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ABSTRACT 

 

Conventional practices to evaluate post-earthquake damage to buildings rely on reconnaissance 

teams deployed to the affected areas to carry out visual inspections of buildings. These 

inspections are done manually and are therefore time consuming and error prone. Motivated by 

these drawbacks, this dissertation explores the possibility and means for conducting automated 

inspections using smart devices, which are ubiquitous in modern communities. The premise is 

that smart devices can record acceleration data using their onboard sensors. The records can then 

be double integrated and processed to yield interstory drift ratios (IDRs), which are key 

indicators of building damage.  

The dynamic behavior of a smart device on an underlying surface subjected to seismic motion is 

studied first. The smart device and its frictional interactions with the underlying surface are 

represented using a modified friction model. The conditions under which the smart device slides 

on or sticks to the surface for a given earthquake intensity are investigated. The concept of a 

‘probability of exceeding the slip limit curve’ is introduced to relate the probability of exceeding 

a given slip limit for a given structure and location.  

The presence of sliding motions in an acceleration record can contaminate the recorded data and 

make it impossible to estimate the motion of the underlying floor from smartphone 

measurements. To resolve this problem, stick-slip motion identification methods are studied 

based on two approaches. The first method relies on the theoretical observation that acceleration 



 

xviii 

 

is constant during sliding. The second method employs two different types of machine learning 

algorithms to differentiate between sticking and slipping motions. It is shown that the developed 

techniques can yield reasonably high classification accuracies.  

Computation of IDR requires multiple steps, each of which is theoretically investigated and 

experimentally validated by using a shake table and multiple types of smart devices with 

different types of protective shells. The needed steps include record synchronization and 

warping, data fusion, and compensation for errors that are magnified by double integration 

(needed to compute IDR). The abilities of different types of smart devices to estimate 

displacement were compared and the error in displacement was shown to have a strong 

relationship to their mean square amplitude of stationary noise. The proposed IDR estimation 

process is validated using the results from previously published shake table experiments of a 

four-story steel frame structure. It is shown that reasonable estimates of IDR can be achieved by 

using the developed methods.  
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CHAPTER 1  

Introduction 

1.1 General 

Conventional practices to evaluate post-earthquake damage to buildings are labor intensive and 

time consuming. After an earthquake occurs, reconnaissance teams are deployed to the affected 

areas to carry out visual inspections of buildings, as outlined in the guidelines ATC-20 (Applied 

Technology Council 1989), ATC-20-1 (Applied Technology Council 2005) and ATC-20-2 

(Applied Technology Council 1995). These operations require a considerable labor force in the 

case of large cities where several thousand buildings could be simultaneously damaged after a 

strong earthquake. Due to the manual and error prone nature of existing practices (Li et al. 2012), 

there is a clear need for the process to be improved.  

This dissertation proposes smartphones as a means to automate damage assessment based on two 

important premises: 1) smartphones may be located throughout a building on each floor; and 2) 

sensors embedded in smartphones can measure accelerations, which can then be processed to 

yield explicit information about building damage. In particular, double integrating accelerometer 

data will yield floor displacements and, therefore, interstory drift ratios (IDR) along the building 

height, as shown in Figure 1-1. IDR is commonly used to represent fragility and vulnerability 

functions because of its direct correlation with building damage, as outlined in FEMA 350 

(FEMA 2013). IDR is defined as the difference of displacements of the floors above and below 

the story of interest normalized by the interstory height. If IDR can be coupled with device 
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location, this data can enable electronic building tagging. Using citizen-owned sensors can 

overcome the substantial challenge of installing accelerometer sensors manually in buildings and 

provide a way to monitor buildings using ubiquitous devices.  

There have been numerous studies to investigate the usability of smartphones for earthquake 

engineering in a variety of areas. For example, a “iShake” system was developed using 

smartphones as seismic sensors to measure and deliver ground motion intensity parameters 

produced by earthquakes more rapidly and accurately than traditional methods (Ervasti et al. 

2011). Smartphone data have also been used to track population movements in the aftermath of 

earthquakes (Bengtsson et al. 2011). Citizen-owned smartphones can provide early warnings of 

earthquake activity and a map of peak ground acceleration (Clayton et al. 2012). A global 

smartphone seismic network, MyShake, has been developed to build a global smartphone 

seismic network by utilizing the power of crowdsourcing. This study showed that an everyday 

handheld smartphone can be used as a portable seismometer by monitoring data from the 

accelerometer to detect earthquakes (Kong et al. 2015). Other research groups have shown that 

smartphones can be employed in health monitoring systems for bridges (Yu et al. 2015) and 

buildings (Kong et al. 2018). These efforts are mainly focused on classifying the occurrence of 

an earthquake or identifying straightforward parameters such as the fundamental frequencies of 

structures. However, none of the previously mentioned studies have addressed how IDR can be 

computed from data collected from smartphone accelerometers and used to directly assess 

seismic damage as is done herein.  

Several topics were studied in this dissertation in order to make the proposed vision a reality. A 

summary of each of these areas is discussed next. 
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Figure 1-1. Computation of residual IDRs after a seismic event (Li et al. 2012) 

 

1.1.1 Dynamic Behavior of an Unconstrained Smartphone under Seismic Shaking 

The first step in using smartphones as earthquake damage sensors is to develop an understanding 

of how they move during seismic shaking. The intent of this part of the study is to solve the 

governing equations of motion of a smartphone sitting on a seismically excited base. For the sake 

of simplicity and without sacrificing accuracy, a smartphone is approximated as a rigid body (or 

block). The frictional response of an unconstrained block on a moving base can be divided into 

two main categories of behavior (sticking and sliding) and the block alternates between these two 

states as the supporting base moves back and forth due to seismic excitation. Because of its 

importance to accurately computing the motion of the block, “stick-slip” transition and the 

conditions under which the block is sliding are key concerns in this work. 
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1.1.2 Stick-Slip Characteristics of a Smartphone under Seismic Shaking 

A key problem that hinders the vision for automated damage assessment is sliding motions, 

which may contaminate the recorded data making it impossible to estimate the motion of the 

underlying floor from the smartphone’s measurements. In order to detect floor acceleration, a 

smartphone must move in tandem with the floor. However, smartphones are usually just placed 

on furniture and not constrained in any way. If a smartphone has an adequate coefficient of 

friction with the underlying surface (e.g. encased in a rubber protective cover) and the underlying 

furniture is attached firmly to the floor, the smartphone’s movements will be representative of 

the floor’s movements. Otherwise, slip occurs. It is therefore necessary to identify the parts of 

the record during which slip occurs so as to exclude those from a smartphone’s readings of the 

shaking record.  

1.1.3 Computing IDR from Acceleration Measurements 

Acceleration measurements from a single smartphone includes substantial noise and may also be 

contaminated by slip action. Improvements in the reliability of the measured data may be 

achieved by stacking measurements from multiple phones. It is therefore necessary to develop 

techniques to reduce the effect of noise in the measured data, detect and eliminate sliding effects, 

fuse data from multiple sources, and reduce double integration errors. Once these issues are 

addressed and reliable estimates of the floor motion are obtained, the IDR values can be 

computed and used for damage assessment, fulfilling the vision of this work.  

1.2 Objectives 

The goals of this study are to: a) understand the dynamic behavior of an unconstrained 

smartphone under seismic motions; b) identify stick-slip characteristic of the smartphone; and c) 
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estimate IDR from smartphones’ acceleration measurements. There are three specific research 

objectives as follows: 

• Develop tools to compute the dynamic behavior of an unconstrained smartphone under 

seismic shaking.  

• Propose strategies to identify the stick-slip characteristics inherent in the motion of a 

smartphone on a moving surface.  

• Propose methods for computing interstory drift ratios using data computed from multiple 

smartphones.  

1.3 Structure of the dissertation 

A brief description of each of the six chapters of this dissertation is provided below.  

Chapter 1: Introduction. A general overview of the motivation and objectives of this research is 

presented. The scope of this work and an introduction to the content to follow is also provided. 

Chapter 2: Dynamic Behavior of an Unconstrained Smartphone under Seismic Shaking. The 

behavior of a smart device on an underlying surface subjected to seismic motion is investigated. 

The smart device is modeled as a rigid block and its frictional interactions with the underlying 

base is represented using an existing model, modified for the purposes of this study. After 

validation of the results using experimental data, the revised model is used to study the sliding 

potential of smart devices on a surface during strong seismic events. This study identifies under 

what conditions a smart device (block) will stick to the underlying surface under seismic action. 

The concept of a probability of exceeding the slip limit curve is introduced and used to relate the 

probability of exceeding a given slip limit versus first period spectral acceleration for a given 

structure and location.  
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Chapter 3: Identify Stick-Slip Characteristics of a Smartphone on a Seismically Excited 

Surface. A method is presented to identify stick-slip motion from a smartphones’ acceleration 

measurements. The method is based on identifying key characteristics in the acceleration record, 

specifically, the kinetic coefficient of friction. The noise associated with a smart device’s 

measurement of acceleration is established and noise reduction methods to overcome them are 

compared. Computational simulation results and experimental data are used to demonstrate the 

concepts discussed in this Chapter.  

Chapter 4: Stick-Slip Classification Based on Machine Learning Techniques. The sliding 

motion detection method in Chapter 3 is reasonably accurate. However, more accurate methods 

are needed to increase the effectiveness of the proposed damage evaluation methodology. To that 

end, machine learning is used to improve the sliding motion detection rate. Two types of 

machine learning methods are applied: supervised learning and deep learning (DL). To 

implement the supervised learning algorithms, acceleration data from an unconstrained 

smartphone undergoing motion with sticking and sliding components are processed to 

empirically select five features to aid in the classification process. Unlike the supervised learning 

algorithms, DL does not require prior knowledge beside the input data and automatically tunes 

the threshold parameters to identify stick-slip motion more accurately. The performance of both 

methods is contrasted and discussed.  

Chapter 5: Stacking multiple device measurements to improve computation of interstory drift 

ratios. A process for estimation of IDR at each floor level is presented. The computed IDR 

values are compared to known limits to assess damage levels. The proposed methodology 

addresses noise reduction, sliding detection, data fusion, double integration errors, and 
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interpolation for missing floors. A shake table test is conducted to showcase and validate the 

proposed process.  

Chapter 6: Summary and Conclusions. Key findings and contributions that can be extracted 

from this work are summarized. Recommendations for future research related to estimating IDR 

using smartphones are also included.   

1.4 Publications from this dissertation 

Chapter 2 consists of work published in one journal paper. The work in Chapter 3 has been 

submitted for publication. The work in Chapter 4 and Chapter 5 are being prepared for 

publication and will soon be submitted. Details are listed below: 

Na, Y., El-Tawil, S., Ibrahim, A., and Eltawil, A. (2018). “Dynamic behavior of a smartphone on 

a surface subjected to earthquake motion.” Earthquake Engineering & Structural 

Dynamics. (Chapter 2)  

Na, Y., El-Tawil, S., Ibrahim, A., and Eltawil, A. “Identifying Stick-Slip Characteristics of a 

Smartphone on a Seismically Excited Surface using On-Board Sensors.” J. of Earthquake 

Engineering, Accepted Feb, 2018. (Chapter 3) 

Na, Y., El-Tawil, S., Ibrahim, A., and Eltawil, A. “Classifying stick-slip motion of a smartphone 

by applying machine learning algorithms,” In preparation. (Chapter 4) 

Na, Y., El-Tawil, S., Ibrahim, A., and Eltawil, A. “Assessment of Interstory Drift measurements 

using smartphone sensors.” Journal of Structural Engineering, Submitted Dec, 2018 

(Chapter 5) 
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CHAPTER 2  

Dynamic behaviour of a smart device on a surface subjected to earthquake motion 

2.1 General 

This chapter begins with an overview of the literature relevant to friction models, which are 

necessary to model the sticking and sliding behavior of smart devices on an underlying moving 

surface. A friction model is adopted and modified for the purpose of this study. The modified 

friction model is validated by comparing its behavior to experimentally measured data. After 

validation, the modified friction model is used to study the sliding potential of smart devices. 

Sliding spectra of selected records are provided for two-dimensional motion and “probability of 

exceeding the slip limit” curves are subsequently derived, and their potential application 

discussed.  

2.2 Literature review 

The frictional response of an unconstrained block on a moving base can be divided into two main 

categories of behavior: sticking (pre-sliding) and slipping (sliding) (Hsieh and Pan 2000). The 

block transitions between sticking and slipping as the supporting base moves back and forth 

because of seismic excitation. At incipient sliding, in the so-called micro-slip zone, small relative 

motion occurs between the block and base (Parlitz et al. 2004). The Stribeck (or velocity 

weakening) effect is characterized by a decrease in the friction force with increasing relative 

velocity, and frictional lag, where there is hysteresis in the friction versus velocity response. 
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Once the applied inertial forces exceed the frictional resistance, the block moves beyond the 

micro-slip zone and starts sliding in earnest. Because of its importance to accurately compute the 

motion of the block, modeling “stick-slip” transition is a main concern in this work. 

Numerous friction models are available in the literature, ranging from simple methods, which 

ignore key friction phenomena, to sophisticated ones that account for multiple considerations. 

The Coulomb law of dry friction is widely used in contact problems because of its simplicity. 

The Coulomb friction force, which acts opposite to the direction of motion of the body with 

respect to the moving base, is simply equal to the normal force between two bodies multiplied by 

the kinetic coefficient of friction.  

To incorporate the Stribeck effect and the effect of pre-sliding displacements, De Wit et al  

(1995) proposed the LuGre model, which is an extension of the Dahl model (Dahl 1975). This 

model is based on a bristle-like interpretation of the frictional interface. However, the LuGre 

model behaves like a linear spring/damper pair when it is linearized for small velocities, and as 

such, Parlitz et al. (2004) and Choi et al. (2006) criticized it as incapable of adequately 

considering pre-sliding hysteresis. Lampaert et al. (2002) and Swevers et al.(2000) attempted to 

address this problem by incorporating a Maxwell slip model. However, the resulting models are 

complex and difficult to extend to two dimensions. 

To simulate sticking and slipping behavior in contact problems with system damping and 

stiffness, Karnopp (1985) developed a force-balance friction model for one-dimensional motion. 

Beyond a predefined velocity window that signals when sliding is occurring, the friction force is 

described as a function of the sliding velocity. Tan and Rogers (1996) extended Karnopp's one-

dimensional model to two dimensions. Their model exhibited “numerical chattering” in the 
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velocity response when the tangential velocity was close to zero. To address this issue, Tariku 

and Rogers (2000) introduced the concept of a micro-slip region, where the friction force acts 

opposite to the net external force, rather than the direction of the sliding velocity, which they 

argued is not reliable in this region. Based on this idea, they presented a new method to alleviate 

the chattering problem. In addition to a sticking spring, Tariku and Rogers (2001) and Antunes et 

al. (1990) introduced a sticking damper when a sticking state is detected to eliminate the spurious 

local vibrations associated with the abrupt change in the friction force direction. However, the 

sticking damper properties, as well as the sticking spring properties, have no physical meaning. 

Several categories of problems in earthquake engineering make use of friction models. Among 

the largest are base isolation systems and geotechnical engineering problems. Of particular 

interest to the ideas in this chapter is the sliding behavior of monuments and blocks lying on the 

ground. For example, using Coulomb's law, Gazetas et al. (2009) introduced the idea of the 

“sliding potential” of a rigid block resting on horizontal or inclined planes subjected to horizontal 

and vertical motion. They used the sliding potential as a measure of the capacity of earthquakes 

to induce damage in sliding systems and introduced one‐dimensional sliding spectra of selected 

ground motion records. Other studies of sliding blocks can be found in Gazetas et al.(2012) and 

Westermo and Udwadia (1983). Most of the studies in this category of problems have focused on 

one‐dimensional problems and not two, as done herein. Also, to the knowledge of the author, this 

is the first study to focus on the behavior of smart devices. 

  



 

11 

 

2.1 Friction models for an unconstrained smart device 

Figure 2-1a shows the system under consideration, where a block sits on a horizontal base. The 

base is subjected to some type of motion described by an acceleration time history, 𝑤̈𝑥(𝑡𝑛). The 

block on the base can undergo stick-slip motion without restriction, i.e. it is not constrained in 

any way. For simplicity, the normal load, 𝑁𝑜, is assumed a constant value, 𝑚𝑔, where m is the 

mass of the block and 𝑔 is the acceleration due to gravity. This assumption is relaxed later on in 

the chapter, where variable vertical acceleration is taken into account. It is also assumed that the 

block and base are rigid and always in contact, i.e, separation because of vertical acceleration 

does not occur. The equation of motion in the x direction is defined as: 

where 𝑢̈𝑥(𝑡𝑛) is the acceleration of the block in the x direction at time, 𝑡𝑛, and 𝐹𝑓,𝑥(𝑡𝑛) is the 

friction force acting between the base and the block in the x direction. The solution of Equation 

2-1 depends on the state of motion (sliding or sticking) and the friction model used. 

 

a) 

 

 

𝑚𝑢̈𝑥(𝑡𝑛) = 𝐹𝑓,𝑥(𝑡𝑛) 2-1 
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b) 

  

Figure 2-1. Problem setup: a block on a base for a) one-dimensional motion and b) two-

dimensional motion 

In two dimensions, the equation of motion is presented as follows:  

where 𝑢̈𝑦(𝑡𝑛) is the acceleration of the block in the y direction at time, 𝑡𝑛, and 𝐹𝑓,𝑦(𝑡𝑛) is the 

friction force acting between the base and the block in the y direction. For simplicity, the relative 

acceleration, velocity and displacement between the base and the block in x and y directions at 

time (𝑡𝑛) are defined as 𝑋̈(𝑡𝑛), 𝑌̈(𝑡𝑛), 𝑋̇(𝑡𝑛), 𝑌̇(𝑡𝑛), 𝑋(𝑡𝑛) and 𝑌(𝑡𝑛), respectively.  

2.1.1 LuGre Model 

De Wit et al (1995) developed the LuGre model by assuming that the friction interface between 

two surfaces comprises contact between bristles. These bristles provide resistance to motion 

when there is a relative velocity between the two contact surfaces giving rise to the friction force, 

which is represented as follows:  

𝑚𝑢̈𝑥(𝑡𝑛) = 𝐹𝑓,𝑥(𝑡𝑛) 

𝑚𝑢̈𝑦(𝑡𝑛) = 𝐹𝑓,𝑦(𝑡𝑛) 
2-2 
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𝐹𝑓,𝑥(𝑡𝑛) = −𝜎0𝑧(𝑡𝑛) − 𝜎1𝑧̇(𝑡𝑛) − 𝜎2𝑋̇(𝑡𝑛) 2-3 

𝑧̇(𝑡𝑛) = 𝑋̇(𝑡𝑛) −
|𝑋̇(𝑡𝑛)|

𝑟 (𝑋̇(𝑡𝑛))
𝑧(𝑡𝑛) 2-4 

𝑟 (𝑋̇(𝑡n)) =
1

𝜎0
(𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒

−|𝑋̇(𝑡𝑛)/ 𝑣𝑠|
2
) 2-5 

where 𝐹𝑓,𝑥(𝑡𝑛) is the friction force in the x direction, 𝑧(𝑡𝑛) and 𝑧̇(𝑡𝑛) are the average deflection 

of the bristles and its derivative; 𝜎0, 𝜎1, and 𝜎2 are the stiffness, damping, and viscous friction 

coefficients, respectively; 𝐹𝑐 , 𝐹𝑠  and 𝑣𝑠  are the Coulomb friction, static friction and Stribeck 

velocity, respectively; and 𝑟 (𝑋̇(𝑡𝑛)) describes the Stribeck behavior. Note that 𝑣𝑠 is a small slip 

velocity, below which microslip behavior occurs.  

To extend the LuGre model to two dimensions, the friction force is split into components parallel 

to those of the instantaneous sliding velocity unit vector, which consequently results in coupling 

of the x and y equations of motion. This force distribution method is based upon the Maximal 

Dissipation Rate Principle (Sorine 1998) for isotropic situations (Velenis et al. 2005). The two-

dimensional equations of motions are presented as follows: 

[
𝐹𝑓,𝑥(𝑡𝑛)

𝐹𝑓,𝑦(𝑡𝑛)
] = −𝜎0 [

𝑧𝑥(𝑡𝑛)

𝑧𝑦(𝑡𝑛)
] − 𝜎1 [

𝑧̇𝑥(𝑡𝑛)

𝑧̇𝑦(𝑡𝑛)
] − 𝜎2 [

𝑋̇(𝑡𝑛)

𝑌̇(𝑡𝑛)
] 2-6 

[
𝑧̇𝑥(𝑡𝑛)

𝑧̇𝑦(𝑡𝑛)
] = [

𝑋̇(𝑡𝑛)

𝑌̇(𝑡𝑛)
] −

[
 
 
 
 
 

|𝑋̇(𝑡𝑛)|

𝑟𝑥 (𝑋̇(𝑡𝑛))
𝑧𝑥(𝑡𝑛)

|𝑌̇(𝑡𝑛)|

𝑟𝑦 (𝑌̇(𝑡𝑛))
𝑧𝑦(𝑡𝑛)

]
 
 
 
 
 

 2-7 
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[
𝑟𝑥 (𝑋̇(𝑡𝑛))

𝑟𝑦 (𝑌̇(𝑡𝑛))
] =

1

𝜎0√𝑋̇(𝑡𝑛)2 + 𝑌̇(𝑡𝑛)2
[
|𝑋̇(𝑡𝑛)|

|𝑌̇(𝑡𝑛)|
] [ 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐) [𝑒

−(|𝑋̇(𝑡𝑛)|/ 𝑣𝑠)
2

𝑒−(|𝑌̇(𝑡𝑛)|/ 𝑣𝑠)
2]] 2-8 

where 𝐹𝑓,𝑦(𝑡𝑛) is the friction force component in the y direction, 𝑧𝑦(𝑡𝑛) is the average deflection 

of the bristles in the y direction, 𝑟𝑦 (𝑌̇(𝑡𝑛)) describe the Stribeck behavior in the y direction. The 

solution of Equation 2-3 for one dimensional and Equation 2-6 for two-dimensional motion 

depends on sticking-sliding state as elaborated upon next.  

2.1.2  Modified Sticking-Spring-Damper Friction Model (SSDFM) 

The friction model used for most of the analyses in this chapter is an extension of the model 

proposed by Tariku and Rogers (2001) and Antunes et al. (1990). Termed the sticking-spring-

damper friction model (SSDFM), it is geared toward application to an unconstrained block 

(smart device) on a moving base subjected to seismic excitation. Two changes are made: 1) an 

interpolation technique is introduced to enhance detection of transition points, which occur 

frequently during seismic motion, and 2) the model is extended to handle vertical accelerations 

whereas the original model only considered constant vertical acceleration. 

