal model of the

plant, which is added to n. In this simple example, the differential equations in Eqn.

3.16 govern the OCP, the plant, and the state prediction function. The plant and

prediction model are defined by the IPplant function from Line 9 to Line 16 and

passed to the model n using the defineIP function on Line 17. Here the IPplant

function is showed for completeness, but its is not described in detail since it uses the

well-documented DifferentialEquations package in Julia [116]. For safety and reduced

time in experimental development, this initial step, i.e., making all of the models the

same and running a simulation-based experiment, should be taken; especially when

formulating more complex OCPs for practical NMPC applications.

Visualization The command mpcPlots(n,idx) plots the data for both plant and

solution trajectories for the states and controls, the predicted initial state, and the

optimization times, where idx is an integer representing the iteration number. For

47

instance, invoking this command to visualize data at the 4th and 15th iterations of the

moon lander problem produces Fig. 3.4a and Fig. 3.4b, respectively; NLOptControl

provides visualization functionality to combine the frames from all iterations into a

single animation.

Section A.1.1 in the Appendices provides a plot NLOptControl’s closed-loop

solution to the moon lander problem compared to the analytical solution.

3.4 Numerical optimal control

This section provides an overview of numerical optimal control methods (i.e.,

transcription methods). The goal of this section is to motivate the choice of direct-

collocation methods in NLOptControl, not to provide the reader with a complete

description of numerical optimal control methods. Readers are referred to [9, 14, 10],

for more comprehensive reviews on this subject. After these methods are discussed,

the mathematics of the various direct-collocation methods as they are implemented

in NLOptControl are provided.

3.4.1 Numerical optimal control overview

Tractable exact algorithms for solving OCPs suitable for practical applications do

not exist; thus, numerical methods are used [108]. Numerical methods for solving

OCPs (i.e., trajectory optimization problems) are generally broken into two cate-

gories: indirect and direct methods. Indirect methods seek the root of the necessary

conditions for optimality [114] while direct methods seek the extrema of the cost

functional [9]. Compared to direct methods, indirect methods produce better error

estimates [78] and require less preliminary work to determine optimality [47]. How-

ever, indirect methods have several disadvantages: the necessary conditions must be

derived [67]; the incorporation of path constraints requires an a priori estimation of

the sequence of constrained/unconstrained singular arcs; and a guess needs to be

48

(a) Output of mpcPlots(n,4) command.

(b) Output of mpcPlots(n,15) command.

Figure 3.4: Closed-loop visualization of moon lander problem using NLOptControl.

49

made for the adjoint variables [10]. Due to these disadvantages, NLOptControl

solves OCPs using direct methods.

Direct methods are broken into shooting methods [106], multiple shooting methods

[15, 27], and direct-collocation methods. Shooting methods are not suitable for most

practical applications because they do not work well when the number of variables is

large [126]. The multiple shooting method is well suited to exploit parallel processing

due to the structure of its formulation [10, 26]. However, there are several disadvan-

tages to the multiple shooting method: an expensive numerical integration needs to

be performed during each iteration of the NLP solve, it can be difficult to incorporate

state inequalities [126], and using multiple integration steps reduces the sparsity of

the Hessian and Jacobian matrices [12]. Direct-collocation methods overcome these

issues by enforcing the dynamic state constraints within the NLP. While this results

in a larger problem, there is no need to perform expensive integrations of the state

dynamics between iterations, because constraints in the NLP enforce the state dy-

namics at the collocation points, the path constraints can be easily incorporated, and

the sparsity in the derivative matrices is preserved.

3.4.2 Direct-collocation method overview

Direct-collocation methods are divided into three categories of polynomial approx-

imation types: h-methods (or local methods) [62, 60, 9], p-methods (or global meth-

ods) [49, 35, 68], and hp-methods (a hybrid of the h- and p-methods) [109, 111, 24].

In an h-method, the dynamic state constraints are satisfied using local approxima-

tions; e.g., Euler’s method or the trapezoidal method [62]. For h-methods, increasing

the number and location of the collocation points [10, 111, 70] leads to convergence.

However, a large number of points may be required for convergence, which can re-

sult in large solve-times [25]. p-methods can reduce the number of points needed

for convergence, because they are more accurate than h-methods [33]. p-methods

50

approximate OCPs using global polynomials constructed by collocating the dynam-

ics at Gaussian quadrature points [33]. p-methods were originally developed to solve

problems in computational fluid dynamics [69] and since have been used in practice in

optimal control. For instance, p-methods were used to rotate the International Space

Station 180 degrees without using any propellant2 [35]. A drawback with p-methods

is that the Jacobian and Hessian matrices are much denser than with h-methods,

which results in a larger NLP [23].

By construction, hp-methods help to mitigate the accuracy issues with h-methods

and the NLP problem size with p-methods. Instead of using a single polynomial as

with p-methods, hp-methods use multiple polynomials constrained to be connected

to one another at the endpoints. This construction reduces the size of the NLP while

maintaining accurate approximations [24].

3.4.3 Direct-collocation methods in NLOptControl

At the time of this writing, three direct-collocation methods are implemented

in NLOptControl: two h-methods and one p/hp-method. The remainder of this

section illustrates how these methods are implemented in NLOptControl.

3.4.3.1 h-Methods

Euler’s backward method and the trapezoidal method are embedded in NLOpt-

Control. However, before these h-methods are given, the h-discretization matrices

used to approximate the continuous-time OCP are provided.

h-Discretization Matrices Consider that t is sampled at N evenly spaced dis-

critization points ∈ [t0 + tex, tf] and denote the result as the vector T = [T1, . . . , TN].

Then, for instance the t0 + tex and tf are defined as T1 and TN , respectively. Denote
2The cost of the fuel saved was estimated at one million dollars and control of the space station

orientation was accomplished using gyroscopes [74].

51

the state and control discretization matrices as

x(t)
∣∣∣
t=T

= X

and

u(t)
∣∣∣
t=T

= U,

respectively. X[i] is the state at the ith collocation point; thus, X[1] and X[N] index

the values of the initial and final states, respectively. The control matrix is similarly

defined; U[i] is the control at the ith collocation point. Denote the minimum and

maximum discretized state limit matrices as

xmin(t)
∣∣∣
t=T

= Xmin

and

xmax(t)
∣∣∣
t=T

= Xmax,

respectively. Similarly, the minimum and maximum control limit matrices are denoted

as

umin(t)
∣∣∣
t=T

= Umin

and

umax(t)
∣∣∣
t=T

= Umax,

respectively.

Euler’s Backward Method The dynamic constraints in Eqn. 4.2 are locally

approximated at (N−1) points defined by T[2 : N]. To accomplish this, (N−1)×nst

52

implicit constraints are added as shown in Eqn. 3.17

0 = X[i+ 1]−X[i]− hF (X[i+ 1],U[i+ 1],T[i+ 1]) (3.17)

= ηi, for i ∈ (1 : N − 1)

where h is the time-step size, which is determined by dividing the time span (tf −

t0 − tex) by N .

The integral term in the cost functional in Eqn. 4.1 is approximated in Eqn. 3.18

as

I = h
N∑
i=1

L(X[i],U[i], Ti) (3.18)

Trapezoidal Method Similar to Euler’s backward method, the dynamic con-

straints in Eqn. 4.2 are locally approximated at (N − 1) points defined by T[2 : N].

To accomplish this, the (N − 1) × nst implicit constraints in Eqn. 3.19 are enforced

with

0 = X[i+ 1]−X[i]− h

2
(F (X[i],U[i],T[i]) + F (X[i+ 1],U[i+ 1],T[i+ 1])) (3.19)

= ηi, for i ∈ (1 : N − 1)

Next, the integral term in the cost functional in Eqn. 4.1 is approximated in Eqn.

3.20 as

I =
h

2

N∑
i=1

(L(X[i],U[i], Ti) + L(X[i+ 1],U[i+ 1], Ti+1)) (3.20)

53

Discrete OCP The h-method-based discrete OCP is given as

minimize
X, U, TN

M(X[1], T1,X[N], TN) + I (3.21)

subject to η = 0 (3.22)

C(X,U,T) ≤ 0 (3.23)

φ(X[1], T1,X[N], TN) = 0 (3.24)

Xmin ≤ X ≤ Xmax (3.25)

Umin ≤ U ≤ Umax (3.26)

tfmin
≤ TN ≤ tfmax (3.27)

where slack constraints can be included with the Mayer term in Eqn. 3.21 and Eqn.

3.23.

3.4.3.2 p-Methods

For generality, this chapter only describes hp-methods, since the single interval

method (i.e., p-method) is merely the case where the number of intervals is equal to

one.

3.4.3.3 hp-Methods

The form of Eqn. 4.1 – Eqn. 3.11 must be modified to directly transcribe the

OCP into an NLP using hp-methods. To apply Gaussian quadrature the interval of

integration must be transformed from [t0 + tex, tf] to [−1,+1]. To accomplish this,

τ ∈ [−1,+1] is introduced as a new independent variable and a change of variable,

for t in terms of τ using the affine transformation, t =
tf−t0−tex

2
τ +

tf+t0+tex
2

. Then,

the interval τ ∈ [−1,+1] is divided into a mesh of K intervals to accommodate for

multiple intervals. With this, as in [25], an array of mesh points (M0, . . . ,MK) for

54

the boundaries of these intervals is defined, which satisfy

−1 = M0 < M1 < M2 < · · · < MK−1 < MK = 1

Denote the continuous-time variables for the state and control are on each mesh

interval, k ∈ (1, . . . , K), by the arrays x(k)(τ) and u(k)(τ), respectively. Next, denote

arrays of continuous-time variables for both the minimum and maximum state and

control limits on each mesh interval, k ∈ (1, . . . , K), as x(k)min, x
(k)
max, u(k)min, and u

(k)
max,

respectively. The state continuity between the mesh intervals is ensured with the

constraint x(k)(Mk) = x(k+1)(Mk) for k = (1, . . . , K − 1) [24]. Similar to [111], this

constraint is enforced programatically by making x(k)(Mk) be the same variable as

x(k+1)(Mk). To continue to describe the hp-method implemented in NLOptControl

, the hp-discretization matrices are defined, which hold the discrete-time values of the

approximation to continuous-time problem.

hp-Discretization Matrices First an array of time discretization vectors, τ (k) =

[τ k1 , . . . , τ
k
Nk], is defined by evaluating the continuous functions at Nk specified τ ’s

∈ [Mk−1,Mk) for k ∈ [1, . . . , K], where Nk notates the number of collocation points

in mesh interval k; for instance, τ 11 = −1. Let

N = [N1, N2, . . . , Nk, . . . , NK−1, NK]

denote an array that holds the number of collocation points within each mesh interval,

where Nk can be adjusted according to the desired level of fidelity for the kth mesh

interval. For k ∈ [1, . . . , K], denote the state and control discretization matrix arrays

as

x(k)(τ)
∣∣∣
τ=τ (k)

= X(k)

55

and

u(k)(τ)
∣∣∣
τ=τ (k)

= U(k),

respectively. Next, denote the minimum and maximum discretized state limit matrix

arrays as

x
(k)
min(τ)

∣∣∣
τ=τ (k)

= X
(k)
min

and

x(k)max(τ)
∣∣∣
τ=τ (k)

= X(k)
max,

respectively. Similarly, the minimum and maximum control limit matrices are defined

as

u
(k)
min(τ)

∣∣∣
τ=τ (k)

= U
(k)
min

and

u(k)max(τ)
∣∣∣
τ=τ (k)

= U(k)
max,

respectively.

To approximate the modified OCP that is modified for hp-methods, NLOptCon-

trol builds on the work done in [49, 48, 110], which was implemented in GPOPS-ii

[111]. Specifically, NLOptControl implements the Legendre-Gauss-Radau quadra-

ture collocation method (Radau collocation method). For completeness, this section

will briefly describe this method, but for a more thorough explanation, the reader is

referred to the seminal work done in [111, 49, 48, 110].

Radau Collocation Method In hp-methods, the states are approximated within

each mesh interval with a Lagrange polynomial as

x(k)(τ) ≈
Nk+1∑
j=1

X[j](k)L(k)
j (τ), k ∈ [1, .., K] (3.28)

56

with

Lkj (τ) =
Nk+1∏
l=1
l 6=j

τ − τ kl
τ kj − τ kl

, k ∈ [1, .., K] (3.29)

Lkj (τ) is the (kth, jth) Lagrange polynomial within a basis of Lagrange polynomials

defined by j = (1, . . . , Nk + 1) and k = (1, . . . , K), τ (k) = [τ k1 , . . . , τ
k
Nk] and is the kth

set of the LGR collocation points (also, called LGR nodes [1]), which are defined on

the kth mesh interval (τ ∈ [Mk−1,Mk)). Then to approximate the entire state, Mk is

added as a noncollocated point [49] for k ∈ (1, . . . , K).

The derivative of the state can then be approximated for each mesh interval as

dx(k)(τ)

dτ
≈

Nk+1∑
j=1

X[j](k)
dL(k)

j (τ)

dτ
, k ∈ [1, .., K] (3.30)

with
dL(k)

j (τ)

dτ

∣∣∣
τ=τkj

= Dk
ij (3.31)

where Dk
ij is an element of the Nk × Nk+1 Legendre-Gauss-Radau differentiation

matrix in the kth mesh interval, as defined in [49].

Next, in order to approximate the integral of the Lagrange term in Eqn. 4.1,

Gaussian-Legendre quadrature [50] is used as

tf∫
t0+tex

L(x(t), u(t), t) dt ≈ tf − t0 − tex
2

K∑
k=1

Nk∑
j=1

Mk −Mk−1

2
wkjL(X[j](k),U[j](k), τ kj ; t0+tex, tf)

(3.32)

where w(k) = [wk1 , . . . , w
k
Nk

] is the kth array of LGR weights3.

Eqn. 3.32 is mathematically equivalent to the approximations made for the inte-

gral term in the cost functional in [24], but it is written in a slightly different form to

reduce the computations needed within the NLP. Specifically, the Mk−Mk−1

2
wkj term

3To calculate both the LGR nodes and weights, NLOptControl leverages FastGaussQuadrature
[105, 1], which uses methods developed in [61].

57

is calculated outside of the NLP, for j ∈ (1, . . . , Nk) and k ∈ (1, . . . , K). The result

is stored in an array of vectors. Thus, the design variable tf is removed from the

summations in NLOptControl.

Discrete OCP The p-method-based discrete OCP is shown in Eqn. 3.33 - Eqn.

3.39 as

minimize
X(k), U (k), tf

M(X1, t0 + tex,X[NK+1]
(K), tK) + I (3.33)

subject to
Nk+1∑
j=1

X
(k)
j D

(k)
ij −

tf − t0 + tex
2

f(X
(k)
i ,U

(k)
i , τ ki ; t0 + tex, tf) = 0 (3.34)

C(k)(X[i](k),U[i](k), τ ki ; t0 + tex, tf) ≤ 0 (3.35)

φ(X1, t0 + tex,X[NK+1]
(K), tf) = 0 (3.36)

X[i]
(k)
min ≤ X[i](k) ≤ X[i](k)max (3.37)

U[i]
(k)
min ≤ U[i](k) ≤ U[i](k)max (3.38)

tfmin
≤ tf ≤ tfmax (3.39)

for (i = 1, . . . , Nk) and (k = 1, . . . , K)

3.4.3.4 Transforming to an NLP

Depending on the method, either the discrete OCP in Eqn. 3.21 - Eqn. 3.27 or

the discrete OCP in Eqn. 3.33 - Eqn. 3.39 is then transformed into a large and sparse

NLP given by Eqn. 3.1 - Eqn. 3.3.

Now that design and methods of NLOptControl have been provided, the fol-

lowing two sections compares its ease of use and speed to existing commonly used

optimal control software.

58

3.5 Evaluation description

The next section compares NLOptControl and PROPT in terms of ease of use

and speed. This section describes the conditions under which these comparisons are

made.

3.5.1 Ease of use

Claiming that a software package is easy to use is subjective; even with the defini-

tion provided for ease of use, i.e., syntax that closely resembles the underlying OCP.

Therefore, the respective syntax in NLOptControl and PROPT needed to model

the moon lander OCP, as given in Eqn. 3.16, is compared.

3.5.2 Benchmark

The conditions under which NLOptControl’s speed is benchmarked against

PROPT include the benchmark problem, methodology, and setup.

3.5.2.1 Benchmark problem

An OCP suitable for an NMPC-based ground vehicle application is used to bench-

mark NLOptControl against PROPT. The purpose of this problem is to find the

steering and acceleration commands that drive a kinematic bicycle model [118, 57] to

a goal location (xg = 0 m, yg = 100 m) as fast as possible (i.e., in minimum time)

while avoiding crashing into a static obstacle. The cost functional is shown in Eqn.

3.40 as

minimize
ax(t), α(t)

(x(tf)− xg)2 + (y(tf)− yg)2 + tf (3.40)

59

The dynamic constraints are shown in Eqn. 3.41 as

ẋ(t) = ux(t) cos(ψ(t) + β(t))

ẏ(t) = ux(t) sin(ψ(t) + β(t))

ψ̇(t) =
ux(t) sin(β(t))

lb

u̇x(t) = ax(t)

(3.41)

where x(t) and y(t) are the position coordinates, ψ(t) is the yaw angle, ux(t) is the

longitudinal velocity, α(t) is the steering angle, β(t) = tan(la tan(α(t))
la+lb

)−1, la = 1.58 m

and lb = 1.72 m are the distances from the center of gravity to the front and rear

axles, respectively. The path constraints ensure that the vehicle avoids an obstacle,

these constraints are shown in Eqn. 3.42 as

1 < (
x(t)− xobs
aobs +m

)2 + (
y(t)− yobs
bobs +m

)2 (3.42)

where xobs = 0 m and yobs = 50 m denote the position of the center of the obstacle,

aobs = 5 m and bobs = 5 m denote the semi-major and semi-minor axes, m = 2.5 m is

the safety margin that accounts for the footprint of the vehicle. The event constraints

ensure that the vehicle starts at a particular initial condition, these constraints are

given in Eqn. 3.42 as

x(t0) = 0 m, y(t0) = 0 m, ψ(t0) =
π

2
rad

ux(t0) = 15
m

s
, ax(t0) = 0

m

s2
, α(t0) = 0 rad

(3.43)

That is the vehicle is traveling straight ahead at a constant velocity of 15 m
s
. The

60

state and control bound constraints are given in Eqn. 3.44 as

−100 m ≤ x(t) ≤ 100 m, −0.01 m ≤ y(t) ≤ 120 m

−2π rad ≤ ψ(t) ≤ 2π rad, 5
m

s
≤ ux(t) ≤ 29

m

s

−2
m

s2
≤ ax(t) ≤ 2

m

s2
,
−30π

180
rad ≤ α(t) ≤ 30π

180
rad

(3.44)

The final time is constrained to be 0.001 s ≤ tf ≤ 50 s.

Solutions to Eqn. 3.40 - Eqn. 3.44 that are obtained in less than 0.5 s are deemed

to be fast enough for real-time NMPC.

3.5.2.2 Benchmark methodology

Using the problem described above, a comprehensive benchmark is made between

various solvers. A solver is defined by a particular combination of either NLOptCon-

trol or PROPT in conjunction with a particular direct-collocation method. The

set of solvers S are listed in Table 3.2 as
Table 3.2: Set of solvers tested

Legend label Description

NLOptLGR1
NLOptControl with LGR nodes with a single interval

NLOptLGR2 NLOptControl with LGR nodes with two intervals

NLOptLGR4 NLOptControl with LGR nodes with four intervals

NLOptE NLOptControl using Euler’s method

NLOptT NLOptControl using trapezoidal method

PROPTC1
PROPT with Chebyshev nodes with a single phase

PROPTC2 PROPT with Chebyshev nodes with two phases

PROPTC4 PROPT with Chebyshev nodes with four phases

Comparisons between the average solve-times of single interval/phase solvers (i.e.,

NLOptE, NLOptT, NLOptLGR2 , PROPTC1) and the multiple interval/phase solvers

(i.e., NLOptLGR2 , NLOptLGR4 , PROPTC2 , PROPTC4) must be considered in con-

text. This is true because as the number of collocation points per interval/phase

61

is increased, the two interval/phase solvers (i.e., NLOptLGR2 and PROPTC2) and

the four interval/phase solvers (i.e., NLOptLGR4 and PROPTC4) are solving prob-

lems that roughly two and four times larger than the single interval/phase solvers,

respectively. However, there are advantages of these multi interval/phase solvers, as

discussed previously, that may be more important than the decreases in solve times.

Thus, these solvers are included in the comparison here for a more comprehensive

comparison.

