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ABSTRACT 

 

 

Two-dimensional layered materials (2DLMs), such as ultrathin graphite (G), hexagonal 

boron nitride (hBN), transition metal dichalcogenides (e.g., molybdenum disulfide MoS2), and 

their newly-emerged van der Waals (vdW) heterostructures with strong in-plane covalent 

bonding but weak interlayer vdW bonding exhibit a unique combination of high elasticity, 

extreme mechanical flexibility, visual transparency, and superior (opto)electronic performance, 

making them ideally suited to modern (bio/opto)electronic devices. Since intrinsic ultrahigh 

surface to volume ratio in 2DLMs dictates an extremely strong and dominant vdW force in many 

processes related to not only synthesis, transfer and manipulation of 2DLMs but also fabrication, 

integration and performance of 2DLMs-based devices, precise nanoscale quantification of their 

weak interlayer vdW bonding is of fundamental, theoretical and technological importance for the 

large-scale production of such promising materials and continued development of flexible and 

transparent electronics incorporating these materials. Although physical and chemical properties 

of similar and dissimilar 2DLMs associated with in-plane covalent bonds are well studied both 

experimentally and theoretically, an extensive atomic and nanoscale characterization of their 

interlayer vdW-dependent properties (e.g., interfacial charge transfer/distribution, interfacial 

adhesion energy, etc.) is still a great challenge due to the highly anisotropic nature of weak 

interlayer vdW interactions, the lack of precise experimental techniques to quantify such 

complex interlayer behavior and difficult mechanical manipulation of ultrathin and highly 

transparent 2DLMs.  

This dissertation aims to address these inherent challenges by developing a novel atomic 

force microscopy (AFM)-assisted manipulation setup with ultrahigh force-displacement 

resolution combined with multiscale modeling at atomistic and continuum levels to advance our 

fundamental understanding of nanoscale interlayer electrostatic and vdW behavior of 2DLMs 

and their heterostructures. We first develop, in a collaborative project, highly‒efficient and 

clean plasma‒assisted exfoliation and nanoimprint‒assisted shear exfoliation techniques to 



xxix 
 

produce large‒scale, ordered graphene and MoS2 device arrays at micro and nanoscale. Then, 

in order to gain a deeper insight into the interlayer vdW interactions of 2DLMs during the 

exfoliation process, I qualitatively study the mechanical response of interlayer vdW 

interactions to external shear or normal forces by gently moving an in situ flattened, 

conductive AFM tip with an attached 2D crystal nanomesa away from the substrate in a 

direction parallel or normal to the basal plane of 2D crystals, followed by shear and normal 

exfoliation of high-quality mono- and few-layer 2D crystal features onto the substrate. My 

experimental observations show that in contrast to the shear exfoliation technique, the normal 

exfoliation technique exhibits a very stochastic exfoliation process. This unique nanoscale 

manipulation setup with ultrahigh force-displacement resolution allows producing The 

University of Michigan’s thinnest possible logo by only mono-, bi- and trilayer G flakes. 

To investigate the atomistic details underlying my AFM-assisted shear/normal 

electrostatic exfoliation mechanisms, I first study the electrostatic response of interlayer vdW 

interactions of few-layer graphene (FLG) to the external electric field using DC electrostatic 

force microscopy (DC-EFM). A series of dielectric measurements on one-to-eight layers of 

graphene under ambient conditions show that although dielectric screening ability of 

monolayer graphene is about 20% weaker than that of bulk graphite, the overall dielectric 

response of FLG samples is almost independent of the number of layers and external electric 

field. Next, I exploit the layered nature of FLG to develop a novel spatial discrete model that 

successfully accounts for both electrostatic screening and fringe field effects on the charge 

distribution of FLG systems. My spatial charge distribution model shows that the overall 

dielectric response of FLG samples is almost independent of the number of layers and the 

external electric field, which is well consistent with my DC-EFM results. 

Next I implement, for the first time, 3D spatial charge distribution of FLG (obtained from 

the proposed spatial discrete model) into molecular dynamics (MD) simulations to further gain 

an atomistic insight into the electrostatic shear/normal exfoliation mechanisms. My MD analysis 

of the simulation trajectories suggests that the coexistence of local delamination and interlayer 

twist in FLG is the main barrier to the accurate control of the number of exfoliated layers using 

the normal exfoliation technique. Instead, the ability of the shear exfoliation method to eliminate 

the interlayer spacing variations and simultaneously suppress the interlayer twist angles (due to 
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the larger interlayer potential corrugation) provides much better control over the desired number 

of the exfoliated flakes, making it superior to the normal exfoliation method. 

As the last piece in the puzzle of understanding the interlayer behavior of 2DLMs, I 

report the first direct quantitative characterization of interfacial adhesion behavior of both fresh 

and aged vdW homointerfaces (G/G, hBN/hBN and MoS2/MoS2) and heterointerfaces (G/hBN, 

hBN/MoS2, G/MoS2, G/SiOx, hBN/SiOx and MoS2/SiOx) under different temperatures and 

humidity conditions through very well-defined interactions between AFM tip-attached 2D crystal 

nanomesas and different 2D crystal and SiOx substrates. I precisely control the temperature of 

nanocontact interfaces in the range of -15⎼300°C by microheaters on the top and a cooling stage 

underneath the substrate. I also quantify how different levels of short-range dispersive (vdW) and 

long-range electrostatic (Coulombic) interactions of similar and dissimilar 2D crystals will 

respond to airborne contaminants and humidity upon thermal annealing. My measurements 

reveal highly stronger interactions in transition metal dichalcogenides than predicted by well-

established first-principles calculations. Moreover, my combined experimental and MD 

computational analysis show the formation of short-range chemical bonds only in G/SiOx 

heterostructures, which explains mechanistic origin of their distinctive ultrastrong adhesion 

behavior beyond the widely accepted vdW interaction. 
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CHAPTER 1 

 

Introduction 

 

1.1 2D Layered Materials and vdW Heterostructures  

Two-dimensional layered materials (2DLMs), such as conducting graphene (G), 

insulating hexagonal boron nitride (hBN), transition metal dichalcogenides (TMDCs: e.g., 

semiconducting molybdenum disulfide (MoS2) and so many others) and their newly emerged 

vdW heterostructures (stacks of individual monolayer flakes of different 2DLMs assembled layer 

by layer) possess strong in-plane covalent bonds but very weak out-of-plane van der Waals 

(vdW) interactions (Figure 1.1). Such a distinct class of anisotropic solids exhibit a unique 

combination of high elasticity, extreme mechanical flexibility, visual transparency, and superior 

(opto)electronic performance, making them ideally suited to modern devices, such as 

photovoltaic devices, hybrid electrochemical capacitors, lithium⎼ and sodium⎼ion batteries, 

hydrogen evolution catalysis, transistors, photodetectors, DNA detection, memory devices and 

flexible and transparent devices [1].  

Mechanical properties of 2DLMs associated with their in-plane covalent bonds are well 

studied both experimentally and theoretically and there is a broad consensus on the reported in- 

plane stiffness, breaking strength and elastic deformation of 2DLMs. A direct measurement of 
 

  

 
  

 

 
Figure 1.1. Side-view high-resolution TEM images of (a) G, (b) hBN and (c) MoS2 crystals, showing interlayer 
vdW interactions with an interlayer separation of 0.335 nm, 0.333 nm and 0.655 nm, respectively. (d)-(f) illustrate 
the corresponding ball-and-stick representation of G, hBN and MoS2 crystals where carbon, boron, nitrogen, 
molybdenum, and sulfur atoms are shown in gray, green, pink, cyan, and yellow, respectively. Top-view high-
resolution TEM images of (g) G and (h) MoS2 crystals, showing strong in-plane covalent bonds. Lattice structure in 
G is similar to hBN with only slightly shorter (~1.8%) lattice constant. (i) Ball-and-stick representation of 
hBN/G/MoS2 heterostructures. 

(a) (b) (c) 

(d) (e) (f) 

(g) 

(h) 

(i) 
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Young’s modulus and fracture strength of monolayer and few-layer G [2], hBN [2] and MoS2 [3] 

is reported by AFM nanoindentation of suspended 2D crystal membranes (Table 1.1), indicating 

that G is the strongest 2DLMs, followed by hBN and MoS2. This table also suggests that the 

Young’s modulus and fracture strength of MoS2 (as the weakest 2D crystal in Table 1.1) are still 

larger than those of stainless steel (i.e., 210 GPa and 0.9 GPa, respectively), making G, hBN and 

MoS2 promising materials for novel flexible and wearable electronic and photonic applications. 

Monolayers of G, hBN and MoS2 can sustain elastic deformation up to 20%, 17%, and 11%, 

respectively, without any fracture [2], thanks to the strong in-plane covalent bonds in 2DLMs.  

2DLMs also offer a wide range of electronic properties. For instance, monolayer and few 

layers of G exhibit a unique band structure featuring massless Dirac Fermions. The transport of 

such Dirac Fermions is partially immune to the scattering induced by the defects in G layers. 

This transport property could be exploited for making new-generation low-power dissipation 

electronic devices. While the lack of band gap has limited some of the applications of G, 

transition metal dichalcogenides such as MoS2 and WSe2 offer new alternatives to designing 

semiconducting materials. The bandgap of MoS2 can be modulated from the direct to indirect 

bandgap through changing the MoS2 flake thickness (or the number of stacked layers). In 

particular, monolayer MoS2 has a direct bandgap of ~1.8 eV, whereas multilayer MoS2 has an 

indirect bandgap of ~0.9 eV [4]. Such a transition behavior from the indirect to direct bandgap 

and other layer-thickness-dependent optoelectronic properties has motivated a series of research 

efforts, seeking to create new optoelectronic devices with tunable transport and photoresponse 

characteristics. The isoelectric equivalent of graphene, hBN (so called white graphene), is an 

insulator with an indirect bandgap of 5.955 eV. It also exhibits unique electronic properties such 

as low dielectric constant (~2⎼4), high thermal conductivity, and chemical inertness. With a 

honeycomb structure based on sp2 covalent bonds similar to G, bulk hBN has first gained 

tremendous attention as an exceptional substrate for other 2DLMs with an atomically smooth 

surface. hBN in the form of few-layer crystals or monolayers of hBN, has then appeared as a 

fundamental building block of vdW heterostructures. 
 

Table 1.1. Comparison of Young’s modulus (E) and fracture strength (σf) of monolayer and few-layer G, hBN and 
MoS2 using AFM nanoindentation of suspended 2D crystal membranes. 

# of layers 
 G [2]  hBN [2]  MoS2 [3] 
 E (GPa)  σf (GPa)  E (GPa)  σf (GPa)  E (GPa)  σf (GPa) 

Monolayer  1026±22  125±0.0  865±73  70.5±5.5  270±100  22±4 
Few layers  942.0±3  85.3±5.4  856±3  72.3±2.5  260±70  21±6 
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1.2 Large-Scale Production of 2DLMs-Based Devices 

In general, fabrication of 2D systems involves transferring 2DLMs from their growth 

substrate or bulk stamp onto a target substrate using different transfer⎼printing techniques. An 

intrinsic weak vdW interaction between neighboring layers allows 2DLMs to be easily sheared 

parallel and/or expanded normal to the layer surface, leading to the generation of so-called 

atomically thin layered materials (ATLMs) with few-layer down to monolayer thickness. 

ATLMs display unique electrical, mechanical, electrochemical, and optical properties that are 

not essentially observed in their bulk layered counterparts. Therefore, over the past decade, two 

distinct strategies have been pursued for the production of ATLMs: a top-down and a bottom-up 

approach. The former generally aims at overcoming the vdW forces between the adjacent layers 

for the exfoliation of ATLMs from their bulk crystals through mechanical (e.g., Scotch tape 

exfoliation), chemical (e.g., liquid phase exfoliation), and electrochemical (e.g., ion/compound 

intercalations) processes (Figure 1.2) [5]. On the other hand, the bottom-up method depends on 

the chemical reaction of molecular building blocks to form covalently linked 2D networks by 

means of catalytic (e.g., chemical vapor deposition, CVD), thermal (e.g., epitaxial growth), or 

chemical (organic synthesis) processes [5]. Since ATLM samples with transfer-induced residues 

and randomly distributed nanoflakes (mainly due to the formation of defects and grain 

boundaries during the growth process) are inevitable in the bottom‒up method, it can be 

expected that the highest quality samples are still produced by the top-down methods. Despite 

rapidly growing demands for mass production of high-quality 2DLMs‒based electronic device 

arrays at micro and nanoscales, appropriate mechanical exfoliation techniques to meet such 

demands are still lacking. 

 

 

Figure 1.2. Top-down exfoliation approach:  (a) Scotch tape, (b) liquid phase and (c) ion/compound intercalations. 
(d) External normal and shear forces for the exfoliation. Bottom-up approach: (e) CVD and (f) epitaxial growth.  

(a) (b) (c) 

(d) 

(e) (f) 
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1.3 Significance of Interlayer vdW Interactions in 2DLMs and vdW Heterostructures  

Since intrinsic ultrahigh surface to volume ratio in 2DLMs dictates an extremely strong 

and dominant vdW force in many processes related to not only synthesis, transfer and 

manipulation of 2DLMs but also fabrication, integration and performance of 2DLMs-based 

devices, a deep insight into their weak interlayer vdW interactions is of fundamental, theoretical 

and technological importance for the large-scale production of such promising materials and 

continued development of flexible and transparent electronics incorporating these materials. 

Recent studies have shown that monolayer and few layers of 2DLMs reveal unique 

friction, interfacial charge screening, lithium ion intercalation, quantum capacitance and 

electrical conductivity properties that are not essentially observed in their bulk crystals [5]. 

However, turning the bulk crystals into monolayer and few layers with an accurate control over 

the number and quality of exfoliated layers requires precise quantitative characterization of 

interlayer vdW behavior of 2DLMs and vdW heterostructures at the nanoscale. As also discussed 

in Section 1.2, in order to fabricate 2DLM systems, individual or combined external normal and 

lateral shear forces in a direction, respectively, perpendicular or parallel to the basal plane of 

2DLMs are required to overcome the internal vdW forces between the adjacent layers or between 

2DLMs and their supporting substrates. As a result, a better understanding of weak interlayer 

vdW interactions of 2DLMs and also their interactions with various substrates is highly desired 

as an essential step toward enhancing the transfer efficiency and thickness uniformity of printed 

flakes and thus producing high‒quality, large‒scale 2DLMs‒based electronic device arrays at 

micro and nanoscales. Moreover, the vdW interaction between 2DLMs and their neighbors is 

also an important parameter for the mechanical integrity of the device whose operation is highly 

influenced by slippage and delamination of 2DLMs during thermal and mechanical loadings. As 

such, a 2DLM needs to make secure contact not only with supporting substrates and metallic 

interconnects in 2DLMs⎼based devices but also with other 2DLMs and encapsulation layers in 

vdW heterostructure devices [6, 7]. 

Newly emerged vdW heterostructures ⎼ stacks of individual monolayer flakes of different 

2DLMs assembled layer by layer, conceptualized from 2D Lego pieces ⎼ offer a variety of new 

physical properties that may not exist in nature, thanks to the full spectrum of electronic 

properties in 2DLMs, from conducting G, to semiconducting MoS2, to insulating hBN. An 

essential feature of such heterostructures is atomically clean interfaces to achieve the best device 
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performance ⎼ any interfacial contamination (e.g., blisters) results in deterioration of transport 

properties [8]. Wet transfer and dry pick-and-lift transfer techniques for assembly of vdW 

heterostructures rely strongly on vdW interactions between the 2D crystals where the polymer 

membrane with an attached 2D crystal is brought into contact with another 2D crystal on a 

substrate. If the second 2D crystal has strong adhesion to the substrate, the first crystal is released 

by the carrier membrane and deposited on top of the second crystal, otherwise the second crystal 

is picked up by the first crystal attached to the membrane, followed by the deposition of the fully 

attached stack onto a final substrate by dissolving the carrying membrane [9]. In both direct 

mechanical assembly techniques, an accurate quantification of vdW interactions between 

different 2DLMs is crucial for the mass production of blister⎼free vdW hetersostructures. One 

example of the importance of clean interlayer vdW interactions in vdW hetersostructures is the 

field-effect tunneling transistor (FETTs). In this type of transistors, G electrodes are separated by 

few-layer MoS2 or hBN. Because of the clean and weak interlayer interactions, the insulating 

2DLMs behaves purely as a tunneling barrier with length equivalent to the thickness of the flake. 

Hence, FETTs possess fast transfer kinetics due to tunneling, nanometer scale morphology 

appropriate for advanced technological applications and an on/off ratio of 106 at room 

temperature [10, 11]. 

Fascinating interlayer vdW-dependent properties of 2DLMs and their vdW 

heterostructures provide a unique opportunity to study the nature of electronic structure and band 

alignment, interfacial thermal and electrical resistance, ion intercalation and deintercalation 

process, interfacial nanofluidic transport and drug delivery behavior, photon absorption and 

photocurrent/photovoltaic production, interfacial charge polarization and redistribution, spin–

orbit coupling and many others in 2DLMs-based devices [12, 13, 14, 15, 16]. Notably, interfacial 

electrical, mechanical, optoelectronic, magnetic and thermal properties of layered materials can 

also interact in a rather complex way. For instance, formation of any delamination-motivated 

surface corrugations (e.g., wrinkles, ripples, folds, and crumples) in 2DLMs can give rise to local 

strain distribution and curvature-induced rehybridization, which modify the electronic structure 

and local charge distribution, create polarized carrier puddles and dipole moment, induce 

pseudomagnetic fields and thus alter magnetic, optical and electrical properties and chemical 

surface reactivity [17]. Moreover, the vdW interaction as a key medium for the stress transfer 

both within and across the interface of 2DLMs can highly impact their thermal and electrical 
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properties in such a way that a 2D layered system can act as a heat conductor or insulator and/or 

a semimetal or electrical insulator through strain engineering [18, 19, 20]. The interfacial 

physical and chemical behavior of layered materials becomes even more complicated when we 

consider that airborne contaminants are an inevitable part of any vdW heterostructures and 

therefore addressing quantitatively to what degree their interlayer vdW interaction is influenced 

by interfacial contaminants and nanoblisters and how to effectively remove them is of 

fundamental importance for the continued development of such promising materials.  

Despite the significance of such a fundamental property for any 2DLMs, an extensive 

atomic and nanoscale characterization of their interlayer vdW-dependent physical properties has 

still remained to be elucidated. The main difficulties in exploring the interlayer electrostatic and 

mechanical properties of layered materials are related to (1) the highly anisotropic nature of the 

vdW interactions which makes their modeling more challenging; (2) the lack of precise 

experimental techniques to quantify such complex interlayer behavior; and (3) the sub to few–

nanometer thickness and high transparency of mono and few layers of 2D materials which make 

them much more difficult to be detected for the mechanical manipulation and subsequent 

physical measurements. 

 

1.4 Summary of Dissertation 

As a means to address the inherent challenges discussed in Sections 1.2 and 1.3, this 

thesis aims at developing a novel atomic force microscopy (AFM)-assisted experimental 

technique with an exceptionally high force-displacement resolution combined with atomistic- 

and continuum-based simulations to directly and precisely measure the interlayer electrostatic 

and vdW properties of 2DLMs and their vdW heterostructures, which have remained elusive for 

decades. Chapter 2 and Chapters 3-5 aim to provide a reliable basis to fill the apparent gap 

discussed in Section 1.2 and Section 1.3, respectively. 

To fill the apparent gap discussed in Section 1.2, we first develop, in a collaborative 

project, two economic, highly‒efficient and clean exfoliation techniques (termed plasma‒

assisted exfoliation and nanoimprint‒assisted shear exfoliation) to produce large‒scale, 

ordered G and MoS2 device arrays at micro and nanoscale. Then, in order to gain a deeper 

insight into the interlayer vdW interactions of 2DLMs during the exfoliation process, I 

qualitatively study the mechanical response of interlayer vdW interactions to external shear or 
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normal forces by gently moving an in-situ flattened, conductive AFM tip with an attached 2D 

crystal nanomesa away from the substrate in a direction parallel or normal to the basal plane 

of 2D crystals, followed by shear and normal exfoliation of high-quality mono- and few-layer 

2D crystal features onto the substrate. I reliably produce high-quality mono- and few-layer 

crystal features of different shapes and sizes at significant yields by shear exfoliation method. 

My experimental observations show that in contrast to the shear exfoliation technique, the 

normal exfoliation technique exhibits a very stochastic exfoliation process. This unique 

nanoscale manipulation setup with ultrahigh force-displacement resolution allowed me to 

successfully produce The University of Michigan’s thinnest possible logo by only mono-, bi- 

and trilayer graphene flakes (Chapter 2). 

To investigate the atomistic details underlying my AFM-assisted shear/normal 

electrostatic exfoliation mechanisms, I first study the electrostatic response of the interlayer 

vdW interactions of few-layer graphene (FLG) to the external electric field. To do so, I 

quantify, for the first time, the effect of layer number and external electric field (up to my 

experimental limit of 0.1 V/Å) on the relative dielectric constant of FLG using a DC 

electrostatic force microscopy (DC-EFM) technique. I perform a series of dielectric 

measurements on the one-to-eight layers of G under ambient conditions and successfully 

show that although the dielectric screening ability of monolayer graphene is about 20% 

weaker than that of bulk graphite, the overall dielectric response of few-layer graphene 

samples is almost independent of the number of layers and the external electric field. Next, I 

exploit the layered nature of FLG to develop a novel spatial discrete model that successfully 

accounts for both electrostatic screening and fringe field effects on the charge distribution of 

the finite-size FLG system. An effective bilayer model based on two tight-binding parameters 

is utilized to accurately describe electronic band structures and thus density of states (DOS) of 

one to eight Bernal-stacked graphene layers. I then explore the unclear relationship between 

the gate-induced charge densities and layer-by-layer Fermi level and charge density profiles 

in FLG systems using a global energy minimization, where its total energy is calculated based 

on electrostatic interaction between graphene layers and band-filling energy in each layer. My 

spatial charge distribution model shows that the overall dielectric response of FLG samples is 

almost independent of the number of layers and the external electric field, which is well 

consistent with my DC-EFM results (Chapter 3). 
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Next I implement, for the first time, 3D spatial charge distribution of FLG (obtained from 

the proposed spatial discrete model) into molecular dynamics (MD) simulations to further gain 

an atomistic insight into the electrostatic shear/normal exfoliation mechanisms. My MD analysis 

of the simulation trajectories suggests that the coexistence of local delamination and interlayer 

twist in FLG is the main barrier to the accurate control of the number of exfoliated layers using 

the normal exfoliation technique. Instead, the ability of the shear exfoliation method to eliminate 

the interlayer spacing variations and simultaneously suppress the interlayer twist angles (due to 

the larger interlayer potential corrugation) provides much better control over the desired number 

of the exfoliated flakes, making it superior to the normal exfoliation method (Chapter 4). 

As the last and most important piece in the puzzle of understanding the interlayer vdW 

interactions of 2DLMs, I provide an accurate nanoscale quantitative (rather than qualitative) 

description of interlayer mechanical behavior of 2DLMs and their vdW heterostructures. I use 

the AFM-assisted nanomanipulation setup to report precise in situ measurements of interfacial 

adhesion energy through well-defined interactions between AFM tip-attached 2D crystal 

nanomesas (G, hBN and MoS2) and mechanically exfoliated 2D crystal flakes and also the bare 

SiOx substrate (as the most widely used substrate in modern electronics). Moreover, since 

airborne contaminants are an inevitable part of any vdW heterostructures, addressing 

quantitatively to what degree their interfacial adhesion energy is influenced by the interfacial 

contaminants and how to effectively remove them is of fundamental and technological 

importance for the continued development of such promising materials. As such, I report the first 

direct quantitative characterization of interfacial adhesion behavior of both fresh and aged vdW 

homointerfaces (G/G, hBN/hBN and MoS2/MoS2) and heterointerfaces (G/hBN, hBN/MoS2, 

G/MoS2, G/SiOx, hBN/SiOx and MoS2/SiOx) under different annealing temperatures (up to 

300°C). I precisely control the temperature of nanocontact interfaces using microheaters. I 

quantify how different levels of short-range dispersive (vdW) and long-range electrostatic 

(Coulombic) interactions of similar and dissimilar 2DLMs will respond to airborne contaminants 

and humidity upon thermal annealing. My measurements reveal highly stronger interactions in 

transition metal dichalcogenides than predicted by well-established first-principles calculations. 

Similarly, my combined experimental and computational analysis shows a distinctive interfacial 

behavior in G/SiOx heterostructures beyond the widely accepted vdW interaction (Chapter 5).   

I conclude with a summary and outlook for the future of this and related work (Chapter 6). 
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CHAPTER 2 

 

Nanofabrication of 2DLMs Device Arrays Using Mechanical Exfoliation Techniques  

 

2.1 Introduction  

Owing to their excellent electronic, photonic and mechanical properties, large natural 

abundance on the earth, as well as good compatibility to planar nanofabrication processes, the 

atomically layered transition metal dichalcogenides (TMDCs) (e.g., WSe2 and MoS2) have 

recently emerged as attractive material candidates to potentially enable a variety of novel 

functional devices with high cost efficiency [4]. A series of new prototype devices based on 

TMDC layers have been demonstrated in the research laboratories, such as high-performance 

thin-film transistors (TFTs) [21], highly sensitive chemical/biological sensors [22], 

phototransistors [23], multibit non-volatile transistor memories [24], and photovoltaic (PV) 

devices with high quantum efficiencies [25], etc. To leverage the superior electronic/photonic 

characteristics of such devices for practical scale-up applications, the research community 

currently needs new nanomanufacturing methods capable of producing TMDC device arrays 

with deterministic and uniform properties. A great deal of recent research effort focuses on the 

attractive properties associated with monolayer TMDC structures, such as direct bandgaps, 

which are suitable for lightemitting applications [26], strong valley-selective circular dichroism, 

which can potentially enable future low-energy-dissipation valleytronic devices [27], as well as 

atomic scale thicknesses that represent the ultimate scaling of material dimension in the vertical 

direction and can potentially enable miniaturization of electronic devices beyond Moore’s Law. 

Therefore, there have been many material-synthesis-oriented works seeking to product TMDC 

monolayers over large areas. In spite of such intensive effort related to monolayers, many 

important nanoelectronic/optoelectronic applications, such as transistor-based memories/sensors 

[28], photovoltaics [29], and power switching TFTs [30], indeed demand high-quality multilayer 

TMDC structures, because multilayer structures can provide excellent transport properties (e.g., 

relatively high mobility) and sizable densities/amounts of electronic/photonic states, enabling 
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device applications that need to drive large current/voltage signals or absorb a large amount of 

photons [31]. However, currently there are very few research efforts dedicated to fabricate high-

quality multilayer TMDC structures with a high uniformity of thickness and electronic/photonic 

properties over large areas. Especially, the research society needs the upscalable production 

technology of multilayer TMDC device arrays or large-scale circuits.  

In this chapter, we first present two top-down nanofabrication approaches (termed 

plasma‒assisted exfoliation and nanoimprint‒assisted shear exfoliation) capable of producing 

pristine multilayer MoS2 and G fake arrays with a high uniformity of flake thicknesses over cm2-

scale areas. Using the as-produced MoS2 flakes, we also demonstrate multiple working 

transistors and electronic biosensors which exhibit very consistent performance. Then, in order 

to gain a deeper insight into the interlayer vdW interactions of 2DLMs during the exfoliation 

process, I qualitatively study the mechanical response of interlayer vdW interactions to the 

external shear or normal forces by gently moving an in-situ flattened, conductive AFM tip 

with an attached 2D crystal nanomesa away from the substrate in a direction parallel or 

normal to the basal plane of 2D crystals, followed by shear and normal exfoliation of high-

quality mono- and few-layer 2D crystal features onto the substrate. 

 

2.2 Plasma-Assisted Exfoliation of MoS2 Flakes into Large-Area Arrays  

Figure 2.1(a) schematically illustrates our approach for transfer printing prepatterned 

MoS2 flakes. The fabrication process consists of the following steps. (1) The process starts with a 

piece of pristine bulk MoS2. (2) Photolithography is performed to pattern a photoresist layer 

spin-coated on top of the MoS2 surface. (3) Arrays of metal masks are created by depositing 

100nm Ti followed with lift-off in acetone. (4) SF6-based reactive ion etching (RIE) is performed 

to transfer the Ti mask pattern onto underlying MoS2 [29-31]. (5) Ti masks are completely 

removed in hydrofluoric (HF) acid, and a bulk MoS2 stamp is created. (6) A SiO2 substrate is 

treated with O2 plasma to generate electric charges on the surface [32]. (7) Finally, the bulk 

MoS2 stamp is used for printing out MoS2 flake arrays onto the SiO2 substrate. This process can 

generate MoS2 device patterns directly from pristine geographic MoS2 materials that have the 

largest crystalline domains (typically, 1 to 100's μm size) and the best electronic properties to 

date [24-26]. Further, this approach can be generalized for manufacturing other emerging 
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atomically layered nanomaterials such as graphene, boron nitride, and topological insulator thin 

films.  

Figure 2.1(b) shows SEM of an exemplary MoS2 stamp prepatterned with 5 μm size, 

600nm high pillars. The zoomed view in Figure 1(b) shows that the SF6 plasma etched area 

exhibits a relatively high roughness, which is attributed to plasma etching or ion bombardment. 

However, the raised pillar mesas protected by the Ti masks are still as smooth as a pristine MoS2 

surface. This should yield a conformal contact with the flat substrate during a mechanical 

printing process and therefore a high transfer-printing efficiency of MoS2 flakes. 

 

 

Figure 2.1. (a) Schematic flowchart of transfer printing of prepatterned few-layer MoS2 flakes, which includes (1) 
initial bulk MoS2 with a pristine surface; (2) photolithography for patterning device features; (3) formation of Ti 
masks by metal deposition followed by lift-off; (4) plasma etching of underlying MoS2; (5) removal of Ti masks and 
finalization of a bulk MoS2 stamp bearing relief features; (6) plasma treatment of the SiO2 substrate; (7) direct 
transfer printing of prepatterned few-layer MoS2 flakes onto the substrate. (b) SEM images of a bulk MoS2 stamp 
prestructured with 5 μm size periodic pillars. 
 

Figure 2.2(a) displays SEM images of MoS2 flakes printed on a pristine SiO2 surface. 

These images, captured over a large printed area (∼1 cm2), show that the mechanical printing 

process can produce large-area, orderly paved arrays of MoS2 pixel features. However, most of 

the printed pixels have relatively irregular edge profiles that are not faithfully correlated to the 

edge profiles of pillars prestructured on the bulk stamp. For each of the printed MoS2 pixels, the 

average flake thickness was extracted from AFM topographic data. Figure 2.2(b) plots the 

statistical distribution of the average thickness data of 100 MoS2 flake pixels of 10 μm size 

produced in a single transfer-printing cycle. Figure 2.2(b) shows that the overall average flake 

thickness is measured to be 4.1 nm (∼6 monolayers), and the standard deviation is 2.2 nm (∼3 

monolayers) over a ∼1 cm2 area. About 95% and 80% of printed MoS2 flakes are thinner than 10 

and 5 nm, respectively. 
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Figure 2.2(c) shows an SEM image of MoS2 patterns printed onto an O2 plasma-charged 

SiO2 substrate, indicating that the printing process on plasma-charged substrates can produce 

large-area, orderly arranged arrays of MoS2 flake pixels with a higher uniformity of pixel 

profiles in comparison with the printing result on a pristine substrate. In particular, MoS2 pixel 

patterns feature clear, well defined edge profiles that are faithfully correlated to the edge profiles 

of pillars prestructured on the bulk stamp. The zoomed image in Figure 2.2(c) reveals that the 

clear edge profile of a MoS2 pixel is indeed made up of a ring-shaped MoS2 ribbon. Such outer 

edge ribbons of MoS2 pixels have widths ranging from 200 to 400 nm. Besides these edge ribbon 

features, there are indeed thinner MoS2 films or flakes located in the inner regions of printed 

pixels enclosed by the edge ribbons. These inner MoS2 flakes typically exhibit a poor feature 

contrast in secondary-electron images. To enhance the SEM contrast, printed MoS2 pixels were 

also imaged by detecting backscattered electrons (BSEs), as shown in Figures 2.2(d) and (e), 

which are often used to detect contrast between areas with different chemical compositions. The 

BSE image contrast in Figures 2.2(d) and (e) suggests the presence of thin MoS2 flakes within 

each of the pixels. To obtain the inner flake thickness data, MoS2 pixels with partially broken 

inner films (e.g., the pixels shown in Figure 2.2(e)) were imaged by using AFM, and the 

thickness of an inner MoS2 flake was measured from its broken edges. 

 

Figure 2.2. (a) SEM image of arrays of 10 μm size MoS2 flake pixels printed onto a pristine SiO2 substrate. (b) 
Stacked column chart of the average thickness data collected from 100 as-printed MoS2 pixels. The thickness data 
were obtained from MoS2 pixels printed over a ∼1cm2 area by using an AFM. (c) Secondary-electron SEM images 
of MoS2 pixel arrays printed onto an O2 plasma-charged substrate, which exhibit clear, well-defined edge profiles 
faithfully correlated to the edge profiles of pillar features on the bulk MoS2 stamps. (d) Backscattered SEM images 
of MoS2 pixel arrays, which show the presence of thin inner MoS2 flakes within each printed pixel. (e) 
Backscattered image of MoS2 pixels with broken inner films. 

 

Figure 2.3(a) displays an AFM image of an exemplary MoS2 pixel consisting of a 

relatively thick edge ribbon and broken inner flakes. The scan line denoted by the solid line and 

accordingly plotted in Figure 2.3(b) explicitly displays that the thickness values measured at the 

(a) (b) (c) (d) 

(e) 
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left and the right sides of this outer edge ribbon are 7 nm (∼11 monolayers) and 8 nm (∼12 

monolayers), respectively; the thickness of the broken inner flakes is measured to be 2.4 nm(∼4 

monolayers). The thickness data acquired from 10 scan lines are used to calculate the average 

thickness of the inner film and the outer edge ribbon of an individual MoS2 pixel. Figure 2.3(c) 

plots the statistical distribution of the average thickness data of 100 MoS2 pixels printed on a 

plasma-charged substrate. Here, the thickness data of inner films (solid columns) and outer edge 

ribbons (blue hatched columns) of MoS2 pixels are separately plotted. Figure 2.3(c) shows that 

the overall average thickness of outer edge ribbons is 17 nm (∼26 monolayers) with a standard 

deviation of 3 nm (∼5 monolayers), whereas the overall average thickness of inner films is 3.0 

nm (∼5 monolayers) with a standard deviation of 1.9 nm (∼3 monolayers). About 90% of inner 

flakes of MoS2 pixels printed on a plasma-charged SiO2 substrate are thinner than 5 nm (∼8 

monolayers). On the basis of such SEM and AFM characterizations, it is concluded that 

microscale MoS2 pixels printed on a plasma-charged SiO2 surface feature relatively thinner inner 

films or flakes enclosed by relatively thicker ring-shaped edge ribbons and a higher percentage 

yield of few-layer MoS2 flakes thinner than 5 nm in comparison with pixels printed on a pristine 

SiO2 substrate. 

 

Figure 2.3. (a) AFM image of a 10 μm size MoS2 pixel printed on a plasma-charged SiO2 substrate. The solid line 
indicates a scanning trace across the pixel, which is explicitly plotted in (b). (c) Stacked column chart of the average 
thickness data collected from 100 as-printed MoS2 pixels. Here, the thickness data acquired from the inner flakes 
(solid columns) and the outer edge ribbons (hatched columns) of these MoS2 pixels are separately plotted. 
 

To obtain a preliminary understanding of plasma-assisted printing mechanisms 

responsible for the resultant morphology of MoS2 pixels, Maxwell stress tensor calculation was 

performed and used for evaluating the distribution of surface charge-induced electrostatic 

attractive stress between the bulk MoS2 stamp and the dielectric substrate. Figure 2.4(a) 

illustrates the 2-D model for the calculation, in which a plasma-charged SiO2 substrate is in 

(a) (b) (c) 
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contact with a bulk MoS2 stamp and the surface charge density is arbitrarily set to 0.05 C/m2. 

Figure 2.4(b) plots the calculated attractive stress exerted by the plasma-charged SiO2 substrate 

on the bulk MoS2 stamp as a function of positions. Figure 2.4(c) shows the zoomed view of the 

attractive stress distribution within a single MoS2 mesa in contact with a SiO2 surface. It is found 

that the attractive stress acting on a microscale MoS2 mesa is uniform in the central region of the 

mesa but is significantly increased along the mesa edges due to the fringe effect. During a 

transfer-printing process, such high attractive stress at the mesa edges is expected to result in the 

exfoliation of MoS2 flake pixels with well-defined edges, as experimentally demonstrated. In 

addition, the strong electric field at the MoS2/SiO2 interface is expected to influence dispersion 

and dipole interactions of atoms there and therefore change the cohesive energy of MoS2 layers 

close to the SiO2 surface. This could lead to a dependence of the number of printed MoS2 

monolayers on the field magnitude, which could qualitatively explain our experimental result 

that for MoS2 pixels printed on plasma-charged substrates the edge portions are statistically 

thicker than the inner flakes, as shown in Figure 2.3(c). 

 

Figure 2.4. (a) Illustration of the 2-D model for Maxwell stress tensor calculation of surface charge-induced 
electrostatic attractive stress between the bulk MoS2 stamp and the dielectric substrate. (b) Calculated attractive 
stress plotted as a function of positions. (c) Zoomed view of attractive stress distribution within a single MoS2 mesa 
in contact with a SiO2 surface. It is found that the attractive stress acting on a microscale MoS2 mesa is uniform in 
the central region of the MoS2 mesa but is significantly increased along the mesa edges due to the fringe effect. 
 

Although plasma-assisted printing can produce large-area arrays of microscale MoS2 

pixels with regular edge profiles, many pixels have broken areas in their central regions, as 

shown in Figure 2.2(e). This can be attributed to several possible reasons, including the limited 

size of crystalline domains in bulk MoS2, non-uniformity of attractive stress within a microscale 

MoS2 pixel mesa, as discussed in the simulation analysis, and the paradigm rule that the direct 

exfoliation of a large-area atomic layer (e.g., a complete microscale MoS2 pixel film free of 

(a) (b) (c) 
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defects) is thermodynamically unfavorable. Such an analysis suggests that it is indeed desirable 

to prepattern bulk MoS2 stamps with densely arranged nanostructures that can improve the 

printing fidelity and eliminate the defects in the middle of printed patterns. In addition, such 

relief nanostructures are expected to generate a higher fringe field during printing processes 

because of the higher density of sharp feature edges and result in the higher transfer-printing 

efficiency of MoS2 features. Thus far we have not developed a scalable process for patterning 

nanostructures on bulk MoS2 because of its overly rough surface. However, we have successfully 

realized the nanopatterning of highly oriented pyrolytic graphite (HOPG) stamps with 100 nm 

half-pitch gratings using nanoimprint lithography, as shown in Figure 2.5(a). SEM images of 

100 nm half-pitch graphene nanoribbons (GNRs) produced by using plasma-assisted transfer 

printing are shown in Figure 2.5(b). The printed GNRs exhibit a high degree of uniformity in 

ribbon widths over large areas and do not exhibit any visible defects in the middle of individual 

ribbons. The thickness of GNRs was measured to be 2.0±1.0 nm by using an AFM. This work 

demonstrates that (1) nanoscale defect-free atomic layer patterns can be more easily produced by 

using plasma-assisted printing in comparison with microscale ones; (2) plasma-assisted printing 

can be generalized for producing high-quality nanostructures of other atomically layered 

materials. 

Figure 2.5. SEM images of (a) a HOPG stamp prepatterned with 100 nm half-pitch relief gratings by using 
nanoimprint lithography followed with plasma etching and (b) graphene nanoribbons printed onto a plasma-charged 
SiO2 substrate. 
 

2.3 Nanoimprint-Assisted Shear Exfoliation of MoS2 Flakes into Large-Area Arrays  

Toward ultimately realizing upscalable production of highly uniform multilayer 

MoS2 device arrays or large-scale circuits, in this section we propose a top-down nanofabrication 

approach capable of producing pristine multilayer MoS2 flake arrays with high uniformity of 

flake thicknesses (i.e., relative thickness error ∼12%) over cm2-scale areas. Figure 2.6 illustrates 

(a) (b) 
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our nanoimprint-assisted shear exfoliation (NASE) method for producing multilayer MoS2 flake 

arrays with uniform thicknesses. In a NASE process, first a bulk MoS2 ingot is prestructured 

with protrusive multilayer mesa arrays by using photolithography followed with plasma etching 

(Figure 2.6(a)). After this process, this ingot becomes a bulk MoS2 stamp. Here, the height of 

protrusive mesas can be well controlled by adjusting the plasma etching duration. This mesa 

height will determine the imprint depth (dNIL) resulted by the stamp. When the stamp is ready, a 

substrate (e.g., glass, Si, or SiO2) is spin-coated with a polymeric fixing layer (e.g., 

thermoplastics or cross-linkable polymers), and the MoS2 stamp is subsequently pressed into the 

fixing layer on the substrate through a nanoimprint lithography (NIL) process (Figure 2.6(b)). 

Afterward, a lab-made motorized roller tool is used to displace the MoS2 stamp along the 

substrate surface (i.e., a shear direction). Due to the shear displacement, the multilayer 

MoS2 mesas already imprinted into the fixing layer can be exfoliated away from the bulk stamp 

(Figure 2.6(c)). The thicknesses of exfoliated multilayer flakes are anticipated to be mainly 

determined by the imprint depth (dNIL) (Figure 2.6(d)).  

