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Abstract	
	

The	self-assembly	of	protein	subunits	 into	 large-scale	oligomeric	structures	

is	 a	 powerful	 and	 ubiquitous	 feature	 of	 biology,	 with	 viral	 capsids	 providing	 an	

excellent	 example.	 These	 assemblies	 perform	 a	 diverse	 set	 of	 functional	 and	

structural	 roles	 in	 living	 systems.	 Additionally,	 proteins	 can	 be	 modified	 both	

genetically	and	chemically	to	introduce	new	properties.	Because	of	these	attractive	

properties,	 natural	 and	 de	 novo	 designed	 protein	 assemblies	 have	 already	 been	

evaluated	 for	 various	 applications	 in	 medicine	 and	 materials	 science.	 This	 thesis	

explores	a	 recently	developed,	generalizable	 coiled	coil	based	strategy	 for	de	novo	

designing	protein	cages	to	utilize	for	applications	in	these	fields.	

The	 design	 strategy	 relies	 on	 the	 combination	 of	 2	 rotational	 symmetry	

elements,	one	provided	by	the	natural,	building	block	protein	(BBP)	and	the	other	

provided	by	 the	coiled	coil,	 to	specify	a	protein	cage	of	 the	desired	geometry.	The	

oligomerization	of	 the	coiled	coil	brings	 the	copies	of	 the	BBP	together,	 leading	 to	

the	 assembly	 of	 protein	 cages.	 	 By	 employing	 BBPs	 and	 coiled	 coils	 of	 different	

rotational	 symmetries,	 cages	 of	 various	 sizes	 and	 geometries	 have	been	designed,	

including	both	tetrahedral	and	octahedral	protein	cages.		

This	 thesis	 extends	 these	 studies	 to	 more	 ambitious	 design	 targets	 and	

explores	the	generalizability	of	this	approach.	

Because	 the	 design	 strategy	 requires	 well-specified	 homo-oligomeric	



	

	 xvi	

parallel-coiled	coils,	the	utility	of	several	selected	de	novo	designed	coiled	coils	was	

first	 evaluated	 as	 off-the-shelf	 components	 for	 protein	 assembly,	 using	 green	

fluorescent	 protein	 as	 a	 model	 system.	 This	 study	 revealed	 context-dependent	

oligomerization	state	changes	for	some	of	these	coiled	coils.		

Next,	 the	 potential	 of	 elaborating	 previously	 designed	 protein	 cages	 by	

attaching	additional	protein	domains	to	free	end	of	the	coiled	coil	was	investigated.	

As	 a	 proof-of-concept,	 an	 octahedral	 cage	 was	 elaborated	 by	 fusing	 a	 large	

monomeric	protein	to	the	free	end	of	the	coiled	coil	assembly	domain.	This	design	

successfully	 self-assembled	 into	 a	 homogeneous	 octahedral	 protein	 cage	 of	 ~	 1.8	

MDa,	 significantly	 the	addition	of	 the	extra	protein	domain	dramatically	 improved	

the	yield	and	efficiency	of	protein	assembly.			

The	 design	 strategy	was	 extended	 to	 the	 de	novo	 design	 of	 an	 icosahedral	

protein	 cage	 by	 fusing	 a	 pentameric	 coiled	 coil	 to	 the	 trimeric	 BBP	 previously	

utilized	for	octahedral	and	tetrahedral	cage	designs.	After	optimization,	a	construct	

with	an	8-residue	oligo-glycine	spacer	successfully	assembled	into	a	hyperstable	60-

subunit	protein	cage	with	icosahedral	geometry	and	molecular	weight	of	~	2.1	MDa.	

Surprisingly,	 these	 cages	 captured	 short	 DNA	 strands	 during	 purification	 which	

were	 important	 to	 maintain	 the	 homogeneity	 of	 the	 cages.	 The	 cages	 could	 be	

transiently	 disassembled	 by	 treating	 with	 Dnase;	 the	 re-assembled	 cages	 were	

significantly	more	heterogeneous.	The	hyperstability	and	ability	to	capture	DNA	are	

new	 emergent	 properties	 of	 this	 design	 that	 arise	 from	 assembly	 and	 were	 not	

evident	in	previously	designed	cages.		

Finally,	the potential of extending this symmetry-based strategy to design protein 
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cages that assemble in response to environmental stimuli was investigated. This study 

was conducted by fusing a de novo designed metal-dependent coiled coil to the trimeric 

BBP. The construct successfully assembled into discrete particles in the presence of 

divalent transition metal ions; adding metal chelators or decreasing pH led to disassembly 

of these particles into their trimeric form. 	
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Chapter	1:	Introduction	
	

1.1 Background	

	
In	1959,	Richard	Feynman,	a	world	famous	physicist	mentioned	that	“there	is	

plenty	 of	 room	at	 the	 bottom”	during	his	 speech	 at	 the	 annual	American	Physical	

Society	 Meeting	 at	 Caltech,	 California.	 The	 speech	 went	 unnoticed	 for	 several	

decades.	However,	this	statement	has	attracted	a	great	attention	within	recent	years	

with	the	swift	growth	of	“nanotechnology”	in	which	scientists	explore	“the	bottom”	

to	design	molecular	machines	for	various	applications.	Particles	with	sizes	ranging	

from	 10-100	 nm	 are	 considered	 as	 nanoparticles.	 Their	 small	 size,	 large	

surface/mass	 ratio,	 ability	 to	 penetrate	 cellular	 membranes	 are	 among	 some	

attractive	properties	of	nanoparticles.	Currently	various	types	of	nanoparticles,	both	

synthetic	 and	 natural,	 have	 been	 developed	 for	 a	 board	 range	 of	 applications	 in	

medicine,	synthetic	biology,	as	well	as	materials	science.	Carbon	nanoparticles,	gold	

nanoparticles,	 polyamidoamine	 (PAMAM)	 dendrimers,	 and	 quantum	 dots	 are	 few	

examples	for	synthetic	nanoparticles.1–12	Natural	nanoparticles	include	nucleic	acid	

based	nanoparticles	and	protein	based	nanoparticles.13–27		

	The	 focus	 of	 my	 thesis	 is	 on	 protein-based	 nanoparticles.	 Protein-based	

nanoparticles	have	potential	applications	in	medicine	and	industry;	they	have	many	

attractive	properties	over	other	nanoparticles,	both	natural	and	synthetic.	Proteins	

can	self-assemble	into	well-organized	architectures	and	these	assemblies	perform	a	
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diverse	set	of	structural	and	functional	roles	 in	 living	systems.	Proteins	are	rich	 in	

molecular	 recognition	 and	 they	 interact	 with	 all	 biological	 materials	 (DNA,	 RNA,	

Lipids	and	Carbohydrates),	small	organic	molecules	and	 inorganic	substances	(E.g.	

metal	 ions,	 H2O,	 O2,	 CO2).	 New	 structural	 and	 functional	 properties	 can	 be	

introduced	 to	 proteins	 with	 atomic	 level	 accuracy,	 by	 both	 chemical	 and	 genetic	

modifications.	 Furthermore,	 functional	 groups	 can	 be	 appended	 to	 proteins;	 both	

covalently	and	non-covalently.	Proteins	can	be	easily	expressed	and	purified	in	large	

scale	 and	with	 low	 cost.26,27	All	 these	properties	of	proteins	make	 them	attractive	

biomaterials	for	the	development	of	new	functional	materials.		

1.2 Natural	Protein	Assemblies	

	

	

Figure	1.	1	Examples	of	natural	protein	assemblies.	(A)	Actin	(taken	from	http://ghr.nlm.nih	
.gov/handbook/illustrations/actin).	(B)	Tubulin	(taken	from	Molecular	biology	of	the	Cell,	4th	
edition).	 (C)	 Ferritin	 (PDB	 ID:	 3GVY)	 (D)	 GroEL	 (top	 and	 side	 views,	 PDB	 ID:	 3E76).	 (E)	
Cowpea	chlorotic	mottle	virus	(PDB	ID:	1ZA7).	
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Proteins	 are	 natural	 nanomachines:	 The	 innate	 ability	 of	 proteins	 to	

assemble	 into	both	homo-	and	hetero-oligomeric	 forms	 increases	 the	 stability,	 co-

operativity	 and	 functional	 efficiency	 of	 these	 nanomachines.	 	 Assembling	 into	

oligomeric	structures	reduces	the	solvent-exposed	surface	area	and	therefore	tends	

to	 increase	 the	 stability	 of	 proteins.	 Large-scale	 quaternary	 structures	 or	 higher	

order	assemblies	of	proteins	are	mainly	grouped	 into	two	classes:	extended	forms	

are	called	filamentous	proteins	and	closed-spherical	forms	are	called	protein	cages	

(Fig.	1.1).		

1.2.1	Filamentous	Proteins	

Filamentous	 proteins	 are	 mainly	 involved	 in	 structural	 and	 mechanical	

support	in	living	systems.	They	are	often	composed	of	one	or	two	repeating	protein	

subunits	 and	 are	 assembled	 into	 fiber-like	 extended	 structures.	 Actin	 and	 tubulin	

are	 some	 well-studied	 examples	 (Fig.	 1.1	 A,B).28,29	 These	 proteins	 are	 mainly	

involved	in	maintaining	the	structural	integrity	of	eukaryotic	cytoplasm	and	are	the	

best-studied	 examples	 of	 highly	 dynamic	 protein	 assemblies	 in	 nature.	

Polymerization	 and	 de-polymerization	 of	 actin	 and	 tubulin	 subunits	 into	

filamentous	 structures	 are	 spatiotemporally	 regulated	 upon	 extracellular	 and	

intercellular	signals/stimuli.		

	 Actin	 is	 the	 most	 abundant	 type	 of	 protein	 in	 most	 eukaryotic	 cells.28	

Globular	 monomeric	 actin	 subunits	 known	 as	 G-actin	 polymerize	 and	 form	

microfilaments	or	so	called	F-actin	by	hydrolyzing	ATP.	Actin	filaments	are	part	of	

cytoskeleton	 as	 well	 as	 contractile	 molecular	 motors	 of	 muscle	 cells.	 Actin	

participates	 in	 cell	 motility	 and	 division	 in	 all	 eukaryotes	 as	 well	 as	 muscle	
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contraction	 in	 animals.	 Tubulin	 is	 found	 nearly	 in	 all	 domains	 of	 life	 and	 is	 also	

involved	 in	 cell	 division,	 inter-cellular	 transport	 and	motility.29,30	 Alpha	 and	 beta	

tubulin	subunits,	the	two	most	common	members	in	tubulin	family,	self-assemble	to	

form	 microtubules,	 a	 process	 that	 requires	 GTP.30	 Microtubules	 are	 part	 of	 the	

cytoskeleton,	form	the	internal	structure	of	cilia	and	flagella	and	are	integral	to	the	

division	of	chromosome	during	mitosis.		

1.2.2	Protein	Cages	

Protein	 cages	 comprise,	 one	 or	 a	 few	 types	 of	 proteins	 that	 assemble	 into	

well-organized,	geometrically	constrained	structures	in	highly	symmetrical	fashion	

to	 perform	 a	wide	 range	 of	 functions	 in	 all	 living	 systems.	 These	 assemblies	 play	

many	 important	 roles	 in	 organisms,	 which	 include,	 storage,	 protection	 and	

transport	 of	 materials	 and	 function	 as	 size	 constrained	 reaction	 vessels.	 	 GroEL,	

ferritin,	 Pyruvate	 dehydrogenase	 complex	 (PDH)	 and	 viral	 capsids	 are	 a	 few	

examples	(Fig.	1.3	C-E).		

GroEL	 is	 a	 large	 double-ringed	 chaperonin	 protein	 found	 in	 bacteria.31,32	

GroEL	forms	a	complex	with	GroES,	a	lid-shaped	protein	and	this	complex	plays	an	

important	 role	 by	 facilitating	protein	 folding.	 Poorly	 folded	proteins	 are	 recruited	

into	the	hydrophobic	interior	of	GroEL	where	they	undergo	ATP-induced	re-folding	

into	 their	 native	 forms.32	 Ferritin	 is	 a	 24-subunit,	 octahedral	 protein	 cage	with	 a	

negatively	charged	interior	that	acts	as	an	iron	storage	container	in	both	eukaryotes	

and	 prokaryotes.33–35	 The	 hollow	 interior	 of	 ferritin	 can	 hold	 up	 to	 about	 45,000	

iron	 atoms.36	 Ferritin	 reduces	 the	 risk	 of	 cellular	 toxicity	 by	 preventing	 the	

accumulation	of	free	iron	in	the	cytoplasm.		
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PDH	 is	 a	 multi-enzyme	 complex	 found	 in	 nearly	 all	 the	 organisms	 and	 is	

composed	 of	 multiple	 copies	 of	 three	 enzymes:	 pyruvate	 decarboxylase	 (E1),	

dihydrolipoamide	 acetyltransferase	 (E2)	 and	 dihydrolipoamide	 dehydrogenase	

(E3).37,38	 The	 PDH	 complex	 catalyzes	 the	 oxidative	 decarboxylation	 of	 pyruvate	

during	 cellular	 respiration	 and	 functions	 as	 a	 bridge	 between	 the	 glycolysis	 and	

citric	acid	cycle.	This	complex	is	a	notable	example	of	how	proteins	have	evolved	to	

perform	sequential	reactions	effectively	in	living	systems.	Assembling	into	cages	has	

helped	 these	 multi-enzyme	 complexes	 to	 efficiently	 channel	 the	 unstable	

intermediates	and	prevent	them	from	diffusing	to	the	exterior.		

Viral	 capsids	 are	 very	 attractive	 biological	 containers	 and	 are	 excellent	

examples	of	smart	protein	assemblies.	Viral	capsids	have	evolved	to	recognize	and	

bind	 to	 the	 host	 cell	 membrane;	 release	 their	 genome	 into	 the	 host	 cell;	 self-

assemble	to	encapsulate	the	viral	genome	and	lastly,	escape	from	the	host	cell	and	

propagate.39	The	most	common	viral	cage	geometry	is	icosahedral,	although,	prolate	

and	 helical	 capsids	 are	 also	 common.	 Cooperative	 binding	 effects	 inherent	 in	 the	

assembly	 of	many	 protein	 subunits	 and	 reduced	 surface/volume	 ratios	 provide	 a	

high	degree	of	stability	to	viral	capsids.	Some	viral	capsids	form	hyperstable	protein	

architectures,	which	can	survive	in	very	harsh	environments	such	as	temperatures	

above	 the	 boiling	 point	 of	 water	 and	 in	 extremes	 of	 pHs.40	 Additionally,	 the	

positively	 charged,	 closed	 interior	 of	 viral	 cages	 provides	 a	 well-protected	

environment	 for	 their	 genomes.	 Some	 viral	 cages	 undergo	 environmentally	

responsive	 (for	 example	 in	 response	 to	 changes	 in	 pH,	 temperature	 or	 ionic	

strength)	 structural	 transitions	and	gating	and	which	makes	 them	very	promising	
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nanomaterials	 for	 applications	 that	 require	 selective	 release	 of	 materials,	 for	

example	release	of	drugs	during	targeted	drug	delivery.41–43	

1.3	Functionalizing	Protein	Cages		

Protein	cages	are	versatile	biomaterials,	which	can	be	 repurposed	 for	wide	

range	 of	 applications,	 and	 this	 field	 has	 gained	 a	 significant	 attention	 in	

nanotechnology	in	recent	years.	These	nano-scale	architectures	are	assembled	from	

one	or	few	types	of	subunits	into	very	stable	structures.	Protein	cages	possess	three	

distinct	 regions:	 an	 exterior	 surface,	 an	 interior	 surface	 and	 the	 inter-subunit	

interface,	 each	 of	 which	 can	 be	 modified	 both	 genetically	 and	 chemically	 to	

introduce	new	structural	and	functional	properties	(Fig.	1.2).18,22	Multiple	different	

functionalities	 can	 be	 introduced	 to	 protein	 cages	 at	 these	 surfaces.	 Moreover,	

protein	 cages	 exhibit	 well-defined	 molecular	 symmetries	 and	 form	 highly	

monodispersed-assemblies,	and	thus	functional	groups	can	be	introduced	to	protein	

cages	in	a	spatially	well	define	manner.		

The	 intriguing	 properties	 of	 protein	 cages	 have	 made	 them	 interesting	

platforms	 for	 developing	new	materials	 for	 use	 in	medicine	 and	 industry.	Natural	

protein	 cages	 for	 example	 ferritin,	 GroEL	 and	 virus	 like	 particles	 (VLPs)	 have	

already	been	developed	 for	 various	 applications	 in	 those	 fields;	 examples	 include,	

gadolinium	 nanoparticles	 encapsulated	 inside	 ferritin	 for	 MRI	 imaging,	 both	 the	

exterior	 and	narrow	 interior	 of	 tobacco	mosaic	 virus	 (TMV)	have	been	utilized	 to	

template	 the	 synthesis	 of	 nanowires	 of	 Ni	 and	 Co	 and	 iron-oxide	 encapsulated	

ferritin	cages	have	been	utilized	to	fabricate	metal	oxide	semicoductors.25,44	De	novo	

designed	 cages	 also	 have	 been	 evaluated	 for	 some	 applications.	 In	 one	 notable	
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example,	 a	 malaria	 vaccine	 was	 developed	 by	 fusing	 malaria	 coat	 protein	 to	 the	

exterior	of	a	de	novo	designed	polypeptide	based	protein	cage,	which	conferred	long	

lasting	immunity	in	mice.45		

	

	

Figure	1.	2	A	schematic	illustration	of	protein	cage	interfaces	available	for	structural	and	
functional	modifications	(Image	adapted	from	ref.	24).	

	

1.3.1	Functionalizing	Interior	of	Protein	Cages	

The	 well-sealed	 interior	 of	 protein	 cages	 provides	 a	 size-constrained	

compartment	 for	 encapsulation	 of	 materials.	 Natural	 protein	 cages	 utilize	 their	

interior	for	storage,	transport	of	cargos,	protection	of	encapsulated	materials	and	as	

reaction	 chambers.	 A	 few	 examples	 were	 discussed	 in	 section	 1.2.2.	 Introducing	

charged	 amino	 acid	 residues	on	 the	 internal	 surface	has	 allowed	encapsulation	of	
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materials	 via	 electrostatic	 interactions.	 DNA,	 RNA,	 proteins,	 peptides,	 synthetic	

polymers,	 fluorescent	 molecules,	 metal	 ions	 and	 other	 charged	 substances	 have	

been	encapsulated	inside	protein	cages	using	electrostatic	interactions.20,22,23,46,24,47–

52	Some	noteworthy	examples	of	encapsulating	proteins	by	employing	electrostatic	

interactions	 comes	 from	 the	 Hilvert	 group.53	 They	 engineered	 negatively	 charged	

residues	 on	 the	 inner	 surface	 of	 luminase	 synthase	 (AaLS),	 a	 60-subunit	 protein	

cage	 from	 Aquifex	 aeolicus.	 In	 one	 study,	 they	 developed	 a	 spectroscopic	 tool	 by	

encapsulating	 positively	 charged	 Green	 fluorescent	 protein	 (GFP)	 variants	 inside	

AaLS	 using	 charge	 complementarity.	 Additionally,	 an	AaLS-GFP	 host-guest	 system	

was	used	 to	 encapsulate	 enzymes	by	 tagging	positively	 charged	GFP.	Although	no	

significant	 change	 in	 catalytic	 activity	 of	 enzymes	 was	 observed,	 this	 work	

demonstrated	the	potential	of	internalizing	proteins	by	appending	them	to	charged	

protein	tags.	 In	other	work,	they	encapsulated	a	peroxidase	enzyme	and	utilized	it	

as	a	nanoreactor	for	polymerization	of	3,3-diaminobenzidine,	which	produced	more	

homogeneous	polymers.		

Additionally	proteins,	nucleic	acids,	fluorescent	probes,	small	molecules	and	

polymers	have	been	introduced	to	the	interior	of	protein	cages	by	covalently	linking	

them	 to	 natural	 or	 non-natural	 amino	 acids	 through	 various	 conjugation	

chemistries;	 for	 example	 cysteine-maleimide	 reaction,	 NHS-ester	 formation	 or	

“click”	chemistry.22,23	In	one	notable	example	the	Francis	group	covalently	attached	

prophyrin	rings	to	bacteriophage	M22	via	cysteine-malemide	coupling	to	develop	a	

photodynamic	therapeutic.19	They	selectively	delivered	these	functionalized	capsids	

to	Jurkat	leukemia	cells	and	the	reactive	oxygen	species	generated	by	the	prophyrin	
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upon	light	illumination	killed	these	cells	with	~	75%	efficiency.	In	another	study	by	

the	 same	 group,	 p-nitrophenylalanine	 derivatives	 were	 internalized	 inside	

bacteriophage	M22	by	covalently	 linking	them	to	tyrosine	a	reaction	which	can	be	

translated	 to	 conjugate	 drugs	 for	 biomedical	 applications.23	 Another	 group	

compartmentalized	 Candida	 antarctica	 lipase	 B	 (CalB)	 inside	 CCMV	 by	 covalent	

conjugation,	which	protected	the	enzyme	from	protease	degradation.54		

Proteins	 and	 peptides	 have	 also	 been	 encapsulated	 inside	 cages	 by	

employing	protein-protein	interactions	as	well	as	genetically	fusing	them	directly	to	

the	protein	forming	the	cage.	The	Comellas-Aragonès	group	encapsulated	GFP	into	a	

cage	 using	 a	 heterodimeric	 coiled	 coil	 oligomer	 and	 is	 a	 notable	 example	 for	

employing	 protein-protein	 interactions	 to	 encapsulate	 proteins.55	 The	 Douglas	

group	 encapsulated	 a	 number	 of	 enzymes	 inside	 VLPs	 by	 genetically	 fusing	 these	

proteins	 to	 a	 capsid’s	 scaffold	 protein.25,56,57	 When	 the	 hydrogenase	 enzyme	 was	

encapsulated	 inside	 a	 VLP,	 the	 catalytic	 activity	 was	 increased	 by	 150-fold	

compared	to	the	free	enzyme.57		

Hydrogen	 is	 a	 very	 good,	 renewable,	 non-polluting	 energy	 source,	 but	 bio-

synthesizing	 it,	 is	 a	 challenge.	 	 This	 work	 is	 an	 excellent	 proof	 of	 concept	 study	

which	 can	be	extended	 to	design	highly	 catalytically	 active	enzyme	nano-reactors.	

The	cage	interior	mimics	the	crowded	environment	 inside	the	cell	and	more	likely	

provides	a	native-like	environment	for	the	enzymes.	This	presumably	increases	the	

catalytic	efficiency	of	enzymes	encapsulated	in	the	cage	interior.	 	In	another	study,	

an	 enzyme	 cascade	 was	 encapsulated	 inside	 a	 VLP.	 Even	 though	 no	 significant	

change	in	catalytic	rate	was	observed	in	this	study,	it	demonstrated	the	potential	of	
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designing	confined	multi-enzyme	systems.56	Similar	strategies	can	be	extended	for	

multi-enzyme	 reactions	 involving	 unstable	 or	 toxic	 intermediates.	 These	 studies	

open	up	a	new	field	of	nanotechnology	utilizing	protein-based	nanoreactors	for	real	

world	applications,	for	example	efficient	synthesis	of	biofuels	such	as	Hydrogen	and	

constructing	new	biomimetic	catalytic	materials.		

Nucleic	 acids	 have	 been	 encapsulated	 inside	 protein	 cages	 by	 genetically	

fusing	 either	 RNA	 or	 DNA	 binding	 peptides	 to	 the	 cage	 interior.	 Some	 research	

groups	have	genetically	fused	nucleic	acid	binding	peptides	to	the	interior	of	cages	

and	 then	 evolved	 these	 cages	 to	 selectively	 capture	 RNA	molecules	 encoding	 the	

cage	 protein	 thereby	 resembling	 viral	 capsids.58,59	 The	 ability	 to	 evolve	 protein	

cages	 to	 selectively	 capture	 specific	 nucleic	 acid	 strands	 suggests	 a	 future	 use	 in	

gene	therapy.	Protein	cages	encapsulating	nucleic	acids	are	already	being	developed	

for	 various	 biomedical	 applications	 including	 gene	 delivery,	 RNA	 delivery	 (siRNA	

and	microRNA),	vaccines	and	CRISPR-Cas9	delivery.60–63	

Functional	 properties	 of	 inorganic	 nanoparticles	 highly	 depend	 on	 their	

shapes	and	sizes.12	Synthesizing	them	in	controlled	sizes	and	shapes	is	a	challenge,	

but	the	protein	cage	 interior	provide	a	well-defined,	size-constrained	environment	

to	synthesize	nanomaterials	with	a	great	precision.	Either	genetically	 fusing	metal	

chelating	 peptides	 to	 the	 interior	 of	 the	 cages	 or	 incorporating	 chemical	 groups	

promoting	electrostatic	interactions	have	allowed	the	synthesis	of	various	inorganic	

nanoparticles;	 E.g.	 CoPt,	 FePt,	 CdS,	 ZnSe,	 SeO2,	 FeO,	 Au,	 Gd	 and	 Ag.18,21,33,44,64–66	

Inorganic	nanoparticles	 templated	by	protein	cages	have	been	developed	 for	wide	

range	of	potential	applications	 in	medicine	as	well	as	 industry.	Some	examples	 for	
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medical	 applications	 include,	 nanoparticles	 utilized	 as	 carriers	 for	 drug	 delivery	

(E.g.	 Au),	 as	 therapeutic	 agents	 (E.g.	 FeO	 for	 hyperthermia	 cancer	 therapy,	Au	 for	

photothermal	therapy)	and	for	bio-imaging	(E.g.	Gd3+	and	FeO	as	contrasting	agents	

for	 MRI	 imaging).11,67	 Industrial	 applications	 include	 semiconductors,	 transistors,	

nanowires	and	catalysts.	18,44,68	

1.3.2	Functionalizing	Exterior	Surfaces	of	Protein	Cages	

Novel	 functionalities	 can	 be	 incorporated	 onto	 the	 exterior	 surface	 of	 the	

cages	 using	 similar	 approaches	 to	 those	 described	 above.	 Protein	 cage	 exteriors	

have	 already	 been	 functionalized	 for	 both	 medical	 and	 industrial	 applications.	

Exterior	 surfaces	 have	 been	 decorated	 with	 antigen	 for	 vaccine	 delivery.18,22,23,69	

Several	 VLP-based	 vaccines	 are	 already	 available	 on	 the	 market;	 Gardacil	 and	

Cervaric	 for	 Human	 Papilloma	 Virus	 (HPV)	 and	 Mosquirix	 for	 Malaria	 are	 some	

examples.70	 Therapeutic	 agents	 such	 as	 small	 molecules	 and	 peptides	 have	 been	

covalently	attached	to	the	cage	exterior.19,71	Fullerene	is	a	potential	theragnostic	for	

cancer	 and	 inflammatory	 disease,	 however	 solubility	 is	 a	 concern.	 In	 one	 notable	

example,	 the	Finn	group	covalently	attached	 fullerene	 to	 the	exterior	of	CPMV	via	

amine	 reactive	 cross-linking	 (NHS)	 chemistry,	 which	 increased	 its	 solubility	 and	

biocompatibility.19	Moreover,	 fullerene	conjugated	capsids	were	successfully	 taken	

up	by	HeLa	cells	with	no	inhibition	by	fullerene.	In	another	example,	doxorubicin,	a	

chemotherapeutic	drug,	was	conjugated	to	exterior	of	CPMV	and	delivered	to	HeLa	

cells,	 which	 efficiently	 killed	 the	 cells	 at	 a	 low	 dosage	 compared	 to	 free	

doxorubicin.19		
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For	 targeted	 drug	 delivery	 and	 similar	 applications,	 protein	 cages	 are	

decorated	 with	 tissue	 specific	 antibodies,	 peptides,	 aptamers	 and	 tissue	 specific	

ligands.18,22,23,72	 The	 RGD	 sequence	 motif	 from	 adenovirus,	 a	 ligand	 with	 natural	

affinity	for	upregulated	intergrin	receptors	in	endothelial	cells	of	tumor	vessels,	is	a	

widely	used	ligand	for	tumor-targeted	drug	delivery.21	Protein	cages	decorated	with	

RGD	 have	 showed	 enhanced	 transport	 of	 drugs	 to	 tumor	 regions.21	 Fluorescent	

molecules	 have	 been	 covalently	 attached	 to	 exterior	 for	 imaging.18	 Viral	 capsid	

exteriors	have	also	been	utilized	to	generate	phage	display	libraries.73		

The	 exterior	 of	 cages	 have	 been	 functionalized	 for	 some	 industrial	

applications.	Metal-binding	peptides	have	been	conjugated	to	protein	cage	exteriors	

to	template	nanocrystals	for	nano	wire	formation.	ZnS	and	CdS	nanowire	have	been	

synthesized	 by	 displaying	 peptides	 on	 M13	 bacteriophage.74	 The	 interior	 and	

exterior	 of	 TMV	 virus	 has	 been	 utilized	 to	 template	 Ni	 and	 Co	 nanowires.20	 A	

conducting	network	of	cowpea	chlorotic	mottle	(CCMV)	was	designed	by	decorating	

its	exterior	with	gold	nanoparticles.20		

More	 complex,	 hierarchical	 architectures:	 1D	 filaments,	 2D	 layers	 and	 3D	

lattices	 have	 been	 designed	 by	 employing	 protein	 cages	 and	 by	 modifying	 their	

exterior	 surface	 to	 drive	 the	 inter-subunit	 interactions.25	 The	 exterior	 surface	 of	

GroEL	was	modified	with	merocyanine,	an	organic	compound	with	affinity	to	Mg2+,	

which	 led	 the	 protein	 to	 assemble	 into	 1D	 tubes	 in	 the	 presence	 of	 Mg2+.25	 In	

another	approach,	a	thiol	group	was	introduced	to	the	exterior	of	CCMV	capsids	and	

which	 assembled	 into	 2D	 layers	 when	 incubated	 with	 Au.75	 Both	 2D	 and	 3D	
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architectures	 have	 been	 designed	 by	 mixing	 negatively	 charged	 CCMV	 with	

positively	charged	substrates.25		

Tezcan’s	 group	designed	a	metal-directed	3D	protein	 lattice	by	 introducing	

histidine	residues	at	the	3-fold	axes	of	ferritin.76	In	another	example,	a	catalytically	

active	protein	super-lattice	was	designed	by	genetically	modifying	the	exterior	of	a	

viral	 capsid	 to	 drive	 the	 3D	 assembly	while	 also	 encapsulating	 two	 enzymes	 in	 a	

cascade	 reaction,	 inside	 the	 capsid.77	 These	 particles	 assembled	 into	 3D	 arrays,	

which	 could	 be	 recycled	 and	 reused.	 This	 is	 an	 excellent	 proof	 of	 concept	 study	

demonstrating	 protein-based	 nanoreactors	 with	 advanced	 properties	 that	 can	 be	

extended	to	various	industrial	applications.	

1.3.3	Functionalizing	Protein	Cage	Interfaces	

The	 interface	 of	 protein	 cages	 can	 be	 modified	 to	 introduce	 controlled	 or	

environmentally	responsive	assemblies	and	gating	mechanisms.	However,	 this	 is	a	

slowly	progressing	area.	Both	exterior	and	interior	surfaces	of	protein	cages	interact	

with	the	solvent	and	therefore,	modifying	proteins	at	those	surfaces	is	less	likely	to	

lead	 to	 significant	 alterations	of	 the	 structural	properties	of	proteins.	However,	 at	

interfaces,	 proteins	 interact	 with	 its	 neighboring	 protein	 subunits	 via	 protein-

protein	interactions.	Therefore,	introducing	new	properties	to	protein	assemblies	at	

their	 interfaces	 often	 disrupts	 the	 assembly	 and	 has	 been	 a	 challenging	 field	 in	

protein	re-engineering.			

Many	 viral	 capsids	 are	 dynamic	 structures	 and	 some	 capsids	 can	 undergo	

environmentally	 responsive	 changes.	 Some	 viral	 cages	 undergo	 environmentally	

dependent	assembly/disassembly	and	some	have	gated	pores	which	swell	open	 in	
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response	 to	 environmental	 changes	 (E.g.	 pHs	 and	 salt	 concentrations).22,78	 New	

interfaces	with	 controlled	 assemblies	 have	 been	 introduced	 to	 a	 very	 few	natural	

protein	cages.	A	pH-responsive	 ferritin	protein	cage	 that	disassembled	at	 low	pHs	

was	designed	by	genetically	 introducing	a	 “GALA	peptide”	sequence.79	This	 is	a	de	

novo	 designed	 pH-responsive	 motif	 which	 undergoes	 acid-induced	 structural	

transitions.	When	introduced	into	the	interface	of	protein	subunits	the	acid-induced	

structural	 transition	caused	 the	cage	 to	dissassemble.79	 In	another	example,	 a	pH-

responsive	 protein	 cage	 was	 designed	 by	 introducing	 histidine	 residues	 to	 the	

interface	of	E2	complex	from	PDH,	a	60-subunit	protein	cage.80	Decreasing	pH	to	pH	

5.0	led	to	disassembly	of	the	E2	protein	cages.	

	Protein	 cages	 with	 controlled	 assemblies	 will	 be	 powerful	 platforms	 for	

number	of	applications.	pH-responsive	cages	will	be	promising	delivery	systems	for	

lysosome-targeted	drug	delivery	where	low	pH	results	 in	the	disassembly	of	cages	

and	release	of	the	cargo.	Moreover,	cages	with	controlled	interfaces	or	pores	can	be	

utilized	 to	 design	 nanoreactors	 where	 a	 control	 of	 material	 flow	 is	 important.	

Furthermore,	such	an	approach	will	allow	development	of	re-usable	nanoreactors.	

1.4	De	novo	Design	of	Protein	Cages	

The	above	examples	show	that	protein	cages	are	smart	biomaterials,	which	

can	be	utilized	to	design	advanced	nanomaterials	 for	a	wide	range	of	applications.	

Growing	interest	in	protein	nanocages	also	increases	the	demand	for	protein	cages	

with	 new	 architectures	 and	 capabilities	 that	 go	 beyond	 the	 ones	 found	 in	 nature.	

However,	 de	 novo	 designing	 protein	 cages	 has	 proved	 difficult	 because	 of	 our	

incomplete	understanding	of	protein	folding.	Nevertheless,	this	field	has	made	great	
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progress	 within	 last	 two	 decades.	 Natural	 proteins	 that	 assemble	 into	 homo-

oligomeric	structures	form	structures	that	are	often	highly	symmetrical	and	possess	

rotational,	 dihedral	 and	 translational	 symmetries.	 In	 2001,	 Todd	 Yeates’s	 group	

realized	 that	protein	 cages	 could	be	de	novo	 designed	by	employing	proteins	with	

rotational	symmetries	to	serve	as	building	block	units.	

Proteins	 with	 rotational	 symmetries	 (Cn)	 often	 possess	 regular	 polygonal	

shapes	 and	 therefore,	 can	 serve	 as	 promising	 building	 blocks	 to	 de	 novo	 design	

protein	 cages	 with	 various	 geometries.	 Various	 platonic	 geometries	 could	 be	

generated	with	 regular	polygons.	 In	platonic	 solids,	 the	 same	number	of	polygons	

meet	at	each	vertex	with	a	minimum	number	of	three	and	at	an	internal	angle	of	less	

than	 360°.	 Only	 equilateral	 triangles,	 squares	 and	 pentagons	 can	 fulfill	 this	

requirement	 and	 natural	 proteins	 with	 C3,	 C4	 and	 C5	 rotational	 symmetries	

respectively	often	resemble	those	polygonal	shapes.		

There	are	five	platonic	solids:	the	tetrahedron,	the	cube,	the	octahedron,	the	

dodecahedron	and	the	icosahedron.	All	these	geometries	possess	three	operational	

(rotational)	symmetries:	faces	and	vertices	possess	C3+C3,	C3+C4	or	C3+C5	symmetric	

combinations	 and	 the	 edges	 have	 C2	rotational	 symmetry	 (Fig.	 1.3).	 Any	 platonic	

solid	can	be	specified	by	pairwise	combination	of	two	of	its	symmetry	elements	and	

the	 dihedral	 angle	 between	 the	 principal	 rotational	 axes.	 However,	 pairing	 a	 C2	

symmetry	 element	 with	 any	 rotational	 symmetry	 element	 can	 lead	 to	 multiple	

assemblies	 unless	 the	 dihedral	 angles	 between	 subunits	 are	 precisely	 defined	 in	

order	to	satisfy	the	intended	geometry	(Fig.	1.3).		
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Figure	 1.	 3	 Different	 cage	 geometries	 can	 be	 generated	 by	 pairwise	 combination	 of	
symmetries.	Left:	Pairing	with	C2	symmetry	allow	multiple	geometries.	Right:	Pairing	other	
rotational	 symmetries	 allow	 formation	 of	 specific	 geometries/platonic	 solid	 form	 (Image	
credits:	Dr.	Ben	Buer).	

