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ABSTRACT

Searches for permanent electric dipole moments (EDMs) are a powerful way to investi-

gate Beyond-the-Standard-Model CP-violation. This work describes the development of a

new technique to measure the EDM of 129Xe with a 3He comagnetometer and reports the

results of our first measurement. In the HeXeEDM experiment, 3He and 129Xe are polarized

using spin-exchange optical pumping, transferred to a measurement cell, and transported

into a magnetically shielded room. The free precession of both species is detected with

SQUID magnetometers in the presence of an applied 2.7–3.3 kV/cm electric field and a

2.6 µT magnetic field. Linear comagnetometer drifts are compensated by combinations of

four segments with alternating high-voltage. The results of a one week run and extensive

study of systematic effects is dA(129Xe) = 0.26 ± 2.33(stat.) ± 0.73(syst.) × 10−27 e cm.

This result corresponds to an upper limit of |dA(129Xe)| < 4.81 × 10−27 e cm (95% c.l.),

which is a factor of 1.4 more sensitive than the previous limit.

xv



CHAPTER I

Introduction

The fundamental symmetries of charge conjugation (C), parity (P), and time-reversal (T)

have puzzled physicists for decades. From the seminal measurements of parity-violation in

the late 1950s followed by the discovery of CP-violation in the mid-1960s, our understanding

of symmetries and their role in the fundamental interactions of particles has evolved. The

culmination of that knowledge and all known forces and elementary particles into a self-

consistent theory is known as the Standard Model of particle physics.

Despite the great success of the Standard Model, many physical observations are yet

unexplained. One of these is the predominance of matter over antimatter in the universe.

To understand the baryon asymmetry, we investigate the symmetries between particles and

antiparticles, C and CP symmetry. The Standard Model accommodates small amounts of

CP-violation, but it is not enough. In many extensions of the Standard Model, sources of

CP-violation arise naturally.

Electric dipole moments (EDMs) of particles, atoms, and molecules are manifestations of

CP-violation and therefore may provide insight into new physics. EDMs in different systems

are sensitive to different sources of beyond-the-Standard-Model CP-violation; therefore,

measurements in many systems are necessary to provide a complete picture. Neutron EDM

measurements have been ongoing for decades. Atomic and molecular EDM measurements

have been used to set stringent limits on the electron EDM. Diamagnetic atoms are uniquely
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sensitive to possible new CP-violating interactions between nucleons. Currently, the EDM

limit of 199Hg, a diamagnetic atom, is the most sensitive to date of any system. However,

theoretical uncertainty in atomic and nuclear structure calculations have made it difficult to

take advantage of the experiment’s precision to set limits on new physics.

129Xe, another diamagnetic atom, had been investigated in the past with the most recent

published limit in 2001. In 2013, the opportunity arose for a new 129Xe investigation, taking

advantage of a magnetically-shielded environment developed for a neutron EDM experiment

in Garching, Germany. The experiment, HeXeEDM, uses a 3He–129Xe comagnetometer and

a new measurement technique, detection with SQUID magnetometers. This work provides

an overview of the experiment’s progress toward our first EDM measurement, which was a

low-statistics campaign in 2017 with one week of data collection.

In Chapter II, we describe the motivation for EDM searches, the relevance of a new

search for the 129Xe EDM, and other 129Xe efforts. In Chapters III and IV we describe

the HeXeEDM experiment with a particular focus on the development of the experimental

apparatus with focus on polarization, optical pumping cells, and diagnostic tests starting

at the Munich magnetically shielded room in 2014 to the first EDM measurement at the

Berlin magnetically shielded room (BMSR-2) in the summer of 2017. A study of systematic

frequency shifts observed in 3He-129Xe comagnetometers is presented in Chapter V. The

main focus of this work is the analysis and result for the 2017 EDM measurement. The

analysis method is described in Chapters VI and Chapter VII describes an extensive study

of systematic effects using data from auxiliary measurements performed in 2017 and 2018.

The final result and ultimate sensitivity of the HeXeEDM experiment are discussed in

Chapter VIII as well as a discussion tying this work to the context of the broader landscape

of EDM measurements.
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CHAPTER II

Motivation

2.1 Background

2.1.1 Matter-Antimatter Asymmetry

The baryonic matter in the universe is dominated by matter rather than antimatter. The

asymmetry between baryons and antibaryons is characterized by the baryon-to-photon

ratio determined through big-bang nucleosynthesis (BBN) observations of light element

(3He, 4He, D, 6Li, and 7Li) abundances and independently from the Cosmic Microwave

Background (CMB). The baryon-to-photon ratio is [1]

η =
nB − nB̄

nγ
= 6.1+0.3

−0.2 × 10−10, (2.1)

where nB is the number density of baryons, nB̄ is the number density of antibaryons, and

nγ is the number density of photons. It is notably not zero, which one might expect in a

homogenous baryon-symmetric universe. In fact, in the case that the universe expansion

is faster than annihilation reactions in local thermal equilibrium, there would be leftover

baryons and antibaryons, known as “freeze out”. The freeze-out abundance is [2, 3]

nB
nγ

=
nB̄
nγ
≈ 10−20 (2.2)
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which is too small to explain current observations.

Because of inflation, we do not expect baryon asymmetry to be an initial condition of

the universe because baryon-symmetric interactions would dilute any asymmetry during

inflation. Therefore, it is necessary for the baryon asymmetry to be generated dynamically,

known as baryogenesis.

2.1.2 Sakharov Conditions

Sakharov’s conditions for baryogenesis [4] are the ingredients needed to create baryon

asymmetry dynamically:

1. B violation

2. Loss of thermal equilibrium

3. C and CP violation

B violation It is clear that to generate baryon asymmetry, baryon number (B) must not be

conserved.

Loss of thermal equilibrium In thermal equilibrium, any baryon-asymmetric process

has an inverse process with equal rate resulting in no net asymmetry. Therefore, interactions

must take place outside of thermal equilibrium.

C and CP violation Charge conjugation (C) is the symmetry between particles and

antiparticles. When C is conserved, the rate for any process that generates excess baryons

has a C-conjugate process that generates antibaryons, and no net asymmetry is observed.

Similarly, if a process violates C but is CP (charge-parity) symmetric, no net asymmetry

is observed. For example, if a process generates excess left-handed baryons, even if the

C-conjugate process does not occur, under CP-symmetry the conjugate process producing

right-handed antibaryons restores B. Therefore, both C and CP violation are necessary.
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2.1.3 CP-violation in the Standard Model

CP-violation in the Standard Model (SM) has been observed in kaon, B meson, and

strange B meson decays. It is parametrized as the complex phase in the Cabbibo-Kobayashi-

Maskawa (CKM) quark-mixing matrix. There is also an unobserved source of CP violation

in the standard model, the θ-term in the QCD Lagrangian [5]

Lθ̄ = − αS
16π2

θ̄Tr
(
GµνG̃µν

)
, (2.3)

where Gµν is the gluon field strength tensor and G̃µν = εµναβG
αβ/2 is its dual. θ̄ is

experimentally constrained by measurements of electric dipole moments to be as low as

10−10, which is known as the “strong CP” problem. The strong CP problem has motivated

solutions such as the spontaneously broken Peccei-Quinn symmetry, which generates axions

[6].

However, it is generally agreed upon [3] that SM CP violation is too small for baryogen-

esis, motivating the search for beyond-the-standard model (BSM) sources of CP violation.

2.2 Electric Dipole Moments (EDMs)

An electric dipole moment is the electric analogue to the magnetic dipole moment. For

a spin-1/2 particle with magnetic dipole moment µ, the P-even, T-even interaction with the

electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ is [7]

LMDM = −µ1

2
Ψ̄σµνFµνΨ. (2.4)

For the transformation B → E, we make the transformation Fµν → −F̃µν where F̃µν =

εµναβF
αβ/2 is its dual. Using the identity εµναβσαβ/2 = −iγ5σµν ,

LEDM = −d i
2

Ψ̄σµνγ5FµνΨ, (2.5)
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which is P-odd due to the appearance of the chirality matrix γ5 and, because the time-reversal

operator T is antiunitary, the additional i in LEDM implies it is T-odd. This is clear in the

nonrelativistic limit where S is the particle spin [7]

Hnr
EDM = −dS

S
· E. (2.6)

Under parity S→ S and E→ −E. Under time-reversal, S→ −S and E→ E. Assuming

CPT conservation, the T-violation of EDMs means non-zero EDMs are also CP-violating.

The history of EDM searches can be traced back nearly 70 years ago to 1950 when

Purcell and Ramsey [8] suggested the possibility of a parity-violating electric dipole moment.

Shortly thereafter, the first measurement of the neutron EDM was completed [9]. The null

result was not published [10] until after the discovery of parity violation in the weak sector

[11, 12, 13, 14]. Later, after CP-violation in K0 decay [15], there was renewed interest in

EDMs as probes of CP-violation.

2.2.1 Atomic and Molecular EDMs

EDMs may also be investigated in atoms and molecules with nondegenerate ground

states. For a system with total angular momentum F, the EDM d relative to the center of

mass (r = 0) is [5]

d =

∫
rρQd

3r = d
F

F
, (2.7)

where ρQ is the electric-charge distribution. In atoms, there is a shielding effect described

by Schiff’s theorem [16] such that in a neutral system composed of nonrelativistic point-like

particles in equilibrium under the effect of electrostatic forces, the net electric field at each

charged particle is zero. The effect is a result of the internal rearrangement of charged

particles to generate an internal electric field Eint that cancels the externally applied field

Eext; therefore, an EDM cannot be observed.

However, the shielding is incomplete in the case of a finite nucleus and from relativistic
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effects in (paramagnetic) systems with unpaired electrons. Paramagnetic atoms additionally

have an enhancement of the electron EDM de approximately proportional to Z3 [17, 18].

BSM CP-violating interactions between the electrons and the nucleus may also generate an

atomic EDM.

Diamagnetic atoms are sensitive to BSM CP-violating nucleon-nucleon interactions

that couple through the Schiff moment S, which is the r2-weighted electric-dipole charge

distribution [5]

S =
1

10

∫
r2rρQd

3r − 1

6Z

∫
r2d3r

∫
rρQd

3r, (2.8)

where the second term is subtracted because it is the contribution from the nuclear EDM,

which cannot be observed in a neutral atom.

2.2.2 Global EDM Analysis

BSM sources of CP-violation manifest differently in different EDM systems. To interpret

the results of EDM measurements across the experimental landscape to constrain BSM CP-

violation in a model-independent way, a formalism based on an electroweak-scale effective

field theory (EFT) has been developed and is applied in Refs. [19, 20, 21, 5]. In the EFT

approach, experimental observables constrain the EFT operator coefficients while BSM

theory provides predictions for the same coefficients. We briefly summarize the approach

below.

The EFT consists of a set of non-renormalizable dimension-6 operators based on SM

fields that are proportional to v2/Λ2 where v = 246 GeV is Higgs vacuum expectation value

and Λ is the mass scale of new physics. The CP-violating Lagrangian incorporating SM and

BSM contributions is

LCPV = LCKM + Lθ̄ + LBSM, (2.9)

where LBSM contains new physics at dimension six or higher. Here, we only consider the

7



𝐶𝐶4𝑓𝑓
semileptonic 3

𝑑𝑑𝑛𝑛

Fundamental 
physics

Electroweak scale

Low energy

𝑑𝑑𝑒𝑒

𝐶𝐶𝑆𝑆 𝐶𝐶𝑇𝑇

𝜃̅𝜃, 𝑑𝑑𝑢𝑢,𝑑𝑑, 𝑑̃𝑑𝑢𝑢,𝑑𝑑, 𝐶𝐶3𝑔𝑔

𝑑̅𝑑𝑛𝑛

SM CPV: CKM, 𝜃̅𝜃
BSM CPV: SUSY, Multi-Higgs, LR symmetry

𝐶𝐶4𝑓𝑓
4−quark 2 , 𝐶𝐶4𝑓𝑓

induced 4−quark

𝑔̅𝑔𝜋𝜋
(0), 𝑔̅𝑔𝜋𝜋

(1)

EDMs of 
paramagnetic 

atoms

EDMs of 
diamagnetic 

atoms

Schiff moment

Figure 2.1: Illustration of how SM and BSM CP-violation may manifest in experimentally
observable EDMs. The electroweak scale parameters are derived from the EFT theory
described in the text.

