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Abstract 

 

Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each 

contributes to bone quality and strength and may change independently, or together, with disease 

progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based 

approaches to characterize bone mineral density (BMD) which only accounts for ~60% of bone 

strength and may not adequately predict fracture risk. In a rare and severe bone disease such as 

osteogenesis imperfecta (OI), the hallmark genotypic and phenotypic variability makes clinical 

management particularly challenging. Treatment strategies rely on anti-resorptive 

bisphosphonates which address osteoclastic, but not osteoblastic deficiencies. Radiographic 

characterization of efficacy identifies structural, but not biomaterial-level alterations. Together, 

there is an unmet need for improved treatment strategies and means to longitudinally monitor 

treatment outcomes at the biomaterial-level to improve clinical management of bone disease.  

This thesis will describe a novel model to understand and predict individual patient 

treatment response to an emerging therapeutic, sclerostin antibody (SclAb) prior to clinical 

exposure. We then challenge the current bone imaging gold-standard with the characterization of 

a novel zero echo time (ZTE) magnetic resonance imaging (MRI) technique that may hold 

promise in identifying matrix-level and biochemical changes characteristic of OI and other 

diseases. 

SclAb has gained interest as a promising bone-forming therapeutic suggesting a novel 

treatment strategy through inhibition of endogenous sclerostin but effects in human pediatric OI 

bone remains unknown. We treated bone samples retrieved from pediatric OI patients during 
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surgery with SclAb in vitro and quantified transcriptional response of Wnt-related genes. Results 

demonstrated a bone-forming response in a manner paralleling pre-clinical experience. Factors 

inherent to the unique phenotypic/genotypic patient profile such as the patient’s baseline cellular 

phenotype appear to govern response magnitude; OI patients with low untreated expression of 

osteoblast-related genes demonstrated the greatest magnitude of upregulation during treatment. 

To expand findings in vivo, we developed a novel OI xenograft model where bone was implanted 

into a host-derived microenvironment. The model was efficacious; bone was bioaccessible by the 

host and retained patient-derived bone cells throughout implantation. Treatment increased bone 

density and volume with a variable outcome between cortical and trabecular bone. Patients with 

low baseline osterix demonstrated robust human-derived osterix-expression with treatment 

supporting in vitro findings. The validated xenograft model can be used to establish patient-

specific factors influencing treatment response suggesting a personalized medicine approach to 

managing OI. 

  Characterization of treatment efficacy for OI, as well as other metabolic bone diseases, is 

complicated by the lack of imaging modality able to safely monitor material-level and 

biochemical changes in vivo. To improve upon BMD, we tested the efficacy of a 3D ZTE-MRI 

approach in an estrogen-deficient (OVX) model of osteoporosis during growth. ZTE-MRI-

derived BMD correlated significantly with BMD measured using the gold standard, µCT, which 

significantly increased longitudinally over the duration of the study. Growth appeared to 

overcome estrogen-deficient changes in bone mass yet ZTE-MRI detected significant changes 

consistent with estrogen deficiency by ten weeks in cortical water, cortical matrix organization 

(T1) and marrow fat. Findings point to ZTE-MRI’s ability to quantify BMD in good agreement 

with the gold standard and detect biochemical alterations consistent with disease independent of 



 xix 

the mineral phase suggesting its value for bone imaging. Together, results from this thesis 

indicate a new treatment design and non-ionizing imaging strategy to improve management of 

bone diseases such as OI. 



 1 

Chapter 1 Introduction 

Motivation 

Osteogenesis imperfecta (OI) is a rare and severe heritable collagen-related bone 

dysplasia characterized by low bone mass, fragility and poor bone quality with increased 

pathological fracture risk presenting most severely in childhood. [1] Heterogeneity is a hallmark 

of the disease[2] which can be classified into 18+ genetically unique types differing in modes of 

inheritance (dominant, recessive, X-linked) and affected gene loci resulting in a range of 

phenotypic presentation. [3] The type of disease-causing mutation and position along the 

collagen chain was once believed to dictate phenotype,[1] but studies have revealed divergent 

phenotypes in patients with identical, or near-identical genetic mutations and different symptoms 

have been reported among family members with the same mutation. [4] This spectrum of 

genotypic-phenotypic variability makes management of the disease especially challenging. 

Current treatment approaches to manage OI include any combination of physical therapy, 

dietary intervention to improve body composition, corrective orthopaedic surgery and 

pharmacological treatment to address the fragility phenotype. While the goal of pharmacological 

management of OI is to reduce fracture incidence and increase bone density and mass, achieving 

this has been complicated. There is currently no United States Food and Drug Administration- or 

European Medicines Agency-approved therapy for OI. Therefore management relies, in part, on 

off-label therapies developed to treat osteoporosis, a metabolic bone dysplasia, which is not fully 

predictive of the clinical response in pediatric OI. Off-label use of bisphosphonates, a class of 

drugs which reduce osteoclast activity, represent the predominant treatment strategy for OI [5]. 

Yet bisphosphonates only partially correct the OI bone phenotype, and improvements in growth, 
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functional ability and definitive fracture risk reduction have been inconclusive. [6, 7] The arrival 

of monoclonal sclerostin antibody (SclAb) has gained interest as a promising bone-forming 

therapeutic [8] suggesting an alternative treatment strategy through inhibition of sclerostin, an 

osteocyte-secreted negative regulator of bone formation. [9] Clinical trials have shown SclAb 

treatment to elicit a positive increase in bone density and mass,[10-12] reductions in fracture 

rate, [13] and improvements in mechanical strength using finite element analysis (FEA) models 

in post-menopausal osteoporotic women.[11, 14]  Pre-clinical studies using transgenic murine 

models support the use of SclAb in treating OI, [15-20] but the magnitude of bone-forming 

response between mild, moderate and severe OI phenotypes in these models suggest genotype 

and phenotype variability influences the response. [15, 18-20] In humans, a Phase II clinical trial 

in adults with types I, III and IV OI treated with a form of SclAb demonstrated increased 

markers of bone formation, decreased markers of bone resorption, and increased lumbar areal 

bone mineral density. [21]  However, the low number of patients enrolled in the trial prohibited 

analysis of response by OI phenotype. To date, results in the pediatric OI patient remain 

unknown and is confounded by the difficulty of performing clinical trials in this young and 

heterogeneous population. [22]   

In addition to the complications surrounding investigations focused on the interaction of 

pharmacologic treatments and bone disease in children, imaging strategies to diagnose and 

longitudinally manage bone disorders such as OI and osteoporosis are incomplete. Current 

clinical practice relies primarily on ionizing x-ray-based approaches to characterize the mineral 

phase of bone. [23-25] When patients are treated for their low bone mass in the clinic, response 

is monitored in vivo using these x-ray based techniques.[26] Clinical trials for emerging 

therapeutics aimed to address low bone mass and fracture risk utilize baseline and end-point 
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dual-energy X-ray absorptiometry (DXA) to quantify treatment efficacy by quantifying bone 

mineral density (BMD). [27] Finally, pre-clinically there is a reliance on these same ionizing 

techniques [e.g. micro-computed tomography, (µCT)], often at higher radiation dose, to quantify 

mineral density and the bone microarchitecture with precision. [28] 

While mineral is the focus of DXA measures, it is understood that bone is a composite 

material composed of  ~35-45% mineral crystals composed of hydroxyapatite, ~40% organic 

matrix including type I collagen, proteoglycan (PG) and glycosaminoglycan (GAG), and ~15-

25% water existing as free (in Haversian and Volkmann’s canals) and bound (hydrostatically 

bound to organic matrix constituents), by volume. [29] Each are critical components to bone 

quality and fragility and may change independently, or together, with disease progression and 

ultimately with treatment. [30, 31] Even so, there is a near ubiquitous reliance on BMD to 

predict mechanical properties and ultimately serve as an in vivo surrogate for treatment efficacy, 

while ignoring these other important contributors of bone strength.[23] The literature largely 

supports that BMD is an incomplete measure since it accounts for only ~60% of bone strength 

and may not adequately predict fracture risk.[32, 33] 

Because these imaging techniques come at a cost of radiation, longitudinal in vivo 

imaging analysis, particularly in the clinic and during clinical trials, is limited in the number of 

acquisitions that can safely be acquired. As a result, the earliest and intermediate biological 

changes due to treatment can go uncharacterized. In the case of pediatric OI patients who sustain 

numerous fractures annually and undergo frequent corrective fluoroscopic-guided surgery, 

clinicians often forego radiographic imaging in an attempt to reduce the lifetime radiation 

exposure and mitigate the long-term consequences that radiation exposure has on bone. There is 

an urgent need to identify alternative or adjuvant imaging methods that could reduce the 
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radiation cost in diagnostic, pre-clinical and clinical trial imaging while improving sensitivity to 

factors contributing to bone strength that are not recognized by the present imaging technology. 

The ability to non-invasively measure biochemical and molecular processes in vivo as 

they relate to bone pathophysiology represents a powerful tool to guide therapeutic development 

and subsequent clinical trials [34] where the desire for non-destructive imaging biomarkers is 

wildly immense and equally unmet. When quantifying metrics beyond the mineral phase in bone, 

traditional pre-clinical targets typically involve end-stage tissue resection to perform histology.  

This requires study design to include matched treatment/control groups (cross-sectional) limiting 

longitudinal in vivo analysis and adding both cost and use of animal. Thus the cost and time to 

employ these studies is immense and there are limitations in assuming groups are comparable in 

the entropic biological system. [35, 36] Non-ionizing quantitative imaging biomarkers for bone 

quality, as such, may be the turning point for increasing pre-clinical, clinical and clinical trial 

efficacy and efficiency. 

There are a number of clinically available imaging modalities whose application in bone 

appear promising but have not yet been fully exploited. [37, 38] One such clinically available 

modality, magnetic resonance imaging (MRI), is gaining interest for its sensitivity to biochemical 

composition and its rich dynamic range. However, bone appears as a signal void in conventional 

MRI bone since it is unable to “capture” bone’s inherently ultra-short transverse relaxation time 

(T2) due to MRI time domain constraints (echo time, TE and repetition time, TR). In bone, proton 

signal intensity is drawn from a limited hydrogen pool which includes water residing in 

microscopic Haversian canals and lacunae-canaliculi systems (free water, T2 > 1 ms), matrix water 

bound to collagen (bound water, T2 << 1 ms) and protons of the collagen backbone/sidechain (T2 

< 0.1 ms). [29, 39] The extremely short T2 relaxation times for these three pools are directly related 
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to the movement allotted by the protons following excitation in MRI.[40]  In recent years, a number 

of remarkable advances have been proposed for both the qualitative and quantitative evaluation of 

short T2 species such as bone with the advent of ultra-short and zero echo time MRI. [41, 42]  

Thesis Outline and Contributions 

The studies that will be presented in this work have been approached using two distinct 

yet equally important models of altered bone remodeling to describe the impact of genetic and 

phenotypic variability on treatment response (Chapter 3 and Chapter 4) and to describe an 

efficacious set of non-invasive imaging biomarkers to quantify bone quality surrogates, in 

addition to mineral density, in bone (Chapter 5). In order to cover this breadth of topics, Chapter 

2: Background will first review bone structure, OI and its phenotypic and genotypic features, and 

pharmacological treatments aimed to address the fragility phenotype of the disease. Chapter 2 

will also briefly discuss osteoporosis, current clinical and pre-clinical imaging approaches to 

characterize the bone and discuss the utility of BMD as the most commonly reported imaging 

outcome (and its inherent limitations). We will next introduce additional measurable “quality” 

components of bone that can be captured using the novel MR imaging technique we present in 

Chapter 5. As such, Chapter 2 includes a review of MRI with a focus on ultra-short and zero 

echo time techniques, an important concept for this thesis.  

We believe that genotypic and phenotypic variability, including baseline fragility, pre-

existing trabecular phenotype, and perhaps yet undescribed mechanisms may impact treatment 

response in OI. In pursuit of this hypothesis, Chapter 3 will describe how individual patient 

genotype and baseline cellular phenotype influence treatment response in vitro. 

The in vitro environment provides a safe and reductionist method to evaluate human OI 

tissue response to SclAb but we recognize the environment is limited in biokinetic and metabolic 

factors inherent to the more complex in vivo environment. As such, in Chapter 4 we build upon 
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and extend findings from Chapter 3 in vivo using a solid-tissue isolate xenograft model OI 

patient tissue is implanted into a nude mouse to study the effects of SclAb in its target tissue, in 

vivo. 

The work to uncover factors influencing treatment response in Chapter 3 and Chapter 4 

has inspired the pursuit of an imaging technique that is able to quantify constituents making up 

bone’s dynamic, composite structure. We believe the ability to non-invasively characterize bone 

quality using quantitative imaging biomarkers represents an extraordinarily powerful tool that 

can impact the field where the safe longitudinally characterization of the entire composite bone, 

not just the mineral, could improve clinical trials and management of bone disease. As such, in 

Chapter 5 we used a novel 3D radial zero echo time (ZTE) MRI sequence that can achieve 

virtually simultaneous excitation and signal acquisition in order to image the bone in vivo. Using 

the technique, we sought to develop a comprehensive (although not exhaustive) set of MRI 

biomarkers to characterize aspects of bone quality that go “missed” when using gold-standard 

bone imaging approaches (e.g., DXA, µCT) that rely on ionizing radiation to attenuate the 

mineral phase in bone. 

The contributions to the field for Body Chapters (3, 4, 5) are as follows: 

Chapter 3 Gene Expression Profile and Acute Gene Expression Response to Sclerostin 

Inhibition in Pediatric Osteogenesis Imperfecta Bone 

The work presented in Chapter 3 is the first description of the effects of a novel anabolic 

therapeutic, SclAb, in pediatric OI tissue retaining patient-specific, OI-causative genetic defect. 

When tissues isolated from OI patients during routine orthopaedic procedures were cultured and 

treated in vitro, SclAb stimulated an acute upregulation in downstream Wnt targets WISP1 and 

TWIST1 and a compensatory response in inhibitory regulators DKK1 and SOST, paralleling 

experience in animal models treated with SclAb. We demonstrate that acute SclAb therapy is 
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able to elicit a bone forming response through upregulation of osteoblast and osteoblast 

precursor genes in vitro. The magnitude of response was heterogeneous regardless of clinical 

phenotype or bone morphological type (trabecular, cortical).  These data represent the first 

reports in the literature of human OI patient bone cell response to sclerostin antibody treatment. 

Perhaps the most important contribution of Chapter 3 is the description of the effects of 

genotype, cellular phenotype and bone morphological type (using the untreated condition) on 

treatment response in pediatric OI bone tissue. Pediatric OI patient samples with low untreated 

expression of osteoblast and osteoblast precursor genes demonstrated the greatest magnitude of 

upregulation in these genes with SclAb treatment. Conversely, patients with high untreated 

expression of osteoblast and osteoblast precursors demonstrated little to no additional 

upregulation following sclerostin inhibition, suggesting that amount of osteoblast activity at the 

time of treatment may help govern the potential for bone-forming response in an inverse 

relationship. Therefore, understanding the patient’s baseline osteoblast and osteoblast progenitor 

pool may be predictive of response magnitude to SclAb.  

The in vitro results presented in Chapter 3 provide evidence that pediatric OI bone cells 

are responsive to acute SclAb treatment in a manner parallel to the pre-clinical experience and 

that factors inherent to the unique phenotypic and genotypic patient profile appear to govern 

magnitude of treatment response. We believe this work takes the field one step closer to 

identifying which patients are best suited for SclAb treatment and has the potential to stratify 

responders verses non-responders prior to treatment. 

Chapter 4 A Xenograft Model to Evaluate the Bone Forming Effects of Sclerostin Antibody in 

Human Bone Derived from Pediatric Osteogenesis Imperfecta Patients 

Clinical trials to establish the effects of emerging and promising therapeutics in the 

pediatric OI population is uniquely challenging due to low patient numbers coupled with high 



 8 

disease heterogeneity and the desire for treatment naive patients. As such there is a near 

ubiquitous reliance on OI animal models to understand the in vivo response of emerging 

therapeutics, yet these models do not comprehensively cover all genetically unique types of the 

disease and may not be fully predictive of patient response. In an effort to evaluate SclAb in 

pediatric OI bone in vivo, Chapter 4 contributes to the field through the description of a patient-

derived xenograft approach as an alternative or adjuvant to genetically modified OI mouse 

models. In this xenograft model, pediatric OI bone tissue can be implanted directly into a 

biologically rich host-derived microenvironment to quantify treatment efficacy in vivo.  

In our xenograft model, we demonstrated that 1) implanted OI bone tissue becomes 

bioaccessible by the host 24 hours after implantation, allowing the drug to access the implant, 2) 

implanted bone cells undergo minimal apoptosis up to 12 weeks of implantation, and 3) 

implanted OI bone remains rich with human-derived bone cells throughout the implantation 

period. We also successfully demonstrated that pediatric OI bone cells respond positively, yet 

differentially, to SclAb in an in vivo condition. While treatment increased bone density and 

volume over time, response was variable by bone type (trabecular, cortical) with the greatest 

magnitude obtained in trabecular implants following four weeks of treatment. Baseline OI 

osterix expression dictated magnitude of response supporting in vitro findings in Chapter 3. OI 

patients with low baseline osterix expression demonstrated robust human-derived osterix-

expression with treatment. Interestingly, it appears that SclAb recruits human-derived, osterix 

expressing bone lining cells to the implant surface in comparison to untreated implants which 

had bone surfaces with host (mouse) derived osterix expressing bone lining cells. Taken 

together, we believe the successful implementation of the model in Chapter 4 contributes to the 
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field by providing a safe and efficacious approach for identifying factors that influence treatment 

response without contraindications to the patient. 

Chapter 5 In Vivo Quantitative Imaging Biomarkers of Bone Quality and Mineral Density 

using a Novel 3D Zero Echo Time Magnetic Resonance Imaging Approach 

Central to the work in Chapter 5 is the focus on a non-invasive and non-destructive 

imaging technique that creates a clear path to clinical translation with patient safety in mind. We 

believe a significant contribution to the field is the direct quantification of mineral density using 

MRI in Chapter 5, while sequentially quantifying additional measures of bone quality including 

cortical water, bone marrow fat fraction and a surrogate for matrix organization using T1 

relaxation, in vivo. In doing so, we challenge the current gold standard which relies on harmful 

ionizing radiation to detect changes in bone mineralization through our implementation of a 

novel 3D zero echo time (ZTE) MRI, multi-band SWeep Imaging with Fourier Transformation 

(MBSWIFT), that is able to achieve a higher bandwidth compared to other MRI approaches and 

mitigate susceptibility artifact inherently present at bone’s cortical/marrow and cortical/muscle 

borders. Because of the experimental MRI’s ability to capture all pools of protons including 

those associated with the mineral phase, we directly derived BMD using MRI and compared to 

µCT, the preclinical gold standard. Both MRI and µCT BMD detected significant longitudinal in 

vivo changes in the measure by two weeks. Furthermore, MRI BMD significantly correlated to 

BMD derived from µCT.  

MRI distinguished significant decreases in cortical water, increases in marrow fat and 

cortical volumetric T1 relaxation (a tissue specific biomarker where measures are related to tissue 

organization) consistent with OVX by 10 weeks. Cortical water fraction quantified using 

MBSWIFT significantly correlated to water loss (% by volume) during sequential drying. 

Findings point to ZTE MRI’s ability to detect biochemical alterations occurring in the system 
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following estrogen deficiency and detect alterations in BMD in a manner correlating to the gold 

standard suggesting the utility of an imaging modality able to characterize both the mineral- and 

quality measures beyond the mineral phase of bone. 

It is my aim that the work presented in this thesis contributes to an overarching goal to 

safely improve upon clinical management of bone disease. This goal was pursued using two 

separate yet equally important approaches to 1) establish a model to safely evaluate drug efficacy 

in the target bone tissue and 2) describe a non-invasive imaging technique to quantify imaging 

biomarkers of bone quality, in addition to mineral density, without the use of harmful ionizing 

radiation. Together, the work can be used to establish patient-specific factors influencing 

treatment response where material-level and biochemical changes can be quantified and 

monitored safely in vivo.  
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Chapter 2 Background 

 

Bone 

Bone is a complex, heterogeneous and dynamic tissue that, through the interplay of 

different cells responsible for remodeling, respond to environmental factors, mechanical loading 

and internal needs based on location and function. [43] The macrostructure of bone is comprised 

of ~ 80% cortical and ~20% trabecular architecture. The cortical bone forms the outer “shell” 

which encases the bone marrow and blood vessels of the system and largely makes up the shaft 

of the extremities and the trabecular bone is comprised of a network of interconnected plates and 

rods and is dominant in the vertebrae. The tissue itself is a composite biomaterial made up of 

~35-45% mineral crystals composed of hydroxyapatite, ~40% organic matrix including type I 

collagen, proteoglycan (PG) and glycosaminoglycan (GAG), and ~15-25% water existing as free 

(in Haversian and Volkmann’s canals) and bound (hydrostatically bound to organic matrix 

constituents), by volume, with each component contributing to bone quality. [29, 44, 45] These 

materials seemingly made up of opposite qualities (organic, inorganic) provide flexibility, 

toughness and elasticity and are essential to understanding the quality of the tissue where 

changes in composition can occur during aging, disease progression and in response to treatment, 

all of which affect mechanical behavior.[30] 

Bone is uniquely dynamic; the tissue possesses the ability to self-repair through a process 

known as bone remodeling. [46] The remodeling process is the continuous, life-long interplay of 

bone resorption (removal of old or damaged bone) and formation of new bone which is guided 

by osteoclasts and osteoblasts, each essential for maintaining optimal bone quality, strength and 
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maintaining mineral homeostasis. [47, 48] The third bone cell, the osteocyte, is the most 

abundant of the bone cells. The osteocyte differentiates from osteoblasts and are embedded 

within the bone matrix during cycles of the modeling and remodeling processes. [49] The 

balance of activities between bone-forming osteoblasts and bone-resorbing osteoclasts determine 

bone mass where the mechanosensing-osteocyte appears to play a role in regulation of this 

process through signal transmission.[50, 51]  Under normal conditions, bone remodeling is 

tightly coupled to ensure there are no major net alterations in bone mass or decreases in 

mechanical strength. When resorption or formation becomes impaired the bone undergoes 

phenotypical alterations marked by changes in composition, structure and function which can 

lead to fragility, decreased bone quality and increases in fracture risk. The imbalance in 

remodeling and turnover can be metabolic, genetic or secondary to disease, treatment or 

environmental factors.[52] The focus of this dissertation will be on two distinct bone diseases: 

osteogenesis imperfecta (OI), a rare and severe genetic disorder of bone fragility, and metabolic 

osteoporosis, the most common disorder of altered bone remodeling.  

Osteogenesis Imperfecta 

Osteogenesis imperfecta (OI) is a genetic bone dysplasia marked by low bone mass, high 

bone fragility and increased incidence of fracture which is especially burdensome during 

childhood.  The name osteogenesis imperfecta, literally meaning ‘imperfect bone formation’ in 

Latin, was first coined by Professor Willem Vrolik in the 1840’s when describing an infant with 

a poorly mineralized skeleton, tubular bones, and multiple fractures who only survived three 

days postnatal. [53] OI is extremely rare with an overall prevalence of approximately 1:20,000 

births [54] affecting between 25,000 and 50,000 individuals in the U.S. [55] The disease is both 

genetically and clinically heterogeneous [56] but has several common phenotypic features such 
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low bone mass, sustained recurrent fractures following minor trauma, short stature, vertebral 

compression, bone pain, long bone bowing and laxity in connective tissue. [3] Of these, the 

liability to fracture is often considered the most critical clinical feature to manage in patients.  

The first classification of OI was created using clinical features and patterns of 

inheritance.[2] The system has become known to the community as the ‘Sillence’ classification 

system and began with four autosomal dominant OI types ranging in severity from mild (OI type 

I), perinatal lethal (OI type II), severe (OI type III), and moderate (OI type IV). [56] An 

expanded Sillence classification system was proposed to include four additional types (V-

VIII).[57] This included an autosomal dominant moderate form (OI type V),[58] having distinct 

clinical and histological characteristics such as hyperplastic callus formation, radial head 

dislocation and interosseous membrane calcification of the forearm. [59] The next two types 

include an autosomal recessive severe OI (type VI) and an autosomal recessive severe form (type 

VII) which, in some cases, can be lethal. [57, 60] In 2007, Cabral et al. described an autosomal 

recessive OI (type VIII) characterized by severe growth retardation, undermineralization of the 

skeleton and bulbous metaphysis.[61] However, in 2010 the International Nomenclature group 

for Constitutional Disorders of the Skeleton (INCDS) published a consensus to group OI into 

five groups; keeping the original four described by Sillence and including the addition of OI V in 

an attempt to return to a more descriptive grouping based on clinical characteristics and patterns 

of inheritance. [62] 

As discussed, OI is generally autosomal dominant but can be autosomal recessive and 

even X-linked in modes of inheritance.[3] The disease is caused by autosomal dominant 

mutations in COL1A1 or COL1A2 encoding the α1 or α2 chain of type I collagen, respectively, in 

up to 85% percent of cases resulting in an underproduction of normal collagen, secretion of 
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defective collagen chains or a quantitative loss of the α1 chain depending on the mutation. [63-

65] Other COL1A1 or COL1A2 mutations resulting in structural defects in the collagen triple 

helix are related to glycine substitutions in the endoplasmic reticulum. [64] The remaining 15% 

of cases include genes beyond COL1A1 or COL1A2 (15+ and growing) that are recessive, 

dominant and even X-linked in origin. [3] Of the new genes, two in particular, CRTAP and 

PLOD2, altered prior conceptions through the discovery that the disease can be caused by 

changes in collagen post-translational modifications. [66, 67] This finding lead to a cascade of 

discoveries involving other collagen chaperones. [68, 69] While the exhaustive list of 15+ genes 

will not be discussed in detail here, the reader should refer to Marini et al. 2017 for further 

information. [3] 

The mutation type and position of the mutation was once accepted to dictate 

phenotype,[1] but variability in clinical presentation can exist within genotype. Studies have 

revealed divergent phenotypes in patients with identical, or near-identical genetic mutations and 

different symptoms have been reported among family members with the same mutation [4]. This 

spectrum of genotypic-phenotypic variability makes both diagnosis and management of the 

disease challenging. It remains unclear how mutation type, location and affected gene contribute 

to OI bone fragility and ultimately response to treatment.  

Pharmacological treatment of Osteogenesis Imperfecta 

There is currently no cure for OI nor a United States Food and Drug Administration- or 

European Medical Agency- approved treatment therapy. Instead, clinical treatment strategies 

include any combination of physical therapy, orthopaedic surgery and pharmacological 

management. Often, pharmacological treatment strategies for OI evolve from approaches 

developed to treat osteoporosis, a metabolic bone disease (which will be discussed in the 
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following section). Numerous pharmacological treatment strategies have been proposed for OI 

but results across patients have been inconsistent highlighting an opportunity to explore factors 

related to treatment response in this highly heterogeneous disease. 

OI is marked by increased osteoclastic bone resorption and as such, off-label use of anti-

resorptive bisphosphonates have been the primary clinical treatment strategy for OI for the last 

decade. [5] However, bisphosphonates only partially correct the OI phenotype as they do not 

actively build bone tissue and do not address osteoblasts harboring the OI-causing collagen 

mutation. [6, 7]  Clinical results have been variable and are dependent on OI type, severity and 

bone site. [6, 70, 71] Concerns regarding prolonged suppression of bone-turnover coupled with 

the long half-life of bisphosphonates raises questions about its long-term use in the pediatric 

population.[72, 73] Denosumab, a monoclonal RANKL antibody that inhibits osteoclast 

maturation, has received approval for use in osteoporotic adults [74] and because denosumab 

acts on the osteoclast, it has gained interest for use in patients with OI. In a prospective pilot trial 

in four children with type VI who had poor response to bisphosphonates, denosumab 

significantly decreased markers of bone resorption yet two patients sustained fractures during the 

trial.[75]  In ten children with types I, III, and IV OI, denosumab improved BMD but also 

demonstrated decreased osteocalcin levels and four patients sustained fracture during trial. [76, 

77] Other experience with denosumab in OI has been equivocal with no clinical improvement in 

BMD. [78] Concerns regarding hypercalciuria development during active treatment and pre-

clinical therapy has limited its use. [79, 80]   

Anabolic treatment strategies are gaining interest for their potential use in OI in part 

because the primary underlying genetic defect of OI often affects collagen type I which is 

synthesized by osteoblasts. Growth hormone therapy in pediatric OI successfully elicited linear 
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bone growth yet these effects were only observed in half of the patients.[81] With intermittent 

teriparatide, a recombinant humanized parathyroid hormone, treatment responders versus non-

responders in adults could be stratified by their OI type.[82] However, results of teriparatide 

treatment in pediatric OI remain unknown due to concerns over osteosarcoma development in 

rats.[83]  Recently, the advent of sclerostin monoclonal antibody (SclAb) represents a different 

treatment strategy to increase bone mass and reduce fracture occurrence.[8] While 

bisphosphonates focus on preventing bone resorption, SclAb increases bone formation by 

inhibiting sclerostin, an osteocyte-secreted protein that negatively regulates osteoblast bone 

formation through Wnt signaling.[9] 

SclAb has elicited positive increases in bone quality and mechanical strength during 

clinical trial for the treatment of post-menopausal osteoporosis. [10-12, 84-86] Pre-clinical 

results in animal models of OI overall support its use in the disease [15-20], but the magnitude of 

bone-forming response between mild, moderate and severe murine models of OI suggest the 

impact of genotypic and phenotypic variability. [15, 18-20] SclAb stimulated markers of bone 

formation, reduced bone resorption and increased lumbar spine areal BMD in a phase II clinical 

trial in adults with types I, III, and IV OI. [21] Because of low group numbers, response to SclAb 

could not be stratified by OI type. Clinical trial for pediatric OI is particularly challenging due to 

the rarity of the disease, stark heterogeneity and desire for treatment-naïve individuals [22] and 

while response to SclAb has been promising, experience in the pediatric OI patient and across all 

types and severity of the disease remain unknown. 

Osteoporosis 

While OI is a rare and severe genetic bone dysplasia,[87] osteoporosis represents the 

most common bone disorder with a prevalence of over 200 million people worldwide. [88] The 

disease is a multi-factorial metabolic bone disorder characterized by decreased BMD, decreased 
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bone quality, disruption of bone microarchitecture and bone function all leading to compromised 

bone strength and increased fracture risk. [89] Even with such a high prevalence and 

accompanying reduction in quality of life, associated morbidity and increased mortality, the 

disease often remains “silent” until the development of fracture which is both clinically and 

socioeconomically burdensome. [90-92] 

Osteoporosis can be classified as primary or secondary depending on the factors affecting 

altered bone metabolism. Primary osteoporosis includes two subgroups: osteoporosis type I and 

osteoporosis type II. Type I, also known as post-menopausal osteoporosis, is caused by estrogen 

deficiency and is the most common cause of primary osteoporosis. Estrogen deficiency leads to 

increased cytokine production in the bone marrow environment stimulating bone resorption 

either through increasing the number or activity of osteoclasts and impairing osteoblast 

function.[93] The trabecular bone in type I is particularly altered as a result of estrogen 

deficiency.[94] Primary osteoporosis type II, also referred to as senile osteoporosis, is loss of 

bone mass due to the aging process.[94-96] Secondary forms of osteoporosis account for ~10% 

of all cases and can be caused as a result of a recognized disease, medication and 

environmental/lifestyle factors. [97] Osteoporosis can also be observed in adolescence. In 

children, osteoporosis is often secondary to disease or treatment, [98, 99] but more rarely can be 

idiopathic where there is severe demineralization. [100] Because the classification of 

osteoporosis includes ‘bone loss that is extensive enough to increase fracture risk’, the 

Osteogenesis Imperfecta Foundation (OIF) reports that nearly all OI patients also have 

osteoporosis. This can confound OI symptoms and become particularly challenging during 

aging. 
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Pre-clinical models of osteoporosis represent an invaluable system to evaluate altered 

bone remodeling. As postmenopausal osteoporosis is the most common form of osteoporosis, 

animal models utilizing ovariectomy (OVX) to achieve estrogen deficient bone loss represent the 

most popular animal model of osteoporosis. The OVX procedure involves the bilateral removal 

of the ovaries at the distal uterine horn,[101] and is the gold standard to initiate an estrogen 

deficiency bone loss [102] through enhanced resorption.[103] In human postmenopausal 

osteoporosis, bone loss is most significant in the trabecular bone and on the endocortical 

surfaces. [104] Therefore an efficacious animal model for the disease should mirror these effects. 

As such, the rat is often the choice animal for OVX models and is recommended by the Food and 

Drug Administration [105]  because its remodeling of the trabecular network occurs in a manner 

similar to humans during menopause.[106]  In mature rats, OVX bone loss at the tibial 

metaphysis can be observed as early as 14 days but can range to 100 days before significant 

changes are observed.[107] The time of OVX initiation has been studied in rats as early as three 

weeks of age [108] and in rats up to two years old.[109] Young rats create a unique system 

where estrogen-deficient bone loss is competing with the elevated modeling/remodeling 

associated with growth while older rats (+ two years) are slow to induce changes because they 

may have reached anovulation prior to OVX.[110] 

Bone Mineral Density 

Bone mineral density (BMD) refers to the amount of mineral in bone tissue or, more 

specifically, the mass of mineral per volume of bone. BMD is highly, yet imperfectly, correlated 

to bone strength [111-114] which is determined by relative amount of mineral, the properties of 

the apatite and mineral crystal organization. [115-118] The mineral phase of bone can change 

with age or during disease such as osteoporosis where smaller mineral crystals grow in size to 

become larger crystals that are more brittle.[119, 120] Because of this knowledge coupled with 
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large epidemiological characterization studies and the ease, availability and low cost of x-ray 

based imaging techniques to assess BMD, the measure is used in near ubiquity to characterize 

bone disease and as an outcome during clinical trial for therapeutics targeting low bone mass.[13, 

121-124] Reporting changes in BMD during clinical trial gives treating clinicians a framework 

when implementing these pharmaceuticals to their own patients. Further, positive increases 

between pre- and post- DXA aBMD measures may have a beneficial role in encouraging patients 

to continue treatment. 

In the next sections, we will describe the clinical and pre-clinical imaging methods to 

obtain BMD, how the measure is used to inform diagnosis of disease and then discuss the 

limitations of the measure. Finally we will review the effects of radiation exposure inherent to 

the imaging modalities used to characterize BMD and discuss potential alternative bone quality 

targets for imaging. 