	

Figure	1.	4	Examples	of	possible	geometries	can	be	formed	when	a	triangular	or	trimeric	
building	block	is	paired	with	C2,	C3	or	C4	(Image	credits:	Dr.	Aaron	Sciore).	
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We	note	that	pairwise	combinations	of	symmetries	can	generate	many	forms	

of	geometries	other	than	platonic	solids	(Fig	1.4).	Nevertheless,	 the	platonic	solids	

are	 stable	 geometries	 with	 minimized	 surface/volume	 ratios	 and	 smaller	 surface	

area	exposed	 to	 the	exterior	compared	 to	other	geometric	 forms.	Proteins	 tend	 to	

assemble	 into	energetically	more	 favorable,	ordered	structures	and	platonic	solids	

satisfy	those	requirements.	Therefore,	we	hypothesize	that	during	assembly	protein	

subunits	will	favor	platonic	solid	geometries	over	the	other	forms.	Theoretically	it	is	

possible	to	design	various	cage-like	protein	architectures	using	one	or	more	types	of	

proteins	with	rotational	symmetries.		

Yeates’	 lab	was	 the	 first	 group	 to	 recognize	 that	 protein	 cages	 could	 be	de	

novo	 designed	 by	 employing	 the	 symmetry.	 In	 2001,	 they	 designed	 a	 tetrahedral	

protein	cage,	the	first	de	novo	designed	protein	cage,	by	exploiting	the	symmetry	of	

natural	proteins.81	Even	though	the	initial	design	had	some	heterogeneity,	this	work	

opened	 up	 a	 whole	 new	 field	 of	 nanotechnology.	 Since	 then	 several	 approaches,	

both	 directed	 and	 fundamental,	 have	 been	 introduced	 to	 de	 novo	 design	 protein	

nanocages	by	utilizing	the	symmetry.	
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Figure	1.	5	Schematic	illustrations	of	two	major	protein	design	approaches.	(A)	Designing	
of	a	tetrahedral	protein	cage	using	oligomeric	 fusion	strategy	by	the	Yeates’	group	(Image	
adapted	from	ref.	83).	(B)	Designing	of	an	octahedral	cage	using	interface	design	strategy	by	
the	Baker	group	(Image	adapted	from	ref.	86).	 

	
	

	Both	 the	 oligomeric	 fusion	 strategy	 and	 the	 interface	 design	 strategy	 have	

made	significant	progress	(Fig.	1.5).	The	oligomeric	fusion	strategy	was	introduced	

by	 the	 Yeates’	 group.	 In	 this	 design	 strategy,	 a	 fusion	 construct	 is	 designed	 by	

genetically	 joining	 two	 natural	 oligomeric	 proteins	 with	 desired	 rotational	

symmetries	via	a	short	α-helical	linker.		A	rigid	α-helical	linker	is	used	to	constrain	

the	geometry	of	the	cage	so	that	correct	dihedral	angle	is	formed.	The	geometry	can	

be	fine	tuned	by	modifying	the	α-helical	pitch	by	varying	the	linker	length.	

The	Yeates’	 group	 initially	designed	a	 tetrahedral	 cage	by	 fusing	 a	 trimeric	

protein	subunit	with	C3	symmetry	and	a	dimeric	subunit	with	C2	symmetry	through	

a	 helical	 connector.81	 However,	 the	 cages	 were	 too	 heterogeneous	 to	 be	
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characterized	 by	 crystallography.	 In	 2012,	 they	 revisited	 the	 design	 and	 removed	

two	amino	acid	 residues	 from	 the	helical	 linker.	This	modification	helped	 them	 to	

successfully	re-design	a	homogeneous	tetrahedral	cage	and	that’s	structure	could	be	

verified	 crystallographically.82	 Subsequently,	 the	 Yeates	 group	 designed	 cubic	 and	

dodecahedral	 protein	 cages	 and	 extended	 structures	 (filaments	 and	 lattices)	

utilizing	this	approach.83–85	

The	oligomeric	 fusion	strategy	opened	up	a	new	field	of	protein	design	and	

engineering,	 which	 allowed	 design	 of	 both	 closed-cage	 like	 and	 extended	 protein	

architectures	 utilizing	 symmetry	 as	 a	 powerful	 tool.	 However,	 in	 this	 approach,	

designing	 protein	 cage	 architectures	 require	 the	 dihedral	 angle	 between	 protein	

subunits	to	be	precisely	controlled	to	obtain	the	intended	geometries.	The	rigid	α-

helical	connector	is	evaluated	intensively	by	varying	the	residues	both	 in	silico	and	

experimentally	to	optimize	the	dihedral	angle.	Nevertheless,	we	note	that	oligomeric	

fusion	 strategy	 is	 far	 more	 promising	 for	 designing	 extended	 materials	 where	

relaxed	 linkers	 can	 be	 incorporated	 and	 therefore	 the	 stress	 for	 optimizing	 the	

linker	 is	 largely	 reduced.	 Various	 research	 groups	 have	 utilized	 oligomeric	 fusion	

approaches	 but	with	 flexible	 linkers	 to	 design	 filaments,	 2D	 arrays	 as	well	 as	 3D	

crystals.83	

The	interface	design	strategy	introduced	by	David	Baker’s	group	has	gained	

impressive	 success.	 This	 design	 strategy	 employs	 sophisticated	 computational	

modeling	to	de	novo	design	protein	cages	and	which	include	symmetric	docking	of	

proteins	 and	 design	 of	 low	 energy	 protein-protein	 interfaces.	 The	 approach	 has	

been	 used	 to	 design	 one	 and	 two	 component	 protein	 cages	 with	 various	
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geometries.86–89	 Here,	 one	 interface	 is	 provided	 by	 the	 natural	 oligomeric	 protein	

and	a	second	protein	interface	is	introduced	by	computational	modeling	to	drive	the	

assembly.	86,87		

First,	 natural	 protein	 subunits	 with	 rotational	 symmetries	 of	 interest	 are	

symmetrically	 docked	 in	 a	 geometry	 of	 interest	 using	 the	 symmetric	 modeling	

framework	 in	 Rosetta.87	 The	 subunits	 are	 allowed	 to	 freely	 rotate	 around	 and	

translate	along	their	symmetry	axes.	Other	rigid	body	movements	are	restricted	in	

order	to	prevent	the	formation	of	non-specific	geometries.	A	scoring	function	is	used	

to	calculate	low	energy	interfaces	with	minimum	steric	clashes.	The	configurations	

with	repeating	symmetrical	 inter-subunit	interfaces	and	high	scoring	functions	are	

selected.	 The	models	with	 high	 scores	 possess	 high	 densities	 of	 contacting	 amino	

acid	residues	at	their	interfaces,	which	largely	reduce	the	risk	for	alterations	in	the	

properties	of	protein	upon	modification	of	surface	amino	acid	residues.		

Next,	 the	 amino	 acid	 residues	 on	 those	 inter-subunit	 interfaces	 are	

genetically	 modified	 to	 generate	 novel,	 geometrically	 complementary	 interfaces	

with	 the	most	 stable	 interfaces	 predicted	 using	 Rosetta	 and	 interactive	 design	 in	

Foldit.	 This	 involves	 sampling	 and	 identifying	 the	 configurations	 of	 amino	 acid	

residues	 on	 the	 inter-subunit	 interfaces,	 screening	 the	 natural	 protein	 interfaces	

which	closely	resemble	these	 inter-subunit	 interfaces	and	mutating	amino	acids	 in	

inter-subunit	 interfaces	to	closely	match	the	properties	of	those	natural	 interfaces.	

Natural	protein	interfaces	possess	well-packed	hydrophobic	regions	surrounded	by	

polar	amino	acid	 residues	and	similar	properties	are	 introduced	 to	 the	new	 inter-

subunit	interfaces	in	order	to	drive	the	protein	assembly.	One	and	two	component	
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protein	 cages	 with	 tetrahedral,	 octahedral,	 dodecahedral	 and	 icosahedral	

symmetries	have	been	successfully	designed	using	this	strategy.86–89		

	

	

Figure	 1.	 6	 Examples	 of	 de	 novo	designed	 protein	 cages.	 (A)	 Designing	 of	 a	 60-subunit	
icosahedral	 protein	 cage	using	 interface	design	 strategy	by	 the	Baker	 lab	 (Image	 adapted	
from	 ref.	 88).	 (B)	 Designing	 of	 icosahedral	 protein	 cages	 using	 coiled	 coil	 motifs	 by	 the	
Burkhard	 group	 (Image	 adapted	 from	 ref.	 90).	 (C-E)	 Porous	 Tetrahedral,	 pyramidal	 and	
prism	shape	cages	designed	using	single	polypeptide	chains	composed	coiled	coil	motifs,	by	
the	Jerala	group	(Image	adapted	from	ref.	91).	

	

The	 interface	 design	 strategy	 has	 made	 striking	 progress	 and	 can	 be	

considered	 as	 a	 very	 promising	 approach	 for	 de	 novo	 design	 of	 protein	 cages.	

However,	 it	 is	 achieved	 at	 the	 high	 cost	 of	 sophisticated	 protein	 modeling	 and	

intensive	 protein	 engineering.	 In	 a	 landmark	 paper,	 271	 trimeric	 proteins	 were	

computationally	evaluated	in	order	to	design	a	tetrahedral	and	an	octahedral	cage.87	

8	constructs	were	expressed	to	screen	for	tetrahedral	assemblies	and	33	constructs	

for	octahedral	assemblies.	However,	only	one	construct	from	each	screen	assembled	

as	 intended.	 In	 2016,	 they	 utilized	 this	 strategy	 and	 designed	 an	 one-component	
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dodecahedral	 cage	 and	 multiple	 two-component	 icosahedra,	 the	 highest	 platonic	

solid	 forms.	 When	 designing	 60-subunit	 dodecahedral	 cage,	 300	 natural	 trimeric	

proteins	were	docked	and	17	of	them	were	selected	for	experimental	screening	with	

only	one	assembled	 into	 the	 intended	geometry	(Fig.	1.6	A).88	For	 two	component	

icosahedra,	 approximately	 350,000	 symmetry	 pairs	 were	 docked	 and	 about	 300	

constructs	were	experimentally	screened,	only	8	designs	assembled	into	icosahedral	

assemblies.89		

Protein	 cage	 architectures	 have	 also	 been	 designed	 using	 self-associating	

motifs	 such	 as	 coiled	 coils.	 The	Burkhard	 group	 designed	 cage-like	 assemblies	 by	

genetically	 fusing	 a	 trimeric	 coiled	 coil	 with	 a	 pentameric	 coiled	 coil	 through	 a	

flexible	oligo-glycine	linker	(Fig.	1.6	B).90	However,	the	initial	assemblies	were	very	

heterogeneous.	 Disulfide	 bonds	 were	 introduced	 between	 each	 side	 of	 the	 oligo-

glycine	linker	to	rigidify	the	dihedral	angle	in	order	to	increase	the	homogeneity	of	

assemblies.	 Subsequently,	 this	 construct	 was	 slowly	 refolded	 under	 oxidative	

conditions	 and	 which	 led	 to	 formation	 of	 a	 fairly	 homogeneous	 60-subunit	

icosahedral	cage.		

The	 Jerala	 group	 designed	 various	 cage-like	 assemblies	 (E.g.	 tetrahedral,	

pyramidal,	 prism)	 using	 single	 polypeptide	 chains	 comprising	 parallel	 and	

antiparallel	coiled	coils	with	flexible	linkers	(Fig.	1.6	C-E).91,92	Several	other	groups	

have	 explored	 coiled	 coil	 based	 strategies	 to	 design	 protein	 cages	 and	 extended	

materials.93–97	This	coiled	coil-based	design	strategy	is	also	referred	to	as	coiled	coil	

protein	 origami	 (CCPO)	 and	 this	 strategy	 provides	 a	 simple	 route	 to	 design	novel	

protein	 architectures.	 However,	 coiled	 coils	 are	 quite	 flexible	 peptide	 motifs	 and	



	

	 23	

therefore,	 the	 resulting	 cages	 are	 often	 very	 heterogeneous	 and	 overly	 flexible.	

Furthermore,	 only	 very	 porous	 cages	 can	 be	 designed	 using	 these	 motifs.	

Nevertheless,	 they	 are	 attractive	 platforms	 for	 antigen	 display	 and	 similar	

applications.	One	noteworthy	example	is	the	functionalization	of	a	coiled	coil-based	

icosahedral	cage	design	by	the	Burkhard	group	to	develop	a	malaria	vaccine.45	

1.5	A	Generalizable	Approach	To	Design	Protein	Nano-Cages	

To	overcome	the	reliance	on	computational	modeling	and	 intensive	protein	

engineering	the	Marsh	lab	has	developed	a	flexible	symmetry-based	approach.	This	

relaxes	 the	requirement	 for	 the	symmetry	axes	 to	be	explicitly	oriented	at	precise	

angles.	This	design	 strategy	utilizes	 small	 coiled	 coil	 domains	 as	modular,	 off-the-

shelf	assembly	domains	that	are	fused	to	a	homo-oligomeric	building	block	protein	

through	a	short,	 flexible	 linker	sequence.	The	geometry	of	 the	protein	cage	 is	 thus	

primarily	specified	by	the	rotational	symmetries	of	the	coiled	coil	and	building	block	

protein.	 This	 flexible	 approach	 to	 protein	 assembly	 produces	 cages	 that	 are	more	

conformationally	labile	than	those	assembled	using	designed	protein	interfaces,	but	

has	the	advantage	that	it	does	not	require	extensive	computational	modeling.	
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Figure	 1.	 7	Assembly	of	Aldolase	 trimmers	 into	multiple	species.	 (A)	The	design	concept.	
(B)	Negative	stain-TEM	images	of	cages	assembled	 into	multiple	species.	 (Images	adapted	
from	ref.	98)	

	

First	 step	 of	 the	 design	 process	 involves	 identifying	 of	 natural	 oligomeric	

“building	block”	proteins	that	possess	rotational	symmetry	due	to	their	quaternary	

structure.	 The	 requirements	 in	 choosing	 a	 building	block	protein	 (BBP)	were:	 the	

protein	must	possess	one	of	the	desired	rotational	symmetry;	the	presence	of	one	of	

its	 termini	 in	 a	 vertex;	 it	 should	 be	 easy	 to	 express	 in	 a	 cost	 effective	 expression	

system	 such	 as	 E.	 coli.	 	 Next,	 a	 coiled	 coil	 domain	 is	 genetically	 introduced	 via	 a	

flexibly	oligo-glycine	(Gly)	spacer	to	the	terminus	located	at	the	vertex	of	the	BBP.	

The	assembly	of	protein	subunits	into	protein	cages	is	mediated	by	oligomerization	

of	the	coiled	coil.		

In	initial	attempts	to	design	protein	cages,	our	group	selected	KDPG-aldolase	

from	T.	maritima:	a	trimer	with	C3	rotational	symmetry	as	the	BBP.98	In	this	design,	

a	hetero-dimeric,	anti-parallel	coiled	coil	with	C2	rotational	symmetry	was	utilized	

to	 mediate	 the	 assembly.98	 This	 hetero-dimeric	 coiled	 coil	 was	 composed	 of	 a	
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predominantly	 positively	 charged	 helix	 and	 a	 predominantly	 negatively	 charged	

helix,	which	 formed	 dimers	 only	when	 they	were	mixed	 together.	 Therefore,	 two	

fusion	 constructs	 were	 designed	 by	 genetically	 fusing	 each	 helix	 to	 the	 trimeric	

protein:	fusion	constructs	with	positively	charged	helix	and	negatively	charged	helix	

were	named	A-(+)	and	A-(-)		respectively.	When	the	fusion	constructs	were	mixed	at	

1:1	ratios,	they	assembled	into	mixture	of	complexes	(Fig.	1.7).	However,	this	study	

demonstrated	the	potential	of	employing	coiled	coils	as	off-the-shelf	components	to	

mediate	 higher	 order	 assemblies.	 	 As	 discussed	 in	 previous	 section,	 pairing	 a	 C2	

symmetry	 element	 can	 lead	 to	 formation	 of	 heterogeneous	 structures	 unless	 the	

dihedral	 angel	 between	 subunits	 are	 precisely	 defined.	 Our	 group	 identified	 the	

drawback	of	this	initial	design	and	attempts	were	taken	to	develop	this	approach	to	

be	more	robust	for	de	novo	designing	protein	cages.	
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Figure	 1.	 8	 The	 coiled	 coil-directed	 design	 concept.	 (A)	 Genetic	 fusion	 construct.	 (B)	
Formation	of	protein	cages	with	different	oligomeric	states	when	C-termini	of	the	trimeric	
esterase	 (red	 spheres)	 genetically	 fused	 via	 a	 flexible	 oligo-Gly	 linker	 to	 one	 of	 parallel	
coiled-coils	of	known	oligomerization	state.	(Image	credits:	Dr.	Ben	Buer).	

	
	

Our	 group	 speculated	 that	 utilizing	 homo-oligomeric	 parallel-coiled	 coils	

with	higher	rotational	symmetries	(C3,	C4	or	C5)	might	alleviate	formation	of	mixed	

protein	 assemblies.	 For	 this	 study	Pseudomonas	Putida	 trimeric	 esterase	 (PDB	 ID:	

1ZOI),	a	C3	symmetric	protein	was	chosen	as	the	BBP	and	a	coiled	coil	sequence	with	

the	 desired	 oligomeric	 state	 was	 genetically	 fused	 to	 the	 C-terminus	 of	 the	 BBP	

through	a	short	oligo-Gly	linker.	The	geometry	of	the	protein	cage	is	specified	by	the	

combination	 of	 rotational	 symmetry	 elements	 represented	 by	 the	 protein	

quaternary	structure	and	the	oligomerization	state	of	 the	attached	coiled	coil	 (Fig.	

1.8).	Here,	 the	BBP	has	C3	symmetry	and	pairing	it	 to	homo-oligomeric	coiled	coils	
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with	different	symmetries	should,	theoretically,	assemble	it	into	protein	cages	with	

different	platonic	geometries:	C3	BBP	+	C3	coiled	coil	 should	specify	 to	a	8-subunit	

tetrahedral	 cage,	C3	BBP	+	C4	coiled	 coil	 should	 specify	 to	a	24-subunit	octahedral	

cage	and	C3	BBP	+	C5	coiled	coil	should	specify	to	a	60-subunit	 icosahedral	protein	

cage.		

However,	 in	 order	 to	 get	 the	 intended	 closed,	 cage-like	 geometries	 it	 was	

found	 to	 be	 very	 important	 to	 optimize	 the	 linker	 length	 and	 the	 strength	 of	 the	

coiled	coil.		Our	group	employs	an	oligo-Gly	linker	to	provide	flexibility	between	the	

two	protein	domains.	If	the	glycine	linker	is	too	short,	steric	classes	will	prevent	the	

cages	 from	 properly	 assembling;	 whereas	 too	 long	 of	 a	 linker	 leads	 to	 an	 overly	

flexible	 structure	 that	misassembles.	 The	 strength	 of	 the	 coiled	 coil	 is	 also	 a	 key-

determining	factor	for	getting	the	subunits	to	assemble	into	homogenous	cages.	 In	

higher	 order	 protein	 assemblies,	 protein	 interfaces	 have	 very	 weak	 interactions.	

However,	 once	 assemble,	 they	 make	 very	 stable	 protein	 cages.	 Viral	 capsids	 are	

excellent	 examples:	 If	 the	 subunit	 interactions	 are	 too	 strong,	 the	 partially	

assembled	 capsids	 become	 trapped	 in	 intermediate	 states	 that	 are	 too	 stable	 to	

proceed	 to	 the	 formation	 of	 the	 final	 capsid.	 A	 very	 weak	 interaction	 is	 also	

problematic	and	can	lead	failure	of	the	capsid	to	assemble	at	all.	In	the	present	case,	

because	coiled	coils	are	built	on	heptad	repeats	of	amino	acid	residues,	the	strength	

of	the	coiled	coils	can	be	controlled	by	varying	the	number	of	heptad	repeats.		

1.5.1	Designing	an	Octahedral	Protein	Cage	

Using	 this	 design	 concept,	 our	 laboratory	 first	 attempted	 to	 design	 an	

octahedral	 protein	 cage	 by	 fusing	 TriEst	 to	 a	 4-heptad	 tetrameric	 coiled	 coil	 (Fig.	
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1.9).99	 This	 project	 was	 led	 by	 Dr.	 Aaron	 Sciore.	 As	 a	 homo-oligomeric,	 parallel	

coiled	coil	is	needed,	a	de	novo	designed	tetrameric	coiled	coil	(PDB	ID:	3R4A)	with	

Ile	and	Leu	residues	at	“a”	and	“d”	positions	was	selected	to	specify	its	geometry.	For	

this	 first	 cage	 design,	 the	 inter-terminus	 distance	 between	 the	 C-terminus	 of	 the	

TriEst	and	N-terminus	of	the	coiled	coil	was	determined	by	using	a	search	algorithm	

implemented	 in	 the	Rosetta	program	 in	collaboration	with	David	Baker’s	group	at	

the	 University	 of	 Washington,	 Seattle.	 TriEst	 was	 arranged	 along	 the	 C3-axes	 in	

octahedral	geometry	and	the	coiled	coil	array	on	the	C4-vertices,	the	inter-terminus	

distance	was	minimized	by	rotating	these	subunits	and	calculating	the	distance	for	

lowest	energy	interface.	The	distance	was	estimated	by	modeling	to	be	9.1	Å,	which	

is	the	distance	of	an	approximately	3-residue	long	linker.		

Three	fusion	constructs	were	designed	by	starting	from	a	two-residue	linker	

(GT)	 and	 by	 adding	 one	 glycine	 residue	 at	 a	 time,	 there	 by	measuring	 the	 linker	

length	 from	 6	 Å	 to	 12	 Å.	 	 Constructs	 were	 named	 as	 Oct-2,	 Oct-3	 and	 Oct-4	

respectively	and	they	were	expressed	in	E.	coli.	From	the	3	constructs,	Oct-4	with	a	

4-residue	linker,	assembled	into	more	homogenous	cages	and	was	characterized	in	

detail	 using	negative	 stain-TEM,	 cryo-EM,	 analytical	ultracentrifugation	 (AUC)	and	

native	 PAGE.	 About	 35,000	 particles	 were	 collected	 by	 cryo-EM,	 and	 the	 3D	

construction	at	a	resolution	of	17	Å	confirmed	that	the	construct	assembles	into	an	

octahedral	 protein	 cage.	 2-dimensional	 sedimentation	 plots	 (2DSA)	 generated	 by	

AUC	 showed	 that	 about	 75	 %	 of	 Oct-4	 assembles	 into	 the	 intended	 geometry.	 A	

single	 and	 symmetric	 elution	 profile	 in	 size	 exclusion	 chromatography	 (SEC)	 and	

native-PAGE	gel	were	further	evidence	for	the	homogeneity	of	Oct-4	assemblies.		
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Figure	1.	9	“Oct-4”	Octahedral	protein	cage.	(A)	Cryo-EM	of	Oct-4.	Left:	3D	map	projections;	
Right:	Reconstructed	electron	density	map.	(B)	Negative	stain	TEM	of	Oct-4.	(Image	adapted	
from	ref.	99)	

	
	

Additionally,	 AUC	 analysis	 showed	 that	Oct-4	 has	 a	 frictional	 ratio	 (f/f0)	 of	

1.89	and	which	suggested	that	Oct-4	maintains	a	hollow	interior	as	expected	 for	a	

protein	cage.	Because	of	 the	flexibility	of	 the	cages	and	low	resolution	of	 the	cryo-

EM	3D-reconstruction,	the	orientation	of	the	coiled	coils	(facing	inward	or	outward)	

could	 not	 be	 determined.	 Overall,	 characterization	 of	 Oct-4	 indicated	 that	 it	 is	

possible	to	design	an	octahedral	protein	cage	by	utilizing	a	simple	coiled	coil	driven	

design	 approach.	 Next,	 our	 group	 wanted	 to	 design	 protein	 cages	 in	 other	

geometries	in	order	to	evaluate	the	generalizability	of	our	strategy.	

1.5.2	Designing	a	Tetrahedral	Protein	Cage	

Our	 laboratory	 next	 evaluated	 the	 potential	 of	 designing	 a	 tetrahedral	
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protein	 cage.	 This	 project	 was	 led	 by	 Dr.	 Somaye	 Badieyan.	 Theoretically,	 a	

tetrahedral	 protein	 cage	 could	 be	 designed	 by	 fusing	 the	 TriEst	 with	 a	 trimeric	

coiled	coil.	In	order	to	test	this,	TriEst	was	fused	with	a	de	novo	designed	4-heptad-

homo-trimeric	parallel	coiled	coil	(PDB	ID:	4DZL).		This	coiled	coil’s	trimeric	state	is	

specified	 by	 placing	 Ile	 at	 both	 “a”	 and	 “d”	 positions.	 	 Several	 constructs	 were	

evaluated	by	varying	the	glycine	linker	length	and	the	number	of	heptad	repeats	(4	

heptads	 and	 5	 heptads).100	 First	 constructs	 containing	 a	 4-heptad	 repeat	 trimeric	

coiled	coil	fused	to	TriEst	were	evaluated	and	the	linker	length	varied	from	4	to	12	

residues,	 increasing	2	residues	at	a	 time.	With	an	8-residue	 linker	 (GT(G)6),	about	

25	%	of	the	proteins	assembled	into	tetrahedral	cages	as	evidenced	by	native-PAGE,	

but	other	constructs	showed	a	higher	heterogeneity	and	no	tetrahedral	assemblies	

were	 evident.	 Next,	 the	 constructs	 with	 6-,	 8-	 and	 10-	 residues	 linkers	 were	 re-

evaluated	after	adding	one	more	heptad	repeat	to	the	coiled	coil.	The	construct	with	

5-heptads	 and	 a	 8-residue	 linker	 (GT(G)6)	 assembled	 into	 very	 homogeneous,	

discrete	particles.	Characterization	of	the	assemblies	was	performed	using	the	same	

set	of	analytical	tools	mentioned	under	the	section	on	octahedral	cage	design.		
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Figure	 1.	 10	 Tetrahedral	 protein	 cage	 design.	 (A)	 Cryo-EM	 of	 Tet8-5H.	 left:	 3D	 map	
projections;	Right:	Reconstructed	electron	density	map.	(B)	Negative	stain	TEM	of	Tet-8-H5.	
(Images	adapted	from	ref.	100).	

	

2DSA	 plots	 generated	 by	 AUC	 showed	 that	 the	 construct	 assembles	 into	 a	

single	hydrodynamic	 species	with	Mw	of	 430	kDa	and	 frictional	 ratio	 of	 f/f0	=	1.5.	

The	 calculated	 Mw	 obtained	 by	 AUC	 was	 in	 a	 very	 good	 agreement	 with	 the	

predicted	Mw	of	 439	kDa.	Additionally,	 the	Mw	was	determined	using	native	mass	

spectrometry	(native	MS),	which	gave	a	Mw	of	434	±	0.2	kDa	and	was	very	close	to	

the	 predicted	Mw.	 Samples	 collapsed	 during	 the	 vitrification	 in	 cryo-EM	 attempts,	

possibly	due	to	the	flexibility	of	the	cages.	Therefore,	the	samples	were	cross-linked	

with	 bis(sulfosuccinimidyl)suberate	 (BS3)	 cross-linker	 to	 prevent	 them	 from	

collapsing	during	the	vitrification	step;	this	cross-linker	reacts	between	amine	in	the	

side	 chains	 of	 lysine	 and	 has	 a	~	 11	Å	 cross-linking	 span.	 	 Cryo-EM	 images	were	

taken	 for	 those	 cross-linked	 samples.	 ~	 35,000	 particles	 were	 collected	 and	 3D	



	

	 32	

reconstruction	map	was	generated	using	class-averaged	images.	The	3D	map	at	13	Å	

resolution	revealed	that	these	cages	have	the	tetrahedral	symmetry	with	coiled	coils	

facing	outward	(Fig.	1.10).		

Overall,	 our	 laboratory	 successfully	 designed	 both	 a	 tetrahedral	 and	 an	

octahedral	 protein	 cage	 from	 the	 same	 BBP	 using	 the	 coiled	 coil-based	 design	

strategy.	Only	 a	 few	 constructs	 needed	 to	 be	 experimentally	 evaluated	 to	 identify	

successfully	assembled	proteins.	Only	three	gene	constructs	were	evaluated	for	the	

octahedral	cage	design	and	nine	constructs	were	evaluated	for	the	tetrahedral	cage	

design.	 The	 work	 described	 above	 showed	 that	 protein	 cages	 with	 different	

geometries	 could	 be	 designed	 by	 fusing	 a	 natural	 symmetrical	 protein	 building	

block	and	a	coiled	coil	through	an	oligo-Gly	spacer.	Overall,	this	strategy	provides	a	

simple	and	easily	implemented	route	for	de	novo	designing	protein	cages.		

1.5.3	Project	Goals	

My	 thesis	 project	 was	 the	 continuation	 of	 this	 work.	 First,	 I	 evaluated	 the	

utility	of	de	novo	designed	coiled	coils	to	use	as	off-the-shelf	components	for	protein	

design	by	fusing	a	set	of	de	novo	designed	coiled	coils	with	different	oligomerization	

states	to	GFP.	This	study	demonstrated	that	coiled	coil	behavior	could	be	subjected	

to	 unanticipated	 changes	 when	 other	 proteins	 are	 attached.	 The	 intended	

oligomerization	 states	 of	 some	 of	 these	 coiled	 coils	 could	 be	 restored	 by	 minor	

structural	modifications.	This	work	is	discussed	in	chapter	2.	

	In	chapter	3,	I	describe	the	elaboration	of	our	octahedral	protein	cage	design	

by	fusing	a	large	monomeric	protein	to	the	free	end	of	the	coiled	coil.	This	work	was	

conducted	 to	 increase	 the	 yield	 of	 octahedral	 cages	 and	 study	 the	 potential	 of	
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appending	 large	 functional	 groups	 to	 the	 free	 end	 of	 the	 coiled	 coil.	 The	 protein	

construct	successfully	assembled	into	a	~	1.8	MDa	protein	cage	with	an	octahedral	

core;	 fusing	 a	 large	monomeric	 group	did	not	disrupt	 the	oligomeric	 state.	 In	 this	

design,	maltose	binding	protein	was	used	as	 the	monomeric	protein.	This	allowed	

purification	of	the	protein	by	maltose	affinity	chromatography	which	increased	the	

yield	of	protein	by	~	60-fold	and	gave	~	60	mg	of	protein	per	1	L	culture.		

In	 chapter	 4,	 I	 describe	 work	 to	 design	 an	 icosahedral	 protein	 cage	 (the	

highest	 geometry)	 using	 our	 symmetry-directed	 design	 approach.	 In	 this	 work,	

seven	constructs	were	evaluated	by	genetically	fusing	a	pentameric	coiled	coil	to	the	

same	trimeric	building	block	through	a	oligo-Gly	 linker.	A	construct	with	4-heptad	

coiled	 coil	 and	 a	 8-residue	 linker	 successfully	 assembled	 into	 a	 hyperstable	

icosahedral	protein	cage	under	optimized	purification	protocols.	Surprisingly,	these	

assemblies	 captured	 short	 DNA	 strands,	 which	 appeared	 to	 be	 important	 for	 the	

homogeneity	 of	 the	 cage.	 In	 the	 absence	 of	 DNA	 the	 protein	 assembled	 into	

heterogeneous	forms.	

	In	 chapter	 5,	 I	 describe	 the	 potential	 of	 designing	 protein	 cages	 that	

assemble	in	a	controlled	manner.	As	there	are	environment-responsive	coiled	coils,	

both	 natural	 and	 de	 novo,	 fusing	 them	 to	 TriEst	 should	 allow	 design	 of	 cages	 in	

which	 the	 assembly	 can	 be	 controlled.	 I	 tested	 this	 hypothesis	 by	 fusing	 a	metal-

dependent	 trimeric	 coiled	 coil	 to	 TriEst	 and	 was	 able	 to	 successfully	 control	 the	

assembly	of	the	cage.	

	In	 chapter	 6,	 I	 summarize	 my	 thesis	 work	 and	 will	 discuss	 the	 future	

directions	of	the	project.	
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Chapter	2:	Evaluation	of	De	Novo	Designed	Coiled	Coils	as	off-the-shelf	
Components	for	Protein	Assembly	

	

This	work	is	published	on	“Cristie-David	AS,	Sciore	A,	Badieyan	S,	Escheweiler	JD,	
Koldewey	P,	Bardwell	JCA,	Ruotolo	BT,	Marsh	ENG	(2017)	Evaluation	of	de	novo-
designed	coiled	coils	as	off-the-shelf	components	for	protein	assembly.	Mol	Syst	Des	

Eng	2:140–148”	

	

2.1	Introduction	

α-helical	 coiled	 coil	 domains	 represent	 one	 of	 the	 simplest	 and	 best	

understood	 protein-protein	 interactions.	 	 They	 occur	 widely	 in	 natural	 proteins,	

comprising	 up	 to	 5%	 of	 all	 protein	 residues,	 and	 were	 among	 the	 first	 protein	

structures	 to	be	designed	de	novo.1–3	 Simple	 rules,	based	on	a	 repeating	 canonical	

heptad	of	amino	acid	 residues,	 apparently	govern	 the	 interactions	between	 the	α-

helices	of	coiled	coil	domains.		The	use	of	these	rules	has	allowed	the	de	novo	design	

of	 a	 wide	 range	 of	 small	 α-helical	 bundle	 proteins	 whose	 structures	 comprise	

between	2	and	7	α-helices	(Fig.	2.1).4–7	The	helices	may	be	designed	to	adopt	either	

parallel	 or	 antiparallel	 topologies	 and	 may	 be	 identical	 (homooligomeric)	 or	

complementary	(heterooligomeric)	in	sequence.8–10		

In	 nature,	 coiled	 coil	 interactions	 often	 mediate	 the	 assembly	 of	 larger	

protein	 domains.	 Well-studied	 examples	 include	 the	 dimerization	 of	 many	

transcription	factors	and	the	assembly	of	multi-enzyme	complexes	such	as	pyruvate	

dehydrogenase	and	polyketide	synthases.11–13	Coiled	coils	are	also	important	in	the	
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interaction	of	proteins	with	membranes.14–17	The	ability	of	 coiled	 coils	 to	mediate	

the	controlled	assembly	of	 large-scale	protein	structures	has	attracted	the	 interest	

of	synthetic	biologists.	Coiled	coil	domains	can	also	be	designed	de	novo	with	well-

defined	 oligomerization	 states,	 topologies,	 and	dissociation	 energies.	Hence	 coiled	

coils	 have	 become	 very	 attractive	modular	 protein	motifs	 for	de	novo	 assembling	

individual	protein	 subunits	 into	higher	order	 structures	 in	 synthetic	biology.	Both	

natural	and	de	novo	designed	coiled	coil	motifs	have	been	widely	utilized	to	de	novo	

design	 protein	 cages,	 extended	 protein	 structures,	 hydrogels	 and	 various	 protein	

based	nanoparticles.18–23	

Our	 lab	 identified	 the	 potential	 of	 using	 de	 novo	 designed	 parallel	 homo-

oligomeric	 coiled	 coils	 to	 function	 as	 simple	 off-the-shelf	 connectors	 to	 drive	

homogeneous	 protein	 cage	 assemblies	 when	 they	 are	 fused	 to	 large	 oligomeric	

proteins	with	rotational	symmetries.	 	The	utility	of	coiled	coil	designs	as	plug-and-

play	components	for	such	synthetic	biology	applications	depends	critically	on	them	

robustly	maintaining	 their	oligomerization	states	when	 fused	 to	 larger	proteins	of	

interest.	 However,	 the	 properties	 of	 the	 de	 novo	 designed	 coiled	 coils	 have	 been	

almost	 exclusively	 investigated	 in	 isolation,	 leaving	 open	 the	 possibility	 that	 they	

may	 significantly	 differ	 in	 their	 behavior	 when	 genetically	 fused	 to	 much	 larger,	

natural	proteins.	

	



	

	 44	

	

Figure	2.	1	Structures	formed	by	several	de	novo	designed	coiled	coils,	which	we	evaluated	
by	 fusing	 to	 GFP.	 (A-C)	 helical	 diagrams	 and	 (D-F)	 crystal	 structures	 of	 4DZN,	 4DZL	 and	
3R4A	coiled	coils	respectively.	In	these	structures	“a”	and	“d”	residues	facing	inward	make	
the	hydrophobic	core	region.	The	mode	of	arrangement	of	hydrophobic	side	chains	(mainly	
Leu	and	Ile	residues)	in	the	core	region	in	“knob	into	hole”	fashion	is	a	main	determinant	of	
the	oligomeric	 state	of	 coiled	 coils.	 	 Salt	bridges	 formed	between	 “e”	and	 “g”	 residues	are	
also	important	for	the	stabilization	of	the	coiled	coils.	(Image	adapted	from	ref.	26)	

	

A	 very	 robust	 set	 of	 coiled	 coils	 (dimeric,	 trimeric,	 tetrameric	 and	

pentameric)	 is	 required	 as	 plug-and-play	 components	 for	 our	protein	 cage	design	

strategy.	 Therefore,	 as	 the	 first	 aim	 of	my	 thesis,	 I,	with	my	 colleagues	Dr.	 Aaron	

Sciore	 and	 Dr.	 Somaye	 Badieyan,	 studied	 the	 behavior	 of	 coiled	 coils	 of	 interest	

when	attached	to	a	larger	monomeric	protein	domain.	The	objective	was	to	ensure	

that	these	coiled	coil	designs	maintained	their	intended	oligomerization	states	when	

used	to	assemble	other	proteins.	We	genetically	fused	various	coiled	coils	to	a	model	

monomeric	protein,	Green	 fluorescent	protein	 (GFP)	and	evaluated	 the	oligomeric	

state	 of	 these	 fusion	 constructs	 using	 several	 analytical	 tools	 (size	 exclusion	
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chromatography,	analytical	ultracentrifugation,	and	native	mass	spectrometry).	GFP	

was	 chosen	 as	 the	 fusion	 control	 because	 it	 is	 a	 robust,	well	 behaved	monomeric	

protein	 and	 its	 fluorescent	 properties	 provide	 an	 easy	 read	 out	 for	 protein	

expression	and	folding.		