EFT contribution at dimension six

Leff
BSM =

1

Λ2

∑
k

α
(6)
k O

(6)
k , (2.10)

where α(6)
k are the Wilson coefficients for each operator O(6)

k . The operators include sources

of CP-violation such as fermion EDMs and chromo-EDMs, four-fermion semi-leptonic

and non-leptonic interactions, a three-gluon interaction, and a quark-Higgs interaction [19].

From these coefficients, a set of independent low-energy parameters are derived to describe

CP-violation at the hadronic scale. These include CP-violating nucleon-nucleon interactions

ḡ
(I)
π for isospin I = 0, 1, 2; scalar and tensor electron-nucleon interactions C(I)

S and C(I)
T ,

respectively; and the electron EDM de and short-range contribution to the neutron EDM d̄n.
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The EDM of a particular system can be written as [20]

di =
∑
j

αijCj, (2.11)

where Cj are the low-energy parameters and the coefficients αij (sometimes written as

∂di
∂Cj

) are provided by atomic and nuclear theory calculations. Fig. 2.2.2 shows to which

low-energy sources of CP-violation the observable EDMs in paramagnetic and diamagnetic

systems are primarily sensitive. The inverse of Eq. 2.11 in terms of measured EDMs

[22, 23, 24, 25] from Ref. [5] (see Table IV within for αij and references) is



d̄sr
n

ḡ
(0)
π

ḡ
(1)
π

C
(0)
T


=



5.2 4.7× 104 9.5× 103 21

−2.8× 1014 −3.1× 1018 −6.3× 1017 −1.4× 1015

−7.0× 1013 −7.7× 1017 −1.6× 1017 −4.8× 1014

1.9× 1016 1.4× 1019 3.6× 1019 8.4× 1016





dn

dXe

dHg

dRa


. (2.12)

Note that while dXe and dHg are similarly sensitive to low-energy CP-violating parameters,

there is considerable uncertainty in ∂dHg

∂dg
(I)
π

, in particular an unknown sign of ∂dHg

∂dg
(1)
π

.

2.3 129Xe EDM searches

The first 129Xe EDM measurement by Vold et al. monitored 129Xe Larmor precession

frequencies as a function of applied electric fields [26]. Development of a 129Xe–3He comag-

netometer for an 129Xe EDM search by Oteiza and Chupp [27, 28] led to a measurement of

dA(129Xe) by Rosenberry and Chupp [23] using a two-species Zeeman maser for continuous

running over months and reported dA(129Xe) = 0.7± 3.3× 10−27 e cm, the most sensitive

129Xe measurement to date. Recent 129Xe efforts include an active maser technique that

is currently being explored [29] and the use of liquid xenon has been investigated in the

past [30]. An approach similar to the one described in this work using free precession and

SQUID magnetometry is being pursued [31]. Additionally, 129Xe is being considered as a

9



comagnetometer in a neutron EDM experiment [32] and, in order to measure the neutron

EDM with sensitivity 1 × 10−27 e cm, the 129Xe EDM sensitivity must be reduced below

approximately 3× 10−28 e cm. The HeXeEDM experiment, described in this work, has an

ultimate goal to achieve a sensitivity of 3× 10−29 e cm.
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CHAPTER III

The HeXeEDM Experiment: Methods

The layout of the HeXeEDM experiment is shown in Fig. 4.6. The basic principle of

the experiment was as follows: 129Xe and 3He were polarized using spin-exchange optical

pumping and then transferred to a measurement cell with electrodes. The measurement cell

was placed in a magnetically shielded room near SQUID detectors in a holding magnetic

field created by a set of Helmholtz coils. Spin precession of the 129Xe and 3He was achieved

using either a nonadiabatic magnetic field rotation or using an oscillating magnetic field pulse

resonant with both species. The SQUIDs detected the magnetization from the precessing

129Xe and 3He. Finally, we applied a high voltage to one electrode of the cell and held the

other at ground potential. The 3He signal was used as a comagnetometer to correct the 129Xe

signal for magnetic field fluctuations. dA(129Xe) was determined from the comagnetometer

corrected 129Xe frequency.

In this chapter, we will review separately the main components of the experiment:

comagnetometry (3.1), spin precession (3.2), spin-exchange optical pumping (3.3), use of

magnetically shielded rooms (3.4), SQUID magnetometry (3.5), and measurement cells

(3.6).
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3.1 Precision requirements and comagnetometry

As mentioned previously, an electric dipole moment is analogous to the magnetic dipole

moment

µ = µ
F

F
= γF (3.1)

for an atom where γ is the gyromagnetic ratio and F = I + J is the total angular momentum.

For both 129Xe and 3He the electronic total angular momentum J = 0 and the nuclear spin

I = 1/2. We will continue to use F for generality. Similarly for the electric dipole moment

d = d
F

F
. (3.2)

Under the influence of applied magnetic and electric fields, the Hamiltonian is

H = −µ ·B− d · E. (3.3)

For B = +B0ẑ and E = +E0ẑ,

U(+B0,+E0) = −γ~mFB0 − d(mF/F )E0. (3.4)

If the gyromagnetic ratio is positive, a positive mF will be energetically preferred. Similarly,

for a negative gyromagnetic ratio (like those of 129Xe and 3He), a negative mF is preferred.

For B = −B0ẑ, the opposite is true. The energy splitting between two mF states is typically

measured through the Larmor precession frequency, which gains a term proportional to d.

For ∆mF = 1

ω =
|U(∆mF = 1)|

~
=

∣∣∣∣−γ∆mFB0 −
d∆mFE0

~F

∣∣∣∣ =

∣∣∣∣−γB0 −
dE0

~F

∣∣∣∣. (3.5)
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+E0ẑ

−E0ẑ

Figure 3.1: Energy levels if d = +|d| for a 2-level system with a negative gyromagnetic
ratio, like 3He and 129Xe. (Not to scale.)

Then, we can combine a pair of frequency measurements with opposite E0 directions

|ω(+E0)− ω(−E0)| =
∣∣∣∣2dE0

~F

∣∣∣∣. (3.6)

In practice, there is some magnetic field drift between the two measurements, so, instead,

for a pair of measurements we have for a spin-1/2 system

|ω(+E0)− ω(−E0)| =
∣∣∣∣4dE0

~

∣∣∣∣+ γ δB. (3.7)

where δB is the shift in the magnetic field between the two measurements. Even with very

stable laboratory magnetic fields, the second term can easily dominate. To address this in the

HeXeEDM experiment, we use a 3He comagnetometer. Use of a 129Xe-3He comagnetometer

was developed previously to take advantage of the ability to polarize multiple noble gas

species at once using spin-exchange optical pumping [33] and was utilized in the Rosenberry

experiment [23]. Other precision searches have also used a 129Xe–3He comagnetometer

[34, 35]. Due to its small Z, the atomic EDM for 3He is suppressed relative to the 129Xe

EDM. Therefore, the 3He precession frequency was used to track changes in the magnetic

field. Details for how the comagnetometer correction was applied in the analysis are

discussed in Ch. VI. For a single frequency measurement with B = +B0ẑ and E = +E0ẑ,
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we have for 129Xe,

ωXe = γXeB0 −
2dA(129Xe)E0

~
, (3.8)

and for 3He

ωHe = γHeB0 −
2dA(3He)E0

~
. (3.9)

Since these are simultaneous measurements, the magnetic field dependence can be canceled

to get

ωXe −
γXe

γHe
ωHe = −2E0

~

[
dA(129Xe)− γXe

γHe
dA(3He)

]
≈ −2dA(129Xe)E0

~
. (3.10)

For a phase-noise limited frequency measurement, the precision obtainable for d is given by

[36, 37, 5]

σd &
~

2E0

√
3

π

vn
V0

τ−3/2, (3.11)

where vn/V0 is the signal-to-noise ratio (SNR), and τ is the observation time. Increasing the

electric field and SNR, along with long observation times, is how we can reach the desired

precision. How each of these parameters is optimized in the HeXeEDM experiment will

be discussed in the following sections. Briefly, the electric field is limited to 3–5 kV/cm

by high-voltage breakdown through the 0.5–1.5 bar 129Xe-3He-N2 gas mixture [38] and the

observation time is limited by a drift seen in the comagnetometer-corrected 129Xe frequency.

The source of these frequency shifts are detailed in Chapter V. The SNR increases in the

development of the experiment are detailed in Chapter IV.

3.2 Spin precession

We will switch to a semiclassical picture of nuclear magnetic resonance [39, 40] to

describe how spin precession is induced in the experiment. The holding magnetic field

B = B0ẑ exerts a torque on µ

τ =
dF

dt
= µ×B. (3.12)
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Using µ = γF, the equation of motion is

dµ

dt
= µ× γB. (3.13)

It is helpful to define a rotating frame. For a general vector

f = fxx̂
′ + fyŷ

′ + fzẑ
′, (3.14)

in a rotating (primed) system with angular velocity Ωrot,

dx̂

dt
= Ωrot × x̂. (3.15)

The time derivative of f in the lab frame is

df

dt
=

dfx
dt

x̂′ +
dx̂′

dt
+

dfy
dt

ŷ′ +
dŷ′

dt
+

dfz
dt

ẑ′ +
dẑ′

dt

=

(
df

dt

)′
+ Ωrot × f .

(3.16)

The equation of motion in the frame where µ is rotating is then

(
dµ

dt

)′
= µ× γBeff, (3.17)

where

Beff = B +
Ωrot

γ
. (3.18)

Notice that for B = B0ẑ we can solve for the equation of motion: if Ωrot = −γB0ẑ, Beff is

zero. As expected, this is the Larmor precession frequency. Since
(

dµ
dt

)′
= 0, µ is fixed in

the rotating frame. Next, we use the rotating frame to describe the two different ways spin

precession was induced in the experiment.
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3.2.1 Pulsed NMR

For pulsed NMR, we applied an oscillating magnetic field resonant with the 129Xe and

3He precession frequencies. For simplicity, we discuss the single frequency case. Consider

the effect of an oscillating magnetic field B1 = 2B1 cosωt on a spin in an applied magnetic

field B0 = B0ẑ. We can decompose this into two counter-rotating magnetic fields

BR = B1(x̂ cosωt+ ŷ sinωt)

BL = B1(x̂ cosωt− ŷ sinωt),

(3.19)

where ω can be positive or negative. Only one of these rotates in the same sense as the

precession, and we neglect the other for the moment. In the frame rotating with frequency

ω, B1 is static:

(
dµ

dt

)′
= µ× [ẑ′(ω − ω0) + x̂′γB1] = µ× γBeff. (3.20)

Here, we’ve substituted ω0 = −γB0. Note that in the rotating frame

x̂′ = x̂ cosωt+ ŷ sinωt,

ŷ′ = −x̂ sinωt+ ŷ cosωt,

ẑ′ = ẑ.

