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ABSTRACT

Balancing the supply and demand of electrical energy in real-time is a core task in

power system operation. Traditionally, this balance has been achieved by controlling

power plants, but increasing amounts of renewable energy generation increases the

variability in generation and requires additional energy balancing capacity. An alter-

native to providing this additional capacity via power plants is to provide signals to

loads that induce changes in their demand, which is referred to as demand response.

There exists a large potential capacity for demand response using residential loads,

but enabling these loads to participate in demand response requires communication

and sensing capabilities. Thermostatically controlled loads (TCLs) are ubiquitous

in residences and have inherent flexibility as they cycle on and off during normal

operation. Coordinating on/off switching of TCL aggregations can provide energy

balancing. However, TCLs are a spatially distributed resource that require sensing

and communication infrastructure to enable demand response capabilities. A key to

realizing cost effective residential demand response is minimizing infrastructure costs

while maximizing the accuracy of the provided energy balancing, which results in

increased revenue while improving reliability in the power system.

The main contribution of this dissertation is to show that advanced algorithms can

leverage existing infrastructure to make energy balancing with loads feasible in the

near-term, which improves the reliability, economics, and environmental impact of the

power grid. The dissertation first presents control algorithms, estimation algorithms,

and models for residential demand response on fast timescales, i.e., on the order of

seconds. Following this, the dissertation presents online learning algorithms for real-

time feeder-level energy disaggregation within an electricity distribution network,

which can be used to estimate the demand-responsive load in real-time. Methods for

both topics are developed to operate within the capabilities of existing communication

and sensing infrastructure, which reduces the implementation costs of the methods.

Control and estimation algorithms are developed that address communication

delays while taking into account realistic measurement availability. Results indicate

that incorporating delay information into the algorithms can mitigate the effects of

communication delays, allowing demand response providers to reduce infrastructure

xi



costs by using less expensive, lower quality communication networks. Additional

work adapts three existing residential demand response models for a more detailed

simulation environment, modifies each model to be more accurate in this environment,

and benchmarks the model variations against each other. Results indicate that the

model modifications produce more accurate predictions versus the unmodified models.

Improving modeling accuracy can improve the reliability of the system and increase

revenues for a demand response provider by improving the performance of model-

based control and estimation algorithms.

The energy disaggregation algorithms seek to separate the measured demand of

a distribution feeder into components (e.g., the demand-responsive load and the re-

maining load) as feeder-level measurements become available. An online learning

algorithm is adapted to perform real-time energy disaggregation using active power

measurements of the total demand on the distribution feeder. Results indicate that

the algorithm is able to effectively separate the air conditioning demand from the re-

maining demand connected to a distribution feeder. This algorithm is then extended

to include reactive power, voltage, and smart meter measurements. Results indicate

that the availability of additional real-time measurements leads to more accurate

disaggregation of the demand components. Additional work in state estimation es-

tablishes connections between the online learning methods used and Kalman filtering

algorithms.
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CHAPTER I

Introduction

An electric power network, or an electricity/power grid, is the network of equip-

ment to produce electrical energy and to transport that energy from the energy pro-

ducers to the energy consumers within a region. The reliable supply of electricity to

consumers, or reliability, is central to economic well-being, and estimates of the annual

cost of power outages in the US range from $20B to over $100B [1]. The main chal-

lenge in operating the power network to ensure reliability is that the production and

consumption of electricity within a power network must be balanced at all times [2].

This balance has traditionally been achieved by controlling the bulk electricity gen-

eration resources, i.e., the bulk energy producers such as power plants [3]. Recently,

electricity generation from renewable energy sources has been increasing, which can

require additional flexibility in other controllable resources within the power network

to counter the intermittent power generation from these renewable resources. Regu-

latory changes and the push to incorporate modern technology into the power grid

(i.e., to create a “smart” grid) have enabled non-traditional resources such as demand

response to participate in the operation of the power network and help balance the

electricity production and consumption [4]. As a result, there is increased interest

in expanding the usage of demand response to provide this additional flexibility [5].

Demand response is defined as the following:

“Demand response is a tariff or program established to motivate changes

in electric use by end-use customers in response to changes in the price

of electricity over time, or to give incentive payments designed to induce

lower electricity use at times of high market prices or when grid reliability

is jeopardized [6].”

In this work, we use the term demand response to refer changes in the electricity

demand caused by signals provided to the demand that help to ensure reliable power

1



network operation.

The work presented in this dissertation develops control algorithms and learn-

ing algorithms that are applied to demand response and to electricity distribution

networks. The control algorithms include three inter-related tasks: modeling, state

estimation, and controller development. Modeling develops a mathematical descrip-

tion of a system of interest, where the state of the system describes the present

“status” of the the system, where the input of the system is a signal that influences

the system state, and where the output of the system is a signal that consists of the

measurements available from the system, which are derived from the system state.

State estimation seeks to estimate the state of the system given the outputs of the

system and the inputs to the system, where the inputs are usually known as they are

computed by a controller. Controller development seeks to design an algorithm that

determines an input to the system given an estimate of the system state or given the

output of the system, where the inputs try to achieve some desired behavior within

the system.

These control algorithms are applied to demand response scenarios, where the

algorithms enable automated changes to the aggregate, or total, electricity demand

of collections, or aggregations, of residential appliances on fast time-scales (i.e., on

the order of seconds) within power network operation. Specific attention is given to

practical issues and limitations within the communication and sensing infrastructure

needed to enable automated demand response on these time-scales, and these issues

and limitations are included within the estimation and control algorithms. By ac-

counting for these issues and limitations, the algorithms are able to produce accurate

demand changes or accurate estimates of power system quantities while avoiding pro-

hibitory costs of extensive upgrades to this infrastructure. Incorporating models into

estimation and control algorithms can improve their performance. Additional work

presented in this dissertation develops aggregate models of the residential appliances

(or residential loads) used for demand response, where the aggregate models capture

the total behavior of the residential appliance population. These models are based on

previously developed models, and they are modified to make them more applicable

to real-world scenarios.

The work presented in this dissertation also develops learning algorithms that

are within the online learning framework of supervised machine learning. Supervised

machine learning uses historical data to estimate a predictor, where the predictor

computes an output given input data, and where the historical data contains both

the input and output information. In supervised learning, offline or batch learning

2



uses a set of historical training data to compute the predictor, and then applies this

predictor as new input data becomes available. In online learning, data becomes

available sequentially over the course of time, and in contrast with offline learning,

the predictor is updated as each new piece of input and output data becomes available.

The learning algorithms are applied to electricity distribution networks, where the

goal is to use measurements from within the distribution network to estimate compo-

nents of the load, or electricity usage/demand. Electricity distribution networks are

part of the infrastructure used to transport electricity to consumers, and the buildings

connected to these networks are usually residences and small commercial buildings.

This goal has a number of uses, but within the demand response problem, it can be

used to obtain estimates of the aggregate electrical demand of the appliances that

are available for demand response in real-time. These aggregate demand estimates

can then be used within demand response control and state estimation algorithms.

As with the control algorithms, these learning algorithms take into account the ca-

pabilities of measurement infrastructure that are commonly available in distribution

networks, enabling their implementation with minimal infrastructure upgrades.

In the remainder of this chapter, Section 1.3 presents the general problem formu-

lation considered within this dissertation in more detail, and it then summarizes the

research contributions of the remaining chapters within this dissertation. In order

to provide additional background to the material in Section 1.3, Section 1.1 provides

background on electric power networks and their operation, and Section 1.2 provides

background on demand response using residential loads, referred to as residential

demand response in this work.

1.1 Background on Electric Power Networks

Electric power networks are considered one of the largest and most complex sys-

tems ever constructed. Generators (traditionally, large power plants) produce elec-

trical energy. Electrical energy is consumed by loads, or the devices and processes

within end-user facilities (such as factories, commercial buildings, and residences)

that use the electric energy to drive other processes. The energy is transported from

the generators to the loads through the transmission and distribution systems, which

contain equipment such as conductors (the power lines) and transformers. Some

electrical energy is consumed by the transmission and distribution systems, which is

referred to as losses. The total consumption of the losses and loads is referred to as

the electricity demand.
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A system operator is responsible for operating the power network. Power network

operation consists of coordinating the generators, power network equipment, and, in-

creasingly, the demand to ensure the reliable supply of the desired power to consumers

while ensuring equipment operates within its engineering limits. Examples of these

engineering limits include the thermal limits of conductors, limits on the generation

capacity of power plants, limits on voltages within the network, and limits on the

frequency of the currents within the alternating current (AC) network [2]. The sys-

tem operator modifies resources within the network (e.g., the generation settings of

power plants and the topology of conductor connections) on a variety of time-scales,

from fractions of a second through years, to ensure that the balance between energy

generation and consumption is maintained [2].

Regulatory changes, i.e., restructuring, have changed the paradigm of system op-

eration from one based on regulated monopolies to one based on markets [2]. Before

these regulatory changes, which began in the US in the 1990s, utilities operated as

vertically integrated, regulated monopolies that had control of all generation, trans-

mission, and distribution resources within its network [7]. These monopolies were

the only electricity provider within their power network; they supplied power to all

customers connected to the network, and prices were set by an external regulating

agency [7]. Restructuring forced monopolies to split the ownership of their assets

into separate entities that owned either generation, transmission, or distribution re-

sources [7]. Owners of transmission and distribution system resources are still op-

erated as regulated monopolies, and owners of generation resources now compete to

provide electrical energy and other services in an open market [7]. Restructuring also

created the entity called a system operator that is independent from the other entities

that own resources within the power network. Previously, the monopoly owned all

resources within its network and could operate them as it saw fit to ensure the reliable

supply of electricity, but after restructuring, many resources that ensure reliability

are obtained through markets [7].

This section presents some background on the basic network structure of AC

power networks, their basic operation principles, and an overview of electricity mar-

kets. The background on the operation principles and markets pertain specifically

to restructured electricity markets within the US. The goal is to provide context for

the general demand response problem addressed in this dissertation, and so only the

necessary details are presented. References on electric power networks such as [2,8,9]

can be consulted for additional background.
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1.1.1 Basic Electric Power Network Structure

The structure of the electric power network helps ensure that the transport of

electricity from producers to consumers is done in a reliable, efficient, and safe manner

[2]. The equipment that transports the electric power is divided into separate levels (or

systems or networks) based on the voltage of the network, and transformers link the

levels by converting the flow of electricity from one voltage level to another. The two

main levels within the power network are the transmission system, which operates at

high voltages, and the distribution system, which operates at low voltages, but there

may also be intermediate levels with intermediate voltages [2]. Large generators (e.g.,

power plants) are connected to the transmission system via a transformer, large loads

(e.g., industrial and large commercial facilities) are connected to intermediate network

levels, and small generators (e.g., residential solar generation) and small loads (e.g.,

residential appliances) are connected to the distribution system [2]. The transmission

system operates at high voltage to reduce losses in transferring large quantities of

electrical energy over long distances, and the transmission system contains redundant

paths (i.e., it is a meshed network) to help ensure the reliable transport of electrical

energy in the event of faults, or malfunctions [2]. The distribution system operates at a

low voltage to help ensure the safe interaction of the general population with the power

network, and it usually radial, meaning that there is one or few paths from one point

within the network to another [2]. The radial structure helps to reduce the equipment

costs and to improve the ability to isolate faults [2]. Finally, distribution feeders are

the conductors that supply electrical energy from the distribution substation to the

buildings connected to the distribution system. The distribution substation contains

transformers that convert the voltage from higher levels to that of the distribution

system.

1.1.2 Basic Operation Principles

The generation and consumption of two types of power must be balanced within

the power network: active power and reactive power. Active power is the flow of

electrical energy that can be used to drive other processes, and reactive power is

the flow of energy that oscillates within the power network due to coupling between

electric and magnetic fields [2]. A mismatch in the production and consumption of

active power causes the system frequency to deviate from its desired value. At the

transmission system level, a mismatch in the production and consumption of reactive

power mainly influences the voltage levels within the power network, which must be
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maintained within specific ranges to ensure equipment health and network reliability

[2]. In a distribution system, the relationship between reactive power and voltage

levels is not as strong due to different characteristics of the conductors versus those

in the transmission system. In this work, we are mainly interested in maintaining, or

regulating, the frequency in real-time about its desired value of 60 Hz in the US.

Real-time frequency regulation occurs through a combination of passive and active

methods [2]. Passive methods are actions inherent in the equipment that help to

correct the balance between the production and consumption of active power, and

active methods are those where some conscious (possibly automated) action is taken

within the system. Active frequency regulation methods are needed to maintain the

frequency within an acceptable range of its desired value, where compensation is

needed due to differences in the predicted or scheduled generation and demand.

The active control methods include governor control, automatic generator con-

trol (AGC), and scheduling [2]. Governor control, the fastest of the three methods,

operates on the time-scale of fractions of seconds to seconds. When a power plant

employs governor control, the plant’s power production is automatically adjusted

based on the rotational speed of the power plant’s generators; the generators speed

up due to the conservation of energy if the system’s total power generation exceeds

the total demand, and the generators slow down if demand exceeds generation [2].

AGC, the medium-speed method, operates on the time-scale of seconds to minutes.

In AGC, the system operator coordinates and transmits automatic adjustments to

the power production settings of the generators1 to regulate the system frequency and

to ensure that power flows between specified regions of the network are carried out

as planned [2]. Scheduling, the slowest of the three methods, operates on time-scales

of minutes to days. Scheduling determines which power plants are producing power,

and it determines their power production schedule based on the forecast demand [2].

1.1.3 Overview of Electricity Markets

In restructured power systems, electricity markets are used to help organize the

operation of the power network. These markets act as a clearinghouse where offers

to buy and sell power system products (such as energy production) are entered,

ensuring that system operation can be carried out in an economically efficient manner

[2]. The system or market operator runs these markets as an independent entity

[7], for example, Regional Transmission Operators (RTOs) and Independent System

1Demand can participate in AGC via demand response programs by adjusting the aggregate
demand of the loads in the opposite direction that a generator would.
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Operators (ISOs) in the US. A number of markets exist to coordinate the long-term

expansion of the network, schedule short-term energy production, and to schedule

ancillary services, which are resources that help ensure the reliability of the power

network.

Typical electricity markets include a capacity market, a day-ahead market, a real-

time market, and an ancillary services market. The capacity market allows power pro-

duction capacity to be bought or sold several years in advance, e.g., three years [10],

which coordinates the long-term ability to meet the expected, future electricity de-

mand. The day-ahead and real-time markets are energy markets because they coor-

dinate the energy delivery to meet the demand forecast one day in advance and/or

minutes in advance, respectively; these markets determine the nominal power produc-

tion schedule of the generators or the demand adjustment schedules. In the day-ahead

market, energy is purchased one day before it must be delivered, e.g., the market on

Thursday sells energy that is delivered on Friday [11]. In the real-time market, energy

is purchased for immediate delivery over some relatively short time period, e.g., five

minutes. The real-time market allows last-minute balancing between the day-ahead

generation commitments and the demand that is expected in the short-term, e.g., over

the next five minutes [11]. However, imbalances will still occur between generation

and consumption because the actual power generation may not match the commit-

ments and because the demand will vary within the time periods of the real-time

market, causing the system frequency to vary.

Finally, the ancillary services market secures services or capabilities that help

ensure the real-time reliability of the power network [7]. These services include op-

erating reserves and frequency-regulation reserves. Operating reserves are used to

respond to major short-term changes in the electricity supply or demand, e.g., if a

generator suddenly fails [7]. Frequency-regulation reserves ensure there is capacity to

increase or decrease generation or demand in response to AGC signals to regulate the

system frequency in real-time [7].

1.2 Background on Residential Demand Response

This section provides background on residential demand response by summarizing

the evolution of research trends in residential demand response, from the inception

of the power industry through the present day, and by developing the motivation for

the research in this dissertation. The research focus in the field of residential de-

mand response has changed over time as the loads connected to the power grid have
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changed, as technology has advanced, and as governmental regulations have changed.

One mechanism to induce changes in residential demand is a market-based approach,

which adjusts the electricity price paid by the consumers based on the price estab-

lished in energy markets to induce manual changes in demand enacted by the residents

(e.g., see [12–14]).2An alternate mechanism induces demand changes by transmitting

signals directly to the loads (e.g., see [15–18]). The signals can be generated by a

system operator or an automated algorithm, and actuation infrastructure enacts au-

tomated responses to the signals. Note that these signals could include time-varying

prices, which an automated algorithm (e.g., within a household energy management

system) uses to adjust the household demand [16, 19, 20]. The discussion below fo-

cuses on the latter mechanism, as it produces more predictable demand changes than

the former mechanism, which is important when supplying reliability services such as

frequency regulation [21].

Participants in the electricity industry have been interested in manipulating the

demand of residential loads from the industry’s inception in the late 19th century.

In the 1880s and 1890s, electricity was mainly used at night for lighting purposes,

and utilities discussed using time-varying electricity prices to promote more evenly

distributed electricity demand [22]. In the 1930s, [15] proposed ripple control, which

transmits a control signal through the power network equipment by superimposing a

signal on the electrical currents flowing within the network, as a method to remotely

switch lighting and electric water heaters on/off. In the 1970s, increased adoption

of air conditioners led to extreme, short-term peaks in the electricity demand during

hot days, and costly generation resources were often used to meet these peaks in

demand [23]. Utilities began using residential demand response, most notably remote

on/off switching of water heating, space heating, and space cooling appliances, to

reduce this peak demand and/or shift energy usage to off-peak times, which reduced

the high operating costs [23].

This constitutes the traditional setting for a residential demand response pro-

gram: a utility compensates residents that enroll a household device into the demand

response program. In exchange, the utility can remotely turn on/off the enrolled res-

idential appliances. Under normal operation, the demand reaches peak values during

a portion of the day, and the utility must use costly generators to produce energy for

this demand. With demand response, the utility controls the residential appliances

2There are a number of works that attempt to develop a taxonomy for labeling demand response
programs (e.g., see [14, 21]); the following discussion does not use terminology that strictly adheres
to a specific taxonomy.
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either to reduce the peak demand or to shift the energy usage to other times; this

allows less costly generators to be used and reduces or eliminates the need to use these

high-cost generators. After the widespread adoption of air conditioners, research fo-

cused on modeling the physical processes driving electric heating and cooling loads in

residences and predicting demand changes from switching these loads on/off [24–30].

From the 1990s through the 2010s, restructuring, the California energy crisis, and

a number of regulations paved the way for a paradigm shift in the role of residential

demand response within a power network. Restructuring introduced electricity mar-

kets, and in the late 1990s and early 2000s, California experienced high and volatile

electricity prices in its markets. A proposed solution was to use market prices to

influence demand [31]. The Energy Policy Act of 2005 identified the integration of

demand response into electricity markets as a major objective of US energy policy [6].

The American Recovery and Reinvestment Act of 2009 supplied $4.5B to start mod-

ernizing the electric power grid, i.e., the smart grid initiative, which funded projects

that included the installation of smart meters at residences and the installation of

communication technologies at the distribution system level [32].

In the 2010s, Federal Energy Regulatory Commission (FERC) Orders 719, 745,

755, and 784 also helped to create a favorable environment for demand response

participation in power markets. FERC Order 719 allows aggregations of loads to

participate in power markets [33]. FERC Orders 745 and 755 allow demand response

resources to participate in energy markets [34] and ancillary service markets [35], re-

spectively. FERC Order 755 includes compensation for ancillary services based on the

speed and accuracy with which ancillary services are provided [35], and FERC Order

784 provides more compensation to resources providing ancillary services with faster

ramping rates, i.e., resources that can rapidly change their generation/demand [36].

These compensation changes benefit residential demand response because aggrega-

tions of small loads, e.g., those in residences, are thought to be able to produce

accurate and fast demand changes [37].

One major avenue of modern residential demand response research, enabled by ad-

vanced metering infrastructure such as smart meters, is the use of load aggregations

to provide frequency regulation. This was initially investigated in [38], and much

research has developed models, control algorithms, and estimation algorithms to im-

prove residential demand response capabilities in this context (e.g., see [17,18,39–46]).

In this setting, an aggregator, which can be a utility or an entity that specializes in de-

mand response, can manipulate the demand of some set of demand-responsive loads,

e.g., air conditioners; the demand-responsive loads are loads that have been enrolled
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in the demand response program by residential customers in exchange for some form

of compensation. The aggregator can bid into an ancillary services market to offer

frequency regulation to the network operator based on the ability of the demand-

responsive loads to change their aggregate demand. If the frequency regulation bid is

accepted, the aggregator receives a desired demand set-point from the system opera-

tor every few seconds, where the set-point is adjusted over time to provide frequency

regulation. Finally, the aggregator is compensated by the system operator based on

the capacity that they bid into the market and the accuracy with which the aggrega-

tor’s total demand-responsive load tracked the system operator’s set-points.

Demand response via a load aggregation requires sensing and communication in-

frastructure to connect the devices because the aggregation consists of a large number

of spatially distributed loads. A demand response program that is providing frequency

regulation can generate higher revenues with sensing, data communication, and ac-

tuation capabilities that enable faster and more accurate demand changes, but this

capability may increase the infrastructure costs of the program. There is an increasing

amount of this infrastructure already deployed at residences, e.g., smart meters [47]

and home automation systems [48]. However, this existing infrastructure may have

limitations in its capabilities. For example, existing smart meters have significant lim-

itations in their communication and data storage capabilities [49]. Operating within

the capabilities of existing infrastructure can help reduce costs by avoiding infrastruc-

ture upgrades, and control algorithms that take these capabilities into account can

provide more accurate demand changes than if the capabilities are not accounted for.

This is the motivation for the work within this dissertation.

1.3 Scope of Work

This section defines the system considered within this work and summarizes the

contributions of this dissertation. Section 1.3.1 summarizes the general problem

framework, i.e., the residential demand response scenario, considered within this dis-

sertation. Each of the following chapters address a portion of this problem directly

or develop algorithms or models that can be applied to this scenario. Section 1.3.2

summarizes the contributions of the remaining chapters within this dissertation.

1.3.1 General Problem Framework

This work focuses on the residential demand response scenario summarized in

Fig. 1.1. The scenario contains three major components: a portion of a distribution
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system, three communication networks, and a power system entity (e.g., a utility or

demand response provider), hereafter referred to as an aggregator in this chapter. The

portion of the distribution network is the plant, or the physical system of interest; it

consists of a distribution feeder and the buildings/loads connected to it. We assume

that feeder-level measurements (e.g., power flows, voltage magnitudes, voltage angles,

and currents) are available from a supervisory control and data acquisition (SCADA)

system. We also assume that weather-related measurements of the feeder’s geographic

area are available. We assume that the plant contains a single distribution feeder for

simplicity, but the framework can be readily extended to include multiple distribution

feeders. The building-level loads (e.g., residences or commercial buildings) consist of

the demand of each of the buildings connected to the distribution feeder. Each of

the buildings is equipped with a smart meter, and we assume according to [49] that

the smart meter is capable of measuring the total power demand (both active and

reactive) of the building, the voltage at the smart meter, and the current flowing

into the building. These measurements are stored and can be transmitted to the

aggregator at some regular interval, e.g., every hour. Furthermore, we assume that

some residences connected to the feeder contain loads, e.g., air conditioners, that

are enrolled in a demand response program. Building-level energy disaggregation

algorithms are capable of separating the measured demand of a building into the

demand of different loads within the building [49], and so we assume that we have

access to the demand of the loads participating in demand response on the same

time-scales that smart meter measurements are available.

The communication networks enable the transfer of data between the plant and the

aggregator. We assume three separate communication networks for generality as dif-

ferent communication infrastructure may be used to link different components within

the system. These communication networks could be identical in practice, but model-

ing them separately allows for a more general problem framework by allowing different

characteristics to be modeled for each communication network. The wide-area mea-

surement network communicates the weather-related measurements and feeder-level

measurements from the plant to the aggregator. The building-level measurement net-

work communicates measurements of the individual buildings’ total power demand

to the aggregator. The input network communicates the control inputs from the ag-

gregator to the plant; the control inputs are used to influence the demand-responsive

load to produce a desired behavior, e.g., tracking a frequency regulation signal from

a system operator. The aggregator computes broadcast inputs, meaning identical

control inputs are sent to all demand-responsive loads within the load aggregation.
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Figure 1.1: The three main components of the residential demand response framework, and the
information transfer between those components

The control inputs may arrive asynchronously at the loads due to the effects of the

communication network, meaning that the same information within the broadcast

input may arrive at each demand-responsive load at different times.

Finally, the aggregator contains inference and input design algorithms that operate

on time-scales of seconds to minutes. The inference algorithms use the measurements

produced by the plant to infer information about the physical system. The input

design algorithms use the inferred information to compute the broadcast inputs. The

inference algorithms may incorporate information about the designed inputs, and the

input design algorithms incorporate the inferred information.

Each of the following chapters develops algorithms or models that can be used

within some portion of this system, and the assumptions regarding the sensing and

communication capabilities are different in the various chapters. As a result, details

of the assumptions are given in the respective chapters.

1.3.2 Contributions

This dissertation focuses on the development of online learning algorithms, control

algorithms, and models for residential demand response and for distribution networks

that operate on fast time-scales of seconds to minutes. The algorithms incorporate

practical limitations of the communication and sensing infrastructure, and incorporat-

ing these limitations allows the algorithms to operate more effectively than algorithms
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that do not include the limitations. The remainder of the dissertation is organized as

follows:

Chapter II presents work that mitigates the effects of communication delays while

using residential demand response for frequency regulation on timescales of

seconds. Communication delays, or delays in transmitting data through a com-

munication network, can arise due to the communication infrastructure used.

In addition, smart meters are not capable of transmitting data to an aggrega-

tor at these timescales, and so intermittent, device-level information about the

demand-responsive loads is assumed to be available. Accounting for the delays

as well as realistic measurement availability from smart meters allows the effects

of these limitations on the ability to follow a frequency regulation signal to be

reduced.

Chapter III presents work that only considers input delays, i.e., this is a simplified

version of the system considered in the previous chapter. The work develops a

simplified control algorithm, compared to the algorithm developed in the previ-

ous chapter. The goal is to reduce the computational requirement in mitigating

input delays and to analyze the reduction in the ability to follow a frequency

regulation signal due to the simplified controller.

Chapter IV benchmarks three aggregate models that were developed for residential

demand response against on another in a comparable scenario. These models

were developed in separate works, under different assumptions, and so eval-

uating them in a common, realistic simulation scenario allows the evaluation

of their comparative accuracy. This chapter compares the accuracy of two

Markov-based and one transfer function-based aggregate models of a set of air

conditioners against a realistic simulation model with time-varying outdoor air

temperature and temperature-dependent air conditioner parameters. The chap-

ter also extends these existing models to cope with the time-varying outdoor

air temperature.

Chapter V explores similarities between online learning algorithms and Kalman fil-

tering algorithms, which are two approaches to estimate the state of a system

in the presence of inaccurate (e.g., noisy) measurements. The chapter shows

that Dynamic Mirror Descent (DMD), an online learning algorithm that incor-

porates a single model, can be constructed to produce state estimates that are

identical to those produced by a discrete-time Kalman filter. Following this,
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the chapter extends this by exploring connections between a multiple model

Kalman filter (MMKF) and Dynamic Fixed Share (DFS), which both incorpo-

rate a set of candidate models to address situations in which the underlying

model is unknown. The functions/parameters used within DFS are constructed

to produce the same estimates as a MMKF. Following this, DFS is modified to

include several heuristics that are used to improve the performance of a MMKF

in order to assess whether they can also be used to improve the performance

of DFS. Finally, we investigate the performance of the algorithms and their

variations in a simulation study that seeks to estimate the time-varying power

consumption of an aggregation of electric loads, which could be used as the

feedback signal within a demand response algorithm.

Chapter VI investigates the ability to disaggregate a distribution feeder’s active

power demand measurements into: 1) the demand of a population of air con-

ditioners, and 2) the demand of the remaining loads connected to the feeder.

It uses an online learning algorithm, DFS, that uses the real-time distribu-

tion feeder measurements as well as aggregate models generated from historical

building- and device-level data. Two implementations of the algorithm are de-

veloped and case studies are conducted using real demand data from households

and commercial buildings to investigate the effectiveness of the algorithm. Note

that in this chapter, no control inputs are generated, and the loads operate nor-

mally.

Chapter VII extends the work of the previous chapter to perform energy disaggre-

gation using real-time reactive power, voltage magnitude, voltage angle, and

smart meter measurements in addition to the active power measurement used

in the previous chapter. The aggregate models are also modified to incorpo-

rate complex current measurements. In contrast with the previous chapter, the

distribution network is explicitly modeled in this work. As a result, the distri-

bution feeder demand is separated into three components: 1) the demand of

the air conditioners connected to the feeder, 2) the demand of the remaining

loads connected to the feeder, and 3) the active and reactive power consumed

by the distribution network. A version of the online learning algorithm devel-

oped in the previous chapter is modified to incorporate the various real-time

measurements via sensor fusion.

Chapter VIII presents the conclusions of the dissertation. It summarizes the con-

tent within the dissertation, it summarizes the main contributions of each chap-
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ter, and it proposes a number of avenues of future research. These avenues

include technical, economic, social science, and policy tasks for advancing res-

idential demand response as well as additional, more general tasks in machine

learning and state estimation.

Note that each chapter is self-contained; notation and acronyms are defined in each

chapter and for that chapter alone.
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CHAPTER II

Managing Communication Delays and Model

Error in Demand Response for Frequency

Regulation 1

Incorporating more fluctuating, renewable power generation into the electricity

network will usually lead to additional power production variability. To maintain the

frequency within an acceptable range, generation resources must supply more reserves,

which may require them to operate at inefficient operating points [52]. Alternatively,

the manipulation of electric power demand using demand response is also capable of

providing frequency regulation.

Common residential demand response methods include price-based demand ma-

nipulation and direct control of loads [53], e.g., residential thermostatically controlled

loads (TCLs) such as air conditioners, heat pumps, and water heaters. Under normal

operation, TCLs cycle on and off to maintain the temperature of an internal medium,

e.g., a house’s air temperature, around a user-defined set-point. Direct control strate-

gies manipulate a TCL population’s total power demand generally by adjusting either

the user-defined temperature set-point, e.g., [18, 38, 39], or by requesting additional

on/off switching, e.g., [17, 40, 41]. Aggregations of TCLs can be used to provide

ancillary services such as frequency regulation to the power system [39]. Recently,

researchers have developed non-disruptive load control strategies [37], ensuring TCLs

operate within or very close to their normal temperature range [39].

TCLs are a spatially distributed resource, and coordinating the demand of thou-

sands of them to provide frequency regulation requires sensing and communication

infrastructure. This infrastructure enables TCLs to receive control inputs and to send

1The work presented in this chapter was originally published in [50], and preliminary work was
published in [51].
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information about their current operating state. However, the cost of this infrastruc-

ture can be prohibitive [54]. Using existing infrastructure, such as smart meters, is

possible but the frequency of information retrieval is limited [49], and load control

input delays can be significant [55]. Developing control algorithms for demand re-

sponse that are robust to delays and respect the limitations of existing infrastructure

may lower the cost of demand response implementations.

Networked control theory addresses imperfect communication within control sys-

tems, see e.g., [56]. Ref. [57] investigates the impact of delays in frequency regulation

including batteries and develops control algorithms to limit their effects. Within the

demand response literature, [17, 40–43] develop control strategies to address infre-

quent or unavailable state measurements, [58] investigates lost messages in optimal

load scheduling, and [59] investigates the impact of, but does not compensate for,

communication latencies.

In this chapter, we develop non-disruptive control and estimation algorithms that

enable aggregations of residential TCLs to provide ancillary services such as frequency

regulation (i.e., secondary frequency control) in the presence of significant commu-

nication system limitations, including delays, as well as substantial error within the

model used by the algorithms. In practice, we would expect large model mismatch

since it is difficult to develop a computationally-tractable and accurate model of the

aggregate dynamics of large number of spatially-distributed, heterogeneous TCLs, es-

pecially given that many useful TCL parameters and states are not easy to measure.

Our primary contribution is to adapt networked state estimation and control ap-

proaches so to that they can be used to solve key practical problems that will be en-

countered in cost-effectively coordinating large numbers of heterogeneous distributed

TCLs for ancillary services. We propose two state estimation strategies, one that syn-

thesizes estimates obtained from a bank of Kalman filters acting on non-synchronous

state measurements and another that uses individual TCL state predictions obtained

from identified TCL models as pseudo-measurements within a single Kalman filter.

We also propose a model predictive control (MPC) algorithm that uses a probabilistic

estimate of the control input.

This work builds upon and extends our preliminary work in [51]. The additional

contributions of this work are as follows: 1) we make modifications to one of the

control algorithms first proposed in [51]; 2) we track real PJM frequency regulation

signals (rather than simple sinusoidal signals as in [51]) to evaluate the impact of

delays on the adequacy of the frequency regulation from demand response; 3) we

evaluate the control and estimation algorithms in tandem (rather than individually
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Figure 2.1: An overview of the problem framework of Chapter II.

as in [51]); 4) we evaluate the impact of modeling error by testing the algorithms

on a more realistic simulated plant, and compare the results to those generated with

the simpler plant used in [51]; 5) we find that both estimator-controller combinations

can effectively mitigate communication delays; and 6) we find that one estimator is

sensitive to the specific model used in the plant whereas the other is not.

The remainder of the chapter is organized as follows: Section 2.1 describes the

problem framework. Section 2.2 summarizes individual and aggregate TCL modeling

details. Section 2.3 develops two state estimation algorithms that we use in conjunc-

tion with a control algorithm that Section 2.4 develops. Section 2.5 formulates a

number of case studies and presents their results. Finally, Section 2.6 presents the

conclusions of the chapter.

2.1 Problem Framework

As shown in Fig. 2.1, we assume a problem framework that contains a plant, a

communication network, and an aggregator. The plant consists of a set of NTCL con-

trollable TCLs, some uncontrollable loads, and a distribution substation that serves

the total demand of the plant. We assume a smart meter acts as an interface be-

tween each TCL and the communication network, allowing two-way communication

between the TCLs and the aggregator through an imperfect communication network
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as in [41].

We make several assumptions regarding the communication network and smart

meters. Due to the capabilities of digital communication networks, we assume that

multiple measurements and inputs can be transmitted within one communication

packet, i.e., message. We also assume the messages are time-stamped [56] and the

clocks are synchronized across the communication network nodes, allowing knowl-

edge of previously realized delays and their resulting statistics. We assume that the

communication network imposes independent and identically distributed (IID) delays

on each message. We assume the smart meter can use logic to select an applicable

input from a set of inputs, as explained in Section 2.4. Finally, we assume each smart

meter can collect histories of the TCL’s internal air temperature and on/off mode

measurements, but the smart meter can only transmit these state measurement his-

tories infrequently, e.g., every fifteen minutes, due to communication limitations as

in [41].

We assume the aggregator, which acts as a central controller, uses a state estimator

and controller, both of which include a model of the plant. The aggregator induces

TCL on/off switching by broadcasting inputs at each time-step (every two seconds).

The inputs are designed to produce a desired aggregate TCL demand, and the inputs

are detailed in Section 2.2.2. IID delays cause the inputs to arrive asynchronously, and

so an estimated input is used by the aggregator. We assume that the desired aggregate

demand values are frequency regulation signals, e.g., automatic generation control

(AGC) or secondary frequency control signals, provided by the system operator.

The aggregator’s state estimation algorithm produces an estimate of the TCL

aggregation’s state, where the state is described in Section 2.2.2. We assume that

the aggregator has access to measurements of the total substation demand and TCL

state measurement histories as in [41]. As in [41], substation demand measurements

are available at every time-step, and the aggregate TCL demand is estimated from

these measurements by subtracting a prediction of the uncontrollable load. While

the substation demand measurements may be accurate, errors in predicting the un-

controllable demand result in measurement noise on the aggregate TCL demand. In

this work, we add normally-distributed, zero-mean noise to the aggregate TCL de-

mand to approximate the prediction error and any noise in the substation demand

measurements. As in [41] the TCL measurement histories are available infrequently

(every 15 minutes) due to smart meter limitations.

The infrequent availability of possibly delayed TCL state measurements, means

the aggregator relies on output feedback (i.e., the aggregate TCL demand estimates,
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referred to as “aggregate power measurements”) at most time-steps to form the state

estimate. The state estimate is then used by the aggregator to generate the control

inputs.

2.2 Modeling

We use three previously developed models and describe them here for complete-

ness and to establish the notation used throughout the chapter. Two hybrid, heat-

transfer-based models represent individual TCLs, and a Markov chain model repre-

sents the TCL population.