Six	 coiled	 coil	 GFP	 fusion	 proteins	 were	 initially	 constructed.	 	 Somewhat	

surprisingly,	 only	 two	 of	 these	 initial	 designs	 adopted	 their	 intended	

oligomerization	 states.	 However,	 with	 minor	 refinements,	 the	 intended	

oligomerization	 states	 of	 two	 of	 the	 four	 other	 constructs	 could	 be	 achieved.		

Parameters	found	to	influence	the	oligomerization	state	of	the	GFP	fusions	included	

the	number	of	heptad	repeats	and	the	length	of	the	linker	sequence	separating	GFP	

from	the	coiled	coil.		These	results	demonstrated	that	even	for	stable,	well-designed	

coiled	 coils,	 the	 oligomerization	 state	 is	 subject	 to	 unanticipated	 changes	 when	

connected	to	 larger	protein	components.	 	Overall,	 this	study	clearly	showed	that	 it	

will	be	necessary	to	both	carefully	validate	and	optimize	the	coiled	coil	interaction	

to	 successfully	 apply	 coiled	 coils	 in	 the	 construction	 of	 large-scale	 protein	

assemblies.	

2.2	Materials	and	Methods	

2.2.1	Construction	of	Genes	Encoding	Fusion	Proteins	

Codon-optimized	 genes	 encoding	 the	 various	 coiled	 coil	 designs	 and	 oligo-

Gly	spacer	units	were	commercially	synthesized	and	introduced	into	the	expression	

vector	pMCSG18	that	encodes	GFP	as	a	reporter	gene,	either	3’	or	5’	to	the	GFP	gene.		

The	complete	sequence	of	each	of	the	fusion	proteins	is	given	in	appendix	A.1.	
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2.2.2	Protein	Expression	and	Purification	

Expression	 constructs	were	 transformed	 into	E.	coli	BL21(DE3)	 cells.	 	 Cells	

were	grown	in	2xYT	medium	with	100	mg/L	ampicillin	at	37	°C.		At	an	OD600	of	0.8,	

the	 temperature	was	 reduced	 to	18	 °C,	 and	at	 an	OD600	 of	 1.0,	 protein	 expression	

was	 induced	by	addition	of	0.1	mM	IPTG.	Cells	were	grown	for	a	 further	18	h	and	

harvested	by	centrifugation.	

All	 purification	 steps	 were	 performed	 on	 ice	 or	 at	 4	 °C.	 	 Cell	 pellets	 were	

resuspended	in	50	mM	HEPES	buffer,	pH	7.5,	containing	1	M	urea,	300	mM	NaCl,	25	

mM	imidazole,	5%	glycerol,	SigmaFAST	protease	inhibitor,	and	1	mg/mL	lysozyme,	

then	lysed	by	sonication.		The	lysate	was	clarified	by	centrifugation	at	48,000	g	for	

30	min	and	injected	onto	a	HisTrap	Ni-NTA	column,	washed	with	several	volumes	of	

the	same	buffer,	and	eluted	with	50	mM	HEPES	buffer,	pH	7.5,	containing	300	mM	

NaCl,	500	mM	 imidazole,	 and	5%	glycerol.	 	 Fractions	 containing	GFP	were	pooled	

and	dialyzed	against	25	mM	HEPES	buffer,	pH	7.5,	containing	100	mM	NaCl	and	2	

mM	 EDTA.	 The	 protein	 was	 then	 concentrated	 using	 30-kDa	 Amicon	 ultra-

centrifugal	 filter	 units	 and	 further	 purified	 by	 SEC	 on	 a	 Superdex	 200	 10/300	

column	equilibrated	in	the	same	buffer.		Fractions	containing	proteins	of	the	desired	

oligomerization	state	were	pooled	and	further	concentrated	for	analysis.	

2.2.3	Size	Exclusion	Chromatography	(SEC)	

100	µL	of	protein	sample	at	a	concentration	of	1	mg/mL	was	injected	onto	a	

Superdex	200	10/300	column	equilibrated	at	4	°C	in	dialysis	buffer	described	above,	

and	proteins	were	eluted	at	0.4	mL/min.	
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2.2.4	Analytical	Ultracentrifugation	(AUC)	

Sedimentation	velocity	 analysis	was	performed	using	 a	Beckman	Proteome	

Lab	 XL-I	 analytical	 ultracentrifuge	 (Beckman	 Coulter,	 Indianapolis,	 IN)	 equipped	

with	an	AN60TI	rotor.		Samples	were	dialyzed	against	25	mM	HEPES	buffer,	pH	7.5,	

containing	 100	 mM	 NaCl	 and	 1	 mM	 EDTA.	 	 The	 hydrodynamic	 behavior	 of	 the	

various	proteins	was	 analyzed	 at	 a	 protein	 concentration	of	~	0.2	mg/mL	 (A280	 =	

0.2).	Samples	were	 loaded	 into	pre-cooled	cells	containing	standard	sector-shaped	

2-channel	 Epon	 centerpieces	 with	 1.2	 cm	 path-length	 (Beckman	 Coulter,	

Indianapolis,	IN)	and	allowed	to	equilibrate	at	6	°C	for	2	h	in	the	non-spinning	rotor	

prior	 to	 sedimentation.	 	 Proteins	 were	 sedimented	 at	 40,000	 rpm	 and	 the	

sedimentation	 of	 the	 protein	 constructs	 was	 monitored	 continuously	 at	 a	

wavelength	of	280	nm.		Sedimentation	velocity	data	was	analyzed	with	the	program	

SEDFIT	 (version	15.01b).24	 Sedimentation	distribution	plots	were	generated	using	

the	 continuous	 c(s)	 distribution	 model,	 with	 a	 confidence	 level	 for	 the	 ME	

(Maximum	Entropy)	 regularization	 of	 0.7.	Molecular	weights	 (Mw)	 including	 their	

standard	deviation	were	calculated	by	integration	of	a	c(M)	continuous	distribution.		

For	that,	 the	ME	(Maximum	Entropy)	regularization	was	set	to	0.5.	 	Buffer	density	

and	viscosity	were	calculated	using	SEDNTERP	(http://sednterp.unh.edu/).	

2.2.5	Native	Mass	Spectrometry	(Native	MS)	

Samples	prepared	 for	mass	 spectrometry	were	purified	as	described	above	

and	 concentrated	 to	 40	 μL.	 The	 minimum	 concentration	 of	 protein	 required	 for	

analysis	 is	1	μM,	with	higher	 concentrations	preferred.	 Samples	were	 then	 loaded	

into	 gold	 plated	 needles	 prepared	 in	 house.25	Nano-electrospray-ion-mobility-TOF	
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mass	 spectrometry	was	 performed	 using	 a	 Synapt	 G2	Traveling-Wave	 instrument	

(Waters	Corp,	Manchester,	U.K.).	 Ions	were	generated	by	applying	a	voltage	of	1.5	

kV	between	the	needle	and	the	instrument	source,	with	further	voltage	drops	aiding	

in	 acceleration	and	desolvation	as	 ions	passed	 through	 the	 skimmer	 region	of	 the	

instrument.	 The	 quadrupole	 region	 was	 set	 to	 RF-only	 mode	 for	 collection	 of	

complete	mass	 spectra,	 and	 in	 some	cases	was	 tuned	 to	 isolate	 selected	peaks	 for	

MS/MS	analysis.	A	range	of	collision	energies	was	tested	for	enhanced	transmission	

and	 desolvation	 of	 the	 ions,	 and	 in	 some	 cases	 dissociation	 of	 the	 ion	 into	 its	

component	subunits.	The	base	values	for	collision	energies	were	20-50	V;	however,	

energies	up	to	150	V	were	utilized	for	dissociation	experiments.	The	IMS	region	of	

the	 instrument	was	 operated	 at	 4	mBar	 of	 nitrogen,	with	wave	 heights	 and	wave	

velocities	 of	 15	 V	 and	 150	m/s,	 respectively.	 The	 instrument	 time	 of	 flight	 mass	

analyzer	was	 operated	 in	 sensitivity	mode,	 and	mass	 spectra	were	 collected	 from	

1000	to	15000	m/z.	Data	analysis	was	performed	using	the	manufacturer-provided	

Masslynx	software.	

2.3	Results		

2.3.1	Selection	of	Coiled	Coils	for	Evaluation		

For	 our	 studies,	 we	 selected	 a	 series	 of	 crystallographically	 characterized	

four-heptad	parallel	 coiled	 coils	designed	by	Woolfson	and	 co-workers.26–28	These	

coiled	 coils	 span	 the	 range	 of	 oligomeric	 states	 from	 dimer	 to	 pentamer,	 making	

them	 potentially	 useful	 for	 the	 assembly	 of	 a	 wide	 variety	 of	 protein	 structures.		

Four	of	the	coiled	coils	were	based	on	the	well-established	canonical	heptad	repeat	
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sequence	(XAAYKZE)4	in	which	the	oligomerization	state	is	primarily	determined	by	

the	identity	of	the	hydrophobic	residues	X	and	Y	at	the	canonical	‘a’	and	‘d’	positions.		

The	dimeric	coiled	coil	(Protein	Data	Bank	(PDB)	ID	4DZM)	employs	Ile	at	the	‘a’	and	

Leu	 at	 the	 ‘d’	 positions,	 with	 the	 exception	 of	 Asn	 at	 the	 third	 ‘a’	 position.	 	 Two	

trimeric	coiled	coils	were	investigated:	one	(PDB	ID	4DZL)	employs	Ile	at	the	‘a’	and	

‘d’	positions,	whereas	the	other	(PDB	ID	4DZN)	employs	Ile	at	the	‘a’	and	Leu	at	the	

‘d’	positions	 (Fig.	2.1	A,B,D,E).	 	The	 tetrameric	 coiled	 coil	 (PDB	 ID	3R4A)	employs	

Leu	at	the	‘a’	and	Ile	at	the	‘d’	positions	(Fig.	2.1	C,F).		The	residue	‘Z’	at	the	solvent-

exposed	‘f’	position	is	Gln,	Trp	or	Lys	depending	upon	the	coiled	coil.		The	larger	size	

of	the	pentameric	coiled	coil	(PDB	ID	4PN8)	results	in	a	solvent-exposed	channel	at	

the	center	of	the	helical	bundle.		In	this	case,	the	hydrophobic	interactions	between	

the	helices	occur	at	the	‘a’,	 ‘d’,	and	‘g’	positions,	which	are	occupied	by	Leu,	Ile	and	

Ile	respectively.	 	The	sequences	and	oligomerization	states	of	these	coiled	coils	are	

summarized	in	Table	2.1.	

	

Table	2.	1	PDB	ID,	sequences,	and	oligomerization	states	of	the	basis	set	of	coiled	coils	used	
in	this	study.		The	hydrophobic	residues	that	primarily	dictate	the	oligomerization	state	are	
indicated	in	bold	type.	

PDB	ID	 abcdefg abcdefg abcdefg abcdefg ab Oligomeric	
state	

4DZM	 IAALKQE IAALKQE IAANKQE IAALKQE Dimer	
4DZN	 IAALKQE IAALKQE IAALKQE IAALKQE Trimer	
4DZL	 IAAIKQE IAAIKQE IAAIKQE IAAIKQE Trimer	
3R4A	 LAAIKQE LAAIKQE LAAIKQE LAAIKQE Tetramer	
4PN8	   KIEKI LQKIEWI LQKIEQI LQKIEQI LQ Pentamer	
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2.3.2	Fusion	of	Coiled	Coils	with	GFP		

We	chose	GFP	as	a	model	protein	domain	with	which	to	test	the	coiled	coils	

ability	 to	 mediate	 protein	 oligomerization.	 	 In	 addition	 to	 GFP	 being	 a	 very	 well	

characterized,	stable,	monomeric	protein,	 its	 fluorescent	property	makes	it	easy	to	

assess	 whether	 the	 addition	 of	 the	 coiled	 coil	 domain	 may	 have	 interfered	 with	

protein	 folding.	 	We	note	that	 the	GFP	variant	encoded	 in	the	PMCSG18	vector	we	

used	in	these	studies	has	a	known	tendency	to	dimerize	at	high	concentrations,	but	

at	the	lower	concentrations	used	in	these	studies	no	dimerization	was	discernable.				

To	construct	fusion	proteins	in	which	the	coiled	coil	sequence	was	added	to	

either	 the	 N-	 or	 C-terminus	 of	 GFP	 we	 used	 the	 standard	 molecular	 biology	

techniques	 described	 in	 the	 experimental	 section.	 An	 oligo-Gly	 spacer	 was	

introduced	between	the	GFP	and	coiled	coil	domains	to	alleviate	steric	constraints	

that	 might	 cause	 either	 domain	 to	 misfold	 (Fig.	 2.2).	 	 Based	 on	 modeling	 that	

assumed	a	hydrodynamic	radius	for	GFP	of	2.4	nm,	we	initially	set	the	length	of	this	

spacer	to	be	six-Gly	residues,	which	is	sufficient	to	span	a	distance	of	~	1.8	nm.		This	

should	 allow	 the	 coiled	 coil	 domain	 to	 oligomerize	 without	 introducing	 steric	

clashes	between	 the	appended	GFP	domains.	 	As	discussed	 later,	 in	 some	designs,	

the	length	of	the	glycine	spacer	was	increased	or	the	coiled	coil	sequence	modified	

from	the	initial	design.		A	description	of	each	construct	studied	is	given	in	Table	2.2.		

The	 fusion	 proteins	were	 over-expressed	 in	Escherichia	coli	 BL21	 and	purified	 by	

Ni-NTA	 affinity	 chromatography	 in	 good	 yields	 without	 difficulty.	 	 All	 constructs	

exhibited	 the	 characteristic	 fluorescent	 green	 color	 of	 GFP,	 indicating	 that	 the	

proteins	were	correctly	folded.			
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Figure	2.	2	Diagram	showing	topology	of	the	GFP	coiled	coil	fusion	proteins	for	coiled	coils	
fused	to	the	C-terminus	of	GFP	(A)	and	to	the	N-terminus	of	GFP	(B).	

	
	
Table	2.	2	Description	of	the	GFP	coiled	coil	fusion	proteins	evaluated	in	this	study.	

	
a	Position	of	the	coiled	coil	relative	to	GFP.		
b	Number	of	Gly	residues	separating	the	GFP	and	coiled	coil	domains.	
c	Constructs	9	and	10	contain	coiled	coils	with	5	repeating	heptads.		
d	Based	on	the	crystal	structure	of	the	isolated	coiled	coil.		
	

2.3.3	Evaluation	of	GFP-Coiled	Coil	Oligomerization	States	

To	 determine	 whether	 the	 oligomerization	 state	 of	 the	 original	 coiled	 coil	

was	 maintained	 in	 the	 GFP	 fusion	 constructs,	 we	 examined	 the	 oligomerization	

states	 of	 the	 various	 GFP	 constructs	 using	 three	 complementary	 techniques:	 size	

exclusion	 chromatography	 (SEC),	 sedimentation	 velocity	 analytical	

ultracentrifugation	 (AUC),	 and	 non-denaturing	 native	 mass	 spectrometry	 (native	
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MS).		Analytical	ultracentrifugation	allows	the	molecular	mass	of	macromolecules	in	

solution,	 as	well	 as	 their	 size	distribution,	 to	be	 accurately	determined.	 	 SEC	does	

not	 directly	measure	molecular	weights,	 but	 is	 a	 simple	 and	 rapid	 solution	 phase	

method	 that	 can	 report	 on	 sample	 homogeneity	 and	 provide	 an	 estimate	 of	

oligomerization	state.		In	native	MS,	samples	are	ionized	under	very	mild	conditions	

so	 that	 non-covalent	 protein-protein	 interactions	 are	 maintained;	 native	 MS	 can	

thus	 provide	 high-resolution	 measurements	 of	 protein	 masses	 that	 allow	 their	

oligomerization	 states	 to	 be	 deduced,	 with	 the	 caveat	 that	 these	 gas	 phase	

measurements	 may	 be	 biased	 by	 differences	 in	 the	 ease	 with	 which	 various	

oligomeric	species	can	be	ionized.		

Characterization	 of	 monomeric	 wild-type	 GFP	 (as	 a	 control)	 and	 fusion	

proteins	 1	 (dimer)	 and	 3	 (trimer)	 by	 these	 techniques	 yielded	 consistent	 data	

indicating	 that	 each	 construct	 was	 fairly	 homogeneous	 and	 adopted	 its	 intended	

oligomerization	 state	 (Fig.	 2.3	 A,B,D;	 Table	 2.3).	 	 However,	 fusion	 proteins	 2	

(expected	trimer)	and	4	 (expected	tetramer)	(Fig.	2.3	C,E)	appeared	to	be	a	dimer	

and	 a	 trimer,	 respectively,	 by	 each	 of	 the	 techniques	 used	 to	 assess	 their	

oligomerization	states,	even	though	the	coiled	coil	domains	had	been	demonstrated	

by	 crystallography	 to	 be	 trimeric	 and	 tetrameric,	 respectively.	 This	 result	may	 be	

less	 surprising	 for	 fusion	 protein	2,	 as	 there	 are	 several	 structures	 of	 coiled	 coil	

dimers	 in	 which	 the	 hydrophobic	 interior	 is	 packed	 with	 Ile	 at	 ‘a’	 and	 Leu	 at	 ‘d’	

positions.	 However,	 it	 was	 quite	 unexpected	 for	 fusion	 protein	 4,	 for	 which	 the	

majority	of	synthetic	coiled	coil	structures	with	Leu	at	‘a’	and	Ile	at	‘d’	positions	are	

tetrameric.	
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These	results	demonstrate	that	the	addition	of	a	large	protein	domain	to	the	

coiled	 coil	 has	 the	potential	 to	 alter	 its	 oligomerization	 state.	 	 This	 observation	 is	

consistent	with	the	previously	described	lability	of	some	parallel	coiled	coil	designs	

in	 which	 the	 oligomerization	 state	 is	 sensitive	 to	 fairly	 subtle	 changes	 in	

hydrophobic	core	packing.5	Interestingly,	in	both	cases	in	which	the	oligomerization	

state	 departs	 from	 what	 is	 expected,	 the	 fusion	 protein	 adopts	 a	 lower	

oligomerization	 state.	 	 This	 suggests	 that	 unfavorable	 steric	 interactions	 between	

the	GFP	domains	(despite	the	introduction	of	a	flexible	spacer	sequence)	may	cause	

reorganization	of	the	coiled	coil	structure.	

	

Figure	2.	3	Characterization	of	the	oligomerization	state	of	C-terminal	GFP	constructs	1–4.		
(A)	Wild-type	GFP.		(B)	Construct	1	(intended	dimer).		(C)	Construct	2	(intended	trimer).			
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Table	2.	3	Summary	of	data	describing	the	oligomeric	properties	of	the	various	GFP	
constructs	characterized	in	this	study	

	

	
a	In	samples	for	which	more	than	one	species	is	present,	the	sedimentation	coefficient	of	the	
major	species	is	reported.	
	b	Average	frictional	coefficient	measured	over	all	sedimenting	species.	
	c	 The	 molecular	 masses	 determined	 by	 native	 MS	 include	 varying	 numbers	 of	 non-
specifically	bound	ions	that	derive	from	the	buffer.		Therefore,	the	molecular	masses	are	not	
exact	multiples	of	the	protein	Mw	derived	from	the	sequence.	
	d	Oligomerization	state	determined	from	the	crystal	structure.	
	e	 Consensus	 from	 the	 three	 experimental	 methods	 used	 to	 examine	 the	 oligomerization	
state	of	the	fusion	proteins.	
f	The	presence	of	aggregated	protein	in	the	sample	prevented	the	frictional	ratio	from	being	
reliably	determined	from	the	data.	

	

We	 next	 examined	 the	 properties	 of	 a	 GFP	 fusion	 protein	 containing	 a	

pentameric	coiled	coil,	construct	5.		Although	the	protein	was	expressed	as	soluble,	

fluorescent	protein	(indicating	that	the	GFP	domain	was	correctly	folded),	SEC	of	5	

yielded	a	single	peak	in	the	void	volume	(Fig.	2.4	A).		This	suggested	that	the	protein	

was	 forming	 large	 aggregates	 that	 could	 not	 be	 further	 characterized	 by	 AUC	 or	

native	MS.		In	this	case,	it	seemed	that	a	six-Gly	spacer	might	be	too	short	to	permit	

the	simultaneous	proper	 folding	of	 the	GFP	domain	and	the	pentameric	coiled	coil	

domain.	 	 We	 therefore	 increased	 the	 length	 of	 the	 spacer	 to	 nine-Gly	 residues,	
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resulting	 in	 construct	 6.	 	 This	 construct	 showed	 significantly	 less	 tendency	 to	

aggregate,	 but	 characterization	 by	 SEC	 indicated	 that	 it	 still	 formed	 a	 mixture	 of	

oligomeric	 species	 (Fig.	 2.4	 B).	 	 Characterization	 of	 6	 by	 AUC	 allowed	 the	

sedimentation	coefficient	for	the	major	species	to	be	determined	as	4.7	S;	however,	

the	 presence	 of	 aggregated	 proteins	 prevented	 the	 frictional	 ratio	 from	 being	

reliably	 determined	 so	 that	 the	 molecular	 weight	 could	 not	 be	 calculated.		

Characterization	of	6	by	native	MS	provided	good	evidence	for	the	formation	of	the	

intended	 pentameric	 species,	 although	 this	 technique	 would	 not	 detect	 high	

molecular	 weight	 aggregates.	 	 Further	 mutation	 of	 a	 Trp	 residue	 at	 a	 solvent-

exposed	 ‘f’	 position	 (initially	 introduced	 to	 facilitate	 spectrophotometric	

quantification	 of	 the	 synthetic	 coiled	 coil)	 to	 a	 more	 hydrophilic	 Asn	 residue	

(construct	 7)	 resulted	 in	 a	 more	 monodisperse	 protein	 species	 that	 appeared	 to	

adopt	 the	 intended	 pentameric	 oligomerization	 state	 as	 judged	 by	 SEC,	 AUC,	 and	

native	 MS	 (Fig.	 2.4	 C).	 	 Although	 the	 ‘f’	 position	 of	 the	 heptad	 repeat	 is	 solvent-

exposed	and	 therefore	does	not	 influence	 inter-helix	 interactions,	 this	observation	

indicates	that	 interactions	between	exterior	residues	of	the	coiled	coil	domain	and	

the	 appended	 protein	 domain	 (in	 this	 case	 GFP)	may	 need	 to	 be	 considered	 and	

optimized	for	the	protein	to	assemble	correctly.	
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Figure	2.	4	Characterization	and	optimization	of	GFP	fused	with	the	pentameric	coiled	coil	
4PN8.	 	 (A)	 Construct	 5,	 for	 which	 aggregation	 prevented	 its	 characterization	 by	 AUC	 or	
native	MS.		(B)	Construct	6.	(C)	Construct	7.		For	details	of	the	constructs,	refer	to	Table	2.	

	

2.3.4	Transposition	of	Oligomerization	Domain	to	N-terminus	of	GFP	

Construct	3	successfully	mediated	the	trimerization	of	GFP	when	fused	to	its	

C-terminus.	 We	 therefore	 extended	 our	 studies	 on	 this	 coiled	 coil	 domain	 to	

investigate	whether	 it	would	 function	 similarly	when	 placed	 at	 the	N-terminus	 of	

GFP.	 	 The	 coiled	 coil	 sequence	 from	 4DZL	 (containing	 Ile	 at	 ‘a’	 and	 ‘d’)	 was	

genetically	 fused	 to	 the	 N-terminus	 of	 GFP	 separated	 by	 the	 same	 six-Gly	 spacer	

sequence	to	give	construct	8.		

Surprisingly,	 although	 construct	8	 was	 expressed	 as	 a	 soluble,	 well-folded	

protein,	it	failed	to	oligomerize	at	all	(Fig.	2.5	A).	Its	elution	volume	(determined	by	

SEC),	 sedimentation	 coefficient,	 and	 native	 mass	 spectrum	 all	 indicated	 that	 the	
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protein	 was	 exclusively	 monomeric.	 	 In	 this	 case,	 it	 seemed	 unlikely	 that	 steric	

crowding	 between	 the	 GFP	 domains	 would	 explain	 the	 protein’s	 failure	 to	

oligomerize.	 	 However,	 it	 is	 possible	 that	 placing	 the	 coiled	 coil	 domain	 at	 the	N-

terminus	may	have	resulted	in	unintended	interactions	between	the	coiled	coil	and	

the	N-terminal	 6-His	 sequence	used	 to	 purify	 the	 protein	 that	 interfered	with	 the	

coiled	coil’s	ability	to	oligomerize.	 	In	particular,	electrostatic	interactions	between	

the	(partially)	positively	charged	6-His	sequence	and	negatively	charged	glutamate	

residues	in	the	coiled	coil	domain	could	potentially	disrupt	the	coiled	coil	structure.	

Therefore,	 we	 investigated	 the	 effect	 of	 strengthening	 the	 coiled	 coil	

interaction	 by	 increasing	 the	 number	 of	 heptad	 repeats	 in	 the	 coiled	 coil	 domain	

from	4	to	5,	resulting	in	construct	9.	 	The	addition	of	the	extra	heptad	appeared	to	

restore	 the	 original	 trimeric	 oligomerization	 state	 of	 the	 coiled	 coil	 domain.	 	 This	

suggests	that	increasing	the	strength	of	the	coiled	coil	 interaction	was	sufficient	to	

overcome	the	unintended	interactions	between	the	coiled	coil	and	either	the	His-tag	

or	GFP	that	initially	prevented	the	fusion	protein	from	trimerizing.			
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Figure	2.	5	Characterization	of	fusion	proteins	in	which	the	trimeric	coiled	coil	4DZL	was	
linked	to	the	N-terminus	of	GFP.		(A)	Construct	8.		(B)	Construct	9.		The	vertical	dotted	lines	
denote	the	elution	volume	and	sedimentation	coefficient	measured	for	the	C-terminal	fusion	
protein,	3.	For	details	of	the	constructs,	refer	to	Table	2.	

	

2.3.5	Attempts	to	Construct	a	Tetrameric	GFP	Fusion	Protein	

Based	 on	 what	 we	 learned	 from	 optimizing	 the	 trimeric	 and	 pentameric	

coiled	coil	designs,	we	attempted	to	construct	a	tetrameric	fusion	protein	of	GFP	by	

either	increasing	the	length	of	the	spacer	sequence	between	GFP	and	the	coiled	coil	

domain	or	increasing	the	strength	of	the	coiled	coil	interaction.	In	construct	10,	we	

increased	the	number	of	Gly	residues	in	the	spacer	from	6	to	9,	and	in	construct	11,	

we	increased	the	number	of	heptad	repeat	units	from	4	to	5.		Both	these	constructs	

expressed	 as	 soluble,	 folded	 protein	 and	 could	 be	 purified	 to	 homogeneity.		

However,	analysis	of	 their	oligomerization	states	by	SEC,	AUC,	and	native	MS	each	

indicated	 that	 10	 and	 11	 remained	 trimeric	 (Fig.	 2.6).	 	 Why	 these	 GFP	 fusion	

proteins	appear	to	adopt	a	trimeric	rather	than	a	tetrameric	oligomerization	state	is	

not	very	clear.		
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Figure	2.	6	Characterization	of	modified	versions	of	construct	4.	(A)	Construct	10,	heptad	
strength	increased	to	5	repeats.	(B)	Construct	11,	spacer	length	increased	to	9	Gly	residues.	
The	vertical	dotted	lines	denote	the	elution	volume	and	sedimentation	coefficient	measured	
for	the	C-terminal	fusion	protein,	4.	For	details	of	the	constructs,	refer	to	Table	2.	

	

2.4	Discussion	

Overall,	of	 the	 five	crystallographically	characterized	coiled	 coils	we	examined,	

only	 two	 constructs,	1	 and	3,	 retained	 their	 oligomerization	 state	 when	 fused	 to	

GFP,	which	served	here	as	a	model	protein	domain.		Although	they	formed	discrete,	

monodisperse	 assemblies,	 the	 oligomerization	 states	 of	 both	 constructs	 2	 and	 4,	

which	formed	dimers	and	trimers	respectively,	were	lower	than	expected	based	on	

the	 trimeric	 and	 tetrameric	 crystal	 structures	 of	 their	 respective	 synthetic	 coiled	

coil	domains.	 	 Interestingly,	we	 recently	employed	 the	 same	 tetrameric	 coiled	coil	

motif	with	Leu	at	 ‘a’	and	Ile	at	 ‘d’	positions	to	successfully	assemble	an	octahedral	

protein	cage;29	in	that	case	the	coiled	coil	functioned	as	a	tetramer,	as	intended.		In	

contrast,	 the	 GFP	 fusion	 protein	 with	 the	 pentameric	 coiled	 coil,	 as	 initially	

constructed,	 formed	high	molecular	weight	aggregates,	suggesting	that	 the	protein	
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was	misfolded.		Lastly,	the	trimeric	coiled	coil,	which	was	well-behaved	when	fused	

to	the	C-terminus	of	GFP,	failed	to	mediate	oligomerization	of	GFP	when	transferred	

to	 the	 N-terminus,	 possibly	 as	 a	 result	 of	 interactions	 between	 the	 coiled	 coil	

domain	and	the	N-terminal	His-tag.			

These	results	illustrated	both	the	limitations	and,	in	some	cases,	advantages	

of	 coiled	 coil	domains	as	plug-and-play	adaptors	 for	 the	assembly	of	proteins.	 	As	

pointed	 out	 early	 on	 by	 Betz	 and	 DeGrado,	 among	 others,	 the	 lability	 of	 parallel	

coiled	 coils	 derives	 from	 the	 fact	 that	 their	 oligomerization	 states	 are	 primarily	

specified	 by	 hydrophobic	 packing	 interactions	 contributed	 by	 the	 ‘a’	 and	 ‘d’	 side	

chains.5,30–32	The	stabilizing	interactions	at	the	interfaces	of	the	α-helices	arise	from	

complementary	 electrostatic	 interactions	 between	 residues	 and	 ‘b’	 and	 ‘e’	 and	 ‘c’	

and	‘g’	positions	and	are	essentially	the	same	for	all	oligomerization	states	between	

dimer	and	tetramer	(Fig.	2.1).		In	contrast,	the	interactions	at	the	interfaces	of	the	α-

helices	 in	 anti-parallel	 coiled	 coils	 are	 different	 for	 each	 oligomerization	 state,	

rendering	this	topology	inherently	more	robust.		It	seems	that	in	several	of	the	cases	

we	studied,	the	addition	of	the	relatively	large	GFP	domain	was	sufficient	to	perturb	

the	delicate	balance	of	hydrophobic	core	interactions	specifying	the	oligomerization	

state.	 	 Set	 against	 this,	 in	 the	 case	of	 construct	9	 the	modularity	of	 the	 coiled	 coil	

design	 could	 be	 exploited	 to	 achieve	 the	 desired	 oligomerization	 state	 simply	 by	

adding	a	further	heptad	repeat	to	the	coiled	coil.			

Our	primary	focus	in	this	study	was	to	evaluate	the	potential	of	the	de	novo	

coiled	coils	to	act	as	simple	components	to	assemble	larger,	more	complex	protein	

subunits	and	de	novo	protein	cages	in	our	case.		However,	it	should	be	noted	that	the	
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choice	of	protein	might	also	 influence	how	the	coiled	coils	behave;	 i.e.	 the	protein	

may	not	be	an	entirely	neutral	component	in	the	assembly	process.		In	this	case,	for	

example,	 the	 latent	 tendency	 of	 GFP	 to	 dimerize	 at	 high	 concentrations	 could	

influence	the	assembly	process	when	individual	GFP	subunits	are	brought	into	close	

proximity	by	 the	coiled	coil	domain	 (although	we	observed	no	direct	evidence	 for	

this	occurring).		It	is	possible	that	if	had	we	chosen	a	different	protein,	we	may	have	

found	 this	 set	 of	 coiled	 coils	 to	 have	 been	 more,	 or	 less,	 successful	 as	

oligomerization	domains.	

After	evaluating,	some	of	 these	de	novo	 coiled	coils	were	utilized	 for	our	de	

novo	protein	cage	design	strategy.	As	mentioned	above,	we	were	able	to	successfully	

design	 an	 octahedral	 protein	 cage	 by	 fusing	 the	 tetrameric	 coiled	 coil	 to	 TriEst	

building	 block	 protein	 (discussed	 in	 chapter	 1)	 even	 though	 this	 coiled	 coil	motif	

failed	to	assemble	into	a	tetramer	when	appended	to	GFP.	This	octahedral	cage	was	

elaborated	by	fusing	a	 large	monomeric	protein	of	~	40	kDa	to	the	free	end	of	the	

coiled	coil	and	in	that	case	it	was	still	able	to	assemble	into	discrete	particles	with	

Mw	of	~	1.8	MDa	and	maintained	the	octahedral	core	(will	be	discussed	in	chapter	

3).33	 A	 tetrahedral	 cage	 was	 designed	 by	 adding	 1	 more	 heptad	 repeat	 to	 4DZL	

trimer	and	fusing	it	to	the	TriEst	(discussed	in	chapter	1).34	Finally,	an	icosahedral	

protein	 cage	 with	 a	 Mw	 in	 the	 mega-dalton	 range	 (~	 2.1	 MDa)	 was	 designed	 by	

fusing	the	pentameric	coiled	coil	to	TriEst	protein	building	block	(will	be	discussed	

in	chapter	4).		

Coiled	coils	are	among	the	most	well	understood	protein-protein	interactions	

and	 are	 attractive	 protein	motifs	 often	 utilized	 as	 off-the-shelf	 components	 for	de	
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novo	 designing	 protein	 architectures.	 	 Both	 natural	 and	 de	novo	 coiled	 coils	 have	

been	 successfully	 utilized	 to	 design	 metalloenzyme	 mimics,	 pH-responsive	

hydrogels,	 two-dimensional	 protein	 lattices,	 and	 three-dimensional	 protein	

nanoparticles.18,19,35–38,38–40	 These	 nanoparticles	 have	 subsequently	 been	 adapted	

for	the	polyvalent	display	of	viral	epitopes	to	create	a	novel	vaccine.41	Nevertheless,	

evaluating	 the	 coiled	 coils	 by	 fusing	 to	 a	monomeric	 protein	 revealed	 that	 coiled	

coils	 could	 subject	 to	 unanticipated	 behaviors	 when	 appended	 to	 large	 proteins.	

Furthermore,	 monomeric	 fusion	 system	 provided	 a	 simple	 and	 an	 easy	 route	 to	

evaluate	the	coiled	coils’	behaviors	in	vivo	and	to	carry	out	modifications	to	restore	

intended	oligomeric	states.		

2.5	Conclusion		

Overall,	 this	 study	demonstrated	 that	de	novo	 designed	 coiled	 coil	 domains	

could	be	subjected	to	unexpected	changes	in	oligomerization	state	when	coupled	to	

larger	 protein	 domains.	 	 Thus,	 of	 the	 six	 fusion	 proteins	 we	 initially	 constructed	

(constructs	1–5	and	8),	only	two	behaved	as	expected	(constructs	1	and	3),	which	

formed	 dimeric	 and	 trimeric	 assemblies.	 	 The	 relatively	 low	 success	 rate	 in	

mediating	 the	 desired	 self-assembly	 of	 a	 simple,	 monomeric	 protein	 comprising	

only	a	single	domain	should	serve	as	a	cautionary	note	for	those	considering	coiled	

coils	 for	 use	 in	 synthetic	 biology	 applications.	 	 It	 appears	 that	 context	 effects	 are	

likely	 to	 play	 a	 greater	 role	 in	modulating	 the	 structures	 of	 coiled	 coils	 than	 has	

previously	been	appreciated.	 	Encouragingly,	by	varying	 the	strength	of	 the	coiled	

coil	and	the	length	of	the	spacer	between	the	two	protein	domains	(parameters	that	

might	 intuitively	 be	 expected	 to	 affect	 the	 ability	 of	 the	 coiled	 coil	 domain	 to	
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oligomerize),	we	were	able	to	achieve	the	intended	oligomerization	states	of	two	of	

the	 fusion	 proteins	 (constructs	 7	 and	 9),	 representing	 pentameric	 and	 trimeric	

assemblies.	 	These	observations	suggest	that	by	screening	a	fairly	sparse	matrix	of	

spacer	lengths	and	coiled	coil	strengths,	it	should	be	possible	to	identify	conditions	

for	successful	protein	assembly	in	many	cases.		
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Chapter	3:	Elaborating	Coiled	Coil-driven	Octahedral	Cage	Design	by	Fusion	
with	Additional	Protein	Domains	

	
	
This	work	is	published	on	“Cristie-David	AS,	Koldewey	P,	Meinin	B	and	Marsh	ENG.	
(2018)	Elaborating	coiled	coil-driven	octahedral	cage	design	by	fusion	with	a	large	

monomeric	protein.	Protein	Sci	27:1883-1890”	

	

3.1	Introduction	

An	interesting	feature	of	our	coiled	coil	base	design	strategy	is	the	potential	

to	elaborate	protein	 cages	 in	a	modular	 fashion	by	 the	addition	of	 further	protein	

domains	 to	 the	 free	end	of	 the	coiled	coil	domain	 (Fig.	3.1).	We	aimed	 to	 test	 this	

idea	by	fusing	a	large	monomeric	protein	free	end	of	the	coiled	coil	used	to	assemble	

an	octahedral	cage.1	Furthermore,	although	the	tetrahedral	cage	could	be	purified	in	

good	 yields	 (~	 20	 mg/L	 of	 culture),	 the	 original	 octahedral	 cage	 could	 only	 be	

purified	in	low	yields	(~	1	mg/L	of	culture).	This	was	because	the	octahedral	cages	

bound	poorly	 to	 the	Ni-NTA	affinity	column	used	 to	purify	 them,	and	a	 significant	

amount	 of	 the	 protein	 formed	 inclusion	 bodies.	 The	 primary	 goal	 of	 de	 novo	

designing	cages	is	to	utilize	them	for	various	applications	in	medicine	and	materials	

science.	However,	the	proteins	must	be	easily	purified	and	produced	in	good	yields	

in	 order	 to	 make	 them	 useful	 for	 such	 applications.	 	 Therefore,	 we	 needed	 to	

establish	a	better	purification	approach	for	our	octahedral	cage	design.		