(3.21)

At resonance Beff = B1x̂
′ is a static field in the rotating frame and µ will precess in the y′-z′

plane, which allows one to use a B1 pulse to rotate µ to an angle in the y′-z′ plane using

θ = γB1tw, (3.22)

where tw is the pulse length. If off resonance, Beff will be shifted toward ẑ or away from ẑ

depending on whether the frequency is above or below the resonance frequency. We can
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write the magnitude of Beff in terms of frequency as

− γBeff = − γ

|γ|

√
(ω − ω0)2 + ω2

1, (3.23)

where ω1 = −γB1. The angle between Beff and x̂′ is α = arctan
(
ω0+ω
ω1

)
and sinα = ω0+ω

−γBeff
.

In this case the spin precesses in a tilted y′-z′ plane. The angle between µ and B0 if at t = 0

they are aligned is

cos θ = sin2 α + cos2 α cos(γBefft). (3.24)

The counter-rotating field, BL, causes a shift of the resonance frequency, known as the

Bloch-Seigert shift. Assuming |ω0 + ω| � |ω1|, to lowest order the shift is [39]

ω = ω0 +
ω2

1

4ω0

. (3.25)

3.2.2 Field switch

For the field switch, instead of applying an oscillating field the B0 direction is changed

suddenly. µ will move adiabatically with any field rotation unless tswitch � 2π
ω0

, where tswitch

is the time taken to rotate the magnetic field direction 90◦. The resulting pulse error is

δθ ≈ ω0tswitch. There is an additional error from imperfect coil alignment. An advantage of

this technique is pulse consistency; the pulse errors are repeatable along with any associated

systematic effects.

3.2.3 Relaxation mechanisms

So far we have describing single system with magnetic moment µ. For an ensemble of

spins, the magnetization is

M =
m

V
=

1

V

∑
〈µ〉. (3.26)
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Once spin precession is induced, the magnetization decays via two modes. Decay of the

magnetization component transverse to the applied magnetic field B0 is described by T2,

and decay of the magnetization component parallel to B0, the longitudinal magnetization, is

described by T1. The phenomenological description of relaxation is provided by the Bloch

equations,
dMx(t)

dt
= γ(M×B)x −

Mx(t)

T2

dMy(t)

dt
= γ(M×B)y −

My(t)

T2

dMy(t)

dt
= γ(M×B)z −

Mz(t)−M0

T1

.

(3.27)

Notice that in the limit of T2 →∞ and T1 →∞ this reduces to the equation of motion for

Larmor precession.

T1 is the decay of the magnetization component parallel to the applied magnetic field and

is the characteristic time of thermal equilibration. It is sometimes known as the spin-lattice

relaxation time or wall relaxation time because it is caused by energy loss to the environment.

This relaxation is accelerated by depolarizing interactions with the walls of the container.

Additionally, magnetic field gradients can cause disorientation of the spin after collisions

resulting in further decay of the longitudinal magnetization. The gradient dependence of T1

for a spin-1/2 system is given by [41, 42, 43]

1

T1

= D
|∇Bx|2 + |∇By|2

B2
0(1 + ω2

0τ
2
c )

, (3.28)

where D is the diffusion constant and τc is the time between collisions. The factor (1 +

ω2
0τ

2
c )−1 is approximately one for the pressures and magnetic fields used in this experiment.

The diffusion constant for species i in a mixture of gases j is given by

1

Di

=
∑
j

pj
Dij

, (3.29)

where pj is the partial pressure of species j and D0
ij are given in Table 3.1.
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Species (j) D0
He-j [bar cm2/s] Ref. D0

Xe-j [bar cm2/s] Ref.

He 1.9 [44] 0.55 [45, 46, 47, 48, 49]

Xe 0.61 [45] 0.06 [45]

N2 0.77 [45] 0.13 / 0.21 [47, 50] / [51]

Table 3.1: Self and mutual diffusion constants for He, Xe and N2.

T2 is known as the spin-spin relaxation time. T2 is caused by dipole-dipole interactions

between the spins and by dephasing of the spins in different parts of the cell due to magnetic

field inhomogeneity. In the motional narrowing regime [52] the former is negligible [53, 54]

and typically the observed transverse decay time is denoted as T ∗2 .

For a spherical cell, T ∗2 is given by [55]

1

T ∗2
=

1

2T1

+
8γ2R4

175D
|∇Bz|2, (3.30)

and for a cylindrical cell with length L and radius R, where the cell axis is aligned with ẑ

[55]
1

T ∗2
=

1

2T1

+
γ2L4

120D

(
∂Bz

∂z

)2

+
7γ2R4

96D

(
∂Bz

∂x

)2

. (3.31)

3.3 Spin-Exchange Optical Pumping

3.3.1 Introduction

For a two-level system, polarization is defined as

P =
|N↑ −N↓|
N↑ +N↓

=
|N↑ −N↓|

N
, (3.32)
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where N↑ is the number of atoms in the mF = +1/2 “spin-up” state and N↓ is the number

of atoms in the mF = −1/2 “spin-down” state. For a general F ,

P =
1

F

∑
mF

mFN(mF )∑
mF

N(mF )
. (3.33)

The thermal or Boltzmann polarization depends on the temperature and the magnitude of

the applied magnetic field. The magnetization is

M0 =
Nγ~
Z

m=+F∑
mF=−F

mF exp

(
γ~mFB0

kBT

)
, (3.34)

where Z is the Boltzmann distribution

Z =

mF=+F∑
mF=−F

exp

(
γ~mFB0

kBT

)
. (3.35)

The polarization can also be written as P = M0/Mmax, where Mmax = Nγ~/2 for F = 1/2.

For B0 = 1 T, T = 300 K, for 3He

P =
M0

Mmax
≈ γ~B0

2kBT
= 2.6× 10−6. (3.36)

Similarly, for 129Xe, it is 9.4× 10−7. This can be increased with very strong magnetic fields

combined with very low temperatures, but a more efficient technique is hyperpolarization

using optical pumping.

Ref. [56] provides the detailed theory of optical pumping and Ref. [57] provides the

theory of optical pumping of 129Xe and 3He. The general theory is quite complex, but we

can make some simplifications for our implementation of spin-exchange optical pumping in

the HeXeEDM experiment. Below we provide a brief overview and a model for determining

equilibrium polarizations.

Spin-exchange optical pumping (SEOP) is a method to hyperpolarize noble gases. In
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Figure 3.2: 87Rb energy levels under an applied magnetic field, with I = 3/2. For 85Rb,
I = 5/2, so the hyperfine levels will be F = 2, 3 instead [59]. Not to scale.

SEOP, an alkali metal vapor is polarized using circularly polarized light. The alkali valence

electron polarization is transferred to the noble gas via spin-exchange collisions. SEOP

allows for polarization of large quantities of gas as opposed to metastability-exchange

optical pumping (MEOP) which can polarize smaller pressures of 3He. MEOP is not suited

for heavier noble gases like 129Xe [58]. SEOP also allows for simultaneous polarization of

multiple noble gas species.

3.3.2 Optical pumping of Rubidium

We use Rb as the alkali metal because of its high vapor pressure at temperatures easily

achievable in the lab, typically 80− 150◦ C. Additionally, the 794.7 nm laser required for

the D1 transition is now readily available in the form of commercial diode lasers, and the

D2 transition is sufficiently far away at 780.0 nm.

Alkali metals are characterized by their ns1 valence electron. For Rb, the unpaired

electron is in the 5s orbital. Natural rubidium has stable isotopes 85Rb (72.2%) with nuclear

spin I = 5/2 and 87Rb (27.8%) with I = 3/2. In the presence of an applied magnetic field
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B0, the Hamiltonian is

Ha = AaIa · Ja + gJµBJzB0 −
µa
Ia
IazB0, (3.37)

where we have introduced the index a is for the alkali, Rb, and Ja = Sa + La is the electron

total angular momentum. The first term describes the hyperfine interaction; the second term

describes the electron spin coupling to the magnetic field; the last term describes the Rb

nuclear spin coupling to the magnetic field. SEOP uses magnetic fields on the order of mT,

so the second term is of order 10−7 eV and the last term 10−10 eV. The hyperfine splittings

are of order 10−5 eV, so the first term dominates. Therefore, the eigenstates ofHa are also

the eigenstates of total atomic angular momentum operator Fa.

Our first simplification comes from the fact that typical SEOP applications are typically

at high pressure. For us, the total optical pumping cell pressure is one or more bars. In this

regime, the alkali hyperfine structure is unresolved due to pressure broadening caused by

collisions with noble gas atoms and nitrogen [60]. The timescale between collisions is short

enough that there is no torque applied to the nuclear spin from the hyperfine interaction [61].

Because the optical pumping and collisional processes are fast with respect to the hyperfine

frequency, we can treat the nuclear spin as a conserved quantity. In this case, the allowed

states are Fa = Ia + 1/2 and Fa = Ia − 1/2.

N2 is included as a buffer gas because Rb-N2 collisions provide a channel to rapidly

transfer Rb excitation energy to rotational and vibrational modes of N2 and therefore

suppress light-trapping from radiative decay of the excited state [62, 63, 64].

The spin-exchange interaction for polarizing noble gases is discussed in the next sec-

tion. The other relevant spin-dependent collisional Hamiltonians include a spin-rotation

interaction [57]

Hsr = γN · Sa, (3.38)

where N is the relative angular momentum of a colliding pair. Here, γ = γ(R) is the
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Figure 3.3: Rb optical pumping scheme, neglecting Rb nuclear spin. The black wavy line
shows the absorption of circularly polarized light by the mJ = −1/2 ground state to excite
to the mJ = +1/2 P1/2 state. The excited state decays through radiative decay (red wavy
line) to both ground states. Collisions with N2 (blue straight line) quench both excited states
with equal probabilities.

coupling constant and depends on the interatomic separation R between the colliding pair.

γ → 0 rapidly as R increases. The spin-rotation interaction results in relaxation or “spin

destruction” for binary Rb-Rb and Rb-3He collisions. The next most important interaction

is an alkali-alkali spin-exchange interaction [57]

Hase = ηSi · Sj, (3.39)

where again the coupling constant η = η(R). There is an additional alkali-alkali relaxation

channel that couples to the relative angular momentum of the colliding pair [57]. Since

this is relevant only at high alkali densities, we will neglect this term. For HeXeEDM, we

polarize at 70-150◦C and additional relaxation due to high Rb density becomes relevant at

temperatures greater than 200◦C.

With the information above we can define a simplified Rb optical pumping scheme

illustrated in Fig. 3.3. In this model, alkali valence electrons in the S1/2 state with mJ =

−1/2 absorb incident 794.7 nm circularly polarized σ+ light and are excited to the P1/2
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state with mJ = +1/2. The excited state decays to either of the S1/2 ground state sublevels

via radiative decay and N2 collisions. Collisions with noble gas and N2 mix the excited

states so that, if radiative decay is effectively suppressed, the excited states decay with equal

probability to either ground state. The branching ratio for radiative decay is [64, 65]

Bγ ≈
3

3 + pN2

, (3.40)

where pN2 is the partial pressure of N2 at 300 K. For the rest of this discussion, we will

assume that the N2 density is sufficient that radiative quenching is negligible. Depolarization,

or spin destruction, of the optically pumped Rb is dominated by collisions with other Rb

atoms, N2, and the noble gases. As the σ+ light penetrates the cell, the Rb vapor toward

the front of the optical pumping cell reaches an equilibrium polarization, and since the

mJ = +1/2 ground state cannot absorb σ+, the vapor becomes effectively transparent and

the light can penetrate further into the cell. Eventually all the vapor in the cell reaches

an equilibrium polarization PRb. A model incorporating the effects described above for

estimating PRb has been detailed in [64]. Briefly, the photon flux Φ(ν, z) is a function of

frequency and axial position through the cell z. It’s z dependence is

dΦ(ν, z)

dz
= −λ−1

σ+(ν, z)Φ(ν, z), (3.41)

where λσ+ is the absorption length of incident, right-circularly polarized light. The scattering

rate of circularly polarized photons per alkali atom in an unpolarized vapor is

γopt(z) =

∫
Φ(ν, z)σs(ν)dν, (3.42)

where σs is the cross-section for scattering of unpolarized light

σs =
(Γ/2)2

(ν − ν0)2 + (Γ/2)2
σ0, (3.43)
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where Γ is the Rb D1 absorption linewidth and σ0 is the peak scattering cross section. Both

are pressure-dependent. The absorption linewidth can be written as

λ−1
σ+(ν, z) = λ−1

0 (ν, z)
ΓSD

γopt(z) + ΓSD
, (3.44)

where ΓSD is the rate of spin destruction given by

ΓSD = kSD
Rb-Rb[Rb] + kSD

Rb-N2
[N2] + kSD

Rb-ng[ng], (3.45)

where ng refers to the noble gas and the spin-destruction rate constants can be found in

Table 3.2. Rubidium density as a function of temperature can be estimated using [66]

[Rb] =
109.318−4040/T

kBT
. (3.46)

The above equations can be used to determine PRb(z)

PRb(z) =
γopt(z)

γopt(z) + ΓSD
, (3.47)

from which the average polarization in the cell P̄Rb can be determined. This model assumes

low Rb densities so that diffusion effects can be neglected.