Imaging modalities to assess bone mineral density 

Both clinically and pre-clinically, the mineral phase of bone is measured using ionizing 

x-ray based techniques. This is because the high atomic mass number associated with calcium 

(Z=20) gives rise to a higher photoelectric absorption compared to that of soft tissue providing 

excellent contrast in x-ray and computed tomography (CT). [125]  Historically, plain skeletal 

radiographs were used in the clinical to measure bone density, however bone demineralization is 

not apparent until >40% of loss has occurred making it too insensitive for clinical reliance. In 

1989, duel x-ray absorptiometry (DXA) was introduced and represents a projection-based 

technique that measures x-ray beam attenuation as they pass through tissues (that vary in density) 

in 2D.[126] The resultant measure is the bone mineral content (expressed in g) and the planar 

area of the projected bone tissue (measured in cm2) which are used to derive the “areal” BMD 
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(aBMD) expressed in g/cm2. DXA aBMD is most commonly measured at the hip and spine but 

is not able to distinguish between cortical and trabecular bone.  

Osteoporosis is diagnosed when a fragility fracture has been sustained or by the patient’s 

DXA-derived aBMD. Clinically, the aBMD is converted to a T- and/or Z-score to give some 

meaningful context in relation to various populations. The T-score is defined as the difference 

between the person’s measured aBMD and the mean aBMD of young individuals (age 20-29 

years, the reference population) divided by the standard deviation of the reference population. 

The subsequent “score” represents the number of standard deviations above or below the average 

peak bone mass of young adults (the reference). The Z-score is the number of standard 

deviations above or below the average aBMD of a person of the same age, sex, and ethnicity. 

[127] Using the T-score, an aBMD equal to or less than 2.5 standard deviations (SD) below the 

mean for a young individual of the same sex meets the diagnostic criteria for osteoporosis.[128] 

A reduction in T-score of 1 SD increases fracture risk by 1.5-2 times and a reduction of 2.5 SD is 

the threshold where fractures can be predicted [129] and is generally used as the prescribing 

criteria for antiresorptive bisphosphonates. A Z-score below -2.5 SD is indicative of secondary 

osteoporosis because the measure is calculated against the mean aBMD of a person of the same 

age and sex. [128] 

BMD is also acquired in the growing skeleton. It is understood that bone health in the 

growing skeleton has long term effects during adulthood because up to 50% of the skeleton is 

laid down during adolescence.[130, 131] As such, BMD is used to assess bone health in children 

at risk for early bone mass derangement [132] in order to optimize bone mass accrual and 

prevent onset of primary osteoporosis or secondary as a result of chronic illness or 

treatment.[133, 134]  
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In pre-clinical research, micro-CT (µCT) has allowed for 3D measures of the bone with 

enhanced resolution from the use of microfocused x-ray tubes.[135]  As a result, volumetric 

BMD can be derived using phantoms made of calcium hydroxyapatite (CHA, Ca10 (PO4)6(OH)2) 

which makes up the mineral in bone. These CHA phantoms are essential to determine specimen-

specific volumetric BMD measures [136] where µCT BMD is calculated using the voxel-wise 

Hounsfield unit compared to the known densities of the CHA calibration standard and water. 

[137] Because of the correlation between apparent bone density (mass of bone without marrow 

divided by bone volume including bone pores) and bone mechanical properties, [138] µCT BMD 

can be converted to apparent bone density and used in finite element (FEA) models to determine 

fracture risk under mechanical loading conditions.[139] Beyond volumetric BMD, µCT permits 

measurements of bone microarchitecture where individual trabecular structures can be resolved 

with remarkable precision. [140] 

More recently, high resolution peripheral quantitative computed tomography (HR-pQCT) 

has been introduced as an in vivo µCT scanner for humans that allows for rapid scanning with 

high resolutions (82 µm) where volumetric BMD, in addition microarchitecture, can be 

derived.[141] HR-qQCT measures are taken at peripheral sites such as the tibia and wrist and, 

because of the higher resolution compared to DXA, can derive separate densitometry measures 

in the cortical and trabecular compartments. Volumetric BMD from HR-pQCT has demonstrated 

good correlation (R2=0.69) with DXA aBMD and allows the user to obtain additional indices 

such as connectivity density and FEA-derived measures to determine fracture risk under loading 

conditions. [142]  
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Limitations of bone mineral density 

While there is an association between a low aBMD and an increased risk of 

fracture,[143] there are a number of limitations with this technique.[32] Bala and Seeman refer to 

bone density as an ambiguous and incomplete measure where the “completeness of 

mineralization, its spatial distribution, porosity, and other factors” are missed.[31]  

In the aging population, declines in bone strength are disproportionally steeper than 

concurrent decreases in BMD and therefore can only partially explain bone strength.[144] Other 

age-related changes including the presence of osteophytes can hinder the interpretation of results. 

In post-menopausal osteoporosis, Sornay-Rendu et al. reported that fracture incidence was 

associated with bone resorption rate in a manner that was independent of BMD.[145] More than 

50% of postmenopausal women who sustained a hip fracture had a BMD score that did not meet 

the conventional -2.5 standard deviations below the reference. Both adults and children with 

small bones or those with extremely low bone density, long bone bowing, have metal rods or 

have compression fracture may get an inaccurate measure of BMD. BMD has further associated 

problems in the growing skeleton. The 2D nature of DXA is unable to capture the inherent non-

uniform bone growth which occurs in 3D during adolescence.[146, 147] Pre-clinically, BMD in 

the growing skeleton can be challenging, too where studies suggest that changes in BMD may be 

attributable to growth and miss underlying alterations indicative of altered bone 

remodeling.[148-150]  

In OI, increases in BMD and overall increases in bone mineralization may be 

independent of OI severity and the associated collagen mutation.[151, 152] Characterizing OI 

using BMD can therefore be challenging. For Type I OI, a mild phenotype, diagnosis of the 

disease cannot be excluded by a BMD score in the normal range.[153] Paterson et al. determined 

that in a cohort of 58 patients with either Type I or Type IV OI, 70% had BMD values within the 
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reference interval.[154] In 154 adults with OI (ages 25-83 and OI types I, III, and IV) only 10% 

of the adults demonstrated T-scores within the osteoporotic range as measured by DXA yet had 

three-fold higher fracture risk compared to the normative population.[155] Thus a measure that 

relies solely on the mineral appear to fall short in fully characterizing this collagen-related bone 

disorder.  

BMD can be an incomplete target to quantify treatment response of drugs aiming to 

target diseases of low bone mass. For example, anti-resorptive alendronate induced 

improvements in spinal BMD but this improvement could only be attributable to 16% of the risk 

reduction in vertebral fractures suggesting that improvements in BMD during antiresorptive 

treatment accounts for a predictable yet small fracture risk reduction. [156] Some drugs aiming 

to improve bone strength and decrease fracture risk have demonstrated promising results 

independent of an increase in BMD. Anabolic parathyroid hormone demonstrated early increases 

in total bone area, cortical porosity and hypomineralized new bone which resulted in little-to-no 

change in BMD in postmenopausal osteoporosis.[157] The pitfalls of relying on BMD alone are 

particularly highlighted in studies using raloxifene, a selective estrogen receptor modulator. 

Vertebral fracture risk reduction was documented in osteoporotic patients treated with raloxifene 

which was documented without concurrent improvements in BMD.[158] Sarkar et al. estimated 

that BMD could explain only 4% of the fracture risk reduction associated with raloxifene therapy 

while the remaining 96% was attributable to BMD/mineral-independent properties.[159] Pre-

clinically, raloxifene demonstrated improvements in bone material and mechanical properties 

without increasing bone mass and BMD. These pre-clinical studies suggest that raloxifene 

improves mechanical properties through a non-cellular mediated mechanism independent of 

hydroxyapatite.[160-163] Another drug target of osteoporosis, strontium ranelate, is thought to 
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increase bone strength by increasing bone water. Increases in mechanical outcomes were lost 

when bone from rats treated with strontium ranelate were dehydrated.[164] Where raloxifene did 

not result in substantial alterations in BMD, strontium ranelate demonstrated strong increases at 

the spine and hip. [165] This increase, however, may be artificial. Strontium ranelate has been 

shown to overestimate BMD up to 10%. [166] This may be attributable to the high atomic 

number of strontium (Z=38) which is even higher than calcium which would more intensely 

attenuate x-ray.[167]  

Radiation exposure from imaging modalities to assess bone mineral density 

While x-ray based techniques remain the current clinical and pre-clinical imaging gold 

standard for bone, these approaches deliver ionizing radiation to the subject/patient tissue which 

can harm the very structure we aim to study. Bone has a higher linear attenuation coefficient than 

soft tissue and experiences local radiation doses ~3-5 times higher compared to these tissues, 

such as the lung, as a result.[168-170] Further, there is a punishing relationship between the 

desire to achieve greater resolution to resolve microarchitecture in the bone at the cost of 

increasing radiation dose.[171] When reporting radiation dose parameters, the effective dose 

expressed in millisieverts (mSv) is commonly used. The effective dose is calculated from 

information regarding absorbed dose to the organ (expressed in grays, (Gy), and is the energy per 

unit mass deposited) and the radiation risk assigned to each of these organs.[172] Bone 

densitometry measured via DXA gives an effective radiation dose to the patient of 0.001 mSv 

(comparable to 3 hours of natural background radiation where the average annual U.S. 

background radiation is 3.6 mSv). While DXA has substantially decreased radiation doses 

compared to other techniques, this projection based method is unable to directly derive true 

volume densities and has demonstrated difficulty in resolving small changes in longitudinal 
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studies of osteoporosis.[173, 174] When acquiring an x-ray of the long bone, the effective 

radiation dose increases to 1.5 mSv and is comparable to 6 months of background radiation. For 

a CT of the same long bone, the dose increases to 3 mSv and can go up to 7 mSv (or two years of 

background radiation). At the increased radiation dose, CT increases achievable resolution and is 

therefore able to derive 3D microarchitecture.[175] The advent HR-pQCT has allowed for 3D 

high-resolution acquisition with a substantially reduced radiation cost compared to CT yet 

remains higher than DXA (HR-pQCT: 0.01 mSv).[176, 177] For each imaging modality, it 

should be noted that radiation exposure depends on many factors including the device itself, 

duration of the scan, size of the individual and sensitivity of the target tissue.[175]  

It is well understood that exposure to high levels of ionizing radiation, on the order of 1-2 

Gy, can result in rapid increases in osteoclast number and osteoclast resorbing surfaces within 

the metabolically active trabecular bone leading to loss of structural integrity.[178-181] An early 

(4 hr) and persistent (24 hr) rise in the expression of RANKL, a marker of bone resorption, was 

observed in mice following a single large (2 Gy) dose of radiation.[182] Radiation exposure at 

lower doses commonly used in the clinic have negative and lasting long-term effects, too. Much 

attention has been focused on the potential risk of radiation-induced cancer as a result from 

diagnostic radiology, especially CT, where one abdominal CT can have the radiation equivalent 

of nearly 750 chest x-rays. Sodickson et al. quantified the potential cancer risk from CT in 

31,462 patients over 22 years; as a whole, the increase was slight (0.7%) but when patients who 

had multiple CTs, this risk increased and ranged from 2.7%-12%.[183] This ionizing radiation 

exposure limits their use in longitudinal in vivo studies where multiple follow-up imaging 

acquisitions to monitor disease progression or response to treatment become unfeasible and 

unethical. In sensitive populations such as pediatric OI patients who endure multiple fractures 
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annually, treating physicians often forego x-ray based imaging studies in order to limit the 

child’s lifetime radiation exposure.  

Bone Quality Measures beyond the Mineral: Potential Imaging Targets 

We have discussed that BMD is an incomplete measure accounting for only ~60% of 

bone strength in humans and animals, [32, 33, 184, 185]; thus it is apparent that the remaining 

40% comprise important bone quality factors that go “missed” using traditional imaging 

approaches. There are currently no accepted approaches to measure bone quality, non-invasively, 

in the clinical setting. [127]  In the next section, we will review additional bone quality measures 

that we believe could serve as potential imaging biomarkers for bone diseases of altered 

remodeling. This list is not exhaustive and does not include all potential bone quality measures; 

instead we discuss targets that are relevant to Chapter 5 of this thesis. Here, we will highlight 

important pre-clinical work in the framework of osteoporosis that supports the development of 

non-invasive biomarkers to characterize these components.  

Organic matrix 

The bone extracellular matrix includes the organic matrix, or organic phase, which is 

made up of 90% type I collagen laid down by osteoblasts during formation. The remaining 

organic extracellular matrix is comprised of non-collagenous components such as osteopontin 

and osteocalcin. [186] The assembly and density of these molecules gives important insight to 

the amount of elasticity and deformation the bone can endure. [187]  As a result, alterations in 

the proportion and assembly can be indicative of disease where in fragile bones, the matrix 

composition is shown to be compromised. [188] We can begin to grasp the critical role collagen 

has in determining bone strength when considering OI where deficient collagen substantially 

increases fracture risk. [55] Patients with osteoporosis have altered expression of type III and IV 

collagen compared to healthy individuals [189] and collagen from premenopausal women who 
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sustained low trauma fractures had higher ratios of non-reducible to reducible collagen crosslinks 

compared to controls. [190] While preclinical ex vivo techniques such as atomic force 

microscopy can resolve these nanoscalar molecules (>1 mm in lengthy and 20-50 nm wide), 

[191], capturing bone collagen in vivo remains challenging. Techniques such as second harmonic 

generation imaging take advantage of the fact that collagen can absorb low energy incident 

photons and re-emit them where the interaction between two low-energy photons, specifically, 

can be quantified [192] with demonstrated success in live animals. [193] This technique, as well 

as other optical techniques not discussed in this thesis, are limited by depth of achievable tissue 

penetration which needs to be resolved prior to realization of clinical use in bone. [194]  Again, 

exploiting the fact that collagen can provide endogenous absorption contrast in the near-infrared 

spectrum,[195] label-free in vivo characterization of tendon using photoacoustic imaging has 

demonstrated promise [196] and may have application in bone. Depth penetration may limit the 

non-invasive technique clinically in bone. Exploitation of organic phase organization however, 

may be achievable using indirect measures of collagen organization derived from clinically 

available non-invasive imaging modalities such as magnetic resonance imaging (MRI) and will 

be discussed in the following sections. [197, 198] 

Cortical water 

Water is an integral constituent of bone. While mineral is related to stiffness and in part 

strength [115] and the organic matrix influences toughness,[199, 200] the interaction of water 

with each of these phases is just as critical to bone mechanical properties. [201] Water’s role in 

bone mechanics has been documented following dehydration of the tissue where water removal 

decreases strain, energy to fracture, and increases stiffness, tensile strength and hardness. [201-

205]  Water changes as a function of skeletal age, too. During growth, water in bone decreases 
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along with progressive mineralization. [206, 207] As aging continues, the decrease in water is 

correlated to a reduction in bone ductility. [201]  

Water in bone exists in two primary compartments; the “free” and “bound” water pools. 

Water existing as “free” is found in intra-cortical pores including the Haversian and Volkmann’s 

canals and the lacuno-canalicular system. [206] This fraction of water is directly related to 

cortical bone porosity; as porosity increases with age, strength is impaired. [208] Further, the 

free water fraction has been shown to be negatively correlated to peak stress. [209] Because 

some of collagen’s residues are hydrophilic, water molecules associate themselves to collagen 

within the matrix and comprises the “bound” pool of water and makes up ~ 20% of cortical 

bone’s wet weight. [210] Bound water influences the three dimensional structure of the organic 

matrix and a reduction in this water pool decreases cortical toughness and reduces collagen fibril 

diameter. [201, 211] Reduction in this pool can directly affect the mineral crystals, too. 

Decreases in water shortens the distance between lattices of mineral crystals reducing their size 

where smaller crystals are correlated with decreased mechanical stiffness. [212] But increases in 

mineralization which increase the size of crystals can also decrease water (diffusing it out).  

Even with all the promise as a biomarker of strength and bone quality, Granke et al. in 

2015 reasoned that water is arguably the “least studied constituent, even less than non-

collagenous proteins and growth factors within the matrix of bone (~1% by volume)”.[29] We 

believe this is because, until recently, there were no straightforward and acceptable techniques to 

non-invasively quantify water in bone. Recently, work has been done to establish the utility of 

MRI to detect alterations in total, bound and free water fractions which will be discussed at 

length in the following sections. 
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Bone marrow fat content 

Bone marrow is a highly vascular substance that occupies ~85% of the bone cavity with 

the remaining ~15% being comprised of trabecular bone. Bone marrow adipose cells are 

observed to have a role in regulation of hematopoiesis, bone turnover and metabolism and the 

alteration/derangement of marrow adipose cells are observed in metabolic bone diseases such as 

osteoporosis in addition to obesity and diabetes. [213].  It has long been observed that decreases 

in bone marrow volume are shown to correlate with increases in bone marrow fat in patient 

biopsies and animal models of osteoporosis and osteopenia. [214, 215] As such, quantification of 

marrow fat suggests a promising opportunity to diagnose and monitor disease. [216] Argawal 

observed that vertebral marrow fat was significantly increased in postmenopausal women with 

osteoporosis compared to women with osteopenia and healthy individuals; as BMD decreased 

marrow fat increased. [217] Higher marrow fat has been correlated with lower trabecular BMD 

as a result of age, too. [218] Because MRI signal in the biological system is derived primarily 

from water and fat protons, the fat fraction or the proportion of signal derived from fat protons 

has gained interest as a quantitative, objective image-based biomarker of disease. [219] As such, 

we will explore the utility of quantifying marrow fat in vivo using MRI in the following sections 

and in Chapter 5 of this thesis. 

Magnetic Resonance Imaging 

While clinical assessment of bone fragility relies on ionizing x-ray-based imaging 

techniques to assess bone mineral density and predict bone quality and fracture risk in vivo, 

mounting evidence suggests that additional markers, [220-222] including the composition of the 

organic extracellular matrix, [223-226] and the content of both bound and free water [201] and 

even the marrow fat, [227] contribute to overall bone health and strongly correlate with bone 

quality and strength. There remains a clear need to develop and implement an imaging tool that 
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can derive quantitative biomarkers relevant to bone, non-invasively, to be utilized in the clinical 

setting and to aid in clinical trial. Di Iorgi et al. made an appeal that the ideal imaging instrument 

to be used in children should be able to perform measurements on skeletal sites where fractures 

are frequent and it should be ‘minimally invasive, accurate, precise and rapid’. [228]  Magnetic 

resonance imaging (MRI) is a well-known tool that offers superior soft tissue contrast without 

harmful ionizing radiation. 

Brief history 

The advent of MRI for biological tissue has revolutionized the non-invasive 

characterization of the human body. Emerging from several fundamental inventions in the 1970s, 

MRI has underwent tremendous development over the past four decades and its capabilities have 

certainly not been fully exploited. With increases in field strength, novel multi-channel coil 

design, advancements in pulse-programming and innovative post processing and reconstruction 

techniques, the high spatial resolution and superior soft-tissue contrast inherent to conventional 

MRI has made it the gold standard modality for diagnostic imaging of numerous diseases such as 

cancer and stroke. Yet with all of these gains, its application beyond soft tissue and the 

identification of quantitative biomarkers is only beginning to be realized. This section provides a 

brief sampling of the principles of MRI from a biomedical imaging perspective with emphasis on 

zero echo time (ZTE) imaging to exploit short T2 species and quantitative MRI tissue parameter 

mapping. Therefore this discussion is confined to the central aspects that are particularly relevant 

to Chapter 5 dissertation.  

Nuclear magnetic resonance 

The principle for MR is based on the interaction between external magnetic fields and the 

nonzero magnetic moment of the nuclei termed the nuclear magnetic resonance (NMR) effect. 



 31 

Initially discovered and described by Purcell and Bloch in 1946, the NMR phenomenon was first 

elicited using a technique known as continuous-wave NMR and could be described by the Bloch 

equation. [229, 230] Soon after Hahn demonstrated that the NMR effect could be observed with 

a modified approach based on finite radio frequency (RF) pulses. The imaging area truly took off 

in 1973 when separate manuscripts by Lauterbur and Mansfield described the concept that if the 

external magnetic field is spatially varying, the Larmor frequency also becomes spatially 

varying. [231, 232] Ernst introduced a reconstruction method using Fourier transformation [233] 

and the first image of a living human was published by 1977. [234] 

The NMR effect can be observed in 1H, 13C, 19F, 16O, 17O, 23NA and 31P where the nuclei 

contain a nonzero spin quantum number and produce a large spin angular momentum, S. [235, 

236] Most biological MRI experiments focus on the resonance effects of the hydrogen proton 

due to its abundance in biological tissue and its high gyromagnetic ratio. As a result hydrogen 

imaging has become the foundation for clinical MRI. The potential energy, E, of the magnetic 

moment in a magnetic field, B, is: 

Equation 2.1 

𝐸 = −𝜇 ⋅ 𝐵 = −𝜇𝑧𝐵0 = 𝛾𝑆𝑧𝐵0      

 

The magnetic field, 𝐵0, is in the z-direction, 𝜇𝑧 and 𝑆𝑧 are the magnetic dipolar moment 

and spin angular momentum in the z-direction, respectively. 𝛾 is the gyromagnetic ratio which is 

specific to each nuclei. The net magnetization sums over all nuclei in the unit volume, 𝑀 = ∑𝜇. 

The magnetic field exerts a torque on the net magnetization and the behavior of the net 

magnetization in the presence of an external magnetic field is given: 
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Equation 2.2 

ⅆ𝑀

ⅆ𝑡
= 𝑀 × 𝛾𝐵 

The net magnetization angular frequency around the main magnetic field B can be solved as: 

Equation 2.3 

𝜔0 = 𝛾𝐵0 

Where 𝜔0 denotes the Larmor frequency. The Larmor frequency is known as the angular 

frequency of a proton where the energy is the difference between the two nuclear spin states; the 

transition of states is exploited in MR to produce a signal. 

When a specimen/tissue is inserted into the scanner’s static magnetic field (B0), the 

protons align parallel or anti-parallel and the result is the net magnetization. To create the 

measurable signal, an RF electromagnetic pulse is applied perpendicular to the main magnetic 

field at the Larmor frequency which induces measurable transition between states. An inductive 

oscillator-driven coil is placed around specimen/tissue where the RF pulse initiates the 

precession of the protons as vectors. The RF pulse generates the ‘transverse magnetization’ 

perpendicular to the main magnetic field and the net magnetization behavior is described by the 

Bloch equation: 

Equation 2.4 

ⅆ𝑀⃗⃗ 

ⅆ𝑡
= 𝑀⃗⃗  × 𝛾𝐵⃗  − 

𝑀⃗⃗ 𝑥𝑦

𝑇2
 −  

𝑀𝑧 − 𝑀0

𝑇1
𝑀𝑧 

where M is the net magnetization, 𝛾 is the gyromagnetic ratio of the proton, B is the external 

magnetic field, Mxy is the transverse magnetization, Mz is the z-component or longitudinal 

magnetization, and M0 is the magnetization prior to the RF pulse application. T1 is the spin-

lattice or longitudinal relaxation time and T2 is the spin-spin or transverse relaxation time (which 

will be discussed in detail in the next section). 
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Relaxation 

The detectible signal declines rapidly via two processes: loss of phase between spins and 

the release of energy to the environment, each of which affect the net magnetization.[229] The 

first type of relaxation affecting the net magnetization is called spin-lattice or longitudinal 

relaxation, denoted by T1, and is the exponential recovery of the longitudinal magnetization 

following the RF pulse. The longitudinal relaxation effect is attributable to the energy exchange 

between protons and their local environment during the return of the excited system (from the 

RF pulse) to its equilibrium state. The second type of relaxation is the spin-spin or transverse 

relaxation, denoted by T2, which is the dephasing of the magnetic moments inside a volume. The 

transverse relaxation effect is attributable to frequency fluctuations caused by proton 

interactions.  

The Bloch equation can now be solved for the longitudinal and transverse relaxation 

components observed by the protons following RF excitation. [237] The dynamic behavior of the 

magnetization (in the laboratory frame) is given by the following equations: 

 

Equation 2.5 

Mz(t) = M0(1 − ⅇ−t∕T1) 

 

 

Equation 2.6 

M𝑥𝑦(t) = Mxy(0)𝑒
−iγ𝐵0 t 𝑒−𝑡/𝑇2 

Where immediately following the RF pulse, Equation 2.5 describes the longitudinal 

magnetization recovery to equilibrium or the initial magnetization where T1 determines the time 

of this return. Equation 2.6, the term Mxy(0) represents the transverse magnetization following 

the RF pulse, 𝑒−iγ𝐵0 t is the accumulated phase and indicates the angle between transverse 
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magnetization and the positive x-axis and 𝑒−𝑡/𝑇2 indicates that the transverse magnetization 

decays exponentially following RF excitation determined by T2. Transverse magnetization is 

equivalent to the MR signal and its decay; the detected signal following the RF pulse in 

conventional MR pulse sequences decays with the T2 relaxation time. 

Protons do not respond to the RF pulse independent of their local environment; instead 

the response of the proton is highly affected by the surrounding macromolecules and elements in 

the tissue and this impact can be detected in the signal using multiple tissue specific parameters 

or contrasts. Damadian et al. first described the difference in T1 and T2 relaxation values of 

tumor tissue compared to that of normal, unaffected tissue exploiting the effects a disease may 

have on image contrast.[238] Thus T1 and T2 time constants directly represent the individual 

biological tissue of interest and changes to this microenvironment.  

Signal localization and image formation 

In its simplest form, a signal can be received (free induction decay (FID)) following the 

RF pulse but the resonating protons cannot be spatially resolved. Spatial localization of the 

protons is based on a linear combination of three magnetic gradient fields in the xyz-directions: 

 

Equation 2.7 

𝐺𝑥(𝑡) =
ⅆ𝐵𝑧(𝑡)

ⅆ𝑥
,   𝐺𝑦(𝑡) =

ⅆ𝐵𝑧(𝑡)

ⅆ𝑦
   and  𝐺𝑧(𝑡) =

ⅆ𝐵𝑧(𝑡)

ⅆ𝑧
 

 

These gradients, which are applied in a deliberate sequence parallel to the main magnetic 

field in a specific spatially differing pattern produce a changing z-component which varies by a 

few hundred to a few thousand Hz. This pattern can then be used to resolve the location of the 

tissue with respect to the isocenter of the magnet (which is designed to be zero). This allows a 
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link from the Larmor frequency we “capture” to the spatial location in the scanner where 

frequency localization can be used for slice selection (2D) and spatial position encoding. [231] 

With the gradients on after RF excitation, the Larmor frequency becomes spatially 

encoded: 

Equation 2.8 

𝜔0(𝑟, 𝑡) = 𝛾(𝐵0 + 𝐺(𝑡) ⋅ 𝑟) 

 

where r denotes the spatial coordinates x, y, z and G(t) is the gradient vector. Now the 

magnetization, with its time-dependent components, can be written as:  

 

Equation 2.9 

M(r, t) = M0(r)𝑒
−iγG(t)⋅𝑟𝑡 𝑒−𝑡/𝑇2 

 

Integration of the equation over all excited locations of the specimen gives the signal 

equation for MRI; the equation demonstrates how over time in the presence of gradients traces 

the Fourier transformation of the magnetization distribution along a path. This is denoted by the 

variable k(t). Solving the signal at each k position in the distribution of the collected data 

followed by taking the inverse Fourier transformation will, in principle, obtain an image. 

Coordinates in Fourier space have been historically denoted by k; because of this, data collected 

in MRI is referred to as k-space data.  

K-space trajectories 

The k-space in MRI is sampled by modulating the gradients. The very first MR images 

were acquired using spokes and gave rise to the radial trajectory. This is where a point in k-space 

is measured moving in a straight line through the center of k-space or from the center of k-space 
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moving outwards. [231] This sampling pattern creates a disc shape in 2D and a sphere in 3D. 

More commonly employed, however, is a Cartesian trajectory where sampling is done by 

creating a line-by-line pattern of k-space which produces a Cartesian grid. Data sampled using 

the Cartesian trajectory has become popular because analysis and reconstruction is relatively 

simple compared to radial sampling which requires additional steps such as regridding. Radial 

sampling provides many benefits over Cartesian sampling such a robustness to motion artifact 

and reduction in scan time and is used by the sequence in Chapter 5 of this dissertation.  

Summary 

In summary, the bulk magnetization of the protons from a specimen align in the positive 

z-direction when placed in the magnetic field for imaging. For each experiment, the specimen 

must be placed within a coil.  Proton magnetization can be tipped to the xy-plane by emitting an 

RF pulse at the Larmor frequency generated by the coil perpendicular to the static magnetic field. 

This tipped magnetization precesses at the Larmor frequency in the xy-plane and acts like a 

gyroscope. This precession induces an alternating voltage within the coil which is proportional to 

its transverse component. This transverse component decays exponentially with the T2 relaxation 

time while the longitudinal component relaxes with the T1 relaxation time back to equilibrium. 

The use of gradients in the xyz direction spatially encodes the protons in the sample and the 

collected signal is processed taking into account the k-space sampling pattern.  

Magnetic Resonance Imaging and Bone 

For musculoskeletal imaging, the application of MRI is in its infancy compared to the 

gold standard clinical radiographs and preclinical CT. Conventional MRI is superb for 

visualization of soft tissue such as cartilage and marrow yet tissues such as bone appear as a 

signal void. This void has been exploited to interpolate trabecular microarchitecture where the 

hyperdense marrow signal is detected via MRI and the blank space is quantified as an indirect 
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measure of trabecular bone. [239]  By taking the inverse gray scale and applying this to the 

image, the bone, which was once void of signal is now bright and the marrow is the lower 

intensity background allowing for quantification of trabecular bone volume fraction (BV/TV), 

trabecular thickness (Tb.Th.) and trabecular number (Tb.N.) in skeletal sites such as the distal 

extremities, proximal tibia, proximal femur and proximal hip. [240-245] The approach is limited 

to morphological measures, thus rich and tissue specific biochemical information embedded in 

tissue contrast cannot be examined.   

Conventional MRI is unable to image bone, which has a limited hydrogen pool, due to 

what was once thought to be a technical limitation of the hardware. The signal detected at the 

induction coil terminals decays exponentially on the order of microseconds making the time 

between RF excitation and signal acquisition crucial. The echo time (TE) is the measure of time 

between these two events (RF excitation and signal acquisition). The repetition time (TR) is the 

time between successive RF pulses applied to the same slice; a long TR allows the protons in all 

tissues to return to equilibrium while a short TR will result in the protons from some tissues not 

having relaxed fully to equilibrium before the signal is acquired, thus decreasing signal from 

these tissues. The shortest TE and TR achievable using conventional MRI remains greater than a 

few milliseconds. Even with TEs on the order of a few milliseconds, some protons in bone have 

returned to equilibrium before signal acquisition has even initiated, thus completely missing a 

fraction, or in some cases all of the protons in a tissue.  

In recent years, a number of remarkable advances have been proposed for both the 

qualitative and quantitative MRI evaluation of biological tissues such as bone with limited and 

highly restricted hydrogen pool. We will focus the discussion on a category of methods focused 

on special pulse sequences that manipulate or nearly eradicate the time elapse between signal 



 38 

excitation and acquisition events (TE). These pulse sequences include the ultra-short echo time 

(UTE) sequence, the zero-echo time (ZTE) sequence and SWeep Imaging with Fourier 

Transformation (SWIFT) sequence. Each sequence in the UTE and ZTE family comes with its 

pros and cons which will be discussed. Further, it remains unknown which sequence is the 

optimal pre-clinical and clinical choice; direct comparisons are difficult because not all are 

supported/available simultaneously by a scanner vendor or may not be feasible to employ due to 

system hardware limitations. A schematic focusing on the achievable reduction in TE can be 

appreciated in Figure 2.1 along with a conventional MRI sequence, which is discussed in the 

next paragraph for comparison.  

In order to understand the advances of UTE, ZTE and SWIFT, the conventional gradient 

recall echo sequence (GRE) should be discussed. The GRE was first described by Haase et al. 

and is one of the simplest pulse sequences in MRI consisting of an RF excitation pulse followed 

by spatial encoding.[246] For the GRE sequence, the TE is specifically defined as the time from 

the center of the RF pulse to the center of the signal acquisition or essentially the point in which 

the center of k-space has been crossed (Figure 2.1A). This is because the first frequency 

encoding gradient moves the sampling measurement point to the edge of k-space prior to the 

acquisition event and this accounts for the time it takes to cross the center of k-space. After each 

acquisition, the GRE takes advantage of a spoiler gradient which is applied to strongly diphase or 

halt transverse magnetization leaving only longitudinal relaxation until the next TR event. In a 

conventional GRE sequence, the TE ranges from 2-25 ms where the shorter TEs are achieved on 

pre-clinical scanners with high performing gradients.   

In order to gain signal in bone using MRI we will elucidate why, biologically, bone is 

difficult to image. We will next discuss UTE and ZTE and work that has been performed in the 
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context of bone. Then we will discuss SWIFT and the advent of multi-band SWIFT which will 

be utilized in the work presented in Chapter 5 of this dissertation.   

Short T2 species 

Biological specimens can be classified into two types based on their T2 values which 

reflects both the size and molecular motion of the molecule: long T2 species and short T2 species. 

Long T2 species are those specimens in which the current clinical application of MR is focused 

and includes materials such as the brain, muscles, cartilage, marrow and lipids. These long T2 

species have T2 relaxation times ranging from a few milliseconds to hundreds of milliseconds. 

MR imaging of long T2 species can be achieved by applying conventional pulse sequences where 

the characteristic time delay between RF excitation and signal acquisition is appropriate to 

capture this relaxation time. Conversely, short T2 species are those biological tissues which have 

T2 relaxation times that can be as short as a few microseconds (µs). These short T2 tissues 

include tendon, ligament, teeth, and bone and the approximate T2 relaxation time for a number of 

these short T2 tissues in human can be appreciated in Table 2.1.   