The first individual TCL model, developed in [60,61] and referred to as the three-

state model, models household heating and cooling appliances using a mass temper-

ature and an air temperature. The second, simpler TCL model, developed in [25,27]

and referred to as the two-state model, uses only an air temperature and can model all

TCLs. We use the three-state model to represent the TCLs within the plant for the

case studies described in Section 2.5 and we incorporate identified two-state model

into the state estimator developed in Section 2.3.2.2.

The hybrid nature of these models, i.e., their usage of both discrete and continuous

states, makes it computationally challenging to incorporate thousands of the models

within optimization-based control algorithms. The Markov chain model, developed in

[17] and referred to as the aggregate model, is a linear model of the TCL population’s

power demand dynamics, and it is easily incorporated into control algorithms. The

algorithms in Sections 2.3 and 2.4 use this aggregate model.

The following section describes the individual TCL models, and Section 2.2.2

describes the aggregate model. Note that we assume model parameters are time-

invariant throughout, but the models can incorporate time-varying parameters. Time-

varying parameters within the individual TCL models would result in a time-varying

aggregate TCL population model. Assuming that the time-varying aggregate model

is known, all of the algorithms are still applicable.

2.2.1 Individual TCL Models

We first present a generic discrete-time state update equation for cooling TCLs

below, then detail the difference between the two individual models in the following

sections. Table 2.1 summarizes the model parameters where rα, βs corresponds to a

uniform distribution and N pα, βq corresponds to a normal distribution with mean α

and variance β.
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Table 2.1: TCL Model Parameters for Chapter II

Parameter Description
Three-State

Value
Two-State

Value
θset Temperature Set-Point [�C] [23, 25] [23, 25]
θdb Temperature Deadband [�C] r0.85, 1.15s r0.85, 1.15s
θo Outdoor Temperature [�C] 32 32
Um Envelope Conductance [kW

�C ] [4.35, 5.87] -
Ua Internal Conductance [kW

�C ] [0.26, 0.35] [0.41, 0.56]
Λm Mass Heat Capacitance [kWh

�C ] [1.93, 2.60] -
Λa Air Heat Capacitance [kWh

�C ] [0.48, 0.64] [0.51, 0.70]
Qm TCL Mass Heat Gain [kW] 0 -
Qa TCL Air Heat Gain [kW] N p0, εq N p0, εq

ε Variance for Qa [kW2] 2.5e-7 2.5e-7
Qh TCL Heat Transfer [kW] [-16, -12] [-16, -12]
η Coefficient of Performance [-] 3 3
∆t Time-Step Duration [s] 2 2

Denote the set of TCLs J TCL �  
1, 2, . . . , NTCL

(
. Each TCL j P J TCL has

continuous-time matrix parameters Ac,j, Bc,j, and Ec,j, and the discrete-time matrix

parameters Aj, Bj, and Ej are formed using [62, p. 315]. The vector θjt denotes

the continuous states, which are the TCL’s internal temperature(s) at time-step t.

The discrete state corresponds to the scalar on/off mode mj
t , and djt is a disturbance

vector. The discrete-time state-update equations are

θjt�1 � Ajθjt �Bjmj
t � Ejdjt j P J TCL (2.1a)

mj
t�1 �

$'''&'''%
0 if θa,jt�1   θset,j � θdb,j{2
1 if θa,jt�1 ¡ θset,j � θdb,j{2
mj
t otherwise,

j P J TCL (2.1b)

where (2.1a) updates the internal temperatures, (2.1b) updates the on/off mode, and

θa,jt is the element of θjt that corresponds to the TCL’s air temperature, which is being

regulated. The power demand of TCL j is P j
t � p|Qh,j| mj

tq{ηj with Qh,j   0 for

cooling TCLs. The output of the TCL model, or the values that can be measured, is

yjt �
�
θa,jt mj

t

�J
.

2.2.1.1 Three-State Individual TCL Model

We use this model to represent individual TCLs within the plant during the

case studies presented in Section 2.5. In the three-state model θjt �
�
θa,jt θm,jt

�J
where θm,jt denotes the TCL’s mass temperature. The disturbance vector is djt �
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�
θo Qa,j

t Qm,j
�J

, where the heat injections Qa,j
t and Qm,j arise due to solar irradi-

ance and heat gain within the household due to occupants and additional appliances.

The model’s continuous-time matrices are

Ac,j �
�
�pUa,j � Um,jq {Λa,j Um,j{Λa,j

Um,j{Λm,j �Um,j{Λm,j

�

Bc,j �
�
Qh,j{Λa,j 0

�J
Ec,j �

�
Ua,j{Λa,j 1{Λa,j 0

0 0 1{Λm,j

�
.

Table 2.1’s “Three-State Value” column parameterizes a population of residential

air conditioners using nominal parameters from [63]. However, we set the outdoor

temperature θo to simulate a reasonably hot day, we assume Qa,j
t is zero-mean and

normally-distributed to include random air temperature disturbances as in [51], and

we set Qm,j � 0. The results in Section 2.5.2 include a discussion of the algorithms’

ability to accommodate positively biased heat injections.

2.2.1.2 Two-State Individual TCL Model

We use these models within the estimator described in Section 2.3.2.2. In the two-

state model θjt � θa,j
t and djt �

�
θo Qa

t

�J
. The resulting continuous-time matrices

are Ac,j � �Ua,j{Λa,j, Bc,j � Qh,j{Λa,j and Ec,j �
�
Ua,j{Λa,j 1{Λa,j

�
. We set the

parameters in Table 2.1’s “Two-State Value” column equal to the three-state model

values where applicable, but we set Ua,j and Λa,j such that the nominal cycle time is

comparable to that of the three-state model.

2.2.2 Aggregate TCL Population Model

The aggregate model, which is used by the controller and estimator, assumes that

the two-state model of Section 2.2.1.2 is the underlying individual TCL model. While

an aggregate model exists for the three-state TCL model [39], measurements of θm,jt

are not easy to obtain, and practical construction of the state-transition matrix from

available measurements is an open question. In Section 2.5, we evaluate the impact of

this assumption on the control and estimation algorithms’ performance by simulating

TCLs within the plant using the three-state model.

The aggregate model uses an aggregate state xt P RNx
where Nx is the number

of discrete states, and each element of the state vector corresponds to the portion of
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TCLs within the discrete state. The discrete states are formed by first defining a nor-

malized temperature deadband and then dividing it into Nx{2 temperature intervals.

Each interval contains two states – one for TCLs that are drawing power and one for

TCLs that are not. The state transition matrix A P RNx�Nx
is a transposed Markov

Transition Matrix that describes the probability of TCLs transitioning between states

in a time-step.

The input ut P RNx{2 is the portion of TCLs that we want to force from the “on”

bin of a temperature interval into the corresponding “off” bin or vice versa. The

matrix B P RNx{2�Nx
ensures the TCLs are forced into the opposite on/off bin within

the same temperature interval. Before transmitting input vectors to the TCLs, this

input is converted into a switching probability by normalizing each input element

with the corresponding state element. To implement these switching probabilities,

each TCL first selects the probability corresponding to its current state. Then, each

TCL determines whether it switches by drawing a random number. We assume the

local TCL controller disregards switching requests when necessary to maintain the

temperature within the normal operating range.

The output of the aggregate model yt depends on whether both aggregate state and

aggregate power measurements are available at time-step t. The set T S denotes time-

steps where both aggregate state and aggregate power measurements are available,

and yt P RNx�1 at these time-steps. Otherwise only aggregate power measurements

are available and yt P R. The resulting linear system is

xt�1 � Axt �But � wt (2.3a)

yt �

$'''&'''%
CPxt � vP

t t R T S��CS

CP

��xt �
��vS

t

vP
t

�� t P T S,
(2.3b)

where wt P RNx
is process noise including modeling error, vS

t P RNx
is the aggregate

state’s measurement noise, vP
t P R is the aggregate power’s measurement noise, CS

is an Nx � Nx identity matrix, CP � P
on
NTCLr0 � � � 0 | 1 � � � 1s, and P

on
is an

approximation for the average power draw of a TCL that is on within the aggregation.

We calculate P
on

using data from a set T hist of Nhist historical time-steps when the
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TCLs cycled without external forcing

P
on � 1

Nhist

��� ¸
tPT hist

°
jPJTCL

P j
t°

jPJTCL

mj
t

��. (2.4)

The quantity
°
jPJTCL P

j
t is the total power draw of TCLs at time-step t, and

°
jPJTCL m

j
t

is the number of TCLs that are on at time-step t. Finally, we assume that the aggre-

gate model is known to the aggregator a priori. It can be derived or identified using

the methods in [17].

2.3 State Estimation Algorithms

Our state estimation algorithms use a networked, time-varying Kalman filter

from [64] that incorporates aggregate state and power measurements. The networked

Kalman filter excludes measurements that have not arrived from the calculations at

each time-step using binary indicator variables. As delayed measurements arrive,

the networked Kalman filter fully incorporates the new information by updating a

history of estimates. Measurement delays are treated deterministically within the

estimator since delays associated with measurements that have arrived are known.

Whereas [64] does not include inputs within the estimator’s dynamic model, we use

estimated inputs that are described in Section 2.4.2.

To incorporate delayed measurements, past estimator values must be stored so

that they can be updated. The memory requirement can be reduced by excluding

measurements with delays longer than a preset threshold; for generality, we do not

set a delay threshold in this work. Setting a delay threshold within the estimator

implies that measurements are discarded if they do not arrive by the deadline. As

measurements take longer to arrive, their information becomes outdated and they are

less useful. The threshold can be set given the known delay statistics such that only

a small number of measurements are discarded due to late arrival and the impact on

the state estimate is small. Section 2.3.1 presents the networked Kalman filter, and

Section 2.3.2 presents two variations of it, which we apply to our problem.

2.3.1 The Networked Kalman Filter

Within this section and Section 2.4, we use the time indexing notation ψk|t where

ψ is an arbitrary value, and t denotes the time of the calculation. In this section, k ¤ t
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indexes a historical horizon of time-steps. The horizon length Nkf
t is set at each calcu-

lation time t as the number of time-steps of the newly-arrived measurements’ largest

delay, and the set of time-steps within the historical horizon is Kkf
t �  

t�Nkf
t , . . . , t

(
.

The set Kkf
t includes past time-steps requiring an update to incorporate the newly

arrived measurements into the state estimate, and the present time-step for which a

new state estimate must be generated.

The binary, scalar variables γS
k|t and γP

k|t indicate whether the aggregate state

and aggregate power measurements sampled at time-step k have arrived by time-

step t. The indicators are 0 if the corresponding measurement has not arrived by

time-step t, and 1 otherwise. The indicator γS
k|t is also set to 0 when the aggregate

state is not measured. The Kalman filter observations incorporate the aggregate state

measurements yS
k and the aggregate power measurements yP

k using yk|t � Ck|tx� vk|t

where

yk|t �
�
γS
k|t y

S
k

γP
k|t y

P
k

�
, Ck|t �

�
γS
k|t C

S

γP
k|t C

P

�
, and vk|t �

�
γS
k|t v

S
k

γP
k|t v

P
k

�
.

The measurement noise vk|t has covariance Vk|t, which is a block diagonal matrix

composed of the aggregate state and aggregate power measurement noise covariances

γS
k|tV

S and γP
k|tV

P. These covariances are assumed to correspond to zero-mean, normal

distributions. The indicator values ensure that measurements that have not arrived

have no effect on the state estimate, and the resulting zero components of yk|t, Ck|t,

vk|t, and Vk|t can be removed to reduce the dimension of the computations with no

effect on the estimate. The quantities ryk|t, rCk|t, rvk|t, and rVk|t correspond to the

reduced matrices.

To perform state estimation, we initialize the recalculation horizon using the

state estimate and error covariance from the calculation at time t � 1: pxt�Nkf
t �1|t �pxt�Nkf

t �1|t�1 and Ht�Nkf
t �1|t � Ht�Nkf

t �1|t�1. Previous state estimates are then re-

calculated to incorporate newly arrived measurements, and a new state estimate is

generated for time-step k � t. For k P Kkf
t :

px�k|t � Apxk�1|t �Bpuk�1 (2.5a)

H�
k|t � AHk�1|tA

J �W (2.5b)

Kk|t � H�
k|t

rCJ
k|t

� rCk|tH�
k|t

rCJ
k|t � rVk|t	: (2.5c)

pxk|t � px�k|t �Kk|t

�ryk|t � rCk|tpx�k|t	 (2.5d)

Hk|t � H�
k|t �Kk|t

rCk|tH�
k|t. (2.5e)
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The aggregate model in (2.5a) generates an a priori state prediction px�k|t and error

covariance H�
k|t in (2.5b), where W is the process noise covariance of a zero-mean,

normal distribution. Section 2.4 explains the estimated input puk in more detail. The

Kalman gain Kk|t is calculated in (2.5c) based on available observation values with

: denoting a pseudo-inverse, which we use for numerical reasons. The a posteriori

state estimate pxk|t and error covariance Hk|t are then calculated in (2.5d) and (2.5e).

The output of the algorithm is the new state estimate for the current time-step t, i.e.,pxt � pxt|t, which fully incorporates all measurements that have arrived. Note that the

process noise is not necessarily zero-mean and normally-distributed, which results in

a sub-optimal filter. We assume that the measurement noise and process noise are

independent from each other and independent in time.

2.3.2 Variations of the Networked Kalman Filter

Because of IID transmission delays, the state measurement histories from individ-

ual TCLs do not arrive synchronously at the aggregator. We develop and investigate

the performance of two methods to form aggregate state estimates from asynchronous

TCL measurements for use within the networked Kalman filter. The method in Sec-

tion 2.3.2.1 describes an algorithm that runs NTCL filters from Section 2.3.1, one

for each TCL. The method in Section 2.3.2.2 uses a single networked Kalman filter

that uses aggregate state predictions obtained by applying identified individual TCL

models to old state measurements. Both methods use (delayed) aggregate power mea-

surements that are sampled at every time-step and (delayed) TCL state measurements

that sent to the aggregator infrequently, e.g., every fifteen minutes.

2.3.2.1 Estimator 1: Parallel Kalman Filter Estimator

An aggregate state measurement can be formed using each TCL’s state mea-

surement, i.e., its temperature and on/off mode measurements, and used within a

networked Kalman Filter. However, this would require waiting until all TCL state

measurements have arrived at the aggregator, and so the aggregate measurement

delay would be equal to the worst-case TCL state measurement delay. Instead, we

construct a state estimator that runs NTCL networked Kalman filters in parallel,

one for each TCL. When a TCL state measurement arrives, we use it within the

corresponding Kalman filter and combine all filter estimates into a single aggregate

state estimate. By doing this, we can update the aggregate state estimates while

measurements are still arriving.
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Each of the filters use the aggregate model, delayed aggregate power measure-

ments, and delayed TCL state measurements from the corresponding TCL. While

TCLs transmit measurement histories, only the most recent measurement is used in

this method. We define the state vector of each filter as xjt P RNx
for j P J TCL; it

is defined equivalently to xt in Section 2.2.2, however xjt models a single TCL. To

form xjt , we convert TCL j’s most recent air temperature and on/off value into its

corresponding discrete bin value within the aggregate state. We then set the element

of xjt corresponding to the TCL’s discrete bin value to 1 and all other elements to 0.

We assume TCL state measurements are accurate for convenience, and so we use a

near-zero aggregate state noise covariance, i.e., V S,j � 0 @ j. We use the the aggregate

power measurement noise covariance defined in Section 2.3.1, and we assume that the

covariance of this measurement noise is significantly greater than zero due to errors

in predicting the uncontrollable demand as described in Section 2.1. The estimates

produced by each filter are combined into an overall aggregate state estimate at each

time-step as x̂t �
�°NTCL

j�1 pxjt	 {NTCL. The main disadvantages of this method are

the large computational requirement of running NTCL Kalman filters in parallel and

the usage of only the most recent TCL measurements.

2.3.2.2 Estimator 2: Single Kalman Filter Using State Predictions

This state estimator consists of three components: an individual TCL parameter

identification algorithm, a bank of NTCL identified two-state individual TCL models

as described in Section 2.2.1.2, and a single networked Kalman filter as described in

Section 2.3.1. The parameter identification algorithm uses the TCL state measure-

ment histories to identify the thermal parameters for each TCL, which we assume

are initially unknown to the aggregator. We assume that measurements of thermal

mass temperature are unavailable, as they would be difficult to obtain in practice.

Therefore, we use the two-state individual TCL models, as it would be difficult or

impossible to identify the three-state model parameters.

This estimator uses delayed aggregate power measurements and delayed TCL state

measurement histories sampled at every time-step but transmitted infrequently, e.g.,

every fifteen minutes. As each TCL’s measurement history arrives, it is used within

a nonlinear least squares algorithm to identify the thermal parameters pΛa,j and pUa,j

corresponding to the two-state individual TCL model, assuming that the set-point,

deadband width, and outdoor temperature are known. We use the identified models

to predict the TCL states at each time-step (assuming Qa,j
t � 0 @ j), and we use the

individual predictions to form an aggregate state prediction x�t .
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A single networked Kalman filter treats the predictions x�t as measurements, al-

lowing the individual TCL models to influence the Kalman filter estimate. The mea-

surement noise associated with the aggregate state predictions vS
t is assumed to be

zero-mean and normally-distributed, and the aggregate state measurement noise co-

variance V S is generated using the historical errors. Note that the noise will not

be normally-distributed in general, which results in a sub-optimal filter. As in Sec-

tion 2.3.2.1, the measurement noise associated with the aggregate power measure-

ments is significant, and so the associated covariance is greater than zero.

The method has the disadvantage that it relies on the accuracy of the two-state

model; the implications are discussed in Section 2.5. This estimator must keep track

of and compute the state of NTCL two-state models and requires one networked

Kalman filter. Alternatively, the parallel Kalman filter estimator requires NTCL net-

worked Kalman filters. The amount of information, e.g., matrices and states, that

must be stored for each Kalman filter depends on the aggregate model’s dimension

Nx. Qualitatively, the data requirements and necessary computations, i.e., matrix

multiplication, for each estimator are similar.

2.4 Control Algorithm

The aggregator uses the predictive control approach described in [56] to counteract

input delays. In this approach, the control algorithm generates an open-loop input

sequence Ut P RNx{2�Nmpc
at each time-step based on the current state estimate.

IID delays cause asynchronous input arrival at the TCLs. Using time-stamping, we

assume that the smart meter (or TCL) can select the most recently generated input

sequence that has arrived. The TCL then selects the input from that sequence that

applies to the current time-step, or it uses a zero input. The controller does not know

the implemented input at each TCL, and an estimated input is generated from the

known delay statistics and is used within the aggregator’s algorithms.

We develop an MPC algorithm that considers a horizon of Nmpc time-steps ranging

from the present time-step t to future time-step t�Nmpc�1 to generate Ut. The MPC

algorithm uses the aggregate model to design inputs to track the desired aggregate

demand yP,ref
t .

Within this section, k is used to indicate the time-step of the MPC horizon. Inputs

corresponding to time-step k are produced at time t � k�Nmpc�1, . . . , k, resulting in

a total of Nmpc inputs for each time-step. The matrix Uk �
�
uk|k . . . uk|k�Nmpc�1

�
denotes the set of input vectors that apply to time-step k.
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As in [65], we form an input estimate put based on previously transmitted input

sequences. Ref. [65] attempts to estimate the single input within an actuator whereas

we form the input estimate put as the weighted sum of possible inputs and their

probability of being implemented. Specifically, we send a finite number of inputs

that apply to time-step k to the TCLs. The inputs are known because the controller

designs them. Using knowledge of the TCLs’ input selection logic and the probability

distribution of delays, which is assumed known from historical data, we compute the

probability that each of the inputs that applies to time-step k is implemented by the

TCLs, where P is the vector of probabilities. The MPC formulation uses the expected

value of the input. This allows us to reformulate the stochastic optimization problem

as a deterministic optimization problem [66]. Section 2.4.2 details the construction

of put, Uk, and P . The following section presents the MPC formulation, which is a

finite-horizon, linear quadratic output regulator with input and state constraints that

is implemented using [67].

2.4.1 MPC Formulation

To set Nmpc, we first fix a parameter pmax. The value 1 � pmax is the probability

that no valid input is available at the TCL, and we explain this further in Section 2.4.2.

The MPC algorithm is initialized using the current state estimate xt � pxt, the current

aggregate demand request yP,ref
t , and any previously transmitted inputs that apply to

time-steps within the horizon. The full formulation is

minimize
u,δ

t�Nmpc�1¸
k�t

�
cy pyerr

k q2 � cδpδ�k � δ�k q �
ķ

m�k�Nmpc�1

cupuJk|m uk|mq
�

(2.6)

s.t. xk�1 � A xk �B puk (2.7)puk � UkP (2.8)

yerr
k � yP,ref

k � CPxk (2.9)

uik|m ¤ xik i P t1, . . . , Nx{2u (2.10)

�uik|m ¤ xN
x�1�i

k i P t1, . . . , Nx{2u (2.11)

0 � δ�k ¤xk ¤ 1 � δ�k (2.12)

0 ¤δ�k , δ�k . (2.13)

The objective function (2.6) minimizes the total cost over the horizon where the

costs cy, cu, and cδ penalize the tracking error yerr
k , control effort, and soft constraint

violations δ�k and δ�k . The input uk|m in (2.6) is a column of Uk. The dynamic model
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in (2.7) corresponds to (2.3a) excluding the process noise and using the estimated

input from (2.8). The tracking error is calculated in (2.9) using a persistent value

of the current aggregate demand request, i.e., yP,ref
k � yP,ref

t for all k in the MPC

horizon. The input constraints (2.10) and (2.11) limit the fraction of TCLs to switch

from a particular bin to be less than the fraction of TCLs within that bin. The soft

state constraint (2.12) is satisfied regardless of the initial value provided from the

unconstrained state estimator, and (2.13) restricts the soft constraint violations to

positive values.

2.4.2 Constructing Input Estimates

The vector P weights each of the inputs in Uk based on their probability of being

implemented. The probabilities within P are fixed during an MPC calculation. How-

ever, the probabilities could be recomputed between MPC calculations if the delay

distribution changes, e.g., due to different traffic levels at various times of the day.

The inputs in Uk become “older” as we go from left to right in the matrix, and

we calculate the elements of P using the corresponding input vector’s location in Uk.
Due to its input selection logic, a TCL uses the input corresponding to the leftmost

column of Uk that has arrived. The probability of using a column depends on two

events: 1) the column must have arrived, and 2) every column to its left within Uk
must not have arrived. We generate the elements of P based on these two events,

the necessary delays for these events to occur, and the probability of realizing these

delays. Note that while assuming IID delays simplifies the following calculations, they

are still possible without independence.

To simplify the notation in the following discussion, denote the ith element of P
as pi, the ith column of Uk as ui (which was previously denoted uk|k�i�1), the delay

in time-steps associated with the arrival of column ui as τ i, and the probability of

the first and second necessary events as p1,i and p2,i. The delays take non-negative,

integer values. Using the assumption of IID delays, pi � p1,ip2,i.

We say that the input ui � uk|k�i�1 arrives within time-step k if its delay is less

than i

p1,i � ppτ i   iq i � 1, . . . , Nmpc. (2.14)

For example, u1 � uk|k arrives within time-step k if τ 1   1, i.e., τ 1 � 0, and u2 �
uk|k�1 arrives within time-step k if τ 2   2, i.e., τ 2 � 0 or τ 2 � 1.

The probability that ui has not arrived by time-step k is ppτ i ¥ iq. Assuming IID

delays, the probability that all columns left of column i have not arrived by time-step
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Table 2.2: Simulation Parameters for Chapter II

Parameter Description Value
Nx Number of State Bins [-] 100
NTCL Number of TCLs [-] 10,000
RP Aggregate Power Noise Covariance [kW2] N p0, 4e6q
P avg Average Steady-State TCL Demand [kW] 6e3
∆t Time-Step Duration [s] 2
∆tS,s TCL State Measurement Interval [s] 2
∆tS,t TCL State History Transmission Interval [s] 900
nsteps Time-Steps in Simulation [-] 1800
pmax MPC Delay Probability Threshold [-] 0.999
cy MPC Output Cost [-] 1
cu MPC Input Cost [-] 1
cδ MPC Soft Constraint Cost [-] 1.01

k is

p2,i �
i�1¹
n�1

ppτn ¥ nq i � 1, . . . , Nmpc. (2.15)

For example, u3 � uk|k�2 can only be used if u1 and u2 have not arrived by time-step

k, i.e., τ 1 ¥ 1 and τ 2 ¥ 2.

For an MPC calculation, columns within Uk whose right time index is less than

t correspond to inputs that have already been sent to the TCLs. The remaining

columns are inputs that the MPC algorithm chooses (i.e., decision variables within

the optimization problem (2.6)–(2.13)), but only a portion of these are included in

the input sequence Ut sent to the TCLs after the MPC calculation. Specifically, Ut

consists of the one column from each Uk, k P tt, . . . , t�Nmpc � 1u, whose right-hand

time index corresponds to the current time t, i.e., every ua|b with b � t. The horizon

length Nmpc is set such that the sum of elements in P is greater than pmax where

Nmpc is the length of P .

2.5 Case Studies

We summarize a series of simulations investigating 1) the impact of compensating

for delays, and 2) the ability of the methods to provide frequency regulation despite

communication delays and model error. Section 2.5.1 details the simulation parame-

ters, algorithm combinations, delay distributions, reference signal construction, and

quantities used to evaluate the simulations. Section 2.5.2 presents the simulation

results.
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2.5.1 Case Study Setup

Table 2.2 details the simulation parameters. We simulate a TCL population of

10,000 air conditioners. The average steady-state TCL demand is slightly different

between the two- and three-state TCL model populations because of the parame-

ters used, and the value in the table is approximate. We use a zero-mean, normal

distribution to generate the aggregate power measurement noise. Similar to [17, 51],

we set the noise variance assuming the average steady-state TCL demand is 15% of

the demand served by the substation, and the standard deviation of the power mea-

surement noise is set to 5% of the total substation load. We generate the aggregate

model’s process noise covariance using historical errors. The resulting process noise

is neither zero-mean nor normally-distributed.

We conduct a series of case studies, varying: 1) the average delay, 2) the reference

signal, 3) the model used to simulate individual TCLs within the plant, and 4) the

estimator. The two reference signals, called the Reg-A and Reg-D reference, corre-

spond to segments of published PJM traditional and dynamic frequency regulation

signals from [68]. The reference signals are from May 4, 2014. The signals are in-

terpolated to two second time-steps, and each signal is scaled so that the maximum

demand change request corresponds to �20% of the average steady-state aggregate

TCL demand. Three delay distributions are used, referred to by their average delay:

0, 10, and 20 seconds. With average delays of 0, we do not impose any measurement

or input delays. With average delays of 10 and 20 seconds, IID delays τ are sampled

from a discretized log-normal distribution τ � texppτ �qu where t�u rounds down and

τ � is normally-distributed. In the cases with delays, the variance of the log-normal

distribution is 0.25 sec2. We use the chosen distribution to model delays that do not

take negative values and are unbounded above. Recall that the estimator treats the

delays deterministically after each measurement has arrived, and so the delay distri-

bution does not impact the estimator performance. The controller uses the statistics

of the delay distribution, and so alternative distributions would change the entries in

P , but these can be computed regardless of the distribution.

We compare four control setups, which vary both the complexity of delay com-

pensation method and the estimator used.

• Estimator 1-FC, where FC refers to “full compensation,” pairs the controller

from Section 2.4 with Estimator 1. This setup requires measurement and input

time-stamping, aggregator knowledge of the input delay statistics, and that

TCLs are capable of input selection.
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• Estimator 2-FC, pairs the controller from Section 2.4 with Estimator 2. This

setup requires measurement and input time-stamping, aggregator knowledge of

the input delay statistics, and that TCLs are capable of input selection.

• Estimator 1-TS, where TS refers to “time stamping,” pairs Estimator 1 with

a simplified controller that does not require aggregator knowledge of the input

delay statistics, but still requires measurement and input time-stamping. The

controller assumes that there are no input delays and sets the probability of the

input arriving at the TCL within the time-step to 1, i.e., P � 1. Additionally, it

uses only one time-step within the MPC algorithm, i.e., Nmpc � 1 because this

is all that is necessary without delays [44] and the reference signal is unknown

in future time-steps. Time-stamping enables measurement delay compensation

in the estimator and input selection at the TCLs.

• Estimator 1-NC, where NC refers to “no compensation,” pairs Estimator 1

with a simplified controller that does not require aggregator knowledge of the

input delay statistics and assumes measurements/inputs are not time-stamped.

As in Estimator 1-TS, the controller does not account for input delays. Since

measurements are not time-stamped, the estimator uses measurements based

on their arrival time rather than their sampling time. Since inputs are not time-

stamped, TCLs use whichever input arrives first during a time-step or zero if

no input has arrived.

We quantify the results using two values 1) the normalized RMS tracking error

(RMSE), and 2) the PJM score described below. We run ten instances of each case

with different realizations of the random quantities and average the RMSE and PJM

score across the instances for each case. The RMSE for a single case instance is

PRMSE � 1

P avg

d
1

nsteps

¸
tPT

�
yP,real
t � yP,ref

t

	2

(2.16)

where P avg is the average steady-state aggregate TCL demand and yP,real
t is the

achieved aggregate demand. The PJM score is a value between 0 and 1 that is

calculated using PJM’s standards [69, pp. 52-54]. The score uses the correlation,

delay, and difference in energy between the requested and actual signals. A passing

score is ¥ 0.75, which could certify a resource to provide frequency regulation when

tracking the PJM test signal. A score of ¥ 0.50 would be satisfactory to maintain

certification for an arbitrary reference signal.
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Figure 2.2: The average RMSE across all simulation scenarios varying the plant (two-state and
three-state TCL models), control setup, average delay, and reference (Reg-A and Reg-D). Error bars
indicate the range of values achieved across the ten instances of each scenario.

2.5.2 Simulation Results

Figure 2.2 summarizes the average RMSE for the four control setups, Table 2.3

summarizes the average PJM scores, and Fig. 2.3 provides time series for Estimators

1-FC and 2-FC assuming an average delay of 20 seconds. Note that Fig. 2.2 does not

contain results for cases using Estimator 2-FC and three-state models as the plant.

As shown in Fig. 2.3c and 2.3d, the resulting RMSE is high (� 15 � 20%) in these

cases, and we explain the cause below.

Note that with no delay, the RMSE and PJM scores of Estimators 1-NC, 1-

TS, and 1-FC are all identical in Fig. 2.2 and Table 2.3 since all three methods

are equivalent without delay. However, with increasing average delays, the RMSE

increases significantly for Estimator 1-NC, increases slowly for Estimator 1-TS, and

is roughly constant for Estimator 1-FC. This indicates that i) delay compensation is

needed if delays are significant, ii) a simple compensation method reduces the effects

of delays, and iii) more complex methods can further mitigate the effects of delays.
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Figure 2.3: Time-series plots comparing the reference tracking of Estimator 1 and Estimator 2
with average delays of 20 seconds.

Estimator 2-FC generally performs worse than Estimator 1-TS, and we discuss this

below. Note that all methods produce average PJM scores over the 0.75 threshold,

except Estimator 1-NC when used to provide Reg-A with average delays of 10 and

20 seconds.

Focusing on Estimator 1-FC, PJM scores for the Reg-D reference are slightly

better than those for the Reg-A reference, while the RMSE is slightly worse for the

Reg-D signal. Because the trends are different for each performance metric, it is

unclear whether the Reg-A or Reg-D cases are superior. Using the three-state TCL
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Table 2.3: Average PJM Scores [-]

Two-State Plant Three-State Plant
Control Setup Avg. Delay Reg-A Reg-D Reg-A Reg-D

Estimator 1-NC 0 0.852 0.899 0.810 0.894
10 0.727 0.821 0.735 0.835
20 0.707 0.782 0.727 0.805

Estimator 1-TS 0 0.852 0.899 0.810 0.894
10 0.846 0.908 0.821 0.901
20 0.836 0.892 0.801 0.896

Estimator 1-FC 0 0.852 0.899 0.810 0.894
10 0.849 0.908 0.814 0.901
20 0.849 0.903 0.824 0.903

Estimator 2-FC 0 0.785 0.882 —— ——
10 0.799 0.892 —— ——
20 0.807 0.887 —— ——
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Figure 2.4: Comparison of discrete state bin distributions in steady-state for populations of TCLs
represented by two-state and three-state models.

models within the plant resulted in slightly worse RMSE and PJM scores, but they

are still above PJM’s threshold, which is important since three-state models capture

the TCL dynamics more accurately. While we used zero-mean heat injections to

generate all of the results shown in this paper, simulations results (not shown here

due to space limitations) indicate that Estimator 1-FC can adequately handle more

realistic, biased heat injections. In contrast, Estimator 2-FC is unable to account for

biased heat injections.

Estimator 2-FC’s performance is dependent on the TCL model used within the

plant. When two-state models are used within the plant, Estimator 2-FC’s PJM

scores are acceptable in all scenarios; however, it performs worse than Estimators 1-

TS and 1-FC. Estimator 2-FC’s performance is dependent on the number of discrete

states Nx, and diminishes if Nx is reduced, e.g., to 40, for computational reasons.
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Improvements to Estimator 2-FC may be achievable with more advanced parameter

estimation methods.

When the three-state models are used within the plant, Estimator 2-FC is not able

to provide effective frequency regulation because Estimator 2 uses two-state models

to generate aggregate state predictions, which are treated as measurements within

the state estimator. Figure 2.4 shows the steady-state distribution of TCLs within

100 discrete state bins using the two- and three-state plants. The distribution in the

two-state plant (left) is fairly flat across the first 50 bins, which correspond to TCLs

that are off. Alternatively, the distribution in the three-state plant (right) has a large

concentration of TCLs around bin 50, which corresponds to the edge of the deadband.

This qualitative difference in their distributions means that the two-state models used

in Estimator 2 cannot effectively predict the aggregate state when the plant consists

of three-state models. Because the thermal mass temperature and environmental heat

injections are difficult to measure, identifying the three-state model is difficult.

2.6 Chapter II Conclusions

In this chapter, we developed a predictive controller and two estimators to mit-

igate the effects of communication delays within a residential demand response sce-

nario. In simulations, we investigated the ability of the algorithms to control an

aggregation of TCLs to track frequency regulation signals. Results show that both

estimator-controller combinations are able to effectively provide frequency regulation

with average delays of up to 20 seconds. The first estimator, which includes only

an aggregate model and relies on a number of Kalman filters running in parallel is

effective with both structural- and parameter-based modeling error. The second es-

timator assumes a specific TCL model and identifies parameters for those models. It

is effective if the assumed TCL model structure matches the true model structure.

Future work should incorporate and address time-varying outdoor temperatures

and time-varying, biased heat injections into the individual TCL models. Investigat-

ing a more effective parameter identification algorithm may allow Estimator 2 to be

used in a wider range of scenarios. Modifying the controller to account for model-

ing error may improve tracking performance. Finally, accounting for non-normally-

distributed measurement noise should be investigated.
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CHAPTER III

A Linear Approach to Manage Input Delays While

Supplying Frequency Regulation Using Residential

Loads 1

Demand response refers to the manipulation of the electric power usage, or de-

mand, of devices to provide some operational benefit to an electric power network.

These benefits can include both peak load reduction and participation in frequency

regulation [37]. Peak load reduction limits the electricity demand during a period of

interest with a goal of reducing the system’s operating costs or improving the system’s

reliability [37]. Demand response for frequency regulation manipulates the electric

power demand to help balance the supply and demand of electricity, maintaining the

power network’s frequency near its operating point. Frameworks for implementing

demand response include both price-based and direct control schemes [53]. Price-

based approaches encourage or discourage additional demand by adjusting the price

of power. In contrast, direct control methods manipulate the state of the loads, e.g.,

switching a device on or off.

In this chapter, we use non-disruptive on/off switching of residential thermostat-

ically controlled loads (TCLs) to provide frequency regulation. Residential TCLs

are household loads such as air conditioners, water heaters, and heat pumps that

draw electricity to maintain the temperature of an internal medium, e.g., a house’s

air temperature, about a user-defined set-point. These loads periodically switch be-

tween an on mode, where the device draws power, and an off mode, where it does

not, to keep the medium’s temperature within a dead-band around the set-point.

While some residential demand response schemes manipulate user-defined set-points,

non-disruptive demand response [37] respects the users’ temperature settings while

1The work presented in this chapter was originally published in [70].
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imposing additional on/off switching on the device.