When sticking is detected, an imaginary tangential sticking spring with stiffness 𝐾𝑓,𝑥 (in the x 

direction) and sticking damper with sticking damping coefficient 𝐶𝑓,𝑥  (in the x direction) are 

inserted between the base and the bottom of the block. Combined, the sticking spring and 

damper force components represent the total friction force. The model detects sticking from 

sliding when three conditions are concurrently satisfied: 1) the relative velocity changes its sign; 

2) the inertial force is less than the Coulomb static friction force; and 3) the sticking spring-

damper force is smaller than or equal to the Coulomb static friction force. When the sticking 
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friction force is greater than the Coulomb static friction force, the sticking state is broken and 

sliding initiates and becomes governed by the kinetic friction force.  

For two-dimensional motion on a base, the sliding friction force in Equation 2-9 is divided into x 

and y components, parallel to those of the instantaneous sliding velocity unit vector, as follows: 

[
𝐹𝑓,𝑥(𝑡𝑛)

𝐹𝑓,𝑦(𝑡𝑛)
] = −

𝜇𝑘𝑁𝑜

√(𝑋̇(𝑡𝑛))
2
+ (𝑌̇(𝑡𝑛))

2
 

[
𝑋̇(𝑡𝑛)

𝑌̇(𝑡𝑛)
] 

2-9 

where 𝜇𝑘 is kinetic coefficient of friction and 𝐹𝑓,𝑦(𝑡𝑛) is the friction force component in the y 

direction.  

The transition from sticking to sliding commences when the magnitude of the external force (in 

this case inertial) is greater than the Coulomb static friction force. Following Tariku and Rogers 

(2001), it is assumed that the friction force acts opposite to the external force, rather than 

opposite to the direction of the sliding velocity in the micro-slip region, until the sliding velocity 

reaches 0.1 mm/s and has a consistent direction. The components of the friction force are 

calculated as a function of the acceleration vector as follows: 

[
𝐹𝑓,𝑥(𝑡𝑛)

𝐹𝑓,𝑦(𝑡𝑛)
] =

𝜇𝑘𝑁𝑜

√𝑤̈𝑥(𝑡𝑛)2 + 𝑤̈𝑦(𝑡𝑛)2 
[
𝑤̈𝑥(𝑡𝑛)

𝑤̈𝑦(𝑡𝑛)
] 2-10 

The set of equations is solved numerically using the Runge Kutta method.  

Transition points are considered to occur when: 1) sliding commences from sticking, 2) the sign 

of a component of the sliding direction reverses, and 3) sliding ends, leading to sticking. Using a 

constant time step for numerical simulations (as done in the traditional friction models) makes it 
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difficult to find an accurate transition point. Instead of using the constant time step, an 

interpolation technique is applied to more accurately compute transition points and prevent 

overshooting. Therefore, at transition points, the time step is discretized into multiple sub-steps 

using a cubic spline. Experimentation with various numbers of steps showed that 20 sub-steps 

produce a reasonable answer as discussed later on in Section 2.4.2.  

Figure 2-2 shows how the transition point is found. At transition, the velocity of the base and 

block are almost the same, and the block stops slipping or changes its slip direction depending on 

the friction forces at play. As shown in Figure 2-2, the larger time steps used during sliding 

(designated with stars [✩] in Figure 2-2) causes overshooting behavior. Once overshooting is 

detected (when the sign of relative velocity reverses), the solution process steps back to the last 

point before overshooting and restarts the computation with a smaller time step (1/20th of the 

original step) leading to more accurate detection of the transition point (designated 1st transition 

point in Figure 2-2). The smaller time steps are shown in Figure 2-2 as diamonds (♢). The larger 

time step is again reinstituted. As shown in Figure 2-2, the large time-step again misses the 

transition point (2nd transition point in Figure 2-2). The interpolation process is repeated (shown 

by triangles [▵] then circles (o) in Figure 2-2) to avoid excessive overshooting.  

The SSDFM algorithm, which is based on Tariku and Rogers (2000) and modified as outlined 

earlier, is applied at each time step 𝑡𝑛 where 𝑛 refers to the present time step and 𝑛-1 refers to the 

previous time as follows: 
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Figure 2-2. Detail of interpolation scheme to accurately identify transition points 

1 If the previous state at time 𝑡𝑛−1 is sliding, then assess sticking by checking to see if the sign of 

the relative velocity changes. Compute 𝛽x and 𝛽y: 

𝛽𝑥 = 𝑋̇(𝑡𝑛)∙𝑋̇(𝑡𝑛−1) 

𝛽𝑦 = 𝑌̇(𝑡𝑛)∙𝑌̇(𝑡𝑛−1) 

2-11 

1.1 If both 𝛽x  and 𝛽y  are positive, the system is still sliding. Compute friction forces from 

Equation 2-9. 

1.2 If either one or both of 𝛽𝑥  and 𝛽𝑦  are zero or negative, compute the inertial force 

components, 𝐹𝑖,𝑥 and 𝐹𝑖,𝑦, acting on the block, and the Coulomb static friction force with static 

coefficient of friction, 𝜇𝑠: 
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𝐹𝑖,𝑥(𝑡𝑛) = 𝑚𝑤̈𝑥(𝑡𝑛) 

𝐹𝑖,𝑦(𝑡𝑛) = 𝑚𝑤̈𝑦(𝑡𝑛) 

𝐹𝑠 = 𝑁𝑜𝜇𝑠 

2-12 

1.2.1 If √(𝐹𝑖,𝑥)
2
+ (𝐹𝑖,𝑦)

2
 >𝐹𝑠 , then the system is sliding. Compute the friction forces using 

Equation 2-9. 

1.2.2 If √(𝐹𝑖,𝑥)
2
+ (𝐹𝑖,𝑦)

2
 ≤𝐹𝑠, then  

1.2.2.1 Compute the transition points  𝑋𝑠𝑡  and 𝑌𝑠𝑡  between 𝑋(𝑡𝑛−1)  and 𝑋(𝑡𝑛)  and between 

𝑌(𝑡𝑛−1) and 𝑌(𝑡𝑛), respectively by interpolation. Go back one step (𝑛= 𝑛-1) and restart the 

computation using Equation 2-9 with 1/20th of the original step until the transition points 𝑋𝑠𝑡 

and 𝑌𝑠𝑡 are reached, defined as the points where the sign of the relative velocity reverses.  

1.2.2.2 Insert imaginary springs and dampers between the base and block in both x and y 

directions. Calculate sticking friction force components 𝐹𝑜,𝑥(𝑡𝑛) and 𝐹𝑜,𝑦(𝑡𝑛): 

𝐹𝑜,𝑥(𝑡𝑛) =  −𝐾𝑓,𝑥[𝑋(𝑡𝑛) − 𝑋𝑠𝑡] − 𝐶𝑓,𝑥𝑋̇(𝑡𝑛) 

𝐹𝑜,𝑦(𝑡𝑛) = −𝐾𝑓,𝑦[𝑌(𝑡𝑛) − 𝑌𝑠𝑡] − 𝐶𝑓,𝑦𝑌̇(𝑡𝑛) 

2-13  

1.2.2.3 If √(𝐹𝑜,𝑥(𝑡𝑛))
2
+ (𝐹𝑜,𝑦(𝑡𝑛))

2
>𝐹𝑠, the system is sliding. In this case, the friction forces 

are given by Equation 2-9. 
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1.2.2.4 If √(𝐹𝑜,𝑥(𝑡𝑛))
2
+ (𝐹𝑜,𝑦(𝑡𝑛))

2
≤𝐹𝑠, the system is sticking. Compute the sticking friction 

force by checking the conditions one-step back: 

1.2.2.4.1 If √(𝐹𝑜,𝑥(𝑡𝑛−1))
2
+ (𝐹𝑜,𝑦(𝑡𝑛−1))

2
≥√(𝐹𝑓,𝑥(𝑡𝑛−1))

2
+ (𝐹𝑓,𝑦(𝑡𝑛−1))

2
, then the friction 

force becomes the sticking friction force 𝐹𝑓,𝑥(𝑡𝑛) = 𝐹𝑜,𝑥(𝑡𝑛) and 𝐹𝑓,y(𝑡𝑛) = 𝐹𝑜,𝑦(𝑡𝑛). 

1.2.2.4.2 If √(𝐹𝑜,𝑥(𝑡𝑛−1))
2
+ (𝐹𝑜,𝑦(𝑡𝑛−1))

2
<√(𝐹𝑓,𝑥(𝑡𝑛−1))

2
+ (𝐹𝑓,𝑦(𝑡𝑛−1))

2
, then go back one 

step (𝑛= 𝑛-1). Compute new 𝐹𝑜,𝑥(𝑡𝑛) and 𝐹𝑜,𝑦(𝑡𝑛) from Equation 2-13. Check for the sticking 

friction force as done in 1.2.2.4.1. 

2. If the previous state at time 𝑡𝑛−1 is sticking, then compare the sticking friction force computed 

from Equation 2-13 and the Coulomb static friction force 𝐹𝑠 

2.1 If 𝐹𝑠 ≥√(𝐹𝑜,𝑥(𝑡𝑛))
2
+ (𝐹𝑜,𝑦(𝑡𝑛))

2
, the block continues to stick and the friction forces are 

computed from Equation 2-13. 

2.2 If 𝐹𝑠 <√(𝐹𝑜,𝑥(𝑡𝑛))
2
+ (𝐹𝑜,𝑦(𝑡𝑛))

2
, then sliding occurs.  

2.2.1 If the relative velocities are greater than 0.1 mm/s, the friction force is given by 

Equation2-9. 

2.2.2 If the relative velocities are less than 0.1 mm/s, the friction force is given by Equation 2-10. 
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2.1.3 Device on a Table on a Moving Floor  

The proposed friction model can be readily applied to the double stacked body problem as shown 

in Figure 2-3, where it is assumed that the smart device sits on a table or other piece of furniture, 

which in turn sits on a moving base. The table or furniture is assumed to be a rigid body. The 

sliding criteria for double stacked bodies are presented as follows:  

where 𝑢1 and 𝑢2 are the relative displacements of the table with respect to the base and of the 

smart device with respect to the table, respectively; 𝜇1 and 𝜇2  are the coefficients of friction 

between the base and the table and between the table and smart device, respectively. 

If the coefficient of friction between the table and smart device is higher than that between the 

base and the table (𝜇2 > 𝜇1), the smart device does not slide with respect to the table. In other 

words, the table slides while the smart device sticks to it. The situation is more complex when 

𝜇2 < 𝜇1. In this case, the table can slide with respect to the base and the smart device can also 

slide with respect to the table. Because the mass of the smart device is generally negligible with 

respect to that of the table, the problem can be uncoupled into two independent parts, where the 

motion of the table or smart device are computed as a function of the movement of the 

underlying surface. In either case, the motion can be computed using the algorithm in section 

2.3.2. 

|𝑢̈𝑔| < 𝜇1𝑔 , |𝑢̈𝑔 + 𝑢̈1| < 𝜇2𝑔 2-14 
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Figure 2-3. Schematic diagram of the double stacked bodies 

 

2.2 Parametric studies  

Two key parameters, sticking spring stiffness and number of interpolation points, are studied to 

show how these parameters affect the simulation results. In the following, it is assumed that 𝑚=1 

kg, 𝜇𝑠=0.45, 𝜇𝑘=0.4, 𝑁𝑜=9.81 N, and 𝐶𝑓,𝑥=191 N∙s/m. The time step of 0.1 millisecond is chosen 

to be less than one thousandth of the period of the highest frequency, among the natural, excited 

and normal force frequencies as outlined in Tariku and Rogers (2001). The motion of the surface 

in the simulations is modeled using cosinusoidal functions with randomly generated amplitude 

and frequency. The amplitude range is 0.1~3 m/s and the frequency range is 0.2π~3π rad/s in the 

x and y directions. An error is defined as the deviation of the smallest computed sticking velocity 

of the block from the velocity of the base at the first transition from slipping to sticking. In the 

subsequent discussion, errors are normalized by dividing them by the maximum amplitude of the 

velocity record.  
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2.2.1 Effect of the Applied Amplitude and Sticking Spring Stiffness 

Figure 2-4 shows the effects of the amplitude of the applied base velocity and the sticking spring 

stiffness of SSDFM on the normalized sticking velocity error. In Figure 2-4, the amplitude of the 

applied velocity ranges from 0.8 through 2.89 m/s, and the sticking spring stiffness ranges from 

1,000 to 80,000 N/m. Figure 2-4 shows that the sticking velocity errors of SSDFM decrease 

asymptotically as the sticking spring stiffness increases. It appears that increasing the sticking 

spring stiffness beyond 50,000 N/m does not result in significant reduction in the sticking 

velocity error. Also, evident from Figure 2-4 is that selecting a larger amplitude for the 

cosinusoidal function results in a lower normalized sticking velocity error. In particular, the 

larger amplitude (2.89 m/s) function has a lower normalized sticking velocity than the smaller 

amplitude (1.30 m/s and 0.80 m/s) functions.  

 

Figure 2-4. Effect of stiffness of spring and amplitude of applied velocity 



 

23 

 

2.2.2 Effect of the Number of Interpolation Points 

Figure 2-5 shows the effect of the number of interpolation points at the transition points on 

solution accuracy. It is clear that increasing the number of interpolation points results in a lower 

normalized sticking velocity error, but leads to longer computation time. Figure 2-5 shows that 

the rate of improvement in reducing the velocity error flattens out considerably at about 20 

points, the number adopted in this work. 

 

Figure 2-5. Effect of number of interpolation in the proposed model 

 

2.2.3 Statistical Error Analysis 

For the purposes of validation, a two-dimensional dynamic system is solved using both the 

LuGre model and SSDFM, focusing in particular on transition points. To compare the 

performance of LuGre and SSDFM, the motion of the surface in the simulations is modeled 
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using cosinusoidal functions with randomly generated amplitude and frequency. The amplitude 

range is 0.1~3 m/s and the frequency range is 0.2𝜋~3𝜋 rad/s. The key parameters are 𝑚=1 kg, 

𝜇𝑠=0.45, 𝜇𝑘=0.4 and 𝑁𝑜=9.81 N. For SSDFM, 𝐾𝑓,𝑥=50,000 N/mm and 𝐶𝑓,𝑥=191 N∙s/m. The time 

step of 0.1 ms is chosen to be less than one thousandth of the period of the highest frequency, 

among the natural, excited and normal force frequencies as outlined in Tariku and Rogers 

(2001). For the LuGre model, 𝜎0 = 50,000 N/m,  𝜎1 =√𝜎0 , 𝜎2 =0.4 , 𝑣𝑠=0.001, and 𝐹𝑠 = 1.125𝐹𝑐 

are selected as outlined in (De Wit et al. 1995). Dynamic responses of the system are simulated 

using the algorithms and solutions discussed in Section 2.3.2. A total of 300 simulation cases for 

two-dimensional motion are conducted.  

The statistical properties of the sticking velocity error appear to follow a Weibull distribution 

(Shigley and Mitchell 1983), which is characterized by four variables: R, 𝜃 , b and 𝑒𝑜 . R 

(reliability) is the cumulative density function complementary to unity. The characteristic value, 

𝜃,  is the abscissa point corresponding to a reliability of 0.368 or ln ln(1/𝑅)=0. The shape 

parameter, 𝑏,  is the slope of the fitted straight line. 𝑒𝑜  is a guaranteed normalized sticking 

velocity. The Weibull distribution requires that the plot of ln ln(1/𝑅) versus ln (Normalized 

sticking velocity error) forms a straight line as shown in Figure 2-6. Following the approach in 

Shigley and Mitchell (1983), the values of the three Weibull parameters (𝑒𝑜, 𝜃, and 𝑏) for the two 

friction models are summarized in Table 2-1. Using these parameters, the mean and the standard 

deviations of the normalized sticking velocity errors are calculated using the formulas for 

Weibull distributions when the sticking spring stiffness of 50,000 N/m is used. 
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Figure 2-6. Relationship between reliability and error 

 

Table 2-1. Weibull parameters for the normalized sticking velocity error distributions 

Model 𝑒𝑜 𝜃 𝑏 

LuGre 0 3.44E-3 7.77E-1 

SSDFM 0 1.98E-3 7.13E-1 

 

Table 2-2 summarizes the statistical parameters for the normalized sticking velocity errors 

computed from the SSDFM and LuGre. It is clear from Table 2-2 that SSDFM has a smaller 

mean than the LuGre model (3.98E-3 for LuGre, and 2.02E-3 for SSDFM), smaller standard 

deviation (5.18E-3 for LuGre, 3.67E-3 for SSDFM), smaller minimum (1.29E-5 for LuGre, and 
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1.13E-5 for SSDFM) and smaller maximum (7.66E-2 for LuGre, and 5.87E-2 for SSDFM) 

normalized sticking velocity error values.  

Another way of comparing the SSDFM and LuGre is to compute the reliability, which shows the 

level of consistency expected from a model. The reliability is calculated as shown in Equation 

2-15.  

where 𝑒  is the normalized sticking velocity error. Figure 2-7 shows the normalized sticking 

velocity error probability curves for the two friction models given by 𝑃(𝑥)=100[1 − 𝑅(𝑥)]. The 

SSDFM gives smaller normalized sticking velocity errors for the same percent probability than 

the LuGre model. For example, in comparing the two points corresponding to 95 percent 

confidence on the two curves of Figure 2-7, the maximum expected sticking velocity error of 

SSDFM (0.010) is smaller than that of LuGre (0.014). The above discussion suggests that the 

SSDFM is modestly better than the LuGre model, especially in reducing the sticking velocity 

error at the transition points and is the reason SSDFM is selected for the subsequent studies.  

 

Table 2-2. Statistics of the normalized sticking velocity errors 

Model Mean 
Standard 

Deviation 
Minimum Maximum 

LuGre 3.98E-3 5.18E-3 1.29E-5 7.66E-2 

SDDFM 2.02E-3 3.67E-3 1.13E-5 5.87E-2 

 

𝑅(𝑥) = exp(−[(𝑒 − 𝑒𝑜)/(𝜃 − 𝑒𝑜)]
𝑏) 2-15 
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Figure 2-7. Probability of normalized sticking velocity error 

 

2.3 Comparison to experimental results 

Shake table experiments are conducted to show that the proposed model can reasonably 

represent the motion of an actual smart device on a seismically excited surface.  

2.3.1 Experimental Setup 

The smart device selected is a Samsung Galaxy S7 (model SM-G930). The ‘Sensor kinetics pro’ 

Android application by Innoventions, Inc., is used to record the phone’s acceleration data. An 

infrared 3D-motion capture system (Optotrak) is used to capture the true displacement of the 

smart device and shake table platen. The tracking system can monitor 3D positions of a set of 
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markers with an accuracy of 0.1 mm and resolution of 0.01mm at a distance of about 3 m. Two 

markers are placed on the platen and another two are placed on the phone to measure the 

displacement time histories. Corresponding velocities and accelerations are obtained by 

differentiating the displacement data.  

A shake table was custom-built for simulation of ground motions. The shake table consists of a 

platen driven by a linear actuator and step motor. The step motor is controlled by a step motor 

driver and an Arduino single-board microcontroller. LabView is used to feed signals to the shake 

table to simulate earthquake motion. The shake table can only represent one-dimensional motion 

because of its configuration. Therefore, in this study, it is assumed that, for the sake of 

simplicity, smartphones are oriented to measure only one-dimensional horizontal motion without 

vertical motion or lift off. Figure 2-8 shows the overall experimental setup with the smart phone, 

infrared sensors, shake table, platen, and Optotrak system. The maximum velocity of this shake 

table is 35cm/s and the maximum stroke is ±30cm. The shake table can produce precise, 

repetitive motions for a given ground motion so that each smartphone can record multiple rounds 

of acceleration measurements that are aggregated to reduce the noise as discussed in Chapter 4.  
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Figure 2-8. Experimental Setup  
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Two sets of tests are conducted, one with the smart device encased in a polyurethane protective 

case and another without a case. The phone case type is selected because it has a high coefficient 

of friction with the platen in order to simulate sticking-dominant response. The bare phone has a 

much lower coefficient of friction with the platen, which results in sliding-dominant motion. The 

platen of the shake table is made of acrylic. Together, both sets of tests represent a wide range of 

possible situations. Using standard procedures by ASTM D1894-14 (ASTM 2008), the measured 

static coefficient of friction between the shake table platen and polyurethane cover is 0.575 and 

the dynamic coefficient of friction is 0.384. The bare phone has a static coefficient of friction of 

0.315 and a dynamic one of 0.210. 

2.3.2 Validation of Proposed Model 

Simulation results from the proposed SSDFM are compared with the experimental results (from 

Optotrak and Galaxy S7) in Figure 2-9a and Figure 2-9c. The input signals represent the strong 

motion portions of EQ2 and EQ3 in Table 2-3, accounting for 95% of the Arias Intensity. 

Because of minor surface imperfections in the platen, the measured acceleration during sliding 

motions is not a perfect plateau as computed in the numerical analysis as shown in Figure 2-9b 

and Figure 2-9d. Nevertheless the overall measured acceleration responses are quite close to the 

simulated acceleration responses.  
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a) 

 

b) 

 

c) 
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d) 

 

Figure 2-9. Comparison of RMSE of simulated and measured acceleration responses: a) 

EQ2; b) detail view of A in EQ2; c) EQ3; and d) Detail view of B in EQ3 

 

Table 2-3. Ground motion records used 

EQ 

ID 

PEER-NGA Record 

Information 
PGA (g) 

Arias Intensity (𝐼𝐴) 

(m/s) 

Name 
Record 

No. 
𝒙-dir 𝒚-dir 𝒛-dir 𝒙-dir 𝒚-dir 𝒛-dir 

EQ1 NORTHR/MUL 953 0.416 0.516 0.327 3.074 4.498 1.350 

EQ2 NORTHR/LOS 960 0.410 0.482 0.318 1.913 1.976 0.532 

EQ3 DUZCE/BOL 1602 0.728 0.822 0.203 3.724 2.431 0.485 

EQ4 HECTOR/HEC 1787 0.266 0.337 0.150 0.831 1.866 0.353 

EQ5 IMPVALL/H-DLT 169 0.238 0.351 0.145 2.398 3.290 0.538 

EQ6 IMPVALL/H-E 174 0.364 0.380 0.140 3.918 3.227 0.511 

EQ7 KOBE/NIS 1111 0.509 0.503 0.371 3.353 2.270 1.325 

EQ8 KOBE/SHI 1116 0.243 0.212 0.059 0.827 0.639 0.059 

EQ9 KOCAELI/DZC 1158 0.312 0.358 0.229 2.171 2.660 0.863 

EQ10 KOCAELI/ARC 1148 0.219 0.150 0.086 0.578 0.434 0.223 

EQ11 LANDERS/YER 900 0.245 0.152 0.136 0.231 0.169 0.113 
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The deviations betweeen the measured acceleration from Optotrak and that from the smart 

device and between the measured acceleration from Optotrak and the simulated one from 

SSDFM are calculated by the root mean square error (RMSE) method. For both EQ2 and EQ3 

motions, the smart device’s measurements have more fluctuations during sliding motions 

compared to the SSDFM such that its RMSE is slightly higher than that for SSDFM. For EQ2 

motion, the RMSE for the smart device is 0.300 compared to 0.276 for SSDFM. For EQ3 motion, 

the RMSE for the smart device is 0.341 versus 0.2810 for SSDFM.  