In comparison with previously reported exfoliation methods for generating layered 

materials, such as electrostatic exfoliation, plasma-assisted nanoprinting and mechanical cutting/ 

 

Figure 2.6. Illustration of nanoimprint-assisted shear exfoliation (NASE) for producing few-layer/multilayer MoS2 
device structure arrays: (a) fabrication of a bulk MoS2stamp bearing protrusive device features; (b) nanoimprint 
process for pressing the protrusive features on the bulk MoS2 stamp into a polymeric fixing layer coated on a 
substrate; (c) exfoliation of imprinted MoS2 features along a shear direction, which is actuated by a motorized roller 
tool; (d) multilayer MoS2 flakes imprinted/exfoliated by NASE, which are expected to exhibit a high uniformity in 
thickness as well as electronic properties; (e) post-NASE processes for further adjusting the final thicknesses of 
exfoliated MoS2 flakes to meet various device application requirements. 
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transfer-printing, the unique shear exfoliation mechanism involved in NASE can result in 

significantly improved transfer-printing efficiency of prestructured MoS2 features as well as 

higher uniformity of exfoliated MoS2 feature thicknesses. In comparison with chemical synthesis 

approaches for generating multilayer MoS2, NASE is expected to be able to produce 

MoS2 structures with larger average crystal domain size (10s–100s μm), higher ordering of 

interlayer stacking configurations and therefore better transport properties. Furthermore, NASE 

could be further generalized for producing high-quality multilayer structures of other atomically 

layered materials, such as highly ordered pyrolytic graphite (HOPG) and emerging topological 

insulators (e.g., Bi2Se3 and Bi2Te3). After a NASE process, additional etching/ablation processes 

could be subsequently used for further adjusting the thicknesses of NASE-produced MoS2 flakes 

to meet the requirements of various device applications (Figure 2.6(e)), such as monolayers for 

light-emitting devices, 10–50 nm thick flakes for making high-mobility transistors and 50–200 

nm flakes for photovoltaic/photodetection devices. 

Figure 2.7(a) shows a photograph of our lab-made motorized roller tool for performing 

the shear exfoliation of multilayer MoS2 structures. This tool consists of an AC brushless motor 

with an electric speed controller, a flat sample holder for immobilizing either the stamp or the 

substrate, a motor-driven roller for generating the relative shear displacement between the stamp 

and the substrate, and a vertical stage for applying a gauge pressure to maintain the stamp flat 

during the shear exfoliation. In particular, the web speed of the roller surface can be adjusted in 

the range of 0–3 cm/s. The vertical stage bearing a set of coil springs can generate an adjustable 

gauge pressure (0–0.5 MPa) for firmly pressing the MoS2 stamp against the substrate, therefore 

effectively avoiding the formation of wrinkles in exfoliated MoS2 layers. In this work, we chose 

MoS2 as the test-bed material for investigating NASE processes, because (i) MoS2 is the most 

widely studied TMDC material; (ii) MoS2 and other TMDCs share very similar mechanical 

properties, which makes the nanofabrication processes developed in this work generally 

applicable to all other TMDCs and layered materials. Figure 2.7(b) and (c) display an optical 

micrograph (OM) and a scanning electron micrograph (SEM) of an exemplary MoS2 stamp 

prestructured with 40 nm high, 15 μm size pillar arrays, respectively. The size of the whole 

stamp is ∼1 cm. 
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Figure 2.7. Photographs of (a) the motorized roller tool for performing NASE processes and (b) an exemplary 1 cm-
size MoS2 stamp. (c) shows the SEM image of this stamp,  which bears 40 nm-high, 15 μm-size protrusive mesa (or 
pillar) arrays. 

 

Figure 2.8(a) shows four optical micrographs of NASE-produced MoS2 flakes, which 

were exfoliated into a 55 nm thick polystyrene (PS) fixing layer coated on a SiO2/Si substrate 

(SiO2thickness, 300 nm). These micrographs were captured from different locations over the 

whole NASE-processed area (∼1 cm2), as mapped in the inset photograph of the whole NASE 

sample. Raman spectroscopy was performed to identify the existence of exfoliated MoS2 flakes 

in the imprinted PS layer. Our Raman results show that more than 80% of imprinted wells in the 

PS fixing layer have MoS2 flakes. Figure 2.8(b) shows a typical Raman spectrum of a NASE-

produced MoS2 flake, which exhibits two characteristic peaks, A1g and E2g, corresponding to the 

out-of-plane and in-plane vibration modes of MoS2 layers, respectively. For all NASE-produced 

MoS2flakes, their A1g–E2g peak spacings are larger than 19 cm–1. This indicates that all NASE-

produced flakes are multilayer MoS2 structures. Our OM and Raman characterizations show that 

NASE can produce orderly arranged multilayer MoS2 device structures over cm2-scale areas. 

Although most imprinted well pixels in PS fixing layers have high-quality MoS2 flakes faithfully 

exfoliated from the bulk stamps, observable imperfection features still occur during NASE 

processes. Figure 2.8(c) displays the OM images of typical imperfection features occurring in 

NASE, which includes (i) imprinted PS wells without MoS2 (i.e., no exfoliation), (ii) imprinted 

wells with broken MoS2 fragments (i.e., incomplete exfoliation), (iii) MoS2 dislocated away from 

the imprinted PS wells, and (iv) nonuniform thickness distribution within individual flakes. The 

occurring probabilities of these imperfection features may be relevant to mechanical properties 

of TMDC stamps and polymeric fixing layers, flatness/total size of TMDC stamps, geometric 

dimensions of prestructured TMDC structures, and NASE processing parameters (e.g., roller 

speed and vertical pressure), etc. Especially, we found that the aspect ratio (i.e., the ratio of the 

height to the lateral size of a feature) of protrusive mesas prestructured on TMDC stamps greatly 

affects the quality of NASE-produced flakes. In particular, given a fixed lateral size of mesas of 

(a) (b) (c) 
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15 μm, our current NASE system can easily exfoliate 40–200 nm high MoS2 mesas without 

resulting in significant imperfections. However, when the initial mesa thickness (or height) is 

thinner than 40 nm, the occurring probability of broken, wrinkled, and dislocated mesa flakes is 

significantly increased. Therefore, as mentioned above, the better route for producing 0.7–40 nm 

thick, 15 μm size MoS2 flake arrays (i.e., monolayer to 60-layer structures) is to employ NASE 

for producing uniform flake arrays thicker than 40 nm, and subsequently perform a post-NASE 

etching process to thin the NASE-produced flakes. For example, Liu et al. has demonstrated 

layer-by-layer thinning of multilayer MoS2 structures [32]. This thinning approach in 

combination with NASE can potentially produce MoS2 structure arrays with arbitrary 

thicknesses for meeting the requirements of various device applications. More nanomechanics-

oriented works will be performed in the future to fully understand the role of other factors in 

generating imperfections during NASE processes and optimize the processing conditions to 

eliminate the imperfection features displayed in Figure 2.8(c). 

 

 

Figure 2.8. NASE results: (a) four optical micrographs of MoS2 flake arrays imprinted/exfoliated into a PS fixing 
layer coated on a SiO2/Si substrate by using NASE, which were captured from different locations over the whole 
NASE-processed area (∼1 cm2), as mapped in the inset photograph of the whole NASE sample; (b) Raman 
spectrum of an exemplary multilayer MoS2 flake; (c) optical micrographs of typical imperfections that occur in 
NASE. (d–f) SEM images of a set of NASE-produced arrays of multilayer MoS2 flakes with various flake diameters 
(D) and flake-to-flake spacings (L). For all of these samples, the imprint depth (dNIL) is ∼50 nm. 

(a) 

(b) (c) 

(d) 

(e) 

(f) 
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To study the effect of the lateral dimensions of MoS2 mesas on the quality of NASE-

produced flake arrays, we also produced MoS2 flake arrays with different lateral 

dimensions. Figure 2.8(d–f) display the SEM images of a set of NASE-produced arrays of 

multilayer MoS2 flakes with various flake diameters (D) and flake-to-flake spacings (L) (i.e., 

(d) D = 7 μm, L = 20 μm; (e) D = 17 μm, L= 30 μm; (f) D = 25 μm, L = 50 μm). For all of these 

samples, the imprint depth (dNIL) is ∼50 nm. The flake arrays with D = 7 and 17 μm exhibit very 

similar quality as compared to 15 μm size ones shown in Figure 2.8(a). Especially, most flakes 

in these arrays have relatively smooth top surfaces, as shown in Figures 2.8(d) and (e). Figure 

2.8(f) shows that the NASE-produced array with D = 25 μm also exhibits a comparable yield 

(∼80%) of exfoliated MoS2 flakes, but the top surfaces of these 25 μm size flakes exhibit a 

noticeably larger roughness in comparison with those of the flakes with the smaller D values. 

This is attributed to the relatively low aspect-ratio (i.e., dNIL/D) of these 25 μm size flakes, which 

results in relatively low flake rigidity and therefore a high occurring probability of wrinkled 

MoS2 layers. In this work, we found that the quality of NASE-produced flakes is not sensitive to 

the flake spacing (L) or density. The relationship between the flake rigidity and the occurring 

probability of wrinkling in exfoliated layers is further discussed below based on our molecular 

dynamics (MD) simulations. 

Because NASE-produced MoS2 flakes are embedded into PS fixing layers, their 

thicknesses cannot be directly measured by using atomic force microscopy (AFM) or the color 

coding method. Especially, it should be noted that our MoS2 flakes, under OM illumination, 

exhibit varying colors ranging from green to deep blue, as demonstrated in Figure 2.8(a). Such a 

color variation among MoS2 flakes are mainly attributed to the spatial variation of the PS film 

thickness or the residual layer thickness (RLT), which are caused by the nonflatness of our 

current MoS2 stamps (or current commercially available MoS2 ingots). Therefore, such a color 

variation does not correctly indicate the thickness distribution among exfoliated MoS2 flakes. To 

evaluate the uniformity of NASE-produced MoS2 flake thicknesses, we employed AFM to 

measure the effective well depth (dW) of imprinted PS wells bearing exfoliated MoS2 layers, as 

illustrated in Figure 2.9(a). The dW value of a MoS2-embeded well is assumed to be the 

difference between the imprint depth (dNIL, or the initial height of MoS2 mesas prestructured on 

the stamp) and the thickness (tMoS2) of the MoS2 flake embedded inside this well. Figure 2.9(b) 

shows a 3-D AFM image of an exemplary NASE-produced MoS2 flake exfoliated into an 

imprinted PS well. The dashed line indicates an AFM scanline that is replotted in Figure 2.9(c). 

The dW value of this MoS2-embeded well is measured from the topographic difference between 
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the center of this MoS2 flake and a location outside the well, as indicated by the red arrows 

in Figure 2.9(c). For this specific imprinted well, dW is measured to be ∼0, indicating 

that tMoS2 ∼ dNIL = 40 nm. Figure 2.9(d) displays the statistics of dW/dNIL values measured from 

100 imprinted wells bearing MoS2 flakes. These structures were produced in a single NASE 

process. Figure 2.9(d) shows that the standard deviation of dW/dNILdata (or the relative thickness 

error of NASE-produced multilayer MoS2 flakes) is estimated to ∼12%. This relative thickness 

error is much smaller than those of multilayer structures produced by previously reported 

exfoliation methods [6].  
 

Figure 2.9. AFM characterization of NASE-produced MoS2 flakes exfoliated into a PS fixing layer: (a) schematic of 
a multilayer MoS2 flake with thickness of tMoS2 exfoliated into an imprinted PS well with imprint depth of dNIL, 
resulting in an effective well depth of dW; (b) an exemplary 3-D AFM image of a multilayer MoS2 flake exfoliated 
into an imprinted PS well; (c) an AFM scanline extracted from the AFM image shown in (b) (i.e., the dashed line 
shown in (b)), from which the dW value of this MoS2-embeded well can be measured from the topographic 
difference between locations denoted with arrows; (d) statistics of dW/dNIL data measured from 100 MoS2-embeded 
wells, which shows that the standard deviation of dW/dNIL data (or the relative thickness error of NASE-produced 
multilayer MoS2 flakes) is estimated to ∼12%. 
 

To further evaluate the scalability of NASE for generating atomically layered structures 

with nanoscale lateral dimensions, we performed a molecular dynamics (MD) simulation of the 

NASE processes for exfoliating nanoscale-lateral-size layered structures. In this simulation work, 

we specifically simulated the shear exfoliation of few-layer-graphene nanostructures into PS 

fixing layers, because few-layer-graphene has the simpler crystal structure than TMDCs, which 

can simplify our simulation, but graphene layers exhibit mechanical properties very similar to 

most TMDCs. Figure 2.10 shows the simulation results of the NASE process for exfoliating 5 

nm size, 4-layer graphene mesas into a PS layer. In particular, Figure 2.10(b–e) display a set of 

snapshots of the simulated postnanoimprint shear exfoliation stages at selected times (t = 0, 50, 

90 ns). These dynamic simulation results show that at least three layers from a mesa can be 

reliably exfoliated and trapped into the imprinted PS well, whereas the layer closest to the top 

edge of the PS well (i.e., the green layer shown in Figure 2.10) exhibits a significant probability 

(a) (b) (c) (d) 
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to be dislocated out of the PS well. Figure 2.10(f) shows a zoom-in view of the interface 

between the graphene layer edges and the sidewall of the imprinted PS well. From Figure 

2.10(f), it can be observed that the imprinted well is deep enough to prevent the trapped graphene 

layers from sliding over one another. This guarantees that the imprinted/exfoliated multiple 

layers can retain their original AB-stacking mode after a NASE process. These MD simulation 

results imply that NASE could be potentially used for generating high-quality nanoscale-lateral-

size layered device structures.  

 

Figure 2.10. Molecular dynamics (MD) simulation of the NASE process for exfoliating atomically layered 
nanostructures: (a) a selected part of the 3-D simulation region, showing the cross-sectional view of the initial 
configuration of the NASE process, involving a graphite stamp bearing 5 nm size, 4-layer mesas and a PS fixing 
layer; (b–d) cross-sectional snapshots of the MD simulation result of a postnanoimprint shear exfoliation course at t 
= 0, 50, 90 ns; (e) a 3-D snapshot of the simulated system at t = 90 ns; (f) a zoom-in view of the imprinted PS well 
bearing graphene layers, especially displaying the interface between the edges of exfoliated layers and the sidewall 
of the imprinted PS well. 

 

We also used MD simulations to investigate the effects of the geometric dimensions of 

prestructured stamping structures on the resultant morphology of NASE-produced layered 

nanostructures. For example, we simulated the NASE process for exfoliating relatively low-

aspect-ratio graphene nanostructures (i.e., 50 nm size, bilayer graphene mesas prestructured on a 

stamp), as shown in Figure 2.11. Specifically, Figure 2.11(a) and (b) display two cross-

sectional snapshots of the postnanoimprint shear exfoliation course taken at t = 0 and 1 ns, 

respectively. Figure 2.11(b) shows that the imprinted bilayer mesa is pulled out of the imprinted 

PS by the bulk stamp moving along a shear direction, and the imprinted PS well fails to 

immobilize such low-aspect-ratio structures. This can be attributed to the fact that the layered 

structures with a lower aspect-ratio possess much lower bending rigidity than the ones with a 

higher aspect-ratio, because the bending rigidity of a solid flake can be expressed as Eh3/12(1 –

 v2), where E, h, and v are the Young’s modulus, thickness, and Poisson’s ratio of the flake. 

Therefore, relatively low-aspect-ratio layered structures can easily deform under the shear stress 

(a) (b) 

(c) 

(d) 

(e) 

(f) 
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exerted by the bulk stamp, and therefore they can be easily pulled out of the imprinted well. Our 

simulation shows that the initial form of such shear-stress-induced deformation in exfoliated 

mesa layers is a set of nanoscale wrinkles. Figure 2.11(c) and (d) display the tilted and side 

views, respectively, of a 3-D snapshot of the low-aspect-ratio graphene layers at t = 1 ns, which 

exhibits a set of wrinkle features induced by the shear dislocation process. Such wrinkle features 

do not appear in relatively high-aspect-ratio layered nanostructures (e.g., 5 nm size, 4-layer 

mesas shown in Figure 2.10) due to their large in-plane stiffness. In addition, our simulations 

indicate that the large deformations created in relatively low-aspect-ratio layered structures can 

reduce the cohesive energies of graphene/graphene as well as graphene/PS interfaces, and further 

enhance the occurring probability of the detachment of imprinted/exfoliated layers from the PS 

fixing layer. Therefore, our MD simulation results, consistent with our experimental results, also 

suggest that NASE is more suitable for producing uniform multilayer structures with relatively 

high aspect-ratios than to producing monolayer/few-layer structures with relatively low aspect-

ratios. However, as mentioned above, NASE-produced multilayer structures with uniform initial 

thicknesses could be further trimmed to the thinner thicknesses by using established layer-

thinning approaches. As discussed above, in a real NASE process, when a MoS2 stamp is sheared 

horizontally, a vertical pressure is applied to the stamp to avoid the ripple formation. 

 

 
Figure 2.11. Molecular dynamics (MD) simulation of the NASE process for exfoliating relatively low-aspect-ratio 
layered structures: (a) a cross-sectional snapshot of the NASE stage, in which a graphite stamp bearing 50 nm size, 
bilayer mesas has been imprinted into a PS fixing layer (i.e., t = 0); (b) a cross-sectional snapshot of the 
postnanoimprint shear exfoliation course taken at t = 1 ns; (c) and (d) are tilted and side views, respectively, of a 3-D 
snapshot of the simulated system at t = 1 ns, which exhibits wrinkle features induced by the shear dislocation 
process.  

(a) 

(b) 

(c) 

(d) 
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2.4 Fabrication of FET and Biosensor Arrays Using Mechanical Exfoliation Techniques   

We characterized the electronic properties of MoS2 flakes exfoliated on the plasma-

charged SiO2/p+ Si substrates by the fabrication of back-gated field-effect transistors (FETs). To 

do so, the metallic drain/source contact pads (5nm Ti/55nm Au) were fabricated by 

photolithography or electron-beam lithography (EBL) followed by metal deposition then lift-off. 

In particular, photolithography was used to fabricate FETs based on the inner flakes of MoS2 

pixels, and EBL was specifically used for the fabrication of FETs based on the outer edge 

ribbons of MoS2 pixels. Finally, another indium metallic contact was fabricated onto the p+-Si 

substrate, which serves as a back gate contact. The device characteristic curves of FETs were 

measured by using an Agilent-4145B semiconductor parameter analyzer. 

Figure 2.12(a) presents a BSE image of an inner flake of a MoS2 pixel that was used to 

fabricate a back-gated FET with flake thickness of ~5 nm, channel length of L=5.4 μm, average 

channel width of W~3.7 μm, and gate dielectric thickness of d=330 nm. Figure 2.12(b) 

demonstrates drain-source current (IDS) – drain-source voltage (VDS) characteristics of this 

exemplary FET under different gate voltages (VG) in the range from -75 to 100 V. Figure 2.12(c) 

plots the IDS – VG characteristics under a fixed drain-source voltage (VDS = 10 V).  

 

 
Figure 2.12. (a) BSE image of an exemplary back-gated FET made from the inner flake of a printed MoS2 pixel 
with flake. (b) IDS-VDS characteristics under different gate voltages (VG) ranging from -75 to 100 V. (c) Semi-
logarithmic plot of an IDS-VG characteristic curve under a fixed drain-source voltage VDS = 10 V. The inset graph 
shows the linear plot of the same IDS-VG curve, and the transconductance (dIDS/dVG) is obtained by fitting the linear 
region of the IDS-VG curve, as indicated by the red line. 

 

As shown in Figures 2.12 (b) and (c), this FET shows N-type conduction with an 

ON/OFF current ratio (ION/IOFF) of ~107. The transconductance at the linear region of the IDS – 

VG characteristic curve was evaluated to be ∆IDS/∆VG = 1.60 µS by the linear fitting (denoted 

with the red solid line in the inset of Figure 2.12 (c)). The field-effect mobility was estimated to 

be µ = 22 cm2/Vs based on below equation (2.1), where Cox is the gate capacitance; ϵ0 is the 

(a) (b) (c) 
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vacuum permittivity; ϵr ~ 3.9 is the dielectric constant of SiO2; W/L is the width/length ratio of 

the MoS2 flake channel. The mobility values evaluated from the inner flakes of printed MoS2 

pixels range from 6-44 cm2/Vs, which are comparable to previously studied values for MoS2 

FETs using SiO2 as the gate dielectric [33]. This confirms that our plasma-assisted transfer-

printing approaches can produce high-quality MoS2 features and are capable of practical 

electronic applications. 

ߤ ൌ െ
ୈୗܫ∆

୭୶ܥ
ܹ
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݀

 (2.1) 

Using a similar fabrication process, we made FETs using the ring-shaped edge ribbons of 

MoS2 pixels as the semiconducting channels. In the electron beam lithography, the overlay 

alignment was carefully performed to prevent incorporating any inner pixel flakes into the FET 

channel. Figure 2.13(a) displays an SEM image of an exemplary edge ribbon-based FET with a 

channel width of W ≈ 300 nm, channel length of L ≈ 500 nm, and average MoS2 thickness of 

∼10 nm. Figure 2.13(b, c) exhibits IDS-VDS and IDS-VG characteristics, respectively, which 

indicate that this edge ribbon-based FET shows p-type conduction for VG = -100 to 100 V. The 

transconductance at the linear region of the IDS-VG characteristic curve was evaluated as dIDS/dVG 

= -1.74 nS by the linear fitting (denoted with the red solid line in the inset of Figure 2.13(c)). 

The field-effect mobility was estimated to be μ = 0.27 cm2/Vs according to ߤ ൌ

ܮൣ ൫ܥ୥ ୈܸୗ൯⁄ ൧ሺ݀ܫୈୗ ݀ ୋܸ⁄ ሻ, where Cg is the average gate capacitance associated with a single 

MoS2 edge ribbon per unit channel length [unit: F/m]. Here, Cg is calculated by using a 

simulation model based on finite element analysis that takes into account the fringe effect at the 

MoS2 nanoribbon edges. This fringe effect can significantly affect the values of Cg for MoS2 

FETs with nanoscale channel widths. The field effect mobility measured from other edge ribbon-

based FETs range from 0.1 to 1.0 cm2/Vs. 
 

 
Figure 2.13. (a) SEM image of an exemplary back-gated FET made from the outer edge ribbon of a printed MoS2 
pixel. (b) IDS-VDS and (c) IDS-VG characteristics of the edge ribbon-based FET.  

(a) (b) (c) 
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To evaluate the uniformity of the electronic properties of multilayer MoS2 flakes 

produced by nanoimprint-assisted shear exfoliation (NASE), back-gated FET arrays were 

fabricated with NASE-produced MoS2 channels and the statistical data of the multiple FET 

transfer characteristics was obtained. Figure 2.14(a) schematically illustrates the FET structure. 

Figure 2.14(b) shows the SEM images of a representative FET array made from the multilayer 

MoS2 flakes produced in a NASE process. For all as-fabricated FETs, the channel width (W) and 

length (L) are 15 and 10 μm, respectively; the MoS2 channel thickness is around 20 nm; the 

back-gate dielectric consists of a 300 nm thick thermally grown SiO2 layer plus a residual PS 

layer. Here, the residual PS thickness (tresidual) under each MoS2 channel is estimated to be 

thinner than 5 nm by using tresidual = tPS - dNIL, in which tPS is the initial PS layer thickness before 

the NASE process. 

It should be noted that our current post-NASE FET fabrication process sometimes results 

in the peeling off of the NASE-produced MoS2 flakes and thus need to be further optimized. This 

is because of the poor adhesion between layered materials and most of substrate materials. This 

issue is not only for NASE-produced MoS2 samples, but also generally for all 2D layered 

materials. Exploring the ultimate solution to this problem is underway but still beyond the scope 

of the present work. Fortunately, in our work, the survived MoS2 flakes remain staying at their 

original locations in the array, and the yields of working FETs over cm2 -scale areas are typically 

50-60% (the yield of NASE-produced MoS2 flakes is ∼80%). Such samples are sufficiently good 

for providing a number of FETs to evaluate the uniformity of the electronic properties of NASE-

produced MoS2 flakes.   

FETs were made from the multilayer MoS2 flakes produced in a NASE process and 

distributed over a 1 cm2 area. Figures 2.14(c) to (f) show the statistics of field-effect mobility 

(μ), On/Off currents (ION is the IDS measured at VG = 60 V; IOFF is the minimum value of IDS 

within the VG range of (60 V), subthreshold swing (SS), and threshold voltage (VT) data, which 

were extracted from the transfer characteristic curves of these 45 FETs. Specifically, the mean 

values of μ, ION, IOFF, SS, and VT were statistically measured to be μ = 46 ± 10 cm2 / (Vs), ION = 

24.0 ± 5 μA (or, 1.60 ± 0.33 μA per 1 μm channel width), IOFF = 21 ± 20 pA, SS = 11.9 ± 2.7 

V/dec, and VT = 28 ± 8 V, respectively. First, it should be noted that the relatively large SS 

values of our FETs are attributed to the relatively thick back-gate dielectric (i.e., 300 nm SiO2) 

used here, and such SS values could be significantly reduced by using much thinner dielectrics. 
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The IOFF data of our FETs exhibit a much larger relative standard deviation (∼95%) as compared 

to other parameters, which is mainly attributed to the measurement precision (2-10 pA) of our 

semiconductor analyzer. The quantity VT could have zero or negative values, and therefore the 

relative standard deviation of VT data is meaningless for evaluating the uniformity of our FETs. 

Therefore, we specifically use the relative standard deviations of μ, ION, and SS data for 

evaluating the uniformity. The relative standard deviations of these parameters range from 21 to 

23%. This shows that even though our post-NASE FET fabrication process is yet to be 

optimized, our current FET arrays made from NASE-produced multilayer MoS2 flakes already 

exhibit a good uniformity in critical FET parameters. The observed variances in the performance 

parameters of our FETs are mainly attributed to several possible factors, including (1) the 

device-to-device variance in the residual PS layer thicknesses; the NASE-introduced defects, as 

discussed above (Figure 2.8(c)); (3) the contaminants introduced during the post-NASE FET 

fabrication processes; (4) intrinsic nonuniformity of the material properties of initial MoS2 ingots 

(e.g., crystal orientations, domain size distributions, and intrinsic defects). 

To further investigate the effect of the residual polystyrene (PS) layers on the uniformity 

of the electronic properties of NASE-produced MoS2 flakes, another batch of MoS2 FETs were 

 

 
Figure 2.14. Back-gated FET arrays made from NASE-produced MoS2 flakes: (a) Schematic illustration of a back-
gated MoS2 FET. (b) SEM images of a representative FET array made from the multilayer MoS2 flakes (thickness 
∼20 nm) produced in a NASE process. For all FETs, the channel width (W) and length (L) are 15 and 10 μm, 
respectively; the back gate dielectric is 300 nm SiO2 + residual PS (estimated to be thinner than 5 nm). The 
following graphs display the statistics of (c) mobility (μ), (d) On/Off currents (ION and IOFF), (e) subthreshold swing 
(SS), and (f) threshold voltage (VT) data measured from 45 MoS2 FETs fabricated by a NASE process.  

(a) (b) 

(c) (d) (e) (f) 
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fabricated using an alternative method to eliminate residual PS. To make such FETs, a SiO2- 

coated p+-Si substrate bearing NASE-produced MoS2 flakes was soaked in toluene for 1-2 h. 

Until this step, the sample had not been subjected to any plasma etching. Therefore, the 

imprinted PS on the substrate (including the residual PS layers under MoS2 flakes) was able to be 

completely removed because there is no cross-linking in PS. However, this cleaning process 

displaced (and even peeled) many MoS2 flakes and only a few survived MoS2 flakes were 

chosen for making FETs. Because the selected MoS2 flakes had been shifted away from their 

original array configurations, we had to perform repetitive lithography, metal deposition, and 

lift-off processes for making multiple FETs. In particular, special finger contacts (5 nm Ti/50 nm 

Au) were fabricated to access to individual selected MoS2 flakes. This was a time-consuming 

task and resulted in a much lower device yield as compared to the method, discussed above, for 

making FET arrays with the residual PS. Figure 2.15 displays two representative back-gated 

FETs made from multilayer MoS2 flakes that were cleaned by Toluene. Figure 2.16(a) shows 

the transfer characteristics of 4 such FETs made from PS-free multilayer MoS2 flakes, and 

Figures 2.16(b)-(e) display the statistics of (a) mobility (μ), (b) On/Off currents (ION and IOFF), 

(c) subthreshold swing (SS), and (d) threshold voltage (VT) data measured from these 11 FETs. 

For the following discussion, these FETs are referred to as PS-free FETs, and the previous array 

FETs as shown in Figure 2.14 are referred to as PS-retained FETs. 

First, our device characterization shows that the field-effect mobility data measured from 

our PS-retained FETs (i.e., μ=46±10 cm2/(Vs)) have a slightly smaller mean value and a slightly 

larger standard deviation in comparison with those measured from our PS-free FETs (i.e., μ = 53 

± 7 cm2 /(Vs)). This slight difference is attributed to the roughness scattering at the MoS2/PS 

 
Figure 2.15. Optical micrograph of two representative back-gated FETs made from selected NASE-produced 
multilayer MoS2 flakes. These NASE-produced MoS2 flakes (~30 nm thick) were soaked in toluene for 1-2 hours in 
order to remove the residual PS layers under them. This toluene etching process shifted most MoS2 flakes away 
from their original locations in the array. Therefore, to make working FETs, special finger contacts (5 nm Ti/50 nm 
Au) were fabricated to access to individual selected MoS2 flakes. 
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interface, which could slightly reduce the field effect mobility of the multilayer MoS2 FET and 

broaden the dispersion of the mobility values measured from different FETs. Because such a PS-

induced mobility reduction is estimated to be only ∼13%, we can think that the presence of 

residual PS between multilayer MoS2 flakes and SiO2 gate dielectrics does not result in a 

detrimental damage to the mobility property of multilayer MoS2 FETs. In comparison with our 

PS-retained FETs, our PS-free FETs exhibit a smaller average SS (i.e., SS=8.4±1.1 V/dec for PS-

free FETs, whereas SS =11.9±2.7 V/dec for PS-retained ones). This difference is attributed to 

that the residual PS layer under a MoS2 FET channel introduces an additional capacitor 

connected with the SiO2 capacitor in series, which decreases the overall gate dielectric 

capacitance and therefore increases the SS value of this FET. In addition, the relative standard 

deviation of the SS data measured from PS-retained FETs (∼23%) is noticeably larger than that 

measured from PS-free FETs (∼13%). This is attributed to the non-uniformity of the residual PS 

layer thicknesses under NASE-produced MoS2 flakes, which may introduce an additional non-

uniformity in back-gate capacitances and hence the SS data of PS-retained FETs. In comparison 

with PS-free FETs, the PS-retained FETs have statistically more positive VT values (i.e., VT = -27 

± 10 V for PS-free FETs, whereas VT = 28 ± 8 V for PS-retained ones). This difference is 

presumably attributed to the polymer-induced surface-charge-transfer (SCT) doping (p-type 

doping) in MoS2 channels. 
 

Figure 2.16. (a) Transfer characteristics of 4 back-gated FETs, made from NASE-produced multilayer MoS2 flakes. 
For these FETs, the residual PS layers under MoS2 channel flakes were completely removed by toluene. This 
toluene cleaning process shifted MoS2 flakes away from their original locations in the array. Therefore, these 
devices had to be fabricated using repetitive lithography and metallization processes. Statistics of (b) mobility (µ), 
(c) On/Off currents (ION and IOFF), (d) subthreshold swing (SS), and (e) threshold voltage (VT) data measured from 
11 FETs made from NASE-produced MoS2 flakes. These selected MoS2 flakes were cleaned with toluene.  

(a) 

(b) (c) (d) (e) 
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More importantly, our NASE-produced MoS2 transistors can be directly implemented as 

electronic biosensors for detecting and quantifying specific illness-related biomarkers. In this 

work, we specifically demonstrated quantification of a standard curve for tumor necrosis factor-

alpha (TNF-α) detection by using multiple MoS2 FET biosensors. Figure 2.17(a) illustrates a 

MoS2 FET sensor functionalized with anti-human TNF-α antibody receptors for detecting TNF-α 

molecules. To realize biomarker quantification, multiple sensors with consistent sensor responses 

to specific biomarker concentrations are needed. We choose the relative change of ON-state IDS 

under a fixed set of VG and VDS, i.e., R = (IDS(anti)- IDS)/IDS, as the sensor response quantity. 

Here, IDS(anti) is referred to be the ON-state IDS measured from an as-functionalized sensor (i.e., 

TNF-α concentration n = 0). Figure 2.17(b) shows the transfer characteristics of eight different 

Figure 2.17. MoS2 transistor biosensors made from NASE-produced multilayer MoS2 flakes: (a) illustration of a 
MoS2 transistor biosensor, in which anti-human TNF-α antibodies are directly functionalized on the MoS2 transistor 
channel; (b) sensor responses (i.e., transfer characteristics) to various TNF-α concentrations (i.e., n = 0, 60 fM, 600 
fM, 6 pM, and 60 pM) measured from eight different sensors; (c) calibrated responses (i.e., relative change of ON-
state IDS measured at a fixed VG=98 V) with respect to n, measured from difference sensors, which exhibit a high 
degree of device-to-device consistency and can be well fitted with Langmuir isotherm. 

(a) (b) 

(c) 
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MoS2 FETs measured under a set of incremental TNF-α concentrations (i.e., n = 0, 60 fM, 600 

fM, 6 pM, and 60 pM). The sensor responses (i.e., values of R were extracted at a fixed VG=98 V 

(i.e., ON-state) and plotted with respect to TNF-α concentration (n) in Figure 2.17(c).  

Figure 2.17(c) shows that the R-n relationships measured from multiple NASE-produced 

sensors exhibit a high degree of device-to-device consistency and can serve as a standard curve 

for TNF-α quantification. These R-n relationships can be well fitted with Langmuir isotherm, and 

the equilibrium constant of the antibody-(TNF-α) pair was extracted to be KD = 308+33 fM. 

These device demonstrations have preliminarily demonstrated that NASE can produce multilayer 

TMDC device structures with a high uniformity of electronic properties. In addition, it should be 

noted that our MoS2 FET biosensors exhibit a very low limit-of-detection (LOD) (< 60 fM). 

Comparing to device multiplexing capability of NASE process, such an fM-level LOD 

potentially enables new bioassay chips offering single-molecule-level analysis capabilities.  

 

2.5 Atomic Force Microscopy-Assisted Exfoliation of G Flakes  

We noted that our 2DLMs FETs and biosensors more or less suffer from the lack of 

precise control over the thickness of the printed layers and thus a deeper understanding of 

exfoliation mechanism in 2DLMs is of fundamental and technological importance.  

Generally speaking, our proposed mechanical exfoliation techniques for the fabrication 

of ordered 2DLMs device arrays at micro and nanoscale consist of four key steps: (1) Pattern 

any arbitrary micro and nano-features on the cm-sized 2D crystal stamp using standard 

lithography methods; (2) Press the pre-patterned stamp against the target substrate; (3) 

Enhance the interfacial adhesion between the stamp and the substrate using an external bias 

voltage (Figure 2.18(a,c)), built-in electric field (e.g., plasma-charged substrate surface, 

Figure 2.18(b)) or polymeric fixing layer (Figure 2.18(d)); and (4) Transfer the micro and 

nano-features from the stamp to the substrate as they are separated from each other in a 

direction perpendicular (Figure 2.18(a,b)) or parallel (Figure 2.18(c,d)) to the substrate 

surface. As such, the mechanical exfoliation of 2DLMs features could be a combined action of 

electrostatic attractive forces (Figure 2.18(a)), applied contact pressure (being used to improve 

the conformity of the mesa to the underlying substrate morphology), external pull-off/shear 

forces, surface friction forces (Figure 2.18(c)), and intermolecular vdW forces (associated with 

the 2DLMs/substrate interfacial adhesion and 2DLMs interlayer cohesion).  
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Figure 2.18. Schematics of mechanical exfoliation of 2DLMs features using (a,c) bias voltage, (b) plasma-charged 
surface and (d) polymeric fixing layer, followed by applying (a,b) pull-off and (c,d) shear forces. 

 

To further gain an in-depth understanding of underlying mechanisms associated with 

the electrostatic exfoliation of 2DLMs, I exploit for the first time conductive atomic force 

microscopy (CAFM) with ultrahigh force–displacement resolution to unravel the relative 

contributions of electrostatic attraction/repulsion, internal layer-to-layer shear, and 

intermolecular vdW forces to the exfoliation of the 2DLMs in general and graphite specifically. I 

have drawn a simple analogy between a typical macro-scale exfoliation setup (as discussed in 

sections 2.3 and 2.4) (Figure 2.19(a)) and the present nano-scale AFM-based exfoliation setup 

(Figure 2.19(b)). Figure 2.19(c) presents a schematic illustration of the CAFM-assisted 

electrostatic manipulation setup, in which an electrically conducting Pt/Ir-coated AFM tip is used 

in contact mode to perform all measurements. For the scope of this section, we focus on the 

exfoliation and characterization of graphite (G) as a model system for other 2DLMs. After 

nanostructure fabrication of 75 nm deep cylindrical mesas with a diameter of 60 nm from highly 

oriented pyrolytic graphite (HOPG), we utilize an in situ flattened AFM tip to uniformly adhere 

the selected HOPG mesa to the tip apex with a conductive adhesive polymer PEDOT:PSS(D-

sorbitol). The tip with an attached mesa is then brought into contact with the SiO2/Si substrate, 

followed by applying a bias voltage of up to 10 V between the mesa and the highly doped Si 

substrate, separated by the 10 nm thick SiO2 film. Pristine G monolayers subjected to attractive 

electrostatic forces are transferred from the nanomesa onto the SiO2 film as the tip is gently 

moved away from the SiO2/Si substrate in a direction normal to the basal plane (hereafter 

(a) (b) 

(c) (d) 
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referred to simply as normal exfoliation method) or parallel to the basal plane of graphite 

(referred to as shear exfoliation method). An atomically well-defined contact formed between the 

nanomesa and the substrate combined with piconewton force and sub-nanometer displacement 

resolution in our CAFM setup facilitates the precise evaluation of both the applied force and the 

vertical/lateral displacement of mesas with respect to the substrate during the exfoliation process. 

Key steps involved in the fabrication procedure and geometrical design are presented with the 

detailed fabrication steps in sections 2.4.1-2.4.6.  

 

 

 

  
Figure 2.19. (a) Schematic of a typical macro-scale exfoliation setup and (b) the corresponding nano-scale AFM-
based exfoliation setup. (c) Schematic of the CAFM experimental setup used to perform shear and normal 
electrostatic exfoliation of FLG from nanosized HOPG mesa onto the SiO2/Si substrate. 
 

2.5.1 Nano-sized HOPG mesas 

A ~100-nm-thick bilayer of polymethyl methacrylate (PMMA) 495K (60 nm)/950K (40 

nm) is spin coated onto the freshly cleaved surface of 1-mm-thick HOPG substrate (SPI-1 grade 

with a mosaic spread value of 0.4o), baked each layer for 10 min at 120 °C to evaporate the 

solvent and then patterned by electron beam lithography. After developing the exposed PMMA 

area in 1:3 MIBK/NMP, a 10-nm-thick aluminum film is deposited by thermal evaporation, 

followed by a lift-off step. To thin down the unprotected HOPG area, oxygen plasma etching is 

carried out in a reactive ion etching system using pure O2 as the reactive gas. Cylindrical mesas 

with a radius of 30 nm and etch depth of 75 nm emerge from the HOPG substrate during the 

plasma etch. After plasma etching, the sample is soaked in 0.1 mol/l KOH water solution for ~3 

min to remove the Al layer, followed by an annealing process at 600 °C under constant Ar/H2 

flow for one hour to remove any resist/metallic residues from the HOPG substrate. Figure 

2.20(a) shows the AFM and SEM images of cylindrical mesa arrays. The sidewall profile in the 

AFM images is steep, indicating that a low etch rate of 15nm/min for the fabrication of the mesa 

structures results in a minor sidewall taper toward the substrate. Also, nanometer-sized mesas in 

our experiments can guarantee the presence of a single-crystalline grain across the whole mesa. 

(a) (b) (c) 
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2.5.2 In-situ preparation of flat AFM tips 

We used Pt/Ir5-coated AFM probes (Nanosensors, ATEC-EFM) with a radius of 

curvature of less than 20nm at the apex. As can be seen in Figure 2.20(b), the tip is positioned at 

the very end of the cantilever and pointing outwards, which allows a very exact positioning of 

the tip. Since our experiments require a flat plateau at the apex parallel to the SiO2/Si surface, we 

scanned the tips in contact mode on the SiO2/Si substrate for 15-30 minutes at a load of 2 µN and 

65-70% relative humidity, followed by cleaning the flattened tips via a polishing over ultra-

smooth monolayer graphene for 15 min at a load of 200 nN to achieve a residue-free contact 

surface. Once polished, the surface area of the tip was measured in a scanning electron 

microscope for the subsequent attachment of FLG onto the flat tip via a conductive adhesive 

PEDOT:PSS(D-sorbitol), as shown in Figure 2.20(c). This in-situ preparation of the flattened 

tips can account for a tilt angle of 12o in the cantilever (which is provided by our XE-70 AFM 

head) such that the flattened tips are parallel to the substrate surface, as can be seen in the inset 

of Figure 2.20(c).  

 

 

Figure 2.20.  (a) AFM image (top) and height profile (bottom) of 75-nm-deep cylindrical mesas with a diameter of 
60 nm from HOPG. Inset: SEM image of the nano-sized HOPG mesa arrays. (b) Pt/Ir5-coated AFM probe tilted at 
an angle of 12o due to the mount of Park XE-70 AFM head. (c) SEM image of AFM tip after the fattening 
procedure. Inset: Flat surface of AFM tip. 
 