There exists a large potential capacity of residential TCLs for demand response

due to their widespread usage, and smart meters can enable communication between a

central controller and TCLs. However, practical issues associated with implementing

residential demand response include the high cost of the sensing and communication

infrastructure due to the resource’s spatially distributed nature. Developing demand

response control algorithms that cope with imperfect communication systems may

allow lower cost communication networks, e.g., existing legacy equipment, to become

viable. Also, reducing the sensing requirements of these algorithms can reduce sensor

costs.

Existing smart meters have communication limitations [49], e.g., infrequent data

transmission, and demand response state estimation approaches have been developed

to cope with unavailable measurements [17, 40, 43, 71]. Networked control is a class

of control that addresses imperfect communication between components within the

control system, see e.g., [56]. Demand response literature incorporating these concepts

include [58], which investigates lost messages in optimal load scheduling, and [51],

which adapts networked control algorithms and uses infrequent state measurements.

Ref. [59] characterizes the effects of (but does not compensate for) communication

latencies. Finally, [72] considers the required rate of communication to enable their

demand control mechanism, [73] investigates the cost of generation during economic

dispatch where packet loss influences the uncertainty of the demand estimate, and

[74,75] investigate the impact of packet loss on demand response control.

In this chapter, we develop a linear controller that accounts for input delays, and

we compare it to the model predictive control (MPC) algorithm from [51], presented

in the previous chatper, that also accounts for input delays. We account for input

delays within both methods by i) including the delay statistics, which are assumed

to be known, within the control algorithms, ii) generating a sequence of inputs at

each time-step rather than an individual input, and iii) allowing the TCLs to select

inputs based on the realized delays, which are assumed to be known by the TCLs

based on the capabilities of digital communication networks. While our controller

uses off-the-shelf linear control techniques, the challenge is to model the large-scale

hybrid system subject to input delays as a compact linear system amenable these

techniques. For this, we extend the linear aggregate TCL modeling approach in [17],

detailed in Section 3.2.2. We present a novel model-reduction method that produces

a reduced-order model similar to that in [76] but provides additional insights. We

then use state augmentation to capture the impact of input delays. We present

39



case studies for both the linear and MPC controllers to compare computation times

and tracking performance under several delay scenarios. The benefits of the linear

controller over the MPC controller are reduced online computation time and a simple,

closed-form control law. Drawbacks of the linear controller compared to the MPC

controller include increased tracking error and the inability to enforce constraints that

the MPC formulation includes explicitly.

The remainder of the chapter is organized as follows: Section 3.1 describes the

problem setting, Section 3.2 details the models used within this work, Section 3.3

develops the control algorithms, Section 3.4 describes the case studies and summarizes

the results, and Section 3.5 presents the conclusions of the chapter.

3.1 Problem Setting and Overview

Figure 3.1 provides an overview of the problem setting. We assume two-way com-

munication is possible between a population of residential TCLs and an aggregator,

which interfaces between a power system operator and a population of loads. The

aggregator can manipulate the total power demand of a TCL population to track a

desired aggregate power signal. The desired aggregate power signal is generated by a

system operator, and we assume it corresponds to a frequency regulation signal.

To manipulate the aggregate TCL demand, the aggregator broadcasts an input

signal to all TCLs within the population. The inputs, detailed in Section 3.2.2, induce

on/off switching, and the inputs are updated and broadcast at intervals of seconds.

Communication delays cause the inputs to arrive asynchronously at the TCLs, and the

implemented input at an individual TCL is not known by the aggregator in real-time.

Finally, TCLs transmit their individual on/off modes and internal air temperatures

(which comprise the “TCL state measurement”) to the aggregator at each time-step,

providing aggregate state information to the controller.

This work focuses on comparing the ability of controllers to mitigate input delays,

and so we neglect communication limitations and delays associated with the TCL

state measurements, which were considered in [51]. As a result, we assume TCL

state measurements are available at every time-step and without delay. Realistically,

state measurements are available infrequently, e.g., due to smart meter limitations,

or not at all, and they may also be delayed if they are available. Similarly, output

measurements may be delayed. Therefore, state estimators would be needed. Future

work will address this.

Our assumptions regarding the communication network include synchronized clocks
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Figure 3.1: An overview of the problem setting for Chapter III.

across the network, the ability to transmit multiple values in a single message [56],

the ability to time-stamp messages [56], and input delays that are independent and

identically distributed (IID). We assume time-stamping enables the aggregator to

know the delay statistics, and so we use these statistics within the controller.

The aggregator’s control algorithms incorporate the predictive control approach

described in [56] to construct an open-loop input sequence at each time-step. The

input sequence is broadcast to the TCLs, and we assume the TCLs use selection

logic and time-stamping to implement the most recently generated input vector that

applies to a given time-step. The controller uses stochastic programming concepts

to account for previously transmitted inputs by combining them into a weighted

combination where the weights are generated based on the delay statistics. The

following section discusses the models used within the work before incorporating

them within the control algorithms detailed in Section 3.3.

3.2 Modeling

Several models are used within this work. The individual TCL model developed

in [60] and described in Section 3.2.1 represents the TCLs within the simulated plant.

It models the heat transfer driving the duty cycle of each residential TCL using

discrete and continuous states. A linear time invariant aggregate model developed

in [17] and described in Section 3.2.2 is a probability-based model that captures

the behavior of the TCL population with reduced complexity. It is used within

the MPC algorithm. Section 3.2.3 derives a reduced-order aggregate model similar
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to [76]. The individual TCL model is the same as that described in Section 2.2.1.1,

and the aggregate model was described in Section 2.2.2; we describe them below for

completeness and to introduce notation. It allows usage of linear quadratic regulator

(LQR) techniques in designing the linear controller.

3.2.1 Individual TCL Model

In this chapter, the individual TCL model represents each of the NTCL residential

air conditioners within the controllable load population. Table 3.1 provides the nota-

tion, description, and approximate distributions of the individual model’s parameters

within this work. The nominal parameters are based on [63] with two exceptions: θo

and Qa,i
t . The outdoor temperature θo is set to be a reasonably hot day, and Qa,i

t

includes Gaussian disturbances as in [51]. Values sampled from uniform and normal

distributions are denoted rα, βs and N pα, βq, respectively. In the latter, α and β are

the mean and variance of the normal distribution.

The parameter distributions in Table 3.1 are randomly sampled to generate the

population of TCLs, and we denote the set of TCLs as ITCL �  
1, 2, . . . , NTCL

(
. We

use i P ITCL to index an arbitrary TCL from the set. Each TCL contains three states

– its internal air temperature θa,it , its internal mass temperature θm,it , and its current

on/off mode mi
t. We define the internal temperature vector as θit �

�
θa,it θm,it

�T
.

A disturbance vector dit �
�
θo
t Qa,i

t Qm,i
t

�T
captures the exogenous, environmental

inputs that influence the TCL’s on/off cycling where Qa,i
t and Qm,i

t capture heating

from loads and occupants within the house as well as solar irradiance. Finally, the

TCL state measurement includes the TCL’s air temperature and on/off mode yTCL,i
t ��

θa,it mi
t

�T
.

The model’s discrete-time state-update equations are

θit�1 � Aiθit �Bimi
t � Eidit i P ITCL (3.1a)

mi
t�1 �

$'''&'''%
0 if θa,it�1   θset,i � θdb,i{2
1 if θa,it�1 ¡ θset,i � θdb,i{2
mi
t otherwise

i P ITCL (3.1b)

where (3.1a) updates the internal temperatures and (3.1b) updates the on/off mode.

The power draw is P i
t � p|Qh,i| mi

tq{ηi with Qh,i   0 for cooling loads. The matrices

in these equations are discretized using [62, p. 315] where the underlying continuous-
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Table 3.1: TCL Model Parameters for Chapter III

Parameter Description Value
∆t Time-Step Duration [s] 2
θset Temperature Set-Point [�C] [24, 26]
θdb Temperature Dead-band [�C] r1.9, 2.2s
θo Outdoor Temperature [�C] 32
Um Envelope Conductance [kW

�C ] [0.89, 1.09]
Ua Internal Conductance [kW

�C ] [0.2, 0.25]
Λm Mass Heat Capacitance [kWh

�C ] [4.75, 5.80]
Λa Air Heat Capacitance [kWh

�C ] [0.16, 0.20]
Qm TCL Mass Heat Gain [kW] N pQ, 0q
Qa TCL Air Heat Gain [kW] N pQ, 2.5e-9q
Q Heat Gain Distribution Mean [0.45, 0.55]
Qh TCL Heat Transfer [kW] [-17.0, -13.8]
η Coefficient of Performance [-] 3

time matrices are

Ac,i �
�
�pUa,i � Um,iq {Λa,i Um,i{Λa,i

Um,i{Λm,i �Um,i{Λm,i

�

Bc,i �
�
Qh,i{Λa,i 0

�T
Ec,i �

�
Ua,i{Λa,i 1{Λa,i 0

0 0 1{Λm,i

�
.

The average cycle time of the discrete-time model using the parameters in Table 3.1

is 10 minutes with a 20% duty cycle.

3.2.2 Aggregate TCL Population Model

The aggregate model [17] captures the power draw behavior of the TCL population

with reduced modeling complexity, and we summarize it here for completeness. The

model is

xt�1 � A xt �B ut (3.3)

yt � C xt. (3.4)

The aggregate state, xt P RNx
, is a set of discrete state bins constructed from a

normalized temperature dead-band. The entries in xt correspond to the portion of

TCLs in each bin, and each TCL maps to a bin based on its current air temperature

and on/off mode. The state transition matrix, A P RNx�Nx
, is a transposed Markov

transition matrix describing the probability of transitioning between state bins during
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a time-step. Elements in the input ut P RNx{2 correspond to the probability mass that

should be switched within each temperature interval, and B P RNx�Nx{2 shifts the

probability mass accordingly. The inputs are broadcast to the TCLs as switching

probabilities, and TCLs switch their on/off mode with the probability corresponding

to their current bin. The output yt P R is the total, or aggregate, power demand of the

TCL population. It is formed using C P R1�Nx
, which sums the portion of TCLs that

are on, and then scales this by P
on

, a historical average power draw of TCLs that are

on. This model is observable [17], but it is over-defined, as xt must sum to one. Given

this and our input definition, there is one uncontrollable state. The reduced-order

model presented in the following section eliminates this one uncontrollable state.

Note that [39] develops an alternative aggregate model that models the effect of

the TCLs’ internal mass temperature on the aggregate dynamics. Since we assume

a stationary outdoor temperature, stationary disturbance distributions, and on/off

control, we do not observe significant changes in the thermal mass temperature, and

so we do not use this model.

3.2.3 Reduced-Order Aggregate Model

This section develops the reduced-order aggregate model from the linear, time-

invariant aggregate model. Removing the single uncontrollable state results in a con-

trollable reduced-order model that retains the observability of the original system.

Eliminating a constant-valued state in the system’s modal representation, which cor-

responds to the steady-state value of the aggregate state, preserves all dynamics of

the original system.

Our approach relies on several facts about the aggregate model’s modal repre-

sentation: i) it contains an eigenvalue λ1 � 1 and the subsystem corresponding to

λ1 is decoupled from the remaining system, ii) λ1 is always the uncontrollable mode

within the aggregate model in Section 3.2.2, iii) the component of the modal state

corresponding to λ1 has no dynamics and is actually a constant scalar equal to 1,

and iv) the output associated with λ1 is yss. These four points result in the following
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structure for the modal system

�
1rxt�1

�
�

A�hkkkikkkj�
1 0

0 rA
� x�thkkikkj�

1rxt
�
�

B�hkkikkj�
0rB
�
ut (3.5)

yt �
�
yss

rC�looomooon
C�

�
1rxt
�

(3.6)

where stars and tildes denote modal and reduced-order quantities, respectively. Elim-

inating the constant modal state and defining ryt � yt � yss forms the reduced-order

system

rxt�1 � rA rxt � rBut (3.7)ryt � rC rxt. (3.8)

Point (i) follows from the proof in [76] that the state transition matrix of the

three-state aggregate model contains an eigenvalue, λ1 � 1, with an algebraic and

geometric multiplicity of 1. This also holds for the time-invariant aggregate model,

and the resulting Jordan block for λ1 is decoupled from the remainder of the system.

The right eigenvector for λ1 is a unique steady-state value xss for the unforced, full-

order aggregate model with corresponding output yss � C xss. Since the columns of A

sum to 1, a vector of ones, denoted 1, is the left eigenvector of λ1. Point (ii) follows

from applying the PBH eigenvector test to λ1 [77]. The test fails for λ1 because

the columns of B sum to 0, and so λ1 is the uncontrollable mode of the full-order

aggregate model. The uniqueness of λ1 requires that the corresponding row of B� is

zeros.

Points (iii) and (iv) rely on the mapping from the original aggregate state to the

modal aggregate state x�t � T�1xt. The rows of T�1 are the left eigenvectors, and

the columns of T are the right eigenvectors. Placing the left and right eigenvectors of

λ1 as the first row and first column of T�1 and T respectively provides the structure

of A� and B� in (3.5).

It also ensures the first modal state, noted as x�,1t , is always 1. Recall from

Section 3.2.2 that 1T xt � 1. Given the structure of T�1, then x�,1t � 1Txt, and (iii)

follows for all valid xt. To show (iv) note that the first column of T is xss, and the

first element of C� � CT is Cxss � yss. Since x�,1t � 1, eliminating x�,1t from the

model only requires that the output of the reduced-order system is redefined as ryt.
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The approach above has similarities to that in [76] to achieve an asymptotically

stable system. Both methods eliminate an eigenvalue λ1 � 1 that is guaranteed to

exist, and both methods redefine the output of the reduced-order model as ryt. How-

ever, there are also differences between the methods. Whereas the method detailed

here relies on points (i)-(iv), [76] uses projections into subspaces, does not establish

decoupling of the subspaces, and does not note that the eliminated modal state is

a constant. Also, the method detailed here shows the reduced-order model is con-

trollable whereas [76] does not include inputs within their reduced-order model. The

following section incorporates the full-order and reduced-order aggregate models into

an MPC algorithm and a linear controller, respectively.

3.3 Control Algorithms

The controllers and the selection of inputs at the TCLs account for input delays

by i) including the delay statistics, which are assumed to be known, within the con-

trol algorithms, ii) generating a sequence of inputs at each time-step rather than an

individual input, and iii) allowing the TCLs to select inputs based on the realized

delays, which are assumed to be known by the TCLs based on the capabilities of

digital communication networks. The controllers utilize two external values – the

desired demand level ydes
t and the aggregate state measurement xt – to generate an

input sequence. The input sequence contains inputs that are designed for the current

time-step and some set of future time-steps. Each TCL uses selection logic to first find

the most recently generated input sequence that has arrived, then it selects the input

vector from this sequence that applies to a given time-step. IID input delays cause

different TCLs to use different input vectors. The TCL then chooses the element of

the input vector that corresponds to its current state, or it disregards the input when

necessary to maintain the temperature within its normal operating range.

The linear controller generates the input sequence using a simple control law,

calculated offline, that consists of matrix multiplication. Alternatively, the MPC

controller solves a quadratic program online to generate an input sequence. Both

controllers use delay statistics to compute the probabilities that previously generated

inputs are implemented by TCLs, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing notation uk|t where k

indicates the time-step that the input applies to and t indicates the time-step during

which the input was calculated. For example, an input ut�4|t is generated at time-

step t, and it applies four time-steps after t. Using this notation, the input sequence
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useq
t P RNx{2�Nu

generated at each time-step t is a set of Nu input vectors

useq
t �

�
uTt|t uTt�1|t � � � uTt�Nu�1|t

�T
. (3.9)

The number of time-steps within the input sequence is set so that the probability of

a TCL having no valid input is 1� pmax where we choose pmax. Section 3.3.1.1 details

the process of setting Nu from pmax.

Section 3.3.1 describes the MPC algorithm originally developed in [51] and pre-

sented in the previous chapter. Section 3.3.2 develops the linear controller.

3.3.1 MPC Algorithm

The MPC algorithm is a finite-horizon, quadratic program with equality and in-

equality constraints. The objective function penalizes desired aggregate power errors

and input effort. Equality constraints embed the full-order aggregate model within

the optimization problem, and inequality constraints impose the physical limitations

on the feasible inputs and states. We define the Nu time-step horizon considered

within the calculation at time t as KMPC
t � tt, . . . , t �Nu � 1u. The aggregate state

measurement xt initializes the dynamics. Assume we have no knowledge of ydes
k over

the horizon, so the desired aggregate power trajectory is assumed to be constant and

equal to the current value.

The MPC controller’s formulation at time t is

min
u

t�Nmpc�1¸
k�t

�
cy pyerr

k q2 �
k�Nmpc�1¸

j�k

cupuTk|j uk|jq
�

(3.10)

s.t. xk�1 � A xk �B puk (3.11)puk � UkP (3.12)

yerr
k � yP,ref

k � CPxk (3.13)

uik|j ¤ xik i P t1, . . . , Nx{2u (3.14)

�uik|j ¤ xN
x�1�i

k i P t1, . . . , Nx{2u (3.15)

0 ¤xk ¤ 1 (3.16)

with k P KMPC
t and j � k, . . . , k � Nu � 1. The objective function (3.10) minimizes

the total cost of output deviations (yerr
k , which is defined in (3.13)) and input effort,

where cy and cu are cost coefficients. The state update (3.11) corresponds to the

aggregate model of (3.3) while excluding the noise term, and it uses the estimated
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input puk from (3.12), which is calculated as a linear combination of the input matrix

Uk P RNx{2�Nu
and the weighting vector P P RNu�1, where Uk and P are detailed

below. The input constraints (3.14) and (3.15) limit each input element based on the

fraction of TCLs available to be turned on or off. Finally, (3.16) imposes physical

limitations on the aggregate state. We implement the algorithm using [67].

3.3.1.1 Constructing Input Estimates

This section explains the construction of Uk and P . To construct Uk, note that

inputs corresponding to a given time-step k appears within Nu MPC calculations.

After each of these MPC calculations, an input sequence useq
t containing an input

corresponding to time-step k is sent to the TCLs. The columns of the matrix Uk ��
uk|k . . . uk|k�Nu�1

�
are the Nu separate input vectors that could apply to time-step

k where the inputs become “older”, i.e., they were generated at earlier calculations,

as we go from left to right in the matrix.

The TCLs use the leftmost column of Uk that has arrived. The probability of

using a column depends on two necessary events: 1) the column has arrived, and 2)

the columns left of it within Uk must not have arrived. Denote the ith element of P
as pi, the corresponding column of Uk as ui, and the probability of first and second

necessary events as p1,i and p2,i. Using the assumption of IID delays, pi � p1,ip2,i.

Define the delay τ i associated with column ui. The input ui arrives by k if its delay

is less than i

p1,i � ppτ i   iq i � 1, . . . , Nu. (3.17)

Using IID delays, the probability that all columns left of column i have not arrived

by time-step k is

p2,i �
i�1¹
n�1

ppτn ¥ nq i � 1, . . . , Nu. (3.18)

The first column is used if its delay is less than one. Use of the second column requires

that its delay is less than two and the first column’s delay is at least one, and so on.

3.3.2 Linear Controller

This section reformulates the MPC algorithm into a linear controller that accounts

for input delays through state-space augmentation of the aggregate model. We in-

clude an integrator for disturbance rejection, use reference feedforward to achieve

tracking, and use an infinite-horizon output-regulating LQR for pole placement. To

decouple reference tracking from disturbance rejection, the integrator dynamics are
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not included within the feedforward gain, which only includes the augmented aggre-

gate model dynamics. Ref. [78] also uses LQR methods within demand response,

however, they use a finite-horizon, output-tracking, LQR controller for commercial

air conditioning systems. The following subsection develops the augmented system,

and Section 3.3.2.2 develops the linear feedback law.

3.3.2.1 Augmenting the Aggregate Model

The augmented state vector, xk, includes the original state xk and previously

transmitted inputs that TCLs could still implement

xk �
�
xTk uTk|k uTk�1|k � � � uTk�Nu�2|k

�T
. (3.19)

The uk�a|k values with a � 0, . . . , Nu � 2 are constructed

uk�a|k �
�
uTk�a|k�1 � � � uTk�a|k�Nu�1�a

�T
. (3.20)

When updating xk to xk�1, the ua|b values become ua�1|b�1.

The block matrix form of the augmented system is then

xk�1 �

Ahkkkkkkkikkkkkkkj�
A AB 0

0 0 Au

�
xk �

Bhkkkkkikkkkkj�
p1B 0

0 Bu

�
useq
k (3.21)

yk �
�
C 0 0

�
loooooomoooooon

C

xk (3.22)

where � indicates augmented quantities, useq
k is defined in (3.9), and p1 is the first

element of P . We explain AB, Au, and Bu below. The first block row of the block

matrices A and B updates xk. The second block row manipulates the inputs within

xk as time progresses. The construction of xk multiplies the first column of A and C

with xk, the second column multiplies with uk|k, and the last column multiplies with

the remaining inputs within xk.

Finally, we explain the AB, Au, and Bu matrices. To construct AB, we reorganize

Bpuk � BUkP into

BUkP �p1Buk|k � � � � � pNuBuk|k�Nu�1 (3.23)

�p1Buk|k � ABuk|k (3.24)
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xT
3

uT
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Figure 3.2: Diagram portraying the effects of Au and Bu when advancing the augmented state
from k � 3 to k � 4 with Nu � 4. The dash-dotted lines correspond to manipulations by Au, which
advances inputs for future time-steps within x3. The solid lines corresponds the action of Bu, which
places inputs from useq

3 into x4.

where AB �
�
p2B � � � pNuB

�
. The components of Au and Bu are identity and

zero matrices of various sizes that appear without a simple pattern. Rather than

constructing Au and Bu explicitly, Fig. 3.2 depicts their effect on the augmented

state.

The augmented system above uses the matrices from (3.3)-(3.4) and adds control-

lable and observable modes at 0 into the system. The model reduction method in

Section 3.2.3 can still eliminate the uncontrollable mode within the extended system.

We denote the reduced-order, augmented matrices as rA, rB, and rC respectively. The

reduced-order, augmented state is rxk, and the corresponding output is still ryk. These

are used below.

3.3.2.2 Control Law Development

We define the linear control law with constant gain matrices Kx
8, Kw

8, and Ky
8 as

useq
t � �Kx

8 xt �Kw
8 wt �Ky

8 y
des
t (3.25)

where wt is an the integrator state that captures the historical tracking error. An

output-regulating LQR formulation with rydes
k � 0 generates the feedback terms Kx

8

and Kw
8

min
u

8̧

k�t

�rxk
wk

�T �prCqT qyrC 0

0 qw

��rxk
wk

�
� puseq

k qT R useq
k (3.26)

s.t.

�rxk�1

wk�1

�
�
�rA 0rC 0

� �rxk
wk

�
�
�rB

0

�
useq
k (3.27)
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where the scalars qy and qw penalize ryk and wk respectively. The input penalty is

R � quI where qu is a scalar. This formulation results in a feedback gain for the

reduced-order augmented state, rKx
8, that we convert using Kx

8 � r0 rKx
8s T , where T

denotes the mapping from modal states.

Output tracking and regulating formulations produce identical feedback gains [79].

However, using the tracking formulation above would result in a feedforward gain

incorporating the integrator. We use an alternative feedforward gain that excludes

the integrator while attempting to achieve steady-state tracking

Ky
8 �

�rCtzI � rA� rB rKx
8u�1rB	�: (3.28)

where �: is a pseudo-inverse that is needed because there are more inputs than

outputs, and we set z � 1.

3.4 Case Studies

This section evaluates the MPC controller and linear controller, denoted as LIN,

while tracking a desired aggregate demand signal under a variety of scenarios. We

present RMS tracking errors and statistics on each controllers’ computation time

to quantify and compare the scenarios. Section 3.4.1 defines the scenarios used to

simulate the system and presents the performance metrics. Section 3.4.2 summarizes

the results of the scenarios.

3.4.1 Scenario Definitions

We simulate 12 scenarios using combinations of the two controllers, two refer-

ence signals, and three delay scenarios. Fifty instances of each scenario use different

realizations of the random quantities. The simulation time is one hour, with 1800

time-steps, and we use the following parameter settings: NTCL � 10, 000, Nx � 30,

pmax � 0.999, cy � 1, cu � 1, qy � 0.1, qu � 1, qw � 0.01. In all scenarios, a popula-

tion of NTCL hybrid models, detailed in Section 3.2.1, are simulated to represent the

plant whereas the controllers rely on the aggregate models detailed in Sections 3.2.2

and 3.2.3.

The two reference signals correspond to historical dynamic and traditional PJM

frequency regulation signals, denoted as “Reg-D” and “Reg-A” references respec-

tively. Data published by PJM [68] from May 4, 2014 are interpolated to two second

time-steps, and each signal is scaled so that the maximum demand change request

51



Table 3.2: Computation Times for Generating Inputs

Controller Mean Delay (s) Mean Time (s) Max Time (s)
MPC 0 0.187 0.978

10 0.589 2.185
20 1.123 3.800

LIN 0 0.001 0.031
10 0.003 0.055
20 0.014 0.132

corresponds to �20% of the average steady-state aggregate TCL demand.

The scenarios include three delay distributions – a delay-free scenario referred to

as delay case 0 and two scenarios with delays. In the scenarios with delays, IID delays

are sampled by i) sampling values from a log-normal distribution with mean µ and

variance σ2, then ii) rounding down the sampled values. Delay cases 1 and 2 set µ to

10 and 20 seconds respectively, and the variance is 0.25 for both. Note that the choice

of distribution and their parameters are examples, not requirements of the algorithm.

We quantify each simulation using the normalized RMS tracking error (RMSE),

the average time to compute an input, and the maximum time to compute an input.

The tracking error for each time-step is yt � ydes
t , and the standard RMSE is then

expressed as a percentage of the average steady-state aggregate TCL demand. The

RMSE value associated with each scenario is the average RMSE across all of the

scenario’s instances. We compute an average computation time for each controller to

generate an input during each delay case, meaning we average across instances without

differentiating the reference signal used. Finally, the single maximum computation

time for generating an input is taken from the set of instances for a controller and

delay case.

3.4.2 Results

Table 3.2 summarizes computation times for the controllers, Fig. 3.3 summarizes

the RMSE of the scenarios, Fig. 3.4 provides sample time series. The simulations were

carried out on a server using Matlab. Note that the controllers were roughly tuned

to values that provide good performance across all scenarios. Improved performance

for both controllers may be achievable by additional tuning, but we do not believe

additional tuning would make LIN outperform MPC.

From Table 3.2, we see that LIN, the linear controller, achieves a significant re-

duction in computation time needed to generate an input. The average time and

maximum time for the linear controller is roughly 100 times faster than the MPC

controller. Also, the maximum time needed to generate an input is 0.132 seconds in
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Figure 3.3: RMS errors of the LIN and MPC controllers in delay scenarios 0, 1, and 2 when
attempting to track the Reg-A and Reg-D reference signals.

the case with the largest delay. This compares with the MPC controller’s maximum

time of 3.8 seconds in the same scenario, which exceeds the 2 second time-step and

means the MPC approach will not always be able to compute an input within the

given time-step. While the computation times are dependent on the machine running

the simulations, LIN clearly achieves faster computation times. This is especially

important when considering the more realistic case where delays and communica-

tion network limitations affect the transmission of state and output measurements,

which will require use of an estimator. By reducing the computation time of the con-

troller, we allow more time to compute the state estimates within the given time-step

duration.

This reduction in computation time comes at the cost of increased RMSE, as

Fig. 3.3 shows. Without delays, the MPC and LIN controllers perform roughly equiv-

alently. As the delays increase, the MPC controller is able to achieve better tracking

with slightly reduced RMSE. However, the differences in RMSE are not large, and

it may be worth sacrificing some tracking accuracy for simplicity (i.e., a closed-form

control law) and reduced computational requirements. In addition, simulations not

presented here show that LIN is better able to compensate for errors in the probability

vector P than the MPC approach, likely because of the integrator.

The number of state bins and amplitude of the reference signal also influence the

results; when using a more extreme reference signal, input inequalities become more

important, and LIN (which does not explicitly include these constraints) performs

worse. To explore this scenario, we increase the amplitude of the reference signal to

80% of the mean steady-state TCL demand. When tracking the “Reg-D” Reference

without delays, LIN has an RMSE of 0.74% and hundreds of input constraint viola-
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Figure 3.4: Time series showing the tracking of the Reg-A and Reg-D references under delay
scenario 2.

tions. Alternatively, MPC achieves an RMSE of 0.59% and no constraint violations.

3.5 Chapter III Conclusions

In this chapter, we developed a linear controller that mitigates the effect of input

delays in residential demand response, and we compared it to a previously developed

MPC controller through simulations that manipulate the aggregate demand of thou-

sands of air conditioners to track real frequency regulation signals. Both methods

counteract input delays by generating an open-loop input sequence at each time-step

and by incorporating knowledge about the input delay statistics. The linear controller

reduces computation time significantly while losing some tracking performance in the

scenarios investigated. This may be a reasonable trade-off since the MPC compu-

tation time is sometimes longer than the time-step duration and, in practice, the

algorithm will require a state estimator, which will also take time to run. Addition-

ally, the integrator makes LIN more robust to errors in the delay statistics. Future

work will design the linear controller in conjunction with an estimator that addresses

communication issues in state and output measurement transmission, as considered

in the MPC controller [51].
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CHAPTER IV

Benchmarking of Aggregate Residential Load

Models Used for Demand Response 1

The power consumption of large numbers of thermostatically controlled loads

(TCLs), such as residential air conditioners (ACs), can be coordinated to help the

electric power grid balance supply and demand [37,38]. In addition to participating in

traditional demand response programs, loads can be controlled to provide ancillary

services, such as frequency regulation, by decreasing/increasing consumption with

respect to their baseline. Much of the work on load control for ancillary services

assumes a load aggregator receives a signal from the system operator and controls

an aggregation of loads to match that signal. A significant body of recent work has

sought to develop aggregate residential load models, e.g., [17, 39, 81, 82], which the

aggregator could use in state estimation and control algorithms. These models capture

the dynamics of the total power consumption of the demand-responsive loads. Use

of dynamic models generally improves control performance as compared to model-

free control approaches. However, modeling aggregations of loads by representing

each load individually leads to large and often complex models. For example, TCLs

are best modeled as hybrid systems since they cycle on/off within a temperature

hysteresis band. A good aggregate model balances simplicity and performance.

Despite significant recent efforts to develop aggregate load models, we only have a

partial understanding of which models work best under which conditions. Each model

was developed under a different set of assumptions (e.g., homogeneous vs. hetero-

geneous loads, static vs. dynamic ambient conditions such as outdoor temperature)

and assuming a specific type of control (e.g., on/off switching, temperature setpoint

control). Models are generally validated in simulation studies, and, often, the same

unrealistic assumptions used to build the model are used to validate it.

1The work presented in this chapter was originally published in [80].
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In this chapter, we seek a better understanding of the advantages and disadvan-

tages of three aggregate load models that represent the dynamics of a heterogeneous

AC population. Two of the models use Markov chains [17,39] and one uses a transfer

function [81, 82]. We identify each model and then use it to predict the aggregate

power consumption of 10,000 air conditioners over a 24 hour period with a time-

varying outdoor temperature. Prediction accuracy is computed against a realistic

simulation model in which individual air conditioners are represented with hybrid

system models including three states: indoor air temperature, indoor mass temper-

ature, and on/off mode. We assume each AC has a time-varying cooling capacity, a

time-varying coefficient of performance (COP), and a time-varying power draw (when

the AC is on) that all depend on the outdoor temperature, making our plant more

accurate than that typically used in the aggregate load modeling literature. In this

preliminary work, we assume that the loads are not coordinated by a load aggrega-

tor; investigating model performance under aggregator control is a subject for future

work.

Beyond the simulation-based benchmarking of three aggregate load models, this

chapter also includes several methodological contributions required to enable a fair

comparison in a realistic setting with a time-varying outdoor air temperature. In

particular, we extend the Markov models [17, 39] to update the Markov transition

matrix parameters as a function of the temperature trend, and we discuss other

ways in which the model could be improved. We also determine a transfer function

structure that may lead to improved model accuracy as compared to the model in

[81,82] and provide suggestions on better ways to identify its parameters.

The rest of this paper is organized as follows: Section 4.1 details the individual

TCL model used in the plant and Section 4.2 describes each aggregate load model and

our extensions. Section 4.3 describes the simulation setting and results. Section 4.4

provides the conclusions of the chapter.

4.1 Individual TCL Model

We use the hybrid model from the residential module of GridLAB-D [83] to model

an individual AC within the plant. It is similar to the model described in Sec-

tion 2.2.1.1, and we describe it below to introduce notation and to detail the differ-

ences. The hybrid model contains continuous states corresponding to the internal air

temperature and mass temperature θat , θ
m
t P R and a discrete state corresponding to

the on/off mode mt P t0, 1u, where the AC is drawing power if mt � 1. Table 4.1
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Table 4.1: Air Conditioner Model Parameters for Chapter IV

Parameter Description Value

θset Temperature Setpoint [�C] Ut20, 24u

θdb Temperature Deadband [�C] Ut1, 2u
θo
t Outdoor Temperature [�C] Varies from 25.2 to 35.0

Um Mass Conductance [kW
�C ] Ut4.4, 5.4u

Ua Air Conductance [kW
�C ] Ut0.25, 0.3u

Λm Mass Heat Capacitance [kWh
�C ] Ut2.0, 2.5u

Λa Air Heat Capacitance [kWh
�C ] Ut0.5, 0.6u

QAC
t Cooling Capacity [kW]

Qrate p1.32�0.01 θot q
1�f latent

Qrate Rated Cooling Capacity [kW] Ut11.1, 13.5u

f latent Fraction of Latent Cooling [-] 0.35

PAC
t Power Draw [kW] QAC

t {ηt
ηt Coefficient of Performance [-] ηstdp0.33 � 0.02 θo

t q
�1

ηstd COP at Standard Conditions [-] 3.5

summarizes other parameters used within the model where Uta, bu indicates a uni-

form distribution between a and b. Table 4.1 includes time-varying values for the

cooling capacity QAC
t , COP ηt, and power draw PAC

t , which are all functions of the

time-varying outdoor temperature θo
t . Note that we have neglected several aspects

that are included within the GridLAB-D model: minimum cycling times, the power

draw and heat injection from the circulation fan, and heating from solar irradiance

and internal heat gains; including these are a subject for future work.

The update equations for the hybrid model are

θt�1 � A θt �B pQAC
t mtq � E θo

t , (4.1a)

mt�1 �

$'''&'''%
0 if θat�1   θset � θdb{2
1 if θat�1 ¡ θset � θdb{2
mt otherwise,

(4.1b)

where (4.1a) updates the temperatures with θt �
�
θat θmt

�T

, and (4.1b) updates the

on/off mode if the air temperature reaches the edge of the allowable temperature

range. Matrices A, B, and E are computed by first constructing continuous-time

matrices using the thermal parameters Um, Ua, Λm, and Λa, and then discretizing

the continuous-time matrices using the time-step ∆t � 2 seconds. To simulate a set

of nAC ACs, we parameterize the set of ACs by independently selecting the relevant

parameters from the distributions in Table 4.1, where Ut�, �u refers to a uniform

distribution. We update each AC’s temperatures and on/off mode by applying (4.1a)
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and (4.1b) with the AC’s parameters.

4.2 Aggregate TCL Models

If nAC is large (e.g., on the order of thousands), then incorporating the nAC hybrid

models into control and estimation algorithms can be computationally prohibitive. As

a result, these algorithms often employ aggregate models, which model the behavior

of the nAC ACs using a single, simpler model. Here, we compare three aggregate

models. The first model, developed in [17] and referred to as the two-state Markov

model, defines a set of discrete bins based on θat and mt, constructs an aggregate

state as the portion of air conditioners in each bin, and it uses a Markov transition

matrix to update the aggregate state of the model. This is the same model detailed

in Section 2.2.2, and we describe it here to reintroduce notation. The second model,

developed in [39] and referred to as the three-state Markov model, is similar but

defines a set of discrete state bins based on θat , θ
m
t , andmt. The third model, developed

in [81, 82], referred to as the transfer function model, maps changes in the outdoor

temperature to changes in the steady state aggregate demand.

4.2.1 Two-State Markov Model

The two-state Markov model [17] uses an aggregate state xt P R2na
, which is

the portion of air conditioners in each of 2na discrete state bins. The discrete state

bins are formed by dividing a normalized temperature deadband into na temperature

intervals, and then creating two discrete states in each interval, one for air conditioners

that are on and one for those that are off. An AC maps to a bin based on its air

temperature and on/off mode. The two-state autonomous Markov model is

xt�1 � At xt, (4.2)

yt � Ct xt, (4.3)

where yt P R1 is the aggregate demand, At is a transposed Markov transition matrix

where the entries correspond to the probability of bin transitions within the time-

step, and Ct � nAC P
on

t

�
0 . . . 0 1 . . . 1

�
where the scalar P

on

t is the average

power draw of air conditioners that are on. In [17] At � A, corresponding to a

constant outdoor temperature. In [84], At is a function of the time-varying outdoor

temperature.