3.3.3 Noble gas polarization through spin-exchange collisions

Polarization of the noble gases 3He and 129Xe is achieved via spin-exchange interactions

with polarized Rb. The free Hamiltonian for the noble gases is

Hng = −µng
Ing

IngzB0. (3.48)
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Species (j) kSD
Rb−j [cm3/s] Ref. kSE

Rb−j [cm3/s] Ref.

Rb 8× 10−13 [67, 68]
3He 2× 10−18∗ [68, 69] 6.74× 10−20 [69]

129Xe 9.07× 10−15 [70] 2.10× 10−16 [71]

N2 1× 10−17∗ [68, 69]

Table 3.2: Spin destruction and spin exchange constants for Rb-3He, Rb-129Xe and Rb-N2.
The starred values are temperature dependent and the numbers listed are for 200◦C. More
detail on alkali-alkali, alkali-3He, and alkali-N2 measurements is given in Appendix D. of
Ref. [69] including a fit to the temperature dependence of the spin destruction constants
using all published measurements. There are considerable (factors of 2) uncertainties for
these values. kSD

Rb−Xe and kSD
Rb−Xe are listed for 129Xe-Rb binary collisions. For estimations

of polarization in OPCs, kSD
Rb−Xe and kSE

Rb−Xe were arbitrarily increased by a factor of 1.5 to
account for spin-rotation of Xe in van der Waals molecules. A more precise estimation of
the total 129Xe spin-exchange and destruction rates is discussed in Ref. [72].

Spin-exchange occurs through a Fermi contact interaction

H = αIng · Sa, (3.49)

where Ing is the noble gas nuclear spin and Sa is the alkali electron spin. α = α(R) and

rapidly approaches zero as the interatomic separation increases.

For 3He, electron spin polarization is exchanged through binary Rb-3He collisions. For

Xe, spin polarization is exchanged via short-lived van der Waals molecules formed with Rb,

129Xe and N2. The interaction includes both Eqs. 3.38 and 3.49, where N is the rotational

angular momentum of the molecule and also contributes to spin relaxation.

We can model noble gas polarization with the following rate equation [73]

dPng

dt
= kSE

Rb-ng[Rb](PRb − Png)− ΓngPng, (3.50)

where kSE
Rb-ng is the spin-exchange rate constant, and Γng = 1/T1 is the room-temperature
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relaxation rate. The steady-state solution is

Png = PRb
kSE

Rb-ng[Rb]

kSE
Rb-ng[Rb] + Γng

. (3.51)

It has been shown experimentally [74, 75] that there is a phenomenological factor X

dependent on the surface-to-volume ratio of the optical pumping cell that limits the maximum

achievable polarization

Png = PRb
kSE

Rb-ng[Rb]

kSE
Rb-ng[Rb](1 +X) + Γng

. (3.52)

There are additional experimental factors that limit the maximum achievable polarization

[76, 77].

In the HeXeEDM experiment, we used a 1-2 bar gas mixture of 18%Xe (90± 2% 129Xe),

73% 3He, and 9% N2 in an optical pumping cell (OPC) containing Rb.

Figure 3.4: Plot of PXe and PHe vs. temperature calculated for a typical refillable SEOP cell
using the model in the text and rate coefficients from Table 3.2.
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3.4 Magnetically Shielded Rooms

A magnetically shielded room (MSR) is a space enclosed by sheets of a high magnetic

permeability material. µ-metal is a nickel-iron soft ferromagnetic alloy with relative per-

meability µr = µ/µ0 ∼ 80, 000− 100, 000. MSRs provide shielding from external static

and slowly varying magnetic fields. They typically also provide shielding from external

electromagnetic noise.

HeXeEDM requires a magnetically shielded environment for the following reasons:

(1) SQUID magnetometers (discussed in the next section) require a magnetically shielded

environment; (2) large magnetic field gradients reduce T ∗2 , which limits our observation

time; (3) the magnetic field must be temporally stable across our smallest analysis time unit,

typically 5–20 seconds, in order to make the comagnetometer correction for magnetic field

drift (see Chap. VI).

From the first experimental campaign in December 2013 until June 2017, we used the

TUM (Technical University of Munich) MSR at the FRM-II (Munich Research Reactor) in

Garching, Germany. From June 2017 to present we use the Berlin Magnetically Shielded

Room (BMSR-2) at Physikalisch Technische Bundesanstalt (PTB) Berlin.

3.4.1 TUM MSR

The TUM MSR is a portable magnetically shielded room achieving a residual magnetic

field of less than 1 nT and residual magnetic field gradient of less than 300 pT/m. The room

is roughly 2×2×2 m3 and is enclosed by an outer shield of two 1 mm thick layers of µ-metal

and an additional 8 mm thick aluminum layer for rf shielding. The passive shielding factor

is roughly 300 for frequencies less than 0.01 Hz [78]. The TUM MSR was created for a

neutron EDM experiment and also has an inner shield [79] that we did not use.
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Figure 3.5: Structure of the BMSR-2 and entrance. Figure reprinted with permission from
Ref. [80].
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Figure 3.6: Shielding factor of BMSR-2 compared to the TUM MSR.

3.4.2 BMSR-2

The BMSR-2 is a 24 ton 8-layer magnetically shielded room comprised of seven layers

of µ-metal of varying thicknesses and a 10 mm thick aluminum rf-shielding layer enclosing

a space of 2.9×2.9×2.8 m3. BMSR-2 features a passive shielding factor of approximately

75000 for frequencies less than 0.01 Hz and 108 above 6 Hz. Similar to the TUM MSR,

the residual magnetic field is less than 1 nT in the working area of one cubic meter in the

center of the room, and the residual magnetic field gradient is less than 0.5 nT/m. There

are additional compensation coils outside the room to provide active shielding of external

magnetic fields [80, 81].

3.5 SQUID magnetometry

The typical magnitude of the static magnetic field B0 is 1–3 µT, corresponding to 129Xe

and 3He frequencies of 12–35 Hz and 32–97 Hz, respectively. For low frequencies, the most

sensitive magnetometers are superconducting quantum interference devices (SQUIDs) and

spin-exchange-relaxation-free (SERF) magnetometers. However, SERFs require suppression

30



of spin-exchange relaxation by zeroing of the magnetic field [82]. SQUIDs are optimized

for a relative magnetic field measurement (like a precessing signal) in a large constant

magnetic field. SQUIDs also have large bandwidth so we can simultaneously measure both

129Xe and 3He precession. A trade-off is that they are susceptible to rf and other frequency

noise, and therefore need to be operated in a low-noise environment. The dynamic range is

limited by the SQUID electronics and environmental noise but is large at low frequencies

[83, 84]. SQUIDs operate below the critical temperature Tc of the superconductor. We

used conventional Nb-AlxOy-Nb trilayer SQUIDs which require low-noise liquid helium

cryostats kept at 4 K.

SQUIDs operate as magnetic-flux-to-voltage transducers. We used low Tc dc SQUIDs,

which typically have a sensitivity of approximately 10−6 Φ0, where Φ0 = h/(2e) is the

magnetic flux quantum [84]. The magnetic field sensitivity is δB = δΦ/AL, where AL is the

area of the SQUID loop. All of the dc SQUIDs used were PTB-fabricated W9L chips with a

sensitive area of 4.4 mm2 and intrinsic white noise of 1.3 fT/
√

Hz [85, 83]. The operating

white noise limit depended on the environmental thermal noise. For us, Johnson noise in the

insulating materials of the dewar limits the SQUID noise level. While there is potential for

improvement by using different insulating material [86], there is another limitation from

the MSR thermal noise, which is 2 fT/
√

Hz for the BMSR-2 [81]. The dewar construction

limits the distance between the closest SQUID and the cell. The signal-to-noise depends on

this distance since the signal strength decreases as 1/r3.

3.5.1 Cube-I

The Cube-I system consists of an array of six SQUIDs in a 30 cm×30 cm×30 cm cube

as described in Ref. [87] but in a smaller dewar. The cold-warm-distance (CWD) is the

distance between the closest SQUID along the dewar axis, labeled Z1, and the bottom of the

dewar. For the Cube-1 distance, this was 6.0±0.2 cm [88].
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Figure 3.7: The Cube-I SQUID system.

3.5.2 MRX-I

The MRX-I system is similar to the Cube-I system in that it also contains an array of

six SQUIDs, but the top SQUID, Z2, is 12 cm away from Z1. The design allows for the

Z-SQUIDs to be used as a gradiometer to cancel vibrations and any long-range magnetic

disturbances seen in both SQUIDs. A Z-gradiometer was not useful in the Cube-I system

because Z2 was close enough to pick up enough precession to reduce the signal strength

significantly when combined with Z1. The CWD for the MRX-I system is 1.2±0.2 cm.

For measurements in 2018, we used a similar system, MRX-III, which had only Z1 and

Z2 SQUIDs and a cold warm-distance of 0.8±0.2 cm.

3.6 Cell production

There were three kinds of cells used in the experiment: sealed glass bulbs containing

a mixture of Rb, N2 and 3He and/or 129Xe; refillable optical pumping cells (OPCs) also

containing Rb, N2 and 3He and/or 129Xe; valved EDM measurement cells with silicon

electrodes. A few double-chambered sealed cells were made with one chamber for optical

pumping and another chamber with electrodes for measuring (see Fig. 3.9). Refillable OPCs
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Figure 3.8: The MRX-I SQUID system.

were able to be refilled using a gas-filling station. The OPCs were installed within a SEOP

polarizer and were used to fill valved EDM measurement cells.

The sealed cells were used primarily in the early stages of the experiment and for testing

purposes thereafter. In the next chapter, we detail the issues faced when using the sealed cells

for measurements. Primarily, rubidium vapor in the cell reduces the breakdown high-voltage

and eddy currents in the Rb caused by changing magnetic fields during transport result in

unwanted magnetic fields and gradients in the measurement volume.

Sealed cells and OPCs for experimental campaigns 1-5 were made at the University of

Michigan. The valved cells with smaller electrodes used for the measurement campaigns

in the summers of 2017 and 2018 (named HeXe2017 and HeXe2018, respectively) were

made at Jülich, Germany, by Patrick Pistel. At the University of Michigan, Roy Wentz did

the glass work at the Department of Chemistry Glass Shop. Skyler Degenkolb prepared

the sealed glass bulbs and all Michigan cells with electrodes and detailed the procedure in

Ref. [89]. We also produced OPCs at Michigan. The setup and procedure are similar and

outlined below.
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3.6.1 Refillable OPCs

The standard protocol for cleaning is as follows:

1. The cell is cleaned with a warm solution of Alconox detergent in distilled water.

2. Then, it is rinsed three times with methanol, followed by three rinses with deionized

water.