Comparisons between the average solve-times of the multiple interval solvers in

NLOptControl and the multiple phase solvers in PROPT also require considera-

tion. Ideally, the benchmark between PROPT and NLOptControl would include

the same direct-collocation methods. Unfortunately, PROPT and NLOptControl

do not have the same direct-collocation methods. As such, comparisons are made

between single/multiple phase Chebyshev pseudospectral methods in PROPT and

multiple single/interval LGR pseudospectral methods in NLOptControl. Unlike

a multiple interval method, in a multiple phase method, between phases, the con-

straints can change and the optimal transition time can be determined. In this work,

the constraints do not change and the final time is divided evenly by the number of

phases to determine the transition time. By doing this, the OCPs formulated by the

multiple phase and multiple interval methods have roughly the same size and level of

complexity. Thus, comparisons between the two software packages can be made with

this issue in mind.

Each solver s is used to solve a set of problems P . The benchmark problem

is discretized over the range of collocation points p = 2, 3, . . . , 102 per interval or

phase to realize the set of problems P tested for each solver; a total of 101 different

values of p (i.e., levels-of-fidelity or problems) are tested. Each test is performed

three times to provide the data needed to calculate the average solve-time ts,p for

the benchmark problem with a level-of-fidelity p using solver s. A polynomial is

62

interpolated through the (x, y) solution points and sampled at 200 points to determine

if the solution drives the vehicle through the obstacle. If a collision is determined for

a particular combination of solver s∗ and level-of-fidelity p∗, then ts∗,p∗ is set to NaN ;

such solutions are not practically feasible.

Conducting many benchmark tests helps accurately rank the solvers. However,

analyzing large sets of benchmark data can be overwhelming and the conclusions

drawn from such analyses can be subjective. To help eliminate these issues, this work

uses an optimization software benchmarking tool called performance profiles [32].

Performance profiles show the distribution function for a particular performance

metric. Here, the performance metric is the ratio of the solver’s average solve-time

to the best average solver solve-time given as

rs,p =
ts,p

min(ts,p : s ∈ S)

where this performance metric is calculated for each solver s at each level-of-fidelity

p = 2, 3, . . . , 102. If a solver does not solve a particular problem, then rs,p is set to

rM . rM is chosen to be a large positive number; the choice of rM does not effect the

evaluation [32].

To assess a solver’s overall performance on the set of problems, the cumulative

distribution function for the performance ratio is defined as

Ps(Γ) =
1

101
size(p ∈ P : rs,p ≤ Γ)

where Ps(Γ) is the probability that solver s can solve problem p within a factor Γ of

the best ratio.

63

3.5.2.3 Setup

The setup is defined by the hardware platform and software stack. The results

in this chapter are produced using a single machine running Ubuntu 16.04 with the

following hardware characteristics; an Intel Core i7−4910MQ CPU @2.90GHz×8, and

16GB of RAM. For software, both NLOptControl 0.1.5 and PROPT use KNITRO

10.3 for the NLP solver with the default settings, except the maximum solve-time,

which is set to 300 s.

3.6 Results

3.6.1 Ease of use

Listing. III.2 and Listing. III.3 show the respective syntax in NLOptControl

and PROPT needed to model the moon lander OCP in Eqn. 3.16. Section A.1 in

the Appendices shows NLOptControl’s and PROPT ’s solutions compared to the

analytical solution.

Listing III.2: NLOptControl code needed to formulate and solve the moon lander

problem. The ! character indicates that the function is modifying the model.

n = define(numStates = 2, numControls = 1, X0 = [10, -2], XF =

↪→ [0., 0.], XL = [0, -20], XU = [20, 20], CL = [0.], CU=[3.]);

2 dynamics!(n,[:(x2[j]), :(u1[j] - 1.5)]);

configure!(n;(:finalTimeDV => true));

4 obj = integrate!(n, :(u1[j]));

@NLobjective(n.ocp.mdl, Min, obj);

6 optimize!(n);

NLOptControl can model OCPs more succinctly than PROPT. NLOptCon-

trol models Eqn. 3.16 with 5 lines of code, while it takes PROPT 12 lines — there

are two main reasons for this: (1) it takes PROPT 4 lines of code to include the initial

64

Listing III.3: PROPT code needed to formulate and solve the moon lander problem
toms t t_f

2 p = tomPhase(’p’, t, 0, t_f, 30);
setPhase(p);

4 tomStates x v
tomControls a

6 cbox = {0.001<=t_f<=400, 0<=icollocate(x)<=20, -20<=icollocate(v)
↪→ <= 20, 0<=collocate(a)<=3};

ode = collocate({dot(x)==v, dot(v)==-1.5 + a});
8 cbnd = {initial(x == 10);initial(v == -2);final(x == 0);final(v

↪→ == 0);};
x0 = {t_f == 1.5, icollocate({x == 0 v == 0}), collocate(a == 0)

↪→ };
10 objective = integrate(a);
options = struct;

12 prob = sym2prob(objective, {cbox, ode, cbnd}, x0, options);
result = tomRun(’knitro’, prob, 1);

and final state conditions, and the upper and lower limits of the states and controls,

while this is accomplished with a single line of code, with NLOptControl, and (2)

several of PROPT ’s features are required, while in NLOptControl they are op-

tional; these features include an initial guess, an options structure, and the naming of

the state and control variables. Additionally, PROPT has more verbose syntax than

NLOptControl — PROPT ’s collocate(), initial(), and final() functions

require many characters per line of code.

3.6.2 Speed

The performances of the solvers in Table 3.2 are now examined on the set of

problems realized by various discretizations of Eqn. 3.40 – Eqn. 3.44, as described in

Sec. 3.5. The results for these examinations are in Fig. 3.5a and Fig. 3.5b. Fig. 3.5a

shows the performance, or average solve-times ts,p, for each solver s on each problem

p. Fig. 3.5b shows the performance profiles for all of the solvers in four ranges of

interest for Γ. Each range is on a separate plot. The purpose of this section is to

(1) show the raw benchmark data in Fig. 3.5a and (2) provide an objective analysis

65

of this data in Fig. 3.5b. In the following section, this information will be used to

draw conclusions regarding the speed of NLOptControl and the best solver for the

benchmark problem.

Fig. 3.5a shows that NLOptControl’s solvers are faster than PROPT ’s. At a

high-level, NLOptControl solves 88% of the problems in real-time using h-methods

(i.e., NLOptE and NLOptT) and 46% of the time using p/hp-methods (i.e., NLOptLGR2 ,

NLOptLGR2 , and NLOptLGR4). PROPT only solves 0.05% of the problems in real-time

using p/hp-methods (i.e., PROPTC1 , PROPTC2 , and PROPTC4). At a lower-level,

the zoomed-in subplot in the the bottom graph of Fig. 3.5a shows that NLOpt-

Control solves the benchmark problem in real-time when the number of collocation

points per interval is less than: 80 for the single-interval case; 45 for the two-interval

case; and 25 for the four-interval interval case. PROPT obtains real-time solutions

when the number of collocation points per phase is less than 27 for the single-phase

case and less than 4 for the two-phase case. For the four-phase case, PROPT cannot

solve any of the problems in real-time.

Fig. 3.5a also shows that as the number of intervals/phases increase from NLOptLGR1

to NLOptLGR4 and PROPTC1 to PROPTC4 , the solve-times increase exponentially.

Due to the large solve-times with PROPT ’s solvers, these trends can only be seen

in the top graph of Fig. 3.5a — the bottom graph shows the trends for NLOptCon-

trol’s solvers. As discussed in the previous section, this increase in solve time is

largely due to the fact that with an increase in the intervals/phases larger problems

are created and they take longer to solve. Even though the NLOptLGR4 solver is solv-

ing a problem that is roughly four times larger than the PROPTC1 solver, NLOptLGR4

results in smaller solve-times.

Fig. 3.5a also shows that h-methods in NLOptControl are faster than the p-

method for the benchmark problem. As the level-of-fidelity increases, the solve-times

increase linearly with h-methods and exponentially with the p-method. Additionally,

66

the number of collocation points needs to be greater than about 20 for the h-methods

to ensure collision avoidance, while the p-methods need 23 and 27 for NLOptControl

and PROPT, respectively.

The four plots in Fig 3.5b show the ranges of Γ wherein certain solvers dominate.

Each profile in this figure shows the probability P that a given solver s will solve the

set of problems P the fastest within a factor of Γ. At Γ = 1, the solver that has

the highest probability of being the fastest is NLOptE, with a probability of 0.881.

NLOptE dominates until about Γ = 1.8, at which point NLOptT has the highest

probability of being the fastest, with a probability of 0.891. NLOptT dominates until

about Γ = 80. The remaining approximate ranges of domination are as follows:

NLOptLGR2 from 80 to 160, NLOptLGR4 from 160 to 5, 000, PROPTC4 from 5, 000

onwards. Given enough time, PROPTC4 solves 100% of the problems. For this

benchmark problem, while the NLOptT and NLOptE solvers are much faster than the

NLOptLGR2 , NLOptLGR4 , and PROPTC4 solvers they are not as reliable. However, the

NLOptT and NLOptE solvers are both faster and more reliable than the NLOptLGR2 ,

PROPTC1 , and PROPTC2 solvers.

3.7 Discussion

The approach detailed in Section 3.2 yields a direct-collocation-based optimal

control modeling language that is both faster and easier to use than PROPT. The

results and the following discussion support this claim.

NLOptControl is easier to use than PROPT, because its syntax is more concise,

and focused on building a model of the OCP in Bolza form. Differences between

Listing. III.2 and Listing. III.3, in terms of number of lines of code and the number

of characters per line of code, indicate that NLOptControl models OCPs more

succinctly than PROPT. This work speculates that PROPT requires more lines of

code to formulate other more practical problems as well.

67

0
100
200
300

So
lv
e-
ti
m
e

(s
)

20 40 60 80 100
0

0.2

0.4

0.6

Number of collocation points per interval/phase

So
lv
e-
ti
m
e

(s
)

NLOptLGR1 NLOptLGR2 NLOptLGR4

NLOptT NLOptE PROPTC1

PROPTC2 PROPTC4

(a) The top graph shows all average solve-times obtained. The bottom graph shows
the solve-times obtained near or below the real-time threshold of 0.5 s.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P

20 40
0

0.2

0.4

0.6

0.8

1

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Γ

P

0 4,000 8,000
0

0.2

0.4

0.6

0.8

1

Γ

(b) Performance profiles: each graph shows the performance profiles for a different
range of Γ.

Figure 3.5: Benchmark results NLOptControl and PROPT for the kine-
matic bicycle problem, see Table 3.2 for legend explanation.

68

In addition to PROPT ’s verbosity, its syntax is flexible to the extent that modeling

errors are easier to be made. This claim is made because its users can more easily

formulate problems that do not fit into the Bolza OCP form. As an example, consider

using PROPT to model the dynamic constraints in Eqn. 4.2 for the moon lander

problem — Line 7 in Listing. III.3. When using PROPT, if the user were to forget

to include the second differential equation as

ode = collocate({dot(x)==v});

an error would not be displayed; such overly flexible syntax can lead to modeling

errors. If that same mistake were attempted in NLOptControl, the user would be

alerted as

1 julia> dynamics!(n,[:(x2[j])]);

ERROR: The number of differential equations must equal ocp.state.

↪→ num.

Thus, NLOptControl helps avoid modeling errors better than PROPT, because

NLOptControl’s syntax does not allow users to formulate problems that are not in

the Bolza form, while PROPT ’s syntax does.

Both NLOptControl and PROPT can be used formulate OCPs, but PROPT

takes a functional approach to this task rather than a modeling approach, as with

NLOptControl. Listing. III.2 is compared to Listing. III.3 to support this claim.

Listing. III.3 shows that, with PROPT, the user creates all of the components of

the OCP and finally assembles them on Line 12. With NLOptControl, in Listing.

III.2, it is clear from the first line of code that a model named n is being built. Using

this approach, NLOptControl can clearly model and solve multiple OCPs at once.

Such an object-oriented approach can further reduce potential modeling errors.

The benchmark results in Fig. 3.5a and Fig. 3.5b show that NLOptControl

is faster than PROPT. Differences between these packages that affect speed include:

differentiation methods, underlying computational language, and available direct-

69

collocation methods.

PROPT uses symbolic automatic differentiation to calculate the derivatives. How-

ever, the structure of the Hessian matrices born from approximating an OCP using

direct-collocation methods is sparse and symbolic automatic differentiation does not

exploit this structure for speed. In contrast, NLOptControl uses the acrylic-coloring

method to exploit the sparse structure of the Hessian matrix in conjunction with re-

verse automatic differentiation. Based on this difference, NLOptControl is expected

to be faster than PROPT, especially when solving large problems that have a very

sparse structure.

PROPT ’s differentiation methods are implemented in MATLAB and NLOpt-

Control’s are implemented in Julia. Unfortunately, the literature does not contain

benchmarks of each of these differentiation methods in both MATLAB and Julia.

However, research has shown that Julia is much faster than MATLAB for a wide

range of problem types [13]. Thus, Julia may be able to run the reverse automatic

differentiation method combined with the acrylic-coloring method to identify sparsity

in the Hessian matrix faster than MATLAB —if it were implemented in MATLAB.

Overall, this chapter speculates that NLOptControl’s unique combination of

differentiation methods and computational language makes it faster than PROPT.

This only a speculation since the direct-collocation methods are different between

NLOptControl and PROPT. However, the following pairs of solvers can be consid-

ered roughly equivalent in terms of their direct-collocation methods: NLOptLGR1 and

PROPTC1 , NLOptLGR2 and PROPTC2 , and NLOptLGR4 and PROPTC4 . Between

these pairs, NLOptControl solves the problem roughly 14, 26, and 36 times faster

than PROPT, respectively. It is unlikely that these large differences are due to either

differences between collocating at Chebyshev nodes vs. LGR nodes, multiple interval

vs. multiple phase methods, or some combination of the two. Thus NLOptControl

is fast, which is especially important for MPC applications. A brief discussion of

70

NLOptControl’s salient MPC functionality follows.

NLOptControl has optional functionality that helps account for the non-negligible

solve-times in MPC applications. In MPC, often the control delay (i.e., solve-time) is

neglected [92]. When the control delay is neglected, the current state of the plant is

used to initialize the problem as opposed to initializing the problem with a prediction

of what the plant’s state will be after the solve-time has elapsed. Typically neglect-

ing the solve-time in linear model predictive control is not an issue; because in linear

MPC, the quadratic program is solved so quickly that initial state of the trajectory

can be set to the current state of the plant without compromising robustness [28].

However, neglecting the solve-time in NMPC is likely to deteriorate robustness [129],

because the NLPs often take a non-negligible amount of time to solve, after which the

state of the plant will have evolved significantly. To make matters even more chal-

lenging, ensuring that the NLP solve-times are smaller than a particular execution

horizon remains an unsolved problem [102, 34, 104, 28, 2, 80]. Fortunately, for many

problems, these NLP solve-times are similar and an upper limit determined based on

experience. This upper limit can be used to determine a fixed execution horizon. In

NLOptControl, after the user selects an execution horizon, as described in Section.

3.3, the framework in Fig. 3.3b can be used to account for non-negligible solve times.

Frameworks such as this, can help establish conceptual schemes to improve safety

and performance in NMPC applications.

3.8 Conclusions

This chapter introduces an open-source, direct-collocation method based OCP

modeling language called NLOptControl. NLOptControl extends the JuMP op-

timization modeling language to include a natural algebraic syntax for modeling

OCPs. NLOptControl is compared against PROPT in terms of ease of use and

speed. PROPT ’s syntax is shown to be more verbose and error-prone than NLOpt-

71

Control’s; thus NLOptControl is easier to use than PROPT. This ease of use

is largely attributed to NLOptControl’s use of the JuMP optimization modeling

language. In addition to being easier to use, results from the benchmark tests show

that NLOptControl is much faster than PROPT. NLOptControl’s superior per-

formance is likely due to the unique utility of the Julia programming language and

the reverse automatic differentiation method in conjunction with the acrylic-coloring

method to exploit the sparsity of the Hessian matrices. NLOptControl emerges as

an easy to use, fast, and open-source [37] optimal control modeling language that

holds great potential for not only improving existing off-line and on-line control sys-

tems but also engendering a wide variety of new ones.

Acknowledgements

This work was supported by the Automotive Research Center (ARC) in accordance

with Cooperative Agreement W56HZV-14-2-0001 U.S. Army Tank Automotive Re-

search, Development and Engineering Center (TARDEC) Warren, MI. Benoît Legat

provided a thoughtful review of this chapter and discussions with the several Julia

developers including Miles Lubin, Tony Kelman, and Chris Rackauckas were helpful.

72

CHAPTER IV

Real-time Trajectory Planning for Automated

Vehicle Safety and Performance in Dynamic

Environments

4.1 Introduction

Enabling performance and safety of automated vehicles in known dynamic envi-

ronments necessitates a trajectory planning algorithm that is more comprehensive

than existing formulations. Here, comprehensiveness is quantified by performance

and safety specifications. This chapter develops a trajectory planning algorithm that

is more comprehensive than existing algorithms. As motivated in Chapter I, this algo-

rithm includes the following performance and safety specifications: minimum time to

goal, a dynamic vehicle model, minimum control effort, both static and moving obsta-

cle avoidance, simultaneous optimization of speed and steering, and a short execution

horizon.

This chapter addresses the following research objectives:

• Introduce an NMPC-based trajectory planner with S1-S7, tailored for a UGV

application.

• Investigate the effect that different sets of specifications have on safety, perfor-

73

mance, and solve-time.

• Investigate the need to include a moving obstacle avoidance specification for a

range of execution horizons and obstacle speeds.

• Investigate NLOptControl’s ability to solve the proposed formulation in real-

time with a short execution horizon.

This chapter assumes that

• both the goal and obstacle information are known,

• the vehicle state is known, and

• the terrain is flat.

The remainder of this chapter is organized as follows: Section 4.2 describes the

NMPC framework developed to consider non-negligible trajectory planning problem

solve-times and the underlying OCP formulation developed to include S1-S6. Sec-

tion 4.3 describes the test conditions under which the proposed planner is evaluated.

In Section 4.4, the effect that adding different specifications to trajectory planners

has on safety, performance, and solve-time is tested in a variety of environments. The

results of these tests are discussed in Section 4.5. Section 4.6 summarizes the chapter

and draws conclusions.

4.2 Mathematical Formulation

4.2.1 NMPC Framework

At heart of an NMPC formulation lies an OCP. In NMPC simulation studies, OCP

solve-times are often neglected [129, 92]. In such a case, first the plant simulation

is paused, and the OCP is initialized at the current time t0 with the current plant

state X0. Next, the OCP is solved to produce an optimal control signal ζ∗ (i.e.,

74

OCP Vehicle
Model

State
Prediction

tex�
ζ∗

U0

G,E
X0,U0

X0
X0p

Figure 4.1: Nonlinear model predictive control framework used to account for non-
negligible optimal control problem (OCP) solve-times.

trajectory). With this signal, the plant is then simulated starting at t0 with X0 until

t0 + tex; this yields a new initial state, which is then used to initialize the next OCP.

However, most practical OCPs take a non-negligible amount of time to solve, after

which, in a more realistic simulation, the plant will have evolved from its current

state, where the OCP was initialized, to a new state [129]. This computational delay

renders the control signal sub-optimal and potentially infeasible or unsafe. To achieve

optimal safety and performance, non-negligible OCP solve-times must be taken into

account. The NMPC framework used in this work, shown in 4.1, accounts for these

non-negligible OCP solve-times.

This framework has three main components: the OCP, the vehicle model (or

plant model), and the state prediction function. The OCP is provided with goal and

environment information, defined as follows:

Definition IV.1. Goal information G includes the goal position (xg, yg), the desired

vehicle orientation at the goal ψg, and the radial tolerance for attaining the goal σ.

Definition IV.2. Environment information E includes the sizes, initial positions,

and velocities of the obstacles.

The obstacles are assumed to be ellipse-shaped, where aobs and bobs are arrays

that describe obstacles’ semi-major and semi-minor axes, respectively; x0obs and

75

y0obs are arrays of the obstacles’ initial x and y positions, respectively; and vx and

vy are arrays of the obstacles’ speeds in the x and y directions, respectively.

During the first execution horizon, the OCP has not produced a control signal for

the vehicle to follow. Therefore, the vehicle is sent a known control signal U0 (see

Fig. 4.1), set such that the vehicle will drive straight at a constant speed. To account

for the evolution of the plant state during the execution horizon, a state prediction

X0p, that is made for t0 + tex, is used to initialize the OCP. The inputs of the state

prediction function are the current state of the vehicle and the current control signal,

which is U0 during the first execution horizon and ζ∗ afterward. Then, the plant

model is simulated from the initial time t0 to t0 + tex and the first OCP is solved.

Real-time feasibility of this framework requires that the OCP solve-times be all less

than the execution horizon.

Model mismatch between the plant model, the vehicle dynamics model in the

OCP, and the state prediction function can induce biases. These biases can affect

the integrity of the research objectives, provided in the previous section. Addressing

these biases is acknowledged as an important research problem, but is not one of the

goals of this chapter. Therefore, to avoid these biases while focusing on our research

tasks, in this chapter, the plant model, the vehicle model in the OCP, and the state

prediction function all use the same set of differential equations, which is presented

in detail later in this section.