For bone, the proton signal intensity is drawn from water residing in microscopic 

Haversian canals and lacunar-canalicular systems (free water, T2 > 1 ms),[247] matrix water 

which is bound to collagen (bound water, T2 << 1 ms) and the protons of the collagen 

backbone/sidechain and other matrix proteins (T2 < 0.1 ms). [40] The T2 relaxation times for 

these three pools are directly related to the movement allotted by the protons following RF 

excitation. Free water refers to the water residing in the Haversian and Volkman’s canals 

comprising the largest majority of the pore network in cortical bone. Pore volume is shown to 

increase with age and disease and lead to a decline in bone mechanical properties. Thus changes 

in free water measures in these pores provides a unique surrogate measure in MRI. [248-250] 
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This water pool, as a result, has the longest T2 because the water is allowed the most movement 

within its microenvironment. For the collagen-bound water, three distinct compartments have 

been identified including water bridges between distant alpha-helices where a direct hydrogen 

bond cannot be formed, cleft water within the grooves of the triple helix and interfacial 

monolayer water comprising the hydration layer of the collagen. [251, 252] The portion of bone 

water that is collagen bound is typically higher than the amount of free water, however accessing 

the collagen-bound water is more difficult due to the shorter T2 inherent to bound water fractions 

in bone.[253] Collagen’s three stranded arrangement of alpha-helices lends itself to MR imaging 

as it is stabilized by a ladder of hydrogen bonds in addition to the support provided by the 

steroelectronic effect, hydroxylation and cross-linking. [254] Collagen protons have the most 

inherently short T2 of all the bone components due in part because collagen is so highly 

anisotropic in structure. Thus collagen MR imaging creates the largest challenge but, perhaps, 

would provide the greatest payoff where there is currently no available in vivo technique to 

quantify this in bone. [255]  

The ability to non-invasively detect and quantify the contribution of bone water (bound 

and free) and collagen content, in vivo, is of great interest to the orthopaedic community at large. 

Bone water, matrix-bound and free, represent a large contributor to bone matrix strength and 

ductility. [29, 209, 256-258] Work by Nyman and colleagues has pointed to the association of 

age-related fragility with a decrease in matrix-bound water fractions.[29, 39] Further, changes in 

matrix water and collagen content go undetected using conventional radiography illustrating a 

significant diagnostic gap in the management of bone health.  



 41 

Ultra-short echo time imaging 

Initially described by Bergin et al. in 1991 and “rediscovered” by Robson et al. in 2003, 

the ability of 2D radial UTE to visualize sub millisecond T2 species was realized and its utility in 

bone was emphasized. [41, 259, 260] The UTE sequence employs a short, rectangular RF pulse 

with a generally small flip angle (< 30°) while the phase encoding gradients are switched off 

(Figure 2.1B). [259] Following the RF pulse, the phase encoding gradients are switched on and 

radial k-space data sampling is initiated. The shortest gap in time between RF excitation and 

signal acquisition is limited by the hardware in the UTE sequence including 

transmission/reception switching and gradient coil switching. Taken together, these delays, albeit 

short and on the order of a few microseconds, are still measurable and limit UTE’s ability to 

capture all protons without some signal attenuation. Unlike ZTE and SWIFT (discussed in the 

next two sections), UTE can be acquired in 2D with the use of half-pulse sequences and in 

3D.[259] UTE has been used with increasing popularity clinically and pre-clinically and now 

comes as a pre-loaded sequence by most vendors.  Perhaps as a result of its increasing 

availability, many studies have evaluated the efficacy of UTE for imaging of short T2 species 

such as tendons, cortical bone, myelin, teeth and ligaments pre-clinically and clinically at a 

variety of magnet strengths from 1.5T through 11.7T and has even been combined with 31P 

imaging to characterize mineral content.[40, 261-264]  

For bone, the majority of UTE MR analysis has centered around the T2 quantification of 

bone water (total or bulk) and bi-component water populations (describing the T2 contribution 

from the bound and free water pools in bone). Bone therapeutics that modulate the non-mineral 

phase of bone are being identified and UTE has been employed with success in describing the 

non-invasive alterations to bone water as a result of these therapeutics.[162, 265] One such 

example is raloxifene, a selective estrogen modulator for the treatment of post-menopausal 



 42 

osteoporosis which works by mimicking the beneficial effects of estrogen in the bone.[124] 

Unlike bone preserving drugs like bisphosphonates, raloxifene decreases fracture rate with little 

to no observed improvements in BMD and studies have pointed to a non-cell-mediated increase 

in bone matrix water fractions to explain this phenomena. [124, 160-162, 266] Allen et al. sought 

to evaluate bone water in vivo through application of UTE to evaluate the bi-component water 

populations using the T2 decay in canine bone treated with raloxifene for 6 months or left 

untreated.[162] Canines were imaged in vivo at 3T where cortical analysis demonstrated that 

raloxifene treatment increased the bound water pool by 14% and decreased the free water pool 

by 20% compared to vehicle control animals.  

UTE applications in bone has progressed to in vivo clinical imaging. Work by 

Techawiboonwong et al. was one of the first to report the efficacy of resolving bone water using 

UTE in vivo at a clinical field strength (3T) with a TE of 70 µs.[267] The authors evaluated bone 

water (as one contribution, bulk) in the tibia in three patient populations and observed a 135% 

increase in bone water in patients with renal osteodystrophy compared to pre-menopausal 

women and a 43% increase compared to post-menopausal women. A hallmark of this work was 

that there was no statistical difference in volumetric BMD of the renal osteodystrophy group 

compared to any other group highlighting the utility of MRI to provide bone quality information 

beyond BMD.   

At clinical field strengths, UTE has been successful in resolving the bi-component water 

populations in bone by directly detecting the T2 values from bound and free water fractions. 

[268-270] This is an important consideration as the water fractions could be disproportionately 

affected due to aging, disease or treatment. Further progressing the in vivo UTE work in bone is 

Rajapaske et al. who demonstrated that pore size information via the cortical bone porosity 
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volumetric map generated using UTE (porosity index, described by Li et al.), validated against 

CT, could be described in a cohort of postmenopausal women.[271, 272] 

The utility of UTE to measure bone collagen has been investigated. In a recent study by 

Ma et al., it was determined that 3D UTE at 3T could capture both bound and free water protons 

but was unable to image protons from the collagen pool via freeze dried and D2O-H2O 

exchanged bone tissue studies.[255] Results from the study indicate that protons from the bound 

and free water are the sole sources of UTE signal and protons of the native collagen molecule are 

undetectable using UTE. The results were in contrast to findings by Siu et al. where solution of 

collagen, derived via a food grade bovine hide collagen powder, at varying concentrations were 

imaged using a spectroscopic technique at 7T, and a fraction of the collagen signal was observed 

via broadened spectral linewidths.[273]  However, the spectral techniques are not compatible 

with in vivo imaging thus effective bone collagen imaging remains to be realized. It is likely that 

UTE was unable to capture the shortest T2 in bone coming from collagen (~0.1 ms) due to the 

short transmit/receive switching time causing the small TE (< 5 ms) that remains inherent to 

UTE. Collagen bone image analysis should be investigated using ZTE and SWIFT techniques 

which nearly and totally eliminate the TE, respectively. 

Zero echo time imaging 

Similar to UTE, ZTE sequences also rely on initiating data acquisition as soon as possible 

following RF excitation.[274] ZTE works by switching on the readout gradients prior to RF 

excitation in contrast to UTE where the gradients are switched on following RF excitation 

(Figure 2.1C). [275] This series of events, in theory, allows the center of k-space to be sampled 

at an effective TE of zero. Because the hardware still switches from transmit to receive there is 

still a nominal TE dictated by the transmit/receive deadtime (although much shorter than that of 
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UTE) and using ZTE, the center of k-space is not actually sampled (instead a minimum k-space 

radius is acquired). The result is a loss of the first few data points in the specimen’s acquisition 

window, however k-space filling techniques through reconstruction algorithms have been 

described to recapture or reconstruct the image in the absence of these data.[276-279] Compared 

to UTE, ZTE is able to achieve a greater signal-to-noise ratio and increase scan time efficiency, 

but unlike UTE, ZTE can only be acquired in 3D because the frequency encoding gradient is 

turned on during RF excitation.[280]  

ZTE has been employed, ex vivo at 7T, to directly depict the microstructure of trabecular 

bone in a bovine specimen.[281] Comparisons to µCT demonstrated excellent agreement 

between the two modalities with the bone volume fraction assessed as 0.34 and 0.36 for MRI and 

CT data, respectively. Weiger et al. demonstrated the utility of ZTE when applying fat, water, 

and fat and water suppression using a sheep knee joint at 4.7T; with no suppression (thus 

collecting signal from both short and long T2 species in the joint) there was little contrast 

between bone, marrow, cartilage and muscle.[282] When applying simultaneous fat and water 

suppression, ZTE contrast in the bone was similar to that of µCT. The authors postulate that ZTE 

MRI may hold the potential to directly determine bone mineral density without the use of 

ionizing radiation.  

Application of ZTE in vivo at clinical strengths is not well explored due to the 

prerequisite of a modified gradient system that has a fast transmit and receive switch rate which 

is essential in ZTE. A few sites have been able to overcome the hardware restraints and offer 

insight to ZTE’s potential clinical utility in bone. At clinical 3T, Breigner et al. reported that 

ZTE MRI provided “CT-like” contrast in bone with strong intermodality agreement between 

clinical (osteoarthritis, Bankart and Hill-Sachs lesions, subchondral cysts) and morphological 
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measures (version, vault depth, erosion) in their patient cohort suggesting the ZTE could be 

considered in lieu of CT. [283] Wiesinger and Delso et al. have described ZTE in skull imaging 

and its utility has been further realized by Sekine et al. and others when combined with positron 

emission tomography (PET) for MRI-PET of the bone.[284-287] Promising work is being 

conducted to manufacture a gradient system for clinical use that reconciles extreme gradient 

strength with rapid transmit/receive switching speed that is required for ZTE.[288] 

SWeep Imaging with Fourier Transformation 

SWeep Imaging with Fourier Transformation (SWIFT) was introduced by Idiyatullin and 

Garwood et al. in 2006 as a novel fast and quiet MR sequence with a zero effective TE that is 

sensitive to short T2 species and even biomaterials.[289] SWIFT is not dictated by the 

transmit/receive deadtime like UTE and ZTE; instead the SWIFT uses gapping of hyperbolic 

secant pulses which allows for a simultaneous signal excitation and acquisition which is acquired 

inside the gaps (Figure 2.1D).[290] The hyperbolic secant pulses supply the large bandwidth that 

is required to both simultaneously excite the protons during the frequency encoding gradient step 

all while providing pulse lengths long enough to allow the required gapping. In SWIFT, the 

gradients are always on and are adjusted during acquisition to radially sample k-space. SWIFT 

makes use of dummy scans which “force” spins into a steady state making the applications of 

SWIFT nearly endless. Further, SWIFT is a favorable technique as it is less sensitive to RF field 

inhomogeneity. The “SWeep” in SWIFT is because the sequence uses swept RF excitation using 

continuous wave NMR [289] but at a far higher sweep rate. The technique uses radial sampling 

of k-space and the Fourier slice theorem, or the “IFT”.   

Compared to UTE, the broadband excitation pulses in SWIFT allow it to excite very off-

resonance isochromats (ensembles of spins experiencing the same field) which means areas 
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where susceptibility differences exist, such as the bone/marrow, bone/air and metal implant 

interfaces are reduced. Compared to ZTE, there is much less opportunity for lost or misplaced 

data at the center of k-space due to the gradient switching. The readout gradients in SWIFT do 

not need to be zeroed between TR therefore SWIFT is almost entirely silent. SWIFT is less 

taxing on the gradient hardware compared to both UTE and ZTE; however, SWIFT is far more 

demanding on the RF system due to the fast-switching. 

SWIFT has been applied in various applications which require short T2 species detection 

such as localizing iron oxide nanopartical (IONP)-labeled stem cells grafted in myocardium, 

resolving morphological features of human teeth, calcification detection in the brain following 

injury and detection of breast cancer metastasis to the lung (a short T2 species). [291-294] 

Promising to our proposed research, SWIFT enabled the duel assessment of spontaneous 

chondral (soft tissue) and subchondral (short T2 species) defect repair in an equine model 

following 12 months of healing using SNR as a biological outcome. [295] Further and promising 

was the high correlation between SWIFT-derived and µCT-derived bone volume fractions 

(r=0.83). Initial proof of concept studies applying SWIFT to detect changes in bone have been 

favorable. Sukenari and colleagues employed SWIFT, compared to conventional MRI, at 7.4T to 

probe alterations in ex vivo cortical bone following OVX and reported that SWIFT was more 

sensitive to early post-operative changes using SNR as a biological outcome.[296] Application 

of SWIFT to diabetes-induced rat model of bone loss demonstrated that excised tibiae scanned 

with SWIFT and µCT were able to detect cortical bone changes using SNR prior to a decline in 

BMD detected via µCT. [297] With SWIFT, cancer-induced osteogenesis and osteolytic 

alterations in bone microarchitecture were detected in tibia of young mice scanned ex vivo.[298] 

The authors describe that with SWIFT, it was possible to gain high-quality and high resolution 
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images of the bone tumor boarders plus the surrounding bone and soft tissues with one rapid scan 

(78 µm isotropic resolution achieved in 10 minutes) without exposure to ionizing radiation.  

Multi-Band SWeep Imaging with Fourier Transformation 

In MRI, bandwidth refers to the range of frequencies, measured in Hz, involved in 

transmit (RF excitation) or receive (signal acquisition) steps. In conventional SWIFT, the 

transmit bandwidth must match the receive bandwidth which usually ranges from 31-125 kHz. 

This is because the RF pulse is applied during the readout gradient thus the bandwidth must be 

broad enough to cover the entire field of view (FOV) at the readout bandwidth. Due to technical 

constraints on achieving the effectively zero TE, regular SWIFT has an upper limit on bandwidth 

through coil ring down (time delay following excitation to mitigate receiver overload) and 

transmit/receive switching time constraints. Lower bandwidths can be problematic when 

resolving all excited short T2 signals in the presence of long T2 signals (common to in vivo 

biological imaging) which can result in off-resonance effects, particularly susceptibility artifact, 

presenting as blurring in radial imaging. Susceptibility artifact refers to the different magnetic 

susceptibility in a tissue or implant which cause magnetic field gradients at the interfaces. This is 

especially prevalent in bone where the cortices have the largest biological pool of strongly 

diamagnetic calcium salt and share a number of biological boarders with much less diamagnetic 

tissues such as muscle, fat, marrow and the periosteum; the strong contrast in tissue composition 

can result in magnetic field distortions.  

Typically, susceptibility artifact can be minimized by lowering the TE or increasing the 

bandwidth but these options are not feasible with SWIFT which already acquires a zero TE and 

has an inherent upper limit on bandwidth. To address the bandwidth limitation, multi-band 

SWIFT (MBSWIFT) has been introduced by Idiyatullin et al. in 2015 where the theory behind 
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the sequence can be appreciated in detail. [299] In short, MBSWIFT makes use of sidebands 

which are generated through gapping the RF pulse. Both regular SWIFT and MBSWIFT excite 

bands outside of the FOV, but only MBSWIFT makes use of the multiple excitation bands where 

SWIFT uses the baseband. As a result, MBSWIFT can achieve high excitation bandwidth with 

increased efficiency (small average power) and in theory, reduce or mitigate the susceptibility at 

the cortical bone interfaces during in vivo imaging. Compared to ZTE sequences achieving a 

similar resolution, MBSWIFT can include more pulse elements per gradient orientation and 

allows for an increased flip angle to be utilize at a given RF amplitude. [299] 

In the original description, proof of concept images were acquired in the human 

mandible, compared to ZTE, where a visual reduction in blurring and an increase in sharpness 

can be appreciated in the MBSWIFT images. [299] MBSWIFT demonstrated a strong decrease 

in magnetic susceptibility artifact around the materials used for the wire leads (non-

ferromagnetic metal) used during deep brain stimulation in rats. [300] Further, MBSWIFT 

provided contrast in the brain comparable to the current functional MRI gold standard sequence 

(spin-echo echo planar imaging) while significantly reducing image distortion around the leads. 

We believe MBSWIFT would have incredible application in bone imaging which has yet to be 

described. As such, MBSWIFT was utilized in Chapter 5 of this dissertation. 

Quantitative magnetic resonance imaging 

The development of MRI in the clinical field was first aimed at obtaining suitable images 

of the anatomical structures and has become known as “conventional” and “qualitative” MRI.  

Conventional MRI images rely on signal intensity in arbitrary units which cannot be compared 

across sites or even scanning sessions making quantitative longitudinal analysis of disease 

progression and drug intervention unfeasible. [301] Furthermore, these conventional MR images 
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are assessed radiographically meaning they are qualitatively interpreted by a radiologist or 

trainee. Quantitative MRI represents the next step in the evolution of MRI offering a host of 

information over the purely anatomical assessment of conventional MR. However, quantitative 

techniques are in their infancy in that they require validation for their prognostic, diagnostic and 

response assessment value and are not well adopted clinically due to technical hurdles; 

quantitative MRI techniques require manual or semi-manual segmentation of the region of 

interest for analysis which can be time consuming and are susceptible to inter- and intra-rater 

variability. Although not the focus of the dissertation work, efforts to reduce or diminish the time 

cost of segmentation including description of automated segmentation routines for MR and the 

use of machine learning are being developed. [302, 303] 

Quantitative MRI using mapping techniques has gained considerable interest in the 

musculoskeletal imaging field for its sensitivity and specificity to macromolecular content such 

as PG, GAG, collagen and its organization, water exchange, water diffusion and tissue 

susceptibility in the magnetic field (the measure of the extend a substance becomes magnetized 

when placed in an external magnetic field, nearly all biological tissues are diamagnetic and have 

susceptibility). Quantitative MRI mapping is comparable across subjects, imaging sites and time 

points because measurements are absolute. [304] Quantitative mapping techniques have been 

explored at length in osteoarthritis; much work has been done to validate the techniques in 

cartilage at pre-clinical and clinical field strengths. [305-307] But cartilage is but one piece of the 

musculoskeletal imaging puzzle where the joint is comprised of many short T2 species such as 

ligament, tendon, endochondral cartilage and bone. Application of a quantitative MRI technique 

with a conventional MRI sequence as the readout would not be feasible in these tissues for 
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reasons discussed; thus applying a UTE or ZTE technique as the MR readout sequence is 

necessary to achieve quantitative MR values in these species. 

T1 relaxation mapping 

In MRI, the image contrast is based on spatial variations in T1 and T2, among other 

parameters, which reflect molecular properties including chemical state of water and its mobility 

which in turn reflects the local macromolecular environment. T1 relaxation times have shown to 

differ within normal tissue (such as depth-dependently in cartilage) [308, 309] and with disease 

[310-312] demonstrating promise as a quantitative imaging biomarker for its sensitivity to tissue-

specific relaxation properties. It has been suggested that variation in T1 may reflect the 

underlying physiology and composition of the mineral phase in bone. [313] When imaging bone 

using solid state 31P MRI, Wu et al. reported that subtle molecular or crystalline structural 

differences was observed as large differences in T1 relaxation values highlighting the 

discriminating power of T1 relaxation using 31P MRI.[313]  

In addition to the capability of imaging ultra-short T2 species, SWIFT has the capacity to 

provide quantitative maps of relaxation constants. With SWIFT, swept radiofrequency excitation 

drives the spin system into a steady state and equilibrium magnetization can be reached without 

applied magnetization preparation. When magnetization preparation blocks are embedded within 

the SWIFT sequence, SWIFT can achieve nearly pure proton density-weighted images, and 

depending on where the blocks are placed, different kinds of clinically meaningful contrasts can 

be produced. [289, 314] While magnetization preparation blocks can be used in SWIFT to 

achieve various contrasts, the image contrast can also be optimized by adjusting the flip angle 

close to the Ernst angle where signal intensity reaches its peak for a given T1. [289] This provides 

an opportunity to derive T1 relaxation maps by varying the flip angle in small steps at and around 
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the Ernst angle, referred to as the variable flip angle (VFA) method. [315] Because SWIFT has 

almost zero T2 weighting, the sequence can provide a pure and true T1 relaxation map and VFA 

using SWIFT has gained interest.  

Wang et al. described the utility of VFA SWIFT in estimating T1 relaxation values in 

varying concentrations of aqueous iron oxide nanoparticles in suspension and observed measures 

were in excellent agreement with spectroscopy. [316] Nissi et al. calculated T1 relaxation values 

using VFA SWIFT and an inversion recovery fast spin echo sequence in doped with known 

concentrations of Gd-DTPA2 and determined the methods to derive T1 were in good agreement. 

Next, the authors evaluated the sensitivity of the methods to detect differences in T1 between and 

native and trypsin-treated (to disrupt collagen) bovine cartilage-bone specimens and observed the 

VFA SWIFT shifted toward a shorter T1 in the osteochondral specimens reflecting the higher 

sensitivity to short T2 spins located at the cartilage/bone junction. [317]  In a feasibility study, 

Sukenari et al. extended the VFA SWIFT method to derive T1 relaxation times in five excised rat 

tibiae scanned ex vivo at 7.4T where T1 maps were successfully derived in cortical bone. [318] 

Building on these works, we sought to apply the VFA method using MBSWIFT in vivo. We 

believe that MBSWIFT’s ability to achieve a zero TE coupled with reduced susceptibility artifact 

at the bone/marrow and bone/muscle borders and inherent insensitivity to motion makes the 

technique highly desirable for quantification of in vivo T1 values in bone.   

Fat fraction mapping and water fraction mapping 

In MRI, fat and water protons behave differently resulting in different magnetic 

properties which can be both visually exploited for qualitative assessment and quantitatively 

measured using knowledge of their chemical differences in the magnetic field “fat-water 

chemical shift”.[319] Fat are large molecules (compared to water) existing primarily as long 
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chain triglycerides, where triglycerides are the lipid in bone marrow. [319] Fat molecules move 

slowly in their local microenvironment due in part to this “bulky” composition with the applied 

external magnetic field. Further, the majority of fat’s hydrogen atoms are located in the long 

aliphatic side chains near electroneutral carbon atoms (electron clouds) leaving the protons in the 

fat molecule relatively “magnetically shielded” from the outside externally applied magnetic 

field. [320] Because of the slow rotation of the fat molecule, fat gives rise to T1 values which are 

much shorter than that of water. For example at 1.5 T field strength, fat has an approximate T1 ~ 

250 ms while the T1 of water is ~ 4000 ms. Biologically, fat and water often reside in separate 

anatomic compartments and can easily be imaged using MRI. However, in structures such as the 

bone which is made up of fat-containing bone marrow which can change as a function of disease, 

there is a desire to separate these signals either for contrast enhancement or for quantification. 

One such method to separate the fat and water components is through “suppression” done by 

exploiting knowledge of the fat-water chemical shift. [321] 

Water molecules contain an oxygen atom which is strongly electronegative which 

permits the hydrogen nuclei to pull away from the electron cloud through deshielding. The 

hydrogen protons are exposed to the local magnetic field and resonate faster than the electron 

cloud-shielded fat molecules creating a difference in resonance frequencies. This difference in 

resonance frequencies, however, increases with increasing magnetic field strength thus a scaling 

factor taking into consideration of the changing Larmor frequency must be applied. The 

difference between fat and water is measured as 3.5 parts per million (ppm or x 10-6). At 9.4T, 

the field strength used in this work, the fat-water frequency difference is calculated as: 

 

Equation 2.10 

Δf = (400 MHz)(3.5 x10-6) = 1400 Hz 
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1400 Hz is thus the frequency distance between the water and fat peak at 9.4T; because 

fat processes slower than water, the main fat peak is found at -1400 Hz and water at 0 Hz (Figure 

2.2). Based on this field strength-dependent value, frequency selective saturation RF pulses can 

be applied at the frequency of fat to saturate its contribution to the MR signal described in detail 

by Delfuat et al. [321] An advantage of fat saturation is that it can be applied to any MR imaging 

technique and effective fat suppression is more achievable at higher field strengths, such as in the 

present work, where the resonant frequencies are better separated. As such, fat saturation using 

SWIFT can be obtained by applying a hyperbolic secant (HS4) inversion pulse (1-kHz 

bandwidth) centered at the fat resonance frequency (-1400 Hz) after every specified N 

views.[289] Similarly, water saturation can be achieved by applying a HS4 saturation pulse at the 

water frequency.  

Biologically, fat cells are both highly dynamic and physiologically active having 

metabolic, endocrine, haematological and immune roles. Alterations in number and/or size of 

adipose cells may be directly related to disease and could be related to inflammation and even 

malignant infiltration in the bone. It has been observed that adipose cells can secrete growth 

factors and matrix proteins that interact with the skeletal system.[322] The accumulation of fat 

within an organ or within the bone marrow is known as ectopic fat deposits and there is a 

growing appreciation for its role in disease pathogenesis.[323] Specifically, bone marrow 

adipose cells are observed to have a role in regulation of hematopoiesis, bone turnover and 

metabolism and the alteration/derangement of marrow adipose cells are observed in metabolic 

bone diseases such as osteoporosis in addition to obesity and diabetes. [213] Through the 

exploitation of the MRI signal to saturate fat and water, fat fraction (FF) maps, or the proportion 
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of signal derived from fat protons can be calculated and may have a role as a quantitative 

imaging-based biomarker in bone.[219] The FF can therefore be derived by taking the signal in 

the image that arises from fat protons divided by the sum of the signal from fat + water protons: 

 

Equation 2.11 

FF= fat/(water + fat) * 100 

 

Similarly, the water fraction (WF) can be exploited by: 

 

Equation 2.12 

WF= water/(water + fat) * 100 

 

where fat is the magnitude of the fat image where water was saturated and water is the water 

image where fat was saturated. The significance of mapping WF in the cortical bone can be 

appreciated in the section entitle, “Short T2 species” in this chapter. 

Bone mineral density using magnetic resonance imaging 

In contrast to the methods to derive BMD described in detail in earlier in this chapter, 3D 

MRI may be a valuable tool to derive volumetric BMD while concurrently providing meaningful 

soft tissue signal. While imaging mineral and other solids is regarded as beyond the scope of 

conventional MRI, Ho et al. demonstrated the feasibility of conventional proton imaging to 

compute voxel-wise BMD by exploiting signal intensity. [324]  The authors used proton-density 

weighted in-phase images of water and fat derived from chemical-shift T2*- IDEAL MRI where 

the fat-water separation was used to compute an inverse BMD measure and results significantly 

correlated to CT.[324] The calculation method for the author’s BMD measure based on signal 
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intensity is described in detail in Chapter 5 of this dissertation. The advent of phosphorous solid 

state nuclear MR imaging (P31) have allowed for the direct signal from phosphorous making 

MRI-derived BMD calculations a possibility. [261, 313] However P31 MRI is even more limited 

in spatial resolution because of the lower gyromagnetic ratio associated with the phosphorous 

molecule. We believe ZTE MRI as such, could be used in place of phosphorous imaging to 

directly resolve BMD using CHA phantom standards (Chapter 5).  

Conclusions 

As such, characterization of disease progression and treatment efficacy for metabolic bone 

diseases is complicated by the lack of imaging modality able to safely monitor material-level and 

biochemical changes in vivo without the use of ionizing radiation. To improve upon the current 

bone imaging landscape and the near ubiquitous reliance on x-ray based BMD, we tested the 

efficacy of a 3D ZTE-MRI approach, MBSWIFT, in an estrogen-deficient (OVX) model of 

osteoporosis during growth in Chapter 5 of this thesis. Here we describe the utility of MBSWIFT 

to characterize not only the mineral phase of bone, but additional material-level bone 

components which contribute to overall bone quality.   
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Figures 

 

 

Figure 2.1: Simplified pulse sequence diagram.  

Diagram emphasizes echo time (TE) for A.) conventional gradient recall echo (GRE) sequence, B.) ultra-

short echo time (UTE) sequence, C.) zero echo time (ZTE) sequence and D.) SWeep Imaging with 

Fourier Transformation (SWIFT). RF= radiofrequency; G=gradient and α° denotes the flip angle of the 

RF excitation pulse. 
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Figure 2.2: Schematic of water and fat peaks acquired at 9.4T.  

The fat-water chemical shift is found to be 1400 Hz based on the Larmor frequency of 400 MHz at 9.4T 

field strength.   
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Tables 

Table 2.1: T2 relaxation times for musculoskeletal tissue. 

Musculoskeletal Tissue 
Approximate T2 
Relaxation Time 

(ms) 

Refs 

Cartilage 10-35 [325-327] 

Endochondral Junction 2-9 [327] 

Tendon 1-2 [328-330] 

Meniscus 5-11 [331, 332] 

Temporomandibular Disc 8-28 [333] 

Cortical Bone 0.2-0.8 [268] 

Periosteum 5-11 [41] 

Free Water >1 [334, 335] 

Bound Water 0.3-0.4 [334, 335] 

Collagen 0.1 [40, 273] 

Dried Cortical Bone 0.22 [268] 
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Chapter 3 Gene Expression Profile and Acute Gene Expression Response to Sclerostin 

Inhibition in Pediatric Osteogenesis Imperfecta Bone 

 

Introduction 

  Osteogenesis imperfecta (OI) is a rare and severe congenital bone dysplasia characterized 

by low bone mass and poor bone quality with increased pathological fracture risk. [1] OI is both 

genetically and clinically heterogeneous; the bone dysplasia can currently be categorized into 

18+ genetically unique types ranging in severity from mild forms with minor skeletal clinical 

manifestations to perinatally lethality. [3, 56, 336] Further complicating the disease are the 

different possible modes of inheritance (dominant, recessive or X-linked gene mutations) and 

variability associated with the affected genetic loci resulting in the range of phenotypic 

presentation. [337] Further, patients with the same OI-causing mutation can present with 

different clinical phenotypes. [4] In up to 85% of cases, OI is caused from a mutation in the 

COL1A1 or COL1A2 gene encoding the α1 or α2 chain of type I collagen respectively, resulting 

in an underproduction of normal collagen or secretion of defective collagen chains depending on 

the mutation. [63, 64, 338] Further modifications due to glycine substitutions in the Gly-X-Y 

collagen repeat in the COL1A1 or COL1A2 gene have been observed which result in moderate-

to-severe phenotypic forms of OI from the structural defect in the collagen triple helix. [338] 

More recently, other genes localized in the matrix, endoplasmic reticulum (ER), ER-golgi, and 

nucleus have been identified in the pathogenesis of OI and make up the remaining 15% of cases. 

[3, 63, 67-69, 87, 339-345]  This spectrum of genotype-phenotype variability has made both 

diagnosis and management of the disease challenging; as such, no cure for OI exists, there is no 
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United States Food and Drug Administration or European Medicines Agency approved 

pharmacological treatment and consensus on an appropriate treatment strategy has yet to be 

identified. [55, 346] 

Pharmacologic treatment strategies for OI have evolved from approaches developed to 

treat osteoporosis, a metabolic bone disease. These strategies which aim to elicit an increase in 

bone mass, improve architecture and decrease fracture risk often result in a variable clinical 

response when applied to OI. Current clinical pharmacological approaches to manage OI relies 

on anti-resorptive bisphosphonates, yet bisphosphonates have demonstrated variable patient 

outcomes depending on OI phenotype, severity and bone site. [6, 70] Further, long-term 

bisphosphonate use in pediatric OI is a concern due to its suppression of bone turnover and the 

drug’s long half-life which leads to long-term residence in the bone. [73]  Inconsistent clinical 

pediatric OI results have also been reported with Denosumab, a RANKL inhibitor, and concerns 

regarding hypercalciuria development during active therapy observed in pre-clinical studies have 

limited its clinical use. [77, 79, 80] More recently, bone-forming sclerostin antibody (SclAb) has 

emerged as a promising alternative or adjuvant to existing therapies and acts by inhibiting 

sclerostin, a negative regulator of bone formation. SclAb has elicited significant increases in 

bone mineral density (BMD) and quality during clinical trials for post-menopausal osteoporosis 

[13, 85] and stimulated markers of bone formation, reduced resorption and increased lumbar 

spinal areal BMD in adults with moderate OI (limited to type I, III, or IV). [21] Despite these 

findings, effects in the pediatric OI population and across all OI types remain unknown. 

Different OI phenotypes appear to respond differently to therapies. Pre-clinically, the bone-

forming response to SclAb has varied in magnitude from strong in the moderate knock-in Brtl+/- 

murine model, moderate in the recessive severe Crtap /-- murine model, and a lesser bone-forming 
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response in the dominant severe Col1a1 jrt/+ murine model. [15-18, 20] Therefore, factors that 

contribute to the heterogeneity of the disorder, including skeletal morphology and individual 

patient gene expression profile may play an important role in the patient’s response to therapy. 

Understanding the transcriptional response to treatment in the diseased target tissue is of 

great interest. Gene expression response following SclAb treatment has been reported rat models 

of post-menopausal osteoporosis and in female Balb/c mice, [347-350] highlighting the unique 

signaling events and compensatory response occurring in the osteoblast lineage as a result of 

SclAb. However, patterns of gene expression response due to treatment in human OI bone tissue 

remains unknown and difficult to assess clinically. We sought to evaluate gene expression 

profiles in native pediatric OI bone tissue and describe the acute gene expression response to 

SclAb treatment across OI patients with severe and moderate phenotypes. We explore how the 

patient’s untreated cellular condition and the bone’s baseline morphological phenotype 

contribute to treatment response during acute sclerostin inhibition. 

Materials and Methods 

Study design 

  Seven pediatric OI and five pediatric non-OI patients undergoing surgical orthopaedic 

intervention were recruited for this Institutional Review Board-approved study and informed 

consent was obtained from the subject and/or legal guardian. Detailed patient demographics 

including OI type and bone harvest location can be appreciated in Table 3.1. Native bone 

typically discarded as surgical waste was collected immediately to media (αMEM/10% fetal 

bovine serum (FBS)) and placed on ice for experiment preparation. Patient bone tissue was 

divided into a Falcon 12-well microplate (Corning Inc., Corning, New York) with each well 

containing 3 mL of media and maintained in culture at 37°C. Each well contained one solid bone 

isolate ~2 mm3 in size and each patient yielded up to 14 usable bone isolates (Table 3.1). 
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Prepared bone was randomly assigned to an untreated (UN), treated with a low dose of SclAb 

(TRL, 2.5 µg/mL), or treated with a high dose of SclAb (TRH, 25 µg/mL) condition. Each 

patient had enough bone tissue to repeat each UN, TRL, TRH condition 2-4 times. Wells 

containing tissue and media were dosed directly with SclAb on days two and four and all 

samples were removed on day five to 1 mL of TRIzol reagent (Invitrogen, Carlsbad, CA) and 

kept at -80°C until RNA isolation occurred. For all conditions, media was changed on day two 

and four immediately prior to treatment. One bone sample from each patient was fixed 

immediately in 10% neutral buffered formalin (NBF) for 24 hours, decalcified in 10% 

ethylenediaminetetracetic acid (EDTA) for 15-20 days, paraffin processed and stained with 

hematoxylin and eosin (H&E) to determine bone morphology using established procedures. 

[351] A detailed schematic can be appreciated in Figure 3.1A. 