2.5.3 Probe tip characterization 

Our preliminary SEM observation of the tip at the apex area suggests a very flat 

triangular shape, as shown in Figure 2.21(a). The surface roughness and the triangular contact 

area of the tip apex can be accurately measured through imprints on the 50-nm-thick 

PEDOT/PSS thin film and AFM tapping-mode imaging, as shown in Figure 2.21(b). The AFM 

(b) (c) (a) 
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indent profile of the tip confirms an atomically flat surface with an RMS roughness of < 0.5 nm. 

The contact surface area of the tip was measured to be 0.0135 µm2. 

 

 
 

 
 

Figure 2.21. (a) SEM image of the flattened tip. (b) Tapping-mode AFM topography image of nanoindentation of 
the flattened tip apex into the 50-nm-thick PEDOT/PSS thin film on the SiO2/Si substrate. The indented profile, 
taken along the red arrow, shows a very flat and smooth surface. AFM topography image (top) and height profile 
(bottom) of (c) a 25-nm-thick PEDOT:PSS(D-sorbitol) film and (d) raised letters 100 nm width and 12 nm height, 
formed at -5 V with a tip speed of 0.5 um/s. 
 

2.5.4 Adhesive and conductive polymer 

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) aqueous 

solution (Clevios™ PH 1000) was purchased from Heraeus Company. The concentration of 

PEDOT:PSS was 1.3% by weight, and the weight ratio of PEDOT:PSS was 1:2.5 in the solution. 

0.45µm syringe filters made from PVDF were used to remove any possible residual gel or dried 

particulates from the PEDOT:PSS. D-sorbitol, as an organic compound with a hydroxyl group, 

was added into the PEDOT:PSS aqueous solution with 10:90 ratio to make PEDOT:PSS 

adhesive without sacrificing its electrical conductivity. The highly adhesive and conductive 

PEDOT:PSS(D-sorbitol) film was formed by spin-coating this blended solution at 8000 rpm on 

the SiO2/Si substrate which was pre-cleaned sequentially with DI water, acetone and isopropyl 

alcohol. After baking at 90 °C for 60 min to remove the water, the electrical conductivity of the 

PEDOT:PSS(D-sorbitol) film was measured as 690 S/cm on the SiO2/Si substrate using the four-

point probe technique. The thickness of the film (~25 nm) was measured at different positions by 

gently scratching the surface with a sharp needle and measuring the height difference between 

the film and the substrate surface using the contact-mode AFM. An AFM topography image of 

the PEDOT:PSS(D-sorbitol) film shown in Figure 2.21(c) reveals a very smooth surface with an 

RMS surface roughness of ~2 nm. 

 

(d) (c) (b) (a) 
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2.5.5 High precision attachment of FLG to the AFM tips 

Using an approach-retract technique, the flattened tip is coated with a very thin layer of 

conductive polymer glue by putting the tip apex in gentle contact (at zero normal force) with the 

pre-baked 25-nm-thick PEDOT:PSS(D-sorbitol) film on an electrically grounded SiO2/Si 

substrate. Applying a negative bias voltage of 5 V to the probe results in the formation of raised 

features in the film (Figure 2.21(d) displays a representative structure formed by this AFM-

assisted electrostatic technique in the film), followed by the mass flow of the locally softened 

polymer toward the tip apex due to localized Joule heating and strong electric field gradient. The 

location of each mesa is then determined by switching the operational mode of the AFM to non-

contact mode which allows us to avoid any contact between the glue-coated flattened tip and the 

mesa surface during the image scanning. Although the tip apex is flat, the non-contact mode can 

still provide us with desired resolution imaging for the subsequent attachment of the mesa to the 

tip. Switching the mode of operation back to the contact mode, the glue-coated tip apex is then 

moved to the center of the selected mesa at an applied normal force of 200 nN, and subsequently 

the mesa/apex contact area is annealed at 95 °C for 30 min using a thin film heater beneath the 

HOPG substrate. Since D-sorbitol must be melted at 95 °C to act as glue, this annealing step is 

required to uniformly adhere the HOPG mesa to the tip apex. We then move the tip laterally 

along a single basal plane of graphite, leading to easy shear of the upper section of the mesa 

(attached to the tip apex) relative to the lower one (fixed to the HOPG substrate), thanks to the 

extremely low friction of graphite at an incommensurate contact interface (i.e., the superlubric 

state). Figure 2.22(a-c) shows a firm attachment of a 25-nm-thick HOPG cylindrical mesa onto 

the flat tip surface. Comparing the height of the mesa on the HOPG substrate before and after the 

shear motion of the AFM tip, one can estimate the number of graphene layers attached to the tip. 

 

 
 

 
Figure 2.22. (a) SEM image of the probe tip with (b) the corresponding zoom-in image, showing a firm attachment 
of a cylindrical mesa onto flat tip surface. (c) Side-view of the tip with an attached HOPG nanomesa. In (b) and (c), 
scale bars indicate 50 and 100 nm, respectively.  

(a) (c) (b) 
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2.5.6 Layer number identification 

Before Raman measurements, the FLG sheets were characterized by color contrast under 

optical microscopy and also by AFM topographic measurements to determine the layer number. 

In order to identify the number of layers with monolayer accuracy, Raman measurements were 

performed under ambient conditions using an ultra-low noise Renishaw inVia Raman 

microscope with 532 nm (2.33 eV) laser excitation (Figure 2.23). To avoid laser-induced 

heating, the laser power at the sample was set to be below 1 mW. A 100× objective lens with a 

numerical aperture (N.A.) = 0.95 was used in the Raman experiments. Several Raman spectra of 

each N-LG sample were collected to ensure the repeatability of the results. In our Raman spectra, 

we did not observe the rotating modes R (~1483-1496 cm-1) and R' (~1622-1626 cm-1) nor any 

change in the integrated intensity of the G and 2D bands in the printed bilayer and multilayer 

graphene, which is indicative of AB stacking [5]. 

 

  
Figure 2.23. (a) Raman spectra of N-LG flakes. The four most intense peaks are first-order (Si) and second-
order (2Si) optical phonon peaks of the silicon substrate, and G and 2D peaks of graphene. Raman spectra are 
scaled and upshifted for clarity. The scaling factors of 1/5 and 1 are used for ω<1200cm-1 and ω>1200cm-1, 
respectively. (b) The ratios of the integrated intensity of the G and Si peaks, I(G)/I(Si), versus layer number N. 
Blue circles are present data, red triangles and green squares are data measured for mechanically exfoliated N-
LG on 280-nm-thick-SiO2/Si at λ=488 nm and on 89-nm-thick-SiO2/Si at λ=532 nm, respectively. 

 

2.5.7 Results and discussion 

In our proposed setup, the exfoliation of FLG features is a combined action of the 

electrostatic force, contact pressure, vdW force, sliding/retraction speed of the tip, surface 

properties of SiO2, and ambient conditions. To narrow down the range of possible experimental 

parameters, we carry out all measurements on the same SiO2 film at zero normal load with a 

relative tip-substrate speed of 10 nm/s under a clean and controlled environment (20% relative 

humidity at 21oC). Our preliminary shear and normal printing measurements in the absence of 

(a) (b) 
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bias voltage reveal no graphene exfoliation under the aforementioned experimental conditions, 

allowing us to elucidate the key role of the electrostatic and interlayer vdW forces in the 

subsequent electrostatic exfoliation process. 

The histograms in Figures 2.24(a) and (b) show the number of printed layers as a function of 

the bias voltage using the shear and normal exfoliation techniques, respectively. Raman 

spectroscopy coupled with AFM height profile measurements are used to determine the layer 

number with monolayer accuracy. Ten measurements are taken for each applied bias voltage. It 

is evident from Figures 2.24(a) and (b) that the shear exfoliation method produces only 1‒3 

layers (predominantly mono and bilayer graphene) at different bias voltages (Figure 2.24(c)), 

whereas the normal exfoliation method yields graphene flakes of various thicknesses (ranging 

from 1 to ~20 layers) in a very stochastic manner (Figure 2.24(d)). We will later show in our 

analysis of the MD trajectories (see Chapter 4) that the weaker interlayer cohesion during the 

normal exfoliation process facilitates the localized delamination, thereby triggering the relative 

twist between the adjacent commensurate graphene flakes and thus making accurate control of 

the number of printed flakes almost inaccessible. In contrast, the shear exfoliation method 

exhibits much more robust sliding behavior with the slight change in the interlayer twist angles 

due to enhanced corrugation of the interlayer potential energy. Figure 2.24(c) also shows the 

SEM image of mono-,bi-, and trilayer graphene flakes printed by the shear exfoliation method in 

the form of letter “M” at V = 10 V, further indicating its versatility for the production of 

graphene flakes with high crystalline quality and uniform thickness (see the inset of Figure 

2.24(c)). We note that regardless of the applied bias voltage, an unexpectedly thick mesa might 

be produced by the shear exfoliation method provided any twist grain boundaries exist along the 

thickness (c-axis) direction of the HOPG nanopillars (Figure 2.24(e)). AFM measurements and a 

combination of FIB/SEM and high-resolution TEM also confirm a polycrystalline structure 

along the c-axis direction of HOPG with a grain thickness of 11-60 nm and 5-30 nm, 

respectively [5]. Hence, during the attachment of the mesa to the glue-coated tip apex, we moved 

the AFM tip laterally rather than vertically to achieve a single crystalline HOPG nanopillar 

which is necessary to avoid any possible shear exfoliation of thick mesas.  

To investigate the atomistic details underlying our experimental results, we first need to 

correctly understand the role of the number of layers and the external electric field in the 

interlayer electrostatic behavior of FLG flakes which will be the topic of my next chapter. 
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Figure 2.24. (a) Shear exfoliation and (b) normal exfoliation histograms of the number of printed flakes collected 
from 110 and 50 samples, respectively, under different bias voltages. (c) SEM image of mono-, bi-, and trilayer 
graphene flakes printed by the shear exfoliation method in the form of the letter “M” at V = 10 V. (d) SEM image of 
monolayer and 15-layer graphene flakes printed by the normal exfoliation method at V = 9.5 V. (e) SEM image of 
an incompletely sheared HOPG nanopillar at an incommensurate basal plane 18 nm above the substrate at the bias 
voltage of 10 V. 
 

2.6 Summary 

We first demonstrated a novel plasma‒assisted exfoliation approach for producing 

ordered arrays of few-layer-MoS2 device features. In this process, the relief structures were 

prepatterned onto a bulk MoS2 film, which served as a stamp for printing out orderly arranged 

MoS2 pixel patterns over cm2-scale areas on both pristine and plasma-charged SiO2 substrates. 

MoS2 pixels printed on plasma-charged substrates featured a higher degree of uniformity in 

pattern profiles and a narrower distribution of the MoS2 flake thickness (i.e., 3±1.9 nm) in 

comparison with those printed on pristine substrates. This was attributed to the strong fringe field 

around the feature edges that was induced by plasma-introduced electric charges. We 

demonstrated that such printing approaches can be generalized for producing other emerging 

atomically layered nanostructures (e.g., graphene nanoribbons).  

We next presented a top-down nanofabrication approach, termed as nanoimprint-assisted 

shear exfoliation (NASE), which is capable of producing high-quality multilayer MoS2 structures 

with a good uniformity of feature thicknesses as well as electronic properties. NASE uniquely 

combines the nanoimprinting and shear exfoliation of prestructured layered nano/microstructures 

into polymeric fixing layers. Our experiments demonstrated that such a NASE mechanism can 

result in high-quality 40–200 nm high, 10–15 μm size MoS2 flake arrays with a high uniformity 

of flake thicknesses (i.e., relative thickness error ∼12%) over cm2-scale areas, which surpasses 

(a) 

(b) 

(c) 

(d) 
(e) 

50 nm 
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the performance of previously reported exfoliation methods for generating layered materials, in 

terms of large-area ordering and thickness uniformity of exfoliated structures. Furthermore, our 

MD simulation results of NASE processes suggested that the presented shear-exfoliation 

mechanism could be further developed for generating nanoscale-lateral-size layered structures 

for meeting the ever-evolving demands for device miniaturization. Such a MD simulation model 

also provided critical information for understanding the effects of the geometric dimensions of 

prestructured stamping structures on the resultant morphology of NASE-produced layered 

nanostructures.  

Finally, to gain an in-depth understanding of the interlayer vdW interactions in 2DLMs 

during the exfoliation/printing course, I qualitatively studied the mechanical response of 

interlayer vdW interactions to the external shear or normal forces by gently moving an in-situ 

flattened, CAFM tip with an attached nanomesa away from the substrate in a direction parallel 

or normal to the basal plane of 2D crystals, followed by shear and normal exfoliation of high-

quality mono- and few-layer 2D crystal features onto the substrate. Our CAFM-assisted 

electrostatic technique showed that high-quality mono- and bilayer graphene is reliably produced 

at significant yields only by the shear type of bond breaking between layers, whereas the normal 

type of bond breaking exhibits a very stochastic process. To gain a detailed understanding of 

underlying mechanisms associated with the normal and shear electrostatic exfoliation of 2DLMs, 

a series of MD simulations will be performed in Chapter 4. 
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CHAPTER 3 

 

Interfacial Electrostatic Behavior of 2D Layered Materials: Few-Layer Graphene  

 

3.1 Introduction  

Since its discovery in 2004, single-layer graphene (SLG) has become the most studied 

nanomaterial due to its exceptional mechanical, electrical and optical properties. Although 

several physical properties are shared between SLG and few-layer graphene (FLG), increasing 

layer thickness can give rise to a unique range of electronic and structural properties that has 

not yet been sufficiently understood. More specifically, electrical noise, charge transport and 

nonlinear optical properties of FLG on substrates (usually SiOx/Si) exhibit strong dependence 

on the number of layers, gate-induced charge densities and underlying oxide substrates. It is 

therefore crucial in the design of FLG-based electronics to quantitatively understand the role 

of the number of layers in the charge distribution and the electric field screening of the 

FLG/SiO2/Si systems and to explore the unclear relationship between the excess gate-induced 

charge densities and layer-by-layer Fermi level and charge density profiles in FLG systems. 

In order to correctly understand the ability of FLG systems to store electrical energy in 

an electric field, we first need to precisely quantify the effect of layer number and electric 

field on the dielectric screening properties of FLG flakes. Despite the importance of such a 

fundamental property for any electronic material, there have been very limited studies with 

significant diversity in the reported values of the dielectric constant of graphitic systems, 

ranging from 2 to 16 [34-40] (Table 3.1). Surprisingly, however, there is no direct 

experimental evidence for the dependence of the dielectric constant of FLG on the layer 

number and the electric field. To fill this apparent gap, we first perform a series of dielectric 

measurements on the one-to-eight layers of graphene mechanically exfoliated on the SiO2/Si 

substrate under ambient conditions but different electric fields using a dc electrostatic force 

microscopy (DC EFM) technique. We then study the effect of oxidation and thermal 

annealing on the dielectric constant of mono-, bi- and few layers of graphene (Section 3.2). 
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Table 3.1. Dielectric constant measurements of different graphitic systems. 
Graphitic systems  Methods ࢘ࢿ 

Single-walled carbon nanotube on 2-nm-thick SiO2/Si substrate [34]  Electrostatic force microscopy  10 

Mechanically-exfoliated, freestanding monolayer graphene [35]  Inelastic x-ray scattering  15.4 

Mechanically-exfoliated, freestanding monolayer graphene [36]  Inelastic x-ray scattering  6.6‒8.8 

Mechanically-exfoliated, freestanding monolayer graphene [37]  Shubnikov-de Haas oscillation  2.2‒4.9 

Quasi-freestanding monolayer graphene grown on carbon face of SiC [38]  High-resolution angle-resolved 
photoemission spectroscopy 

 
 

7.8 

Quasi-freestanding monolayer graphene grown on carbon face of SiC [39]  High-resolution angle-resolved 
photoemission spectroscopy 

 
 

6.4±0.1 

CVD-grown monolayer graphene on BN/SiO2/Si substrate [40]  Scanning tunneling microscopy  3±1 

 

Moreover, due to the importance of the subject, the question of interlayer charge 

screening length λ in the FLG systems has been addressed by several experimental methods, 

including angle-resolved photoemission spectroscopy [41], nondegenerate ultrafast mid-

infrared pump-probe spectroscopy [42], Kelvin probe force microscopy [43, 44, 45], single-

gated field effect transistor [46], double-gated field effect transistor [47] and dark-field 

scattering spectroscopy [48]. However, a relatively wide range of experimental values 

for λ (from less than a single layer to seven layers) is observed, which is not yet fully 

understood (Table 3.2). Nevertheless, a part of this data scattering may be attributed to the 

dependence of the screening length on the device quality and experimental conditions, such as 

sample preparation processes, the presence of defects and impurities in graphene, the intrinsic 

charge density in each graphene layer and the actual doping level of the system. This diversity 

in the reported values of λ is also seen in theoretical approaches. Depending on whether the 

inter-layer electron tunneling is taken into account or not, λ between 0.54 nm [49] and 0.7 nm 

[50] is obtained using a random phase approximation. Kuroda and coworkers theoretically 

reported that both the gate charge and temperature could highly influence λ, whose value may 

range from ~0.2 nm to 3.1 nm [51].  

 

Table 3.2. Charge screening depth measurements in FLG systems. 
#  Methods  λ (nm)  Ref. 
1  Angle-resolved photoemission spectroscopy  0.14−0.19  [41] 
2  Nondegenerate ultrafast mid-infrared pump-probe spectroscopy  0.34  [42] 
3  Kelvin probe force microscopy  1.36−1.70  [43] 
4  Kelvin probe force microscopy  0.42  [44] 
5  Kelvin probe force microscopy  2.4  [45] 
6  Single-gated field effect transistor  0.6  [46] 
7  Double-gated field effect transistor  1.2  [47] 
8  Dark-field scattering spectroscopy  1.2±0.2  [48] 
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Finite-size FLG flakes and graphene nanoribbons in actual devices exhibit an 

intriguing dependence of the electrostatic and electrical conductivity response on their 

geometrical parameters (e.g., lateral sizes, thicknesses, shapes and edge types) [52]. Both 

experimental and theoretical studies have demonstrated that a strong charge accumulation 

takes place at the edges of the finite-size graphene flake due to the electrostatic fringe field 

effects. Scanning gate microscope measurements of a monolayer graphene device on a 

SiO2/Si substrate reveal significant conductance enhancement at the edge of the graphene 

device due to the strong charge accumulation [53]. Similar observations of inhomogeneous 

charge density and capacitance profiles near the edges of both suspended and hBN-supported 

mono/bilayer graphene devices have been reported using quantum Hall edge channels [54]. 

Among different theoretical models on the charge distribution of the finite-sized graphene, we 

particularly note a strong charge accumulation at the edges and the corners of a positively 

charged rectangular graphene sheet using the charge/dipole molecular dynamics model 

[55] and along the edges of a graphene nanoribbon using the tight-binding model [56].  

Despite recent progress, a detailed understanding of the electrostatic charge 

distribution in connection with the actual electronic structure of finite-size FLG is still 

lacking. In particular, quantification of nonlinear charge density profile, interlayer 

capacitance, quantum capacitance, and local surface electrostatic potential of FLG requires an 

accurate model that can account for both electrostatic screening and fringe field effects on the 

charge distribution of the finite-size FLG system. Also a general model that can not only 

characterize the charge density profile, interlayer screening, quantum capacitance, and local 

surface potential of other 2DLMs and vdW heterostructures, but also unravel the relationship 

between the macroscopic induced charge density and sub-nanoscopic (layer-by-layer) charge 

distribution in finite-size 2DLMs is still missing. As such, we exploit the layered nature of 

FLG to develop a novel spatial discrete model that successfully accounts for both electrostatic 

screening and fringe field effects on the charge distribution of the finite-size FLG system. We 

utilize an effective bilayer model based on two tight-binding parameters to accurately 

describe electronic band structures and density of states (DOS) of one to eight Bernal-stacked 

graphene layers. In order to verify the accuracy of the results predicted by the discrete model, 

we compare our local surface potentials with those measured by our DC EFM method, angle-

resolved photoemission spectroscopy, and Kelvin probe force microscopy (Section 3.3). 
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3.2 Dielectric Constant Measurements of FLG  

Figure 3.1(a) shows the AFM topography image of 1-8 graphene layers mechanically 

exfoliated from HOPG onto a 10-nm-thick SiO2/Si substrate. A sharp needle is used to gently 

scratch through the thin SiO2 film and expose the underlying Si for the dielectric constant 

measurement of the SiO2 film as a validation of our subsequent experimental results. The height 

profile along the green line in the topography is shown in Figure 3.1(b). In our setup, the contact 

potential difference (VCPD), capacitance gradient (߲ܥ ⁄ݖ߲ ) and the vdW force (FvdW) between the 

tip and sample surface are first measured by acquiring the total force (sum of electrostatic force, 

Fel, and FvdW) on the Pt/Ir-coated tip (SCM-PIT, Nanoworld, with the spring constant of 1.9 N/m, 

Figure 3.1(c)) while sweeping the bias voltage between -3 and 3V on the sample surface at 

different tip-sample distances. The total force can be given by 

,ݖሺܨ ܸ, ߳௥ሻ ൌ െ
1
2
,ݖሺܥ߲ ߳௥ሻ

ݖ߲
ሾܸ െ େܸ୔ୈሺݖሻሿଶ ൅  ሻ (3.1)ݖ୴ୢ୛ሺܨ

where the first term represents the electrostatic force. This parabolic equation with three fitting 

parameters (߲ܥ ⁄ݖ߲ , େܸ୔ୈ and ܨ୴ୢ୛) is used to fit F‒V curves, such as the ones shown in Figure 

3.1(d) on a 4LG/SiO2/Si sample.  

It is evident from the offset of the parabolic F‒V curves along the y axis that the 

contribution of ܨ୴ୢ୛ to the total force is negligible when a bias voltage is applied, in particular, 

 

 

 

 

   

 

Figure 3.1.  (a) AFM topography image of 1-8LG onto a 10-nm-thick SiO2/Si substrate with the corresponding 
layer numbers labeled; (b) Height profile (blue line) and contact potential difference VCPD profile (red line) 
corresponding to the green line in (a); (c) SEM images of the conductive SCM-PIT tip used for the measurements. 
(d) Total force-voltage curves taken on the 4LG/SiO2/Si substrate at each tip-surface distance. Circles are 
experimental data and the lines are parabolic fits using Eq. (3.1) at a constant lift height. Three fitting parameters 
ܥ߲ ⁄ݖ߲ (aF/nm), େܸ୔ୈ(V) and ܨ୴ୢ୛(nN) are given for each curve

(b) 

(c) 

(a) (d) 
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at ݖ ൐ 10	nm. Hence, throughout the experiments described in the following, we scan over the 

sample from a distance farther than 10 nm to only measure the electrostatic force. The fitting 

parameter େܸ୔ୈ also reveals a dependence on the tip-sample distance in such a way that େܸ୔ୈ of 

4LG varies from 294 mV (at ݖ ൌ 6.1	nm) to 342 mV (at ݖ ൌ 19.7	nm). Using this method, we 

measured in Figure 3.1(b) େܸ୔ୈ between the tip and sample surface along the same green line in 

Figure 3.1(a) at ݖ ൌ 10	nm, clearly indicating the layer-dependent surface potentials in FLG up 

to four layers. 

In order to precisely quantify the relative dielectric constant of FLG, the electrostatic 

force acting on the tip needs to be calculated by integrating the Maxwell stress tensor over the 

surface of the probe. Since an accurate analytical model that can exactly reproduce the tip-

sample electrostatic interaction is not available, we carry out three-dimensional (3D) finite 

element electrostatic simulations using COMSOL Multiphysics (AC/DC Electrostatics module) 

to calculate the Maxwell stress tensor from the electrostatic potential distribution obtained by 

solving the following Poisson’s equation in a cylindrical space:  

.׏ ሺߝ௥ߝ଴۳ሻ ൌ 0 (3.2) 

where ߝ௥ is the relative permittivity of SiO2, air or FLG (depending on the subdomain to which 

Eq. (3.2) is applied); ߝ଴ is the permittivity of vacuum (ൌ 8.854 ൈ 10ିଵଶ	CଶNିଵmିଶ); ۳ (ൌ

െܸ׏) is the electric field vector (ܧ௫, ,௬ܧ  ௭); and ܸ is the electric potential. We also set theܧ

following boundary conditions: the electrical potential (e.g., V = 10V) is defined on the surface 

of the probe while the bottom surface of the SiO2 substrate is electrically grounded (V = 0). The 

Neumann condition (ܸ݀ ݀݊⁄ ൌ 0) is used on the lateral and upper sides of the simulation box 

(Figure 3.2(a)).  

Then, we calculate the electrostatic attractive force exerted on the tip by the integration of 

the Maxwell stress tensor over the surface of the probe. In a given subdomain, the Maxwell 

stress tensor (ો) can be expressed by 

ો ൌ ଴ߝ௥ߝ ൤۳۳ െ
1
2
ሺ۳. ۳ሻ۷൨ 

(3.3) 

where ۷ is the identity tensor.  

We consider a cylindrical simulation box of radius 250nm and height >300nm, as shown 

in Figure 3.2(a). The probe is modeled as a solid truncated cone of height 250nm and the half 

cone angle 15o with a semi-spherical apex of radius R positioned in the truncated region (tangent 
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to the cone surface, forming continuity in the geometry) and at a distance z from the substrate. 

The FLG film is modeled as a solid cylinder of radius 250nm, height h, and relative dielectric 

constant, ߝ௥, over the 10-nm-thick SiO2 substrate of ߝ௥ ൌ 3.8 (which is obtained in the absence 

of FLG). The air surrounding the probe is modeled as empty space of ߝ௥ ൌ 1. We adopt an extra-

fine tetrahedral mesh for the entire simulation box, except for the tip apex, FLG and SiO2 thin 

films where an extremely fine tetrahedral mesh is applied for better numerical accuracy. Figure 

3.2(b) shows, as an example, the cross-section of 3D finite element calculation of the 

electrostatic field distribution between the tip and the 28LG/SiO2 sample at z=10nm and V=10V 

(see the inset of Figure 3.3(a) for the corresponding potential distribution). 

 

  

Figure 3.2. (a) Geometric representation of the tip-FLG/SiO2 system along with the parameters used in electrostatic 
3D finite element calculations. (b) Cross-section of 3D finite element calculation of the electrostatic field 
distribution between the tip and the 28LG/SiO2 sample at a tip-surface distance of 10nm. The applied potential 
between tip and substrate is V=10V.  

 

We first calibrate the apex geometry of the probe by taking electrostatic force-distance 

(Fel‒z) curves on a conductive surface (e.g., highly-doped silicon or HOPG) close to the 

graphene flakes. However, we note that only local electreostatic force at the tip apex depends 

strongly on the tip-sample distance within the range 10-150 nm and thus the global electreostatic 

contribution from the cantilever shank and the cone is negligible. As such, in Figure 3.3(a) the 

electrostatic force on the tip apex is obtained by subtracting the electrostatic force of the 

cantilever shank/cone at ݖ ൐ 200	nm from the total force. All Fel‒z curves were fitted with our 

finite-element calculations over a 10-150 nm tip-sample distance at V = 10 V, using the effective 

apex radius R as the only fitting parameter, while the nominal half cone angle was fixed at ߠ ൌ

15°. From ten Fel‒z measurements (similar to the one shown in Figure 3.3(a) on the bar silicon 

surface), we found R to be 28 ± 0.5 nm which is consistent with the nominal value ~20 nm 

provided by the manufacturer.  

(b) (a) 
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After VCPD and R were determined as a prerequisite for the accurate quantification of the 

dielectric constant of the FLG, we next measure the Fel‒z curves on the graphene flake of 

different thicknesses, followed by matching the finite-element results to the experimental data 

using the only fitting parameter ߳௥. We illustrate in Figure 3.3(a) the Fel‒z curves on the bare 

silicon (for the sake of tip calibration), on the 10-nm-thick SiO2 (for comparison purposes) and 

on the 28LG (a thicker flake was chosen for more clarity in the figure). From several 

measurements on different areas of the sample, we obtain ߳௥ ൌ 20.1 േ 1.9 for the 28LG and 

߳௥ ൌ 3.86 േ 0.67 for the ultrathin SiO2 film (in good agreement with the corresponding bulk 

material 3.8 [57] and ultrathin films ~4.0 േ 0.9 [58, 59]). For further comparison, we revisited 

the dielectric constant of SWCNTs on 2-nm-thick SiO2/Si substrate, reported by Lu et al. using a 

combination of scanning force microscopy and finite element electrostatic simulations [60]. As 

shown in Figure A.1 (Appendix A), 3D modelling of an SWCNT of diameter 3 nm as a hollow 

cylinder rather than a solid cylinder leads to the dielectric constant of ~22.5, which is more than 

twice as large as that of a solid SWCNT of the same diameter. This modified value for the 

dielectric constant of SWCNTs is more consistent with that of 28LG. 

  

 

 

 
Figure 3.3. (a) Measured electrostatic force versus tip-Si distance taken on the bare Si surface (gray circles), on the 
10-nm-thick SiO2 film (blue triangles), and on the 28LG (red squares) at V = 10 V. The lines are theoretical fittings 
to Eq. (1). Top inset shows that as the tip moves across the sample surface in constant height, the tip experiences a 
larger electrostatic force on 28LG than that on Si and SiO2. Bottom inset shows the cross-section of 3D finite 
element calculation of the electrostatic potential distribution between the tip and the 28LG/SiO2 sample (see Figure 
3.2(b) for the corresponding electric field distribution); (e) Relative dielectric constant as a function of the layer 
number under relatively low and high bias voltages. The application of the bias voltage ൑ 3V makes the dielectric 
response extremely weak in our setup. The dashed line is a guide to the eyes and represents the dielectric constant of 
the bulk HOPG; (f) Dependence of the relative dielectric constant of 1-3LG and bulk HOPG on oxygen reaction at 
V=10 V. 

(a) (b) 

(c) 
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We now perform a series of similar dielectric measurements on the 1‒8 LG of Figure 

3.1(a) under ambient conditions and the extracted dielectric constants are shown in Figure 

3.3(b). Although the dielectric screening ability of 1LG is relatively weaker (~20%) than that of 

bulk HOPG, the overall dielectric response of FLG samples to the external electric field is almost 

independent of the number of layers. Interestingly, the presence of a relatively strong electric 

field of E=0.1V/Å (or equivalently 10V/10nm) does not show any systematic change in the 

dielectric response of FLG. These observations are in sharp contrast with density functional 

theory (DFT) calculations of effective dielectric constant of freestanding 2-10LG [27] where ߳௥ 

varies from ~3 (for 2LG) to ~8 (for 10LG) at E=0.1V/Å and becomes electric field-dependent for 

E>0.01V/Å.  

A relatively large variation in the measured dielectric constant of monolayer graphene 

under ambient conditions (Figure 3.3(b)) motivates us to study the possible effect of surface 

reaction on the dielectric response of the FLG. To do so, we oxidized the FLG using a modified 

Hummer’s method in which the FLG/SiO2/Si substrate was dipped into the diluted oxidant 

solution (60% H2SO4:0.01M KMnO4 = 1:1) for up to 5 min, followed by deionized water rinse 

and an N2 dry. In Figure 3.3(c), our measurements on the FLG under different exposure times 

reveal a strong dependence of the dielectric constant of monolayer graphene on the surface 

reaction which makes it an excellent charge screening material upon 300s oxidation, whereas 

bilayer graphene and FLG exhibit very high oxidation resistance. We also observed that vacuum 

thermal annealing of monolayer graphene at 400°C for 5 h can fully recover its charge storage 

capability, making it a unique material with a wide range of dielectric response upon 

oxidation/thermal annealing. 

 

3.3 Layer-by-Layer Insight into Electrostatic Charge Distribution of FLG 

In FLG systems on a dielectric substrate such as SiO2, the addition of each extra layer of 

graphene can drastically alter their electronic and structural properties. Here, we map the charge 

distribution among the individual layers of finite-size FLG systems using a novel spatial discrete 

model and extract the interlayer charge screening length in FLG. We first examine the charge 

distribution of an FLG/SiO2/Si system containing N (up to 8) layers of finite-size graphene sheet 

with desired shapes (i.e., square, rectangle, circle or ribbon), as schematically illustrated in 

Figure 3.4. Each graphene layer is labeled by an integer number starting from ݅ ൌ 1 for the layer 
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closet to the substrate (hereafter referred to as the innermost layer) to ݅ ൌ ܰ for the top layer (as 

the outermost layer). Applying a bias voltage ଴ܸ between the highly-doped Si substrate and ܰ-

layer graphene (N-LG) induces a total excess charge density of ܳ଴ in N-LG, whose layer ݅ can 

carry a charge density of ܳ௜ such that the following constraint holds ܳ଴ ൌ ∑ ܳ௜
ே
௜ୀଵ .  

 
Figure 3.4. Schematic illustration of an eight-layer graphene/SiO2 system. The Si substrate beneath the SiO2 film is 
not shown for simplicity. The arrows correspond to the electric field lines focusing near the edges of FLG. Left 
inset: density of states in the four innermost graphene flakes versus the electronic band energy, where the 
transparent area represents the average induced charge density ܳ௜ and the average value of the Fermi energy profile 
is denoted by 〈ॱ୊௜〉. 
 

The electronic bands of N‒LG can be modeled by two tight-binding parameters, namely, 

the nearest neighbor hopping parameter ߛ଴ (which defines the Fermi velocity ݒ௙ ൌ ሺ3 2⁄ ሻ ଴ܽߛ ԰⁄ , 

where ܽ ൌ 0.142	݊݉ is the C-C bond length) and the nearest neighbor interlayer coupling 

constant ߛଵ. We take ߛ଴ ൌ 3.14	ܸ݁ and ߛଵ ൌ 0.4	ܸ݁ as typical values of bulk graphite. The 

energy dispersion in Bernal-stacked N‒LG, obtained from 2D cuts in the electronic dispersion of 

graphite, perpendicular to the graphene planes at specific values of ߠ ൌ ߨ݆ 2ሺܰ ൅ 1ሻ⁄ , can be 

given by ௝݇
ଶ ൌ ॱଶ ⁄ଶߛ േ 2 ௝݉

∗ॱ ԰ଶ⁄ , where ߛ ൌ ௙԰ (԰ being the reduced Planck constant), ௝݉ݒ
∗ ൌ

൫ߛଵ ௙ݒ
ଶ⁄ ൯ sin is the effective mass, ݆ (ൌ ߠ 1,3,5,… ,ܰ െ 1 for even layers and 0,2,4,… , ܰ െ 1 for 

odd layers) is the index of the energy band with kinetic energy ॱ. Figures 3.5(a) through (h) 

illustrate low‒energy band structures of N‒LG (near the K‒point of the Brillouin zone) up to 

ܰ ൌ 8. It is seen that monolayer graphene (Figure 3.5(a)) exhibits a well-known linear 

dispersion which results in massless excitations, whereas bilayer graphene (Figure 3.5(e)) 

displays a set of four hyperbolic bands (with no Dirac electrons) touching at the so-called Dirac 
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point. Though the band structure of trilayer graphene (Figure 3.5(b)) comprises one pair of 

linear (monolayer-like) bands and two pairs of hyperbolic (bilayer‒like) bands, tetralayer 

graphene (Figure 3.5(f)) interestingly shows only four pairs of hyperbolic (bilayer‒like) bands. 

In general, based on the tight-binding model described above, both monolayer‒ and bilayer‒like 

bands are present in odd multilayers (ܰ ൒ 3), whereas the band structure of even multilayers 

only consists of the bilayer‒like bands.  

 

 
 

Figure 3.5. (a-h) Low‒energy band structures of Bernal‒stacked N‒LG near the K‒point of the Brillouin zone. 
There exist ܰہ 2⁄ ہ pairs of split-off hyperbolic bands, where ۂ  denotes the integer part of the quantity. The ۂ
excitation energy from the ground state to the first excited state (ॱே

ୣ୶) is shown with arrows. Blue lines in (a)-(d) 
correspond to the electronic dispersion of the effective monolayer graphene (ߠ ൌ 0) which only appears in systems 
with an odd number of graphene layers, whereas red, green, pink and brown in (e)-(h) correspond to the electronic 
dispersion of the bilayer-like graphene (ߠ ് 0). Negative and positive ॱ refer to the 
valence(hole)/conduction(electron) bands, respectively. (i) Density of states in ܰ‒LG showing discontinuous jumps 
at the excited states. (j) Zoom-in view of discontinuous jumps at the first excited state (ॱே

ୣ୶). 

(a) 

(i) (j) 

(b) (c) (d) 

(e) (f) (g) (h) 
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Figure 3.5(a)-(h) confirm that N‒LG should be considered a single 2D system ( ௝݉
∗ ് 0), 

rather than a composite system consisting of ܰ parallel single layers of graphene with the linear 

energy dispersion ( ௝݉
∗ ൌ 0), as experimentally confirmed by micro magneto-Raman scattering 

spectroscopy in 1- to 5-LG systems [61]. We will address at the end of the chapter the influence 

of the effective mass on the charge distributions of the N‒LG system through comparison of our 

results with those obtained by a massless linear energy dispersion model. 

The density of states (DOS) in N-LG is obtained from the summation of the DOS for 

each energy band with double spin and double valley degeneracies 

ேሺॱሻܦ ൌ෍෍
݀
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ቆ ௝݇
ଶ
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௝
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௟ୀଵ

ൌ
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ଶߛߨ
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൰൨

௝

ே್

௟ୀଵ

 (3.4) 

where ௕ܰ (ൌ ܰ 2⁄  and ሺܰ ൅ 1ሻ 2⁄   for even and odd multilayers, respectively) is the number of 

bands in ॱ and ݆ ൌ 2݈ െ 1	 and 2ሺ݈ െ 1ሻ for even and odd multilayers, respectively. A systematic 

evolution of ܦேሺॱሻ as a function of the layer number in Figure 3.5(i) reveals finite 

discontinuities at the split-off (excitation) energies ॱୣ୶ (ൌ ଵߛ2 sin  which are produced by the (ߠ

band extrema at the K-point, followed by a linear increase with kinetic energy ॱ. Of particular 

importance for the electronic structures of ܰ-LG at low energies is the excitation energy from the 

ground state (Dirac point) to the first excited state (denoted by ॱே
ୣ୶), as explicitly shown in 

Figure 3.5(j).  

 We next determine the charge distribution profile in a finite-size ܰ-LG stack with a 

circular shape of radius ܴ, based on the method of images, followed by solving the Love 

equation (Section B1.1, Appendix B). The charge density profile in the circular layer ݅ can then 

be expressed by 

,௜ሺ঒ݍ ,௜ߙ ܳ௜ሻ ൌ
݂ሺ঒, ௜ሻߙ
〈݂〉

ܳ௜ (3.5) 

where   

݂ሺ঒, ௜ሻߙ ൌ
݃ሺ঒ሻ

ඥሺ1 ൅ ௜ሻߙ െ ঒ଶ
 (3.6) 

is the charge distribution profile, normalized to its average value 〈݂〉 for generality purposes; the 

index notation ݅ varies from 1 to N; ঒ (ൌ ݎ ܴ⁄ ) is a dimensionless parameter; ݎ denotes the radial 

coordinate of atom and ݃ሺ঒ሻ is a polynomial function of ঒ which only depends on the ratio of the 
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graphene size to the dielectric thickness (Figure B.1, Appendix B). A new parameter ߙ௜	ሺ൐ 0ሻ 

is introduced by Eq. (3.6) in order to determine the amount of charge density at the edge of the 

layer	݅ (঒ ൌ 1). Although the focus of the present work is on graphene flakes with a circular 

shape, we note that the charge distribution of circular graphene flakes and graphene nanoribbons 

is of a similar form as given by Eq. (3.6) and, therefore, does not qualitatively and pretty much 

quantitatively alter the main results of this chapter (Section B1.2, Appendix B). We also refer 

the interested reader to Section B1.3 of Appendix B for the corresponding charge distribution 

profile of rectangular/square graphene flakes.  

As we already discussed, in practice, the charge distribution in electrostatically doped 

graphene devices is inhomogeneous, yielding a non-uniform Fermi level profile. For instance, 

scanning gate microscope measurements of a monolayer graphene device on a SiO2/Si substrate 

reveal a strong shift of the local Dirac point from the Fermi level at the graphene edge due to the 

contribution of both localized edge states (i.e., zigzag or armchair) and accumulated charge along 

the edge [23]. The Fermi energy profile ॱ୊௜ across the layer ݅ can be expressed in terms of the 

constant Fermi energy অ୊௜ as follows (Section B2, Appendix B) 
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(3.7)

Then, the average charge density of each layer can be expressed by 
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݁
ܰ
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଴
ൌ
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where 〈ॱ୊௜〉 is the average value of ॱ୊௜ in terms of অ୊௜ and ߙ௜. The average charge density ܳ௜ can 

be obtained by minimizing the total energy of the system with respect to অ୊௜ and ߙ௜ as the 

variational parameters under the constraint that ܳ଴ ൌ ∑ ܳ௜
ே
௜ୀଵ . In the N-LG/SiO2/Si system, the 

total energy can be split as, ௧ܷ ൌ ௥ܷ ൅ ௘ܷ ൅ ܷ௕, where the terms correspond to energy stored in 

SiO2 as the dielectric medium (ൌ ܳ଴
ଶ݄௦ ሺ2ߝ଴ߝୱሻ⁄  where ݄௦ and ߝୱ are the SiO2 thickness and the 

dielectric constant, respectively, and ߝ଴ is permittivity of the vacuum), electrostatic energy 

between the graphene layers and the band-filling energy in each layer, respectively. Charge 
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distribution in the N-LG system can be explained as a result of the competition between ௘ܷ that 

tends to hold the charge in the layers as close to the Si substrate as possible, and ܷ௕ that tends to 

spread the charge throughout the N-LG system. Assuming that the electronic band structures 

remain unchanged under an external electric field, ௘ܷ and ܷ௕ at zero temperature can be given, 

respectively, by    

௘ܷ ൌ
݀௚

௚ߝ଴ߝ2
෍ቌܳ଴ െ෍ܳ௝

௜

௝ୀଵ

ቍ

ଶ
ே

௜ୀଵ

 (3.9) 
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where ݀௚ is the interlayer distance and ߝ௚ is the dielectric constant in N-LG. One may find the 

equivalent bias voltage applied between the Si substrate and N-LG by taking the derivative of the 

total energy with respect to the total induced charge density (i.e., ଴ܸ ൌ ݀ ௧ܷ ݀ܳ଴⁄ ) and local 

surface electrostatic potential of each layer can be obtained by ௜ܸ ൌ ݀ ௘ܷ ݀ܳ௜⁄ .  