Comparison between the location and number of sliding points as computed from SSDFM and 

measured in the experiments is another way to validate the model. The device without protective 

shell is used in the following discussion because it has a pronounced sliding response. Sliding 

motion is commonly assumed to occur when the relative velocity between the base and the 

device is greater than the Stribeck velocity 𝑣𝑠 (0.001m/s) (De Wit et al. 1995). Based on the 

0.002 second time step used in this study and given the displacement accuracy achievable by the 

Optotrak system, velocity can be measured to about 0.01m/s.  

Figure 2-10 illustrates the effect of the assumed 𝑣𝑠 on the accuracy of state detection, i.e. sliding 

versus sticking. The correct detection rate is the ratio of correctly matched states to the total 

number of states. The erroneous detection rate represents the remaining points. Figure 2-10 

shows that the rate of increase in correct detections flattens out at around 0.012 m/sec, which 

corresponds to the resolution of the test system. Hence this number is adopted in this work to 

define the interface between sticking and sliding. Figure 2-11 plots sliding points for EQ2 and 

EQ3 as computed from the Optotrak and SSDFM data. In Figure 2-11 sliding points are plotted 

as circles. It is clear that the measured data matches the computed data well. The high correct 

detection rate (94% for EQ2 and 97% for EQ3) signifies that the SSDFM is reaonably accurate 
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and capable of modeling well the sticking and sliding regimes and the many transitions that 

occur between them. 

 

Figure 2-10. The effect of vs on state detection for a) EQ2 and b) EQ3 

 

a) 
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b) 

 

c) 
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d) 

 

Figure 2-11. Comparison between measured and computed sliding points (vs of 0.012 m/s): 

a) acceleration response for EQ2; b) acceleration response for EQ3; c) velocity response for 

EQ2; and d) velocity response for EQ3 

 

2.4 Dynamic response of smart devices under earthquake ground motion 

Using the SSDFM developed earlier, the idea of ‘sliding potential’ is used to assess the 

behaviour of a rigid block on a horizontal base subjected to two-dimensional motion and variable 

vertical acceleration. The intent is to identify under what conditions a smart device (block) will 

stick to the underlying surface under seismic action. The ground motions used in this study are 

from the Far-Field ground motion record sets in FEMA P-695 (FEMA 2009).  

Table 2-3 lists their key characteristics, including peak ground acceleration (PGA) and the Arias 

Intensity (𝐼𝐴) in two horizontal (𝑥 and 𝑦) and vertical (𝑧) directions. The selected records are 
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typically used by others for assessment of the probability of building collapse under the 

Maximum Considered Earthquake (MCE) as defined in ASCE/SEI 7-05 (ASCE 2006).  

The critical acceleration is defined as the maximum acceleration the block can withstand without 

slipping. Based on this definition, the critical acceleration at which slip commences is: 

Whenever the magnitude of base acceleration,  

exceeds 𝐴𝑐, sliding of the block initiates with respect to the base as mentioned in Equation 2-12.  

2.4.1 The Effect of Horizontal Motion on the Critical Acceleration  

Figure 2-12 shows the displacement response of the block in the horizontal plane when the 

underlying base is subjected to both components simultaneously of EQ1 and EQ2 and when 

𝐴𝑐=0.1𝑔. It is clear from Figure 2-12b that the displacement response of the block subjected to 

the EQ2 ground motion has strong directivity in the 𝑥  direction. Figure 2-13 shows the 

acceleration, velocity and displacement responses in the 𝑥  direction of EQ1 and EQ2 for 

𝐴𝑐=0.1𝑔 . The 𝑥 component of EQ1 has a PGA of 0.416𝑔, which is more than four times 𝐴𝑐, yet 

it produces a peak slip of only 0.060 m, which is less than half the peak displacement of the base 

(0.131 m). On the other hand, the 𝑥 component of EQ2, which also has a PGA about four times 

𝐴𝑐 (PGA =0.410𝑔) has a peak sliding displacement of 0.226 m, which is about twice the peak 

displacement of the base (0.110 m). The main cause of this dichotomy is the relatively low-

𝐴𝑐 = |𝜇𝑠𝑔| 2-16 

𝑤̈ = √𝑤̈𝑥
2 + 𝑤̈𝑦

2   2-17 
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frequency content of EQ2 motion compared to EQ1, which allows the slipping action to build up 

for longer periods during EQ2.   

 

Figure 2-12. Sliding response induced by a) EQ1 and b) EQ2 when Ac=0.1g 

a) 
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b) 

 

Figure 2-13. Sliding in the response induced by a) EQ1 and b) EQ2 in x direction when 

Ac=0.1g 

 

Table 2-4 shows a summary of the maximum drift ratios of the block and base for the two 

horizontal components of each record under horizontal motion. The maximum drift ratio is 

defined as the largest ratio of the peak displacement of the block to that of the base. Most of 

maximum drift ratios associated with horizontal motion only are close to unity with some 

exceptions, e.g. EQ2 has a drift ratio of 1.933 in the 𝑥 direction because of its high directivity in 

this particular direction.  
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Table 2-4. Summary of maximum drift ratio for horizontal only and horizontal and vertical 

motions 

EQ ID 

Maximum drift ratio 

Difference 
Horizontal ground motion 

Horizontal and vertical 

ground motion 

𝒙-dir 𝒚-dir 𝒙-dir 𝒚-dir 𝒙-dir 𝒚-dir 

EQ1 0.456 1.197 0.45 1.308 1% 9% 

EQ2 1.933 0.995 1.908 0.984 1% 1% 

EQ3 0.934 1.383 0.937 1.392 0% 1% 

EQ4 0.892 1.290 0.899 1.268 1% 2% 

EQ5 1.014 1.014 1.010 0.995 0% 2% 

EQ6 0.933 1.070 0.906 1.074 3% 0% 

EQ7 0.993 0.912 0.905 0.941 9% 3% 

EQ8 0.978 1.065 0.987 1.033 1% 3% 

EQ9 0.875 0.988 0.878 0.957 0% 3% 

EQ10 0.997 1.003 0.996 1.003 0% 0% 

EQ11 1.139 1.015 1.139 1.011 0% 0% 

 

2.4.2 Effect of Vertical Motion 

To account for the effect of vertical motion, which typically occurs during earthquakes, the 

assumption that the normal load is a constant value is relaxed. This is achieved by replacing 

Equations 2-9, 2-10, and 2-12 by the following three equations, respectively: 

[
𝐹𝑓,𝑥(𝑡𝑛)

𝐹𝑓,𝑦(𝑡𝑛)
] = −

𝜇𝑘𝑚(𝑔 − 𝑤̈𝑧(𝑡𝑛))

√(𝑋̇(𝑡𝑛))
2
+ (𝑌̇(𝑡𝑛))

2
 

[
𝑋̇(𝑡𝑛)

𝑌̇(𝑡𝑛)
] 

2-18 

[
𝐹𝑓,𝑥(𝑡𝑛)

𝐹𝑓,𝑦(𝑡𝑛)
] =

𝜇𝑘𝑚(𝑔 − 𝑤̈𝑧(𝑡𝑛))

√𝑤̈𝑥(𝑡𝑛)2 + 𝑤̈𝑦(𝑡𝑛)2 
[
𝑤̈𝑥(𝑡𝑛)

𝑤̈𝑦(𝑡𝑛)
] 2-19 
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𝐹𝑠 = 𝑚(𝑔 − 𝑤̈𝑧(𝑡𝑛))𝜇𝑠 2-20 

where 𝑤̈𝑧(𝑡𝑛)  is the vertical acceleration time history. For the sake of simplicity, it is still 

assumed that the block remains in contact with the base, i.e. no separation occurs, which is 

essentially true for all the ground motions consider herein because none of them had a vertical 

acceleration greater than the gravity acceleration.   

The effect of vertical motion on the maximum drift ratio is summarized in Table 2-4. Figure 2-14 

shows the displacement record of the two records with largest vertical peak accelerations: EQ1 

and EQ7. It is clear from the Figure 2-14 that the effect of vertical motion is small. Figure 2-14 

shows the same general trend. This can be seen by comparing the maximum drift ratios 

computed with and without vertical motion, where the maximum difference is generally within 

2%, with the exception of a few cases, e.g. the 𝑦 component of EQ1 and the 𝑥 component of 

EQ7. Others have also observed this effect in sliding systems, e.g. in Gazetas et al. (2012) and 

Sarma and Scorer (2009). 

a) 

 



 

42 

 

b) 

 

Figure 2-14. Displacement response of a block subjected to the two records with the highest 

peak vertical acceleration. a) EQ1 in y direction and b) EQ7 in x direction 

 

2.4.3 Effect of Critical Acceleration 

The effect of the critical acceleration is studied by varying 𝐴𝑐  from 0.05g to 0.50 g with 

increments of 0.025. The spectra of the maximum relative velocity between the base and the 

block of all the horizontal ground motions are plotted in Figure 2-15. It can be seen from Figure 

2-15 that the general trend is less slip with increasing  𝐴𝑐 , becoming asymptotic with zero 

especially beyond 𝐴𝑐=0.3𝑔 , i.e. the block sticks to the base beyond this point. However, a 

number of obvious exceptions seem to occur, where the maximum relative velocity actually 

increases as 𝐴𝑐 increases before eventually proceeding in the expected direction. The 

phenomenon of paradoxical increase of slippage with increasing critical acceleration Ac is 

labelled as ‘Safe Gulf Paradox (Gazetas et al. 2009).  

The sticking critical acceleration is defined as the critical point where the maximum relative 

velocity is less than 0.001 m/s (the aforementioned Stribeck velocity). The intent of defining the 
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sticking critical acceleration is to define the conditions under which the block sticks, from a 

practical perspective, to the base for a given earthquake intensity. These sticking 𝐴𝑐 values are 

marked with a circle in Figure 2-15.   

a) 

 

b) 

 

Figure 2-15. Sliding spectra of the block in terms of maximum relative velocity for all the 

horizontal ground motions with varying Ac. a) in x direction and b) in y direction 
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2.5 Probability of exceeding the slip limit  

If a sturdy (rigid) desk in a building has a high coefficient of friction and sticks to the floor, e.g. 

it sits on a carpet that is firmly attached to the floor, its movements during an earthquake are 

representative of the motion of the underlying floor. The same idea can be extended to a smart 

device. If the device is in a protective shell made of a rubber-like polyurethane and there is a 

sufficiently high coefficient of friction between the shell and table to make it stick to the table 

during motion of the table, then the device’s movements are represented of the table’s 

movements, and therefore the underlying floor’s movements. If, on the other hand, the 

coefficient of friction is not high enough or if the demand is too high, slip will likely occur and it 

becomes more challenging to assess the motion of the underlying floor from the device’s 

readings. It is helpful to know the chance of this occurring.  

Consider a four-story steel frame building (Wu et al. 2018) with a first mode period of 1.67s with 

5% damping located in Seattle with latitude (34.049) and longitude (-118.252). Using hazard 

curves from the United States Geological Survey (USGS), scale factors are computed by 

following the scaling method in FEMA P-695 (FEMA 2009) to generate new records that 

correspond to three hazard levels: 2% in 50 years, 10% in 50 years, and 50% in 50 years. The 

first period spectral accelerations corresponding to the three hazard levels are 0.55𝑔, 0.26𝑔, and 

0.07𝑔, respectively. To enrich the computational space, four additional spectral accelerations, 

0.04𝑔, 0.12𝑔, 0.35𝑔, and 0.45𝑔 (not tied to any specific hazard level) are used in the scaling 

scheme for a total of 7 scaled records for each earthquake. The scaled records are used to 

compute four maximum slip curves that correspond to critical acceleration values of 𝐴𝑐= 0.2𝑔, 

0.3𝑔, 0.4𝑔, and 0.5𝑔. The sliding spectra of the block in maximum slip displacement between 

the base and the block for 𝑥 and 𝑦 components of all the horizontal ground motions are plotted in 
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Figure 2-16. It is can be seen from Figure 2-16 that the general trend is that, aside from cases that 

follow the ‘Safe Gulf Paradox’ (Gazetas et al. 2009), the maximum slip decreases with 

increasing 𝐴𝑐. 

a) 

 

b) 
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c) 

 

d) 

 

Figure 2-16. Sliding spectra of the block in terms of maximum slip for all the horizontal 

ground motions with a) Ac=0.2g, b) Ac=0.3g, c) Ac=0.4g, and d) Ac=0.5g 

 

Based on the information in Figure 2-16, the idea of a “probability of exceeding the slip limit” 

(PESL) curve is introduced. The PESL curve is analogous to a fragility function. The slip limit, 

which is the difference between the absolute values of the peak displacements achieved by the 

block and underlying base, is selected to be 0.02 m. This value corresponds to 10% of the 

interstory drift associated with the collapse prevention limit state. The selection of 0.02m is 

arbitrary and can be tightened or relaxed depending on the accuracy sought. The PESL curve is 

obtained by using the FEMA P-58 Conditional Probability of Collapse Curve Fit Tool (FEMA P-
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58 20012) and relates the probability of slip of an unconstrained block to the first period spectral 

acceleration. Table 2-5 summarizes the calculated probability of exceeding the slip limit for 

selected seven spectral accelerations with various critical accelerations. Figure 2-17 shows the 

fitted curve of probabilities for acceleration response spectrum with various value levels of 𝐴𝑐 by 

using the curve fit tool. For example, for a 50% in 50 years event, there is no chance of 

exceeding the slip limit for all values of 𝐴𝑐. That grows to 36% for a 2% in 50 years event when 

𝐴𝑐= 0.5𝑔. The data in Table 2-5 and Figure 2-17 suggests that a device with a coefficient of 

friction of 0.4 will be capable of reading the movement of the underlying surfaces with a 

maximum slip of less than 0.02m for events with 10% and 50% chances of occurrence in 50 

years. This information (and the PESL curve, in general) can be useful for crowdsourcing 

damage assessment through smart devices after seismic events.  

 

Table 2-5. Probability of exceeding the slip limit for selected spectral accelerations and 

critical accelerations 

Sa(𝑇=1.67s) 𝐴𝑐=0.2𝑔 𝐴𝑐=0.3𝑔 𝐴𝑐=0.4𝑔 𝐴𝑐=0.5𝑔 Hazard Level 

0.04g 0% 0% 0% 0%  

0.07g 0% 0% 0% 0% 50% in 50 years 

0.12g 9% 0% 0% 0%  

0.26g 45% 18% 0% 0% 10% in 50 years 

0.35g 82% 36% 18% 18%  

0.45g 91% 55% 18% 18%  

0.55g 100% 64% 5% 36% 2% in 50 years 
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Figure 2-17. Probability of exceeding the slip limit as a function of the acceleration 

response spectrum for various critical accelerations 

 

2.6 Summary and conclusion 

The behavior of a smart device on an underlying surface subjected to seismic motion was 

investigated in this chapter. The smart device was modeled as a rigid block and its frictional 

interactions with the underlying base was represented using an existing model that was modified 

for the purposes of this research. The revised model used an interpolation technique to enhance 

detection of transition points, which must be accurately detected because of the frequency of 

their occurrence during seismic motion. The second modification entailed extending the model to 

handle vertical accelerations. The behavior of a device on (rigid) furniture, which itself is placed 

on a floor subjected to seismic motion (double stacked problem) was also discussed.  
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After validation of the model by comparing its behavior to experiments, the sliding/sticking 

behavior of a smart device on a base subjected to seismic motion was investigated. In particular, 

the sliding spectra associated with selected ground motions were presented. It was shown that 

vertical accelerations have a small effect on the sliding behavior of smart devices. The concept of 

a ‘probability of exceeding the slip limit curve’ was introduced and used to relate the probability 

of exceeding a given slip limit versus first period spectral acceleration for a given structure and 

location. Once generalized by taking into account other structures and locations, this information 

can be of value in future crowd-sourced, post-disaster reconnaissance efforts.  
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CHAPTER 3  

Identifying stick-slip characteristics of a smart device 

3.1 General 

This chapter provides an analytical error model of an accelerometer in a smart device and the 

effects of sampling rates on smart devices. Then, a methodology is presented by which a smart 

device can decide if its motion is representative of the motion of the floor underneath or whether 

it is tainted by excessive sliding action. This method is based on the estimation of the kinetic 

coefficient of friction between the smart device and the underlying surface based on wavelet 

transforms. The noise associated with a smart device’s measurement of acceleration is 

established and noise reduction methods to overcome them are compared. Computational 

simulation results and experimental data are used to demonstrate the concepts discussed in this 

chapter. 

3.2 Literature review 

Accelerometers in smart devices are imperfect sensors with performance variations among 

devices of a given model as well as between models. The sensor errors can be classified into two 

types: deterministic (systematic) and stochastic (random) (Nassar 2003). While major 

deterministic error sources include bias and scale errors, which can be removed by specific 

calibration procedures (Park and Gao 2006), stochastic error estimation necessitates a more 

complex process. As such, stochastic errors are not addressed in this chapter, although they can 

be reduced in future efforts by using methods such as the zero velocity update method 
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(Noureldin et al. 2012) as discussed later in Chapter 5. An analytical study of the effects of 

biases in the accelerometer data and the effects of changing the cut-off frequency in anti-aliasing 

filters was conducted by Thong et al. (2002). 

Sliding motion may contaminate the recorded data making it impossible to estimate the motion 

of the underlying floor from the device’s measurements. In order to detect floor acceleration, a 

smart device must move in tandem with the floor. However, smart devices are usually just placed 

on furniture and not constrained in any way. If a smart device has an adequate coefficient of 

friction with the underlying surface (e.g. encased in a rubber protective cover) and the underlying 

furniture is attached firmly to the floor, the device’s movements will be representative of the 

floor’s movements. Otherwise, slip occurs. It is therefore necessary to identify the parts of the 

record during which slip occurs so as to exclude that from a device’s readings of the shaking 

record.  

As seen in the simulation results in Figure 2-9, acceleration readings from a sliding device 

exhibit plateau-like step function. The presence of these plateaus can be used to help distinguish 

between sliding and sticking motion. Edge or step detection is a fundamental problem in many 

areas of signal and image processing. Gradient operators, such as Roberts, Prewitt, and Sobel, 

are classical methods for detecting edges. These operators can be improved by incorporating 

smoothing procedures to eliminate noise, i.e. the so-called filtered derivative methods, and are 

widely used due to their simplicity. However, there are trade-offs between the level of smoothing 

and the variance of the estimated edge location, which can be resolved by adopting a multi-scale 

analysis through wavelet analysis (Mallat and Hwang 1992). Wavelet analysis has been used in 

various fields. Sadler and Swami (1999) detected steps using a multiscale wavelet analysis based 

on the ability of a certain discrete wavelet transform (DWT) to characterize signal steps and 
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edges. Sun and Chang (2002) investigated the use of the wavelet packet transform and a neural 

network model for damage assessment of civil engineering structures. Zarei and Poshtan (2007) 

developed a diagnostic method employing Wavelet Packet Analysis for the detection of incipient 

bearing failures. Sadler et al. (1998) studied detection and estimation of aeroacoustics shock 

waves generated by supersonic projectiles with wavelet transform. None of these studies, 

however, and other similar ones in the literature, proposed methods by which to detect sliding 

regimes as done herein. As will be shown, detecting edges in clean computational data is feasible. 

However, noisy experimental data presents new challenges. 

3.3 Error characteristics of smartphone accelerometers 

It is necessary to develop an understanding of the errors and limitation of sampling rate in smart 

device accelerometers. This section addresses two challenges: 1) an analytical error model for 

MEMS-based accelerometers that are ubiquitous in smart devices is adopted in an attempt to 

understand the errors that could potentially contaminate their measurements and 2) an 

investigation of the sampling rate needed to minimize displacement measurement errors. 

3.3.1 Errors in smart device accelerometers 

Current commercially available accelerometers have a variety of error sources, which are slightly 

different depending upon the manufacturing processes employed. The error equation of a 

conventional mechanical inertial sensor for acceleration measurement along the x-axis (𝑎̃𝑥) can 

be expressed as (Titterton et al. 2004): 

𝑎̃𝑥 = (1 + 𝑆𝑥 + 𝛿𝑆𝑥)𝑎𝑥 + 𝑀𝑦𝑎𝑦 + 𝑀𝑧𝑎𝑧 + 𝐵𝑥 + 𝛿𝐵𝑥 + 𝐵𝑣𝑎𝑥𝑎𝑦 + 𝑛𝑥 3-1 
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where 𝑎𝑥  is the x-acceleration (along the x-axis), 𝑎𝑦  and 𝑎𝑧  are the accelerations applied 

perpendicular to the x-axis, 𝑆𝑥 is the scale factor error, usually expressed in polynomial form to 

include non-linear effects, 𝛿𝑆𝑥  is residual scale factor error, 𝑀𝑦  and 𝑀𝑧  are the cross-axis 

coupling factors, 𝐵𝑥  is the measurement zero-offset bias, 𝛿𝐵𝑥  is residual bias, 𝐵𝑣  is the vibro-

pendulous error coefficient, and 𝑛𝑥 is the random noise. 