3. Pirahna solution, 97% H2SO4 and 30% H2O2, is mixed in a 7:3 ratio, poured into the

cell and allowed to sit for a minimum of one hour.

4. The piranha solution is drained, followed by three rinses with deionized water.

5. To remove additional traces of acid, the cell is rinsed three times with high purity

methanol.

6. Finally, the cell is rinsed three times with deionized water.

7. The cell is baked in an oven at 80◦ to 100◦ C for 12–24 hours to evaporate any

remaining water.

After cleaning, the OPC is attached to the cell filling station. A rubidium ampoule is

opened and added to the sidearm, and the open port is sealed using an oxygen-propane torch.

The OPC is then pumped out while the main volume is heated using heating tape at 100◦ to

200◦ C for 12–48 hours to reach a base pressure of 10−7–10−8 Torr. After cooling the OPC,

the rubidium is “chased” from the sidearm using the torch into the cell where it recondenses

on the unheated surface. The sidearm containing the rubidium ampoule is then pulled off

and sealed using the torch. Then, the desired gas mixture is added to the cell. Typically,

xenon is added first and condensed using a liquid nitrogen bath outside the cell while 3He

and then N2 is added.

3.6.2 Valved EDM cells

Early cells with electrodes produced at Michigan used a modified hydroxide-catalysis

bonding method to attach silicon wafers to the cell [89]. For HeXe2017 and HeXe2018, we

used cells produced at Jülich which used diffusion bonding [90] to attach the silicon wafers.
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Figure 3.9: Different kinds of cells used in the experiment: (a) sealed cells, (b) a double-
chambered cell, (c) refillable optical pumping cell (OPC), and (d) valved EDM measurement
cell. Figure reprinted with permission from Ref. [38].

Figure 3.10: A cylindrical OPC used during measurements at PTB. Here, it is attached to
the gas system at Michigan prior to chasing rubidium into the cell from the ampoule in the
sidearm.
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CHAPTER IV

The HeXeEDM Experiment: Apparatus

Development of the HeXeEDM experiment began in 2013. The first experimental

campaign that brought together the collaboration for measurements at an MSR was in 2013

with a goal of measuring spin precession of 129Xe and 3He with SQUIDs. Since then there

has been about one experimental campaign per year, with the time between campaigns spent

on development of cells, polarization optimization, noise, and analysis. Campaigns 1–5

during 2013–2017 took place at the TUM MSR after which we moved to the BMSR-2

for EDM measurement campaigns HeXe2017 and HeXe2018. In this chapter, we briefly

review the development work done in Campaigns 1–4. Campaign 5 was dedicated to a

systematic effect investigation detailed in Chapter V. HeXe2017 was our first complete EDM

measurement and was undertaken at PTB. The data and analysis of HeXe2017 discussed in

Chapters VI and VII are the primary motivation and focus of this dissertation.

4.1 Experimental Campaign 1 (December 2013)

The collaboration’s first attempt at measuring spin precession signals using the Cube-I

SQUID system (see Sect. 3.5) took place in December 2013. The six SQUID channels

were connected to two FLL electronic boxes, and the voltage output was acquired with a

24-bit USB DAQ (Data Translation DT9826-16 [91]). A 1.2 µT B0 field was generated

using a 3-axis set of ≈1.5 m wood-frame Helmholtz coils with current applied from an
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ultra-low noise current source from I-Test Systems (BE2100) and later a Magnicon [92]

current source. A field switch as discussed in Section 3.2.2 was deployed to initiate spin

precession. Initial studies were done using a sealed cell (“Maya,” see Table 3.3) that was

transported from Earl Babcock’s polarizer to the TUM MSR using a 1.5 mT transport coil.

Sealed SEOP cells from Michigan (X1, X2, and X3 in Table 3.3) containing Rb, N2, 129Xe

and 3He were also tested. Additionally, a valved 6 cm bulb from PTB was used after being

filled with a polarized mixture of 129Xe, 3He, and N2. Early measurements relied on existing

SEOP systems from other projects and did observe some small precession signals from 3He

and 129Xe that motivated continued effort toward an EDM measurement of 129Xe [93].

4.2 Experimental Campaign 2 (May–June 2014)

During the second experimental campaign, the HeXeEDM apparatus began to come

together more concretely. We installed a SEOP polarizer outside the TUM-MSR and began

construction of a cell-filling station. For the polarizer, we used a 100 W water-cooled laser

diode array [94]. The emission line was narrowed using a reflecting volume Bragg grating

to stimulate 794.8 nm diode emission preferentially [95]. After the grating, a quarter-wave

plate was used to circularly polarize the light, and two shaping lenses were used to create an

approximately 6 cm diameter beam that shone into the windowed calcium silicate oven. An

online NMR system developed at PTB [96] was borrowed and used to study the polarization

of sealed cells immediately before being transferred into the room. A LabView program

was developed for pulsed NMR [97]. AC pulses were generated using a standard function

generator (Agilent 33220A). We began developing computer control for the SEOP laser,

HV power supplies, and magnetic fields utilizing an existing database developed by Mike

Marino for the TUM nEDM experiment. At the time, we were only able to use the internal

clock of the USB DAQ for the SQUID channel data. A LabView interface was also used to

read the data stream in real time. AC pulses were used to induce spin precession in the Maya

3He cell and double-chambered cell F3. We observed in the Maya cell that T ∗2 increased
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after each applied pulse. The increasing T ∗2 may have been caused by the large longitudinal

magnetization of the polarized 3He causing a magnetic field gradient (see Fig. 4.1) within

the cell. In the double-chambered cells, we observed frequency beating resulting from the

different magnetic fields of the two chambers (see Fig. 4.2).

Next, we focused on OPC and valved EDM cell development. At Michigan, we worked

on the development of a circulating gas system with pressure-actuated valves used to create

pressure differentials in segments of the system to encourage gas flow between segments. An

early form of this system can be seen in Fig. 4.3. We also worked on a portable pulsed-NMR

system for easy installation and permanent use at the polarizer outside the TUM MSR.

4.3 Experimental Campaign 3 (May–June 2015)

In the summer of 2015, we installed a four-coil system at the polarizer following the

design in Ref. [96] to provide a uniform magnetic field over a larger volume and allow

for a larger oven for polarizing OPCs. The stray field from the four-coil system provided

enough of a spin-transport field for the cells into the MSR that a transport coil was no

longer required. We also installed a new pulsed NMR system developed at Michigan with

a LabView interface for permanent use at TUM. The pulsed NMR system was used to

study the polarization buildup of 3He and 129Xe in various sealed cells and characterize the

completed SEOP polarizer and then determine our best cells for testing inside the MSR. A

rail system was constructed using long plastic rods that extended from a station under the

SQUID dewar to the polarizer outside the MSR and a 3D-printed cart and holder for the

cells. The pulsed NMR system was used to determine polarization losses during transport.

Before the addition of a rail system, cells were passed from a person outside the room to

a person inside who would remain in the MSR for the duration of the measurement. The

person-in-room method was inconvenient because humans tend to introduce magnetic and

vibrational noise.

We obtained our first spin precession measurements using a valved EDM cell (E2) during
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Figure 4.1: Maya effect observed in June 2014. High-pass filtered Z1 data for the first
100 seconds after each nominal π/4 or π/2 pulse. T ∗2 increased with each pulse as the
longitudinal magnetization was destroyed.
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Figure 4.2: Frequency beating of 3He observed in double-chambered cell F3 in June 2014.

Figure 4.3: Circulating gas system at Michigan. Pressure-actuated valves were controlled
by a LabView program to activate in a sequence that created gas flow through pressure
differentials.
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Figure 4.4: Pictures of valved EDM cell filling and transport from June 2015.

this campaign. A measurement with high voltage was attempted with 9.4 kV applied across

the electrodes, but a breakdown occurred during the measurement. Data was acquired using

a 24-bit DAQ (DTacq ACQ437ELF) with the timebase derived from an external SRS 10

MHz Rb frequency standard.

4.4 Experimental Campaign 4 (May–June 2016)

During the Campaign 4, we switched to using the MRX-I SQUID system for a smaller

SQUID-cell distance and lower dewar noise. We also replaced the previous wooden coil

forms of the 3-axis coil system with a 2-axis coil system with anodized aluminum frames.

The new coils had more rigid mounting to reduce vibrations at low frequency. The design

and distances were optimized using COMSOL and featured more accurate mounting and
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positioning. The goal for this campaign was diagnostic testing and acquisition of spin

precession data using the refillable OPCs and valved EDM cells.

HV was applied to one electrode, with the other held at ground potential, to generate

the electric field. A grounded silicon wafer was placed between the cell and the SQUIDs to

protect them from HV sparks. We set up leakage current monitoring along the return path

from the grounded EDM cell electrode to the HV power supply. In test measurements with

HV with reasonable 129Xe and 3He amplitudes and T ∗2 times we observed large comagne-

tometer drifts (shown in Fig. 4.5) which became the topic of study for the next experimental

campaign discussed in Chapter V.

4.5 HeXe2017 (June–July 2017)

HeXe2017 was the first EDM measurement campaign. The noble gases were polarized

in a separate setup similar to that described in Ref. [96]. The gas mixture of 18% Xe

(90 ± 2% 129Xe), 73% 3He, and 9% N2 was polarized in a refillable OPC. Typically we

achieved 9–12% polarization for 129Xe and 0.1–0.2% polarization for 3He depending on

the total pressure in the OPC. The polarized gas was transferred from the valved OPC to a

previously evacuated valved EDM measurement cell and then transported to the magnetically

shielded room using a battery-powered 400 µT shielded solenoid. Before filling, the EDM

measurement cell (PP1 or PP2) was degaussed using a magnetic tape eraser. Each time

the OPC was filled, the gas was used for two EDM runs with different pressures and

polarizations. The first run had higher pressure (≈ 1 bar) and lower polarization, and the

second run had lower pressure (≈ 0.5 bar) and higher polarization. The gas in the OPC was

continuously polarized between runs.

Magnetic fields were applied using a 3-axis set of Helmholtz coils in the center of the

room with the static magnetic field, B0 = B0ŷ, of 2.6 µT applied along the y-axis with a

1.6 m diameter set of coils. An AC π/2 pulse was used to initiate spin precession using

the Agilent programmable standard function generator from TUM and was applied along
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Figure 4.5: Drift in the comagnetometer-corrected 129Xe frequency from data taken during
Campaign 4. Above: Corrected 129Xe frequency vs. time. Below: A modified Allan devia-
tion plot showing drift dominating over white phase noise after 150 seconds of integration
time.
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the x-axis with a 1.5 m diameter set of Helmholtz coils. After the cell was placed in the

measurement position as shown in Fig. 4.6, the door was closed, and the magnetic field was

allowed to stabilize for five minutes before the pulse was applied. As the 129Xe and 3He

precessed, 6 kV high voltage was applied to one electrode of the measurement cell with the

other electrode at ground potential, producing a 2.7 kV/cm field for cell PP2 or 3.3 kV/cm

for cell PP1. The voltage was chosen to be safely below the voltage observed to cause a

breakdown across the cell at the lowest operating pressure.

Precession frequencies for each species were determined using the data from the Z1-

SQUID, which was located a distance of 50–52 cm from the center of the EDM measurement

cell. The SQUID-cell distance was limited by the 3 cm dewar housing and by the grounded

safety electrode, a 2 mm thick silicon wafer placed above the cell as shown in Fig. 4.6 to

protect the SQUIDs from high voltage discharges. The DAQ used was a commercial system

by Lay Audiotechnik [98] and the data acquisition sample rate, nominally 915.525 Hz, was

derived from an Oscilloquartz BVA8607 external clock stable up to 10−11 Hz over time

scales relevant for the experiment.