This framework runs until the UGV either reaches the goal or fails the test. An

algorithm is run after each execution horizon to determine if the vehicle has reached

the goal within the radial goal tolerance σ. The test fails if

1. the vehicle crashes into an obstacle,

2. the vertical tire load in the plant model goes below 100 N for any of the four

tires,

76

3. any of the solve-times exceeds 300 s, or if

4. the solution to the nonlinear programming problem (NLP) is not considered to

be optimal based on the tolerances and the Karush-Kuhn-Tucker conditions.

4.2.2 Optimal Control Problem

This section describes how the set of planner specifications S1-S6 are incorporated

into the OCP. At a high-level, these specifications are all incorporated into the single-

phase, continuous-time OCP defined in Eqn. 4.1 - Eqn. 4.4 as

minimize
ξ(t), ζ(t), tf

M(ξ(t0 + tex), t0 + tex, ξ(tf), tf) +

tf∫
t0+tex

L(ξ(t), ζ(t), t) dt (4.1)

subject to

dξ

dt
(t)− f(ξ(t), ζ(t), t) = 0 (4.2)

C(ξ(t), ζ(t),A(t), tf) ≤ 0 (4.3)

φ(ξ(t0 + tex), t0 + tex, ξ(tf), tf) = 0 (4.4)

where tf is the free final time, t ∈ [t0 + tex, tf] is the time, ξ(t) ∈ Rnst is the state

and ζ(t) ∈ Rnctr is the control, with nst defined as the number of states and nctr

defined as the number of controls. The Mayer term isM : Rnst ×R×Rnst ×R→ R

and the Lagrange term is L : Rnst × Rnctr × R → R. The dynamic constraints

are given by f : Rnst × Rnctr → Rnst . The path constraints are captured by C :

Rnst × Rnctr × Ra × R → Rp, which bound: the state and control based on the

vehicle’s dynamic limits, and any additional information, denoted as A(t) ∈ Ra; and

tf based on a maximum final time tfmax . Finally, the event constraints are expressed

with φ : Rnst × R× Rnst × R→ Rq.

The remainder of this section describes how S1-S6 are incorporated into Eqn. 4.1

- Eqn. 4.4.

77

Cost Functional First, the cost functional in Eqn. 4.1 is set to Eqn. 4.5 as

J = wttf

+ wg
(x(tf)− xg)2 + (y(tf)− yg)2

(x(t0 + tex)− xg)2 + (y(t0 + tex)− yg)2 + ε

+ wcf

tf∫
t0+tex

[wδf δf (t)
2 + wγγ(t)2 + wJJx(t)

2]dt

+ wFz

tf∫
t0+tex

[tanh(−Fzrl − a
b

) + tanh(−Fzrr − a
b

)]dt+ %

+ whaf

tf∫
t0+tex

[sin(ψg)(x− xg)− cos(ψg)(y − yg)]2dt (4.5)

where wt, wg, wcf , wδf , wγ, wJ , wFz , whaf are weight terms, x(t) and y(t) represent the

vehicle’s global position coordinates on a flat plane, ε is a small number set to 0.01

to avoid singularities, δf (t) is the steering angle at the front of the vehicle, γ(t) is the

steering rate, Jx(t) is the longitudinal jerk, a and b are parameters to prevent Fzrl

and Fzrr from being close to the minimum vertical tire load limit, denoted as Fzmin
,

as described in [92], and % is a term for penalizing the slack variables on the initial

and terminal conditions.

There are six terms in Eqn. 4.5, the first of which minimizes the final time tf ,

which helps establish a minimum-time-to-goal specification. The second term helps

the vehicle reach the goal when the goal is not within the LiDAR range, denoted as

Lrange. If the goal is within a distance of Lrange, then wg is set to zero, and the vehicle

is constrained to reach the goal. This constraint is described in greater detail later in

this section. The third term minimizes the control effort, which encourages smooth

control signals. The fourth term dissuades the controller from generating solutions

near the minimum vertical tire load limit. This is done to prevent vehicle rollover and

infeasible initializations in the next OCP. The fifth term establishes soft constraints

78

x

y

Ψ

αr

Fyr

δf

αf

FyfV U

ωz

Lr

Lf

Figure 4.2: 3DoF dynamic vehicle model [91].

on the initial and terminal conditions. This term is also described in greater detail

later in this section. Finally, to help the vehicle pass the goal location through the

desired direction ψg the sixth term is added, which minimizes the area between a line

in the (x, y) plane going through the goal in the desired direction ψg and the vehicle’s

trajectory in the (x, y) plane [92].

Dynamic Vehicle Model When including both the dynamic vehicle model and

minimum time-to-goal specifications, it is important to consider that the vehicle may

need to operate at its dynamic limits. Thus, this work leverages the 3DoF vehicle

model developed in [91] (shown in Fig. 4.2). This model is designed to plan trajec-

tories that operate a HMMWV safely at its dynamic limits [91]. To achieve this, it

has eight states, two controls, uses a pure-slip Pacejka tire model [107], and considers

the longitudinal load transfer effects when calculating the vertical tire forces. The

differential equations that are used to model the plant, the vehicle dynamics in the

OCP, and the state prediction function are shown in Eqn. 4.6 as

f(ξ(t), ζ(t), t) = D(ξ(t)) + Bζ(t) (4.6)

79

where,

D(ξ(t)) =

U(t) cos Ψ(t)− (V (t) + Lfωz(t)) sin Ψ(t)

U(t) sin Ψ(t) + (V (t) + Lfωz(t)) cos Ψ(t)

(Fyf (t) + Fyr(t))/Mt − U(t)ωz(t)

(Fyf (t)Lf − Fyr(t)Lr)/Izz

ωz(t)

0

ax(t)

0

,

ξ(t) =

x(t)

y(t)

V (t)

ωz(t)

Ψ(t)

δf (t)

U(t)

ax(t)

BT =

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

 and ζ(t) =

 γ(t)

Jx(t)

Eqn. 4.6 breaks the dynamics constraints in Eqn. 4.2 into two terms. The first

of these terms, D(ξ(t)), establishes the state dynamics for the global position of the

vehicle, the lateral speed V (t), the yaw rate ωz(t), the heading angle Ψ(t), the steering

80

angle δf (t), the longitudinal speed U(t), and the longitudinal acceleration ax(t). The

second term, Bζ(t), relates state variable rates to their respective control variables,

i.e., dδf
dt

(t) to the steering rate γ(t), and dax
dt

(t) to the longitudinal jerk Jx(t). Finally,

Lf and Lr are the distances from the front and rear axles to center-of-mass (COM),

Izz is the moment of inertia about the COM, Fyf and Fyr are the front and rear

lateral tire forces, and Mt is the total vehicle mass. Table C.3, which is in Appendix

6.2, contains all of the vehicle parameters used in this chapter.

The vertical tire load on each of the four tires is constrained to be above the

minimum vertical tire load limit Fzmin
. These constraints helps prevent vehicle roll-

over and are incorporated into Eqn. 4.3. To calculate the vertical loads on the

tires, this work uses a vertical load transfer model [92]. The vertical tire forces are

approximated as

Fzrl =
1

2
(Fzr0 +Kzx(ax(t)− V (t)ωz(t))−Kzyr

Fyf + Fyr
Mt

Fzrr =
1

2
(Fzr0 +Kzx(ax(t)− V (t)ωz(t)) +Kzyr

Fyf + Fyr
Mt

Fzfl =
1

2
(Fzf0 −Kzx(ax(t)− V (t)ωz(t))−Kzyf

Fyf + Fyr
Mt

Fzfr =
1

2
(Fzf0 −Kzx(ax(t)− V (t)ωz(t)) +Kzyf

Fyf + Fyr
Mt

where Fzrl and Fzrr are the rear left and rear right vertical tire loads, Fzfl and Fzfr

are the front left and front right vertical tire loads, Fzr0 =
MtLfg

Lf+Lr
is the static rear

axle load, Fzf0 = MtLrg
Lf+Lr

is the static front axle load, and Kzx is the longitudinal

load transfer coefficient, Kzyf and Kzyr are the front and rear lateral load transfer

coefficients [92].

State and Control Limits Actuator and other physical plant limits help establish

the state and control bounds, which are added to Eqn. 4.3. Specifically, five of the

81

states and both controls are bounded with constant upper and lower bounds as

xmin ≤ x(t) ≤ xmax

ymin ≤ y(t) ≤ ymax

ψmin ≤ ψ(t) ≤ ψmax

δf,min ≤ δf (t) ≤ δf,max

Umin ≤ U(t) ≤ Umax

γf,min ≤ γf (t) ≤ γf,max

Jx,min ≤ Jx (t) ≤ Jx,max

Finally, nonlinear functions of the vehicle’s speed bound the vehicle’s acceleration

as

ax,min[U(t)] ≤ ax(t) ≤ ax,max[U(t)]

Maximum deceleration/acceleration data collected from a 14DoF HMMWVmodel are

used to establish these nonlinear functions for the maximum deceleration/acceleration

[92].

No explicit lateral speed or yaw rate constraints exist.

Obstacle Avoidance Two possible approaches for incorporating the static and

moving obstacle avoidance specifications into the OCP include soft constraints (or

artificial potential-fields) and time-varying hard constraints [140]. There are two lim-

itations to the soft constraints approach: (1) a trajectory may be generated that is

deemed feasible according to the formulation, but actually goes through an obsta-

cle, and (2), the NLP solve-times are known to be large, when compared with the

time-varying hard constraints approach [38]. Therefore, in this formulation, time-

82

varying hard constraints for the avoidance of static and moving obstacles avoidance

are incorporated into Eqn. 4.3.

Time-varying hard constraints enforce the vehicle’s trajectory to avoid intersecting

with the obstacles’ trajectories, while accounting for the obstacles’ shapes and sizes.

Because this OCP will be transcribed into an NLP, the obstacles’ shapes should be

represented with twice continuously differentiable functions, e.g., a circle or an ellipse.

As such, similar to planners tailored for spacecraft [71] and UGV [38] applications,

this work establishes a moving obstacle avoidance specification using time-varying,

elliptical hard constraints. Eqn. 4.7 defines these constraints as

(
x(t)− (x0obs[i] + vxt)

aobs[i] + sm(t)
)2+

(
y(t)− (y0obs[i] + vyt)

bobs[i] + sm(t)
)2 > 1, for i ∈ 1 : Q (4.7)

where sm(t) = sm1 + sm2−sm1

tf
t describes the time-varying safety margin, which en-

forces the vehicle to operate further from the obstacles as t increases, and Q is the

total number of obstacles. The notation x0obs[i] refers to the ith element of the x0obs

vector.

LiDAR Region Constraints To ensure that the vehicle’s trajectory does not go

beyond the LiDAR region, an additional path constraint is incorporated into Eqn.

4.3. This constraint is defined in Eqn. 4.8 as

(x(t)− x(t0 + tex))
2 + (y(t)− y(t0 + tex))

2 − (Lrange + κ)2 ≤ 0 (4.8)

where κ is the LiDAR relaxation range [92].

Initial and Terminal State Constraints In a low-tolerance hard constraints ap-

proach, if the plant is driven into an infeasible state space, a feasible control signal can-

83

not be computed [127]. To mitigate infeasible problems created using low-tolerance

hard constraints on the initial and terminal conditions, soft constraints are introduced

into this formulation. Soft constraints are introduced using slack variables, where the

size of the slack variable corresponds to the respective constraint violation [79]. These

slack constraints are shown in Eqn. 4.9-4.14 as

X0p − ξ(t0 + tex) ≤ x0s (4.9)

X0p + ξ(t0 + tex) ≥ x0s (4.10)

xg − x(tf) ≤ xf s[1] (4.11)

xg + x(tf) ≥ xf s[1] (4.12)

yg − y(tf) ≤ xf s[2] (4.13)

yg + y(tf) ≥ xf s[2] (4.14)

where x0s is the nst dimensional vector of slack variables for the initial conditions,

and xf s is the two dimensional vector of slack variables for the terminal conditions.

Adding slack variables to the cost functional reduces the size of the slack constraint

violations. The weight for these slack variables is chosen to be large enough to keep

the slack constraint close to zero. The % term in Eqn. 4.1 is now defined in Eqn. 4.15

as

% = ws0x0s + wsfxf s (4.15)

where ws0 is a 1 × nst dimensional vector of individual weight terms on the slack

variables for the initial state constraints, and wsf is a 1 × 2 dimensional vector of

individual weight terms on the slack variables for the final state constraints.

When using only soft constraints, "optimal" trajectories are found that have initial

and terminal states which are too far from their desired values. Adding high-tolerance

hard constraints on the initial and terminal state conditions mitigates this issue. Thus,

84

high-tolerance hard constraints are added to Eqn. 4.4, where the entire initial state

is constrained to match X0p within a specified tolerance X0tol. Eqn. 4.16 establishes

these constraints as

X0p −X0tol ≤ ξ(t0 + tex) ≤ X0p + X0tol (4.16)

Additionally, the vehicle’s final x and y positions are constrained to be within the

goal tolerance σ using Eqn. 4.17 - Eqn. 4.18 as

xg − σ ≤ x(tf) ≤ xg + σ (4.17)

yg − σ ≤ y(tf) ≤ yg + σ (4.18)

If the distance from the vehicle to the goal is greater than the vehicle’s planning

range Lrange, then the soft (Eqn. 4.9 - Eqn. 4.14) and hard constraints (Eqn. 4.17

- Eqn. 4.18) on the final conditions are relaxed. Setting the elements in wsf to

zero relaxes the soft constraints, and setting σ to 106 m relaxes the hard constraints.

The remaining parameter modifications and additional constraints needed to relax the

assumption that the goal is within the vehicle’s planning range [38] are now presented.

LiDAR Range Constraints If the goal is not within Lrange of the vehicle, then

the vehicle is constrained to arrive at the edge of the LiDAR region within a distance

of κ at tf . This is accomplished using Eqn. 4.19 and Eqn. 4.20 as

(x(tf)− x(t0 + tex))
2 + (y(tf)− y(t0 + tex))

2 − p1 ≤ 0 (4.19)

−(x(tf)− x(t0 + tex))
2 − (y(tf)− y(t0 + tex))

2 + p2 ≤ 0 (4.20)

where p1 and p2 are set to (Lrange + κ)2 and (Lrange − κ)2, respectively.

To avoid creating an infeasible problem while continuing to drive the UGV towards

85

the goal, the goal constraints described in the previous section (i.e., Eqn. 4.9 - Eqn.

4.18) are relaxed and a new soft constraint is used. This soft constraint minimizes the

squared distance from the vehicle to the goal at tf , normalized by squared distance

from the vehicle to the goal at t0 + tex [92]. Setting the goal weight wg in Eqn. 4.5 to

a non-zero value enforces this constraint.

In the case that the goal is within a distance of Lrange to the vehicle, wg is set

to zero and the vehicle is constrained to reach the goal using Eqn. 4.9 - Eqn. 4.18.

This is done by setting σ to a much smaller goal tolerance, which enforces the hard

constraints on reaching the goal, and setting the elements in the weight vector wsf to

large positive weights establishes soft constraint on reaching the goal through slack

variables. Then, to avoid creating an infeasible problem, the hard constraints for

reaching the edge of the LiDAR region at tf are relaxed. To do this, p1 and p2 are

set to 10−6 and −10−6, respectively,

The above specifies the details of the NMPC-based trajectory planning formula-

tion with specifications S1-S6. The evaluation of this formulation as a function of its

specifications follows.

4.3 Evaluation Description

The next section presents comparisons among four planners within three different

test environments, and evaluates the proposed planner’s ability to improve both safety

and performance without increasing solve-times. This section describes these planners

and their test environments. Afterwards, the computer hardware platform used to

produce the results presented in this chapter and the software configuration under

which NLOptControl is evaluated are described.

86

Table 4.1: Planners compared in the work

4.3.1 Planners

Comparisons are made among four planners (denoted as PA-PD). The specifi-

cations of these planners are listed in Table 4.1, where PA is used as the baseline

planner. Note that PA already includes the specifications of a dynamic vehicle model

and simultaneous optimization of speed and steering, since previous work already

illustrated the need to include them; see [93, 44, 91] for the first and [92] for the

latter.

The set of parameters in the left-hand column in Table C.4, which is in Appendix

6.2, define the planners. The right-hand column in Table C.4 defines the values of

PA’s parameters. All of the weight terms used in this work are obtained either from

previous research [92] or manual tuning. In addition to this, setting the moving

obstacle avoidance constraint in Eqn. 4.7 to false means that Eqn. 4.7 is modified

to Eqn. 4.21 as

(
x(t)− x0obs?[i]

aobs[i] + sm(t)
)2 + (

y(t)− y0obs?[i]

bobs[i] + sm(t)
)2 > 1, for i ∈ 1 : Q (4.21)

where x0obs? and y0obs? are arrays that describe the initial x and y positions of

the obstacles, respectively. These arrays are updated to reflect the obstacles’ current

87

position after each execution horizon.

Next, the values of PA’s parameters are modified to define PB-PD. The difference

between PA and PB is that the weight on the final time wt is set to 100 for PB. To

allow PA to reach the goal or the edge of the LiDAR region at will, the final time is left

as a design variable, but the weight on it (i.e., wt) is set to zero. Next, the difference

between PB and PC is that wce is set to 1 for the latter. Finally, the difference between

PC and PD is that PD has a moving obstacle avoidance specification, while PC does

not. PD establishes this specification with Eqn. 4.7. Specifically, PC assumes that

the obstacles will be static over each prediction horizon, while PD incorporates the

movement of the obstacles into the position constraints over the prediction horizon.

Closed-loop comparisons are made among four different vehicles (denoted as VA−

VD). PA, PB, PC , and PD control VA, VB, VC , and VD, respectively. Unless otherwise

noted, the execution horizon is set to a value of 0.5 s for all comparisons.

4.3.2 Environment Categories

To evaluate the proposed planner, this work uses four distinct environmental cat-

egories: unknown vs. known; unstructured vs. structured; dynamic vs. static, and

challenging vs. simple. A description of each follows.

Unknown vs. Known In an unknown environment [92], sensors collect data from

the environment for algorithms that estimate factors including the obstacles’ sizes,

positions, and velocities. In addition to assuming that the obstacle information is

known, this chapter assumes that the environment known.

Unstructured vs. Structured In an unstructured environment [131, 22, 82, 92],

there are no roads to follow or traffic rules to obey. However, in a structured envi-

ronment [76, 108], some combination of these factors needs to be considered. In this

chapter the distinction between these environment categories is that in an unstruc-

88

tured environment there are no lanes to follow, while in a structured environment

there is a lane to follow.

Dynamic vs. Static In a dynamic environment [20], at least one obstacle is mov-

ing. In a static environment, all of the obstacles are stationary. This chapter uses

both dynamic and static environments.

Challenging vs. Simple In planning problems, the number of obstacles directly

affects the computational load [20]. As such, the environment becomes more challeng-

ing as the number of obstacles increases. This chapter uses an environment with 38

obstacles as a challenging example and an environment with 3 obstacles as a simple

one.

4.3.3 Environments

UGV safety, performance, and solve-times are evaluated in three different environ-

ments (denoted as EA-EC). Each of these environments consists of some combination

of the above environment categories, which is now described in detail.

EA: Simple, Static, Unstructured Environment Both the increase in per-

formance and solve-times, consequent to including the minimum time-to-goal and

minimum control effort specifications, can be evaluated in a simple, static, unstruc-

tured environment (denoted as EA). EA has three static obstacles (denoted as 01, 02,

and 03) and Table C.5, which is in Appendix 6.2, lists EA’s parameters. The right

trace of Fig. 5.13 shows the obstacle field and goal location of EA.

EB: Simple, Dynamic, Unstructured Environment The increases in both

safety and solve-times, consequent to including a moving obstacle avoidance specifi-

cation, can be evaluated in a simple, dynamic, unstructured environment (denoted

89

as EB). EB has three dynamic obstacles (also denoted as 01, 02, and 03). EB is the

same environment as EA, except the obstacles are given non-zero velocities to test the

planner’s ability to avoid collisions with moving obstacles. The respective velocities

of 01, 02, and 03 are as follows:

vx = [−2,−1,−0.5]
m

s
and vy = [0, 1, 6]

m

s

Fig. 4.4 shows the movement of these obstacles, which can be seen in the right

trace by following the obstacles’ position at the indicated times.

EC: Challenging, Dynamic, Structured Environment Increases in safety and

solve-times from including a moving obstacle avoidance specification can be fur-

ther evaluated within a challenging, dynamic, structured environment (denoted as

EC). EC is a double lane change scenario, which was originally developed to test

a HMMWV within a static environment [98]. Fig. 4.5 shows EC , which has two

large obstacles that need to be avoided, labeled 01 and 02. In this test, the vehicle is

started at the bottom of Fig. 4.5 traveling in the left lane at a speed of 17 m
s
. From

this point, it is restricted to perform a double lane change maneuver. To constrain

the vehicle to perform this maneuver, first, minimum and maximum constraints on

the vehicle’s x position are imposed. This restricted region is colored in light blue,

where the lower and upper limits on the vehicle’s x position are xmin = 0 m and

xmax = 24 m, respectively. Next, to ensure that the vehicle stays in the left lane

during the first part of the maneuver, at the start of the track, until after y = 175 m,

a series of 36 cones are placed at the edge of the lane boundary. If these cones are

not present, or there are not enough cones, then the vehicle will change lanes earlier

in order to minimize the sixth term in Eqn. 4.5. The first large obstacle, 01, is static

and is located in the left lane. The second large obstacle, 02, starts at the back of the

track in the right lane near the goal and moves towards the front of the track. Table

90

B.5 lists the parameters for EC .