Furthermore,	 although	 cryo-EM	 reconstruction	 of	 the	 tetrahedral	 cage	
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resolved	 the	 coiled	 coil	 domains,	 showing	 them	as	protruding	 from	 the	 surface	of	

the	cage,	we	were	unable	to	resolve	these	domains	in	a	similar	reconstruction	of	the	

octahedral	 cage.	This	 suggested	 that	 there	was	heterogeneity	 in	 the	orientation	of	

the	coiled	coil	domains	 in	 the	octahedral	design.	 	We	reasoned	that	we	could	 take	

advantage	of	our	design	 strategy	 to	 elaborate	 the	octahedral	 cage	by	attaching	an	

additional	 large	protein	domain	 to	 the	C-terminal	 ends	of	 the	 coiled	 coil	domains.	

This	 would	 force	 the	 large	 protein	 to	 point	 outwards,	 potentially	 reducing	 the	

formation	 of	 inclusion	 bodies	 and	 improving	 the	 homogeneity	 of	 the	 resulting	

elaborated	octahedral	cage.	

 

Figure	3.	1	Outline	of	the	strategy	used	to	construct	octahedral	cages.	(A)	and	(B)	display	
linear	maps	of	the	protein	sequences	of	Oct-4	and	Oct-MBP,	respectively.	(C)	and	(D)	show	
cartoons	 illustrating	 the	 coiled	 coil-mediated	 oligomerization	 of	 Oct-4	 and	 Oct-MBP,	
respectively	to	form	octahedral	protein	cages.	
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Maltose	binding	protein	(MBP),	Mw	~	40	kDa,	is	a	monomeric	protein	widely	

used	to	help	solubilize	and	affinity	purify	proteins.	Additionally,	MBP	is	larger	than	

the	 TriEst	 monomers	 (~	 30	 kDa).	 Therefore,	 MBP	 was	 selected	 as	 a	 solubilizing	

domain	to	elaborate	the	octahedral	protein	cage.	MBP	was	genetically	appended	to	

the	C-terminal	end	of	 the	coiled	coil	of	 the	Oct-4	octahedral	cage	construct.	 In	this	

case	 fusing	MBP	protein	 to	Oct-4	produced	a	 structure	with	a	designed	molecular	

weight	of	~	1.8	MDa.	 	The	resulting	complex	protein	assembly,	Oct-MBP,	(Fig.	3.1)	

retained	its	octahedral	structure	and	was	more	homogenous	than	the	original	Oct-4	

protein	 cage.	 Importantly,	 addition	of	 the	MBP	domain	dramatically	 improved	 the	

efficiency	 of	 assembly,	 resulting	 in	 ~	 60-fold	 greater	 yield	 of	 purified	 protein	

compared	to	the	original	cage	design.		This	study	shows	the	potential	of	using	small,	

coiled	coil	motifs	as	off-the-shelf	components	to	design	MDa-sized	protein	cages	to	

which	 additional	 structural	 or	 functional	 elements	 can	 be	 added	 in	 a	 modular	

manner.	

3.2	Materials	and	Methods	

3.2.1	Construction	of	Genes	Encoding	Fusion	Proteins	

The	 MBP	 gene	 was	 PCR	 amplified	 from	 pMAL-c5X	 using	 commercially	

synthesized	primers.	The	5’end	of	the	forward	primer	was	designed	to	overlap	with	

the	sequence	encoding	the	C-terminus	of	the	coiled	coil	and	13-residue	linker	in	the	

middle.	 The	 reverse	primer	 incorporated	 two	 stop	 codons	 and	overlapped	 the	T7	

terminator	region	of	pET-28B	at	its	5’	end.	The	codon-optimized	gene	encoding	the	

tetrameric	coiled	coil	and	the	oligo-Gly	spacer	units	was	commercially	synthesized.	
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Both	 the	 tetrameric	 coiled	 coil	 and	 the	 MBP	 construct	 were	 introduced	 into	 the	

expression	 vector	 pET-28b	 by	 Gibson	 assembly	 using	 the	 NEB	 Gibson	 assembly	

protocol.	The	complete	sequence	of	the	Oct-MBP	design	is	shown	in	Appendix	A.2.	

3.2.2	Protein	Expression	and	Purification	

Proteins	were	expressed	in	E.	coli	BL21	by	standard	methods,	as	described	in	

previous	chapter	(see	2.2.2),	and	cell	pellets	were	stored	at	 -80	 °C.	All	purification	

steps	were	performed	at	4	°C	and	all	the	buffers	used	were	at	pH	7.5.	Cell	pellets	(~	

8	g)	were	 thawed	on	 ice	 for	20–30	min,	 then	resuspended	 in	buffer	containing	50	

mM	 HEPES,	 100	mM	 ammonium	 acetate,	 5%	 glycerol,	 1	 FAST	 protease	 inhibitor	

tablet	(Sigma),	and	50	mg	of	hen	egg	lysozyme	(Sigma).	This	suspension	was	kept	on	

ice	 and	gently	 agitated	 for	20	min.	 Cells	were	 lysed	by	 sonication.	The	 lysate	was	

clarified	by	centrifugation	at	40,000	g	for	30	min	and	filtered	through	a	0.2	μM	filter.	

During	Ni-purification	attempts,	the	supernatant	was	loaded	onto	a	HisTrap	Ni-NTA	

column,	washed	with	60	-	80	mL	of	the	same	buffer,	and	eluted	with	50	mM	HEPES	

buffer,	pH	7.5,	containing	100	mM	ammonium	acetate,	750	mM	imidazole,	and	5%	

glycerol.	Ni-affinity	chromatography	gave	a	very	low	yield	of	protein	and	therefore	

Oct-MBP	was	purified	using	its	MBP	tag.	The	supernatant	was	loaded	on	to	a	5	mL	

MBP-trap	 column	 (GE	Healthcare)	 at	 a	 flow	 rate	 of	 0.5	mL/min.	 The	 column	was	

subsequently	washed	with	60	-	80	mL	of	the	same	buffer	at	a	flow	rate	of	1	mL/min	

and	 then	 eluted	 with	 buffer	 containing	 10	 mM	maltose,	 50	 mM	 HEPES,	 100	mM	

ammonium	 acetate	 and	 5%	 glycerol.	 Fractions	 containing	 the	 desired	 protein	

(approximately	 15	 mL)	 were	 combined	 and	 treated	 with	 benzonase	 (1	 μL).	 The	

resulting	 solution	was	 dialyzed	 against	 buffer	 containing	 20	mM	HEPES,	 100	mM	
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ammonium	acetate,	2	mM	EDTA	and	10%	glycerol	for	two	days.	

3.2.3	Size	Exclusion	Chromatography	(SEC)	

SEC	was	used	as	an	additional	purification	step	and	also	an	analytical	 step.	

SEC	 was	 performed	 on	 a	 Superose	 6	 10/300	 column	 equilibrated	 with	 buffer	

containing	 20	mM	HEPES,	 100	mM	 ammonium	 acetate,	 and	 2	mM	 EDTA	 at	 4	 °C.	

Injections	 comprised	 400	 μL	 of	 sample	 at	 1	 mg/mL.	 Fractions	 with	 desired	

oligomeric	 state	 were	 pooled	 and	 kept	 in	 the	 column	 elution	 buffer	 for	 further	

characterization	 using	 the	 techniques	 described	 below.	 If	 needed,	 protein	 was	

concentrated	using	100-kDa	Amicon	ultra-centrifugal	filter	units.	

3.2.4	Analytical	Ultracentrifugation	(AUC)	

Sedimentation	velocity	 analysis	was	performed	using	 a	Beckman	Proteome	

Lab	 XL-I	 analytical	 ultracentrifuge	 (Beckman	 Coulter,	 Indianapolis,	 IN)	 equipped	

with	an	AN60TI	rotor.	For	AUC,	samples	were	prepared	by	buffer	exchanging	 into	

PBS,	100	mM	NaCl,	pH	7.4	by	SEC	on	a	Superose	6	10/300	FPLC	column	equilibrated	

with	 the	 above	 buffer.	 	 Samples	 were	 loaded	 into	 pre-cooled	 cells	 containing	

standard	 sector-shaped	 2-channel	 Epon	 centerpieces	 with	 1.2	 cm	 path-length	

(Beckman	Coulter,	Indianapolis,	IN)	and	allowed	to	equilibrate	at	6	°C	for	2	h	in	the	

non-spinning	rotor	prior	to	sedimentation.	Proteins	were	sedimented	at	22,500	rpm	

at	6	°C.		Absorbance	data	were	collected	at	a	wavelength	of	220	nm.			

3.2.5	Negative-stain	TEM	Imaging	

Protein	samples	were	adjusted	to	a	concentration	0.04	mg/mL	and	fixed	on	

Formvar/Carbon	 400	 Mesh,	 Cu	 grids	 using	 conventional	 negative	 staining	
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procedures.	 Imaging	 was	 performed	 using	 a	 JEOL	 1500	 electron	 microscope	

equipped	 with	 tungsten	 filament,	 XR401	 high	 sensitivity	 sCMOS	 camera	 and	

operated	at	90	kV.	

3.2.6	Activity	Assays	

Catalytic	activity	for	TriEst,	Oct-MBP	and	cross-linked	and	TEV-cleaved	Oct-

MBP	 was	 assessed	 by	 incubating	 1	 μM	 of	 protein	 with	 1	 mM	 2,4-di-nitrophenyl	

acetate	(2,4-DNPA)	substrate	at	45	°C	in	20	mM	HEPES,	100	mM	ammonium	acetate,	

and	 2	 mM	 EDTA	 with	 5%	 v/v	 methanol	 (Reaction	 volume:	 150	 μl).	 Changes	 in	

absorbance	were	measured	at	405	nm.	

3.2.7	Dynamic	Light	Scattering	(DLS)	

DLS	 was	 performed	 using	 a	 DynaPro	 NanoStar	 ZS	 instrument	 using	 a	

standard	 90°	 scattering	 geometry.	 The	 samples	 were	 centrifuged	 to	 remove	 any	

suspended	particles	before	being	analyzed	in	10	μL	cuvettes	at	25	°C.	The	refractive	

index	 and	 absorption	 coefficient	 for	 the	 particles	 were	 set	 at	 1.45	 and	 0.001,	

respectively.	 Runs	were	 performed	 in	 triplicate	 and	 each	 run	 is	 an	 average	 of	 15	

scans.	 	 At	 the	 concentration	 ranges	 used	 non-ideality	 effects	were	 assumed	 to	 be	

negligible.	

3.2.8	Protein	Crosslinking	and	TEV	Cleavage	

The	Oct-MBP	protein	 cages	were	 cross-linked	 using	 bis(sulfosuccinimidyl)-

suberate	(BS3).	BS3	concentrations	were	varied	between	1	mM	and	2	mM	whereas	

the	 protein	 concentrations	 were	 varied	 between	 5	 and	 10	 μM.	 The	 reaction	 was	

performed	in	dialysis	buffer	at	pH	7.5	and	the	sample	was	kept	at	4	°C	for	3-4	days	
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to	 ensure	 that	 the	 cross-linker	 is	 fully	 destabilized.	 ~	 0.5	 μM	 TEV	 protease	 was	

added	and	incubated	over	night	at	4	°C.	The	cleaved	material	was	purified	by	SEC	on	

a	 Superose	6	10/300	 column	and	 the	 efficiency	of	 cleavage	was	 assessed	by	 SDS-

PAGE.			

3.3	Results	

3.3.1	Construction	of	the	Elaborated	Octahedral	Protein	Cage,	Oct-MBP	

MBP	was	genetically	 fused	 to	 the	C-terminus	of	Oct-4	 through	a	13-residue	

spacer	sequence	(GGENLYFQGGGGG)	that	incorporates	a	TEV	protease	cleavage	site,	

which	potentially	allows	the	MBP	domain	to	be	removed	from	the	cage,	and	a	series	

of	 glycine	 residues	designed	 to	 impart	 flexibility.	 This	design	was	designated	Oct-

MBP.	 The	 choice	 of	 this	 relatively	 long	 spacer	 sequence	 was	 informed	 by	 our	

previous	 studies,	which	have	 shown	 that	 coiled	 coil	 oligomerization	 states	 can	be	

affected,	leading	to	aggregation,	by	the	proteins	attached	to	them	if	the	spacer	is	too	

short.2	

Oct-MBP	was	over-expressed	in	Escherichia	coli.		Attempts	to	purify	Oct-MBP	

by	 Ni-affinity	 chromatography	 using	 its	 N-terminal	 His-tag	 gave	 a	 low	 yield	 of	

protein	(Fig	3.2	A)	~	2	mg/	mL)	suggesting	that	the	N-terminus	is	buried	within	the	

protein	cage.	Next	we	purified	Oct-MBP	by	MBP	utilizing	a	MBP-trap	column	(Fig	3.2	

B).	Size	exclusion	chromatography	 followed	by	MBP-affinity	chromatography	gave	

more	homogeneous	protein	as	judged	by	SDS-PAGE	(Fig.	3.3	B).	The	yield	of	purified	

protein	 (~	60	mg/L	culture)	 represented	a	dramatic	 improvement	over	 the	yields	

obtained	with	the	original	Oct-4	design.	The	esterase	activity	of	Oct-MBP,	measured	
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as	 turn-over	 number	with	 2,4-di-nitrophenyl	 acetate	 as	 substrate,	 was	 12.4	 ±	 0.7	

min-1,	 which	 is	 very	 similar	 to	 the	 activity	 of	 the	 unassembled	 trimeric	 esterase	

(14.2	±	2.3	min-1).	 	 This	 indicates	 that	 the	 assembly	process	did	not	 result	 in	 any	

gross	structural	perturbation	of	the	protein	building	blocks.	

	

	

Figure	3.	 2	Comparing	SDS	PAGE	gels	Oct-MBP	purified	by	Ni-affinity	chromatography	vs		
MBP	 affinity	 chromatography.	 (A)	 Purification	 of	Oct-MBP	by	Ni-affinity	 chromatography.	
F8-F12	 are	 the	 elution	 fractions	 and	 10	 μL	 of	 fractions	 were	 loaded	 on	 to	 the	 gel.	 	 (B)	
Purification	of	Oct-MBP	by	MBP-trap	column.	F4-F20	are	the	elution	 fractions	and	5	μL	of	
fractions	were	loaded	onto	the	gel.			
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Figure	 3.	 3	 Initial	 characterization	 of	 Oct-MBP.	 (A)	 Size	 exclusion	 chromatographs	
(Superose	6	10/300	column)	of,	Top	to	bottom:	Oct-MBP,	Oct-4,	TEV	protease-cleaved	Oct-
MBP	 and	 Tri-EST.	 	 (B)	 SDS-PAGE	 analysis	 of	 Oct-MBP.	 Lane	 1:	 marker	 proteins;	 lane	 2:	
purified	Oct-MBP;	 lane	3:	 cross-linked	 and	TEV-cleaved	Oct-MBP.	 For	 details	 see	 the	 text.	
(C)	Native	PAGE	analysis	of	Oct-MBP	and	Oct-4.	Lane	1	Oct-4;	 lane	2:	Oct-MBP	 lane	3:	Oct-
MBP	after	cross-linking	and	TEV	protease	cleavage.			

	

3.3.2	Characterization	of	the	Elaborated	Octahedral	Cage	

To	 examine	whether	 the	 construct	 assembled	 into	 the	 intended	 octahedral	

cage	geometry,	we	characterized	the	complex	using	size	exclusion	chromatography	

(SEC),	native	PAGE,	sedimentation	velocity	analytical	ultracentrifugation	(SV-AUC),	

negative-stain	 transmission	 electron	 microscopy	 (TEM)	 and	 dynamic	 light	

scattering	(DLS).	These	techniques	provide	complementary	information	on	the	size	

and	shape	of	protein	complexes.	
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3.3.3	Size	Exclusion	Chromatography	 	

We	 initially	 used	 SEC	 to	 examine	whether	 Oct-MBP	 assembled	 into	 a	 high	

molecular	weight	complex.		When	subjected	to	FPLC	chromatography	on	a	Superose	

6	 10/	 300	 SEC	 column,	 (molecular	 cutoff	 ~	 5	 x	 106	 Da;	 void	 volume	 ~	 8	 mL),	

purified	 Oct-MBP	 eluted	 a	 single,	 symmetrical	 peak,	 with	 an	 approximate	 elution	

volume	of	10	mL	(Fig.	3.3	A).		For	comparison,	Oct-4	(~	854	kDa),	the	unelaborated	

octahedral	 protein	 cage,	 eluted	 at	 ~12	 mL,	 Tet8-5H	 (~	 439	 kDa),	 a	 tetrahedral	

protein	cage,	eluted	at	~	14	mL	and	the	unassembled	trimeric	protein	building	block	

(TriEst,	~	 97-kDa)	 eluted	 at	 18	mL.1,3	 These	 indicated	 that,	 as	 expected,	Oct-MBP	

assembles	 into	 a	 complex	 that	 is	 significantly	 larger	 than	 Oct-4,	 from	which	 it	 is	

derived.	

3.3.4	Native	PAGE	 	 	

The	approximate	size	and	homogeneity	of	Oct-MBP	was	further	analyzed	by	

native	PAGE	on	a	3-12%	gradient	gel.		Oct-MBP	migrated	as	a	smeared	band	that	ran	

significantly	more	slowly	than	Oct-4	(Fig.	3.3	C).		The	observed	smearing	may	result	

from	interactions	of	 the	 large	protein	complex	with	the	gel	matrix,	or	possibly	 the	

presence	incorrectly	assembled	material.		The	electrophoretic	behavior	of	Oct-MBP	

is	 also	 consistent	 with	 Oct-MBP	 forming	 fairly	 homogenous	 cages	 that	 are	

significantly	larger	than	Oct-4.					

3.3.5	Dynamic	Light	Scattering	

The	 size	 of	 the	 particles	 formed	 by	 Oct-MPB	 was	 further	 investigated	 by	

dynamic	 light	 scattering.	 	 These	 revealed	 the	 particles	 formed	 by	 Oct-MBP	 to	 be	
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homogeneous	and,	intensity	distribution	analysis	gave	a	hydrodynamic	diameter	of	

28.1	±	0.8	nm	(Fig.	3.4).	This	value	is	in	good	agreement	with	diameter	of	~	24	nm	

for	Oct-MBP,	which	was	simply	estimated	by	modeling	 the	structure	of	MBP	on	to	

the	vertices	of	the	Oct-4	protein	cage.			

	

Figure	3.	4	Characterization	of	Oct-MBP	using	dynamic	light	scattering.				

	

3.3.6	Sedimentation-Velocity	Analytical	Ultracentrifugation	(SV-AUC)	 	 	

Sedimentation	traces	for	Oct-MBP	were	recorded	at	22,500	rpm	and	6	°C	on	

samples	with	initial	protein	concentrations	ranging	between	0.014	and	0.07	mg/mL.		

The	sedimentation	velocity	experiments	were	 first	analyzed	by	 the	enhanced	van-

Holde	Weischet	method	to	assess	 the	homogeneity	of	 the	sample	(Fig.	3.5	A).4,5	At	

higher	Oct-MBP	concentrations	the	observed	sedimentation	coefficient,	s,	decreased,	

which	indicates	non-ideal	behavior.		This	non-ideal	behavior	likely	arises	from	non-

specific	interactions	between	protein	cages	at	higher	concentrations,	a	phenomenon	

that	 is	 generally	 more	 pronounced	 for	 larger	 macromolecules.	 At	 lower	
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concentrations	 the	 samples	 were	 characterized	 by	 a	 major	 component	 with	 a	

sedimentation	 coefficient	 (s)	 of	 ~	 23	 S	 and	 another	 less	 abundant	 component	

comprising	faster	sedimenting	species.		

 

Figure	 3.	 5	 Characterization	 of	 Oct-MBP	 using	 sedimentation	 velocity-analytical	
ultracentrifugation:	(A)	enhanced	van	Holde-Weischet	analysis	of	Oct-MBP	sedimenting	at	a	
range	of	initial	concentrations,	as	indicated	on	plot.	(B)	Representative	plot	obtained	by	2-
dimensional	sedimentation	analysis	of	Oct-MBP	initial	protein	concentration	0.028	mg/mL.		

	

We	 further	 analyzed	 the	 data	 from	 the	 lower	 concentration	 samples	 by	 2-

dimensional	 sedimentation	 spectrum	 analysis	 (2DSA)	 followed	 by	 a	 genetic	

algorithm	analysis,	which	was	validated	by	a	Monte	Carlo	analysis	(GA-MC).	This	is	a	

model-independent	 analysis	 approach	 to	 fit	 sedimentation	boundaries	 that	 allows	

the	 shape	 and	 molecular	 mass	 distribution	 of	 macromolecular	 mixtures	 to	 be	

determined.6	We	 have	 used	 this	methodology	 to	 characterize	 our	 smaller	 protein	

cage	designs	and	determine	their	molecular	weights.1,3,7	In	this	case,	2DSA	analysis	
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of	 Oct-MBP	 traces	 recorded	 at	 initial	 concentrations	 ranging	 between	 0.014	 and	

0.042	 mg/mL	 consistently	 resolved	 two	 sedimenting	 species	 (Fig.	 3.5	 B).	 The	

principle	component	(comprising	~	75	%	of	the	sample)	had	s	=	23	±	1	S,	consistent	

with	the	van-Holde	Weischet	analysis,	and	the	minor	component	had	s	=	30	±	1	S.		

The	 frictional	 ratio	 (f/f0)	 of	 the	major	 23	 S	 species	 was	 1.7	 ±	 0.04	 for	 the	major	

component,	 although	 this	 varied	 somewhat	 and	was	 dependent	 upon	 the	 sample	

preparation	 and	 concentration.	 The	 minor	 30	 S	 species	 has	 a	 surprisingly	 small	

frictional	ratio,	 f/f0	=	1.005	±	0.03,	 that	might	 indicate	 that	 this	 is	a	more	compact	

cage	 conformation	 or	 aggregated	 form	 of	 the	 protein.	 	 Overall	 the	 AUC	 analyses	

indicate	 that	Oct-MBP	 is	 predominantly	 a	 single	 species	 that	 appears	 significantly	

larger	than	Oct-4	for	which	s	=	17.5	S.		The	range	of	frictional	ratios	associated	with	

major	 Oct-MBP	 species	 falls	 within	 the	 range	 reported	 for	 other	 porous	 protein	

cages	such	as	 ferritin,	 f/f0	=	1.3,	 the	E2	complex	of	pyruvate	dehydrogenase,	 f/f0	=	

2.5	 and	 Oct-4,	 f/f0	 =	 1.9,	 suggesting	 that	 it	 too	 maintains	 an	 open,	 porous	

structure.1,8,9	

3.3.7	Electron	Microscopy	

The	assemblies	formed	by	Oct-MBP	were	imaged	by	negative-stain	TEM	(Fig.	

3.6	A,B).		The	protein	cages	appeared	as	discrete	particles	with	a	fairly	uniform	size	

distribution.	 	 Analysis	 of	 ~	 300	 particle	 images	 using	 the	 program	 Image	 J	 gave	

average	 diameter	 of	 23.4	 ±	 2.9	 nm	 (Fig.	 3.7)	 and	which	 closely	matches	with	 the	

modeled	diameter	of	~	24	nm.		Comparison	of	the	images	with	those	obtained	from	

Oct-4	 showed	 that	 they	 appeared	 less	 well	 defined	 and	 in	 particular,	 unlike	 the	

parent	Oct-4	design,	no	symmetry	was	apparent	in	the	particle	images.		This	is	most	
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likely	 a	 result	 of	 the	 appended	 monomeric	 MBP	 domains	 masking	 the	 core	

octahedral	 cage.	 	 In	 most	 images,	 poorly	 defined	 peripheral	 structures	 were	

discernable	 surrounding	 the	 core	 particle	 that	 may	 represent	 individual	 MBP	

domains.		

 

Figure	3.	6	Negative-stain	transmission	electron	microscopy	images	of	Oct-MBP.	(A)	Wide	
field	view	of	particles	formed	by	Oct-MBP	(B)	left:	Oct-MBP	particles	at	higher	magnification	
exhibit	 a	 less	 compact	 structure	 that	 Oct-4	 (compare	 with	 panel	 C)	 right:	 individual	
particles	at	high	magnification;	arrows	 indicate	peripheral	structures	that	 likely	represent	
MBP	domains.	(C)	images	of	Oct-4	particles	lack	peripheral	structures	(compare	with	panel	
B)	(D)	images	of	Oct-MBP	after	removal	of	MBP	domains	by	treatment	with	TEV	protease.		
These	 particles	more	 closely	 resemble	 the	 compact	 structures	 formed	 by	Oct-4	 shown	 in	
panel	C.		
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Figure	 3.	 7	 Size	distribution	analysis	of	protein	 cages	 formed	by	Oct-MBP	obtained	 from	
measurement	of	~	300	particles	imaged	by	negative	stain	TEM	using	the	software	package	
Image	J.	

	

3.3.8	Cleavage	of	the	MBP	Domain	 	

To	 further	 establish	 the	 multidomain	 nature	 of	 Oct-MBP	 we	 used	 tobacco	

etch	virus	protease	(TEV)	to	cleave	the	maltose-binding	domain	from	the	octahedral	

core.	 	 Initial	 attempts	 at	 proteolysis	 resulted	 in	 dissociation	 of	 Oct-MBP	 to	 its	

component	 trimers	 (Fig.	 3.8).	 	 The	 reason	 for	 this	 is	 unclear.	 	 Therefore,	we	 first	

covalently	cross-linked	the	Oct-MBP	subunits	using	the	lysine-reactive	cross	linker,	

bis(sulfosuccinimidyl)suberate	 (BS3).	 The	 protein	 was	 then	 incubated	 with	 TEV	

protease	overnight	and	the	material	re-purified	by	SEC.		The	cross-linking	preserved	

the	structure	of	 the	cages	and	the	TEV-cleaved	material	chromatographed	with	an	

elution	volume	similar	 to	Oct-4	(Fig.	3.3	A).	 	Analysis	by	native	PAGE	showed	that	

most	of	the	TEV-cleaved	material	migrated	similarly	to	Oct-4,	although	some	higher	

molecular	weight	bands	are	evident	 (Fig.	3.3	C).	 	These	may	represent	cages	 from	
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which	 the	MBP	domain	has	been	 incompletely	 cleaved	or	 cages	 in	which	 the	MBP	

domain	 was	 covalently	 cross-linked	 to	 the	 Oct	 core.	 	 Examination	 of	 the	 cleaved	

cages	by	TEM	showed	that	the	particles	have	a	similar	appearance	and	size	to	Oct-4,	

consistent	 with	 the	 removal	 of	 the	 outer	 MBP	 domain	 (Fig.	 3.6	 C,D).	 	 The	 cross-

linked	 and	 TEV-cleaved	 cages	 retained	 their	 catalytic	 activity	 (14.8	 ±	 1.8	 min-1),	

indicating	 that	 the	 structure	 of	 the	 esterase	 building	 block	 was	 not	 significantly	

altered	by	these	manipulations.	

	

	

Figure	3.	8	 Initial	attempts	to	cleave	MBP	tag	from	Oct-MPB	protein	cages.	(A)	SDS-PAGE	
for	 TEV	 cleaved	Oct-MBP.	As	 shown	 in	 the	 gel,	 SEC	 followed	by	TEV-cleavage	 completely	
removed	the	MBP	domain.	(B)	3-12	%	Native	PAGE	for	TEV	cleaved	Oct-MBP.	The	cleaved	
proteins	 migrated	 rapidly	 in	 the	 gel	 which	 indicated	 that	 MBP	 cleaved	 protein	 does	 not	
assemble	 into	an	octahedral	protein	cage	with	Mw	~	856	kDa	 	 (C)	Re-chromatography	of	
MBP	 removed	 protein.	 It	 eluted	 at	 elution	 volume	 18	 mL,	 the	 elution	 volume	 of	 TriEst.	
Native	PAGE	analysis	and	SEC	data	 indicated	 that	 removal	of	MBP	 from	Oct-MBP	 leads	 to	
complete	dissociation	of	cages	into	its	trimeric	form.	
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3.4	Discussion	

Growing	 interest	 in	 the	 use	 of	 protein	 nanoparticles	 for	 applications	 in	

medicine	and	materials	science	has	stimulated	efforts	to	design	new	protein	cages	

from	a	range	of	protein	building	blocks.10–17	Our	efforts	have	focused	on	the	use	of	

de	 novo	 designed	 coiled	 coils	 as	 “off-the-shelf”	 components	 to	 assemble	 proteins	

into	cages.1,3,7	In	this	study,	we	demonstrated	the	potential	of	our	design	strategy	for	

the	 modular	 expansion	 of	 a	 protein	 cage	 by	 fusing	 a	 relatively	 large	 monomeric	

protein,	 MBP,	 to	 the	 free	 end	 of	 the	 coiled	 coil	 domain	 used	 to	 mediate	 cage	

assembly.		The	resulting	construct	self-assembled	into	a	fairly	homogeneous	protein	

cage	in	which	MBP	was	displayed	on	the	exterior.	The	addition	of	the	MBP	domain	

both	improved	protein	folding	and	allowed	the	cage	to	be	easily	purified	by	affinity	

chromatography.	Furthermore,	 it	was	possible	to	remove	the	MBP	domain	by	TEV	

protease	cleavage	and	recover	the	core	octahedral	protein	cage.	

A	 valuable	 consequence	 of	 appending	 MBP	 to	 the	 octahedral	 cage	 was	 to	

increase	the	purified	yield	of	protein	by	~	60-fold.		This	is	important	for	real-world	

applications	where	proteins	need	to	be	produced	in	high	yields.		The	purified	yield	

of	our	initial	Oct-4	design	was	only	about	1	mg/L	culture,	both	because	a	significant	

fraction	of	the	protein	was	produced	as	inclusion	bodies,	presumably	because	it	was	

misfolded,	 and	because	 the	His-tag-based	 affinity	 chromatography	used	during	 its	

purification	was	inefficient.	 	We	suspect	that	this	 inefficiency	arose	because	the	N-

terminus	of	the	trimeric	esterase,	which	contained	the	His-tag,	was	not	exposed	to	

the	exterior	of	the	cage,	so	it	could	not	bind	to	the	Ni-NTA	affinity	column	material.		

Thus,	 elaborating	 the	 original	 octahedral	 cage	 with	 MBP	 domains	 has	 provided	
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three	 benefits	 over	 the	 original	 design.	 	 First	 it	 allowed	 an	 alternative	method	 of	

affinity	purification	that	resulted	in	increased	efficiency.		Second,	it	forced	the	coiled	

coil	 domains	 to	 point	 outwards	 from	 the	 octahedral	 cage	 (because	 there	 is	

insufficient	 space	 within	 the	 cage	 to	 accommodate	 the	 MBP	 domain)	 thereby	

improving	homogeneity.	 	Third,	 it	 improved	 folding	and	assembly,	 thereby	 largely	

eliminating	the	formation	of	inclusion	bodies	and	improving	the	yield	of	protein.		

3.5	Conclusion	

In	this	work,	we	successfully	elaborated	our	octahedral	protein	cage	design	

by	fusing	a	larger	monomeric	protein	to	the	free	end	of	the	coiled	coils.	This	project	

supports	the	idea	that	the	coiled	coil-mediated	assembly	of	protein	superstructures	

based	primarily	on	symmetry	considerations	is	a	generalizable	and	robust	strategy.		

By	appending	a	large	protein	domain	at	each	end	of	the	small,	coiled	coil	domain	(~	

3	kDa)	we	have	constructed	discrete	cage-like	assemblies	that	extend	to	the	mega-

Dalton	size	range.		The	domain	fusion	strategy	that	we	demonstrate	here	potentially	

allows	 the	 cages	 to	 be	 elaborated	 towards	 various	 applications	 such	 as	 the	

polyvalent	 display	 of	 antigens	 for	 vaccine	 development	 or	 the	 construction	 of	

artificial	multi-enzyme	complexes.	 	More	generally,	 this	design	strategy	provides	a	

conceptually	simple	route	to	design	complex,	higher	order	protein	assemblies	that	is	

largely	independent	of	the	structure	of	the	proteins	and	does	not	require	extensive	

computational	modeling	and	protein	re-design.	
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Chapter	4:	Designing	a	Coiled	Coil-Mediated	Assembly	of	an	Icosahedral	
Protein	Cage	with	Extremely	High	Thermal		

and	Chemical	Stability	
	

	

4.1	Introduction	

Protein-based	 compartments	 are	 intimately	 involved	 in	 cellular	 functions,	

where	 they	 serve	 as	 storage	 vessels,	 assist	 in	 protein	 folding	 and	 protein	

degradation,	and	 in	some	cases	contain	enzymatic	 reactions.1–5	Viruses	provide	an	

excellent	example	of	the	importance	of	protein	cages	in	the	packaging,	transport	and	

delivery	 of	 biological	 cargoes.6,7	We	 discussed	 in	 chapter	 1	 the	 development	 of	

natural	protein	cages	towards	a	variety	of	applications:	these	include	targeted	drug	

delivery,	polyvalent	display	of	antigens,	in	vivo	imaging,	templating	of	nano-particles,		

and	encapsulation	of	enzymes	in	protein	nano-reactors.		

The	protein	 cages	most	 commonly	used	 for	 such	applications	are	virus	 like	

particles	 (VLPs)	 derived	 from	 icosahedral	 viruses.6	VLPs	 comprise	 the	 assembled	

viral	 coat	 protein(s)	 but	 lack	 the	 viral	 genome	 and	 so	 are	 both	 empty	 and	 non-

infectious.	 Examples	 include	 cages	 derived	 from	 bacteriophages	 P22	 and	Qβ,	 and	

from	cowpea	chlorotic	mottle	and	cowpea	mosaic	viruses.6	Viral	protein	cages	have	

evolved	to	assemble	into	very	robust	cages;	however,	this	places	constraints	on	the	

extent	to	which	these	cages	can	be	re-purposed.	The	Baker	group	has	explored	the	

potential	 of	 de	novo	designing	 cages	with	 icosahedral	 geometry	 ressembling	 viral	
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capsids,	 and	 within	 last	 two	 years,	 several	 icosahedral	 cages	 have	 been	 reported	

using	 the	 interface	 design	 strategy.8,9	 Yeates	 group	 also	 attempted	 to	 design	 a	

dodecahedral	 protein	 cage	 by	 utilizing	 their	 fusion	 strategy,	 but	 only	 a	 small	

percentage	 of	 the	 protein	 assembled	 into	 the	 intended	 form.10	 These	 design	

strategies	were	discussed	in	detail	under	chapter	1.		

The	 coiled	 coil	 driven	 cage	 design	 strategy	 developed	 in	 our	 lab,	 in	 which	

protein	assembly	is	mediated	by	short,	parallel,	coiled	coil	domains,	provides	a	more	

modular	 approach	 to	 design	 protein	 cages.	 Our	 approach	 greatly	 simplifies	 the	

design	process	because	the	angle	between	the	symmetry	axes	need	not	be	specified,	

eliminating	 the	 requirement	 for	 intensive	 computational	 modeling	 and	 protein	

engineering.	 	 By	 using	 combinations	 of	 symmetry	 axes	 that	 are	 unique	 to	 the	

geometry	 of	 the	 desired	 protein	 cage,	 it	 is	 possible	 in	 principle	 to	 assemble	well-

defined	 protein	 cages	 using	 symmetry	 considerations	 alone.	 In	 chapter	 1,	 I	

described	 the	construction	of	octahedral	and	 tetrahedral	cages	by	combining	a	C3-

symmetric	building	block	protein	with	either	a	C4-symmetric	or	C3-symmetric	coiled	

coil	assembly	domain,	respectively.	11,12	
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Figure	 4.	 1	 Design	 scheme	 for	 a	 self-assembling	 icosahedral	 protein	 cage.	 (A)	 The	 Ico8	
fusion	protein	comprises	a	trimeric	esterase,	an	oligo-Gly	linker	sequence	and	a	pentameric	
coiled	 coil.	 (B)	 Structures	 of	 the	 trimeric	 esterase	 and	 pentameric	 coiled	 coil	 with	 a	
schematic	illustration	of	the	assembly	of	the	fusion	protein	into	an	icosahedral	cage.	