Each run, lasting about 15,000 seconds, used a single gas filling. The T ∗2 depended on

the cell used and the gas pressure. For 129Xe, T ∗2 was in the range of 3700–8000 s; for 3He,

T ∗2 was 4000–8000 s. During each run, the HV polarity was positive, negative, and zero for

equal length intervals. The data acquired and analysis are discussed in Chapter VI.
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CHAPTER V

Investigations of 3He–129Xe interactions

In this chapter, we review the underlying physics behind the comagnetometer drift and

propose a model to explain it, supported by experimental studies performed at the TUM

MSR. A preprint summarizing this work is now available [99] and was the subject of Jonas

Meinel’s master’s thesis [100]. More detail can be found in the previous references on

the use of the measurement data to determine the 129Xe–3He contact interaction. Here, we

focus on how the measurements were performed, the use of phase-coherent pulsing, and

the analysis to extract frequency data which was performed similarly to the 129Xe EDM

analysis.

The drift observed in the comagnetometer frequency (see Fig. 4.5) is the dominant

source of systematic error for HeXeEDM and other precision searches using a 129Xe–3He

comagnetometer [34, 35] and has been observed since the very first investigations into use

of a 129Xe–3He comagnetometer in 129Xe EDM measurements [28]. The drift is caused by

previously uncharacterized magnetic interactions between the 129Xe and 3He spins and the

bulk magnetization of each polarized species. We’ve seen some indication of the strength of

the internal magnetic fields and gradients in the case of the “Maya effect” (Fig. 4.1) where

the T ∗2 of 3He was reduced because of the gradient caused by the large 3He longitudinal

polarization.
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5.1 Internal magnetic fields

The origin of the drift has previously been attributed to Ramsey-Bloch-Seigert shifts [35]

which has generated some controversy [101, 102]. The Ramsey-Bloch-Seigert (RBS) shift

[103, 104] is the generalized Bloch-Seigert shift (Eq. 3.25) in this case due to the rotating

internal magnetic fields caused by the precessing atoms. For a system with gyromagnetic

ratio γ and Larmor frequency ω0 = γB0, the RBS shift for a rotating field of amplitude B1

and frequency ω1 is

δωRBS(t) = ±
[√

∆ω2 + γ2B2
1(t)−∆ω

]
, (5.1)

where ∆ω = |ω0 − ω1|. With this model, there are two effects to be considered: one is the

“cross-talk” or the shift of the 129Xe precession frequency due to the internal field of 3He and

vice versa; the second is the “self-shift” or the shift in the 129Xe due to its own internal field

and similarly for 3He. In these cases, B1 refers to the internal magnetic field Bint from 129Xe

or 3He. The controversy mentioned above was about the size of such a field. In Ref. [35],

the authors propose that the magnetic field created by the transverse magnetization is the

classical result for the magnetic field in a uniformly magnetized sphere

Bint =
2µ0

3
M. (5.2)

However, as mentioned in the comment by Romalis et al. [101], the above result comes

from the classical expression for the field created by a magnetic dipole m

B(r) =
µ0

2π

2r̂(r̂ ·m)−m

r3
+

2µ0m

3
δ(r), (5.3)

for a uniform density of dipoles n = M/m. By integrating over a spherical cell, the first

term integrates to zero for a perfect sphere. For real atoms of finite size that are randomly

distributed within a spherical volume and are completely noninteracting, the average field
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value is zero [105, 106]. However, in the case of contact interactions the second term is

parametrized by a factor κ

B =
2µ0

3
κM (5.4)

where κ ≡ n(0)/n(∞) and n(r) is the number density of dipoles within a sphere of radius

r. Additionally, the first term in Eq. 5.3 contributes a geometric factor to κeff ≡ κgeo + κ.

In the studies presented below, we observed the effect of Bint by separately considering

the influence of the transverse magnetization MT and the longitudinal magnetization ML

on the species’ frequencies. We performed a study to test the RBS model by observing

frequency shifts in 3He after changing the size of the transverse magnetization MT . We also

observed frequency shifts in 3He and 129Xe after changing the direction of the longitudinal

magnetization ML of each species by 180◦.

5.2 Experimental setup

The setup used was the same as in Campaign 4 (Section 4.4) at the TUM MSR. Fig. 5.1

shows a diagram of the apparatus. Two cells were used for these experiments: a sealed cell

(cell 1 in Table 3.3) and a valved EDM cell (E2). The main difference from Campaign 4

was the implementation of phase-coherent or in-phase pulsing for the single-species (sealed

3He cell) measurements, which allowed us to apply pulses to already precessing signals.

For the phase-coherent pulsing, the Z1-SQUID signal was split and inputted directly to a

lock-in amplifier in addition to the DAQ. Using the lock-in amplifier phase output, we were

able to track the phase difference between the precession frequency as measured by Z1 and

the reference signal used for the AC pulses B1. Once a pulse was manually triggered from

the operating PC, the AC pulse signal was sent to the B1 coils at a time when the phase

difference |φZ1 − φref| = 0 according to the lock-in output.
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5.3 Analysis method

The general analysis method we use for spin precession data is described in more detail

in the next chapter. Briefly, the data were divided into sections called blocks and a time-

domain fit to the following function was used for single species data to determine the phase

for each block φi = arctan(ai/bi)

S(t) = a sinωt+ b cosωt + c1t+ c0. (5.5)

From the block phases, the accumulated phase was determined by adding the appropriate

number of cycles Φ = φ + 2πN where N is the number of cycles. To determine single

species frequencies, because of magnetic field drift, a Y-SQUID-comagnetometer was

employed. For the SQUID comagnetometer, the data for Y1 and Y2 were averaged first to

remove any residual spin precession signal picked up by the SQUIDs and then the SQUID

data for each block was averaged to get the relative magnetic field B̃i measured by the

SQUID for each block. We then defined a SQUID comagnetometer for each species by

numerically integrating B̃: Φ̃(ti) = Φ(ti)− γG
∫ ti

0
B̃(t)dt, where G is a scaling factor that

depends on the SQUID calibration. The single-species frequencies were determined from a

linear fit of Φ̃(ti) vs. ti. For two-species data we used the following fit function

S(t) = aXe sinωXet+ bXe cosωXet+

aHe sinωHet+ bHe cosωHet+ c1t+ c0, (5.6)

and the 3He–129Xe comagnetometer frequency was determined from a linear fit of Φco =

ΦXe −RΦHe, where R is the nominal ratio of the gyromagnetic ratios γXe/γHe.
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5.4 Tests by varying transverse magnetization

For the single-species experiment we used a sealed SEOP cell. To vary MT we applied

a sequence of phase-coherent 90◦ pulses to move the magnetization direction between four

angles with respect to B̂0, illustrated in Fig. 5.2: (1) 10◦ (2) 100◦ (3) 190◦, and (4) 280◦.

If θ1 ≡ 10◦, the states with low MT = M cos θ1 and opposite large ML = M sin θ1 are (1)

and (3) and the states with high MT = M sin θ1 and opposite small ML = M cos θ1 are (2)

and (4). Averaging pairs with opposite M̂L cancels potential contributions proportional to

ML. Pulses were applied 30 seconds apart in a pattern of +10◦, +90◦, +90◦, +90◦, −90◦,

−90◦, −90◦, +90◦, etc. to reduce accumulation of pulse error. Therefore, the sequence of

states was (1), (2), (3), (4), (3), (2), (1), (2), (3), (4), etc.

B̂0

x̂-ẑ plane

M

(1)

(2)

(3)

(4)

Figure 5.2: Transverse magnetization test pulsing scheme.

The observed frequency shift δωT was determined using

δωT =

∣∣∣∣(ω1 + ω3

2

)
−
(
ω2 + ω4

2

)∣∣∣∣. (5.7)

The data are shown in Fig. 5.3 and the slope of a linear fit vs. the change in amplitude was

1

2π

δωT
|∆A|

= 0.46± 0.33 µHz/pT. (5.8)
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The observed shift is two orders of magnitude smaller than the observed shifts due to

longitudinal magnetization, described in the next section. This suggests that RBS shifts are

not the dominant source of the observed comagnetometer drifts of several µHz.

Figure 5.3: δωT/(2π) vs. the change in amplitude ∆A for the transverse shift test. 960
frequencies were used to derive 320 values of δωT/(2π)using Eq. 5.7. The error bars of the
data have been scaled by

√
χ2/dof .

5.5 Tests by varying longitudinal magnetization

For tests of frequency shifts caused by ML we first applied an initial pulse with tip-angle

θin followed by a train of 180◦ pulses, which reverse the direction of ML. The frequency

shift δωL was determined from the difference between ±M̂L

δωL = ω(θin)− ω(θin + 180◦) (5.9)

5.5.1 Single species

Since we expect the frequency shift to be dependent on Bint, which is dominated by

the integration of the first term of Eq. 5.3 over the cell, we used the sealed cell to test the
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geometric dependence of the frequency shift. The sealed cells are spherical with pull-off

stems as illustrated in Fig. 5.4 and shown in Fig. 3.9a. We can approximate them as perfect

spheres with a small external volume containing a dipole field generated by the polarized

3He gas within. We measured the frequency shifts while rotating the cell stem by an angle

α in the x̂-ŷ plane, essentially moving the location of the external dipole presumed to be

dominated by the pull-off stem. The results are shown in Fig. 5.4.

Figure 5.4: δωL/(2π) vs. α [99]. The data shown is from a single measurement where
the angle α was rotated back-and-forth three times. The data was fitted to a modified P2

polynomial, a(3 cos2(α − b) − 1) + c, where a = −2.73 ± 0.07 mHz, b = −13.4 ± 0.6◦,
and c = 0.76± 0.07 mHz, which is consistent with the angular dependence of the field in
the cell produced by an external dipole. The offset may be caused by asphericity of the cell
that is α-symmetric. The error bars of the data have been scaled by

√
χ2/dof .

5.5.2 Two species

For two species measurements, we used the cylindrical valved EDM cell. An initial

45◦ pulse was applied that was resonant with both species, followed by 180◦ single-species

resonant pulses, which reversed the magnetization of 129Xe and 3He sequentially. In Fig. 5.5,

the 3He frequency shifts are compared with the comagnetometer-corrected 129Xe frequency
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ωco. The data shows that the comagnetometer does not cancel the observed longitudinal

frequency shifts.

Figure 5.5: The plots above show two perspectives of viewing the observed frequency
shifts due to inversions of the 3He and 129Xe longitudinal magnetizations. The top plot
shows δωXe/(2π) vs. RδωHe/(2π). Both axes have units of 129Xe frequency. A slope of one
would mean the 129Xe frequencies and 3He frequencies are identical up to a scaling factor
R. The deviation from a slope of one shows frequency shifts dependent on the longitudinal
magnetization and that there is a sign difference for the self-shift (blue diamonds) and the
cross-talk (orange squares). The bottom plot is δωco/(2π) vs. δωHe/(2π) which removes the
slope. In this view, a flat line at zero would indicate no difference between the 129Xe and
scaled 3He frequencies. For both plots, the blue and orange lines shown are from linear fits
to data after 129Xe and after 3He 180◦ pulses. The shaded regions are the 68% confidence
interval for the fits and all error bars have been scaled by

√
χ2/dof .
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5.6 Interpretation of results

The data show that the observed transverse frequency shift is small; however, there

is significant shift observed in both 129Xe and 3He when ML is reversed. We refer to the

observed shift as the species-dependent shift and as we show below this can arise when the

precessing magnetization MT of one species exerts a torque on ML of the same species (a

self-shift), rotating the magnetization into the transverse plane that is out of phase with MT ,

therefore advancing the phase resulting in a frequency shift.