Here, to compute At and P
on

t , we first compute a set of time-invariant matrices A
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and average power draws Pon at different outdoor temperatures T o. Each element of

A is computed by counting the bin transitions at the corresponding outdoor tempera-

ture from T o, and then normalizing the columns to sum to one. We then compute At

by linearly interpolating the elements of the two time-invariant matrices correspond-

ing to the temperature above and below θo
t . Each element of Pon is computed by

calculating the average power draw of ACs that are on when θo
t is at the temperature

from T o. We interpolate P
on

t in a similar manner.

We use three approaches to identify A and Pon.

• MM2-C: We simulate the nAC ACs for each integer temperature within T o,

holding the temperature constant during each simulation. Each entry of A and

Pon is computed with data from one simulation.

• MM2-V: We simulate the ACs with a time-varying outdoor temperature us-

ing historical temperature data. Each entry of A and Pon is computed with

data corresponding to outdoor temperatures nearest to the entry’s associated

temperature.

• MM2-S: In addition to simulating the ACs with a time-varying outdoor tem-

perature, we create two sets A and Pon, one for when θo
t is increasing and one

for when θo
t is decreasing. This is justified because the interaction between θa

t

and θm
t is different for an increasing versus decreasing θo

t .

4.2.2 Three-State Markov Model

The three-state Markov model [39] creates discrete bins, similar to those of the

two-state Markov model, but based on both the air and mass temperatures. The

deadband is divided into na temperature intervals for the air temperature, as in

the two-state Markov model, and the deadband is divided into nm mass intervals

for the mass temperature. The aggregate state is then xt P R2nanm
, which is the

portion of ACs in each of the 2pnanmq discrete state bins. The three-state autonomous

Markov model is (4.2) and (4.3). As with the two-state Markov model, we define

three methods of constructing At and P
on

t : MM3-C, MM3-V, and MM3-S. They each

construct the sets A and Pon using the same methodology as with the two-state

Markov model. Note that this model is constructed assuming that measurements

of the thermal mass are available within each residence, which are not available in

practice.

Also, note that the structure (i.e., the location of zero and non-zero entries) of

each time-invariant matrix within A can be different for this model, depending on
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the outdoor temperature used to construct the model. As At is computed by linearly

interpolating between different time-invariant matrices with different structures, the

structure of At changes over time. Non-zero elements of xt can then be set to zero

due to the changing structure, reducing the probability mass within xt to less than

one. We heuristically ensure that each column in the time-invariant matrices sum to

one, ensuring that the probability mass within xt is not reduced.

4.2.3 Transfer Function Model

The transfer function model, developed in developed in [81,82], maps a change in

the ambient temperature to a change in the steady state aggregate demand, and it

has the form

yptq �
� nAC¸
i�1

PAC,i
t

	
L tGpsqu�1 pθo

t � θinitq (4.4)

Gpsq � b1s� b2

s2 � ζωn s� ω2
n

(4.5)

where L t�u�1 is the inverse Laplace transform, θinit is the initial outdoor temperature,

s is the variable in the Laplace domain, ζ is the damping coefficient of an under-

damped system, ωn is the natural frequency of an under-damped system, b1 and b2 are

coefficients, and
°nAC

i�1 P
AC,i
t is the total power draw if all ACs were on at time t. The

coefficients and parameters in (4.5) are computed based on an assumed response to a

step change in the outdoor temperature from θinit to θfinal, where these temperatures

must be assumed a priori to compute the model. The details about the calculation

of (4.5) can be found in [81,82], but some general aspects of the calculations include

the following: 1) the assumed, individual AC model is a simplified version of that

in Section 4.1, which only contains one continuous state for the air temperature; 2)

many of the parameters characterizing the individual AC model are assumed to be

identical across the AC population; 3) estimates for the steady state portion of ACs

that are on must be computed for both θinit and θfinal; and 4) an estimate for the

the period of the oscillations resulting from the step change is computed using the

parameter distributions of the population, which are assumed to be known.

The AC models in Section 4.1 differ substantially from the assumptions within [82].

As a result, we define two approaches to generate models based on transfer functions.

• TF-O: We implement (4.4) and (4.5) according to [82]. Thermal parameters for

the AC model with one continuous state are identified from historical data of
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θa
t , mt, and θo

t data for each AC. Parameters that are assumed to be identical

across the AC population in [82] are taken as their average value.

• TF-ID: We use a data-driven approach to identify a transfer function structure

as well as the transfer function parameters from historical θo
t and aggregate

demand data. We identify the transfer function parameters using the tfestp�q
function in Matlab, where we subtract the initial values of the aggregate demand

data and θo
t data. We then select the transfer function structure that achieves

the lowest error based on historical data. The resulting model has the following

structure:

yptq �L
"
b3s

2 � b4s� b5

s2 � a1 s� a2

*�1

pθo
t � θinitq � yinit (4.6)

where yinit is the initial demand and the parameters to be identified are b3, b4,

b5, a1, and a2.

To implement each of the transfer functions within a discrete-time simulation, we

convert each transfer function to a separate continuous-time, state-space model and

then discretize each state-space model.

4.3 Simulation-Based Case Studies

In this section, we use a number of simulation-based case studies to investigate the

prediction accuracy of the three aggregate models and their variations. Section 4.3.1

summarizes the simulation settings for the case studies, and Section 4.3.2 presents

the results. In general, more accurate aggregate models lead to more accurate control

and state estimation algorithms that could be used to provide frequency regulation

with ACs throughout the day. As a result, we evaluate the models using the RMS

error (RMSE) of the model’s predicted aggregate demand versus the true aggregate

demand over the day.

4.3.1 Parameterization

The case studies each use a plant of 10,000 simulated ACs, modeled and pa-

rameterized according to Section 4.1, over 24 hours using a time-varying outdoor

temperature. The outdoor temperature, available through the Pecan Street Data-

port [85], corresponds to that of Austin, TX on July 10, 2016, where we linearly

interpolate the data from one-hour to two-second time-steps. Figure 4.1 depicts the
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Table 4.2: Simulation Settings for Chapter IV

Parameter Description Value

∆t Time-step duration [s] 2

nsteps Number of time-steps [-] 43,200

nAC Number of air conditioners [-] 10,000

na Number of air temperature bins [-] 20

nm Number of mass temperature bins [-] 20

T o Set of temperatures used to compute the various Markov models t24, 25, . . . , 36u

θinit Initial outdoor temperature used to compute the transfer function
[�C]

28.8

θfinal Final outdoor temperature used when computing the transfer func-
tion [�C]

35.0

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

5

10

15

20

D
em

a
n
d
(M

W
)

25

30

35

θ
o t
(�
C
)

Figure 4.1: The aggregate demand of the simulated ACs and the outdoor temperature for the case
study setup

aggregate demand of the simulated ACs, which is the ground-truth demand in our

simulations, along with θo
t . Table 4.2 contains additional simulation parameters. We

use the RMSE to evaluate the prediction accuracy of each aggregate model versus

the aggregate demand of the simulated ACs.

To compute the Markov models, we generate the necessary data by simulating

the plant models using outdoor temperature data from July 1-9, 2016. We initialize

the Markov model at the true aggregate state value. To generate the parameters

for the transfer function models, we simulate the plant models using the outdoor

temperature for July 9, 2016. For TF-O, the transfer function was computed using

θinit as the actual initial temperature of the simulation and θfinal as the maximum

temperature of the simulation. The initial state of the discreteized TF-O model is

set to a vector of zeros. For TF-ID, yinit is set to the initial aggregate demand, θinit

is set to the actual initial temperature, and the initial state of the discretized TF-ID

model is set to zeros.
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4.3.2 Results

Table 4.3 summarizes the aggregate model variations and their RMSE values.

Figure 4.2 presents time series of the aggregate demand and the predictions of a

number of aggregate models over a portion of the simulated day. Figure 4.2a presents

time series for MM2-C and MM2-S where we exclude MM2-V for clarity, and Fig. 4.2b

presents time series for TF-O and TF-ID. We do not present time series for the three-

state Markov model predictions as they are similar to those of the two-state Markov

model. Figure 4.3 presents errors of various aggregate model’s predictions versus

the aggregate demand over the entire simulated day. Figure 4.3a presents the errors

of MM2-C and MM2-S, and Fig. 4.3b presents the prediction error for MM3-C and

MM3-S, where we exclude MM2-V and MM3-V for clarity. Figure 4.3c presents the

prediction error for TF-O and TF-ID.

As can be seen in Table 4.3, the increased modeling detail of the three-state

aggregate model reduces the RMSE errors versus the two-state aggregate model across

all variations. Accounting for the trend in θo
t in MM2-S and MM3-S reduces the

RMSE versus the other Markov-based model varieties substantially. Furthermore,

both MM2-S and MM3-S achieve similar RMSE, indicating that accounting for the

θo
t reduces the gap in modeling accuracy between the two Markov-based aggregate

models. The reduced RMSE when using MM2-S or MM3-S can be see in Fig. 4.2a

(which shows MM2-S but is true for MM3-S as well). Whereas the prediction of MM2-

C lags the aggregate demand, this is corrected in MM2-S by accounting for differences

in the AC model behavior when θo
t is increasing versus decreasing. Also, note that

from 4:00 AM to 8:00 AM, θo
t is relatively flat and switches between increasing and

decreasing several times, and the resulting prediction of MM2-S undergoes several

jumps. This results in significant prediction error in MM2-S and MM3-S, as can

be seen in Fig. 4.3a and Fig. 4.3b. Further differentiating between an increasing,

decreasing, or flat trend in θo
t may improve model performance. The time series for

MM3-C and MM3-S, which are not included, show similar trends.

The predictions of TF-O and TF-ID have higher RMSE than either Markov-

based aggregate model. This makes sense as the transfer function models are simpler

models than the Markov-based models; whereas TF-O and TF-ID have two states

and a steady-state demand term, the Markov-based models have 40 and 800 bins,

respectively. Figure 4.2b shows that the TF-O prediction generally lags the aggregate

demand and the TF-ID prediction does not. The errors in Fig. 4.3c also show that

TF-O under-predicts the demand as it increases from 12:00 PM to 6:00 PM.
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Figure 4.2: Time series of the aggregate demand and various model predictions over a portion of
the simulated day
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Figure 4.3: Prediction error of various models versus the aggregate demand
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Table 4.3: Summary of Models and RMSE (kW) Values

Abbreviation Base Aggregate Model Details RMSE (kW)
MM2-C Two-State Markov Model Set of models for different θo

t values;
data for model computation gener-
ated using constant θo

t values

436.7

MM2-V Two-State Markov Model Set of models for different θo
t values;

data for model computation gener-
ated using time-varying θo

t values

437.1

MM2-S Two-State Markov Model Set of models for different θo
t val-

ues and different θo
t trends; data for

model computation generated using
time-varying θo

t

226.2

MM3-C Three-State Markov Model Set of models for different θo
t values;

data for model computation gener-
ated using constant θo

t values

320.9

MM3-V Three-State Markov Model Set of models for different θo
t values;

data for model computation gener-
ated using time-varying θo

t values

322.9

MM3-S Three-State Markov Model Set of models for different θo
t val-

ues and different θo
t trends; data for

model computation generated using
time-varying θo

t

213.4

TF-O Transfer Function Model Single model; assumed transfer
function structure of two poles and
one zero; parameters computed us-
ing [82]

504.4

TF-ID Transfer Function Model Single model; transfer function
structure of two poles and two zeros
identified from historical model ac-
curacy; parameters identified with
historical input-output data

447.0

4.4 Chapter IV Conclusions

In this work, we benchmarked the prediction accuracy of three existing aggregate

models and several variations of them within a common, detailed simulation scenario.

The simulation scenario includes a time-varying outdoor temperature and detailed AC

models that include a time-varying cooling capacity, COP, and power draw (when

the AC is on) that all depend on the outdoor temperature. Results indicate that

the three-state aggregate model generally performs better than the other aggregate

models. Incorporating the temperature trend improves both Markov-based models

and reduces the gap in prediction accuracy between the two. The transfer function

model is the least accurate of the three aggregate models, most likely due to its

simplicity and due to the fact that the simulation scenario differs substantially from

the assumptions used to develop the model in [82]. The transfer function using input-

output data to identify the parameters resulted in reduced prediction error. While
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the three-state aggregate model is the most accurate, it is more computationally

complex than the other two models. The simpler two-state aggregate model offers

similar performance, when including temperature trends into the model, at lower

computational complexity.

Avenues of future work include the following: 1) developing a variation of the

Markov-based models that accounts for times of little change in outdoor tempera-

ture; 2) deriving transfer function parameters for an AC aggregation undergoing a

sinusoidal input rather than a step input, which better approximates realistic temper-

ature changes; 3) investigating the identified transfer function structure and whether

its parameters can be derived from the individual AC population; 4) including time-

varying solar irradiance and internal heat gains within the AC models; and 5) pre-

diction performance under aggregator control.
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CHAPTER V

Exploring Connections Between a Multiple Model

Kalman Filter and Dynamic Fixed Share with

Applications to Demand Response 1

State estimation and online learning are two approaches to estimate the state of

a dynamic system as measurements arrive at sequential, discrete time-steps. The

discrete-time Kalman filter (hereafter referred to simply as a Kalman filter) relies

on a model-based update that advances the state estimate in time according to an

assumed model of the underlying system, and a measurement-based update that

incorporates newly arrived measurements of the system into the state estimate. While

a Kalman filter uses a single model of the system to estimate the state, a multiple

model Kalman filter (MMKF) [88, 89] uses a set of possible models to compute the

state estimate, addressing situations where the model is unknown beforehand. The

Kalman filter and MMKF make assumptions on the generative model of the data,

i.e., that the system model is linear and that each model’s error and measurement

noise are normally distributed. The assumptions lead to a fixed structure for the

state estimation equations, and a user implementing the algorithms can only tune

the model-based parameters within the update equations.

While many online learning algorithms are model-free and data-driven, two re-

cently developed online learning algorithms, Dynamic Mirror Descent (DMD) and

Dynamic Fixed Share (DFS) [90], incorporate dynamic models and use both a model-

based update and a measurement-based update, similarly to Kalman filtering algo-

rithms. DMD is an online learning analogue to a Kalman filter, and DFS is compa-

rable to a MMKF. DMD and DFS both estimate a dynamic system state without

making assumptions of the generative model of the data. These online learning al-

1The work presented in this chapter was originally published in [86] and [87].
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gorithms are based on online convex optimization [91], where a user-defined convex

optimization problem is solved online, or at each time-step, to update estimates using

each new measurement as it arrives. These algorithms are more flexible and more

data-driven than the Kalman filter algorithms. Flexibility arises from the user’s abil-

ity to use a nonlinear system model within the algorithm and the ability for the user

to design the online, convex optimization problem that dictates the way that a new

measurement is incorporated into the estimate. The algorithms are more data-driven

in the sense that historical data can be used do design this convex optimization prob-

lem as well as to select the form of the possibly nonlinear model(s) along with its

(their) parameters. Within a Kalman filter, the user can tune the parameters within

the update equations to improve performance, but within DMD, the user can tune the

equations themselves (as well as the parameters) to improve performance. However,

DMD and DFS are not guaranteed to be the best estimator from specific class of

estimators, unlike a Kalman filter, which is the best linear estimator out of all linear

estimators.

In this chapter, we show that DMD can be constructed to produce identical state

estimates to those produced by a Kalman filter, we compare the multiple model

algorithms, DFS and a MMKF, and we apply DFS and a MMKF to a demand re-

sponse simulation. DMD can produce state estimates that are identical to those of

a Kalman filter by choosing the model to match that of a Kalman filter and then by

properly selecting the user-defined functions/parameters within the convex optimiza-

tion problem of DMD. We present two simple examples that illustrate the impact of

the user-defined functions and parameters within DMD; the examples also provide

empirical evidence that DMD can be constructed to produce the same estimates as

a Kalman filter. We then build on this result and show that the user-defined func-

tions/parameters within DFS can be constructed to produce identical states estimates

to those produced by a MMKF. We then modify DFS to include three heuristics that

are used to improve the performance of a MMKF in order to assess whether they can

also be used to improve the performance of DFS. While these heuristics result in a

suboptimal MMKF, they often improve its estimation accuracy in practice, which we

will demonstrate empirically.

In our simulation study, we aim to estimate the time-varying aggregate demand

of a population of residential air conditioners (ACs). Such estimates could be used

as a feedback signal within a demand response algorithm that aims to coordinate the

aggregate demand to provide services (e.g., frequency regulation) to the electricity

grid. We compare the estimation error of various DFS and MMKF implementations,
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which all rely on a set of aggregate load models that vary in their relative accuracy

over the course of the simulation horizon.

The contributions of this chapter are as follows: 1) we show that DMD can be

constructed to produce identical updates to those of a Kalman filter; 2) we show

that DFS can be constructed to produce identical estimates to those produced by a

MMKF; 3) we present two simple examples illustrating the flexibility of the DMD

algorithm; 4) we incorporate three heuristics used within MMKFs into DFS; and

5) we compare the performance of DFS and a MMKF within the demand response

simulation.

The remainder of this chapter is organized as follows. Section 5.1 presents the gen-

eral estimation problem; Section 5.2 summarizes the Kalman filter algorithms; Sec-

tion 5.3 summarizes the DMD and DFS algorithms; Section 5.4 reviews the method

to construct the functions/parameters within DMD to achieve the same estimates

as a Kalman filter, derives a method to construct the functions/parameters within

DFS to achieve the same estimates as a MMKF, and derives heuristic adjustments to

DFS based on those commonly used in MMKFs; Section 5.5 provides simple exam-

ples of DMD implementations, and it provides empirical evidence that DMD can be

constructed to produce the same estimates as a Kalman filter; Section 5.6 describes

the demand response simulation study and its results; and Section 5.7 presents the

conclusions of the chapter.

5.1 Estimation Problem

The general estimation problem considered within this work is to estimate the

value of a dynamic system state using 1) a priori knowledge about the system and

2) measurements of the system as they arrive at sequential, discrete time-steps. For

the Kalman filter methods summarized in Section 5.2, a priori knowledge corre-

sponds to the assumption of a linear system model and the assumption of zero-mean,

normally-distributed process and measurement noise. For the online learning meth-

ods summarized in Section 5.3, a priori knowledge corresponds to the model, which

may be nonlinear, and the construction of the convex optimization problem that is

solved at each time-step.

Each algorithm uses a model to advance an estimate in time, which we refer to

as the model-based update, and then uses a measurement to adjust the estimate,

which we refer to as the measurement-based update. At time-step k, the algorithm

first advances its estimate of the system state to the next time-step using an assumed
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model of the system to produce an a priori estimate for time-step k� 1. The system

then produces a measurement for time-step k � 1. The algorithm uses this new

measurement to adjust the a priori estimate and compute the a posteriori estimate.

The algorithm then uses the model to advance the estimate in time again, and the

process repeats.

Furthermore, to address modeling uncertainty, there may be multiple versions of

each algorithm running where each version incorporates a separate model from a set

of models and forms its own estimate of the state. Then, the individual estimates

are combined into an overall estimate. Models that are more accurate are given more

weight and can dominate the overall estimate. These “multiple-model” algorithms

can be used in situations where the system model is not known beforehand or when

the system operates in different regimes best described by different models.

We denote the system state xk P X , the a priori estimate as pxk P X , the a

posteriori estimate as rxk P X , and the measurement as yk P Y . We assume that

the domain of the state X � Rp is a bounded, closed, convex feasible set, which is

required by the online learning algorithms summarized in Section 5.3 but not by the

Kalman filter algorithms summarized in Section 5.2. Finally, we assume that the

domain of the measurements is Y � Rq. The set of Nmdl models is denoted Mmdl,

and i PMmdl indexes them.

5.2 Kalman Filter Algorithms

We next summarize the Kalman filter and MMKF algorithms to introduce no-

tation. Section 5.2.1 describes the Kalman filter, and Section 5.2.2 describes the

MMKF.

5.2.1 Kalman Filter

A Kalman filter can be viewed as a stochastic approach to estimating the state

of a dynamic system where updates to the estimate rely on a system model that is

assumed to be linear along with process and measurement noise that are assumed to

be normally distributed. The assumed system model is

xk�1 � Ak xk � ωk (5.1)

yk � Ck xk � vk, (5.2)

71



where (5.1) advances the state in time and (5.2) relates the state to a measurement. In

these equations, xk P Rp is the state, ωk P Rp is the process noise (or modeling error),

yk P Rq is the output (or observation/measurement), and vk P Rq is the measurement

noise. Samples of ωk and vk are assumed to be IID and to follow separate zero-mean,

normal distributions. Their respective covariances Qk and Rk are each symmetric,

positive definite matrices. The system is assumed to be observable, and the matrices

Ak, Ck, Qk, and Rk are assumed to be known.

The Kalman filter finds a state estimate that minimizes the mean squared es-

timation error based on the assumed system model. The model-based update ispxk�1 � Ak rxk. The measurement-based update is

rxk � pxk � pPkCT
k

�
Ck pPkCT

k �Rk

��1

pyk � Ckpxkq , (5.3)

where pPk is the estimation error covariance, which is known at each time-step. Equa-

tion (5.3) can be viewed as the solution to the following online, convex optimization

problem [92]:

min
x,vk

vT
kR

�1
k vk � px� pxkqT pP�1

k px� pxkq (5.4)

s.t. yk � Ckx� vk. (5.5)

When implementing a Kalman filter, the user can choose the model parameters – Ak,

Ck, Qk, and Rk – but the mathematical equations for the model-based update and

the measurement-based update are otherwise fixed.

5.2.2 Multiple Model Kalman Filter

The MMKF uses a set of Nmdl independent Kalman filters that each run in parallel

using one model fromMmdl, and the MMKF combines the estimates of each Kalman

filter into an overall estimate. Each model i P Mmdl satisfies the assumptions of

the Kalman filter and has corresponding matrices denoted Aik, C
i
k, Q

i
k, and Ri

k. We

denote the estimate using model i P Mmdl as pxik and the covariance of the output

estimation error as pP y,i
k � Ci

k
pP i
k pCi

kqT � Ri
k. Finally, we define a quantity dy

kppyikq
that is the squared Mahalanobis distance of Kalman filter i’s output estimate versus

the measurement yk, i.e., dy
kppyikq � ppyik � ykqT p pP y,i

k q�1ppyik � ykq with pyik � Ci
kpxik.

The equations that form the weights and combine the estimates within the MMKF
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are

hpyk|miq �
�
p2πqq{2

b
| pP y,i
k |

��1

exp

�
�1

2
dy
kppyikq
 (5.6)

wik�1 �
hpyk|miq wik°

jPMmdl hpyk|mjq wjk
(5.7)

pxk�1 �
¸

iPMmdl

wik�1 pxik�1, (5.8)

with i PMmdl for (5.6) and (5.7). In the above, (5.6) is a conditional probability of

the likelihood of the observation yk given that the underlying system is model mi,

(5.7) is a weighting function where the weights can be viewed as a probability that

model mi matches the underlying system model, and (5.8) forms the overall estimate

using the individual Kalman filter estimates and their weights.

Note that other algorithms exist for situations where the system models switches

as time progresses, e.g., the first- and second-order generalized pseudo-Bayesian al-

gorithms and the interacting multiple model algorithm, all from [89]. However, these

algorithms require the probability of transitioning from one model to another during

a time-step to be known a priori ; here, we assume that this is unknown a priori. In

addition, whereas online learning assumes that the underlying models (or “experts”)

operate independently, the first- and second-order generalized pseudo-Bayesian algo-

rithms and the interacting multiple model algorithm do not make this assumption.

As a result, we do not include further discussion of these algorithms.

5.3 Online Learning Algorithms

In this section we summarize the DMD and DFS algorithms, which were originally

developed in [90]. Section 5.3.1 describes DMD, and Section 5.3.2 describes DFS.

5.3.1 Dynamic Mirror Descent

The DMD algorithm uses a user-defined convex optimization formulation and

a single model of the underlying system to estimate its state. Specifically, DMD

uses the convex optimization formulation to adjust the estimate pxk using the new

measurement yk, and then applies the model to advance the adjusted estimate to the

73



next time-step. The DMD algorithm formulation is [90]

rxk � argmin
xPX

ηs p∇`kppxkqqT x�D px}pxkq (5.9)

pxk�1 �Φprxkq, (5.10)

where (5.9) computes the adjusted estimate and (5.10) applies the model. In these

equations, Φp�q is the (possibly nonlinear) model, ηs ¡ 0 is a user-defined step size,

and ∇`kppxkq is the gradient or subgradient of the convex loss function `kppxkq, which

computes the error on the output estimate. The function Dpx}pxkq is a Bregman

divergence, which is similar to a distance function. As an example, we could use

Dpx}pxkq � ‖x � pxk‖2
2 and `kppxkq � ‖Cpxk � yk‖2

2, where the matrix C translates the

state estimate into an output estimate. The choice of loss function establishes the

relationship between output estimate errors and state estimate errors, since the gradi-

ent of this function helps to determine how the state estimate is adjusted based on the

output estimate errors. The choice of the Bregman divergence helps to establish the

relationship between estimation errors within the different components of the state.

The parameter ηs controls how closely the algorithm matches the output estimates

with the measurements (by adjusting the state estimate) versus trusting the models.

Section 5.5 presents one example to show the impact of ηs and one example to show

the impact of the choice of the divergence and loss functions.

5.3.2 Dynamic Fixed Share

The DFS algorithm uses a set of DMD algorithms, each using a separate (possibly

nonlinear) model fromMmdl, as experts (i.e., algorithms that generate estimates) into

the Fixed Share Algorithm developed in [93]. Similar to a MMKF, DFS forms an

overall state estimate from the Nmdl experts. The DFS algorithm’s weight updates

and overall estimate are those of the Fixed Share Algorithm where the estimates pxik
for i PMmdl are generated using DMD:

wik�1 �
λ

Nmdl
� p1 � λq wik exp p�ηr `k ppxikqq

Nmdl°
j�1

wjk exp
��ηr `k �pxjk�� (5.11)

pxk�1 �
¸

iPMmdl

wik�1 pxik�1 (5.12)

with i PMmdl for (5.11). Equation (5.11) updates the weight of each expert, where

wik is the weight of expert i, λ P p0, 1q is a user-defined parameter that sets the

74



minimum weight of each expert, and ηr is a user-defined parameter that scales the

total accumulated loss (which is related to output estimation errors). Equation (5.12)

combines the individual estimates into an overall estimate pxk. Setting ηr to larger

values forces exp p�ηr `k ppxikqq to be near one regardless of `k ppxikq, and this results in

faster changes to the weights.

5.4 Connections Between the Kalman Filtering and Online

Learning Algorithms

Section 5.4.1 presents a method to construct the functions/parameters within

DMD to produce estimates identical to those produced by a Kalman filter. Sec-

tion 5.4.2 builds on this result and presents a method to construct the functions/parameters

used within DFS to produce estimates identical to those produced by a MMKF. Fi-

nally, Section 5.4.3 adapts several heuristics commonly used within MMKFs to DFS.

5.4.1 Producing Identical Estimates with DMD and a Kalman Filter

We construct DMD by choosing the model, user-defined parameters, and user-

defined functions. As with a Kalman filter, we assume as linear model and that the

model matrices Ak, Ck, Qk, and Rk are known, and additionally, that pPk is known.

Choosing the model used within DMD to be identical to that used within the Kalman

filter results in the same model-based update. The remaining step is to construct the

convex program (5.9) such it corresponds to (5.3).

In (5.9) we have the ability to choose the ηs, Dpx}pxkq, and `kppxkq. Recall that the

measurement-based update in a Kalman filter is

rxk � pxk � pPkCT
k p pP y

k q�1 pyk � Ckpxkq ,
and the measurement-based update in DMD is

rxk � arg min
xPX

ηs p∇`kppxkqqT x�D px‖pxkq .
Choosing the Bregman divergence as D px‖pxkq � 1

2
px� pxkqT pP�1

k px� pxkq, setting

ηs � 1, and solving for the closed form solution of the convex program (i.e., taking

the gradient with respect to x and setting this equal to zero) gives

rxk � pxk � pPk p�∇`kppxkqq . (5.13)
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Note that with the appropriate selection of the Bregman divergence, the structure of

DMD’s measurement-based update closely matches that of the Kalman filter, and the

remaining step is to choose `kppxkq appropriately. Noting that δ
da

�pMa� bqTV pMa� bq� �
2MTV pMa� bq, we choose

`kppxkq � 1

2
pCkpxk � ykqT p pP y

k q�1 pCkpxk � ykq ,

and then �∇`kppxkq � CT
k p pP y

k q�1 pyk � Ckpxkq. Plugging �∇`kppxkq into (5.13) gives

the same measurement-based update as the Kalman filter. Section 5.5 presents a

simple example that shows DMD producing identical estimates as a Kalman filter.

5.4.2 Producing Identical Estimates with DFS and a MMKF

Since DMD can be constructed to produce identical estimates to those produced

by a Kalman filter, all that is needed to produce identical updates with DFS and

MMKF is to ensure that the updates to the weights wik are equal. We first set λ � 0,

ηr � 1, and use the loss function developed in Section 5.4.1. The resulting weight

update in DFS is

hDFSpyk|miq � exp
��`kppxikq� (5.14)

wik�1 �
hDFSpyk|miq wik°

jPMmdl hDFSpyk|mjq wjk
(5.15)

for i PMmdl. Note that (5.15) corresponds exactly to (5.7), and the remaining step

is to construct hDFSpyk|miq to equal hpyk|miq.
To make hDFSpyk|miq equal hpyk|miq, we will scale pP y,i

k by a parameter βi such that

p2πq�q{2 p|βi pP y,i
k |q�1{2 � 1. The parameter βi will be positive since pP y,i

k is positive

definite, and we also define αi �
a
βi. Scaling pP y,i

k by βi amounts to adjusting

our belief of the accuracy of the output estimate, and the output equations should

be changed accordingly. To see this, recall that pP y,i
k � Ci

k
pP i
kpCi

kqT � Ri
k, and then

βi pP y,i
k � pαiCi

kq pP i
kpαiCi

kqT � βiRi
k, i.e., the scaling parameters only appear with the

output-related quantities. As a result, the outputs are scaled, i.e., pyik � Ci
kpxik becomes

αipyik � pαiCi
kqpxik, the measurement noise covariance Ri

k becomes βiRi
k, and the output

yk � Ci
kxk � vk becomes αiyk � αiCi

kxk � αivk.

To determine βi, we use the property of determinants where |γV | � γn|V | for an

n� n matrix V and scalar γ. To set βi, we replace pP y,i
k with pβi pP y,i

k q, and then solve
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for βi:

1 � 1

p2πqq{2
b
|βi pP y,i

k |
(5.16)

ùñ βi � q

b
p2πq�q | pP y,i

k |�1. (5.17)

Using this scaling to adjust hpyk|miq within the MMKF gives

hpyk|miq �

exp

�
�1

2
pαipyik � αiykqT pβi pP y,i

k q�1pαipyik � αiyk



,

where the scaling eliminated the constant in front of the exponential, and where

the scaling cancels out in the exponent. Applying the scaling to hDFSpyk|miq gives

hDFSpyk|miq � hpyk|miq, and so the updates to the weights are equal.

However, since we have modified the expression for hpyk|miq within the MMKF,

we must carry the scaling through each MMKF equation. Within the Kalman gain,

we see that replacing the output matrices and the estimated output with their scaled

values results in a scaled gain:

K
i

k � pP i
kα

ipCi
kqT

�
αiCi

k
pP i
kα

ipCi
kqT � βiRi

k

��1

(5.18)

� αi

βi
Ki
k. (5.19)

However, the scaling cancels out within the measurement-based update:

rxik � pxik � αi

βi
Ki
k

�
αiyk � αiCi

kpxik� (5.20)

� pxik �Ki
k

�
yk � Ci

kpxik� (5.21)

for i PMmdl. The model-based update does not contain any scaled quantities, and the

scaling factor also cancels out in the update to the state estimation error covariance.

5.4.3 Adapting MMKF Heuristics to DFS

We next show that several heuristic adjustments that are commonly used within

MMKFs can be readily incorporated into DFS by modifying the weight update. The

heuristics include 1) setting a minimum weight such that a model’s weight does not

go to zero [89], 2) using exponential decay within the likelihood function [94], and 3)
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using a sliding window within the likelihood function [94].

To incorporate these methods into DFS, we can change the weighting equation

(5.11). The first heuristic is equivalent to setting λ to a value greater than zero within

DFS. The second heuristic is equivalent to adjusting (5.11) to

wik�1 �
λ

Nmdl
� p1 � λq pwikqγ exp p�ηr`kppxikqq

Nmdl°
j�1

pwjkqγ exp
��ηr`kppxjkq� . (5.22)

The parameter γ P p0, 1q reduces the impact of the previously accumulated loss on

the model’s weight, where smaller values of γ reduce the effect more dramatically.

The third method is equivalent to adjusting (5.11) to

wik�1 �
λ

Nmdl
� p1 � λq

k±
t�k�N`

exp p�ηr `t ppxitqq
Nmdl°
j�1

k±
t�k�N`

exp
��ηr `t �pxjt�� , (5.23)

where N ` is the number of time-steps within the sliding window. By using (5.22)

and (5.23), it is possible to discount and exclude historical estimation errors (and

their resulting losses), which leads to a more dynamic set of weights that depend on

the recent estimation accuracy. Simulations presented in Section 5.6 investigate how

these weighting functions affect the overall estimates within DFS and a MMKF.

5.5 Examples of DMD Implementations

In this section, we present two examples that demonstrate the influence of several

of the user-defined functions and parameters within DMD. The first example shows

how the choice of ηs impacts the estimate in the presence of measurement noise. The

second example illustrates how the choice of divergence and loss functions impact

the estimates generated by (5.9), and it provides empirical evidence for the result in

Section 5.4.1 that DMD can be constructed to produce identical estimates to those of

a Kalman filter. These examples are constructed to isolate impact of the component

of interest. In reality, the various parameters and function choices influence each

other in nontrivial ways, which generally cannot be known a priori.

In the examples below, the plant model, whose state we are trying to estimate,
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consists of (5.1) and (5.2), where C �
�
0 1

�
and

A �
�

cospπ{500q � sinpπ{500q
sinpπ{500q cospπ{500q

�
. (5.24)

The the state is xk P R2, its initial value is x0 �
�
0 1

�T

, ωk P R2, and vk P R. We

assume that ωk and vk satisfy the assumptions of a Kalman filter, and their time-

invariant covariances are Q P R2�2 and R P R, respectively, where we detail their

values in each example.

5.5.1 Varying the Gradient Descent Step Size ηs

The parameter ηs influences how closely DMD adjusts the state estimate pxk to

match the (possibly noisy) measurement versus trusting the predictions of the system

model Φp�q. In this example, we assume the plant model contains no process noise,

i.e., Q � 0, and the measurement noise covariance is R � 1. The DMD model Φprxkq
is set to the plant model (5.1) and (5.2) excluding ωk and vk. The divergence is set

to Dpx‖pxkq � 1
2
‖x� pxk‖2

2 and the loss function is set to `kppxkq � 1
2
‖Cpxk � yk‖2

2. The

resulting closed-form measurement-based update (5.9) is

rxk � pxk � ηsCTpyk � Cpxkq. (5.25)

We apply DMD for two different values of ηs (i.e., η0
k � 0.0 and η1

k � 1.0, where the

resulting estimates are denoted px0
k and px1

k, respectively) and compare the results. All

estimates are initialized at the true state.

Figure 5.1 presents the resulting time series of the second elements of xk, px0
k, andpx1

k; we exclude time series of the first elements as they exhibit similar characteristics.

The second term of (5.25) is 0 for px0
k, and so there is no adjustment to the state

estimate based on the measurement. As a result, px0
k matches xk exactly because

the model within DMD exactly matches the plant model. Alternatively, for px1
k, the

convex program adjusts the state estimate to match the noisy measurements rather

than trusting DMD’s model, resulting in significant estimation error.

5.5.2 Varying the Choice of Divergence and Loss Functions

The choice of the divergence and loss functions within DMD influences the algo-

rithm’s measurement-based adjustments. In this example, we vary DMD’s measure-

ment-based update by using two choices for the divergence and loss functions – one
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Figure 5.1: Time series of the second element of xk, px0
k, and px1

k for the example in Section 5.5.1

that includes covariance matrices explicitly and one that does not. We also simu-

late a Kalman filter to empirically show that the DMD estimates match those of a

Kalman filter when the divergence and loss functions are constructed as described in

Section 5.4.1.