	
	

In	 this	 chapter,	 I	describe	 the	 extension	 of	 this	 approach	 to	 design	a	~	2.1	

MDa	icosahedral	cage	of	a	size	similar	to	a	small	viral	capsid.		As	the	largest	Platonic	

solid,	icosahedral	protein	cages	can	encapsulate	large	volumes	and	as	such	are	often	

used	 in	 Nature	 for	 packaging	 and	 transport.13	 Large,	 robust	 and	 customizable	

protein	cages	should	be	useful	in	synthetic	biology,	vaccine	design	and	targeted	drug	

delivery.7,14–16	However,	 icosahedral	 cages	 remain	challenging	 to	 construct,	 as	 they	

require	the	coordinated	assembly	of	60	protein	subunits	(in	this	case	20	copies	of	a	

trimeric	protein)	to	achieve	the	desired	icosahedral	geometry.			

For	the	combination	of	C3	and	C5-symmetric	proteins	necessary	to	specify	an	

icosahedral	cage,	we	selected,	respectively,	same	trimeric	esterase	(TriEst)	which	we	
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utilize	 as	 building	 block	 protein	 (BBP)	 for	 our	 other	 designs	 and	 a	 well-

characterized	 de	novo	 pentameric	 parallel	 coiled	 coil	 domain.	 	 These	were	 linked	

together	 through	 a	 flexible	 oligo-Gly	 sequence.	 	 Characterization	 of	 the	 resulting	

protein	 assemblies	 revealed	 that	 they	 form	 hollow	 cages	with	 features	 consistent	

with	the	intended	icosahedral	geometry.		Notably,	assembly	of	the	trimeric	esterase	

into	 a	 cage	 resulted	 in	 a	 remarkable	 increase	 in	 both	 its	 thermal	 stability	 and	

resistance	 to	 chemical	 denaturation	 by	 guanidium	 hydrochloride	 (GnHCl)	 and	

extremes	of	pH.			

4.2	Materials	and	Methods		

4.2.1	Construction	of	Genes	Encoding	Fusion	Proteins			

The	codon-optimized	gene	encoding	the	pentameric	coiled	coil	and	the	oligo-

Gly	 spacer	 units	 were	 commercially	 synthesized	 and	 were	 introduced	 into	 the	

expression	 vector	 pET-28b	 using	Gibson	 assembly	protocol.	The	 sequences	 of	 the	

proteins	are	given	in	Appendix	A.3.		

4.2.2	Protein	Expression	and	Purification			

Expression	 constructs	 were	 transformed	 into	 E.	 coli	 BL21(DE3)	 cells	 and	

protein	expression	induced	by	IPTG	using	standard	methods	as	described	in	chapter	

2	 (section	 2.2.2).	 For	 initial	 characterization,	 proteins	 were	 purified	 by	 standard	

methods	using	an	N-terminal	6-His	tag	to	facilitate	affinity	chromatography	on	a	Ni-

NTA	column	as	described	 in	section	2.2.2.	For	 further	characterization	of	 Ico8,	 the	

protein	was	purified	as	follows:	~	5	g	of	cells	was	resuspended	on	ice	in	45	mL	of	50	

mM	HEPES	buffer,	pH	7.5	containing	300	mM	ammonium	acetate,	50	mM	imidazole,	
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1.5	M	urea	and	5%	(v/v)	glycerol;	a	protease	inhibitor	tablet	and	50	mg	of	lysozyme	

were	added	and	the	suspension	gently	shaken	for	20	min.	 	The	cells	were	lysed	by	

sonication	 or	 passage	 through	 a	 microfluidizer	 and	 the	 lysate	 was	 clarified	 by	

centrifugation	for	30	min	at	40,000	g.		The	supernatant	was	passed	through	a	5	mL	

Ni-NTA	column	at	0.25	mL/min	and	the	flow-through	heated	at	70	°C	for	~	75	min.		

Precipitated	proteins	were	removed	by	centrifugation	at	40,000	g	for	30	min	and	the	

supernatant	dialyzed	at	4	°C	against	20	mM,	pH	7.5,	HEPES,	2	mM	EDTA,	100	mM	

ammonium	 acetate	 for	 one	 week.	 	 Dialyzed	 samples	 were	 further	 purified	 by	 2	

rounds	of	 SEC	using	 a	 Superose	6	10/300	column	equilibrated	 in	 the	 same	buffer	

(flow	 rate	 0.3	 mL/min).	 	 Fractions	 containing	 Ico8	 were	 pooled,	 concentrated	 by	

ultrafiltration	 and	 re-chromatographed	 on	 the	 same	 column.	 	 Samples	 were	 then	

concentrated	and	stored	at	room	temperature.		

4.2.3	Enzyme	Activity			

The	 esterase	 activity	 of	 Ico8	 and	 TriEst	 were	 assayed	 using	 2,4-di-

nitrophenol	 acetate	 as	 the	 substrate	 and	measuring	 the	 increase	 in	 absorbance	 at	

405	nm,	as	described	in	3	chapter	(section	3.2.6).		

4.2.4	Nucleic	Acid	Analysis			

Nucleic	 acids	 were	 purified	 from	 protein	 samples	 by	 phenol:chloroform	

extraction	 using	 standard	methods.	 	 The	 presence	 of	 DNA,	 rather	 than	 RNA,	 was	

confirmed	 by	 digestion	 with	 either	 DNase	 I	 (RNase	 free)	 or	 RNase,	 followed	 by	

agarose	 gel	 electrophoresis.	 	 500	 ng	 of	 phenol:chloroform	 extracted	 nucleic	 acids	

were	incubated	with	either	1	unit	of	DNase	I	or	RNase	A	for	30	min	at	25	°C	in	the	
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manufacturers’	 buffer.	 	 The	 amount	 of	DNA	was	 quantified	 by	 analysis	 of	 agarose	

gels	and	comparison	to	DNA	standards	using	the	program	Image	J.			

To	 study	 the	 effect	 of	 DNAse	 I	 on	 the	 stability	 of	 Ico8,	 0.5	mg/mL	 protein	

samples	were	incubated	overnight	at	room	temperature	with	5	units	of	DNAse	I	and	

purified	by	SEC	on	a	superose	6	10/300.		Fractions	collected	from	elution	volume	~	

18	mL	was	used	for	further	characterizations.	

4.2.5	Electron	Microscopy			

Proteins	 (0.03	–	0.1	mg/mL)	were	 fixed	 on	 Formvar/Carbon	 400	Mesh,	 Cu	

grids	using	conventional	procedures	and	staining	with	uranyl	formate.		For	negative	

stain	TEM,	 imaging	was	performed	at	 room	 temperature	with	 JEOL	1500	electron	

microscope	equipped	with	tungsten	filament,	XR401	high	sensitivity	CMOS	camera	

and	 operated	 at	 90	 keV.	 	 Samples	 for	 scanning	 transmission	 electron	microscopy	

(STEM)	were	 prepared	 similarly.	 Images	 were	 acquired	 using	 a	 JEOL	 JEM-2100F	

transmission	electron	microscope	(TEM)	with	a	CEOS	probe	corrector.	 	Microscopy	

was	performed	at	200	keV	in	STEM	mode	with	the	lens	setting	corrected	by	the	Cs-

corrector	to	produce	a	sub-Angstrom	beam	size.		Both	high-angle	annular	dark-field	

and	bright-field	images	were	acquired	simultaneously.		To	better	display	the	internal	

microstructures	of	 the	virus,	 fast	Fourier	 transform	 image	 filtering	was	performed	

for	bright	field	images.	

4.2.6	Dynamic	Light	Scattering			

DLS	measurements	 were	 made	 using	 a	 DynaPro	 Nanosizer	 ZS	 instrument.		

Measurements	 were	 made	 at	 25	 °C	 with	 the	 refractive	 index	 and	 absorption	
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coefficient	 for	 the	 particles	 were	 set	 at	 1.45	 and	 0.001	 respectively.	 	 Diameter	

distributions	 by	 intensity	 were	 recorded.	 	 Measurements	 were	made	 in	 triplicate	

with	 each	 measurement	 comprising	 an	 average	 of	 15	 scans.	 	 Temperature-

dependent	 DLS	 was	 performed	 using	 the	 same	 instrument.	 	 10	 µL	 samples	 with	

protein	concentration	0.2	mg/mL	were	heated	at	a	rate	of	5	°C/min	from	40	to	100	

°C.		The	refractive	index	and	absorption	coefficient	for	the	particles	were	set	at	1.45	

and	0.001	respectively,	and	the	diameter	distribution	by	intensity	was	recorded.	

4.2.7	Zeta	Potential	Measurements			

Zeta	 Potential	 measurements	 were	 performed	 using	 Malvern	 Instruments	

Nanosizer	ZS.	Samples	were	buffer-exchanged	into	1XPBS	buffer	containing	20	mM	

ammonium	acetate,	pH	7.4.	The	protein	concentration	was	adjusted	to	~	0.2	mg/mL	

and	measurements	were	performed	in	triplicate	and	averaged	readings	reported.		

4.2.8	Circular	Dichroism		(CD)	

CD	 measurements	 were	 performed	 using	 Jasco	 J815	 CD	 spectrometer.		

Protein	concentrations	were	between	0.2	–	0.5	mg/mL,	(1	mm	path	length	cuvette).		

Samples	were	heated	from	40	°C	to	98	°C	at	a	rate	of	1	°C	/min.		

4.2.9	Differential	Scanning	Calorimetry	(DSC)	

DSC	 scans	were	 performed	 using	 a	 TA	 instruments	 nanoDSC,	 with	 dialysis	

buffer	was	used	as	reference.		~	0.6	mL	of	samples	of	protein,	0.3	-	0.4	mg/mL,	were	

heated	at	1	°C/min	from	50	°C	to	120	°C	at	3	atm	pressure	and	the	changes	in	heat	

taken	up	by	the	samples	recorded.		
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4.2.10	Atomic	Force	Microscopy	(AFM)	

Samples	for	AFM	analysis	were	first	chemically	cross-linked	using	the	lysine-

specific	 reagent	 bis(sulfosuccinimidyl)suberate	 (Thermo	 Fisher)	 as	 described	 in	

chapter	 3	 (section	 3.2.8)	 to	 achieve	 ~	 50%	 cross-linking	 as	 determined	 by	 SDS-

PAGE.	 	 The	 protein	 solution	 (20	μL	~	0.02	mg/mL)	was	 spin-coated	 at	 3500	 rpm	

onto	 a	 freshly	 cleaved	 mica	 surface	 and	 further	 rinsed	 with	 40	 μL	 milli-Q	 water	

while	spinning	to	remove	salt	from	the	surface.		AFM	imaging	was	carried	out	under	

AC	mode	using	PicoPlus	5500	(Agilent	Electronic	Measurement,	K-tek	CNT	tip)	AFM	

system.	 	 A	 total	 of	 20	 images	 containing	 ~	 1100	 cages	 were	 analyzed	 by	 the	

automated	particle	detection	 function	 in	 SPIP	 (version	6.2.6,	 Image	Metrology,	 0.8	

nm	z-range	cutoff	 threshold).	Since	 the	protein	cage	 flattened	on	 the	mica	surface,	

we	 computed	 the	 undistorted	 icosohedral	 diameter	 from	 the	 measured	 particle	

volume	 using	 the	 icosahedral	 geometric	 relationship:	 V = ! !! !
!"

∗ ( !"

!"!! !
)! ,	

where	V	 is	 the	volume	and	d	 is	 the	diagonal	diameter.	This	procedure	was	carried	

out	so	that	the	extent	of	cage	assembly,	as	assessed	by	AFM,	could	be	compared	to	

the	information	obtained	from	TEM	measurements.	

The	 IR-PiFM	 measurements	 were	 performed	 using	 a	 Molecular	 Vista	 Inc,	

Vista-IR	microscope.		A	QCL	based	light	source	illuminated	the	AFM	probe	(300	kHz	

NCHR-Au,	 NanoSensors	 AG)	 providing	 a	 spectral	 range	 from	 770-1885	 cm-1.	 	 The	

protein	solution	(20	uL,	0.02	mg/mL)	was	drop-casted	onto	freshly	cleaved	mica	and	

air	dried	before	imaging.		The	spectral	acquisition	time	was	1.0	seconds	with	image	

acquisition	time	of	4.2	min	at	256	x	256	pixels.		
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4.2.11	Cryo-electron	Microscopy	(Cryo-EM)			

Samples	 were	 concentrated	 to	 ~	 0.3	 mg/mL	 and	 loaded	 onto	 glow-

discharged	QUANTIFOIL	R2/2	200	mesh	grids	and	flash-frozen	using	Vitrobot	(FEI	

Mark	 IV).	 	 The	 samples	were	 visualized	 at	 liquid	nitrogen	 temperature	 on	 a	Talos	

Arctica	 electron	 microscope	 (FEI)	 operating	 at	 200	 keV.	 	 Cryo-EM	 images	 were	

recorded	at	a	nominal	magnification	of	×34014	using	a	K2	Summit	direct	electron	

detector	(Gatan	Inc.)	in	counted	mode.		

A	 total	of	560	micrographs	of	 cages	assembled	 in	 the	presence	of	DNA	and	

240	 micrographs	 for	 cages	 assembled	 in	 the	 absence	 of	 DNA	 were	 taken	 using	

automation	 software	 SerialEM,	 Dose-fractionated	 image	 Images	were	 subjected	 to	

motion	correction	using	MotionCor2,	and	binned	by	2	resulting	in	a	sampling	of	2.94	

Å	per	pixel	for	particle	picking	and	processing.17,18	For	the	sample	with	DNA,	18,707	

particles	 were	 selected	 automatically,	 then	 subjected	 to	 reference-free	 2D	

classifications	using	RELION.19	Well-defined	class	average	images	were	selected	for	

further	 3D	 reconstruction	 using	 cisTEM.20	 For	 the	 sample	 without	 DNA,	 9,380	

particles	 were	 selected	 manually	 and	 subject	 to	 reference-free	 2D	 classifications	

using	RELION.	

4.2.12	DPH	binding		

Ico8	and	TriEst	were	buffer	exchanged	 into	100	mM	HEPES,	100	mM	NaCl,	

pH	7.0	and	DMSO	added	to	5	%	final	concentration.	 	Protein	samples,	5	µM-10	µM	

final	 concentration	 were	 incubated	 with	 5	 µM	 DPH	 for	 20-30	 min	 with	 gently	

agitating	at	25	°C.		Fluorescence	was	visualized	under	UV	light.	
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4.3	Results	

To	 design	 a	 self-assembling	 icosahedral	 protein	 cage,	we	utilized	 the	 same	

coiled	 coil	 driven	 design	 approach	 previously	 used	 to	 assemble	 tetrahedral	 and	

octahedral	 cages.	 	 For	 the	C3-symmetric	building	block	we	used	 the	 same	 trimeric	

esterase	(TriEst)	(PDB	ID:	1ZOI)	as	in	our	previous	studies	to	facilitate	comparisons	

with	 our	 earlier	 designs	 and	 assess	 the	 generality	 of	 the	 design	 strategy.21	 To	

provide	the	C5	component	necessary	for	icosahedral	geometry	we	selected	a	de	novo	

designed,	 parallel,	 pentameric	 coiled	 coil	 (PDB	 ID:	 4PN8);	 this	 component	 was	

modified	 by	 mutating	 W13Q	 to	 alleviate	 problems	 with	 aggregation,	 and	 was	

described	in	chapter	2.22,23		

4.2.1	Screening	and	Optimization	of	Assembly		

	Synthetic	 genes	 were	 constructed	 to	 encode	 proteins	 in	 which	 the	 C-

terminus	of	TriEst	was	linked	to	the	N-terminus	of	the	coiled	coil	through	a	flexible	

sequence	 containing	 increasing	 numbers	 of	 Gly	 residues	 (Fig.	 4.1	 and	 Table	 4.1).		

The	number	of	Gly	residues	were	increased	two	at	a	time,	resulting	in	six	constructs	

that	contained	between	2	and	12	Gly,	herein	referred	to	as	Ico2	through	Ico12,	with	

each	additional	di-Gly	unit	 increasing	by	~	5	Å	the	distance	between	the	C3	and	C5	

domains.		These	constructs	were	expressed	and	purified	by	standard	procedures	as	

described	in	the	Methods	section.			
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Table	4.	1	Spacer	and	coiled	coil	sequences	of	fusion	proteins	generated	in	this	study.	

	

	

Figure	4.	2	Size	exclusion	chromatography	of	Ico	constructs.	
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All	 the	 constructs	 eluted	 in	 the	 void	 volume	 (~	 8	 mL)	 on	 	 a	 superose	 6	

10/300	(Fig.	4.2).	 	Superose	6	10/300	column’s	Mw	cut	off	is	5	MDa	and	calculated	

Mw	for	the	60-subunit	icosahedral	cage	is	~	2.1	MDa.	These	results	indicated	that	the	

constructs	 are	 either	 aggregrating	or	 assembling	 into	 very	 large	molecular	weight	

species.	 The	 Ico2	 and	 Ico4	 proteins	 were	 very	 unstable	 and	 rapidly	 precipitated,	

presumably	because	the	linker	length	was	too	short	for	the	two	protein	domains	to	

fold	properly.	 	The	other	constructs	were	sufficiently	stable	 to	be	characterized	by	

negative	stain	TEM.		Ico6,	Ico10	and	Ico12	each	formed	a	heterogeneous	mixture	of	

assembled	proteins,	aggregated	material	and	unassembled	trimers	(Fig.	4.3	A-C).		As	

evidenced	by	negative	stain	TEM,	Ico8	assembled	into	sperical	particles	with	a	wide	

diameter	 distribution,	 and	 for	 the	 protein	 to	 completely	 assemble	 into	 sperical	

cages,	 it	 took	approximately	2-3	months	(Fig.	4.3	D,E).	Although	Ico8	contained	an	

N-terminal	His-tag,	the	protein	bound	only	weakly	to	Ni-NTA	resin	used	in	the	initial	

purification	 and	 the	 yield	 of	 protein	 was	 less	 than	 1	 mg/L	 culture.	 From	 all	 6	

constructs	evaluated,	the	construct	with	8-residue	linker	was	identified	as	the	most	

promising	 construct.	 After	 optimizing	 the	 linker	 length,	 we	 evaluated	 another	

protein	construct	by	adding	1	more	heptad	to	the	8-residue	linker	(Ico8-5h)	(Table	

4.1).	If	the	heterogeneity	of	cages	result	from	the	weak	interaction	strength	of	the	4-

heptad	pentameric	coiled	coil,	we	hypothesized	that	adding	another	heptad	to	its	C-

terminus	 will	 alleviate	 this	 problem.	 However,	 Ico8-5h	 construct	 also	 formed	 a	

mixture	 of	 assemblies	 similar	 to	 Ico6,	 10	 and	12	 constructs	 as	 evidenced	 by	 both	

SEC	and	negative	stain	TEM	(Fig.	4.4).		
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Figure	4.	3	Initial	evaluation	of	protein	cage	formation	by	Ico6,	Ico8,	Ico10	and	Ico12	fusion	
proteins	visualized	by	negative	stain	TEM.		(A)	Ico6;	(B)	Ico10;	(C)	Ico12.	(D-E)	Ico8	purified	
by	Ni-affinity	column	chromatography	visualized	by	negative	stain	TEM.	(D)	Few	days	after	
purification	(E)	Same	sample	after	10	weeks.	

	
	

	

Figure	4.	4	Characterization	of	of	Ico8-5h	construct.	(A)	Size	and	homogeneity	assessed	by	
size	exclusion	chromatography.	(B)	Negative	stain	TEM	of	particles	formed	by	Ico8-5h.		
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Ico8	 cages	were	very	 thermostable	 (discussed	 later)	 and	we	 therefore	 took	

advantage	of	its	heat	stability	to	purify	the	protein.	This	was	achieved	by	heating	the	

cell	 lysate	 at	 70	 °C	 for	 ~	 75	min	 to	 precipitate	most	E.	 coli	proteins,	 which	were	

removed	 by	 centrifugation.	 	 After	 dialysis,	 the	 cages	were	 purified	 further	 by	 two	

rounds	of	SEC	and	the	protein	eluted	at	10	mL	with	a	symmetrical	elution	profile	on	

the	superose	6	10/300	column.	 	This	purification	procedure	 increased	the	yield	of	

protein	to	~	5	mg/L	of	culture	and	produced	electrophoretically	pure	protein	(Fig.	

4.5	A)	that	assembled	into	cages	of	a	more	uniform	size	than	those	purified	by	Ni-

NTA	 affinity	 chromatography.	 Surprisingly,	 this	 purification	 procedure	 also	

accelerated	Ico8	assembly	from	2-3	months	to	~	2	weeks.	This	material	was	used	for	

further	characterization.	

	

	

Figure	 4.	 5	Analysis	 of	 Ico8	by	polyacrylamide	 gel	 electrophoresis	 (A)	 SDS-PAGE	of	 heat	
purified	Ico8;	(B,	C)	Co-migration	of	Ico8	cages	and	nucleic	acid:	(B)	3-12%	Native	PAGE	of	
purified	Ico8	and	TriEst	stained	for	protein	with	Instant	Blue.	(C)	The	same	gel	stained	with	
Gel	red	to	detect	nucleic	acids.	Ico8	protein	band	is	stained	with	Gel	red,	which	confirmed	
that	DNA	strands	are	associated	with	Ico8.	
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SEC	and	dynamic	 light	 scattering	 (DLS)	analysis	 indicated	 that	 Ico8	 formed	

quite	homogenous	assemblies	of	the	correct	size	(Fig.	4.6	A,B).		Analysis	of	negative	

stain	 TEM	 images	 of	 Ico8	 showed	 that	 Ico8	 assembled	 into	 particles	 ranging	 in	

diameter	from	~	24	–	30	nm	(Fig.	4.6	C).	However	Ico8	appeared	more	spherical	and	

icosahedral	features	were	not	evident	in	these	images.	The	sizes	of	the	cages	were	of	

approximately	the	size	expected	for	the	assembly	of	TriEst	into	an	icosahedral	cage,	

which	was	estimated	to	be	~	27	nm	in	diameter	based	on	the	structure	of	the	TriEst	

trimer	when	arrayed	in	icosahedral	geometry.		These	findings	were	consistent	with	

the	flexible	nature	of	the	design,	as	the	oligo-Gly	spacer	sequence	has	the	potential	

to	span	a	length	of		~	25	Å.		However,	it	is	also	possible	that	some	particles	may	have	

misassembled	 and	 contain	 either	 fewer	 or	 greater	 than	 the	 intended	 60	 protein	

subunits.	 	 Higher	 resolution	 images	 were	 obtained	 using	 scanning	 transmission	

electron	 microscopy	 (STEM)	 (Fig.	 4.6	 C).	 These	 images	 revealed	 hexagonal	

morphologies	in	many	of	the	particles,	which	is	consistent	with	the	projection	onto	a	

2D	surface	of	an	icosahedron	lying	on	one	face.			
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Figure	4.	6	Characterization	of	the	protein	cages	formed	by	Ico8.		(A)	Size	and	homogeneity	
of	Ico8	assessed	by	size	exclusion	chromatography:	solid	line,	Ico8;	dashed	line	TriEst;	(B)	
Number-averaged	diameter	distribution	of	Ico8	cages	measured	by	dynamic	light	scattering:	
solid	 line,	 Ico8;	 dashed	 line	 TriEst	 (C)	 Top:	 Conventional	 negative	 stain	 TEM	 of	 particles	
formed	by	Ico8;	middle:	high-angle	annular	dark-field	scanning	EM	of	Ico8	particles;	bottom:	
bright	 field	Fourier-filtered	scanning	EM	images	reveal	hexagonal	 features	associated	with	
cages.		
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Figure	4.	7	Atomic	force	microscopy	and	IR-photo-induced	force	microscopy	of	Ico8	cages.	
(A)	 Representative	 field	 of	 view	 of	 Ico8	 particles	 imaged	 by	 AFM.	 	 (B)	 Distribution	 of	
particle	 diameters	 calculated	 from	AFM	 images.	 	 	 (C)	 left:	Topography	 of	 a	 representative	
Ico8	 particle	 imaged	 by	 conventional	 AFM;	 middle	 and	 right:	 images	 of	 Ico8	 particles	
obtained	by	scanning	PiFM	at	1666	cm-1	(D)	IR	spectrum	of	an	individual	Ico8	particle.			

	

4.2.2	Atomic	Force	Microscopy	of	Ico8			

To	 obtain	 further	 information	 on	 the	 size	 of	 the	 cages	 formed	 by	 Ico8,	 we	

imaged	 the	 cages	 using	 atomic	 force	microscopy	 (AFM,	 Fig.	 4.7	 A),	which	 has	 the	

advantage	of	directly	measuring	the	height	and	volume	of	particles.	 	Particles	were	

spin-coated	onto	a	mica	substrate	as	described	in	the	Methods	section	and	imaged	
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using	 a	 carbon	 nanotube	 (CNT)	 tip	 in	 AC	mode	 in	 the	 air.	 ~	 1100	 particles	were	

imaged	 and	 subjected	 to	 automated	 particle	 analysis	 and	 classification	 (Fig.	 4.7	 B	

and	 Fig.	 4.8).	 	 In	 air,	 the	 cages	 flattened	 onto	 the	 freshly	 cleaved	 mica	 surface	

resulting	in	an	average	particle	height	of	3.6	±	1.1	nm.		To	compare	the	theoretically	

expected	 volume	 and	 the	 experimental	 volume	 obtained	 from	 cryo-electron	

microscopy	 (Cryo-EM),	 the	measured	 particle	 volumes	were	 used	 to	 calculate	 the	

diameter	of	an	ideal	icosahedral	geometry.		This	yielded	an	average	diameter	of	24.9	

±	 7.0	 nm	 for	 the	 Ico8	 cages,	 with	 the	 distribution	 of	 particle	 sizes	 being	 in	 good	

agreement	 with	 that	 measured	 by	 both	 cryo-EM	 and	 negative	 stain	 TEM.	 	 AFM	

characterization	indicated	a	lower	volume	tail	that	may	result	from	collaped	protein	

cages	during	spin-coating.	

	

Figure	 4.	 8	 Analysis	 of	 Ico8	 particle	 size	 by	 atomic	 force	 microscopy.	 Plots	 of	 particle	
thickness	(Z	range)	of	Ico8	particles	spin-coated	on	mica	surfaces	as	of	particle	volume.	
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Further	 images	 and	 infrared	 (IR)	 spectra	 for	 individual	 Ico8	particles	were	

measured	 using	 IR-photo-induced	 force	 microscopy	 IR-PiFM	 (Fig.	 4.7	 C,D).	 	 This	

technique	 records	 the	 vibrational	 spectrum	 of	 the	 material	 located	 in	 close	

proximity	 of	 an	AFM	 tip	 operated	 in	 dynamic	mode.24,25	 IR	 spectra	 recorded	 from	

individual	 particles	 showed	 characteristic	 amide-I	 and	 amide-II	 bands,	 confirming	

that	the	particles	consist	of	proteins	(Fig.	4.7	D).		Images	obtained	using	the	amide	I	

band	at	1666	cm-1	were	consistent	with	 the	 formation	of	 icosahedral	 cages	and	of	

similar	dimensions	to	those	obtained	by	AFM	and	TEM.			

4.2.3	Cryo-electron	Microscopy	of	Ico8			

Further	structural	information	on	the	cages	formed	by	Ico8,	was	obtained	by	

cryo-EM	 single	 particle	 analysis.	 A	 total	 of	 18,707	 particles	 were	 excised	 then	

subjected	to	reference-free	classification	and	averaging	using	the	program	RELION.47		

2D	class-averaged	cryo-EM	images	(Fig.	4.9)	indicated	that	Ico8	forms	hollow	cages	

that	range	in	diameter	from	20	to	30	nm,	with	an	average	diameter	of	~	25	nm	(Fig.	

4.10	A,B).	 	Unexpectedly,	 two	concentric	 shells	of	density	were	observed	 in	all	 the	

class	 averages,	 with	 most	 classes	 exhibiting	 short,	 inward-pointing	 features	 that	

appear	to	connect	the	inner	and	outer	shells	at	multiple	sites.		The	thickness	and	gap	

between	the	two	shells	appeared	independent	of	the	sizes	of	these	cages	(Fig.	4.11).		

Interestingly,	 these	 inward-pointing	 features	 were	 approximately	 the	 size	 of	 the	

pentameric	coiled	coil	domain	(Fig.	4.10	B).				
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Figure	4.	9	Class	averaged	images	of	Ico8	particles	determined	by	automated	classification	
of	Ico8	particles	imaged	by	cryo-EM.		All	the	class	averages	exhibit	two	concentric	shells	of	
density.	Many	class	averages	show	connections	between	the	inner	and	outer	shells.			

	
	

To	obtain	more	detailed	structural	 information	on	 Ico8,	we	selected	10,363	

particle	projections,	representing	the	average	size	of	the	protein	cage,	to	calculate	a	

3D	 cryo-EM	 reconstruction	 of	 Ico8	 using	 the	 program	 cisTEM.20	 Icosahedral	

symmetry	 was	 enforced	 during	 the	 refinement	 and	 the	 final	 reconstruction	

indicated	 a	 resolution	 of	 12	 Å.	 	 The	 symmetrically-reconstructed	 electron	 density	

map	 clearly	 reveals	 the	 arrangement	 of	 TriEst	 subunits	 that	 surround	 a	 region	 of	

inward-pointing	density	attributable	to	the	5-fold	symmetric	coiled	coil	domain	(Fig.	

4.10	C-E).	 	This	is	consistent	with	the	inward-pointing	density	seen	in	the	2D-class	

averages.		The	orientation	of	the	coiled	coil,	inward	or	outward,	was	not	specified	in	

the	design.	So,	although	the	cryo-EM	reconstruction	indicates	an	inward	orientation,	
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it	is	possible	that	there	is	a	minor	population	of	coiled	coils	that	point	outwards	but	

are	 not	 resolved	 by	 cryo-EM.	 	 The	 inner	 shell	 of	 electron	 density	 is	 also	 clearly	

evident	 in	 the	 reconstruction.	 The	 origin	 of	 this	 additional	 electron	 density	 is	

unclear.	

	

Figure	 4.	 10	Cryo-EM	analysis	of	 Ico8	cages.	 	 (A)	Size	distribution	of	 Ico8	cage	measured	
from	2D	class	averages.		(B)	Representative	reference-free	2D	class-averaged	images	of	Ico8	
cages	 illustrating	 the	 concentric	 shells	 of	 density	 exhibited	 by	 the	 cages	 and	 regularly	
spaced	constrictions	between	the	inner	and	outer	walls	that	likely	represent	the	coiled	coil	
domain.	 	 The	 expanded	 view	 of	 one	 class-averaged	 image	 shows	 the	 coiled	 coil	 domain	
(yellow)	superimposed	on	the	density	attributed	the	coiled	coil.	(Arrows	indicate:	IS,	inner	
shell	of	density;	OS,	outer	shell	of	density).	 	 (C,	D)	Cross-sections	 through	 the	3D	electron	
density	map	of	Ico8,	with	the	crystal	structures	of	TriEst	(C)	and	the	pentameric	coiled	coil	
(D)	docked.	E)	Cross-sectional	view	of	the	density	map	perpendicular	to	2-fold	axis.	The	red	
arrow	indicates	the	5-fold	symmetry	element	specified	by	the	coiled	coil.	
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It	 is	evident	that	the	electron	density	poorly	accommodates	the	structure	of	

TriEst,	 as	 the	 density	 is	 thinner	 and	more	 spread	 out	 than	 expected	 (Fig.	 4.10	C).		

This	 is	 attributable	 to	 the	 flexible	 nature	 of	 the	 protein	 cage	 attributable	 to	 the	

flexible	glycine	spacer	connecting	the	two	domains,	which	leads	to	smearing	out	of	

the	averaged	density.	 	However,	 although	of	 low	resolution,	 the	 structure	 could	be	

reproducibly	reconstructed	from	the	data.	 	 Importantly,	the	 icosahedral	 features	of	

the	cage	were	maintained	when	 the	 symmetry	enforced	 in	 the	 reconstruction	was	

relaxed	from	icosahedral	to	C5	symmetry.	This	observation	provides	confidence	that	

the	icosahedral	geometry	is	correct.		

	

Figure	 4.	 11	 Analysis	 of	 cage	 wall	 thickness	 as	 a	 function	 of	 cage	 diameter.	 (A)	
Representative	 class-averaged	 cryo-EM	 images	 of	 Ico8	 cages	 of	 increasing	 diameter.		
Measurement	of	wall	thickness	is	indicated	on	the	image	on	the	right.		(B)	Plots	of	diameter	
(blue	bars)	and	wall	thickness	(red	bars)	for	the	class-averaged	images	shown	in	A.	

	

0	
5	

10	
15	
20	
25	
30	
35	
40	

1	 2	 3	 4	 5	 6	

nm
	

Diameter	vs.	Thickness	(nm)	

500	bpè	

100	bpè	

1	

A	

B	

C	



	

	 110	

	

Construct	

 

					Turnover	(min-1)	

 

TriEst	
TriEst	(boiled)	
Ico8 
Ico8	(boiled)	
 

15.2	±	0.72	
N.D. 

21.5	±	0.6 
24.2	±	0.42	

 
	

Table	4.	2	Enzymatic	activity	of	TriEst	and	Ico8	determined	with	2,4-di-nitrophenyl	acetate	
as	substrate	(N.D.	–	none	detected).	

	

	

	

Figure	4.	12	DPH	binding	to	Ico8.	Tube	1:	DPH	in	buffer;	Tube	2:	TriEst;	Tube	3:	TriEst	and	
DPH;	Tube	4:	Ico8;	Tube	5	Ico8	and	DPH.	

	

4.2.4	Structural	Integrity	of	Ico8	

	As	a	 further	check	on	the	structural	 integrity	of	 the	cage,	we	measured	the	

catalytic	 activity	 of	 the	 esterase	 building	 block	 and	 the	 ability	 of	 the	 coiled	 coil	

domain	to	bind	hydrophobic	 fluorophores.	 	The	cages	 formed	by	Ico8	retained	 full	

catalytic	 activity,	 determined	 with	 2,4-di-nitrophenyl	 acetate	 as	 substrate	 (Table	

4.2),	 indicating	 that	 the	 structure	 of	 the	 esterase	 is	 not	 compromised	 by	 the	

assembly	process.	 	The	5	helices	of	 the	pentameric	coiled	coil	 form	a	well-defined	

hydrophobic	pore	that	has	been	shown	to	selectively	bind	hydrophobic	fluorophores	
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such	 as	 diphenylhexatriene	 (DPH).26	We	 exploited	 this	 property	 to	 evaluate	 the	

integrity	of	the	coiled	coil	component	of	Ico8.		Consistent	with	the	coiled	coil	domain	

assembling	correctly,	Ico8	cages	fluoresced	when	DPH	was	added	to	the	buffer	(Fig.	

4.12),	whereas	TriEst	exhibited	no	fluorescence	in	the	presence	of	DPH.		

4.2.5	Ico8	Binds	DNA	

	Although	neither	TriEst	nor	the	coiled	coil	bind	nucleic	acids,	preparations	of	

Ico8	 always	 absorbed	 strongly	 at	 260	nm	 (A260:A280	 ratios	were	 typically	 between	

1.6	–	1.8),	which	indicated	that	nucleic	acids	were	associated	with	the	cages.		Native	

PAGE	analysis	of	Ico8	demonstrated	that	the	nucleic	acids	and	Ico8	protein	cage	co-

migrate,	indicating	that	the	nucleic	acids	are	associated	with	the	protein	cage	rather	

than	adventitiously	co-purifying	(Fig.	4.5	B,C).			

	

Figure	4.	13	Electrophoretic	analysis	of	nucleic	acid	content	of	Ico8	cages.	Left	to	right	DNA	
ladder;	 phenol-chloroform	 extracted	 nucleic	 acids	 from	 purified	 Ico8	 cages;	 nucleic	 acids	
after	digestion	with	RNAse	A;	nucleic	acids	after	digestion	with	DNAse	I.	
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To	 further	 characterize	 the	 nucleic	 acids,	 the	 protein	 cages	were	 extracted	

with	 phenol:chloroform	 to	 remove	 the	 protein	 and	 the	 nucleic	 acids	 analyzed	 by	

electrophoresis,	 either	 before	 or	 after	 digestion	 with	 RNase	 A	 or	 DNase	 I.	 	 The	

recovered	 nucleic	 acids	 fragments	 were	 approximately	 300	 –	 500	 bp	 in	 size	 and	

could	be	digested	by	DNase	I	treatment	(but	not	RNase	A	treatment)	indicating	that	

they	 comprise	 DNA	 (Fig.	 4.13).	 	 Quantification	 of	 the	 nucleic	 acid	 and	 protein	

content	 of	 the	 cages,	 determined	 by	 agarose	 gel	 electrophoresis	 and	 SDS-PAGE	

respectively,	indicated	that	the	nucleic	acid	component	comprises	~	30	%	by	weight	

of	the	purified	Ico8	cages.	

	

Figure	4.	14	Characterization	of	Ico8	cages	purified	from	cells	lysed	using	a	microfluidizer	
that	 lack	 associated	 nucleic	 acids.	 (A)	 Size	 and	 homogeneity	 of	 Ico8	 assessed	 by	 size	
exclusion	 chromatography.	 (B)	 Conventional	 negative	 stain	TEM	of	 Ico8	 assemblies	 show	
them	to	be	more	heterogenous	than	those	containing	DNA	fragments.	