A subset of bone tissue from patients OI3, OI4 and OI6 were collected to media and 

immediately implanted subcutaneously on the dorsal surface of an athymic mouse representing 

our xenograft model to evaluate the effects of SclAb in a host-derived system more closely 

recapitulating the in vivo microenvironment (Figure 3.1B). Fourteen bone samples in total were 

implanted and mice were randomly assigned to an untreated or SclAb treated group. Treatment 

was administered to the host (mouse) subcutaneously at 25 mg/kg, two times a week for either 2 

or 4 weeks where the mice were euthanized. All mice received calcein (30 mg/kg, intraperitoneal 

(i.p.) injection), administered seven days before sacrifice and alizarin (30 mg/kg, i.p.) 

administered one day prior to sacrifice, to follow new bone formation. Implanted mice 

underwent µCT imaging (Bruker Skyscan 1176, Bruker BioSpin, Belgium) 24 hours following 

implantation and immediately following euthanasia using an X-ray voltage of 50 kV, current of 

800 uA and a 0.5 mm aluminum filter. Scans were reconstructed at an 18 μm isotropic voxel size 
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and calibrated with the use of two manufacturer provided hydroxyapatite standards. The bone 

implant was manually segmented followed by a series of several automated processes so that 

only implant was extracted and analyzed for longitudinal changes (presented as a percent change 

from pre- to post- scans) for bone surface (CTAn Version 1.15.4.0, Bruker Biospin, Belgium). 

Following imaging, OI bone tissue implants were removed from the host and plastic processed 

for histomorphometric analysis using standard laboratory procedure. All experimental animal 

procedures were approved by the University of Michigan Committee for the Use and Care of 

Animals.  

Bone tissue preparation and RNA extraction 

Total RNA was extracted from each bone isolate by first pulverizing each bone in 1 mL 

TRIzol using a high-speed tissue homogenizer (Model 1000; ThermoFisher Scientific). Each 

bone isolate underwent three 20-second cycles of homogenization and was placed on ice 

between cycles. The bone’s total nucleic acid content was isolated using 0.2 mL of 24:1 

chloroform:isoamyl alcohol per 1 mL of TRIzol, centrifuged at 12000 g for 15 minutes at 4°C 

where the supernatant containing the RNA fraction was removed by pipetting. RNA was then 

purified using the RNeasy Mini Kit (Qiagen, Valencia, California) followed by DNA digestion 

with an RNase-Free DNase Set (Qiagen) using manufacturer provided instruction. Finally, total 

RNA was eluted in 30 µL of RNase-free water. For quality control, RNA concentration extracted 

from each bone isolate was determined using NanoDrop 2000 (ThermoFisher Scientific) 

followed by assessment of RNA quality using a bioanalyzer (Model 2100, Pico Kit; Agilent 

Technologies, Santa Clara, California) to generate an RNA integrity number (RIN). In order to 

maximize nucleic acid content from each patient condition, RNA from each well condition (UN, 

TRL, TRH) per patient with an RNA integrity number (RIN) number of 5.5 or greater were 
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pooled to yield 200 ng per condition and a new concentration value was determined using the 

NanoDrop. The RIN number of 5.5 was chosen due to the rarity of the human tissue and few 

samples did not meet this threshold; two non-OI and four OI bone samples had RIN values 

below 5.5 and were excluded from analysis and not pooled as they did not meet our quality 

standard for the study. The average RIN number was 8.8; pooled non-OI patient bone RIN 

values ranged from 6.3-10 and OI patient bone from 6.7-9.9. Extracted RNA was stored at -80°C 

until further processing. 

TaqMan qPCR analysis 

The expression levels of 10 genes related to the canonical and non-canonical Wnt 

signaling pathway and one endogenous control were quantified using TaqMan quantitative real-

time polymerase chain reaction (RT-qPCR) (Table 3.2). Specifically, downstream Wnt targets 

(WISP1, TWIST1), inhibitory regulators of bone formation (SOST, DKK1), markers of 

osteoblastogenesis (SP7, RUNX2), osteoblast markers (BGLAP, COL1A1), and markers of 

osteoclast differentiation and activity (OPG, RANKL) were evaluated. The panel represents a 

subset of markers in the bone remodeling cycle many of which have been identified as key 

targets for SclAb therapy in prior animal studies.[347-349, 352] Due to the rarity of the OI bone 

tissue and the size of the available harvested bone (which affected the amount of total nucleic 

acid we were able to extract), we chose to analyze only one housekeeping gene (HPRT1), which 

has documented in the literature as a stable gene across experimental conditions in human bone 

studies. [353, 354] 

  Pooled, purified RNA samples underwent reverse transcription using qScript cDNA 

SuperMix (Quanta Biosciences, Gaithersburg, MD) followed by thermocycling (C1000 Thermal 

Cycler, Bio-Rad Laboratories, Hercules, California) according to manufacturer 
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recommendations. TaqMan Gene Expression Master Mix (Applied Biosystems) was combined 

with cDNA and validated TaqMan primer (Applied Biosystems, Foster City, California) and 

loaded into a 96-well microfluidic array card (Applied Biosystems, Foster City, California). Each 

array card permitted for two patients’ (one OI, one non-OI) samples (UN, TRL, TRH, each) and 

five primers plus the housekeeping primer simultaneously with twelve array cards in total 

evaluated. All reactions were run in duplicate and a no-template control and no-reverse 

transcription control were utilized. Array cards were centrifuged at 4°C (Legend XTR (with 

custom TaqMan array card bucket); Sorvall, Waltham, Massachusetts), sealed and ran in 

accordance to recommendations from the manufacturer. 

  Amplification plots were generated and expression of SOST, DKK1, COL1A1, BGLAP, 

OPG, RANKL, RUNX2, TWIST1, WISP1, and the housekeeping gene (HPRT1) were quantified. 

For cellular untreated analysis to understand phenotypic expression levels and treatment 

response analysis, baseline and threshold settings were adjusted to obtain an accurate threshold 

cycle (CT) that was standard across all patients (OI 1-7 and non-OI 1-5) and conditions (UN, 

TRL, TRH) per each individual gene of interest. Comparative CT method (ΔΔCT) was used to 

calculate fold change expression levels by normalizing data to endogenous HPRT1 by averaging 

the duplicates of the gene of interest and the duplicate of the housekeeping gene for each patient 

per condition.[355] Experiments in which duplicate reactions deviated by four or more cycles 

(CT) were deemed a failed reaction due to technical error and thus excluded. 

The individual OI patient UN condition was normalized to the average non-OI UN 

condition (control) to quantify variability in untreated gene expression and describe genotypic 

variability present among OI patients irrespective of OI clinical phenotype. We then quantified 

the individual patient response to SclAb by normalizing each individual patient’s treatment 
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condition (TRL, TRH) to that patient’s untreated condition to assess treatment response variation 

among individual patient tissue. Next, we evaluated the response to SclAb by clinical phenotype 

by averaging the treatment condition (TRL, TRH) normalized to the average untreated condition 

within each OI type (Type III, Type III/IV, Type IV). Finally we normalized each mean 

treatment condition (TRL, TRH) within OI type to the mean untreated non-OI control allowing 

observations on whether SclAb treatment returned gene expression to non-OI untreated control 

levels. 

Statistical analysis 

All data were analyzed using GraphPad Prism v7 (GraphPad Software, La Jolla, 

California). Gene expression results are shown as mean ± standard error of the mean (SEM). 

Differences in individual OI untreated gene expression, individual OI treatment response and 

mean treatment response within OI type were statistically evaluated via a paired t-test using the 

respective ΔCT values as described in detail by Yuan et al. [356] A two-way ANOVA (non-

repeated measures) with patient type (OI Type III, OI Type III/IV, OI Type IV or Non-OI) and 

treatment (UN, TRL, TRH) as factors was used to determine differences in treatment response to 

SclAb by patient group. Follow-up Dunnett’s post-hoc analysis was used where appropriate in 

order to compare average OI patient condition outcomes back to the average non-OI untreated 

controls. TaqMan probes have validated amplification specificity, sensitivity and efficiency; as 

such fold changes from the TaqMan assays (up or down) of 1.5 or greater that were identified as 

being statistically significant (p < 0.05) via paired t-test or two-way ANOVA met our criteria for 

denoting differences in gene expression levels. [357] 

Results 

  Bone samples harvested from OI patients were of cortical and trabecular origin, while 

harvested non-OI bone, derived from tibial reamings during anterior cruciate ligament (ACL) 
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reconstruction, were morselized (Figure 3.2).Patient bone yield varied, ranging from 5-14 usable 

samples; patients with lower sample yield ultimately resulted in lower nucleic acid concentration 

which did not allow the evaluation of all conditions and/or all genes of interest. For these 

patients, an abbreviated panel of genes were evaluated or the TRL condition was omitted. When 

a gene or condition was omitted, missing fold-change values were denoted herein by 

“insufficient nucleic acid content” in the figures where appropriate. 

Untreated gene expression was heterogeneous among OI patients 

Untreated expression levels for all ten genes in each individual OI patient normalized to 

the average untreated non-OI control condition was conducted to understand genotypic 

variability among OI patients. Untreated expression varied among the OI patients regardless of 

bone morphological or Sillence type Figure 3.3. OI bone generally demonstrated lower 

expression of downstream Wnt targets (WISP1, TWIST1). Inhibitory regulators (SOST and 

DKK1) were variable between OI. SOST expression for patient OI1 was significantly greater 

compared to non-OI controls (+5.54 fold difference). Osteoblast marker genes (SP7, RUNX2) 

and osteoblast progenitor marker genes (BLGAP, COL1A1) were heterogeneous among OI 

patients and were generally expressed below non-OI levels with some exceptions. Patient OI5 

(Type III/IV OI) demonstrated both high levels of inhibitory regulator DKK1 and osteoclast 

precursor RANKL and high expression levels of osteoblast and progenitor (SP7, BGLAP) 

markers well above both non-OI controls and OI patients. 

Individual OI patient response to SclAb varied in magnitude 

Individual patient response to SclAb was evaluated using a low and high dose to 

understand response variability among patients. Differences in treatment response among OI 

patients can be appreciated in Figure 3.4 where significance within each patient between 
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conditions (UN, TRL, TRH) is denoted by stars and brackets. SclAb induced an upregulation in 

downstream Wnt targets (WISP1, TWIST1) and an upregulation (compensatory response) in 

inhibitory regulators (SOST, DKK1). The greatest magnitude of upregulation was observed in 

treated OI cortical-derived bone tissue (OI2, OI3, OI6) for these targets. A bone-forming 

response to treatment observed by an upregulation of osteoblast activity was observed in nearly 

all OI patient samples regardless of bone type (trabecular, cortical) or OI Type (III, III/IV). For 

SP7, treatment response was improved (through a greater upregulation) using the TRH dose 

compared to the TRL. For RUNX2, BGLAP and COL1A1, a dose dependent effect was less 

pronounced among OI patients in these osteoblast-related genes.   

Response to treatment appeared related to untreated gene expression levels 

Patient’s untreated gene expression appears to influence the magnitude of response to 

SclAb treatment, specifically for osteoblast and osteoblast progenitor genes COL1A1, RUNX2, 

SP7 and BGLAP (Figure 3.5). Data suggests that patients with the highest untreated osteoblast 

expression were least responsive to the acute SclAb treatment. This can be appreciated in the 

case of patient OI2 with high untreated expression of SP7 (Figure 3.3) and down regulation 

(TRL) and nominal upregulation (TRH) with SclAb treatment (Figure 3.4). A similar observation 

was made in patient OI5 for BGLAP and patient OI1 for RUNX2 and COL1A1 genes (Figure 3.3 

and Figure 3.4). The converse was true; patients with low untreated expression were the most 

responsive in bone formation markers to SclAb treatment (Figure 3.5). This can be appreciated in 

patients OI3, OI6 and OI7 who had the lowest untreated expression of SP7 (Figure 3.3) and the 

greatest magnitude of upregulation with SclAb treatment (Figure 3.4). This observation was true 

regardless of dose for patient OI3 and OI6 and for low dose (TRL) for OI7. Similar observations 

were made for patient OI7 for genes RUNX2, BGLAP, COL1A1 and for patient OI5 for RUNX2 
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and COL1A1 (Figure 3.3 and Figure 3.5). Further, individual patients with low untreated 

expression of downstream Wnt target TWIST1 and inhibitory regulators DKK1 and SOST relative 

to the untreated average non-OI controls demonstrated the largest magnitude of upregulation 

following SclAb treatment. The increased compensatory response with of inhibitory regulators 

DKK1 and SOST with treatment in patients OI3 and OI6 correlated with low untreated 

expression of these targets (untreated expression Figure 3.3, treatment response Figure 

3.4).Conversely, high untreated expression for these same genes demonstrated a moderate-to-low 

treatment response with SclAb (patient OI5, Figure 3.3 and Figure 3.4) compared to other OI 

patients with more moderate-to-low untreated expression levels. 

Response to SclAb was also differential by patient’s clinical Sillence type classification 

Next, mean SclAb treatment response was stratified by the patient’s clinical Sillence 

classification by averaging the gene expression data from OI Type III, OI Type III/IV and OI 

Type IV patients, respectively (Figure 3.6). Gene expression response to SclAb was 

heterogeneous among clinical OI phenotypes. OI Type III patients demonstrated a greater 

upregulation in TWIST1, BGLAP and RUNX2 with treatment while OI Type III/IV had a greater 

magnitude of upregulation for WISP1, SOST and COL1A1. OI Type IV patients demonstrated the 

greatest upregulation in DKK1, SP7 and a comparable response in BGLAP for OI Type III 

patients. There was no statistical significance reached in gene expression response within OI 

type. 

Results from two-way ANOVA (non-repeated measures) and follow-up Dunnett’s post-

hoc testing for each gene of interest comparing average treatment condition (UN, TRL, TRH) 

within patient OI type (Type III, Type IV, or Non-OI) normalized to average non-OI untreated 

condition can be appreciated in  Figure 3.7A-B. Results revealed a significant effect of patient 
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type for downstream Wnt target TWIST1, inhibitory regulators SOST and DKK1 and 

osteoblastogenesis marker RUNX2. Additionally, a significant effect of treatment and a 

significant interaction between treatment and OI patient type was observed for SOST (Figure 

3.7A). OI Type III patients were the only patent conditions which differed significantly from the 

non-OI untreated controls following SclAb treatment (Figure 3.7B). Specifically, following 

treatment OI Type III patients had a significantly greater upregulation in TWIST1 (TRL and 

TRH), SOST, (TRL and TRH), and DKK1 (TRL) above non-OI untreated control levels. 

Following acute SclAb treatment, osteoblast and osteoblast precursor markers of SP7, RUNX2, 

BGLAP and COL1A1 were upregulated to- or above non-OI untreated control levels in patients 

with type III OI. 

In vivo treatment confirmed a bone forming response to SclAb 

The subset of OI bone tissue from patients OI3, OI4 and OI6 implanted into our 

xenograft model demonstrated increases in µCT measures of percent change bone surface (BS) 

following SclAb treatment at 2 (OI3, OI4, OI6) and 4 weeks (OI4) (Figure 3.8A). Two week 

treated implants demonstrated the most robust increase in bone surface (+ 29%) followed by four 

weeks of treatment which increased on average by +12%. Untreated implants demonstrated a 

mean -3% decrease in BS following the implantation duration at two weeks and a slight increase 

(+10%) following untreated implantation at four weeks. Histomorphometry corroborated µCT 

findings. Implants following two and four weeks of treatment demonstrated robust calcein and 

alizarin fluorochrome labeling compared to the untreated implants which had minimal non-

specific calcein labeling only (Figure 3.8B).  

Discussion 

  In this study we explored the impact of genotypic patient diversity to bone-forming 

SclAb in native OI patient bone cells within their native extracellular environment using a panel 
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of 10 key Wnt-related bone targets. Gene expression was heterogeneous across untreated 

conditions both between and within the patient’s phenotypical clinical classification. Acute 

SclAb treatment induced upregulation of osteoblast activity in nearly all OI patients regardless of 

bone origin (trabecular, cortical) or OI Type (III, III/IV, or IV) but varied in magnitude. When 

the average condition response by OI type was normalized to the average non-OI untreated 

controls, SclAb upregulated osteoblast marker and progenitor genes in OI Type III patients to- or 

above non-OI untreated control levels. Acute inhibition of sclerostin induced an upregulation of 

inhibitory regulators (SOST, DKK1) similar to prior reports in animal models treated with SclAb. 

The patient’s untreated gene expression appeared to influence the magnitude of response to 

SclAb treatment, specifically for osteoblast and osteoblast progenitor genes COL1A1, RUNX2, 

SP7 and BGLAP. We observed that OI patients with low untreated expression of a gene targeted 

by SclAb generally demonstrated a greater magnitude of response (upregulation) with treatment. 

Conversely, patients with higher untreated gene expression elicited moderate to minimal 

upregulation with sclerostin inhibition. Gene expression at the time of treatment may provide 

new insights in predicting treatment response and guide clinical decision making in OI. 

Our findings in human pediatric OI tissue share similarities with studies monitoring gene 

expression treatment response to SclAb in animal models of bone loss. Nioi et al. evaluated 

expression changes in 84 confirmed canonical Wnt target genes in OVX rats treated with SclAb 

and reported significant upregulation in a focused set of Wnt targets: Wisp1, Twist1, Bglap, Gja1 

and Mmp2. The authors reported the most consistent SclAb treatment response was observed in 

the Wisp/Twist cluster. [349] In our work, SclAb induced an upregulation of WISP1 and TWIST1 

with the strongest response in OI Type III patients and patients demonstrating low untreated 

expression in the WISP/TWIST cluster. WISP1 and TWIST1 hold important roles in modulating 
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osteogenesis and cell function. WISP1 has been described to act as a negative regulator of 

osteoclastogenesis and its upregulation following SclAb treatment may point to its proposed anti-

resorptive effects. [358] While TWIST1’s function is not as well defined, the gene is thought to 

serve as a negative regulator of RUNX2 and an upregulation in TWIST1 is suggestive of RUNX2 

inhibition (a marker of bone formation). [359] Supporting TWIST1’s proposed role, Patient OI1 

demonstrated a large upregulation in TWIST1 and a concurrent downregulation of RUNX2 with 

treatment (Figure 3.4). It has additionally been proposed that TWIST1 may be responsible for the 

inhibition of osteoblast apoptosis by suppressing TNF-α but TNF-α was not quantified in the 

present study. [360] 

SclAb stimulates a rapid increase in bone formation in preclinical models [15, 17, 361, 

362] and increases markers of bone formation, increases BMD, [12] decreases vertebral fracture 

risk [13] and increases trabecular and cortical bone mass [11] in patients with low bone mass. 

Nioi et al. observed that Bglap and Col1a1 were significantly upregulated in osteoblast lineage 

cells following one dose of SclAb in an OVX rat model, indicating that the bone forming 

response at the gene level can be both acute and robust. [349] In our short-term treatment scheme 

using human bone isolates, our results are supportive of Nioi et al. and others where we observed 

that SclAb treatment elicited an early bone-forming response through upregulation of COL1A1 

and BGLAP in nearly all treated OI patient tissue. [349, 352, 363] This upregulation following 

short-term treatment reflects initial stages of bone anabolism consistent with an eventual increase 

in osteoblast differentiation. Taken together with the WISP1 upregulation, a negative regulator of 

osteoclastogenesis, our results in human tissue suggest an increase in bone forming activity and 

evidence of a concurrent decrease in resorptive activity. We observed an upregulation in RANKL 

(albeit slight) and down regulation in OPG. These results align with Stolina et al. where no 
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changes in Rankl or Opg were observed following SclAb treatment in aged OVX rats. [350] 

However, Stolina et al. evaluated Rankl and Opg expression following long-term treatment, not 

short-term as in the present study, where treatment-induced bone forming gains may have begun 

to attenuate as previously described. [361, 364, 365] Alternatively, it is possible that the 

inconsistent results in our in vitro model compared to animal models treated with SclAb may be 

due in part to the unloaded condition experienced during culture which may have led to RANKL 

upregulation.[366] We acknowledge, however, that the OI condition may also mirror disuse. 

Future studies could evaluate the in vitro treatment response in human OI tissue under in vitro 

loading conditions in order to induce mechanotransduction in the bone to determine the impact 

on RANKL and OPG. [367] 

  Following long-term SclAb treatment, bone formation begins to attenuate or decrease, 

suggesting a period where the bone begins to self-regulate the anabolic action. [348, 361, 363-

365] It has been proposed that the dampening effects following long-term SclAb treatment may 

be due to a large and acute upregulation in inhibitory regulators of bone formation (SOST, 

DKK1). [347] We observed a similar upregulation of SOST and DKK1 with SclAb treatment. A 

similar upregulation of a compensatory response to sclerostin inhibition has been reported in 

OVX rats and female Balb/c mice treated with SclAb. [347-350] Like our study, this 

compensatory response has been documented in the acute phase of treatment with significant 

upregulation observed following a single dose of SclAb. [347] Because SclAb acts to prevent the 

interaction of sclerostin with LRP5, not by blocking the production of sclerostin, it has been 

suggested that a signaling event may occur to increase secretion of sclerostin following the initial 

blocking of LRP5 binding. [8] This event may lead to an increase in inhibitory regulators leading 
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to the observed compensatory upregulation in SOST and DKK1 we observed in order to regulate 

the concurrent early bone-formation gains.   

  While SclAb elicited increases in osteoblast and osteoblast progenitor markers and 

increases in inhibitory regulators in our OI patient tissue, the magnitude of this response varied 

across patients. Variability in treatment response has been observed clinically with no clear 

causation documented and no metric to predict which patients will positively respond to a 

therapy and which patient will require a completely different treatment approach to mitigate the 

effects of the disease. OI type, phenotypic severity and age provide valuable guides when 

determining a treatment plan but identification of factors that contribute to differential treatment 

response would be advantageous. For example, following two years of Pamidronate treatment in 

children with Type III and Type IV OI, Zacharin et al. reported no statistical correlation in age, 

phenotypic severity, or predicted collagen mutation on treatment response. [70] While nearly all 

patients in the study demonstrated improvements in BMD, magnitude of BMD gains differed 

between and within patients of the same OI type. We demonstrated that SclAb response 

statistically differed between OI Type (III, IV, III/IV) in key inhibitory genes (SOST, DKK1, 

TWIST1) and for osteoblast markers (RUNX2). Specifically, patients with OI Type III, 

considered the most severe form of children who survive through the neonatal period, 

demonstrated the greatest upregulation in these markers with treatment. It is understood that 

severity of the disease can vary within OI type. When treatment response was evaluated between 

individual patients, the magnitude of response differed within patients of the same OI 

classification suggesting factors beyond phenotype may be responsible for differential treatment 

response.  
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  We postulate that the patient’s genetic expression/cellular phenotype at the onset of 

treatment may hold valuable, predictive information regarding treatment response. When 

normalized to the average non-OI untreated control, we observed a differential expression in all 

genes evaluated among the seven OI patients. This variability in the untreated condition was 

present irrespective of OI type or bone origin. Interestingly, when OI patient tissue was treated 

with SclAb, untreated expression of bone formation markers appeared to impact the magnitude 

of response during our short-term treatment in vitro. Bone with the lowest relative untreated 

expression of osteoblast and osteoblast precursor markers SP7, RUNX2, COL1A1 and BGLAP 

were particularly impacted demonstrating the greatest upregulation following treatment. The 

converse was true; patients with a high relative untreated expression of these markers, indicative 

of a bone forming response, were only moderately upregulated when treated with SclAb. From 

our results, we postulate that there is an upper limit for eliciting an early/rapid bone response 

with SclAb which is perhaps attributable to 1) the amount of available mesenchymal stem cells 

(MSCs) and quiescent bone lining cells [363, 368, 369] and 2) the available bone surface area for 

which osteoblasts can differentiate. We can reason that patients with high expression levels of 

osteoblast markers and osteoblast progenitors have “little room” for further formation where 

further minimal upregulation was observed. Second, there is a finite bone surface area in which 

SclAb can induce bone formation (without the use of co-treatment of bisphosphonate, for 

example [370, 371] and perhaps a maximization of bone forming surfaces in the sample had 

already occurred, further limiting bone response. Supportive of this reasoning, trabecular-derived 

bone (which inherently contains a greater MSC population and has more surface area compared 

to cortical-implants) demonstrated a greater capacity for acute response (upregulation in 

osteoblast markers and precursors) and demonstrated the greatest increase in µCT-derived bone 
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surface when treated in our xenograft pilot. Future work should further evaluate these potential 

factors and their role in determining the magnitude of treatment response.  

  The in vitro environment provides a safe and reductionist method to evaluate human 

tissue response to SclAb but the environment is limited in both biokinetic and metabolic factors 

inherent to the in vivo environment. Through a proof of concept pilot, we extended treatment to 

human bone from three OI patients in vivo using a xenograft model to evaluate the bone forming 

response to SclAb in an environment that more closely recapitulates the patient environment. We 

implanted both cortical-derived (patient OI3 and OI6) and trabecular-derived tissue (OI4) and 

observed a greater magnitude of response to SclAb in trabecular-derived implants following two 

weeks of treatment in both µCT and histomorphometry outcomes. For patient OI4, trabecular-

derived implants, this response appeared to attenuate following four weeks of treatment where 

µCT changes measured from pre- to post- treatment decreased in magnitude compared to the two 

week treated implants from the same patient. Because of the limited bone tissue we received 

from patients OI3 and OI6, we did not allocate tissue to the four week treated time point (instead, 

using the tissue for in vitro analysis), so we did not evaluate treatment response in the cortical 

implants at four weeks. Prior evaluation of this xenograft model in our lab demonstrates that 

cortical-derived bone with minimal human marrow cells at the time of implantation requires 

longer implantation duration to elicit a bone-forming response (data not shown). When the 

parallel cortical-derived bone tissue from patient’s OI3 and OI6 were treated acutely in vitro, we 

did observe an upregulation in osteoblast markers (particularly SP7) and an upregulation 

(compensatory response) in inhibitory regulators SOST and DKK1 indicating a treatment 

response. We believe the in vivo treatment duration for these cortical-derived implants may have 

been too short (two weeks) to induce an analogous gene expression response to what was 
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observed in vitro in this cortical bone tissue. Future analysis using the proposed xenograft model 

should evaluate gene expression response analogous to the panel reported in the present study to 

determine the effects of SclAb in the host-derived microenvironment in comparison to the in 

vitro response. 

Conclusions 

  Using solid tissue isolates from human OI bone patients culture in vitro, SclAb activates 

downstream Wnt targets of WISP1 and TWIST1 and induces a compensatory response in SOST 

and DKK1 expression, consistent with pre-clinical studies of ovariectomized rats and SOST and 

DKK1 in female Balb/c mice. In all patient samples, a bone-forming response to treatment was 

observed but the magnitude of this response was variable. While OI type and bone origin 

(cortical, trabecular) were influential in response, the level of untreated gene expression appeared 

to greatly influence the magnitude of response to SclAb in native human OI bone tissue. Clinical 

heterogeneity is a hallmark of OI; understanding a patient’s genetic, cellular and morphological 

bone phenotype may play a crucial role in predicting treatment response and could help guide 

clinical decision making. 
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Figures 

 

Figure 3.1: Study schematic.  

A) Cortical and trabecular bone samples (~2 mm3) from osteogenesis imperfecta (OI) patients and 

morselized bone samples from non-OI control patients typically discarded as surgical waste during 

corrective orthopaedic procedures were collected to media and randomly assigned: untreated (UN), low-

dose SclAb (TRL, 2.5 µg/mL), or high-dose SclAb (TRH, 25 µg/mL) group and maintained in culture 

(37ºC). Treatment occurred on day 2 and 4 and samples were removed on day 5 for RNA extraction. One 

bone sample per patient was formalin-fixed upon harvest for baseline hematoxylin and eosin (H&E). B) A 

subset of OI bone tissue (14 samples from 3 OI patients) was immediately implanted subcutaneously on 

the dorsal surface (~2 mm3 in size) of an athymic mouse representing our xenograft model. Implanted 

mice were randomly assigned to an UN or high dose (TRH, 25 µg/kg) group for 2 or 4 weeks where 

SclAb treatment was administered via subcutaneous injection 2 times a week. All mice received calcein 

and alizarin fluorochrome injections 7 and 1 day prior to sacrifice, respectively. Mice were imaged via 

µCT 24 hours after implantation and immediately following sacrifice. Following imaging, implanted OI 

bone tissue was removed from the host and plastic processed for dynamic histomorphometry analysis. 
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Figure 3.2: Patient donor bone tissue morphology for OI and non-OI patients evaluated using 

hematoxylin and eosin (H&E).  

For the OI patients, tissue ranged from cortical (OI 2, OI 3, OI 6) and trabecular (OI 1, OI 4, OI 5, OI 7) 

bone tissue. In all cases, non-OI control bone tissue (bottom) was morselized due to the method it was 

removed during anterior cruciate ligament (ACL) reconstruction tibial tunnel placement (non-OI 1-5). 

Colored boxes surrounding OI patient samples correspond to subsequent figures depicting fold-change 

gene expression. Images were acquired at 20x. Scale bar= 500 µm. 
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Figure 3.3: Untreated gene expression was heterogeneous across osteogenesis imperfecta (OI) 

patients.  

Quantification of fold-differences in the untreated expression of 10 genes of interest for each OI patient 

(n=7) normalized to the average untreated non-OI control patients (n=5) corrected by HPRT1. Height of 

bars represents fold-change derived from mean technical replicates and error bars represent standard error 

of the mean (SEM) derived from technical replicates of three pooled bone samples for the untreated 

condition for each OI patient. Untreated non-OI (black bar) is the average of these data from 5 patients. 

OI patients are organized by cortical-like bone samples (right, blue) and trabecular-like bone samples 

(left, green). [*] and brackets denote significant differences in OI expression compared to untreated 

controls at p≤0.05. Missing data due to insufficient nucleic acid content (NA) is indicated. UN= 

untreated; CORT=cortical-like samples; TRAB=trabecular-like samples. 
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Figure 3.4: Response to SclAb varied in magnitude among individual osteogenesis imperfecta (OI) 

patients.  

Quantification of fold-change expression of 10 genes of interest due to low (TRL) and high (TRH) dose 

SclAb treatment in vitro. Each OI patient’s treated conditions were normalized to the individual patient’s 

untreated condition, corrected by HPRT1. Height of bars represents relative fold-change derived from 

mean technical replicates and error bars represent standard error of the means (SEM) from technical 

replicates of three pooled bone samples for each condition (UN, TRL, TRH) for each OI patient (n=7). 

Data is organized by cortical-like patient samples (right, blue; OI 2, OI 3, OI 6) and trabecular-like patient 

samples (left, green; OI 1, OI 4, OI 5, OI 7). [*] and brackets denote significance within each patient due 

to treatment at p ≤ 0.05. Missing data due to insufficient nucleic acid (NA) content is indicated. 

UN=untreated; TRL=low dose treatment; TRH=high dose treatment; CORT=cortical-like samples; 

TRAB=trabecular-like samples. 
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Figure 3.5: Untreated gene expression levels appear to impact magnitude of response to SclAb 

treatment. 

SclAb treated fold change for 10 genes of interest plotted against the individual patient’s untreated fold 

change by dose (treated low dose, TRL; treated high dose, TRH). In particular, magnitude of treatment 

response of osteoblast markers and precursors COL1A1, RUNX2, SP7 and BGLAP appeared to be 

impacted by the OI patient’s relative untreated expression of the osteoblast related genes. SclAb treated 

OI patient bone that demonstrated a large magnitude of upregulation generally presented with low 

untreated expression. Conversely, patient bone that demonstrated little to no upregulation in osteoblast 

markers with SclAb treatment change due to treatment generally demonstrated high relative untreated 

expression of the gene of interest. Data represents treatment fold-change relative to the individual 

patient’s untreated condition (y-axis) plotted against the individual patient’s untreated fold-change 
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relative to the average non-OI control patients (x-axis). Specifically, each data point on the y-axis 

represents individual OI-patient SclAb treated bone sample (TRL=red stars; TRH=grey diamonds) fold-

change derived from technical replicates of three pooled condition bone samples normalized to the 

individual patient’s untreated condition. X-axis is the individual patient’s untreated fold-change condition 

normalized to the average non-OI untreated controls. TRL=treated low dose; TRH=treated high dose; 

UN=untreated; ave=average. 
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Figure 3.6: Response to SclAb was differential by patient’s clinical phenotype classification.  

Average fold-change expression of 10 genes of interest due to low (TRL) and high (TRH) dose SclAb 

treatment by patient’s OI Sillence type clinical classification. Multiple bone tissue samples were 

harvested from patients clinically classified by physical examination and genetic testing as either Type III 

(n=2), Type III/IV (n=4) or Type IV (n=1). Average treated conditions for each OI type were normalized 

to average untreated condition for that OI type, corrected by HPRT1. For example, average TRL for all 

OI Type III patients were normalized to the average OI Type III untreated (UN) condition. Height of bars 

represents relative fold-change derived from combined mean technical replicates for all patients of that OI 

Type (each patient’s technical replicates were averaged over condition) and error bars represent standard 

error of the means (SEM) from averaged technical replicates which were derived from three pooled bone 

samples for each condition (UN, TRL, TRH) for each OI patient combined by OI type. Horizontal dotted 
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line represents 1, or the normalized untreated condition and average treatment response (TRL and TRH) 

are plotted. Black circles represent individual OI patient fold change for each condition and correspond to 

results presented in Figure 3.4. Black circles indicate variability in treatment response to acute SclAb 

present within bone tissue obtained from patients of the same clinical OI classification. No significance 

was observed between UN, TRL and TRH conditions within OI type but difference in magnitude of 

treatment response by either increase or decrease in mean fold change gene expression can be appreciated 

between OI type. 
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Figure 3.7: Acute SclAb treatment upregulated osteoblast related genes in OI Type III patients to- 

or above non-OI untreated control levels. 

A) Two-way non-repeated measures ANOVA results for each gene of interest comparing average 

treatment condition (UN, TRL, TRH) within OI type (Type III, Type III/IV, Type IV) normalized to 

average non-OI untreated control condition. Treatment and patient type served as factors and table values 

are bolded when significance was reached. B) Quantification of fold-change expression levels of 10 genes 

of interest for average OI Type III, average OI Type III/IV, and average OI Type IV patients in their 

untreated (UN) and SclAb treated low (TRL) and high (TRH) conditions. The average OI patient 

conditions were normalized to the average non-OI untreated condition, corrected by HPRT1, in order to 

create a common scale for the three OI patient populations. Height of bars represents relative fold-change 

derived from the average of each patients conditional (UN, TRL, TRH) mean technical replicates and 

error bars represent standard error of the means (SEM) from these technical replicates of three pooled 

bone samples from each condition, for each patient. Data is organized by OI Type III patients (left, 

horizontal stripes) and OI Type IV patients (right, diagonal stripes). [*] and brackets denote significant 

difference from the non-OI untreated control using a Dunnett’s post-hoc test at p ≤ 0.05. 
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Figure 3.8: In vivo SclAb treatment confirmed a bone forming response.  