To improve safety and performance within EC , several planner parameters, which

are listed in Table C.4, are modified. Specifically, for all of the EC simulations shown

in this chapter, the Lrange, N , and κ planner parameters in Table C.4 are modified.

The Lrange is modified because using an Lrange of 50 m, the vehicle crashes into 02 over

a large range of 02 obstacle speeds. To avoid limiting the UGV based on its sensing

range, and not its dynamic limits, Lrange is increased to 90 m for EC . To accommodate

for this extended planning range, the number of points in the discretization N is

increased from 10 to 15 and the LiDAR relaxation range κ is increased from 5 m to

10 m.

4.3.4 Hardware Platform and Software Stack

The results in this chapter are produced using a single machine running Ubuntu

16.04 with an Intel Core i7 − 4910MQ CPU @2.90GHz × 8, and 31.3GB of RAM.

This work evaluates NLOptControl’s ability to solve the complex OCP formulation

presented in this work in real-time. As mentioned, NLOptControl is our open-

source, direct-collocation based OCP solver. In this work NLOptControl 0.1.6 [37]

is used with the KNITRO 10.3 NLP solver, where the default KNITRO settings

are used, except the maximum CPU-time (i.e., solve-time), which is set to 300 s.

Additionally, the trapezoidal method [10, 78] is used to approximate both the cost

functional (Eqn. 4.1) and the dynamics (Eqn. 4.2). In order to more closely simulate

practice, where time can typically be allocated to initialize trajectory planners, the

optimizations are warm-started.

91

4.4 Results

4.4.1 Performance and Solve-Times within EA

Planning with a minimum time-to-goal specification can reduce the time-to-goal

without increasing the solve-times in a simple, static, unstructured environment. In

particular, using either PB or PC in lieu of PA within EA, reduces the time-to-goal

from 9.0 s to 7.0 s (see Fig. 5.13). This is because, until about t = 5.5 s, both VB and

VC accelerate while VA decelerates; this results in higher speeds for both VB and VC .

Next, while both PB and PC run in real-time in EA, PA does not. This can be seen in

the top left trace of Fig. 5.13, where the solve-times for both PB and PC are all less

than tex, but several of the solve-times obtained using PA go above tex. Again, this

creates a safety issue because, in practice, if the solve-time is greater than tex, then

the vehicle will not have a trajectory to follow.

In EA, compared to PB, PC reduces the control effort without increasing either

the time-to-goal or the solve-times. More specifically, even though VB and VC arrive

at the goal in 7.0 s, VC uses less control effort for all of the three control effort terms.

The third term in Eqn. 4.5 calculates the control effort terms for the steering angle,

steering rate, and longitudinal jerk. The overall values of each of these control effort

terms, along with their percentage decrease, are in Table B.6, which is in Appendix

6.2. Next, in the top left trace in Fig. 5.13, it can be seen that the solve-times for

PB and PC are below the real-time threshold of 0.5 s.

4.4.2 Safety and Solve-Times within EB

Planning with a moving obstacle avoidance specification can increase safety with-

out increasing the solve-times in a simple, dynamic, unstructured environment. This

is shown in the comparison between PC and PD within EB (see Fig. 4.4). At the

start of this test, both vehicles accelerate and then turn in opposite directions: VC to

92

5 10 15
0

0.2
0.4
0.6

Iterations

so
lv
e-
ti
m
e

(s
)

−5

0

5
·10−2

δ f
(t

)
(r

ad
ia

n
)

10

15

20

u
x

(m
s
)

0 2 4 6 8
−2

−1

0

1

Time (s)

a
x

(m s2
)

160 180 200 220 240
0

20

40

60

80

100

120

Goal

O1O1O1O1

O2O2O2O2

O3O3O3O3

VA, 0.0 s

VA, 3.0 s

VA, 6.0 s

VA, 9.0 s

VB and VC , 0.0 s

VB and VC , 2.3 s

VB and VC , 4.7 s

VB and VC , 7.0 s

x (m)

y
(m

)

VA
VB
VC

Figure 4.3: Closed-loop comparison of PA, PB, and PC in EA.

93

5 10
0

0.2

0.4

0.6

Iterations

so
lv
e-
ti
m
e

(s
)

−5

0

5
·10−2

δ f
(t

)
(r

ad
ia

n
)

17

18

19

20

u
x

(m
s
)

0 2 4 6

−0.5
0

0.5
1

Time (s)

a
x

(m s2
)

140 160 180 200 220 240
0

20

40

60

80

100

120
Goal

O1, 0 s
O1, 2.2 s
O1, 4.3 s
O1, 6.5 sO2, 0 s

O2, 2.2 s
O2, 4.3 s
O2, 6.5 s O3, 0 s

O3, 2.2 s

O3, 4.3 s

O3, 6.5 s

VC , 0.0 s

VC , 1.2 s

VC , 2.3 s

VC , 3.5 s

VD, 0.0 s

VD, 2.2 s

VD, 4.3 s

VD, 6.5 s

x (m)

y
(m

)

VC
VD

Figure 4.4: Closed-loop comparison of PC and PD in EB.

the left and VD to the right. PC tries to avoid 01 to the left, which results in a crash

at t = 3.5 s. On the other hand, by taking the obstacles’ motion over the prediction

horizon into account, PD turns VD to the right. This allows VD to arrive safely at the

goal at t = 6.5 s. Lastly, as seen in the top left trace in Fig. 4.4, the solve-times for

both PB and PC are below the real-time threshold of 0.5 s.

4.4.3 Safety and Solve-Times within EC

Similarly, planning with a moving obstacle avoidance specification can increase

safety without significantly increasing the solve-times in a challenging, dynamic, struc-

tured environment. This is demonstrated by testing PC and PD within EC (see Fig.

94

4.5 - Fig. 4.7). At the start of the test, the first lane-change maneuver is performed

successfully for both VC and VD.

During this time, both vehicles accelerate aggressively to increase their speed from

17 m
s
at t = 0 s to 26.5 m

s
at t = 19.5 s. At this time, VC crashes into 02 (see Fig. 4.6

for a zoomed in view of the crash) while VD avoids 02 and eventually attains the goal.

Additionally, PD is able to avoid this collision with a solve-time that is only slightly

higher than the one obtained with PC ’s just before is causes VC to crash. The next

section discusses the larger solve-times encountered at 19.0 s. Finally, the solve-times

for PD are less than the real-time threshold of 0.5 s, despite the fact that this is a

challenging environment (i.e., with 38 obstacles instead of 3).

4.4.4 Execution Horizon and Obstacle Speed Analysis within EC

Including a moving obstacle avoidance specification increases safety over a range of

execution horizons and obstacle speeds. To shown this VC and VD are tested within EC

for a range of execution horizons (tex = [0.01, 0.0621, . . . , 1] s) and obstacle velocities

(vy[2] = [0,−2.11, . . . ,−20] m
s
). The data from this parameter sweep are shown in

Fig. 4.8, where a plotted point indicates a successful simulation. For instance, when

the execution horizon is 0.01 s and the velocity of 02 is −2.11 m
s
, both VC and VD

attain the goal.

The data follow the expected trend: i.e., VD is safer than VC , and the results are

statistically significant (p = 2.2×10−16), as shown by a Fisher Test, in Appendix 6.2.

VD accounts for the majority (87.1%) of the successful trials, and VC accounts for the

majority of (60.0%) of the trials that failed.

While making the execution horizon small creates a more reactive planner, which

can more reliably avoid collisions with fast moving obstacles, it makes it more difficult

to obtain the planning solutions in real-time. Fig. 4.9 depicts this issue, where the

real-time-factor (RTF) and probability-of-safety (POS) are defined as follows

95

−50 0 50 100
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

xmin xmax

Goal

Cones

O2, 0 s

O2, 9.5 s

O2, 19.5 s

O2, 28.5 s

O1

VC , 0.0 s

VC , 6.5 s

VC , 13.0 s

VC , 19.5 s

VD, 0.0 s

VD, 9.5 s

VD, 19.5 s

VD, 28.5 s

x (m)

y
(m

)

V C
V D

Figure 4.5: Closed-loop comparison of PC and PD in EC .

96

0 5 10 15 20
430

435

440

445

450

O2, 0 s

O2, 9.5 s

O2, 19.5 s

O2, 28.5 s

VC , 0.0 s

VC , 6.5 s

VC , 13.0 s

VC , 19.5 s

VD, 0.0 s

VD, 9.5 s

VD, 19.5 s

VD, 28.5 s

x (m)

y
(m

)

V C
V D

Figure 4.6: Zoomed in on Fig. 4.7 at 19.5 s

20 40 60
0

0.2
0.4
0.6 Real-time threshold = 0.5 s

Iterations

so
lv
e-
ti
m
e

(s
)

−2
0
2
4
·10−2

δ f
(t

)
(r

ad
ia

n
)

20

25

u
x

(m
s
)

0 10 20 30

−1
0
1

Time (s)

a
x

(m s2
) VC

VD

Figure 4.7: Closed-loop comparison of PC and PD in EC .

97

0 0.2 0.4 0.6 0.8 1

−30

−20

−10

0

Execution horizon (s)

V
o
bs

(m
s
)

V C V D

Figure 4.8: Effect that both the execution horizon and obstacle speed have on the
vehicle attaining the goal in EC for both PC and PD.

Definition IV.3. Real-time-factor (RTF): RTF = solve-timesmax
tex

. To calculate solve-timesmax,

the maximum value in a vector of solve-times for each test case (i.e., obstacle speed

and execution horizon) is averaged across obstacle speeds.

Definition IV.4. Probability-of-safety (POS): The probability that the vehicle will

attain the goal, which is calculated over the range of obstacle velocities for each

execution horizon.

For both PC and PD, the RTF is very high at small execution horizons and drops

for larger execution horizons, as shown in Fig. 4.9. For PC , the POS is very low

across the entire range of execution horizons. In contrast, PD’s POS is higher for

smaller execution horizons and lower for larger execution horizons. Additionally,

when using PD there are two cases where the RFT is less than 1, namely when the

execution horizon is either 0.687 or 0.790 s. In these cases the POS is 0.45 and 0.25,

respectively.

4.5 Discussion

This chapter develops four NMPC-based trajectory planners, each with a differ-

ent set of specifications. Comparisons among these planners, within three different

environments, illuminate the potential effects of several key planner specifications on

98

100

101

R
ea
l-t
im

e-
fa
ct
or

0

0.2

0.4

0.6

0.8

1 P
ro
ba

bi
lit
y-
of
-s
af
et
y

PC RTF V C POS
PD RTF V D POS

0 0.2 0.4 0.6 0.8 1

Execution horizon (s)

0

0.2

0.4

0.6

0.8

1

Figure 4.9: Effect of the execution horizon on both the maximum real-time factor
(left axis) and the probability-of-safety (right axis) in EC for both PC and PD.

UGV safety and performance. These comparisons provide the basis for this chapter’s

contributions.

This work was motivated by the assumption that including the set of specifications

S1-S7 into a planner will improve both performance and safety, compared with less

comprehensive sets. The results presented in this chapter support this assumption. In

particular, the results show that including (a) minimum time-to-goal, (b) minimum

control effort, and (c) moving obstacle avoidance specifications improves the closed-

loop performance and safety for a UGV application.

Contrary to our expectations, adding several key planner specifications does not

lead to larger solve-times. Specifically, the results show that adding (a) minimum

time-to-goal, (b) minimum control effort, and (c) moving obstacle avoidance specifi-

cations does not lead to an increase in NLP solve-times.

In fact, adding a minimum time-to-goal specification actually reduces the solve-

times within the simple, static, unstructured environment (see the top left trace in Fig.

5.13). The minimum time-to-goal specification helps balance the sixth term in Eqn.

4.5, which minimizes the area between the vehicle’s position trajectory and a line that

runs through the goal in the y-direction. To see this balancing effect, compare the

99

position trajectories of VA to those of VB and VC in Fig. 5.13. The baseline planner,

i.e., PA, more effectively minimizes the area mentioned above for VA than either PB

or PC does for VB and VC , respectively. VB and VC have a larger area because both

PB and PC have, in addition to the sixth term in Eqn. 4.5, a minimum time-to-goal

specification. To reduce this area more effectively, VA aggressively decelerates over

the entire test and operates at lower speeds; these lower speeds allow VA to return to

the line that runs through the goal in the y-direction sooner than either VB or VC .

These differences between the vehicle’s trajectories may have led to the differences

in the planners’ solve-times, where PA has longer solve-times than either PB or PC .

Notice that at around 6 s, VA’s steering angle δf (t) and longitudinal deceleration ax(t)

are large, and PA’s solve-time increases sharply. On the basis of such observations,

this chapter speculates that planning aggressive deceleration and steering trajectories

at low speeds may be more computationally expensive than planning less aggressive

deceleration and steering trajectories at high speeds.

The results presented in this chapter show that NLOptControl can solve UGV

OCPs in real-time, suggesting that NLOptControl can solve complex OCPs faster

than MATLAB [92, 38]. Our latest UGV work [38] has a less complex OCP than

this work, while using the same computer and the same class of collocation methods1

as this work. Thus, the OCP solve-times obtained in this chapter and our previous

work can be compared to help evaluate the ability of the respective software stacks to

quickly solve complex OCPs. Our previous work uses MATLAB in conjunction with

the IPOPT NLP solver to solve a UGV planning problem. To illustrate a shortcom-

ing of this work, Table B.1, in Appendix 6.2, summarizes long solve-times obtained

using this software stack and hard and soft constraints for obstacle avoidance to solve

a single OCP in dynamic, unstructured environments with 3 and 17 obstacles. Sim-

ilar research shows that solving real-time UGV planning problems using MATLAB
1In both cases local-collocation methods are used; this work uses the trapezoidal method and our

previous work uses Euler’s backward method.

100

and IPOPT is challenging [92] — planning problems are solved up to 30 times slower

than real-time with a 2.90GHz Intel Xenon processor and a 0.5 s execution horizon.

This chapter shows that solving UGV OCPs, using a direct-collocation method im-

plemented in NLOptControl [37] in conjunction with the KNITRO NLP solver,

makes real-time solutions feasible. Additionally, unreported tests in EA-EC indicate

that using NLOptControl in conjunction with the open-source IPOPT NLP solver

yields similar solve-times. Therefore, this step forward for real-time UGV planning

can be attributed to the novel design specifications of NLOptControl and not the

KNITRO NLP solver.

As the number of obstacles increase, the environment becomes more challenging,

because the number of obstacles directly affects the computational load [20]. In

the formulation developed in this work, the NLP dimensions grow linearly as the

number of obstacles increases. Thus, increasing the number of obstacles from 3 (in

EA and EB) to 38 (in EC) enlarges the size of the NLP and the computational load.

It is reasonable to assume that this increase is a major factor in the corresponding

increase of solve-times. To see this increase in solve-times, compare Fig. 5.13 and Fig.

4.4 to Fig. 4.7. Increasing the number of obstacles may result in a loss of real-time

solutions. However, several approaches may be taken to use the formulation presented

in this chapter in an environment with many obstacles. These approaches include:

developing a strategy that considers a smaller number of obstacles at a time, grouping

several small, closely packed obstacles as a single obstacle, increasing computational

power, or some combination of these.

For a given UGV, as obstacle speed increases, the environment becomes more

challenging, because the vehicle is put in an increasingly difficult situation. The

data plotted in Fig. 4.8 support this claim; even with a moving obstacle avoidance

specification, it is not possible to reliably avoid the oncoming obstacle 02 in EC when

it is moving faster than 21.1 m
s
.

101

A moving obstacle avoidance specification may be unnecessary if the planner is

updating quickly and the obstacles are moving slowly. The data plotted in Fig. 4.8

also support this claim. The data reveals that if the obstacle is moving directly toward

the vehicle at a speed less than 2.11 m
s
, and if the execution horizon is less than 0.375 s,

then a planner without a moving obstacle avoidance specification will safely attain

the goal. Removing the moving obstacle avoidance specification will also eliminate

the need for an algorithm to predict the speed of the obstacles. This simplification

may be appropriate for some industrial applications, where the obstacles are known

to move slowly.

In addition to a moving obstacle avoidance specification, as obstacle speed in-

creases, a small execution horizon becomes increasingly crucial for safety. The data

plotted in Fig. 4.8 supports this claim as well; over a range of obstacle speeds, plan-

ning with a smaller execution horizon makes it more likely that the vehicle attains the

goal. It is therefore desirable to make the execution horizon as small as possible in

order to create a more reactive and safer planner. Having a small execution horizon,

however, makes it more difficult for the planner to obtain solutions in real-time.

In order to ensure that the planning solutions are obtained in real-time while

maintaining safety, it may be necessary to operate the UGV within environments

where the obstacles are traveling from low to moderate speeds. Particular sets of

data plotted in Fig. 4.8 support this claim as well. Specifically, when disregarding

the cases where the obstacle is traveling faster than 16.8 m
s
, the RTF decreases to

0.933 and the POS increases to 0.889. Similarly, when disregarding the data where

the obstacle is traveling faster than 4.21 m
s
, the RTF is further reduced to 0.920 and

the POS increases to 1.

In addition to reducing the execution horizon, planning in a dangerous situation

can increase the RTF. This results from the fact that planning in a dangerous situation

can lead to less feasible or even infeasible NLP constraints, which make it more

102

challenging or even impossible for the NLP solver to obtain a solution. The top trace

of Fig. 4.7 supports this claim; it shows that solve-times increase sharply just before

VD avoids a collision with 02. It is important to consider these situations in terms of

solve-time; if the planner cannot obtain a trajectory within the real-time limit, then

the vehicle will not have a trajectory to follow and the situation status will go from

dangerous to disastrous.

4.6 Conclusion

This chapter incorporates planner specifications S1-S7 (listed in Table 1.1) into an

NMPC-based trajectory planner for a UGV. UGV safety and performance is tested

within four simulation-based comparisons. The results show that

• planners with less comprehensive sets of specifications than S1-S7 reduce UGV

safety and performance,

• if the planner is updating quickly, then a slowly moving obstacle can be safely

avoided without a moving obstacle avoidance specification,

• to avoid faster obstacles, both the moving obstacle avoidance and small execu-

tion horizon specifications are necessary,

• a small execution horizon improves safety, but decreases the feasibility of ob-

taining trajectories in real-time, and

• planning in an environment with more obstacles increases OCP solve-times.

Contrary to our expectations, our results show that adding the minimum-time-to-goal,

minimum control effort, and moving obstacle avoidance specifications does not lead

to larger solve-times. In fact, adding a minimum-time-to-goal specification actually

reduces planning solve-times in the simple, static, unstructured environment. For our

103

final research objective, the first three comparisons show that NLOptControl solves

the OCP formulations, with a minimum-time-to-goal specification, in real-time, i.e.,

the solve-times are all less than the chosen execution horizon of 0.5 s. In contrast,

previous work [38, 92] shows that MATLAB cannot solve OCP formulations that

have a similar level of complexity in real-time. Therefore, NLOptControl is found

to be a suitable tool for quickly solving complex OCPs. While this work tailors

the NMPC-based trajectory planner for a UGV application, a variety of automated

vehicle systems, e.g., UAVs and spacecraft, can also make use of the approach detailed

here.

104

CHAPTER V

Real-time Trajectory Planning for Automated

Vehicle Safety and Performance in Unknown

Dynamic Environments

5.1 Introduction

Achieving safe and performance-based control of automated vehicles in unknown,

dynamic environments is challenging. Part of the challenge is identifying and com-

bining suitable planning and perception algorithms. For safety and performance, a

suitable planning algorithm must fully exploit the vehicle’s maneuvering capacity to

avoid collisions, especially for large, high-speed, automated-vehicle platforms such as

a racecar, HMMWV, or a passenger car in an emergency situation. Specifically for

safety, a suitable perception algorithm must accurately predict obstacle motion using

sensor data. While existing combinations of planning and perception algorithms allow

operation of automated vehicles in unknown dynamic environments, a combination

has yet to be established that ensures safety and performance.