	
	

The	 short	 strands	 of	DNA	 associated	with	 Ico8	most	 likely	 derive	 from	 the	

sonication	step	used	 to	 lyse	 the	cells	during	purification,	because	when	cells	were	
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lysed	 using	 a	 microfluidizer,	 which	 does	 not	 shear	 DNA	 so	 effectively,	 no	 nucleic	

acids	were	associated	with	the	Ico8	protein	purified	from	them.		However,	the	Ico8	

cages	purified	in	this	way	were	noticeably	more	heterogeneous	in	size	as	judged	by	

SEC	and	negative	stain	TEM	(Fig.	4.14).			

	

Figure	4.	15	Disassembly	and	reassembly	of	Ico8	in	response	to	DNAse	I	digestion.	(A)	Size	
exclusion	chromatography	of	Ico8	after	treatment	with	DNAse	I.		The	shaded	fractions	were	
pooled	and	analyzed	further	by	SDS-PAGE	and	EM.	 	(B)	SDS-PAGE	of	DNAse	I-treated	Ico8	
after	 SEC	purification.	 (C-E)	Negative	 stain	TEM	 images	 of	 Ico8:	 completely	 disassembled	
trimers	images	immediately	after	purification	(C);	Partially	reassembled	cages	imaged	after	
3	days	(D);	fully	reassembled	Ico8	cages	imaged	after	14	days	(E).	

	

To	 better	 understand	 the	 effect	 on	 nucleic	 acids	 on	 cage	 morphology,	 we	

attempted	 to	 remove	 the	 DNA	 from	 purified	 Ico8	 cages	 by	 DNase	 I	 digestion.		

Overnight	incubation	at	room	temperature	with	DNase	I	removed	the	nucleic	acids,	
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suggesting	 that	 the	cages	are	sufficiently	porous	 to	allow	access	of	 the	nuclease	 to	

the	DNA.		Interestingly,	a	de	novo	designed	protein	cage	was	recently	described	that	

encapsulated	RNA	and	was,	 similarly,	 porous	 to	RNase.27	Surprisingly,	 digestion	of	

the	DNA	also	resulted	in	transient	disassembly	of	the	Ico8	cages.		Thus,	immediately	

after	DNase	I	treatment,	Ico8	appeared	to	be	predominantly	trimeric,	as	judged	both	

by	 negative	 stain	 TEM	 and	 SEC	 (Fig.	 4.15	 A,C).	 	 However,	 after	 storage	 at	 room	

temperature	for	~	2	weeks	almost	all	of	the	protein	had	reassembled	into	cages	(Fig.	

4.15	E).	These	were	more	heterogeneous	in	size	than	the	original	material	and	their	

morphology	resembled	the	cages	formed	by	Ico8	purified	from	cells	lysed	using	the	

microfluidizer.		

	

	

Figure	 4.	 16	 Class	 averaged	 images	 of	 Ico8	 particles	 after	 DNAse	 I	 digestion	 and	 re-
assembly	determined	by	automated	classification	of	 Ico8	particles	 imaged	by	cryo-EM.	All	
the	class	averages	exhibit	two	concentric	shells	of	density,	similar	to	Ico8	particles	imaged	
before	removal	of	DNA	(see	Fig.	4.9).	

	
The	 reassembled	 cages	 were	 further	 analyzed	 by	 cryo-EM.	 	 9380	 particles	

were	excised	then	subjected	to	reference-free	classification	as	described	above.		The	

2D	class-averaged	images	(Fig.	4.16)	show	that	the	DNA-free	protein	forms	similar	

hollow	cages,	although	they	appear	slightly	less	regular	in	shape.	These	observations	
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suggest	that	DNA	may	exert	an	unanticipated	templating	effect	on	Ico8	leading	to	the	

assembly	of	more	homogeneous	cages.	

As	a	further	point	of	comparison,	we	also	measured	the	zeta	potential	(ZP)	of	

Ico8	cages	to	examine	the	surface	charge	of	the	particles.		If	DNA	was	bound	to	the	

exterior	of	the	cages,	then	this	should	be	reflected	in	a	more	negative	zeta	potential.		

ZP	 measurements	 were	 conducted	 in	 PBS	 buffer	 containing	 20	 mM	 ammonium	

acetate	at	pH	7.4	for	Ico8	preparations	that	contained	DNA	and	those	for	which	DNA	

had	been	removed	as	described	above	and	the	cages	allowed	to	reassemble.		The	ZP	

for	both	Ico8	samples	were	within	error	the	same	ζ	=	-21.8	±	1.7	mV	and	ζ	=	-23.3	±	

2.6	 mV	 for	 the	 DNA-containing	 and	 DNase	 I	 treated	 samples	 respectively.	 	 These	

measurements	suggest	that	DNA	is	less	likely	to	be	associated	with	the	outer	surface	

of	Ico8	cages.		

4.2.6	Stability	of	Ico8		

Many	natural	protein	 cages,	 e.g.	 viral	 capsids,	 exhibit	high	 stability	 towards	

unfolding.		We	therefore	examined	how	assembly	of	the	TriEst	building	block	into	an	

icosahedral	cage	affected	its	stability	and	catalytic	activity.		Circular	dichroism	(CD)	

was	 used	 to	 follow	 the	 thermally-induced	 unfolding	 of	 both	 Ico8	 and	 TriEst	 by	

monitoring	 the	 decrease	 in	 ellipticity	 at	 222	 nm	 (Fig.	 4.17).	 	 Whereas	 TriEst	

irreversibly	denatured	between	70	°C	and	80	°C,	Ico8	remained	folded	at	98	°C	(the	

highest	 temperature	 examined).	 	 The	 thermal	 stability	 of	 Ico8	 was	 further	

investigated	using	differential	scanning	calorimetry	(DSC),	which	permitted	thermal	

unfolding	of	the	protein	to	be	studied	at	temperatures	up	to	120	°C	at	a	pressure	of	3	
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atm	 (Fig.	 4.18).	 Again,	 TriEst	 underwent	 an	 irreversible	 exothermic	 transition	

between	70	°C	and	80	°C,	indicative	of	protein	unfolding;	however,	Ico8	exhibited	no	

thermal	transitions	up	to	120	°C,	implying	that	it	remained	folded.		Consistent	with	

this,	 no	 discernable	 change	 in	morphology	 was	 apparent	 when	 the	 protein	 cages	

were	imaged	by	negative	stain	TEM	after	cooling	(Fig.	4.19).	 	Significantly,	the	Ico8	

cages	 remained	 fully	 catalytically	 active	 after	 heating	 and	 cooling	 (Table	4.2)	 and	

retained	their	ability	to	bind	DPH	(Fig.	4.20).		In	contrast,	as	expected,	heating	TriEst	

above	its	unfolding	temperature	precipitated	the	protein	and	completely	inactivated	

it.		

	

Figure	4.	17	Thermal	and	chemical	stability	of	Ico8	protein	cage.	(A)	The	thermally-induced	
unfolding	 of	 TriEst	 and	 Ico8	 monitored	 by	 changes	 in	 molar	 ellipticity	 at	 222	 nm.	 (B)	
Thermally-induced	 unfolding	 of	 Ico8	 monitored	 by	 light	 scattering	 as	 a	 function	 of	
temperature	at	both	high	and	low	pH	and	in	8	M	GnHCl.	

	
	

The	 cages	 formed	 by	 Ico8	 also	 proved	 extremely	 stable	 towards	 chemical	

denaturation.	 	We	compared	the	stability	of	Ico8	and	TriEst	at	pH	2.0	and	pH	12.0.		

At	low	pH	the	TriEst	building	block	was	unfolded	and/or	aggregated.		However,	both	

CD	 spectroscopy	 and	 DLS	measurements	 indicated	 that	 the	 cages	 formed	 by	 Ico8	
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remain	 intact	 at	 extremely	 low	 as	 well	 as	 extremely	 high	 pHs.	 	 Similarly,	 Ico8	

remained	folded	even	in	the	presence	of	8	M	GnHCl,	whereas	TriEst	was	irreversibly	

unfolded	by	~	1.5	M	GnHCl	(Fig.	4.21).	 	We	extended	these	measurements	by	using	

temperature-dependent	DLS	to	examine	the	thermal	stability	of	Ico8	at	pH	2.0,	at	pH	

12.0,	and	in	8	M	GnHCl	(Fig.	4.17	B).		The	number-averaged	diameter	distribution	of	

particles	 recorded	 by	 DLS	 provides	 a	 sensitive	 measure	 of	 protein	 aggregation,	

which	 is	 indicative	 of	 partial	 unfolding.	 	 At	 pH	 2.0,	 Ico8	 showed	 no	 evidence	 for	

unfolding/aggregation	at	temperatures	up	to	100	°C.		At	pH	12.0,	or	in	8	M	GnHCl,	an	

increase	 in	particle	diameter,	 indicative	of	aggregation,	was	only	evident	when	 the	

protein	 samples	were	heated	 to	 temperatures	 above	90	 °C.	 	Again,	 no	discernable	

change	 in	 morphology	 was	 apparent	 when	 the	 protein	 cages	 were	 imaged	 by	

negative	stain	TEM	after	treatment	with	denaturants	(Fig.	4.19).		The	only	exception	

was	samples	heated	in	8	M	GnHCl,	 for	which	some	aggregation	was	evident	by	EM	

(Fig.	 4.19	G).	 	 Interestingly,	when	 the	 cages	heated	 in	GnHCl	were	 re-imaged	after	

storing	 at	 room	 temperature	 for	 2	weeks,	 the	 aggregated	material	 was	 no	 longer	

evident	although	the	cages	appeared	more	heterogeneous	in	size	(Fig.	4.19	H).		The	

thermal	 unfolding	 of	 Ico8	 cages	 from	 which	 nucleic	 acids	 had	 been	 removed	 by	

DNase	 I	 treatment	 was	 also	 examined	 by	 CD	 and	 DSC.	 	 Although	 more	

heterogeneous	in	size,	these	cages	did	not	show	any	evidence	for	unfolding	by	either	

technique	when	heated	to	the	maximum	experimentally	accessible	temperature:	98	

°C	and	120	°C	for	CD	and	DSC	respectively.	(Fig.	4.22)			
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Figure	 4.	 18	 Thermal	 unfolding	 of	 Ico8	 and	 TriEst	 measured	 by	 scanning	 differential	
calorimetry.	 	 (A)	Baseline	 subtracted	 plot	 of	 heat	 flow	 as	 a	 function	 of	 temperature	 for	
Ico8.		(B)	Baseline	subtracted	plot	of	heat	flow	as	a	function	of	temperature	for	TriEst;	the	
unfolding	transition	is	circled	and	the	expanded	trace	shown	inset.			

	

	

Figure	 4.	 19	 Negative	 stain	 TEM	 images	 of	 Ico8	 cages	 after	 heating	 and/or	 exposure	 to	
denaturants	or	extremes	of	pH.		(A)	pH	2,	25	°C;		(B)	pH	2,	95	°C;		(C)	pH	11,	25	°C;		(D)	pH	
12,	25	°C;	(E)	pH	12,	95	°C;		(F)		120	°C,	3	atm;		G)	8	M	GnHCl,	100	°C;	and	imaged	after	two	
days,	(H)	Same	sample	as	G	imaged	after	storing	at	25	°C	for	2	weeks.	
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Figure	4.	20	Stability	of	Ico8	at	higher	temperatures	assessed	by	DPH	binding.	Tube	1	
TriEST	at	25	°C;	Tube	2	TriEst	after	boiling;	Tube	3	Ico8	at	25	°C;	Tube	4	Ico8	after	boiling.				

	
	
	

	
	

Figure	4.	21	Denaturation	of	TriEst	and	Ico8	by	GnHCl.		(A)	Denaturation	of	TriEst	at	0	M,	1	
M	and	1.5	M	GnHCl	 followed	by	CD	spectroscopy.	 	 (B)	The	thermally-induced	unfolding	of	
Ico8	at	8M	GnHCl	monitored	by	changes	in	molar	ellipticity	at	222	nm	by	CD	spectroscopy.	
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Figure	4.	 22	Thermal	stability	of	 Ico8	cages	re-assembled	in	the	absence	of	DNA.	(A)	The	
thermally-induced	unfolding	of	reassembled	Ico8	monitored	by	changes	in	molar	ellipticity	
at	 222	 nm	 by	 CD	 spectroscopy;	 (B)	 measured	 by	 scanning	 differential	 calorimetry;	 (C)	
Negative	stain	TEM	of	reassembled	Ico8	after	heating	to	120	°C	at	3	atm	during	DSC.	

	

4.3	Discussion	

Protein-based	 nanomaterials,	 formed	 by	 the	 ordered	 assembly	 of	 protein	

building	 blocks,	 have	 the	 potential	 to	 impact	 wide	 range	 applications	 in	 material	

science,	biotechnology	and	medicine:	many	examples	were	discussed	 in	chapter	1.	

For	 this	 potential	 to	 be	 fully	 realized,	 simple	 and	 generalizable	 approaches	 to	

protein	assembly	are	needed.		In	this	study	we	have	demonstrated	the	assembly	of	a	

nano-scale	protein	container	with	a	size	comparable	to	a	small	viral	capsid	using	a	

very	simple,	symmetry-based	approach.		
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Remarkably,	the	combination	of	a	C3-symmetric	building	block	protein	and	a	

C5-symmetric	 coiled	 coil,	 with	 no	 other	 constraints,	 appears	 to	 be	 sufficient	 to	

assemble	20	copies	of	a	trimeric	enzyme	into	a	60-subunit	icosahedral	protein	cage.	

We	have	now	shown	that	it	is	possible	to	assemble	the	same	trimeric	esterase	into	

tetrahedral,	 octahedral	 or	 icosahedral	 protein	 cages	 simply	 by	 choosing	 the	

appropriate	 coiled	 coil	 design.	 	 To	 achieve	 the	 efficient	 assembly	 of	 each	 of	 these	

cages	it	was	necessary	to	optimize	the	linker	length	between	the	esterase	and	coiled	

coil	domain,	but	this	required	screening	only	a	small	number	of	constructs	(7	in	this	

case)	to	identify	a	successful	design.		Thus,	our	design	approach	appears	to	be	both	

an	 efficient	 and	 general	 method	 to	 assemble	 proteins	 that	 requires	 minimal	

computational	 modeling	 to	 implement.	 	 In	 comparison,	 designing	 new	 protein-

protein	interfaces	to	assemble	proteins	produces	cages	that	are	both	more	rigid	and	

structurally	 better	 defined.8,9	 However,	 this	 precision	 requires	 extensive	

computational	 design	 methods	 that	 screen	 out	 many	 proteins	 that	 do	 not	 meet	

designability	criteria	and	requires	that	many	design	variants	be	examined	to	identify	

soluble,	correctly	assembled	cages.				

Importantly,	 the	 assembly	 of	 Ico8	 did	 not	 compromise	 the	 enzyme	 activity,	

which	 was	 actually	 slightly	 higher	 for	 Ico8	 than	 the	 esterase	 from	 which	 Ico8	 is	

assembled	 (Table	 4.1).	 	 The	 relative	 ease	 with	 which	 tetrahedral,	 octahedral	 and	

icosahedral	 protein	 cages	 are	 formed	 suggests	 that	 natural	 protein	 cages	 may	

perhaps	have	evolved	through	a	similar	route	involving	gene	fusion	of	C3-symmetric	

proteins	with	C3-,	C4-	or	C5-symmetric	proteins.		If	the	cages	conferred	an	advantage	
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on	the	organisms	in	which	they	arose,	then	further	rounds	of	natural	selection	may	

have	led	to	the	development	of	more	rigid	cages	with	extensive	protein	interfaces.	

An	 interesting	 and	 valuable	 feature	 of	 the	 cages	 formed	 by	 Ico8	 is	 their	

extremely	 high	 thermal	 and	 chemical	 stability.	 	 Whereas	 TriEst	 is	 irreversibly	

unfolded	at	~	75	°C,	and	in	the	presence	of	1.5	M	GnHCl,	the	Ico8	cages	remain	intact	

at	120	°C	and	in	8	M	GnHCl.		This	places	Ico8	among	some	of	the	most	thermostable	

proteins	so	far	described,	either	natural	or	designed.	 	The	enzymatic	activity	of	the	

cages	 is	 not	 affected	 by	 exposure	 to	 these	 harsh	 conditions,	 which	 is	 clearly	 a	

valuable	 feature	 for	 many	 biotechnological	 applications.	 	 An	 icosahedral	 protein	

cage	was	recently	reported	by	Baker	and	co-workers	that	was	thermostable	to	90	°C,	

which	was	engineered	by	designing	new	subunit	 interfaces.8	However,	 in	 this	 case	

the	 protein	 building	 block	 was	 obtained	 from	 a	 hyperthermophile	 and	 so	 was	

intrinsically	 thermostable.	 	 As	 shown	 in	 Fig.	 4.17	 A,	 TriEst	 is	 not	 itself	 very	

thermostable,	posing	a	question	as	to	the	origin	of	the	remarkable	stability	exhibited	

by	 Ico8.	 	This	may	partly	derive	 from	the	stability	of	 the	coiled	coil	domain,	which	

was	previously	shown	to	withstand	thermal	unfolding	up	to	90	°C.22		

Cooperative	 effects	 that	 arise	 from	 the	 increased	 number	 of	 inter-subunit	

interactions	 in	 the	 assembled	 cage	 also	may	 contribute	 to	 Ico8’s	 stability.	 	 Similar	

cooperative	interactions	between	capsid	proteins	are	believed	to	be	responsible	the	

high	 stability	 of	 many	 viral	 capsids,	 and	 studies	 on	 the	 assembly	 pathways	 of	

icosahedral	 viruses	 have	 highlighted	 the	 importance	 of	 cooperative	 effects	 in	

assembling	 viral	 capsids.28–34	 The	 strength	 of	 the	 protein-protein	 interactions	 is	

crucial	 to	 the	 successful	 assembly	 of	 the	 capsid:	 too	 weak	 and	 the	 virus	 will	 not	
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assemble;	 too	 strong	 and	 many	 kinetically-trapped	 intermediate	 structures	

accumulate.	 	 One	 advantage	 of	 using	 coiled	 coils	 to	 direct	 protein	 assembly	 is	 the	

ability	to	easily	optimize	the	interaction	strength	by	changing	either	the	number	of	

heptad	 repeats	 or	 the	 number	 of	 electrostatic	 interactions	 between	 adjacent	 α-

helices.35	The	stability	of	viral	 capsids	has	also	been	suggested	 to	be	coupled	with	

their	high	rigidity;	however,	our	results	suggest	that,	on	the	contrary,	protein	rigidity	

is	not	a	prerequisite	for	assembling	extremely	stable	protein	cages.28–30		

An	unanticipated	property	of	the	cages	formed	by	Ico8	is	that	they	appear	to	

bind	nucleic	acids.	 	This	was	unexpected	because	neither	TriEst,	nor	the	coiled	coil	

domain,	 bind	 nucleic	 acids.	 Furthermore,	 neither	 the	 octahedral	 nor	 tetrahedral	

cages	 that	we	 previously	 designed	 bound	 nucleic	 acids.11,12	 It	 is	 possible	 that	 the	

small	 DNA	 fragments	 associated	 with	 the	 cage	 might	 be	 encapsulated	 within	 the	

cages,	 as	 the	DNA	co-migrates	with	 Ico8	when	subjected	 to	native	PAGE	(Fig.	4.5).		

However,	 it	 was	 not	 possible	 to	 identify	 the	 location	 of	 the	 DNA	 in	 the	 cryo-EM	

images.	 	 The	 inner	 shell	 of	 electron	 density	 identified	 in	 the	 cryo-EM	 images	 is	

present	 in	 cages	 independently	 of	 whether	 DNA	 is	 present,	 indicating	 that	 this	

material	 is	not	DNA.	 	We	consider	 it	more	 likely	 the	additional	material	comprises	

proteins	 that	 are	 encapsulated,	 possibly	 by	 non-specific	 electrostatic	 interactions.		

Tentative	support	 for	 this	possibility	 is	provided	by	the	observation	that	 Ico8	cage	

preparations	 always	 contained	 a	 background	 of	 contaminating	 proteins	which	 are	

evident	in	SDS-PAGE	gels	(Fig.	4.5	A),	but	which	are	not	resolved	as	separate	species	

by	native	PAGE	(Fig.	4.5	B).	
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The	 transient	 disassembly	 of	 the	 cages	 when	 the	 DNA	 was	 removed	 by	

nuclease	digestion	remains	to	be	fully	understood.		However,	we	note	that	for	many	

viruses,	 capsid	 assembly	 occurs	 concomitant	 with	 packaging	 their	 genomes.		

Furthermore,	it	has	been	found	that	the	size	of	the	genome	packaged	can	alter	viral	

morphology.36,37	We	suspect	that	in	this	case	the	nucleic	acid	fragments	may	help	to	

template	 the	assembly	of	 Ico8,	because	although	 Ico8	preparations	 lacking	nucleic	

acids	 assembled	 into	 cage-like	 structures,	 these	 particles	 were	 significantly	 more	

heterogenous,	as	judged	by	EM,	than	cages	containing	nucleic	acids	(Fig.	4.14).	 	We	

suggest	 that	 electrostatic	 effects	 arising	 from	 the	 highly	 negatively	 charged	 DNA	

polymer,	 rather	 than	 specific	 DNA-protein	 interactions,	 underlie	 the	 templating	

effect	of	DNA.		Further	experiments	are	needed	to	examine	this	intriguing	aspect	of	

Ico8	assembly.	

4.4	Conclusion	

In	 conclusion,	 by	 selecting	 the	 appropriate	 coiled	 coil	 and	 optimizing	 the	

spacer	 length	 between	 the	 TriEst	 building	 block	 and	 the	 coiled	 coil	 domains,	 we	

have	now	been	able	to	construct	well-defined	cages	with	tetrahedral,	octahedral	and	

icosahedral	geometries.	 	Taken	 together,	 these	 results	demonstrate	 the	modularity	

of	this	simple	approach	that	relies	on	small	off-the-shelf	coiled	coil	sequences	of	the	

appropriate	rotational	symmetries	to	direct	assembly.		The	icosahedral	cage	that	we	

describe	here	represents	the	most	challenging	geometric	structure	to	assemble	as	it	

is	 necessary	 to	 bring	 together	 60	 protein	 subunits.	 	 However,	 it	 is	 potentially	 the	

most	 useful	 protein	 cage	 because	 of	 the	 large	 internal	 volume	 enclosed.	 	 The	

extreme	 stability	 of	 the	 cage	 is	 an	 emergent	 property	 that	 is	 not	 inherent	 to	 the	
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enzyme	used	in	its	construction.		This	allows	enzyme	activity	to	be	preserved	under	

harsh	conditions,	which	is	a	valuable	property	for	any	industrial	process	relying	on	

enzymatic	catalysis.			
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Chapter	5:	Designing	a	Metal-dependent	Protein	Cage	
	

5.1	Introduction	

Our	 research	 group	 showed	 that	protein	 cages	 can	be	designed	de	novo	 by	

fusing	 a	 natural	 protein	 with	 a	 rotational	 symmetry	 (Cn)	 to	 a	 homo-oligomeric	

parallel	coiled	coil	 through	a	 flexible	oligo-glycine	 linker.	By	pairwise	combination	

of	 these	 two	 elements	 various	 geometries	 can	 be	 generated.	 Using	 this	 approach,	

our	 group	 successfully	 designed	 a	 tetrahedral,	 an	 octahedral	 and	 an	 icosahedral	

protein	cages	by	fusing	a	timeric	natural	protein	to	a	trimeric	coiled	coil,	tetrameric	

or	a	pentameric	coiled	coil	respectively,	which	demonstrated	the	generalizability	of	

the	design	approach.1,2	Next,	we	wanted	to	extend	our	coiled	coil	based	strategy	to	

design	protein	cages	that	assemble	in	response	to	environmental	stimuli.	

Multimeric	proteins	such	as	actin,	vertebrate	nuclear	pore	complex	and	some	

viral	capsids	undergo	environmentally	responsive	assemblies	and	disassemblies.3–5	

Inspired	by	Nature,	various	strategies	have	been	developed	to	control	the	assembly	

of	 extended	 protein-based	 nanomaterials	 (filaments,	 2D	 lattices	 and	 3D	 crystals);	

for	example	by	incorporating	di-sulfide	linkages,	small	molecules	and	metal	ions	to	

mediate	assembly.6–11	The	interfaces	of	natural	protein	cages	have	been	engineered	

to	 undergo	 environmentally	 responsive	 assembly-disassembly.12–14	 For	 example	 a	

Cu(II)		responsive	ferritin	cage	has	been	designed	by	introducing	His	residues	at	the	
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inter-subunit	 interface	 of	 ferritin.13	 A	 pH	 responsive	 ferritin	 cage	 has	 been	

engineered	 by	 introducing	 GALA	 peptide,	 a	 pH	 responsive	 amphipathic	 helix,	 to	

protein-protein	interface.14		

	

	

Figure	 5.	 1	 The	 metal-dependent	 protein	 cage	 design	 strategy.	 (A)	 Genetic	 fusion.	 (B)	
Metal-dependent	coiled	coil	motif.	(C)	A	cartoon	illustrating	the	controlled	assembly	of	the	
protein	design.	

	
	

Re-engineering	interfaces	is	challenging	as	modifications	in	these	regions	are	

likely	disrupt	inter-subunit	interactions.	Indeed	re-engineering	interfaces	to	achieve	

environmentally	 responsive	 interfaces	 in	 de	 novo	 designed	 protein	 cages	 has	 not	

been	 reported.	 However,	 various	 environmentally	 responsive	 coiled	 coil	 designs	

have	been	reported,	that	undergo	assembly	only	under	certain	conditions	(E.g.	pH,	
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presence	 of	 metal	 ions).15–17	 Therefore,	 our	 coiled	 coil	 based	 design	 strategy	 can	

potentially	be	utilized	as	a	promising	route	for	controlling	the	assembly	of	de	novo	

protein	cages	by	overcoming	these	limitations.	

Here,	we	have	evaluated	the	design	of	a	metal-dependent	tetrahedral	protein	

cage,	which	was	constructed	by	fusing	a	trimeric	esterase	from	Pseudomonas	putida	

(TriEst,	 PDB	 ID:	 1ZOI)	 to	 a	 trimeric	 metal-dependent	 coiled	 coil	 (Fig.	 5.1).	 We	

utilized	 a	 metal-dependent	 coiled	 coil	 design	 (IZ-3adH)	 that	 was	 reported	 to	

assembled	 into	 a	 homo-trimeric	 parallel	 coiled	 coil	 in	 the	 presence	 of	 divalent	

transition	metal	ions	and	disassembled	in	the	absence	of	metal	ions	or	at	low	pH.17	

In	the	presence	of	divalent	metal	 ions,	 this	construct	assembled	into	discrete,	high	

Mw	materials	 consistent	 with	 a	 tetrahedral	 protein	 cage.	 	 Adding	metal	 chelators	

(E.g.	 EDTA)	 or	 decreasing	 pH	 led	 to	 disassembly	 of	 the	 cages	 into	 their	 trimeric	

form.	 	 This	 coiled	 coil-based	 design	 strategy	 therefore	 provides	 a	 simple	 and	

generalizable	route	for	de	novo	designing	protein	cages	with	controlled	assemblies;	

a	challenging	problem	in	protein	nanotechnology.	

5.2	Materials	and	Methods	

5.2.1	Construction	of	Genes	Encoding	Fusion	Proteins	

A	 metal-dependent	 coiled	 coil	 with	 a	 8-residue	 spacer	 at	 its	 5’	 end	 was	

commercially	synthesized.	This	ds-DNA	sequence	was	genetically	fused	to	3’	end	of	

TriEst	in	expression	vector	pET-28b	plasmid,	using	Gibson	assembly	protocol.	This	

fusion	construct	was	named	T8H4-1.	To	design	T8H4-2	and	T8H4-3	constructs,	ds-

DNA	with	a	TEV	protease	 cleavage	 site	and	ds-DNA	with	a	TEV	protease	 cleavage	
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site	 and	 oligo-Gly	 spacers	 respectively	 were	 commercially	 synthesized.	 These	 ds-

DNA	sequences	were	fused	genetically	to	5’	end	of	TriEst	in	expression	vector	pET-

28b	plasmid,	using	Gibson	assembly	protocol.	The	complete	sequences	of	T8H4-1,-2	

and	-3	are	given	in		Appendix	A.4.	

To	design	MBP-T8H4,	His-tag	at	N-terminus	of	TriEst	was	replaced	by	MBP	

as	 follows.	 The	MBP	 gene	was	 PCR-amplified	 from	pMAL-c5X	 using	 commercially	

synthesized	primers.	The	5’	end	of	the	forward	primer	was	designed	to	overlap	with	

the	sequence	encoding	the	T7	promoter	region	of	pET-28b	at	its	3’	end.	The	reverse	

primer	 was	 designed	 to	 overlap	 with	 the	 spacer	 (spacer	 1	 sequence:	

GGGGGGENLYFQGGGGH)	 region	 between	 MBP	 and	 TriEst.	 The	 codon-optimized	

gene	encoding	the	17-residue	long	spacer	1	with	a	TEV	protease	cleavage	site	was	

commercially	 synthesized.	 Both	 the	MBP	 construct	 and	 spacer	 1	were	 introduced	

into	5’	 end	of	 the	above	TriEst-metal-dependent	 coiled	 coil	 fusion	 construct	using	

Gibson	assembly	protocol.	The	complete	sequence	of	the	MBP-T8H4	design	is	given	

in	Appendix	A.4.	

5.2.2	Protein	Expression	and	Purification	

Proteins	were	 expressed	as	described	 in	 chapter	2	 (see	2.2.2).	T8H4-1	and	

T8H4-2	were	purified	by	Ni-column	chromatography	as	described	in	chapter	2	(see	

2.2.2).	MBP-T8H4	was	purified	by	maltose-affinity	chromatography	as	described	in	

chapter	3	(see	3.2.2).	Fractions	containing	the	desired	protein	(approximately	10-15	

mL)	 were	 pooled,	 combined	 and	 treated	 with	 2	 μL	 of	 benzonase.	 T8H4-1	 was	

dialyzed	 against	 buffer	 containing	20	mM	HEPES,	 100	mM	NaCl,	 2	mM	EDTA	and	

10%	 glycerol	 approximately	 for	 1	 day	 at	 4	 °C.	 MBP-T8H4	 was	 dialyzed	 against	
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buffer	containing	20	mM	HEPES,	100	mM	ammonium	acetate,	2	mM	EDTA	and	10%	

glycerol	approximately	for	2	days	at	4	°C.	

Size	 exclusion	 chromatography	 (SEC)	was	 performed	 for	 both	 T8H4-1	 and	

MBP-T8H4	 as	 an	 additional	 purification	 and	 buffer	 exchange	 step	 as	 well	 as	 an	

analytical	 step.	 SEC	was	 performed	 on	 a	 superose	 6	 10/300	 column	 equilibrated	

with	 Tris	 HCl	 SEC	 buffer	 (10	mM	 Tris	 HCl,	 100	mM	NaCl,	 pH	 8)	 at	 4	 °C.	 400	 μL	

samples	with	~	2-3	mg/mL	concentration	were	injected	at	0.3	mL/min	flow	rate.		

Fractions	 at	 elution	 volume	 17	 mL	 for	 T8H4-1	 injections	 and	 fractions	 at	

elution	volume	14.5	mL	for	MBP-T8H4	injections	were	pooled	and	stored	at	4	°C	in	

the	 column	 elution	 buffer.	 If	 needed,	 protein	 was	 concentrated	 using	 100-kDa	

Amicon	ultra-centrifugal	filter	units.	

5.2.3	Sample	Preparation	and	SEC	Procedure	for	Studying	the	Controlled	

Assembly		

200	μL	samples	of	20	μM	T8H4-1	was	equilibrated	with	40	μM	and	100	μM	

NiCl2	 and	 incubated	 over	 night	 (o/n)	 and	 re-chromatographed	 on	 a	 superose	 6	

10/300	column	equilibrated	with	same	TrisHCl	SEC	buffer	containing	metal	ions	at	

same	 concentrations.	 200	 μL	 samples	 of	 20	 μM	MBP-T8H4	was	 equilibrated	with	

various	 concentrations	 of	 NiCl2,	 CoCl2,	 CuCl2	 and	 ZnCl2	 to	 evaluate	 the	 metal-

dependent	 assembly	 of	 protein	 cages	 (concentrations	 are	 given	 in	 the	 Results	

section).	 These	 samples	 were	 incubated	 at	 4	 °C	 for	 2	 h,	 o/n	 or	 o/n	 while	 gently	

rocking.	 Samples	were	 injected	 to	 a	 superose	 6	 10/300	 column	 equilibrated	with	

TrisHCl	 SEC	 buffer	 at	 same	metal	 ion	 concentrations.	 	 The	 fractions	 from	 elution	
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volume	10.5	mL	were	re-chromatographed	under	the	same	buffer	conditions.		

In	order	to	further	characterize	assembled	MBP-T8H4,	400	μl	of	50-200	μM	

protein	 was	 incubated	 with	 200	 μM	 NiCl2	 o/n	 at	 4	 °C	 with	 gently	 agitating	 and	

purified	 by	 SEC	 using	 a	 superose	 6	 10/300	 column	 equilibrated	 with	 Tris	 HCl	

containing	200	μM	NiCl2.	The	fractions	at	elution	volume	10.5	mL	were	pooled	and	

used	for	further	characterizations	by	the	techniques	described	below.		

5.2.4	Thrombin	Cleavage	of	T8H4-1	

0.2	mg	of	protein	was	 incubated	o/n	with	3	units	of	 thrombin	 from	Bovine	

plasma	 (Sigma-Aldrich)	 to	 remove	 the	 His-tag	 and	 cleavage	was	 assayed	 by	 SDS-

PAGE	analysis.	

5.2.5	Cross-linking	with	BS3	

Assembled	 MBP-T8H4	 were	 cross-linked	 using	 the	 lysine-specific	 reagent	

(bis(sulfosuccinimidyl)suberate)	 (Thermo	 Fisher)	 as	 described	 in	 chapter	 3	 (see	

3.2.8).		

5.2.6	Negative	stain	TEM	imaging	

Negative	stain	TEM	was	performed	as	described	in	chapter	3	(see	3.2.5).		

5.2.7	Activity	assays	

Catalytic	 activity	 for	 TriEst	 and,	 assembled	 and	 unassembled	 MBP-T8H4	

were	assessed	using	2,4-di-nitrophenyl	acetate	 (2,4-DNPA)	as	 the	substrate	and	at	

45	°C	as	described	in	chapter	3	(see	3.2.6).	The	assays	were	performed	in	Tris	HCl	

SEC	buffer.	Absorbance	was	measured	at	405	nm.	
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5.2.8	Dynamic	Light	Scattering	

DLS	was	performed	using	DynaPro	NanoStar	ZS	 instrument	as	described	 in	

chapter	3	(see	3.2.7).	Protein	concentrations	were	kept	at	20	μM.	

5.3	Results	

5.3.1	Metal-dependent	Protein	Cage	Design	

TriEst	 (PDB	 ID:	 1ZOI)	 was	 selected	 as	 the	 primary	 building	 block	 protein	

(BBP),	 to	 facilitate	 comparison	 with	 our	 previous	 studies.	 In	 order	 to	 design	 the	

metal-dependent	 protein	 cage,	 we	 genetically	 fused	 IZ-3adH,	 a	 de	 novo	 designed	

metal-binding	4-heptad	trimeric	coiled	coil		(Sequence:	IEKKIEA	IEKKIEA	HEKKHEA	

IEKKIEA)	 to	 the	 C-terminus	 of	 TriEst	 through	 a	 flexible	 8-residue	 Gly	 linker	

(GTGGGGGG).	 IZ-3adH	 incorporates	 His	 residues	 at	 a	 and	 d	 positions	 in	 the	 3rd	

heptad	repeat	of	the	trimeric	coiled	coil	 to	provide	a	6-cordinate	His-X3-His	site.17	

Oligomerization	of	the	construct	into	a	parallel	trimeric	coiled	coil	in	the	presence	of	

metal	 ions	 has	 been	 evaluated	 by	 sedimentation	 equilibrium	 analytical	

ultracentrifugation	 (SE-AUC),	 circular	dichroism	 (CD),	 fluorescence	quenching	and	

NMR.17	These	studies	confirmed	that	the	construct	assembles	into	a	trimeric	coiled	

coil	 in	 the	 presence	 of	 divalent	 transition	metals	 such	 as	Ni(II),	 Co(II),	 Cu(II)	 and	

Zn(II)	and	returns	to	an	unstructured	monomeric	form	in	the	absence	of	metals	or	

at	acidic	pH.		
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Figure	5.	2	T8H4	fusion	constructs.	(A)	T8H4-1;	(B)	T8H4-2;	(C)	T8H4-3.	
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Figure	 5.	 3	 Characterization	 of	 T8H4-1.	 (A)	 Size	 exclusion	 chromatography	 of	 T8H4-1.	
Tet8-5H	tetrahedral	cage	and	TriEst	were	used	as	standards	and	which	eluted	at	14	mL	and	
17	mL	respectively;	T8H4-1	trimer	eluted	at	16	mL;	In	the	presence	of	Ni(II)	T8H4-1	gave	
broad,	 asymmetrical	 elution	profiles	 indicating	 a	heterogeneity.	 (B)	 Sedimentation	profile	
analysis	of	T8H4-1.	