Additional cortical-derived bone tissue from patient OI3 and OI6 and trabecular-derived bone tissue from 

patient OI4 were implanted subcutaneously into an athymic mouse representing our xenograft model 

system. A) OI implants treated with SclAb demonstrated increases in bone surface (BS) measured as a 

percent change from pre- to post- in vivo µCT following two weeks compared to untreated OI implants. 

The treatment response in these trabecular-derived implants began to attenuate following four weeks of 

SclAb treatment. B) Histomorphometry corroborated treatment-induced increases in BS at two weeks 

(bottom panel) demonstrating robust calcein (green) and alizarin (red) fluorochrome labeling (white 

arrows) compared to the untreated two week implants which had minimal non-specific calcein labeling 

only (yellow arrow). Fluorescent images acquired at 20x. Scale bar= 100 µm. 

  



 88 

Tables 

Table 3.1: Patient demographics and bone sample type. 
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Table 3.2: Target genes for qPCR analysis. 
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Chapter 4 A Xenograft Model to Evaluate the Bone Forming Effects of Sclerostin Antibody 

in Human Bone Derived from Pediatric Osteogenesis Imperfecta Patients 

 

Introduction 

Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia characterized 

by low bone mass and poor bone quality with increased pathological fracture risk presenting 

most severely in childhood. OI occurs equally in males and females with an overall incidence of 

~1:10,000-20,000 births. [1] The disease can be classified into 18 genetically unique types 

differing in modes of inheritance (dominant or recessive) and severity both within and between 

type. [3, 336] The hallmark genetic heterogeneity of OI may not only contribute to its growing 

variable clinical classifications but may also impact patient response to treatment.  

The goal of OI treatment is to reduce fracture risk and increase bone mass and density. 

Numerous treatment options for OI have been proposed with inconsistent treatment response 

across patients where efficacy appears to be based, in part, on the underlying disease pathology 

[70, 77, 81, 82, 372]. Bisphosphonates, a class of drugs which reduce osteoclastic activity, 

represent the predominant treatment strategy over the past decade for OI, [5] yet bisphosphonates 

only partially correct the bone phenotype. [6, 7] The advent of monoclonal sclerostin antibody 

(SclAb) has gained interest as a bone-forming therapeutic suggesting a different treatment 

strategy through inhibition of endogenous sclerostin, a negative regulator of bone formation. [8] 

Clinical trials of SclAb have led to positive increases in bone quality and mechanical strength in 

post-menopausal osteoporosis [10-12, 84-86] and results are corroborated in OI animal models 

supportive of its use in OI. [15-20] In a phase II clinical trial in adults with a moderate phenotype 
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of OI, SclAb stimulated markers of bone formation, reduced bone resorption and increased 

lumbar spine areal bone mineral density (aBMD), [21] yet results in pediatric OI patients across 

all types and severity remains unknown. 

Clinical trials in the pediatric OI population are especially challenging due to low patient 

number and high disease variability coupled with a desire for treatment-naïve individuals. [22] 

As such there is wide-use and reliance on genetically modified mouse models to understand the 

impact of emerging bone therapeutics, yet a mouse model does not exist to mimic each unique 

OI mutation. Furthermore, studies have revealed divergent phenotypes in patients with identical, 

or near-identical genetic mutations. [4] Specifically for SclAb, varying magnitude of positive 

bone-forming response to therapy has been reported pre-clinically between mild, moderate, and 

severe phenotypic murine models of OI suggesting the impact of genotypic and phenotypic 

variability [15, 18-20] including baseline fragility, [20] pre-existing trabecular phenotype, [370] 

or other yet undescribed mechanisms, on treatment response. As new antiresorptive and anabolic 

agents are being investigated, the efficacy of these drugs within- and across all OI types and 

patients in the pediatric population should be better understood prior to clinical extension. 

Based on these limitations, there exists a need for a model which represents the inherent 

phenotypic tissue-level, cellular and genetic variability of OI to safely evaluate emerging 

therapeutics prior to clinical extension. Human xenograft models in the form of 

heterotransplantation of human immortalized cancer cell lines into immunodeficient mice were 

first documented by Isaacson and Cattanach in 1962 and have continually been employed with 

success over the past five decades. [373] The advent of patient-derived xenograft systems 

represents a bench-to-bedside approach in cancer research to generate more clinically relevant 

preclinical models. Solid tumor isolates can be surgically harvested from the patient and 
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subcutaneous implanted into the nude mouse to explore treatment in humanized tumors thus 

more closely recapitulating human disease. [374, 375] The use of solid tissue isolates has been 

extrapolated to bone where McCauley and colleagues evaluated the effects of anabolic 

intermittent parathyroid hormone (iPTH) on implanted neonate mouse tissue drawing on the 

interaction of host-derived osteoclasts and donor-derived osteoblasts in the model. [376, 377] 

Together, these earlier works motivate the exploration of a similar transplantation model to 

evaluate therapeutic interventions in OI. Here, we describe a patient-derived xenograft approach 

as an alternative to genetically modified OI mouse models through the procurement of pediatric 

OI bone tissue that is implanted directly into a biologically rich host-derived microenvironment 

where we can evaluate treatment efficacy of a bone-forming therapeutic in its target tissue. 

Materials and Methods 

Study design 

Eight pediatric OI patients undergoing corrective orthopaedic surgery (osteotomy, open 

reduction-internal fixation, rodding, fracture intervention, implant exchange) and three age-

matched non-OI patients with unaffected collagen status undergoing anterior cruciate ligament 

(ACL) reconstructive surgery provided informed consent for this Internal Review Board 

approved study (Table 4.1). These orthopaedic procedures yield bone fragments typically 

discarded as surgical waste which were collected at surgery (OI n=8/ non-OI n=3), immediately 

transferred to media (αMEM/10% fetal bovine serum) on ice and trimmed to roughly 3 mm3. 

Samples were implanted subcutaneously (s.c.) on the dorsal surface of a 4-6 week athymic 

mouse (Foxnnu [002019]; The Jackson Laboratory, Bar Harbor, ME, USA) through a 1 cm 

posterior incision adjacent to the spinal column (Figure 4.1). Each mouse received up to three 

implants depending on patient yield with one non-implanted sample per patient fixed (10% 

neutral buffered formalin (NBF)) for baseline analysis. In total, 67 mice were implanted with 84 
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samples and 14 additional samples were fixed for baseline analysis. Donor OI bone tissue was 

either trabecular-like or cortical-like in morphology while healthy non-OI tissue always 

originated from tibial reamings and was received as morselized pieces approximately 1-2 mm3 in 

size and implanted as a “conglomerate” of the smaller morselized pieces. Due to the nature of the 

OI procedures and how the bone samples were procured, we had no control over selection of 

anatomical site and bone type. Two mice implanted with one bone sample each died before the 

end of the implantation period due to formation of a bulbourethral gland cyst which was strain-

dependent and unrelated to treatment, and one implant fell out from the surgical incision site 

before the end of the implantation period and thus were excluded from analysis. All experimental 

animal procedures were approved by the University of Michigan Committee for the Use and 

Care of Animals. 

 Bone was randomly divided for this three-stage study. In the first stage, implanted mice 

were randomly assigned to 1, 2, 4 and 12 week untreated groups to evaluate donor implant 

viability in the host during short and long-term implantation durations. Second, additional 

implanted mice were assigned to 2 and 4 week untreated and treated groups used to assess the 

bone-forming effects of SclAb treatment in the human explants. Mice received SclAb (SclAb VI, 

Amgen , Thousand Oaks, CA, USA 25 mg/kg s.c. 2QW) beginning one day following 

implantation for 2 or 4 weeks and compared to 2 and 4 week untreated controls. All mice 

received calcein (30 mg/kg, intraperitoneal (i.p.) injection), administered seven days before 

sacrifice and alizarin (30 mg/kg, i.p.) administered one day prior to sacrifice, to follow new bone 

formation. At sacrifice, implanted human bone and mouse right femora (RF) were dissected free 

of soft tissue and fixed overnight (10% NBF), rinsed for 10 minutes in dH2O and placed in 70% 

ethanol at 4°C for in preparation for tissue processing. Implants and RF were divided for 
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immunohistochemical and histological analysis (paraffin processed) or histomorphometry 

(plastic processed). The mouse (host) RF served as an internal control for all subsequent analyses 

described below. 

 To confirm efficacy of drug delivery to the implanted human bone at the initiation of 

treatment on day one following implantation, one mouse received calcein (30 mg/kg) and SclAb 

(25 mg/kg) s.c. 24 hours post-implantation. The mouse was euthanized 24 hours following the 

calcein and SclAb injections (48 hours post-implantation) and the human bone implant was 

prepared for non-decalcified fluorescence histology. 

 Finally, to provide information on the effects of bone tissue storage for the third stage of 

the study, tissue from two additional OI patients were collected to media and immediately stored 

at 4°C with one sample from each patient fixed immediately for baseline analysis. At five time 

points during a 48 hour period, bone fragments were removed from media and fixed to evaluate 

donor bone cell survival following storage. 

Tissue preparation 

Bone samples prepared for paraffin processing were decalcified in 10% 

ethylenediaminetetracetic acid (EDTA) with constant shaking for 15-20 days and complete 

decalcification was ensured by Faxitron imaging. Bone tissue was paraffin processed (Leica ASP 

300 paraffin tissue processor), embedded and cut into 5 µm thick sections (Leica RM2255 

microtome). 

A subset of undecalcified bone samples and mouse RF were prepared for plastic 

processing using a Leica ASP300 tissue processor and placed in a series of methyl methacrylate 

(MMA) and dibutyl phthalate with progressively higher concentrations of benzoyl 

peroxide. Samples were manually embedded in partially polymerized polymethyl methacrylate 
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(PMMA) and allowed to cure at room temperature for up to ten days followed by hardening in a 

37° C oven overnight. Bone explants were sectioned to 5 µm thickness (Leica RM2255 fitted 

with a disposable tungsten carbide blade) and slides were placed under compression for two days 

in a 37° C oven to allow section fixation to the slide. Embedded mouse RF were sectioned 

transversely with a low-speed saw (IsoMet, Beuhler, Lake Bluff, IL), polished using progressive 

grades of silicon carbide abrasive paper (1200, 2400, and 4000 grit) followed by a felt pad with a 

¼ μm diamond slurry suspension (Struers Inc., Cleveland, OH) on the plane distal to the lateral 

third trochanter. All images were acquired using a Nikon Eclipse Ni-U microscope (Nikon 

Instruments Inc., Melville, NY).  

Micro-computed tomography (µCT) 

Bone morphology and microarchitecture of the implanted bone sample were analyzed 

using high resolution µCT (Bruker, Skyscan 1176) at two time points; a pre- scan acquired 24 

hours following implantation under anesthesia and a post- scan acquired immediately following 

euthanasia. A third ex vivo scan of the implant and RF was acquired following removal from the 

host. Ex vivo scans of the excised implant and RF were acquired on the same system by placing 

the sample of interest in a 0.5 mL or 1.5 mL tubule filled with deionized water, respectively. All 

pre- and post- images were obtained at an X-ray voltage of 75 kV and current of 333 μA and ex 

vivo at an X-ray voltage of 50 kV and 500 μA current and all acquisitions used a 0.5 mm 

aluminum filter to ensure uniform beam energy. Reconstructed scans were calibrated with the 

use of two manufacturer-provided hydroxyapatite standards at either 18 μm (pre- and post-) or 9 

μm (ex vivo) isotropic voxel size. Images were analyzed using the Skyscan CT-Analyzer 

software (CTAn, Bruker,Version 1.15.4.0).  
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For the implant, area surrounding the bone was segmented manually followed by several 

automated processes to extract only the implant from the image allowing for morphometric 3D 

analysis to be performed on the donor bone without assumptions on underlying bone structures 

of the host mouse (e.g. mouse spine, rib, sacrum). Due to the differential morphology of the 

donor bone tissue, the implant was subject to a specimen-specific threshold to obtain 

densitometry values. [378] Parameters including bone mineral density (BMD), tissue mineral 

density (TMD), bone volume fraction (BV/TV) and bone volume (BV) were quantified using 

manufacturer supplied algorithms (CTAn, Bruker, Belgium). Analysis was performed using 

percent change from pre- to post- in vivo scans for BMD (%changeBMD), TMD 

(%changeTMD), BV/TV (%changeBV/TV) and BV (%changeBV). Baseline values derived 

from pre- in vivo scans of BMD, TMD, BV/TV and BV were used to describe bone morphology 

at implantation.  

To evaluate a systemic treatment response to SclAb, host right femora were analyzed for 

femoral geometry (trabecular thickness, cortical area and cortical thickness) and volumetric 

trabecular BMD (g/cm3) by first isolating cortical and trabecular bone with fixed attenuation 

coefficient derived densitometry threshold values of 110 and 90 µ, respectively. The volumes of 

interest (VOIs) were created and assessed using an auto-segmentation method (CTAn) which 

separates cortical and trabecular bone automatically using a series of morphological and bitwise 

operations. A trabecular VOI was created proximal to the end of the distal growth plate spanning 

1 mm in the z-direction. The cortical VOI was selected at the mid diaphysis distal to the lateral 

third trochanter spanning 2 mm in the z-direction. 



 97 

Immunohistochemical analysis 

Immunohistochemistry with fluorescence (IHC-F) was used to evaluate the presence of 

human-derived bone cells through staining for human mitochondria (hMito) at baseline and upon 

removal from the host following implantation durations of 1, 4 and 12 weeks and a subset of 2 

and 4 week treated and untreated implants. Detection of host/donor contributions of sclerostin 

(SOST) and osterix (Osx) was performed using a dual IHC-F staining protocol where primary 

antigens of SOST/hMito, and on serial sections, Osx/hMito were immunolocalized. Staining of 

hMito was used in all instances to indicate donor-derived cells with the addition of SOST or Osx 

(using antibodies with validated sensitivity to both mouse and human antigens) in order to detect 

all instances of SOST and Osx expression (both mouse (host) and human (donor) derived) to 

derive host/donor relationship. 

In brief, paraffin sections were deparaffinized in xylene and rehydrated through a 

descending alcohol series. For dual stained hMito/Osx, heat-mediated antigen retrieval was 

achieved by placing slides in 0.01 mol/L sodium citrate (pH 8.0) in a steamer (Black and Decker) 

for 15 minutes and sections were cooled to room temperature. For dual stained hMito/SOST, 

antigen retrieval using Proteinase K (2.5 μl in 100 mm Tris, pH 9.0, and 50 mm EDTA, pH 8.0) 

for 10 minutes at 37 °C followed by three washes with 0.1 m Tris-buffered saline (pH 7.4) 

containing 0.02% Tween-20. In all cases, endogenous peroxidase activity was quenched by a 10 

minute immersion in 0.3% hydrogen peroxide. hMito/Osx sections were blocked with 5% 

donkey blocking serum mixed with 1% bovine serum albumin and 1xPBS plus 0.1% triton 

detergent. hMito/SOST sections were blocked in the same manner except for Tween-20 used in 

the place of triton.  

Sections were incubated with the primary anti-hMito antibody (MAB1273, EMD 

Millipore) at a 1:200 dilution and either a primary polyclonal rabbit anti-Osx antibody (ab22552, 
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Abcam; 1:400) or primary polyclonal rabbit anti-SOST antibody (bs-10200r, Bioss; 1:200) 

overnight at 4°C. For all cases, hMito was developed with a biotinylated mouse anti-rabbit 

secondary antibody (715-066-150, Jackson ImmunoResearch) at a 1:400 dilution, incubated at 

ambient temperature for one hour and followed by the addition of the Osx donkey anti-rabbit 

IgG secondary antibody conjugated to Alexafluor 488, (A-21206, Invitrogen; 1:400) or SOST 

goat anti-rabbit IgG secondary antibody conjugated with Alexafluor 488 (ABIN400260, 

antibodies-online; 1:250) for an additional hour at 37°C. Following washing, slides were 

incubated with an avidin conjugated peroxidase system (Vectastain Elite ABC Kit; Vector 

Laboratories) and developed with a tyramide signal amplification (TSA) substrate (Perkin 

Elmer) per the manufacturer’s instructions to amplify the hMito signal. All slides were washed 

with a DAPI dilution and mounted using Prolong Gold Antifade Mountant (Life Technologies). 

Negative control sections underwent the same procedure, but primary antibodies were omitted. 

Species control sections were used to evaluate the specificity of the primary antibodies. Serial 

sections were stained with hematoxylin and eosin (H&E) for morphology guiding IHC-F 

findings using established procedures. [351] Dual, positive-stained cells indicate that either Osx 

or SOST is human (donor) derived while single Osx or SOST stained cells suggest host (mouse) 

contributions. 

Dynamic and static histomorphometry 

Undecalcified plastic-embedded implant sections were assessed for the presence and 

labeling characteristics of calcein and alizarin fluorochrome labeling on newly-formed bone 

surfaces in 2 and 4 week treated and untreated implants. Analysis of labeling was qualitative in 

nature due to the heterogeneity of the bone tissue (size, orientation, bone type). Serial implant 
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sections were stained with Goldner’s Masson Trichrome (GMT) for static histomorphometry 

assessment of cellular populations guiding fluorochrome labeling findings.  

To further confirm bone-forming activity due to treatment in the host, dynamic 

histomorphometry of mouse RF including bone surface (BS), mineral apposition rate (MAR), 

mineralizing surface to bone surface (MS/BS) and bone formation rate (BFR) were performed at 

the mid-diaphysis on the periosteal and endosteal surfaces using the calcein and alizarin label 

according to standard nomenclature. [379] Fluorescent images of the prepared cross sections 

were acquired with a 10x objective of calcein (excitation 485/20 nm, emission: 540/25 nm) and 

alizarin (excitation: 557/55 nm, emission: 615 nm) and merged (NIS Elements Br, Nikon 

Instruments Inc., Melville, NY). Quantitative dynamic measurements were performed using 

ImageJ. Regions where a dual label was not present, MAR was treated as a missing value. To 

calculate BFR/BS in the cases with a missing MAR value, a value of 0.3 µm/day was assigned. 

This value has been used previously in our lab and is established in the literature for cases of 

missing MAR values. [17, 380]  

Tartrate-resistant acidic phosphatase (TRAP) staining 

A subset of decalcified paraffin embedded baseline (time-0), and 2 and 4 week treated 

and untreated implant sections were stained for tartrate-resistant acidic phosphatase (TRAP) 

activity, a marker of bone resorption, and counterstained with Fast Green according to 

manufacturer protocol (387A-1KT, Sigma, St. Louis, MO, USA). Slides were imaged using a 

bright-field light microscope (10x objective) and analysis was performed in ImageJ where 

osteoclast detection comprised TRAP-positive cells. [381] For each slide, the entire implant was 

treated as the ROI where the bone surface was measured followed by quantification of TRAP-
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positive cells. Measurements were expressed as the number of positive TRAP-stained 

osteoclastic cells per millimeter of bone surface (Oc.N./B.pm.) of the implant. 

TUNEL assay for bone cell apoptosis 

For the third stage of the study, a subset of OI bone samples were evaluated for cell 

survival by initiating TdT-mediated dUTP nick end labeling (TUNEL) assay for apoptosis. To 

evaluate the effects of tissue storage and determine the optimal time course for retrieval and 

implantation, trabecular bone from one OI patient and cortical bone from a separate OI patient (5 

samples per patient, ~3 mm3 each in size for a total of 10 bone samples) were collected to 

αMEM/10% FBS and immediately stored at 4°C. One bone sample per patient was formalin 

fixed immediately for baseline analysis (time-0) and the remaining bone tissue was removed 

from storage and formalin fixed at the following time points: 18, 24, 32, and 48 hours. The 

procedure was performed with a TUNEL staining kit (In Situ Cell Death Detection Kit, Roche, 

11684817910) following instructions from the manufacturer. All fluorescent images were 

acquired at 20x using a Nikon Eclipse Ni-U microscope. Analysis was performed in ImageJ 

using the analyze particle function combined with the watershed pre-processing algorithm to 

better separate areas of dense cells (e.g. marrow cells). [382] In short, quantification of all 

nucleated cells (DAPI) and positive stained cells (TUNEL) were performed in a total tissue 

region of interest (ROI) that contained bone and bone marrow, a bone-only ROI, and a marrow-

only ROI to determine if cell apoptosis rate differs between the marrow and bone. Results were 

presented as a percentage of total TUNEL/total DAPI. Serial standard H&E stained sections 

were used to morphologically guide ROI selection.  
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To determine the presence of bone cell apoptosis in our implanted human bone, excised 

implants 1, 4 and 12 weeks (untreated) were evaluated in the same manner using TUNEL assay 

to ensure bone cells remained viable throughout the proposed implantation duration. 

Statistical analysis 

Descriptive and inferential statistics for µCT implant outcomes, presented as a relative 

percent change derived from pre- and post- image acquisitions, were analyzed using SPSS v.22.0 

(IBM, Armonk, NY). First, we describe the demographic, clinical and related characteristics of 

the implant including patient type (OI or non-OI), implant duration (2 or 4 week), treatment 

status (treated or untreated), baseline µCT values (BMD, TMD, BV/TV and BV) and bone type 

(trabecular, cortical or morselized) by using raw counts, measures of central tendency (e.g., 

mean, median or mode) and measures of data dispersion (e.g., 95% confidence intervals, 

standard deviations (SD)) where appropriate. Comparisons of baseline µCT BMD, TMD, 

BV/TV and BV between randomly assigned treated and untreated OI and treated and untreated 

non-OI groups using Student’s t tests were undertaken to ensure group equality at implantation. 

Direct comparisons of µCT outcome measures were carried out with paired t-test for 2 and 4 

week data within patient type (OI and non-OI). To understand the impact of bone type, 

univariate ANOVAs for 2 and 4 week analysis of %changeBMD, %changeTMD, 

%changeBV/TV, and %changeBV were used to detect a differential response in implant bone 

type (cortical, trabecular, morselized) to treatment (treated, untreated). This analysis also served 

to detect differential response due to implantation (using the untreated condition) between OI 

and non-OI control tissue at each time point. Bonferroni post-hoc analyses were conducted as 

appropriate.  
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Analysis of positive TRAP activity using the Oc.N./B.Pm. ratio was conducted on a 

subset of baseline (time-0), treated and untreated 2 and 4 week OI bone implants. The 

Oc.N./B.Pm. were analyzed using a regular one-way ANOVA with a Holm-Sidek test for 

multiple comparisons between implant groups. Results from the TUNEL assay for cell apoptosis 

following tissue storage were presented as a percentage of total positive TUNEL cells/total DAPI 

nucleated cells from trabecular- and cortical-derived bone and reported in the total tissue ROI, 

bone-only ROI and marrow-only ROI at five time points.  

Mouse (host) dynamic histomorphometry outcomes (periosteal and endosteal MAR, 

MS/BS, and BFR/BS) and ex vivo µCT derived trabecular (BMD, trabecular thickness) and 

cortical (area, thickness) measurements were analyzed using a Two-Way ANOVA with 

treatment (treated vs. untreated) and duration (2 vs. 4 week) as factors to confirm a systemic 

effect of SclAb. Post-hoc t tests with a Tukey correction was conducted as appropriate 

(GraphPad Prism v7, GraphPad Software, La Jolla, CA, USA). In all cases, alpha was set at 

p≤0.05. 

Results 

Donor bone is bioaccessible, viable, and donor-derived bone cells are present for up to 12 

weeks 

A definitive calcein fluorochrome label was present on the OI bone surface (Figure 4.2A, 

white arrows) following one dose of calcein administered 24 hours following s.c. implantation. 

This suggests that SclAb can reach the target implant 24 hours following implantation. Results 

from TUNEL assay for apoptosis demonstrated minimal TUNEL-positive apoptotic cells 

following short (1 week) and intermediate (4 week, Figure 4.2B) durations. Following long-term 

implantation, nominal positive TUNEL cells were observed in osteocytes, marrow cells and bone 

lining cells (Figure 4.2C). The existence of viable, human-derived osteocyte-rich bone which 
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expressed human-derived bone lining cells was observed upon harvest and maintained at 

intermediate durations (Figure 4.2D) through 12 weeks (Figure 4.2E) in OI and non-OI untreated 

implants (positive for hMito, red). Together, these results suggest that SclAb treatment can reach 

the target implant 24 hours following s.c. implantation, and xenografts present with human-

derived bone cells at short, intermediate and long-term implantation durations with nominal bone 

cell apoptosis.  

Balance of host-to-donor bone cell contribution is altered with duration and treatment 

Qualitative analysis of hMito IHC-F revealed the presence of human-derived bone cells, 

but their occurrence decreased slightly with longer implantation durations (up to 12 weeks) 

(Figure 4.2D-E). Trabecular-derived bone presented with more positive hMito cells, including a 

greater number of hMito positive bone lining cells that remained present longer (12 weeks) 

compared to cortical-derived bone which had the fewest instances of viable hMito cells at 12 

weeks (Figure 4.3). Similar to trabecular-derived implants, hMito positive bone cells were 

observed in greater quantities (both osteocyte and lining cells) in the morselized bone compared 

to cortical bone. No specific staining was observed in negative control sections and no species 

cross-reactivity was observed in mouse tissue controls ensuring the specificity of the hMito 

antibody (Figure 4.4A-B). 

A subset of baseline (time-0), and 2 and 4 week treated and untreated OI and non-OI 

implants were dual IHC-F stained to probe for Osx (green) and hMito (red), and on serial 

sections, dual SOST (yellow) and hMito (red) to determine donor/host cell populations. 

Following both 2 and 4 week treatment durations, implants exhibited bone surfaces rich with 

human-derived Osx-expressing cells (Figure 4.5B and D) which became more robust with 

increasing treatment duration. Untreated implants expressed Osx on bone surfaces; however, 
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expression was principally host-derived (i.e. positive for Osx but not hMito) (Figure 4.5A-C). In 

untreated implants, these host-derived Osx-expressing lining cells decreased between 2 and 4 

weeks (Figure 4.5C) implantation duration regardless of bone type (trabecular, cortical, 

morselized), and in some cases, no Osx expressing lining cells were present by 4 weeks. Non-OI 

bone implants behaved similarly to OI as they contained more instances of human-derived Osx -

expressing bone lining cells with treatment compared to untreated xenografts at the same time 

point. While most treated OI implants expressed primarily human-derived Osx, cortical 

xenografts from patient OI4 demonstrated surfaces which were rich with a combination of 

mouse-derived Osx-expressing cells, along with human-derived Osx-expressing cells, at both 

treated time points. Patients with less immunolocalized Osx expression at baseline generally 

demonstrated more robust Osx-expression, primarily human-derived, by 4 weeks of treatment 

Figure 4.6A). Conversely, high baseline Osx expression led to fewer Osx-expressing cells on 

implant bone surfaces for patient OI4 who also had a mix of mouse and human-derived Osx-

expressing cells (reported, above) following four weeks of treatment (Figure 4.6A). 

Donor SOST is expressed at baseline and throughout the 4 week period for all conditions (Figure 

4.5E-H). Varying levels of SOST staining surrounding the osteocyte was observed at baseline and 

generally demonstrated an increase in staining following SclAb treatment (Figure 4.5F and H). Baseline 

SOST expression surrounding the osteocyte varied by patient ranging from minimal (OI4, non-OI1), 

moderate (OI5, OI6) to robust (non-OI1, non-OI3). Implants with minimal SOST expression at baseline 

generally demonstrated the greatest increase in staining levels surrounding the osteocyte following 

treatment compared to the untreated condition (e.g. OI4 implants, Figure 4.6B). This observed increase 

in staining appeared less robust in implants presenting with moderate and robust baseline SOST 

expression prior to the initiation of treatment. In all cases, osteocytes were human-derived with the 

exception of OI6 cortical-like implants, which demonstrated several instances of mouse-derived, SOST 
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expressing osteocytes near bone surfaces at 4 week treated and untreated conditions (Figure 4.6C 

example in treated condition). 

In vivo µCT confirms a variable bone-forming treatment effect 

Baseline in vivo µCT confirmed there were no significant differences between baseline 

values of BMD, TMD, BV/TV and BV between treated and untreated two week + four week OI 

or treated and untreated two + four week non-OI groups (Figure 4.7A-D). This ensured equality 

between randomized groups and that no unintended bias was introduced at the time of 

implantation.   

When OI implants were combined into treatment groups regardless of baseline 

morphology, treated OI implants were not significantly different from untreated OI implants in 

any percent change µCT outcome at two or four weeks despite numerically higher increases in 

all measures with SclAb treatment (Figure 4.8A-D). Non-OI implants elicited a significant 

treatment response for two week %changeTMD, %changeBV/TV, and four week %changeBV.  

Given the large variation in the data, we performed a post-hoc analysis based on bone 

type. OI implants were both trabecular and cortical-derived while non-OI implants were all 

morselized bone. SclAb treatment response varied in magnitude by bone type at both two and 

four weeks (Figure 4.9A-D, bolded p-values indicate significant effect of bone type). In some 

conditions, implantation alone (untreated) continued to increase in bone formation which was 

differential by bone type (Figure 4.9A-D). Results from follow-up Bonferonni post-hoc analysis 

are denoted by brackets and stars when significance was reached between bone type. While not 

statistically significant, we observed a 7-fold increase in mean %changeBMD for trabecular OI 

groups between two and four weeks of treatment (2.24 vs. 18.47), a 0.5-fold increase for cortical 

OI groups (7.38 vs. 11.19) and a decrease in morselized non-OI groups (65.42 vs 40.61).  
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Untreated xenografts were not significantly different following two weeks of 

implantation. At four weeks, trabecular and morselized implant %changeBMD was significantly 

increased over cortical implants (Figure 4.9A). Interestingly, untreated trabecular implants 

trended for an increase in %changeBMD, TMD and BV/TV between two and four weeks while 

untreated cortical implants decreased between 2 and 4 weeks (Figure 4.9A-C).  

Implant histomorphometry findings corroborate µCT results 

Analysis of implant histomorphometry was qualitative due to tissue heterogeneity 

including variation in bone size, orientation and bone type and an inability to define a common 

sectioning plane. OI and non-OI SclAb-treated implants demonstrated positive formation of new 

bone presenting with more definitive calcein and alizarin labeling and greater inter-label width 

(Figure 4.10E and M) compared to weaker and non-specific labeling observed in untreated 

implants (Figure 4.10A and I). In general, labeling became more robust following 4 weeks of 

SclAb treatment compared to two weeks of treatment. 

Osteoid seams were observed on serial sections stained with GMT and closely matched 

locations of calcein and alizarin-labeled surfaces in all implants (Figure 4.10B, F, J, N). 

Evaluation of Osx expression in the implants corroborated fluorochrome and GMT data by 

revealing a concurrent increase in osteoblast activity. In general, Osx expression on implanted 

bone surfaces was stronger in treated implants compared to untreated implants and increased in 

expression with treatment duration (Figure 4.10, C,G,K,O). 

No significant changes in bone resorption following SclAb was observed in the implants 

TRAP analysis was conducted on a subset of baseline, treated and untreated 2 and 4 wk 

implants. No significant changes in Oc.N./B.Pm., a measure indicative of bone resorption, was 

observed across all groups (Figure 4.11A-B).  
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Host mouse femora confirmed systemic bone-formation response to SclAb 

Ex vivo µCT analysis of mouse RF confirmed a systemic bone-forming effect of 

treatment in the host (Figure 4.12A-E). Two-Way ANOVA results revealed a significant effect 

of treatment and duration for cortical area (treatment: p<0.0001, duration: p<0.01) and cortical 

thickness (treatment: p<0.0001, duration: p<0.0001) and a significant treatment effect for 

trabecular BMD (p<0.001) and trabecular thickness (p=0.022). Specifically, cortical area 

increased by +10% following 2 weeks (p=0.06) and +18% following 4 weeks (p=0.0001) of 

treatment. Cortical thickness increased by +9% (p=0.02) and +15% (p<0.0001) following 2 and 

4 weeks of treatment, respectively. Trabecular BMD increased by +25% following treatment at 2 

weeks (p=0.06) and +20% at 4 weeks (p=0.008) and trabecular thickness increased by +5% 

following treatment at 2 weeks (p=0.89) and +21% (p=0.05) at 4 weeks.  

Dynamic histomorphometry measures of MAR, MS/BS, and BFR/BS on the periosteal 

and endosteal surfaces of the host RF (Figure 4.12F-G) further corroborated a systemic bone-

forming effect of SclAb. 

Bone tissue morphology dictates donor cell apoptosis rates following harvest and during 

storage 

Trabecular and cortical OI bone revealed dissimilar rates of donor cell apoptosis 

following removal from the patient (baseline, time-0) through storage up to 48 hours at 4° C. 

TUNEL assay results from two patients can be appreciated in Figure 4.13A-K. Patient OI7 

yielded trabecular-like bone while patient OI 8 yielded cortical-like bone (Table 4.1 for detailed 

patient demographics; both patients Type III OI). At baseline following harvest from the patient, 

trabecular bone experienced fewer positive apoptotic cells compared to the cortical bone (5% vs. 

12%). Following 18 hours in storage, cortical bone underwent cell apoptosis in 54% of the total 

tissue including 63% of the bone and 38% of the marrow. At the same time point, trabecular 
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bone demonstrated apoptosis in 19% of the total tissue with 14% of the bone and 20% of the 

marrow donor cells undergoing apoptosis. Both trabecular- and cortical-like bone demonstrated a 

linear increase in total tissue cell apoptosis with increasing storage time except for trabecular 

bone at 32 hours and cortical bone at 24 hours. In general, trabecular bone underwent a greater 

amount of apoptosis in the marrow ROI while cortical bone experienced a greater amount of 

apoptosis in the bone ROI following storage. 

Discussion 

There is currently no US Food and Drug Administration- or European Medicines 

Agency-approved therapy for the treatment of OI. Rather, current clinical OI management relies, 

in part, on off-label use of therapies targeting osteoporosis. Osteoporosis represents a metabolic 

disease of bone fragility, and therefore, patient response to therapy is not fully predictive of the 

clinical response in pediatric OI patients using the same interventions. [70, 76] Divergent clinical 

therapeutic responses in OI highlights the need for an appropriate model to evaluate bone drug 

efficacy prior to clinical extension. To address this deficiency, we describe a novel xenograft 

model using solid, OI patient-derived bone tissue harvested during corrective orthopaedic 

procedures which maintains human-derived bone cells within their native extracellular 

environment and preserves the genetic mutation unique to each patient. The model provides a 

controlled host-derived micro-environment to evaluate the in vivo bone-forming effects of SclAb 

in its target tissue without contraindications to the OI patient outside of pre-planned surgical 

intervention. Following bone implantation, TUNEL assays demonstrated that donor bone cells 

remain viable at short (1 week), intermediate (2-4 weeks) and long-term (12 week) durations. 