Accelerometers based on micro-electro-mechanical (MEMS) technology have insignificant 

cross-axis coupling factors. Hence, Equation 3-1 can be simplified as follows (Allen et al. 1998): 

In this work, deterministic errors are estimated by using the static multi-position method (El-

Diasty and Pagiatakis 2008). All biases, scale factor errors and non-orthogonality errors for the 

axes x, y and z are estimated using measurements from multiple at-rest position configurations 

(six positions, as discussed next). The idea is to first take an average of Equation 3-2, where 

residual errors of scale factor (𝛿𝑆𝑥), residual bias (𝛿𝐵𝑥), and random noise (𝑛𝑥) are eliminated 

because their expected values (means) are zeros.  

where 𝐴(∙) is the average of the data. Consider the at-rest situation where the device is placed 

along the x-axis. Gravity acts on the device in the negative direction (-g) of the x-axis when the 

device is placed pointing along the x-axis and vice versa. Equation 3-3 can be extended in the x, 

y and z directions as Equation 3-4. In this case, the superscript of acceleration as Xu in Equation 

𝑎̃𝑥 = (1 + 𝑆𝑥 + 𝛿𝑆𝑥 )𝑎𝑥 + 𝐵𝑥 + 𝛿𝐵𝑥 + 𝑛𝑥 3-2 

𝐴(𝑎̃𝑥) = (1 + 𝑆𝑥)𝐴(𝑎𝑥) + 𝐵𝑥 3-3 
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3-4 is denoted. In the opposite direction, the superscript of acceleration as Xd in Equation 3-5 is 

denoted. 

where 𝑆𝑖𝑗 are the scale factor of 𝑖𝑡ℎ axis under 𝑗𝑡ℎaxis as a chosen principal axis. The diagonal 

elements of 𝑆𝑖𝑗 represent the scale factors along the three axes, whereas the other elements of 𝑆𝑖𝑗 

are the cross-axis factors. The experiment is repeated in the same way for the y and z directions. 

The collection of the above six observation equations provide the following single equation in 

matrix form: 

where  

[

𝐴(𝑎̃𝑋𝑢)𝑥 

𝐴(𝑎̃𝑋𝑢)𝑦

𝐴(𝑎̃𝑋𝑢)𝑧

] = [[
1 0 0
0 1 0
0 0 1

] + [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

]] [
−𝑔
0
0

] + [

𝐵𝑥

𝐵𝑦

𝐵𝑧

] 3-4 

[

𝐴(𝑎̃𝑋𝑑)𝑥 

𝐴(𝑎̃𝑋𝑑)𝑦

𝐴(𝑎̃𝑋𝑑)𝑧

] = [[
1 0 0
0 1 0
0 0 1

] + [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

]] [
𝑔
0
0
] + [

𝐵𝑥

𝐵𝑦

𝐵𝑧

] 3-5 

𝑊 = 𝐸𝐶 3-6 

𝑊 = [

𝐴(𝑎̃𝑋𝑢)𝑥 + 𝑔 𝐴(𝑎̃𝑋𝑑)𝑥 − 𝑔 𝐴(𝑎̃𝑌𝑢)𝑥 𝐴(𝑎̃𝑌𝑑)𝑥 𝐴(𝑎̃𝑍𝑢)𝑥 𝐴(𝑎̃𝑍𝑑)𝑥

𝐴(𝑎̃𝑋𝑢)𝑦 𝐴(𝑎̃𝑋𝑑)𝑦 𝐴(𝑎̃𝑌𝑢)𝑦 + 𝑔 𝐴(𝑎̃𝑌𝑑)𝑦 − 𝑔 𝐴(𝑎̃𝑍𝑢)𝑦 𝐴(𝑎̃𝑍𝑑)𝑦

𝐴(𝑎̃𝑋𝑢)𝑧 𝐴(𝑎̃𝑋𝑑)𝑧 𝐴(𝑎̃𝑌𝑢)𝑧 𝐴(𝑎̃𝑌𝑑)𝑧 𝐴(𝑎̃𝑍𝑢)𝑧 + 𝑔 𝐴(𝑎̃𝑍𝑑)𝑧 − 𝑔

] 3-7 

𝐸 = [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧 𝐵𝑥

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧 𝐵𝑦

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧 𝐵𝑧

] 3-8 
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The calibration parameters are computed by using the Least Square method as follows:  

where  𝑃 = 𝜎0
2Σ−1  , 𝜎0

2  is the a priori variance factor (usually 𝜎𝑜
2 = 1) and Σ  is the sample 

variance-covariance matrix comprising the sample variances of the accelerometer average from 

the six-position test in the diagonal and zeros in the non-diagonal elements.  

The result of an experiment with a Samsung Galaxy S5 is shown in Equation 3-11. It is 

important to note that its selection does not affect the generality of the results presented 

hereafter. In addition, it should be noted that for  low-cost inertial sensors, the bias and scale 

errors are temperature-dependent as indicated by El-Diasty et al. (2007). These experiments were 

conducted in an indoor laboratory at 17 - 23 ℃ which has negligible effects on acceleration. 

This result can be directly applied to Equation 3-2 to obtain the calibrated acceleration, 𝑎̂𝑥 , 

which still includes the effects of stochastic errors:  

𝐶 = [

−𝑔 𝑔 0 0 0 0
0 0 −𝑔 𝑔 0 0
0 0 0 0 −𝑔 𝑔
1 1 1 1 1 1

 ] 3-9 

𝐸̂ = (𝑊𝑃𝐶𝑇)(𝐶𝑃𝐶𝑇)−1 3-10 

𝐸 = [

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧 𝐵𝑥

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧 𝐵𝑦

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧 𝐵𝑧

] = [

0.015 −0.004 0.000 −0.102

−0.05 0.017 0.007 0.166

−0.011 0.005 0.011 0.145

] 3-11 

𝑎̂𝑥 = (𝑎̃𝑥 − 𝐵𝑥)/(1 + 𝑆𝑥𝑥) 3-12 
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Table 3-1 shows that the average of standard deviation (𝜎) of the calibrated acceleration data 

from six positions of stationary accelerometer is reduced insignificantly in comparison with the 

measured acceleration data. This implies the MEMS-based accelerometer in smart devices have 

negligible errors due to bias and scale factor. 

Table 3-1. Results of calibration of stationary accelerometer 

 
x direction y direction z direction 

𝜎(𝑎̃𝑥) 

Measured data 
0.0218 0.0214 0.0327 

𝜎(𝑎̂𝑥) 

Calibrated data 
0.0215 0.0210 0.0323 

 

3.3.2 The effects of sampling rates on smart devices 

Besides the errors in accelerometers described in the previous section, the relatively low 

sampling rates in current accelerometers can cause additional problems. To understand the 

limitations of commercially avavilable smart devices, Thong et al. (2002) investigated how 

errors in position sensed by means of accelerometers vary with time and sampling frequency.  

Following the approach in Thong et al. (2002), a study of a Samsung Galaxy S5 is conducted to 

investigate errors in the measurement of position attributed to noise in accelerometer data. 

Readings from the device are taken while it is stationary to ensure that any errors computed from 

its output are due to noise only and not any actual device motion. Errors in the estimated 

displacement that arise from double integration of noise are used to compute the variation of the 

root mean square (RMS) error in position with change in the sampling frequency for a fixed 
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integration time, taken as 3.0 seconds. Three cut-off frequencies for the low pass filter are 

considered: 50, 100, and 200 Hz.   

As shown in Figure 3-1, the smaller the cut-off frequency of the filter, the smaller the RMS 

errors in position with change in the sampling frequency. This can be explained qualitatively by 

noting that the lower the cut-off frequency, the more significant the correlation between the 

samples of noise. The results in Figure 3-1 demonstrate that the RMS errors decrease 

asymptotically as the sampling frequencies increase. It appears that increasing the sampling 

frequency beyond 1000 Hz for 50, 100 and 200 Hz cut-off frequencies does not result in a 

significant reduction in the RMS errors. This illustrates that commercially available smart 

devices that commonly have a maximum sampling rate of 200 Hz are presently not good enough 

to minimize error in displacement computations associated with noise.  

 

Figure 3-1. RMS position errors as a function of sampling frequency for various filter cut-

off frequencies applied to the Samsung Galaxy S5 

 

Maximum sampling rate of 

commercial smart devices 
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3.4 Computed behavior of a non-constrained smart device on a moving surface 

Assume that a smart device can be adequately approximated as a rigid solid block. The block sits 

on a rigid surface subjected to transitional motion in one-dimension as shown in Figure 2-1. The 

equation of motion in the x direction is: 

where 𝑚 is the mass of the device, 𝑢̈𝑥(𝑡𝑛) is the acceleration of the device in the x direction at 

time, 𝑡𝑛 , and 𝐹𝑓,𝑥(𝑡𝑛)  is the friction force acting between the base and the device in the x 

direction. The solution of Equation 3-13 depends on the state of motion (sliding or sticking). 

The Coulomb law of dry friction is widely employed in contact problems because of its 

simplicity. In this Chapter, we assume that the friction force is of the Coulomb type. The friction 

force acts opposite to the direction of motion of the device with respect to the moving base. It is 

further assumed that the weight of the device, 𝑁𝑜, remains constant, i.e. no vertical acceleration 

occurs, and that the acceleration of gravity, g, is constant. Under these conditions, the Coulomb 

friction force during sliding is simply equal to the normal load multiplied by a KCOF, 𝜇𝑘 , 

between the device and the underlying base as follows: 

When sliding initiates, the acceleration of the device divided by the gravity acceleration becomes 

equal to 𝜇𝑘.  This can be seen by substituting Equation 3-14 into Equation 3-13 , as follows: 

𝑚𝑢̈𝑥(𝑡𝑛) = 𝐹𝑓,𝑥(𝑡𝑛) 3-13 

𝐹𝑓,𝑥(𝑡𝑛) = 𝑁𝑜𝜇𝑘 = 𝑚𝑔𝜇𝑘 3-14 



 

59 

 

Extending this idea into two-dimension, the KCOF is: 

where 𝑢̈𝑦(𝑡𝑛) is the acceleration of the device in the y direction at time, 𝑡𝑛. In this chapter, only 

transitional motion in one-dimension is considered for the sake of simplicity. In section 2.3.2, 

more general cases are discussed, including those that account for the static coefficient of friction 

(SCOF).  

3.5  Computational and experimental simulation of sticking and sliding 

Experiments and associated computations are conducted to investigate a smart device’s sticking 

and sliding behaviour on a shaking surface. The subject of the research in this chapter is an 

Android smart phone SM-G930 (Samsung Galaxy S7).  

The selected device has a smooth aluminum body. A protective cover is also considered in the 

research for two reasons: 1) such covers are widely used by people to protect their devices and 

therefore represents a common situation, and 2) the presence of a cover changes the friction 

properties of the device and hence its interaction with the underlying surface. The smooth body 

of the device itself promotes a sliding-dominant response. To explore the other extreme in 

behavior, a protective shell with relatively high coefficient of friction is selected to promote 

sticking-dominant behavior. Figure 3-2 shows the selected device and its protective cover. 

𝜇𝑘 = 𝑢̈𝑥(𝑡𝑛)/𝑔 3-15 

𝜇𝑘 = √(𝑢̈𝑥(𝑡𝑛))
2
+ (𝑢̈𝑦(𝑡𝑛))

2
/𝑔 3-16 
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The friction coefficients between the device, with and without its protective shell, and the 

shaking surface (described in section 2.5.1) is measured using standard procedures (ASTM 

2008). The measured KCOF is 0.164 for the device without its shell and the SCOF is 0.216. 

With the protective shell, the KCOF is 0.273 and the SCOF is 0.362. The SCOF is known to be 

greater than the KCOF for the same set of interacting surfaces (Sheppard and Tongue 2005, 

Meriam et al. 2008).  

 

(a) front side 

 

(b) back side 

 

(c) a protective shell 

Figure 3-2. Studied Galaxy S7 and its base 

 

A ‘Sensor Kinetics Pro’ Android application by Innoventions, Inc. is used to record the 

acceleration data. An infrared 3D-motion capture system (Optotrak) is used to capture the true 

motion of the smart device. The tracking system can measure the 3D positions of a set of 

markers with an accuracy of 0.1 mm and resolution of 0.01mm as long as the markers are placed 

within a 3m radius from the detector. The markers are connected to the recording system via thin 
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wires. The wires are arranged carefully to prevent them from hindering or influencing the motion 

of the phone. The velocity and acceleration responses are computed by taking the first and 

second derivatives, respectively, of the displacement measured by the Optotrak system.  

The platen is subjected to a given seismic history. Figure 3-3a, b and c show the measured 

velocity and acceleration responses of the device and platen for a seismic signal. Figure 3-3d, e 

and f show the behavior as computed using Equation 3-13 through 3-15 wherein the measured 

SCOF and KCOF are used. Shaded areas represent sliding motion and other areas represent 

sticking motion in Figure 3-3. Generally, sliding motion is assumed to exist when the relative 

velocity between the base and the device exceeds the Stribeck velocity (De Wit et al. 1995). This 

small relative velocity represents the transition limit between static and dynamic behaviors. 

Given the displacement resolution of the Optotrak system used (± 0.01 mm) and it’s 500Hz 

sampling rate, the Stribeck limit is taken to be 0.01m/s. When sliding occurs, i.e. when the 

relative velocity between the device and platen exceeds the Stribeck value, the velocity versus 

time response is linear as shown in Figure 3-3a and d.  

In regions C and D in Figure 3-3e, the transition between sliding and sticking is sharp in the 

computed acceleration data. Singularities (points at which a function does not possess a 

derivative) can be observed at these transition points. In signal and image processing field, these 

singularities are called edges and are the basis of commonly used edge detection methods as 

discussed earlier. In regions A and B in Figure 3-3b, however, transitions between sliding and 

sticking motions in the experimental acceleration data are rounded. Also, the sliding regime has 

significant chattering and is not as smooth as the computed data, where the behavior is a plateau 

with a constant value equal to KCOF. The contrast can be seen in more detail in Figure 3-3c and 

f. The rounded transitions and uneven sliding response in the experimental data hinder 
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differentiating between sliding and sticking motions and complicate finding the KCOF. Given 

this difficulty, the remainder of the Chapter is devoted to finding means by which to estimate an 

appropriate KCOF value from measured data.  

a) 

 

b) 

 

c) 
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d) 

 

e) 

 

f) 

 

Figure 3-3. Dynamic responses of the device on the moving base: a) Measured velocity; b) 

Measured acceleration; c) Detailed view of regions A and B; d) Simulated velocity; e) 

Simulated acceleration; and f) Detailed view of regions C and D. Shaded areas represent 

sliding motion and other areas represent sticking motion 
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3.6 Identification of KCOF 

As noted earlier, the acceleration during the sliding regime is theoretically constant. It is denoted 

as the ‘slip acceleration’ and equal to the KCOF multiplied by the gravity acceleration. From 

Equations 3-15 and 3-16: 

This observation is the basis of the KCOF identification methods discussed next. 

3.6.1 Wavelet transform method for edge detection 

As noted earlier, theory predicts that transitions between sticking and sliding are abrupt, i.e. they 

are separated by edges. General edge detection methods have four steps in common: 1) 

smoothing to suppress the noise, without destroying the true edges; 2) enhancement by applying 

a filter to enhance the quality of the edges; 3) detection of thresholds, and 4) localization to 

determine the location of the edge. For example, the simplest edges coincide with peaks of the 

first-derivative of the input signal and “zero-crossings” of the second-derivative of the input 

signal. To achieve reasonable edge detection results, it is necessary to minimize false detection, 

e.g. where the algorithm cannot detect true sliding points or falsely detects sliding points and 

maximize correct detection.  

Edge detection is a classic problem in signals and images. A widely used means of estimating 

edges or step changes in signals is based on the filtered derivative method, which combines 

smoothing with gradient operators to reduce noise effects. To overcome optimization problems 

associated with the use of two criteria, localization and signal-to-noise ratio (SNR), wavelet 

transform (WT) was founded on basis functions formed by dilation and translation of a prototype 

𝐴𝑠 = |𝜇𝑘𝑔| 3-17 
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function (Daubechies 1990). Mallat and Zhong (1992) developed a discrete wavelet transform 

(DWT) based on smoothed gradient estimation, with smoothing varied over dyadic scale. 

However, DWT has some limitations (Percival and Walden 2006). First, it requires the length of 

the dataset to be dyadic (i.e., have a power of 2). Secondly, the output generated by DWT is 

highly dependent on the origin of the signal being analyzed. A small shift in origin affects the 

outputs generated, which is known as circular shift. Due to circular shift, it is difficult to align 

the transformed signals with time. To overcome the above two limitations, a modification of 

DWT called Maximal Overlap Discrete Wavelet Transform (MODWT) (Percival and Walden 

2006) is used herein. MODWT is circular shift invariant and is not limited by the dyadic length 

constraint. Therefore, the signals are easier to interpret for time series analysis.  

Whereas MODWT provides more flexible time-frequency resolution properties, one possible 

drawback is that the frequency resolution is rather poor in the high-frequency region. It faces 

some difficulties in discrimination between signals having close high-frequency components, 

such as noise and edges. Coifman and Wickerhauser introduced the wavelet packet transform 

(WPT), which uses alternative basis functions that are formed by taking linear combinations of 

the usual wavelet functions (Coifman and Wickerhauser 1992, Wickerhauser 1996).  

The general idea of wavelet decomposition for wavelet transform and wavelet packet transform 

is applying low-pass (H) and high-pass (G) filters to each intermediate signal, recursively. While 

WT takes only the low-frequency components, WPT takes both the low-frequency components 

and the high-frequency components. This rich information with wide range of time-frequency 

resolution allows discrimination between noise and edges (Yen and Lin 2000).  As shown by 
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Equation 3-18, a wavelet packet is a function with three indices, 𝑊𝑗,𝑘
𝑖 (𝑡), where integer 𝑖, 𝑗 and 𝑘 

are the modulation, scale, and translation parameters, respectively.  

The wavelet packet component signal 𝑓𝑗
𝑖(𝑡) can be expressed by a linear combination of wavelet 

packet function 𝑊𝑗,𝑘
𝑖 (𝑡) as follows: 

where the wavelet packet coefficients 𝑐𝑗,𝑘
𝑖  is  

where 𝑓(𝑡) is a discrete-time signal.  

For higher decomposition levels, the WPT results in good resolution in the frequency domain but 

poor resolution in the time domain. Nevertheless, WPT has the same limitations as DWT 

(Percival and Walden 2006). Like MODWT, these drawbacks can be overcome by removing the 

downsampling step in the WPT as done in the maximal overlap discrete wavelet packet 

transform (MODWPT) method (Walden and Cristan 1998).  

Edges are defined by detecting the abscissa where the wavelet modulus maxima converge at fine 

scales (Stephane 1999). A wavelet modulus maximum is defined as a point where |𝑓𝑗
𝑖(𝑡)| is 

locally maximum. In the lower scale, it is difficult to determine which belongs to the true edges 

𝑊𝑗,𝑘
𝑖 (𝑡) = 2𝑗/2𝑊𝑖(2𝑗𝑡 − 𝑘)   𝑖 = 1,2,⋯ 3-18 

𝑓𝑗
𝑖(𝑡) = ∑ 𝑐𝑗,𝑘

𝑖 𝑊𝑗,𝑘
𝑖

∞

𝑘=−∞

(𝑡) 3-19 

𝑐𝑗,𝑘
𝑖 = ∫ 𝑓(𝑡)𝑊𝑗,𝑘

𝑖 (𝑡)𝑑𝑡
∞

−∞ 

 3-20 
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due to noise. Even though the maxima become less and only the true edges remain when the 

scale increases, these maxima are located far away from the real edge.  

To enhance edges and suppress noise in the signal, the multiscale product of the last component 

of WPT at each level is applied as Sadler and Swami (1999) 

The function 𝑃𝑗0𝑗1 shows peaks at edges and has relatively small values elsewhere. The idea of a 

cross-scale correlation was developed by Rosenfeld for edge detection in images (Rosenfeld 

1970). 

It is important to classify which wavelet coefficients represent the edges or noise in a measured 

acceleration signal. This depends on the characteristic of the selected wavelet and the properties 

of a given signal. Daubechies wavelet with one vanishing moment (db 1) (Daubechies 1992) was 

selected empirically from parametric studies. It is discontinuous and resembles a step function. 

The results of the estimated KCOF from the simulations and experiments are compared in the 

following examples. Two types of earthquake motions are applied to the platen; “DUZCE.BOL” 

with 1602 record sequence number for sliding-dominant motion and KOBE/NIS with 1111 

record sequence number for sticking-dominant motion from FEMA P-695. The selected records 

have been used by others for assessment of the probability of building collapse under the 

Maximum Considered Earthquake (MCE) as defined in ASCE/SEI 7-05 (2002). Two versions of 

KCOF are estimated, one for the interaction between the bottom surface of the smart device and 

𝑃𝑗0𝑗1 = ∏ 𝑓𝑗
2𝑗

𝑗1

𝑗=𝑗0

  for  𝑗0=1, 𝑗1=1,2,3,4 3-21 
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the platen (sliding-dominant motion) and the other between the device with its protective shell 

and the platen (sticking-dominant motion).  

Figure 3-4 and Figure 3-5 depict the results for both sliding- and sticking-dominant responses 

from simulation and as measured in the experiments, respectively, including the first three levels 

of normalized MODWPT components (𝑓1
2, 𝑓2

4, and 𝑓3
8) and multiscale products (𝑃12, 𝑃13, and 

𝑃14) with the range of 0 to 1 values. The red circles in Figure 3-4 are the detected edges using the 

0.3 threshold criterion. Because the simulated acceleration response has relatively sharp edges, 

the resulting MODWPT components and normalized cross-scale products 𝑃12 and 𝑃13 in Figure 

3-4 depict clean peaks aligned with the edges. Note that the lower scale components, 𝑓1
21

, have 

narrower and sharper peaks at the edges than the higher scale components 𝑓2
4and 𝑓3

8. 
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MODWPT components and multiscale products Simulated acceleration with detected peaks 
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Figure 3-4. Edge detection results (from simulation data) for 1) sliding dominant response 

(a)-(f) and 2) sticking dominant response (g)-(l): a)-c) and g)-l) are the first three levels of 

the normalized MODWPT components, f1
2, f2

4, and f3
8 with ‘db1’ wavelet; d)-f) and (j)-(l) 

are the normalized multiscale products, P12, P13, and P14, respectively. Circles are detected 

edges with a threshold of 0.3. 
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MODWPT components and multiscale products Measured acceleration with detected peaks 
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MODWPT components and multiscale products Measured acceleration with detected peaks 
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Figure 3-5. Edge detection results (experimental data) for 1) sliding dominant response (a)-

(f) and 2) sticking dominant response (g)-(l): a)-c) and g)-l) are the first three levels of 

normalized MODWPT components, f1
2, f2

4, and f3
8with ‘db1’ wavelet; d)-f) and j)-l) are the 

normalized multiscale products, P12, P13, and P14, respectively. Circles are detected edges 

with a threshold of 0.3 
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Figure 3-6 plots the relationship between the edge detection peak values and corresponding 

KCOFs for both simulated and measured acceleration responses.  Figure 3-6a and c show that the 

estimated KCOFs with the low scale of MODWPT component, 𝑓1
2, in particular, match well with 

the actual KCOFs for the sticking- and sliding-dominant responses, respectively. The estimated 

KCOF with higher scale MODWPT and multiscale products also match well with the given 

KCOFs beyond a threshold of 0.3. As such, a threshold value of 0.3 is adopted in this study.  