Table 1.1 lists the specifications of the planner that are most critical for automated

vehicle performance and safety in dynamic environments. For safety in dynamic envi-

ronments, the planner should include a static and moving obstacle avoidance specifi-

cation (S1, Table 1.1). To improve the vehicle’s ability to avoid collisions with obsta-

105

cles, the planner should include a dynamic vehicle model specification (S2, Table 1.1),

which helps ensure that the planned trajectories are dynamically feasible [44, 45]. For

performance, the planner should include a minimum time-to-goal specification (S3,

Table 1.1), which in conjunction with a dynamic vehicle model specification, exploits

the vehicle’s maneuvering capacity to attain the goal as quickly as possible. For ad-

ditional performance, a minimum control effort specification (S4, Table 1.1) should

be included to reduce both mechanical wear and fuel consumption. To further im-

prove safety and performance, the planner should simultaneously optimize speed and

steering (S5, Table 1.1). This specification permits the planner to exploit the vehicle’s

maneuvering capacity better to avoid collisions with obstacles [92] and attain the goal

as quickly as possible. Finally, for safety, the planner should have a fast update rate

(i.e., small execution horizon, S6, Table 1.1), which makes the planner responsive to

sudden changes in the environment. However, formulating a planning algorithm with

S1–S5 and solving it quickly is difficult. Fortunately, NLOptControl, the direct-

collocation-based optimal control software tool developed in Chapter III, may enable

comprehensive trajectory planning algorithms to be easily formulated and quickly

solved. Thus, as an additional research task, this work evaluates NLOptControl’s

ability to solve comprehensive trajectory planning problems in unknown environments

quickly.

Safety- and performance-based planning algorithms [92, 38] have been combined

with perception algorithms to operate in unknown static environments [92], but not

in unknown dynamic environments. In [92], a relatively simple perception algorithm

is developed to enable automated vehicle testing in an unknown static environment.

Unfortunately, this simple perception algorithm cannot be easily modified to account

for moving obstacles. Combinations of planning and perception algorithms exist that

permit mobile robots [39] and manipulator arms [134] to operate in unknown dynamic

environments. However, neither [39], nor [134] explicitly considers the vehicle’s dy-

106

namics in the planning algorithm. As previously observed [44, 45], this simplification

renders the planning algorithm unsafe, especially in the types of applications specified

above.

The ultimate goal of this research is to ensure the safety and performance of

automated vehicles operating in unknown, dynamic environments. To this end, this

work combines a safety- and performance-based planning algorithm [91, 92, 38] with

a suitable perception algorithm; which is a recently developed Kalman-filter-based

algorithm that provides estimates of obstacle size, position and velocity using raw

light detection and ranging (LiDAR) data [115]. Planning algorithms are typically

developed under the assumption of a known environment. Therefore, as an additional

goal, this research statistically quantifies various safety and performance factors that

are expected to deteriorate when the assumption that the environment is known is

relaxed. These factors are obstacle avoidance ability, tracking error, orientation error,

planner solve times, time-to-goal, steering effort, throttle effort, and braking effort.

For this quantification, this chapter assumes that

• the goal location is known,

• the vehicle state is known, and

• the terrain is flat.

The remainder of this chapter is structured as follows: Section 5.2 describes the

automated vehicle framework developed to combine the planning and perception algo-

rithms. Section 5.3 describes the test conditions under which the proposed automated

vehicle system is evaluated. Section 5.4 compares the performance and safety factors

of the automated vehicle system operating in a known to those of an unknown en-

vironment. The results of this comparison are discussed in Section 5.5. Section 5.6

summarizes the chapter and draws conclusions.

107

5.2 Methods

This chapter combines planning [91, 92, 38] and perception [115] algorithms to

enable safety and performance for automated vehicles operating in unknown dynamic

environments. To this end, this chapter develops a high-fidelity, simulation-based,

proving ground framework. This framework is developed in ROS to move towards

experimental testing. This section describes the design of this framework.

5.2.1 Automated vehicle framework

Many automated vehicle frameworks are tailored for urban settings, otherwise

known as a structured environment. In a structured environment there specific con-

straints, such as traffic rules to follow, which are accounted for using hierarchical

control schemes. However, the automated vehicle framework developed in this work

is tested in an unstructured environment. In an unstructured environment, there are

no traffic rules to follow. As such, this section first describes the framework developed

in the context of a structured environment. This description illustrates how a hierar-

chical control scheme in a structured environment can use the framework developed

in this work.

In urban settings, control of automated ground vehicles can be accomplished using

a hierarchical structure with four layers [108]; route planning, behavioral layer, motion

planning, and local feedback control. These layers are shown conceptually in Fig. 5.1a

and are briefly described for completeness. Afterward, the reduced framework that is

used in this work, which is depicted in Fig. 5.1a, is discussed. This reduced framework

eliminates route planning and behavioral layers.

Given a goal location G a route planning algorithm, such as the Transfer Pattern

[5] technique1, computes a route information R and typically includes a sequence

of way-points through a road network [6]. With R and environment estimates Eest,
1which has been used in Google Maps since 2010 [6]

108

such as obstacle-free space, the behavioral layer identifies motion specifications M

and may identify if the vehicle should change lanes, obey traffic rules, or slow down

near pedestrians, etc.

The motion planner is then provided motion specifications M, environment infor-

mation estimates Eest, and plant state estimate X0est, to calculate either a reference

signal for the local feedback control layer. This reference signal may be a reference

path Xref, or state trajectory Xref(t), or control trajectory Uref(t) [5]. Depending

on the design of the motion planner desirable properties of Xref/Xref(t) include

collision-free, dynamically feasible, minimum-time, and minimal control effort. Path

planning involves finding a feasible and optimal path which entails meeting the de-

signer’s constraints and minimizing the terms in the objective functional. Popular

path planning methods include geometrical methods [19] and sampling based methods

[75]. A limitation of path planners is that they do not tell the local feedback con-

troller how to follow Xref, because no temporal information is included. Therefore,

following a reference path Xref may not be safe as it does constrain the vehicle dy-

namics to be feasible and the environment may not be static. When small automated

ground vehicles are operated in 3D static environments at low to moderate speeds with

a conservative control input, incorporating kinematic constraints into path planner

may be suitable [82]. However, in emergency situations, military missions, or racing

applications, the environment is often dynamic and it may be necessary to operate

automated ground vehicles at high-speeds with control inputs that push the vehicle

to its dynamical limit. Trajectory planners are better suited for this type of applica-

tion because Xref(t) provides a temporal component. This work focuses on military

applications and develops a controller for an HMMWV vehicle. The HMMWV is a

large vehicle that has a high center of gravity and operating it at high-speeds causes

to rollover be a major issue. In addition to rollover, it is desirable to operate HMMVs

in unstructured environments. Typically motion planners are designed for urban en-

109

vironments [76, 108] and relatively less research and development work specifically

for unstructured environments [131, 22, 82]. As mentioned, in an unstructured en-

vironment, there are no roads to follow or traffic rules to obey. While in some ways

this makes the motion planning problem easier, it also opens up new challenges. For

instance, with no roads to follow the design space for identifying trajectories or paths

is significantly larger

When this reference signal, a state estimate X0est, and an estimate of the en-

vironment information Eest, the local feedback control layer calculates the actuator

control signals U. The goal of the local feedback control layer is to stabilize the

reference signal to ensure robustness and correct for both modeling errors and un-

certainties. Effective techniques used in the local feedback layer include pure pursuit

[21], linear MPC, and nonlinear MPC controllers. Ultimately, the actuator control

signal U induces the plant state X0 to evolve in the environment.

The remaining blocks in Fig. 5.1a account for the perception and estimation

aspects of the automated vehicle problem. The sensors produce the environmental

data E , which includes both perception sensors, such as LiDARs and cameras, and

state sensors, such as GPS, IMU, and wheel encoders. Then the estimation and

perception algorithms process the environmental data E to produce state estimates

X0est and environment information estimates Eest.

5.2.2 Scope of this work

To narrow the scope of this work, route planning, and the behavioral layer in

the framework in Fig. 5.1a are omitted and the focus is the rest of the framework.

Additionally, this work considers that the automated ground vehicle is operating in

an open area such as a field, so there are no streets to follow or traffic rules to obey.

With that, both the route planning and behavioral layers are removed and the goal

location G is be passed directly to the motion planning layer. Finally, the actual

110

(a) Hierarchical control structure used for automated ground vehicles in urban environments.
† designates trajectory planning inputs, as opposed to path planning input.

Behavioral
Layer

Motion
Planning

Local
Feedback
Control

Plant Environment

Route
Planning

Estimation
and

Perception
Sensors

Uref(t)†

R

M Xref(t)†

Xref
U

G

X0

E
X0est,Eest

(b) Hierarchical control structure used in this work.

Motion
Planning

Local
Feedback
Control

Plant Environment

Perception Sensors

G Xref(t)† U

X0

E
X0,Eest

Figure 5.1: Hierarchical control structures used for automated vehicles

plant state X0 is assumed to be known.

This reduced framework is depicted in Fig. 5.1b. The four major components of

this framework include the plant, the local feedback controllers, the motion planning

algorithm, the perception algorithm, and the environment. A 145 DOF HMMWV

model is created using Project Chrono to realize the plant. For the feedback, controls

consist of a pure pursuit algorithm and a PID controller. Together, these controllers

send steering, throttle and brake control signals U to the plant that follow the po-

sition and speed trajectories, which are included in the reference trajectory Xref(t)

and determined using the planning algorithm. The planning algorithm uses the plant

state X0 and estimates of the obstacles’ size and speed Eest. The perception algo-

rithm produces obstacle estimates Eest using data collected in the environment E .

The environment is modeled using the Gazebo simulator. This environment model

includes a 2D LiDAR model and the vehicle’s position size and orientation.

111

A scenario consists of a goal location G, an obstacle field, and an initial plant

state. Provided a particular scenario, the framework in Fig. 5.1a runs until either

the vehicle attains the goal or the test fails. The test fails if

• the vehicle crashes into an obstacle,

• two of the tires on the plant lift off of the ground,

• any of the solve times exceeds 10 s,

• the overall simulation time exceeds 500 s,

• the solution to the nonlinear programming problem (NLP) does not meet the

Karush-Kuhn-Tucker conditions for optimality, or if

• the vehicle travels outside of the prescribed test track area in Chrono.

The remainder of this section further describes the perception algorithm, LiDAR

model, collision detection, plant model, planning algorithm, and the local feedback

controller.

5.2.3 Perception algorithm

The perception algorithm [115] used in this work processes raw 2D LiDAR data to

detect and track obstacles. Detected obstacles are represented using circular models.

A Kalman filter enables tracking of these circular models, which produces an estimate

of the obstacle’s velocity. Fig. 5.2 illustrates the accuracy of the position estimates

determined by the perception algorithm. However, this figure illustrates that even

though the obstacles are circles the estimated obstacle position is slightly forward of

the actual obstacle position. This is an artifact the design of the algorithm which

centers the obstacles position between the two furthest points for each obstacle.

This work uses an implementation of this perception algorithm [115] that has been

tested in physical experimentation. This implementation that uses raw 2D LiDAR

112

Figure 5.2: Estimating obstacle data using raw LiDAR data and the Kalman filter-
based perception algorithm [115]

data to estimated environment information Eest. Unfortunately, at the time of experi-

mentation, the author did not have access to an automated HMMWV vehicle testbed;

thus, the raw 2D LiDAR data necessary for this implementation is generated in the

simulation. Fortunately, this type of data is produced using the Gazebo simulation

environment.

5.2.4 LiDAR model and collision detection

Fig. 5.3 illustrates the Gazebo simulation environment that models a 2D LiDAR

device, the obstacles, and the vehicle’s size, position (x, y), and orientation ψ. The

state of the actual plant model is used to update the vehicle’s position and orientation.

This design permits the LiDAR model to accurately gather data while moving among

the obstacles. The LiDAR has a range of 100 m and sweeps with 1875 samples

at points 180 degrees in front of the vehicle. Gaussian noise is added to the LiDAR

model with a mean of 0 m and a standard deviation of 0.01 m. The remaining LiDAR

113

Figure 5.3: Modeling the LiDAR, the obstacles, and collisions between the vehicle
and the obstacles using Gazebo

parameters are summarized in Table C.4, which is in Appendix 6.2. A contact sensor

plug-in is added to Gazebo to enable collision detection between the vehicle and the

obstacles.

5.2.5 Plant model

Fig. 5.4 depicts the high-fidelity HMMWV model adapted from Chrono [117] that

models the plant. This plant simulation in Chrono consists of an FEA-based model

for the terrain and the wheels that interact with a 145 degree of freedom vehicle

dynamics model. This vehicle dynamics model is rear-wheel drive and includes a

full double wishbone suspension, a pitman steering arm mechanism, and a model

powertrain model. Steering ∈ [−1, 1], throttle ∈ [0, 1], and brake ∈ [0,−1] commands

U control the plant. The Chrono model and vehicle parameters are in Table C.2

and Table C.3, respectively, these tables are in Appendix 6.2. Unfortunately, the

plant model simulation runs about two times slower than real-time. Therefore, the

Gazebo simulation time is advanced based off of the Chrono time and the ROS time is

advanced based off of the Gazebo time. Additionally, the planner is not provided this

additional time. If the cumulative planner solve time exceeds the current simulation

time, the planner is forced to wait until this condition is false before commencing

another optimization.

114

Figure 5.4: High-fidelity HMMWV model in Chrono used to model the plant [128].

5.2.6 Planning algorithm

The optimal control problem formulation used in this work is tailored for a

HMMWV and is developed in [91, 92, 38]. A 3DOF vehicle model [91] is used to

realize the dynamic vehicle model specification. This model has eight states, two

control, uses a pure-slip Pacejka tire model [107], considers the longitudinal load

transfer effects when determining the vertical tire force, and constrains the vertical

tire load to remain above a minimum vertical tire load limit Fzmin
. Table C.4, which

is in Appendix 6.2, contains the key planning parameters used in this chapter. Since

the focus of this chapter is not to develop a planning algorithm, the optimal control

problem developed in [91, 92, 38] is omitted here. However, this work does provide

the most realistic test of this type of planning algorithm. This work tests a planning

algorithm with specifications S1-S5 is tested (1) with a high-fidelity plant model, (2)

on a distributed ROS-based system, (3) and most importantly in conjunction with a

perception algorithm to enable operation in an unknown dynamic environment.

Fig. 5.5 shows the planning animation that can be displayed as the simulation is

running. This animation shows the plant trajectories, the current planned trajectory,

and the solve-times. This figure shows that planning solutions are obtained at around

0.5 Hz. Unfortunately, this update rate is not fast enough such that the planner

algorithm can directly send control signals to the plant. Additionally, the plant is

115

Figure 5.5: Animation showing (1) the current position, steering angle, longitudinal
speed and acceleration trajectories calculated with the planning algorithm compared
against the respective plant trajectories, and (2) the planning solve times.

controlled using a control signal U that consists of steering, throttle, and braking

signals. Therefore, the position and speed trajectories Xref(t) are sent to a path

tracking algorithm to quickly produces appropriate plant control signals U.

5.2.7 Local feedback controller

Two controllers process the latest trajectoryXref(t) to calculate the plant control

signalsU. A PID controller uses the speed trajectory to calculate appropriate throttle

∈ [0, 1], and brake ∈ [0,−1] commands to send to the plant. Additionally, a pure

pursuit path tracking algorithm [21] processes the position trajectory Xref(t) to

116

determine the the steering command ∈ [−1, 1] to send to the plant.

5.3 Evaluation Description

The next section evaluates the change in performance and safety factors when mov-

ing from a known environment to an unknown environment. This section describes

the test track, the performance and safety factors, and the computer hardware and

software specifications that produce the results presented in this chapter.

5.3.1 Test track

Fig. 5.6 shows the test track used to evaluate the perception algorithm’s ability

to enable the planning algorithm to operate in an unknown environment. This test

track consists of four obstacles, which are denoted as 01, 02, 03, and 04, and a goal

location. Table C.5, which is in Appendix 6.2, lists the base parameters of this test

track.

To permit the perception algorithm to be evaluated under a wide range of condi-

tions, this test track is parameterized by the radius r1 and velocity vy1 of 01. These

test conditions are defined realized by 400 random combinations of r1 and vy1 are

selected in the ranges of 1 to 10 m and −0 to −20 m
s
, respectively. The negative on

the obstacle’s velocity indicates that it is in the negative y direction, coming directly

at the vehicle’s initial position, which can be seen in Fig. 5.6. Tests are performed for

these test conditions in an environment that is known and then one that is unknown.

The vehicles operating in the known and unknown environments are referred to as VA

and VB, respectively. As the tests are conducted, the various safety and performance

factors are recorded.

5.3.2 Performance and Safety Factors

These safety and performance factors are now described.

117

Figure 5.6: Test track that enables an evaluation of the Kalman-filter based perception
algorithm [115]

obstacle avoidance ability This safety factor is either true or false, indicating if

the vehicle collided into an obstacle or not.

tracking and orientation error These are both safety and performance factors.

They are safety factors because, if the vehicle is not following the planned trajectory,

then there is no guarantee that the obstacles will be avoided. They are performance

factors because the trajectory that we determined for the vehicle has a minimum

time to goal specification. By more closely following this trajectory the vehicle can

be pushed to higher operating speeds.

Fig. 5.7 shows the way that the tracking and orientation error are calculated. This

figure has three main variables, the orientation error Θε, the tracking error χε, the

vehicle’s current (xv, yv) and previous (xvp , yvp) (x, y) position state, and the closest

two points on the current planned trajectory (xt1 , yt1) and (xt2 , yt2). As seen in the

figure, these four points are used to calculate two lines. The magnitude of the angle

118

Figure 5.7: Calculating the orientation error Θε and tracking error χε

between these lines is calculated for the orientation error Θε and the perpendicular

distance from the vehicle’s current state (xv, yv) to the planning line is the tracking

error χε. This algorithm is run at 5 Hz.

planner solve time Averaging all of the planners solve times determines the plan-

ner solve time.

time to goal The amount of time that it takes for the vehicle to attain the goal is

the time to goal.

steering effort Integrating the square of the steering signal that is sent to the

Chrono vehicle determines the steering effort.

throttle effort Integrating the square of the throttle signal that is sent to the

Chrono vehicle determines the throttle effort.

braking effort Integrating the square of the braking signal that is sent to the

Chrono vehicle determines the braking effort.

119

−20−15−10−50

2

4

6

8

10

Obstacle 01 velocity (m
s
)

O
bs
ta
cl
e

0 1
ra
di
us

(s
)

known unknown both fail

Figure 5.8: Effect of obstacle size and speed on attaining the goal in both an unknown
and a known environment.

5.3.3 Hardware Platform and Software Stack

The results in this chapter are produced using a single machine running Ubuntu

16.04 with an Intel Core i7 − 3770MQ CPU @2.90GHz × 8, and 15.6GB of RAM.

In this work NLOptControl 0.1.6+ [37] configured with the trapezoidal method

[10, 78] direct-collocation solver is used with the KNITRO 10.3 NLP solver to solve

the planning problems.

5.4 Results

Operating in an unknown environment reduces the vehicle’s ability to attain the

goal over a range of obstacle sizes and speeds. To illustrate this effect, tests are

performed on the test track, which is described in the previous section, in both an

unknown and a known environment for 600 random sizes and speeds of obstacle 01.

Fig. 5.8 summarizes the the data from this parameter sweep indicating if the vehicle

attains the goal in the known environment, the known environment, or not in either

the known or unknown environment.

Out of the 600 cases tested, there are 264 cases where the vehicle attains the goal

in both the known and unknown environments. Fig. 5.9 illustrates one of the cases

120

0

1

2
so
lv
e-
ti
m
e

(s
)

−5

0

5

·10−2

δ f
(t

)
(r

ad
ia

n
)

0 10 20 30
0

10

20

Time (s)

u
x

(m
s
)

−100−50 0 50 100

0

50

100

150

200

250

300

350

400 Goal

O1, 0.0 s

O1, 7.9 s

O1, 15.8 s

O1, 23.6 s

O2O2O2O2

O3O3O3O3

O4, 0.0 s
O4, 7.9 s
O4, 15.8 s
O4, 23.6 s

VA, 0.0 s

VA, 7.9 s

VA, 15.8 s

VA, 23.6 s

VB, 0.0 s

VB, 9.3 s

VB, 18.6 s

VB, 27.9 s

x (m)

y
(m

)

VA, known environment
VB, unknown environment

Figure 5.9: A case with a small obstacle traveling at moderate speeds, where the goal
is attained in both known and unknown environments.

that the vehicle attains the goal in both the known and unknown environments. In

this case, 01 has a 2.44 m radius and is traveling at a velocity of −6.89 m
s
. While

both vehicles attain the goal, the vehicles take different trajectories and have different

solve times. For this case, operating in an unknown environment increases both solve

times and steering effort.

Overall, the results from this parameter sweep indicate that operating in an un-

known environment degrades all of the performance and safety factors. Fisher tests

show that operating in an unknown environment significantly increases (p� 1×10−6)

collisions, tracking error, orientation error, planner solve-times, time to goal, steering

effort, throttle effort, and braking effort. Only the data from the cases where the

vehicle attains the goal in both the unknown and known environment are used to

calculate the safety and performance factors, except for the collision statistics.