In this example, we assume the measurement noise covariance is R � 2, and the

process noise covariance is

Q �
�

0.25 0.1

0.1 0.25

�
.

We construct a steady-state discrete-time Kalman filter, whose estimates are denotedpxKF
k , using the underling system model and covariances. Both DMD formulations use

ηs � 1. The first DMD formulation, whose estimates are denoted pxa
k, uses the same

loss function, divergence function, and resulting measurement-based update equa-

tion as in the previous example. The second DMD formulation, whose estimates are

denoted pxb
k, uses the divergence and loss functions needed to produce measurement-

based updates that are equivalent to those of the Kalman filter, i.e., (5.3), and we setpPk � P and pP y
t � �

CPCT �R
�
. The quantity P is a steady-state estimation error

covariance that the Kalman filter converges to if the system is time-invariant. Note

that the second formulation explicitly includes accurate model prediction error statis-

tics via the covariances, whereas the first estimate implicitly assumes the covariances

are identity matrices.

Figure 5.2 presents the time series of xk, pxa
k, pxb

k and pxKF
k . Note that the estimatespxb

k and pxKF
k coincide exactly, empirically supporting our claim that we can choose the
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Figure 5.2: Time series of xk, pxa
k, pxb

k, and pxKF
k for the example in Section 5.5.2

DMD model, divergence function, and loss function to achieve a measurement-based

update equivalent to that of Kalman filter. In estimating the second element of xk,

we first note that both pxa
k and pxb

k follow the general trajectory of the true state,

but pxb
k is noticeably smoother than pxa

k. By including the covariance matrices into

the measurement-based update, pxb
k is better able to account for the measurement

noise resulting in a less erratic estimate and reduced estimation error versus pxa
k. In

estimating the first element of xk, both methods have significant deviations from the

true state value; however, the root mean square estimation error in pxb
k is smaller that

of pxa
k, indicating that pxb

k is more accurate over the duration of the simulation. Again,

the inclusion of accurate statistical information into the measurement-based update

has led to a more accurate estimate.

It should be noted that this example was constructed such that the Kalman filter

is the optimal estimator. In reality, the assumptions of the Kalman filter rarely hold.

A Kalman filter can still be applied with varying degrees of success, but it may not be

the optimal estimator. The DMD algorithm relaxes some of the underlying assump-

tions, which allows greater flexibility in designing the updates, but the theoretical

guarantees of the Kalman filter do not apply. Additionally, it should be noted that

in this example we assume we have a perfect estimate of the covariance matrices.
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5.6 Case Studies

In this section, we use the MMKF and DFS algorithms to estimate the total ac-

tive power demand of an aggregation of residential ACs. Specifically, we investigate

the estimation accuracy of DFS and a MMKF, with and without the scaling in Sec-

tion 5.4.2, and with and without the heuristics in Section 5.4.3, where each expert

(i.e., instance of DMD) in DFS is a separate Kalman filter from the MMKF. Such

estimates could be used as a feedback signal within a demand response algorithm

that aims to coordinate the aggregate demand to provide services (e.g., frequency

regulation) to the electricity grid. However, here we assume that the loads are not

controlled (making the estimation problem more difficult).

5.6.1 Problem Setup and Simulation Details

Figure 5.3 gives the block diagram of the estimation problem. The plant is our

representation of the physical system. It consists of a set of nAC residential AC models

along with other loads within a distribution network. The demand response provider

would like an estimate of the aggregate AC demand (i.e., the flexible demand), but it

only has a measurement of the total demand. It subtracts an estimate of the demand

of the other loads from the measurement of the total demand to obtain a noisy

estimate of the aggregate AC demand. This noisy estimate is used as a measurement

within the DFS/MMKF algorithms to obtain a better estimate of the aggregate AC

demand.

Each AC within the plant is modeled similarly to Section 2.2.1.2, where the equa-

tions from [95] and the notation are the following:

θk�1 �a θk � p1 � aq pθo
k �mkΛP q (5.26)

mk�1 �

$'''&'''%
0 if θk�1   θset � θdb

2

1 if θk�1 ¡ θset � θdb

2

mk otherwise,

(5.27)

where θk P R is the internal air temperature of the house, mk P t0, 1u is the AC’s on/off

switch value, θo
k P R is the time-varying outdoor temperature, a � expp�∆t{ΛCq,

and ∆t P R is the time-step. The remaining parameters are sampled from uniform

distributions with ranges from [17], where θset P R is the temperature set-point, θdb P
R is the temperature dead-band, Λ P R is the thermal resistance, C P R is the thermal

capacitance, η P R is the coefficient of performance, and P P R is the energy transfer
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Figure 5.3: Block diagram of the estimation problem in Chapter V.

rate. The aggregate power draw of the set of ACs is yAgg
k � °nAC

i�1 m
i
kP

ipηiq�1. In

this work, we assume the estimation error vk associated with the demand of the other

loads is normally distributed with variance R. Therefore, the noisy aggregate AC

demand estimate (i.e., the measurement used within the DFS and MMKF algorithms)

is yk � yAgg
k � vk.

We simulate the plant with nAC � 1000, ∆t � 4 seconds, and with a time-

varying outdoor temperature over the course of six hours. The time-varying outdoor

temperature corresponds to one period of a sine wave initialized at 31�C and varying

from 28 � 34�C over the course of the simulation. We set the standard deviation of

the measurement noise, i.e.,
?
R, equal to 10% of the AC demand’s average value

over the simulation.

Each algorithm uses a set of dynamic models, developed in [17, 44], that capture

the aggregate AC demand. Each model is a linear, time-invariant autonomous system

xk�1 � Axk, yk � Cxk, where the state xk P R2 captures the portion of ACs that

are on versus off, A P R2�2 is a transposed Markov transition matrix, and C P R1�2

multiplies the the portion of ACs switched on by a scalar, resulting in the aggregate

AC demand y P R. Both A and C are a function of the outdoor temperature. We

use Nmdl � 3 aggregate models, where A and C are identified by simulating a set

of ACs with the same parameter distributions as those within the plant at outdoor

temperatures θo � 28, 31, and 34�C. We denote these aggregate models as m28, m31,

and m34.
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Table 5.1: Summary of Algorithms and Their RMS Estimation Errors (kW)

Abbreviation Details RMS Error (kW)
MMKF The standard MMKF algorithm without any heuristics 104.5
MMKF-S A MMKF with scaling performed according to Section 5.4.2 104.5
MMKF-M A MMKF using a minimum weight for each model, i.e., using

an equation similar to (5.11) as the weight update
63.4

MMKF-W A MMKF using a sliding window weight update and a mini-
mum weight for each model

-

MMKF-E A MMKF using an exponential decay weight update and a
minimum weight for each model

61.1

DFS-S DFS with scaling performed according to Section 5.4.2 104.5
DFS-M DFS with the standard weight update (5.11), which includes

a minimum weight for each model
61.9

DFS-W DFS using the sliding window weight update (5.23), which
includes a minimum weight for each model

61.4

DFS-E DFS using the exponential decay weight update (5.22), which
includes a minimum weight for each model

60.9

The algorithm implementations are summarized in Table 5.1. We choose the

functions within DFS such that the updates resemble the updates of a MMKF. How-

ever, for DFS-M, DFS-W, and DFS-E, we do not use the scaling from Section 5.4.2

and we tune ηr (which does not appear in the MMKF weight update) resulting in

different performance between the comparable DFS and MMKF algorithms. By com-

paring MMKF and MMKF-S we see that the MMKF scaling in Section 5.4.2 achieves

approximately the same performance in this case, and by comparing MMKF-S and

DFS-S we can verify that the algorithms produce identical updates. We set λ � 1e�5

in DFS-M, DFS-W, DFS-E, and MMKF-M (which uses a weight update similar to

(5.11)), which allows a single model to dominate the overall estimate if one proves to

be the most accurate. We set ηr to 0.8 in DFS-M, 0.5 in DFS-W, and 1.2 in DFS-

E. We set the window duration to N ` � 250 time-steps in DFS-W and MMKF-W.

We set the exponential decay parameter to γ � 0.995 in DFS-E and MMKF-E. The

values of ηr, N `, and γ were tuned qualitatively in the given simulation scenario to

provide weights that are responsive but not overly erratic, e.g., from measurement

noise.

In order to compare the performance of the weight updates we need to ensure that

the estimates pxik for i PMmdl are the same within each implementation. Since DMD

can be constructed to produce identical updates to a Kalman filter, we implement

an identical set of Kalman filters within each DFS/MMKF implementation. In each

Kalman filter, we set the measurement noise covariance to R and compute the process

noise covariance based on the estimation error of the model. Note that the Kalman

filters are sub-optimal estimators since the process noise is not normally distributed.
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Figure 5.4: Time series of the aggregate AC demand, denoted yAgg
k , versus the MMKF-S and

DFS-S estimates, denoted yMMKF-S
k and yDFS-S

k , respectively.

5.6.2 Results

Figure 5.4 presents time series for the MMKF-S and DFS-S. Figure 5.5 presents

time series of the MMKF and DFS-M estimates along with the total AC demand;

we exclude time series of the other algorithm implementations as they are difficult

to distinguish from one another. Figure 5.6 presents time series of the Kalman filter

estimates obtained using each model along with the aggregate AC demand. Table 5.1

summarizes the RMS error in kW of the aggregate AC demand estimates for each

algorithm implementation, and Fig. 5.7 presents time series of the weights for various

algorithm implementations. Note that in Fig. 5.7 we exclude weight time series for

MMKF-W as results could not be computed due to numerical issues, and we exclude

weight time series for MMKF-E as they are similar to those of DFS-E. The numerical

issues with MMKF-W arise due to the coefficient in front of the exponential in (5.6),

which results in values that are approximately zero when computing a windowed

weight, i.e., using an update that is similar to (5.23).

From Fig. 5.4, we can see that the estimates for MMKF-S and DFS-S are the same.

From Table 5.1, we can see that the RMS estimation errors of MMKF, MMKF-S,

and DFS-S are the same, which empirically validates the equivalence established via

scaling the output equations in Section 5.4.2 and demonstrates that, in this case, the

MMKF scaling achieves approximately the same result as without scaling.

From Table 5.1, we can see that the MMKF performance can be improved with

heuristics. In general, the DFS implementations slightly outperform the comparable

MMKF implementations. It is unsurprising that the results are similar due to the
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similarities in the MMKF and DFS algorithms. Tuning the covariance matrices within

the underlying Kalman filters may improve the performance of all implementations,

but this improvement would be identical across all implementations as they all use

the same underlying estimates. The improvement in DFS is due to the parameter ηr,

which allows the algorithm to generate more dynamic weights by setting ηr to larger

values. This is not possible in a MMKF.

Comparing the various time series of the weights to the accuracy of the under-

lying Kalman filter estimates illuminate the differences in algorithm performance.

Specifically, the MMKF weights presented in Fig. 5.7a show that the MMKF does

not ever weight m28 heavily, even though the model is accurate over the final two

hours of the simulation. This is because m28 was inaccurate over the early portion of

the simulation, resulting in a low likelihood and a low weight, and it was unable to

regain weight once it became accurate. Including a minimum weight into the MMKF

overcomes this issue, as can be seen in Fig. 5.7b, which shows the weight time series

for MMKF-M. In contrast, the DFS algorithm weights m28 heavily in the final two

hours of the simulation, as can be see in Fig. 5.7c.

Another characteristic of the DFS-M, MMKF, and MMKF-M weights are that

they become smoother as the simulation progresses. This is because the weights sum

the losses (related to the output estimation errors) as the simulation progresses, and

the weights become more stagnant as the losses accrue. Alternatively, the behavior

of the DFS-W and DFS-E weights in Fig. 5.7d and Fig. 5.7e, respectively, are more

consistent throughout the simulation. The MMKF-E weights behave similar to those

of DFS-E. This is because the recent losses have larger influence on the weights. As a

result, the weights are able to react to the models’ recent performance. Incorporating

a sliding window or exponential decay into the weight function performs a similar

function, which results in similar weights. This can be seen in that DFS-W and

DFS-E weights are almost identical and result in very similar RMS error values.

5.7 Chapter V Conlusions

In this chapter, we showed that Dynamic Mirror Descent (DMD), which is used

within the DFS algorithm, can be constructed to be equivalent to a discrete-time

Kalman filter through proper choice of user-defined functions and parameters. We

showed that DFS can produce updates that are identical to that of a MMKF. We

also showed that DFS can be modified to incorporate heuristics that are commonly

used within a MMKF. We applied various implementations of DFS and a MMKF
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to a demand response simulation. This simulation scenario empirically validated

the scaling that is used to produce identical updates between DFS and a MMKF. We

showed that including a minimum weight threshold improves the performance of DFS

and a MMKF. We also showed that including exponential decay or a sliding window in

the DFS or MMKF weight update allows more consistent, responsive behavior in the

weights. In addition, the minimum weight, exponential decay, and sliding window

versions of the DFS and MMKF algorithms effectively estimate the aggregate AC

demand within the demand response simulation.
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CHAPTER VI

Real-Time Energy Disaggregation of a Distribution

Feeder’s Demand Using Online Learning 1

Distributed energy resources (DERs) such as demand-responsive, electric loads

and residential solar generation are becoming more common within electricity distri-

bution networks [98,99]. Sensing infrastructure, such as household smart meters, are

also becoming more common [100]. However, distribution system operators still often

lack an accurate real-time picture of overall DER characteristics such as i) the total

power consumption of the air conditioners connected to a distribution feeder, or ii)

the total power production of all solar panels installed on a distribution feeder.

Knowing overall DERs characteristics in real-time can help system operators,

utilities, and third-party companies (such as energy efficiency and demand response

providers) improve power system reliability, economic efficiency, and environmental

impact. For example, 1) a system operator can better determine balancing reserve

requirements by knowing the real-time production of intermittent distributed gener-

ation; 2) a utility can better plan demand response actions by knowing the weather

forecast and the real-time portion of weather-dependent loads (e.g., air conditioners,

heaters, dehumidifiers); 3) a demand response provider offering ancillary services to

the system operator can better determine its bid capacity by knowing the real-time

consumption of demand responsive loads; and 4) a demand response provider can use

the real-time consumption of demand responsive loads as the feedback control signal

within a load coordination algorithm.

Perfect real-time knowledge of DER characteristics requires a sensor at each of the

large number (e.g., thousands) of spatially distributed devices and a communication

infrastructure capable of reliably transmitting the data at the necessary frequency

1The work presented in this chapter was originally published in [86, 96], and preliminary work
was published in [97].
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(e.g., every few seconds). Rather than installing additional, costly metering and

communication infrastructure, this chapter shows that it is possible to estimate real-

time DER characteristics using existing sensing capabilities and some knowledge of

the underlying system. Specifically, we show how to separate measurements of the

net demand served by a distribution feeder into its components in real-time, using

knowledge of the physical processes driving load/generation. We refer to this task as

feeder-level energy disaggregation.

In this work, the feeder-level energy disaggregation problem framework is specified,

Dynamic Fixed Share (DFS) [90] is applied to separate the active power demand

served by a feeder into two components: the active power demand of a population of

residential air conditioners and the active power demand of all other loads connected

to the feeder. DFS incorporates dynamical system models of arbitrary forms, blending

aspects of machine learning and state estimation. The contributions of this work are

the following:

• Frame the feeder-level energy disaggregation problem

• Adapt DFS to the feeder-level energy disaggregation problem

• Develop a variation of DFS that allows it to include models with different un-

derlying states

• Demonstrate the performance of DFS via a realistic, data-driven case study

• Compare the performance of DFS to that of a set of Kalman filters

• Demonstrate the influence of including model prediction error statistics on the

performance of DFS.

Section 6.1 compares our problem and approach to related problems/work. Sec-

tion 6.2 defines the problem framework. Section 6.3 describes the data used to con-

struct the underlying system, and Section 6.4 describes the models used within the

algorithm. Section 6.5 summarizes the DFS algorithm, and it summarizes the im-

plementations of DFS for the feeder-level energy disaggregation problem. Section 6.6

constructs case studies and summarizes their results. Section 6.7 presents the con-

clusions of the chapter.
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6.1 Comparison to related problems and work

The feeder-level energy disaggregation problem combines aspects of building-level

energy disaggregation and load forecasting. Building-level energy disaggregation,

also referred to as nonintrusive load monitoring [101], separates building-level de-

mand measurements into estimates of the demand of individual or small groups of

devices [49]. Building-level energy disaggregation algorithms typically use an aggre-

gate signal that is sampled at high frequencies (e.g., 10 KHz to over 1 MHz) and

composed of 10-100 component loads. Disaggregation algorithms use data sampled

at frequencies ranging from over 1 MHz to 0.3 mHz (i.e., hourly interval data) where

higher-frequency data allows separation of more devices [49]. The algorithms gener-

ally leverage assumptions stemming from the relatively small number of underlying

loads (e.g., a single device turns on or off per time-step [102] or that step changes can

be seen in the aggregate signal [103]), and the problem is not usually solved online.

Both unsupervised and supervised learning approaches have been proposed, with the

latter often using models developed with submetering data.

Load forecasting predicts the total future demand within a given area over time

horizons ranging from hours to years [104]. Whereas energy disaggregation typically

deals with small load aggregations, load forecasting typically deals with large aggre-

gations, e.g., thousands to millions of loads. For example, forecasting the load served

by a distribution transformer is considered a “small” forecasting problem [104]. Very

short term load forecasting, corresponding to intraday forecasts, generally uses 15 min

to one hour interval data [104,105]. Smart meter data enables offline development of

detailed load models [106], which may be used online for operational decisions [107],

e.g., for predicting the curtailable load [106]. However, load forecasting is typically

done offline and used for planning.

In contrast to building-level energy disaggregation, feeder-level energy disaggrega-

tion involves disaggregating the demand of a large number of loads, e.g., thousands,

into a small number of source signals, e.g., two. In contrast to load forecasting,

feeder-level energy disaggregation estimates portions of the total demand and assumes

real-time demand measurements, e.g., taken by SCADA systems at distribution sub-

stations, are available on timescales of seconds to minutes. This corresponds to rela-

tively fast sampling for load forecasting and relatively slow sampling for building-level

energy disaggregation. In contrast to both building-level energy disaggregation and

load forecasting, feeder-level energy disaggregation is done online. However, much like

load forecasting and some building-level energy disaggregation approaches, we assume
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Figure 6.1: Example time series of yt and its components yOL
t and yAC

t .

detailed historical load data are available and used offline to construct models.

Machine learning algorithms have been proposed to address a number of problems

in power systems including security assessment, forecasting, and optimal operation

[108]. A variety of machine learning techniques have been used to forecast load,

renewable generation, and prices [109–113]. References [45, 114–117] apply learning

approaches to demand response. However, to the best of our knowledge, this is the

first paper to pose and solve the feeder-level energy disaggregation problem, or to

apply the approach in [90] to a power systems problem.

6.2 Problem Framework

We assume that a power system entity (e.g., a system operator, utility, or third-

party company) has access to real-time measurements of the electricity demand served

by a distribution feeder. The power system entity is interested in separating these

measurements into two components in real-time, i.e., at each time-step. The first

component is the power demand of a population of residential air conditioners served

by the feeder, referred to as the “AC demand.” Air conditioners generally draw power

periodically to maintain a building’s indoor temperature within a range centered at

a user-defined temperature set-point. The AC demand varies in time due to each

air conditioner’s power cycling, weather-related influences, and building occupant

influences. The second component is the power demand of the other loads on the

feeder, referred to as the “OL demand,” which we assume includes both residential

and commercial loads. Figure 6.1 displays example time series for the measured total

demand yt, the AC demand yAC
t , and the OL demand yOL

t over a day. We measure

yt at each time-step and try to estimate yAC
t and yOL

t at each time-step as each

measurement arrives.

The power system entity has two distinct modes of operation. The first is the real-
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Figure 6.2: Problem framework: real-time and offline modes.

time estimation mode depicted in Fig. 6.2a. The second is the offline model generation

mode, depicted in Fig. 6.2b. During real-time operation, we assume that the power

system entity has access to active power measurements corresponding to the demand

served by the distribution feeder as well as weather-related measurements. The power

measurements are time-averaged active power demands over one minute intervals, and

they are the sum of the AC and OL demand. The weather-related measurements could

include, for example, temperature and humidity, and can be obtained from existing

weather sensors; load-specific weather monitoring is not required.

Model generation occurs offline using historical smart meter, feeder, and weather

data. To apply DFS to feeder-level energy disaggregation we assume real-time mea-

surements of the demand components are unavailable, but models of the components
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are available. These models could be created using a variety of techniques (e.g., via

system identification using historical measurements obtained from the same system or

a different system, or using analytical methods and parameters from the literature).

In this work, we assume that smart meters are installed at all houses, and they en-

able the collection of household-level demand measurements at one minute intervals.

The smart meters’ communication limitations [49] make real-time communication of

this information infeasible, and so we assume that it is only available offline for prior

days. Because we do not need real-time, device-level demand measurements, we as-

sume that historical device-level demand estimates can be obtained offline from the

historical household-level measurements either by applying non-intrusive load moni-

toring (NILM) algorithms or by using information from communicating or advanced

thermostats, which are becoming more common within residences. These thermostats

can measure and record the on/off mode of a residence’s AC unit and measurement

histories can be used to estimate the power draw of these devices. The resulting

device-level demand estimates may not be exact, but they are accurate enough to

be used within the computation of model parameters. As a result, we use historical,

device-level measurements to construct the AC demand models. We also assume that

the power system entity has access to historical feeder and weather data. Once the

models are formed, they are used along with the real-time measurements to estimate

the AC and OL demand.

An online learning algorithm, Dynamic Mirror Descent (DMD) [90], uses a single

model to generate predictions of the total demand, a loss function to penalize errors

between the predicted and measured total demand, and a convex optimization for-

mulation to adjust this prediction based on the measured total demand. Dynamic

Fixed Share (DFS) [90], uses DMD within the Fixed Share Algorithm [93] to include

predictions from a bank of models. Specifically, DFS applies DMD separately to each

model and uses a weighting algorithm to associate a weight with each model’s ad-

justed prediction before combining the predictions into an overall estimate. In DFS,

these models are weighted based on their prediction accuracy – better prediction-

measurement matching leads to larger weighting and more influence in the overall

prediction.

Rather than predicting the AC demand using a single load forecast, the proposed

approach has two main advantages. First, in DMD, the AC and OL demand predic-

tions are adjusted in real-time based on the real-time, realized feeder demand. This

feedback improves future predictions; in contrast, load forecasting is open-loop. It

is necessary to predict both the AC and OL demand since only the total demand is
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measured. If only the AC demand is predicted, the prediction cannot be adjusted

in real-time because measurements of the realized AC demand are not available in

real-time. Second, the DFS algorithm can incorporate a number of AC demand pre-

dictions into an overall AC demand prediction. Predictions associated with prediction

methods that have performed well recently are weighted more heavily and the weights

evolve over time so different predictors will be preferred at different times. The algo-

rithm implementation is described in detail in Section 6.5.2, but first we describe the

construction of the underlying physical system, i.e., the plant, used within the case

studies and the models used within the algorithm.

6.3 Construction of Plant

In this section, we detail the methods used to form the AC and OL demand time

series and the associated weather time series over one day. These time series incor-

porate data from real households, the devices within those households, commercial

buildings, and nearby weather stations. The data for individual, residential air condi-

tioners are summed to form the AC demand, the data for household non-AC devices

are summed to form the residential OL demand, and the data for commercial building

demand signals are summed and scaled to form the commercial, OL demand signal.

Lastly, the outdoor temperature data consists of real data from nearby weather sta-

tions, and the data is interpolated to make it applicable on the time-steps used within

the problem scenario. These time series are then used as the plant, i.e., the underly-

ing physical system or the ground-truth signals. The time series for a day consist of

nsteps one-minute time-steps with t � 0 at 12:00 AM. Because we were unable to find

sufficient data from a single location/day, we use demand and weather data from a

variety of sources.

We use feeder model R5-25.00-1 from GridLAB-D’s feeder taxonomy [118] to set

the average residential and commercial demand on the feeder to 5.8 MW and 2.1 MW,

respectively. Ignoring network losses (which, if included, would be treated as part

of the OL demand), the total feeder demand measurements are the sum of the AC

and OL demand, i.e., yt � yAC
t � yOL

t , where yOL
t is the sum of the other residential

demand and the commercial demand yOL
t � yOL,res

t � yOL,com
t .

Both yAC
t and yOL,res

t are constructed using residential data from the Pecan Street

Dataport [85]. The data consists of historical, one-minute interval, household- and

device-level demand measurements for a set of single family homes in Texas. Daily

household demand signals were randomly drawn with replacement and added together
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until the total residential signal’s mean matched that of the feeder model, resulting in

2, 499 total houses. To construct the AC demand signal, we summed the demand of

each household’s primary air conditioner and air blower unit. Note that some houses

have no/multiple air conditioner and air blower units. We assume that only one unit

per household contributes to the AC demand, resulting in 2, 269 units. The remaining

demand is the residential OL demand.

The commercial data consists of 4-second interval, whole-building demand mea-

surements from two buildings in California, a municipal building and a big box retail

store. We summed the demand of the two buildings, and then scaled the sum by 2.61

to match the average commercial demand of the feeder model. We also down-sampled

the data to one minute intervals by averaging the values over each minute.

The plant’s weather data is constructed from data obtained from the Pecan Street

Dataport [85] and the National Climatic Data Center [119]. The Pecan Street weather

data corresponds to the residential demand. It consists of the outdoor air temperature

for Austin, TX, and it is sampled at one hour intervals. We linearly interpolate the

data down to one minute intervals. The NOAA weather data corresponds to the

commercial demand. It consists of outdoor temperature data from the Concord, CA

weather station, sampled at one hour intervals. Again, we linearly interpolate the

data down to one minute intervals. All weather data was taken from the same day

as the demand data.

6.4 System Models

In this section, we describe the models used to generate predictions of the AC

and OL demands. These models are generated offline, using historical data, and then

used within the online learning algorithm implementations detailed in Section 6.5.2.

The historical demand signals were constructed in the same manner as described in

Section 6.3, using the same combination of houses as used to construct the plant

signals. The OL demand is modeled using two different linear regression methods as

detailed in Section 6.4.1, and the AC demand is modeled using several linear dynamic

systems as well as a linear regression method as detailed in Section 6.4.2. Note that

other models may prove to be more accurate on average than the models that are

used within this work. However, the intended objective within this work is to use an

array of models (including some that are known to be overly simple or less accurate) to

investigate the performance of DFS on the feeder-level energy disaggregation problem.
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Figure 6.3: Example OL demand and several OL demand model predictions.

6.4.1 OL Demand Models

We use two types of regression models to predict the OL demand: time-of-day

(TOD) regression models and a multiple linear regression (MLR) model. Figure 6.3

displays a day of data for yOL
t , several TOD regression model predictions, e.g., pyOL,Mon

t ,

and the MLR model prediction pyOL,MLR
t . We next describe the construction of these

models.

6.4.1.1 TOD Regression Models

The TOD regression model is a lookup table where an OL demand prediction is

generated for each minute of the day based on the OL demand of a single day in the

past

pyOL,TOD
t � αOL,TOD

k � αOL,TOD xOL,TOD
t . (6.1)

Whereas t indexes overall time-steps, k indexes the time of day in minutes, i.e., k � 0

for 12:00 AM and k � 60 for 1:00 AM. The scalar αOL
k corresponds to the predicted

OL demand value for time-of-day k, αOL,TOD is a row vector containing all αOL
k values,

and xOL,TOD
t is a column vector that selects the appropriate αOL,TOD based on the

corresponding time of day for t. We generate αOL,TOD by smoothing the OL demand

signal of a previous day using a piecewise linear and continuous, least-squares fit.

Each linear segment corresponds to a 15 minute interval of the historical data. We

generate one TOD regression model for each weekday, and the models are denoted

ΦOL,Mon, ΦOL,Tues, ΦOL,Wed, ΦOL,Thurs, and ΦOL,Fri. Their corresponding predictions
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are pyOL,Mon
t , pyOL,Tues

t , pyOL,Wed
t , pyOL,Thurs

t , and pyOL,Fri
t , respectively.

6.4.1.2 MLR Model

The MLR model of the OL demand is denoted ΦOL,MLR, and it uses input features

that include calendar-based variables, e.g., the day of the week, as well as weather-

based variables, e.g., the outdoor temperature, to generate an OL demand prediction.

We split the MLR model into two distinct components: one model for the commercial

demand and one model for the residential OL demand since the underlying data

corresponds to different geographic areas and time periods. The overall MLR model

of the OL demand is then the sum of the predicted residential OL demand pyOL,res
t and

the predicted commercial demand pyOL,com
t , i.e.,

pyOL,MLR
t �pyOL,res

t � pyOL,com
t (6.2)

�βOL,res xOL,res
t � γOL,com xOL,com

t , (6.3)

where the row vectors βOL,res and γOL,com are regression parameters for the residential

OL demand and the commercial demand, respectively. The column vectors xOL,res
t

and xOL,com
t are the corresponding input features.

The MLR model for the residential OL demand uses input features xOL,res
t ��

pxTOW
t qT TTX

t yt�1

�T

where xTOW
t is an indicator vector for the time of week

in minutes, TTX
t is the outdoor temperature for Austin, TX, and yt�1 is the mea-

sured total demand of the previous time-step. The commercial regression model

corresponds to “Baseline Method 1” from [120]; it uses input features xOL,com
t ��

pxTOW
t qT TCA

t � pxTOW
t qT

�T

where TCA
t is the outdoor temperature for Concord,

CA and TCA
t � pxTOW

t q is a vector that associates the temperature to the correspond-

ing time of week.

6.4.2 AC Demand Models

We use three types of models to predict the AC demand: a MLR model, linear

time invariant (LTI) system models, and linear time varying (LTV) system models.

Figure 6.4 displays yAC
t for a simulated day, several LTV model predictions, e.g.,pyAC,LTV1

t , and the MLR regression model prediction pyAC,MLR
t . We next describe the

construction of these models.
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Figure 6.4: Examples AC demand and several AC demand model predictions.

6.4.2.1 MLR Model

The MLR model of the AC demand, denoted ΦAC,MLR, is similar to the MLR

model in Section 6.4.1.2 with different input features

xAC,MLR
t �

�
pxTOW

t qT TTX
t�τ l pTTX

t�τ lq2 pTTX
t�τ lq3 pTTX

t�τ lq4
�T

,

where TTX
t�τ l is the temperature in Austin, TX from τ l time-steps ago and τ l is the time

lag that maximizes the cross correlation between the historical AC demand signal and

temperature signal (119 minutes for our plant).

6.4.2.2 LTI Models

We construct a set of LTI models MLTI that are similar to the aggregate model

detailed in Section 2.2.2. As in [84], each model within the set captures the aggregate

behavior of the population of air conditioners at outdoor temperature Tm and has

the form

pxLTI,m
t�1 � ALTI,m pxLTI,m

t (6.4)pyAC,LTI,m
t � CLTI,m pxLTI,m

t , (6.5)

with m P MLTI � t1, . . . , NLTIu. The state vector pxLTI,m
t P RNx�1 consists of the

portion of the air conditioners within each of Nx discrete states. In this chapter, we

use one state to represent the portion of air conditioners that are drawing power and

another to represent those that are not, i.e., Nx � 2. The state transition matrix,
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ALTI,m P RNx�Nx
, is a transposed Markov transition matrix. Its entries capture

the probabilities that air conditioners maintain their current state or transition to

the other state during the time-step. The output matrix CLTI,m estimates the AC

demand pyAC,LTI,m
t from the portion of air conditioners that are drawing power, i.e.,

CLTI,m � NacP
m
�
0 1

�
, where P

m
is a parameter approximating of the average power

draw of air conditioners drawing power and Nac is the number of air conditioners,

which we assume is known.

To identify ALTI,m and CLTI,m for all m, we first define a set of NLTI evenly

spaced temperatures T temps �  
Tmin, . . . , Tmax

(
and denote the m-th temperature

of the set as Tm. The difference between successive temperatures Tm and Tm�1

is ∆T . Matrices ALTI,m and CLTI,m are constructed using power demand signals

from each air conditioner corresponding to periods when Tm � ∆T
2

¤ TTX
t�τ l  

Tm� ∆T
2

. Some heuristics were used to exclude anomalous high or low power demand

measurements. Parameter P
m

is set as the average power draw of air conditioners

that are drawing power. The four entries of ALTI,m were determined by checking

whether an air conditioner 1) started drawing power, 2) stopped drawing power, 3)

continued to draw power, or 4) continued to not draw power during each time-step.

The occurrences for each case were counted for every air conditioner at every time-step

and the totals were placed into their respective entries in ALTI,m, and then each column

was normalized so that the sum of the column entries was 1. In our case studies, we

construct an LTI model for each integer temperature in the set t74, . . . , 99u �F. If

the outdoor temperature lies outside of this range, we use the model corresponding

to the closest temperature.

6.4.2.3 LTV Models

We use two LTV models, where the models both have the general form of that in

Section 4.2.1, but the method of computing the time-varying matrices are different

for each model. The first ΦAC,LTV1 uses the delayed temperature and has the form

pxLTV1
t�1 � ALTV1

t pxLTV1
t (6.6)pyAC,LTV1

t � CLTV1
t pxLTV1

t , (6.7)

where ALTV1
t and CLTV1

t are generated by linearly interpolating the matrix entries

based on TTX
t�τ l . The second ΦAC,LTV2 uses a moving average of the past temperature

over τw time-steps to generate the prediction pyAC,LTV2
t . We chose τw to be the value

that maximizes the cross correlation between the historical moving average tempera-

101



ture and the historical AC demand signal (270 min for our plant). When evaluating

either LTV model, if the temperature lies outside of the range used to generate the

model, we extrapolate using the difference between the nearest two models.

6.5 Online Learning Algorithm

In this section, we first summarize the DFS algorithm developed in [90] and then

describe two algorithm implementations, one inspired by DFS and one a direct im-

plementation of it. DFS incorporates DMD, also developed in [90], into the Fixed

Share algorithm originally developed in [93]. The Fixed Share algorithm combines a

set of predictions that are generated by independent experts, e.g., models, into an es-

timate of the system parameter using the experts’ historical accuracy with respect to

observations of the system. DMD extends the traditional online learning framework

by incorporating dynamic models, enabling the estimation of time-varying system

parameters (or states). DFS uses DMD, applied independently to each of the models,

as the experts within the Fixed Share algorithm.

6.5.1 The DFS Algorithm

The objective of DFS is to form an estimate pθt P Θ of the dynamic system param-

eter θt P Θ at each discrete time-step t where Θ � Rp is a bounded, closed, convex

feasible set. The underlying system produces observations, i.e., measurements, yt P Y
at each time-step after the prediction has been formed, where Y � Rq is the domain

of the measurements. From a control systems perspective, this is equivalent to a state

estimation problem where θt is the system state.

DFS uses a set of Nmdl models defined as Mmdl � t1, . . . , Nmdlu to generate the

estimate pθt. To do this, DFS applies the DMD algorithm to each model, forming

predictions pθmt for each m P Mmdl. DMD is executed in two steps (similar to a

discrete-time Kalman filter): 1) an observation-based update incorporates the new

measurement into the parameter prediction, and 2) a model-based update advances

the parameter prediction to the next time-step. DFS then uses the Fixed Share

algorithm to form the estimate pθt as a weighted combination of the individual model’s

DMD-based predictions. A weighting algorithm computes the weights based on each

model’s historical accuracy with respect to the observations yt. Models that perform
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poorly have less influence on the overall estimate. The DFS algorithm is [90]

rθmt � arg min
θPΘ

ηs
A
∇`tppθmt q, θE�D

�
θ}pθmt 	 (6.8)

pθmt�1 �Φmprθmt q (6.9)

wmt�1 �
λ

Nmdl
� p1 � λq

wmt exp
�
�ηr `t

�pθmt 		°Nmdl

j�1 wjt exp
�
�ηr `t

�pθjt		 (6.10)

for each m PMmdl, and pθt�1 �
¸

mPMmdl

wmt�1
pθmt�1, (6.11)

where each term is defined below. DMD is applied to each model in (6.8) and (6.9)

to form the expert predictions, where (6.8) is a convex program that constructs the

measurement-based update to the previous prediction and (6.9) is the model-based

advancement of the adjusted prediction. The Fixed Share algorithm consists of (6.10)

and (6.11), where (6.10) computes the weights and (6.11) computes the estimate as

a weighted combination of the individual experts’ estimates. We note that the Fixed

Share algorithm’s updates are independent of the dynamics and only use the experts’

predictions and their resulting losses.