 

3.3.1 Comparison studies  

We first compare local work functions (Φ௜ ൌ െ݁ ௜ܸ) predicted by the present discrete 

model with those measured by our DC EFM technique (Figure 3.1(b)), angle-resolved 

photoemission spectroscopy (ARPS) [41] and Kelvin probe force microscopy (KPFM) [43, 44]. 

We note that since the accurate work function of the tip under the ambient conditions and also 

the accurate value of the dielectric constant for the N-LG/SiO2 interface are unknown, the 

difference of the work function is used to achieve more accurate comparison purposes. In Figure 

3.6(a), we present our measured Φ௜ in the 1-8-LG systems relative to that of 8LG, Φ଼, which is 

well consistent with that predicted by the discrete model when ܳ଴ ൌ 7.9 ൈ 10ଵଶcmିଶ. We also 

compare Φ௜ in a 4-LG system with that measured by ARPS [41], as shown in Figure 3.6(b). The 

results are given relative to the work function of the outermost layer Φସ as the zero-reference 

level and ܳ଴ is set to be 2.2 ൈ 10ଵଷcmିଶ. It is evident from Figure 3.6(b) that a very good 

agreement exists between the proposed discrete model and those measured by Ohta et al. [41]. 

Another comparison study is conducted in Figure 3.6(c) between the present discrete model and 

KPFM results of Ziegler et al. [43], who measured Φ௜ in the 1-6-LG systems relative to that of 
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bulk graphite Φஶ. Figure 3.6(c) clearly demonstrates that the measured work functions are 

generally in much better agreement with our results than those obtained by ab initio DFT 

calculations [43] when assuming a total induced charge density of 4.85 ൈ 10ଵଶcmିଶ. We further 

perform a similar comparison in Figure 3.6(d) between the present work functions at the 

uppermost layer of ܰ-LG (Φே) relative to those of ሺܰ െ 1ሻ-LG (Φேିଵ) with KPFM results 

measured for N-LG with layer number ranging from 1 to 8 [44]. It is indicated that the present 

work functions closely match with the experimental observations for ܳ଴ ൌ 1.7 ൈ 10ଵଷcmିଶ.   

 

  

  

Figure 3.6. (a) Our work functions in the 1-8-LG systems relative to that of 8LG, Φ଼, for ܳ଴ ൌ 7.9 ൈ 10ଵଶcmିଶ; 
(b) work functions across a 4-LG system which are given relative to that of the outermost layer Φସ as the zero-
reference level for ܳ଴ ൌ 2.2 ൈ 10ଵଷcmିଶ [41]; (c) work functions in the 1-6-LG systems relative to that of bulk 
graphite Φஶ for ܳ଴ ൌ 4.85 ൈ 10ଵଶcmିଶ [43]; and (d) difference between the work function of the uppermost layer 
in the N-LG system and that in the (N-1)-LG system for N=1 to 8 when ܳ଴ ൌ 1.7 ൈ 10ଵଷcmିଶ [44]. 
 

Further comparison study is performed in Figure 3.7 to investigate the influence of the 

effective mass ௝݉
∗ on the charge distribution of an 8-LG system. It is seen from Figure 3.7 that 

the model based on the monolayer-like band structure fails to accurately predict the charge 

distribution of the 8-LG system, in particular at the smaller induced charge densities. This figure 

also shows a significant deviation in the charge densities of layers ݅ ൐ 5 for ܳ଴ ൌ 10ଵଷcmିଶ.  

Also, our energy evaluations of N-LG systems under a given ܳ଴ for three possible charge 

distribution scenarios⎼ (a) optimum distribution given in Eq. (3.6), (b) non-uniform distribution 

with the charge singularity at the very edge (i.e., ߙ௜ ൌ 0), and (c) fully uniform distribution (i.e., 

(a) (b) 

(c) (d) 
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௜ݍ ൌ ܳ௜ሻ⎼ reveal that the minimum energy is only achieved by the present optimum charge 

distribution model, further indicating its merit in predicting the charge distribution of other 

families of atomically thin layered materials.  

 

 

Figure 3.7. Normalized charge distribution profiles of an 8-LG system for three different values of ܳ଴. Dashed 
curves with open symbols represent the results obtained by the linear energy dispersion ( ௝݉

∗ ൌ 0), whereas solid 
curves with filled symbols denote the results obtained by the actual energy dispersion of an 8-LG system ( ௝݉

∗ ് 0). 
 

3.3.2 Layer‒by‒layer charge density profiles in 5‒LG system 

We now explore the unclear relationship between the total induced charge densities and 

the layer-by-layer charge density and Fermi level profiles. To this end, we begin by illustrating 

the charge density profiles of the 5-LG system when ܳ଴ ൌ 10ଵଷcmିଶ, as shown in Figure 3.8(a) 

(see Figure B.2(a), Appendix B for the corresponding Fermi level profiles). Consistent with the 

experiments of Ohta et al. [41] and Wang et al. [44], the charge density is drastically reduced as 

one move away from the innermost toward the outermost layer. However, the charge density in 

the region very close to the edges is screened out an order of magnitude more weakly than that 

across the central region of the layer, as shown in Figure 3.8(b), which can be explained by the 

presence of the strong fringe field along the edges, as schematically shown in Figure 3.4. Our 

results in Figure 3.8(a) also suggest that the innermost layer plays the most important role in the 

electrostatic charge distribution of the N-LG systems by hosting ~70% of the gate charge density 

ܳ଴. Hence, it is worth looking into its Fermi level profile more in detail, as illustrated in Figure 

3.8(c). By following the evolution of the Fermi level along the innermost layer, it is observed 

that a strong charge accumulation and thus sufficiently large shift in the Fermi energy at the edge 

can give rise to a jump in the electronic band structures of 5-LG toward the first excited state, 0.4 

eV (as shown in green solid curve in Figure 3.8(c) and in green dashed curve in the inset, which 

shows the energy band structure of the 5-LG system). However, our Fermi level analyses in the 

innermost layer of 6-and 8-LG systems exhibit few jumps in the Fermi level of the regions both 
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close to and away from the edges when ܳ଴ ൌ 10ଵଷcmିଶ (Figure B.2(b), Appendix B for detail). 

This can be attributed to the fact that the lowest energy of the first excitation band decreases for 

the N-LG system with a larger number of graphene layers, as shown in Figure 3.8(b). 

 

 
Figure 3.8. (a) Charge density profiles of a 5-LG system for ܳ଴ ൌ 10ଵଷcmିଶ, where each dashed line represents the 
average charge density 〈ݍ௜〉 ൌ ܳ௜ in the layer i. (b) Charge density at the edge ݍ௜

௘ and the center ݍ௜
௖ of the layer i. (c) 

Fermi level profile of the innermost layer. Inset: low-energy band structure of 5-LG system. Solid green curve in the 
Fermi level profile and dashed green curve in the band structure represent the first (0.4 eV) excitation energy. (d) 
Blue curves: normalized average charge profiles across the layers of a 5-LG system for different gate charge 
densities of 10ଵଶ (circles), 10ଵଷ (rectangles) and 10ଵସcmିଶ (diamonds). Red curves: corresponding changes in the 
local charge screening ߣ௜,௜ାଵ. 
 

To quantitatively elucidate the correlation between the magnitude of the gate charge 

density ܳ଴ and the average charge distribution ܳ௜ through the 5-LG thickness, Figure 3.8(d) 

shows ܳ௜ ܳ଴⁄  ratio as a function of the layer positions for three different values of ܳ଴ (ൌ 10ଵଶ, 

10ଵଷ and 10ଵସcmିଶ). It is seen that a larger value of ܳ଴ leads to a stronger charge screening 

normal to the layers, however, this effect diminishes when ܳ଴ ൏ 10ଵଶcmିଶ. This figure also 

demonstrates that almost 90% of the excess charge density resides in the first two layers, 

implying that the interlayer screening length can reliably be determined to be less than ~0.7 nm. 

In other words, the gate-induced electric field can be felt very weakly by layers N>2, which is 

consistent very well with our CAFM measurements in Figure 3.3(b) where the relative dielectric 

constant (which is a measure of charge storage capability and electric field screening in a 

material) is almost independent of electric field and layer number, in particular, for N>2. Having 

ܳ௜ data for each layer enables us to calculate the “local” (interlayer) charge screening ߣ௜,௜ାଵ as 

ܳ௜ାଵ ܳ௜⁄ ൌ exp	൫െ݀ ⁄௜,௜ାଵߣ ൯ based on Thomas-Fermi charge screening theory (see Section B4, 

Appendix B for the calculation of the interlayer screening). It is deduced from Figure 3.8(d) 

that the charge screening length between the first and second layers ߣଵ,ଶ may reduce from ~1݀ at 

ܳ଴ ൌ 10ଵଶcmିଶ to ~0.5݀ at ܳ଴ ൌ 10ଵସcmିଶ, while a smaller variation in ߣ௜,௜ାଵ is observed for 

the layers farther from the substrate due to the reduction in their DOS at the Fermi level.  

(a) (b) 

(c) 

(d) 
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3.3.3 Layer‒dependent charge screening in N‒LG systems 

We now turn to a discussion of the layer-dependent charge distribution/charge screening 

in 1-8-LG systems for a given gate-induced charge density of 10ଵଷcmିଶ. Figure 3.9(a) presents 

a plot of ܳ௜ ܳ଴⁄  versus the layer positions in 1-8-LG systems, indicating that approximately 

70%, 20%, 6% and 3% (99% overall) of ܳ଴ sit in layers ݅ ൌ 1 to 4, respectively, and thus the 

gate-induced electric field is not definitely felt by ݅ ൐ 4 layers. Interestingly, we observed that 

the charge density of the layers located in the same position in N-LG systems decreases in a 

sawtooth-like fashion, as shown in the insets of Figure 3.9(a) for the normalized charge density 

of the innermost ܳଵ ܳ଴⁄  and second innermost ܳଶ ܳ଴⁄  layers. This saw-tooth pattern which is 

associated with the presence of the linear energy dispersion in N-LG with odd layer number has 

been experimentally confirmed through the measurement of the electric double-layer capacitance 

between an ionic liquid and 1-6-LG [33].  

 

 

Figure 3.9. (a) Normalized average charge distribution profiles across the layers of 1-8-LG systems for ܳ଴ ൌ
10ଵଷcmିଶ. Insets: Normalized charge density of the first (lower inset) and second (upper inset) layer in 2-8-LG. (b) 
Circles with blue borders: global charge screening length in 1-8-LG systems for ܳ଴ ൌ 10ଵଷcmିଶ. A decay length 
(d/λ) of 1.04 is found by fitting the data with a function e−(i−1)d/λ, indicated by a dashed curve. Rectangles with red 
borders: local charge screening length in 1-8-LG systems for ܳ଴ ൌ 10ଵଷcmିଶ. (c) Edge-to-center charge density 
ratio as a function of the layer position in 1-8-LG systems when ܳ଴ ൌ 10ଵଷcmିଶ. Inset: Edge-to-center charge 
density ratio for the innermost (red circles) and outermost (blue squares) layers of 1-8-LG systems. 
 

The results in Figure 3.9(a) provide an important piece of information about the charge 

screening effect of the innermost layer on different layers of 2-8-LG. Hence, we first define a 

“global” (effective) charge screening ߣ as ܳ௜ ܳଵ⁄ ൌ exp	ሾെ݀ሺ݅ െ 1ሻ ⁄ߣ ሿ. This new definition of 

the “global” charge screening length allows us to explore how the innermost layer impacts the 

surface potential drop across the FLG thickness and also provides a single value of the screening 

length to predict the charge distribution of all layers relative to that of the innermost layer. 

Keeping both global and local screening definitions in mind, we observe from Figure 3.9(b) that 

our global charge screening can be well fitted by the simple exponential decay function (in 

(a) (b) (c) 



58 
 

particular for ܳ଴ ൑ 10ଵଷcmିଶ, see Figure B.3, Appendix B) when ߣ ൎ ݀.  Figure 3.9(b) also 

illustrates the local charge screening between the adjacent layers of 1-8-LG, showing a much 

lower variation in ߣ௜,௜ାଵ of the middle layers with an average value of ~	݀, consistent with the 

global charge screening length. It is also observed from Figure 3.9(b) that ߣ௜,௜ାଵ/݀ of the 

innermost and outermost interlayers becomes layer-independent for ܰ ൒ 3 and ܰ ൒ 4, 

respectively. 

We next address the problem of the charge accumulation along the graphene edge, 

focusing first on very limited publications that have quantitatively studied the charge density at 

the edge of graphene thus far. From prior experimental work, a nearly three-fold increase in 

capacitance and thus the charge density near the edge of a suspended bilayer flake (0.4 µm wide 

and 2.6 µm long) was observed using quantum Hall edge channels [62]. From theoretical points 

of view, the charge/dipole molecular dynamics model predicts a seven-fold (fifteen-fold) 

enhancement of the charge density at the edge (corner) over that at the center of a charged 8.5 

nm × 4.8 nm rectangular graphene sheet [63] and a similar eight-fold enhancement of the charge 

density in a 20-nm-wide graphene nanoribbon [55]. This model also suggests that the charge 

enhancement is more significant in multi-layered graphene in such a way that the charge density 

at the edge relative to that at the center can vary from 9 in the inner layer to >14 in the outer 

layer of a 4-LG nanoribbon system [55]. Also, using the tight-binding Hartree model, the charge 

density along the edge of a 20-nm-wide graphene nanoribbon enhances up to five times over that 

at the center [56].  

Having this quantitative description of the charge accumulation at the graphene edge in 

mind, we present in Figure 3.9(c) the charge density at the edge relative to that at the center, 

௜ݍ
ୣ ௜ݍ

ୡ⁄ , as a function of the layer position in the 1-8-LG systems for ܳ଴ ൌ 10ଵଷcmିଶ. As is 

evident from the figure, our discrete model predicts the edge-to-center charge density ratio for 

monolayer graphene to be ~7.5 which is consistent with the theoretical results [55, 56, 63]. 

Surprisingly, the addition of each extra layer reduces the charge accumulation at the edge of the 

innermost layer from 7.5 in 1-LG down to ~5 in 8-LG, whereas an inverse trend is observed for 

the charge accumulation at the edge of the outermost layer, whose value varies from 7.5 in 1-LG 

up to ~20 in 8-LG, as shown in the inset of Figure 3.9(c). While the latter can be attributed to 

the presence of highly weak charge screening at the edge due to the strong fringe field effect, as 

already shown in Figure 3.9(b), the former may be accounted for by a combined effect of strong 
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repulsive forces at the edge and the overall charge reduction in the innermost layer. It is worth 

pointing out that such reduction of the charge accumulation at the edge is observed in all other 

layers having the same position in the N-LG systems (for instance, see the second innermost 

layer in 2-8-LG) and the edge-to-center charge density ratio eventually converges to a constant 

value, showing nearly layer-independent behavior for ܰ ൒ 6.  

 

3.3.4 Temperature‒dependent charge screening model 

While the present study has focused on the charge distribution of N-LG at absolute zero 

temperature, we note that a variation in temperature from zero to room temperature has no 

appreciable effect on the charge screening length, more specifically at the higher gate electric 

field. Following a temperature-dependent model of the charge distribution detailed in Section 

B5, Appendix B, the local charge screening between the first and second layers of an 8-LG 

system is plotted in Figure 3.10 as a function of ܳ଴ at ܶ ൌ 0 and 300	K. For comparison 

purposes, the results of Kuroda et al. [51] based on the linear energy dispersion are reproduced 

by setting ௝݉
∗ ൌ 0, as indicated by dashed curves with open symbols in Figure 3.10. It is evident 

from Figure 3.10 that the interlayer charge screening is insensitive to the temperature variation 

when ܳ଴ ൒ 5 ൈ 10ଵଶcmିଶ and only a slight change in ߣଵ,ଶ is observed at smaller gate charge 

densities (see lower inset) and ultimately saturates to ߣଵ,ଶ ൎ ݀. Consistent with our temperature-

independent charge screening length, Yang and Liu reported using the first-principles 

calculations that the interlayer screening, static perpendicular dielectric function and density of 

states of bi- and tri-layer graphene slightly changes as temperature increases from 0 K to 300 K 

to 600 K [64].  

 

 

 

Figure 3.10. Local screening length between the first and second layers of an 8-LG system as a function of ܳ଴. 
Dashed curves with open circles (squares) represent the results obtained by the linear energy dispersion model 
( ௝݉

∗ ൌ 0) at T=0 K (T=300 K), whereas solid curves with filled circles (squares) denote the results obtained by the 
actual energy dispersion of the 8-LG system ( ௝݉

∗ ് 0) at T=0 K (T=300 K). 
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It is also observed from Figure 3.10 that the linear dispersion model fails to predict the 

interlayer charge screening between the two innermost layers for ܳ଴ ≲ 10ଵଶcmିଶ such that ߣଵ,ଶ 

goes to infinity (i.e. ܳଶ ൎ ܳଵ) at ܶ ൌ 0 as ܳ଴ → 0. Interestingly, a layer-by-layer inspection of 

the charge density in a similar 8-LG system for different values of ܳ଴ reveals that the linear 

dispersion model not only yields inconsistent charge density profiles in almost all layers for 

ܳ଴ ≲ 10ଵଶcmିଶ but also shows a significant deviation in the charge densities of outer layers for 

ܳ଴ ൐ 10ଵଶcmିଶ, as shown earlier in Figure 3.8. This deviation from our model can be 

understood in terms of the effective mass in N-LG with ܰ ൒ 2: an essential ingredient that is not 

captured in Kuroda’s model where an N-LG system is considered as ܰ parallel single layers with 

a massless linear energy dispersion (upper inset for ܰ ൌ 1), rather than a single 2D system with 

the actual energy dispersion (upper inset for ܰ ൌ 8) [65]. 

 

3.4 Summary 

We quantified, for the first time, the effect of layer number and electric field on the 

dielectric constant of FLG. Our electrostatic force measurements on FLG/SiO2/Si samples 

suggested a constant relative permittivity nearly independent of the layer number and the 

external electric field (up to our experimental limit of 0.1 V/Å), which is in excellent agreement 

with our proposed discrete model. We also demonstrated that the dielectric constant of 

monolayer graphene can be tuned from 17 to 3.5 upon oxidation and recovered its charge storage 

capacity by thermal treatment. Notably, bilayer graphene and FLG can retain their chemical 

inertness under oxidation and thus are well-suited for fabrication of long-term stable electronic 

devices with higher moisture and oxidation resistance.  

We next developed a novel spatial discrete model to unravel the relationship between the 

macroscopic induced charge density and sub-nanoscopic (layer-by-layer) charge distribution in 

finite-size FLG through considering the effects of both electrostatic interlayer screening and 

fringe field. We showed that adding each extra layer reduces the charge accumulation at the edge 

relative to that at the center of the innermost layer up to 20% (from ~7.5 in 1-LG down to ~5 in 

8-LG). Our model offered a simple rule of thumb regarding the charge distribution in FLG: 

approximately 70%, 20%, 6% and 3% (99% overall) of the total induced charge density reside 

within the four innermost layers (layers ݅ ൌ 1 to 4, respectively), implying that the gate-induced 

electric field is not definitely felt by layers ݅ ൐ 4. We finally found that a variation in 
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temperature from zero to 300 K has no appreciable effect on the interlayer charge screening 

when the gate charge density is larger than ~5×1012cm-2. Although our study is concerned with 

FLG systems, the generality of our spatial discrete model suggests that the charge density profile, 

interlayer screening, quantum capacitance, and local surface potential of other atomically thin 

layered materials (ATLMs), such as semiconducting transition metal dichalcogenides (e.g., 

MoS2, WSe2 and WS2) and heterostructures (e.g., graphene/MoS2 and MoS2/WSe2), can be 

characterized by feeding relevant electronic band structures of ATLMs into our model. In 

addition, the effect of structural defects (e.g., vacancies, adatoms, dislocations and grain 

boundaries) and stacking faults on the charge distribution of defective FLG systems can be 

studied by modifying DOS of pristine FLG. 
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CHAPTER 4 

 

Atomistic Simulations of Electrostatic Exfoliation in 2DLMs: Few-Layer Graphene  

 

4.1 Introduction  

To investigate the atomistic details underlying our CAFM-assisted electrostatic shear and 

normal exfoliation setup (discussed in details in Chapter 2), we learnt from Chapter 3 how excess 

charges are distributed within FLG systems upon applying an external bias voltage between the 

highly-doped Si substrate and ܰ-layer graphene (N-LG). In this chapter, we implement, for the 

first time, 3D spatial charge distribution of FLG (obtained from the proposed spatial discrete 

model in Chapter 3) into molecular dynamics (MD) simulations and perform a series of MD 

simulations to further gain an atomistic insight into the electrostatic shear/normal exfoliation 

mechanisms. In order to provide more accurate atomistic models of electrostatic exfoliation 

process, we chose graphene from a wide variety of 2DLMs in our simulations (and thus in our 

experiments) because there are well‒established empirical potentials to accurately model FLG. 

 

4.2 Atomistic Simulation Setup 

Eight circular graphene layers with AB stacking and radius ~2.5 nm are placed at a 

distance of 3.0 Å above an amorphous SiO2 substrate while the flattened tip is modeled by a 

tapered silicon (001) layer, as illustrated in Figure 4.1. The 8-LG stack can be printed by 

displacing the tip upwards (to the right) for the normal exfoliation case (shear exfoliation case) 

with a constant speed. In order to better mimic our exfoliation setup, the tapered silicon (001) 

layer was moved along the x direction with the rate of 1.5×10-2 Å/ps for the shear exfoliation 

case and was pulled away along the z direction with the rate of 1×10-2 Å/ps for the normal 

exfoliation case. To hold the system in space, 2 Å of the SiO2 substrate from the bottom was 

treated as rigid. Though the contact pressure, humidity and exfoliation speed may contribute to 

the transfer printing of FLG, we do not investigate their possible effects in this study. Needless to 

say that in the case of normal exfoliation method, the contact pressure is not considered because  
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Figure 4.1. Atomic structure of the 8‒LG/SiO2 system. The background color and the arrows in the figure correspond to 
the local electric fields (color can be read from the scale bar and the length of arrows is proportional to the field intensity). 
Left inset: density of states in the four innermost graphene flakes versus the electronic band energy, in which the 
transparent area represents the average induced charge density. Right inset: top view of AB-stacked circular flakes cut out 
of the rectangular sheet with a mixture of armchair and zigzag edges. 
 

FLG system is relaxed at room temperature for an adequate time to fully conform to the substrate 

surface and thus any further contact pressure will not facilitate the normal exfoliation of FLG. 

We adopt reactive empirical bond order (REBO) potential function [66] to model the 

intralayer carbon‒carbon interactions within the same graphene layer while the free graphene 

edges are passivated by hydrogen. A registry‒dependent (RD) interlayer potential that can 

accurately describe the overall cohesion, corrugation, equilibrium spacing and compressibility of 

FLG is implemented in the LAMMPS code to model the carbon–carbon interaction between 

graphene flakes [67]. For the same MD simulation but different interlayer potentials (LJ or RD 

potential), both the number and the orientation of printed flakes were completely different, 

indicating that the potential corrugation (which cannot be described by the LJ potential) plays a 

crucial role in determining the intrinsic resistance to interlayer sliding and controlling the 

exfoliation behavior of the FLG under external electrostatic loads (Section C.1, Appendix C). 

Tersoff potential and Stillinger-Weber potential are utilized for the modelling of SiO2 substrate 

and silicon (001) layer, respectively. Given that the graphene‒SiO2 interaction is physisorption in 

nature, it has been proposed that the short‒range vdW interaction is the predominant mechanism 

at the graphene‒SiO2 interface rather than O‒C and Si‒C covalent bonds [68, 69, 70]. As a 

result, we use a standard 12‒6 LJ potential for describing Si‒C and O‒C interactions according 

to the Universal Force Field (UFF) model and the Lorentz‒Berthelot mixing rules. Although the 

extreme flexibility of graphene (which makes its interaction with SiO2 more liquid-like than 

solid-like) and the surface properties of SiO2 play a role in the exfoliation of graphene, the Si‒C 
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and O‒C interaction parameters, used in this work, alone do not lead to the graphene exfoliation, 

allowing us to elucidate the key role of electrostatic and interlayer vdW forces in the exfoliation 

process. The minimum graphene‒SiO2 interfacial adhesion strength required to print monolayer 

graphene onto the substrate in the absence of electrostatic forces can be obtained for εୗ୧ିେ ൌ

13.36meV and ε୓ିେ ൌ 5.163meV which are 1.5 times greater than the interaction energy values 

we used in this Article (see Figure C.1, Appendix C). Nevertheless, we will demonstrate later 

that the electrostatic force can significantly facilitate the print of the graphene flakes onto the 

substrate with the weak surface adhesion. The glue between the tip and graphene flakes is simply 

modeled by applying the LJ potential between the silicon layer and the topmost graphene flake 

using a larger Si‒C interaction energy (i.e., εୗ୧ିେ ൌ 17.8meV). 

 

4.3 Three-Dimensional Spatial Charge Distribution of FLG 

Herein, we first use our spatial discrete model to find the charge distribution within each 

graphene flake and through the 8‒LG thickness and then assign, for the first time, the electric 

charge of each carbon atom by substituting their position coordinates into the relevant charge 

density profile. Figure 4.2(a) illustrates the layer-by-layer charge density profiles in the 8‒LG 

system when a total excess charge density of ܳ ൌ 10ଵଷcmିଶ is induced (see Section C.2, 

Appendix C, for more details about charge density/Fermi level profiles in the 8‒LG system). 

 
 

 

 

Figure 4.2. (a) Charge density profiles of an 8‒LG system for ܳ ൌ 10ଵଷcmିଶ, where each dashed line represents the 
average charge density 〈ݍ௜〉 ൌ ܳ௜ in the layer ݅; (c) 3D discrete charge density profile of the innermost flake (݅ ൌ 1) in the 
8‒LG system for ܳ ൌ 10ଵଷcmିଶ where ݍଵ௝ is the charge density on atom j belonging to the innermost flake. (b) 
Normalized average charge density across the layers of an 8‒LG system for different gate charge densities. Inset: 
normalized average charge density in the two innermost layers to show the electrostatic charge screening effect. Zoom-in 
of a region in which the charge screening between the first and second layers is shown by a dashed black square. 

(a) (b) 
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Our spatial discrete model in Figure 4.2(b) also suggests that almost 87%, 91% and 95% 

of the total excess charge density reside within the two innermost layers of the 8‒LG system 

upon application of ܳ ൌ 10ଵଶcmିଶ (equivalent to a bias voltage of ~0.46 V), 10ଵଷcmିଶ (~ 4.6 

V) and 5 ൈ 10ଵଷcmିଶ (~ 23 V), respectively, implying that the gate-induced electric field can be 

felt very weakly by layers N>2. This is consistent very well with our CAFM measurements in 

Figure 3.3(b) that the relative dielectric constant is almost independent of the electric field and 

the layer number, in particular, for N>2. 

 

4.3.1 Electric charge on each carbon atom in FLG 

To provide a quantitative determination of the charge density of an FLG system in each 

individual graphene flake down to a single atom, we start by dividing the surface of an N-atom 

graphene flake into N equilateral triangular subareas, with a carbon atom at the center of each 

subarea, as shown in Figure 4.3(a). By doing so, a uniform charge distribution over each subarea 

allows us to further assume that the whole charge on such a small area is accumulated on the 

corresponding atom due to the strong attraction of nucleus. As a result, the graphene flake can be 

considered as a charge carrier with point charges at the positions of carbon atoms.  

 

 
 

 

 

Figure 4.3. (a) Uniform charge distribution over a triangular area (ܣ௖ ൌ 3√3ܽଶ 4⁄ , where ܽ ൌ 1.42	Հ is the C‒C 
bond length) surrounding the associated atom. (b) 3D discrete charge density profile of the innermost flake (݅ ൌ 1) 
in the 8‒LG system for ܳ ൌ 10ଵଷcmିଶ where ݍଵ௝ is the charge density on atom j belonging to the innermost flake. 
 

The point charge on atom j belonging to the flake i can be determined by multiplying the 

corresponding charge density ݍ௜௝ to the triangular area (ൌ 3√3ܽଶ 4⁄ ), where ݍ௜௝ can be given by: 

(a) (b) 
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௜௝ݍ ൌ
݂൫঒௜௝, ௜൯ߙ
〈݂ሺߙ௜ሻ〉

ܳ௜ (4.1) 

where 

݂൫঒௜௝, ௜൯ߙ ൌ
݃൫঒௜௝൯

ටሺ1 ൅ ௜ሻߙ െ ঒௜௝
ଶ

 (4.2) 

and the charge distribution profile is normalized by 

〈݂ሺߙ௜ሻ〉 ൌ
1
ܯ
෍

݃൫঒௜௝൯

ටሺ1 ൅ ௜ሻߙ െ ঒௜௝
ଶ

ெ

௝ୀଵ

 (4.3) 

with the index notations ݅ and ݆ varying from 1 to N (N being the total number of graphene 

layers) and 1 to M (M being the total carbon atoms in each layer), respectively; ঒௜௝ (ൌ ௜௝ݎ ܴ௜⁄ ) is 

a dimensionless parameter; ݎ௜௝ denotes the radial coordinate of atom ݆ in the ݅th layer which 

carries the corresponding charge density of ݍ௜௝; ܴ௜ is the radial coordinate of the atom at the edge 

of the layer ݅; ݃൫঒௜௝൯ is a polynomial function of ঒௜௝ which is determined by solving the Love 

equation; ܳ௜ is the average charge density in the ݅th layer and ܳ ൌ ሺ1 ⁄ܯ ሻ∑ ∑ ௜௝ݍ
ெ
௝ୀଵ

ே
௜ୀଵ  is the 

total induced charge density in the FLG. The quantity ߙ௜ which determines the amount of charge 

density at the edge with respect to that at the center of the ݅th layer is obtained from the energy 

minimization of the system, as discussed in the main text.  

We now assign the charge of each atom by substituting their radial coordinates into the 

charge density profile of each layer using Eq. (4.1). In Figure 4.3(b), we provide 3D discrete 

charge density profile of the innermost flake in the 8‒LG system for ܳ ൌ 10ଵଷcmିଶ, indicating 

the charge variations at the zigzag and armchair edges, as previously confirmed by scanning gate 

microscope measurements and the charge‒dipole model (Section C.2.4, Appendix C). 

 

4.3.2 Attractive and repulsive electrostatic forces on each atom 

As the last piece in the puzzle of the electrostatic MD simulations, we calculate the 

attractive electrostatic force of each atom using the well-established concept of the parallel plate 

capacitor model. Experimental studies have demonstrated that the attractive electrostatic force 

acting on suspended mono‒, bi‒ and tri‒layer graphene [71] and also on carbon nanotubes [72] 

can be approximated very well by the parallel plate capacitor model. Furthermore, implementing 
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the electrostatic force in MD simulations of suspended carbon nanotubes using the standard 

capacitance model can not only provide the results consistent with the experimental data but also 

significantly reduce the computational cost [73]. In this light, one may compute the total 

attractive force between the graphene flakes and SiO2/Si substrate as follows: 

௧ܨ ൌ
ܳଶܣ

2߳଴߳ୱ୧୭మ
ൌ

௖ܣܯ
ୱ୧୭మߝ଴ߝ2

෍቎
1
ܯ
෍ݍ௜௝

ெ

௝ୀଵ

቏

ଶே

௜ୀଵ

ൌ
௖ܣ

ୱ୧୭మߝ଴ߝܯ2
෍቎෍ݍ௜௝

ெ

௝ୀଵ

቏

ଶே

௜ୀଵ

 (4.4) 

where ߝୱ୧୭మ (=3.8) is the dielectric constant of SiO2. 

Under the assumption of uniform electric field, Eq. (4.4) reduces to 

௧ܨ ൌ
௖ܣܯ

ୱ୧୭మߝ଴ߝ2
෍ܳ௜

ଶ

ே

௜ୀଵ

ൌ ௜ܨ෍ܯ

ே

௜ୀଵ

  (4.5) 

where ܨ௜ (ൌ ௖ܳ௜ܣ
ଶ ୱ୧୭మൗߝ଴ߝ2 ) denotes the attractive force uniformly applied to all atoms 

belonging to the layer number ݅. As a result, the force of each atom which is proportional to the 

square of its corresponding charge density (given by Eq. 4.1) can reliably be written as  

௜௝ܨ ൌ
௜௝ݍ௖ܣ

ଶ

ୱ୧୭మߝ଴ߝ2
 (4.6) 

This expression can successfully capture both the fringe field and screening effects on the 

attractive electrostatic force acting on each individual atom in the direction perpendicular to the 

substrate.  

In our MD simulations, the repulsive electrostatic forces due to the like charges on all 

atoms are computed using the Coulomb pair potential as follows 

Ԧ௜௝ܨ ൌ
௜௝ݍ௖ܣ
଴ߝߨ4

෍෍
Ԧ௜௝ݎ െ Ԧ௞௟ݎ

หݎԦ௜௝ െ Ԧ௞௟หݎ
ଷ

ெ

௟ୀଵ
௟ஷ௝

ே

௞ୀଵ

 ௞௟ (4.7)ݍ௖ܣ

where a cut‒off radius of 10 Å is taken into account for the Coulombic pairwise interaction. 

 

4.4 Results and Discussion 

After relaxation of the uncharged system at 300K for 50ps, we assign the charge of each 

atom and equilibrate the charged system at 300K using a Nose‒Hoover thermostat for 10ps. 

Then, the attractive electrostatic forces are applied to each atom and the system is again 

equilibrated for another 10ps. For the normal (shear) exfoliation process, the tapered silicon 
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(001) layer is pulled in the z direction (x or y direction) with a constant speed of 1 ൈ 10ିଶ Հ ps⁄  

(1.5 ൈ 10ିଶ Հ ps⁄ ). Newton’s equations of motion are integrated using the velocity Verlet 

algorithm with a time step of 1 fs. This time step yielded the total energy variation of ൏ 0.01% 

during the whole period of simulations. 

In order to provide a quantitative demonstration of the normal and shear electrostatic 

printing of the FLG, Figure 4.4(a) shows the number of printed flakes as a function of the total 

induced charge density in the 8-LG. As an illustration, snapshots from the MD simulations of the 

normal exfoliation for ܳ ൌ 8.5 ൈ 10ଵଶcmିଶ at ݐ ൌ 1	ns and the shear exfoliation for ܳ ൌ 9.5 ൈ

10ଵଶcmିଶ at ݐ ൌ 3	ns are shown in Figures 4.4(b) and (c), respectively. From Figure 4.4(a), the 

minimum induced charge density on 8-LG required for the normal and shear exfoliation of 

graphene flake is 8.5 െ 9ሺ10ଵଶ cmଶ⁄ ሻ which is in good agreement with our experimental results 

for the normal exfoliation (ܳ ൎ 12.9 ൈ 10ଵଶcmିଶ for ݄௦ ൌ 10݊݉ and ܸ ൌ 6	ܸ) and the shear 

exfoliation (ܳ ൎ 10.8 ൈ 10ଵଶcmିଶ for ݄௦ ൌ 10݊݉ and ܸ ൌ 5	ܸ) and also with the other 

experimental results for the normal exfoliation of 18 nm wide FLG nanoribbons and 1.4 μm 

diameter pillars (ܳ ൎ 3.7 ൈ 10ଵଶcmିଶ for ݄௦ ൌ 50݊݉ and ܸ ൌ 8.5	ܸ) [74], the shear exfoliation 

of 5 μm wide square mesas and 25 μm wide ribbons (ܳ ൎ 12.4 ൈ 10ଵଶcmିଶ for ݄௦ ൌ 52݊݉ 

and ܸ ൌ 30	ܸ) [75], and also the normal exfoliation of sub-20 nm wide nanoribbons (ܳ ൎ 8.6 ൈ

10ଵଶcmିଶ for ݄௦ ൌ 5݊݉ and ܸ ൌ 2	ܸ) [76] where the total charge density is approximated as 

ܳ ൌ ௦ܸߝ଴ߝ ሺ݄݁௦ሻ⁄  according to the parallel plate capacitor model. It is also observed from 

Figure 4.4(a) that the overall number of printed layers in the shear exfoliation model increases 

by the increase of the induced charge density, reasonably consistent with our experimental 

results in Figure 2.18(a). However, a constant number of printed layers for ܳ ranging, for 

instance, from 9.5 െ 11ሺ10ଵଶcmିଶሻ are hypothesized to primarily be the result of the 

electrostatic screening effect.  

Unlike the case of shear exfoliation, it is observed that the number of printed flakes in the 

normal exfoliation technique does not necessarily increase with the increase of the bias voltage, 

leading to a random number of printed flakes, as already observed in Figure 2.18(b). This 

counter‒intuitive observation can be understood in terms of anisotropic nature of the vdW 

interactions in FLG where the interlayer shear strength ߬௦ within the basal plane competes with 

the tensile strength ߪ௦ (i.e., interfacial cohesion strength) normal to the basal plane during the 

normal exfoliation/printing course, whereas in the shear exfoliation technique, the interlayer 
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shear strength is primarily responsible for initiating flake sliding and separation. In order to 

better understand how these physical parameters and their possible interplay can hinder or 

facilitate the FLG exfoliation, we next establish a quantitative characterization of the interlayer 

interactions of graphite.  

 

 
 

  

 

Figure 4.4. (a) Number of printed layers as a function of the induced charge density for both normal and shear 
exfoliation techniques. Snapshots from MD simulation of (b) the normal exfoliation for ܳ ൌ 8.5 ൈ 10ଵଶcmିଶ at ݐ ൌ
1	ns and (c) the shear exfoliation for ܳ ൌ 9.5 ൈ 10ଵଶcmିଶ at ݐ ൌ 3 ns;
 

 

Recent experimental observations on the relative sliding motion of graphite demonstrated 

that the interlayer shear strength of the AB‒stacked (commensurate) graphite flakes (߬௦௖ ൎ

140MPa) is drastically reduced by more than two orders of magnitude for their non‒AB‒stacked 

(incommensurate) counterparts (߬௦௜௖ ൎ 0.25 െ 2.5MPa) due to the superlubricity phenomenon in 

graphite [77]. From experimental measurements [78] and atomistic results [79], a very slight 

interlayer rotation (~2 degrees) between two adjacent commensurate graphene flakes can cause 

the interlayer shear strength (i.e., interlayer friction) to suddenly decrease by over 50% (Figure 

C.7, Appendix C). This clearly indicates that the interlayer shear strength is very sensitive to the 

in‒plane rotation. In addition, the tensile strength of polycrystalline (incommensurate) graphite 

normal to the basal plane was measured to be in the range ߪ௦௜௖ ൎ 10.3 െ 20.7MPa [80], which is 

(a) (b) 

(c) 
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one order of magnitude greater than ߬௦௜௖. To the best of our knowledge, there is no direct 

experimental measurement of the tensile strength for crystalline (commensurate) graphite ߪ௦௖. 

Although a slight difference in the measured interfacial adhesion energy (i.e., basal plane 

cleavage energy) of the incommensurate (0.37	Jmିଶ) and commensurate graphite (0.39	Jmିଶ) 

[81] implies that their corresponding out‒of‒basal‒plane elastic modulus (C33) could be 

relatively close to one another, their tensile strength could exhibit a remarkably different 

behavior (see Table C1, Appendix C, for more comprehensive data obtained from a wide range 

of experimental methods and a detailed discussion about the interlayer mechanical properties of 

FLG/graphite). 