	

Our	 original	 tetrahedral	 design	 was	 optimized	 with	 a	 8-residue	 linker,	

therefore	 the	 same	 linker	 was	 incorporated	 between	 the	 TriEst	 and	 the	 metal-

dependent	 coiled	 coil.	 Three	 fusion	 constructs	 (T8H4-1/-2/-3)	 were	 initially	

evaluated	and	the	sequences	are	given	in	appendix	A.4	(Fig.	5.2).	The	first	construct	

was	 named	 T8H4-1.	 We	 presumed	 that,	 in	 the	 presence	 of	 above	 metal	 ions,	

trimerization	of	coiled	coil	domain	in	this	fusion	construct	will	bring	together	four	

copies	of	the	TriEst	and	assemble	into	a	tetrahedral	protein	cage.	In	the	absence	of	

metal	 ions,	 the	construct	stayed	 in	 its	 trimeric	 form	as	evidenced	by	SEC	and	AUC	
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data:	 the	protein	eluted	at	elution	volume	16	mL	on	a	 superose	6	10/300	column	

and	gave	a	sedimentation	coefficient	of	~	4,	which	 is	consistent	with	the	expected	

molecular	weight	(Fig.	5.3).	20	µM	of	protein	was	equilibrated	with	40	µM	and	100	

µM	Ni(II)	and	studied	by	both	SEC	and	AUC.	In	the	presence	of	Ni(II),	T8H4-1	gave	

broad	 and	 asymmetric	 size	 exclusion	 and	 sedimentation	 profiles	 indicating	 the	

heterogeneity	of	assembled	species	 (Fig.	5.3).	A	His-tag	 is	placed	at	N-terminus	of	

TriEst	 as	 a	 purification	 tag.	 	We	 questioned	whether	 the	 heterogeneity	 of	 protein	

assemblies	 resulted	 from	 interactions	 of	 Ni(II)	 with	 these	 His-residues.	 	We	 thus	

attempted	 to	 remove	 the	 His-tag	 by	 using	 the	 thrombin	 cleavage	 site	 located	

between	 His-tag	 and	 N-terminus	 of	 TriEst.	 However,	 thrombin	 cleavage	 was	

unsuccessful	as	evident	by	SDS	PAGE	(Fig.	5.4).	

	Therefore,	T8H4-2	fusion	construct	was	designed	by	replacing	the	thrombin	

cleavage	 site	with	 a	TEV	 cleavage	 site	 in	order	 to	 remove	 the	His-tag	 followed	by	

purification	 of	 the	 protein	 by	 Ni-affinity	 chromatography.	 However,	 this	 fusion	

construct	was	not	expressed:	no	post-induction	protein	band	was	observed	by	SDS-

PAGE	 (Fig.	 5.5	 A,B).	Western	 Blot	 analysis	 of	 pre-	 and	 post-induction	 samples	 of	

T8H4-2	 stained	 for	 His-tag	 further	 confirmed	 that	 T8H4-2	 construct	 does	 not	

express	(Fig.5.5	C).		Original	TriEst	also	failed	to	express	when	its	thrombin	cleavage	

site	 was	 replaced	 with	 TEV.	 Therefore,	 a	 third	 fusion	 construct	 was	 designed	 by	

adding	 oligo-Gly	 spacers	 in	 each	 side	 of	 TEV	 cleavage	 site	 (Sequence:	

GGGGGGGENLYFQGGG)	 in	 an	 attempt	 to	 express	 the	 protein,	 the	 construct	 was	

named	T8H4-3	(Fig.	5.2	C).	However,	this	fusion	construct	also	did	not	express	and	

original	 TriEst	 with	 the	 same	 genetic	modification	 behaved	 similarly.	 The	 reason	
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why	 these	 fusion	 constructs	 were	 not	 expressed	 when	 the	 thrombin	 site	 was	

replaced	with	TEV	protease	cleavage	site	is	unclear.				

	

	

Figure	5.	4	SDS-PAGE	analysis	of	T8H4-1	incubated	with	thrombin.	No	cleavage	was	
evident.		
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Figure	5.	5	Analysis	of	T8H4-2.	(A)	SDS	PAGE	analysis	of	pre-	and	post-induction	samples	of	
T8H4-2	 (B)	 SDS	 PAGE	 analysis	 of	 supernatant,	 flow	 through	 and	 concentrated	 elution	
fractions	from	Ni-column	chromatography	of	T8H4-2.	(C)	Western	Blot	analysis	of	pre-	and	
post-induction	samples	of	T8H4-2,	visualized	by	staining	with	anti-His	antibody.	

Next	 a	 fourth	 fusion	 construct	was	 designed	 by	 replacing	 the	 His-tag	with	

maltose	binding	protein	 (MBP)	domain	 to	 facilitate	purification	 (Fig.	5.1	A).	A	17-

residue	 spacer	 (Spacer	 1:	 GGGGGGGGGENLYFQGG)	 was	 genetically	 introduced	

between	 the	 MBP	 domain	 and	 TriEst	 to	 provide	 enough	 freedom	 for	 these	 two	

protein	domains	to	fold	while	minimizing	possible	steric	clashes	(the	N-terminus	of	

TriEst	 is	 located	 on	 one	 of	 the	 faces	 of	 TriEst	 and	 is	 in	 closer	 proximity	 to	 its	

rotational	axis).	A	TEV	cleavage	site	was	placed	in	this	spacer	region	to	facilitate	the	

removal	of	MBP	tag	if	needed.	This	fusion	construct	was	named	as	MBP-T8H4.		
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Figure	 5.	 6	 SDS-PAGE	 analysis	 of	 MBP-T8H4	 samples	 from	 post-induction	 and	maltose-
affinity	chromatography.		

	

MBP-T8H4	was	overexpressed	in	E.coli	and,	purified	by	MBP	affinity	column	

chromatography	(Fig.	5.6).	The	protein	was	purified	to	homogeneity	as	verified	by	

SDS-PAGE	and	with	a	yield	of	~	400	mg/L	culture.	The	purified	protein	was	dialyzed	

over	night	at	4	°C	in	buffer	containing	2	mM	EDTA	to	remove	any	bound	metal	ions.	

The	 protein	was	 further	 purified	 by	 size	 exclusion	 chromatography	 (SEC)	 using	 a	

superose	6	10/300	column	and	the	protein	was	eluted	at	14.5	mL	in	the	column	as	a	

single	peak,	which	 is	consistent	with	the	expected	Mw	=	227.4	kDa	for	the	trimeric	

form	of	the	protein	(5.7	A).		
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Figure	5.	7	Size	Exclusion	Chromatography	of	MBP-T8H4.	(A)	SEC	of	MBP-T8H4	purified	by	
MBP-trap	 column.	 (B)	 20	 uM	 MBP-T8H4	 equilibrated	 with	 80	 uM	 Ni(II).	 (C)	 Re-
chromatography	 of	MBP-T8H4	 assemblies	 in	 the	 presence	 of	 Ni(II)	 in	 the	 buffer.	 (D)	 Re-
chromatography	 of	 MBP-T8H4	 assemblies	 in	 the	 absence	 of	 Ni(II)	 in	 the	 buffer.	 (E)	 Re-
chromatography	of	MBP-T8H4	assemblies	in	the	presence	of	a	metal	chelator	(EDTA)	in	the	
buffer.	 (F)	 Re-chromatography	 of	 MBP-T8H4	 assemblies	 at	 pH	 4.5	 in	 TrisHCl	 buffer	
containing	Ni(II).	

	

5.3.2	Equilibrating	MBP-T8H4	with	Metal	Ions	

The	 de	 novo	 designed	metal-binding	 coiled	 coil	 (IZ-3adH)	was	 reported	 to	

have	low	micromolar	affinities	for	divalent	metal	ions	with	relative	affinities	in	the	

order	Ni(II)	>	Cu(II)>	Zn(II)	≈	Co(II).17	We	therefore	evaluated	the	potential	of	MBP-

T8H4	construct	 to	assemble	 into	protein	cages	 in	 the	presence	of	 the	above	metal	
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ions.	 	Because	Ni(II)	was	reported	to	have	the	highest	binding	affinity	 for	 IZ-3adH	

(Kd	=	5.0	±	0.3	µM)	we	first	studied	the	binding	of	Ni(II)	by	MBP-T8H4.	200	µL	of	20	

µM	MBP-T8H4	was	equilibrated	with	concentrations	of	NiCl2	varying	from	5	µM	to	

200	µM	NiCl2	at	4	°C	with	gently	agitating	o/n.	The	samples	were	chromatographed	

on	a	superose	6	10/300	column	equilibrated	with	the	Tris	HCl	SEC	buffer	(at	pH	8)	

containing	 the	 same	 NiCl2	 concentration.	 Two	 peaks	 were	 observed	 for	 all	 the	

samples,	at	10.5	mL	and	14.5	mL	indicating	that	some	of	the	protein	was	assembling	

into	higher	molecular	weight	species	in	the	presence	of	Ni(II)	(Fig.	5.7	B).	Maximum	

percentage	 of	 assemblies	were	 observed	 at	Ni(II)	concentrations	 between	 20	µM-	

200	µM	(Fig.	5.8).	 	Analysis	of	 SEC	peak	areas	 indicated	 that	~	65%	 -	75%	of	 the	

proteins	 assembled	 into	 higher	 order	 species	 at	 these	 Ni(II)	 concentrations	 (Fig.	

5.8).	MBP-T8H4	was	studied	by	equilibrating	at	higher	Ni(II)	concentrations	(1	mM	

and	2	mM),	however	a	smaller	fraction	(~	30-	40%)		of	proteins	assembled	at	these	

concentrations	 and	 a	 100%	 assembly	 could	 not	 be	 achieved	 at	 studied	 Ni(II)	

concentrations.	 	Equilibrating	MBP-T8H4	with	Ni(II)	at	room	temperature	or	 for	a	

longer	 time	period	(up	 to	2	weeks)	did	not	make	any	significant	difference	on	 the	

fraction	of	assembled	vs.	unassembled	MBP-T8H4.		
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Figure	 5.	 8	 Assembled	 percentage	 of	 MBP-T8H4	 in	 the	 presence	 of	 Ni(II)	 studied	 by	
analyzing	area	under	the	peak	of	SEC	elution	profiles.		

	
	

Next,	the	assembly	of	MBP-T8H4	in	the	presence	of	Co(II),	Cu(II)		and	Zn(II)	

was	evaluated.	20	µM	of	MBP-T8H4	samples	were	equilibrated	at	20	µM,	80	µM	and	

200	µM	concentrations	of	each	metal	ion	and	evaluated	by	SEC.	At	20	µM,	80	µM	and	

200	µM	Co(II),	at	20	µM	and	80	µM	Cu(II)	and	at	20	µM	Zn(II)	concentrations,	MBP-

T8H4	gave	size	exclusion	profiles	similar	 to	 the	elution	profiles	 in	 the	presence	of	

Ni(II)	 at	 those	 concentrations	 (Fig.	 5.9).	 However,	 at	 200	µM	Cu(II),	 no	 peak	was	

observed	at	10.5	mL;	rather,	a	small	peak	was	observed	at	12	mL,	in	addition	to	the	

trimer	peak	at	14.5	mL.		4-coordinate	complexes	are	also	common	for	Cu(II),	so	the	

peak	 at	 elution	 volume	 12	 mL	 	 might	 result	 from	 MBP-T8H4	 forming	 dimers	 at	

higher	 Cu(II)	 concentrations.	 In	 support	 of	 this	 possibility,	 Suzuki,	 et	 al.	 observed	

dimer	formation	with	IZ-3adH	peptides	at	higher	Cu(II)	concentrations	whereas	at	



	

	 145	

low	Cu(II)	IZ-3adH	formed	trimers.17	Moreover,	only	a	single	peak	at	elution	volume	

14.5	mL	was	 observed	 at	 80	µM	 and	 200	µM	 Zn(II)	 concentrations	 studied.	 This	

experiment	was	 repeated	with	 two	 independent	 Zn(II)	 stocks	 and	 similar	 results	

were	observed.		

	

Figure	5.	9	Studying	the	assembly	of	MBP-T8H4	in	the	presence	of	Co(II),Cu(II)	and	Zn(II).	
(A-C)	 Size	 exclusion	 chromatography	 of	MBP-T8H4	 at,	 A)	 Co(II);	 B);	 Cu(II);	 C)	 Zn(II).	 (D)	
SDS	PAGE	gel	comparing	cross-linked	protein	from	elution	volume	14	mL	of	20	µM	Zn(II)	
chromatograph	with	cross-linked	MBP-T8H4	trimer,	the	same	protein	band	heights	for	both	
samples	confirmed	that	the	shift	of	trimer	peak	of	MBP-T8H4		at	20	µM	Zn(II)	is	not	from	
dimerizing	of	the	protein.	

	

5.3.3	Studying	the	Controlled	Assembly	of	MBP-T8H4	

50-200	 µM	 of	 MBP-T8H4	 were	 equilibrated	 with	 200	 µM	 NiCl2	 and	

assembled	 fractions	 were	 purified	 by	 SEC.	 When	 re-chromatographed,	 the	
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assembled	protein	eluted	at	the	same	elution	volume	in	a	symmetrical	peak,	which	

suggested	 the	 assembled	 species	 was	 fairly	 homogeneous	 (Fig.	 5.7	 C).	 However,	

when	 the	 assembled	 species	 were	 re-chromatographed	 in	 buffer	 containing	 no	

metal	 ions,	 the	 protein	 eluted	 as	 a	mixture	 of	 assembled	 and	 unassembled	 forms	

(Fig.	5.7	D).	This	 is	consistent	with	the	 loss	of	Ni(II)	 ions	from	the	complex	during	

chromatography	 and	 suggested	 that	 assembly/disassembly	 may	 be	 a	 dynamic	

process.		

Next,	 we	 studied	 the	 potential	 of	 disassembling	 the	 assembled	 species	 by	

changing	 the	 buffer	 conditions.	 When	 the	 MBP-T8H4	 assemblies	 were	

chromatographed	on	the	superose	6	10/300	column	equilibrated	with	the	Tris	HCl	

buffer	 containing	2	mM	EDTA,	 a	 single	protein	peak	at	 elution	volume	~	14.5	mL	

was	 observed	 indicating	 a	 complete	 dissociation	 of	 the	 cages	 into	 their	 trimeric	

form	(Fig.	5.7	E).	Additionally,	similar	results	were	observed	for	assembled	protein	

re-chromatographed	with	 Tris	 HCl	 buffer	 adjusted	 to	 pH	 4.5	 (Fig.	 5.7	 F).	 A	 small	

percentage	(~	30-40%)	of	the	proteins	disassembled	at	pH	5	and	pH	5.5.	Next,	the	

potential	 for	 the	 re-assembly	 of	 the	 cages	 was	 studied	 by	 either	 removing	 EDTA	

followed	 by	 equilibrating	with	 Ni(II)	 or	 re-adjusting	 the	 pH	 of	 	 pH	 4.5	 to	 pH	 8.0.	

When	 these	 samples	 were	 re-chromatographed	 on	 a	 superose	 6	 10/300	 size	

exclusion	 column,	 a	 large	 fraction	of	protein	eluted	at	10.5	mL	 indicating	 that	 the	

protein	had	reassembled	 in	 the	presence	of	metal	 ions	and	under	near	neutral	pH	

conditions	 (pH	8).	However,	 the	 chromatograph	 also	 indicated	 a	 small	 fraction	 of	

aggregated	 protein	 after	 low	 pH	 treatment,	 which	 might	 have	 resulted	 from	

denaturation	of	some	of	TriEst	at	low	pH	(Fig.	5.10).18		
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Figure	5.	10	Size	exclusion	chromatography	of	MBP-T8H4	after	re-adjusting	pH	from	4.5	to	
pH	8.0.	

	

	5.3.4	Characterization	of	Metal-dependent	Assembly	of	MBP-T8H4	

5.3.4.1	Dynamic	Light	Scattering	(DLS)	

DLS	is	widely	used	to	measure	the	hydrodynamic	radius	of	particles	and	to	

assess	the	homogeneity	of	samples.	The	trimeric	and	assembled	forms	of	MBP-T8H4	

were	 studied	 by	 DLS	 at	 20	 µM	 protein	 concentrations	 and,	 at	 100	 µM	 Ni(II)	 for	

assembled	 cages.	 In	 the	 presence	 of	 Ni(II),	 MBP-T8H4	 assembled	 into	 a	

homogeneous	 species	 with	 a	 larger	 hydrodynamic	 radius	 (23.8	 ±	 0.9	 nm).	 The	

unassembled	form	gave	a	much	smaller	hydrodynamic	radius	(12.6	±	2.0	nm)	(Fig.	

5.11).		
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Figure	 5.	 11	Diameter	distribution	of	MBP-T8H4	 (A).	 Intensity	distribution	of	 assembled	
(blue)	 and	 unassembled	 (Red)	 MBP-T8H4	 by	 DLS.	 (B)	 Size	 distribution	 analysis	 of	
assembled	MBP-T8H4	obtained	 from	measurement	of	~	300	particles	 imaged	by	negative	
stain	TEM	using	the	software	package	Image	J.		

	

5.3.4.2	Native-PAGE		

The	 assemblies	 were	 further	 studied	 by	 native-PAGE	 to	 assess	 the	

homogeneity	 of	 the	 assembled	 proteins.	 The	 assembled	 protein	 was	 cross-linked	

with	bis(sulfosuccinimidyl)suberate	(BS3)	to	prevent	dissociation	into	the	trimeric	

form	during	electrophoresis	because	Ni(II)	ions	would	be	stripped	from	the	protein	

during	 electrophoresis.	 On	 a	 3-12%	 native-PAGE	 gel,	 cross-linked	 assemblies	

migrated	as	a	much	larger	but	single	species	and	the	trimeric	MBP-T8H4	migrated	

fast	as	a	small	species	and	with	a	single	gel	band	(Fig.	5.12	B).		

5.3.4.3	Electron	Microscopy	

The	samples	were	visualized	by	negative	stain	TEM.	The	trimeric	form	of	the	

protein	 (fractions	 from	 elution	 volume	 14.5	mL)	 appeared	 as	 small,	 unassembled	

species	by	EM	(Fig.	5.13).	Metal-assembled	proteins	 collapsed	on	 the	grids	during	

sample	preparation	possibly	due	to	interactions	between	the	coiled	coils	motifs	and	
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Cu	 on	 the	 surface	 of	 the	 TEM	 grid	 (which	 was	 not	 seen	 for	 our	 previous	 cage	

designs).	This	was	overcome	by	covalently	cross-linking	the	assembled	protein	with	

BS3	reagent	(Fig.	5.12).	The	cross-linked	material	appeared	as	discrete	particles	and	

showed	 a	 homogeneous	 size	 distribution	 (Fig.	 5.13).	 However,	 neither	 the	

symmetry	nor	 the	 shape	of	 the	 cages	 could	be	discerned	 in	TEM	 images,	 possibly	

because	the	MBP	domain	fused	to	the	surface	of	TriEst	masked	the	core	structure.	

The	diameter	distribution	of	TEM	images	analyzed	using	 image	 j	software	gave	an	

average	diameter	of	~	18	nm	for	the	particles	(Fig.	5.11).			

	

Figure	5.	12	Characterization	of	MBP-T8H4	by	gel	analysis.	(A)	SDS-PAGE	analysis	of	MBP-
T8H4,	both	uncross-linked	and	cross-linked	samples.	(B)	Native	PAGE	analysis	of	trimeric	
and	assembled	MBP-T8H4.	

	



	

	 150	

	

Figure	5.	13	Negative	stain	TEM	images	of	MBP-T8H4.	(A)	MBP-T8H4	trimer	(unassembled	
form)	 purified	 by	 SEC	 followed	 by	MBP	 trap	 column.	 (B)	 20	µM	MBP-T8H4	 equilibrated	
with	 80	µM	Ni(II)	 (C-E)	 SEC	 purified	 and	 cross-linked	MBP-T8H4	 assemblies,	 (C)	A	wide	
field	 view	 of	 the	 assembled	 cages,	 (D)	 A	 view	 of	 cages	 at	 higher	magnification,	 (E)	 Some	
selected	particles	showing	the	three	fold	symmetry	of	the	cages.	

	

5.3.4.4	Catalytic	Activity	

The esterase activities of the trimeric MBP-T8H4 construct and the high 

molecular weight species assembled from MBP-T8H4 in the presence of Ni(II) were 

compared with the unmodified esterase, TriEst, from which MBP-T8H4 is derived. With 

2,4-di-nitrophenyl acetate (2,4-DNPA) as a substrate the turnover number for unmodified 

TriEst was 14.2 ± 2.3 min-1 whereas the turnover number for trimeric MBP-T8H4 was 
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22.3 ± 1.9 min-1 and turnover number for the assembled MBP-T8H4 complex was 15.5 ± 

1.7 min-1. These results confirmed that neither the assembly process nor fusion of the 

coiled coil with MBP domain significantly alters the functional properties of TriEst. 

	

	

Figure	 5.	 14	Analysis	of	MBP	cleaved	MBP-T8H4.	 (A)	SDS	PAGE	 for	MBP	cleaved	protein	
samples.	 (B)	 Re-chromatography	 of	 protein	 sample	 from	 elution	 volume	 16	mL.	 (C)	 Size	
exclusion	chromatography	of	MBP	cleaved	protein	equilibrated	at	20	µM,	80	µM	and	200µM	
Ni(II)	concentrations.	

	

5.3.5	Removing	MBP	Tag	from	MBP-T8H4	

The	MBP	tag	was	removed	by	TEV	cleavage.	MBP	cleavage	was	very	efficient	

for	Oct-MBP	where	o/n	 incubation	of	 the	protein	with	TEV	protease	 cleaved	MBP	

with	 ~	 100%	 efficiency	 (Chapter	 3).	 However,	 a	 longer	 incubation	 with	 TEV	
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protease	(agitating	at	room	temperature	for	~	2	weeks)	was	needed	to	cleave	MBP	

tag	 from	 MBP-T8H4.	 As	 both	 MBP-T8H4	 and	 TEV	 cleaved	 MBP-T8H4	 elution	

profiles	 overlapped	 on	 the	 superose	 6	 10/300	 column,	 almost	 100%	 of	 TEV	

cleavage	 efficiency	 was	 necessary	 to	 purify	 the	 MBP	 cleaved	 protein	 to	

homogeneity.	The	MBP-cleaved	construct	was	eluted	at	elution	volume	of	~	16	mL	

and	 homogeneity	 of	 the	 collected	 samples	 were	 assayed	 by	 SDS-PAGE	 (Fig.	 5.14	

A,B).		

20	µM	of	the	SEC	purified	protein	was	equilibrated	with	20	µM,	80	µM	or	200	

µM	Ni(II)	o/n	at	4	˚C	while	gently	agitating.	Three	elution	profiles,	at	11	mL,	13	mL	

and	16	mL,	were	observed	for	all	the	samples	(Fig.	5.14	C).	Elution	profiles	at	11	mL	

and	 13	 mL	 indicated	 assembled	 species	 and	 the	 elution	 profile	 at	 16	 mL	

corresponded	 to	unassembled	 trimeric	 form.	When	re-chromatographed,	 fractions	

collected	from	elution	profiles	11	mL	and	13	mL	gave	symmetric	elution	profiles	at	

elution	 volumes	 11	 mL	 and	 13	 mL	 respectively	 (Fig.	 5.15	 A).	 The	 samples	 from	

elution	 volume	 11	 mL	 and	 13	 mL	 were	 cross-linked	 with	 BS3	 and	 analyzed	 by	

native-PAGE	gel	electrophoresis	and	negative	stain	TEM.	The	proteins	migrated	as	

smeary	 bands	 in	 native-PAGE	 gel	 where	 the	 species	 from	 elution	 volume	 11	 mL	

migrated	slowly	compared	to	the	species	from	elution	volume	13	mL	(Fig.	5.15	B).	

Negative	 stain	 TEM	 images	 of	 the	 samples	 collected	 from	 both	 elution	 volumes	

indicated	 that	 they	 assembled	 into	 highly	 heterogeneous	 species	 (Fig.	 5.15	 C).	

Therefore,	no	further	studies	were	performed	for	MBP-cleaved	protein.	
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Figure	 5.	 15	 Characterization	 of	 assemblies	 of	 MBP	 cleaved	 protein	 in	 the	 presence	 of	
Ni(II).	 (A)	Re-chromatography	of	protein	 fractions	 from	elution	volume	11	mL	(Cyan)	and	
elution	 volume	 13	mL	 (Red)	 fractions.	 (B)	 Native	 PAGE	 analysis	 of	 cross-linked	 samples	
from	elution	volume	11	mL	and	13	mL.	(C)	Negative	Stain	TEM	of	cross-linked	samples	from	
elution	volume	11	mL	(Top)	and	13	mL	(Bottom).	

	

5.4	Discussion		

In	 this	 work	 we	 described	 designing	 a	 metal-dependent	 protein	 cage	 by	

exploiting	 the	 coiled-coil	 based	 design	 strategy	 developed	 in	 our	 lab.	 A	 de	 novo	

designed	metal-binding,	parallel,	trimeric	coiled	coil	(IZ-3adH)	was	genetically	fused	

to	 the	 C-terminus	 of	 TriEst	 through	 a	 oligo-Gly	 linker:	 several	 constructs	 were	

designed.	T8H4-1	assembled	into	heterogeneous	species	in	the	presence	of	Ni(II)	as	

evidenced	by	both	SEC	and	AUC.	In	TriEst,	a	His-tag	 is	 incorporated	at	N-terminus	

for	 purification	 purposes,	 which	 also	 interacts	 with	 metal	 ions.	 In	 attempts	 to	

remove	the	His-tag	(to	minimize	possible	interferences	by	Ni(II)	binding	to	the	His-
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tag),	 two	 fusion	 constructs	 were	 designed:	 T8H4-2	 and	 T8H4-3.	 However,	 these	

constructs	 did	 not	 express	 and	 the	 reason	 is	 unclear.	 MBP-T8H4	 fusion	 protein	

designed	by	 replacing	 the	His-tag	with	MBP	was	 identified	 as	 the	most	promising	

construct.	 This	 protein	 could	 be	 purified	 in	 large	 scale	 (~	 400	 mg/L	 culture)	 by	

maltose-affinity	chromatography.	

	The	 assembly	 of	 MBP-T8H4	 into	 protein	 cages	 in	 the	 presence	 of	 several	

divalent	 transition	 metal	 ions	 was	 evaluated.	 The	 MBP-T8H4	 construct	 could	

assemble	into	higher	order	species	in	most	cases,	but	despite	varying	the	conditions	

assembly	 was	 never	 complete.	 Under	 the	 studied	 metal	 ion	 concentrations,	 the	

highest	percentage	observed	 for	 the	assembled	 form	was	65-75%.	Only	about	30-

40%	of	the	protein	assembled	at	higher	Ni(II)	concentrations	(1	mM	and	2	mM)	and	

the	 protein	 formed	 assemblies	 only	 at	 very	 low	 concentrations	 (20	µM)	of	 Zn(II).	

The	reason	for	these	observations	is	not	clear.	One	possibility	is	that	steric	shielding	

by	 protein	 subunits	 could	 affect	 the	 formation	 of	 metal	 coordination	 complexes.	

Furthermore,	 higher	 concentration	 of	 metal	 ions	 could	 promote	 the	 formation	 of	

coordination	complexes	within	the	same	fusion	protein;	for	example	with	two	His-

residues	 in	 a	 single	 helix	 and	 its	 neighboring	 amine	 groups,	 or	with	 the	 two	His-

residues	 in	 the	helix	and	solvent	or	buffer	molecules	(E.g.	H2O,	Cl-,	OH-).	However,	

we	do	not	have	clear	evidence	or	experimental	data	to	support	these	hypotheses.		

Nevertheless,	when	the	fractions	from	the	peak	with	elution	volume	10.5	mL	

were	 re-chromatographed	 in	 the	 presence	 of	metal	 ions,	 they	 eluted	 at	 the	 same	

elution	 volume	 showing	 the	 stability	 of	 metal-assembled	 particles.	 Removing	 the	

metal	from	the	buffer	or	lowering	pH	led	to	disassembly	of	the	cages.	Interestingly	
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the	protein	 could	be	 reassembled	by	 incubating	with	metal	 ions	or	 increasing	pH.	

This	confirmed	that	the	cage	assembly	is	dynamic	and	could	be	controlled	by	both	

metal	ions	and	pH.	

Overall,	in	the	presence	of	Ni(II),	Co(II),	Cu(II)	or	Zn(II),	MBP-T8H4	construct	

successfully	 assembled	 into	discrete	particles	 as	 evident	 by	DLS,	TEM	and	native-

PAGE	gel	analysis	 .	The	hydrodynamic	radius	by	DLS	and	the	diameter	analysis	by	

negative	stain	TEM	were	in	a	good	agreement	with	the	modeled	diameter	(~	18-20	

nm)	 of	 the	 tetrahedral	 cage.	 The	 symmetry	 of	 assembled	 structures	 was	 not	

apparent	 in	 most	 of	 the	 particles	 imaged	 by	 negative	 stain	 TEM	 as	 MBP	 domain	

probably	masks	the	core	cage	structure.	3-fold	symmetry	of	a	tetrahedral	cage	was	

apparent	 in	 some	 images	 (Fig.	 5.13	 E).	 Furthermore,	 MBP-T8H4	 needed	 to	 be	

incubated	o/n	with	gentle	agitating	in	order	for	the	protein	to	assemble.	MBP-T8H4	

stayed	 in	 trimeric	 form	when	equilibrated	with	metal	 ions	 for	a	short	 time	or	o/n	

and	 therefore	 the	 agitating	 step	 was	 necessary	 for	 the	 protein	 to	 assemble	 (Fig	

5.16).	Agitation	step	probably	position	the	subunits	very	close	to	each	other	and	in	

an	orientation	that	facilitates	the	assembly.	

Some	 research	 groups	 have	 designed	metal-dependent	 extended	materials	

(1-,	2-	and	3-dimensional)	by	introducing	metal	coordinating	groups	to	the	exterior	

surfaces	 or	 interfaces	 of	 natural	 proteins.6,11,19–21	 Furthermore,	 natural	 protein	

cages	 have	 been	 engineered	 to	 undergo	 environment-responsive	 assemblies.12–14	

Additionally,	metal-dependent	protein	motifs	(E.g.	coiled	coils	and	beta	sheets)	have	

been	 de	 novo	 designed.17,22–26	 Nevertheless,	 de	 novo	 designing	 protein	 cages	 with	

controlled	 interfaces	 in	 3-dimensions	 remains	 a	 challenge.	 Here,	we	were	 able	 to	
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overcome	 this	 limitation	 by	 utilizing	 the	 inherently	 modular	 protein	 cage	 design	

approach,	developed	in	our	lab.		

	

	

Figure	5.	16	Size	exclusion	chromatography	of	MBP-T8H4	equilibrated	with	Ni(II)	for	~	2	h	
or	o/n	without	agitating	the	samples.	

	

Additionally,	in	this	design,	we	fused	MBP	(a	large	monomeric	protein)	to	N-

terminus	of	TriEst	located	on	one	of	its	two	triangular	surfaces	(the	surface	opposite	

to	 its	 active	 site)	 to	 facilitate	 purification.	 In	 chapter	 3,	 I	 described	 fusing	 a	 large	

monomeric	protein	to	the	free	end	of	the	coiled	coil	of	our	octahedral	protein	cage	

design.	 In	 that	 case,	 the	 design	 successfully	 assembled	 into	 an	 octahedral	 protein	

cage	with	Mw	~	1.8	MDa.	This	work	shows	the	potential	of	TriEst	BBP	to	assemble	

into	cages	when	a	large	functional	group	is	fused	to	its	N-terminus.	As	TriEst	could	

be	decorated	with	 large	groups,	proteins	 in	our	case,	at	either	of	 its	 termini,	 these	

protein	 cages	 show	potential	 to	 be	 developed	 for	 various	 biomedical	 applications	
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(E.g.	polyvalent	antigen	display,	fusing	tissue-specific	tags	for	targeted	drug	delivery	

or	decorating	with	nucleic	acid	strands	for	gene	therapy).	

One	 drawback	 of	 our	 all	 the	 previous	 cage	 designs	 was	 our	 inability	 to	

control	 their	 surface	 orientation.	 In	 this	 design,	 by	 fusing	 a	 large	 group	 onto	 one	

surface	of	TriEst,	we	were	able	 to	 force	 its	active	site	 to	 face	 inward	and	 there	by	

control	 the	 surface	 orientation	 of	 the	 BBP.	 Activity	 assays	 showed	 that	 adding	 a	

bulky	 group	 (MBP	 in	 our	 case)	 or	 assembly	 process	 did	 not	 alter	 the	 enzymatic	

properties	of	TriEst.		

5.5	Conclusion	

De	 novo	 designing	 protein	 cages	 with	 controlled	 interfaces	 has	 been	 a	

challenge	 for	other	protein	 cage	de	novo	 design	approaches.	Here,	we	 successfully	

designed	 a	 metal-dependent	 protein	 cage	 by	 utilizing	 our	 coiled	 coil-driven	

symmetry-based	 design	 strategy.	 	 Our	 approach	 requires	 no	 structural	

modifications	 to	 the	 BBP	 and	 therefore	 preserves	 its	 structural	 and	 functional	

properties.	 Coiled	 coil	 motifs	 govern	 the	 assembly	 of	 the	 BBP	 to	 cage-like	

geometries.	 Utilizing	 off-the-shelf	 environmental	 responsive	 coiled	 coils,	 we	

extended	 the	 study	 to	de	novo	 design	 of	 protein	 cages	 to	 create	metal-dependent	

assemblies.	 These	 cages	 have	 potential	 applications	 as	 metal	 ion	 sensors,	 as	

nanoreactors,	and	for	in	vivo	bio	medical	applications	such	as	for	controlled	release	

of	drugs.	
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Chapter	6:	Conclusion	

	

Our	lab	has	recently	developed	a	fundamental	design	strategy	for	assembling	

protein	 cages	 based	 on	 small	 coiled	 coil	 sequences.	 In	 this	 approach,	 a	 natural	

oligomeric	 protein	 possessing	 Cx	 rotational	 symmetry	 is	 genetically	 fused	 to	 a	

homo-oligomeric	parallel	coiled	coil	domain	with	Cy	symmetry	and	the	geometry	of	

the	 cage	 is	 specified	 by	 the	 combination	 of	 those	 two	 symmetry	 elements.	 The	

natural	 protein	 constitutes	 the	 primary	 building	 block	 (BBP)	 of	 the	 protein	 cage	

while	 the	 coiled	 coil	 drives	 the	 assembly	 of	 these	 BBP	 units	 into	 cage-like	

geometries.	 A	 flexible	 oligo-Gly	 linker	 is	 incorporated	 between	 the	 BBP	 and	 the	

coiled	coil	to	provide	the	necessary	degree	of	freedom	and	flexibility	between	these	

two	symmetry	elements	for	assembly	to	occur.	The	fusion	construct	is	optimized	by	

varying	the	strength	of	the	coiled	coil	and	the	length	of	the	oligo-Gly	linker	to	obtain	

the	intended	geometry.	The	strength	of	the	coiled	coil	can	be	controlled	by	varying	

the	number	of	heptad	repeats.		

This	 approach	provides	 a	 simple	 route	 for	 designing	protein	 cages	de	novo	

which	 does	 not	 depend	 explicitly	 on	 structural	 details	 of	 the	 BBP.	 Therefore,	 our	

design	strategy	avoids	 the	need	 for	 intensive	computational	modeling	and	protein	

engineering	 that	 other	 protein	 cage	 design	 approaches	 require.	 Our	 group	

successfully	designed	a	 tetrahedral	protein	cage	and	an	octahehedral	protein	cage	

by	utilizing	this	approach	and	 fusing	a	 trimeric	BBP	to	a	 trimeric	coiled	coil	and	a	
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tetrameric	coiled	coil	respectively,	which	were	discussed	in	chapter	1.1,2	My	thesis	is	

a	 continuation	 of	 this	work,	which	 included	 evaluating	 and	 optimizing	 coiled	 coil	

motifs	 to	 mediate	 protein	 assemblies	 and	 designing	 protein	 cages	 with	 new	

geometries	and	new	properties.	

6.1	Evaluating	De	novo	Designed	Coiled	Coils	

The	 first	 focus	of	my	 thesis	was	evaluating	de	novo	designed	coiled	coils	as	

off-the-shelf	 components	 to	mediate	 these	protein	 cage	assemblies.	These	de	novo	

coiled	 coils	 were	 originally	 chemically	 synthesized	 and	 evaluated	

crystallographically	and	their	behavior	when	fused	to	other	proteins	had	not	been	

investigated.3,4	 Therefore,	we	 examined	 how	 reliable	 these	 coiled	 coils	 are	 as	 off-

the-shelf	component	for	de	novo	designing	complex	protein	structures.	We	decided	

to	 evaluate	 the	 utility	 of	 these	 coiled	 coils	 by	 fusing	 to	 a	monomeric	 protein	 that	

does	 not	 interfere	with	 the	 oligomeric	 state	 of	 the	 coiled	 coils.	 Green	 fluorescent	

protein	 (GFP)	 was	 chosen	 as	 it	 is	 a	 widely	 used	 and	 well	 behaved	 monomeric	

protein	whose	 fluorescence	provides	 an	 easy	 read	 out	 of	 the	 protein’s	 expression	

and	folding.		