To interpret our data we parametrize the frequency shifts due to transverse and longitudi-

nal magnetization as

δωT,mk = ρmk M
T
m δωL,mk = λmk M

L
m, (5.10)

where indices k,m refer to the species 129Xe or 3He. The time-dependent comagnetometer

drifts are

δωTco,k = ρkcoM
T
k (0)e−t/T

∗k
2 − rρmcoM

T
m(0)e−t/T

∗k
2 (5.11)

δωLco,k = λkcoM
L
k (0)e−t/T

k
1 − rλmcoM

L
m(0)e−t/T

k
1 , (5.12)

where rmk = γk/γm and ρkco = ρkk − rρkm and λkco = λkk − rλkm. The internal magnetic field is

Bm
int = 2µ0

3
κmeff,kM

k. We parametrize the geometric component as

BT
int = µ0ΓTMT BL

int = µ0ΓLML, (5.13)

where ΓT ,ΓL are dimensionless cell-specific geometric factors.

The effect of Bint on the precession frequency can be determined using the Bloch
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equations. If B0 = B0ẑ,

dMx
k

dt
= γk {My

k [Bz
int(k) +Bz

int(m)]−M z
k [By

int(k) +By
int(m)]}

dMy
k

dt
= −γk {Mx

k [Bz
int(k) +Bz

int(m)]−M z
k [Bx

int(k) +Bx
int(m)]}

dM z
k

dt
= γk {Mx

k [By
int(k) +By

int(m)]−My
k [Bx

int(k) +Bx
int(m)]}.

(5.14)

In a frame rotating at the Larmor precession frequency ω0,k = γkB0 around ẑ, all the static

Bz components vanish and the self-resonant contribution is

dMx′

k

dt
= −γkM z′

k B
y′

int(k)

dMy′

k

dt
= γkM

z′

k B
x′

int(k)

dM z′

k

dt
= γkM

x′

k B
y′

int(k)−My′

k B
x′

int(k).

(5.15)

Substituting Bx′,y′

int = µ0ΓTMx′,y′ , we find

dMx′

k

dt
= −µ0γkM

z′

k ΓTMy′

k

dMy′

k

dt
= µ0γkM

z′

k ΓTMx′

k

dM z′

k

dt
= 0.

(5.16)

Taking the second derivative

d2Mx′

k

dt2
= −µ0γkΓ

T

[
M z′

k

dMy′

k

dt
+My′

k

dM z′

k

dt

]
= −(µ0γkΓ

TM z′

k )2Mx′

k = −δω2
kM

x′

k

(5.17)

we see that in the rotating frame M′ precesses with frequency δωk = γkµ0ΓTM z′

k or

δωk = γkµ0ΓTML
k . We interpret this as a frequency shift due to the torque on M z

k from the

resonant rotating component of Bint. There are two frequency shifts, one is from BL
int adding
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to B0. The other is δωk. Combining them,

ωk = ω0,k + µ0γk
[
(ΓL − ΓT )ML

k + ΓLML
m

]
. (5.18)

For the comagnetometer frequency, ωco = ωk − γk
γm
ωm, we find

ωco = µ0γkΓ
T
(
ML

k −ML
m

)
, (5.19)

which is a frequency shift proportional to the difference of longitudinal magnetizations

that decays as ML
Xee
−t/TXe

1 −ML
Hee
−t/THe

1 , which is consistent with our observations. To

mitigate the drift, we can investigate geometries that reduce ΓT as well as reduce residual

ML
k through more accurate 90◦ pulses.
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CHAPTER VI

Analysis

This chapter describes the analysis method we used for spin precession data. For

HeXe2017, the EDM data for the experiment were collected in 16 separate runs defined

as a spin precession measurement with applied high-voltage that begins with a π/2 pulse.

To extract frequencies for 129Xe and 3He used in the analysis, the data for each run were

divided into blocks and segments. Blocks are the shortest data selections, typically 5 to 20

seconds and used to determine the phases of 129Xe and 3He at a specific time within each

block. The length of the block is chosen to be short enough that magnetic field drift did

not affect that validity of the fit function but long enough to separate the two frequencies.

Segments are the set of consecutive blocks at an applied high-voltage. They are typically

400 or 800 seconds long. A linear fit of the comagnetometer-corrected xenon phase per

segment provides the comagnetometer frequency of each HV state, from which the EDM

frequency is derived.

The analysis of data for a block of length τ was done by a time-domain fit of the data to

determine the 129Xe and 3He phase for each block. For unfiltered data, there was typically

some SQUID baseline drift, so the fitting function was

S8par(t) = aXe sinωXet+ bXe cosωXet+

aHe sinωHet+ bHe cosωHet+ c1t+ c0, (6.1)

60



where the last two terms describe baseline drift and offset. In order for this model to describe

the data effectively, the blocks must be short enough that the drift is purely linear. An

F -test [107] was used to determine the significance of adding the baseline drift terms in

Eq. 6.1. Alternatively, baseline drift can be removed using a finite impulse response (FIR)

high-pass filter. An FIR filter has the advantage of having an exactly linear phase response,

and the resulting group delay can easily corrected (see Appendix D for further discussion

on filtering). The specific filter used was an equiripple linear-phase FIR filter designed

using Matlab’s Signal Processing Toolbox [108] with a passband frequency of 5 Hz and a

stopband frequency of 0.5 Hz. For filtered data, SQUID offset and drift may be neglected

and the fit model is

S6par(t) = aXe sinωXet+ bXe cosωXet+

aHe sinωHet+ bHe cosωHet. (6.2)

The fits were performed using the separable non-linear least squares method described in

[109] using Levenberg-Marquardt least-squares minimization over a fixed time interval

[−τ/2, τ/2]. The phase for each species at the center for each block, labeled by indexm, was

φmXe/He = arctan (bmXe/He/a
m
Xe/He). The two-argument four-quadrant inverse tangent function

(atan2 in Matlab) was used to return a phase in the domain [−π, π]. The unwrapped phase

is Φm
Xe/He = φmXe/He + 2πNm, where Nm is the integer number of cycles. The phase at each

time tm = mτ was determined using

Φm
Xe/He = φmXe/He +

{
Φm−1

Xe/He + ωm−1
Xe/Heτ

−
(

Φm−1
Xe/He + ωm−1

Xe/Heτ
)

mod(2π)
}
, (6.3)

where the term in brackets is 2πNm. The uncertainty of Φm
Xe/He is estimated from standard

gaussian error propagation using the parameter uncertainties of amXe/He and bmXe/He, obtained

from computation of the covariance matrix of the fit to Eq. 6.2, which was scaled by
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the mean-squared-error of the residuals from the fit. Frequencies were determined by a

linear least-squares fit of the phase vs. time. To get the comagnetometer frequency, the

correction was applied to the 129Xe phase using ΦXe,co = ΦXe −RΦHe, where R = 1/r and

r ≡ 2.7540816 is the number used in the analysis which is the nominal ratio of the 3He and

129Xe shielded gyromagnetic ratios [110].

For the main analysis, the 20 second block length τ was chosen so that amplitude decay

and frequency drift were small enough not to affect the validity of the fit model but long

enough to separate the 129Xe and 3He frequencies. Longer block lengths were preferable

because they decreased computational time. The comagnetometer correction was applied

to each block so that magnetic field drifts over periods longer than τ were compensated.

Fig. 6.1 illustrates the limitation of magnetic field drift on block length.

Figure 6.1: Modified Allan deviation of run C84 from June 2017. B0 drift is observed
beyond 20 seconds, our typical analysis block length.

Similarly, comagnetometer drift limits the integration time for a measurement of the

comagnetometer frequency, ωco. For the analysis, this means the length of time for which

the comagnetometer phase ΦXe,co is linear. An estimate of the size of the comagnetometer

drift was determined from Modified Allan deviation plots of early spin precession runs and
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was used to determine how often we switched the applied HV polarity. 1

A HV segment is the portion of data at a given HV polarity. We chose this length to be

400 or 800 seconds and for each run all segments had equal length. To account for drift

when we combined segments to determine the EDM frequency ωd, we used the following

HV polarity pattern for all runs: ±[0 +−−+−+ +−−+ +−+−−+0, 0−+ +−+

−−+ +−−+−+ +−0]. Two runs, C92 and C13, were ended after the first 18 states.

The HV polarity pattern allowed us to combine the frequencies from each HV segment i

to determine ωd in a way that compensated for comagnetometer drift. For example, if the

comagnetometer drift is purely linear over four HV segments,

ωco = a0 + a1t+ ωd, (6.6)

then, for a sequence of +−−+ and equal length segments ti = i∆t,

ω1
co − ω2

co − ω3
co + ω4

co = a0 + a1t1 + ωd − (a0 + a1t2 − ωd)

− (a0 + a1t3 − ωd) + a0 + a1t4 + ωd

= a1t1 − a1t2 − a1t3 + a1t4 + 4ωd

= a1(∆t− 2∆t− 3∆t+ 4∆t) + 4ωd

= 4ωd. (6.7)

1The Modified Allan deviation in contrast to the regular Allan deviation can separate white phase noise
(slope τ−3/2) from white frequency noise (slope τ−1/2). From Ref. [111], the Modified Allan variance from a
set of M frequency measurements y for averaging time τ = mτ0 where τ0 is the basic measurement interval is

Modσ2
y(t) =

1

2m4(M − 3m+ 1)

M−3m+2∑
j=1


j+m−1∑

i=j

(
i+m−1∑
k=i

[yk+m − yk]

)
2

, (6.4)

or with phase data x from N = M + 1 measurements

Modσ2
y(t) =

1

2m2τ2(N − 3m+ 1)

N−3m+1∑
j=1


j+m−1∑

i=j

[xi+2m − 2xi+m + xi]


2

. (6.5)
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Similarly, a sequence of eight cancels quadratic drifts; a sequence of 16 cancels drifts up

to 3rd order; and the full sequence is insensitive to drifts up to 4th order. Because this is an

unweighted average, longer sequences resulted in lower statistical sensitivity due to loss of

signal amplitude by the end of the run from T ∗2 decay. Because our drifts were mostly linear

over four segments, we chose to use a sequence of four for our analysis. The process for

determining the systematic error from higher order drifts is discussed in Ch. VII. A sequence

of segments used for a ωd determination we refer to as an EDM set.

There were two irregular runs. In C82, there was a significant SQUID perturbation in the

second HV segment. In C93, the HV did not switch on until the last 100 seconds of the first

intended HV segment. For both these runs the affected HV segment was shortened to only

include the unaffected data. The other three segments in the EDM set were also shortened by

the same amount so that the linear comagnetometer drift could be compensated. For another

run, C13, an F -test showed that the Φm
Xe,co vs. mτ was not linear for the first 5 segments, so

they were shortened by six blocks or 120 seconds until the F -test showed a P ≤ 0.5 that a

quadratic term was significant2.

For each HV segment, the extracted comagnetometer frequencies ωico were blinded by

adding or subtracting, depending on Ê0·B̂0, a previously computer-generated pseudorandom

number of magnitude ≤ 5× 10−8 Hz. The blinding offset was saved separately from the

data in a binary format. After all cuts and systematic corrections were determined, the last

step was removing the blinding offset and reanalyzing to produce a set of frequencies for

the final analysis.

2The F -test [107] uses the χ2 statistics of two fits to determine the validity of adding an (m+ 1)th term

Fm,m+1 =
χ2(m)− χ2(m+ 1)

χ2(m+ 1)/(N −m− 1)
, (6.8)

where N is the number of data points and Fm,m+1 follows the F distribution PF (F ; ν1, ν2) for degrees of
freedom ν1 = 1 and ν2 = N −m+ 1. Then, the probability Pm,m+1 =

∫∞
Fm,m+1

PF (F ; 1, N −m+ 1).
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Figure 6.2: The top plots are the raw HV monitor and Z1 data from C82. Below, the filtered
data divided into the first nine segments, including shortened segments from the SQUID
jump.
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Figure 6.3: The top plots are the raw HV monitor and Z1 data from C93. Below, the filtered
data divided into the first nine segments, including segments that were shortened because
the HV did not turn on as intended.
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ŷ
69

29
64

20
10

00
40

0
B

36
2.