In (6.8), we minimize over the variable θ, ηs ¡ 0 is a step-size parameter, and x�, �y
is the standard dot product. The value ∇`tppθtq is a subgradient of the convex loss

function `t : Θ Ñ R, which penalizes the error between the predicted and observed

values yt using a known, possibly time-varying, function ht : Θ Ñ Y that maps θt to

an observation, i.e., yt � htpθtq, to form predictions of the measurements. An example

loss function is `tppθtq � ‖Cpθt�yt‖2
2 where the matrix C is htp�q. In (6.9), the function

Φmp�q applies model m to advance the adjusted estimate rθmt in time. Each Φmp�q can

have arbitrary form and time-varying parameters. In (6.10), the weight associated

with model m at time-step t is wmt , λ P p0, 1q determines the amount of weight that

is shared amongst models, and ηr influences switching speed. The weight for model

m is based on the loss of each model and the total loss of all models. The term

ηsx∇`tppθtq, θy captures the alignment of the variable θ with the positive gradient of

`tppθtq. To minimize this term alone, we would choose θ to be exactly aligned with the

negative gradient direction. The term Dpθ}pθtq is a Bregman divergence that penalizes

the deviation between the new variable θ and the old variable pθt. For simplicity, we

have excluded regularization within (6.8), which DMD readily incorporates [90].
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6.5.2 Algorithm Implementations

We next describe two algorithm implementations to update the expert predictions.

First, we describe an implementation that uses the concept of DMD but it is not a

direct implementation of DMD. This method treats the models as black boxes and

adjusts only their output, i.e., the OL and AC demand predictions, using the measured

and predicted total feeder demand. Second, we describe a direct implementation of

DMD, which updates the state xt of the LTI and LTV AC demand models. In the

following, the total demand model is Φp�q � tΦACp�q,ΦOLp�qu where ΦACp�q is an AC

demand model and ΦOLp�q is an OL demand model, with predictions pyAC
t and pyOL

t ,

respectively.

6.5.2.1 Update Method 1

The models used within this chapter have different underlying parameters, dy-

namic variables, and/or structures, which makes it difficult to define a common θt

across all of the models used. Therefore, we develop a variation of the DMD algo-

rithm that adjusts the demand predictions directly, rather than applying the updates

to quantities influencing the demand predictions. This allows us to include a diverse

set of models. Specifically, we modify the DMD formulation to

pκt�1 � arg min
θPΘ

ηs
A
∇`tppθtq, θE�D pθ}pκtq (6.12)

qθt�1 �Φpqθtq (6.13)pθt�1 �qθt�1 � pκt�1. (6.14)

The AC and OL demand models generate their predictions independently from one

another, and so (6.14) can be rewritten as

pθt�1 � Φpqθtq � pκt�1 �
�

ΦACpqθtq
ΦOLpqθtq

�
� pκt�1. (6.15)

The convex program (6.12) is now used to update a value pκt that accumulates the

deviation between the predicted and actual measurements. The model-based update

(6.13) computes an open-loop prediction qθt�1, meaning that the measurements do

not influence qθt�1. The measurement-based updates and model-based, open-loop

predictions are combined in (6.14). In contrast, DMD uses a closed-loop model-based

update where the convex program adjusts the parameter estimate to rθt, which is used
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to compute the next parameter estimate pθt�1.

In this method, we define θt as the AC and OL demand, i.e., θt �
�
yAC
t yOL

t

�T

.

The mapping from the parameter to the measurement is htpθtq � Ctθt where the

matrix Ct �
�
1 1

�
. While the mapping and matrix are time-invariant, they may

be time-varying in Section 6.5.2.2, and so we use the more general notation. We

choose the loss function as `tppθtq � 1
2

∥∥∥p pP y
t q�

1
2 pCtpθt � ytq

∥∥∥2

2
and the divergence as

Dpθ‖pκtq � 1
2
‖p pPtq� 1

2 pθ � pκtq‖2
2 where pPt and pP y

t are symmetric, positive definite, co-

variance matrices corresponding to the model prediction errors and the measurement

prediction errors, respectively. The quantity G� 1
2 � U

�
Σ� 1

2

	
UT denotes a matrix

square root of an arbitrary symmetric positive-definite matrix G, where U is orthonor-

mal and Σ a diagonal matrix with positive entries on the diagonal. The square roots

of pPt and pP y
t are also symmetric and positive definite [121]. We can then write (6.12)

in closed form as

pκt�1 � pκt � ηs pPtCT
t

� pP y
t

	�1 �
yt � Ctpθt	 . (6.16)

The estimation error covariance Qt P R2�2 and the measurement noise covariance

Rt P R1 are used to compute pPt and pP y
t . We set Qt � diagpRAC

t , ROL
t q, where diagp�q

forms a diagonal matrix from the scalar arguments. The values RAC
t P R and ROL

t P R
correspond to the variances of the AC and OL demand models’ prediction errors. We

detail several sets of assumptions and methods for computing the parameters Rt,

RAC
t , ROL

t , pPt, and pP y
t in Section 6.6.2.

6.5.2.2 Update Method 2

This method applies only to dynamic system models with dynamic states, i.e., in

this paper the LTI or LTV AC demand models, which have dynamic states xt. We

set θt �
�
xT
t yOL

t

�T

, where xt is pxLTI,m
t in (6.4), pxLTV1

t in (6.6), or pxLTV2
t in an update

equation similar to (6.6). The mapping from the parameter to the measurement is

then Ct �
�
CAC
t 1

�
where CAC

t is the output matrix of the LTI or LTV AC demand

model, i.e., CLTI,m, CLTV1
t , or CLTV2

t . Defining the system parameter in this way

allows us to update the dynamic states of the LTI and LTV AC demand models,

rather than just the output as in Update Method 1. The model-based update is then

pθt�1 �
�

ΦACprθtq
ΦOLpqθtq

�
�
�

0 0

0 1

�pκt�1, (6.17)
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where we update the AC demand model using the adjusted parameter estimate, as in

DMD. Because the OL demand models do not include dynamic states, we continue

to update their estimates according to Update Method 1. We again use (6.16) as the

measurement-based update where we replace pκt with pθt.
The estimation error covariance Qt P R3�3, and the measurement noise covari-

ance Rt P R are used to compute pPt and pP y
t . The process noise matrix is Qt �

blkdiagpQAC
t , ROL

t q where blkdiagp�q constructs a block diagonal matrix from the ar-

guments. The matrix QAC
t P R2�2 corresponds to the process noise of the (LTI or

LTV) AC demand model. We detail several methods for constructing QAC
t , ROL

t , pPt,
and pP y

t in Section 6.6.2.

6.6 Case Studies

In this section, we define the scenarios, describe the benchmark, summarize the

parameter settings, and present the results. In [90], performance bounds for DMD

and DFS were established in terms of a quantity called regret. Regret is the total (or

cumulative) loss of an online learning algorithm’s prediction sequence versus that of

a comparator sequence, often a best-in-hindsight offline algorithm. In [90], the DMD

regret bound uses a comparator that can take on an arbitrary sequence of values from

the feasible domain Θ. The DFS regret bound uses a comparator that chooses the

best-in-hindsight possible sequence of models chosen from the same model collection

used by DFS, where the number of model switches is a predefined number. In lieu of

developing formal performance bounds for the given problem scenario, we benchmark

the algorithms’ performance using Kalman filters, which is described in Section 6.6.3.

Future work will investigate regret bounds for our particular problem.

6.6.1 Model Set Scenarios

We define the three sets of models for use within DFS:

1. MFull, all of the models developed in Section 6.4, i.e., every combination of AC

and OL demand models from the AC demand model set

MAC,Full � tMLTI, ΦAC,MLR, ΦAC,LTV1, ΦAC,LTV2u

and the OL demand model set

MOL � tΦOL,Mon, ΦOL,Tues, ΦOL,Wed, ΦOL,Thurs, ΦOL,Fri, ΦOL,MLRu;
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2. MRed, a reduced set that excludes the LTI models, which are not accurate over

the course of the day;

3. MKF, a further reduced set that excludes the MLR AC demand model, which

can not be used in a Kalman filter;

Since the Update Method 2 is only applicable to the LTI and LTV AC demand

models, case studies using Update Method 2 apply the method to all applicable

model combinations and otherwise use Update Method 1.

6.6.2 Error Covariance Scenarios

In this section, we detail three approaches for computing covariance matrices, re-

ferred to as “Identity”, “Historical”, and “Real-Time”, that are used within Update

Method 1 and 2. The first approach does not explicitly include any model predic-

tion error statistics into the measurement-based updates. The second approach uses

historical data from the week preceding the first testing day, where testing days are

detailed in Section 6.6.4, to compute covariance matrices. The third approach uses

an unrealistic assumption, i.e., that the total, AC, and OL demand are measured

at each time-step and used to compute the exact covariance at each time-step. The

details of each approach are as follows:

Identity: We assume that pPt and pP y
t are appropriately sized identity matrices for

both Update Method 1 and Update Method 2.

Historical: Update Methods 1 and 2 assume that the process noise covariance is

time-invariant, i.e., Qt � Q and that the measurement noise covariance is Rt � 0

as the total demand measurements are accurate. The covariances QAC, RAC,

ROL used within the two variations of Q are computed using historical esti-

mation errors, and QAC is used within the Kalman filter. Update Method 2

updates pPt according to

rPt � pPt � pPtCT
t

�
Ct pPtCT

t �Rt

��1

Ct pPt (6.18)pPt�1 � At rPt AT
t �Qt, (6.19)

which are the update equations for the estimation error covariance of a Kalman

filter [121, p.190], and Update Method 1 sets pPt � Q. Both methods set pP y
t �

pC pPtCT �Rtq. In Update Method 2, we use At � blkdiagpA�
t , 0q P R3 to updatepPt and pP y

t where A�
t is the state update matrix of the (LTI or LTV) AC demand
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model; constructing At this way assumes that errors in the AC demand model

are decoupled from errors in the OL demand model, and that the errors of the

OL demand model are independent at each time-step.

Real-time: Update Methods 1 and 2 assume that pPt � Qt where the covariances are

computed at each time-step using measurements of the AC and OL demand.

Variance Rt is computed at each time-step using measurements of the total

demand. Both methods set pP y
t � pC pPtCT �Rtq.

6.6.3 Kalman filter benchmark

A set of Kalman filters are used to establish a benchmark for the DFS algorithm.

A Kalman filter uses measurements, an assumed system model, and known statistics

of random variables, which are assumed to be zero-mean and normally distributed,

to estimate the value of dynamic system parameters, i.e., the system state, at each

time-step. Additional background on Kalman filters can be found in [121].

We use the LTV AC demand models within the Kalman filters. For each LTV

model, the covariance of the process noise is computed using a week of historical

data, where the true state is generated using the measured AC demand and the LTV

model’s matrices. The Kalman filter estimates the state of the AC demand model,

i.e., θt � xt where xt is pxLTV1
t or pxLTV2

t , using output pseudo-measurements of the AC

demand ryAC
t � yt � pyOL

t . We assume that yt is noise-free, but ryAC
t is noisy due to OL

demand prediction error. The covariance of the measurement errors depends on the

OL demand model used, and is computed for each model using a week of historical

errors.

We use one Kalman filter for each model pair in the set MKF. We compare the

performance of the DFS algorithm to that of the best Kalman filter (BKF), which

takes the lowest ex post root mean squared error (RMSE) achieved by a Kalman

filter within the setMKF, and the average Kalman filter (AKF), which is the average

RMSE across all of the Kalman filters.

6.6.4 Data

We test the methods on data from Aug 3-5, 10-14, 17, and 18, where the commer-

cial data is from 2009 and the residential data is from 2015, and we refer to these days

as the testing days. Note that the dates in both years pertain to the same days of the

week. The household and commercial demand data for Aug 3 were used to determine

the set of houses included on the feeder and construct the plant. To generate the
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Table 6.1: Parameter ηs Used in the Scenarios in Section 6.6.5

Model Set MFull MFull MRed MRed MKF MKF

Update Method 1 2 1 2 1 2

ηs 0.013 0.015 0.4 0.013 0.4 0.5

MLR regression models of the AC and OL demand, we use data from June 24 to

Aug 2, 2015 and commercial data from June 24 to Aug 2, 2009. The LTI and LTV

models of the AC demand were constructed using device-level data from individual

air conditioners from May 2 to Aug 2, 2015. The TOD regression models and Kalman

filter covariance matrices were generated using data from the week preceding Aug 3.

6.6.5 Investigation of Algorithm Performance

Table 6.1 gives the settings of ηs. Identity matrices are used as covariances ac-

cording to Section 6.6.2 throughout the case studies in this section. Also, we set

λ � ηr � 1.0 � 10�5 across all case studies in this subsection. Parameter λ dictates

the amount of weight shared amongst the models, where values near 1 force the DFS

algorithm to generate estimates that are close to an average of the predictions of

all models. By using a λ value near 0, a single model can dominate the estimate if

one model is more accurate than the rest. Parameters ηr and ηs were roughly tuned

to achieve qualitative characteristics of fast switching between models without over-

fitting. The optimal ηr and ηs for a given day will generally not be optimal across

all days, and so tuning to achieve the desired qualitative characteristics is appropri-

ate. In practice, ηr and ηs can be tuned based on recent historical data, and λ can

be tuned based on the historical accuracy of the models within the algorithm. An

avenue for future research is to develop methods for online parameter tuning using

real-time data.

Figure 6.5 depicts time series for the Aug 17 case study with MRed while using

Update Method 1. Figure 6.6 shows the evolution of the dominant model weights.

The weights of the remaining models are summed and referred to as “Other Models.”

In this scenario, the total demand is accurately separated into its AC demand and OL

demand components in real-time, where the RMSE of the total demand, AC demand,

and OL demand is 93.2 kW, 151.0 kW, and 150.8 kW, respectively. In this scenario,

DFS produces a more accurate AC demand estimate than BKF, which has an AC

demand RMSE of 177.3 kW. The RMSE of the AC demand for AKF is 214.0 kW. The

majority of the weight is initially given to the “Other Models,” because we initial-

ize all models with the same weight. As the simulation progresses, the weight shifts
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between different model combinations. Since the combinations tΦAC,LTV2,ΦOL,MLRu
and tΦAC,LTV1,ΦOL,MLRu perform best, they eventually earn more weight and dom-

inate the predictions. It is unsurprising that the ΦOL,MLR is the most accurate OL

demand model as it captures weather and time variables with the most detail, and it

is unsurprising that ΦAC,LTV1 and ΦAC,LTV2 are the most accurate AC demand models

as they capture the physical phenomenon driving changes in the AC demand as the

outdoor temperature changes.

Figure 6.7 presents the minimum, mean, and maximum RMSE across the full set

of testing days for the total demand, the AC demand, and the OL demand for each

DFS scenario. For comparison, BKF achieves a minimum RMSE of 148.4 kW, a mean

RMSE of 195.3 kW, and a maximum RMSE of 318.9 kW for the AC demand, and

AKF achieves a minimum RMSE of 173.1 kW, a mean RMSE of 259.4 kW, and a

maximum RMSE of 357.5 kW for the AC demand. The model corresponding to the

BKF varies from day to day and so it is not possible to obtain a single Kalman filter

that always outperforms DFS.2 The models corresponding to the BKF vary from day

to day. To demonstrate the value of the measurement-based updates, we generated

results for the full set of testing days using the model setMRed and with ηs � 0; the

measurement-based update is irrelevant with this parameter setting. The resulting

total demand, AC demand, and OL demand RMSEs were 260.4 kW, 254.2 kW, and

245.2 kW, respectively. These are significant increases over the DFS scenarios using

MRed.

The scenarios usingMFull have significantly higher AC demand RMSEs than the

simulations using MRed as well as the BKF and AKF simulations. Each of the LTI

models may be accurate for a portion of the day when the AC demand is near the

steady-state demand of the particular model. However, as the AC demand changes

due to changes in the outdoor temperature, a given LTI model will become highly

inaccurate. The DFS algorithm takes time to shift weight from the inaccurate model

that was heavily weighted to the new model, and this results in increased RMSE.

Eliminating these “bad models”, by using MRed rather than MFull, eliminates this

issue.

The scenarios using MRed generally do better, in terms of AC demand RMSE,

than AKF and worse than BKF. On some simulated days DFS also outperforms

BKF, as was shown in Fig. 6.5. Within this set of simulations, Update Method 2

2Choosing BKF on a particular day and applying it to all other days, we find that DFS performs
better on approximately half of the days when using MRed. However, the loss function, divergence
function, and initial model weights within DFS could be modified based on historical performance,
which would improve its performance relative to the Kalman filter.
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Figure 6.5: Total, OL, and AC demands versus their DFS estimates (Aug 17, MRed, Update
Method 1). The best Kalman filter estimate of the AC demand is also shown.
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Figure 6.7: Minimum, mean, and maximum RMSE (kW) for the DFS scenarios in Section 6.6.5.
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results in higher AC demand RMSE than Update Method 1. The increased RMSE

in Update Method 2 versus Update Method 1 can be explained due to the usage of

only two discrete states within the LTV models. Specifically, the states reach their

steady-state values rapidly, and so the measurement-based updates to the state do not

persist for very long, whereas the measurement-based updates to the output used in

Update Method 1 do. Using LTV models with more discrete states may allow Update

Method 2 to achieve better RMSE, but this would complicate system identification.

Finally, the scenarios with MKF result in larger AC demand RMSE than those

with MRed. The MLR model of the AC demand is often weighted heavily in the

MRed simulations, especially for Update Method 2. Given this, it makes sense that

excluding this model would result in increased RMSE.

6.6.6 Sensitivity to the Parameters ηr and ηs

We apply DFS to the full set of testing days while varying ηr and ηs to investigate

the impact of those parameters on the results. We vary ηs from 0.0 to 0.9 using

increments of 0.1, and we vary ηr from 10�7 to 10�3, where we increment the order

(i.e., 10�7, 10�6, . . . ). We apply DFS using every combination of these parameter

values while using Update Method 1, identity covariances according to Section 6.6.2,

MRed, and λ � 1.0 � 10�5 as in Section 6.6.5.

Figure 6.8 provides the average RMSE of the AC demand across the full set of

testing days for each parameter value combination. With ηs near zero the RMSE

is relatively large as DFS makes small adjustments to the model predictions based

on the realized prediction errors. The RMSE with ηs near zero decreases slightly as

ηr increases because this allows for faster transitions in the weighting of the models.

However, it should be noted that at larger ηr values (e.g., 10�3), the model weights

within DFS become erratic or noisy, and overfitting is possible. The RMSE is also

relatively high with large ηs (e.g., 0.9) and small ηr as DFS adjusts the model pre-

dictions too aggressively and the model weights change slowly. Alternatively, as ηr

increases with large ηs, the RMSE decreases, but again the weights become vulnerable

to overfitting. The RMSE using moderate ηs values (e.g., from 0.2-0.7) are similar.

The ηs and ηr values used within Section 6.6.5 do not achieve the lowest RMSE, but

they achieve low RMSE while ensuring changes in the weights are reasonably fast but

not erratic.
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Figure 6.8: Average RMSE of the estimated AC demand across all days as a function of ηs and ηr,
using Update Method 1, identity covariances according to Section 6.6.2, MRed, and λ � 1.0 � 10�5

where the marker indicates the parameter values used in Section 6.6.5.

6.6.7 Sensitivity to the Parameter λ

We apply DFS to the full set of testing days while varying λ from 1.0�10�7 to 1.0

to investigate the impact of λ on the results. Within DFS, we use Update Method 1,

identity covariances according to Section 6.6.2, and MRed, and we also set ηs � 0.4,

and ηr � 1.0 � 10�5 as in 6.6.5.

Figure 6.9 gives the average RMSE of the estimated AC demand across all days

as a function of λ. The average RMSE of the AC demand decreases as λ is increased

from 1.0 � 10�7 and reaches a minimum RMSE of 211.3 kW with λ � 0.005. As λ

increases from 0.005, the RMSE increases until it remains relatively constant from 0.1

to 1.0. While we set λ in Section 6.6.5 to allow a single model to dominate the DFS

estimate if one model proved to be more accurate than the rest, Fig. 6.9 indicates

that tuning λ on a set days that are similar to the testing days may allow a reduction

in the RMSE.
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Figure 6.9: Average RMSE of the estimated AC demand across all days as a function of λ,
using Update Method 1, identity covariances according to Section 6.6.2, MRed, ηs � 0.4, and
ηr � 1.0 � 10�5.

Table 6.2: Parameters ηs and ηr Used in Update Methods 1 and 2 in Section 6.6.8

Update
Method

1 1 1 2 2 2

Covariance Identity Historical Real-Time Identity Historical Real-Time

ηs 0.4 0.5 0.5 0.013 0.5 1.0
ηr 1.0 � 10�5 10 1.0 � 10�3 1.0 � 10�5 10 1.0 � 10�3

6.6.8 Investigating the Impact of Including Error Covariances

This section presents case studies that illustrate the impact of including different

covariance matrices within the algorithm implementations. Table 6.2 lists the values

of the parameters ηs and ηr used in each scenario; we set λ � 1.0�10�5 in all scenarios.

We tuned ηr and ηs qualitatively, as described in Section 6.6.5. All case studies run

Update Method 1 and 2 using Mred.

Figure 6.10 presents time series of the total demand, OL demand, AC demand,

their respective estimates, and the model weights from the August 4 case study

while running Update Method 1 with covariances generated from historical data.

In Fig. 6.10d, ΦOther is used to denote the combined weight of all model combinations

not explicitly specified. Table 6.3 summarizes the mean, minimum, and maximum

RMSE for each demand component across the simulated days and scenarios. Fig-

ure 6.11 presents time series of the AC demand and various estimates across several

scenarios from the August 11 case study.

From Fig. 6.10c, it is clear that, in this case, Update Method 1 effectively estimates

the AC demand in real-time. In this scenario, BKF achieves an RMSE of 148.4

kW for the AC demand, and Update Method 1 performs similarly, achieving an
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Table 6.3: Mean, Minimum (Min), and Maximum (Max) RMSE in kW over 10 Test Days for each
Update Method and Covariance Computation Approach from Section 6.6.8

Update
Method

Covariance Total Demand AC Demand OL Demand

Min Mean Max Min Mean Max Min Mean Max

1 Identity 88.9 100.0 110.5 151.0 220.6 325.8 150.8 222.3 327.2
1 Historical 98.4 114.8 123.2 155.0 252.2 371.5 150.2 250.1 372.5
1 Real-Time 146.6 154.3 168.4 120.2 125.3 131.8 104.8 114.5 130.5
2 Identity 175.4 199.1 224.8 194.2 230.9 314.5 145.0 216.2 312.7
2 Historical 100.5 119.5 126.1 192.0 259.8 311.5 190.6 265.5 320.2
2 Real-Time 120.8 125.2 129.1 104.0 116.5 140.1 96.6 109.4 131.9

BKF Historical - - - 148.4 195.3 318.9 - - -
AKF Historical - - - 173.1 259.4 357.5 - - -

RMSE of 155.0 kW for the AC demand. It should be noted that Update Method

1 is determining the model of the underlying system in real-time, as can be seen in

Fig. 6.10d. Alternatively, the BKF algorithm selects the most accurate model after

the simulation, which is not feasible in practice. For comparison, AKF achieves an

RMSE of 173.1 kW. The weights within Update Method 1 is initially dominate by

ΦOther, which makes sense as the weight of each model combination is initialized to the

same value. As the simulation progresses, the weight shifts to tΦAC,LTV1,ΦOL,MLRu,
which is the most accurate model. At points of the simulation, it loses accuracy, and

the weight shifts to other model combinations during those times. The total demand

is estimated closely, which can be achieved based on the parameter settings. Finally,

it should be noted that while Update Method 1 did not achieve lower RMSE than

BKF in this case, in some cases it does outperform BKF.

As Table 6.3 shows, Update Method 1 achieves AC demand RMSEs that are worse

than BKF but generally better than the AKF when using realistic (i.e., historical)

covariance data. Update Method 2 achieves AC demand RMSE that is comparable

to the AKF. Figure 6.11a shows time series for AKF, BKF, and DFS using historical

covariances. When using unrealistic (i.e., real-time) covariance data, both Update

Method 1 and 2 outperform BKF, which is still using historical data to compute the

covariance matrices. An example of this is shown in Fig. 6.11b.

Figure 6.11c provides example time series of the AC demand estimates for Update

Methods 1 and 2 when using historical covariances, and Fig. 6.11d provides similar

example time series when using real-time covariance data. As can be seen in Fig. 6.11c,

the Update Method 1 generally achieves better RMSE for the AC demand than

Update Method 2. However, as can be seen in Fig. 6.11d Update Method 2 achieves

lower RMSE than Update Method 1 when real-time errors are used to generate the
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Figure 6.10: Time series from Section 6.6.8 of the total, OL, and AC demands versus their estimates
as well as times series of the weights from the August 4 case study while running Update Method 1
with historical covariances on model set MRed
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(a) AC demand estimates for BKF, AKF, and Update Method 2 while using historical
covariances
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(b) AC demand estimates for BKF and Update Method 2 while using real-time covariances
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(c) AC demand estimates for Update Methods 1 and 2 when using historical covariances
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(d) AC demand estimates for Update Methods 1 and 2 when using real-time covariances

Figure 6.11: Time series of the AC demand and various estimates from the August 11 case study
in Section 6.6.8 where UM1 and UM2 refer to Update Method 1 and 2, respectively
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covariance matrices. Part of the reasoning for this is that the LTV AC demand

models only include two states, and for a given outdoor temperature, the models

rapidly converge to a steady-state value. When running Update Method 2, this

means that the measurement-based adjustment at a given time-step may not have

an effect on the model’s predictions after several time-steps. Alternatively, Update

Method 1 continually adjusts the model predictions based on its accuracy, and by

separating these adjustments from the model, these adjustments persist.

Also, our method of computing the covariances with historical data degrades per-

formance. This implies that our assumptions regarding the errors are overly coarse.

However, the inclusion of unrealistically accurate covariance information, which is

done when using real-time covariance data, the performance of Update Methods 1

and 2 improve dramatically.

6.7 Chapter VI Conclusions

In this chapter, we applied an online learning algorithm, DFS, which uses DMD

together with the Fixed Share algorithm, to estimate the real-time AC demand on

a distribution feeder using feeder demand measurements, weather data, and system

models. Two implementations of algorithms based on DMD were developed and

compared via case studies. Our results showed that DFS can effectively estimate the

real-time AC demand on a feeder. DFS achieved lower AC demand RMSE than the

average across a set of Kalman filters. When selecting the most accurate Kalman

filter ex post, DFS generally results in larger RMSE. However, DFS learns the most

accurate model, or combination of models, in real-time whereas the best Kalman filter

can only be chosen after the simulation. The performance of DFS depends heavily

on the inclusion of models within its set. Including models that are inaccurate for

majority of the day degraded the algorithm performance as did removing models that

were frequently weighted heavily. Furthermore, including prediction error statistics,

e.g., error covariances, into the update equations influences the algorithm performance

significantly.

In this work, we separated the demand into only two components. However,

the algorithm is applicable to scenarios with more than two components, assuming

that we have at least one model of each demand component. As the number of

components increases, it may become more difficult to disaggregate them, but these

difficulties could be counteracted by incorporating more real-time measurements, e.g.,

the reactive power demand. Future work will develop improved AC demand models
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and incorporate active control into the problem framework.
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CHAPTER VII

Separating a Feeder’s Demand into Components

Using Smart Meter and Feeder Measurements

Distributed energy resources (DERs) such as residential solar installations and

residential demand responsive loads are becoming more prevalent within distribution

networks [122,123]. These technologies can cause more variability in the power flows

within the distribution network, requiring additional sensing to maintain acceptable

power quality to end-users. Traditionally, real-time sensing capabilities in distribu-

tion networks have been limited to within the distribution substations [124]. However,

additional real-time sensing capabilities, e.g., of the voltage magnitude and phase an-

gle, at points within the distribution feeder are becoming more common [125,126]. In

addition, smart meters have been widely deployed in distribution networks [123], and

they are capable of providing power usage information at the device level using en-

ergy disaggregation algorithms [49]. Due to smart meter communication limitations,

the measurements may not be available in real-time, or they may only be available

intermittently, e.g., every fifteen minutes.

In this chapter, we seek to utilize real-time and historical measurements from the

distribution feeder and smart meters to perform real-time, feeder-level energy disag-

gregation on time-scales of seconds to minutes. Real-time, feeder-level energy disag-

gregation seeks to separate the measured demand of a distribution feeder into compo-

nents, e.g., the aggregate demand/generation of different types of loads/generators.

It can benefit distribution system operators and demand response providers by pro-

viding information about 1) potential balancing reserve requirements due to changes

in solar generation, and 2) the real-time aggregate demand of the demand-responsive

loads, e.g., as a feedback signal for control algorithms, among other applications.

The energy disaggregation algorithm developed in this chapter is an online learning

algorithm that incorporates sensor fusion to utilize real-time measurements from a
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variety of sources that are available on different timescales. Historical measurements

are used to compute models of the demand components, where the models produce

predictions of the demand components in real-time. Real-time measurements are then

used to adjust these predictions. Case studies apply the algorithm to disaggregate

the real-time feeder demand into the total demand of air conditioners (ACs), the

total demand of the non-air conditioning loads, and the total demand of network

equipment, i.e., the losses and capacitor banks. Unlike existing works in feeder-

level energy disaggregation, which neglect the effects of the distribution feeder and

do not take advantage of the full real-time sensing capabilities available within the

distribution feeder, we account for the distribution feeder explicitly, and we include

a general sensor fusion methodology to incorporate real-time measurements that is

adaptable to the available measurements.

Related work in feeder-level energy disaggregation includes [86,96,127–130]. Ref.

[127] uses substation power measurements to disaggregatee the feeder demand into

the solar generation on the feeder and the remaining demand on one minute time in-

tervals using multiple linear regression. Ref. [128] and [129] use substation power and

voltage measurements to disaggregate loads into categories on one-hour intervals us-

ing an artificial neural network and using a method of computing the load components

directly, respectively. Ref. [130] uses substation power and voltage measurements to

disaggregate loads into categories on one-minute intervals using an artificial neural

network. Our prior work, [86, 96], presented in Chapter VI, disaggregates the active

power demand of a distribution feeder into two components on one-minute intervals

using online learning algorithms. None of these works explicitly model the power

consumed by the distribution feeder equipment, and they do not take advantage of

real-time measurements outside of the distribution substation.

The contributions of this chapter are the following: 1) we formulate a more general

disaggregation problem than [86, 96] that includes reactive power into the formula-

tion, that models the feeder explicity, and that includes sensor fusion methodology to

adapt the algorithm to the available real-time measurements; 2) we develop methods

to incorporate active and reactive power flow, smart meter active and reactive power,

complex voltage, and complex current measurements; 3) we develop models of compo-

nents of the demand, specifically for the AC loads, the non-AC loads, and the network

demand, i.e., the losses and the power injections of capacitor banks; and 4) we eval-

uate the value of additional real-time measurements on the aggregate modeling and

disaggregation accuracy. This work differs from [86,96,127–130] in a number of ways.

Whereas [86, 96] include only the active demand into the disaggregation algorithm,
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Figure 7.1: Time series of the measured feeder demand and the underlying time series of the
three underlying demand components: the AC demand; the OL demand, which consists of the non-
AC loads; and the network (NW) demand, which consists of the losses and capacitor bank power
injections.

we include the reactive demand and take advantage of additional sensing capability in

the distribution network. Unlike, [86, 96, 127–130], which only incorporate real-time

measurements from the distribution substation, we incorporate additional real-time

measurements from points along the feeder and from smart meters. Also, we incorpo-

rate measurements that are available on different time-scales, and we explicitly model

the losses and capacitor bank power injections, whereas [86,96,127–130] do not.

The remainder of the work is organized as follows: Section 7.1 describes the prob-

lem overview; Section 7.2 details the energy disaggregation algorithm and methods to

incorporate the various measurements types; Section 7.3 describes the aggregate mod-

eling used within the disaggregation algorithm; Section 7.4 details the case studies;

and Section 7.5 concludes the chapter.

7.1 Problem Overview

In this chapter, a power system entity performs real-time feeder-level energy dis-

aggregation to estimate the real-time aggregate demand of N demand components

within a distribution feeder on timescales of seconds to minutes. Figure 7.1 depicts

example time series, where the entity seeks to disaggregate the measured power flow

into a distribution feeder, i.e., the measured total demand of the feeder, into three

components: the AC demand; the OL demand, which consists of the non-AC loads;

and the network (NW) demand, which consists of the losses and capacitor bank power

injections.

Figure 7.2 depicts a block diagram of the problem overview that summarizes

the plant (i.e., the physical system of interest), the disaggregation algorithm of the

power system entity, and the potential real-time measurements. The plant contains
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Figure 7.2: Block diagram of the two main components in the problem overview and the real-time
measurements

a distribution substation, a distribution feeder, and the residences connected to the

distribution feeder. We assume that all loads and capacitor banks are wye connected

(line-to-neutral); including delta connected loads is a topic of future research. The

residences contain N � 1 different load types that have active and reactive demand

components. The Nth demand component is the NW demand.

We assume that the power system entity receives some combination of substation,

network, smart meter, and weather measurements in real-time. Table 7.1 summarizes

examples of measurements that could be available, and it summarizes the assump-

tions on the frequency of their availability for the case studies of Section 7.4. We

assume 1) that substation measurements are available as substations are extensively

metered [124], 2) that network measurements, i.e., measurements at points within

the distribution feeder outside of the substation, may be available from micro-phasor

measurement units [126], 3) that real-time smart meter measurements may be avail-

able as smart meters have been widely installed, but, if available, the measurements

are transmitted to the power system entity at infrequent invervals, e.g., every 10-60

minutes, due to smart meter communication limitations [49], and 4) that weather

measurements are available from either nearby weather stations or weather sensing

capabilities of the power system entity.

We assume that smart meters have capabilities that enable the computation of

the N demand components when real-time smart meter measurements are available.

Smart meters are capable of measuring the real power, reactive power, voltage magt-

nidue, and current magnitude, and phase difference between the current and voltage

of a residence [49]. The smart meter measurements may be transmitted to the power

system entity infrequently in real-time, but smart meters can sample measurements
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Table 7.1: Examples of Potential Real-Time Measurements

Measurement Type Frequency

Substation Measurements

Active and reactive power flow into the feeder 1 minute

Complex current flowing into the feeder 1 minute

Complex voltage at the feeder head 1 minute

Network Measurements

Active and reactive power flow within the feeder 1 minute

Complex voltage within the feeder 1 minute

Smart Meter Measurements

Active and reactive power flowing into the residence 10-60 minutes

Current magnitude flowing into the residence 10-60 minutes

Voltage magnitude at the residence 10-60 minutes

Voltage and current phase difference at the residence 10-60 minutes

Weather Measurements

Outdoor temperature 1 minute

on timescales of seconds to minutes and transmit histories of measurements [49]. We

assume that these capabilities enable building-level energy disaggregation algorithms

to separate the measured building/residence demand into the N � 1 demand compo-

nents [49], which allows the computation of the real-time aggregate demand of the

N�1 load types when smart meter measurements are transmitted. The NW demand

can be computed by subtracting the total smart meter demand from substation mea-

surements of the total feeder demand. Due to these smart meter capabilities, we also

assume that historical smart meter measurements are always available on timescales

of seconds to minutes, regardless of whether they are transmitted in real-time.

Figure 7.3 summarizes the feeder-level energy disaggregation algorithm developed

in this work that uses demand component estimates for the previous time-step, ag-

gregate models (and their parameters), and substation, network, smart meter, and

weather measurements to compute demand component estimates for the present time-

step. The algorithm first fuses the available substation, network, and smart meter

measurements. Then, the algorithm computes measurement-based predictions us-

ing the fused measurements. Following this, the algorithm computes model-based

estimates using aggregate models for each demand component, weather measure-

ments, and possibly substation measurements. Finally, the algorithm computes de-

mand component estimates for the present time-step based on the model-based and

measurement-based predictions.