On the other hand, the results from the experiments are quite different and, indeed, much worse. 

Figure 3-6b and d show that the estimated KCOFs do not match well with the given KCOFs for 

Daubechies wavelet with one vanishing moment (db 1). Poor edges detection can also be seen in 

Figure 3-5, where the resulting MODWPT components and normalized cross-scale products are 

unable to adequately isolate the edges for the given 0.3 threshold. The results suggest that the 

rounded edges at sliding and noise in the experimental data are highly influential and that an 

alternative KCOF estimation method is needed. 

1) Sliding-dominant response 
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2) Sticking-dominant response 

 

Figure 3-6. Effect of threshold for edge detection on estimated KCOF for both simulated 

and experimental data: a) simulated response; b) measured response with ‘db1’ wavelet; c) 

simulated response; and d) measured response with ‘db1’ wavelet 

 

3.6.2 Noise reduction 

Many noise reduction algorithms tend to distort the original signals. Denoising is generally done 

by band-pass filters, but these can eliminate non-smooth features of a signal such as the sharp 

transition to sliding motion in the acceleration response. This is important to preserve in the 

current application. WT, on the other hand, makes it possible to preserve such features and, at the 

same time, extract much of the noise. In particular, if the wavelet coefficients that belong to the 

noise details can be classified, it is possible to remove them and reconstruct the signal, yielding a 

denoised signal. Therefore, it is essential to identify which wavelet coefficients represent the 

noise in a measured acceleration signal.  

The multiple levels of wavelet decomposition are obtained by applying low-pass and high-pass 

filters on the sub-sampled output of the low-pass filter, recursively. While the most significant 

coefficients of the signal are the low-frequency components (approximations), 𝑓𝑘
1 (for k=1, 2, 3, 



 

73 

 

4), which have the majority of the information of the signal, the high-frequency components 

(details) are embedded in  𝑓𝑘
2𝑘

 (for k=1, 2, 3, 4), and are generally related to high-frequency 

noise components. Using these characteristics of WT, high-frequency noise can be eliminated by 

removing less relevant frequency components in the sub-band decomposition performed by the 

WT (El-Sheimy et al. 2004, Kang et al. 2010). In this study, wavelet de-noising is applied to 

remove part of the high-frequency components (short-term noise).  

Experiments for earthquake motions as mentioned earlier are conducted to compare the 

denoising performance of three different methods: low-pass filter, MODWT, MODWPT. 

Accelerations recorded by the onboard accelerometers in the Samsung Galaxy S7 and computed 

from the motion recorded by the Optotrak system are compared in Figure 3-7. The Optotrak data 

is considered as a reference. The noise in the measured Galaxy S7 acceleration is calculated by 

the root mean square error (RMSE) deviations from the reference. In both the sliding-dominant 

and sticking-dominant response cases, MODWPT has the smallest RMSE compared to two other 

methods. The RMSE is 0.2320 for the sliding-dominant response case and 0.3832 for the 

sticking-dominant response case, as shown in Figure 3-7. These results suggest that the 

MODWPT can remove noise while still maintaining the shape of transitions between sticking 

and sliding or reversals in the direction of sliding. 
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a) 

 

b) 

 

Figure 3-7. Comparison of RMSE for three different noise detection methods for a) sliding-

dominant response and b) sticking-dominant response 
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3.6.3 Proposed KCOF identification method 

A method is proposed to estimate KCOF based on sliding motions in the experimental record. 

Rather than focusing on sharp edges, which are prominent in the computational results, such as 

region A in Figure 3-3b, the proposed method associates sliding with plateaus, which are clearer 

in the experimental data, such as region B in Figure 3-3b. It is therefore proposed that during a 

sliding plateau, the first derivative of acceleration should theoretically be zero. The practical 

reality is that a margin of error must be accommodated since experimental results have 

fluctuations associated with imperfections in the sliding surfaces (the previously mentioned 

chattering).  

Based on this idea, four parameters are applied to help isolate KCOF: 1) a minimum acceleration 

threshold, 𝑇ℎ𝑎, is applied to eliminate the chance for erroneous detection associated with low 

seismic events, during which it makes no sense to assess seismic damage; 2) a zero threshold, 

𝑇ℎ𝑧𝑒𝑟𝑜  is applied to the first derivative of acceleration in order to accommodate the 

experimentally observed chattering in the sliding plateaus; 3) an outlier threshold, 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟, is 

applied to eliminate falsely detected points due to fortuitous plateaus. The acceleration values of 

detected points are sorted by absolute magnitude and points below 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟 are removed; 4) a 

minimum distance threshold, 𝑇ℎ𝑑, is applied to eliminate non-consecutive detected sliding points 

due to chattering or reversed motions. The parameters 𝑎̅  and 𝑎̇  are denoted as the denoised 

acceleration and the first derivative of denoised acceleration, respectively.  
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As shown in the Figure 3-8, the proposed KCOF identification process is as follows: 

STEP 1: Collect the acceleration data from Galaxy S7 smartphone with 200 Hz sampling rate,  

STEP 2: Remove noise from the measured acceleration by MODWPT and obtain 𝑎̅ 

STEP 3: Take the first derivative of the absolute value of denoised acceleration and obtain 𝑎̇ 

STEP 4: Detect the sliding points in the plateau region, which satisfies the following conditions 

STEP 5: Remove the outliers when the magnitude of acceleration is less than 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟  

STEP 6: Remove the non-consecutive detected points when the distance between neighbor 

detected points exceeds 𝑇ℎ𝑑  

STEP 7: Take the average of the absolute values of the detected sliding points to estimate KCOF 

|𝑎̅| > 𝑇ℎ𝑎 and |𝑎̇| < 𝑇ℎ𝑧𝑒𝑟𝑜 3-22 

A survey of the literature shows that KCOF between commercial on-the-shelf smartphones and 

possible surfaces (such as desks, tables, carpeted floors, and tiled floors) exceeds a value of 0.1 

(Friction 2018). This threshold corresponds to a minimum reasonable number that KCOF must 

exceed. Based on this observation, 𝑇ℎ𝑎 is selected as 0.1g.  

 

Figure 3-8. Flowchart of the proposed KCOF identification process 
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Figure 3-9 illustrates the effect of 𝑇ℎ𝑧𝑒𝑟𝑜  and 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟  on the estimated KCOF for the 

experimental data outlined earlier in section 3.6.3. As shown in Figure 3-9 a and c, the estimated 

KCOF becomes asymptotic with the measured KCOF when 𝑇ℎ𝑧𝑒𝑟𝑜 is about 6 m/s3, the number 

adopted in this work. As shown in Figure 3-9b and d, the estimated KCOFs for both sliding- and 

sticking-dominant responses become close to the measured KCOFs, respectively, when 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟 

is 40 %, the number adopted in this work.  

1) Sliding-dominant response 

 

(for Tha=1 m/s2, Thoutlier=40%) (for Thzero=6 m/s3, Tha=1 m/s2) 

2) Sticking-dominant response 

 

(for 𝑻𝒉𝒂= 1 m/s2, 𝑻𝒉𝒐𝒖𝒕𝒍𝒊𝒆𝒓=40%) (for 𝑻𝒉𝒛𝒆𝒓𝒐= 𝟔 m/s3, 𝑻𝒉𝒂= 1 m/s2) 

Figure 3-9. Effect of Thoutlier and Thzero on detected sliding points: a) and c) are the effect of 

Thzero; b) and e) are the effect of Thoutlier 
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Figure 3-10 illustrates the effect of 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟 and 𝑇ℎ𝑑 on the sliding detection results. The dashed 

line corresponds to 𝑇ℎ𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 40%. Non-consecutive detected sliding points are removed when 

their distance between neighbor detected points exceed 𝑇ℎ𝑑. The parameter 𝑇ℎ𝑑 is selected to be 

4 time steps, i.e. 0.02 second, which is equal to 50Hz with a 200Hz sampling rate of the 

smartphone. This is deemed reasonable because it is higher the 0.5-25Hz frequency band 

commonly observed in strong motion measurements (Trifunac and Todorovska 2001). 

1) Sliding-dominant response 

a) 

 

b) 
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2) Sticking-dominant response 

c) 

 

d) 

 

Figure 3-10. The effect of Thoutlier of 40% and Thd of 0.02s (for Thzero = 6 m/s3, Tha = 1 m/s2): 

a) Detection result at STEP 3; b) Detection result at STEP 5; c) Detection result at STEP 3; 

and d) Detection result at STEP 5. Dash lines are 40% in detected points 

 

The proposed method is demonstrated using the experimental data outlined earlier in section 

3.6.3. Figure 3-11 shows the results of the KCOF estimation process for both sliding- and 

sticking-dominant responses. The red circles are the detected sliding points on the plateaus as 

identified by the proposed method. It is clear that they match reasonably well the actual sliding 

points (black stars in Figure 3-11b and d) determined by the Optotrak measurements. 
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1) Sliding-dominant response 

a) 

 
b) 

 
2) Sticking-dominant response 

c) 

 
d) 

  
Figure 3-11. Measured response by Galaxy S7 for Tha=1 m/s2, Thzero=6 m/s3, Thoutlier of 40% 

and Thd of 0.02s: a) First derivative of the acceleration; b) Measured acceleration; c) First 

derivative of the acceleration; and d) Measured acceleration. Circles are detected plateau-

related sliding points. Black stars are actual sliding motions measured by Optotrak 
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3.7 Validation and discussion 

Four different ground motions are used to validate the proposed method. The records are selected 

from FEMA-P695 (2009). A total of 10 repetitive experiments are conducted and accelerations 

are measured by the Galaxy S7 device with/without the protective shell for each earthquake. 

Table 3-2 summarizes the experimental results. The average of the estimated KCOF from the 

Galaxy S7 are 0.173 for sliding-dominant responses and 0.264 for sticking-dominant responses. 

These results show that the developed KCOF identification method is in good agreement with 

the experimentally measured KCOF for sliding- and sticking-dominant responses (3.5% and 

2.6% error, respectively). The standard deviations of estimated KCOF values for sliding-

dominant responses are slightly higher than those for sticking-dominant responses.  

 

 

Table 3-2. Results of the estimated KCOFs by Galaxy S7 

EQ 

ID 

PEER-NGA Record Information 
Sticking-dominant 

response 

Sliding-dominant 

response 

Name Record No. Mean Std Mean Std 

EQ1 NORTHR/MUL 933 0.181 0.004 0.274 0.016 

EQ2 DUZCE/BOL 1602 0.169 0.006 0.272 0.010 

EQ3 IMPVALL/H-DLT 169 0.185 0.005 0.269 0.012 

EQ4 IMPVALL/H-E 174 0.176 0.003 0.279 0.005 
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Using the procedure described above, sliding motions can be detected from the acceleration 

records of smart devices. The idea is that sliding motions occur when the onboard accelerometers 

measure accelerations that exceed to the slip acceleration in Equation 3-17 with the estimated 

KCOF. Figure 3-12 shows the results of detected sliding motions for both sliding- and sticking-

dominant responses as computed from the Optotrak and Galaxy S7 measurements. Clearly, the 

detected sliding motions computed from the Galaxy S7 measurements are in close agreement 

with those from the Optotrak with 93.9% and 95.3% correct detection rate for sliding- and 

sticking-dominant response, respectively. The correct detection rate is the ratio of correctly 

matched sliding and sticking states to the number of points in the record.   

 

 

 

Figure 3-12. Results of the detected sliding motions for a) sliding-dominant response and b) 

sticking-dominant response. The circles are detected sliding motion points 
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3.8 Summary and conclusion 

To utilize smart devices to characterize building seismic damage in a quantitative manner, two 

key challenges are highlighted. First, the error equation for MEMS-based accelerometers in 

smart devices is presented and deterministic errors estimated experimentally by using the static 

multi-position method. The information presented suggests that MEMS-based accelerometers in 

smart devices have negligible errors due to bias and scale factor. Also, it is shown that the 

optimal sampling rate to minimize error for a specific smart device must be in excess of 1000Hz. 

This means that new generations of smart devices must have a substantially higher sampling rate 

for their data to be accurate for the proposed application. Second, a sliding detection method is 

introduced to decide whether the motion of the smart device is representative of the motion of 

the floor underneath or if it is contaminated by excessive sliding action. In the simulated 

acceleration response, it was shown that the theoretical sliding motions have step shapes with a 

clear plateau. However, in the measured acceleration response, the sliding motions were 

observed to have rounded shapes and chattering, which hinders the ability to differentiate 

between sliding and sticking motions. To detect sliding motions, the conventional edge detection 

method based on wavelet transform analysis is reviewed. In addition, noise reduction methods 

are presented based on the use of wavelet transforms to alleviate noise in the smart device’s 

accelerometer. It is shown that the MODWPT method out performs other wavelet transform 

methods in noise reduction for measurement of acceleration by the smart device, while still 

maintaining the shape of transitions between sticking and sliding. A new method for KCOF 

estimation is proposed, which includes acceleration noise reduction using MODWPT and a 

plateau template with configurable thresholds to address the occurrence of chattering during 

sliding. The proposed method is validated using shake table experiments and it was shown that 
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the results of the estimated KCOF are in good agreement with the true KCOFs. The estimated 

KCOF is used to compute slipping accelerations and corresponding sliding motions. It is shown 

that a 93.9% correct detection rate can be achieved using the proposed method.  
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CHAPTER 4  

Stick-slip classification based on machine learning techniques 

4.1 General 

This chapter presents an accurate and robust accelerometer-based stick-slip motion classification 

framework based on machine learning techniques. To improve upon the stick-slip identification 

done in Chapter 3, two types of machine learning algorithms (supervised learning and deep 

learning) are introduced and their classification performance compared. Three classification 

conditions are considered for the supervised learning algorithm: feature selection, non-linear 

discriminating analysis and classifier comparison. Three hyperparameters are considered for the 

deep learning algorithm to find the best performing classification algorithm. Each algorithm is 

trained and validated with experimental acceleration data from a shaking table test. 

4.2 Literature review 

To the author’s knowledge, no prior studies have examined stick-slip motion classification based 

on machine learning. Stick-slip motion classification is analogous to Human Active Recognition 

(HAR) as both use smart phone generated acceleration data to discover meaningful 

characteristics. For the latter, machine learning algorithms have been successfully used to detect 

the type of activity being performed from accelerometer readings. The accelerometer data used 

are typically categorized into separate classes through a classification process. This classification 

problem is a multidisciplinary research area which shares connections with machine learning, 

artificial intelligence, machine perception and ubiquitous computing. Because of its wide-
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ranging capabilities, classification using accelerometers has drawn increasing interest from 

researchers in a variety of fields.  

The majority of movement classification systems with accelerometers have been custom 

designed for a specific domain of activities. Some of these designs have investigated the use of 

acceleration signals to analyze and classify different types of the same physical activity 

(Mantyjarvi et al. 2001). Others have employed acceleration signals for recognizing a wide set of 

daily physical activities (Najafi et al. 2003). The identification of recurring activities of workers 

were studied using accelerometer data (Minnen et al. 2005). Other studies have investigated fall 

detection and prevention for the elderly (Giansanti et al. 2008, Narayanan et al. 2008). 

There exists a considerable body of literature on HAR methods that use various types of machine 

learning algorithms. Some studies have developed the idea of simple heuristic classifiers 

(Foerster et al. 1999, Najafi et al. 2003, Karantonis et al. 2006). Others studies have investigated 

more automatic and comprehensive methods from the machine learning literature including 

decision trees, nearest neighbor and Bayesian networks (Bao and Intille 2004, Maurer et al. 

2006, Ermes et al. 2008), support vector machines (SVM) (Bao and Intille 2004), neural 

networks (Kiani et al. 1997, Mantyjarvi et al. 2001), Gaussian mixture models (GMM) (Allen et 

al. 2006), and Markov chains (Kern et al. 2003, Minnen et al. 2005, Sung et al. 2005).  

Unlike activity recognition methods that require feature vectors as input, deep learning 

algorithms use the original data directly. In particular, recurrent neural networks (RNN) is 

suitable for handling time-series data, such as audio and video signals, and natural language. 

This allows the calculation of feature vectors to be skipped at the time of training and 

recognition. A method of human activity recognition from raw accelerometer data applying a 
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RNN was proposed and various architectures and its combination to find the best parameter 

values were investigate by (Inoue et al. 2018). A generic deep framework for activity recognition 

based on convolutional and LSTM recurrent units was proposed by (Ordóñez and Roggen 2016). 

Many of these systems have produced excellent results in classification of specific movements. 

Given these successful applications, there is scope for the development of similar accelerometer-

based systems that can automatically identify and classify stick-slip motion of smart devices 

under earthquake.  

A number of existing studies in the broader literature have examined techniques for identifying 

structural damage using machine learning algorithms. A statistical feature extraction process was 

studied to classify features capable of detecting structural damage based on accelerometer data 

(Figueiredo et al. 2009). An automated crack detection algorithm using image processing was 

presented to automatically tune the threshold parameters to identify cracks more accurately 

(Prasanna et al. 2016). A sensor data fusion system based on machine learning classification 

methods for structural health monitoring (SHM) applications was proposed (Vitola et al. 2017). 

The residual error of an auto-regressive model of acceleration time series was used for damage 

detection based on support vector machines (SVM) for SHM (Gui et al. 2017). Convolutional 

neural networks (CNN) were used to estimate damage severity based on accelerometer data 

(Abdeljaber et al. 2018). In spite of these studies, there have been no efforts to identify structural 

damage based on the ideas proposed in this dissertation, i.e. processing accelerometer 

measurements from free-standing smart devices that are prone to slip-stick motion during 

seismic events.  
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4.3 Stick-slip motion classification methodology 

The objective of this chapter is to investigate the feasibility of using the accelerometers in smart 

devices subjected to seismic motions as a means for classifying stick-slip motion based on 

machine learning techniques. To achieve plausible classification results, three important 

classification conditions are considered: 1) the consideration of an optimal window size; 2) 

feature selection; and (3) selection of the best performing classifiers. For classifiers, two types of 

machine learning algorithm are studied: a supervised learning algorithm and a deep learning 

algorithm. Supervised learning algorithms require features to be extracted by users on the basis 

of the characteristics of segmented input data. Figure 4-1 shows the overall research 

methodology used for the supervised learning framework, which consists of (1) data collection 

and labeling; (2) data segmentation; (3) feature extraction; (4) discriminant analysis; (5) 

classification; and (6) validation. Unlike supervised learning algorithms, deep learning 

algorithms do not required users to extract features. This work is accomplished via the algorithm 

itself. Figure 4-2 shows the overall research methodology for the deep learning framework, 

which consists of (1) data collection and labeling; (2) classification; and (3) validation.  
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Figure 4-1. Block diagram of the supervised learning algorithm 
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Figure 4-2. Block diagram of the deep learning algorithm 

4.3.1 Data Collection 

Acceleration data were collected by placing the phone on a shaking table (Figure 2-8). The two 

motions of interest were sticking and sliding. To simulate earthquake events, six ground motions 

(EQ1, EQ2, EQ3, EQ5, EQ6, and EQ7) were selected from Table 2-3. The motions were 

selected because they could lead to substantial sliding action. Five different smartphones were 

used as shown in Figure 4-3 and summarized in Table 4-1. To collect substantial amount of 

experimental results for machine learning, each smartphone has two surfaces with and without a 
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protective shell. Each smartphone recorded ten rounds for each ground motion to achieve a large 

enough dataset to facilitate machine learning. A total of 600 measured acceleration data records 

were collected.  

 

Figure 4-3. Smartphones used in the test: a) Samsung Galaxy S7; b) Samsung Galaxy S5; c) 

LG G5; d) Nexus 6P; and e) Nexus 5X 

Table 4-1. List of smartphones used in the test 

 
Sampling rate 

(Hz) 

MS amplitude of 

noise (m𝑔) 

Maximum 

Range (m/s2) 

Resolution 

(mm/s2) 

Samsung 

Galaxy S7 
200 106.09 19.6 0.599 

Samsung 

Galaxy S5 
100 416.16 19.6 0.599 

LG G5 100 268.96 156.9 0.958 

Nexus 6P 100 338.56 156.9 0.958 

Nexus 5X 100 930.25 39.2 1.200 
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4.3.2 Annotation Method 

The infrared 3D-motion capture system (Optotrak) was used to capture the true displacement of 

the smart device and shake table platen as mentioned in Section 2.5.1. To annotate sliding and 

sticking motions for the learning methods, sliding was considered to occur when the relative 

velocity between the base and the device exceeds the Stribeck velocity (De Wit et al. 1995) as 

mentioned in Section 2.3.1. The annotation results for stick-slip motions obtained by the 

Optotrak were quite accurate, as validated by an analysis of video recordings of the motions of 

the smartphone and underlying surface.  

4.3.3 Segmentation Technique 

Like any other supervised classification problem, in stick-slip motion classification, the sensor 

signal is first divided into smaller time segments more commonly known as windows. For each 

window, features are computed separately and fed to the classification algorithms. This 

information is then combined to give a motion profile along the entire signal. Unlike human 

activity, which has some distinct characteristics, such as a certain motion with a certain length or 

two activities occurring consequently, stick-slip motions are quite random events. This 

randomness poses a challenge for the application of the conventional window method. To 

address the issue of randomness, in this study the acceleration measurements are snipped into 

small segments bounded by the points where the acceleration crosses zero because these points 

are transitions associated with sliding reversals. This segmentation is denoted as zero crossing 

(marked with red circles in Figure 4-4c) and compared the classification performance with other 

window sizes such as 0.25, 0.5, 0.75, 1.00, 2.00, and 3.00 seconds length of window. These 

windows are defined by a fixed windowing approach that divides the data into single segments 
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with no overlapping data, with a specific length of window size as shown in Figure 4-4a. This 

fixed windowing approach shows the better performance in the other classification study than the 

sliding windowing approach, which allows overlap of the data between segments (Jebelli et al. 

2018). as shown in Figure 4-4b. 

a) 

 

b) 

 

c) 

 

Figure 4-4. Windowing approaches: a) fixed window; b) sliding window; c) zero-crossing 

window (the window numbers are indicated on each window) 
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4.3.4 Feature 

After labeling the data with specific segment numbers, features representing each of the 

segments were extracted for motion classification. These features were then fed to a classifier 

that implements a specific classification algorithm. Features are extracted with respect to both 

the time and frequency domain because these two approaches are widely used in classification 

methods. Some studies have derived time-domain features directly from a window of 

acceleration data. Examples include the mean, median, variance, skewness, and kurtosis. To 

derive frequency-domain features, the window of sensor data must first be transformed into the 

frequency domain, normally using a fast Fourier transform (FFT). The output of a FFT typically 

gives a set of basis coefficients which represent the amplitudes of the frequency components of 

the signal and the distribution of the signal energy.  