Implanted donor-derived bone tissue became bioaccessible to the host following 24 hours, 

indicating that systemic treatment is accessible by the xenograft tissue as early as day one in the 

model. Taken together, we administered SclAb systemically beginning 24 hours after 
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implantation and evaluated implant treatment response at 2 and 4 weeks durations to maximize 

the likelihood that treatment targeted human-derived bone cells.  

We used immunohistochemistry to evaluate the donor/host relationship of the implants 

with and without SclAb treatment. Most notably, there was a shift in donor/host origin of Osx 

expression with SclAb treatment in the human OI implants. We observed that treated implant 

surfaces were rich with human-derived Osx expressing cells while untreated implants 

demonstrated surfaces primarily expressing mouse-derived Osx expressing cells. This 

observation was determined using a dual-IHC approach where human-derived Osx was 

confirmed by the presence of cells positively stained for both hMito and Osx antibodies. TUNEL 

results reveal that nominal apoptosis occurs in the implant at 2 and 4 weeks, therefore the lack of 

human-derived Osx expressing cells in the untreated implant is likely not attributable to cell 

death. We hypothesize that SclAb treatment may have been able to preserve and differentiate the 

human-derived cells of the osteoblast lineage leading to the human-derived Osx expression 

observed in the treated xenografts. It is possible that untreated implant osteoblast precursors were 

present in the implant but did not differentiate to Osx-expressing lining cells and instead, mouse-

derived osteoblasts were recruited to the untreated implant. Baseline Osx expression also 

appeared to dictate the magnitude of osteoblast response to treatment in the implants. For 

instance, bone from patient OI6 had very little Osx expression on bone surfaces prior to 

implantation; as soon as 2 weeks of SclAb treatment, all OI6 implant surfaces were rich in Osx 

expressing cells which were primarily human-derived. Conversely, patient OI4 had surfaces rich 

with Osx at baseline (Figure 4.6A). Of the two bone samples from patient OI4 treated for 2 

weeks, one bone sample maintained some surfaces of strong Osx expression while the other bone 

sample had less human-Osx expression compared to baseline. 
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Human-derived SOST was expressed by osteocytes in both 2 and 4-week treated and 

untreated implants. At baseline, SOST expression was variable ranging from minimal positive 

SOST-expressing osteocytes to moderate and even robust in a few cases. Following treatment, 

immunolocalization of SOST surrounding the osteocyte appeared more robust compared to the 

positive immunolocalized levels surrounding untreated control osteocytes at the same timepoint. 

SclAb treatment acts by inhibiting SOST which is a negative regulator of bone formation. The 

drug itself possesses a post-translational effect; it blocks the effects of the protein rather than 

halting the expression of SOST by the osteocytes. Holdsworth et al. reported a significant 

upregulation, or compensatory response, of SOST as measured by RT-qPCR (TaqMan) analysis 

following both a single dose and long-term treatment with SclAb. [347] We postulate that this 

compensatory response following SclAb treatment may explain the increased levels of 

immunolocalized SOST surrounding the osteocytes in the treated OI implants. Future studies 

should evaluate SOST gene expression using qPCR approaches in the human bone following 

treatment to confirm SOST upregulation.  

Osteoblast differentiation into matrix-embedded osteocytes is a complex and not well 

understood process which includes a gradual transition to osteoid-osteocytes before 

differentiating fully into osteocytes. [383] By two weeks we confirmed the presence of mouse-

derived Osx-expressing lining cells on some of the human implants; while human osteoblasts 

remain active up to three months, [384] the lifespan of a murine osteoblast is ~10-20 days. [385] 

While numerous studies report bone deposition rates, the time between osteoblast-osteocyte 

transformation is still not well understood and range from three days in young rabbits, [386] 2-5 

days in newborn rats, [387, 388] and 10-19 days on periodontal surfaces in newborn mice. [385] 

Expression of SOST is indicative of a mature osteocyte phenotype and is expressed as early as 
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during the onset of mineralization of the osteoid. [389, 390] SOST expression has been 

confirmed at low levels in osteoblasts, [389] yet its presence in the osteoid-osteocyte in humans 

and mice remains in question. [390-392] We postulate that it is feasible for these mouse 

osteoblasts to begin the differentiation process and express SOST by our 4 week timepoint (14 

days after we observed mouse Osx expression) where immunolocalization of SOST in patient OI 

6 treated and untreated implants near the bone surface appeared to be mouse-derived (absence of 

positive hMito, Figure 4.6C). Future studies using transgenic mice tagging cells of the osteoblast 

lineage could evaluate the host-osteoblast fate in the human xenograft bone tissue to validate our 

findings. 

Similar to our model, Pettway and McCauley et al. described an ectopic ossicle bone 

model system utilizing donor bone marrow stromal cells (BMSCs), expanded in vitro, and 

implanted into an athymic murine host. The model represents a system where mesenchymal 

components are from the donor and hemopoietic cells are from the host. [376, 377, 393, 394] 

The authors observed an increase in marrow cellularity following 1 week of iPTH treatment, an 

anabolic response by 3 weeks of treatment and plateau in treatment response following 7 weeks. 

The authors hypothesized that the plateau was indicative of a time point where the host was 

incapable of supplying viable mesenchymal cells. In our study, SclAb stimulated new bone 

formation in the implanted bone tissue which significantly differed in both magnitude and rate 

when implant bone type was considered. Specifically, trabecular and morselized implants 

continued to respond in µCT markers of bone formation with longer treatment durations while 

cortical implants responded early (2 weeks) and appeared to demonstrate a similar plateau as 

discussed by Pettway et al. following 4 weeks of treatment. We hypothesize that trabecular 

implants did not reach a treatment plateau by 4 weeks due to two factors. First, the increased 
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geometric quantities of surface-to-volume ratio inherent to trabecular and morselized samples 

appear to hold a greater capacity for bone-forming response to SclAb treatment. [370, 395] 

Second, both the trabecular and morselized bone contained rich donor-derived marrow 

progenitor cells which we believe were capable of osteoblast differentiation upon SclAb 

treatment. Upon removal from the patient, only 6% of the trabecular marrow elements stained 

positive for TUNEL, leaving a large population of viable donor osteoprogenitor cells that have 

the capacity to form new bone with anti-sclerostin therapy having local effects on 

osteoblastogenesis. [389, 396-398] When implementing the proposed model, treatment durations 

should be altered by implant bone type depending on the hypothesis tested.  

Literature supports that SclAb acts in part by decreasing bone resorption through a 

decrease in osteoclast number. [399-401] We did not observe a significant reduction in 

Oc.N./B.Pm. in OI implants treated with SclAb. Interestingly, the implants with the highest 

osteoclast number following treatment were also the same implants that contained the most 

robust human-derived Osx expression on bone surfaces. Our TRAP findings are in line with 

those reported by Spatz et al. and Williams et al. where partial and no significant changes in 

markers of bone resorption, respectively, following SclAb treatment after short-term treatment 

schemes (≤ 4 weeks) in pre-clinical murine models. [402, 403] Because our model involves 

implantation of donor bone tissue into a host microenvironment, it is conceivable that increased 

osteoclasts in the treated implants were mouse-derived. The presence of mouse-derived 

osteoclasts has been observed in humanized xenograft models of bone metastasis. [404] Further 

supporting that osteoclasts were mouse-derived (host), Pettway et al. observed increased 

osteoclast number in Zoldronic acid treated ossicles at levels above untreated ossicles while 

circulating serum TRAP in the treated host mouse was well below serum TRAP levels in the 
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untreated host. [377, 405] Moreover, the increased Oc.N./B.Pm in the treated implants may have 

been influenced by the lack of mechanical stimuli of the subcutaneously implanted bone where 

skeletal unloading leads to increased markers of bone resorption. [406, 407]   

Some bone tissue continued to increase in µCT outcome parameters due to implantation 

alone which appeared to be a result of osteoblast-derived contributions from the host. Pettway 

and McCauley et al. observed increases in bone size in both vehicle (VEH) and treated ossicles 

at longer implant durations (7 weeks and a 3 week group where treatment or VEH was initiated 

following 12 weeks of untreated implantation). [393] In our study, untreated trabecular-derived 

and morselized implants demonstrated a positive increase in %changeBMD, %changeTMD and 

%changeBV/TV between 2 and 4 weeks (while cortical implants trended for a decrease with 

increasing implantation duration). Histomorphometry corroborated results with increased inter-

label width and more robust osteoid seams were demonstrated trabecular and morselized 4 week 

untreated xenografts. As early as 2 weeks of untreated implantation, bone surfaces were lined 

with mouse-derived Osx expressing cells which increased in magnitude by 4 weeks indicating 

the origin of bone formation in the untreated implants is due in part to host-derived components 

acting on the donor bone. We postulate that we did not observe the same increase in the cortical 

implants perhaps because cortical implants, in contrast to trabecular and morselized implants, 

inherently contained fewer human-derived BMSCs/marrow cells at harvest and had less bone 

surface area available for remodeling. 

A strength of the implant model is its ability to evaluate the effects of treatment in its 

target tissue while possessing the ability to monitor changes in the endogenous host bone. This 

provides a necessary internal positive control for the proposed treatment effects of the bone-

forming therapeutic being considered. We observed a significant increase in µCT and dynamic 
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histomorphometry markers of bone formation in treated mice compared to untreated using the 

host right femora for analysis. Results in the mice were consistent with prior work performed in 

our lab evaluating the effects of SclAb treatment. [362] 

The time between bone harvest and implantation is an important consideration for donor 

bone cell survival. We evaluated the effects of tissue storage at 4˚C over the course of 48 hours 

to guide decision making regarding implantation latency duration and the potential for tissue 

banking and shipping tissue between OI centers for future diagnostic and treatment studies. At 

baseline, at the time human bone was implanted in the proposed xenograft model, trabecular 

bone experienced less apoptosis in the total tissue and the marrow ROI compared to cortical 

bone. Further, trabecular bone tissue (from the bone-only ROI) demonstrated fewer instances of 

apoptotic cells over the 48 hours compared to cortical bone. Over time, however, marrow space 

for trabecular bone did demonstrate greater amount of positive TUNEL cells compared to the 

cortical bone by the 24 and 48 hour time points. Taken together, it appears that 18 hours of 

storage at 4˚ C may be the upper limit following removal from the patient and that trabecular 

derived bone may have a greater capacity for bone cell survival through 18 hrs.  

Conclusions 

  In summary, we propose a xenograft model using solid bone tissue derived from OI 

patients as a means to evaluate treatment response to novel therapeutics. We demonstrate that 

patient bone remains viable during implantation, contains human-derived bone cells for up to 12 

weeks of implantation, and is bioaccessible by the host as early as 24 hours and systemic SclAb 

treatment in the host elicits a bone-forming effect in the implant. Response to treatment was 

variable; bone morphology, treatment duration and baseline cellular phenotype likely play 

important contributing roles. When donor/host response was evaluated, donor SOST remains 
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present in all conditions while SclAb treatment appeared to dictate Osx expression in the 

implants. Differences in response in this heterogeneous OI bone tissue is of interest and could 

lead to understanding which patients would respond best to therapy. The successful 

implementation of the model may provide a safe approach to evaluate drug efficacy in a disease 

state without contraindications to the patient. 
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Figures 

 

Figure 4.1: Bone tissue harvest and implantation process.  

Radiograph from osteogenesis imperfecta (OI) patient OI 1, open reduction internal fixation (ORIF) 

surgery, left humerus (A). Bone samples typically discarded during orthopaedic surgery were collected 

into media (B), trimmed, and implanted subcutaneously on the dorsal side of a 4-6 week nude mouse 

through a 1 cm posterior incision adjacent to the spinal column in the lumbar region (C,D). Upon removal 

(E), implanted bone is rich with host blood vessels (white arrows). Each patient yielded ~3-20 samples. 
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Figure 4.2: Donor bone is bioaccessible, viable, and donor-derived bone cells are present for up to 

12 weeks.  

Bioaccessibility, bone cell viability and presence of donor cells in the human-derived implant. One 

subcutaneous administration of calcein (30 mg/kg) to the host 24 hours following implantation 

demonstrated a definitive calcein label (green label, white arrow) present on the implant bone surface 

upon removal 24 hours after injection (A). TUNEL assay results following intermediate (B) and long-

term (C) implantation duration (4 weeks and 12 weeks untreated) demonstrate minimal positive TUNEL 

cells (green; DAPI=blue) at each time point; insets (1) positive apoptotic osteocyte(s) and (2) example of 

positive apoptotic progenitor and lining cell populations. Immunolocalization (IHC) of donor derived 

cells using human mitochondria primary antigen (hMito=red; DAPI=blue) at 4 weeks (D) and 12 weeks 

(E) demonstrate human-derived osteocytes (inset 1) and bone rich with human-derived lining cells (inset 

2) in the OI implant. A, D-E acquired at 40x (50 µm scale bar) from patient OI 3 (Type III OI) and patient 

OI 2 (Type I OI), respectively; B-C acquired at 20x (100 µm scale bar) from patient OI 1 (Type III OI). 

OI= osteogenesis imperfecta. 
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Figure 4.3: Immunolocalization of human mitochondria in osteogenesis imperfect (OI) and non-OI 

control bone implants following 12 weeks of implantation in the xenograft model.  

In all cases, OI and non-OI control bone tissue presented with human-derived bone cells and bone lining 

cells that stained positive for human mitochondria (hMito, red) antibody following 12 weeks of 

implantation (the longest implantation time point). While all bone tissue stained positive for hMito, the 

amount of stain appeared to be dictated by bone type (cortical (left) or trabecular (middle) derived bone 

from OI patients and morselized (right) bone tissue from non-OI controls). OI cortical implant from 

patient OI 1, OI trabecular implant from patient OI 2 and non-OI morselized implant from patient non-OI 

1. All images acquired at 40x magnification with a 50 µm scale bar. 
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Figure 4.4: Results from immunohistochemistry control slides.  

No specific staining was observed in osteogenesis imperfect (OI) bone tissue when primary antibodies for 

SOST or osterix was omitted (no primary control) (A). Top left depicts DAPI nuclear stained section 

(blue), top middle is the no primary control for SOST (yellow) and top right is the no primary control for 

osterix (green). Human osteogenesis imperfect bone tissue images from patient OI 1 obtained at 4x 

magnification with a 500 µm scale bar. No species cross-reactivity was observed in mouse (host) right 

femoral (RF) control tissue when stained with human mitochondria (hMito) primary antibody (B). Left 

panel depicts DAPI nuclear stain (blue) and right panel depicts no fluorescence from the hMito antibody 

(red) ensuring the specificity of the antibody. Mouse RF images obtained at 40x with a 50 µm scale bar. 
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Figure 4.5: Immunohistochemistry with fluorescence (IHC-F) to assess donor/host relationship.  

Human osteogenesis imperfecta (OI) implants were dual IHC-F stained to probe for the presence of 

Osterix (Osx; green) and human mitochondria (hMito; red) (A-D) and on serial sections, Sclerostin 

(SOST; yellow) and hMito (red) (E-H). In all cases, hMito was used to indicate donor derived cells and 

Osx or SOST primary antibody (validated sensitivity to both mouse and human antigens) were used to 

probe all instances of expression (both host and donor). Zoomed insets (1) depict lining cells expressing 

Osx (A-D) and osteocytes expressing SOST (E-H). Images were acquired at 40x (50 µm scale bar). 

DAPI= nuclear stain (blue). Panel represents data from one OI patient (OI 6, Type III/IV OI) who yielded 

cortical-derived bone samples (I), hematoxylin and eosin (H&E) stained implant acquired at 20x with a 

250 µm scale bar. 
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Figure 4.6: Influence of baseline human osterix (Osx) and SOST expression on treatment response 

in OI patient implants.  

Low baseline Osx expression upon removal from the patient increased following 4 weeks of treatment 

and remained primarily donor-derived. An OI patient with high baseline Osx expression demonstrated 

minimal Osx expressing cells following 4 weeks of treatment (A). A similar pattern was observed with 

SOST expression; low baseline levels appeared to increase in expression following treatment while 

patients with robust baseline IHC SOST staining still had had osteocytes expressing SOST but staining 

levels were less pronounced (B). Tissue from one OI patient demonstrated the presence of host-derived 

(mouse) SOST-expressing osteocytes (example, white arrow) near the implant bone surface (red dashed 

line in brightfield (BF) image) following 4 weeks of treatment (C). In all cases, hMito (red) was used to 

indicate donor derived cells and Osx (green) or SOST (yellow) primary antibody (validated sensitivity to 

both mouse and human antigens) probed all expression regardless of species. Images were acquired at 40x 

(50 µm scale bar). OI= osteogenesis imperfecta; DAPI= nuclear stain (blue). 
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Figure 4.7 Baseline in vivo µCT confirmed no significant differences between µCT parameters at 

time of implantation.  

In vivo µCT baseline BMD (A), TMD (B),BV/TV (C), and BV (D) acquired 24 hours following 

implantation are plotted for 2 + 4 week treated and untreated OI and non-OI groups. No significant 

differences in baseline BMD (A), TMD (B), BV/TV (C), and BV (D) between randomly assigned 

untreated and treated OI and untreated and treated non-OI implant groups was observed. Results indicate 

equality between randomly assigned treated and untreated patient groups at baseline prior to treatment 

initiation. OI= osteogenesis imperfecta; BMD = bone mineral density; TMD = tissue mineral density; 

BV/TV = bone volume fraction; BV = bone volume. 

  



 123 

 

Figure 4.8: Longitudinal in vivo µCT outcomes for two and four week treated and untreated 

osteogenesis imperfect (OI) and non-OI implants.  

Mean ± standard deviation of in vivo µCT derived %changeBMD (A), %changeTMD (B), 

%changeBV/TV (C) and %changeBV (D) for treated and untreated 2 and 4 week OI and non-OI 

implants. %change values were derived as the change from pre- µCT acquisition acquired 24 hours 

following implantation (baseline) and post- µCT acquired immediately following sacrifice. Direct 

comparisons of µCT outcome measures were carried out with paired test for 2 and 4 week data within 

patient type (OI and non-OI) where significance is denoted by brackets and stars. In all cases, statistical 

significance was set to p<0.05. OI= osteogenesis imperfecta; BMD = bone mineral density; TMD = tissue 

mineral density; BV/TV = bone volume fraction; BV = bone volume. 
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Figure 4.9: In vivo µCT confirms a variable bone-forming treatment effect that changes in 

magnitude by implant bone type.  

ANOVA results with Bonferonni correction of in vivo implant µCT results by bone type for two and four 

week treated and untreated implants. Mean ± standard deviation of in vivo µCT derived parameters of 

%changeBMD (A), %changeTMD (B), %changeBV/TV (C) and %changeBV (D) for trabecular-derived 

implants, cortical-derived implants and morselized implants are plotted. ANOVA p-values are reported 

and bolded when a significant effect of bone type was detected at p ≤ 0.05. Significance between bone 

type within condition, assessed via post-hoc analysis with a Bonferonni correction, is denoted by brackets 

and stars. Trabecular and cortical implants originated from OI patients while morselized implants 

originated from non-OI patients. OI= osteogenesis imperfecta; TRAB= trabecular; CORT= cortical; 

MORS= morselized; BMD = bone mineral density; TMD = tissue mineral density; BV/TV = bone 

volume fraction; BV = bone volume. 
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Figure 4.10: Implant histomorphometry findings and immunolocalization of osterix corroborate 

µCT results.  

Calcein (green) and alizarin (red) fluorochrome bone labeling, serial Goldner’s Masson trichrome (GMT), 

and immunohistochemistry (IHC) with fluorescence of osterix (green) and corresponding DAPI (blue) 

nuclear stained images for one patient at 2 (A-D) and 4 week (I-L) untreated, 2 (E-H) and 4 week (M-P) 

treated. SclAb treated implants presented with a definitive calcein and alizarin label and greater inter-

label width (E,M) compared to weaker and non-specific labeling observed in untreated conditions (A,I). 

GMT osteoid seams corresponded to areas of fluorochrome labeling (B,F,J,N). Osterix expression on 

implant bone surfaces was strong in treated implants and increased with treatment duration (G, O). 

Untreated implants at 2 weeks displayed osterix on bone surfaces which diminished by 4 weeks untreated 

(C, K). Calcein/alizarin images and GMT were acquired at 10x (100 µm scale bar) and IHC images at 20x 

(250 µm scale bar). Panel represents data from one OI patient (OI 4, Type III OI, cortical-derived 

implant). Due to the tissue processing requirements for histomorphometry (undecalcified plastic 

processing) and immunohistochemistry (decalcified paraffin processing) images are parallel implants 

harvested from the same OI patient (OI 4). 
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Figure 4.11: Sclerostin antibody did not significantly alter bone resorption in the implants.  

TRAP results from baseline (time 0) and 2 and 4 week SclAb-treated and untreated OI implants (A, B). 

No statistically significant differences were observed in measures of osteoclast number per bone 

perimeter (Oc.N./B.pm.) between groups. The Oc.N./B.pm. decreased below baseline and untreated levels 

following 2 weeks of SclAb treatment (not sig.) and increased above all other groups following 4 weeks 

of treatment. The entire implant bone surface was used as the region of interest (ROI). Statistical 

significance was set to p≤0.05. OI= osteogenesis imperfecta; UN= untreated; TR= treated; Oc.N.= 

osteoclast number; B.pm.= bone perimeter; SD= standard deviation. 
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Figure 4.12: Host mouse femora confirmed a systemic bone-forming effect of SclAb treatment.  

Quantitative µCT analysis host (mouse) femora reveal a significant bone-forming response to SclAb 

treatment compared to untreated controls in measures of cortical area (A), thickness (B) and trabecular 

bone mineral density (BMD) (C) and thickness (D) at 2 and 4 weeks. Significance is indicated by brackets 

and stars (*) when reached (p≤0.05).  Representative ex vivo µCT images of mouse femora at 2 and 4 

week treated with SclAb (top) and untreated (bottom) (E). Treated 2 week n=14, untreated 2 week n=10, 

treated 4 week n= 13, untreated 4 week n=11. Representative cross-sectional dynamic histomorphometry 

images of femora demonstrate stronger calcein (green) and alizarin (red) labeling, including increased 

inter-label width, following 2 and 4 weeks of SclAb treatment compared to untreated controls (F). Results 

from endosteal and periosteal mineralizing surface/bone surface (MS/BS), mineral apposition rate (MAR) 

and bone formation rate/bone surface (BFR/BS) for all groups is presented as mean ± SD with statistical 

significance indicated (p≤0.05) (G). Dual label was not present on all surfaces (preventing MAR 

measurements in some cases) and was treated as a missing value. Treated 2 week n=16, untreated 2 week 

n=10, treated 4 week n= 13, untreated 4 week n=8. Images acquired at 20x (500 µm scale bar). 
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Figure 4.13: Bone tissue morphology dictates donor cell apoptosis rates in osteogenesis imperfect 

(OI) bone tissue following harvest and during storage.  

OI patient trabecular-derived and cortical-derived bone was evaluated for donor cell apoptosis using a 

TUNEL assay at baseline and following storage four time points (18, 24, 32 and 48 hrs) in αMEM/10% 

FBS at 4° C. TUNEL assay results from trabecular bone (A-E) and cortical bone (F-J) (left) and serial 

hematoxylin and eosin (H&E, right) are displayed. Detailed TUNEL results, presented as a percent of 

total TUNEL positive cells/total DAPI stained cells for a total tissue ROI, bone only ROI and marrow 

only ROI for the trabecular and cortical bone at each time point is depicted (K). Positive TUNEL 

apoptotic cells are shown in green and DAPI nuclear stain (highlighting all cells) in blue. Trabecular bone 

was harvested from OI 7 (Type III OI) and cortical from OI 8 (Type III OI). All images acquired at 20x 

(500 µm scale bar). 
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Tables 

Table 4.1: Pediatric osteogenesis imperfect (OI) and non-OI control patient demographics. 

 

  

Patient OI Type Analysis Type Surgical Indication
Drug TR 

History

Harvest 

Location
Age Sex

Bone Sample Yield 

(baseline/implant)

OI 

OI 1 III Xenograft
Open Reduction Internal 

Fixation

Depo-

testosterone
L Humerus 17 M 1/9

OI 2 I Xenograft Implant Exchange Vitamin D2 R Tibia 14 M 2/18

OI 3 III Xenograft Fracture
Ca Carbonate, 

Vitamin D2
R Humerus 17 F 1/11

OI 4 III Xenograft
Bowing of Femur over 

Rod

Ca Carbonate, 

Vitamin D2

R Metaphyseal 

Femur
18 F 1/6

OI 5 III/IV Xenograft
Bilateral, Multiple 

Osteotomies
None R&L Femur 16 mo F 1/2

OI 6 III/IV Xenograft Osteoplasty 
Ca Citrate-

Vitamin D3
R Femur 23 F 1/8

OI 7 III Storage Pilot Revision
Depo-

testosterone
L Ulna/Radius 17 M 6 (Storage Pilot)

OI 8 III Storage Pilot Osteotomy None R Tibia/Fibia 21 M 6 (Storage Pilot)

Non-OI 

Non-OI 1 Unaffected Xenograft ACL Reconstruction N/A Tibial Reaming 15 F 4/9

Non-OI 2 Unaffected Xenograft ACL Reconstruction N/A Tibial Reaming 14 M 1/9

Non-OI 3 Unaffected Xenograft ACL Reconstruction N/A Tibial Reaming 10 M 2/12
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Chapter 5 In Vivo Quantitative Imaging Biomarkers of Bone Quality and Mineral Density 

using a Novel 3D Zero Echo Time Magnetic Resonance Imaging Approach 

Introduction 

In bone diseases of altered remodeling such as osteoporosis, current clinical practice 

relies primarily on ionizing x-ray-based approaches to characterize the mineral phase of bone. 

[23-25, 27, 28] While mineral is the focus of x-ray based measures, it is understood that bone is a 

composite material composed of  ~35-45% mineral crystals composed of hydroxyapatite, ~40% 

organic matrix including type I collagen, proteoglycan and glycosaminoglycan, and ~15-25% 

water existing as free (in Haversian and Volkmann’s canals) and bound (hydrostatically to 

organic matrix constituents), by volume. [29] Each are critical components to bone quality and 

fragility and may change independently, or together, with disease progression and in response to 

treatment. [30, 31] Even so, there is a near ubiquitous reliance on bone mineral density (BMD) to 

predict mechanical properties and ultimately serve as an in vivo surrogate for treatment efficacy, 

while ignoring these other important contributors of bone strength. [23] However, the literature 

largely supports that BMD is an incomplete measure since it accounts for only ~60% of bone 

strength and may not adequately predict fracture risk. [32, 33] 

Despite the prevalence of radiographic techniques that are used to predict fracture risk 

through alterations in BMD, it has become increasingly evident that additional factors, 

commonly referred to as markers of bone quality, play an important and unique role in governing 

the mechanical integrity of the bone and its overall health. [29, 227, 408, 409] Importantly, these 

factors are not interpretable from traditional radiographic imaging approaches, but rather rely on 
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invasive or ex vivo techniques to quantify changes. For example, traditional pre-clinical targets 

typically involve end-stage tissue resection to perform histology. This requires study designs to 

include matched treatment/control groups (cross-sectional) limiting longitudinal in vivo analysis 

adding both cost and use of animal. [35, 36] Therefore, the ability to non-invasively measure 

biochemical processes and material-level changes in vivo as they relate to bone pathophysiology 

represents a powerful tool to guide therapeutic development and subsequent clinical trials [34] 

where the desire for non-destructive imaging biomarkers to characterize mineral in addition to 

the remaining material-properties is immense and equally unmet. 

There are a number of clinically available imaging modalities whose application in bone 

appear promising but have not yet been fully exploited. [37, 38] One such clinically available 

modality, magnetic resonance imaging (MRI), is gaining interest for its sensitivity to 

biochemical composition and its rich dynamic range. However bone appears as a signal void in 

conventional MRI bone since it is unable to “capture” bone’s inherently ultra-short transverse 

relaxation time (T2) due to time domain constraints (echo time, TE and repetition time, TR). In 

bone, proton signal intensity is drawn from a limited hydrogen pool which includes water 

residing in microscopic Haversian canals and lacuno-canaliculi systems (free water, T2 > 1 ms), 

matrix water bound to collagen (bound water, T2 << 1 ms) and protons of the collagen 

backbone/sidechain (T2 < 0.1 ms). [29, 39] The extremely short T2 relaxation times for these 

three pools are directly related to the movement allotted by the protons following excitation in 

MRI. [40] In recent years, a number of remarkable advances have been proposed for both the 

qualitative and quantitative evaluation of short T2 species with the advent of ultra-short echo 

time (UTE) MRI. [41, 42] However, UTE’s minimal TE caused by transmit/receive switching 

time may miss the shortest T2 proton pools in bone, specifically those associated with collagen.   
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Zero-echo time (ZTE) technologies such as 3D radial SWeep Imaging with Fourier 

Transformation (SWIFT) MRI can overcome this limitation providing sensitivity to highly 

ordered and mineralized tissue allowing for imaging of all compositional elements of bone [45, 

410]. SWIFT is an entirely different class of ZTE; the time domain signals are acquired in a 

time-shared manner during a swept radio frequency (RF) excitation. [289] This results in 

virtually no acquisition delay (TE=0) allowing it to overcome the rapid signal loss due to low 

and restricted proton concentrations. [289] Initial proof-of-concept studies applying SWIFT to 

bone and calcified cartilage have been favorable. [295-298, 318] Due to technical constraints on 

achieving this nominal TE, conventional SWIFT has an upper limit on bandwidth (BW), or the 

range of frequencies (in Hz) allowed in the imaging signal. Lower BW may be insufficient in 

capturing all excited short T2 species and can lead to an increase in susceptibility artifact. This is 

particularly problematic in bone where the cortices have the largest pool of strongly diamagnetic 

calcium salt in the body and shares its biological boarder with lesser diamagnetic tissues such as 

muscle, fat, marrow and the periosteum which can result in magnetic field distortions. To 

address the limitation on BW, multi-band SWIFT (MBSWIFT) has been introduced which 

makes use of sidebands generated by gapping the RF pulse. [299] As a result, MBSWIFT can 

achieve high excitation BW and in theory mitigate susceptibility artifact at the cortical bone 

interfaces during in vivo imaging.  

MBSWIFT could have a novel and specific application in bone research where capturing 

the mineral and the remaining 40% of the tissue that confers quality and strength to bone is 

highly desired. Using MBSWIFT, we sought to describe a comprehensive (although not 

exhaustive) set of MRI biomarkers to characterize aspects of bone quality that go “missed” when 

using gold-standard bone imaging approaches (e.g., clinical DXA, pre-clinical µCT). 
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Specifically, we employed MBSWIFT to quantify cortical water, cortical matrix T1 relaxation 

times (a tissue-specific biomarker where measures are related to tissue organization) and marrow 

fat longitudinally following ovariectomy in growing rats. Further, we established the efficacy of 

MBSWIFT to directly measure changes in BMD in comparison to μCT. Findings contribute to 

the overall goal of establishing a potential imaging strategy to simultaneously quantify material-

level and biochemical alterations in bone safely, without the use of ionizing radiation.  

Materials and Methods 

Animal model and study design 

All animal procedures were approved and conducted in accordance with the University’s 

Institutional Animal Care & Use Committee (IACUC) in compliance with the Animal Care & 

Use Office (ACUO) guidelines. Seven female Sprague Dawley rats, six weeks old, were housed 

randomly (2-3 per cage) and fed a standard rat chow diet with access to tap water at libitum. All 

rats were subject to bilateral ovariectomy (OVX) following baseline imaging (described in detail 

in the next section). In short, bilateral OVX was performed using a dorsal approach through 2 cm 

incisions from the second to fifth lumbar vertebrae ventral to the rector spinae muscles below the 

last rib. Sutures were placed around the cranial portion of the uterus and uterine vessels and the 

ovaries and oviducts were excised.  

To track longitudinal changes in bone following estrogen deficiency in the growing rats, 

in vivo imaging of the right proximal tibia included µCT, a conventional MRI sequence with the 

lowest achievable TE, and the experimental ZTE MBSWIFT MRI approach described in detail 

below. In vivo imaging occurred at baseline 48 hours prior to OVX procedure and at 2, 4, 10 and 

12 weeks post-OVX surgery. All rats were euthanized following the 12 week imaging timepoint. 

Successful OVX was confirmed by assuring uterine horn atrophy during necropsy. 
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In vivo Magnetic Resonance Imaging (MRI) 

In vivo high-field magnetic resonance imaging was performed with an Agilent 9.4T small 

animal imaging system (31 cm horizontal bore, Agilent Technologies Inc., Santa Clara, CA) 

running VnmrJ software (version 2.3 A) using a 33 mm diameter surface coil composed of 

materials (Teflon) not visible with 1H MRI even when using MBSWIFT. This ensures that no 

unwanted signal would fold into the field of view (FOV) from the coil. Rats were anesthetized 

and imaged under 2% isoflurane inhalation and right tibiae were immobilized and secured so that 

the region of the proximal tibial growth plate was within the coil iso-center and aligned in the 

same direction for maintenance of a specific flip angle (FA) and to avoid radiofrequency (RF) 

non-uniformity. 

A table of MRI scanning parameters for the study can be found in Table 5.1.  MBSWIFT 

images were acquired at three FAs in order to derive T1 relaxation times (using the variable flip 

angle method described in detail in the next section); one at the Ernst angle, one below and one 

above the Ernst angle. At each of the three FA, the following three saturation schemes were 

acquired; fat saturation, water saturation and no saturation. Fat saturation which was obtained by 

applying a hyperbolic secant (HS4)[289] saturation pulse of 1-kHz bandwidth centered at fat 

resonance frequency after every 16 views (MBSWIFT-FS). Water saturation was similarly 

applied at water resonance frequency (MBSWIFT-WS). Images without saturation were acquired 

with identical timing parameters (MBSWIFT-NS). The use of fat suppression with MBSWIFT 

(MBSWIFT-FS) removed almost all signal contributed by fat in the bone including the fatty 

bone marrow, whereas water saturation (MBSWIFT-WS) left only the signal arising from visible 

fat. All MBSWIFT acquisitions made use of 128 sidebands in order to achieve a bandwidth (bw) 

of 1395 Hz. 800 dummy projections were applied prior to the first spatial encoding and 32 

dummy projections were applied before each spiral to ensure steady state was achieved in all 
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MBSWIFT acquisitions. Additional acquisition parameters specific to MBSWIFT not found in 

Table 5.1 include: number of projections (np) = 2048; number of spirals (nspirals) = 5; number 

of views (nv) = 2250. A conventional 3D gradient echo (3DGE) sequence was acquired with no 

saturation scheme at the lowest achievable TE for comparison (scan time = 5 m 13 s). Each 

MBSWIFT acquisition (using the saturation scheme at a given FA) took 56 seconds and a 30 

second delay was observed between MBSWIFT acquisitions. In total nine MBSWIFT images 

and one 3DGE image were acquired for each animal at each imaging time point. Total in vivo 

scan time was 16 minutes 57 seconds per animal.  