125



Input: Demand component estimates for previous time-step; aggregate models; substation, net-
work, smart meter, and weather measurements

1: Fuse the available substation, network, and smart meter measurements
2: Compute measurement-based predictions using the fused measurements
3: Compute the model-based predictions using the aggregate models, weather measurements, and

possibly substation measurements
4: Estimate the demand components for the present time-step

Output: Demand component estimates for present time-step

Figure 7.3: Steps within the energy disaggregation algorithm to compute estimates of the demand
components for the next time-step

7.2 The Energy Disaggregation Algorithm

In this section, we describe the feeder-level energy disaggregation algorithm, which

consists of an estimation algorithm, sensor fusion methodology, and output equations

for distribution system measurements. Subsection 7.2.1 summarizes a previously de-

veloped estimation algorithm. Subsection 7.2.2 develops sensor fusion methodology,

which allows the disaggregation algorithm to use measurements from multiple sources

on different timescales. Subsection 7.2.3 develops output equations for four measure-

ment types within the distribution system: power flows, squared voltage magnitude

differences, voltage angle differences, and smart meter measurements. These output

equations can then be included into the estimation algorithm via the sensor fusion

methodology.

The disaggregation algorithm does not model coupling between the three phases

of the distribution network. As a result, the algorithm is applied to each phase

individually, and notation specifying the specific phase is not used in the discussion

below for simplicity. Note that while coupling is not considered in the disaggregation

algorithm, the plant within the case studies includes a three-phase distribution feeder

model with unbalanced loads.

7.2.1 The Estimation Algorithm

The estimation algorithm is a modified version of Dynamic Mirror Descent (DMD).

DMD is an online learning algorithm that was developed in [90], and it was modified

in [96], which was presented in the previous chapter. DMD iterates between 1) a

measurement-based update that computes an adjusted state estimate via a convex

optimization problem that incorporates newly arrived measurements, and 2) a model-

based update that advances the adjusted state estimate to the next time-step via a

possibly nonlinear model. Ref. [96] modified DMD to separate the measurement-

based update from the model-based update, allowing a wider range of models to be

126



used within the algorithm. We use the modified DMD algorithm in this chapter.

The estimation algorithm computes estimates pθt P Θ of a system parameter,

or state, θt P Θ that changes over time using measurements yt P Y that arrive

sequentially in time. The domain of the state Θ � Rp is a bounded, closed, convex

feasible set, and Y � Rq is the domain of the measurements. The details of the

algorithm are the following:

pκt�1 � arg min
θPΘ

ηs
A
∇`tppθtq, θE�D pθ}pκtq (7.1)

qθt�1 �Φpqθtq (7.2)pθt�1 �qθt�1 � pκt�1. (7.3)

where pκt is a quantity that accumulates the measurement-based adjustment to the

state estimate pθt, and the remaining quantities are detailed below. Eq. (7.1) updatespκt to include the new measurement-based update, (7.2) creates a model-based pre-

diction for the next time-step, and (7.3) adjusts the model-based prediction using

the accumulated measurement-based adjustments of pκt. In the above, ηs P p0, 1s is

a step-size parameter that the user selects, x�, �y is the standard dot product, ∇`tp�q
is a gradient or subgradient of the loss function `tp�q, which penalizes deviations in

the predicted measurement versus the actual measurement yt, θ is the optimization

variable, and D p�}�q is a Bregman divergence that the user can choose. The variableqθt is the model-based prediction, and Φp�q is the model.

The loss function `tppθtq contains a mapping from pθt to the estimated output pyt.
In this work, we assume that this mapping is linear, i.e., that pyt � Ctpθt where the

output matrix is Ct. We also assume that `tppθtq contains an output estimation error

covariance matrix Πy
t , i.e., a covariance matrix that quantifies the accuracy of the

output estimates, as this can improve disaggregation accuracy [86].

7.2.2 Sensor Fusion Methodology

Sensor fusion is commonly used within Kalman filtering [131], but it has not been

applied feeder-level energy disaggregation. We assume that the following output

equation describes each measurement:

yt � Ctθt � wt, (7.4)

where wt is the measurement noise, which we assume is a random vector with positive-

definite covariance R. Given two measurements y1
t , y

2
t , their respective output ma-
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trices C1
t , C2

t , and their respective measurement error covariances R1 and R2, a com-

bined/fused output equation is formed as�py1
tpy2
t

�
�
�
C1
t

C2
t

� pθt.
We assume that the measurement noise for separate sensors are independent, and so

R �
�
R1 0

0 R2

�
.

The output estimation error covariance used within the estimation algorithm is

computed as Πy
t � CtpΠtC

T
t � R, where pΠt is the state estimation error covariance.

The formulation of Πy
t assumes that the estimation errors are independent from each

other and from the measurement noise. Because R is positive definite, Πy
t is invertible.

7.2.3 Output Equations

In this section, the feeder is described from a graphical perspective, portions of the

feeder are defined using the graphical representation, a state is defined for feeder-level

energy disaggregation using the graphical representation, and a general output matrix

is defined for this state. In the following subsections, output matrices are developed

using the state for active and reactive power flow measurements, squared voltage

magnitude difference measurements, and voltage angle difference measurements based

on power flow modeling in a radial distribution feeder; an output equation is also

developed for smart meter measurements using energy disaggregation at the building

level and substation power measurements. We exclude time indices in this subsection

to simplify notation; all sets are time invariant, and we point out the other time

invariant quantities.

The feeder can be viewed as a graph consisting of a set of buses/nodes N and a

set of power lines/edges E connecting the nodes in a radial/rooted-tree topology. In a

radial/tree topology, 1) the graph is connected, i.e., a path consisting of a sequence of

edges and nodes exists from every node to any other node, and 2) no path exists from

a node back to itself without backtracking over edges. In a rooted tree, one node is

designated as the root, a node within the substation in this case, and a parent-child

designation exists between nodes connected via an edge. An edge connecting nodes

m and n is labeled as pm,nq P E where m is the parent (i.e., the upstream node, or

the node closer to the root) and where n is the child (i.e., the downstream node, or
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the node further from the root). The root has no parent node, every other node has

one parent, and nodes can have multiple/no child nodes. The descendants of a given

node n are the set of nodes downstream of n (i.e., the set of nodes that contain n on

the path from the node of interest to the root).

In this setting, knowledge of the feeder topology means that the adjacency matrix

is known and that the node that each residence, and its constituent loads, is connected

to is known. The adjacency matrix indicates which nodes are children of each node.

The feeder topology could be known, e.g., if it is provided by the distribution system

operator, or it could be estimated, e.g., using voltage magnitude measurements from

smart meters [132].

If the topology is known or estimated, then portions of the feeder can be defined

as subsets of nodes and edges. We define Nn as the set of node n plus its descendants,

En as the set of edges downstream from n, and En� as the set En plus pp, nq P E where

p is the parent of n. For an arbitrary set Y , we use the notation Ymzn to indicate

the set Ym excluding the elements of Yn, and we use this notation to define the sets

Nmzn and Emzn�. Finally, we construct two portions of the feeder A and B that each

consist of a set of nodes and a set of edges. The portion of the feeder B consists of the

edge pm,nq and all nodes and edges downstream from n, and A is the remainder of

the feeder starting from the substation and excluding the nodes and edges in B, i.e.,

B � tNn, En�u and A � tN0zn, E0zn�u, where 0 denotes a node within the substation.

Note that A and B are a partition of the feeder, i.e., they have no nodes/edges in

common and combining the two sets together forms the set of all of the nodes and

edges within the feeder.

We define the feeder-level energy disaggregation state as

θ �
�
PT
A PNW

A PT
B PNW

B QT
A QNW

A QT
B QNW

B

�T

(7.5)

where p�qT denotes the transpose. In (7.5), PA P RN�1 is a column vector consisting

of elements P l
A for l � 1, . . . , N�1, where P l

A is the active power demand of load type

l aggregated over the nodes in A, i.e., P l
A � °

kPN0zn
P l
k. Also in (7.5), QA P RN�1 is a

column vector consisting of the reactive power demand of the load types aggregated

over A, and PNW
A P R1 and QNW

A P R1 are the active and reactive NW demand for A,

respectively. The quantities PB, QB, PNW
B and QNW

B are defined similarly for B.

Given this θ, the objective in each of the subsections below is to determine the

elements within the output matrix of the output equation for each of the four mea-

surement types and to determine the corresponding measurement noise covariance R.
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The output equation containing the general output matrix is

y �
�
cN dN eN fN

�
θ (7.6)

where y depends on the measurement considered within each subsection. The quan-

tities cN , dN , eN , and fN are N -element row vectors where each element in the vector

is a scalar c, d, e, and f , respectively. In the following subsections, we also discuss

when θ can be defined using aggregations over the entire feeder, when aggregations

over additional portions of the feeder are needed, and how to define the portions of

the feeder in θ to accommodate all available measurements.

7.2.3.1 Active and Reactive Power Flow Measurements

We develop output equations for measurements of the active and reactive power

flow out of a node by manipulating the DistFlow power flow equations from [133]

into sums of the N � 1 load types and the NW demand over a portion of the feeder.

The manipulated equations are then used to define the scalars in (7.6) both for power

flow measurements at a node within the feeder and for measurements at the feeder

head within the substation. We then describe how to construct the state and output

matrices for an arbitrary combination of power flow measurements.

The DistFlow equations compute Qmn, the reactive power flowing out of node m

towards node n, as

Qmn �
¸

k:pn,kqPE
Qnk �

N�1̧

l�1

Ql
n �Qcap

n � xmni
2
mn, (7.7)

where the first term is the power flowing out/downstream of node n, the second term

is the reactive load at node n, the third term Qcap
n is the reactive power injection of

a capacitor bank at node n, and the last term is the reactive power consumed by

pm,nq where xmn is the time-invariant reactance of the power line/edge, and i2mn is

the squared current magnitude flowing from node m to n. The active power flow Pmn

is computed similarly using the active power flows and active demand components,

where the active power injection of the capacitor bank is zero, and where xmn is

replaced by the time-invariant resistance rmn to compute the active power losses.

We manipulate (7.7) and the corresponding active power flow equation into sums

of the N �1 load types and the NW demand over a set of nodes and edges. Ref. [134]

approximates Pmn and Qmn as sums of the net load (i.e., demand minus generation)
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at each node in Nn. We extend this to include losses on the downstream edges, and

we modify the equation into sums over the N demand components to relate elements

of θ to the power flow measurements. The resulting reactive power flow equation is

Qmn �
N�1̧

l�1

¸
kPNn

Ql
k �

¸
kPNn

Qcap
k �

¸
kPEn�

xki
2
k (7.8)

�
Ņ

l�1

Ql
B, (7.9)

where QN
B � QNW

B � °
kPNn

Qcap
k �°

kPEn� xki
2
k. The active power flow Pmn is com-

puted similar to (7.9) using the active power components (setting capacitor bank

injections to zero).

Using this formulation of the active and reactive power flows, we parameterize

the output matrix in (7.6) for power flow measurements at two separate locations:

at a point within the distribution feeder, and at the substation. The first location

measures the active and reactive power flow from a node m towards node n, where n

corresponds to the node used to define the set of nodes and edges within B. Based on

(7.9), Qmn is the sum of N reactive demand components aggregated over B, and so

the scalars c, d, and e are zero, and f is one. Similarly, Pmn is the sum of the active

demand component aggregated over B. In this case the scalars c, e, and f are zero,

and d is one.

The second location measures the active and reactive power flow at the feeder head

in the substation, i.e., it measures the total active/reactive demand of the distribution

feeder. The total active/reactive demand of the feeder consists of the active/reactive

demand of the portion of the feeder B plus the active/reactive demand of the re-

maining nodes and edges on the feeder, i.e., of A. As a result, for active power flow

measurements at the feeder head, c and d are one, and e and f are zero, and vice

versa for reactive power measurements.

If power flow measurements are available at multiple points within the feeder out-

side of the substation, rather than at a single point within the feeder as discussed

above, then θ must be defined using additional portions of the feeder that form a

partition of the feeder; the output matrix can then be constructed for each measure-

ment based on θ. To define θ for an arbitrary set of power flow measurements, start

with the measurement that is furthest downstream and define a portion of the feeder

as the nodes and edges within the power flow equation, e.g., (7.8), at the point of

the measurement. Then, take the next furthest downstream measurement, and again
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form the set of nodes and edges needed to compute the power flow; if this new set

of nodes and edges does not contain a previously defined portion of the feeder, then

define the set as a new portion of the feeder; if the set contains a previously defined

portion of the feeder, then define the new portion of the feeder such that the existing

portion and the new portion together form the necessary set of nodes and edges. Con-

tinue taking the next furthest downstream measurement; construct the set of nodes

and edges needed to compute the power flow at the point of the measurement; define

the new portion of feeder such that it, possibly together with some previously defined

portions of the feeder, forms the set of nodes and edges needed to compute the power

flow. Once this has been done for all of the measurements, construct the output ma-

trix for each measurement such that the matrix sums the demand components over

the portions of the feeder that are needed to compute the power flow at the point of

the measurement.

We assume that power flow measurements are accurate, and so we set the mea-

surement noise covariance for power flow measurements as RPQ � 0.

7.2.3.2 Squared Voltage Magnitude Difference Measurements

We develop an output equation for measurements of the difference in squared volt-

age magnitude between two nodes that may be connected via intermediate nodes. We

first summarize the linear Disflow equation approximating the difference in squared

voltage magnitude between two ends of an edge, and we relate this to θ. We then

extend this to compute the difference in squared voltage magnitudes between two

nodes, separated first by a single node and then by an arbitrary sequence of nodes,

and we describe how to construct θ in both cases. Finally, we describe the construc-

tion of the output matrix for the general case and define the parameters in (7.6) for

the original definition of θ. While [134] also computes the difference over an arbitrary

sequence of nodes, they consider only the impact of the net load at each node and

do not consider the impact of the losses. In contrast, we include the impact of losses,

and we formulate the equations in terms of sums of load components over portions of

the network.

The linear DistFlow equation approximating the difference in squared voltage
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magnitudes over pm,nq is

V 2
mn �2 prmnPmn � xmnQmnq (7.10)

�2rmn

Ņ

l�1

P l
B � 2xmn

Ņ

l�1

Ql
B (7.11)

where V 2
mn � v2

m� v2
n and v2

m is the squared voltage magnitude at node m. In (7.11),

we express the power flows using (7.9), as sums of demand components within θ.

We now extend (7.10) for the difference in squared voltage of two nodes separated

by an intermediate node and relate the new equation to θ. Consider the sequence of

nodes 0, m, n that are successively connected via edges, and where 0 corresponds to

a node within the substation. The difference in squared voltage magnitude between

nodes 0 and n is

V 2
0n �2pr0mP0m � rmnPmnq � 2px0mQ0m � xmnQmnq
�2 pr0m rP0m � Pmn � Pmns � rmnPmnq� (7.12)

2 px0m rQ0m �Qmn �Qmns � xmnQmnq
�2 pr0m rP0m � Pmns � pr0m � rmnqPmnq� (7.13)

2 px0m rQ0m �Qmns � px0m � xmnqQmnq

�2r0m

Ņ

l�1

P l
A � 2pr0m � rmnq

Ņ

l�1

P l
B� (7.14)

2x0m

Ņ

l�1

Ql
A � 2px0m � xmnq

Ņ

l�1

Ql
B.

Above, we first use V 2
0n � V 2

0m�V 2
mn, we add and subtract the downstream power flow

terms in (7.12), we rearrange terms in (7.13) to collect the resistances and reactances

for the power flows, and we use (7.8) and the corresponding active power flow equation

in (7.14) to express the power flows as sums of the demand components over portions

of the feeder. We used the property that
°N
l�1Q

l
A � Q0m �Qmn by expressing both

power flow terms on the right-hand side according to (7.8), then by noting that the

terms left after subtracting Qmn were a summation over the set of nodes and edges

in A. Because 0 and n correspond to the nodes used to define A and B, and because

no other power flow terms appeared in (7.13), we were able to define the power flows

in terms of the portions of the feeder used in the definition of θ.

We now extend this to consider the difference in squared voltage magnitudes over

an arbitrary sequence of nodes 1, . . . , n, and we describe the corresponding construc-
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tion of θ. The above process can be extended to an arbitrary sequence of nodes by 1)

expressing V 2
1n in terms of the resistances, reactances, and power flows on each of the

edges between 1 and n, 2) by looking at each power flow term and adding and sub-

tracting power flows that appear within the equation and that are downstream from

the power flow of interest, and 3) by rearranging terms to collect resistances and re-

actances for the power flows and power flow differences. The properties Pnm � �Pmn,

Qnm � �Qmn, rnm � rmn, and xnm � xmn can be used if quantities appear in the op-

posite direction that they were defined, i.e., if the edge is defined as pm,nq not pn,mq.
A portion of the feeder should be defined for each set of nodes and edges needed to

compute each power flow term and each power flow difference term that appears in

the manipulated equation for V 2
1n. Additional portions of the feeder should be de-

fined, if needed, to form a partition of the feeder. The state θ should be constructed

to include the N demand components for each of the feeder portions defined.

We construct the output matrix for V 2
0n as the state for this corresponds to the orig-

inal definition of θ, and then we describe the construction of an output matrix for the

state resulting from the measurements across the arbitrary sequence of nodes 1, . . . , n.

For V 2
0n we formulate an output equation as V 2

0n � CVMθ where we must define the

entries in CVM. In (7.14), a resistance/reactance or a sum of resistances/reactances

appears before each summation of load components over each of the portions of the

network in θ. The scalars in CVM defined in (7.6) would be set equal to these resis-

tances/reactances and their sums if the network parameters, i.e., the resistances and

reactances, were known. However, we assume that we only know the feeder topol-

ogy and not the network parameters. As a result, we identify the parameters c, d,

e, and f within CVM via multiple linear regression using historical measurements of

V 2
0n and θ, where historical values of θ are estimated using the historical availability

of both smart meter measurements and substation power flow measurements, where

Section 7.2.3.4 details the process of estimating θ.

In a similar vein, once the state is constructed for measurements across the arbi-

trary sequence of nodes 1, . . . , n, the parameters for the output matrix can be defined

as the resistances/ reactances that appear as coefficients to the summations over

the portions of the network within the state, or they can be identified if the resis-

tances/reactances are not known. Future work should compare the disaggregation

accuracy when the resistances and reactances within CVM are known versus when

they are identified.

We compute the measurement noise covariance RVM as the covariance of the errors

between the historical measurements of V 2
0n and the values computed according to
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CVMθ. The measurement noise arises from the approximations used to form (7.10),

and from the errors in estimating both CVM and θ.

7.2.3.3 Voltage Angle Difference Measurements

We develop an output equation for measurements of the difference in voltage

angles between two nodes separated by an intermediate node. We also describe how

to develop an output equation for measurements of the difference in voltage angles

over an arbitrary sequence of nodes. We start from the linear approximation for the

voltage angle difference used in [134]. Following this, we use similarities between the

voltage magnitude and voltage angle difference equations to describe the equation for

the voltage angle difference over an arbitrary sequence of nodes. Finally, we describe

the output matrix and measurement noise covariance for this measurement type.

The linear equation approximating δmn, the voltage angle difference between nodes

m and n across pm,nq, is

δmn � xmnPmn � rmnQmn. (7.15)

Note that this has a similar form to (7.10), except that the resistance and reactance

have been swapped and the resistance is negated. As a result, the equations general-

izing the change in voltage angle over a sequence of nodes have the same form as those

of the difference in squared voltage magnitude, but the resistances and reactances are

swapped and the resistances are negated. We assume that voltage angle measure-

ments are available at the same nodes as voltage magnitude measurements, and so

no modifications to the state are needed to incorporate voltage angle differences as

the same power flow terms (and resulting portions of the feeder) appear in both the

voltage magnitude and angle equations.

The output equation for δ0n is

δ0n � 1

2

�
eVM
N fVM

N �cVM
N �dVM

N

�
θ (7.16)

where cVM
N , dVM

N , eVM
N , and fVM

N are the parameters within CVM, which are identi-

fied via multiple linear regression. Future work should compare the disaggregation

performance when using the identified parameters versus the actual network parame-

ters, and it should also investigate identification of the matrix parameters using both

voltage angle and voltage magnitude data (rather than only using voltage magnitude

data).
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The measurement noise covariance for voltage angle measurements, RVA, is com-

puted using the historical accuracy of the measured angle difference versus the pre-

dicted angle difference given historical estimates of the state vector θ, the computation

of which are detailed in Section 7.2.3.4, and the corresponding output matrix. The

measurement noise arises from the approximations used to form (7.16), and from the

errors in estimating both the output matrix parameters and historical state values.

7.2.3.4 Smart Meter Measurements

We develop an output equation for real-time smart meter measurements. Real-

time smart meter measurements along with substation power flow measurements allow

the estimation of real-time active and reactive power measurements for the N demand

components, where we have assumed that the smart meter data for a residence is

disaggregated into the demand of the N � 1 load types. If θ contains aggregations

over portions of the network, then power measurements for N � 1 load types can be

computed by summing the disaggregated household data that pertains to the nodes

within each portion of the network. As a result, θ does not need to be modified to

incorporate real-time smart meter measurements.

We assume that measurements of the NW demand are not available for portions

of the network as this would require power flow measurements at each end of each

line/edge and metering of the power injections of the capacitor banks. As a result, we

assume that the total NW demand of the feeder can be divided into the NW demand

of the portions of the feeder based on the number of edges within the portion of

the feeder (for a given phase). For example, PNW
A � PNW|E0zn�| p|E|q�1 and PNW

B �
PNW|En�| p|E|q�1, where PNW is the total NW demand of the feeder and where |�| is

the number of elements in the argument set. Note that the NW demand contains

the power injections of the capacitor banks, which introduces inaccuracies in the

approximation. Also, in reality, the NW demand should be divided for the portions

of the feeder as a function of the resistances and reactances of each line and the line

length within the portion of the feeder.

Without adhering to the general output matrix structure in (7.6), the resulting

output equation for real-time smart meter measurements is

y �
�
I
�
θ, (7.17)

where I is an appropriately-sized identity matrix. Inaccuracies arise in the mea-

surement from errors in disaggregating the smart meter data, but we assume this
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is negligible. As a result, we assume that the measurements are accurate, and so

the measurement noise covariance for smart meter measurements is set as RSM � 0.

While there are known inaccuracies in the approximations of measurements of the

NW demand for portions of the feeder, these inaccuracies cannot be reflected into the

covariance as we assume no data is available to quantify the inaccuracy.

Future work should investigate improving the estimation of the NW demand for

portions of the feeder. This could be done 1) by investigating whether a capacitor

bank connecting/disconnecting to the feeder can be detected from the substation, 2)

by investigating whether knowledge of the amount and location of power injected by

the capacitor bank improves the estimation of the NW demand for portions of the

feeder, and 3) by investigating methods of more accurately approximating active and

reactive losses using line lengths and possibly line parameters. These three topics

could improve disaggregation accuracy by improving the accuracy of the state mea-

surements derived from real-time smart meter measurements as well as the accuracy

of the identified parameters in the voltage magnitude and angle output matrices.

Throughout the subsections for the various measurement types we have described

how to define θ based on the portions of the feeder used to compute the measured

quantities. If measurements are only available at the substation, then θ does not

need to include demand components for portions of the network, and we can relax

the assumption that the feeder topology is known. Alternatively, if different types of

measurements are available at different nodes, then it is necessary to define portions

of the feeder that form a partition such that the portions can be combined into the set

of nodes and edges used to compute the power flows that appear within the equations

for the different measurements.

7.3 Aggregate Models for Energy Disaggregation

We create separate aggregate load models for the N demand components using

multiple linear regression with historical smart meter and feeder measurements. The

aggregate models are formed for each phase individually, and we do not include no-

tation specifying the phase here for simplicity.

The regression models for a given phase are

pP l
t � βlDl

t l � 1, . . . , N (7.18)pQl
t � γlDl

t l � 1, . . . , N (7.19)
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where pP l
t is the predicted active demand for load component l, pQl

t is the predicted

reactive demand for l, βl and γl are row vectors of regression parameters for l. The

column vector Dl
t consists of the input features for l at time t:

Dl
t �

�
Dl,CAL
t Dl,WEA

t Dl,NW
t

�T

,

where Dl,CAL
t , Dl,WEA

t , and Dl,NW
t are row vectors of calendar-based features, weather-

based features, and features based on substation and network measurements, respec-

tively.

Aggregate models for each of the N load component can be created for the entire

feeder, or for portions of the feeder if the feeder topology is known. Historical data

for the N load components are needed to compute the models, and we assume that

historical values of the input features are available. To compute historical aggregate

data of the N � 1 load types, we assume that the historical smart meter data for

each residence can first be disaggregated into the demand of the N � 1 load types. If

the feeder topology is known, the residence-level data for the N � 1 load types can

be summed over the set of residences connected to each node to compute aggregate

historical nodal demand data for the N � 1 load types. The aggregate nodal data

can be summed over the nodes within each feeder portion to compute the aggregate

demand of the load types for each portion of the feeder. If the feeder topology is not

known, then historical data of the aggregate demand for the N � 1 load types can be

computed for the entire feeder by summing the disaggregated smart meter data for

each load type over all of the residences.

Aggregate NW demand data, both active and reactive, can be computed for the

entire feeder by subtracting the total smart meter demand from the substation mea-

surements of the active and reactive power flow into the feeder. If the feeder topology

is known, the total NW demand can be estimated for the portions of the feeder based

on the number of lines/edges in that portion of the feeder (for the phase of interest)

as in Section 7.2.3.4.

7.4 Case Studies

In this section, we perform case studies to evaluate the performance of the dissagre-

gation algorithm using a variety of scenarios of real-time measurement availability and

to evaluate the prediction accuracy of the models within the disaggregation algorithm

when substation measurements are and are not included into the models. In these
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case studies, the power system entity disaggregates the total demand of a distribution

feeder into three components: 1) the aggregate AC demand, 2) the aggregate non-air

conditioning demand, or the OL demand (where OL stands for other load), and 3)

the demand of the distribution feeder equipment, referred to as the network (NW)

demand, which includes the losses and the power injections of the capacitor banks.

Subsection 7.4.1 details the plant used within the case studies, which includes a

feeder model and load models that have active and reactive demand components. The

time-step of the case studies is one minute as this is the frequency with which load data

is available for the plant. Subsection 7.4.2 provides the details of the disaggregation

algorithm. Subsection 7.4.3 details two sets of aggregate models of the three demand

components used within the disaggregation algorithm, where the sets differ in the

input features used. Subsection 7.4.4 details different cases, which are defined based

on the real-time measurement availability and the aggregate models used within the

disaggregation algorithm. Subsection 7.4.5 describes the data used in evaluating the

disaggregation algorithm, and it defines the performance metric used to evaluate the

disaggregation algorithm. Finally, Subsection 7.4.6 summarizes the results.

7.4.1 Plant Construction

The plant incorporates a feeder model, real-world weather data, real-world active

power demand data for the loads connected to the feeder, and voltage-dependent load

models with active and reactive power components. The feeder model is the IEEE

13-bus test feeder [135]. Figure 7.4 depicts the single-line diagram of the feeder and

indicates the assumed boundaries of the substation. We use a three-phase, unbalanced

feeder model, where we assume that all loads are wye-connected, we assume that the

switch within the feeder is closed, we assume the data for the line from node 671 to

692 is the same as the line from node 692 to 675, and we assume that there is a load

at node 680, which we set to p290� 212.0jq, p170� 80.0jq, and p128� 86.0jq kW for

phases A, B, and C, respectively. We assign half of the distributed load to node 632

and half to node 671. The feeder contains a voltage regulator for each phase as well

as capacitor banks, which we assume are always connected. We assume a lockout

time of five minutes for tap changes on each phase of the voltage regulator.

Real-world outdoor temperature data and real-world data for the active power

demand of residences and the devices/loads within those residences are taken from

[136]. All data from [136] corresponds to Austin, TX. We linearly interpolate the

hourly weather data down to the time-scale of the demand data of the loads, i.e.,

one minute time-steps. We connect houses to the phases at each node by randomly
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sampling with replacement from the set of available houses in [136]. Houses are

drawn for each phase at a node until the total average active power demand over the

course of August 31, 2017 is greater than the active demand for the phase load of the

feeder model. We incorporate the real-world data of the loads’ active power demand

into load models to determine the voltage-dependent active demand as well as the

voltage-dependent reactive power demand of the loads.

We use a “performance model” based on [137,138] to compute the reactive power

draw of the ACs connected to each phase at each node, and we use ZIP model

parameters from [139, 140] to compute the active and reactive power demand of the

OLs connected to each phase at each node. Note that the following discussion pertains

to each phase at node n, but we do not include notation specifying the phase for

simplicity.

The performance model captures the voltage and temperature dependence of the

reactive power demand of the ACs, where the active power model is approximately

a constant power model that is unaffected by voltage changes. To implement the

performance model, we first sum the active power demand of the ACs connected to a

given phase at node n: P n,AC
t � °

jPJ n,AC P
j,AC
t , where P n,AC

t is the total active power

of ACs connected to node n, P j,AC
t is the active power demand of AC j, J n,AC is the

set of ACs connected to node n. Note that the real-world data used to calculate P n,AC
t

implicitly depends on outdoor temperature. Then, we use the outdoor temperature,

the voltage at node n, and P n,AC
t to compute the reactive power of the air conditioners

at node n, Qn,AC
t , according to the following [137]:

Qn,AC
t � b1 � b2

pvnt � b0q � b3pvnt � b0q � b4pvnt � b0q (7.20)

where b0, b2, b3, and b4 are parameters that depend on the outdoor temperature, b1

is a parameter the depends on P n,AC
t , and where vnt is the voltage of node n. We

compute the parameters in (7.20) based on the curves of Fig. 16 in [138].

To determine P n,OL
t and Qn,OL

t , which are the active and reactive power of the

OL demand connected to a given phase at node n, we use active power data for

these loads from [136], and we use voltage-dependent ZIP models. The ZIP model
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Figure 7.4: Single-line diagram of the IEEE 13-bus test feeder where the infinite bus corresponds
to the distribution substation.

Table 7.2: Summary of ZIP Model Parameters for Different Load Types

Load Type ZIP Parameters Reference

Qj0 Zjp Ijp P jp Zjq Ijq P jq
Coffee Maker 13.32 0.13 1.62 -0.75 3.89 -6.0 3.11 [140]
Drier Heater 0 0.96 0.05 -0.01 0 0 0 [139]
Drier Tumbler 459.91 1.91 -2.23 1.33 2.51 -2.34 0.83 [139]
Fan 83.28 -.47 1.71 -0.24 2.34 -3.12 1.78 [140]
Freezer 558.86 1.19 -0.26 0.07 0.59 0.65 -0.24 [139]
Heat Pump 426.37 0.72 -0.98 1.25 14.78 -23.72 9.93 [139]
Lighting 0.85 0.47 0.63 -0.1 0.55 0.38 0.07 [140]
Microwave 451.02 1.39 -1.96 1.57 50.07 -93.55 44.48 [140]
Miscellaneous 73.84 1.18 -1.64 1.47 8.29 -13.67 6.38 [140]
Office Equipment 0 0.34 -0.32 0.98 0 0 0 [139]
Refrigerator 52.47 1.17 -1.83 1.66 7.07 -10.94 4.87 [140]
Washing Machine 518.23 0.05 0.31 0.63 -0.56 2.2 -0.65 [139]
Water Heater 1.46 0.64 0.59 -0.23 0.13 0.75 0.12 [140]

from [139] for load j P J n,OL is

P j,OL
t � P j

0

�
Zj

p

�
vnt
vj0


2

� Ijp

�
vnt
vj0



� P j

p

�
(7.21)

Qj,OL
t � Qj

0

�
Zj

q

�
vnt
vj0


2

� Ijq

�
vnt
vj0



� P j

q

�
(7.22)

where J n,OL is the set of OL loads connected to node n, where P j
0 , Zj

p, Ijp, P j
p , and

V j
0 are the ZIP parameters for the active power demand of load j, and where similar

parameters are defined for Qj,OL
t . The total OL active power demand at node n is

P n,OL
t � °

jPJ n,OL P
j,OL
t , and Qn,OL

t is computed similarly.
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Table 7.2 summarizes the ZIP parameters. Note that the ZIP models include a

parameter P j
0 for the nominal active power demand of load j; we set this parameter

to the measured demand for load j at time t from [136], and so we do not include

P j
0 in the table. The remaining ZIP parameters are taken from [139, 140] depending

on the type of load. The lighting loads are assumed to be incandescent. Water

heaters are assumed to be resistive heaters. Furnace/heater loads are assumed to

correspond to heat pumps. Data from kitchen plugs for small appliances are assumed

to correspond to a coffee maker. Miscellaneous loads that do not fall into one of the

specific categories are summed into a household-level ZIP model whose parameters

are also given in the “Miscellaneous” entry in Table 7.2. We assume that the rated

voltage vj0 for all ZIP models is 120 V.

At each time-step, the simulation computes the complex voltages and complex

currents within the feeder using the previously determined assignments of loads to

nodes and phases, the active power demand data and outdoor temperature data, the

load models, and the feeder model. The residence connections are used to assign the

loads to each phase at each node. The quantity P n,AC
t is then calculated for each

phase at each node, which is then used along with the outdoor temperature and the

voltage at the node to determine Qn,AC
t . The ZIP models of the OL loads, the voltage

of the respective nodes, and the active power demand data are used to compute P n,OL
t

and Qn,OL
t at each node.

At each time-step in the simulation, the voltages at the nodes are initially assumed

to be at their rated values, then a forward-backward sweep algorithm from [141] iter-

ates to compute the complex voltages and complex currents within the feeder. Dur-

ing each iteration, the voltages within the performance and ZIP models are updated

to compute the new value of the voltage-dependent load. We check the forward-

backward sweep algorithm for convergence at node 671, where the algorithm is said

to converge if the maximum change in voltage at the node is less than 1.0�10�6 in

per-unit voltage. Once the algorithm converges at a given time-step, the tap posi-

tions of the voltage regulator are updated by checking the voltage magnitude at node

671, where the allowable voltage bandwidth is 121-123 V (for a 120 V base). If the

tap position changes at a given time-step, the forward-backward sweep algorithm is

restarted with the new tap positions and the process repeats. If the tap position does

not change, the plant simulation advances to the next time-step.
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7.4.2 Disaggregation Algorithm Details

This subsection provides the details of the disaggregation algorithm used within

the case studies. We first define the state vector θt, then we select the user-defined

functions in (7.1) to formulate the closed-form update. Finally, we summarize the

parameter settings in the algorithm and detail the tuning process of these parameters.

The state vector θt is defined according to (7.5) with B � tNn, En�u and A �
tN0zn, E0zn�u. We set node n to node 671 in Fig. 7.4, and we set 0 to the secondary side

of the voltage regulator. As we have two load types in the disaggregation formulation

of the case studies, PA, PB, QA, and QB each contain two demand components, one

for the AC demand and one for the OL demand in the respective portions of the

feeder.

To formulate the closed-form update of (7.1), we set the Bregman divergence

as Dpθ‖pκtq � 1
2
‖pΠ� 1

2
t pθ � pκtq‖2

2, and we choose the loss function to be `tppθtq �
1
2
‖pΠy

t q�
1
2 pCtpθt�ytq‖2

2, where pΠt is a user-defined, positive semi-definite matrix for the

estimation error covariance, and where Πy
t is a user-defined, positive definite matrix

for the covariance of the output estimation error. Given these functions, the closed

form solution of (7.1) is the following:

pκt�1 � pκt � ηspΠtC
T
t pΠy

t q�1
�
yt � Ctpθt	 . (7.23)

We compute pΠt from the historical covariance of the prediction errors of the aggregate

models used within the disaggregation algorithm, where the prediction errors pertain

to the historical data from August 14-30, 2017. We compute the covariance Πy
t

according to Section 7.2.2.

We tune the parameters within (7.23) by applying the disaggregation algorithm

to the simulated plant using data for August 31,2017. We set ηs � 0.5 when using

model set Mnc within the algorithm, and we set ηs � 0.2 when using model set Mc.

Note that these parameters were roughly tuned to optimize algorithm performance

for the given day; additional tuning may result in performance gains, but we do not

believe they would influence the results significantly. We set the measurement noise

covariances RPQ and RSM to σI, where I is an appropriately-sized identity matrix in

each case, and where σ � 1 � 10�8. Measurement noise covariances RVM and RVA

are computed using the historical data from August 14-30, 2017.
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7.4.3 Aggregate Model Details for the Disaggregation Algorithm

We define two sets of aggregate models used in the disaggregation algorithm that

each contain separate models for the AC, OL, and NW demand. The state contains

two portions of the feeder, and so two models for each demand type are computed

in each set. We train the models, i.e., compute the regression parameters, using

historical data obtained by simulating the plant with load and temperature data

from August 14-30, 2017.

The first set of models include input features based on the complex current flowing

into the feeder measured at the substation, and we denote the set of models as Mc.