Eight different features were selected (6 for time-domain features and 2 for frequency-domain 

features). This choice was based on their widespread use in accelerometer-based activity 

recognition studies (Baek et al. 2004, Ravi et al. 2005, Koskimaki et al. 2009). Smartphone 

accelerations were then integrated once to yield velocity data and the same eight features were 

selected. The total number of potential features was 16. The time-domain features include the 

following: (1) mean, an average value of acceleration data over the window; (2) standard 

deviation of acceleration values in each window; (3) range (difference between maximum and 

minimum values); (4) skewness (a degree of asymmetry in the distribution of acceleration data); 

(5) the squared sum of the magnitude of data below 25 cumulative percentage and (6) below 75 

cumulative percentage. The features in the frequency domain are (7) energy of wavelet 

decomposition in the frequency-domain (Laine and Fan 1993) and (8) entropy of the wavelet 

packet in the frequency-domain (Coifman and Wickerhauser 1992). Energy and entropy features 
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have also been used to identify the states of movement and differentiate actions that have a 

similar energy level, respectively.  

4.3.5 Feature Selection  

Characterizing sliding accelerations can be challenging for two reasons. First, the acceleration of 

sliding motion is highly related to the KCOF between the smartphone and the underlying surface. 

As a result, the sliding acceleration response would be different for each phone because each 

smartphone can have a different KCOF. Second, sticking motion is a random movement because 

it follows random ground motions. Due to this randomness, it is difficult to define a cycle time of 

a specific motion unlike human activities (Ryu et al. 2018). To achieve effective classification, 

selecting high discriminative features is important. The high discriminative feature set should 

have similar attributes between repetitions of either stick or slip motion but should have distinct 

properties between two different motions.  

In order to achieve better classification, in this study, the ReliefF algorithm was used as a feature 

selection method because it has been widely used for feature selection (Menai et al. 2013). The 

algorithm iteratively determines k-nearest features of the same and different classes from 

randomly sampled instances in the training data set. It estimates the importance weight by 

averaging their contribution (Hall 1999). The parameter k is related to the distance of estimations 

and can be set heuristically to 10 for most purposes (Robnik-Šikonja and Kononenko 2003). The 

importance weight of each feature represents the degree of class differentiation. A larger feature 

weight indicates a more important feature, and the algorithm sets a rank for each feature based 

on the weight (Hall 1999). 
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4.3.6 Dimension Reduction and Discriminating Feature Extraction 

Due to similarities in time and frequency-domain parameters, discrimination of stick-slip 

motions was difficult. This difficulty is attributable to the presence of low between class variance 

in the motion-data that resulted in poor classification accuracy and had to be overcome using a 

method that could achieve dimension reduction as well as increase the low between-class 

variance to increase the class separability. Dimension reduction was achieved by means of 

extracting discriminating features, which works on the idea of maximizing total scatter of the 

data, while minimizing the variance within classes. The most common techniques for this 

purpose include linear discriminant analysis (LDA) (Mika et al. 1999) and kernel discriminant 

analysis (KDA) (Baudat and Anouar 2000). 

LDA seeks to find a linear transformation by maximizing the between-class variance and 

minimizing the within-class variance; as such, it has proved to be a more suitable technique for 

classification than original features (Li et al. 2003). This method maximizes the ratio of between-

class variance to the within-class variance in any particular data set thereby guaranteeing 

maximal separability. The output of LDA is an optimal linear discriminant function which maps 

the input into the classification space on which the class identification of the samples is decided. 

Further details on the LDA are available in Belhumeur et al. (1997). 

Although LDA is a major improvement in discriminating features, it is still a linear technique in 

nature. Because of this, when severe non-linearity is presented, this method is intrinsically poor. 

A better analytical approach is Kernel Discriminant Analysis (KDA), a non-linear discriminating 

approach based on kernel techniques that is designed to find non-linear discriminating features. 

KDA computes the non-linear discriminating basis vectors which has shown good performance 
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in cases where LDA has failed (Li et al. 2003). Details of KDA algorithm are available in Baudat 

and Anour (2000). The performances of each of these techniques will be discussed later.  

4.3.7 Classifiers 

Machine learning techniques are used to learn acceleration signal of sticking-slip motions from 

training data, and then classify types of motions from testing data. To classify stick-slip motions, 

two types of machine learning algorithms are studied: a supervised learning algorithm and a deep 

learning algorithm. 

For the supervised learning algorithm, two widely used algorithms for HAR are employed and 

their performance are compared: support vector machine (SVM) and multilayer perception 

(MLP) artificial-neural networks based on the feed-forward backpropagation algorithm. The 

SVM classifies data by finding the best hyperplane that separates all data points of one class 

from those of another class. The best hyperplane for an SVM is the one with the largest margin 

between the two classes. Here, margin refers to the maximal width of the slab parallel to the 

hyperplane that has no interior data points. The support vectors are the data points that are 

closest to the separating hyperplane; these points are on the boundary of the slab. SVM can be 

improved using kernel function to create non-linear classifiers. In this study, the kernel function 

used for non-linear classification is the Gaussian radial basis function (Bishop 2006), which has 

been successfully applied in another activity recognition study (Ravi et al. 2005). Further details 

of SVM models can be found in Bishop (2006).  

The MLP consists of three layers of nodes: an input layer, a hidden layer and an output layer. 

Except for the input nodes, each node is a neuron that uses a nonlinear activation function. To 

optimize performance MLP with different number of layers and neurons were tested. The 
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training of MLP classifier was also repeated several times by changing the input order in a 

random fashion. After several trials, one hidden layer with ten neurons and one output layer with 

two neurons corresponding to the two classification outputs (sliding and sticking) were selected.  

For the deep learning algorithm, a recurrent neural network (RNN) is employed because it is the 

most suitable algorithm for classification problems with time series data (Hochreiter and 

Schmidhuber 1997). This method was developed to tackle one important limitation of the MLP 

architecture, which assumes all inputs and outputs are independent of each other when in fact, 

they should be considered dependent. To resolve this problem, RNN uses a recurrent connection 

for every unit. The response of a neuron is fed back to itself with a weight and a unit time delay. 

This provides a memory of past responses (hidden values) to learn the transitory dynamics of 

sequential data. For this study, a long short-term memory networks (LSTM) is used (Bishop 

2006).  

The core components of an LSTM network are a sequence input layer, an LSTM layer, a fully 

connected layer, a softmax layer, and a classification output layer, as shown in Figure 4-5. The 

sequence input layer inputs sequence or time series data into the network. The LSTM layer 

learns the long-term dependencies between the time steps of the sequence data. The fully 

connected layer multiplies the input by a weight matrix and then adds a bias vector. In this layer, 

all neurons in a fully connected layer connect to all the neurons in the previous layer. This layer 

combines all of the features (local information) learned by the previous layers across the data to 

identify the larger patterns. For classification problems, the last fully connected layer combines 

the features to classify the signals. 
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Figure 4-5. Architecture of long short-term memory networks (LSTM) (Demuth and Beale 

1994) 

In the following, some important details of the RNN with the LSTM algorithm are introduced 

including a softmax function, a loss function, a stochastic gradient descent, and a gradient 

clipping method. In addition, some important parameters which cannot be directly estimated 

from the data are investigated. These types of model parameters are referred to as a 

hyperparameters (or tuning parameters) in machine learning because there is no analytical 

formula available to calculate appropriate values (Kuhn and Johnson 2013).  

Softmax function: In the softmax layer, the softmax function is a neural transfer function that 

calculates a layer’s output from its net input. For classification problems, the softmax layer and 

the classification layer must follow the final fully connected layer. The softmax function is also 

known as the normalized exponential and can be considered a multi-class generalization of the 

logistic sigmoid function (Bishop 2006). This softmax function is a generalization of the logistic 

function that squashed a K-dimensional vector z of arbitrary real values to a K-dimensional 

vector 𝜎(𝒛) of real values, for 𝐾 ≥ 2, where each entry is in the interval (0,1), and all the entries 

sum to 1:  

𝜎:ℝK → {𝜎 ∈ ℝ𝐾 |𝜎𝑖 > 0  ,∑𝜎𝑖

𝐾

𝑖=1

= 1 }   4-1 
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The standard softmax function is given by the standard exponential function on each coordinate, 

divided by the sum of the exponential function applied to each coordinate, as a normalizing 

constant. 

Loss function : In the classification layer, the RNN takes the values from the softmax function 

and assigns each input to one of the K mutually exclusive classes using a loss function (error 

function), called a cross-entropy function for a 1-of-K coding scheme (Bishop 2006):  

where N is the number of samples, K is the number of classes, tij is the indicator that the i th 

sample belongs to the j th class, and yij is the output for sample i for class j, which in this case, is 

the value from the softmax function.  

Stochastic gradient descent method: To minimize the loss function, the stochastic gradient 

descent method is used. The gradient descent method searches the local minimum value in the 

adjacency by repeating to change w in the negative gradient direction by a very small amount. 

The weight in the tth time of repetition be wt, 

where 𝜖 is called as a learning rate, and 𝛻𝐸 is the gradient of the loss function. As the learning 

rate is high, learning becomes faster, but it also vibrates near the local minimum value of the loss 

function leading errors. To resolve this problem, a method to adjust the learning rate, called 

𝜎(𝒛)j =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

   for j=1,2,…, K 4-2 

𝐸 = ∑∑𝑡𝑖𝑗 ln 𝑦𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 4-3 

𝑤𝑡+1 = 𝑤𝑡 − 𝜖𝛻𝐸 4-4 
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adaptive moment estimation (Adam), is employed (Krishnan and Cook 2014). The stochastic 

gradient descent algorithm evaluates the gradient and updates the parameters using a subset of 

the training set. This subset is called a mini-batch. Each evaluation of the gradient using the 

mini-batch is an iteration. At each iteration, the algorithm takes one step towards minimizing the 

loss function. The full pass of the training algorithm over the entire training set using mini-

batches is an epoch. In this study, the 20 mini-batch size is selected.  

Gradient clipping method : The LSTM layer is utilized mainly to replace some units of the RNN 

to solve two problems: 1) an input and output weight conflict, which is the conflict between the 

input from the previous layer and the recurrent value (Hochreiter and Schmidhuber 1997); and 2) 

the vanishing and exploding gradient problem, which is the large increase in the norm of the 

gradient during training due to the explosion of the long-term components and the opposite 

behavior (Bengio et al. 1994, Pascanu et al. 2013). To resolve these problems, the input/output 

weight conflict and the vanishing gradient problem are solved by the input/output gate and a 

constant error carousel (CEC), respectively. The exploding gradient problem is solved by a 

gradient clipping method. This gradient clipping corrects the L2 norm of the gradient not to 

exceed the threshold value (Pascanu et al. 2013). Specifically, when c is the threshold value, 

‖𝛻𝐸‖ ≥ c  is satisfied and the gradient is modified as follows  

Table 4-2 summarizes the hyperparameters and corresponding values for the RNN. To achieve 

the best performing classification, an examination of three other hyperparameters (numbers of 

layers and units, and gradient clipping parameter) is conducted to the study of motion 

classification using the RNN.  

𝛻𝐸 ← 
𝑐

‖𝛻𝐸‖
 𝛻𝐸  4-5 
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Table 4-2. Predefined hyperparameters of RNN 

Hyperparameters Values 

Activation function of output layer Softmax 

Loss function Cross entropy 

Type of internal layer unit LSTM 

Mini-batch size 20 

Initial weights random Gaussian distribution (𝜇=0, 𝜎2=0.012) 

Initial bias None 

Learning rate adjustment method Adam 

Gradient Threshold Method L2 norm 

Input dimension 2 

Output dimension 2 

 

4.4 Classification results 

The present study evaluates the performance of the proposed approach for classifying stick-slip 

motions. The data from the shaking table test were used for motion classification to determine 

the best combination of features, window sizes, classifiers, and discriminant methods. To assess 

the classification accuracy, a 10-fold cross-validation was performed using data from 

smartphones (Kuhn and Johnson 2013, James et al. 2013). From this cross validation, it is 

possible to evaluate predictive models by partitioning the original sample into a training set to 

train the model, and a test set to evaluate it. The classification accuracy was calculated by 

dividing the number of correctly classified actions by the total number of instances in the data 

set. 
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4.4.1 Feature selection and window size on classification accuracy 

To assess whether all selected features are robust for motion classification as described in the 

section 4.3.4. and select optimal features from the potential features of 16, the ReliefF algorithm 

was used. This algorithm can select highly correlated features among the potential features since 

it is challenging to avoid selecting superfluous features (Atallah et al. 2011). To resolve this 

problem, the threshold values were selected by comparing feature importance weights 

determined through the algorithm (Ryu et al. 2018). 

The feature importance weights from each window size and average weight are shown in Figure 

4-6. For all window sizes, the importance weights were lower than the averaged importance 

weights for the first 8 features. To select highly correlated features for classification 

performance, the top 8 features were selected for the minimum threshold in this study. To 

examine the claim that the use of more features can produce a better distinction (Hall 1999), the 

top 8, 12, and 16 features, corresponding to 50%, 75%, and 100% of the total features, 

respectively, were used.  

Figure 4-7 shows the classification accuracy according to the number of selected features and the 

classifiers when data from all window sizes (each classification accuracy represents the average 

of the classification accuracy using all window sizes) are used. Two classifiers showed the best 

performance when using all 16 extracted features. Therefore, all 16 extracted features were used 

in the following analysis. 
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Figure 4-6. Feature importance weight 

 

 
Figure 4-7. Average accuracy of classification with selected features 
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Figure 4-8 shows the overall accuracy for motion classification with all of the extracted features. 

The highest accuracy was 86.7% from MPL with zero-crossing window and the lowest accuracy 

was 76.5% from the SVM with 3-s window size. As can be seen, the use of two classifiers tends 

to increase classification accuracy with the larger window size until the 1-s window size. When 

the window size is larger than the 1-s window size, the classification accuracy decreases. This 

trend is highly related to the average length of the sliding motions, 0.67s. A too large window 

size is undesirable.  

The accuracy with a zero-crossing window was better than other fixed length windows. Unlike 

other repetitive human activities with relatively consistent length, the randomness of stick-slip 

motion hinders characterizing each sticking and sliding motions using the fixed length windows. 

The zero-crossing window can be considered as a dynamic length window model as suggested 

by Laguna et al. (2011). The dynamic length window model generates different window segment 

length by actions and achieves better classification accuracy. Using the dynamic length window 

model, the characteristic of dynamic behavior of stick-slip motions of a non-constrained 

smartphone can be represented better than with fixed length windows.  
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Figure 4-8. Accuracy of classification with different window size using all features 

 

4.4.2 Effect of discriminant analysis on classification accuracy 

To demonstrate the effect of dimension reduction methods on classification results, confusion 

matrices from three features using MLP with a zero-crossing window are presented in Figure 

4-9. In the confusion matrix, each row represents actual classes and each column corresponds to 

predicted classes. Precision is the ratio of the number of correct predictions to the total number 

of instances classified as positive. Recall is the ratio of the number of correct predictions to the 

total number of positive instances.  

The results show that the classification with features produced by KDA outperformed that with 

the original features and with features produced by LDA in improving class separation as shown 

in the Figure 4-9. Features from KDA provided an average sliding motion classification rate of 

up to 89.0% compared to 87.6% obtained with LDA and 86.7% obtained with the original 

features. These results imply that the original features are relatively plausible separations and the 

discriminant analysis results in a modest improvement in classification accuracy.   
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It is worth noting that the main purpose of this study is to detect the sliding motions from the 

acceleration measurements in order to remove them to facilitate a more accurate displacement 

response computation. From this perspective, the most important instance in the confusion 

matrix is the sliding instances falsely classified as sticking motions. These instances can result in 

critical errors in the estimated displacements. For these instances, the classification results from 

the KDA method is 8.8% compared to 10.5% from the original features and 10.3% from the 

LDA method. This result shows that KDA method is the best method not only in the total 

classification accuracy, but also in the reduction of falsely detected rates for sliding instances. 

Figure 4-10 shows the scatter plot of the sliding and sticking motions. Figures a)-d) are the top 

four features of the selected 16 features identified using the ReliefF algorithm. The results for 

LDA and KDA are given in e) and f), respectively. To compare the separability of each feature, 

the normal distributions of each features are presented with normalizing feature values in terms 

of its maximum value as shown in Figure 4-11. KDAs show the largest difference mean value, 𝜇, 

between the two motions compared to other features.  

 

Figure 4-9. Effect of feature reduction by LDA and KDA 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Figure 4-10. Features a)-d) top four most correlated features, e) LDA, and f) KDA 
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Figure 4-11. Normal distribution of features a)-d) top four most correlated features, e) 

LDA, and f) KDA 

 

4.4.3 Parametric study of RNN 

The evaluation on the correlation of all the hyperparameters is a laborious process due to large 

number of hyperparameters and lengthy computational time. To deal with these difficulties, the 

effectiveness of each hyperparameter is determined by varying each hyperparameter based on the 

empirically obtained best model with the highest classification accuracy. The results for three 

hyperparameters are presented in Table 4-3. In the best model, the train and test classification 

rate were 93.45% and 93.86% at maximum, respectively.  
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Table 4-3. Selected hyperparameters for the best performing classification model 

Hyperparameters Values 

Number of internal layers 2 

Number of units in one layer 40 

Gradient clipping parameter c=7 

 

To determine the effect of each parameter on classification accuracy and find the best 

combination for three hyperparameters, only one parameter is changed while holding the other 

two fixed. The effect of the number of internal layers is presented using 1,2,3, and 4 layers as 

shown in Figure 4-12. As can be seen in the figure, the classification accuracy is the highest 

when two layers are used for both training and test data. The classification accuracy increased as 

the number of layers was increased until two. However, the classification accuracy decreased in 

the three- and four- layers model. This occurrence of this phenomenon can be explained because 

of increasing learning difficulty associated with the additional layers and overfitting when the 

freedom of the model becomes too high. A further weakness associated with additional layers is 

that the computation time increases in proportion to the increase of internal layers. The 

computation times were 480s for the single layer, 592s for the two layers, 667s for the three 

layers, and 842s for the four layers, respectively. In this study, the best model is based on only 

the highest classification accuracy, but in the future, it is reasonable to consider both 

computational time and classification accuracy to select the best model. From the above results, a 

redundant increase in the layers in the model may lead to a degradation in the generalization 

performance. 
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The effect of the number of internal layer units is presented using 20, 30, 40, and 50 units as 

shown in Figure 4-13. As shown in the figure, the classification accuracy is the highest when 40 

units are used in train and test data. When more than 40 units are used, the classification 

accuracy decreases. The reasons for this are the same as those for the number of internal layers. 

To obtain a high generalization performance, the number of units should not be excessively 

increased.  

The effect of the gradient clipping parameter is presented using 3, 5, 7, and 9 as shown in Figure 

4-14. In the figure, it can be seen that the recognition rate is highest in the case of c=7 in train 

and test data. The lack of improvement may imply that the clipping parameter is not a sensitive 

parameter or that the gradient explosion was absent in this dataset 

The above results show that, in the task of stick-slip classification, a modest difference appeared 

in the recognition rate for the three selected hyperparameters. The most difference occurred for 

the number of internal layer units, a difference of 3.21% between the maximum at 40 units and 

minimum at 20 units classification accuracy. 
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Figure 4-12. Comparison of classification accuracy according to the number of internal 

layers (50 units, c=7) 

 

Figure 4-13. Comparison of classification accuracy according to the number of units 

 (2 layers, c=7) 
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Figure 4-14. Comparison of classification accuracy according to the gradient clipping 

parameter (2 layers, 50 units) 

 

4.4.4 Comparison classifiers 

Compared to other supervised learning algorithms, the deep learning algorithm shows better 

performance for motion classification as shown in the Figure 4-15. The classification accuracies 

for each classifier were 93.2% for RNN, 89.0% for MLP, and 86.1% for SVM. Theoretically, in 

MLP, the input units in a fully connected network have the same connection and would not 

change the performance of the network by swapping their positions. This lack of invariable 

connection is not a suitable property for classification on raw data, because it ignores the 

dependencies between adjacent units. However, the RNN algorithm as a sparse neural network 

can extract the information in adjacent units. 
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Figure 4-15. Classification Comparison 

 

4.5 Summary and conclusion 

This chapter presents an accurate and robust accelerometer-based stick-slip motion classification 

framework based on the machine learning method. RNN for the deep learning algorithm showed 

maximum classification with 93.2% compared to two other supervised learning techniques, 

89.0% for MLP, and 86.1% for SVM. Three methods are investigated for the supervised learning 

algorithm: 1) the ReliefF algorithm was used to select highly correlated features among the 

potential features; 2) the zero-crossing window were selected as the best performing 

segmentation method for raw acceleration data; and 3) LDA and KDA were used to improve the 

class separability and showed a modest improvement in classification accuracy. For the deep 

learning algorithms, detailed examination of a combination of three hyperparameters of the 

proposed RNN and its performance is considered important for further improvement of the 

accuracy of this network. Two internal layers, 40 units for each internal layer and c=7 gradient 

clipping parameter were selected.  
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CHAPTER 5  

Stacking multiple device measurements to improve computation of interstory drift 

ratios 

5.1 General 

This chapter addresses means by which to mitigate the unreliability of individual acceleration 

measurements from smartphones by stacking readings from multiple devices. Some of the causes 

of unreliability include: 1) smartphones can slide under a given ground motion when the friction 

between the smartphone and the underlying surface is overcome; and 2) the inherent errors in 

acceleration measurements make it difficult to accurately compute displacements from a single 

acceleration record. Successfully stacking acceleration measurements from multiple devices 

requires noise reduction, sliding detection, and data fusion, methods for which are introduced 

and discussed. Techniques for accurately double integrating the resulting data and computing 

inter story drift ratios (IDR) are also introduced. Each of the main ideas presented is assessed and 

validated by shake table experiments.   

5.2 Proposed idr estimation process 

A process for IDR estimation from smartphones measurements is proposed in this section. Figure 

5-1 shows the 6 steps needed to get from measured accelerations to IDR estimation. These steps 

are: 
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STEP 1: Remove noise. The noise associated with measurements of the smartphone is reduced 

without removing the signals associated with the motion of the underlying surface. 

STEP 2: Synchronize measurements. Multiple measurements are synchronized in the same 

time domain in order combine their values in a meaningful manner.  

STEP 3: Remove sliding motions. Smartphone sliding is detected. Only data from devices that 

stick to the underlying surface can be used for computation of IDR.  

STEP 4: Combine filtered measurements. Sticking-only-acceleration responses are aggregated 

by a data fusion method, Kalman filter (KF), to produce more accurate acceleration 

responses. 