Keeping this quantitative description of the vdW interaction of graphite in mind, an 

evaluation of the MD trajectories and electrostatic interactions indicates that during the normal 

exfoliation process, the interlayer shear strength and out‒of‒basal‒plane tensile strength are 

highly coupled through vdW interactions between the adjacent graphene flakes. Monitoring of 

the interlayer spacing (∆݀ ൌ ݀௜ െ ݀௜ିଵ) and the interlayer rotation (∆ߠ ൌ ௜ߠ െ  ௜ିଵ) of theߠ

graphene flakes in our simulations (as an illustration, see Figure 4.5(a) for the normal 

exfoliation of the 8‒LG system when ܳ ൌ 10.5 ൈ 10ଵଶcmିଶ and the corresponding snapshot of 

the MD simulation for such a system in Figure 4.5(b)) reveals that as the graphene flakes are 

continuously being expanded during the normal exfoliation process, their attractive vdW 

interaction becomes progressively weaker and weaker, leading to the facile twisting and sliding 

of the graphene flakes. This, coupled with our MD observations that the interlayer rotation ߠ 

varies within the range െ2.5° ൏ ߠ ൏ 2.5° before the exfoliation is initiated, indicates that 

adjacent graphene flakes with a larger interlayer rotation are more susceptible to sliding relative 

to one another under even relatively low shear stress levels. Figure 4.5(b) clearly shows that the 

interlayer shear stress, mainly induced by the local delamination of the layers during the normal 

exfoliation/printing course, leads to a complete separation between layers, labeled 7 and 6, rather 

than, for instance, between 6 and 5 due to the larger interlayer rotation between 7 and 6, as 

shown in Figure 4.5(a). Interestingly, our MD results suggest that the normal exfoliation process 

is always initiated at the edges rather than the middle of the graphene flakes, which can be 

attributed to the greater electrostatic attractive and repulsive forces caused by the charge 

accumulation on the edges. 
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Figure 4.5. (a) A portion of the MD trajectory for the normal exfoliation of the 8-LG system when ܳ ൌ 10.5 ൈ
10ଵଶcmିଶ. Variation of the interlayer rotation/distance between layers, labeled 5 and 6, and between 6 and 7 as a 
function of simulation time. The separation of the layer 7 from 6 is initiated at ݐ ൎ 0.45	ns (highlighted by magenta 
dashed line); (b) Corresponding snapshot of the MD simulation for such exfoliation taken at ݐ ൌ 0.6 ns. Local 
delamination is marked in transparent red circles. 

 

 

Our analysis of the simulation trajectories further reveals that the shear exfoliation 

method can effectively suppress the interlayer rotation whose value does not exceed േ0.5° 

before complete exfoliation is achieved. Given that the interlayer potential corrugation (i.e., the 

interlayer potential energy variation) is a measure of how easily adjacent layers can slide and 

rotate relative to one another, our MD calculations for a bilayer system will show that the 

potential corrugation increases when the interlayer spacing is reduced by imposing the attractive 

electrostatic forces. As illustrated in Figures 4.6(a) and (b), a bilayer graphene in equilibrium 

(∆݀ ൌ 3.35Հ) exhibits a corrugation of only ~10 meV/atom, while the corrugation of a 

compressed bilayer (∆݀ ൌ 3.00Հ) is ~50 meV/atom, indicating a strong dependence of the 

potential corrugation on the interlayer distance and the layer stacking. This finding suggests that 

compared to the normal exfoliation, a larger potential corrugation and thus a smaller interlayer 

rotation in the shear exfoliation technique is caused by the absence of interlayer spacing 

variations induced by the upward pulling forces. This robust sliding/rotation behavior makes the 

shear exfoliation method a much more promising candidate for creating high‒quality, ordered, 

2DLMs‒based device arrays with uniform thicknesses over large areas. Figure 4.6(a) also 

confirms that for the bilayer system in equilibrium, the AB stacking is energetically more 

favorable than AA stacking by ~10meV/atom, consistent with the experimental observations.   

 

 

 

(a) (b) 
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Figure 4.6.  2D and corresponding 3D contours of the potential corrugation of (a) the bilayer system in equilibrium 
(∆݀ ൌ 3.35Հ) and (b) the compressed bilayer (∆݀ ൌ 3.00Հ). In (a) and (b), the maximum energy difference ∆ܸ ൌ
஺ܸ஺ െ ஺ܸ஻ is reported. (c) Three stacking configurations AA, AB and saddle corresponding to the Max, Min and 

Saddle points on the contour plots, respectively. 
 

4.5 Summary 

In order to gain an in-depth understanding of underlying mechanisms associated with the 

normal and shear electrostatic exfoliation of 2DLMs, we exploited CAFM-assisted experimental 

results (Chapter 2) coupled with the proposed novel spatial discrete model (Chapter 3) to conduct 

a series of MD simulations using the LAMMPS software package. Consistent with our 

experimental observations, MD simulations confirmed that the accurate control of the number of 

printed flakes was not feasible using the normal exfoliation method. We attributed this result to 

an intrinsic competition between the interlayer shear strength (which is highly influenced by the 

interlayer twist angle) and the out-of-plane tensile strength (which strongly depends on the 

interlayer spacing and local delamination) during the normal exfoliation course. Instead, the 

ability of the shear exfoliation method to eliminate the interlayer spacing variations and 

simultaneously suppress the interlayer twist angles (due to the larger interlayer potential 

corrugation) provides much better control over the desired number of the printed flakes, making 

it superior to the normal exfoliation method. 

Max

Saddle

Min

݀௘௤ ൌ 3.00 Հ	

ሻ܄܍ܕሺࢂ∆

݀௘௤ ൌ 3.37	Հ	

	ሻ܄܍ܕሺࢂ∆
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CHAPTER 5 

 

In Situ Measurements of Interfacial Adhesion in 2D Materials and vdW Heterostructures 

 

5.1 Introduction  

As we already discussed in detail in Section 1.3, the interlayer vdW interaction, which 

can be well described by the interfacial adhesion energy (IAE), is a fundamental property of 

2DLMs and vdW heterostructures due to their intrinsic ultrahigh surface to volume ratio, making 

vdW adhesion forces extremely strong in many processes related to fabrication, integration and 

performance of devices incorporating 2D crystals. Therefore, many attempts have been made 

over the last few decades to measure the IAE of 2D crystals using a wide range of experimental 

methods. While a vast majority of studies have been conducted on the interaction of G with G 

substrate with a wide range of reported IAE values (i.e., 0.15⎼0.72 Jm-2, Tables D1 and D2, 

Appendix D), no IAE measurement at the hBN/hBN interface yet exists, and also there is only 

one report on the interaction of MoS2 with MoS2. We also note that there is no direct IAE 

measurement on the 2D crystal vdW heterostructures. In addition, despite many experimental 

studies devoted to the IAE determination of 2D crystals/SiOx heterostructures, no experimental 

data are available on the interaction of hBN/SiOx, whereas the reported IAE data on the 

interaction of G and MoS2 with SiOx are very diverse, ranging from 0.09⎼0.90 Jm-2 at the G/SiOx 

interface (Table D3) and 0.08⎼0.48 Jm-2 at the MoS2/SiOx interface (Table D4). As such, a 

comprehensive and accurate experimental technique that can not only directly quantify the 

interfacial adhesion behavior of fresh and aged 2D vdW homo/heterointerfaces at nanoscale but 

also successfully address the exact cause of variation in the reported IAE values is still lacking.  

Herein, we use an AFM technique to report precise in situ adhesion measurements 

through well-defined interactions of AFM tip-attached 2D crystal nanomesas (G, hBN and 

MoS2) with 2D crystal and SiOx substrates. We quantify how different levels of short-range 

dispersive (vdW) and long-range electrostatic (Coulombic) interactions respond to airborne 

contaminants and humidity upon thermal annealing.  
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5.2 In Situ AFM-Assisted Experimental Setup 

We record force⎼displacement (F⎼d) curves with piconewton⎼subnanometer resolution 

upon retraction of AFM tip-attached 2D crystal nanomesas from fresh and aged 2D crystal and 

SiOx/Si substrates under controlled ambient conditions in the near⎼equilibrium regime (Figure 

5.1(a)). The annealing temperature of nanocontact interfaces is precisely controlled in the range 

of -15⎼300°C by a microheater on the top (left inset of Figure 5.1(a)) and a cooling stage 

underneath the SiOx/Si substrate. Aged substrates are prepared by two different aging conditions 

where the freshly exfoliated 2D crystal and bare SiOx/Si substrates are either exposed to the 

ambient air directly (hereafter referred to simply as untreated substrates) or kept at subzero 

temperature, followed by the air exposure (referred to as precooling-treated substrates). A similar 

method is used to age the tip-attached nanomesas for the subsequent contact with their 

corresponding aged substrates. 

While F⎼d curves at the fresh interfaces are recorded during the attachment of nanomesas 

to the glue-coated tip where the tip is gently pulled away from the substrate surface in a direction 

perpendicular (parallel) to the single basal plane of 2D crystal, leading to pulling (shearing) off 

the upper section of the nanomesa (attached to the tip apex) from the lower section (fixed to the 

2D crystal substrate) (Figures 5.1(b) and (c)), the interfacial adhesion measurements at 

untreated and treated interfaces are performed upon retraction of the 2D crystal tip from the 

untreated and precooling treated surfaces (Figures 5.1(d) and (e)). 

Among many different combinations of dissimilar 2DLMs, we focus on the interlayer 

vdW behavior of conducting G, insulating hBN and semiconducting MoS2 crystals as a model 

system for a large class of 2D vdW heterostructure systems. Since direct nanoscale probing of 

weak vdW interactions in 2DLMs and vdW heterostructures requires a unique combination of 

high-resolution imaging, precise mechanical manipulation and accurate in situ interfacial 

adhesion measurements, nanosized square (circular) 2D crystal mesas with a width (diameter) of 

60nm are attached to an in situ flattened AFM tip which is precoated with an ultrathin adhesive 

polymer at the apex (right inset of Figure 5.1(a)). Using nano-sized 2D crystal tips with a very 

well-defined geometric shape parallel to the substrate together with accurate determination of 

spring constant of the probe is an essential prerequisite for the detailed characterization of 

nanoscale vdW interfaces and the accurate extraction of interfacial adhesion properties of 

2DLMs. 
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Figure 5.1. (a) Schematic of the AFM setup used to perform interfacial adhesion measurements under different 
annealing temperatures. Left inset: SEM image of the microheater with an MoS2 flake exfoliated on the heating line 
whose corresponding AFM image was taken by the G crystal tip. Right Inset: SEM images of the tip-attached G 
circular nanomesa (top image) and hBN square nanomesa (bottom image). Scale bars indicate 100 nm. (b) Normal 
and (c) shear interfacial adhesion measurements at the intact homointerfaces. Interfacial adhesion measurements at 
the (d) untreated and (e) precooling-treated homointerfaces. 

 

All AFM measurements were performed under controlled ambient conditions (T= 22°C 

and 15% relative humidity) by a Park XE-70 microscope which is isolated from mechanical floor 

vibration by a microscope vibration isolator, and also from acoustic vibration, ambient light 

disturbance and air flow by a closed box. The whole setup was located in an isolated place in the 

new Center of Excellence in Nano Mechanical Science and Engineering with the state-of-the-art 

ultra-low vibration chambers on the ground floor, which are tightly controlled to limit shaking, 

noise, temperature, humidity variations, radio frequency and magnetic interference. Having 

employed all these noise control facilities, we determined the noise floor of our AFM setup to be 

consistently less than 0.3 Å throughout the measurements. 

(a) 

(b) (c) 

(d) (e) 
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After surface preparation of SiOx/Si wafer (Section 5.2.1), three small pieces of SiOx/Si 

substrate were simultaneously loaded onto the AFM stage, including (1) 2D crystal flakes 

mechanically exfoliated with adhesive type on microheater arrays which are prefabricated on the 

SiOx/Si substrate (piece#1); (2) 25 nm thick polymer glue (PEDOT:PSS, D-sorbitol) coated on 

the SiOx/Si substrate (piece#2), and (3) pre-patterned bulk 2D crystal stamps with 50-80nm–

thick square and circular nanomesas of 60nm in width and diameter, respectively, (Section 5.2.2) 

which are attached to the SiOx/Si substrate using double-sided copper tape (piece#3). To 

minimize the effect of the relative tilt angle, all three pieces were attached to a larger piece of 

SiOx/Si substrate using the ultrathin glue film (PEDOT:PSS, D-sorbitol), followed by placing the 

larger piece onto a multistage Peltier cooling element equipped with a tilt control mechanism 

(angle resolution: ±0.5°) beneath the cooling stage. Instead of immediately removing all 2D 

crystal-loaded adhesive tapes from the piece#1 to complete the mechanical exfoliation onto the 

microheaters, we only peeled off the tape containing the 2D crystal flakes of interest for the 

interfacial adhesion measurements, thereby enabling much better control over the possible 

adsorption of airborne contaminants onto the fresh surface of 2D crystals.  

For the AFM force-displacement measurements, a highly doped silicon AFM probe 

(NANOSENSORSTM, ATEC-FM, with a nominal spring constant of 2.8 N/m and a typical tip 

radius of curvature better than 10 nm) was used where the tip is positioned at the very end of the 

cantilever and pointing outward which provides a more accurate positioning of the tip apex. 

Since our experiments require a flat plateau at the apex parallel the piece#1 surface on which all 

interfacial adhesion measurements were conducted, we scanned the tip in contact mode on its 

SiOx surface to achieve an atomically flat surface with an RMS roughness of <1 nm. The in-situ 

flattened tip was next moved from piece#1 to piece#2 and coated with a very thin layer of 

polymer glue by putting the tip apex in gentle contact with the PEDOT:PSS(D-sorbitol) film. 

Then the tip was left at room temperature for 1 hour to remove any water from the 

PEDOT:PSS(D-sorbitol) aqueous solution. For the precise attachment of 2D crystal nanomesa to 

the glue-coated flattened apex, the tip was moved from piece#2 to piece#3, followed by locating 

the nanomesas by the non-contact AFM topography measurements. The glue-coated tip apex was 

then moved to the center of the selected 2D crystal nanomesa at an applied load of 2 nN and held 

in contact with the nanomesa for 10 mins. Afterwards, the X⎼Y piezo stage was gently moved 

laterally along a single basal plane of 2D crystal, leading to easy shear of the upper section of the 
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nanomesa (attached to the tip apex) relative to the lower section (fixed to the 2D crystal 

substrate) (Section 5.2.3). Compared to 2D crystal micro-sized mesas, the tip-attached nano-

sized mesas alone offered four striking features to our setup: (1) the presence of a single-

crystalline grain across the whole nanomesa is guaranteed, enabling an atomically defect-free 

contact interface; (2) high-resolution topographic images in noncontact mode can still be taken to 

locate 2D crystal flakes of interest for the subsequent IAE measurements; (3) substantially more 

reliable and robust IAE measurements can be achieved under any possible small relative tilting 

angle between the tip-attached mesa and the substrate, assuring perfect face-to-face contact 

during approach-retract tip manipulation; and (4) the nano-sized contact area with a significantly 

smaller interfacial adhesion force allows using the AFM probe with a lower spring constant and 

thus higher force resolution. 

To study the effect of thermal annealing on the interfacial adhesion, the flakes were 

heated up to 300°C by applying a constant current to the microheater (Section 5.2.4). Using the 

microheater can significantly minimize the possible thermal effect on the AFM probe by locally 

heating the substrate. For each temperature change, enough time was given to the flakes to reach 

steady-state temperature (T). Then, the 2D crystal tip was engaged with the sample surface at a 

pressure of 5 MPa (unless otherwise noted) for 15 min to reach thermal equilibrium and then the 

substrate cooled back down to room temperature to perform the interfacial adhesion 

measurements. Similarly, we conducted a series of the interfacial adhesion measurements at 

subzero temperature by cooling the substrate surface down to -15°C using a multistage Peltier 

element (Section 5.2.5). 

 

5.2.1 Sample preparation 

Surface preparation of SiOx substrates: Prior to mechanical exfoliation of 2D crystal flakes, 

square pieces of a 300-nm-thick SiOx/Si wafer were ultrasonically cleaned in sequential baths of 

acetone, isopropanol and deionized water and dry blown with nitrogen.  

 

2D crystal preparation: G, hBN and MoS2 flakes were prepared by mechanical exfoliation of 

ultrapure single crystal of hBN, HOPG and single crystal of MoS2 on the SiOx/Si substrate.  
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 5.2.2 Fabrication of nano-sized 2D crystal mesas 

A ~100-nm-thick bilayer of polymethyl methacrylate (PMMA) 495K (60 nm)/950K (40 

nm) is spin coated onto the freshly cleaved surface of 1-mm-thick HOPG (SPI, Grade 1, with a 

mosaic spread value of 0.4o), hBN (grade A, with single crystal domains over 100μm) and MoS2 

(429MS-AB, natural single crystals from Canada) substrates, baked each layer for 10 min at 120 

°C to evaporate the solvent and then patterned by electron beam lithography. After developing 

the exposed PMMA area in 1:3 MIBK/NMP, a 10-nm-thick aluminum film is deposited by 

thermal evaporation, followed by lift-off process in acetone. The unprotected HOPG, hBN and 

MoS2 areas are thinned down by using a reactive ion etching system with pure O2 (precursor 

flow rate: 10 sccm, RF power: 40W, pressure: 10 mTorr), CHF3/Ar/O2 (10/5/2 sccm, 30W, 10 

mTorr) and SF6 (20 sccm, 100W, 20 mTorr) reactive gases, respectively. Square (circular) mesas 

with a width (diameter) of 60 nm and etch depth of 50-80 nm emerge from 2D crystal substrates 

during the plasma etch.  

After plasma etching, the sample is soaked in 0.1 mol/l KOH water solution for ~3 min to 

remove the Al layer, followed by an annealing process at 200-600 °C under constant Ar/H2 flow 

for one hour to remove any resist/metallic residues from 2D crystal substrates. Figure 5.2(a) 

shows the SEM images of MoS2 square and G circular nanomesa arrays. The corresponding 3D 

AFM image of MoS2 square nanomesas is also shown in Figure 5.2(b). The sidewall profile in 

the AFM images is steep (as also confirmed by the height profiles in Figure 5.2(c)), indicating 

that a low etch rate of 15nm/min for the fabrication of the mesa structures results in a minor 

sidewall taper toward the substrate.  

 

   

Figure 5.2. (a) SEM images of MoS2 square and G circular nanomesa arrays. (b) 3D AFM image of MoS2 square 
nanomesas. (c) Corresponding height profiles of 60-nm-deep MoS2 square mesas with an average width of 60 nm.  
 

(a) (b) (c) 
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5.2.3 Attachment of 2D crystal nanomesas to in situ flattened AFM tip 

Since the attachment of 2D crystal mesas to the tip apex requires a well-defined and 

smooth landing area, the method described in [5] was adopted to flatten the AFM tip by scanning 

it in contact mode on the SiOx/Si substrate.  The morphology and area of the flat tip were first 

quantified through SEM and AFM images (Figures 5.3(a) and (b)). Next, the surface roughness 

and the contact area of the tip apex were determined by imprinting the tip onto the 50-nm-thick 

PEDOT/PSS film, followed by the AFM tapping-mode imaging. The AFM indent profile of the 

tip confirms a very flat triangular shape with an RMS roughness of less than 0.5 nm (Figure 

5.3(c)). After glue coating the flattened apex by making a contact between the tip and piece#2, 

we moved the tip from piece#2 to piece#3 while switching the operational mode of the AFM to 

non-contact mode to determine the location of each nanomesa. Although the tip apex is flat, the 

non-contact mode can still provide us with desired resolution imaging for the subsequent 

attachment of the nanomesa to the tip apex. Switching the mode of operation back to the contact 

mode, the glue-coated tip apex was then moved to the center of the selected 2D crystal nanomesa 

and held in contact with the nanomesa at an applied load of 2 nN for 10 mins. Afterwards, the 

X⎼Y piezo stage was gently moved laterally along a single basal plane of 2D crystal, leading to 

easy shear of the upper section of the nanomesa (attached to the tip apex) relative to the lower 

section (fixed to the 2D crystal substrate), thanks to the extremely low friction at the contact 

interface of 2D crystals. Figure 5.3(d) shows typical SEM images of tip-attached square and 

circular nanomesas.  

 

 

 

 

 

 

Figure 5.3. (a) SEM image of an in situ flattened tip apex. (b) AFM topography image of nanoindentation of the tip 
apex into the 50-nm-thick PEDOT/PSS film on the SiOx/Si substrate. (c) Indented profile of the tip shows a very flat 
and smooth surface. (d) Typical SEM images of the tip with an attached square or circular nanomesa.  
 

(a) (b) 

(c) 

(d) 
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5.2.4 Fabrication and characterization of microheaters 

In order to perform AFM measurements at elevated temperatures, an external stage heater 

(e.g., silicone rubber heater, Kapton heater, etc.) is widely used to heat a sample. However, 

microdroplets of condensed water or volatile components in the atmosphere and/or emitted from 

the hot sample may condense on the relatively cooler cantilever surface (being typically 10-20 

μm away from the heated sample makes the probe cooler than the sample surface), as shown in 

Figure 5.4(a). Such microdroplets can induce adverse effect on the deflection and oscillation 

amplitude measurements of the probe by scattering the laser beam and also on the physical 

properties of the probe by changing its resonance frequency and spring constant. As a remedy, 

we used microheaters to confine the heat to a micron-sized region on the SiOx/Si substrate via 

the Joule effect with very low power consumption.  

Microheater array was fabricated by the deposition of Ti(20nm)/Pt(200nm) stack on the 300-

nm-thick SiOx insulator by RF sputtering, followed by a lift-off step to pattern heating lines and 

contact pads. While large heating areas can be achieved by meander or spiral shaped 

microheaters, heating lines will be partially or fully covered by the subsequent exfoliated flakes, 

rendering the microheaters useless. As such, a simple U-shaped geometry was used to yield more 

2D crystal flakes in direct contact with the heating lines, enabling a uniform heat distribution 

over the entire area of the flakes with almost the same temperature as the heating lines. Figure 

5.4(b) shows the SEM image of the fabricated microheater device with surrounding 2D crystal 

flakes, indicating very smooth and uniform line width (5μm) of the heating element with 15μm 

spacing between the lines. Fine gold wires were used for connecting the contact pads to a 

programmable dc power supplier (Instek PSP-405) through package pins.  

 

 

 

 

 

 

Figure 5.4. (a) SEM images of the probe exposed to a temperature of 95°C using a 1cm×1cm Kapton heater (i.e., 
global heating) and a micron-sized heater (i.e., local heating). (b) SEM image of a representative microheater 
surrounded by the exfoliated MoS2 flakes. (c) AFM noncontact-mode image of the region marked by the square in 
(b), taken by the G crystal tip.  

(a) (b) (c) 

Droplets 

Global heating-exposed probe 

Local heating-exposed probe 
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For calibration purpose, a Probe station, consisting of a microscope, a micromanipulator 

with a set of ultrasharp needle probes, resistance measurement unit along with an integrated hot 

chuck (having an accuracy of 1°C) was used to measure the electrical resistance change of the 

microheaters as a function of temperature ranging from RT to 300°C. The resistance 

measurements were repeated for ten microheaters, all showing a self-consistent linear 

dependence of the electrical resistance change on temperature with the best linear fit of 

R=0.058T+21.15 Ω, which is consistent with the following resistance-temperature expression 

R=R0+R0α0(T-T0), where R0 and α0 are the resistance of the microheater and the temperature 

coefficient of resistance of Pt, respectively, at room temperature T0. The microheaters were 

subsequently characterized by Joule heating with a DC power supply of 1 to 10 mW input 

power, followed by measuring the electrical resistance of the microheaters using a digital 

multimeter. We again observed a linear dependence of the resistance on the input power P with 

the best linear fit of R=1.613P+22.50 Ω. Assuming that the electrical resistance of the 

microheaters obtained from the hot chuck measurements is equal to that obtained from the Joule 

heating measurements, the linear relationship between the input power and the temperature is 

given by T=27.81P+23.28 °C (Figure 5.5(a)). This equation was further verified by temperature 

measurements in close proximity to the microheaters by an infrared camera during Joule heating, 

as shown in Figure 5.5(a). Slightly lower temperatures measured by the IR camera may be 

attributed to the aperture-limited resolution of the camera that does not allow identifying the 

hottest spot in the microheater devices. Our transient measurements obtained by the application 

of a constant voltage pulse to the microheaters for a very short time also revealed a very fast 

thermal response (i.e., 100 ms from RT to 300°C).  

 

 

 

 

 

 

Figure 5.5. (a) Calibration of the microheater devices using the hot chuck/Joule heating (red dots) and IR camera 
(blue dots), both showing a linear relationship between the temperature and the input power. The dashed red line is 
linearly fitted to the combined hot chuck/Joule heating results. (b, c) IR results for the temperature distribution of the 
microheaters with the thermally-disconnected (b) and connected (c) G flakes. 

(a) (b) (c) 
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It should be noted that the microheaters are mostly fabricated on a thin membrane to 

reduce the power consumption; however, our microheaters on the silicon substrate avoid 

deformation of the membrane during the approach/retraction process of the AFM tip, making 

adhesion measurements more accurate at a cost of higher power consumption. 

After the calibration of the microheaters, we note that the temperature of 2D crystal 

flakes strongly depends on their distance from the heating source. This can be understood by 

examining the radially symmetric temperature decay of a thin silicon membrane with the heating 

laser spot at its center which is a logarithm function of the distance as follows 

ܶሺݎሻ ൌ ଴ܶ െ
ܲ

݇݀ߨ2
ln
ݎ
଴ݎ

 (5.1) 

where P is the input power, d is the thickness of the membrane, k is the thermal conductivity of 

Si and (T0, r0) is a reference point in the temperature field. Hence, we used IR camera to map the 

temperature distribution within the mechanically exfoliated 2D crystal flakes. For clarity in the 

IR images, we scaled up the microheaters from 25×55μm2 to 250×550μm2 heating area while 

preserving all the geometric features. We observed that the flakes exfoliated few microns away 

from the heating lines possess much lower temperature than the microheaters and may not be 

well detected under the IR camera (Figure 5.5(b)) while those in direct contact with the heating 

lines display almost the same temperature (Figure 5.5(c)), thanks to very high thermal 

conductivity of 2D crystals. As a result, only flakes exfoliated onto the heating lines were 

considered for the interfacial adhesion measurements at elevated temperatures.     

To further evaluate the temperature of the microhetaer, 2D crystal flakes and the probe, 

steady state temperature distribution of our AFM setup needs to be calculated. As such, a 3D 

model of the setup was created using COMSOL Multiphysics (Figure 5.6(a)) to numerically 

solve the following thermal transfer equation  

.׏ ሺെ݇ܶ׏ሻ ൅ ܿߩ
߲ܶ
ݐ߲

ൌ  ௦ (5.2)ݍ

where ݇, ߩ and ܿ are the thermal conductivity, material density and specific heat capacity, 

respectively; and ܶ and ݍ௦ are the temperature and the density of the heat power generation, 

respectively. The microheater, graphite flakes, SiOx/Si substrate and the AFM probe were 

surrounded by an air block of 1400×1400×420μm3. In the desired temperature range (<300°C), 

the resulting radiation losses are negligible due to the very low emissivity of the materials 

involved and thus heat losses caused by the thermal convection and conduction were taken into 
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account. Moreover, all sides of the air block were assigned a symmetry boundary condition. 

Figure 5.6(b) shows the simulated temperature distribution of the G flakes and the microheater 

at an input power of 5 mW. Consistent with our experimental observations, while the 

temperature of G flakes surrounding the microheater is highly smaller than that of the heating 

lines, the flake in direct contact with the microheater shows the same uniform temperature 

distribution as the heating line does.    

  

  

  

Figure 5.6. (a) 3D model of the AFM setup developed in COMSOL. (b) Steady state thermal simulation of the G 
flakes and microheater over the SiOx/Si substrate at an input power of 5 mW. (c) Temperature distribution of the 
AFM probe. (d) Temperature distribution profile along the probe length.     
 

We also probed temperature distribution of the AFM tip in contact with the flake at 

221°C. Figure 5.6(c) demonstrates that the localized heating of 2D crystal flakes can effectively 

restrict the heat flow of the AFM tip only through the 2D crystal nanopillar with the cross-

sectional area of ~0.003 μm2, thereby maintaining the cantilever shank at temperatures 

consistently less than 70° C (Figure 5.6(d)), thanks also to the protruded (3.2 μm from the very 

end of the cantilever) and tall (18.5 μm) tip which also maximizes the separation between the 

cantilever shank and the microheater.   

 

(a) (b) 

(c) (d) 
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5.2.5 Cooling stage setup 

The home-built cold stage is based on a multistage Peltier element which is attached to a 

machined aluminum spacer and connected to a dc power supply, where the spacer with a magnet 

in the Teflon base is securely fixed to the magnetic sample holder of a variable tilt mount on the 

X-Y piezo stage (Figure 5.7(a)). The Teflon base is used to further protect the piezo stage 

against overheating. A piece of PEDOT:PSS(D-sorbitol)-coated SiOx/Si wafer is then attached to 

the cooling element using metal spring clips, where thermal compound spreads at their interface 

to improve the heat transfer. The aluminum spacer alone enabled to further extract the heat from 

the hot side of the Peltier element, thereby cooling the surface of small SiOx/Si pieces, which are 

glued with PEDOT:PSS(D-sorbitol) to the SiOx/Si substrate, down to -15.2°C (Figure 5.7(b)).   

 

 

 

Figure 5.7. (a) Schematic of Peltier-based cooling stage setup. (b) Infrared image for the temperature distribution of 
the SiOx/Si pieces on the multistage Peltier element, showing a very uniform temperature of -15.2°C. 
 

Upon turning on the Peltier cooling element, microdroplets of water in the atmosphere will 

immediately condense on the substrate surface, increase in size and merge together to form 

bigger droplets and eventually cover the entire substrate surface. After turning off the Peltier, the 

microdroplets start to evaporate immediately at room temperature. Figure 5.8 shows the 

condensation and evaporation process of microdroplets under the optical microscope within a 

very short time period (i.e., 10 sec). 

 

 

Figure 5.8. Wetting behavior during condensation and evaporation of water microdroplets on the surface of the 
mechanically exfoliated G/SiOx/Si substrate when the Peltier cooling element is (a) turned ON at 0 sec, (b) then 
turned back OFF right after 5 sec and (c) kept in the OFF state for another 5 sec. 
 

(a) (b) (c) 

(a) (b) 
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5.3 Interfacial Adhesion Energy Measurements 

For each 2D crystal, we considered 15 thermally-connected crystal flakes on each of 

which 10 individual interfacial adhesion measurements at a contact pressure of 5 MPa (unless 

otherwise noted) were taken from different locations of the flake surface at each annealing 

temperature to confirm the reproducibility. The contact time (dwell time) of the 2D crystal tips 

with the substrate was 15 min to reach thermal equilibrium at the contact interface. The approach 

speed was set to be 10 nm/s while a very slow pulling rate of 1 nm/s was used so that the tip 

remains in thermodynamic equilibrium with the substrate upon tip retraction. Such a slow pulling 

rate was achieved by using a 16-bit digital-to-analog converter in low voltage mode with an 

ultralow noise AFM controller which significantly improved the Z scanner’s vertical resolution 

to 0.1 Å at the expense of limiting the Z scanner’s motion range. Very careful adjustment of the 

Z servo gain to suppress any possible oscillation of the Z scanner combined with an ultralow 

noise floor (<0.3 Å) in our setup could further make the retraction measurements in the near-

equilibrium regime possible. In order to measure the cohesion energy, during the attachment of 

nanomesas to the glue-coated tip, F⎼d curves were recorded at zero normal force as the tip was 

gently pulled away from the substrate surface in a direction perpendicular (parallel) to the single 

basal plane of 2D crystal, leading to pulling (shearing) off the upper section of the nanomesa 

(attached to the tip apex) from the lower section (fixed to the 2D crystal substrate). The 

annealing temperature for the case of cohesion measurements (studied after completion of our 

interfacial adhesion experiments) was controlled by a Kapton heater while the probe was fully 

retracted (~ 4 cm) from the substrate. While the adhesion forces were calculated by the calibrated 

spring constant and the measured deflection signal of the AFM probe, the interfacial adhesion 

energy per unit area (J/m2) was calculated by integrating the difference in force upon approach 

and retraction as a function of the piezo displacement, followed by dividing the resulting 

adhesion energy by the known contact area at the interface. To obtain the interfacial adhesion 

energy from the shear force-displacement curves, the maximum shear force of each nanomesa 

was divided by its width or diameter. 

The accuracy of AFM force-displacement measurements can be limited by the 

uncertainty in the determination of the interfacial contact area and spring constant of the AFM 

probe. The first source of uncertainty in the interfacial adhesion measurements is the surface area 

of the tip, which must be known to determine the interfacial adhesion energy. In order to create a 

known contact area, we used 2D crystal tips with a very well-defined geometric shape parallel to 
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the substrate, enabling an atomically clean and flat contact interface. Our interfacial adhesion 

measurements reveal that the tilting angle between the tip and the substrate is smaller than 1°, 

indicating perfect face-to-face contact during measurements (Section D.2, Appendix D). We 

reduced the second main source of uncertainty in our measurements by determining the stiffness 

of the AFM cantilever by means of three different methods and took their mean value as the 

static normal (3.05±0.05 N/m) and axial (8.60±0.40 N/m) spring constants of the probe, 

suggesting a relative calibration error of 2% and 5%, respectively (Section D.3, Appendix D). 

Although a calibrated AFM probe was used for these experiments, the spring constant value still 

contains approximately ∼2-5% error. Thus, the same tip was used throughout all experiments to 

ensure that the relative change in the interfacial adhesion energy is accurate even though the 

absolute value may contain some systematic error. The laser spot was also kept at the same 

position on the lever to avoid any changes in the force measurements. After performing all the 

measurements, the spring constant of the probe was again determined in ambient conditions to 

make sure that the cooling/annealing of the substrate has no appreciable effect on its stiffness. 

 

5.4 Cohesion Energy in 2D Crystals 

During the attachment of nanomesas to the glue-coated tip, F⎼d curves can be recorded 

as the tip is gently pulled away from the substrate surface in a direction perpendicular (parallel) 

to the single basal plane of 2D crystal, leading to pulling (shearing) off the upper section of the 

nanomesa (attached to the tip apex) from the lower section (fixed to the 2D crystal substrate). 

Figures 5.9(a) and (b) illustrate typical retraction force-displacement and shear force- 

displacement curves, respectively, at the intact G, hBN and MoS2 homointerfaces. After 

complete retraction of the tip, our SEM and AFM inspection of the lower section of the 

nanomesas on the 2D crystal substrate reveals an atomically flat and defect-free surface at the 

separation plane (insets of Figures 5.9(a) and (b)). From retraction force measurements (Figure 

5.9(a)), we observe a relatively gradual reduction of the adhesion force (rather than a snap-back 

to zero force), in particular, at the G and hBN homointerfaces, which looks at the first glance, 

fairly similar to the AFM rupture force curves of bridging nanobubbles. However, by closer 

inspection of our retraction F⎼d curves for 2D crystals and nanobubbles, we notice that not only 

is the effect of tip-sample capillary forces and bridging bubble ruptures on our retraction curves 

negligible but also there are fundamental differences in the separation mechanism of 2D crystals 

and bridging nanobubbles (see Section 5.4.1). Our shear force measurements (Figure 5.9(b)) 
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also exhibit fluctuations in plateau regions for all 2D crystals which can be attributed to the 

atomic stick-slip friction of the tip-attached top mesa on the mobile bottom mesa, indicating that 

the present axial shear force microscopy technique can provide the shear force resolution up to 

the atomic level compared to the conventional lateral shear force microscopy technique (Figure 

D.5, Appendix D). 

 

   

Figure 5.9. (a) Typical retraction F⎼d curves recorded at the intact homointerface of G(in red), hBN(in blue) and 
MoS2 (in brown) crystals and also the approach F⎼d curve (in gray) recorded at the hBN tip/substrate 
homointerface. The light blue-shaded area between the approach and retraction curves at the hBN homointerface 
represents the cohesion energy in units of Joules. Each raw data set was given an offset to provide the same 
equilibrium position for all F⎼d curves. Right Inset: SEM images of lower section of the nanomesas on their 
corresponding bulk substrate after the full tip retraction. Left inset: Perspective AFM image corresponding to the 
SEM image of the MoS2 nanomesa shown in the right inset. Scale bars indicate 50 nm. (b) Typical shear 
force⎼lateral piezo displacement curves recorded at the intact homointerface of G(in red), hBN(in blue) and MoS2(in 
brown) crystals. Schematic inset shows that the 2D crystal substrate moves along the long axis of the cantilever tip 
at zero contact force. Inset: Corresponding SEM images of the sheared G, hBN and MoS2 nanomesas. (c) Cohesion 
energy of G, hBN and MoS2 crystals obtained by normal force measurements (circles with cyan borders) and shear 
force measurements (circles with orange borders) at room temperature. Data are presented as average ± standard 
deviation. 
 

Figure 5.9(c) shows the intrinsic interfacial adhesion energy (i.e., cohesion energy) of G, 

hBN and MoS2 crystals at room temperature with an average value of respectively 0.328±0.028, 

0.326±0.026 and 0.482±0.032 Jm-2 using normal force microscopy, matching well with the 

corresponding average value of 0.361±0.014, 0.372±0.015 and 0.501±0.017 Jm-2 using the shear 

force microscopy (Section D.1.1, Appendix D, for a detailed comparison of cohesion energy 

values for 2D crystals). Slightly larger IAE values obtained by the shear measurement technique 

might be attributed to the small contribution of friction forces to the overall interfacial shear 

strength of 2D crystals. Nonetheless, both IAE measurement techniques indicate that the 

strongest interaction occurs between adjacent MoS2 layers due to dipolar, partially ionic Mo⎼S 

bonds, whereas nonpolar C⎼C bonds and highly polar B⎼N bonds offer a very similar level of 

interaction at the G and hBN homointerfaces, respectively. In particular, our retraction F⎼d curve 

(a) (b) (c) 
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for the 2D crystal/metal heterostructure is fairly similar to that for the MoS2 homostructure, 

indicating more electron sharing and thus stronger interlayer bonding in MoS2 than even 

predicted by first-principles calculations (see Section 5.4.1). 

 

5.4.1 Force-displacement measurements of nanobubbles and G/copper 

Upon retraction of the tip, we observed a relatively gradual reduction of the interfacial 

adhesion force (rather than a snap-back to zero force), in particular, in G and hBN crystals which 

is fairly similar to the AFM rupture force curves of bridging nanobubbles [82, 83]. However, our 

F⎼d curves upon tip approach display a small jump-to-contact force due to the hydrophobic 

nature of 2D crystal nanomesas (see, for instance, hBN/hBN approach curve in Fig. 1b in the 

main text), suggesting negligible effect of tip-sample capillary forces and bridging bubble 

ruptures on the retraction curves. In addition, similar observation in our measurements at higher 

annealing temperatures (up to 300°C) further confirms that the IAE in 2DLMs is mainly 

governed by vdW forces rather than capillary forces. For comparison purposes, we recorded 

rupture force curves of bridging nanobubbles formed between the in situ flattened Si tip and the 

SiOx/Si substrate at the relative humidity of 70% (red curve in Figure 5.10). By closer inspection 

of the F⎼d curves, we notice three fundamental differences in the separation mechanism between 

2DLMs (e.g., blue curve in Figure 5.10) and bridging nanobubbles (e.g., red curve in Figure 

5.10). First, the separation range in the 2DLMs (typically 5-10 nm) is almost an order of 

magnitude shorter than that in the nanobubbles (typically 50-80 nm), further supporting the claim 

that the short-range vdW interaction is the major separation mechanism in 2DLMs. Second, 

contrary to the case of the bridging nanobubbles where the adhesion strongly depends on the 

retraction speed of the piezo [84], our F⎼d analysis under various tip retraction rates in the range 

of 1-1000nm/s reveals no appreciable effect on the IAE of 2DLMs, indicative of the absence of 

any dynamic (viscous) forces in the separation mechanism of 2DLMs. Third, an abrupt drop in 

the retraction force curves of nanobubbles just prior to the complete separation could reflect the 

pinch-off process of the unstable bubble neck, whereas a relatively fast transition from a surface 

contact to a line contact during the separation process in 2DLMs can eventually lead to the 

sudden break of the line contact and thereby an abrupt force drop at the very end of the 

separation process. 
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Unlike the relatively gradual reduction of the adhesion force in G and hBN crystals and 

bridging nanobubbles, a sudden detachment of 2D crystal tips from metal substrates (i.e., Ni, Cu, 

Pt and Au) is observed (see, for instance, the F⎼d curve of G tip on the Cu substrate in Figure 

5.10). Strong interfacial adhesion energy (1.02 Jm-2) between G and Cu also suggests that Cu 

atoms share electrons with carbon atoms. Similarly, much stronger interactions with a faster 

detachment at the homointerface of MoS2 than G and hBN (Fig. 1b in the main text) suggest 

possible sharing electrons in the interlayer region of transition metal dichalcogenides beyond a 

simple vdW-only interaction. Very recent X-ray diffraction measurements on the weak interlayer 

interaction of 2D crystal TiS2 also suggest more electron sharing in the S…S interaction (i.e., 

stronger interlayer bonding) than predicted by DFT calculations [85], implying that the presence 

of S…S covalent-like quasi-bonding can better account for the higher IAE value in the MoS2 

crystal of similar TMD structure. 

 

 

Figure 5.10. Typical retraction F⎼d curves recorded at the interface of tip-attached G nanomesa/G substrate (in 
blue), bare Si tip-attached nanobubble/SiOx substrate (in blue) and tip-attached G mesa/Cu substrate (in brown) at 
the relative humidity of 15%, 70% and 15%, respectively. The light blue-shaded area represents the interfacial 
adhesion energy in units of Joules. Each raw data set was given an offset to provide the same equilibrium position 
for all F⎼d curves. Schematic inset shows the bridging bubble rupture between the in-situ flattened Si tip and the 
SiOx/Si substrate, where the energy required to rupture the nanobubble is roughly obtained by dividing the area 
under the F⎼d curve over the area of the flat tip. 
 

5.5 Adhesion Between Similar vdW Heterostructures 

Figure 5.11 presents IAE values of both fresh and aged vdW homostructures at the 

intact, pre-cooling treated and untreated heterointerfaces as a function of annealing temperatures. 

We begin our discussion with IAE measurements at the intact and aged 2D crystal 

homointerfaces under different annealing temperatures (Figure 5.11). It is evident from the gray 

circles in Figure 5.11 that the measured IAE at the intact homointerfaces is independent of the 



90 
 

annealing temperatures. However, after exposing the freshly exfoliated 2D crystal flakes to the 

ambient air, the IAE between similar vdW heterostructures (red circles in Figure 5.11) is 

consistently lower than their corresponding intrinsic value, mainly due to the possible adsorption 

of airborne contaminants (e.g., water and hydrocarbon molecules) onto the fresh surface of 

crystals (see Section 5.5.1 for our detailed discussions upon water contact angle measurements). 