The vector DAC
t �

�
xtod
t |i0t | realpi0t q imagpi0t q T o

t

�T

are the input features for the

AC demand models, where xtod
t is an indicator vector indicating the time of day,

where |�|, realp�q, and imagp�q are the magnitude, real component, and imaginary

component of the argument, respectively, where i0t is the complex current measured

at the distribution substation, and where T o
t is the outdoor temperature. The input

features for the OL demand models are DOL
t �

�
xtod
t |i0t | realpi0t q imagpi0t q

�T

. The

input features for the NW demand models are the same as for the OL demand, i.e.,

DNW
t � DOL

t .

The second set of models do not include input features based on the complex

current measurements, and we denote the set of models as Mnc. In this case, the

input features for the AC, OL, and NW demand models are DAC
t �

�
xtod
t T o

t

�T

and

DNW
t � DOL

t � xtod
t .

7.4.4 Case Definitions

To define the cases, we define five scenarios of real-time measurements from the

substation and feeder, we describe notation used to indicate the additional avail-

ability of real-time smart meter measurements in a scenario, and we indicate which

model sets are used within each scenario. In all scenarios, we assume that historical

measurements of the active and reactive power flowing into the feeder and histori-

cal active and reactive power measurements from smart meters are available, which

allows computation of the aggregate model parameters for Mnc in any scenario. In

addition, we assume that any measurements that are available in real-time are also

available historically. For example, if real-time complex current measurements are

available at the substation, historical values are available to compute Mc.

The measurement scenarios are the following:

• Scenario 1: This scenario does not include any real-time measurements from
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the substation, the feeder, or from smart meters. This scenario allows the use of

the models inMnc to compute predictions, but it does not allow measurement-

based adjustments to the predictions within the disaggregation algorithm as

there are no real-time measurements.

• Scenario 2: This scenario consists of real-time measurements of the complex

current flowing into the feeder, measured at the substation. In this scenario,

we useMc to compute predictions as complex current measurements are avail-

able. We do not use measurement-based adjustments to the predictions in the

disaggregation algorithm.

• Scenario 3: This scenario consists of real-time measurements of the active

power flowing into the distribution feeder, measured at the substation. We use

Mnc within this scenario as no real-time complex current measurements are

available. We use measurement-based adjustments within the disaggregation

algorithm using the real-time active power measurements.

• Scenario 4: This scenario consists of measurements of the active power, re-

active power, and complex current flowing into the feeder, measured at the

substation. We use both Mc and Mnc within this scenario. We also incorpo-

rate the active and reactive power measurements into the measurement-based

adjustments of the disaggregation algorithm.

• Scenario 5: This scenario consists of the measurements of Scenario 4 plus

voltage magnitude and voltage angle measurements at the secondary side of the

voltage regulator and at node 671 within Fig. 7.4. While both model sets could

be used within this measurement scenario, we only useMc. We incorporate the

active and reactive power measurements as well as the voltage magnitude and

angle measurements into the measurement-based adjustments in the disaggre-

gation algorithm.

• Smart Meter Measurements: We indicate smart meter measurement avail-

ability in a scenario by adding a suffix to the measurement scenario that indi-

cates the number of minutes between smart meter measurements. For example,

3-60 denotes measurement scenario 3 with smart meter measurements available

every 60 minutes. If we do not incorporate smart meter measurements into the

scenario, we do not add a suffix.
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Scenario 3 is comparable to the measurement availability for the case studies in [96]

and [86], detailed in the previous chapter, which benchmarks the results within this

chapter against these prior works.

7.4.5 Performance Evaluation

We evaluate the algorithm performance by applying the disaggregation algorithm

while simulating the plant using data from September 1-4, 2017. We use the RMS

error (RMSE) of the AC, OL, and NW demand to evaluate the performance of the

algorithm in the different cases. The RMSE for an arbitrary sequence of complex-

valued predictions pψt and the corresponding true values ψt over N ts time-steps is

defined as follows:

RMSE �
d°Nts

t�1|ψt � pψt|2
N ts

where |�| is the magnitude of the argument. While θt contains demand components for

portions of the feeder, we evaluate the disaggregation algorithm’s ability to estimate

the total AC, OL, and NW demand, i.e., we add the estimates of the feeder portions

together for each demand component and compare this to the total realized demand

of that component.

7.4.6 Results

Table 7.3 summarizes the RMSE of the AC, OL, and NW demand components in

each case. The RMSE values in the table are average values over the three phases,

and the “models” column indicates the set of models used within the specific case

study. The AC-P, AC-Q, and AC-S entries correspond to the active, reactive, and

apparent power of the AC demand, and similar quantities are included for the OL

and NW demand. In the table, we exclude entries for the reactive and apparent

power for Scenario 3 and its variants as the disaggregation algorithm does not include

reactive power in these cases. Figure 7.5 depicts time series of the actual AC, OL,

and NW demand magnitude for phase A along with the corresponding aggregate

model predictions for Scenario 1 and Scenario 2. Figure 7.6 depicts time series of the

actual AC, OL, and NW demand magnitude for phase A along with the estimated

demand components in scenario 4 usingMc and in Scenario 4-15, which also usesMc.

The discussions below highlight aspects of Table 7.3 to draw comparisons between

the different scenarios and to evaluate the impact different real-time measurement
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Table 7.3: RMSE (kW) of the Demand Components in Different Cases

Scenario Models Demand Component

AC-P AC-Q AC-S OL-P OL-Q OL-S NW-P NW-Q NW-S

1 Mnc 181.4 45.4 187.0 179.2 52.7 186.8 50.0 157.0 165.4

2 Mc 64.1 16.0 66.1 68.0 20.0 70.9 5.6 8.2 9.9

3 Mnc 129.6 - - 114.0 - - 23.0 - -

3-60 Mnc 77.5 - - 63.0 - - 16.8 - -

3-30 Mnc 69.6 - - 55.7 - - 13.8 - -

3-15 Mnc 61.1 - - 47.0 - - 10.9 - -

4 Mnc 103.5 25.9 106.7 97.0 33.1 102.5 8.7 21.4 23.1

4 Mc 64.1 16.0 66.1 64.8 19.6 67.7 5.7 8.2 10.0

4-60 Mc 46.9 11.7 48.3 48.7 15.6 51.1 5.6 7.7 9.5

4-30 Mc 45.7 11.4 47.1 47.5 14.9 49.8 5.2 7.1 8.8

4-15 Mc 41.2 10.3 42.4 43.1 13.4 45.2 5.0 6.4 8.1

5 Mc 61.7 15.4 63.6 62.2 20.2 65.4 6.1 13.6 15.1

availability.

To evaluate the prediction accuracy for model sets Mnc and Mc we compare the

RMSE of Scenarios 1 and 2. Scenario 2, which usesMc, achieves an average reduction

in RMSE of 73.1% across the demand components compared to Scenario 1, which uses

Mnc. Specifically, the RMSE of the active power components of the AC, OL, and NW

demand are reduced by 64.7%, 62.1%, and 88.8%, respectively. Figure 7.5 presents

time series depicting this improvement in prediction accuracy. These results indicate

that including real-time substation measurements of the complex current flowing into

the distribution feeder significantly improves the prediction accuracy of the aggregate

models used within the disaggregation algorithm.

To evaluate the impact of additional real-time smart meter measurements at in-

creasing frequency of availability, we compare the RMSE of Scenarios 3, 3-60, 3-30,

and 3-15. Comparing Scenario 3 and Scenario 3-60 shows that including smart meter

measurements results in an average reduction in RMSE of 37.3% across the three

active power demand components. The average RMSE reductions for Scenarios 3-30

and 3-15 versus Scenario 3 are 45.8% and 54.7%, respectively. These results indicate

that real-time smart meter measurements can significantly improve disaggregation

accuracy, and that increasing the frequency with which real-time smart meter mea-

surements are available can further improve disaggregation accuracy.

To evaluate 1) the impact of substation reactive power measurements in addition

to the active power measurements, and 2) the impact of substation complex current

measurements in addition with the real and reactive power measurements, we com-

pare Scenario 3, Scenario 4 using Mnc, and Scenario 4 using Mc. Scenario 4 using
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(c) NW Demand Time Series

Figure 7.5: Time series of the actual AC, OL, and NW demand magnitude, the magnitude of the
aggregate model predictions in Scenario 1, denoted with a “1” in the superscript, and the magnitude
of the aggregate model predictions in Scenario 2, denoted with a “2” in the superscript. The time
series correspond to phase A.
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Figure 7.6: Time series of the actual AC, OL, and NW demand magnitude for phase A, the
magnitude of the corresponding estimates produced in Scenario 4 using Mc, and the magnitude of
the corresponding estimates produced by Scenario 4-15. Estimates for Scenario 4 are denoted with
a “4” in the superscript after the demand component, and estimates for Scenario 4-15 are denoted
with a “4-15” in the superscript.
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Mnc results in average RMSE reductions compared to Scenario 3 of 20.1%, 14.9%,

62.2%, for the active demand of the AC, OL, and NW demand, respectively. These re-

sults indicate that substation reactive power measurements significantly improves the

disaggregation algorithm accuracy. Scenario 4 using Mc results in significant RMSE

reductions versus Scenario 4 usingMnc. However, this RMSE reduction is mainly due

to the improvement in aggregate model accuracy within the disaggregation algorithm

as the RMSEs for Scenario 4 using Mc are very similar to those of Scenario 2, but

are slightly lower. These results indicate 1) that including reactive power flow mea-

surements from the substation can significantly improve disaggregation accuracy and

2) that substation power flow measurements and substation current measurements

may convey similar information as performance gains from real-time power flow mea-

surements were small after complex current measurements were included into the

models.

To evaluate the impact of real-time smart meter measurements with increasing

frequency when utilizing active power, reactive power , and current measurements at

the substation, we compare Scenarios 4, 4-60, 4-30, and 4-15 (all usingMc). Scenario

4-60 achieves an average reduction in RMSE versus to Scenario 4 usingMc of 18.1%

across all demand components, and a reduction of 26.8%, 24.8%, and 1.8% for the

active power components of the AC, OL, and NW demand, respectively. The average

RMSE across all demand components is reduced by 21.9% and 28.8% when compar-

ing Scenario 4-30 and 4-15 to Scenario 4 using Mc. As in the previous discussion

of real-time smart meter measurements, disaggregation accuracy improves as smart

meter measurements are available more frequently, even though the algorithm is sig-

nificantly more accurate in Scenario 4 than in the previous discussion of smart meter

measurements. Figure 7.6 depicts the improved disaggregation accuracy of Scenario

4-60 versus Scenario 4. Figures 7.6a and 7.6b show improved accuracy in estimating

the AC and OL demand components in Scenario 4-15 versus Scenario 4 (using Mc)

as bias in the estimation error is reduced. Figure 7.6c also shows improved estima-

tion accuracy in estimating the NW demand, but the improvements are slight as the

average RMSE is on the order of 1-10 kW.

Finally, to evaluate the impact of real-time voltage magnitude and angle measure-

ments, we compare the RMSE for Scenario 4 and Scenario 5. The RMSE for the

active power of the AC and OL demand is reduced by 3.7% and 4.0%,respectively,

versus that of Scenario 4. The RMSE for the active power component of the NW

demand increases by 7.0%. These modest improvements may be due to the process

of identifying the parameters used in the output matrices, which may not accurately

150



reflect the relationship between the state and the measurements.

7.5 Chapter VII Conclusions

In this chapter, we developed an energy disaggregation algorithm to separate the

measured, real-time demand of a distribution feeder into N components, where one

component consisted of the network losses and capacitor bank power injections. The

algorithm was based on a modified version of DMD, an online learning algorithm,

that used sensor fusion to allow measurements from multiple sources on different

timescales to be used within the algorithm. Output matrices were developed to allow

fusion of four real-time measurement types: active and reactive power flows, differ-

ences in squared voltage magnitudes, differences in voltage angles, and smart meter

measurements. In addition, aggregate models were developed for the disaggregation

algorithm that utilize real-time complex current measurements from the substation

and real-time outdoor temperature measurements.

Case studies sought to disaggregate the real-time feeder demand into the AC

demand, the OL demand, and the NW demand. The simulated plant within the case

studies incorporated a three-phase, unbalanced distribution feeder model with wye-

connected loads, a voltage and temperature dependent AC model that incorporates

real-world active power demand data and outdoor temperature data, and voltage-

dependent ZIP models of the non-air conditioning loads that also incorporate real-

world active power demand data. All load models within the plant included an active

and reactive power component.

Results indicated that 1) incorporating real-time measurements from the distribu-

tion substation into the aggregate models of the disaggregation algorithm can signifi-

cantly improve the models’ prediction accuracy, 2) including reactive power measure-

ments at the substation can improve disaggregation accuracy, 3) including real-time

smart meter measurements at higher frequencies increasingly improves the energy

disaggreation algorithm’s accuracy, and 4) including measurements of the complex

voltage at points within the feeder and at the substation can further improve accu-

racy.

Future work should 1) incorporate delta-connected loads into the simulation frame-

work and disaggregation algorithm, 2) compare the disaggregation performance when

using the estimated/identified parameters versus the exact network parameters, 3) in-

vestigate whether capacitor banks connecting/disconnecting to the feeder can be de-

tected from the substation, 4) investigate methods to better approximate the losses in
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each portion of the feeder. An additional avenue of future work should disaggregate

the demand while controlling the ACs for demand response.
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CHAPTER VIII

Dissertation Conclusions

To conclude this dissertation, a summary of the dissertation is presented, the

main contributions of each chapter are summarized, and a various avenues of future

research are discussed.

8.1 Dissertation Summary

This dissertation presented work in three main areas: 1) the development of con-

trollers, state estimator, and models for demand response scenarios, 2) a comparison

of state estimation algorithms from control theory and online learning, and 3) the

disaggregation of the power demand of a distribution feeder into components.

Chapter II presented state estimation and control algorithms that addressed com-

munication delays in a demand response scenario that operates on timescales of sec-

onds to provide frequency regulation. This demand response scenario included 1)

frequent, noisy measurements of the aggregate demand of the demand-responsive

load population, 2) infrequent, noise-free measurements of the state of the individual

demand-responsive loads, and 3) delays that were independently applied to each type

of measurement as well as the inputs. It was found that incorporating delay statis-

tics into the controller, incorporating the realized measurement delays into the state

estimator, and allowing input selection logic at the demand-responsive loads can help

mitigate the effects of communication delays.

Chapter III simplified the controller from the previous chapter into a linear control

law. These controllers’ performance was evaluated in a demand response scenario

that included input delays, as in the previous chapter. In contrast with the previous

chapter, it was assumed that state measurements were available at each time-step.

It was found that using the simpler control law slightly reduced the accuracy of the
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frequency regulation provided in comparison with the more complex controller, but

the simpler controller also greatly reduced the computation time of the inputs.

Chapter IV then investigated the prediction accuracy of three existing models in

residential demand response that seek to model aggregate behavior of a population

of thermostatically controlled loads (TCLs) on timescales of seconds; modifications

were made to the models to make them applicable to more realistic demand response

scenario. New models based on Markov chains were developed that incorporate the

effects of a time-varying outdoor temperature by including both the outdoor tem-

perature and its trend in computing the model. A new transfer function model was

proposed based on data analysis that proved to be more accurate than the existing

transfer function model. It was found that the more detailed Markov model, which

computes discrete states from two temperatures within the individual TCL models

(versus one temperature for the simpler Markov model), was the most accurate of the

models. Including the outdoor temperature trend in computing the Markov models

significantly reduced the difference in estimation accuracy between the two Markov

models, and the simpler Markov model may be advantageous as it has reduced com-

putational complexity with similar modeling accuracy.

Chapter V compared state estimation techniques from two fields, control theory

and online learning. Two commonly used Kalman filtering methods were presented

along with two online learning methods, Dynamic Mirror Descent (DMD) and Dy-

namic Fixed Share (DFS). It was shown that user-defined functions and parameters in

DMD can be chosen such that DMD produces estimates identical to that of a Kalman

filter. Following this, it was shown that a multiple model Kalman filter, which incor-

porates model uncertainty into the Kalman filter framework, can be manipulated to

produce identical state estimates to that of DFS, which also addresses model uncer-

tainty. Then, heuristics that are commonly included into the multiple model Kalman

filter were incorporated into DFS. Finally, the estimation accuracy of DMD and a

Kalman filter were compared in a simple example, and several variations of multiple

model Kalman filters and DFS were compared in a demand response scenario.

Chapter VI presented the feeder-level energy disaggregation framework and in-

vestigated disaggregation accuracy using real-time measurements of the total active

power demand of a distribution feeder. Feeder-level energy disaggregation seeks to

separate/disaggregate the total demand of a distribution feeder into components,

where the components correspond to different types of aggregate demand, e.g., for

different types of loads. In this chapter, the demand was disaggregated into the resi-

dential air conditioning demand and the remaining demand on the feeder. A model
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of the distribution feeder was not included in the problem framework. DFS, which

incorporates DMD, was used to perform disaggregation using a variety of models for

the demand components, and two implementations of DFS were developed for the

case study scenarios. The results investigated the impact on disaggregation accuracy

of using different sets of models within DFS, of incorporating estimation error covari-

ances into DMD/DFS, and of varying various parameters within DFS. It was found

that DFS could disaggregate the air conditioning load on a feeder from the other loads

on the feeder with reasonable accuracy, that careful model selection is necessary as

including inaccurate models can greatly decrease the accuracy of DFS, and that in-

corporating accurate covariance information can greatly improve the performance of

DFS.

Chapter VII then extended the feeder-level energy disaggregation framework of

the previous chapter to include additional real-time measurements. A three-phase,

unbalanced distribution feeder model was included in the problem framework. In this

chapter, the total feeder demand was disaggregated into the aggregate air condition-

ing demand, the demand of the non-air conditioning loads, and the demand of the

distribution network equipment. Methods were presented to incorporate a variety of

real-time measurements on different timescales into a variation of DMD via sensor

fusion. These measurements included active and reactive power flow measurements,

voltage magnitude measurements at the substation and at points within the feeder,

voltage angle measurements at the substation and at points within the feeder, and ac-

tive and reactive smart meter measurements. Real-time measurements of the complex

current flowing into the distribution feeder from the substation were also included into

the aggregate demand models used within the variation of DMD. Case studies investi-

gated the disaggregation accuracy under different scenarios of real-time measurement

availability. It was found that including real-time reactive power flow measurements,

in addition to active power flow measurements, within the disaggregation algorithm

improved disaggregation accuracy. The availability of real-time smart meter measure-

ments further improved disaggregation accuracy, and this improvement increased as

real-time smart meter measurement were made available more frequently. It was also

found that including the complex current measurements into the aggregate models

improved their prediction accuracy.
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8.2 Summary of Contributions

This dissertation has made a variety of contributions to the domains of residen-

tial demand response, state estimation, and energy disaggregation. Chapter II con-

tributed to the field of residential demand response by adapting networked state

estimation and control approaches to address communication delays and communi-

cation limitations in a residential demand response scenario operating on time-scales

of seconds. Chapter III contributed to the field of residential demand response by

developing a simplified, linear control law that incorporates input delay statistics.

Chapter IV contributed to the field of residential demand response by developing

modifications of several existing aggregate models for more realistic scenarios and

by comparing these models and their modifications in a single, detailed simulation.

Chapter V contributed to the field of state estimation by establishing that DMD can

be made to produce identical updates to a Kalman filter and by exploring the connec-

tions of DFS to a multiple model Kalman filter. Chapter VI contributed to the field of

energy disaggregation by formulating the feeder-level energy disaggregation problem

and by showing that DFS can be effectively used perform this disaggregation task

when using active power measurements. Finally, Chapter VII contributed to the field

of energy disaggregation by extending the work of the previous chapter to include

additional real-time measurements into the feeder-level disaggregation framework.

The work presented in this dissertation focused on overcoming practical issues

in implementing cost effective residential demand response to provide fast-timescale

frequency regulation to the power grid. Addressing communication delays and mea-

surement limitations, e.g., from smart meters, provides a framework to perform state

estimation and control under realistic communication scenarios and provides algorith-

mic tools to reduce the required quality of the sensing/communication infrastructure.

Developing methods to perform feeder-level energy disaggregation addressed a gap

in residential demand response literature, namely the question of how to obtain a

real-time feedback signal of the aggregate demand-responsive load for control and

estimation algorithms. The feeder-level energy disaggregation work was again for-

mulated while considering realistic sensing capabilities, meaning that extensive up-

grades to the communication and sensing infrastructure are not needed to implement

the algorithms. By working within the constraints of realistic sensing and commu-

nication capabilities, the need to upgrade equipment or install costly, high-quality

communication systems and pervasive sensing is mitigated. Thus, the overall cost

of implementing a demand response program can be reduced, because key, practical
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problems in operating a residential demand response program have been addressed.

8.3 Avenues of Future Research

There are a number of additional tasks that can help make cost effective frequency

regulation via aggregations of residential loads a reality. Avenues of future research

in residential demand response and feeder-level energy disaggregation should include

a variety of technical, economic, social science, and policy tasks. Additional avenues

of future research in machine learning and state estimation are proposed that, while

more widely applicable, would benefit residential demand response and feeder-level

energy disaggregation.

The proposed technical tasks include tasks that address open questions within this

dissertation and tasks that more generally apply to the field of residential demand

response. The proposed tasks that address open questions within this dissertation

include investigating the impact of large-scale changes within the energy disaggrega-

tion problem, investigating how the parameters should be set given the accuracy of

the models, and investigating how the parameters should be set given the timescale

of changes to the system. These tasks are detailed below:

1. Investigating the impact of large-scale changes within the energy disaggregation

problem: The work on the feeder-level energy disaggregation within this dis-

sertation assumed that the system was reasonably well behaved in the sense

that there were no large-scale, abrupt changes to the system. These types of

changes may occur within normal operation and could include feeder reconfigu-

ration and sudden, dramatic changes in the weather, e.g., as a storm approaches.

The energy disaggregation work in this dissertation used online learning algo-

rithms, and these large-scale changes may be detectable if dramatic increases in

the achieved losses of the online learning algorithm are observed. It would be

beneficial to investigate the impact of these types of changes and to determine

whether they are detectable within the algorithm.

2. Investigating how the parameters should be set given the accuracy of the models:

The accuracy of the online learning algorithms, both the single model variation

and the multiple model variation, largely depends on the accuracy of the models

and the parameter settings used within the algorithms. The accuracy of the

models can be evaluated using historical data. However, the parameters within

the algorithm were tuned to optimize the performance of the algorithms on
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a set of tuning data without considering the underlying characteristics of the

accuracy of the models. For example, models were used in Dynamic Fixed

Share that were accurate for part of the day but inaccurate for the remainder

of the day. It may have been possible to tune the parameters within Dynamic

Fixed Share to take this behavior into account. Characterizing the accuracy

of the models and how this accuracy changes over the period of interest may

inform better parameter tuning. It would be beneficial to develop a formal

relationship between accuracy of the models over the period of interest and the

optimal parameter settings within the online learning algorithms.

3. Investigating how the parameters should be set given the timescale of changes

to the system: Similar to the previous point, the parameters within the online

learning algorithm were tuned without paying attention to the timescales of

changes in the underlying demand components and the changes in weather-

related characteristics driving those demand changes. It would be beneficial to

derive optimal settings for the parameters within the online learning algorithm

based on the timescales of the dynamics within (or driving) the components

of the measured signal. This can help inform reasonable parameter settings in

different scenarios based on the behavior of the underlying system.

The proposed technical tasks that more generally apply to the field of demand re-

sponse include developing of a standard simulation framework, hardware-based test-

ing of developed methods, investigating the performance of the collective control

tasks, investigating the impact of demand response participation levels, and investi-

gating a virtual power plant approach. These tasks are detailed below:

1. Developing a standard simulation framework: Developing a standard, realistic,

and detailed simulation framework to evaluate the existing and future meth-

ods (e.g., models, controllers, state estimators, and other inference algorithms)

within demand response literature would allow the direct comparison of meth-

ods. Presently, these methods are often developed in disparate scenarios that

each have their own assumptions, making it difficult to compare their effective-

ness against other techniques. Establishing a common framework, in a similar

vein to the IEEE test networks for power systems, would allow a fair comparison

of approaches to begin determining the most effective of the available methods in

residential demand response. In addition, if the simulation framework includes

reasonable assumptions about the sensing and communication infrastructure, it

may encourage the development of methods that are more implementable.
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2. Hardware-based testing of developed methods: Creating hardware-based evalu-

ation methods would illuminate practical issues in existing residential demand

response methods. Hardware-based testing could occur within a test bench or

in a real-world pilot program of demand response with a goal of providing fre-

quency regulation. The implementation of a variety of existing models in the

more detailed simulation framework of Chapter IV led to modifications to the

models to make them more suitable to the more realistic scenario, and it led

to additional adjustments to the models that made them more accurate in this

scenario. In a similar light, continuing to add more realism to the scenarios in

which residential demand response methods are tested may spur more devel-

opments and improvements as factors impacting their performance are better

understood, and as practical issues in their usage arise.

3. Investigating the performance of the collective control tasks: It would be ben-

eficial if the existing residential demand response control algorithms that ad-

dress feeder-level energy disaggregation, state estimation, control, and param-

eter identification of the demand-responsive devices were tested together to

provide insight as to how accurate these algorithms are together. Algorithms

for residential demand response are often developed while only looking at a

particular portion of the overall problem. While this simplifies the process of

developing the individual algorithms, an understanding of how these algorithms

operate together is also valuable. In particular, the stability of the intercon-

nected control tasks should be investigated to ensure that the approaches are

implementable together in practice. In addition, it may be possible to inte-

grate the previously independent control tasks to improve performance, e.g.,

by controlling the demand-responsive devices in a manner that benefits energy

disaggregation or state estimation.

4. Investigating the impact of demand response participation levels: In the feeder-

level energy disaggregation work, the goal was to disaggregate the air condition-

ing demand from the total demand of a distribution feeder. Additional work in

feeder-level energy disaggregation could focus on disaggregating demand for a

subset of the air conditioners on the feeder, where the subset of air conditioners

could be assumed to be participating in demand response and the remaining

air conditioners could be assumed to be operating normally. In addition, anal-

ysis of energy disaggregation accuracy versus the portion of air conditioners

connected to the feeder within this subset could be carried out. This would
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provide information about the portion of demand-responsive loads on a distri-

bution feeder that are necessary to effectively carry out the inference algorithms

in a real-world demand response program.

5. Investigating a virtual power plant approach: A virtual power plant approach

could look at a distribution feeder, including the loads and generation resources

connected to it, as a single entity within the power system (i.e., as a virtual

power plant). In this context, the net demand, or the demand minus the genera-

tion, of the feeder over the course of a day is scheduled, e.g., via markets, similar

to a traditional power plant. The control task in this setting is to coordinate

the controllable loads, generation resources, uncontrollable loads, and network

losses to follow the scheduled net demand. Measurements at the distribution

substation of the power flow into the feeder, i.e., the net feeder demand, could

be used to validate the realized versus scheduled net demand and to provide

a feedback signal for carrying out the necessary control tasks. In addition, it

would be beneficial to investigate the advantages and drawbacks of the virtual

power plant approach versus an approach that treats demand-responsive loads

separately.

Additional proposed tasks for future work include cost-benefit analyses to deter-

mine the net benefit of adding more sensing, communication, and automation to a

demand response program, an investigation of the social factors driving demand re-

sponse participation, and development of standards and policies for home automation

infrastructure and smart appliances. These tasks are detailed below:

1. Cost-benefit analyses to determine the net benefit of adding more sensing, com-

munication, and automation to a demand response program: Cost-benefit

analyses comparing the implementation costs of technical capabilities within

the communication, sensing, and actuation infrastructure versus the potential

performance benefits and revenue increases would be instrumental in helping

to determine reasonable assumptions in the development of residential demand

response methods. For example, understanding the cost-benefit trade-off asso-

ciated with enabling finer temperature sensing in a residential air conditioner

informs the temperature detail with which models can be developed, tested,

and implemented. In addition, understanding the cost-benefit trade-off of im-

plementing various communication technologies informs the frequency and re-

liability with which measurements and inputs can be communicated. Another
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analysis could investigate the performance of feeder-level energy disaggrega-

tion and the resulting performance in providing frequency regulation versus the

costs of obtaining the various measurements that can be used within the algo-

rithm. This economic analysis of infrastructure capabilities could then be used

to quantify the costs and revenues of a demand response program and to inform

reasonable assumptions in developing residential demand response methods.

2. Investigation of the social factors driving demand response participation: An

investigation of the social factors encouraging or discouraging participation in

demand response would enable demand response providers to better tailor their

recruitment and educational efforts to increase participation in residential de-

mand response programs. For example, the collection of user data, e.g., in

mobile phone application usage, is more common today than it has ever been.

However, there are often privacy concerns about the installation of smart me-

ters. In addition, household occupants may be hesitant to allow a demand

response provider to control their air conditioner. Demand response providers

could take actions in their handling of the pertinent data to alleviate privacy

concerns, and they could take a non-disruptive control approach that seeks to

operate within the normal range of the device, which is defined by the user.

Educating potential participants about efforts to protect their privacy and en-

sure non-disruptive control may boost interest in demand response programs.

Methods to alleviate barriers to participation in demand response programs can

improve demand response participation rates in a given area.

3. Development of standards and policies for home automation infrastructure and

smart appliances: Smart meters have been widely deployed, and they allow

two-way communication between a demand response provider and the smart

meters of end users. However, additional in-home communication infrastruc-

ture is needed to enable a demand response provider to communicate with a

demand-responsive appliance via the smart meter, and the appliance must be

upgraded to enable responsiveness to demand response control signals. Stan-

dards should be developed ensuring that appliances that are good candidates

for demand response have the necessary capabilities, e.g., communication and

control capabilities. In addition, policies encouraging the adoption of smart

devices and home automation systems that have built-in demand response ca-

pabilities would provide more widespread ability to execute demand response

actions.
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Additional avenues of future research in machine learning and state estimation

include the adaptation of performance bounds for online learning algorithms to their

Kalman filter counterparts, the development of performance bounds for the modified

Dynamic Mirror Descent algorithm, an investigation of convex loss functions for dif-

ferent error characteristics, and an investigation of identifiability and observability in

energy disaggregation. These tasks are detailed below:

1. The adaptation of performance bounds for online learning algorithms to their

Kalman filter counterparts: Performance bounds have been developed for Dy-

namic Mirror Descent, and this dissertation showed that Dynamic Mirror De-

scent can be constructed to produce identical estimates to a Kalman filter.

However, the assumptions of Dynamic Mirror Descent are more general than

those of a Kalman filter. Adapting the performance bounds of Dynamic Mirror

Descent to the assumptions of a Kalman filter may lead to new bounds on the

accuracy of a Kalman filter. Similar performance bounds could be established

for a multiple model Kalman filter by adapting the performance bounds for

Dynamic Fixed Share.

2. The development of performance bounds for the modified Dynamic Mirror De-

scent algorithm: A modified version of Dynamic Mirror Descent was developed

in this dissertation that uses measurements to modify the output of a model,

rather than adjusting the state within the model. While this makes the algo-

rithm applicable to more model types, the performance bounds for Dynamic

Mirror Descent do not apply to it. Additional performance bounds could be

developed for this algorithm.

3. An investigation of convex loss functions for different error characteristics:

Dynamic Mirror Descent relies on a convex optimization problem to compute

adjusted state estimates based on the realized loss (and the newly arrived mea-

surements). In this dissertation, loss functions were constructed to include the

covariance of the state and output estimation errors into the convex program.

Additional work could develop other convex loss functions that capture other

characteristics of the prediction errors and reflect those characteristics into the

optimization problem. This could help inform the selection of the loss function

and Bregman divergence functions to provide more accurate estimates based on

the underlying characteristics of the system.

4. Investigation of identifiability and observability in energy disaggregation: Iden-

162



tifiablility and observability are properties that describe whether parameters or

states within a model can be inferred given observations/measurements pro-

duced by the system under consideration. These properties are rarely referred

to in energy disaggregation literature, but they may be informative in character-

izing the performance, i.e., disaggregation accuracy, for a given energy disaggre-

gation scenario. It would be beneficial to use identifiability/observability, and

how well these criteria are satisfied, to quantify the effects of 1) disaggregating

additional demand components, 2) additional measurements, and 3) additional

models used within the online learning algorithms. For example, one could

quantify the change in disaggregation accuracy if additional demand/generation

components are disaggregated from the measured signals, one could optimize

the additional measurements used within an energy disaggregation scenario to

maximally improve identifiability/observability, or one could use identifiabil-

ity/observability to inform the selection of models used within a multiple model

estimation algorithm.

163



BIBLIOGRAPHY

[1] K. H. LaCommare and J. H. Eto, “Cost of power interruptions to electricity
consumers in the United States (US),” Energy, vol. 31, no. 12, pp. 1845–1855,
2006.

[2] A. Von Meier, Electric power systems: a conceptual introduction. John Wiley
& Sons, 2006.

[3] J. P. S. Catalão, Electric power systems: advanced forecasting techniques and
optimal generation scheduling. CRC Press, 2012.

[4] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine,
vol. 8, no. 1, 2010.

[5] R. Walawalkar, S. Fernands, N. Thakur, and K. R. Chevva, “Evolution and
current status of demand response (DR) in electricity markets: Insights from
PJM and NYISO,” Energy, vol. 35, no. 4, pp. 1553–1560, 2010.

[6] U.S. Department of Energy, “Benefits of demand response in electricity markets
and recommendations for achieving them,” U.S. Department of Energy, Tech.
Rep., Feb. 2006.

[7] K. Bhattacharya, M. Bollen, and J. E. Daalder, Operation of restructured power
systems. Springer Science & Business Media, 2012.

[8] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control.
McGraw-Hill New York, 1994, vol. 7.

[9] D. S. Kirschen and G. Strbac, Fundamentals of power system economics. John
Wiley & Sons, 2004.

[10] “Forward capacity market,” https://www.iso-ne.com/markets-operations/
markets/forward-capacity-market, ISO New England Inc., accessed: 2017-09-
05.

[11] “Day-ahead and real-time energy markets,” https://www.iso-ne.com/
markets-operations/markets/da-rt-energy-markets, ISO New England Inc.,
accessed: 2017-09-05.

164



[12] Z. Chen, L. Wu, and Y. Fu, “Real-time price-based demand response man-
agement for residential appliances via stochastic optimization and robust op-
timization,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1822–1831,
2012.

[13] A. J. Roscoe and G. Ault, “Supporting high penetrations of renewable genera-
tion via implementation of real-time electricity pricing and demand response,”
IET Renewable Power Generation, vol. 4, no. 4, pp. 369–382, 2010.

[14] M. H. Albadi and E. F. El-Saadany, “A summary of demand response in elec-
tricity markets,” Electric power systems research, vol. 78, no. 11, pp. 1989–1996,
2008.

[15] H. P. Barker, “The centralized control of public lighting and off-peak loads
by superimposed ripples,” Journal of the Institution of Electrical Engineers,
vol. 83, no. 504, pp. 823–836, 1938.

[16] A. J. Conejo, J. M. Morales, and L. Baringo, “Real-time demand response
model,” IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 236–242, 2010.

[17] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and control of
electric loads to manage real-time energy imbalance,” IEEE Transactions on
Power Systems, vol. 28, no. 1, pp. 430–440, 2013.

[18] S. Bashash and H. K. Fathy, “Modeling and control of aggregate air conditioning
loads for robust renewable power management,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 4, pp. 1318–1327, 2013.

[19] K. M. Tsui and S.-C. Chan, “Demand response optimization for smart home
scheduling under real-time pricing,” IEEE Transactions on Smart Grid, vol. 3,
no. 4, pp. 1812–1821, 2012.

[20] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on utility
maximization in power networks,” in IEEE Power and Energy Society General
Meeting. IEEE, 2011.

[21] J. L. Mathieu, T. Haring, J. O. Ledyard, and G. Andersson, “Residential de-
mand response program design: Engineering and economic perspectives,” in
Conference on the European Energy Market (EEM). IEEE, 2013.

[22] W. J. Hausman and J. L. Neufeld, “Time-of-day pricing in the US electric
power industry at the turn of the century,” The RAND Journal of Economics,
pp. 116–126, 1984.

[23] C. W. Gellings, “The concept of demand-side management for electric utilities,”
Proceedings of the IEEE, vol. 73, no. 10, pp. 1468–1470, 1985.

[24] A. M. Bruning, “Cold load pickup,” IEEE Transactions on Power Apparatus
and Systems, no. 4, pp. 1384–1386, 1979.

165



[25] C.-Y. Chong and A. S. Debs, “Statistical synthesis of power system functional
load models,” in IEEE Conference on Decision and Control (CDC), 1979, pp.
264–269.
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