STEP 5: Estimate displacement for each floor. With merged acceleration records, estimated 

floor displacements are obtained by double integration and zero velocity update 

(ZUPT) method. 

STEP 6: Calculate IDR. The estimated consecutive story displacements produce IDRs that 

represent building damage after an earthquake.  

 

 

 

Figure 5-1. Flowchart of IDR estimation 
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5.2.1 Denoising  

Noise reduction is an essential process in most measurement systems. However, many noise 

reduction algorithms also tend to degrade the original signals. Denoising is commonly done 

using band-pass filters for seismic applications (Amini et al. 1987); but that can also detract from 

the non-smooth features of a signal. Wavelet transform (WT) can overcome this drawback and 

makes it possible to preserve these features and extract much of the noise. If the wavelet 

coefficients that characterize the noise can be classified, it is possible to remove the noise and 

reconstruct a clean signal. In Chapter 3, it was shown that the maximal overlap discrete wavelet 

packet transform (MODWPT) exhibited superior performance with respect to noise reduction in 

the measured acceleration records of smartphones that undergo sticking-sliding motion over 

other filters such as a bandpass filter and the maximal overlap discrete wavelet transform 

(MODWT). This approach is adopted herein.  

5.2.2 Synchronization  

Prior to combining multiple measured accelerations into a single estimated acceleration for each 

floor, it is essential to synchronize them in the time domain. One research group used 25 

smartphones at the same location to improve the signal-to-noise ratio by stacking them (Kong et 

al. 2018). They assumed that recorded noise could be removed by stacking across different 

measurements because noise from different smartphones is truly random and less related to the 

building’s response. The cross correlation of measured accelerations between phone recordings 

were calculated by shifting them within 120s windows to find the maximum correlation 

coefficient. They concluded that stacking more phones does not always lead to improvement in 

the accuracy of combined records and stacking seven phones provide the best results when the 
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correlation coefficient exceeds 0.6. However, misalignment problems still existed even after 

applying the cross-correlation method they used.  

Figure 5-2a shows the result of stacking multiple acceleration measurements with the best cross 

correlation. As can be seen, the shaking motions have slightly different time durations. To adjust 

for these different shaking duration times, measurements are stretched or shortened uniformly for 

each measurement compared to a benchmark measurement specifically selected to have the 

highest correlation value among all the measurements. Figure 5-2b shows that this scaled scheme 

is not enough to adequately synchronize multiple measurements. The poor alignment of multiple 

acceleration measurements are particularly clear at 1.7-3s. Therefore, it is necessary to explore 

an alternative technique to enhance the performance of the method used to align multiple 

measurements.  
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b) 

 

Figure 5-2. Results of stacking multiple acceleration measurements by cross correlation for 

a) before adjusting the scale and b) after adjusting the scale. Note the poor alignment.  

 

Some researchers have claimed that it is possible that the sensors temporarily freeze or fail to 

properly collect and store data from fractions of a second to a few seconds and in return, 

compensate for the missing data points by collecting data at a rate higher than the assigned 

frequency (Akhavian and Behzadan 2016). In such cases, a preprocessing technique to fill in for 

missing data points and removing redundant ones can help ensure a continuous and orderly 

dataset. Imperfect repeatability of simulation in the shake table or technical limitations on the 

accelerometers could also cause this misalignment problem. Figure 5-3 shows three examples of 

sampling points from a Galaxy S7 smart device that demonstrate that an exact sampling rate of 

200Hz is not achieved.  
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Figure 5-3. Sampling points from Galaxy S7 for three different measurements 

 

Dynamic time warping (DTW) (Bellman and Kalaba 1959, Sakoe and Chiba 1978) can be a 

possible method to solve misalignment. DTW is a well-known technique to find an optimal 

alignment between two given sequences (time-dependent). It minimizes the effects of time 

lagging and warping in the time domain by allowing elastic transformation of time series to 

detect similar features in different phases. The alignment path built by DTW has certain 

restrictions and rules as follows: 1) every index from the first sequence must be matched with 

one or more indices from the other sequence; 2) the first and last index from the first sequence 

must be matched with the first and last index from the other sequence, respectively; and 3) the 

mapping of the indices from the first sequence to indices from the other sequence must be 

monotonically increasing. The distance matrix between two signals is calculated by the 
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Euclidean distance measure. A dynamic programming algorithm (Bellman and Kalaba 1959) is 

employed to determine the minimal distance matrix between sequences. 

Even though the DTW algorithm is useful to align two signals that are similar in the time axis, 

the algorithm has a problem when the two sequences differ in the amplitude axis (Keogh and 

Pazzani 2001). To overcome these drawbacks, the derivative dynamic time warping (DDTW) 

algorithm is used to yield more accurate alignment results (Keogh and Pazzani 2001). The 

distance measured between two signals in DDTW is calculated by the square of the difference of 

the estimated derivatives of the two signals, i.e. it is not Euclidean. However, DDTW still shows 

poor alignment results with noisy acceleration measurements from smartphones. To resolve this 

problem, two new simple methods are proposed that add and element-wise multiply two 

normalized distance matrices calculated in Euclidean space (DTW) and the first derivative of 

signals (DDTW), respectively. These proposed methods are denoted additive dynamic time 

warping (ADTW) and multiplicative dynamic time warping (MDTW), respectively.  

To compare the alignment performances of these methods, two examples are presented. The first 

example aligns two artificial signals of the same length, one is a clear sinusoidal waveform and 

the other is similar to the former but has white Gaussian noise added. In order to evaluate the 

performance of the methods, the amount of warping, 𝑊, defined as the ratio of the length of the 

warping path, 𝐾, to the sum of the length of each signal, 𝑛 and 𝑚, respectively, are compared as 

follows: 

𝑊 = 𝐾/(𝑛 + 𝑚)  5-1 
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The more warping there is, the larger the value of 𝑊. Figure 5-4 shows warping paths on the 

distance matrix and alignment results of DTW, DDTW, ADTW and MDTW with two artificial 

signals. MDTW has the smallest 𝑊  value compared to the three other methods. Since these 

signals are the same length except for some perturbations, having a straight diagonal line along 

the warping path on the distance matrix is an ideal result.  

The second example aligns two measured accelerations of different length, one is measured by 

Optotrak and the other is measured by Samsung Galaxy S7. In this case, the root mean square 

error (RMSE) of the two accelerations are compared to evaluate the performance of the four 

methods. It is expected that more accurate alignment will lead to a smaller value of RMSE. 

Figure 5-5 shows warping paths on the distance matrix and the alignment results of DTW, 

DDTW, ADTW and MDTW for both Optotrak and Galaxy S7 measurements. Since these 

signals have different lengths due to an uneven sampling rates, the warping path on the distance 

matrix is not necessarily a straight line, unlike the previous case. The results indicate that 

MDTW has the smallest RMSE value compared to the three other methods.  
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a) 

 

𝑾=0.625  

b) 

 

𝑾=0.671  
 

c) 

 

𝑾=0.526 
 

d) 

 

𝑾=0.513 
 

Figure 5-4. Comparison of warping path and alignment for two artificial signals. The lines 

between two signals in the left columns indicate alignment results for a) DTW, b) DDTW, 

c) ADTW, and d) MDTW 



 

124 

 

a) 

 

RMSE=0.7726 
 

b) 

 

RMSE=0.8707 
 

c) 

 

RMSE=0.7927 
 

d) 

 

RMSE=0.7670 
 

Figure 5-5. Comparison of warping path and alignment for Optotrak measurement and 

Galaxy S7 measurement for a) DTW, b) DDTW, c) ADTW, and d) MDTW 
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These two examples show that MDTW outperforms other methods in terms of the warping path 

for artificial signals and RMSE value for the acceleration measurement. Figure 5-6 shows 

comparisons of the correlation matrices for five acceleration measurements for the same ground 

motion without and with MDTW. It is clear that MDTW improves the correlation values 

between the measurements and is adopted in further work in this chapter.  

a) 

 

b) 

 

 

Figure 5-6. Comparison of correlation matrix with multiple acceleration measurements for 

a) without MDTW and b) with MDTW. Var1-5 indicate the sample number for each 

acceleration measurement under the same ground motion  
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5.2.3 Sliding motion detection 

Sliding of smartphones on their underlying surface impedes their use for assessing building 

seismic damage. These sliding motions occur under extreme movement and become prominent 

when the coefficient of friction between the smartphone and its underlying surface is small. The 

method presented in Chapter 2 for detecting the occurrence of sliding motions in the recorded 

acceleration response is adopted in this study. That method requires knowledge of the KCOF. 

For that, the KCOF estimation method introduced in Chapter 3 is employed.  

5.2.4 Interpolation method 

It is feasible that some floors may not have good estimates of their movement, for example, due 

to too few smartphones or if all the smartphones slide during the earthquake in a certain floor. In 

this case, it is reasonable to dispose of all the acceleration measurements in that floor and 

indirectly estimate the displacement based on the estimated displacement in adjacent floors. 

Conventionally, motions of the non-instrumented floors are estimated by an interpolation 

procedure (De la Llera and Chopra 1995, Naeim 1997). Typically, a piece-wise cubic polynomial 

interpolation (PWCPI) procedure is used for conventional buildings. It is generally believed that 

the PWCPI procedure provides reasonable estimates of motions at non-instrumented floors. A 

convenient implementation of the PWCPI procedure is possible in MATLAB (MathWorks, 

2006) with the use of “spline” function, which is not-a-knot spline method. The usefulness of 

interpolation method will be discussed with experimental results in Section 5.3.7.  

5.2.5 Data fusion method 

As mentioned in Chapter 3, the inherent errors in acceleration measurements in smartphone can 

be classified into two types: deterministic (systematic) and stochastic (random) (Nassar 2003). 
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Although major deterministic error sources (bias and scale factor errors) could be removed by 

using the static multi-position method (El-Diasty and Pagiatakis 2008), in reality, it is 

impractical to apply this method to private smartphones before or after an earthquake occurs 

because it requires the owner’s active participation. Scale factor errors are discussed later on in 

the chapter. Stochastic errors, which are a key concern in this chapter, are addressed by 

aggregating the results of multiple smartphones. It is assumed that noise recorded by the same 

smartphone is truly stochastic and that stacking multiple measurements can alleviate that noise as 

explored later on.   

To stack multiple measurements, data fusion is used to estimate IDR for each floor of a building. 

The advantage of fusing multiple streams of data is that it cancels out the random noise in 

measurements and produces more consistent and accurate acceleration responses than those 

provided by measurements from individual smartphones. Kalman filter (KF) is a well-known 

data fusion method that has beneficial recursive properties, low computational requirements, and 

is an optimal estimator for one-dimensional linear systems with Gaussian error statistics (Kalman 

1960). KF has a prediction step (Equations 5-2 and 5-3) and an update step (Equations 5-4 

through 5-6).  

Prediction 

Update 
 

𝑥̂𝑡|𝑡−1 = 𝐹𝑡𝑥̂𝑡−1|𝑡−1 = 1 × 𝑥̂𝑡−1|𝑡−1 = 𝑥̂𝑡−1|𝑡−1 5-2 

𝑃𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡 = 𝑃𝑡−1|𝑡−1 + 𝑄𝑡 5-3 

𝐾𝑡 = (𝑃𝑡|𝑡−1𝐻𝑡
𝑇)(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1

 5-4 

𝑥̂𝑡|𝑡 = 𝑥̂𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡𝑥̂𝑡|𝑡−1) = 𝑥𝑡|𝑡−1(1 − 𝐾𝑡) + 𝐾𝑡𝑧𝑡 5-5 

𝑃𝑡|𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡|𝑡−1 5-6 
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where 𝑥̂𝑡  is the estimation of state vector at time t, 𝐹𝑡  is the state transition matrix, 𝑃𝑡  is the 

covariance matrix of the state error, 𝑄𝑡 is the covariance matrix of the process noise, 𝐻𝑡 is the 

transformation matrix, 𝑅𝑡 is the covariance matrix of the measurement noise, and 𝑧𝑡 is the vector 

of measurements.  

In this study, one state value is considered to combine the multiple acceleration measurements. 

The state of a system at a time t evolved from the prior state at time t-1 according to the Equation 

5-2. Combining only acceleration measurements, it is assumed that the state-transition model is 

set to 1 and the current state is the same as the previous state in Equation 5-2. For sensor fusion, 

more than one sensor value in observation vector 𝑧𝑘, which are the current readings of multiple 

measurements, will be combined. Without any prior knowledge, it is reasonable to assume that 

all the measured accelerations contribute equally to acceleration estimation, so 𝐻𝑡 matrix is a 

1×n (n is the number of smartphones) matrix of ones. However, each measurement could have a 

different weight if additional information were available.  

The mean square (MS) amplitude of noise can be estimated approximately from the 

smartphone’s stationary response before or after the shaking. This is an approximation of the MS 

of the amplitude of noise but is a reasonable approach to calculate the weighted values for 

combining measurements from multiple smartphones since it gives more importance to data with 

less noise. Using this information, a weighted value, 𝑊𝑖, for each measurement can be calculated 

inversely proportional to the MS amplitude of noise, 𝑛𝑖, between different smartphones (Brennan 

1959).  
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For example, the MS amplitude of noise is 106.09, 416.16, 268.96, 338.56, and 930.25 m𝑔 for 

Samsung Galaxy S7, Samsung Galaxy S5, LG G5, Nexus 6P, and Nexus 5X, respectively, as 

shown in Table 4-1. The weighted values are therefore 0.482, 0.123, 0.190, 0.151, and 0.055 for 

each smartphone.  

The diagonal elements of the 𝑅𝑡 matrix are the variance of the observation of the noise signal 𝑣𝑡 

for each measurement, which is assumed to be the variance of the stationary response of each 

smartphone. Elements of non-diagonal terms of this matrix are assumed as zeros because they 

represent how much each sensor’s noise varies with another’s. The size of 𝑃𝑡 is a scalar value 

because it represents the covariance of the single value estimate value 𝑥̂𝑡 with itself. The gain 𝐾𝑡 

is a 1×n matrix, because the single state estimate 𝑥̂𝑡 and n number of sensor observations in 𝑧𝑡.  

While the gain can be extracted from output signals, the covariance of the state error cannot be 

evaluated without knowledge of the covariance of the process and measurement noise 𝑄𝑡 and 

𝑅𝑡 (Bulut et al. 2011). The measurement noise represents electronic and random noise 

characteristics of the sensor. It is calculated from the sensor accuracy, which is represented using 

standard deviation of measured values from true values during the calibration and summarized in 

Table 4-1. However, the process noise decides the accuracy and time lag in the estimated value. 

The higher the value of the covariance of process noise, the higher the gain, giving more weight 

to noisy measurements and compromising the estimation accuracy. Lower values of the 

covariance of process noise lead to better estimation accuracy but introduce undesired time lag in 

the estimated value.  

weighted value based on MS amplitude of noise: 𝑊𝑖 =

1

𝑛𝑖

Σ
1

𝑛𝑖
  
 5-7 
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Figure 5-7 shows the relation between the covariance of process noise and RMS error that is 

calculated between the reference signal, Optotrak measurement, and combined acceleration for 

four acceleration measurements from Galaxy S7. The plot does not seem like a perfect L-curve 

as expected for a standard regularization parameter estimation method. Nevertheless, the value of 

𝑄𝑡=10-3 and 10-1 could be intuitively chosen for KF with a given value of  

This result shows that the value of covariance of process noise greater than that of the 

measurement noise should be selected.   

 

Figure 5-7. Parametric study of the covariance of process noise with four acceleration 

measurements 

𝑅𝑡
1 = [

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

]×10-3 and 𝑅𝑡
2 = [

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

]×10-1  
5-8 
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5.2.6 Double integration 

The double integration error of accelerometer signals is also of importance in this work. Even 

when appropriate sensor error models and calibration methods are employed, it is still difficult to 

compute accurate displacements from measured acceleration by double integration. This is due 

to technical limitations of the accelerometers in smart devices and is analogous to calculating the 

permanent ground displacements from ground accelerations, which some reputable researchers 

have concluded impractical (Trifunac and Todorovska 2001). Nevertheless, many researchers 

have attempted to minimize the error in displacement from double integration (Ribeiro et al. 

2003, Park et al. 2005). However, most of studies to date have employed fixed accelerometers 

(not smartphones) and do not have to contend with the effect of sliding motion of the smart 

device.  

A promising technique to facilitate displacement computation is the zero velocity update (ZUPT) 

technique (Ibrahim et al. 2018). The method was used for determining the displacement of an in-

service bridge from its free vibration acceleration. The key of this idea is that the value of 

velocity after shaking should be zero, a fact that is used to reduce the accumulated integration 

errors. Noise cancellation can be achieved by taking advantage of the fact that an earthquake’s 

vibration intensity fades gradually and eventually stops at zero velocity and acceleration. In this 

case, the measured velocity at the end of shaking reflects the accumulated error in the preceding 

samples, which can be used to minimize the estimation error. In particular, the ZUPT method 

compensates for a constant drift error, which is the one of the deterministic errors.  

To demonstrate the proposed double integration method with ZUPT, the selected records (FEMA 

2009) of ground motions are applied to the shake table platen in Table 5-1; “DUZCE.BOL” 
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(denoted as EQ1 in Table 5-1), KOBE/NIS (EQ2), and NORTHR/MUL (EQ3). Figure 5-8 shows 

the results of applying the double integration method for EQ1. Five rounds of repetitive 

acceleration measurements from Galaxy S7 and the reference response from Optotrak are 

considered in this exercise. As discussed later on, the results must be aggregated to address the 

stochastic errors associated with the signals.   

Table 5-1. Ground motion records used 

EQ 

ID 

PEER-NGA Record Information 
PGA (g) 

Arias Intensity (𝐼𝐴) 

(m/s) Name Record Seq. No. 

EQ1 DUZCE/BOL 1602 0.728 3.724 

EQ2 KOBE/NIS 1111 0.509 3.353 

EQ3 NORTHR/LOS 960 0.410 1.913 

 

The signals are first processed using MODWPT to reduce noise. MDTW is then used to align the 

records and KF is used to fuse the data as shown in Figure 5-8a. The start and end points of 

shaking are identified, and velocity is calculated from the acceleration record using the 

cumulative trapezoidal numerical integration method. The terminal velocity after shaking should 

be zero as theorized in ZUPT. However, as is clear, the terminal velocity of the integrated 

velocity is not zero because of the acceleration measurement errors (Sekiya et al. 2016). In order 

to make the terminal velocity equal to zero, the drift component (shaded area in Figure 5-8b) is 

subtracted out uniformly from the integrated velocity. Clearly, the corrected velocity is in good 

agreement with the reference velocity response from Optotrak, as shown in Figure 5-8c. Finally, 

the estimated displacement is obtained by a second integration. Figure 5-8d shows that it is in 

reasonably good agreement with the Optotrak reference displacement, where the maximum 
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displacement error is 0.015m. These results show that the ZUPT method, as applied to the first 

integration from acceleration to velocity, effectively removes the constant drift error, which is a 

key deterministic error. With this error corrected, the second integration (from velocity to 

displacement) is typically quite accurate. This can be seen in Figure 5-9 where the maximum 

displacement errors (ME) in displacement estimation compared to the Optotrak measurement are 

0.015 m for EQ2, 0.008 m for EQ3, respectively, and the error at peak (EP) in displacement 

estimation compared to the Optotrak measurements are 0.003 m for EQ2 and 0.006 m for EQ3, 

respectively. 

a) 

 

b) 
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c) 

 

d) 

 

Figure 5-8. Four steps of double integration with five sets of acceleration measurements for 

EQ1: a) acceleration response; b) velocity response without ZUPT; c) estimated velocity 

response with ZUPT; and d) estimated displacement response 
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Figure 5-9. Results of double integration with ZUPT method for a) EQ2 and b) EQ3 

 

5.3 Experimental Results 

The results from shake table experiments and data from other studies are used to show that the 

proposed methods can reasonably estimate floor displacements and hence, the IDR of buildings, 

under seismic events. In the following section, three quantities are compared to show the 

performance of measured acceleration and displacement estimation: 1) the root mean square 

error (RMSE) in measured or combined acceleration compared to the Optotrak measurement; 2) 

the maximum error (ME) in displacement estimation compared to the Optotrak measurement; 

and 3) error at peak (EP) in displacement estimation compared to the Optotrak measurements. 
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5.3.1 Experimental setup 

Experiments are conducted to simulate a smartphone’s behavior on a customized shaking 

surface. The overall experimental setup including the smartphone, infrared sensors, shake table, 

base, and Optotrak system as shown in Figure 2-8.  

To study the effect of the different surfaces, the Samsung Galaxy S7 smartphone is used with 

three types of protective shells as shown in Figure 5-10. The measured KCOF is 0.164 for the 

device without its shell for Case 1. With the protective shell, the KCOF is 0.273 for Case 2, 

0.488 for Case 3, and 0.508 for Case 4.  

To study the effect of different types of smartphones in the following section, five different 

Android smartphones (with various types of onboard accelerometers) are used, as summarized in 

Table 4-1. It is clear from Table 4-1 that subsequent models of the same type of smartphone have 

significantly better accelerometers than older versions. For example, the Galaxy S7 has double 

the sampling frequency (200 Hz versus 100 Hz) and half the amplitude of noise (10.3 m𝑔 versus 

20.4 m𝑔).  
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a) 

 
front side 

 

 
Case 1 

(KCOF 0.164) 

b) 

 
Case 2  

(KCOF 0.273) 

 
Case 3 

(KCOF 0.488) 

 
Case 4 

(KCOF 0.508) 

Figure 5-10. Configuration of a) Galaxy S7 and b) three types of protective shells 

 

5.3.2 Effect of MDTW on acceleration measurements 

To demonstrate the effect of MDTW on acceleration measurements, two sample measurements 

under the same ground motion are obtained from the Samsung Galaxy S7 as shown in Figure 

5-11a. These two samples are fused into a single combined acceleration by KF with MDTW 

(DTW-fusion) and without MDTW (Raw-fusion). The estimated displacements for both Raw-

fusion and DTW-fusion are then obtained by double integration method. The results show that 

Raw-fusion has a larger error in RMSE, ME, and EP than DTW-fusion (RMSE: 0.375, 0.325, 

ME: 0.031, 0.013, EP: 0.028, 0.012 for Raw-fusion and DTW-fusion, respectively). It is clear 
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that the DTW method can improve the accuracy of combined measurements and estimated 

displacement compared to combined measurements without DTW.  