We	 evaluated	 several	 de	 novo	 designed	 coiled	 coils	 of	 potential	 utility	 for	

protein	 assembly.5	 Interestingly,	 these	 results	 clearly	 showed	 that	 the	 oligomeric	

state	of	these	coiled	coils	could	be	influenced	by	the	protein	fused	to	it,	even	in	the	

presence	of	a	 fairly	 long	 linker	between	 the	monomer	and	GFP	(9	residues	 in	 this	

case,	spanning	approximately	~	30	Å).	This	work	was	the	 first	study	to	report	 the	

context-dependent	 behavior	 of	 coiled	 coils.	 Overall,	 this	 study	 suggested	 the	

importance	 of	 evaluating	 the	 de	 novo	 designed	 coiled	 coils	 by	 fusing	 them	 to	 a	



	

	 163	

monomeric	protein	before	utilizing	them	to	assemble	oligomeric	proteins	into	more	

complex	architectures.		

6.2	Elaborating	an	Octahedral	Cage	with	a	Monomeric	Protein	

In	 this	 work,	 I	 explored	 the	 potential	 of	 elaborating	 protein	 cages	 with	

additional	protein	domains	by	fusing	maltose	binding	protein	(MBP)	to	the	free	end	

of	the	coiled	coil	in	the	octahedral	protein	cage	(Oct-4).	With	the	addition	of	MBP,	a	

protein	domain	of	~	40	kDa,	the	construct	successfully	assembled	into	an	octahedral	

protein	 cage	 with	 Mw	 of	 ~	 1.8	 MDa.6	 Importantly,	 fusing	 a	 larger	 protein	 to	 the	

coiled	coil	domain	did	not	perturb	the	geometry	of	the	cage.		The	ability	to	elaborate	

the	cages	by	appending	additional	domains	to	the	to	free	end	of	the	coiled	coil	has	

potential	uses	 for	polyvalent	antigen	display	and	designing	artificial	multi-enzyme	

complexes.		

Additionally,	 fusing	MBP	 to	 the	 Oct-4	 cage	 allowed	 the	 cage	 to	 be	 purified	

efficiently	 using	 maltose-affinity	 chromatography.	 Initially	 Oct-4	 octahedral	 cages	

were	 purified	 using	 Ni-affinity	 chromatography	 which	 gave	 a	 very	 low	 yield	 of	

protein	(~	1	mg/L	culture).	The	inability	to	purify	the	protein	assemblies	on	large	

scale	 is	 a	 drawback	 for	 using	 these	 cages	 for	 applications	 which	 need	 large	

quantities	 of	 proteins	 (E.g.	 vaccine	 development,	 drug	 delivery,	 nanoreactors	 for	

synthesizing	inorganic	nanoparticles).	Fusing	MBP	to	the	octahedral	cage	increased	

expression	 level	 significantly	 and	 purification	 by	 MBP-trap	 column	 further	

increased	the	yield	of	protein	by	60-fold.	In	our	design	strategy,	coiled	coils	can	face	

inward	or	outward	from	the	cage	wall.	However,	fusing	large	group	to	the	free	end	

of	 the	 coiled	 coil	 prevents	 them	 from	 facing	 inward	 because	 of	 steric	 clashes.	
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Therefore,	 fusing	MBP	provided	a	way	 to	control	 the	orientation	of	coiled	coils	by	

forcing	them	to	point	outward.	

6.3	Designing	a	hyperstable,	60-subunit	Icosahededral	Protein	Cage	

		 The	 third	 aim	 of	 my	 thesis	 was	 exploring	 the	 potential	 of	 designing	 an	

icosahedral	protein	 cage	by	 fusing	a	pentameric	 coiled	 coil	 (PDB	 ID:	4PN8)	 to	 the	

same	TriEst	BBP	(Trimeric	Esterase	 from	Pseudomonos	putida;	PDB	ID:	1ZOI)	 that	

our	 group	 employed	 for	 designing	 tetrahedral	 and	 octahedral	 protein	 cages.	

Although	the	strategy	is	simple,	the	fact	that	20	copies	of	the	BBP	need	to	be	brought	

together	by	a	small,	~	3	kDa	coiled	coil	domain	in	order	to	assemble	an	icosahedral	

protein	 cage	 represents	 a	 significant	 challenge.	 Several	 constructs	 were	 screened	

that	 contained	 increasing	 oligo-Gly	 linker	 lengths	 from	 2	 residues	 to	 12	 residues.	

The	 construct	 with	 the	 8-residue	 linker	 (Ico8)	 assembled	 into	 discrete-cages,	

however	the	assemblies	were	highly	heterogeneous	and	the	assembly	took	about	2-

3	months	to	occur.		

Next	 I	 studied	 a	 better	 purification	 protocol	 and	 a	method	 to	 increase	 the	

homogeneity	 of	 the	 proteins	 and	 to	 accelerate	 the	 time	 required	 for	 assembly.	

Interestingly	 Ico8	 cages	 showed	 a	 high	 thermostability	 and	 this	 property	 of	 the	

cages	was	 used	 to	 purify	 Ico8.	Heating	 the	 cell	 lysate	 at	 70	 °C	 for	 1.15	 h	 allowed	

precipitation	of	most	of	non-specific	proteins.	Dialyzing	the	supernatant	followed	by	

size	exclusion	chromatography	gave	pure	protein.	This	purification	procedure	was	

far	more	effective	in	purifying	Ico8.	Additionally,	purifying	by	heating	increased	the	

homogeneity	 of	 the	 assemblies	 and	 accelerated	 the	 assembly	 process	 to	 less	 than	

two	weeks.		



	

	 165	

Interestingly	 Ico8	cages	showed	thermal	hyperstability	which	was	not	seen	

in	either	octahedral	or	tetrahedral	designs.	Ico8	stayed	folded	at	temperatures	up	to	

120	 °C,	 at	 extremes	 of	 pHs	 between	 pH	 2	 and	 12	 and	 in	 high	 concentrations	 of	

denaturants	 (8	M	 urea	 or	 8	M	 guanidinium	 chloride).	 This	 stability	 likely	 results	

from	the	higher	order	assembly	and	is	often	evident	in	viral	capsids	where	a	small	

surface	 area	 is	 exposed	 to	 the	 external	 environment	 as	 a	 large	number	of	protein	

subunits	assemble	into	pseudo-spherical	geometries	with	a	small	surface-to-volume	

ratio,	e.g.	icosahedral.		

Furthermore,	 Ico8	 captured	 short	 DNA	 strands	 that	 were	 adventitiously	

formed	by	shearing	of	DNA	during	the	sonication	of	cells.	Treating	these	cages	with	

benzonase	led	to	disassembly	of	the	cages	into	the	trimeric	protein	building	blocks.	

Interestingly,	 they	 reassembled	 into	 heterogeneous	 cages	 after	 storage	 at	 room	

temperature	for	about	two	weeks.		This	indicated	that	these	short	DNA	strands	play	

a	role	in	assembling	Ico8	into	homogeneous	cages.	Ico8	preparations	purified	using	

a	 microfludizer	 to	 break	 the	 cells,	 where	 little	 shearing	 of	 DNA	 occurs,	 also	 had	

significant	 size	 variations.	 However,	 the	 cages	 assembled	 in	 the	 absence	 of	 DNA	

were	 still	 very	 stable,	 similarly	 to	 cages	 assembled	 in	 the	 presence	 of	 DNA.	 The	

morphological	 changes	 of	 these	 cages	 in	 the	 presence	 or	 absence	 of	 DNA	 is	 an	

emergent	 property	 of	 Ico8	 and	 further	 studies	 are	 needed	 to	 understand	 the	

underlying	mechanism	of	these	changes.	

Cryo-EM	 3D	 reconstruction	 of	 Ico8	 containing	DNA	 showed	 that	 it	 has	 the	

C3+C5	 symmetry	 of	 a	 60-subunit	 (T1)	 icosahedral	 cage.	 These	 cages	 still	 varied	 in	

diameter	between	~	20-30	nm.	This	variation	may	result	from	the	flexibility	of	the	
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8-residue	Gly	 linker.	Furthermore,	a	Cryo-EM	3D	reconstruction	map	could	not	be	

generated	 for	 Ico8	 cages	 assembled	 in	 the	 absence	 of	 DNA	 because	 of	 their	

significant	size	variations	(~	20-50	nm).	Interestingly	2D	class	averages	of	both	Ico8	

either	 containing	 DNA	 or	 not	 containing	 DNA	 showed	 an	 inner	 wall.	 	 SDS-PAGE	

analysis	of	SEC	purified	Ico8	cages	showed	a	small	amount	of	non-specific	proteins	

co-purified	with	 Io8	but	 these	were	not	evident	 in	 the	Native-PAGE	gel	analysis	of	

Ico8.	 This	 indicated	 that	 the	 inner	 layer	 might	 be	 formed	 by	 these	 non-specific	

proteins	and	possibly	by	other	unidentified	bio-polymers.	 Some	viral	 capsids	 (E.g.	

P22	viral	capsid)	assemble	around	scaffold	proteins	and	Ico8	may	follow	a	similar	

route	for	assembly.	This	is	another	emergent	property	of	Ico8	resulting	from	higher	

order	structure.		Understanding	the	mechanism	underlying	the	assembly	process	of	

Ico8	may	inform	the	evolution	of	natural	proteins	into	complex	nano-machines	with	

diverse	structural	and	functional	properties	(E.g.	viral	capsids,	PDH,	ferritin,	GroEL).	

Overall,	 the	 successful	 design	 of	 an	 icosahedral	 cage	 clearly	 demonstrates	 the	

generalizability	 of	 coiled-coil	 driven	 protein	 cage	 design	 approach	 to	 design	

complex	protein	architectures.		

6.4	Design	of	a	Metal-dependent	Protein	Cage	

Lastly,	 I	 explored	 the	 potential	 of	 utilizing	 this	 approach	 to	 design	 protein	

cages	with	 controlled	 assembly.	 As	 there	 are	 environment-responsive	 coiled	 coils	

available,	this	design	approach	would	provide	a	simple	approach	to	de	novo	design	

cages	 whose	 assembly	 could	 be	 controlled.	 This	 was	 studied	 by	 fusing	 a	 de	 novo	

designed	metal	dependent	coiled	coil,	containing	six-His	ligands,	to	the	TriEst	BBP.	

Additionally	 the	His-Tag	of	TriEst	was	replaced	by	MBP	to	avoid	 interference	 that	
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can	result	from	interaction	of	the	His-Tag	with	metal	ions.	The	construct	was	named	

MBP-T8H4.	 The	 construct	 successfully	 assembled	 into	 discrete	 particles,	

presumably	of	a	tetrahedral	geometry	(although	this	remains	to	be	confirmed)	with	

Mw	of	~	900	kDa	in	the	presence	of	Ni(II),	Co(II),	Cu(II)	and	Zn(II).	The	cages	could	

be	 completely	disassembled	by	adding	 chelators	or	by	 lowering	 the	pH	 to	pH	4.5.	

Removing	EDTA	followed	by	incubating	with	metal	ions	or	increasing	the	pH	to	near	

neutral	 led	 MBP-T8H4	 to	 reassemble	 into	 cages.	 This	 study	 provided	 a	 proof-of-

concept	for	utilizing	the	coiled	coil	mediated	protein	cage	design	approach	to	design	

protein	cages	with	controlled	interfaces.	

6.5	Future	Directions	

	 Both	 natural	 and	 de	 novo-designed	 protein	 cages	 are	 becoming	 very	

attractive	nano-particles	for	various	applications	in	medicine	and	materials	science.	

The	shape,	size,	geometry	and	the	 internal	volume	are	some	key	considerations	 in	

choosing	 protein	 cages	 for	 applications	 in	 these	 fields.	 	 Our	 approach	 provides	 a	

systematic	method	 to	 design	 cages	 that	match	 these	 particular	 needs.	 	 So	 far,	we	

have	designed	protein	cages	only	by	utilizing	one	natural	BBP.	As	 the	demand	 for	

protein	cages	is	rapidly	growing,	one	very	interesting	future	direction	of	the	project	

would	be	to	extend	this	work	to	design	various	protein	cage	architectures	by	pairing	

other	 natural	 proteins	 with	 different	 rotational	 symmetries	 with	 the	 appropriate	

coiled	coils.		

	 Attractive	 3D	 structures,	 which	 we	 have	 yet	 to	 explore,	 are	 cubic	 and	

dodecahedral	protein	cage	geometries.	By	pairing	a	tetrameric	BBP	with	a	trimeric	

coiled	coil,	a	cubic	protein	cage	with	C4+C3	symmetry	could	be	designed.		Although	
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there	 are	many	 tetrameric	 proteins,	most	 of	 them	 exist	 in	 pseudo-D2	 symmetries	

and	are	thus	not	well	suited	for	our	design	approach.	Nevertheless,	Ruv-A	(PDB	ID:	

1CUK)	 is	 a	 well-characterized	 DNA-binding	 protein	 with	 C4	 symmetry	 and	which	

could	be	utilized	to	design	a	protein	cage	with	cubic	geometry.7	As	Ruv-A	binds	to	

DNA,	the	structural	integrity	of	assembled	protein	could	be	easily	verified	by	a	DNA	

gel	shift	assay.	Dodecahedral	protein	cages	with	C5+C3	symmetry	could	be	designed	

by	 fusing	 a	 BBP	 with	 C5	 symmetry	 to	 a	 trimeric	 coiled	 coil.	 Here,	 the	 well-

characterized	 lumazine	 synthase	 (PDB	 ID:	 2I0F)	 from	 Saccharomyces	 cerevisiae	

could	 be	 utilized	 as	 the	 BBP.8	 Lumazine	 synthase	 is	 an	 enzyme	 in	 the	 riboflavin	

biosynthesis	pathway	and	therefore,	structural	properties	of	the	BBP	of	assembled	

dodecahedral	protein	cage	can	be	easily	assayed	by	an	existing	chromogenic	assay.9	

	 Additionally,	 protein	 cages	 that	 assemble	 under	 controlled	 conditions	 are	

very	useful	systems	for	applications	that	require	selective	encapsulation	and	release	

of	 materials:	 for	 example,	 targeted	 drug	 delivery	 and	 designing	 reusable	

nanoreactors.	 	 However,	 de	 novo	 designing	 protein	 cages	 that	 assemble	 in	 a	

controlled	manner	 is	 a	 challenging	 problem	 because	 of	 our	 limited	 knowledge	 in	

protein-protein	 interactions.	 The	 ability	 to	 use	 small	 coiled	 coils	 as	 off-the-shelf	

connectors	 to	 mediate	 protein	 assembly	 and	 the	 availability	 of	 environmentally	

responsive	coiled	coils	make	our	design	approach	promising	 for	designing	protein	

cages	whose	assembly	can	be	controlled.	As	a	proof-of-concept	study,	I	successfully	

designed	a	metal-dependent	protein	cage.		

pH-responsive	 protein	 cages	 could	 be	 very	 useful	 for	 lysosome-targeted	

drug-delivery.	Here,	 one	 could	 explore	 the	 potential	 of	 designing	 a	 pH-responsive	
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tetrahedral	 or	 octahedral	 protein	 cage.	 	 The	 required	 trimeric	 and	 tetrameric	pH-

responsive	 homo-oligomeric	 parallel	 coiled	 coils,	 could	 be	 designed	 by	

incorporating	His	residues	at	either	“a”	or	“d”	positions	of	 trimeric	and	tetrameric	

coiled	coils,	which	provide	a	 simple	 route	 to	pH-responsive	coiled	coils.	 	Once	 the	

coiled	 coils	 are	 optimized,	 one	 could	 fuse	 them	 to	TriEst	 through	 the	 appropriate	

linkers	 to	 design	 a	 pH-responsive	 tetrahedral	 and	 a	 pH-responsive	 octahedral	

protein	cages	respectively.	

A	 further	 extension	 of	 our	 approach	 would	 be	 to	 design	 two-component	

protein	cages,	which	assemble	only	upon	mixing	the	two	different	fusion	constructs.	

Such	 cage	 designs	 would	 be	 very	 useful	 for	 applications	 that	 require	 controlled	

encapsulation	of	materials.	To	test	this,	one	could	genetically	fuse	TriEst	to	a	hetero-

tetrameric,	parallel	coiled	coil	with	complementary	coiled	coil	domains	and	design	

two	fusion	constructs	with	complementary	coiled	coils.	The	octahedral	protein	cage	

should	form	only	when	the	two	fusion	constructs	are	mixed.	The	hetero-tetrameric	

parallel	coiled	coil	designed	by	Fairman	and	coworkers	by	modifying	the	GCN4-pLI	

parallel	 coiled-coil	 tetramer	 would	 be	 well	 suited	 for	 such	 a	 study.10	 Our	 Oct-4	

octahedral	 protein	 cage	 required	 a	 4-residue	 Gly-linker	 and	 therefore	 the	 same	

linker	could	be	utilized	for	this	cage	design	as	well.		

Functionalizing	 protein	 cages	 would	 be	 another	 very	 interesting	 area	 to	

explore	as	 there	are	many	potential	applications	 for	such	biomaterials.	 	Chapter	1	

discussed	 efforts	 to	 functionalize	 the	 exterior,	 interior	 and	 interfaces	 of	 protein	

cages	 in	 order	 to	 utilize	 them	 for	 medical	 as	 well	 as	 industrial	 applications.	

Additionally,	 chapter	 1	 also	 discussed	 in	 depth	 about	 genetic	 and	 chemical	
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approaches	 to	 functionalizing	 protein	 cages	 including	 methods	 for	 attaching	

functional	groups	both	covalently	and	transiently	for	various	applications.	Our	cage	

designs	 would	 also	 appear	 suitable	 for	 all	 of	 these	 various	 functionalization	

strategies.	

In	 chapter	 3,	 I	 described	 the	 potential	 of	 elaborating	 our	 protein	 cages	 by	

fusing	 large	 functional	 groups	 to	 free	 end	 of	 the	 coiled	 coil,	 demonstrating	 it	was	

possible	 to	 fuse	 large	 protein	 tags	 to	 an	 octahedral	 protein	 cage.	 Furthermore,	 in	

chapter	 5,	 MBP	 was	 fused	 to	 the	 N-terminus	 of	 TriEst	 for	 purification	 purposes	

without	 interfering	 with	 assembly	 of	 the	 construct	 into	 discrete	 particles.	 Both	

studies	 demonstrated	 the	 potential	 of	 the	 BBP	 protein	 to	 make	 homogeneous,	

discrete	 assemblies	 in	 the	 presence	 of	 large	 groups	 at	 either	 its	 termini.	 These	

properties	could	make	 them	useful	 for	vaccine	design	by	attaching	antigens	or	 for	

targeted	 drug	 delivery	 by	 attaching	 tissue	 specific	 ligands	 to	 their	 exteriors.	 As	

discussed	in	chapter	4,	TMA-DPH,	a	 fluorogenic	molecule,	 fluoresced	upon	binding	

to	 the	pentameric	coiled	coil	of	 Ico8	cages.	The	Woolfson	group	demonstrated	 the	

potential	 of	 using	 this	 interaction	 to	 develop	 a	 biosensor	 to	 detect	 certain	 lipid	

molecules.11	 These	 are	 some	 examples	 that	 show	 the	 potential	 of	 utilizing	 these	

cages	for	actual	applications.		

In	 future	 studies,	 the	 hollow	 interior	 of	 these	 cages	 could	 be	 utilized	 to	

encapsulate	 cargos,	 synthesize	 inorganic	 nanoparticles	 and	 as	 bioreactors.	 For	 in	

vivo	biomedical	applications,	drugs	and	imaging	agents	could	be	covalently	attached	

to	 protein	 cage	 interior.	 Aberrant	 vascular	 architecture	 in	 tumor	 tissues	 causes	

accumulation	 of	 nanoparticles	 in	 these	 areas	 and	 this	 enhanced	 permeability	 and	
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retention	 (EPR)	 effect	 is	 utilized	 to	 treat	 cancer	by	nano-medicines.12	Our	protein	

cages	could	in	principle	be	loaded	with	anti-cancer	drugs	to	develop	effective	cancer	

therapeutics.	 	 	 For	 targeted	delivery,	 the	protein	 cage	exterior	 could	be	decorated	

with	tissue	specific	ligands;	for	example,	epitope	tags	and	aptamers.		PEGylation	or	

decorating	our	protein	cages	with	humanized	proteins	might	be	necessary	to	make	

them	 less	 immunogenic	 nano-carriers.	 A	 pH-responsive	 cage	 design	 could	 be	

developed	 for	 lysosome-targeted	 delivery	 where	 the	 low	 pH	 inside	 the	 lysosome	

causes	disassembly	of	the	protein	cage	and	release	of	drugs.		

The	 functional	 properties	 of	 inorganic	 nanoparticles	 depend	 on	 their	 size,	

shape	and	density,	but	controlling	these	properties	and	synthesizing	homogeneous	

nanoparticles	 are	 challenging	 problems.	 	 Another	 future	 direction	 would	 be	

repurposing	 our	 protein	 cages	 for	 synthesizing	 inorganic	 nanoparticles.	 The	well-

defined	 interior	 of	 a	 protein	 cage	 provides	 a	 size-constrained	 environment	 to	

synthesis	 nanoparticles	 with	 well-defined	 geometries,	 volumes	 and	 densities.		

Examples	 of	 nanoparticles	 synthesized	 inside	protein	 cages	 and	 their	 applications	

were	 discussed	 in	 chapter	 1	 (see	 section	 1.3.1).	 Introducing	 negatively	 charged	

amino	acid	residues	and	decorating	the	cage	interior	with	metal	chelating	peptides	

are	some	popular	approaches	utilized	to	mineralize	inorganic	nanoparticles	within	

the	protein	cage	interior.	Our	metal	dependent	protein	cage	design	could	be	utilized	

to	develop	a	re-usable	nanoreactor	where	mineralized	products	can	be	released	by	

disassembling	the	protein	cages	and	reassembled	cages	can	be	re-used.	

The	 hyper-stability	 and	 the	 large	 internal	 volume	 of	 the	 Ico8	 protein	 cage	

makes	 it	 a	 promising	 system	 for	 designing	 enzyme-nanoreactors.	 The	 extremely	
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stable	nature	of	this	protein	cage	should	provide	a	well-protected	environment	for	

the	enzymes.	In	chapter	one	we	discussed	how	a	significant	increase	in	the	catalytic	

activity	of	an	enzyme	could	be	obtained	when	it	was	encapsulated	inside	a	protein	

cage	 (see	 section	 1.3.1).	 The	 large	 interior	 of	 Ico8	 could	 be	 utilized	 for	 similar	

applications	 and	 to	 develop	 highly	 catalytically	 active	 enzyme	 nanoreactors.	

Furthermore,	compartmentalization	of	enzymes	in	cascade	reactions,	which	involve	

unstable	 or	 toxic	 intermediates,	 provides	 an	 efficient	 and	 a	 safer	 platform	 for	

conducting	sequential	chemical	reactions.		

	 	 The	 discussion	 above	 outlines	 a	 few	 potential	 ways	 to	 functionalize	 the	

protein	 cages	 synthesized	 as	 part	 of	 this	 thesis	 and	 develop	 them	 for	 real	 world	

applications.	 	 Additionally,	 various	 examples	 of	 functionalized	 protein	 cages	were	

discussed	 in	 chapter	 1	 (see	 section	 1.3)	 and	 most	 of	 these	 strategies	 could	 be	

extended	 to	 our	 protein	 cage	 designs.	With	 the	 growing	 interest	 in	 protein-based	

nanoparticles	 for	 both	medical	 and	 industrial	 applications,	 this	 is	 a	 very	 exciting	

field	of	science	that	our	research	group	would	like	to	explore	further	in	the	future.	

6.6	Conclusion	

In	 conclusion,	 in	our	 first	 attempts	 to	design	protein	 cages,	we	evaluated	a	

strategy	 by	 fusing	 a	 trimeric	 building	 block	 protein	 (Adolase)	 to	 a	 heterodimeric	

anti-parallel	 coiled	 coil	 through	 a	 flexible	 oligo-Gly	 linker,	 however	 this	 construct	

assembled	into	multiple	species.13	As	discussed	in	chapter	1,	pairwise	combination	

of	C3+C2	symmetry	elements	can	lead	to	a	mixture	of	geometries	unless	the	dihedral	

angle	is	controlled	precisely.	Next,	we	explored	an	approach,	which	is	still	modular	

but	 far	 more	 promising	 in	 designing	 protein	 cages	 to	 homogeneity.	 As	 there	 are	
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homo-oligomeric	 parallel	 coiled	 coils	 with	 higher	 oligomeric	 states	 (Trimer,	

Tetramer	 and	 Pentamer),	 we	 hypothesized	 that	 utilizing	 these	 coiled	 coils	 will	

provide	a	better	 route	 for	de	novo	design	of	 coiled	coil	driven	protein	cages	while	

mitigating	 the	potential	 for	multiple	geometries.	Utilizing	 this	approach	our	group	

successfully	 designed	 a	 tetrahedral,	 octahedral	 and	 an	 icosahedral	 protein	 cage.	

Furthermore,	we	elaborated	 the	octahedral	 cage	with	a	protein	domain	at	 its	 free	

coiled	coil	end.	Moreover,	using	this	modular	approach,	we	were	able	to	successfully	

design	 a	 metal	 responsive	 protein	 cage.	 Overall,	 all	 these	 examples	 shows	 the	

generalizability	 of	 the	 coiled	 coil	 based	 design	 strategy	 introduced	 by	 the	 Marsh	

group.	
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Appendix	A:	Protein	Sequences	
	

	

A.1	Chapter	2	constructs	

Vector	plasmid:	pMCSG18	

Expression	cell	line:	E.	Coli	BL21	DE3	

	

Wild	Type	GFP		

Mw:	30.02	kDa	

        10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260  
NEKRDHMVLL EFVTAAGITH GMDELYN  
	

GFP	Construct	1	(GFP-IL17N)	

Mw:	32.42	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
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       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGEIAAL KQEIAALKQE IAANKQEIAA LKQG  
	

GFP	Construct	2	(GFP-IL)	

Mw:	32.42	kDa	

        10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGEIAAL KQEIAALKQE IAALKQEIAA LKQG  

 
GFP	construct	3	(GFP-II)	

Mw:32.42	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGEIAAI KQEIAAIKQE IAAIKQEIAA IKQG  
	

GFP	construct	4	(GFP-LI)	

Mw:	32.42	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
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       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGELAAI KQELAAIKQE LAAIKQELAA IKQG  

	

GFP	construct	5	(GFP-pent)	

Mw:	32.88	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGKIEQI LQKIEKILQK IEWILQKIEQ ILQG  
	

GFP	construct	6	(GFP-pent-9)	

Mw:	33.05	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGGGGKI EQILQKIEKI LQKIEWILQK IEQILQG  
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GFP	construct	7	(GFP-pent9-W)	

	Mw:	32.97	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGGGGKI EQILQKIEKI LQKIENILQK IEQILQG  
 
 
GFP	construct	8	(GFP-II-Nterm)	

Mw:	33.35	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDHIAAIKQE IAAIKQEIAA IKQEIAAIKQ EGGGGGGTEN LYFQSNIGSG  
 
        70         80         90        100        110        120  
LLASKGEELF TGVVPILVEL DGDVNGHKFS VSGEGEGDAT YGKLTLKFIC TTGKLPVPWP  
 
       130        140        150        160        170        180  
TLVTTLCYGV QCFSRYPDHM KRHDFFKSAM PEGYVQERTI FFKDDGNYKT RAEVKFEGDT  
 
       190        200        210        220        230        240  
LVNRIELKGI DFKEDGNILG HKLEYNYNSH NVYIMADKQK NGIKVNFKTR HNIEDGSVQL  
 
       250        260        270        280        290        300  
ADHYQQNTPI GDGPVLLPDN HYLSTQSALS KDPNEKRDHM VLLEFVTAAG ITHGMDELYN  
	

GFP	construct	9	(GFP-II5hep-Nterm)	

Mw:	34.10	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDHIAAIKQE IAAIKQEIAA IKQEIAAIKQ EIAAIKQEGG GGGGTENLYF  
 
        70         80         90        100        110        120  
QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG EGEGDATYGK LTLKFICTTG  
 
       130        140        150        160        170        180  
KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG YVQERTIFFK DDGNYKTRAE  
 
       190        200        210        220        230        240  
VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY IMADKQKNGI KVNFKTRHNI  
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       250        260        270        280        290        300  
EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP NEKRDHMVLL EFVTAAGITH  
 
 
GMDELYN  
	

GFP	construct	10	(GFP-LI-5hep)	

Mw:	33.17	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290        300  
NEKRDHMVLL EFVTAAGITG GGGGGELAAI KQELAAIKQE LAAIKQELAA IKQELAAIKQ  
	

GFP	construct	11	(GFP-LI-9Gly)	

Mw:	32.59	kDa	

 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNIGSGLLA SKGEELFTGV VPILVELDGD VNGHKFSVSG  
 
        70         80         90        100        110        120  
EGEGDATYGK LTLKFICTTG KLPVPWPTLV TTLCYGVQCF SRYPDHMKRH DFFKSAMPEG  
 
       130        140        150        160        170        180  
YVQERTIFFK DDGNYKTRAE VKFEGDTLVN RIELKGIDFK EDGNILGHKL EYNYNSHNVY  
 
       190        200        210        220        230        240  
IMADKQKNGI KVNFKTRHNI EDGSVQLADH YQQNTPIGDG PVLLPDNHYL STQSALSKDP  
 
       250        260        270        280        290  
NEKRDHMVLL EFVTAAGITG GGGGGGGGEL AAIKQELAAI KQELAAIKQE LAAIKQ  
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A.2	Chapter	3	Constructs	

	
Vector	plasmid:	pET	28b	

Expression	cell	line:	E.	Coli	BL21	DE3	

	
	
Oct-MBP		
	
Mw:	76.9	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320        330        340        350        360  
LAAIKQELAA IKQELAAIKQ ELAAIKQDGG GENLYFQGGG GGKIEEGKLV IWINGDKGYN  
 
       370        380        390        400        410        420  
GLAEVGKKFE KDTGIKVTVE HPDKLEEKFP QVAATGDGPD IIFWAHDRFG GYAQSGLLAE  
 
       430        440        450        460        470        480  
ITPDKAFQDK LYPFTWDAVR YNGKLIAYPI AVEALSLIYN KDLLPNPPKT WEEIPALDKE  
 
       490        500        510        520        530        540  
LKAKGKSALM FNLQEPYFTW PLIAADGGYA FKYENGKYDI KDVGVDNAGA KAGLTFLVDL  
 
       550        560        570        580        590        600  
IKNKHMNADT DYSIAEAAFN KGETAMTING PWAWSNIDTS KVNYGVTVLP TFKGQPSKPF  
 
       610        620        630        640        650        660  
VGVLSAGINA ASPNKELAKE FLENYLLTDE GLEAVNKDKP LGAVALKSYE EELVKDPRIA  
 
       670        680        690        700  
ATMENAQKGE IMPNIPQMSA FWYAVRTAVI NAASGRQTVD EALKDAQ  
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TriEst	
	
Mw:	32.3	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRS  
 
 

A.3	Chapter	4	Constructs	

	
Vector	plasmid:	pET	28b	

Expression	cell	line:	E.	Coli	BL21	DE3	

	
	
Ico2	
	
Mw:	35.9	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTKI  
 
       310        320  
EQILQKIEKI LQKIEQILQK IEQILQG  
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Ico4	
	
Mw:	36	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320  
KIEQILQKIE KILQKIEQIL QKIEQILQG  

Ico6	
	
Mw:	36.2	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320        330  
GGKIEQILQK IEKILQKIEQ ILQKIEQILQ G  
	
	
Ico8	
	
	Mw:	36.2	kDa	
 
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
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       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320        330  
GGGGKIEQIL QKIEKILQKI EQILQKIEQI LQG  
	
Ico10	
	
Mw:	36.3	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320        330  
GGGGKIEQIL QKIEKILQKI EQILQKIEQI LQG  
	
Ico12	
	
Mw:	36.4	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
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       310        320        330  
GGGGGGKIEQ ILQKIEKILQ KIEQILQKIE QILQG  
	

A.4	Chapter	5	Constructs	

	
Vector	plasmid:	pET	28b	

Expression	cell	line:	E.	Coli	BL21	DE3	

	
	
T8H4-1	
	
Mw:	36.0	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MSYVTTKDGV QIFYKDWGPR DAPVIHFHHG WPLSADDWDA  
 
        70         80         90        100        110        120  
QLLFFLAHGY RVVAHDRRGH GRSSQVWDGH DMDHYADDVA AVVAHLGIQG AVHVGHSTGG  
 
       130        140        150        160        170        180  
GEVVRYMARH PEDKVAKAVL IAAVPPLMVQ TPGNPGGLPK SVFDGFQAQV ASNRAQFYRD  
 
       190        200        210        220        230        240  
VPAGPFYGYN RPGVEASEGI IGNWWRQGMI GSAKAHYDGI VAFSQTDFTE DLKGIQQPVL  
 
       250        260        270        280        290        300  
VMHGDDDQIV PYENSGVLSA KLLPNGALKT YKGYPHGMPT THADVINADL LAFIRSGTGG  
 
       310        320        330  
GGGGIEKKIE AIEKKIEAHE KKHEAIEKKI E 
	
T8H4-2	
	
Mw:	36.8	kDa	
	
 10         20         30         40         50         60  
MHHHHHHSSG VDLGTENLYF QSNHMSYVTT KDGVQIFYKD WGPRDAPVIH FHHGWPLSAD  
 
        70         80         90        100        110        120  
DWDAQLLFFL AHGYRVVAHD RRGHGRSSQV WDGHDMDHYA DDVAAVVAHL GIQGAVHVGH  
 
       130        140        150        160        170        180  
STGGGEVVRY MARHPEDKVA KAVLIAAVPP LMVQTPGNPG GLPKSVFDGF QAQVASNRAQ  
 
       190        200        210        220        230        240  
FYRDVPAGPF YGYNRPGVEA SEGIIGNWWR QGMIGSAKAH YDGIVAFSQT DFTEDLKGIQ  
 
       250        260        270        280        290        300  
QPVLVMHGDD DQIVPYENSG VLSAKLLPNG ALKTYKGYPH GMPTTHADVI NADLLAFIRS  
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       310        320        330  
GTGGGGGGIE KKIEAIEKKI EAHEKKHEAI EKKIEA  
	
	
T8H4-3	
	
Mw:	36.8	kDa	
	
 10         20         30         40         50         60  
MGSSHHHHHH SSGGGGGGGE NLYFQGGGHM SYVTTKDGVQ IFYKDWGPRD APVIHFHHGW  
 
        70         80         90        100        110        120  
PLSADDWDAQ LLFFLAHGYR VVAHDRRGHG RSSQVWDGHD MDHYADDVAA VVAHLGIQGA  
 
       130        140        150        160        170        180  
VHVGHSTGGG EVVRYMARHP EDKVAKAVLI AAVPPLMVQT PGNPGGLPKS VFDGFQAQVA  
 
       190        200        210        220        230        240  
SNRAQFYRDV PAGPFYGYNR PGVEASEGII GNWWRQGMIG SAKAHYDGIV AFSQTDFTED  
 
       250        260        270        280        290        300  
LKGIQQPVLV MHGDDDQIVP YENSGVLSAK LLPNGALKTY KGYPHGMPTT HADVINADLL  
 
       310        320        330        340  
AFIRSGTGGG GGGIEKKIEA IEKKIEAHEK KHEAIEKKIE A  
	
	
MBP-T8H4	
	
Mw:	76.8	kDa	
	
 10         20         30         40         50         60  
MKIEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ VAATGDGPDI  
 
        70         80         90        100        110        120  
IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY NGKLIAYPIA VEALSLIYNK  
 
       130        140        150        160        170        180  
DLLPNPPKTW EEIPALDKEL KAKGKSALMF NLQEPYFTWP LIAADGGYAF KYENGKYDIK  
 
       190        200        210        220        230        240  
DVGVDNAGAK AGLTFLVDLI KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK  
 
       250        260        270        280        290        300  
VNYGVTVLPT FKGQPSKPFV GVLSAGINAA SPNKELAKEF LENYLLTDEG LEAVNKDKPL  
 
       310        320        330        340        350        360  
GAVALKSYEE ELVKDPRIAA TMENAQKGEI MPNIPQMSAF WYAVRTAVIN AASGRQTVDE  
 
       370        380        390        400        410        420  
ALKDAQTGGG GGGGGGENLY FQGGHMSYVT TKDGVQIFYK DWGPRDAPVI HFHHGWPLSA  
 
       430        440        450        460        470        480  
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DDWDAQLLFF LAHGYRVVAH DRRGHGRSSQ VWDGHDMDHY ADDVAAVVAH LGIQGAVHVG  
 
       490        500        510        520        530        540  
HSTGGGEVVR YMARHPEDKV AKAVLIAAVP PLMVQTPGNP GGLPKSVFDG FQAQVASNRA  
 
       550        560        570        580        590        600  
QFYRDVPAGP FYGYNRPGVE ASEGIIGNWW RQGMIGSAKA HYDGIVAFSQ TDFTEDLKGI  
 
       610        620        630        640        650        660  
QQPVLVMHGD DDQIVPYENS GVLSAKLLPN GALKTYKGYP HGMPTTHADV INADLLAFIR  
 
       670        680        690  
SGTGGGGGGI EKKIEAIEKK IEAHEKKHEA IEKKIEA  
	
	