A 30% and 19% drop in the IAE of G/G and hBN/hBN, respectively, at room temperature 

suggests that hBN has higher chemical stability than G of very similar lattice structure (Figure 

5.12). Although a mild annealing temperature (130°C) coupled with relatively strong vdW 

interactions at the interface can provide a sufficient driving force to push the trapped water 

molecules away from the contact interface and thus to slightly improve the IAE of the crystals 

(up to ~5%), a higher annealing temperature is required to build up larger pressure at the 

interface to drive out the majority of hydrocarbons as the main source of such IAE drop, leading 

to nearly full recovery of the intrinsic IAE only at the hBN homointerface upon annealing at 

300°C. Interestingly, despite stronger vdW interaction of MoS2/MoS2 and similar level of 

interaction of G/G compared to hBN/hBN, the full aggregation of such contaminants into 

nanobubbles at the G and MoS2 homointerfaces can only be triggered at a much elevated 

temperature, implying that hydrocarbons have a stronger interaction with G and MoS2 than hBN.  

We next preform a series of measurements to study the effect of pre-cooling treatment of 

the substrate on the IAE of the homointerfaces (blue circles in Figure 5.11). Surprisingly, such a 

precooling treatment can significantly improve the IAE of the hBN, G and MoS2 crystals 

regardless of the subsequent annealing temperature. While such an IAE improvement upon 

130°C and 300°C thermal annealing could be intuitively understood by hypothesizing that the 

formation of ice-like mono/bilayer on the freshly cleaved 2D crystals can be effectively 

leveraged as a self-release underlying film for the facile removal of the subsequent hydrocarbon 

adsorptions, this hypothesis might not be supported by our findings at room temperature and -

15°C where the ice-like layer is still stable and tightly bonded to the underlying crystal surface. 

Notably, however, our observations can be fully supported for all range of temperatures by a 

recent study, showing that water adsorption on graphitic surfaces can significantly slow down the 

hydrocarbon adsorption rate [86], thus making the nanometer-thick ice-like water an excellent 

protective layer against the airborne contamination for several hours. We also note that an 

increase of the annealing temperature from 130°C to 300°C exhibits further improvement of the 
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IAE, implying that the ice-like layer which is completely removed at T≤130°C cannot fully 

cover the crystal surface, still leaving unprotected areas with adsorbed high boiling point 

hydrocarbons.  

 

 

Figure 5.11. IAE values as a function of annealing temperatures at the G, hBN and MoS2 homointerfaces using 
normal force microscopy technique. Filled gray circles denote the intrinsic IAE values at the intact G, hBN and 
MoS2 homointerfaces whereas filled blue (red) circles denote the IAE values between 2D crystal tips and 
precooling-treated (untreated) substrates. Each open transparent gray circle represents a single IAE measurement at 
the intact homointerfaces, whereas each data point shown in open transparent blue and red circles represents the IAE 
of the tips on an individual 2D crystal flake averaged over 10 measurements from different locations of the flake 
surface. Each filled circle is presented as average of all corresponding open circles ± standard deviation. Insets 
illustrate ball-and-stick representation of various tip/substrate interfaces where carbon, boron, nitrogen, 
molybdenum, and sulfur atoms are shown in gray, green, pink, cyan and yellow, respectively.   
 

5.5.1 Interaction of 2D crystals with airborne contaminants using water contact angle 

measurements 

Upon the air exposure, the adsorption of airborne contaminants (e.g., water and 

hydrocarbon molecules) onto the fresh surface of crystals can reduce their overall free surface 

(Gibbs) energy, thereby the IAE between similar vdW heterostructures is consistently lower than 

their corresponding intrinsic value (Figure 5.11). A 30% and 19% drop in the IAE of G/G and 

hBN/hBN, respectively, at room temperature suggests that hBN has higher chemical stability 

than G of similar lattice structure with only slightly shorter (~1.8%) lattice constant. After 

exposure of mechanically exfoliated hBN, G and MoS2 flakes to the ambient air for several 

months, hBN flakes exhibit much cleaner surfaces compared to G and MoS2 flakes (Figure 

5.12), making hBN crystals an ideal candidate for encapsulation and protection of exfoliated G 

and MoS2 flakes. Figure 5.12 also shows that the surface of G and MoS2 flakes is readily 

contaminated by water, organic molecules, and other adsorbates, leading to the deterioration of 

their electrochemical and electronic properties.  
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Figure 5.12. SEM images of (a), (b) hBN, (c), (d) G and (e), (f) MoS2 flakes which are exfoliated on the heating line 
of the microheaters and exposed to the ambient air for several months. 
 

Effect of airborne surface contaminations and thermal annealing on the IAE of 

heterostructures can be well understood in terms of intrinsic water wettability of fresh and aged 

surfaces of 2D crystals. Many studies on the wettability of G crystal along with very limited 

studies on the wettability of hBN and MoS2 crystals all suggest that freshly cleaved crystals 

spontaneously adsorb airborne contamination upon the air exposure, leading to an increase in the 

water contact angle (WCA) of G [87], hBN [88] and MoS2 [89] crystals, respectively, from (64°, 

63°, 69°) measured within few seconds of air exposure of fresh surfaces to a saturated value of 

(90°, 86°, 89°) within few hours of air exposure.  

We now develop an analytical model coupled with the water contact angles (WCAs) 

reported in literature to quantify the surface contaminations of G crystal. The total surface energy 

of G crystals, ீߛ , which consists of contributions from both nonpolar (dispersion) interaction ீߛ
ௗ 

and polar (electrostatic) interaction ீߛ௣ of graphite (i.e., ீߛ ൌ ீߛ
ௗ ൅  ௣), can be given by theߛீ

Fowkes equation: 

2ቆටߛௐ
ௗ ௗߛீ ൅ ටߛௐ

௣ ௣ቇߛீ ൌ ௐሺ1ߛ ൅ cos  ሻ (5.3)ߠ

where ߛௐ
ௗ  and ߛௐ

௣  are the dispersion (21.8 mJ m−2) and polar (51.0 mJ m−2) components of the 

total surface energy of water ߛௐ (72.8 mJ m−2), and θ is the WCA of G bulk crystal. To 

determine the electrostatic surface energy of G, we first measured the surface electrostatic 
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potential of graphite using a conductive AFM tip (SCM-PIT, Nanoworld, with the spring 

constant of 1.9 N/m) and found it to be ~398 mV for the tip-substrate distance of 10 nm (see 

Figure 3.1). We then calculated the electrostatic surface energy of graphite ீߛ௣ (0.07 mJ m−2) 

using the well-established concept of the parallel plate capacitor model. The interfacial adhesion 

energy of the G crystal (Γீ ൌ  in Table 5.1 and Figure 5.13 is calculated by finding the (ீߛ2

dispersion interaction as follows 

ீߛ
ௗ ൌ

1

ௐߛ
ௗ ቈ
ௐߛ
2
ሺ1 ൅ cos ሻߠ െ ටߛௐ

௣ ௣቉ߛீ
ଶ

 (5.4) 

The results marked by the star in Table 5.1 are the IAE of the airborne contamination adlayer, 

஼ுை (ൌߛ ஼ுைߛ
ௗ ൅ ஼ுைߛ

௣ ), whose electrostatic interaction ߛ஼ுை
௣  was similarly determined to be 0.32 

mJ m−2 and therefore can be expressed by  

஼ுைߛ
ௗ ൌ

1

ௐߛ
ௗ ቈ
ௐߛ
2
ሺ1 ൅ cos ሻߠ െ ටߛௐ

௣ߛ஼ுை
௣ ቉
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 (5.5) 

 

Table 5.1. Summary of water contact angle measurements and corresponding IAE values of G crystal.  
Notes Measured within WCA 2γG (J/m2) Ref 
Ultrahigh vacuum 3 sec 42±7° 0.348±0.033 [90] 
Ambient air at 24°C/48% RH 10 sec 64.4° 0.232 [87] 
 2 days 91.0° 0.093*  
550oC annealing in Ar 1 min 54.1° 0.286  
Ambient air at 22-25°C/20-40% RH 10 sec 64.4±2.9° 0.232±0.015 [91] 
 7 days 97.0±1.8° 0.072±0.01*  
Ultrahigh vacuum for 15 h N.A. 59° 0.260  
Ambient air at 22-25°C/20-40% RH 10 sec 68.6±7.1° 0.210±0.034 [92] 
Ambient air at 22°C/50% RH 10 sec 68.2±2° 0.212±0.010 [93] 
 1 day 90±0.1° 0.096±0.002*  
Ambient air at RT/40-50% RH 1.5 min 62.9±2.2° 0.239±0.012 [94] 
Ambient air at RT/40-50% RH 5 min 61.8±3.3° 0.249±0.017  
 1 day 81.9±2.9° 0.129±0.012*  
600oC annealing in He N.A. 51.4±2.0° 0.300±0.010  
Clean room at 21°C/40% RH 5 sec 53±5° 0.292±0.027 [95] 
 8 min 66±3° 0.223±0.016  
 2 days 86±4° 0.112±0.016*  
Water vapor atmosphere N.A. 58±2° 0.266±0.010  
Ultrahigh-purity argon atmosphere 1 min 45±3° 0.333±0.016  
Evacuation/1050oC annealing/vacuum 1 min 55±1° 0.281±0.005  
Evacuation/1000oC annealing/atmosphere 1 min 73±5° 0.187±0.025  
Ambient air at 22-25°C/20-40% RH 10 sec 60±0.1° 0.255±0.002 [86] 
* Interfacial adhesion energy of airborne contamination adlayer.  

 

Our further analysis on the temporal evolution of the adhesion energy and contamination 

thickness measured on the mechanically exfoliated HOPG surface during the first 60 min of air 

exposure reveals that its intrinsic IAE of 0.341±0.025 Jm-2 obtained under ultrahigh vacuum or 
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ultrahigh-purity argon atmosphere is well consistent with our experimental value of 0.328±0.028 

Jm-2 but drastically decreases within the first minute of air exposure and eventually approaches a 

saturated value of 0.15±0.02 Jm-2 after 10 min (Figure 5.13), which is much smaller than our 

IAE value of 0.233±0.035 Jm-2 upon room-temperature storage for 10 h. This could be attributed 

to the presence of the contact pressure and the vdW interaction between the layers in our 

experiments which may still play a role to squeeze away the contaminants even at room 

temperature, leaving cleaner interfaces with stronger interactions. We also note that a substantial 

decrease in the surface hydrocarbon level under vacuum, high-temperature (500⎼1000°C) 

treatment during the WCA measurements results in the IAE recovery of the G crystal 

(0.282±0.024 Jm-2), which is in good agreement with our IAE value of 0.268±0.028 Jm-2 at much 

lower temperature (300°C), further confirming the dominant contribution of the vdW force to the 

IAE improvement. 

 

Figure 5.13. Temporal evolution of the adhesion energy (left axis in blue) and contamination thickness (right axis in 
red) measured on the mechanically exfoliated HOPG surface during the first 60 min of air exposure. Adhesion 
energy is extracted from WCA measurements of refs. [90], [91], [93], [94], [95] and [86] denoted by black, cyan, 
brown, orange, magenta, green circles, respectively. Adsorbed contamination layers linearly grow within the first 60 
min of air exposure, reaching a thickness of ~0.55nm, and then the growth rate considerably decreases and plateaus 
at ~0.60nm after several hours [86].   
 

5.6 Adhesion Between Dissimilar vdW Heterostructures 

Our IAE measurements on dissimilar vdW heterostructures exposed to air at room 

temperature (red circles in Figure 5.14) reveal that the adhesion level at the untreated G/hBN 

interface remains roughly the same as that at the untreated G and hBN homointerfaces over the 

temperature range of -15⎼300°C, whereas the IAE value of MoS2 on the untreated G and hBN 

substrates is almost two-fold smaller than that on the untreated MoS2 substrate. During the 

approach-retract course, we observe a very similar adhesive response of the G nanomesa to both 
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G and hBN substrates within our experimental accuracy, suggesting that the IAE of G/hBN is 

governed primarily by the same level of dispersion energy at the interface with a negligible 

contribution from the electrostatic interactions of hBN, which are absent at the G/G interface. 

However, this is not the case at the contact interface between MoS2 and hBN(G) where different 

crystal structures and different static polarizabilities of the constituent atoms dictate very 

different levels of short-range dispersive (vdW) and long-range electrostatic (Coulombic) 

interactions at the MoS2/MoS2 interface and MoS2/hBN(G) interfaces. Notably, we observe that 

unlike very high-quality interface of untreated MoS2/MoS2 upon annealing at 300°C, untreated 

MoS2/hBN and G/MoS2 interfaces do not show any further improvement, implying an absent or 

even negative impact of such a high annealing temperature on the IAE of MoS2/hBN(G).  

This counterintuitive observation can be explained by a trade-off between interface self-

cleansing mechanisms driven by the vdW forces and MoS2 oxidation process triggered by 

relatively high temperatures (>130°C) in the ambient air. On one hand, two-fold weaker vdW 

interaction in MoS2/hBN(G) than MoS2/MoS2 can still provide sufficient driving forces of 

similar magnitude to those of G/G, hBN/hBN and G/hBN for the segregation of the contaminants 

to the localized nanobubbles, leading to the enhanced IAE of MoS2/hBN(G) at 300°C. On the 

other hand, the weaker interaction of MoS2/hBN(G) can facilitate the oxygen interfacial 

diffusion and thereby the oxidation process which is initiated from the edges, grain boundaries 

and intrinsic atomic defects of MoS2 and gradually penetrates into the MoS2 grains at the 

interface. This is consistent with the gradual surface oxidation of MoS2 in ambient conditions 

[96] and the low-temperature surface oxidation of MoS2 which is initiated at ~100°C and 

significantly increases at 300°C [97], resulting in the negative impact of oxygen adsorption on 

the photocurrent and field-effect mobility of MoS2 transistors in air [98, 99] and on the mobility 

and homogeneity of MoS2/G heterostructure devices after annealing above 150°C [100].  

We hypothesize two possible interfacial oxidation mechanisms responsible for the 

weaker interaction of MoS2/hBN(G) at 300°C: (1) replacement of sulfur atoms with oxygen 

atoms results in a lower surface energy in the oxidized MoS2 (MoO3) than unreacted MoS2; (2) 

partial protrusions (0.36±0.25nm [101]) at the interface due to formation of interfacial MoO3 

patches along with the presence of gaseous reaction products (e.g., SO2, which cannot diffuse out 

of interface owing to extremely high vdW pressure on trapped molecular layer [102]) gives rise 

to local interlayer decoupling of unreacted MoS2 crystal from underlying hBN and G substrates. 
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Similar to the precooling-treated G, hBN and MoS2 homointerfaces, it is evident from the 

blue circles in Figure 5.14 that precooling treatments can effectively protect the crystal 

substrates against the airborne contaminants and thus boost the adhesion level at the interface of 

dissimilar vdW heterostructures at much lower annealing temperature of 130°C. However, such a 

protective layer offers no appreciable improvement in the IAE of MoS2/hBN(G) at 300°C, 

further confirming the possible destructive effect of interfacial contaminations/oxygen diffusion 

on the MoS2 oxidation at higher temperatures.  

 

 

Figure 5.14. IAE values as a function of annealing temperatures at the G/hBN, G/MoS2 and MoS2/hBN 
heterointerfaces using normal force microscopy technique. Filled blue (red) circles denote the IAE values between 
2D crystal tips and precooling-treated (untreated) substrates. Each data point shown in open transparent blue and red 
circles represents the IAE of the tips on an individual 2D crystal flake averaged over 10 measurements from 
different locations of the flake surface. Each filled circle is presented as average of all corresponding open circles ± 
standard deviation. Insets illustrate ball-and-stick representation of various tip/substrate interfaces where carbon, 
boron, nitrogen, molybdenum, and sulfur atoms are shown in gray, green, pink, cyan and yellow, respectively.   
 

5.7 Adhesion Between 2D Crystals and SiOx  

Here we report in Figure 5.15 an AFM quantitative characterization of the interlayer 

interactions of 2D crystals on both untreated and pre-cooling treated SiOx substrates which 

provides a benchmark experimental data set for other experimental techniques (Section D.1.2, 

Appendix D). Similar to untreated 2D crystals, the thermal annealing can effectively remove the 

water and hydrocarbons from the untreated SiOx surface, leading to the higher IAE at the 2D 

crystal/SiOx interface. Surprisingly, however, unlike the case of 2D crystal substrates, the 

precooling treatment results in the weaker interaction of the 2D crystals with the SiOx substrate 

at both -15°C and room temperature. This weaker interaction may be explained by the 

hydrophilic nature of SiOx that can adsorb a homogeneous and flat water film of thickness 2-3nm 
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(~6-10 monolayers of water) on its silanol (Si⎼OH)-rich surface when storing at -15°C 

(corresponding to 100% relative humidity) [103]. As such, our IAE measurements at -15°C (i.e., 

0.171±0.041, 0.177±0.042 and 0.152±0.034 Jm-2 for the G, hBN and MoS2 crystals on SiOx, 

respectively) essentially take place at the 2D crystal/water interface rather than 2D crystal/SiOx 

interface. In addition, a larger IAE of 2D crystal/treated SiOx at room temperature compared to 

that at -15°C can be attributed to the presence of a mixture of ice-like mono/bilayer structure 

(fully H-bonded to the silanol groups) and liquid-like few-layer structure on top of the ice-like 

layer at room temperature. Such trapped liquid-like film can segregate into isolated nano-sized 

bubbles [104] by means of the contact pressure and the interlayer vdW forces, bringing the 2D 

crystals into closer proximity with the SiOx surface and thus enhancing the IAE at the 2D 

crystal/SiOx interface. Similarly, the weaker interaction between the 2D crystals and the 

untreated SiOx at -15°C compared to that at room temperature is presumably due to the 

formation of the thicker ice-like layer on the SiOx surface at -15°C. We also note that the thermal 

annealing at 130°C and 300°C makes no appreciable difference in the interfacial adhesion level 

between 2D crystal/precooling-treated SiOx and 2D crystal/untreated SiOx, confirming the 

formation of the protective ice-like layer on the untreated SiOx substrate due to 15% RH in the 

ambient air.  

 

 

Figure 5.15. IAE values as a function of annealing temperatures at the G/SiOx, hBN/SiOx and MoS2/SiOx 
heterointerfaces using normal force microscopy technique. Filled blue (red) circles denote the IAE values between 
2D crystal tips and precooling-treated (untreated) substrates. Each data point shown in open transparent blue and red 
circles represents the average IAE value obtained from 10 measurements within an individual small region 
(1μm×1μm) of SiOx substrate. Each filled circle is presented as average of all corresponding open circles ± standard 
deviation. Insets illustrate ball-and-stick representation of various tip/substrate interfaces where carbon, boron, 
nitrogen, molybdenum, sulfur, silicon and oxygen atoms are shown in gray, green, pink, cyan, yellow, white and 
orange, respectively.   
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Similar to the interaction of MoS2 crystal with the other 2D crystals, the high annealing 

temperature of 300°C can drastically reduce the adhesion level at the MoS2/treated-SiOx 

interface, which lends additional support to the hypothesis of MoS2 oxidation at higher 

temperatures due to the chemical reaction of MoS2 with the trapped water and the diffused 

oxygen. Such significantly reduced IAE of MoS2/treated-SiOx relative to MoS2/hBN(G) at 

300°C can be understood as a direct consequence of the strong hydrophilic property of SiOx, 

where the MoS2 crystal undergoes an additional chemical reaction with the interfacial water 

layer, resulting in the partial etching of the MoS2 interface layer and needle-like protrusions due 

to the formation of MoO3.H2O on the MoS2 surface [105]. It is worth pointing out that although 

oxygen plasma treatment can completely remove any water and hydrocarbon molecules, leaving 

a contamination-free SiOx surface terminated with more silanol groups, we observed that 

stronger interaction between 2D crystals and plasma-cleaned SiOx surface leads to the exfoliation 

of 2D crystals across the thickness of nanomesa, making a direct IAE measurement at 2D 

crystals/plasma-treated SiOx interfaces inaccessible. 

 

5.8 Tabulated Experimental Data 

In order to provide a valuable guideline for the fabrication of vdW heterostructures based 

on the vdW pick-up transfer techniques, we have presented a summary of the cohesion energy at 

the intact G, hBN and MoS2 homointerfaces (Table 5.2) and the interfacial adhesion energy of 

untreated and precooling-treated homo/heterostructures (Table 5.3), corresponding to the 

experimental data points in Figures 5.9(c), 5.11, 5.14 and 5.15.    

 

Table 5.2. Summary of cohesion energy Γ (Jm-2) at intact G, hBN and MoS2 homointerfaces. 

T(°C) Normal force microscopy technique  Shear force microscopy technique 
G/G hBN/hBN MoS2/MoS2  G/G hBN/hBN MoS2/MoS2 

 -15 0.336±0.025 0.319±0.022 0.471±0.035      
  22 0.328±0.028 0.326±0.026 0.482±0.032  0.361±0.014 0.372±0.015  0.501±0.017

130 0.324±0.027 0.322±0.029 0.479±0.036      
300 0.333±0.026 0.312±0.027 0.484±0.030      

 

These tables show, for instance, that both G and hBN can be used to pick up all three 2D 

crystals from the SiOx substrate at room temperature. However, the stronger adhesion of G to the 

SiOx substrate requires careful selection of the 2D crystals for the high-yield G pick-up, making 

MoS2 a relatively improper choice for such a purpose. Moreover, the simple precooling 

treatment of the SiOx substrate before the mechanical exfoliation of 2D crystals can highly 
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facilitate the 2D crystal pick-up by reducing the interfacial adhesion energy at the 2D 

crystal/SiOx interface. 

 

Table 5.3. Interfacial adhesion energy Γ (Jm-2) in similar/dissimilar heterostructures using normal force microscopy. 

T(°C) 
Similar vdW heterostructures  Dissimilar vdW heterostructures  2D crystal/SiOx heterostructures 
G/G hBN/hBN MoS2/MoS2  G/hBN G/MoS2 MoS2/hBN  G/SiOx hBN/SiOx MoS2/SiOx 

  Untreated substrates               
 -15 0.239±0.044 0.250±0.035  0.391±0.045   0.251±0.031 0.209±0.034 0.219±0.033  0.223±0.052  0.200±0.043 0.174±0.034

  22 0.230±0.035 0.259±0.032  0.384±0.042   0.248±0.035 0.211±0.038 0.206±0.025  0.239±0.054  0.208±0.047 0.189±0.027

130 0.245±0.034 0.265±0.031  0.401±0.037   0.265±0.033 0.228±0.027 0.228±0.030  0.259±0.045  0.228±0.031 0.205±0.043

300 0.268±0.028 0.296±0.044  0.417±0.050   0.304±0.029 0.221±0.048 0.226±0.047  0.276±0.044  0.235±0.041 0.211±0.038

 Precooling-treated substrates         
 -15 0.265±0.030 0.276±0.027  0.416±0.036   0.271±0.024 0.222±0.025 0.212±0.027  0.171±0.041  0.177±0.042 0.152±0.034

  22 0.270±0.031 0.282±0.026  0.411±0.037   0.264±0.025 0.208±0.028 0.218±0.023  0.209±0.044  0.186±0.043 0.169±0.039

130 0.303±0.028 0.297±0.038  0.445±0.036   0.295±0.034 0.252±0.026 0.257±0.029  0.273±0.043  0.220±0.038 0.209±0.046

300 0.313±0.026 0.310±0.042  0.455±0.038   0.312±0.040 0.249±0.037 0.260±0.044  0.284±0.047  0.230±0.042 0.197±0.048

 

5.9 Adhesion at G/SiOx Interface: Beyond vdW Interaction 

During interfacial adhesion measurements of G/SiOx at the annealing temperatures of 

130°C and 300°C, we unexpectedly observed abrupt detachment of G nanomesa with 

single/multiple force jumps in the F⎼d retraction curves, resulting in much stronger interfacial 

interactions in G/SiOx than hBN(MoS2)/SiOx. In particular, the separation process of 2D crystal 

tips in our setup dictates a relatively gradual reduction of the interfacial adhesion force between 

two adjacent 2D crystal flakes and between hBN(MoS2) nanomesas and SiOx substrate. As a 

result, such sudden detachment with single/multiple plateau force jumps in the G/SiOx adhesion 

curves cannot be interpreted as a consequence of experimental noises, thermal fluctuations and 

mechanical instabilities of the probe, as they are roughly equally present in all the F⎼d 

measurements.  

From over hundred interfacial adhesion measurements for the G/SiOx interaction, we 

identified three distinct F⎼d curves, each describing gradually broken contacts (i.e., weak 

interaction without any force jump), suddenly broken contacts (i.e., strong interaction with a 

single force jump), and a transition from gradually to suddenly broken contacts (i.e., mild 

interaction with multiple force jumps), as shown in Figure 5.16(a). To provide a rational 

explanation of the origin of such distinctive interfacial behavior in the G/SiOx heterostructure, 

we begin by addressing quantitatively to what degree the interfacial adhesion of G/SiOx 

interfaces (and also intact and aged G homointerfaces for comparative purposes) is controlled by 

the conformity of the tip-attached G nanomesa to the underlying substrate morphology. To this 
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end, a series of interfacial adhesion measurements over a pressure range of 0-10 MPa was 

conducted at the interface of G crystal tip/pre-annealed SiOx substrate and G crystal tip/pre-

annealed G substrate, as shown in the top and bottom panel of Figure 5.16(b), respectively. To 

further minimize experimental uncertainty, a 2μm×2μm smooth region of the SiOx (G) substrate 

with an RMS surface roughness of 0.305nm (0.077nm) was first located by non-contact AFM 

roughness measurements and then, ten contacts with 100 nm interval spacing were formed at 

each pressure load under a very clean environment, allowing us to perform all measurements 

within a very small region in close proximity to the microheater (see the SEM image in the inset 

of bottom panel in Figure 5.16(b)). Moreover, prior to each pressure increment, SiOx and G 

substrates are annealed at 300°C for 30 min to remove any possible adsorbed contaminations and 

then the G crystal tip/pre-annealed substrate interface is further annealed at 300°C for 15 min, 

followed by the new round of adhesion measurements 

 

 

 

 

Figure 5.16. (a) Typical retraction F⎼d curves of the G/SiOx interface recorded at no contact pressure (in purple) 
and 5MPa (in brown, magenta and orange) and also a typical approach F⎼d curve (in gray). (b) IAE values as a 
function of contact pressure at the intact G homointerfaces (filled blue squares in top panel), G/SiOx interfaces 
(filled red circles in top panel) and aged G homointerfaces (filled blue circles in bottom panel). Each open 
transparent symbol represents a single IAE measurement at the given contact pressure. Each filled symbol is 
presented as average of all corresponding open symbols ± standard deviation. From 110 IAE measurements shown 
in the top panel, 33 and 77 contacts result in the separation of G crystal tip across the thickness of the nanomesa 
(open blue squares) and from the SiOx surface (open red circles), respectively. In the top panel, cyan and orange 
shaded regions indicate the vdW-only and vdW+non-vdW interactions of G/SiOx, respectively, where the liftoff in 
the vdW-only region is relatively gradual in comparison to the vdW+non-vdW region. Dashed blue lines denote an 
overall average IAE value of 0.328±0.022 Jm-2 and 0.263±0.032 Jm-2 at the intact G homointerface (top panel) and 
aged G homointerface (bottom panel), respectively. Dashed red line in the top panel represents the best fit to the 
data, indicating the pressure dependence of IAE at the interface with an average value of 0.284±0.046 Jm-2 taken 
within the pressure-independent region (i.e., ≥3MPa). Inset of bottom panel: SEM image showing 2μm×2μm square 
regions of G (in turquoise) and SiOx (in rose) substrates on which all measurements are performed in close 
proximity to the microheater.  

 

(a) (b) 
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It is observed from Figure 5.16(b) (top panel) that the G crystal tip requires a contact 

pressure of ≥3MPa to conform closely to the SiOx surface, thereby enhancing the IAE of the 

G/SiOx interface from 0.131±0.038 Jm-2 at zero pressure to 0.289±0.034 Jm-2 at 10 MPa. In 

contrast, both the intact G homointerface (blue squares in the top panel of Figure 5.16(b)) and 

the aged G homointerface (bottom panel in Figure 5.16(b)) suggest a constant IAE value of 

0.328±0.022 Jm-2 and 0.263±0.032 Jm-2, respectively, almost entirely independent of the 

pressure, indicative of atomically flat and dangling bond-free G/G interfaces. It is also evident 

from the top panel in Figure 5.16(b) that graphene flakes are not exfoliated on SiOx at very low 

pressure (< 2MPa) and only 10% and 20% of contacts at 2 and 3 MPa, respectively, result in the 

exfoliation of graphene flakes, indicating the significant contribution of the conformal adhesion 

to the overall interfacial adhesion strength of the G/SiOx interface. More importantly, we observe 

that abrupt detachment events with single/multiple force jumps in the retraction curves of G/SiOx 

take place more frequently at higher pressure in such a way that nearly all contacts are suddenly 

broken at the pressure load of ≥4MPa with IAE values roughly greater than 0.221 Jm-2. 

Surprisingly, this value is very close to theoretical calculations of the intrinsic vdW interaction 

energy (0.230 Jm-2) at the G/SiOx interface obtained for the multilayer graphene blister tests on 

the SiOx substrate under pressure loading [106]. Hence, while a continuous decrease in the 

retraction curves can be attributed to the long-range vdW interaction of G/SiOx with IAE values 

typically smaller than 0.221 Jm-2, direct observation of single/multiple force jumps at stronger 

G/SiOx interfaces can be hypothesized to be the result of formation of short-range chemical 

bonds at the interface.  

In particular, both experimental and theoretical results confirm that G flakes supported on 

SiOx exhibits much higher chemical reactivity than suspended G flakes, mainly due to the 

combined action of inhomogeneously distributed charge puddles (induced by polar adsorbates, 

such as water molecules on the silanol surface and by ionized impurities, such as Na+ ions 

trapped on SiOx) and larger topographic corrugations (induced by thermal fluctuation and vdW 

interaction at the G/SiOx interface) [107, 108, 109, 110]. As such, hydrogen and oxygen 

molecules preferentially bind to apexes of corrugated G due to the combined contribution from 

the enhanced elastic and electronic energies of convex regions on the G surface [111]. Notably, 

from Figure 5.16(b), only ~22% chemical bond-induced improvement in the IAE of G/SiOx 

(i.e., from 0.221±0.030 Jm-2 to 0.284±0.046 Jm-2) under relatively low pressure (of the order of 
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few MPa) leads us to believe that (1) vdW interactions are still the dominant mechanism of 

adhesion at the G/SiOx interface; (2) the formation of hydrogen bonds (e.g., C⎼H…O⎼Si, 

C⎼O…H⎼O⎼Si	 and C⎼O⎼H…O⎼Si in the absence of contaminants and C⎼H…O∖
ୌ
െH…O⎼Si and 

C⎼O…H⎼O⎼H…O⎼Si in the presence of water molecules) rather than covalent bonds could result 

in such force jumps in the retraction curves; nonetheless, the formation of any covalent bonds 

between G and SiOx (e.g., C⎼O⎼Si and C⎼Si [112, 113, 114, 115, 116]) cannot be completely 

ruled out because the effect of localized tensile strain and charge transfer on the chemical 

activity level of the corrugated G is poorly understood, and thus exploring site-specific 

adsorption mechanisms of external chemical species (e.g., molecules and atoms) at the ripple 

apexes and edges of 2D crystal flakes is warranted. In addition, the specific chemical reactivity 

of the carbon atoms with accessible and highly active electrons at the edge of the G flakes can 

also contribute to the formation of chemical bonds, as observed in a number of our retraction 

curves (e.g., see the magenta curve in Figure 5.16(a)).  

 

 

Figure 5.17. MD-calculated force versus relative displacement curves for the interaction of G/G (in black), the 
vdW-only interaction of G/SiOx (in purple) and vdW+non-vdW interaction of G/SiOx (in magenta) with three 
covalent C⎼O⎼Si bonds at the interface. Each force jump labeled by 1, 2 and 3 represents the break of the 
corresponding covalent bond, as illustrated by the MD pull-off simulation in the inset. 
 

To gain an in-depth understanding of underlying mechanisms associated with the 

interaction of G crystal and the SiOx substrate, we performed classical MD simulations using the 

LAMMPS simulator at room temperature. Four 98.2Å×102.1Å G layers with AB stacking were 

placed at a distance of 3.0 Å above an amorphous SiOx substrate (143.3×146.5×21.3Å3) while 

the flattened tip was modeled by a tapered silicon (001) layer (inset of Figure 5.17). The total 

interfacial force (i.e., vdW and non-vdW forces) and relative displacement between the 

innermost G layer and the SiOx substrate were simultaneously monitored as the tapered silicon 
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(001) layer was pulled in the normal direction with a constant speed of 10-2 Å/ps. Our MD results 

show that force jumps in the retraction curves can only be achieved by breaking short-range 

chemical bonds at the G/SiOx interface (Figure 5.17). 

It is also to be noted that in contrast to MD-calculated retraction curves in Figure 5.17, 

the number of force jumps in Figure 5.16(a) does not necessarily correspond to the number of 

chemical bonds at the G/SiOx interface. One may argue from an interfacial fracture standpoint 

that once the restoring force of the probe cantilever exceeds the strength of the G/SiOx 

interaction (i.e., the pull-off force), interfacial nano-sized cracks form and propagate until 

complete interfacial fracture occurs. As such, the interfacial fracture of G/SiOx heterostructure is 

a combined action of the external pull-off force and the internal adhesion force (i.e., vdW and/or 

non-vdW forces). For the case of the vdW-only interaction of G/SiOx, both a smaller pull-off 

force and the smooth and slow propagation of nanocracks contribute to the relatively gradual 

reduction of the interfacial adhesion force (purple curve in Figure 5.16(a)). In contrast, faster 

crack propagation in the stronger vdW+non-vdW interaction of G/SiOx which is triggered by a 

larger pull-off force, results in the abrupt force drop in the retraction curves immediately upon 

the initiation of the separation process. As the nanocracks are continuously propagating and the 

pull-off force becomes progressively smaller and smaller, the chemical bonds (i.e., the anchoring 

spots) gain the ability to pin the nanocrack tips and thus momentarily retard the crack 

propagation. Such unique crack arresting behavior at the G/SiOx interface gives rise to very short 

signals in the retraction curves through a significant decrease in the force drop rate, making the 

detection of the chemical bonds possible in our setup (brown and magenta curves in Figure 

5.16(a)). However, in the case of suddenly broken contacts with a single force jump (e.g., orange 

curve in Figure 5.16(a)), as the number of the interfacial chemical bonds increases, larger and 

larger pull-off forces are required to initiate the interfacial fracture of the G/SiOx, thereby much 

faster nanocrack propagation at the beginning of the separation process causes all interfacial 

chemical bonds to suddenly break and thus no longer allows our setup to capture the crack 

arresting behavior during propagation. Furthermore, while both the pull-off and interfacial 

adhesion forces are primarily responsible for developing the interfacial nanocrack growth and 

separation (see step-like events in the retraction curves), when the pull-off force approaches zero, 

further pull-off force needs to build up to overcome possible chemical bonds at the edge of G 

flakes (magenta curve in Figure 5.16(a)). 
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5.8.1 Origin of distinctive interfacial behavior in G/SiOx heterostructures: surface 

roughness measurements 

To gain a sub-nanoscale insight into the origin of the distinctive interfacial behavior in 

the G/SiOx heterostructure specifically and into the underlying interaction mechanism of 2D 

crystals and SiOx in general, the interfacial contact of 2D crystal nanomesas with SiOx substrate 

alone does not provide a direct access to the 2D crystal/SiOx interface. Therefore, three-

dimensional surface topography measurements of single layer 2D crystals on SiOx with sub-

nanometer resolution together with the power spectral density (PSD) analysis of the surface 

roughness data provides a versatile means to explore the interfacial behavior of 2D crystal/SiOx 

heterostructure. To do so, 2D crystal stamps with 10 μm square mesas of thickness 10-30 nm are 

mechanically transferred onto a flat polydimethylsiloxane (PDMS) substrate using a combined 

imprint-assisted shear exfoliation and transfer printing technique [117]. The flat PDMS stamp 

with the uniform exfoliated multilayer mesas enables a fully conformal contact with the SiOx 

substrate under a uniform pressure. A lab-made roller tool [7] was used to transfer the 2D crystal 

mesas from the PDMS substrate to the 90 nm thick SiOx/Si substrate at a contact pressure of 5 

MPa. Prior to the flake transfer, SiOx samples were sonicated in acetone, isopropanol and 

deionized water and dry blown with nitrogen, followed by annealing at 200 °C. Raman 

spectroscopy coupled with AFM height profile measurements were used to determine the layer 

number of the exfoliated mesas with monolayer accuracy. From the  

The most popular parameter characterizing the morphology of surfaces is the root mean 

square (RMS) roughness, which describes the RMS height of an ܮ ൈ  scanned surface area ܮ

around its mean value as follows 

ܴ௤ ൌ ඩ
1
ܰଶ ෍ ෍ܼଶሺݔ௠, ௡ሻݕ

ே

௡ୀଵ

ே

௠ୀଵ

 (5.6) 

where N represents the number of grid points in x- or y-direction with a pixel size of ∆ܮ ൈ  ܮ∆

ܮ∆) ൌ ܮ ܰ⁄ ), ܼሺݔ௠, ,௠ݔ௡ሻ is the height of the surface relative to the mean line at position ሺݕ  ,௡ሻݕ

and ݔ௠ ൌ ௡ݕ ,ܮ∆݉ ൌ  Despite its reliable information on the height deviation, the RMS .ܮ∆݊

surface roughness can neither distinguish between peaks and valleys nor describe the lateral 

distribution of surface features. Using a fast Fourier transform (FFT) algorithm, the power 
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spectral density (PSD) can however provide a more accurate and comprehensive description of 

the surface roughness both in vertical and lateral directions. To analyze the AFM image data, we 

adopt the following two-dimensional (2D) PSD function  

PSD൫ ௫݂, ௬݂൯ ൌ
1
ଶܮ
൝෍ ෍ܼሺݔ௠, ൫݉ܮ∆݅ߨ௡ሻexpൣെ2ݕ ௫݂ ൅ ݊ ௬݂൯൧

ே

௡ୀଵ

ே

௠ୀଵ

ሺ∆ܮሻଶൡ

ଶ

 (5.7) 

where ௫݂ and ௬݂ are the spatial frequency in the x- and y-directions, respectively, which take the 

discrete range of values 1/L, 2/L, . . . , N/2L. According to the Parseval’s theorem, the square root 

of the area under the PSD curve is equal to the RMS roughness.  

Using a 16-bit digital-to-analog converter in low voltage mode with an ultralow noise 

AFM controller can significantly improve the X-Y scanner’s lateral resolution to subnanometer 

(L/216) and the Z scanner’s vertical resolution to sub-angstrom (at the expense of limiting the X-

Y and Z scanners’ motion range), allowing us to image  atomic-scale features. Given that the 

radius of the AFM tip determines the maximum spatial frequency (i.e., N/2L) that can be 

measured, 200 nm square images with 256 × 256 pixel resolution were captured for each 2D 

material flake at a scanning rate of 0.5 Hz, providing a pixel size of 0.8 nm smaller than the 

probe tip radius of <2-5 nm. To obtain a more accurate PSD of the surface, at least twenty data 

sets obtained from different locations of the sample were processed and then averaged for each 

case. A first-order regression polynomial was selected to remove any artifacts that result from 

the slope (consistently less than 0.1°) produced by the scanning process. Since the features 

smaller than 2 nm (i.e., spatial frequency > 0.5 nm-1) may not be captured in our setup due to 

contributions from both the limited size of the tip radius and instrumental noise, we applied a 

low pass filter to the 2D PSD of the AFM topographic images to suppress <2nm features without 

any effect on the physical content of the image data [118, 119]. 

In order to perform accurate and repeatable surface roughness measurements, the tip 

sharpness and the system noise floor play a key role. We used an ultrasharp tip with 2nm 

nominal radius of curvature (<5nm guaranteed) and sparing constant of 39.1 N/m in the 

noncontact mode and in the attractive regime (with a frequency shift of -10 Hz and free 

amplitude of 7.5 nm) under ambient conditions and then determined the noise floor of the AFM 

system (being consistently less than 0.3 Å) by measuring the average surface roughness under 

the following conditions: contact mode with 256 × 256 pixel resolution and zero scan size (i.e., 

the tip apex remains in static contact with the sample surface at a single point). To ensure the tip 
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sharpness is preserved throughout the roughness measurements, we performed more than 50 

sequential imaging with sub-angstrom precision in non-contact mode of the same area on the 

SiOx surface and monitored the variation of the surface roughness measurements. We acquired 

an average surface roughness value of 310 pm with a standard deviation of 5 pm.  

Typical high-resolution 200×200 nm2 AFM topographic images of bare SiOx and 

monolayer G, hBN and MoS2 flakes supported on SiOx and the PSD profiles corresponding to 

the images are shown in Figures 5.18(a) and (b), respectively. It is evident that highly random 

corrugations with sub-nanometer vertical dimension but few-nanometer lateral dimension in 

monolayer 2D crystals are imposed by the underlying SiOx substrate. In Figure 5.18(c), the 

average surface roughness of monolayer 2D crystal/SiOx heterostructures and histograms of the 

corresponding height distribution are presented, where the measurements from the bilayer of G 

on SiOx and monolayer of G on the hBN and MoS2 substrates are also shown for comparative 

purposes. Our roughness measurements suggest that monolayer G exhibits the highest degree of 

conformation to the SiOx (roughness ratio: 0.94), followed by bilayer G (0.78), monolayer hBN 

(0.76) and monolayer MoS2 (0.57).  