 

 a) 

 

b) 
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c) 

  

d) 

  

Figure 5-11. Effect of DTW on combined signals: a) Two measurements from Galaxy S7; b) 

combining two measurements from Galaxy S7; c) Raw-fusion; and d) DTW-fusion 
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5.3.3 Effect of the number of combined measurements 

The effect of the number of combined measurements on improving the accuracy of estimated 

displacements is investigated. First, it is assumed that all combined measurements are from the 

same phone to illustrate the improvement in performance without adding uncertainty due to 

different types of accelerometers being combined. Then, in Section 5.3.5, the performance when 

combining readings from different types of smartphone accelerometers is investigated.  

It is reasonable to increase the number of combined measurements in a specific order to 

maximize the accuracy of combined measurements, i.e., more reliable measurements are 

combined first before adding less reliable measurements. In this study, it is assumed that the 

reliability of measurements corresponds to the correlation coefficient between other 

measurements in the same device. After obtaining repetitive measurements from Samsung 

Galaxy S7 under the same ground motion and applying DTW to align multiple measurements, 

one measurement with the highest average of correlation coefficient between the others is 

selected as a reference. Based on this reference measurement, the rest of the measurements are 

sorted by the correlation coefficient value. The combined measurements, with an increasing 

number of measurements, are obtained by adding the acceleration measurements following the 

order of the correlation coefficient.  

Figure 5-12 shows the results of different numbers of combined measurements. When the 

number of combined measurements is increased, the RMSE, ME, and EP tend to decrease. This 

result shows that it is reasonable to combine more than five measurements to acquire accurate 

combined measurements. However, it is important to note that RMSE, ME, and EP converge 

asymptotically and tend to be larger as the value of peak ground acceleration (PGA) is larger 
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(0.728g for EQ1, 0.509g for EQ2, 0.416g for EQ3). This observation led to further investigation 

of the amplitude dependence of ground motions in acceleration measurement error. Figure 5-13 

confirms that the RMSE, ME and EP converge asymptotically for scaled versions of EQ2 with 

PGA ranging from 0.201g to 0.506g versus the number of combined measurments.  
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c) 

 

Figure 5-12. Effect of the number of combined measurements a) RMSE in acceleration, b) 

ME in displacement, and c) EP in displacement 
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c) 

 

Figure 5-13. Effect of the number of combined measurements for scaled ground motion of 

EQ:2 a) RMSE in acceleration; b) ME in displacement; and c) EP in displacement 

5.3.4 Scale factor errors  

To study the effect of varying the amplitude of ground motions, three ground motions are scaled 

down and used as input to the shake table. PGAs of four scaled ground motions are 0.735g, 

0.505g, 0.357g, and 0.292g for EQ1, 0.506g, 0.347g, 0.246g, and 0.201g for EQ2, and 0.405g, 

0.319g, 0.233g, and 0.153 for EQ3. Specifically, as shown in Figure 5-14, it is clear that the 

RMSE, EP, and ME and the amplitude of ground motions are in a proportional relationship. Note 

that the results presented are after averaging 5 measurments to eleimate stochastic noise as 

discussed in Section 4.2. These results show that the accelerometer in a smartphone has an 

amplitude dependent error in acceleration measurement. This dependence is called a scale factor 

error (Groves 2013) and can, under certain conditions, be removed through a calibration process 

as mentioned in Section 3.3.1. This is not done in this study because it is impractical to achieve 

this with private smartphones after a seismic event. 
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Figure 5-14. Effect of the amplitude of ground motions on combined five measurements: a) 

RMSE in acceleration; b) ME in displacement; and c) EP in displacement 

 

5.3.5 Results of combining multiple readings from different types of smartphones 

The result of combining the readings from the five different types of smartphones employed in 

this research is investigated. The reading for each smartphone type is assumed to be aggregated 

from five separate readings for that particular smartphone type for a total of twenty-five 

readings. Each smartphone has a different type of accelerometer and therefore different ability to 

measure acceleration accurately. To account for this uncertainty, each measurement has a 

weighted value that is inversely proportional to the MS amplitude of noise associated with each 

smartphone in Equation 5-7, as noted earlier in Section 5.2.5.  

Figure 5-15 shows the estimated displacement responses and errors in displacement after 

combining the five smartphones with respect to the Optotrak reference for EQ1. The results for 

only the Samsung Galaxy S7 are also presented. Figure 5-16 shows the MEs and EPs for the 

combined data and those from only the Galaxy S7 for three ground motions. This figure shows 

that combining measurements from multiple smartphones does not always improve displacement 

estimation. The reason for this is because the data being combined contains poor data sets (from 
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the older and less-capable smartphones), which is overshadowed by the better data set from the 

Samsung Galaxy S7. Nevertheless, the weight values for each smartphone when multiple 

measurements are combined produce reasonable results in displacement estimation compared to 

the best performing smartphone, Galaxy S7, in displacement estimation. 

a) 

 

b) 

 

Figure 5-15. Estimated displacements for EQ1: a) estimated displacement (cm) and b) 

error in displacement (cm) 

 

 

Figure 5-16. Results of displacement estimation for combined five smartphones: a) ME in 

displacement and b) EP in displacement 
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5.3.6 Effect of different surface KCOF 

Figure 5-17 shows the effect of different surface KCOF in ME and EP in estimated 

displacements compared to Optotrak measurements. For a given ground motion, the surface with 

higher KCOF tends to have smaller MEs and EPs than that with a lower value of KCOF. This is 

because the shell with higher KCOF sticks more effectively to the underlying surface and has a 

smaller microslip zone.  

 

Figure 5-17. Results of displacement estimation for different types of surface: a) ME in 

displacement and b) EP in displacement 

 

5.3.7 Reconstruction of IDR 

To demonstrate the capabilities of the proposed method to compute IDR for a given building on 

the basis of smartphone data, the results of scaled building experiments conducted by others are 

used (Lignos 2008) as shown in Figure 5-18. Specifically, the displacement responses of each 

floor as measured from the building experiments (Lignos 2008) are applied to the shake table in 

separate experiments. The measurements are recorded using a single smartphone (Samsung 
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Galaxy S7) for two conditions. The first uses protective shell Case 4 (see Figure 5-10) to 

minimize sliding motions (denoted EX1). The second uses no protective shell (Case 1 in Figure 

5-10) to highlight the effect of sliding motion on displacement estimation (denoted EX2). The 

displacement records of each floor are estimated following the proposed methodology and IDRs 

are calculated using the given floor heights of the frame (Lignos 2008).  

a) 

 

b) 

 

Figure 5-18. Test frame for shaking table tests (Lignos 2008): a) drawing of test frame and 

b) Test frame for shaking table tests 
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Figure 5-19 shows the results of the estimated displacements and IDR of each floor for Optotrak 

and smartphone measurements for Cases 4 and 1, respectively. It is clear that the estimated 

displacement responses for EX1 match better with the Optotrak measurements compared to that 

for EX2. The maximum differences in the displacement time histories of each floor are 0.945cm, 

0.280cm, 1.175cm, and 0.667cm for EX1, and 3.019cm, 2.590cm, 1.329 cm, and 1.044cm for 

EX2 for the 1st to 4th floors, respectively.  

 

Figure 5-19. Results of estimated displacements and IDRs of each floor for smartphones 

with Case 4: a) Each floor’s displacement (cm) and b) IDR values (%) 
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The estimated displacements translate into peak IDR differences for EX1 of 3.05%, 2.30%, and 

2.81% for 1st-2nd floor, 2nd-3rd floor and 3rd -4th floor, respectively, and 10.31%, 7.86%, and 

4.83% for EX2, respectively as shown in Figure 5-20. As expected, these result shows that the 

smartphone with high KCOF case (EX1) can provide more accurate acceleration measurements 

and displacement estimations than that with low KCOF (EX2). Most importantly, this study 

shows the conditions under which smartphone data can be used to estimate actual and residual 

IDR with reasonable accuracy. 

 

Figure 5-20. Results of estimated displacements and IDRs of each floor for smartphones 

with Case 1: a) Each floor’s displacement (cm) and b) IDR values (%) 
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Figure 5-21 shows the results of interpolation method (PWCPI) as mentioned in chapter 5.2.3 for 

the displacement and IDR at unknown floor (third floor). The interpolated displacement at third 

floor based on the adjacent floors (the second and fourth floor) are in good agreement with the 

actual displacement from the Optotrak measurement. Using this interpolated displacement, IDR 

between the 2nd-3rd floor and 3rd-4th floor can be estimated. The interpolated IDR shows also 

good agreements with the ground truth IDR obtained from the Optotrak. These results confirm 

that the interpolation method is a robust method for handling missing floor data. 

 

Figure 5-21. Results of interpolation method for the non-instrumented floor at the 3rd floor 

with Case 1: a) Each floor’s displacement (cm) and b) IDR values (%) 
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5.4 Summary and conclusion 

The steps for reconstructing interstory drift ratios from smartphone records was discussed. 

Estimating IDR in this manner is a critical first step for automating building damage assessment 

after seismic events. Each step of the proposed process was experimentally investigated, 

including noise reduction, sliding detection, data fusion, double integration, and calculation of 

IDR. Different alignment techniques based on the dynamic time warping method for acceleration 

measurements were compared and the proposed MDTW method was shown to have better 

performance than the other methods considered. Double integration based on ZUPT method was 

presented to compensate for errors in velocity estimation.  

When data fusion was considered, it was shown that the MDTW method improved the alignment 

between different measurements and, hence, the accuracy of estimated displacements, compared 

to methods that did not use MDTW. Experimental results showed that at least five smartphone 

readings should be aggregated to improve overall accuracy when estimating IDR. The abilities of 

different types of smartphones to estimate displacement were compared and the error in 

displacement was shown to have a strong relationship to their MS amplitude of noise while 

stationary. Another important observation from the experimental data was that the use of 

protective shells with a high KCOF (high sticking potential) lead to better displacement 

estimation than those more prone to sliding. The proposed methodology was validated using the 

results from previously published shake table experiments of a steel frame structure. It is shown 

that reasonable estimates of IDR can be achieved. Interpolation method shows that robust and 

reasonable results can be obtained for the displacement and IDR of floors with insufficient data.  
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A limitation of this research was that multiple smartphone records needed to be aggregated to 

reduce stochastic errors. If multiple smartphone records are not available, it is difficult to remove 

stochastic error for single smart device due to randomness of inherent errors of MEMS based 

accelerometer. Another limitation was the presence of amplitude dependent scale factor errors in 

the smartphone accelerometers. This dependence may aggravate the displacement estimation 

because the weight factor that used in this study to combine multiple measurements is based on 

the noise in stationary. Even though this is out of scope of this research, this is an important 

finding and it is needed more further investigations to deal with this amplitude dependent scale 

errors in acceleration measurements. 
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CHAPTER 6  

Research summary and conclusions 

6.1 Summary of research 

The aim of this dissertation was to propose means by which to automate post-earthquake damage 

assessment through the use of smart devices that are ubiquitous in most communities. As such, 

the research explored four inter-related goals: 1) to understand the dynamic behavior of an 

unconstrained smart device under seismic motions 2) to identify stick-slip characteristic of the 

smart device on a seismically excited surface; 3) to classify stick-slip motions based on machine 

learning techniques; and 4) to estimate interstory drift ratios (IDR) from smart devices’ 

acceleration measurements by stacking multiple measurements. Taken together, the studies 

yielded findings that show great promise for the integration of smart devices in earthquake 

reconnaissance. A summary of the research conducted in each of these areas is as follows. 

6.1.1 Dynamic behavior of an unconstrained smart device under seismic shaking 

Chapter 2 presented a study of the dynamic behavior of a smart device placed on the underlying 

surface of subjected to seismic motion. The smart device was modeled as a rigid block and its 

frictional interactions with the underlying base was represented using an existing model 

(sticking-spring-damper friction model), which was modified for the purposes of this research. 

The first modification used an interpolation technique to enhance detection of transition points, 

which must be accurately detected because of the frequency of their occurrence during seismic 
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motion. The second modification entailed extending the model to handle vertical accelerations. 

In this process, the assumption that the normal load is a constant value was relaxed.  

To demonstrate the feasibility of the modified friction model, experiments were conducted with a 

custom-built shaking table. The shaking table consisted of stepper motor and linear actuator and 

was controlled by Labview and an Arduino microprocessor chipset. The shake table could 

produce precise, repetitive motions for a given ground motion. Placed on the table were smart 

devices that recorded multiple rounds of acceleration measurements, which were then combined 

to reduce the noise. Due to minor surface imperfections, the measured acceleration during sliding 

motions were not a perfect plateau as computed in the numerical analysis. Nevertheless, the 

overall response computed by the modified friction model showed good agreement with the 

acceleration responses measured by an independent and accurate non-contact measurement 

system.  

After validation, the modified friction model was used to investigate the possibility that a device 

would slide on a flat surface. The aim of this study was to define from a practical perspective the 

conditions under which the smart device would stick to the surface for a given earthquake 

intensity. To study the sliding response spectra, a 4-story steel special moment frame (SMF) 

model designed by NIST was used. The SMF was designed with deep columns and reduced 

beam sections (RBS) using ASTM A992 steel. Seven scale factors were computed by following 

the scaling method in FEMA P-695 to generate new records, specifically for three hazard levels: 

2%, 10%, and 50% chances of occurrence in 50 years. It was shown that vertical accelerations 

have a small effect on the sliding behavior of smart devices. The concept of a ‘probability of 

exceeding the slip limit curve’ was introduced and used to relate the probability of exceeding a 

given slip limit versus first period spectral acceleration for a given structure and location. This 
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curve suggested that the smart device with a static coefficient of friction of 0.4 and 0.5 can read 

the movement of the underlying surfaces with a maximum slip of less than 2cm for events with a 

magnitude corresponding to a 10% and 50% chance of occurrence in 50 years. Once generalized 

by taking into account other structures and locations, this information could be of value in future 

crowd-sourced, post-disaster reconnaissance efforts.  

6.1.2 Identifying stick-slip characteristics of a smart device 

Chapter 3 highlighted two key challenges utilizing smart devices to characterize seismic damage 

of buildings in a quantitative manner. For one, accelerometers in a smart device produce noisy 

data and are sampled at a relatively slow rate. For another, sliding can contaminate the 

acceleration record. To address these issues, first, the error equation for MEMS-based 

accelerometers in smart devices was presented. The deterministic errors were estimated 

experimentally by using the static multi-position method. It was shown that the optimal sampling 

rate to minimize error for a specific smart device must be in excess of 1000Hz to ensure 

accuracy. Although current devices cannot achieve this sampling rate, it is highly likely that 

future devcies will because a new generation of high‐resolution, low‐noise accelerometers, such 

as Nano‐g or nanoelectromechanical system (NEMS) accelerometers, appears poised to enable 

smart devices.  

After development of the error equation, a stick-slip identification method was introduced to 

determine whether the motion of the smart device is representative of the motion of the floor 

underneath. This crucial step uses the acceleration measurements, taking into account that 

acceleration measurements contaminated by excessive sliding action cannot represent the motion 

of the underlying surface. In a simulated acceleration response, it was shown that the theoretical 
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sliding motions are step shaped with a clear plateau. However, in the measured acceleration 

response, the sliding motions were observed to have rounded shapes and chattering, which 

hinders the differentiation of sliding and sticking motions. For the first step of stick-slip 

identification method, the noise associated with a smart device’s measurement of acceleration is 

established and noise reduction methods are compared. After considering multiple methods, it 

was shown that the maximal overlap discrete wavelet packet transforms (MODWPT) method 

out-performs other wavelet transform methods in noise reduction for measurement of 

acceleration by a smart device, while still maintaining the shape of transitions between sticking 

and sliding. Then, a kinetic coefficient of friction (KCOF) estimation method was proposed 

based on the observation that a plateau occurs during sliding. To address the occurrence of 

chattering during sliding due to imperfections in the frictional surfaces, configurable thresholds 

were applied. From the shake table experiments, it was shown that the results of the estimated 

KCOF are in good agreement with the true KCOFs. The estimated KCOF was used to compute 

slipping accelerations and corresponding sliding motions. It was shown that a 93.9% correct 

detection rate could be achieved using the proposed method.  

6.1.3 Stick-slip classification based on machine learning techniques 

Chapter 4 presented an accurate and robust accelerometer-based stick-slip motion classification 

framework based on two different machine learning methods, supervised learning algorithms and 

deep learning algorithms. For the former, three methods were investigated: 1) the ReliefF 

algorithm was used to select highly correlated features among the potential features; 2) the zero-

crossing window was selected as the best performing segmentation method for raw acceleration 

data; and 3) linear discriminant analysis (LDA) and kernel discriminant analysis (KDA) were 

used to improve the class separability and showed a modest improvement in classification 
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accuracy. For the latter, a detailed examination of a combination of three hyperparameters of the 

proposed recurrent neural networks (RNN) and its performance were considered important to 

further improve the accuracy of the network. Two internal layers, 40 units for each internal layer 

and c=6 gradient clipping parameter were selected. The RNN for the deep learning algorithm 

showed somewhat better classification accuracy (93.2%) than two other supervised learning 

techniques, 89.0% for multilayer perception (MLP), and 86.1% for support vector machines 

(SVM). 

6.1.4 Stacking multiple measurements to improve computation of interstory drift ratios. 

Chapter 5 proposed a process for reconstructing interstory drift ratios using smart device records 

by stacking multiple measurements. Each step of the proposed process was experimentally 

investigated, including noise reduction, sliding detection, data fusion, double integration, and 

calculation of IDR.  

To synchronize multiple measurements, the proposed multiplicative dynamic time warping 

(MDTW) method, which is based on the dynamic time warping method was shown to have 

better performance than other methods investigated. To compensate for errors in velocity 

estimation, double integration based on the zero-velocity update (ZUPT) method and Kalman 

filter were presented. When data fusion was considered, experimental results showed that at least 

five smart device readings should be aggregated to improve overall accuracy when estimating 

IDR. The abilities of different types of smart devices to estimate displacement were compared 

and the error in displacement was shown to have a strong relationship to their mean square (MS) 

amplitude of stationary noise. Another important observation from the experimental data was 

that the use of protective shells with a high KCOF (high sticking potential) led to better 
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displacement estimation than those with a low KCOF. The proposed IDR estimation process was 

validated using the results from previously published shake table experiments of a four-story 

steel frame structure. It was shown that reasonable estimates of displacement and IDR of each 

floor using the proposed IDR estimation method can be achieved. An interpolation method was 

shown to be capable of obtaining robust and reasonable results for the displacement and IDR of 

floors with insufficient data.  

6.2 Conclusions 

Major findings from this research are as follows. 

6.2.1 Dynamic behavior of an unconstrained smart device under seismic shaking 

• The dynamic behavior of a non-constrained smart device under seismic shaking is 

simulated with the modified friction model and its results show good agreement with the 

shaking table experimental data. 

• Vertical accelerations have a small effect on the sliding behavior of smart devices for the 

selected ground motions. They can therefore be ignored in such situations.  

• Once generalized by taking into account other structures and locations, the proposed 

probability of exceeding the slip limit curve could be of value in future crowd-sourced, 

post-disaster reconnaissance efforts. 

6.2.2 Identifying stick-slip characteristics of a smart device  

• The optimal sampling rate to minimize error for a specific smart device must be in excess 

of 1000Hz to ensure accuracy. Although current devices cannot achieve this sampling 

rate, it is highly likely that future devices will. 
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• The MODWPT method out performs other wavelet transform methods in noise reduction 

for measurement of acceleration by a smart device, while still maintaining the shape of 

transitions between sticking and sliding. 

• The estimated KCOF was used to compute slipping accelerations and corresponding 

sliding motions. It was shown that a 93.9% correct detection rate could be achieved using 

the proposed method. 

6.2.3 Stick-slip classification based on machine learning techniques 

• The RNN for the deep learning algorithm showed somewhat better classification 

accuracy (93.2%) than two other supervised learning techniques, 89.0% accuracy for 

MLP, and 86.1% for SVM. 

• For the RNN algorithms, two internal layers, 40 units for each internal layer and c=7 

gradient clipping parameter were shown to give good results. 

6.2.4 Stacking multiple measurements to improve computation of interstory drift ratios 

• Experimental results showed that at least five smart device readings should be aggregated 

to improve overall accuracy when estimating IDR. 

• The abilities of different types of smart devices to estimate displacement were compared 

and the error in displacement was shown to have a strong relationship to their mean 

square (MS) amplitude of stationary noise.  

• The use of protective shells with a high KCOF (high sticking potential) lead to better 

displacement estimation than those with a low KCOF because the shell with higher 

KCOF sticks more effectively to the underlying surface and has a smaller microslip zone. 



 

160 

 

• Of most importance, the proposed IDR estimation process can achieve reasonable 

displacement and IDR of each floor for the shake table experiments of a four-story steel 

frame structure.  

• The interpolation method was shown to be capable of obtaining robust and reasonable 

results for the displacement and IDR of floors with insufficient data.  

6.3 Limitations of the study  

It should be borne in mind that this study is limited in two important ways: 

• The first is attributable to the study set up. The shake table could represent only one-

dimensional motion because of its configuration. Therefore, for the sake of simplicity, in this 

study it was assumed that the smart devices were oriented to measure only one-dimensional 

horizontal motion without vertical motion or lift off. Because of the limited experimental 

setup this is a study of one-dimensional motion only. To simulate more realistic situations, 

these assumptions need to be relaxed and a fully three-dimensional analysis needs to be 

conducted.  

• Another limitation is the presence of amplitude dependent scale factor errors in the 

accelerometers of the smart devices, which necessitated stacking of multiple smart device 

records. In the future, it is expected that fewer readings than those used in this work will be 

needed as the quality of smart device accelerometers continues to increase.  

6.4 Future research 

In order to further realize the goal of fast and reliable earthquake damage assessments a number 

of studies can be done to extend the work presented here. Suggestions for future research can 
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focus on two main areas. The first is to extend the smart device based automated post-earthquake 

damage assessment system to three-dimensions. The second is to estimate the residual 

displacement of buildings after earthquake events using an unmanned aerial vehicles (UAV) to 

improve IDR estimation.  

To realize the potential of automated post-earthquake damage assessment, the behavior of the 

smart device must be measured in three-dimensions. This will require a customized three-

dimensional shaking table with a rotary motor to simulate the effects of rotation on a building 

during an earthquake. This work has the potential to simulate more realistic responses of smart 

devices during an earthquake and serve as an important step towards completing the automated 

post-earthquake damage assessment system proposed in this dissertation. 

Given the availability of affordable UAV and excellent cameras this technology is a promising 

choice for estimating the residual displacement of buildings after earthquakes and to enhance the 

IDR estimation method described herein. The ZUPT method was applied to correct the estimated 

velocity by the first integration from the measured acceleration. To correct the estimated 

displacement by the second integration, it is necessary to determine the residual displacement. 

Using a UAV and the Structure-from-Motion (SfM) technique, 3D models of buildings can be 

generated, which can be used to improve the estimated displacements and, hence, IDR.  
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