121

0

1

2
so
lv
e-
ti
m
e

(s
)

−2

0

2
·10−2

δ f
(t

)
(r

ad
ia

n
)

0 10 20
0

10

20

Time (s)

u
x

(m
s
)

−100−50 0 50 100

0

50

100

150

200

250

300

350

400 Goal

O1, 0.0 sO1, 5.3 sO1, 10.6 sO1, 15.9 s

O2O2O2O2

O3O3O3O3

O4, 0.0 sO4, 5.3 sO4, 10.6 sO4, 15.9 s

VA, 0.0 s

VA, 7.6 s

VA, 15.2 s

VA, 22.8 s

VB, 0.0 s

VB, 5.3 s

VB, 10.6 s

VB, 15.9 s

x (m)

y
(m

)

VA, known environment
VB, unknown environment

Figure 5.10: A case with a large obstacle traveling at slow speeds, where the vehicle
attains the goal in an known environment, but not in an unknown environment,
because a non-optimal planning solution is determined.

Fig. 5.8 indicates that it is harder to avoid large and slow obstacles in an unknown

environment, than a known environment. Consider one of these cases in Fig. 5.10,

where 01 has a radius of 8.72 m and is traveling at a velocity of −1.5 m
s
.

Fig. 5.8 indicates that the vehicle operating an unknown environment with

medium sized vehicles traveling slowly, does not attain the goal. Consider one of

these cases in Fig. 5.11, where 01 has a radius of 1.89 m and is traveling at a velocity

of −0.63 m
s
. There is a large spike in the planner solve-times and the actual reason

for failure is that the planner did not determine an optimal solution, as required. It

is important to remember that as the vehicle is driving, the planner is calculating

the next trajectory. Therefore, in Fig. 5.11, while it appears that the planner should

be able to calculate a feasible trajectory, the optimization problem that is infeasible

was initialized almost 2 s before the 19.2 s. It is also important to keep in mind

122

0.5
1

1.5
2

so
lv
e-
ti
m
e

(s
)

−2

0

2

·10−2

δ f
(t

)
(r

ad
ia

n
)

0 10 20
0

10

20

Time (s)

u
x

(m
s
)

−100−50 0 50 100

0

50

100

150

200

250

300

350

400 Goal

O1, 0.0 sO1, 7.8 sO1, 15.6 sO1, 23.4 s

O2O2O2O2

O3O3O3O3

O4, 0.0 s
O4, 7.8 s
O4, 15.6 s
O4, 23.4 s

VA, 0.0 s

VA, 7.8 s

VA, 15.6 s

VA, 23.4 s

VB, 0.0 s

VB, 6.4 s

VB, 12.8 s

VB, 19.2 s

x (m)

y
(m

)

VA, known environment
VB, unknown environment

Figure 5.11: A case with a medium sized obstacle traveling slowly, where the goal is
not attained in an unknown environment

that the optimization problems in the unknown environment are solved using esti-

mates of the obstacle data, which are different than the actual obstacle data plotted

in these figures. The following section provides a possible explanation for why the

vehicle better attains the goal when the obstacles are moving at moderate to fast

speeds in an unknown environment, than when they are either stationary or moving

slowly.

Fig. 5.8 shows several anomalous cases where the vehicle does not attain the

goal, when a medium sized obstacle is traveling at moderate speeds in an unknown

environment. Consider one of these cases in Fig. 5.12, where 01 has a radius of

4.2 m and is traveling at a velocity of −7.78 m
s
. As seen, the vehicle in the unknown

environment misses the goal, which is likely due to the large planning solve-times.

Ultimately, the reason for failure is that simulation is stopped because the actual time

123

0.5

1

1.5

so
lv
e-
ti
m
e

(s
)

0

5 · 10−2
0.1

δ f
(t

)
(r

ad
ia

n
)

0 20 40
0

10

20

Time (s)

u
x

(m
s
)

−100−50 0 50 100

0

50

100

150

200

250

300

350

400 Goal

O1, 0.0 s

O1, 7.8 s

O1, 15.6 s

O1, 23.4 s

O2O2O2O2

O3O3O3O3

O4, 0.0 s
O4, 7.8 s
O4, 15.6 s
O4, 23.4 s

VA, 0.0 s

VA, 7.8 s

VA, 15.6 s

VA, 23.4 s

VB, 0.0 s

VB, 16.7 s

VB, 33.4 s

VB, 50.1 s

x (m)

y
(m

)

VA, known environment
VB, unknown environment

Figure 5.12: A case with a medium sized obstacle traveling at moderate seeds, where
the goal is missed in an unknown environment, but attained in an known environment

exceeds 50 s. The other failure cases in this region fail in this way as well.

Fig. 5.8 shows two anomalous cases where the vehicle does not attain the goal,

when a medium sized obstacle is moving very slowly in a known environment. Con-

sider one of these cases in Fig. 5.13, where 01 has a radius of 7.1 m and is traveling

at a velocity of −0.12 m
s
. The reason for failure in both of these anomalous cases is

that an optimal solution is not determined by the planner. Fig. 5.13 shows that, just

before 15 s, there is a spike in solve-time and the final two optimal solutions take

nearly 1 s to calculate. These planning delays put the vehicle in such a dangerous

situation, that the planner is not able determine an optimal solution and then, the

simulation is terminated.

124

0.5

1

so
lv
e-
ti
m
e

(s
)

−5

0

5
·10−2

δ f
(t

)
(r

ad
ia

n
)

0 5 10 15 20
0

10

20

Time (s)

u
x

(m
s
)

−100−50 0 50 100

0

50

100

150

200

250

300

350

400 Goal

O1, 0.0 sO1, 6.5 sO1, 12.9 sO1, 19.4 s

O2O2O2O2

O3O3O3O3

O4, 0.0 s
O4, 6.5 s
O4, 12.9 s
O4, 19.4 s

VA, 0.0 s

VA, 5.8 s

VA, 11.5 s

VA, 17.3 s

VB, 0.0 s

VB, 6.5 s

VB, 12.9 s

VB, 19.4 s

x (m)

y
(m

)

VA, known environment
VB, unknown environment

Figure 5.13: A case with a small sized obstacle is moving at very slow seeds, where an
optimal solution is not determined in a known environment and the vehicle crashes
in the unknown environment

125

5.5 Discussion

This work combines planning and perception algorithms to enable safe operation

of large, high-speed, unmanned ground vehicles in unknown, dynamic environments.

Moving from a known to an unknown environment degrades various safety and

performance factors. These factors include obstacle avoidance ability, tracking error,

orientation error, planner solve-times, time to goal, and steering effort. The results in

this work illustrate that moving from a known to an unknown environment degrades

all of these safety and performance factors. This performance and safety gap will

exist until perception algorithms can provide planning algorithms with better esti-

mates of the size and speed of the obstacles in the environment. However, assuming

that the environment is known makes it easier to develop and test new automated

vehicles algorithms. Therefore, researchers assuming that the environment is known

should anticipate that the performance and safety factors highlighted in this work

will degrade. With this anticipation, special care should be taken to further improve

these factors in known environments as well.

When obstacles are traveling close to the vehicle, the perception algorithm is more

accurate at estimating the sizes of obstacles traveling at moderate speeds than those

traveling at either low or high speeds. This claim is supported by Fig. 5.8, where it is

illustrated that in an unknown environment there is a range of obstacles speeds, that

does not start at zero, where the vehicle is most likely to attain the goal. However,

the reason for most of these failure cases, as depicted in Fig. 5.10, is that the planner

was not able to attain an optimal solution. Thus, the data in Fig. 5.8 and the

results shown in Fig. 5.10 are not enough to make the claim that the perception

algorithm is at fault for these cases. To make this claim, the perception algorithm’s

inability to send the planning algorithm accurate estimates of the obstacle data must

be established.

To this end, the planning algorithm’s ability to accurately estimate the radius of

126

0 20 40 60 80 100
0

2

4

6

8

10

12

Distance from front bumper to center of obstacle (m)

E
st
im

at
ed

ra
di
us

(m
)

obstacle speed = 0 m
s

obstacle speed = 1 m
s

obstacle speed = 5 m
s

obstacle speed = 10 m
s

obstacle speed = 20 m
s

Figure 5.14: Effect that distance to the obstacle has on size estimates for various
obstacle speeds

an obstacle with a 10 m radius is tested for five different obstacle speeds. Fig. 5.14

shows the results of these perception algorithm tests, which indicate that obstacle

speed and distance both play an important role in the perception algorithm’s ability

to accurately determine obstacle data (i.e., size and speed). Recall that the perception

algorithm processes raw LiDAR data to estimate obstacle data.

When the obstacle is stationary and close to the vehicle, obstacle size is underes-

timated. This underestimate is likely caused by the limited vantage provided by the

radial LiDAR sensor, which is shown in Fig. 5.15. On the other hand, when obstacles

are moving and close to the vehicle, obstacle size estimates are much more accurate.

This increased accuracy is likely due to the fact that the perception algorithm is de-

signed using a Kalman-filter, which uses obstacle size estimates that were determined

using data when the obstacle was further away from the vehicle.

When the obstacles are just coming into the into view of radial LiDAR sensor,

obstacle size is underestimated. This can also be understood by considering that the

raw LiDAR data that is provided to the perception algorithm. As the obstacle enters

the view of the LiDAR, it appears quite small because only a portion of the obstacle

127

Figure 5.15: Limited data due to radial nature of LiDAR, which becomes more re-
stricted as the obstacle gets closer

is actually within range of the sensor. Accordingly, as the obstacle gets closer to the

vehicle, more LiDAR data is provided to the perception algorithm and thus more

accurate obstacle size estimates are determined until the obstacle gets too close, as

previously discussed. However, when the center of the obstacle is 17 m to 82 m away

from the front bumper of the vehicle, the perception algorithm overestimates obstacle

size.

Ultimately, the inaccurate estimates of obstacle size and speed make it less likely

for the vehicle to attain the goal and decrease various safety and performance factors.

Large planning solve-times and non-optimal solutions are a major safety issue and

strategies to mitigate and compensate for these spikes must be developed. Consider

the two anomalous tests in Fig. 5.8 that failed in a known environment, when a

medium-sized obstacle is moving at very slow speeds. These tests highlight how spikes

in planning solve-times can lead to non-optimal solutions and ultimately safety issues.

This work speculates that these failures are due to either the limited planning range,

the limited level of discretization in the trajectory, a sampling-rate issue, or some

combination of these factors. Therefore, these failure cases can likely be mitigated by

tuning the planner’s parameters. However, in addition to further parameter tuning,

128

safeguards need to be established to compensate for long planning solve-times and

non-optimal solutions. For instance, in similar research [92], when a non-optimal

solution is encountered, the next portion of the last optimal solution is sent to the

vehicle controllers; such heuristics are not considered in this work. An alternative is

having multiple planners running in parallel and using a management node to decide

which trajectory to send to the vehicle controllers.

5.6 Conclusions

This work identifies and combines perception [115] and planning algorithms [91,

92, 38] to enable automated vehicle safety and performance in unknown dynamic en-

vironments. As expected the results illustrate that operating in an unknown dynamic

environment, as opposed to a known dynamic environment, significantly increases2

collisions, tracking error, orientation error, planner solve-times, time to goal, steering

effort, throttle effort, and braking effort. Thus, this work identifies and quantifies sig-

nificant gaps in safety and performance engendered when operating in an unknown

environment and helps evaluate the known environment assumption. Contrary to ex-

pectations, results show that operating in an unknown environment among obstacles

traveling at moderate speeds is safer than with obstacles moving at slow speeds. It is

speculated that this result is in part due to the large underestimation of obstacle size

when the obstacles are close to the vehicle and moving at slow speeds. To mitigate

this safety issue, the use of more accurate perception systems should be explored.

For instance, using more than one LiDAR sensor will enable to perception algorithm

to more accurately estimate obstacle size. Ultimately, this work demonstrates that

the real-time planning algorithm used in this work enables safety and performance in

unknown environments among medium-sized and low-speed dynamic obstacles.

2p� 1× 10−6

129

CHAPTER VI

Conclusion

This thesis develops a real-time trajectory planning algorithm to enable automated

vehicle safety and performance in unknown dynamic environments.

Safety and performance are enabled by incorporating a dynamic vehicle model,

simultaneous optimization of speed and steering, minimum control effort and time

to goal objectives, both static and moving obstacle avoidance, and a small execution

horizon into the planning algorithm. In a known environment, the moving obstacle

avoidance specification is not needed for safety when the planner has a small execution

horizon (≤ 0.375 s), and the obstacles are moving slowly (≤ 2.11m
s
). However, a

moving obstacle avoidance specification is needed when the obstacles are moving

faster, and this specification improves the overall safety by a factor of 6.73 (p =

2.2 × 10−16) without, in most cases, increasing the solve-times. Therefore, safe and

performance-based planning algorithms for automated vehicles should include the

entire set of specifications mentioned above unless a static or low-speed environment

permits a less comprehensive algorithm.

Real-time solutions to this comprehensive algorithm are obtained using NLOpt-

Control [37], the open-source, direct-collocation-based optimal control modeling

language that is created in this thesis. To generate this language, this thesis identi-

fies and exploits a unique opportunity to leverage three recent developments (1) the

130

Julia computational language [13], (2) reverse automatic differentiation [121] with

the acrylic coloring method [59] to exploit sparsity in the Hessian matrix, and (3) the

JuMP optimization modeling language [30]. NLOptControl is shown to be both

easier to use and faster than the commonly-used commercial optimal control solver

called PROPT [112]. Ease of use is quantified by the number of lines and charac-

ters that it takes to formulate and solve the moon lander optimal control problem

[99]. Additionally, NLOptControl was used to develop a new optimal-control-based

learning algorithm [85] — accomplished independently of this thesis and without any

help from the author, further supporting the claim regarding ease of use. Therefore,

NLOptControl holds great potential for not only improving but also engendering a

wide variety of off- and on-line control systems.

A Kalman-filter-based perception algorithm [115] that processes raw LiDAR data

to estimate the sizes, positions, and velocities of obstacles is identified and combined

with the proposed planning algorithm to enable operation in unknown environments.

This combination of algorithms can safely control an automated vehicle among small

obstacles (radii <1.46 m) traveling up to high speeds (20 m
s
) in an unknown envi-

ronment. However, unexpected results of tests in an unknown environment indicate

that when obstacles are traveling at moderate speeds (≈ 7.5 m
s
) they are avoided for

the broadest range of obstacle sizes. On either side of this safety peak, safety can

be achieved only as obstacle size is reduced. The failure cases for these slower speed

obstacles may reflect the possibility that obstacle estimations (i.e., size and speed)

made for these slow-speed cases are less accurate than those made for the moderate-

speed cases. More accurate estimates are determined for dynamic obstacles because

the Kalman-filter can exploit richer LiDAR data. Additionally, as the obstacles move

closer to the vehicle, the vantage that radial LiDAR sensor has becomes increasingly

limited, which makes the perception algorithm increasingly underestimate obstacle

size.

131

To further quantify challenges encountered when operating in an unknown envi-

ronment, this thesis identifies eight safety and performance factors: collision avoid-

ance, tracking error, orientation error, planner solve-times, time-to-goal, steering ef-

fort, throttle effort, and braking effort. All of these factors degrade significantly

when operating in an unknown environment, as opposed to a known environment.

Thus, this work identifies and quantifies significant gaps in safety and performance

engendered when running in an unknown environment and helps evaluate the known

environment assumption. The use of more accurate perception systems should be

explored to avoid problems associated with this deterioration.

While this work tailors a trajectory planning formulation for a UGV application,

a variety of automated vehicle systems, e.g., UAVs and spacecraft, can also make use

of the approach detailed here.

6.1 Contributions

The novel contributions of this thesis are:

Comparing soft constraints to hard constraints for realizing moving ob-

stacle avoidance in trajectory planning algorithms

The choice between soft and hard constraints affects safety in terms of two factors

(1) the planner’s solve-times and (2) the vehicle’s ability to avoid obstacles. Thus, it

is critical to quantify how this choice affects safety. To this end, this thesis formulates

two trajectory planning algorithms, which are tailored for an HMMWV, to permit

moving obstacle avoidance; one of these formulations uses soft constraints, and the

other uses hard constraints. Results indicate that, in terms of both solve-times and

obstacle avoidance ability, hard constraints are safer than soft constraints. Therefore,

for safety, trajectory planning algorithms should use hard constraints instead of soft

constraints for avoiding obstacles [38].

Establishing an easy to use and fast direct-collocation-based optimal

132

control modeling language

Comprehensive trajectory planning algorithms can be reliably solved using a

direct-collocation-based numerical optimal control method [92, 111, 125, 112, 73, 74,

64, 133, 44], but these methods often struggle to solve such algorithms in real-time

[38, 92, 5, 55]. To accomplish Contribution 2, this thesis identifies and investigates

an approach for developing an easy to use and fast optimal control modeling language.

This language is called NLOptControl , and this approach is as follows:

Approach

• For ease of use and speed, NLOptControl is embedded in the fast, dynamically-

typed Julia programming language [13].

• For increased ease of use, NLOptControl extends the JuMP optimization

modeling language [30], which is written in Julia, to include a natural syntax

for modeling optimal control problems in Bolza form.

• For increased speed, NLOptControl uses the acrylic-coloring method [59] to

exploit sparsity in the Hessian matrix and reverse-automatic differentiation

through the ReverseDiffSparse package [121], which is also written in Julia.

Results show that NLOptControl is both faster and easier to use than the commonly-

used commercial MATLAB -based optimal control software package called PROPT.

The speed benchmarking against PROPT, which is done using a trajectory plan-

ning problem for a UGV, illustrates that NLOptControl can solve the problem fast

enough for use in an on-line NMPC application, while PROPT generally cannot.

Therefore, NLOptControl is well-suited for formulating comprehensive trajectory

planning problems that must be solved on-line, such as the general algorithms devel-

oped in [92] and [38]. With NLOptControl ready for use, the focus of this thesis

shifts back to enabling a safe and performance-based trajectory planning algorithm

for automated vehicles operating in dynamic environments.

133

Formulation of trajectory planning algorithm with specifications S1–S7

(listed in Table 1.1)

This thesis speculates that this set of specifications (i.e., S1–S7) is necessary for

safety and performance in dynamic environments. Chapter IV details the mathemat-

ical formulation that incorporates S1–S7.

Quantification of the effect that different sets of planning specifications

have on safety, performance, and solve-time

This contribution validates the speculation that S1–S7 should be incorporated into

trajectory planning algorithms, for safety and performance in dynamic environments.

To perform this quantification, three additional planning algorithms, each with a

less comprehensive set of specifications, are formulated and compared. As expected,

planners with less comprehensive sets of specifications than S1-S7 reduce UGV safety

and performance. However, contrary to expectations, this work shows that adding

the minimum time to goal, minimum control effort, and moving obstacle avoidance

specifications does not lead to longer solve-times.

Quantification of the need to include a moving obstacle avoidance spec-

ification for a range of execution horizons and obstacle speeds

This contribution validates the speculation that a planner without a moving ob-

stacle avoidance specification may be able to operate safely in a dynamic environment

under certain conditions. As expected, if the planner is updating quickly, then a slowly

moving obstacle can be reliably avoided without a moving obstacle avoidance speci-

fication. Additionally, to avoid faster obstacles, both the moving obstacle avoidance

and small execution horizon specifications are necessary.

Evaluation of NLOptControl’s ability to solve the proposed formulation

in real-time in a low-fidelity, known environment

Overall, NLOptControl solves the proposed formulation in real-time over a wide

range of test cases. As expected, a little execution horizon improves safety but de-

134

creases the feasibility of obtaining trajectories in real-time. As is also shown in the

literature [20], this thesis shows that planning in an environment with more obstacles

increases solve-times. Overall, NLOptControl is found to be a suitable tool for

solving complex NMPC problems on-line.

Evaluation of the developed algorithm’s ability to maintain safety and

performance in unknown dynamic environments, while being solved in real-

time

This thesis develops a high-fidelity, simulation-based proving ground to test the

planner developed in this work in an unknown environment. This proving ground

is established in ROS and uses a 2D LiDAR model in Gazebo, a perception algo-

rithm that handles dynamic obstacles [115], and a 145 degree of freedom model of

the HMMWV in Chrono. Results from this proving ground demonstrate that the

developed planning algorithm enables safety and performance in unknown dynamic

environments with small obstacles that are moving at speeds up to high. As expected,

the results also show that operating in an unknown dynamic environment, as opposed

to a known dynamic environment significantly increases1 collisions, tracking and ori-

entation error, planner solve-times, time-to-goal, steering effort, throttle effort, and

braking effort. Thus, this thesis identifies and quantifies significant gaps in safety and

performance factors engendered by operating in an unknown environment and helps

evaluate the known environment assumption. The use of more accurate perception

systems should be explored to avoid problems associated with this deterioration.

The ultimate contribution of this thesis is consequently

Enabling real-time trajectory planning for automated vehicle safety and

performance in unknown dynamic environments.
1p� 1× 10−6

135

6.1.1 Publications, presentations, and workshops

Much of this thesis leverages papers that have either been published or are in the

publication process. Accordingly, the author gratefully acknowledges the efforts of

the co-authors of those papers that helped with them.