The MBSWIFT images were reconstructed using gridding and iterative FISTA algorithm 

[411] CMRRpack written in VnmrJ (Agilent Technologies, Santa Clara, CA, USA), LabVIEW 

(National Instruments, Austin, TX, USA) and Matlab (MathWorks, Natick, MA, USA) (http:// 

www.cmrr.umn.edu/swift/). [412] Because of the 3D radial nature of MBSWIFT, the sequence is 

highly insensitive to motion so no motion correction was applied.  

In vivo Micro-Computed Tomography (µCT) 

In vivo µCT imaging (Bruker, Skyscan 1176) was acquired on the right proximal tibia at 

baseline (two days prior to OVX surgery) and week 2, 4, 10 and 12 post OVX surgery. Rats were 

imaged supine and the right tibia was secured to minimize motion. All in vivo images were 

obtained at an x-ray voltage of 70 Kv and current of 357 µA using a 1 mm aluminum filter to 

insure uniform beam hardening. Total scan time equaled 6 minutes 47 seconds. All scans were 

reconstructed at 35 μm isotropic voxel size using vendor-supplied software (NRecon, Bruker, 

Version 1.7.1.6.). 

http://www.cmrr.umn.edu/swift/
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In vivo Image Analysis 

All image analysis was performed using Matlab algorithms developed in-house. Full 

resolution µCT images (35 µm) were used to derive the trabecular and cortical segmentation 

masks for each animal (n=7) at each imaging timepoint (baseline, 2, 4, 10, 12 wk) and used as 

the standard volume of interest (VOI) for comparing µCT and MRI outcomes (described in the 

next section). Specifically, trabecular and cortical masks were created 2.5 mm distal to the 

growth plate and spanned 3 mm in the z-direction. The cortical mask included only cortical bone 

while the trabecular mask contained both marrow and trabecular bone encompassing the entire 

non-cortical region inside the tibia. Masks were contoured using an automated segmentation 

algorithm based on a pre-defined threshold to isolate the cortical mask and was followed by a set 

of morphological operations to extract the trabecular mask.  

Image Registration 

In order to quantify longitudinal changes following OVX in the cortical and tibial VOIs,  

the µCT images were registered to the MBSWIFT MR images for each rat at each time point 

using Elastix (version 4.8), an open-source registration algorithm with mutual information as an 

objective function and simplex as an optimizer (Figure 5.1).[413, 414]  The registration was 

automatically performed and assumed rigid-body geometry (only rotation and translation) of the 

right tibia. The resulting transforms derived from each registration [each animal (n=7 at each 

timepoint for a total of 42 registrations)] were applied to the μCT-derived trabecular and cortical 

segmentation masks (which created the VOIs) on the experimental MBSWIFT MRI images 

which were identical to the μCT VOIs to guide quantitative imaging analysis (Figure 5.1G). 

Signal to Noise Ratio (SNR) 

Signal to noise ratio (SNR) was used to compare signal efficiency between the 

conventional 3DGE MRI and the experimental MBSWIFT-NS and MBSWIFT-FS across 
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baseline in vivo acquisitions.  Using the right proximal tibia, mean SNR was calculated in 

manually segmented cortical, marrow and muscle regions beginning 3 mm distal from the 

growth plate and spanning 5 slices distally. SNR was calculated using Equation 5.1: 

Equation 5.1 

SNR=SImean/SDnoise 

 

where SImean is the mean signal in the region and SDnoise is the standard deviation of the 

background noise in the image.  

Bone Mineral Density (BMD) 

Trabecular and cortical volumetric BMD was calculated in the original μCT images 

reconstructed at 35 μm resolution and registered μCT (DS μCT) where resolution matched that 

of the MRI scans (156 μm). Scans were acquired with a known calcium hydroxyapatite density 

calibration phantom (CHA), a water phantom, and an air region. The mean attenuation 

coefficient of an air (μA) and water (μw) VOIs were determined and used to convert the image 

attenuation coefficient (μijk) to Hounsfield units (HU) by applying a linear transformation of the 

data, Equation 5.2. 

Equation 5.2 

HU= μ * M + B 

where 

M (or slope) = 1000/(μw - μA) 

B (or intercept) = (-M* μW) 
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Once in HU’s, the mean HU of the CHA phantom (HUCHA) VOI was calculated. The 

mean of the trabecular (HUTRAB) and cortical (HUCORT) VOIs was determined, from the vBMD 

for each was calculated using Equation 5.3. 

Equation 5.3 

vBMDTRAB or CORT = {
[𝐻𝑈𝑇𝑅𝐴𝐵 𝑜𝑟 𝐶𝑂𝑅𝑇×𝜌𝐶𝐻𝐴]

𝐻𝑈𝐶𝐻𝐴
} 

 

The value 1.64 mg/mm3 is the known concentration of CHA in the standard and HUCHA is the 

average HU of the CHA standard.  

Next, vBMD was derived in the MBSWIFT MRI images (MRI BMD) with the lowest 

flip angle (closest to pure proton density in MBSWIFT) and no saturation scheme using an 

analogous manner. MBSWIFT MRI scans were acquired with the same known calcium 

hydroxyapatite density calibration phantom, CHA, water phantom, and a region of air. An 

example MBSWIFT image of the CHA phantom can be seen in Figure 5.2. The mean gray scale 

index of air (GSA) and water (GSW) were determined. Images were converted to a HU value by 

applying the linear transform found in Equation 5.2 (using the mean MRI values for the air and 

water phantom). Using Equation 5.3, the volumetric BMD for the trabecular and cortical VOIs in 

the MRI were calculated.  

Finally, using MBSWIFT-NS MRI image with the lowest flip angle, we employed a 

method using MRI signal intensity to estimate BMD (SI MRI BMD) first described by Ho et al. 

for comparison of our direct HU MRI BMD approach.[324] Using the CHA standard and water 

phantom, SI MRI BMD can be estimated using the signal model, adapted from Ho et al., in 

Equation 5.4. 
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Equation 5.4 

SI BMDTRAB or CORT  = {1 − [
 𝑆𝑇𝑅𝐴𝐵 𝑜𝑟 𝐶𝑂𝑅𝑇 − 𝑆𝐶𝐻𝐴

𝑆𝑊𝐴𝑇𝐸𝑅−𝑆𝐶𝐻𝐴
]} × 𝜌𝐶𝐻𝐴 

 

 

where SI BMD is the estimated BMD based on signal intensity, STRAB or CORT is the average 

signal of the VOI of interest, SWATER is the average signal intensity for water and ρCHA is the 

known concentration of the CHA standard (1.64 mg/mm3). In the original equation described by 

Ho et al., SWATER can be any standardized region in which there is no mineral and there is a 

maximum signal in the region. In the original description, the authors used a region of 

subcutaneous fat; however, in our model of estrogen deficiency during growth we refrained from 

using an internal reference to ensure no unintended effect of estrogen deficiency in the fat region 

and instead chose a standardized water phantom.  

Sensitivity to water loss in cortical bone subject to sequential drying 

MBSWIFT sensitivity to changes in cortical water was evaluated under progressive 

dehydration using bone from three four month old female rats who had not undergone OVX. 

Immediately following sacrifice, bi-lateral tibia were removed and dissected free of soft tissue 

including removal of the periosteum. The proximal and distal ends were removed and marrow 

was flushed completely from the cortices. Using the left tibia (n=3), the prepared bone was 

patted dry and weighed in air with an electronic balance (Mettler-Toledo AE50, Columbus OH) 

at baseline. Dehydration was performed in an oven at 110°C while maintaining a constant 

vacuum.  Weight was acquired every 5 minutes for the first 100 minutes and every 30 minutes 

thereafter until full dehydration was reached. Full dehydration was marked by a plateau in 

weight for at least three consecutive observations 30 minutes apart. Weight and time were 
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plotted and dehydration time was determined for ¾ hydration, ½ hydration and full dehydration 

for each of the three tibiae calculated using the following equation: 

 

Equation 5.5 

%Water loss by weight = (W initial – W)/ W initial 

 

The initial bone wet weight is denoted by W initial and W is the weight taken throughout the 

dehydration protocol. 

Next, the contralateral tibias (n=3, right) were imaged ex vivo at baseline and following 

dehydration under oven/vacuum condition to reach ¾ hydration, ½ hydration and full 

dehydration using the imaging protocol described in detail above.  Specifically, following 

baseline image acquisition, tibiae entered the 110°C oven under vacuum for the amount of time 

each contralateral tibia required to reach ¾ dehydration. Tibia were immediately imaged, 

returned to oven and the process was repeated until ½ hydration and full dehydration had been 

imaged. To mitigate any effects of transmit and receive gain changes over image acquisition at 

multiple time-points; a water phantom was imaged, in addition to the experimental tibia, as an 

internal control for B1 field changes. Weights were taken before and after imaging to ensure 

bone did not alter weight due to further dehydration in air by more than 0.05% which has been 

used in previous reports. [268] Water fraction maps were calculated (described in the next 

section) in the cortical bone VOI to evaluate MBSWIFT’S sensitivity to cortical water content 

loss during sequential drying.  

Water Fraction and Fat Fraction MRI Maps 

Signal fat fraction (FF) maps and water fraction (WF) were derived from consecutive 

MBSWIFT MR images acquired with fat saturation (MBSWIFT-FS), with water saturation 
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(MBSWIFT-WS) and no saturation scheme (MBSWIFT-NS) each using a nominal flip angle in 

order to achieve near proton-density image and minimize T1 bias. The FF maps which 

distinguish signal arising from fat protons in the image, [415] were derived in Matlab from the 

following Equation 5.6: 

Equation 5.6 

FF= fat/(water + fat) * 100 

 

where fat is the magnitude of the fat image where water was saturated (MBSWIFT-WS) and 

water is the water image where fat was saturated (MBSWIFT-FS). Water fraction (WF), signal 

arising from water protons, were calculated using Equation 5.7: 

Equation 5.7 

WF= water/(water + fat) * 100 

MBSWIFT T1 Relaxation using the Variable Flip Angle (T1-VFA) Method 

T1 relaxation maps of the MBSWIFT-NS MRI using the variable flip angle method (T1-VFA) 

were fitted using a voxel-by-voxel linear fitting relative to E1 in  Equation 5.9 based on the 

theoretical signal intensity (Equation 5.8) described by Treier et al.[315]   

Equation 5.8 

S = M0 * (sin α * (1 - E1) * E2)/ (1 – E1 * cos α) 

 

S is the signal intensity that is a function of equilibrium longitudinal magnetization (M0), 

relaxation times T1, T2, echo time (TE), repetition time (TR) and the flip angle (FA, α). In the 

linear form, we get: 

Equation 5.9 

S/sin α = E1 * S/tan α + M0 * (1 - E 1) * E2 
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where 

E1=  exp(–TR/T1) 

E2 = exp(–TE/T2) 

 

E2, however, is set to 1 since the effective TE for MBSWIFT-NS acquisitions is 0. Since TR is 

kept constant and there is no input from TE, the measured signal changes from each FA is fit to a 

line characterized by slope α = E1 and intercept b= M0*(1-E1) and T1 values were calculated in 

the cortical and trabecular VOI. [315] 

Signal intensity normalization 

Signal normalization (SigNorm) of the MBSWIFT-NS images was performed in order to 

compare signal intensity changes due to OVX, longitudinally, across all animals in the study. 

Signal was normalized to a manually segmented region of the water phantom scanned during 

each acquisition. This fixed the water signal in the images to 1 and scaled the remaining signal 

(normalizing) in the image. The mean normalized signal intensity was calculated in the cortical 

and trabecular VOIs for analysis. 

Histology 

To support MRI outcomes, tibia from one additional rat euthanized at six weeks of age 

(no OVX, representing our baseline time point) and one rat from the 12 week post-OVX group 

were stained for marrow fat deposition using an Oil Red O- isopropanol method described by 

Lillie et al. [416] In short, tibia were removed free of soft tissue, fixed for 24 hours in 10% 

neutral buffered formalin, rinsed in tap water and embedded in OCT (Tissue-Tek; Sakura Finetek 

USA) in preparation for cryosectioning following standard laboratory procedure. Embedded non-

decalcified tibia were sectioned longitudinally at 5 µm thickness on a cryostat (Leica CM30505, 



 144 

Nussloch, Germany) where sections were adhered using the Kawamoto tape method. [417]  Oil 

Red O stained sections were imagined (brightfield) 20x magnification using a Nikon Eclipse Ni-

U microscope (Nikon Instruments Inc., Melville, NY).  

Statistical analysis 

For comparison of in vivo signal efficiency, one-way analysis of variance (ANOVA) with 

Bonferonni correction were used to compare SNR between conventional 3DGE MRI with the 

lowest achievable TE, MBSWIFT-NS and MBSWIFT-FS for cortical, marrow and muscle VOIs.  

Pearson correlation coefficients were used to test the linear association between μCT 

BMD measures at 35 µm resolution, DS μCT BMD measures at the resolution of the MRI (156 

µm), the direct MRI BMD and the SI MRI BMD approach. Pearson correlation coefficients were 

also calculated to compare the two MRI methods to obtain BMD. Simple linear regressions were 

used to determine the predictive value of the BMD methods against μCT BMD measures at 35 

µm resolution, our gold standard approach.  

To determine MBSWIFT’s sensitivity to changes in water during sequential drying 

during our dehydration protocol, a simple linear regression model was used to determine 

association between WF and gravimetric weight in the cortical bone. To evaluate the sensitivity 

of in vivo imaging outcomes to longitudinal changes in the cortical and trabecular VOIs 

following OVX, repeated measures ANOVA (RM-ANOVA) followed by Holm-Sidak’s multiple 

comparison test was used to detect differences in imaging outcome parameters compared to 

baseline (pre-OVX). Specifically, we tested the sensitivity of μCT BMD, MRI BMD, WF, 

SigNorm and T1 relaxation to detect changes following OVX in the cortical VOI. For the 

trabecular VOI, analysis was carried out using the following outcomes:  μCT BMD, MRI BMD, 

FF and SigNorm. Finally, a simple linear regression model was used to determine association 
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between these MRI derived outcomes compared to μCT BMD. Pearson correlation coefficients 

were also reported between each MRI outcome and μCT BMD. Graphpad Prism Version 8.0.2. 

was used for data analysis. In all cases, P ≤ 0.05 was considered statistically significant. 

Results 

MBSWIFT achieved significantly greater signal to noise ratio (SNR) in the tibia compared to 

3DGE MRI 

Representative consecutive in vivo MRI acquisitions of the rat proximal tibia using 

3DGE, MBSWIFT-NS, and MBSWIFT-FS acquired for the study (Figure 5.3A). For the 

cortical, marrow and muscle regions (Figure 5.3B,C) MBSWIFT-NS and MBSWIFT-FS 

achieved significantly greater SNR compared to 3DGE acquired with the lowest achievable TE. 

ANOVA results, including Bonferonni post-hoc analysis, can be appreciated in Figure 5.3D 

where significance is denoted by brackets and stars. Compared to the 3DGE MRI, we observed a 

+562% and +617% increase in SNR in the cortical bone using MBSWIFT-FS and MBSWIFT-

NS, respectively. Marrow SNR increased by +197% (MBSWIFT-FS) and +199% (MBSWIFT-

NS) and muscle SNR by +142% (MBSWIFT-FS) and +164% (MBSWIFT-NS) compared to the 

3DGE acquisition. There were no significant differences in SNR between MBSWIFT-NS and 

MBSWIFT-FS in any region. Representative SNR color map overlays in the cortical region for 

each sequence can be appreciated in Figure 5.4. 

MRI-derived BMD significantly correlated with μCT BMD measures 

We observed a significant positive linear correlation between all methods used to derive 

BMD in both the cortical and trabecular VOIs where r- and p-values can be appreciated in Table 

5.2. Specifically, cortical BMD derived from the full resolution μCT, our gold standard, 

demonstrated a strong linear correlation with each MRI BMD method (MRI BMD: r = 0.67; SI 

MRI BMD: r = 0.65). Correlations were statistically significant for trabecular BMD between 
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μCT and MRI however, the direct MRI approach had a slightly decreased r value (0.58) 

compared to the SI MRI BMD method (r=0.62). BMD derived between µCT methods (full 

resolution μCT vs. DS μCT) were highly correlated (cortical: r=0.97; trabecular: r=0.90) and 

BMD between MRI methods (MRI vs. SI MRI BMD) were highly correlated (cortical: r=0.98; 

trabecular: r=0.97) (Table 5.2). 

  Linear regressions between BMD acquired using DS μCT, MRI BMD and SI MRI BMD 

against results from the full resolution μCT (gold standard) for the cortical and trabecular VOI 

were significant in all cases (Figure 5.5). Y-intercepts for trabecular BMD were significantly 

different (p < 0.0001) and can be appreciated in Figure 5.5. 

Both MRI and μCT detected significant longitudinal increases in BMD  

We evaluated longitudinal changes in cortical and trabecular BMD measured using full 

resolution µCT and MBSWIFT MRI BMD using RM ANOVAs (Figure 5.6A-B). For cortical 

BMD, RM ANOVA results for each modality was significant (µCT: p<0.0001; MRI: p<0.0001). 

Cortical BMD increased from baseline following OVX and follow-up Holm-Sidek’s multiple 

comparison test determined this was significant by 2 weeks and was observed in both imaging 

modalities. For trabecular BMD, RM ANOVA results were significant for MRI (p<0.0001) but 

not for µCT (p=0.06). Trabecular BMD measured with MRI increased from baseline following 

OVX and was significantly different by 2 weeks post-OVX. Trabecular BMD measured using 

µCT was significantly increased from baseline by 10 weeks post-OVX.  

MBSWIFT Cortical water fraction was sensitive to sequential drying 

Correlations between ex vivo cortical MBSWIFT WF and water loss (measured as a % loss by 

volume) during sequential drying under oven/vacuum (Figure 5.7). As WF decreased, percent 

water loss by volume increased; this strong negative correlation was significant between the two 
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measures (R=-0.98; p=0.01). Results indicate MBSWIFT WF is highly sensitive cortical water 

loss.  

Cortical water fraction significantly decreased by 10 weeks and was negatively correlated with 

BMD 

While BMD measures significantly increased in our model (likely as a result of growth 

overcoming estrogen-deficiency changes), we evaluated the utility of WF and SigNorm to detect 

additional bone quality changes in the cortical bone consistent with OVX. The longitudinal 

effects of OVX on cortical WF and SigNorm can be appreciated in Figure 5.8A. Both cortical 

WF and SigNorm significantly decreased longitudinally from baseline following OVX (RM 

ANOVA WF: p<0.0001; SigNorm: p=0.02). Post hoc testing revealed that the decrease in 

cortical WF and SigNorm was significantly different from baseline by 10 weeks post-OVX.  

Associations between cortical WF and BMD and cortical SigNorm and BMD can 

appreciated in Figure 5.8B and Pearson’s correlation coefficients can be found in Table 5.3. 

Cortical WF negatively correlated with cortical µCT BMD (r=-0.6; p=0.0002). While cortical 

SigNorm decreased marginally with increasing cortical BMD, this observation was not 

statistically significant (r=-0.32; p=0.06).  

Prior studies using SNR as a biological outcome derived from conventional SWIFT in 

cortical bone following diabetes onset detected significant changes in SNR prior to change in 

BMD between controls.[297] The authors hypothesized that changing signal was due to changes 

in cortical water. As such, we evaluated the relationship between cortical SigNorm and WF and 

did not observe a relationship (r=0.09; p=0.6). Results suggest that changes in water do not fully 

explain changes in SigNorm over time following OVX indicating another pool of protons, 

perhaps collagen-related, may be contributing to changes in SigNorm. 
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Marrow fat fraction significantly increased by 10 weeks post OVX 

Marrow fat measured as the FF in the trabecular VOI increased longitudinally following 

OVX (Figure 5.9A). RM ANOVA was significant (p<0.0001) and Holm’s-Sidek post hoc 

determined that FF significantly increased from baseline by 10 weeks post-OVX. Undecalcified 

cryosections stained with Oil Red O support the finding where increased marrow fat deposition 

is observed in 12 week post-OVX sections (Figure 5.9C). While FF increased following OVX, 

normalized signal intensity values, SigNorm, in the trabecular VOI were relatively unchanged 

over time and no significant differences measured by the RM ANOVA was observed (p=0.97). 

There were no statistical associations between FF and trabecular BMD or between SigNorm and 

BMD (Figure 5.9B). Longitudinal changes in marrow fat from baseline through 12 weeks post-

OVX for one rat can qualitatively be appreciated in Figure 5.9D. 

Cortical matrix T1 relaxation time decreased significantly by 10 weeks post-OVX 

Mean T1 relaxation measured using VFA-MBSWIFT increased two weeks following 

OVX and then began to decrease over time through the 12 week post-OVX timepoint which can 

be appreciated in Figure 5.10A. RM ANOVA results comparing T1 relaxation times 

longitudinally were significant (p=0.0005) and Holm’s-Sidek post hoc test for multiple 

comparisons determined that T1 relaxation was significantly decreased from baseline by 10 

weeks post-OVX. There was an observed negative relationship between T1 relaxation times and 

BMD but this association was not significant (p=0.08). There was no statistical relationship 

between T1 relaxation time and cortical WF (Figure 5.10B, Table 5.3). The decrease in cortical 

matrix T1 relaxation time longitudinally following OVX can qualitatively be appreciated in 

Figure 5.10C. 
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Discussion 

Because the high atomic mass number associated with calcium (Z=20) gives rise to a 

higher photoelectric absorption compared to that of soft tissue, there is a near ubiquitous reliance 

on ionizing x-ray based techniques to visualize the mineral phase of bone. [125] As a result, 

characterization of disease progression and treatment efficacy for metabolic bone diseases is 

complicated by the lack of imaging modality able to safely monitor material-level and 

biochemical changes in vivo. To improve upon x-ray based BMD, we tested the efficacy of a 

novel 3D ZTE-MRI approach, MBSWIFT, in an estrogen-deficient (OVX) model of 

osteoporosis during growth. This provided a rapidly changing system to evaluate our proposed 

MRI bone biomarkers of cortical WF, cortical matrix T1 relaxation times, marrow FF, and 

trabecular and cortical normalized signal intensity (SigNorm) in addition to a proposed direct 

measure of BMD using MBSWIFT. MBSWIFT MRI-derived BMD correlated significantly with 

BMD measured using the gold standard, µCT, in the trabecular and cortical regions which 

significantly increased longitudinally over the duration of the study. Growth appeared to 

overcome estrogen-deficient changes in bone mass in our rat model yet MBSWIFT MRI 

detected significant changes consistent with estrogen deficiency by 10 weeks in cortical WF, 

cortical matrix organization (T1 relaxation times) and marrow FF. Further, MBSWIFT derived 

cortical WF was strongly correlated to water loss during sequential drying indicating the 

technique is highly sensitive to small changes in cortical water. Findings point to MBSWIFT 

MRI’s ability to quantify BMD in good agreement with the gold standard µCT, and ability to 

detect biochemical and material-level alterations consistent with disease independent of the 

mineral phase suggesting, its value for bone imaging. 

MBSWIFT MRI was able to achieve significantly greater SNR in the bone compared to 

conventional 3DGE using the lowest achievable TE. The greatest magnitude of signal 
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improvement compared to 3DGE was in the cortical bone where a +562% and +617% increase 

in SNR was observed using MBSWIFT-NS and MBSWIFT-FS, respectively. This increase 

highlights the immense improvement in signal efficiency achievable in not only the extremely 

short T2 cortical bone, but the concurrent signal improvement in the surrounding muscle and 

marrow achieved in vivo. 

BMD is used clinically to classify the onset and extent of osteoporosis [418] and as a pre-

clinical endpoint in osteoporosis related research. [419] Because MBSWIFT is able to achieve 

TE=0, we hypothesized that it would be sensitive to the mineral phase of bone which has a short 

T2 ~ 10 µs,[40] and therefore could directly quantify BMD without the use of harmful ionizing 

radiation. We imaged a CHA standard and water along the rat tibia using MBSWIFT, converted 

the images to HU and quantified trabecular and cortical BMD. We compared this to the high 

resolution µCT (35 µm, the gold standard) in addition to DS µCT and SI MRI BMD based on 

signal intensity in the MRI images. [324] MBSWIFT BMD significantly correlated to both 

trabecular and cortical BMD acquired using the gold standard approach demonstrating its 

promise to resolve changes in BMD in good agreement with µCT.  

MBSWIFT BMD was able to significantly detect longitudinal increases in cortical bone 

comparable to BMD measured by µCT. However, for the trabecular region, MRI BMD detected 

a significant increase by 2 weeks while µCT was not significantly elevated from baseline until 

week 10. In aged models of estrogen deficiency (OVX) bone loss, bone loss is greater and occurs 

more rapidly in trabecular bone compared to cortical bone. [420, 421] We believe the estrogen-

related changes in the trabecular region may have been stronger therefore growth induced 

increases in BMD did not overcome estrogen deficiency bone loss until 10 weeks post-OVX 

(µCT). While MBSWIFT demonstrated significant correlations with µCT BMD in the trabecular 
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region, the correlations were not 1:1 and the method in which signal is captured (by exciting 

protons) is different from attenuation of the tissue. Inspection of the regression plots in the 

trabecular VOI show that both MRI-derived approaches appear to overestimate BMD compared 

to µCT and there was almost no difference between MRI approaches to derive BMD. The 

contribution of signal from the marrow (fat and water) may have impeded the BMD values in the 

region. In contrast, µCT trabecular VOI shows tissue attenuation for the trabeculae and little 

signal contributions from the marrow and water. As such, the increased BMD values for the 

trabecular region may have been confounded by the increased dynamic range of the MRI image 

compared to that achieved using µCT. Even so, we believe the statistical correlations in both 

VOIs and sensitivity to longitudinal change, especially in the cortical VOI, support the utility of 

MBSWIFT to characterize the mineral phase of bone, in vivo, without the use of ionizing 

radiation. 

In human subjects, Li et al. demonstrated the utility of UTE MRI-derived bulk water 

(total) measures at the mid diaphyseal of the tibia where positive correlations were observed with 

age and negative correlations with BMD.[271] Using MBSWIFT to quantify water fraction in 

the cortical region of the rat proximal tibia, we also observed a significant negative correlation 

between cortical water and BMD measured using µCT. While both bound and free water pools 

are contributing to the signal we are capturing in the MBSWIFT water fraction maps, the bone 

has a larger portion of water existing in the bound form located in matrix [335] found either 

loosely bound to collagen [40] or more tightly to the mineral. [422] Further, Du et al. reported 

that UTE MRI signal in human cortical bone was greater than 77.6% attributable to the bound 

water pool [423] therefore it is likely that the greater contribution of our measured water signal 

was from bound water. Using a solid-state NMR spectroscopy technique, Cao et al. suggested 
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that protons bound to the matrix more closely relate to the matrix composition and can infer 

mineral density of bone. [424] The authors used a solid-state approach to achieve zero-TE where 

the most molecularly immobile components could be imaged including signal in the solid bone 

matrix (where authors used suppression of fluid signals, similar to our study, to exploit this). 

With MBSWIFT MRI, time-domain signals are acquired during a swept RF excitation in a time-

shared manner thus achieving zero TE and there the technique has the ability to capture all 

protons in the bone including matrix bound water. [289] Bound water has shown to decrease 

with age in rats [425] and in human cadaveric femurs [39] and decrease in rats with high bone 

turnover rates in a model of chronic kidney disease.[426]  Bone turnover rate is increased both 

during aging and with osteoporosis and can lead to deterioration of bone microarchitecture 

affecting bone quality[427] which may be observed independent of BMD. In the present study, 

we observed a significant decrease in cortical water by 10 weeks post-OVX, consistent with 

increased bone turnover due to estrogen deficiency, even while BMD continued to increase.  

Free pore water concentration on the other hand may be a surrogate to measure cortical 

porosity. [39] Li et al. applied a saturation recovery scheme to selectively quantify pore water in 

ex vivo cadaveric tibia specimens and demonstrated that UTE MRI demonstrated strong positive 

correlations with both age and µCT porosity.[428] It has been previously shown that porosity 

increases as a result of age and this change accounts for over 70% of reduction of strength in 

bone. [248, 429] Using 1H NMR, Horch et al. observed that bound water positively correlated 

with peak stress while free water (pore) negatively correlated using human cortical bone 

specimens. [209] The ability to separate these water pools using in vivo acquisitions is desirable 

and work has been done using bi-component analysis of cortical water pools acquired by UTE 

both preclinically and in humans at clinical field strengths. [270, 335, 430] In the present study, 
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we were limited in this analysis because MBSWIFT is inherently only able to capture TE=0; thus 

the curve fitting technique used to derive the bi-component water populations using variable 

TE’s is not feasible. Future work using MBSWIFT with saturation schemes at the pore and 

bound peak should be applied to derive water contributions from each pool. 

Traditional x-ray-based approaches also fall short in characterizing bone marrow fat. 

There is a strong relationship between increased marrow fat observed in patient biopsies with 

osteoporosis [214, 431, 432] suggesting its promise as an imaging target for the disease. 

Conventional MRI has demonstrated utility in quantifying marrow fat in vivo,[433-435] but 

conventional MRI is unable to provide additive information regarding the surrounding mineral 

and other material-level properties in bone. In the present study using MBSWIFT, we detected 

an increase in marrow FF longitudinally following OVX. This increase was statistically 

significant from baseline by 10 weeks supportive of clinical experience of increased bone 

marrow fat in osteoporotic bone samples. [214, 431, 432] Prior studies have suggested that fatty 

marrow is associated with reduced trabecular bone mass. Studies have demonstrated a negative 

relationship between lower bone density measured by DXA and higher fat content measured by 

conventional MRI, [434-437] where it has been suggested that low BMD may result in increased 

differentiation of mesenchymal stem cells to adipocytes instead of osteoblasts. [438, 439] 

However, in our study we did not observe a statistical relationship between increasing FF and 

µCT BMD in the growing rats following OVX (r=0.27; p=0.21). It has been reported that both 

DXA and CT are vulnerable to incorrect reading of BMD in the presence of large increases in 

marrow fat. [440, 441] Even so, we reason the lack of association was likely more attributable to 

the continued growth of the animal influencing the increased BMD in our study. We believe the 

detectable increase in FF observed independent of increasing BMD in our growing animals 
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following OVX highlights the discriminating power of MBSWIFT measured FF, supported by 

histology (Figure 5.9) suggesting its additive utility as an imaging biomarker of increased bone 

turnover due to disease and estrogen deficiency. 

T1 relaxation times hold promise as a quantitative imaging biomarker based on tissue-

specific relaxation properties because T1 reflects the energy flow between spins and their local 

microenvironment. T1 relaxation times have shown to be sensitive to small variations in healthy 

tissue [308, 309] and more importantly, is able to distinguish changes due to disease. [309, 310, 

312, 442] Until the advent of UTE and ZTE MRI, T1 relaxation times of short T2 species such as 

bone has been unattainable. Since the description of SWIFT, Wang et al. described its utility of 

conventional SWIFT using the variable flip angle (VFA) method to measure T1 relaxation times 

in aqueous suspensions of iron oxide nanoparticle in excellent agreement with spectroscopic 

measures [316] and others have applied ex vivo VFA SWIFT to quantify T1 relaxation times in 

osteochondral specimens.[317] We applied the VFA method using MBSWIFT to reduce 

susceptibility artifact at the cortical borders where we calculated volumetric T1 relaxation times 

in vivo. We observed the cortical matrix T1 relaxation times increased immediately after baseline 

and then decreased longitudinally and were statistically different from baseline by 10 weeks. 

While cortical water also decreased longitudinally in the study, there was no statistical 

association between decreasing T1 and decreasing cortical WF. Interestingly, while not 

statistically significant, T1 relaxation time decreased with increasing BMD. Nissi et al. observed 

that T1 relaxation times decreased closer to the more mineralized region in the cartilage bone 

interface reflecting the higher sensitivity to short T2 spins located at the cartilage/bone interface. 

[317] Using 3D solid state phosphorus-31 NMR projection imaging ,Wu et al. reported that 

subtle molecular or crystalline structural differences in the mineral were reflected as large 
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changes in T1 highlighting the discriminating power of the parameter to its local 

environment.[313]  We hypothesize that the significant decrease in VFA MBSWIFT T1 reflects 

its ability to directly image the changing bone matrix composition. This included an increase in 

mineral density and changes in the collagen environment including cross link concentration and 

collagen morphology both of which are observed in osteoporosis [409, 443, 444]  and would 

affect the mobility of protons measured during longitudinal relaxation (T1) resulting in shorter T1 

relaxation times. 

 SNR itself has been used as a biological outcome measure in studies applying regular 

SWIFT, acquired ex vivo, in cortical bone. Sukenari and Minami et al. each determined SNR was 

positively correlated with new bone area measured using histomorphometry in rats with diabetes 

and following OVX and weakly correlated to increasing BMD following OVX. [296, 297] For 

Sukenari et al., 12 week old rats were subject to OVX or SHAM and cortical BMD was 

measured using DXA; both OVX and SHAM animals increased cortical BMD through 12 weeks 

but increases were less for OVX animals. The authors evaluated correlations between cortical 

SNR and BMD and determined that it was significant but weakly positive (p=0.04, R2 =0.066) 

suggesting that SNR detected additional bone quality measures not captured by BMD but the 

authors did not measure any additional SWIFT outcomes.[297] Using 8 week old male rats, 

Minami et al. induced diabetes via streptozotocin injection and monitored BMD changes using 

µCT compared to control animals and observed that BMD increased longitudinally in both 

groups but lesser so in diabetic rats. [297] While this difference was not detected until 8 weeks, 

SWIFT SNR detected a significant difference from controls by two weeks. Results were 

promising yet additional SWIFT measures were not evaluated to determine the source of this 

change (water, collagen) and correlations between SNR and BMD were not evaluated. 
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 While we did not use SNR as a biological outcome in our study, we did use a signal 

intensity normalization (SigNorm) method to evaluate MBSWIFT signal changes following 

OVX. Cortical SigNorm significantly decreased by 10 weeks following OVX and demonstrated 

a negative non-significant relationship with the increasing BMD in our study (p=0.06, R=-0.32). 