 

 

 
 

 

Figure 5.18. (a) High resolution AFM images of the surface roughness of bare SiOx, monolayer graphene (1LG), 
monolayer hBN (1LhBN) and monolayer MoS2 (1LMoS2) on SiOx substrate; (b) PSD profiles corresponding to the 
images in (a); and (c) surface roughness measurements of different heterostructures. Error bars show the spread of 
data over several independent measurements of different flakes. Left inset: Histogram of the height distribution 
(surface roughness) for bare SiOx, 1LG/SiOx, 1LhBN/SiOx, 1LMoS2/SiOx, 1LG/hBN and 1LG/MoS2 substrates. 
Solid lines are Gaussian fits to the distribution. Right inset: Representative SEM images of 2D crystal square mesas 
exfoliated onto the substrate. Scale bar in each is 5μm. (b), (c) and the insets of (c) share the same color legend. 
 

As expected, the topography of monolayer G on hBN and MoS2 substrates is much 

smoother than that of monolayer G on SiOx, suggesting an atomically flat contact at G/hBN and 

G/MoS2 interfaces. Assuming that the conformation of 2D crystal flakes to the underlying SiOx 

(a) 

(c) 

(b) 
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substrate of similar corrugation pattern is proportional to their interfacial adhesion energy but 

inversely proportional to the bending stiffness of the flakes [118] with a value of D1LG=1.49 eV, 

D2LG=35.5 eV, D1LhBN=1.34 eV and D1LMoS2=11.7 eV, (see Section D.4, Appendix D), the 

smaller bending stiffness of monolayer hBN compared to mono- and bilayer G, however, results 

in a smoother surface morphology, further confirming the stronger IAE at the G/SiOx interface. 

Moreover, our comparative study of the corrugation of bilayer G and monolayer MoS2 with 

almost the same thickness (i.e., 0.670 nm in 2LG versus 0.645 nm in 1LMoS2) also demonstrates 

that the adhesion of bilayer G to SiOx is much stronger than that of monolayer MoS2. Such 

intimate and strong interaction of G/SiOx suggests that the electron scattering sites across the 

interface as well as the convex sites of corrugated G result in the formation of short-range 

chemical bonds which act as anchoring spots to locally pin G to the SiOx surface at the location 

of such chemically active sites. Since monolayer G with extreme flexibility possesses more 

chemically active sites than multilayer G at the G/SiOx interface, stronger adhesion energy of 

monolayer to SiOx is expected, as previously confirmed by a pressurized blister test to be 

0.45±0.02 Jm-2 for monolayer G but 0.31±0.03 Jm-2 for multilayer G [68]. 

 

5.9 Summary 

 We used an AFM-assisted nanomanipulation technique to directly and precisely measure 

the weak interlayer vdW bonding at the fresh and aged vdW homo/heterointerfaces under 

different annealing temperatures. We recorded force⎼displacement curves with 

piconewton⎼subnanometer resolution upon retraction of AFM tip-attached 2D crystal nanomesas 

from fresh and aged 2D crystal and SiOx/Si substrates under controlled ambient conditions in the 

near⎼equilibrium regime. The annealing temperature of nanocontact interfaces was precisely 

controlled in the range of -15⎼300°C by a microheater on the top and a cooling stage underneath 

the SiOx/Si substrate. 

We observed highly stronger interactions at the homointerface of MoS2 than G and hBN, 

suggesting possible sharing electrons in the interlayer region of transition metal dichalcogenides 

beyond a simple vdW-only interaction. After quantifying the effect of airborne contaminants and 

humidity on the interfacial adhesion level, we revealed to what degree contaminated 

heterointerfaces can recover their interfacial adhesion energy upon thermal annealing through 

precise temperature control of nanocontact interfaces. We showed that a simple but very 
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effective precooling treatment can significantly improve the interfacial adhesion of the hBN, G 

and MoS2 crystals regardless of the subsequent annealing temperature. Our combined 

experimental and atomistic analysis also suggested that the formation of short-range chemical 

bonds only in G/SiOx heterostructures can elucidate the mechanistic origin of the distinctive 

strong adhesion behavior between G and SiOx beyond the widely accepted vdW interaction. Our 

precise nanoscale quantification of weak interlayer vdW bonding in 2D materials and vdW 

heterostructures not only provides a reliable basis for theoretical calculations but also can be of 

fundamental and technological importance for the mass production and continued development 

of such promising materials in modern electronic devices. 
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CHAPTER 6 

 

Conclusions and Suggestions for Future Work 

 

6.1 Summary  

This thesis proposed a novel atomic force microscopy (AFM)-assisted experimental 

technique with an exceptionally high force-displacement resolution combined with atomistic- 

and continuum-based simulations to directly and precisely measure the interlayer electrostatic 

and vdW properties of 2DLMs and their vdW heterostructures, which have remained elusive for 

decades. Chapter 1 included an overview of the basic concepts relevant to the experimental and 

theoretical results presented in Chapters 2-5.  

In Chapter 2, we first developed two economic, highly‒efficient and clean exfoliation 

techniques (termed plasma‒assisted exfoliation and nanoimprint‒assisted shear exfoliation) to 

produce large‒scale, ordered G and MoS2 device arrays at micro and nanoscale. Then, in 

order to gain a deeper insight into the interlayer vdW interactions of 2DLMs during the 

exfoliation process, I qualitatively studied the mechanical response of interlayer vdW 

interactions to external shear or normal forces by gently moving an in-situ flattened, 

conductive AFM tip with an attached 2D crystal nanomesa away from the substrate in a 

direction parallel or normal to the basal plane of 2D crystals, followed by shear and normal 

exfoliation of high-quality mono- and few-layer 2D crystal features onto the substrate. I 

reliably produced high-quality mono- and few-layer crystal features of different shapes and 

sizes at significant yields by shear exfoliation method. My experimental observations showed 

that in contrast to the shear exfoliation technique, the normal exfoliation technique exhibits a 

very stochastic exfoliation process. 

Chapter 3 aimed at providing prerequisite information about the interlayer electrostatic 

properties of 2DLMs to investigate the atomistic details underlying my AFM-assisted 

shear/normal electrostatic exfoliation mechanisms. As such, I first studied the electrostatic 
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response of the interlayer vdW interactions of few-layer graphene (FLG) to the external 

electric field. To do so, I quantified, for the first time, the effect of layer number and external 

electric field (up to my experimental limit of 0.1 V/Å) on the relative dielectric constant of 

FLG using a DC electrostatic force microscopy (DC-EFM) technique. I performed a series of 

dielectric measurements on the one-to-eight layers of G under ambient conditions and 

successfully showed that although the dielectric screening ability of monolayer graphene is 

about 20% weaker than that of bulk graphite, the overall dielectric response of few-layer 

graphene samples is almost independent of the number of layers and the external electric 

field. Next, I exploited the layered nature of FLG to develop a novel spatial discrete model 

that successfully accounts for both electrostatic screening and fringe field effects on the 

charge distribution of the finite-size FLG system. An effective bilayer model based on two 

tight-binding parameters was utilized to accurately describe electronic band structures and 

thus density of states (DOS) of one to eight Bernal-stacked graphene layers. I then explored 

the unclear relationship between the gate-induced charge densities and layer-by-layer Fermi 

level and charge density profiles in FLG systems using a global energy minimization, where 

its total energy is calculated based on electrostatic interaction between graphene layers and 

band-filling energy in each layer. My spatial charge distribution model showed that the 

overall dielectric response of FLG samples is almost independent of the number of layers and 

the external electric field, which is well consistent with my DC-EFM results. 

In Chapter 4, I implemented, for the first time, 3D spatial charge distribution of FLG 

(obtained from the proposed spatial discrete model) into molecular dynamics (MD) simulations 

to further gain an atomistic insight into the electrostatic shear/normal exfoliation mechanisms. 

My MD analysis of the simulation trajectories suggested that the coexistence of local 

delamination and interlayer twist in FLG is the main barrier to the accurate control of the number 

of exfoliated layers using the normal exfoliation technique. Instead, the ability of the shear 

exfoliation method to eliminate the interlayer spacing variations and simultaneously suppress the 

interlayer twist angles (due to the larger interlayer potential corrugation) provided much better 

control over the desired number of the exfoliated flakes, making it superior to the normal 

exfoliation method. 

In Chapter 5, I provided an accurate nanoscale quantitative (rather than qualitative) 

description of interlayer mechanical behavior of 2DLMs and their vdW heterostructures. I used 
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the AFM-assisted nanomanipulation setup to report precise in situ measurements of interfacial 

adhesion energy through well-defined interactions between AFM tip-attached 2D crystal 

nanomesas (G, hBN and MoS2) and mechanically exfoliated 2D crystal flakes and also the bare 

SiOx substrate. Moreover, since airborne contaminants are an inevitable part of any vdW 

heterostructures, addressing quantitatively to what degree their interfacial adhesion energy is 

influenced by the interfacial contaminants and how to effectively remove them is of fundamental 

and technological importance for the continued development of such promising materials. As 

such, I reported the first direct quantitative characterization of interfacial adhesion behavior of 

both fresh and aged vdW homointerfaces (G/G, hBN/hBN and MoS2/MoS2) and heterointerfaces 

(G/hBN, hBN/MoS2, G/MoS2, G/SiOx, hBN/SiOx and MoS2/SiOx) under different annealing 

temperatures (up to 300°C). I precisely controled the temperature of nanocontact interfaces using 

microheaters. I quantified how different levels of short-range dispersive (vdW) and long-range 

electrostatic (Coulombic) interactions of similar and dissimilar 2DLMs will respond to airborne 

contaminants and humidity upon thermal annealing. My measurements revealed highly stronger 

interactions in transition metal dichalcogenides than predicted by well-established first-principles 

calculations. Similarly, my combined experimental and computational analysis showed a 

distinctive interfacial behavior in G/SiOx heterostructures beyond the widely accepted vdW 

interaction.   

 

6.2 Future Outlook  

While we specifically focused on the interlayer electrostatic properties of few-layer 

graphene, our AFM-assisted electrostatic exfoliation technique can be used for other 2DLMs, 

such as semiconducting transition metal dichalcogenides (e.g., MoS2, WSe2 and WS2), and their 

vdW heterostructures (e.g., G/MoS2 and MoS2/WSe2). Also, the generality of our spatial discrete 

model suggests that the charge density profile, interlayer screening, quantum capacitance, and 

local surface potential of other 2DLMs can be characterized by feeding relevant electronic band 

structures of ATLMs into our model. In addition, the effect of structural defects (e.g., vacancies, 

adatoms, dislocations and grain boundaries) and stacking faults on the charge distribution of 

defective FLG systems can be studied by modifying DOS of pristine FLG. 

Our interfacial adhesion measurements for 2DLMs can be extended to other 2DLMs and 

classical materials, such as metals, composites, ceramics, polymers, semiconductors, 
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biomaterials, etc. The effect of temperature, humidity and airborne contaminants on their 

interactions can also be quantified through precise measurements of their force-displacement 

curves. Although our study focuses on the interlayer electrostatic and mechanical properties of 

2DLMs and their vdW heterostructures, an in situ flattened magnetic probe can be used to study 

their magnetic properties under different temperatures, humidity and airborne contaminants. 
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APPENDIX A 

 

Dielectric Constant of a Single-Walled Carbon Nanotube 

 

In order to obtain the relative dielectric constant of single-walled carbon nanotube 

(SWCNT), we revisited the work of Lu et al. [60] who reported the first experimental 

measurement of dielectric polarization of individual SWCNTs on 2-nm-thick SiO2/Si substrate 

using a combination of scanning force microscopy and electrostatic force microscopy and finite 

element electrostatic simulations. We employed a similar finite element model, as shown in 

Figure A.1(a), except that a hollow cylinder of inner radius 1nm, outer radius 1.5nm and length 

200nm was used to model an SWCNT rather than a solid cylinder of radius 1.5nm and length 

200nm, as used by Lu et al. [60]. We noted that the calculated electrostatic force on the solid 

SWCNT of dielectric constant 10 is equal to that of the hollow cylinder whose dielectric constant 

is ~22.5. This modified value for the dielectric constant of SWCNTs is in excellent agreement 

with our results for FLG.        

 
 

  

Figure A.1. (a) Geometric representation of the tip-SWCNT/SiO2 system along with the parameters used in 
electrostatic 3D finite element calculations. (b) Cross-section of 3D finite element calculation of the electrostatic 
field distribution between the tip and the SWCNT/SiO2 sample at z=8nm and V=5V. 
 

 

 

(a) (b) 
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APPENDIX B 

 

Electrostatic Charge Distribution in FLG Systems 

 

B1 Electrostatic Fringe Field Effects in Graphene Flake 

B1.1 Circular graphene flake 

Both experimental and theoretical studies have demonstrated that a strong charge 

accumulation takes place at the edges of the finite-size graphene flake due to the electrostatic 

fringe field effects [55, 63, 53]. Scanning gate microscope measurements of a monolayer 

graphene device on a SiO2/Si substrate demonstrate that the charge accumulation at the edge of 

the graphene devices is significant, in particular in narrow devices such as graphene nanoribbons 

[53].  In addition, the charge distribution in a positively charged graphene sheet was studied 

using a charge/dipole molecular dynamics model and a strong charge accumulation was observed 

along the edges and at the corners of the rectangular graphene sheet [55, 63].  

In order to figure out how the induced charge is distributed within the graphene sheet 

under an external electric field, we consider a circular graphene sheet of radius ܴ placed at a 

distance of ݄ above SiO2 film and at a potential ଴ܸ relative to the Si substrate. The corresponding 

induced charge density ݍሺݎሻ can be calculated using the method of images. The charge density 

depends on the radial coordinate across the sheet, which varies in the range 0 ൏ ݎ ൏ ܴ. Using 

the method of images, this problem is equivalent to two parallel circular sheets of radius ܴ 

vertically separated by a distance 2݄ and placed at potentials ଴ܸ (upper sheet) and െ ଴ܸ (lower 

sheet), such that the Si substrate plane (ݖ ൌ 0) is at zero potential. The center of the upper sheet 

is taken to be at ሺ0,0, ݄ሻ and the center of the lower sheet at ሺ0,0,െ݄ሻ. Following the analytical 

solution developed by Felderhof [120], the electrostatic potential in the upper sheet can then be 

expressed by 

଴ܸ ൌ න
ሻݏሺ݌

ଶݎ√ െ ଶݏ
ݏ݀

௥

଴
൅ න ܹሺݎ, 2݄, ݏሻ݀ݏሺ݌ሻݏ

ோ

଴
 (B1) 
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where 

ܹሺݎ, ,ݖ ሻݏ ൌ Re
1

ඥݎଶ ൅ ሺݖ െ ሻଶݏ݅
 (B2) 

satisfies Laplace’s equation (׏ଶ߮ሺݎ, ሻݖ ൌ െ4ݍߨሺݎሻߜሺݖሻ) everywhere, except on a disk of radius 

ݖ centered at the origin in the ݏ ൌ 0 plane, and the weight function ݌ሺݏሻ satisfies the Love 

equation  

ሻݎሺ݌ െ
1
ߨ
න ൤

ߢ
ଶߢ ൅ ሺݎ െ ሻଶݏ

൅
ߢ

ଶߢ ൅ ሺݎ ൅ ሻଶݏ
൨ ݏሻ݀ݏሺ݌

ଵ

଴
ൌ
2 ଴ܸ

ߨ
 (B3) 

where ߢ ൌ ݄ ܴ⁄ . We solved this integral equation numerically in MATHEMATICA using 

iteration with a suitable initial function. In order to evaluate the convergence of our numerical 

solution, we compared the “scaled” capacitance (multiplied by the factor ߨ 2⁄ ) of the sheet given 

by  

ܥ ൌ
1

଴ܸ
න ݏሻ݀ݏሺ݌
ோ

଴
 (B4) 

with that of Cooke [121]. We obtained the scaled capacitance of 1.8208 (For ߢ ൌ 1) and 9.2328 

(for ߢ ൌ 0.4), which are in excellent agreement with those of Cooke [121] who reported the 

values of 1.8208 and 9.2330, respectively. 

Finally, the induced charge density and the weight function are related by 

ሻݎሺݍ ൌ
െ1
ݎߨ2

݀
ݎ݀
ቈන

ሻݏሺ݌ݏ

ଶݏ√ െ ଶݎ
ݏ݀

ோ

௥
቉ (B5) 

In Figure B.1, we show the normalized induced charge density profiles (from which the Fermi 

energy profiles shown in Figure B.2 are extracted) for different values of ݄/ܴ.  

 

 

Figure B.1. Induced charge density profile of the sheet for different thickness-to-radius ratios. 

SiO2	

Si	

2R	
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In this work, for more practical applications, we set ߢ ൌ ݄ ܴ⁄  to be 0.1 and thus the 

corresponding charge density profile can be given by 

ሺ঒ሻݍ ൌ
݃ሺ঒ሻ

√1 െ ঒ଶ
ܳ (B6) 

where ঒ (ൌ ݎ ܴ⁄ ) is a dimensionless parameter, ݃ሺ঒ሻ ൌ 1.57 െ 0.77঒ଶ െ 0.39঒ସ ൅ ⋯, and ܳ is 

the total charge density. 

 

B1.2 Graphene nanoribbon 

Similar to the charge distribution profile in the circular FLG, the charge distribution in a 

graphene nanoribbon of width ݓ can be given by [122] 

,ݔ௜ሺݍ ,ݕ ,௜ߙ ܳ௜ሻ ൌ
݂ሺݔ, ,ݕ ௜ሻߙ

〈݂〉
ܳ௜ (B7) 

where   

݂ሺݔ, ,ݕ ௜ሻߙ ൌ
ሻݕሺߜ

ටሺ1 ൅ ௜ሻߙ െ ቀݓݔቁ
ଶ
ቈ0.318 െ 0.056 ቀ

ݓ
݄
ቁ
ଶ
ቆ
ଶݔ2

ଶݓ െ 1ቇ቉ 
(B8) 

where ߜሺݕሻ is the delta function and ݄ is the dielectric thickness. The terms in the brackets are 

valid when the ribbon width is much smaller than the dielectric thickness (ݓ ≪ ݄). We refer the 

interested reader to the supplementary material of Ref. [123] for the charge distribution of the 

graphene nanoribbon with different ribbon width-dielectric thickness ratios ݓ/݄.    

 

B1.3 Rectangular/square graphene flakes 

Similar to the charge distribution profile in the circular FLG, the charge distribution in 

the rectangular graphene flakes with length ݈௫ and width ݈௬ can be given by 

௜௝ݍ ൌ
݂ሺঘ, ঙሻ

݃൫ߙ௫௜, ௬௜൯ඥሺ1ߙ ൅ ௫௜ሻߙ െ ঘଶට൫1 ൅ ௬௜൯ߙ െ ঙଶ
 

(B9) 

where the charge distribution profile is normalized by 

݃൫ߙ௫௜, ௬௜൯ߙ ൌ න න
݂ሺঘ, ঙሻ

ඥሺ1 ൅ ௫௜ሻߙ െ ঘଶට൫1 ൅ ௬௜൯ߙ െ ঙଶ

ଵ
ଶ

ିଵ
ଶ

ଵ
ଶ
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ଶ
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where ঘ ൌ ݔ2 ݈௫⁄  and ঙ ൌ ݕ2 ݈௬⁄  are dimensionless parameters; ݔ and ݕ denotes, respectively, 

the x and y coordinates of atom j in the ith layer which carries the corresponding charge of ݍ௜௝; 

and ݂ሺঘ, ঙሻ is a polynomial function of ঘ and ঙ which only depends on the ratio of the graphene 

size to the dielectric thickness [123]. Also, ߙ௫௜ and ߙ௬௜ denote the amount of charge 

accumulation at the middle of the x and y edges relative to that at the center of the graphene 

flake, respectively. From Eq. (B9), the amount of charge accumulation at the corner relative to 

that at the center of the rectangular graphene flake is obtained to be ~ 1 ඥߙ௫௜ߙ௬௜⁄ . 

 

B2 Non-Uniform Fermi Energy Profile 

Uniform charge density of ݅th layer is related to its corresponding constant Fermi energy অ୊௜ by 

തܳ௜ ൌ
݁
ܰ
න ேሺॱሻ݀ॱܦ
অూ೔

଴
ൌ

݁
ଶܰߛߨ

෍෍ሺঅ୊௜
ଶ ൅ 2অ୊௜ߛଵ sin ሻߠ

௝

ே್

௟ୀଵ

 (B11) 

Solving Eq. (B11) for অ୊௜ yields 
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Similarly, the charge density profile can be related to the fermi energy profile as follows 

ॱ୊௜ሺ঒, ,௜ߙ തܳ௜ሻ ൌ െ
ଵߛ
௕ܰ
෍෍sin ߠ

௝

ே್

௟ୀଵ

൅ ඩ
ଶܰߛߨ

௕ܰ݁
,ത௜ሺ঒ݍ ,௜ߙ തܳ௜ሻ ൅ ቎

ଵߛ
௕ܰ
෍෍sinߠ

௝

ே್

௟ୀଵ

቏

ଶ

 (B13) 

defining the charge density profile by 

,ത௜ሺ঒ݍ ,௜ߙ തܳ௜ሻ ൌ
݂ሺ঒, ௜ሻߙ
〈݂〉

തܳ௜ (B14) 

and substituting Eq. (B11) into Eq. (B14) yield 
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Finally, substituting Eq. (B15) into Eq. (B13) leads to 
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B3 Fermi Level Profiles in N-Layer Graphene 

Figure B.2(a) demonstrates the Fermi level profiles of a 5-LG system, while Fermi level 

profile of the innermost layer in an 8-LG system is shown in Figure B.2(b) for ܳ଴ ൌ 10ଵଷcmିଶ. 

Far from the edge, we observe from Figure B.2(b) that sitting ~70% of the total induced charge 

in the innermost layer would cause a shift in the Fermi level from the ground state to the first 

excited state (as shown in brown solid curve in Figure B.2(b) and in brown dashed curve in the 

inset, which shows the energy band structure of the 8-LG system). However, our Fermi level 

analyses in the innermost layer of the bi-, tri-, tetra- and penta-LG systems do not exhibit any 

jump in the Fermi level of the region away from the edge when ܳ଴ ൌ 10ଵଷcmିଶ. This can be 

attributed to the fact that the lowest energy of the first excitation band decreases for the N-LG 

system with a larger number of graphene layers. Following the evolution of Fermi level along the 

innermost layer in Figure B.2(b), it is observed that a strong charge accumulation and thus 

sufficiently large shift in Fermi energy at the edge can give rise to a jump in the electronic band 

structures of FLG toward the second(0.4eV) and third(0.61eV) excitation energies, as shown in 

orange and green curves, respectively. 

 

  

Figure B.2. (a) Fermi level profiles of a 5-LG system for ܳ଴ ൌ 10ଵଷcmିଶ. (b) Fermi level profile of the innermost 
layer in an 8-LG system for ܳ଴ ൌ 10ଵଷcmିଶ. Inset: low- and high-energy band structure of the 8-LG system. 
Brown, orange and green solid curves in the Fermi level profile and brown, orange and green dashed curves in the 
band structure represent the first (0.14 eV), second (0.40 eV) and third (0.61 eV) excitation energies, respectively. 
 

B4 Local and Global Interlayer Charge Screening 

Sui and Appenzeller [46] presented a systematic experimental study on charge and 

current distribution in FLG field-effect transistors and then proposed the following charge 

distribution in the FLG systems based on the Thomas-Fermi (TF) charge screening theory  

(a) (b) 
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where the index i takes on values from 1 to N (N being the total number of graphene layers); Q1 

is the total induced charge in the closest layer to the SiO2 substrate; ܳ଴ is the total induced 

charge in the graphene system; ݄ (typically in the range of 50-300 nm) is the SiO2 thickness; ݀௜ 

is the distance from the bottom of the FLG system to the layer ݅ (hence, ݀௜ାଵ െ ݀௜ ൌ ݀ ൌ

0.335݊݉ is the distance between adjacent graphene layers); and ߣ௜,௜ାଵ is the local screening 

length between two consecutive layers. Considering that in many graphene-based electronic 

devices, the SiO2 film is much thicker than the FLG, Eq. (S17) reduces to: 
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We also define the global screening length ߣ between the innermost layer and the other layers by 

ܳ௜
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ఒ ൨

 (B20) 

Figure B.3(a) shows ܳ௜ ܳଵ⁄  ratio as a function of the layer positions for a 5-LG system under 

three different gate densities of 10ଵଶ, 10ଵଷ and 10ଵସcmିଶ and a similar plot for an 8-LG system 

for ܳ଴ ൌ 10ଵଶ, 10ଵଷ and 5 ൈ 10ଵଷcmିଶ is presented in Figure B.3(b). We observe from Figure 

B.3 that our data can be well fitted by an exponential decay function when ܳ଴ ൑ 10ଵଷcmିଶ. 

 

  

Figure B.3. Normalized average charge profiles across the layers of (a) a 5-LG system and (b) an 8-LG system for 
different values of ܳ଴. A decay length (d/λ) of 1.0, 1.2 and 1.6 is found by fitting the data with a function e−(i−1)d/λ.  

(a) (b) 
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B5 Temperature-Dependent Discrete Model 

In order to propose a mathematical discrete model that can be numerically solved at ܶ ്

0, we had to use a uniform charge distribution model, in which. Eqs. (3.5) and (3.7) in Section 

3.3 reduce to a constant charge density (ݍ௜ ൌ ܳ௜) and a constant Fermi level (ॱ୊௜ ൌ অ୊௜), 

respectively. Therefore, the charge density of each layer can be expressed by 

ܳ௜ ൌ
݁
ܰ
න ேሺॱሻ݂ሺॱሻ݀ॱܦ
ஶ

଴
 (B21) 

where 

݂ሺॱሻ ൌ
1

1 ൅ expሾሺॱ െ অ୊௜ሻ ݇ܶ⁄ ሿ
 (B22) 

is the Fermi-Dirac distribution function, ݇ the Boltzmann constant, ܶ the absolute temperature, 

and ܦேሺॱሻ corresponds to Eq. (3.4) in Section 3.3. Also, the electrostatic energy ௘ܷ and band-

filling energy ܷ௕ at temperature ܶ can be given, respectively, by    
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and 
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The charge distribution of N-LG is then determined by minimizing the total energy with respect 

to each অ୊௜ of the variational parameters. It is reasonably believed that the above mathematical 

simplification does not qualitatively and pretty much quantitatively change the results presented 

in Figure (3.10) of Section 3.3.4 since our results for ܶ ൌ 0 obtained by the model given in this 

section and the one proposed in the main text are very close, if not identical, over the entire range 

of ܳ଴. 
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APPENDIX C 

 

Atomistic Simulations in FLG Systems 

 

C1 Atomistic Simulation Setup 

To gain an in-depth understanding of underlying mechanisms associated with the normal 

and shear electrostatic exfoliation of 2D atomic layered materials, molecular dynamics (MD) 

simulations were performed with the LAMMPS software package. In order to mimic our 

exfoliation setup, the tapered silicon (001) layer was moved along the x direction with the rate of 

1.5×10-2 Å/ps for the shear exfoliation case and was pulled away along the z direction with the 

rate of 1×10-2 Å/ps for the normal exfoliation case. Though the normal (pressing) load, humidity 

and exfoliation speed may contribute to the transfer printing of FLG, we do not investigate their 

possible effects in this study. In the case of normal exfoliation method, the contact pressure is not 

considered because FLG system is relaxed at room temperature for an adequate time to fully 

conform to the substrate surface.  

 

C1.1 Description of intralayer carbon‒carbon interactions 

Reactive empirical bond order (REBO) potential function was adopted to model the 

intralayer carbon‒carbon interactions within the same graphene layer. All the free graphene 

edges are passivated by hydrogen. To study the mechanical properties of carbon‒based materials 

such as graphene, carbon nanotubes and diamond, the REBO potential has been shown to 

accurately capture the bond–bond interaction between carbon atoms as well as bond breaking 

and bond‒reforming.  

 

C1.2 Description of interlayer carbon-carbon interactions 

In order to model interlayer carbon‒carbon interactions between adjacent graphene 

flakes, interfacial adhesion energy of few‒layer graphene/graphite provides a vital piece of 

information for characterizing the microscopic vdW interactions in FLG. Though many efforts 
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have been made to determine the interfacial adhesion energy of few‒layer graphene and graphite 

using various experimental and theoretical approaches, the reported data are very diverse, 

ranging from 0.19 െ 0.72	Jmିଶ obtained by experimental measurements and from 0.03 െ

0.51	Jmିଶ predicted by theoretical models. For instance, in May 2015, a team at IBM Research–

Zürich  reported in Science a direct “accurate” mechanical measurement of the interfacial 

adhesion energy of incommensurate graphite (0.227 േ 0.005	Jmିଶ) using an atomic force 

microscopy setup under ambient conditions [124]. Surprisingly, three months later, researchers at 

University of Pennsylvania and Tsinghua University reported in Nature Communications the 

“first accurate” direct measurement of the interfacial adhesion energy of incommensurate 

graphite (0.37 േ 0.01	Jmିଶ) using a micro‒force sensing probe based on the self‒retraction 

phenomenon under ambient conditions and different temperatures [81]. We believe that a part of 

this large data scattering may be attributed to the graphene sample variations, different sample 

preparation processes, different measurement uncertainties associated with the different 

measurement techniques, and inherent poly‒crystallinity of graphite both within and normal to 

the basal plane. 

In order to gain atomistic insight into the exfoliation mechanism of graphitic systems, an 

empirical interlayer potential that can adequately model the interfacial adhesion energy between 

adjacent graphene layers is crucial. Though the widely‒used Lennard‒Jones (LJ) potential can 

reproduce the overall cohesion, equilibrium spacing and compressibility of graphite along the c‒

axis (z‒axis), it considerably underestimates the corrugation in the interlayer interaction of 

graphene layers. Therefore, a registry‒dependent (RD) interlayer potential that can accurately 

describe the corrugation was implemented in the LAMMPS code to model the carbon–carbon 

interaction between graphene flakes [67]. The RD model can predict the mean interfacial 

adhesion energy of 0.223	Jmିଶ which is in excellent agreement with the recently reported 

accurate experimental value for the interfacial adhesion energy of the incommensurate graphite 

(0.227 േ 0.005	Jmିଶ) [124]. 

 

C1.3 LJ potential vs. RD potential for vdW interaction of FLG 

Kolmogorov and Crespi [67] showed that the LJ potential fails to account for the 

variation of the corrugation energy surface of the graphite for different stacking modes (e.g., AB, 

AA, and ABC stackings). Such drawback leads to the interlayer shear modulus (C44) of ~0.3 GPa 
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(using the LJ 12‒6 potential with the well‒depth energy of 2.84 meV and equilibrium distance of 

0.339 nm), which is one order of magnitude smaller than the experimental value of 4.3‒5.1 GPa 

in the graphite and FLG systems [125, 126, 127]. Shen and Wu [128] proposed changing the 

well‒depth energy from 2.84 meV to 45.44 meV to achieve the interlayer shear modulus of 4.6 

GPa; however this change leads to a drastic increase in the interlayer cohesive energy as well. 

In order to provide a more accurate description of the vdW interaction between graphene 

flakes, the RD interlayer potential was proposed by which the interlayer potential between atom i 

on one flake and atom j on the adjacent flake can be expressed  

ܸ൫࢘௜௝
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where ݎ௜௝
∗  and ߩ௜௝ are the actual and lateral distances between two atoms, respectively; ࢔௜(࢔௝) is a 

vector normal to the sp2 plane (which is formed by the three nearest bonded neighboring atoms) 

at the position of atom ݅ (݆); ݂ is a function to compute a rapid decay in the interlayer potential 

energy. Following parameters are directly given from the original work [67]; ߙ ൌ 3.629	Հିଵ, 

݀ ൌ 3.34	Հ,  ߜ଴ ൌ 0.578	Հ, ܣ ൌ 10.238 meV, ܥ଴ ൌ 3.030 meV, ܥଵ ൌ 15.71 meV, ܥଶ ൌ 12.29 

meV and ܥଷ ൌ 4.933 meV. With this set‒up, we obtained the in‒plane carbon–carbon distance 

of 1.401 Å, the equilibrium separation of 3.365 Å for two planar graphene layers in AB stacking, 

the cohesion energy of 45.2 meV per atom with respect to one graphene layer (i.e., cleavage 

energy per atom), interlayer shear modulus of 5.01 GPa (C44) and out‒of‒plane elastic modulus 

of 38.8 GPa (C33), all in excellent agreement with their corresponding experimental values [129]. 

It is worth pointing out that during the normal and shear exfoliation process, we observed 

a slight interlayer rotation (െ2.5° ൏ ߠ ൏ 2.5°) of the FLG about the c‒axis (z‒axis) when using 

the RD potential, whereas modelling of the graphene‒graphene interlayer binding by means of 

the standard LJ potential introduced a twist angle of ൐ േ20° between the graphene flakes. This 

implies that the LJ potential fails to properly describe the corrugation potential of the FLG. In 

addition, for the same MD simulation but different interlayer potentials (LJ or RD potential), 

both the number and the orientation of printed flakes were completely different, indicating that 

the potential corrugation plays a crucial role in determining the intrinsic resistance to interlayer 

sliding and controlling the exfoliation behavior of the FLG under external electrostatic loads. 
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C1.4 Description of SiO2 substrate 

Tersoff potential developed by Munetoh et al. [130] was utilized for the Si‒Si, Si‒O and 

O‒O covalent bonds. In spite of complete neglect of long‒range Coulombic interaction, this 

potential is not only suitable for large‒scale calculations but also capable of reproducing 

structural and dynamical properties of SiO2 systems (e.g., the radial distribution function and 

phonon density of states of amorphous SiO2), very well consistent with the experimental data. In 

order to ensure that the interfacial adhesion between the graphene and SiO2 mainly depends on 

the vdW interaction rather than the long‒range Coulombic interaction for the problem at hand, 

we used BKS potential [131], including long‒range Coulombic interaction (which was modeled 

by the particle‒particle particle‒mesh method in LAMMPS), in few MD simulations and 

compared the results with those of Tersoff potential but observed no difference in the resulting 

number of exfoliated graphene flakes. Therefore, the Tersoff potential was chosen for the entire 

simulations due to its much lower computational cost. To obtain the amorphous bulk SiO2, the 

crystalline SiO2 substrate was constructed within a rectangular simulation domain of 110.2 × 

108.8 × 32 Å3 with period boundary conditions in all directions, annealed at T = 5000 K and 1 

bar for 20 ps and slowly quenched to the room temperature at a rate of 2×1012 K/s. Then, the 

silica atoms in 10 Å of the simulation domain from the top were deleted to obtain the amorphous 

SiO2 substrate with the final dimension of 110.2Å×108.8Å×22Å. 

 

C1.5 Description of graphene/SiO2 interface 

A reasonable atomistic description of the interfacial adhesion between the FLG and SiO2 

substrate is essential for a better understanding of exfoliation mechanism underlying our 

electrostatic force‒assisted methods. Koenig et al. [68] showed that the extreme flexibility of 

graphene allows it to follow the underlying morphology of SiO2 substrate, making its interaction 

with the substrate more liquid‒like than solid‒like. Though few experimental efforts have been 

devoted to the determination of the graphene‒SiO2 interfacial binding, the measured monolayer 

graphene‒SiO2 adhesion energy ranges from 0.096 to 0.45 Jm‒2 [68, 69, 132], which can 

potentially be attributed to the intrinsic ripples of graphene on SiO2 substrate, and also to surface 

properties of SiO2, such as surface roughness, different surface configurations (due to its 

amorphous nature), surface polarities, charge impurities, surface reactions with ambient 

humidity, and type of surface termination/defects (i.e., H‒, Si‒ and O‒terminated surfaces). 
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Unlike trapped charges (or charge impurities) in SiO2 [68] and surface polar modes of SiO2 

[132], the surface reactions of SiO2 with water could profoundly influence the graphene‒SiO2 

interaction strength in such a way that the adhesion energy is reduced by surface hydroxylation 

and further reduced by adsorption of water molecules [70]. Also, the first-principles calculations 

show that the graphene‒SiO2 interfacial binding energy for H‒, Si‒ and O‒terminated surfaces 

can vary from 0.16 to 0.19 to 0.48 Jm‒2, respectively [133]. It is worth pointing out that the 

graphene‒SiO2 adhesion energy also depends on the number of graphene flakes and reduces 

consistently from 0.45±0.02 Jm‒2 for monolayer graphene to 0.31±0.03 Jm‒2 for FLG (2 to 5 

layers) [68] based on the direct experimental measurements and from 0.5 Jm‒2 for monolayer 

graphene to 0.295 Jm‒2 for 8-LG based on an analytical solution [134].  

Given that the graphene‒SiO2 interaction is physisorption in nature, it has been proposed 

that the short‒range vdW interaction is the predominant mechanism at the graphene‒SiO2 

interface rather than O‒C and Si‒C covalent bonds. As a result, we used a standard 12‒6 LJ 

potential for describing Si‒C and O‒C interactions which can be expressed by 

ሻ∗ݎሺܧ ൌ εߜ4 ൤ቀ
σ
∗ݎ
ቁ
ଵଶ
െ ቀ

σ
∗ݎ
ቁ
଺
൨ , ∗ݎ ൏ ௖ݎ ൌ 2.5σ (C2) 

where ε, σ, and ݎ∗ are the energy parameter, equilibrium distance and interatomic distance, 

respectively, and ݎ௖ is the cut‒off distance (which is set to 2.5σ). Since there is no definitive 

value for the graphene‒SiO2 interfacial adhesion energy, the scaling factor ߜ is introduced to 

adjust the overall graphene‒SiO2 adhesion strength. Unless otherwise stated, the value of ߜ is set 

to be 1 for all simulations. According to the vdW interactions in the Universal Force Field (UFF) 

model and using the Lorentz‒Berthelot mixing rules, the Si‒C and O‒C interaction parameters 

were calculated as follows: ሺε, σሻୗ୧ିେ ൌ ൫8.909meV, 3.326Հ൯ and ሺε, σሻ୓ିେ ൌ

൫3.442meV, 3.001Հ൯.  

From Eq. (C2), we computed the total vdW energy EvdW stored between the innermost 

graphene flake with ܯ atoms (=792) and the SiO2 substrate with O atoms (=37800) as follows 
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Then the graphene‒SiO2 adhesion energy can readily be obtained by 

Υ ൌ
୴ୢ୛ܧ
ܣ

ൌ
୴ୢ୛ܧ
௖ܣܯ

 (C4) 



127 
 

where ܣ is the flake area (ൌ ௖ (ൌܣ ௖); andܣܯ 3√3ܽଶ 4⁄ , where ܽ ൌ 1.42	Հ is the C‒C bond 

length) is the area surrounding each carbon atom. Our MD calculations reveal that Υ is in the 

range of the measured monolayer graphene‒SiO2 adhesion energy (0.096‒0.45 Jm‒2) when ߜ 

varies from 1 to 2. Results presented in Figure C.1(a) were averaged over the last 1000 time 

steps of the equilibrium procedure at T=300K and the error bars in the curves were obtained 

accordingly. As we discussed earlier, a wide range of values for the graphene/SiO2 adhesion 

energy has been reported in the literature (ranging from 15 to 75 meV/atom). To investigate the 

effect of the graphene/SiO2 interfacial adhesion strength on the exfoliation process of the 

uncharged FLG system, a series of simulations were performed at thirteen distinct vdW strength 

scaling factors ߜ over the interval from 1 to 2.2 (with 0.1 increments). The LJ interaction cutoff 

distance for the Si‒C and O‒C interactions was increased and set at 14 Å. Figure C.1(b) 

confirms that the graphene exfoliation in the absence of external electric filed requires the vdW 

strength scaling factor of over 1.3. Also, there was no observation of shear-exfoliated graphene 

for ߜ up to 2.2.  

 

  

Figure C.1. (a) Graphene‒SiO2 adhesion energy as a function of the scaling factor. (b) Number of printed layers as 
a function of the scaling factor obtained by the normal exfoliation technique in the absence of the electrostatic 
forces. 
 

C2 Charge Distribution and Fermi Profiles in a 8-LG System  

C2.1 Charge density/Fermi level profiles of 8-LG 

The induced excess charge density in the N‒LG which is equal and opposite to the charge 

density on the silicon substrate, can be distributed over the ݅th layer. Figure C.2 demonstrates 

the Fermi level profiles of the 8‒LG system when ܳ ൌ 10ଵଷcmିଶ. Furthermore, the 

corresponding charge density profile and the average charge density of the innermost layer are 

shown in Figure C.3. 

(a) (b) 
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Figure C.2. Fermi level profiles of the 8‒LG system for ܳ ൌ 10ଵଷcmିଶ. 
 
Our results in Figure 4.2(a) in the main text also suggest that the innermost layer plays the 

most important role in the electrostatic charge distribution of the N‒LG systems. Hence, it is 

worth looking into its Fermi level and charge density profiles more in detail, as illustrated in 

Figures C.3(a) and (b), respectively. Far from the edge, we observe that sitting ~70% of the total 

induced charge in the innermost layer would cause a shift in the Fermi level from the ground 

state to the first excited state (as shown in brown solid curve in Figure C.3(a) and in brown 

dashed curve in the inset, which shows the energy band structure of the 8‒LG system). However, 

our Fermi level analyses in the innermost layer of the bi-, tri-, tetra- and penta‒LG systems do 

not exhibit any jump in the Fermi level of the region away from the edge when ܳ ൌ 10ଵଷcmିଶ. 