Conference papers Two conference papers have been published. The first publi-

cation is not directly related to the work in this thesis, but the second is.

1. Febbo, H.; Stein, Jeffrey; Ersal, Tulga; (2016). A Combined Plant/Controller

Optimization Framework for hybrid vehicles with mpg, emissions and drivability

concerns: ASME IDETC/CIE

2. Febbo, H.; L., Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey; Ersal, Tulga;

(2017). Moving Obstacle Avoidance for Large, High-Speed Autonomous Ground

Vehicles. American Control Conference. Seattle, WA, USA.

Chapter V is based on a paper that will be submitted to the 2020 to American

Control Conference. The current details of this future publication are:

• Febbo, H.; Jayakumar, Paramsothy; Stein, Jeffrey; Ersal, Tulga; (2019). Real-

time trajectory planning for automated vehicle safety and performance in un-

known dynamic environments

Journal papers Chapter IV is based on a preprint of a paper that is currently

being tailored for ACM Transactions on Mathematical Software. The current details

of this future publication are:

• Febbo, H.; Jayakumar, Paramsothy; Stein, Jeffrey; Ersal, Tulga; (2019). NLOpt-

Control: A modeling language for dynamic optimization

136

Chapter III is based on a paper that was submitted to IEEE Transactions on

Control Systems Technology Journal in December 2018, and is currently under review.

The current details of this future publication are:

• Febbo, H.; Jayakumar, Paramsothy; Stein, Jeffrey; Ersal, Tulga; (2018). Real-

time trajectory planning for automated vehicle safety and performance in dy-

namic environments

Finally, the algorithms developed in this thesis were modified and used to support

human studies in a shared control research project. The current details of this future

publication are:

• Bhardwaj, A.; Ghasemi, A.; Zheng, Y.; Febbo, H.; Jayakumar, Paramsothy;

Stein, Jeffrey; Gillespie, B.; (2019). Who’s the Boss? Arbitrating Control

Authority Between a Human Driver and Automation System

Presentations

• "Vehicle-Dynamics-Conscious Real-Time Obstacle Avoidance in Autonomous

Ground Vehicles," ARC Annual Review, May 25th, 2016.

• "Vehicle-Dynamics-Conscious Real-Time Obstacle Avoidance in Autonomous

Ground Vehicles," ARC Annual Review, May 9th, 2017.

• "Vehicle Control and Design: With Applications To Powertrain Design And

Control Autonomous Vehicle Control, And Teleoperated Vehicle Control," A

seminar given at Auburn University, August. 28th, 2017

Workshops

• "NLOptControl - A High-Level and Fast Model Predictive Control Tool in

julia," A workshop given at JuliaCon in Berkeley, June. 24th, 2017

137

6.2 Future research

The research provided by this thesis can be used as a basis for developing control

schemes for dynamic systems. Specifically, it can be applied to nonlinear optimal con-

trol and model predictive control to applications such as automated vehicles, robotics

systems, chemical applications, and medical applications.

Automated vehicles

This thesis proposes and develops a real-time trajectory planning algorithm that

enables safe and performance-based operation of automated vehicles in unknown dy-

namic environments. As discussed, this algorithm is then tested in a high-fidelity,

simulation-based proving ground. Test results indicate that the developed planning

algorithm safely controls an HMMWV at high-speeds in an unknown, dynamic en-

vironment among small to medium sized obstacles traveling up to moderate speeds.

Therefore, future work for this algorithm includes experimental validation and devel-

opment. This necessary step will uncover practical issues that can introduce addi-

tional research questions.

Optimal control

This thesis develops a fast and easy to use optimal control tool called NLOpt-

Control. While the current use of optimal control is typically limited to engineering

applications, it holds great potential for improving and engendering a wide array of

other applications. To this end, the remainder of this chapter provides an example

of an application for which NLOptControl can be used to improve anesthesiology

training in veterinary medicine.

Safely prescribing multimodal anesthetic drugs, e.g., injectable and inhalants is a

dynamic task that is challenging to teach veterinary students. Part of the challenge

is teaching the students how the drugs they prescribe (i.e., control variables) affect

138

the patient’s vital parameters (i.e., state) over time. In the early stages of veteri-

nary training, this type of feedback is difficult to provide without an actual patient.

Currently, students assimilate knowledge gathered in core courses like anatomy, phar-

macology, physiology, and anesthesiology to determine the drugs needed to induce a

particular patient’s state. While this is a critical skill that needs to be developed, it

is a time-consuming and error-prone endeavor that can limit and skew learning. To

improve learning, the students can be provided with a virtual model of the patient

that can be treated and monitored.

This virtual pedagogical tool can be developed using a model predictive control

approach, which has a mathematical model of the patient dictated by the state and

control variables. A species-specific, mathematical model can be developed; the state

of the patient can be quantified its by heart rate, respiratory rate, temperature, blood

pressure, carbon dioxide level, blood oxygenation saturation, and electrocardiogram

waveform (ECG); the controls are various injectable and inhalant anesthetic drugs;

and sudden and expected drops/rises in the vital parameters can be used to identify

when the patient is ready to be intubated/extubated. During the entire procedure, the

student can monitor the patient’s vitals and administer inhalant/injectable anesthesia

in response to the patient’s dynamic vitals. Each time the student prescribes a new

dosage, an optimal control problem can be solved to show the optimal dosage at that

time. The model of the patient can then be simulated using the student’s dosage.

This simulated anesthetic process can continue until either the patient dies or the

procedure is completed. Thus, prior to hands-on training, i.e., clinical rotations,

veterinary students can navigate potential outcomes to various aesthetic cases using

the student’s prescribed pharma.

139

APPENDICES

140

APPENDIX A

Supplementary Material for Chapter III

Fig. A.1 shows the analytic solutions for the states, control, as well as costates

compared to the results obtained with NLOptControl using a single interval with

30 LGR nodes. NLOptControl calculates these trajectories reasonably well.

The NLP solver for this example is IPOPT and an hp-method in NLOptControl

is used with 4 intervals and 10 LGR nodes.

A.1 Moon lander problem

A.1.1 Closed-loop

Fig. A.2 shows the closed-loop solution to the moon lander problem using NLOpt-

Control. The closed-loop trajectory of the plant is very close to the analytic solu-

tion. Additionally, all of the solve-times are well below the chosen execution horizon

tex of 0.2 s; thus NLOptControl solves this NMPC problem in real-time.

The NLP solver for this example is IPOPT and an hp-method in NLOptControl

is used with 4 intervals and 10 LGR nodes.

141

0

2

4

6

8

·10−2

x
(t

)

−1

0

1

v
(t

)

0 0.2 0.4 0.6 0.8 1

−8

−6

−4

−2

0

Time (s)

a
(t

)

−40

−20

0

20

40

λ
x
(t

)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

Time (s)

λ
v
(t

)

Optimal
solution
coll. pts.

Figure A.1: State, control, and costate trajectories using NLOptControl (with 30
LGR nodes) compared to the analytical optimal solution for the Bryson Denham
problem

A.1.2 Open-loop

In Fig. A.3, it can be seen that both NLOptControl and PROPT determine the

analytic solution accurately, with 30 LGR and Chebyshev nodes, respectively. How-

ever, there is an overshoot in the solution of the control with both NLOptControl

and PROPT. This is due to the bang-bang nature of the analytic solution. It is noted

that this overshoot may be mitigated using either mesh refinement [109, 25, 70] or

radial basis functions [100].

142

0 10 20
2

4

6

·10−2

Iterations

so
lv
e-
ti
m
e

(s
)

0 1 2 3 4

0

5

10

Time (s)

x
(t

)

−4

−2

0

v
(t

)

0 1 2 3 4

0

1

2

3

Time (s)

a
(t

)

Analytic solution
Plant

Figure A.2: Closed-loop trajectories for moon lander problem compared to the ana-
lytic solution

A.2 Benchmark problem

This section provides an example of the type of solutions that are obtained from

the benchmark between NLOptControl and PROPT. For NLOptControl, the hp-

method with LGR nodes and four intervals and 10 collocation points per interval is

used. PROPT is set to use four phases and 10 collocation points per phase and

Chebyshev nodes. Fig. A.4 compares the results of these solvers, where it can be

seen that position trajectories are close. Starting at a speed of 15 m
s
, the solutions

obtained from both PROPT and NLOptControl apply maximum acceleration from

t0 = 0 s to tf = 5.1 s while avoiding collision with the obstacle and reaching the

desired goal position. The trajectories for NLOptControl exhibit large oscillations

in the α trajectory. These oscillations may be an artifact of the Runge phenomenon

and seem to be reduced with PROPT as it uses Chebyshev nodes.

143

0

5

10

x
(t

)

0 1 2 3 4

−4

−2

0

Time (s)

v
(t

)

0 1 2 3 4

0

1

2

3

Time (s)

a
(t

)

Analytic solution
NLOptControl

NLOpt. colloc. pts.
PROPT

PROPT colloc. pts.

Figure A.3: State and control trajectories using NLOptControl (with 30 LGR
nodes) and PROPT (with 30 Chebyshev nodes) compared to the analytic solution
for moon lander problem

There is no analytic solution to this problem.

144

1.4

1.5

1.6

1.7
ψ
,

(r
ad

ia
n
)

−0.2

0

0.2

α
,

(r
ad

ia
n
)

15

20

25

u
x
,

(m
s
)

0 2 4
2

2

2

Time (s)

a
x
,

(m s2
)

−10−5 0 5 10
0

10

20

30

40

50

60

70

80

90

100

m

aobs bobs

Obstacle

Goal

x, (m)

y
,

(m
)

NLOptControl
NLOpt. colloc. pts.

PROPT
PROPT colloc. pts.

Figure A.4: State and control trajectories using NLOptControl (with 4 intervals
and 10 LGR nodes) and PROPT (with 4 intervals and 10 Chebyshev nodes) for the
kinematic ground vehicle problem

145

APPENDIX B

Supplementary Material for Chapter IV

Table B.1: Long MATLAB solve-times

Solve-times
Constraints 3 Obstacles 17 Obstacles
Hard constraints 44.4 s 193 s
Soft constraints 110 s 2.19× 103 s

Table B.2: Vehicle Parameters

Variable Value Units
Mt 2689 kg
Izz 4110 kg −m2

Lf ,Lr 1.58,1.72 m
Kzx ,Kzyr ,Kzyf 806,1076,675 N

m

s2

Fzmin
1000 N

a,b 1300,100 -
ψmin,ψmax [−2π, 2π] ◦

δf,min,δf,max [−30, 30] ◦

γf,min,γf,max [−5, 5]
◦

s

Jx,min,Jx,max [−5, 5] m
s3

Umin,Umax [0.01, 29] m
s

146

Table B.3: Simulation Parameters for PA

Variable or Conditions Value and Units
tex,N ,Lrange,κ 0.5 s,10,50.0 m,5.0 m
sm1, sm2, sm 2.5 m,4 m,2 m
X0 [200 m, 0 m, 0, 0, 1.57rad, 0, 17 m

s
, 0]

X0tol [0.5 m, 0.5 m, 0.5, 0.005, 0.5, 0.25, 0.5 m
s
, 0.5]

XFtol [5.0 m, 5.0 m, NaN,NaN,NaN, . . .
NaN,NaN,NaN]

wic,wx0,wy0,wv0,wr0,wψ0,wsa0,wux0,wax0,wxf 100,1,1,10,10,10,2,0.1,0.1,100
wg,wt,whaf ,wFz ,wce,wsa,wsr,wax,wjx 10,0,1,0.5,0,0.1,1,0.1,0.01
moving obstacle avoidance constraint in Eqn. 4.7 false

Table B.4: Environment for EA

Variable Description Value Unit
aobs array of the obstacles semi-major axes [5, 4, 2] m
bobs array of the obstacles semi-minor axes [5, 4, 2] m
x0obs array of the obstacles initial x positions [205, 180, 200] m
y0obs array of the obstacles initial y positions [57, 75, 63] m
vx array of obstacles speeds in x direction [0, 0, 0] m

s

vy array of obstacles speeds in y direction [0, 0, 0] m
s

xg x position of goal location 200 m
yg x position of goal location 125 m
σ tolerance on goal location 15 m
ψg desired orientation at goal π

2
rad

Table B.5: Environment for EC
see Table. C.5 for Variable Descriptions

Variable Value Unit
aobs [6, 6, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, . . . m

. . . 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, . . .

. . . 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387, 0.387]
bobs same as aobs m
x0obs [6, 18, 12, . . . m

. . . 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]
y0obs [281, 650, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, . . . m

. . . 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175]
vx [0, 0] m

s

vy [0,−10, 0] m
s

xg 18 m
yg 700 m
σ 25 m
ψg

π
2

rad

147

Table B.6: Control Effort

Effort Term PB PC Decrease
Steering Angle 0.000586 0.000422 28.0 %
Steering Rate 0.00129 0.000922 28.5 %
Longitudinal Jerk 0.530 0.420 20.8 %
Total 0.532 0.421 20.9 %

Table B.7: Fisher’s exact test for attaining the goal for PC and PD in EC (p =
2.2× 10−16)

Fail Pass Total
PC 378 (60.0 %) 22 (12.9 %) 400
PD 252 (40.0 %) 148 (87.1 %) 400
Total 630 (100%) 170 (100 %) 800

148

APPENDIX C

Supplementary Material for Chapter V

Table C.1: LiDAR Parameters

Variable Value Units
Update rate 40 Hz
Minimum range 0.1 m
Maximum range 100 m
Samples 1875
Mean 0 m
Standard deviation 1000 m

Table C.2: Chrono Model Parameters [117]

Variable Value
Vehicle assembly HMMWV Full
Contact method NSC
Tire model TMEASY
Powertrain model SHAFTS
Drive type RWD
Steering type PITMANARM

149

Table C.3: Vehicle Parameters

Variable Value Units
Mt 2689 kg
Izz 4110 kg −m2

Lf ,Lr 1.58,1.72 m
Kzx ,Kzyr ,Kzyf 806,1076,675 N

m

s2

Fzmin
1000 N

a,b 1300,100 -
ψmin,ψmax [−2π, 2π] ◦

δf,min,δf,max [−30, 30] ◦

γf,min,γf,max [−5, 5]
◦

s

Jx,min,Jx,max [−5, 5] m
s3

Umin,Umax [0.01, 29] m
s

Table C.4: Planning Parameters

Variable or Conditions Value and Units
N ,Lrange,κ 35,60.0 m,5.0 m
sm1, sm2, sm 2.5 m,4 m,2 m
X0 [0 m, 0 m, 0, 0, 1.57rad, 0, 0 m

s
, 0]

X0tol [0.5 m, 0.5 m, 0.5, 0.005, 0.5, 0.25, 0.5 m
s
, 0.5]

XFtol [5.0 m, 5.0 m, NaN,NaN,NaN,NaN,NaN,NaN]
wic,wx0,wy0,wv0,wr0,wψ0,wsa0,wux0,wax0,wxf 100,50,50,10,20,20,2,0.1,0.1,100
wg,wt,whaf ,wFz ,wce,wsa,wsr,wax,wjx 10,250,1,0.5,1,0.1,1,0.1,0.01

Table C.5: Environment Parameters

Variable Description Value Unit
aobs array of the obstacles semi-major axes [r1, 10, 5, 12] m
bobs array of the obstacles semi-minor axes [r1, 10, 5, 12] m
x0obs array of the obstacles initial x positions [0,−25,−25,−25] m
y0obs array of the obstacles initial y positions [275, 168, 145, 110] m
vx array of obstacles speeds in x direction [0, 0, 0, 0] m

s

vy array of obstacles speeds in y direction [vy1, 0, 0,−1] m
s

xg x position of goal location 400 m
yg x position of goal location 0 m
σ tolerance on goal location 10 m
ψg desired orientation at goal π

2
rad

150

BIBLIOGRAPHY

151

BIBLIOGRAPHY

[1] Milton Abramowitz. Stegun. Handbook of Mathematical Functions, 55:888,
1965.

[2] Jan Albersmeyer, Dörte Beigel, Christian Kirches, Leonard Wirsching,
Hans Georg Bock, and Johannes P Schlöder. Fast nonlinear model predic-
tive control with an application in automotive engineering. In Nonlinear Model
Predictive Control, pages 471–480. Springer, 2009.

[3] Joel Andersson, Johan 12.0Akesson, and Moritz Diehl. Casadi: A symbolic
package for automatic differentiation and optimal control. In Recent Advances
in Algorithmic Differentiation, pages 297–307. Springer, 2012.

[4] Lorenz T. Biegler Andreas Wachter. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming, 2004.

[5] G Basset, Yunjun Xu, and OA Yakimenko. Computing short-time aircraft
maneuvers using direct methods. Journal of Computer and Systems Sciences
International, 49(3):481–513, 2010.

[6] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. In Algorithm Engineering, pages 19–80.
Springer, 2016.

[7] Craig Earl Beal and J. Christian Gerdes. Model predictive control for vehicle
stabilization at the limits of handling. IEEE Transactions on Control Systems
Technology, 21(4):1258–1269, 2013.

[8] Victor M Becerra. Solving complex optimal control problems at no cost with
psopt. In Computer-Aided Control System Design (CACSD), 2010 IEEE In-
ternational Symposium on, pages 1391–1396. IEEE, 2010.

[9] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of Guidance Control and Dynamics, 21(2):193–207, 1998.

[10] John T Betts. Practical methods for optimal control and estimation using non-
linear programming, volume 19. Siam, 2010.

152

[11] John T Betts, Stephen L Campbell, and NN Kalla. Initialization of direct tran-
scription optimal control software. In Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, volume 4, pages 3802–3807. IEEE, 2003.

[12] John T Betts and William P Huffman. Exploiting sparsity in the direct tran-
scription method for optimal control. Computational Optimization and Appli-
cations, 14(2):179–201, 1999.

[13] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A
fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145,
2012.

[14] Lorenz T Biegler. An overview of simultaneous strategies for dynamic op-
timization. Chemical Engineering and Processing: Process Intensification,
46(11):1043–1053, 2007.

[15] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for direct
solution of optimal control problems. IFAC Proceedings Volumes, 17(2):1603–
1608, 1984.

[16] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat. MPC-based ap-
proach to active steering for autonomous vehicle systems. International Journal
of Vehicle Autonomous Systems, 3(2-4):265–291, 2005.

[17] NEAL E. BOUDETTE. G.m. says its driverless car could be in fleets by next
year. New York Times Magazine, 2018.

[18] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. Knitro: An integrated
package for nonlinear optimization, 2006.

[19] John Canny and John Reif. New lower bound techniques for robot motion
planning problems. In Foundations of Computer Science, 1987., 28th Annual
Symposium on, pages 49–60. IEEE, 1987.

[20] Hao-Tien Lewis Chiang, Baisravan HomChaudhuri, Lee Smith, and Lydia
Tapia. Safety, challenges, and performance of motion planners in dynamic
environments.

[21] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[22] Hendrik Dahlkamp, Adrian Kaehler, David Stavens, Sebastian Thrun, and
Gary R Bradski. Self-supervised monocular road detection in desert terrain.
In Robotics: Science and Systems, volume 38. Philadelphia, 2006.

[23] Christopher L Darby. hp-Pseudospectral method for solving continuous-time
nonlinear optimal control problems. University of Florida, 2011.

153

[24] Christopher L Darby, William W Hager, and Anil V Rao. An hp-adaptive
pseudospectral method for solving optimal control problems. Optimal Control
Applications and Methods, 32(4):476–502, 2011.

[25] Christopher L Darby and Anil V Rao. A mesh refinement algorithm for solving
optimal control problems using pseudospectral methods. Proceedings of the
AIAA, 2009.

[26] Moritz Diehl, H Georg Bock, Johannes P Schlöder, Rolf Findeisen, Zoltan Nagy,
and Frank Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. Journal of
Process Control, 12(4):577–585, 2002.

[27] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber. Fast direct
multiple shooting algorithms for optimal robot control. In Fast Motions in
Biomechanics and Robotics, pages 65–93. Springer, 2006.

[28] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical
methods for nonlinear mpc and moving horizon estimation. Nonlinear Model
Predictive Control, 384:391–417, 2009.

[29] Moritz Diehl, Daniel B Leineweber, and Andreas AS Schäfer. MUSCOD-II
users’ manual. Universität Heidelberg. Interdisziplinäres Zentrum für Wis-
senschaftliches âĂę, 2001.

[30] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language
for mathematical optimization. SIAM Review, 59(2):295–320, 2017.

[31] Iain Robert Dunning. Advances in robust and adaptive optimization: algo-
rithms, software, and insights. PhD thesis, Massachusetts Institute of Technol-
ogy, 2016.

[32] Jorge J. More Elizabeth D. Dolan. Benchmarking optimization software with
performance profiles. 2001.

[33] Gamal Elnagar, Mohammad A Kazemi, and Mohsen Razzaghi. The pseu-
dospectral legendre method for discretizing optimal control problems. IEEE
Transactions on Automatic Control, 40(10):1793–1796, 1995.

[34] Azim Eskandarian. Handbook of Intelligent Vehicles. Springer, 2012.