While Sukenari and Minami suggested the source of their decreased signal was due to changes in 

water content following OVX and diabetes onset, respectively, when we evaluated the 

relationship between SigNorm and WF, we did not observe a relationship (p=0.59, R=0.09). We 

believe the results suggest a different contributing proton pool is responsible for this decrease in 

signal such as perhaps collagen which should be directly evaluated in future studies. 

Conclusions 

There are currently no accepted approaches to measure bone quality, non-invasively, in 

the clinical setting. [127]  We believe MBSWIFT may hold enormous pre-clinical and clinical 

potential by overcoming MRI’s inability to directly image the mineral phase of bone in vivo 

while simultaneously providing quantitative bone quality measures. MBSWIFT significantly 

detected longitudinal increases in BMD comparable to BMD measured by µCT and significantly 

correlated to BMD acquired using the gold standard approach. Results support the utility of 

MBSWIFT to characterize the mineral phase of bone, longitudinally, without ionizing radiation. 

While BMD increased following OVX, likely as a result of growth, the proposed MBSWFIT 

MRI biomarkers targeting additional measures of bone quality significantly detected changes in 

the bone at 10 weeks that were consistent with estrogen-deficiency following OVX without the 

use of harmful ionizing radiation. Results support the promise of ZTE MRI techniques to non-

invasively image bone in vivo. 
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Figures 

 

Figure 5.1 Image post-processing workflow.  

A) Representative coronal slices from scans performed using in vivo Multi-Band SWeep Imaging with 

Fourier Transformation MRI (MBSWIFT, 156 μm resolution) and μCT (35 μm resolution) of the right 

proximal tibia acquired at baseline and post ovariectomy (OVX). B) Trabecular and cortical segmentation 

masks were derived using μCT images at each time point. Masks began 2.5 mm distal from the growth 

plate spanning 3 mm distally and created the volume of interest (VOI) for analysis. Cortical masks 

included only cortical bone and trabecular masks contained both marrow and trabecular bone 

encompassing the entire non-cortical region inside the tibia. C) μCT was registered to the experimental 

MBSWIFT MRI assuming a rigid body transformation and checkerboard images of the resultant 

registration were used as quality control for accuracy.  D) Registered μCT image (156 μm) was used for 

further analysis. E) The transform from each registration for each animal (n=7 animals at 6 time points for 

a total of 42 registrations) was applied to corresponding trabecular and cortical VOIs. F) Transformed 

VOIs were used across imaging modalities to guide image analysis (G). Total registration time ~ 1 minute 

and 3 seconds and VOI transformation took ~47 seconds. 
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Figure 5.2: Calcium hydroxyapatite phantom acquired using MBSWIFT MRI.  

Example image of the calcium hydroxyapatite (HA) phantom in water acquired using MBSWIFT MRI 

with no saturation scheme. Calibration phantom and a separate water phantom were acquired under the 

same experimental parameters. Regions of water and air were used to convert the MR images to 

Hounsfield units and the HA phantom was used to derive bone mineral density. MBSWIFT= Multi-Band 

SWeep Imaging with Fourier Transformation. 
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Figure 5.3: In vivo MRI signal to noise ratio (SNR) measures are improved with MBSWIFT.  

A) We compared the signal efficiency using SNR between the conventional 3D gradient echo (3DGE, 

top) with the lowest achievable TE, Multi-Band SWeep Imaging with Fourier Transformation with no 

saturation scheme (MBSWIFT-NS, middle), and MBSWIFT with fat suppression (MBSWIFT-FS). B) 

SNR was measures were taken in the right tibia beginning 3 mm distal from the growth plate and spanned 

5 consecutive slices distally. C) SNR mean ± standard deviation was reported using manually-drawn 

regions in the muscle, cortical and marrow (outlined in pink).  D) Results from ANOVA with Bonferonni 

correction are depicted; ANOVA p-values are reported and bolded when significance was detected and 

bracket and stars indicate significant post-hoc differences. In all cases, MBSWIFT achieved significantly 

greater SNR in each region. There were no significant differences in SNR between MBSWIFT-NS and 

MBSWIFT-FS. Significance was set at p ≤ 0.05.  
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Figure 5.4: Example signal to noise ratio (SNR) colormap overlay between MRI sequences for one 

rat.  

Cortical and trabecular SNR colormaps overlaid onto µCT image for the 3D gradient echo (3DGE) MRI 

acquired with the lowest achievable TE, Multi-Band SWeep Imaging with Fourier Transformation with 

no saturation (MBSWIFT-NS) and fat suppression (MBSWIFT-FS) demonstrate the signal efficiency 

gained in each VOI using 3D zero time MRI approach. Example in vivo acquisitions from one rat at 

baseline (axial view). Overlay colormap range: 0-40 SNR. 
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Figure 5.5: Relationship between MRI-derived bone mineral density (BMD) and μCT BMD (gold 

standard).  

The x-axis is BMD calculated from the full resolution μCT and on the y-axis is BMD derived from the 

following experimental approaches: 1) downsampled μCT (DS μCT BMD, blue), 2) MBSWIFT MRI 

converted to Hounsfield units using a calcium hydroxyapatite phantom (MRI BMD, red) and 3) 

MBSWIFT using the signal intensity method described by Ho et al. (SI MRI BMD, green). The 

relationship between μCT derived BMD and experimentally derived BMD (MRI, SI MRI and DS μCT) 

was statistically significant in both the cortical (A) and trabecular (B) VOIs in all cases (denoted by 

bolded p-values next to the respective regression equation on the plot). The y-intercept between BMD 

methods in the trabecular VOI were statistically different. For each BMD method, regression lines (solid) 

and coefficients (dotted with shaded fill) are shown with the 95% confidence intervals. Significance was 

set at p ≤ 0.05. MBSWIFT = Multi-Band SWeep Imaging with Fourier Transformation where the no 

suppression acquisition was used for calculation. R values from correlations can be found in Table 5.2. 
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Figure 5.6: Longitudinal in vivo cortical and trabecular bone mineral density (BMD).  

Cortical and trabecular BMD (mean ± SD) measured at the proximal tibia at baseline through 12 weeks 

post ovariectomy (OVX) in seven growing rats using µCT (A) and MBSWIFT MRI (B). For A-B, BMD 

was calculated by converting images to Hounsfield units and deriving BMD using calcium hydroxyapatite 

standard (CHA). Repeated measures ANOVA results were significant in cortical µCT BMD (p<0.0001), 

and cortical and trabecular MRI BMD (p<0.0001, p<0.0001, respectively) but not for trabecular μCT 

BMD (p=0.06). Holm-Sidak’s multiple comparison test was used to detect differences in BMD compared 

to baseline (pre-OVX) and significance is denoted by brackets and stars. Significance was set at p ≤ 0.05. 

MBSWIFT = Multi-Band SWeep Imaging with Fourier Transformation where the no suppression 

acquisition was used for calculation. 
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Figure 5.7: MBSWIFT WF is sensitive to cortical water loss during sequential drying. 

As MBSWIFT MRI water fraction (WF) decreased, percent water loss by volume increased; this strong 

negative correlation was significant between the two measures (R=-0.98; p=0.01). Results indicate 

MBSWIFT WF is highly sensitive cortical water loss. MBSWIFT= multi-band SWeep Imaging with 

Fourier Transformation.  
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Figure 5.8: Longitudinal cortical MRI water fraction and normalized signal outcomes following 

OVX and their relationship with BMD.  

A) In vivo coronal water fraction (WF) images with cortical VOI overlay at baseline through 12 weeks 

post-OVX. Cortical WF decreased longitudinally following OVX (reaching significance from baseline by 

10 weeks) which can be appreciated by the loss of signal within the cortical region. B) Both cortical WF 

and normalized signal (SigNorm) decreased following OVX reaching significance from baseline by 10 

weeks post-OVX (denoted by brackets and stars). C) Cortical WF and BMD were significantly negatively 

correlated. Cortical BMD and SigNorm demonstrated a negative non-significant association. D) Measures 

of cortical WF and SigNorm were not associated suggesting protons other than water contribute to the 

observed decrease in signal intensity measured using SigNorm. This would be feasible due to 

MBSWIFT’s ability to achieve TE=0 thus is sensitive to all protons in the matrix. Significance was set at 

p ≤ 0.05. Representative longitudinal WF images are from one rat. MBSWIFT= Multi-Band SWeep 

Imaging with Fourier Transformation; VOI=volume of interest.  
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Figure 5.9: Longitudinal changes in trabecular MRI marrow fat fraction and normalized signal 

following OVX were unrelated to changes in BMD.  

A) In vivo coronal fat fraction (FF) images with trabecular VOI overlay at baseline through 12 weeks 

post-OVX. FF increased longitudinally following OVX (reaching significance from baseline by 10 

weeks) which can be appreciated by the increasing signal (white) within the trabecular region over time. 

B) FF and normalized signal (SigNorm) in the trabecular VOI plotted as mean ± SD measured at the 

proximal tibia at baseline through 12 weeks post ovariectomy (OVX). FF increased following OVX; RM 

ANOVA was significant and follow-up post hoc indicated that the measure was significantly increased 

from baseline by 10 weeks post-OVX.  There were no significant longitudinal changes observed in 

SigNorm. C) There was no statistical association between FF and trabecular BMD and between trabecular 

BMD and SigNorm. D) Bright field images of tibial marrow region stained using Oil Red O at baseline 

(top, no OVX) and following 12-weeks post OVX (bottom) depict increases in lipid deposit (red) 

following OVX. Significance was set at p ≤ 0.05. Representative longitudinal FF images are from one rat. 

MBSWIFT= Multi-Band SWeep Imaging with Fourier Transformation; VOI=volume of interest.  
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Figure 5.10: Cortical matrix T1 relaxation times decrease significantly following OVX in growing 

rats. 

A) Representative axial tibia MBSWIFT images with cortical T1 relaxation map overlay for one rat at 

baseline through 12 weeks post-OVX. B) Mean ± SD of T1 relaxation times in the cortical VOI measured 

using VFA-MBSWIFT at baseline through 12 weeks post-OVX (n=7). RM ANOVA with a Holm-Sidak 

post-hoc test determined T1 relaxation times significantly decreased from baseline by 10 weeks post-OVX 

(brackets and stars). C) Regression plots show associations between cortical µCT-derived BMD and 

cortical T1 relaxation (right) and between cortical water fraction (WF) and T1 relaxation (left). Cortical 

BMD and T1 relaxation demonstrated a negative relationship which was not significant. There was no 

statistical association between T1 relaxation and WF. In all cases, p ≤ 0.05. VFA-MBSWIFT= variable 

flip angle Multi-Band SWeep Imaging with Fourier Transformation MRI (used to acquire volumetric T1 

relaxation time measures); VOI= volume of interest; BMD= bone mineral density; WF = water fraction; 

OVX= ovariectomy.  
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Tables 

Table 5.1:MRI scan parameters. 

Sequence Saturation 

Flip 

Angle (°) 

TE 

(ms) 

TR 

(ms) 

Ave Matrix  

FOV 

(mm3) 

Voxel Size 

(µm3) 

Time 

3DGE No Saturation 20 2.41 4.78 1 256x256x256 40 156 5 m 13 s 

MBSWIFT No Saturation 2 ~0 3.37 1 256x256x256 40 156 56 s   

 

  4 ~0 3.37 1 256x256x256 40 156 56 s   

    6 ~0 3.37 1 256x256x256 40 156 56 s   

MBSWIFT Fat Saturation 2 ~0 3.37 1 256x256x256 40 156 56 s   

    4 ~0 3.37 1 256x256x256 40 156 56 s   

    6 ~0 3.37 1 256x256x256 40 156 56 s   

MBSWIFT Water Saturation 2 ~0 3.37 1 256x256x256 40 156 56 s   

 

  4 ~0 3.37 1 256x256x256 40 156 56 s   

    6 ~0 3.37 1 256x256x256 40 156 56 s   

TE= echo time; TR= repetition time; Ave= number of averages; FOV= field of view. Resolution was isotropic in all 

cases. 
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Table 5.2: Summary of Pearson Correlations between imaging modalities used to obtain bone mineral 

density (BMD). 

VOI Imaging Method for BMD 

Correlation 

Coefficient [r] 

P-value 

Cortical μCT vs. DS μCT 0.97 <0.0001 

  μCT vs. MRI BMD 0.67 <0.0001 

  μCT vs. SI MRI BMD 0.65 <0.0001 

  MRI BMD vs. SI MRI BMD 0.98 <0.0001 

Trabecular μCT vs. DS μCT 0.73 <0.0001 

  μCT vs. MRI BMD 0.58 <0.0001 

  μCT vs. SI MRI BMD 0.62 <0.0001 

  MRI BMD vs. SI MRI BMD 0.97 <0.0001 

VOI= volume of interest; DS= down sampled; SI= signal intensity; BMD= bone mineral density 
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Table 5.3: Summary of Pearson Correlations between MBSWIFT MRI outcomes and μCT derived BMD. 

VOI μCT BMD vs. SWIFT MRI Outcome 

Correlation 

Coefficient [r] 

P-value 

Cortical μCT BMD vs. WF -0.6 0.0002 

  μCT BMD vs. SigNorm -0.32 0.066 

  μCT BMD vs. T1 Relaxation -0.3 0.08 

 Trabecular μCT BMD vs. FF 0.27 0.21 

  μCT BMD vs. SigNorm 0.04 0.82 

VOI=Volume of interest; BMD=bone mineral density; WF=water fraction; SigNorm=normalized signal 

intensity; FF=fat fraction. 
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Chapter 6 Conclusions 

This thesis established a novel model to understand individual patient treatment response 

to an emerging therapeutic, sclerostin antibody (SclAb) prior to clinical exposure in osteogenesis 

imperfecta (OI) and described an alternative in vivo imaging strategy to quantify matrix-level 

and biochemical changes characteristic of OI and other bone diseases without the use of harmful 

ionizing radiation.   

Based on the findings from these studies, the following conclusions, limitations and 

future studies are presented: 

Gene Expression Profile and Acute Gene Expression Response to Sclerostin Inhibition in 

Pediatric Osteogenesis Imperfecta Bone 

Conclusions 

• Gene expression of Wnt and Wnt-related targets varied among untreated OI patient bone 

emphasizing the hallmark heterogeneity of the disease.  

• SclAb induces downstream Wnt targets WISP1 and TWIST1 and a compensatory response 

in Wnt inhibitors SOST and DKK1 in pediatric OI bone tissue. This observation is 

consistent with previous reports of an acute compensatory upregulation of similar factors 

in pre-clinical osteoporosis models and female Balb/c mice treated with SclAb. 

• While all patients demonstrated an upregulation in osteoblast and osteoblast progenitor 

markers with treatment, the response was heterogeneous among individual patients. 

• We observed a relationship between untreated gene expression levels and magnitude of 

treatment response for osteoblast and osteoblast precursors. Patients with low untreated 

expression demonstrated the greatest magnitude of upregulation with treatment while 

patients with higher untreated expression demonstrated a smaller upregulation with 

treatment. 
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• When patients were grouped by Sillence type, response varied by clinical phenotype with 

Type III patients demonstrating the greatest upregulation in osteoblast-related markers. 

• In vivo implanted OI patient bone tissue demonstrated a bone forming response to SclAb 

with the greatest response from trabecular-derived OI tissue. 

 

We conclude that understanding patients’ genetic, cellular, and morphological bone 

phenotypes may play a crucial role in predicting treatment response, thus aiding clinical decision 

making for pharmacological intervention to address fragility in OI.  

Limitations 

We recognize several limitations to the present study. We evaluated expression levels in 

OI patient bone tissue removed during corrective orthopaedic procedure using qPCR to quantify 

a panel of key genes involved in bone metabolism. We are therefore, evaluating a specific point 

in time for these patients; it is both feasible and likely that expression levels will continue to 

change with growth and in consequence to environmental factors in this pediatric population. We 

were unable to standardize bone harvest site in the present study; instead, this rare pediatric bone 

tissue was taken as surgical waste from patients undergoing corrective orthopaedic procedure. As 

indication for surgery varied across patients, so did the site of bone harvest. We did consider 

bone morphological type (trabecular- or cortical-derived) in our evaluation of treatment 

response. As such, it is feasible that expression levels varied by bone site within the same patient 

and site variation likely played a role in the untreated expression levels observed between OI 

patients and the magnitude of treatment response. Even so we believe this variation was not a 

critical factor when evaluating treatment response within the patient where treatment response 

was normalized to that patient’s untreated gene expression. The amount of nucleic acid 

concentration, which was dependent on the amount of bone tissue harvested, limited the number 
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of genes we were able to evaluate using TaqMan qPCR in some patients. This also inhibited the 

number of conditions we were able to evaluate; as such future studies should include a baseline 

or “time 0” condition where bone removed from the patient is immediately processed for qPCR. 

This should also be performed because the act of culturing the bone itself may have altered gene 

expression; culture lacks all the growth factors inherent to in vivo and therefore may have 

influenced untreated expression.  

Future Studies 

In the present study, did not use a humanized form of SclAb to treat the OI patient bone. 

Instead, OI bone was treated using a pre-clinical version of SclAb (SclAb VI, Amgen , Thousand 

Oaks, CA) typically used in murine studies. Even so, we observed increases in markers of bone 

formation across all human bone tissue above untreated levels indicative of a bone forming 

response to treatment. Future studies could compare the efficiency of humanized SclAb (such as 

romosozumab/blosozumab) with the murine SclAb used in the present study to determine if 

magnitude of gene expression response is altered between formulations. If efficiency was 

increased using the humanized formulation, this would inform future studies applying the 

proposed methodology to quantify patient response. 

While our focus was on an abbreviated panel of genes (a key panel we identified from 

prior pre-clinical work using SclAb), future studies should build on this work through RNA-

sequencing (RNA-seq) of the treated rare OI tissue. RNA-seq provides more data overall and 

makes it possible to detect previously unknown transcripts, isoforms, junctions and evaluate 

genes in pathways where the user has little baseline knowledge on location that may be 

implicated by treatment. [445, 446] 
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A Xenograft Model to Evaluate the Bone Forming Effects of Sclerostin Antibody in Human 

Bone Derived from Pediatric Osteogenesis Imperfecta Patients 

Conclusions 

• The proposed xenograft model was efficacious in assessing effects of SclAb in bone cells 

harboring the causative OI defect.  

• Treatment administered systemically to the host (mouse) can be initiated as early as 24 

hours following implantation where donor bone becomes bioaccessible. 

• Patient-derived osteocytes expressing human SOST and lining cells are present and 

remain viable up to 12 weeks of implantation in the host. 

• SclAb recruits human-derived, osterix expressing lining cells to the implant surface while 

untreated implants had surfaces with host-derived osterix expressing cells. 

• OI patients with low baseline osterix expression demonstrated robust human-derived 

osterix-expression after treatment while high baseline osterix expression demonstrated 

smaller expression gains with treatment.  

• Magnitude of treatment response differed depending on implant bone type (trabecular or 

cortical derived OI bone) where trabecular implants demonstrated the strongest bone-

forming response by four weeks measured by µCT and corroborated using 

histomorphometry. 

• Host right femora confirmed a systemic response to SclAb in line with prior reports and 

served as a positive internal control for treatment in the proposed xenograft model. 

 

  Findings support the use of the xenograft model using solid bone isolates to explore the 

effects of novel bone-targeted therapies. We believe the findings will impact our understanding 

of SclAb therapy in pediatric OI tissue through establishing the efficacy of this treatment in 

human cells prior to extension to the clinic.  

Limitations 

  There are several limitations to the study. First, the study was limited by low pediatric 

patient numbers (eight OI patients were enrolled) which was inevitable due to the rarity of the 
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disease. [1] However, each patient yielded up to 20 implantable bone samples which allowed us 

to evaluate numerous treated and untreated implantation durations in a patient-matched manner. 

When patient bone yield was low, it limited our ability to allocate bone to every outcome 

measure (varying implantation durations and treatment durations) while maintaining an adequate 

size of the sample to implant (~3 mm3). To mitigate this, outcome measures were prioritized to 

address our primary hypothesis that human OI bone can respond to SclAb in vivo, by focusing on 

µCT, immunohistochemistry, and histomorphometry in 2 and 4-week treated and untreated 

groups. Evaluation of the effects of tissue storage has shed light on the appropriate latency period 

between harvest and implantation. To increase patient numbers in future studies using this 

model, it may be possible to receive bone samples from other institutions within an 18 hour 

period following removal from the OI patient, based on results from the time course evaluation 

using TUNEL assay for apoptosis. Due to the rarity of the disease and our interest in 

investigating the impact of heterogeneity on treatment response, bone was harvested from all-

comers undergoing orthopaedic surgical intervention which ranged from fracture repair, 

osteotomy and hardware removal and included tissue from various locations in the body 

(humerus, radius, femur, tibia) which intraskeletally undergo varying rates of remodeling. [447, 

448] The non-OI group contained homogenized bone tissue harvested in otherwise healthy 

individuals from tibial tunnel reamings during ACL reconstructive procedure and implanted as a 

morselized trabecular bone mass. The bone collected for the study was bone that would have 

typically been discarded as surgical waste therefore it was not possible to standardize harvest 

location and bone type (cortical/trabecular). While this may have inhibited some more 

standardized analyses, it could be argued that a strength of the model is its ability to evaluate 

changes in heterogeneous, rare tissue and allowed us to evaluate the presence of a differential 
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response to treatment and implantation in the model we described. Finally, it is accepted that 

sclerostin expression is altered under loading conditions and during unloading.[449] While the 

model allows for in vivo evaluation of the tissue, it is not fully analogous to the patient as the 

implanted bone tissue does not experience any normal loading condition. 

Future Studies 

The xenograft model described in this work gives rise to several ways we can explore 

emerging therapeutics in its target tissue. The model can first be extrapolated to other rare bone 

tissue, harvested from corrective orthopaedic procedure or through iliac crest biopsy, and 

implanted into the athymic mouse for study. Treatment is not limited to SclAb; the advent of 

novel therapeutics exploiting new pathways can and should be explored in the target tissue prior 

clinical extension. Our model provides a safe model where human bone can be treated with no 

contraindication to the patient. While the xenograft model was used in the framework of 

evaluating a novel anabolic bone therapy to treat a rare bone disease, the model may find utility 

in the study of human bone metastasis. The model in this work demonstrates that a human bone 

isolate can be successfully implanted into the host mouse and remain viable, with donor derived 

elements up to twelve weeks. This would allow a clinically relevant scenario where tumor 

propagation can be studied in native bone tissue.  

Next, the untreated OI implants in the study demonstrated bone surfaces where osterix 

expression was primarily mouse (host) derived at two and four weeks (where treated implants 

had surfaces that expressed human-derived osterix). By four weeks, we observed a few instances 

of mouse-derived SOST below the bone surface in the untreated OI implants. This presents a 

unique scenario in which to 1) study inter-species signaling of the osteocytes and 2) determine if 

bone quality in the matrix improves in a scenario where mouse osteoblasts which are not 
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defective in collagen are laid down into the bone matrix as osteocytes. This would require 

increasing implantation duration to increase the amount of mouse-derived osteoblasts which 

differentiate to osteocytes in the implant. It would be interesting to determine response of 

sclerostin to mechanical loading in a human bone implant with embedded mouse osteocytes that 

express mouse SOST compared to a human derived implant expressing only human SOST. This 

evaluation would explore if mechanosensing and signaling between bone cells of different 

species would be possible. 

Literature supports that SclAb acts in part by decreasing bone resorption through a 

decrease in osteoclast number [399-401]. However, we did not observe a significant change in 

bone resorption with SclAb treatment, compared to baseline and untreated controls, at two or 

four weeks. In our study, bone resorption was quantified using TRAP staining on OI bone 

implant sections and we did not quantify host serum TRAP levels. Further, the TRAP staining 

technique we employed did not differentiate between donor/host osteoclasts (like what was 

performed using immunohistochemistry where concurrent staining for human mitochondria 

allowed us to determine if expression was donor or host derived). Therefore we were unable to 

determine if the lack of decrease in implant bone resorption with treatment was due to an 

increase of resorptive activity from the host acting on the implant. Future work using the 

xenograft model should evaluate the contributions of sclerostin inhibition (from SclAb) between 

circulating SOST (host) and local (human) to observe where the antibody is binding. Studies 

should understand if circulating mouse sclerostin can bind to local human cells; this observation 

could be performed by fluorescent tagging the antibody molecule. However, one should be 

cautious with tagging in this scenario since tagging molecules inevitably changes the size and 

may make it difficult-to-impossible for circulating SOST to make its way to the matrix. 
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While an upregulation in osteoblast and osteoblast precursor markers were observed in 

Chapter 3 with acute SclAb treatment and acute response in vivo was observed in Chapter 3, we 

were not able to evaluate where and what type of new bone was being deposited. This would be 

of great interest to further understand the effects of bone morphology and clinical phenotype on 

treatment response to SclAb. Further, evaluation of the quality of new bone deposited across all 

OI genotypes during anabolic treatment would interesting. It has been argued that, because OI is 

a collagen related bone disorder where osteoblasts can lay down defective collagen, increasing 

the amount of this bone (defective) may not be mechanically advantageous. Future studies could 

utilize in situ hybridization of osteocalcin and perhaps calcium-tagging of OI bone isolates 

treated in culture to visualize location and quality of new bone deposition. 

  Finally, future analysis using the proposed xenograft model should evaluate gene 

expression response analogous to the panel reported in Chapter 3 to determine the transcriptional 

effects of SclAb in the host-derived microenvironment in comparison to the in vitro treatment 

response. It is understood that in vitro provides a controlled environment to study the effects of 

SclAb in target OI tissue but lacks biokinetic and metabolic factors inherent to the in vivo 

environment. These factors, as such, likely influence gene expression response and are integral to 

further understanding factors contributing to an eventual bone-forming response in human tissue.  

In Vivo Quantitative Imaging Biomarkers of Bone Quality and Mineral Density using a 

Novel 3D Zero Echo Time Magnetic Resonance Imaging Approach 

Conclusions 

• The direct quantification of BMD using ZTE MRI is strongly correlated to BMD 

acquired using µCT in both the cortical and trabecular regions. 

• Longitudinally, both MRI and µCT BMD detected significant increases from baseline 

by two weeks post-OVX in the cortical bone  
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• While BMD increased longitudinally in the animals likely as a result of growth 

competing with estrogen deficiency-induced changes in the mineral phase, proposed 

MRI biomarkers were sensitive to OVX-related changes by 10 weeks post-surgery. 

• Specifically, MRI detected a significant decrease in cortical water and significant 

increase in marrow fat by 10 weeks post-OVX. 

• We achieved volumetric T1 relaxation mapping in the cortical regions of the bone 

using the variable flip angle (VFA) method and observed a significant decrease in T1 

by 10 weeks post-OVX. 

• During sequential drying, as cortical water decreased (measured using ZTE MRI), 

percent water loss by volume increased; this strong negative correlation was 

significant between the two measures (R=-0.98; p=0.01). Results indicate the 

experimental ZTE MRI sequence is highly sensitive cortical water loss.  

• Findings point to the experimental ZTE MRI’s ability to detect biochemical and 

material-level alterations occurring in the system following estrogen deficiency 

independent of changes in mineral.  

 

In conclusion, the experimental zero echo time (ZTE) MRI sequence, MBSWIFT, 

significantly detected longitudinal increases in BMD comparable to BMD measured by µCT and 

significantly correlated to BMD acquired using the gold standard approach. Results support the 

utility of ZTE MRI to characterize the mineral phase of bone without ionizing radiation. While 

BMD increased following OVX, likely as a result of growth, the proposed ZTE MRI biomarkers 

targeting additional measures of bone quality significantly detected changes in the bone at 10 

weeks that were consistent with estrogen-deficiency following OVX. 

Limitations 

In the present study, we may have been limited by the age of our animals at the time of 

OVX (six weeks old) where the rats were reproductively mature yet still growing.[450] The 

continued growth appeared to compete with estrogen deficiency-induced changes in the mineral 
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phase where BMD significantly increased longitudinally over the course of the study. The impact 

of growth on OVX-related changes has been highlighted in other studies. Turner et al. observed 

that rats ovariectomized at seven weeks of age demonstrated a significantly increased bone 

formation rate at the tibial diaphysis by four weeks compared to SHAM.[451]  The authors did 

not observe osteopenic changes in the OVX animals and reasoned that increasing radial growth 

overshadowed increases in endosteal resorption. In another study, rats ovariectomized at 10 

weeks of age significantly increased bone formation in the tibia (measured at 5 weeks post-

OVX) and the authors postulated estrogenic antagonism may have been overshadowed by the 

stimulatory effects of growth hormone.[452] It should be restated that our use of OVX in 

growing rats satisfied the goal of the present study where we sought to compare imaging 

modalities, including the sensitivity of their outcomes, longitudinally in a system of changing 

bone mass and material composition. While BMD increased over time in our growing rats 

following OVX, our proposed ZTE MRI was able to characterize BMD in a manner which 

significantly correlated to µCT and MRI provided additive quantitative outcomes about bone 

quality in a manner consistent with estrogen deficiency. The present study was not cross 

sectional and we did not use a SHAM operated control group for comparison. Instead, we 

focused on the sensitivity of MRI to detect longitudinal in vivo changes following OVX 

compared to measures acquired at baseline. A SHAM group, however, may have permitted 

OVX-related changes in BMD to be detected over time even during growth. Lietner et al. 

demonstrated that SHAM-operated 3 month old female rats longitudinally increased bone growth 

(significantly) by 10% at four weeks. [453] In the OVX rats, the authors determined that this 

growth rate “dampened” BMD results measured longitudinally from baseline. When the authors 



 180 

compared the OVX rats to the SHAM operated group, a significant decrease in OVX BMD 

compared to SHAM was observed. [453]  

There is increasing interest in characterizing microarchitecture, in addition to BMD, as it 

relates to bone health and biomechanics[454-456] which is almost ubiquitously measured using 

high-resolution µCT pre-clinically and HR-pQCT in clinical studies.[457] Compared to µCT, 

proton-based MRI is limited by the in vivo spatial resolution it is able to achieve while 

maintaining a sufficient signal to noise ratio (SNR) and limited its ability to resolve 

microarchitecture of the trabeculae, for example. Resolution is directly proportional to the 

number of pixels and therefore can be improved by decreasing the FOV and increasing the 

matrix size. However, this comes at a tradeoff to SNR where SNR is inversely proportional to 

the basic resolution (or, directly proportional to pixel size). While not evaluated in the present 

study, we believe measures of cortical thickness in our rat tibia would be possible but the 

potential for partial-volume averaging, which could over- or underestimate the binarized 

thickness of the cortices, is a concern at decreased resolution. We instead focused on the ZTE 

MRI’s ability to resolve mineral density, in addition to other bone quality outcomes, in the rat 

proximal tibia. Using our 156 µm in vivo MBSWIFT MR images we were able to achieve 

significant correlation in BMD measures between high resolution (35 µm) µCT  (r = 0.67 for 

cortical region and r = 0.62 for trabecular region). Future work should focus on increasing 

resolution in the proposed ZTE MR images to determine if resolving cortical thickness and 

eventually trabecular microarchitecture of the rat bone is attainable while maintaining a 

sufficient SNR to obtain meaningful biomarker measures in the bone. 
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Future Studies 

Building on the patient-specific xenograft approach in Chapter 4 combined with ZTE 

MRI using MBSWIFT in Chapter 5, an introduction of superparamagnetic iron oxide (SPIO) 

nanoparticle-labeled cancer cells in an ectopic orthotopic hybrid model of bone metastasis could 

be used to guide MR tracking of cell fate in the spirit of Paget’s seed/soil hypothesis. Novel to 

the approach is the use of a 3D radial ZTE MRI sequence which will decrease iron blooms 

because of the k-space sampling trajectory and allow 1) the possibility of tracking of individual 

cells because of the more discrete iron blooms and 2) allow for the local bone environment to 

remain visible (due to reduced artifact from iron particles because of increased signal intensity 

possible novel to this acquisition approach).[291] Using MBSWIFT for this application, bone 

quality measures in the local microenvironment could be simultaneously obtained. Only now can 

the local surrounding bone environment be probed for the earliest biochemical alterations by 

resolving T1 relaxation using the variable flip angle (VFA) method described in Chapter 5 in 

addition to marrow fat, cortical water fraction and BMD, without the use of ionizing radiation. 

Imaging findings could be correlated to serum markers of metabolic bone turnover indicative of 

metastasis. Now that we can quantify the earliest changes due to bone metastasis (MBSWIFT 

imaging biomarkers) using a non-invasive imaging approach, we can apply dual modality 

techniques at the earliest sign of metastasis to 1) deliver emerging drugs locally using 

microbubbles and 2) test novel ablation techniques which exploit sound and light (photothermal 

therapy (PTT) and high-intensity ultrasound ablation) to identify biological factors that bifurcate 

patients (tumors) from being responders versus non-responders.  

Numerous studies have highlighted the ability to quantify bi-component water 

populations in the cortical bone using ultra short echo time (UTE) MRI. [269, 271, 458] The 

importance of each water population and its role in understanding mechanical strength is 
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understood and as such, reporting these values as they relate to bone health using MRI is of great 

interest.[29] We reported cortical water fraction, or the fraction of signal in the image coming 

from water, but were unable to derive bound and free populations using the MBSWIFT 

technique. While MBSWIFT is able to achieve TE=0, the sequence cannot increase TE and is 

only able to acquire TE=0. This is unlike UTE, a gradient echo approach, where the TEs can be 

sequentially increased and multiple echoes acquired and fit to resolve the short and long T2 

components. Future studies using MBSWIFT could discriminate between water pools by 

utilizing saturation schemes at the bound and free water peaks. The water fraction arising from 

each pool could then be quantified. 

Each imaging modality suffers from its own limitations and boasts its unique set of 

strengths; by combining non-invasive modalities to create an omni-modality approach we can 

reap the benefits, biologically, of complementary information. As such, there is a clear and 

unique role in incorporating photoacoustic imaging (PA) and MRI. Through activatable next 

generation gadolinium metallalofullerene combined with a photothermal agent with near infrared 

(NIR) absorbance (previously described [459]) the agent can be utilized in a dual-modality 

scenario, PA with MRI, where photothermal therapy (PTT) can be achieved and the activatable 

MRI contrast of the tumor environment can guide quantification. Unique to this proposed study 

would be the addition of ZTE MRI, such as MBSWIFT, where local environments with short 

T2s, such as bone and lung, could explored. By developing a real-time registration or “fusing” of 

PA data to MR images, we can increase clinical efficacy providing immediate information from 

PA where MRI can provide a morphological reference coupled with voxel-wise mapping (of an 

imaging biomarker such as T1 proposed in the present study) in the local environment without 

harmful ionizing radiation. 
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