This can be attributed to the fact that the lowest energy of the first excitation band decreases for 

the N‒LG system with a larger number of graphene layers. By following the evolution of the 

Fermi level along the innermost layer in Figure C.3(a), it is observed that a strong charge 

accumulation and thus sufficiently large shift in the Fermi energy at the edge can give rise to a 

jump in the electronic band structures of FLG toward the second (0.4 eV) and third (0.61 eV) 

excitation energies, as shown in orange and green curves, respectively.   
 

 

Figure C.3. (a) Fermi level profile of the innermost layer for ܳ ൌ 10ଵଷcmିଶ. Inset: low‒energy band structure of 8-
LG. Brown, orange and green colors in the Fermi level profile and the band structure represent the first (0.14 eV), 
second (0.40 eV) and third (0.61 eV) excitation energies. (b) Corresponding  charge density profile and the average 
charge density of the innermost layer. 

(a) (b) 
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C2.2 Layer-by-layer charge distribution in 8-LG 

As shown in Figure C.4(a), the charge density in the region very close to the edges is 

screened out an order of magnitude more weakly than that across the central region of the layer, 

which is mainly due to the presence of the strong fringe field along the edges. To quantitatively 

elucidate the correlation between the induced charge density and the average charge distribution 

through the 8‒LG thickness, Figure C.4(b) clearly shows that almost 90% of the excess charge 

density resides in the two innermost layers, implying that the effective interlayer screening 

length can reliably be determined to be less than 0.7 nm (see Figure C.5 for the calculation of 

the effective interlayer screening). The Inset to Figure C.4(b) further demonstrates that a larger 

value of ܳ଴ leads to a stronger charge screening normal to the layers.  

 

 

Figure C.4. (a) Charge density at the edge ݍ௜
௘ and at the center ݍ௜

௖ of the layer ݅. (b) Normalized average charge 
density across the layers of an 8‒LG system for different gate charge densities. Inset: normalized average charge 
density in the two innermost layers to show the electrostatic charge screening effect. Zoom-in of a region in which 
the charge screening between the first and second layers is shown by a dashed black square. 
 

C2.3 Effective interlayer screening:  

We present in Figure C.5(a) the local screening length in the 8‒LG system for three 

different values of ܳ଴. It is seen that the local screening length ranges from more than half the 

interlayer distance up to 2 layers. We also define the global screening length ߣ between the 

innermost layer and the other layers by 

ܳ௜
ܳଵ

ൌ ݁
ି൤ௗ

ሺ௜ିଵሻ
ఒ ൨

 (C5) 

This new definition of the screening length allows us to explore how sharply the charges and 

thus the surface potentials drop across the FLG thickness and also provides us with a single value 

of the screening length to predict the charge distribution of all layers relative to that of the 

innermost layer. Keeping this definition in mind, we observed from Figure C.5(b) that our data 

(b) (a) 
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can be well fitted by the simple exponential decay function. Also, the charge screening for the 

larger induced charge is observed to be stronger.   

 

  

Figure C.5. (a) Local and (b) global charge screening lengths for different values of ܳ଴. A decay length (d/λ) of 1.0, 
1.2 and 1.6 is found by fitting the data with a function e−d/λ.  
 

C2.4 Charge distribution in rectangular graphene flakes 

The charge accumulation along the edge depends on the size and shape of the graphene 

flake, number of graphene layers, intensity of external electric field, graphene states (substrate-

supported/suspended, defective/intact or functionalized/pristine graphene). To demonstrate how 

well our proposed spatial discrete model can predict the charge distribution within the graphene 

flake, in particular, along the edge, a comparison study between the present spatial discrete 

model, charge‒dipole model [122] and analytical model is conducted to calculate the charge 

profile along the 4.92‒nm‒long zigzag edge of a 4.92nm×0.23nm rectangular monolayer 

graphene, as shown in Figure C.6.  
 

  

Figure C.6. (a) Comparison of the normalized charge profile along the zigzag edge of the graphene flake between 
the present spatial discrete model and the charge-dipole model. (b) Corresponding 3D charge distribution of the 
rectangular graphene sheet. 

(a) (b) 

(a) (b) 
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For comparison purposes, the charge of each atom is normalized to that located at the 

center of the zigzag edge and ܳ ൌ 3 ൈ 10ଵଶ/cmଶ. Figure C.6 reveals that unlike the analytical 

model, the spatial discrete model can successfully reflect the charge variations induced by the 

structure of the graphene edges and, therefore, yields results in better agreement with those 

obtained by the charge‒dipole model. The interested reader can find more information on the 

spatial discrete model for rectangular flakes in the next section. 

Similar to the charge distribution profile in the circular FLG, the charge distribution in 

the rectangular graphene flakes with length ݈௫ and width ݈௬ can be given by 

௜௝ݍ ൌ
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where the charge distribution profile is normalized by 
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where ঘ௜௝ ൌ ௜௝ݔ2 ݈௫⁄  and ঙ௜௝ ൌ ௜௝ݕ2 ݈௬⁄  are dimensionless parameters, ݔ௜௝ and ݕ௜௝ denotes, 

respectively, the x and y coordinates of atom j in the ith layer which carries the corresponding 

charge of ݍ௜௝. Also, ߙ௫௜ and ߙ௬௜ denote the amount of charge accumulation at the middle of the x 

and y edges relative to that at the center of the graphene flake, respectively. From Eq. (C6), the 

amount of charge accumulation at the corner relative to that at the center of the rectangular 

graphene flake is obtained to be ~ 1 ඥߙ௫௜ߙ௬௜⁄ . 

 

C3 Configuration-Dependent Interlay Mechanical Properties of FLG  

We have summarized the interlayer mechanical properties of FLG and graphite obtained 

from a wide range of experimental methods in Table C1, allowing more detailed conclusions to 

be made about the atomistic mechanisms governing the electrostatic exfoliation of the FLG. It 

can be deduced from Table C1 that: (1) the stacking mode has only a slight impact on out-of-

basal-plane elastic modulus C33, whereas a small interlayer twist between two adjacent 

commensurate graphene flakes results in an order of magnitude decrease in the interlayer elastic 

modulus C44 and over two orders of magnitude decrease in the shear strength ߬௦. Experimental 

results show average self-consistent values of C33≈37.6±1.0 GPa and C44≈4.7±0.5 GPa for 
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commensurate FLG and graphite and C33≈36.6±1.1 GPa and C44≈0.18‒0.49 GPa for 

incommensurate counterparts; (2) attempts to measure the interlayer shear strength ߬௦ have 

yielded significant diversity in the reported values. For the case of incommensurate stacking 

state, ߬௦ and C44 have been reported to fall in the relatively narrow range of 0.12 to 3.1 GPa and 

0.18 to 0.49 GPa, respectively. Contrary to our expectation that the measured values of ߬௦ would 

not significantly change for commensurate-stacked systems, experimental methods give values 

in the range of 5 MPa and 200 MPa. This unusual interlayer mechanical response in FLG and 

graphite can be hypothesized to primarily be the result of the strong dependence of ߬௦ and C44 on 

basal-plane dislocations, bulk-lattice imperfections, geometry of the structures and stacking 

misalignments. Given that the former two defects are much more prevalent in graphite than in 

commercially available defect-free FLG, we only focus on the latter effect on the interlayer shear 

behavior of graphitic systems. 

 

Table C1. Interlayer elastic properties of FLG and graphite using experimental methods. 
Method Stack C33 (GPa) C44 (GPa) ࢙࣌ (MPa) ࢙࣎ (MPa) 

Specific heat [135] Canadian natural graphite >18 2.3   
Static tests [80] Polycrystalline graphite(Incommensurate)   10.3–20.7  
Uniaxial-shear stress [136] Single-crystal graphite  4.5±0.6  0.25–0.75 
Ultrasonic test [137] Single-crystal graphite  4.0±0.4   
Ultrasonic/static tests [138] Pyrolytic graphite(Incommensurate) 36.5±1 0.18‒0.35  0.88–2.45 
Neutron scattering [139] High-quality pyrolytic graphite 37.1±0.5 4.6±0.2   
Ultrasonic test [140] Pyrolytic graphite(Incommensurate) 36.6 0.281   
X-ray scattering [141] Single-crystal graphite(Incommensurate) 36.6±1.2    
Brillouin scattering [142] Graphite  5.05±0.35   
Partial dislocation motion [143] HOPG    5‒200 
Friction force microscope [144] HOPG(AB)    80‒120* 
X-ray scattering [126] Single-crystal graphite(AB) 38.7±0.7 5.0±0.3   
Thermal noise excitation [145] HOPG    2000‒7000 
Self-retraction motion [146] HOPG(AB)    100±40 
Self-folding conformation [147] Multi-layer graphene(Incommensurate)  0.36–0.49   
Raman spectroscopy [127] Multi-layer graphene(AB)  4.3   
Modulated nano-indentation [148] HOPG 33±3    
 10-layer epitaxial graphene 36±3    
AFM-assisted mechanical shearing [124] HOPG(Incommensurate)    0.5‒3.1** 
Self-retraction motion [81] HOPG(Incommensurate)    0.12*** 

 

C3.1 MD simulations of interlayer mechanical properties of FLG 

We carry out a set of MD simulations to investigate the effect of the stacking 

misalignments on both ߬௦ and C44. To do so, stress-strain curves and elastic constants, such as, 

out-of-basal-plane elastic modulus ܥଷଷ and interlayer shear modulus ܥସସ, are calculated. The 

FLG substrate is modeled by four layers of graphene in AB stacking with the size of ~5nm × 



133 
 

5nm where the bottom layer is fixed during the simulation. The moving graphene flake with the 

size of ~1.7nm × 1.7nm, is placed on the center of the substrate and periodic boundary 

conditions are applied to the substrate. 

The interlayer force acting on the graphene flake with N atoms from the graphene 

substrate with M atoms can be expressed as 

ࡲ ൌ ,௫ଙ̂ܨ൫ܨ ,௬ଚ̂ܨ ௭࢑෡൯ܨ ൌ െ෍෍
߲ܸ൫࢘௜௝

∗ , ,௜࢔ ௝൯࢔

߲࢘௜௝
∗

ெ

௝ୀଵ

ே

௜ୀଵ

 (C8) 

where ܨ௫, ܨ௬ and ܨ௭ are the force components acting on the flake along x, y and z directions, 

respectively. From Eqs. (C1) and (C8), one may, for example, write ܨ௫ as 
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(C9) 

where ݔ௜௝ is the x component of the actual distance vector ࢘࢐࢏
∗  between two atoms i and j, and 

݊௠௫ (m=i, j) is the x component of the unit vector ࢔௠.  

The shear stress τ and normal stress ߪ induced by the lateral movement and vertical 

movement of the flake relative to the FLG substrate are then equal to ߬ ൌ ௫ܨ ⁄ܣ ൌ ௫ܨߩ ܰ⁄  and 

߬ ൌ ௭ܨ ⁄ܣ ൌ ௭ܨߩ ܰ⁄ , respectively, where A is the flake area and ߩ denotes the planar atomic 

density (ൌ 0.3818	Հିଶ). The shear strain is defined as ߛ ൌ ௫ݏ ݀⁄ , where ݏ௫ and ݀ are the average 

shear displacement of the graphene flake along the x direction and the interlayer distance, 

respectively. The interlayer shear modulus is then given by ܥସସ ൌ ߬ ⁄ߛ . Similarly, the normal 

strain is defined as ߝ ൌ ௭ݏ ݄⁄ , where ݏ௭ and ݄ denote the average vertical displacement of the 

graphene flake along the z direction and the thickness of the FLG stack, respectively. The elastic 

modulus can be obtained by ܥଷଷ ൌ ߪ ⁄ߝ . 

From the simulated stress–strain curves in Figure C.7, the elastic moduli (ܥସସ and ܥଷଷ), 

strengths (߬௦ and ߪ௦) and fracture strains (ߛ௙ and ߝ௙) can be obtained: the elastic moduli are 



134 
 

calculated as the initial slope of the stress–strain curve; the strengths and fractures strain are 

defined at the point where the peak stress is reached. From Figure C.7(a), it is seen that ߬௦ 

decreases by 30% within approximately േ1° and by 50% within approximately േ2.5° twist 

variation. It is observed from Figure C.7(b) that at the critical normal strain of ~0.07, the tensile 

strength reaches its peak with the value of ~1.7 GPa. Also, the interlayer rotation has no 

appreciable effect on ߪ௦. It should be noted that the cutoff was tuned in our exfoliation 

simulations to achieve ~20 MPa tensile strength, more consistent with the experiments.  

 

Figure C.7. (a) Shear stress-strain curves and (b) normal stress-strain curves for the graphene flake in the 
commensurate (ߠ ൌ 0°) and incommensurate (ߠ ൌ 2.5°) stacking. 
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APPENDIX D 

 

Interfacial Adhesion Energy of 2D Materials and vdW Heterostructures 

 

D1 Comparative Studies of Interfacial Adhesion Energy 

In this section, we perform a comprehensive comparison study on the interfacial adhesion 

energy (IAE) of 2D crystals and 2D crystal/SiOx heterostructures obtained from a wide range of 

experimental methods. While a vast majority of studies have been conducted on the interaction 

of G with G (Section D1.1) and SiOx (Section D1.2) substrates with a wide range of reported 

IAE values, to the best of our knowledge, no IAE measurement at the hBN/hBN and hBN/SiOx 

interfaces yet exists, and also there are a very limited number of reports on the interaction of 

MoS2 with MoS2 (Section D1.1) and SiOx (Section D1.2) substrates. We also note that, to the 

best of our knowledge, there is no direct IAE measurement on the 2D crystal heterostructures.  

 

D1.1 Comparison study on cohesion energy of 2D crystal homostructures 

Although many attempts have been made over the last six decades to measure the 

cohesion energy of G crystal with the reported values ranging from 0.15⎼0.72 Jm-2 (Table D1), 

there are few direct measurements available for comparison. From the literature data, we found 

that our measurements for cohesion energy of G crystal are in excellent agreement with micro-

force sensing probe measurements on 4 μm wide square mesas (0.37±0.01 Jm-2 [81]) and AFM-

assisted shearing measurements on 3 μm wide square mesas (0.35 Jm-2 [149]), but inconsistent 

with the recent AFM-assisted shearing measurements on circular mesas of 100⎼600 nm in 

diameter (0.227±0.005 Jm-2 [124]). We revisited lateral stiffness calibration of all probes used in 

[124] by means of 3D finite element simulations. A typical optical microscope of probes (Figure 

D.1(a)), schematic of probe dimensions and lateral load (Figure D.1(b)) and their corresponding 

measured dimensions (Figure D.1(c)) were all given in the supplementary materials of [124]. 

We used the same Young’s modulus of 169 GPa and shear modulus of 50.9 GPa as they did.  
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Table D1. Cohesion energy of carbon nanotubes, few-layer graphene, and graphite.  
Method Sample Stack Γ (J/m2) Ref 
Heat of wetting Graphite N.A. 0.26±0.03 [150] 
Radial deformation of MWCNT Collapsed MWCNT (Non–)AB* 0.15–0.31 [151] 
Thermal desorption HOPG AB 0.37±0.03 [152] 
MWCNT retraction MWCNT Non–AB 0.28–0.4 [153] 
Deformation of thin sheets HOPG AB 0.19±0.01 [154] 
AFM pull-off force measurements HOPG Non–AB 0.319±0.05 [155] 
DWCNT inner-shell pull-out DWCNT Non–AB 0.436±0.074 [156] 
SEM peeling of MWCNT Collapsed MWCNT on 1-LG (Non–)AB 0.40±0.18 [157] 
 Flattened MWCNT on 1-LG  0.72±0.32  
AFM-assisted mechanical shearing HOPG Non–AB 0.227±0.005 [124] 
Self-retraction motion HOPG AB 0.39±0.02 [81] 
  Non–AB 0.37±0.01  
AFM-assisted mechanical shearing HOPG Non–AB 0.35 [149] 
AFM nano-indentation BLG/FLG onto FLG Non–AB 0.307±0.041 [158] 
Atomic intercalation of neon ion 1LG onto HOPG Non–AB 0.221±0.095 [159] 
Surface force balance CVD-grown 1LG/1LG Non–AB 0.230±0.008 [160] 
 CVD-grown FLG/FLG Non–AB 0.238±0.006  
* Intermediate between commensurate and incommensurate states 
 

After carefully developing the 3D model of the probe in COMSOL based on the given 

optical image and dimensions (Figure D.1(d)), we first applied a lateral force of Ftip=10 nN to 

the tip apex and calculated the rotation of each probe φ about its long axis at a point right above 

the tip apex on the cantilever shank (with the same x and y coordinates as those of the tip apex) 

where the laser spot is normally positioned (Figure D.1(e)), followed by calculating the torsional 

stiffness cφ=kφ/ltip
2 where kφ=(Ftipltip/φ). It is to be noted that ltip should have been replaced by ltip 

+ h (i.e., the vertical distance between the acting point of the force at the tip apex and the 

location of the laser spot) for the accurate calculation of cφ and kφ, however, for comparison 

purposes, we used the same equation as Koren et al. [124] did. We next applied a similar lateral 

force of 10 nN to the same point of laser incidence on the cantilever shank (Figure D.1(f)), 

followed by calculating the lateral stiffness kl=(Ftip/∆y) where ∆y is the lateral deflection at the 

point of applied force. We finally calculated the effective lateral stiffness of the probe as follows 

cl =(1/kl + 1/cφ)-1. It is seen from Table D2 that our 3D model predicts consistently stiffer (~1.5 

times) probes than those described in the original work. We also noted that the normal spring 

constant of all probes kn obtained by our simulations (with an average value of 3.04 N/m) is also 

more than twice the value of Koren et al. (1.40 N/m) [124], further indicating a systematic 

underestimation in their stiffness values. Using the modified lateral spring constant of 132 N/m 

yields a cohesion energy value of 0.340±0.008 Jm-2 at the G/G interface, which is more 

consistent with our measurements. 
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Figure D.1. (a) Typical optical microscope image of the AFM tip with an effective length and width of L and b, 
respectively. (b) Schematic drawing of probe dimensions and a lateral load applied to the apex. (c) Dimensions of 
the probes used. (a)-(c) are directly used from [124]. (d) Corresponding 3D model of the AFM probe. (e) Rotation of 
the probe A about its long axis x when a lateral force of 10 nN is applied to the tip apex in the positive y direction, 
yielding a torsional stiffness value of cφ=222.74 N/m. (e) Lateral deflection of the probe A when a force of 10 nN in 
the positive y direction is applied to a point on the cantilever shank with the same x distance from the cantilever root 
as the x distance of the tip apex, yielding a lateral bending stiffness value of kl=344.59 N/m.  

 

Using the similar finite element technique, we also calculated the effective lateral 

stiffness of our probe to be 83.8 N/m, which is an order of magnitude larger than the axial spring 

constant of the probe (8.60±0.40 N/m), confirming that the accuracy of shear force 

measurements using the conventional lateral shear force microscopy technique is highly limited 

by the large spring constant of the probe.  

We also note that to the best of our knowledge no cohesion energy measurement on the 

hBN homointerface yet exists, while there is only one measured cohesion energy value of 0.22 

Jm-2 at the MoS2 homointerface using a nanomechanical cleavage technique [161], which is 

lower than half the value observed in our experiment. We believe that in their calculations, a 

very low bending stiffness value of 0.92 eV has been used for the monolayer MoS2 which is even 

lower than that of monolayer G (1.49 eV) and monolayer hBN (1.34 eV) whose thicknesses are 

almost half the thickness of MoS2, resulting in such a low cohesion energy value in their MoS2 

homostructure (see Section D4).  

 

Table D2. Comparisons between calibrated stiffness of probes reported by Koren et al. [124] and the present work. 
Type  ࢔࢑ሺࡺ ⁄࢓ ሻ  ࣐ࢉሺࡺ ⁄࢓ ሻ  ࢒࢑ሺࡺ ⁄࢓ ሻ  ࢒ࢉሺࡺ ⁄࢓ ሻ  Ratio 
  Koren Present  Koren Present  Koren Present  Koren Present   
A  1.19 3.31  218 223  183 343  99 135  1.36 
B  1.40 3.26  202 248  150 338  86 143  1.66 
C  1.71 2.94  168 217  137 327  75 130  1.73 
D  1.30 2.63  176 189  160 315  84 118  1.40 
Avg.  1.40 3.04  191 219  158 331  86 132  1.53 

(a) (b) 

(c) 

(d) (e) 

(f) 
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D1.2 Comparison study on interfacial adhesion energy of 2D crystal/SiOx 

Despite many experimental studies devoted to the IAE determination of 2D crystals/SiOx 

heterostructures, no experimental data are available on the interaction of hBN/SiOx, whereas the 

reported IAE data on the interaction of G and MoS2 with SiOx are very diverse, ranging from 

0.09⎼0.90 Jm-2 at the G/SiOx interface (Table D3) and 0.08⎼0.48 Jm-2 at the MoS2/SiOx interface 

(Table D4). We believe that a part of this large data scattering can be attributed to different 

surface properties of SiOx during sample preparation, leading to different surface roughness, 

surface configurations (due to its amorphous nature), surface polarities, charge impurities, 

surface reactions with ambient humidity, and type of surface termination/defects (i.e., H‒, Si‒ 

and O‒terminated surfaces). 

 

Table D3. Interlayer adhesion energy of carbon nanotubes, few-layer graphene, and graphite on SiOx. 
Method Sample Γ (J/m2) Ref 
AFM nano-indentation BLG/FLG 0.270±0.020 [158] 
Pressurized blister 1LG 0.45±0.02 [68] 
 2-5LG 0.31±0.03  
Pressurized blister 1LG 0.24 [69] 
Pressurized blister 1LG 0.140±0.040 [162] 
 5LG 0.160±0.060  
AFM with a microsphere tip  1LG 0.46±0.02 [163] 
Intercalation of nanoparticles 5LG 0.302±0.056* [164] 
Infrared crack opening Interferometry 1LG 0.357±0.016 [165] 
Nanoparticle-loaded blister 1LG 0.453±0.006 [70] 
 3-5LG 0.317±0.003  
 10-15LG 0.276±0.002  
Intercalation of nanoparticles FLG 0.567 [166] 
Colorimetry technique 2LG 0.9 [167] 
Interfacial nanoblisters 1LG 0.093±0.001 [168] 
* After making a correction in E from 0.5 to 1 TPa.  

 
Table D4. Interlayer adhesion energy of MoS2 on SiOx. 
Method Sample Γ (J/m2) Ref 
Intercalation of nanoparticles FL 0.482 [166] 
Pressurized blister 1L 0.212±0.037 [169] 
 2L 0.166±0.004  
 3L 0.237±0.016  
 1L CVD 0.236±0.021  
Wrinkle  FL 0.170±0.033 [170] 
Interfacial nanoblisters 1L 0.082±0.001 [168] 

 

D2 Effect of Tilt Angle on Interfacial Adhesion Energy Measurements  

Flat tips can result in direct and accurate acquisition of the interfacial adhesion energy, 

provided they are carefully aligned with respect to the sample surface. In this study, an in-situ 

flattened tip was used as a means to minimize the effect of the tilt angle of the substrate on the 
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IAE measurements. Nevertheless, to investigate the dependence of the IAE on the misalignment 

of the sample, we used a home-made setup consisting of a variable tilt mount with an angle 

resolution of 0.5° to measure the IAE of G tip on the G substrate at a contact pressure of 1 MPa 

and 10 MPa. The G substrate was first rotated about the axis perpendicular to the probe length to 

achieve the maximum pull-off force, followed by the rotation of the substrate about the axis 

parallel to the probe length with an increment of 0.5° for the subsequent IAE measurements at 

the G/G interface. Ten IAE measurements were taken from different locations of the G sample 

for each tilt angle. Given that the maximum IAE value is presumed for the fully aligned tip-

sample system, we set the corresponding tilt angle to be zero and accordingly the IAE values are 

reported for tilt angles ranging from -3° to 3°, as shown in Figure D.2(a).  

It is seen that the IAE of G/G is almost independent of the contact pressure within the 

studied tilt angle range. It is also observed that the IAE exhibits a very weak dependence on the 

tilt angle of less than 1.5° (within our experimental errors) and only ~30% reduction at the tilt 

angle of 3°. This result is interesting because in the literature a larger adhesion force reduction of 

~30% and 60% was reported at a tilt angle of 1° and 3°, respectively, for a flat silicon tip 

(nominal spring constant: 48 N/m) with a 2 μm diameter contact area over a 2 nm thick SiOx 

substrate [171]. More than an order of magnitude smaller contact area in the present study (i.e., 

60 nm versus 2 μm diameter flat tip apex) motivates us to investigate to what extent the 

misalignment effect on the interfacial adhesion force is controlled by the size of the contact area.  

To do so, we perform a set of classical MD simulations to calculate the pull-off force 

between the SiOx substrate and the square flakes of graphene with both small (2nm×2nm) and 

large (10nm×10nm) flake sizes. The SiOx substrate was tilted clockwise in the range of 0° to 3° 

and the pull-off force was obtained as the tapered silicon layer was moved away from the sample 

surface. For comparison purposes, pull-off force was normalized with respect to maximum pull-

off force at a tilt angle of 0°. It is evident from Figure D.2(b) that pull-off force in the larger 

flakes exhibits a significantly stronger dependence on the tilt angle compared to that in smaller 

flakes, further supporting our experimental observations that the smaller flat tip apex provides 

more reliable IAE values on tilted substrates. 

We also note that over an order of magnitude smaller torsional stiffness of our probe 

compared to that in [171] can play a role in the formation of conformal contact at the tilted G/G 

interface, leading to the lower sensitivity of our IAE measurements toward the tilt angle 
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(according to the Euler-Bernoulli equation, the torsional stiffness kφ is proportional to the normal 

stiffness kn of the probe of length L and can be given by: kφ=4knGL2/(3E) where E and G are the 

Young’s and shear moduli of silicon, respectively). 

 

 
 

Figure D.2. (a) Interfacial adhesion energy measurements of G/G as a function of tilt angle. (b) MD calculations of 
normalized pull-off force versus the tilt angle of the SiOx substrate at the interface of SiOx and the small (2nm×2nm) 
and large (10nm×10nm) graphene flakes. 

 

D3 Static Spring Constant Calibration  

The main source of uncertainty in our AFM measurements lies in the determination of 

spring constant k of the AFM probe subjected to the normal or shear force at the apex. A large 

number of studies have addressed this issue in the past, and have suggested different techniques 

producing more or less uncertainty in the calculation of this parameter. The method that is most 

viable for in-situ characterization is the thermal method (independent of material properties of 

the AFM cantilever), requiring knowledge of instrument parameters and the mean-square 

amplitude vibrations of the cantilever as a function of frequency only, which can be efficiently 

and quickly measured before each experiment. 

We measure thermal fluctuations of the free end of the cantilever to determine its spring 

constant, which, according to the equipartition theorem, is ൌ ݇஻ܶ ⁄〈ଶሺ݂ሻݖ〉  , where T is the room 

temperature, ݇஻ is Boltzmann’s constant, and 〈ݖଶሺ݂ሻ〉 is the mean square of the cantilever 

thermal fluctuation amplitude. Because the thermal noise method relies on the measurement of 

cantilever fluctuations, some corrections are required to achieve an accurate determination of the 

spring constant. 

(a) (b) 
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D3.1 Spring constant calibration under a normal load at the apex 

(a) Contribution of fundamental natural frequency: Basically, 〈ݖଶሺ݂ሻ〉 is obtained by integrating 

the amplitude power spectrum of the cantilever (which is modeled by a simple harmonic 

thermally-driven oscillator) over the whole frequency range. However, in practice, the dominant 

contributions of the thermally driven fluctuations is at and around the fundamental natural 

frequency, ଵ݂, and, as a result, the amplitude spectral density is recorded and integrated over a 

few kHz band of frequencies centered at the fundamental natural frequency. Hence, the 

expression for the spring constant needs to be modified by 

݇ ൌ
12
ଵߙ
ସ

ܳ
ߨ

݇஻ܶ
ଶሺݖ〉 ଵ݂ሻ〉

∆݂

ଵ݂
 (D1) 

where ߙଵ ൌ 1.8751 is the parameter quantifying the amount of energy stored in the fundamental 

vibration mode, Q and 〈ݖଶሺ ଵ݂ሻ〉 denote the quality factor and the mean square cantilever 

displacement in the fundamental mode, respectively, and ∆݂ is the frequency resolution. An 

accurate measurement of the mean square displacement in a region around the fundamental 

natural frequency is challenging for the AFM probes and the following effects must be taken into 

account.  

 

(b) Conversion of virtual to actual deflection: The AFM measures the angular changes (virtual 

deflection, ̂ݖ) rather than the actual deflection, ݖ, so it is necessary to correct the mean-square 

amplitude of the cantilever vibration to account for these angular changes. The actual deflection 

 through the following ݖ̂ for the fundamental mode can be related to the virtual deflection ݖ

expression [172] 

ଶሺݖ〉 ଵ݂ሻ〉 ൌ ൬
3
2
sin ଵߙ ൅ sinhߙଵ
ଵߙ sin ଵߙ sinhߙଵ

൰
ଶ

ଶሺݖ̂〉 ଵ݂ሻ〉 (D2) 

 

(c) Effect of the protruding tip: In the contact mode, the adhesion force is applied to the tip apex 

not to the free end of the cantilever. Hence, we need to take the offset end load into 

consideration. As schematically illustrated in Figure D.3, a tip protruded from the free end of a 

cantilever tilted by an angle ߠ with respect to a horizontal surface increases the effective lever of 

the force from ܮ cos ߠ െ ܮ to ݔ cos ߠ ൅ ܦ sinߚ െ  where the effective tip height D is measured ,ݔ

from the tip apex to the midpoint of the cantilever thickness. 
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Figure D.3. Schematic drawing of a cantilever tilted by an angle θ with respect to a horizontal surface subjected 
to a normal force along the positive z axis. 

 

 

Following the work of Hutter [173], the bending moment-curvature relation in the 

cantilever can be expressed by the following differential equation 

ܫܧ cosଷ ߠ
݀ଶݖ
ଶݔ݀

ൌ ܮሺܨ cos ߠ ൅ ܦ sin ߚ െ  ሻ (D3)ݔ

After integrating and applying the boundary condition ݀ݖ ⁄ݔ݀ ሺݔ ൌ 0ሻ ൌ െ tanߠ, we can find 

the inclination at the free end about the equilibrium slope as follows 

ݖ̂∆ ൌ
ݖ݀
ݔ݀

ൌ
ܮܨ

ܫܧ2 cosଶ ߠ
ሺܮ cos ߠ ൅ ܦ2 sin  ሻ (D4)ߚ

Further integration of Eq. (D3) and using the boundary condition ݖሺݔ ൌ 0ሻ ൌ 0 lead to the 

deflection at the free end of the cantilever as follows 

ݖ∆ ൌ
ଶܮܨ

ܫܧ3
൬ܮ cos ߠ ൅

3
2
ܦ sin ൰ߚ cos  (D5) ߠ

By inspection of Eqs. (D4) and (D5), the relation between the actual and virtual deflections in 

Eq. (D2) is further modified to  
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(d) Effect of size and position of the laser spot: The laser spot size is primarily defined by the 

laser wavelength and microscope objective being used. While the minimum achievable spot size 

is diffraction limited, according to the laws of physics and optics, the laser spot diameter Ds is 

equal to 1.22 λ / N.A., where λ is the wavelength of the laser, and N.A. is the numerical aperture 

of the microscope objective being used.  In our AFM setup with an 830 nm laser and a 0.28/10x 

objective, the theoretical spot diameter is 3.62 µm. Such a small optical spot (compared to the 

long length of the probe, i.e., Ds/Leff = 3.62μm/(231.4μm×cos12º) = 0.016) which is placed at the 
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very end of the cantilever has a negligible effect on correction factor considered in Eq. (D2) 

[174]. 

(e) Effect of the angle of repose: The optical lever sensitivity, S, defined by the ratio of the 

displacement of the piezo-scanner Δz0 and the position-sensitive photo-detector (PSPD) voltage 

ΔV0, is the factor that allows us to convert the cantilever deflection from volts to nanometers. 

Basically, the optical lever sensitivity is the slope of a force curve obtained by placing the probe 

in contact with an infinitely stiff surface and ramping the scanner position. However, the value of 

S (=Δz0/ΔV0) is obtained in the scanner’s reference frame while the contact force acts in the 

cantilever’s reference frame, which is tilted at a repose angle of ߠ with respect to the sample. 

Hence, we need to divide S by cos   leading to ,ߠ
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where 〈∆ܸଶሺ ଵ݂ሻ〉 is the mean square voltage at the fundamental natural frequency.  

Substituting Eq. (D7) into (D1), we end up with a full expression for the spring constant of the 

probe as follows 
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By setting ߙଵ ൌ 1.8751, Eq. (D8) can be further simplified to 
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Our XE-70 AFM head provides a tilt angle of ߠ ൌ 12°. From the SEM measurements of the 

probe geometry, the following parameters were determined: ߚ ൌ ܮ ,10.5° ൌ ܦ ,݉ߤ231.4 ൌ

ܶ All measurements were performed in the ambient conditions at .݉ߤ20.7 ൌ  Three .ܭ	295

parameters ܳ, ଵ݂, and 〈∆ܸଶሺ ଵ݂ሻ〉 are determined by acquiring the thermal noise power spectrum 

using the SR760 FFT Spectrum Analyzer with the frequency resolution of ∆݂ ൌ 15.625	Hz. The 

optical lever sensitivity, S, on the sapphire sample was 14.32 nm/V.  

Figure D.4(a) shows the typical measurement of the mean square voltage amplitude by 

connecting the spectrum analyzer to the output of the preamplifier of the PSPD of the AFM 

controller. The spectrum analyzer measures the mean square voltage amplitude for the 

fundamental cantilever oscillation mode, which can be represented as 
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where the first two terms are used to account for a 1/f noise background and a white-noise floor, 

respectively. Once Eq. (D10) is fitted to the data by five fit parameters ܤ ,ܣ, ܳ, ଵ݂, and 

〈∆ܸଶሺ ଵ݂ሻ〉, the last three ones are used for the calculation of the spring constant from Eq. (D9) 

which is obtained to be 3.05 N/m. In a second approach, we employed the Sader method [175] 

with the input parameters of ሺܮ, ,ݓ ଵ݂, ܳሻ ൌ ሺ230.8ߤm, ,mߤ36.4 73.375kHz, 225.1ሻ, yielding a 

static spring constant of 3.29 N/m. This is slightly higher than the value predicted by Eq. (D9) 

because the effects of the protruding tip and the angle of repose were not taken into account. 

After considering these effects, the spring constant becomes 3.10 N/m, more consistent with that 

of thermal noise method. Note that the effective length in the Sader method was modified to 

account for the triangular end of the cantilever such that the new rectangular cantilever exhibits 

the exact same deflection response as the original cantilever.  

 

  

Figure D.4. (a) Mean square fluctuations in amplitude as a function of frequency for the probe with the protruded 
tip in air. The blue curve is the original data while the dash curve is the fit to the data using Eq. (12). (b) Deflection 
of the probe when a contact force of 30 nN is applied to the apex in the positive z direction, yielding a spring 
constant of 2.99 N/m. 
 

In a third approach, we estimated the spring constant of the probe by performing a finite 

element method simulation using COMSOLTM. The effective dimensions of the probe were 

measured using SEM images to an accuracy of ±0.5μm and ±2μm for the width and length, 

respectively, and ±100nm for the thickness. Assuming that the probes are typically fabricated 

from a [100] wafer with their long axis aligned with a <110> direction, we considered the elastic 

modulus of silicon to be E110=169 GPa. After tilting the probe by 12o about the x axis, we 

applied a 30 nN force in the positive z direction to the tip apex while the root of the cantilever 

(a) (b) 
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was fixed (Figure D.4(b)). From the computed deflection, the stiffness of the probe was 

calculated to be 2.99 N/m, in excellent agreement with the static spring constant obtained from 

thermal noise and Sader methods. For the purpose of this experiment, the mean value of the three 

methods (3.05±0.05 N/m) was taken as the static normal spring constant, enabling us to obtain 

the adhesion force by ܨ ൌ ݇ܵ∆ܸ, where ∆ܸ is the measured PSPD voltage signal. 

 

D3.2 Spring constant calibration under an axial load at the apex 

In this study, we moved 2D crystal substrates along the long axis of the cantilever tip 

rather than perpendicular to its long axis to obtain more accurate shear force measurements. In 

order to demonstrate the higher force resolution in the present axial shear force microscopy 

technique compared to that in the conventional lateral shear force microscopy technique, we 

determine the spring constant of the probe for each case.    

The spring constant of the probe under the axial load can be related to the previously calibrated 

spring constant under the normal load by calculating the deflection ratio of the free end of the 

cantilever under normal and axial loading conditions. In the contact mode, the axial force 

directed to the long axis of the cantilever is applied to the tip apex, as shown in Figure D.5(a). 

The bending moment-curvature relation in the cantilever can be expressed by the following 

differential equation 

ܫܧ cosଷ ߠ
݀ଶݖ
ଶݔ݀

ൌ ܮሺܨ cos ߠ െ ሻݔ tan ߠ ൅ ܦܨ cos  (D11) ߚ

After integrating Eq. (D11) twice with respect to x and applying the relevant boundary 

conditions, we can find the deflection at the free end of the cantilever as follows 
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3
2
ܦ cos ൰ߚ cos  (D12) ߠ

By inspection of Eqs. (D5) and (D12), one can analytically determine the deflection ratio for the 

axial and normal loads as follows    
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ൌ 0.339 (D13) 

Because the spring constant is inversely proportional to the tip deflection, the spring constant of 

the probe under the axial load can be determined by (3.05N/m)/0.339 = 9.00N/m. In a second 

approach, we carried out a similar finite element method simulation with the axial load of 30 nN 

applied to the positive x direction (Figure D.5(b)). From the computed deflection, the spring 
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constant of the probe was calculated to be 8.20 N/m. For the purpose of this experiment, the 

mean value of the two methods (8.60±0.40 N/m) was taken as the static spring constant under the 

axial load. This value is an order of magnitude smaller than the lateral spring constant of the 

probe (i.e., 83.8 N/m when the shear force acts perpendicular to the long axis of the cantilever), 

indicating much more accurate shear force measurements in the present shear force microscopy 

technique. This is also confirmed by our shear force measurements with atomic-level resolution 

(Figure 5.9(b)). 

 

 

 

Figure D.5. (a) Schematic drawing of a cantilever tilted by an angle θ with respect to a horizontal surface subjected 
to a axial force directed to the long axis of the cantilever along the positive x axis. (b) Deflection of the probe when 
a contact force of 30 nN is applied to the apex in the positive x direction, yielding a spring constant of 8.20 N/m. 
 

D4 Calculation of Bending Stiffness in 2D Crystals 

A direct measurement of in-plane elastic modulus of monolayer G (342±8 Nm-1 [2]), 

bilayer G (645±16 Nm-1 [2]), monolayer hBN (289±24 Nm-1 [2]) and monolayer MoS2 (180±60 

Nm-1 [3], 120±30 Nm-1 [176]) was reported by AFM nanoindentation of suspended 2D crystal 

membranes. Also, the bending stiffness of monolayer G (1.49eV) [177], monolayer hBN 

(1.34eV) [177] and monolayer MoS2 (11.7eV) [176] is obtained by first principles calculations, 

whose in-plane elastic modulus of monolayer 2D crystals is consistent with the aforementioned 

experimental values. In addition, the bending stiffness of bilayer G (35.5 eV) was calculated by 

measuring the critical voltage for snap-through of pre-buckled graphene membranes [178]. 

 

D5 Molecular Dynamics Simulations of G/SiOx Heterostructure 

To gain an in-depth understanding of underlying mechanisms associated with the 

interaction of G crystal and the SiOx substrate, we performed classical MD simulations using the 

LAMMPS simulator at room temperature. Four 98.2Å×102.1Å G layers with AB stacking were 

(a) (b) 
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placed at a distance of 3.0 Å above an amorphous SiOx substrate (143.3×146.5×21.3Å3) while 

the flattened tip was modeled by a tapered silicon (001) layer. To hold the system in space, 2 Å 

of the SiOx substrate from the bottom was treated as rigid throughout the simulation. We adopted 

reactive empirical bond order potential function to model the intralayer carbon‒carbon 

interactions within the same G layer while the free G edges were passivated by hydrogen. A 

registry‒dependent interlayer potential that can accurately describe the overall cohesion, 

corrugation, equilibrium spacing and compressibility of few-layer G was implemented in the 

LAMMPS code to model the carbon–carbon interaction between G flakes. Tersoff potential and 

Stillinger-Weber potential were utilized for the modelling of SiOx substrate and silicon (001) 

layer, respectively. We used a standard 12‒6 Lennard-Jones potential for describing Si‒C and 

O‒C long-range vdW interactions according to the Universal Force Field model and the 

Lorentz‒Berthelot mixing rules, whereas O‒C and Si‒C covalent bonds at the G/SiOx interface 

were modeled by the Tersoff potential. The glue between the tip and the few-layer G nanomesa 

was simply modeled by applying the Lennard-Jones potential between the silicon layer and the 

topmost G layer using a larger Si‒C interaction energy. The calculations were conducted in the 

NVT ensemble using the Nosé-Hoover thermostat and Newton’s equations of motion were 

integrated using the velocity Verlet algorithm with a time step of 1 fs. The total interfacial force 

(i.e., vdW and non-vdW forces) and relative displacement between the innermost G layer and the 

SiOx substrate were simultaneously monitored as the tapered silicon (001) layer was pulled in the 

normal direction with a constant speed of 10-2 Å/ps. 
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