[35] Fariba Fahroo and I Michael Ross. Advances in pseudospectral methods for
optimal control. In AIAA Guidance, Navigation and Control Conference, page
7309, 2008.

[36] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. Predictive active
steering control for autonomous vehicle systems. IEEE Transactions on Control
Systems Technology, 15(3):566–80, 2007.

154

[37] Huckleberry Febbo. NLOptControl. https://github.com/JuliaMPC/
NLOptControl.jl, 2017.

[38] Huckleberry Febbo, Jiechao Liu, Paramsothy Jayakumar, Jeffrey L Stein, and
Tulga Ersal. Moving obstacle avoidance for large, high-speed autonomous
ground vehicles. In American Control Conference, pages 5568–5573, 2017.

[39] Sarah Ferguson, Brandon Luders, Robert C Grande, and Jonathan P How.
Real-time predictive modeling and robust avoidance of pedestrians with uncer-
tain, changing intentions. In Algorithmic Foundations of Robotics XI, pages
161–177. Springer, 2015.

[40] Robert Fourer. On the evolution of optimization modeling systems. Optimiza-
tion Stories, pages 377–388, 2012.

[41] Robert Fourer, DM Gay, and BW Kernighan. Ampl: A modeling language for
mathematical programming, 2002. Duxbury Press.

[42] Emmanuel Fragniere, Jacek Gondzio, Robert Sarkissian, and Jean-Philippe
Vial. A structure-exploiting tool in algebraic modeling languages. Manage-
ment Science, 46(8):1145–1158, 2000.

[43] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl. An auto-generated nonlinear MPC algorithm for real-time obstacle
avoidance of ground vehicles. In European Control Conference, pages 4136–41,
2013.

[44] Janick V Frasch, Andrew Gray, Mario Zanon, Hans Joachim Ferreau, Sebastian
Sager, Francesco Borrelli, and Moritz Diehl. An auto-generated nonlinear mpc
algorithm for real-time obstacle avoidance of ground vehicles. In European
Control Conference, pages 4136–4141. IEEE, 2013.

[45] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Real-time motion planning
for agile autonomous vehicles. Journal of Guidance, Control, and Dynamics,
25(1):116–129, 2002.

[46] Yiqi Gao, Theresa Lin, Francesco Borrelli, Eric Tseng, and Davor Hrovat. Pre-
dictive control of autonomous ground vehicles with obstacle avoidance on slip-
pery roads. In Dynamic Systems and Control Conference, pages 265–272, 2010.

[47] Divya Garg. Advances in global pseudospectral methods for optimal control.
PhD thesis, University of Florida USA, 2011.

[48] Divya Garg, William W Hager, and Anil V Rao. Pseudospectral methods for
solving infinite-horizon optimal control problems. Automatica, 47(4):829–837,
2011.

155

https://github.com/JuliaMPC/NLOptControl.jl
https://github.com/JuliaMPC/NLOptControl.jl

[49] Divya Garg, Michael Patterson, William W Hager, Anil V Rao, David A Ben-
son, and Geoffrey T Huntington. A unified framework for the numerical solu-
tion of optimal control problems using pseudospectral methods. Automatica,
46(11):1843–1851, 2010.

[50] Carl Friedrich Gauss. Methodus nova integralium valores per approximationem
inveniendi. apvd Henricvm Dieterich, 1815.

[51] Assefaw H Gebremedhin, Arijit Tarafdar, Alex Pothen, and Andrea Walther.
Efficient computation of sparse hessians using coloring and automatic differen-
tiation. INFORMS Journal on Computing, 21(2):209–223, 2009.

[52] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What color
is your jacobian? graph coloring for computing derivatives. SIAM review,
47(4):629–705, 2005.

[53] Mathieu Geisert and Nicolas Mansard. Trajectory generation for quadrotor
based systems using numerical optimal control. In International Conference on
Robotics and Automation, pages 2958–2964. IEEE, 2016.

[54] Jon Gertner. Tesla’s dangerous sprint into the futture. The New York Times
Magazine, 2017.

[55] Borna Ghannadi, Naser Mehrabi, Reza Sharif Razavian, and John McPhee.
Nonlinear model predictive control of an upper extremity rehabilitation robot
using a two-dimensional human-robot interaction model. In International Con-
ference on Intelligent Robots and Systems, pages 502–507. IEEE, 2017.

[56] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algo-
rithm for large-scale constrained optimization. 2002.

[57] J Gonzales, F Zhang, K Li, and F Borrelli. Autonomous drifting with onboard
sensors. In Advanced Vehicle Control, page 133. CRC Press, 2016.

[58] Colin M Greatwood and Arthur G Richards. Implementation of fast mpc with a
quadrotor for obstacle avoidance. In AIAA Guidance, Navigation, and Control
(GNC) Conference, page 4790, 2013.

[59] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: Adol-c: a
package for the automatic differentiation of algorithms written in c/c++. ACM
Transactions on Mathematical Software (TOMS), 22(2):131–167, 1996.

[60] WilliamWHager. Runge-kutta methods in optimal control and the transformed
adjoint system. Numerische Mathematik, 87(2):247–282, 2000.

[61] Nicholas Hale and Alex Townsend. Fast and accurate computation of gauss–
legendre and gauss–jacobi quadrature nodes and weights. SIAM Journal on
Scientific Computing, 35(2):A652–A674, 2013.

156

[62] Charles R Hargraves and Stephen W Paris. Direct trajectory optimization
using nonlinear programming and collocation. Journal of Guidance, Control,
and Dynamics, 10(4):338–342, 1987.

[63] Josef Heinen. Gr. https://github.com/jheinen/GR.jl, 2018.

[64] Anders Holmqvist and Fredrik Magnusson. Open-loop optimal control of batch
chromatographic separation processes using direct collocation. Journal of Pro-
cess Control, 46:55–74, 2016.

[65] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. ACADO toolkit: An
open-source framework for automatic control and dynamic optimization. Opti-
mal Control Applications and Methods, 32(3):298–312, 2011.

[66] Joey Huchette, Miles Lubin, and Cosmin Petra. Parallel algebraic modeling
for stochastic optimization. In Proceedings of the 1st First Workshop for High
Performance Technical Computing in Dynamic Languages, pages 29–35. IEEE
Press, 2014.

[67] David G Hull. Conversion of optimal control problems into parameter opti-
mization problems. Journal of Guidance, Control, and Dynamics, 20(1):57–60,
1997.

[68] Geoffrey Huntington, David Benson, and Anil Rao. A comparison of accu-
racy and computational efficiency of three pseudospectral methods. In AIAA
Guidance, Navigation and Control Conference, page 6405, 2007.

[69] M Yousuff Hussaini and Thomas A Zang. Spectral methods in fluid dynamics.
Annual Review of Fluid Mechanics, 19(1):339–367, 1987.

[70] Sachin Jain and Panagiotis Tsiotras. Trajectory optimization using multiresolu-
tion techniques. Journal of Guidance, Control, and Dynamics, 31(5):1424–1436,
2008.

[71] Christopher Jewison, R Scott Erwin, and Alvar Saenz-Otero. Model predictive
control with ellipsoid obstacle constraints for spacecraft rendezvous. IFAC-
PapersOnLine, 48(9):257–262, 2015.

[72] Eric Firing Michael Droettboom John Hunter, Darren Dale. matplotlib.
https://github.com/matplotlib/matplotlib, 2018.

[73] Timothy Jorris, Christopher Schulz, Franklin Friedl, and Anil Rao. Constrained
trajectory optimization using pseudospectral methods. In AIAA Atmospheric
Flight Mechanics Conference and Exhibit, page 6218, 2008.

[74] Wei Kang and Naz Bedrossian. Pseudospectral optimal control theory makes
debut flight, saves nasa 1 m in under three hours. 2007.

157

https://github.com/jheinen/GR.jl
https://github.com/matplotlib/matplotlib

[75] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

[76] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka.
Real-time motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions. Transportation Research Part C: Emerg-
ing Technologies, 60:416–442, 2015.

[77] A. Katriniok and D. Abel. LTV-MPC approach for lateral vehicle guidance
by front steering at the limits of vehicle dynamics. In IEEE Conference on
Decision and Control and European Control Conference, pages 6828–33.

[78] Matthew Kelly. An introduction to trajectory optimization: How to do your
own direct collocation. SIAM Review, 59(4):849–904, 2017.

[79] Eric C Kerrigan and Jan M Maciejowski. Soft constraints and exact penalty
functions in model predictive control. In UKACC International Conference,
2000.

[80] Christian Kirches, Leonard Wirsching, Sebastian Sager, and Hans Georg Bock.
Efficient numerics for nonlinear model predictive control. In Recent Advances
in Optimization and its Applications in Engineering, pages 339–357. Springer,
2010.

[81] Krisada Kritayakirana and J Christian Gerdes. Using the centre of percussion
to design a steering controller for an autonomous race car. Vehicle System
Dynamics, 50(sup1):33–51, 2012.

[82] Philipp Krüsi, Paul Furgale, Michael Bosse, and Roland Siegwart. Driving on
point clouds: Motion planning, trajectory optimization, and terrain assessment
in generic nonplanar environments. Journal of Field Robotics, 34(5):940–984,
2017.

[83] Viktor Leek. An optimal control toolbox for matlab based on casadi, 2016.

[84] Benoît Legat. SumOfSquares. https://github.com/JuliaOpt/
SumOfSquares.jl, 2019.

[85] Laurent Lessard, Xuezhou Zhang, and Xiaojin Zhu. An optimal control ap-
proach to sequential machine teaching. arXiv preprint arXiv:1810.06175, 2018.

[86] A. Liniger, A. Domahidi, and M. Morari. Optimization-based autonomous rac-
ing of 1:43 scale RC cars. Optimal Control Applications and Methods, 36(5):628–
47, 2015.

[87] Todd Litman. Autonomous vehicle implementation predictions. Victoria Trans-
port Policy Institute, 2017.

158

https://github.com/JuliaOpt/SumOfSquares.jl
https://github.com/JuliaOpt/SumOfSquares.jl

[88] Jiechao Liu, Paramsothy Jayakumar, James L. Overholt, Jeffrey L. Stein, and
Tulga Ersal. The role of model fidelity in model predictive control based hazard
avoidance in unmanned ground vehicles using lidar sensors. volume 3 of ASME
Dynamic Systems and Control Conference, page Dynamic Systems and Control
Division. American Society of Mechanical Engineers, 2013.

[89] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L. Stein, and Tulga Ersal. A multi-
stage optimization formulation for mpc-based obstacle avoidance in autonomous
vehicles using a lidar sensor. American Society of Mechanical Engineers, 2014.

[90] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L. Stein, and Tulga Ersal. An mpc
algorithm with combined speed and steering control for obstacle avoidance in
autonomus ground vehicles. American Society of Mechanical Engineers, 2015.

[91] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L Stein, and Tulga Ersal. A study
on model fidelity for model predictive control-based obstacle avoidance in high-
speed autonomous ground vehicles. Vehicle System Dynamics, 54(11):1629–
1650, 2016.

[92] Jiechao Liu, Paramsothy Jayakumar, Jeffrey L Stein, and Tulga Ersal. Com-
bined speed and steering control in high-speed autonomous ground vehicles
for obstacle avoidance using model predictive control. IEEE Transactions on
Vehicular Technology, 66(10):8746–8763, 2017.

[93] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based
motion planning for quadrotors using linear quadratic minimum time control. In
International Conference on Intelligent Robots and Systems, pages 2872–2879.
IEEE, 2017.

[94] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. Search-based
motion planning for aggressive flight in se (3). IEEE Robotics and Automation
Letters, 3(3):2439–2446, 2018.

[95] Michael C Lo, Robert P Giffin, Kraig A Pakulski, W Sumner Davis, Stephen A
Bernstein, and Daniel V Wise. High-mobility multipurpose wheeled vehicle
rollover accidents and injuries to us army soldiers by reported occupant restraint
use, 1992–2013. Military medicine, 182(5-6):e1782–e1791, 2017.

[96] Miles Lubin and Iain Dunning. Computing in operations research using julia.
INFORMS Journal on Computing, 27(2):238–248, 2015.

[97] Miles Lubin, Yury Dvorkin, and Scott Backhaus. A robust approach to chance
constrained optimal power flow with renewable generation. IEEE Transactions
on Power Systems, 31(5):3840–3849, 2016.

[98] Charles C MacAdam. Development of driver/vehicle steering interaction mod-
els for dynamic analysis. Technical report, MICHIGAN UNIV ANN ARBOR
TRANSPORTATION RESEARCH INST, 1988.

159

[99] J Meditch. On the problem of optimal thrust programming for a lunar soft
landing. IEEE Transactions on Automatic Control, 9(4):477–484, 1964.

[100] Hossein Mirinejad and Tamer Inanc. An rbf collocation method for solving
optimal control problems. Robotics and Autonomous Systems, 87(Supplement
C):219 – 225, 2017.

[101] Kartik Mohta, Ke Sun, Sikang Liu, Michael Watterson, Bernd Pfrommer,
James Svacha, Yash Mulgaonkar, Camillo Jose Taylor, and Vijay Kumar. Ex-
periments in fast, autonomous, gps-denied quadrotor flight. arXiv preprint
arXiv:1806.07053, 2018.

[102] Manfred Morari and Jay H Lee. Model predictive control: past, present and
future. Computers & Chemical Engineering, 23(4):667–682, 1999.

[103] Yuuki Nishio, Kenichiro Nonaka, and Kazuma Sekiguchi. Moving obstacle
avoidance control by fuzzy potential method and model predictive control. In
Asian Control Conference, pages 1298–1303. IEEE, 2017.

[104] Toshiyuki Ohtsuka and Kohei Ozaki. Practical issues in nonlinear model predic-
tive control: real-time optimization and systematic tuning. In Nonlinear Model
Predictive Control, pages 447–460. Springer, 2009.

[105] Sheehan Olver. Fastgaussquadrature. https://github.com/
ajt60gaibb/FastGaussQuadrature.jl, 2017.

[106] Mike R Osborne. On shooting methods for boundary value problems. Journal
of Mathematical Analysis and Applications, 27(2):417–433, 1969.

[107] Hans Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[108] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Fraz-
zoli. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016.

[109] Michael A Patterson, William W Hager, and Anil V Rao. A ph mesh refine-
ment method for optimal control. Optimal Control Applications and Methods,
36(4):398–421, 2015.

[110] Michael A Patterson and Anil V Rao. Exploiting sparsity in direct colloca-
tion pseudospectral methods for solving optimal control problems. Journal of
Spacecraft and Rockets, 49(2):364–377, 2012.

[111] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature
collocation methods and sparse nonlinear programming. ACM Transactions on
Mathematical Software (TOMS), 41(1):1, 2014.

160

https://github.com/ajt60gaibb/FastGaussQuadrature.jl
https://github.com/ajt60gaibb/FastGaussQuadrature.jl

[112] Marcus M. Edvall Per E. Rutquist. PROPT - Matlab Optimal Control Software.
Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA 99163,
USA, 1 edition, June 2016.

[113] Anna Petrovskaya and Sebastian Thrun. Model based vehicle detection and
tracking for autonomous urban driving. Autonomous Robots, 26(2-3):123–139,
2009.

[114] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC
Press, 1987.

[115] Mateusz Przybyła. Detection and tracking of 2d geometric obstacles from lrf
data. In Robot Motion and Control (RoMoCo), 2017 11th International Work-
shop on, pages 135–141. IEEE, 2017.

[116] Christopher Rackauckas and Qing Nie. Differentialequations. jl–a performant
and feature-rich ecosystem for solving differential equations in julia. Journal of
Open Research Software, 5(1), 2017.

[117] Dan Negrut Radu Serban. PROJECT CHRONO. http://projectchrono.org/,
February 2019.

[118] Rajesh Rajamani. Vehicle dynamics and control. Springer Science and Business
Media, 2011.

[119] Anil V Rao. User’s manual for gpocs c version 1.0: A matlab R© implementation
of the gauss pseudospectral method for solving multiple-phase optimal control
problems, 2007.

[120] Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila
Francolin, Ilyssa Sanders, and Geoffrey T Huntington. Algorithm 902: Gpops, a
matlab software for solving multiple-phase optimal control problems using the
gauss pseudospectral method. ACM Transactions on Mathematical Software
(TOMS), 37(2):22, 2010.

[121] Jarrett Revels. Reversediff. https://github.com/JuliaDiff/
ReverseDiff.jl, 2017.

[122] Richard E Rosenthal. Gams–a user’s guide. 2004.

[123] I Michael Ross. A beginner’s guider to dido: A matlab application package for
solving optimal control problem. http://www. elissar. ziz, 2007.

[124] 2.1 edn. RWTH Aachen University, Germany. DyOS User Manual. 2002.

[125] Joan Pau Sanchez and Daniel Garcia Yarnoz. Asteroid retrieval missions en-
abled by invariant manifold dynamics. Acta Astronautica, 127:667 – 677,
2016. Asteroid mission;Easily retrievable objects;Libration point orbits;Low
thrust;Trajectory designs;.

161

https://github.com/JuliaDiff/ReverseDiff.jl
https://github.com/JuliaDiff/ReverseDiff.jl

[126] RWH Sargent. Optimal control. Journal of Computational and Applied Math-
ematics, 124(1-2):361–371, 2000.

[127] Pierre OM Scokaert and James B Rawlings. Feasibility issues in linear model
predictive control. AIChE Journal, 45(8):1649–1659, 1999.

[128] Radu Serban, Michael Taylor, Dan Negrut, and Alessandro Tasora. Chrono::
Vehicle–template-based ground vehicle modeling and simulation. Technical re-
port, Technical Report TR-2016-10, 2016.

[129] Levente L Simon, Zoltan K Nagy, and Konrad Hungerbuehler. Swelling con-
strained control of an industrial batch reactor using a dedicated nmpc environ-
ment: Optcon. In Nonlinear Model Predictive Control, pages 531–539. Springer,
2009.

[130] Matthew J Tenny, James B Rawlings, and Rahul Bindlish. Feasible real-time
nonlinear model predictive control. In AICHE SYMPOSIUM SERIES, pages
433–437. New York; American Institute of Chemical Engineers; 1998, 2002.

[131] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoff-
mann, et al. Stanley: The robot that won the darpa grand challenge. Journal
of Field Robotics, 23(9):661–692, 2006.

[132] Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven Diamond,
and Stephen Boyd. Convex optimization in julia. In Proceedings of the 1st First
Workshop for High Performance Technical Computing in Dynamic Languages,
pages 18–28. IEEE Press, 2014.

[133] Trygve Utstumo, Therese W Berge, and Jan Tommy Gravdahl. Non-linear
model predictive control for constrained robot navigation in row crops. In
Industrial Technology (ICIT), 2015 IEEE International Conference on, pages
357–362. IEEE, 2015.

[134] Rayomand Vatcha and Jing Xiao. Practical motion planning in unknown and
unpredictable environments. In Experimental Robotics, pages 883–897. Springer,
2014.

[135] E. Velenis, P. Tsiotras, and Lu Jianbo. Modeling aggressive maneuvers on loose
surfaces: The cases of trail-braking and pendulum-turn. In European Control
Conference, pages 1233–40, 2007.

[136] E Velenis, P Tsiotras, and J Lu. Aggressive maneuvers on loose surfaces: Data
analysis and input parametrization. In Control & Automation, 2007. MED’07.
Mediterranean Conference on, pages 1–6. IEEE, 2007.

[137] Oskar von Stryk. Dircol. Internet/WWW, 2001.

162

[138] Peng Yao, Honglun Wang, and Zikang Su. Real-time path planning of un-
manned aerial vehicle for target tracking and obstacle avoidance in complex
dynamic environment. Aerospace Science and Technology, 47:269–279, 2015.

[139] Yongsoon Yoon, Jongho Shin, H Jin Kim, Yongwoon Park, and Shankar Sastry.
Model-predictive active steering and obstacle avoidance for autonomous ground
vehicles. Control Engineering Practice, 17(7):741–750, 2009.

[140] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. Optimization-based
collision avoidance. arXiv preprint arXiv:1711.03449, 2017.

163

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Dissertation organization

	Trajectory Planning in Dynamic Environments
	Introduction
	Problem Formulation
	Results and Discussion
	Conclusion

	NLOptControl: A Modeling Language for Solving Optimal Control Problems
	Introduction
	Software ecosystem
	Scope of NLOptControl
	Numerical optimal control
	Evaluation description
	Results
	Discussion
	Conclusions

	Real-time Trajectory Planning for Automated Vehicle Safety and Performance in Dynamic Environments
	Introduction
	Mathematical Formulation
	Evaluation Description
	Results
	Discussion
	Conclusion

	Real-time Trajectory Planning for Automated Vehicle Safety and Performance in Unknown Dynamic Environments
	Introduction
	Methods
	Evaluation Description
	Results
	Discussion
	Conclusions

	Conclusion
	Contributions
	Future research
	APPENDICES
	Moon lander problem
	Benchmark problem

	BIBLIOGRAPHY