62
2

C
85

PP
2

42
0

ŷ
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CHAPTER VII

Systematics

7.1 Introduction

Systematics for HeXeEDM are shifts of the comagnetometer frequency that correlate

with Ê0 · B̂0 or false EDMs. In this chapter, we review the systematic effect measurements

and analysis for the EDM measurement data of HeXe2017. Some auxiliary measurements

from HeXe2018 were used. At the end of the chapter, we tabulate the results for the total

systematic error. Our approach for systematic studies for the EDM measurement is to,

whenever possible, amplify an effect we expect to induce a comagnetometer response,

measure that response, then scale down to the actual size determined through consistent

monitoring during the experiment. The main systematic effects that can be studied in this

manner are false EDMs due to leakage currents, charging currents, and HV-correlated cell

motion.

7.1.1 EDM definition and sign, analysis units

Recall from Fig. 3.1 that the frequency shift due an EDM ωd, depends on the sign of the

applied electric and magnetic fields. For B0 = +B0ŷ in the coordinate system of the BMSR-

2 (see Fig. 4.6), a positive electric field E0 = +E0ŷ reduces the precession frequency and a

negative electric field E0 = −E0ŷ increases it for positive d. For B0 = −B0ŷ, the opposite
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is true. This means the EDM shift to ωco is (Eq. 3.10 for positive d )

ωd = −2d

~
E0 · B̂0. (7.1)

To review the analysis time-scales described in Ch. VI, a block is the smallest analysis

unit and describes a set of data typically over 5–20 seconds from which a time-domain

fit is used to determine the phase at a well-defined time tm at the center of the block. A

segment describes the set of data comprised of an integral amount of blocks during which

the high-voltage is constant. The comagnetometer frequency ωco is determined per segment

from a linear fit of the corrected phase per block. An EDM set is a sequence of N = 4 or 8

segments with HV applied in a drift-canceling pattern. An EDM measurement is derived

from an unweighted average of ωco from an EDM set as shown in Eq. 6.7:

ωdco =
1

N

N∑
i=1

sgn(E0 · B̂0)ωco = ωd + ωfalse, (7.2)

where ωfalse is the contribution from systematic effects that manifest as a false EDM. A run

is a single fill of a cell and consists of 16 or 32 segments with applied HV, and two or four

segments with no applied HV.

7.1.2 Comagnetometer model

A false EDM is a shift of the comagnetometer frequency ωco that is correlated with

Ê0 · B̂0. In order to understand false EDM signals, let us first look at the contributions to

the precession frequencies of 129Xe and 3He in the absence of an applied electric field

ωHe = γHe(1− δHe) 〈B〉He + ωsdHe + Ω · B̂

ωXe = γXe(1− δXe) 〈B〉Xe + ωsdXe + Ω · B̂,
(7.3)
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where γHe/Xe = 2µHe/Xe/~ is the intrinsic nuclear gyromagnetic ratio, δHe/Xe = σHe/Xe +δ′He/Xe

is the species-specific chemical shift, σHe/Xe is the atomic diamagnetic shielding and δ′He/Xe

depends on several factors including cell pressure, temperature, and surrounding materials.

〈B〉He/Xe is the averaged magnetic field in the cell and generally is different for both species

due to the different diffusion constants and ωsdHe/Xe is the species-dependent frequency shifts

discussed in Ch. V that result in the observed comagnetometer drift. Ω · B̂ is the projection

of the earth’s rotation frequency Ω onto the magnetic field B. Note that contributions to

B include the applied magnetic field B0, the residual magnetic field in the room, and any

nearby magnetized materials. The earth’s rotation contribution is

Ω ·B0 = Ω cosφBerlin cos(ρ− 90◦sgn[B0]) (7.4)

where the earth rotation frequency Ω = 72.921× 10−6 rad/s, the latitude φBerlin = 52.5164◦

and ρ = 208◦ is the angle of x̂ in the coordinate system of the BMSR-2 relative to due north.

The comagnetometer frequency is the combination of the two species frequencies

ωco = ωXe −RωHe, (7.5)

where R = 1/r ≡ 1/2.7540816 is the nominal ratio of the shielded gyromagnetic ratios

γXe(1+σXe)
γHe(1+σHe)

used in the analysis. Then,

ωco = [γHe(1− δXe) 〈B〉Xe −RγHe(1− δHe) 〈B〉He]+(ωsdXe−RωsdHe)+(1−R)Ω · B̂. (7.6)
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For small changes in δXe/He and 〈B〉Xe/He = B + ∆BXe/He, the comagnetometer frequency is

ωco ≈ − γHe(1− σHe)∆RB

+ γXe(1− σXe)(∆BXe −∆BHe)

+ (1−R)Ω · B̂

+ ωsdXe −RωsdHe. (7.7)

The first term in Eq. 7.7 refers to an offset in the comagnetometer frequency proportional

to B that results from varying chemical shift ∆R caused by different pressures, etc. The

second term refers to frequency shift caused by a difference in the averaged magnetic field

by the two species because of different diffusion and 2nd and higher order gradients across

the cell. The third term refers to the comagnetometer drift discussed in Ch. V. The last term

is the contribution from the earth’s rotation and couples any change in the direction of B̂.

Note that in Eq. 7.7 we’ve neglected v × E effects which are negligible as discussed in

Section 7.6.
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Parameter Value

Electric field |E| = 2.94 kV

Magnetic field gradient
∣∣∣∂By∂y ∣∣∣ = |Gyy| = 30 nT/m

Comagnetometer B response 1
2π

∂ωco

∂B
= 3 Hz/T

Comagnetometer gradient response 1
2π

∂ωco

∂Hyy
= 0.17± 0.09 Hz/(T/m2)

Table 7.1: Parameters used for estimates of systematic effects.

7.1.3 Assumed parameters

7.1.3.1 Electric field strength

The same high-voltage of 6 kV was applied to the cells for all runs. However, each cell

has a different length with lPP1 = 1.85 cm and lPP2 = 2.18 cm. Then, for the six runs using

PP1, the electric field (dropping the subscript) magnitude is E = 3.24 kV/cm and for the

remaining ten runs with PP2 E = 2.75 kV/cm. For some systematic effect calculations, the

different electric field strengths are taken into account. For global estimates, we use the

average E = 2.94 kV/cm, which is a weighted average of E for each run.

7.1.3.2 Magnetic field gradients

The first-order gradient Gyy = ∂By
∂y

is estimated from the T ∗2 times for 129Xe and 3He

provided in Table 6.1. The minimum observed T ∗2 values were T ∗2,Xe = 3705 s in run C10

and T ∗2,He = 4867 s in run C02. Using Eq. 3.31 to estimate the worst-case gradient, we find

|Gyy| =30 nT/m.

7.1.3.3 Comagnetometer B sensitivity

The comagnetometer-B sensitivity ∂ωco

∂B
refers to the ωco frequency offset resulting from

uncertainty inR due to chemical shifts, variations in the cell glass, pressure, and other effects,

∆R. In Fig. 7.1, we see that the comagnetometer drift dominates at the beginning of a run.

We used the absolute frequencies at the end of each run to estimate ∂ωco

∂B
. The difference
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between the maximum and minimum value was used as ∆ωco. The comagnetometer B

sensitivity is
1

2π

∂ωco

∂B
=

8.2 µHz
2.6 µT

= 3 Hz/T. (7.8)

7.1.3.4 Comagnetometer gradient sensitivity

The comagnetometer gradient sensitivity is the response of ωco to magnetic field gradi-

ents. The second term in Eq. 7.7 arises from a difference in the magnetic field averaging

by the two species due to diffusion. As long as the diffusion time for each species is much

less than T ∗2 , a first order gradient is averaged the same way for each species. However, a

second-order and higher magnetic gradient is averaged differently [112]. We studied the

comagnetometer response to gradients by “loop-tests,” where a wire was looped around the

stem of a valved EDM cell or taped to the opposite electrode and current on the order of µA

was applied. The change in ωco for different applied currents was measured. For a loop of

radius a, the magnetic moment and magnetic field along its axis ŷ are

µloop = πa2I Bloop
y = 2

µ0Iπa
2

4πr3
, (7.9)

where r =
√
a2 + y2. The 1st, 2nd, and 3rd order gradients are

Gloop
yy =

∂By

∂y

loop

= −6
µ0Iπa

2y

4πr5

H loop
yy =

∂2By

∂y2

loop

= 6
µ0Iπa

2

4πr5

[
5
y2

r2
− 1

]
K loop
yy =

∂3By

∂y3

loop

= 6
µ0Iπa

2

4πr7

[
15y − 35

y3

r2

]
.

(7.10)

There were two such measurements performed: one was during HeXe2017 using cell PP1

and the a = 0.5 cm loop wrapped around the stem approximately 1 cm away from the

electrode; the other measurement was performed at the TUM MSR a month later using

a valved EDM cell E2 with a loop of radius a = 0.5 cm attached directly to the electrode
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opposite the stem. Both results are presented in Figs. 7.3 and 7.4, but for the HeXe2017

systematic analysis we used the latter measurement because the loop was closer to the cell

and therefore higher order gradient terms were more significant. The size of the 1st, 2nd, and

3rd order gradients in the cell for each measurement is illustrated in Fig. 7.2.

Figure 7.2: Calculation of the 1st through 3rd order magnetic field gradients using Eq. 7.10
for the TUM and PTB loop tests. The dotted and dashed black lines indicate the cell
boundary for the TUM and PTB cells, respectively. Gradients were calculated for a 10 µA
applied current.

For the HeXe2017 loop-test measurement, current was applied to the loop in the fol-
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Figure 7.3: Results of the loop-test measurement during HeXe2017 in June 2017. (a) The
extracted comagnetometer frequency ωco/(2π) vs. applied current and (b) δωco vs. δωHe.
δω is the change in ω from the previous segment. Analysis using δω instead of ω is less
sensitive to comagnetometer and B drift.
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lowing order: 0, 2, 0,−2, 0, 2, 4,−2,−4, 0 µA. The data were divided into segments based

on the applied current, and then further divided into blocks. Similar to the analysis in

Ch. VI, the data in the blocks were fit to determine the phase, and a linear fit of the

comagnetometer-corrected phases provided the comagnetometer frequency of each segment.

The 3He frequencies per segment were determined similarly. Fig. 7.3 shows ωco vs. ap-

plied current as well as the change in the comagnetometer frequency between consecutive

segments, δωco vs. the change in the 3He frequency, δωHe.

For the loop-test measurement at the TUM MSR in August 2017, current was applied in

the following order: 0, 10, 100, 0, 100 µA. The results are summarized in Fig. 7.4. Using

Eq. 7.10 we can estimate the size of the magnetic field gradient in the cell and use the slope

in Fig. 7.5a for
1

2π

∂ωco

∂Hyy

= 0.16± 0.09
Hz

T/m2 . (7.11)

In Ref. [112] the authors present a scaling argument that the comagnetometer frequency

dependence is proportional to H3
yy. A fit to the dependence on H3

yy is

1

2π

∂ωco

∂(Hyy)3
= 2.1× 107 ± 9.3× 106 Hz

(T/m2)3
. (7.12)

This result is used in Section 7.5.3.2 for determining the effect of cell motion in the presence

of a fixed magnetic gradient.

7.2 Leakage current

When HV is applied to the EDM measurement cell, current may flow between the

electrodes, following an unknown path dependent on the bulk resistance of the cell glass and

inner and outer surfaces. The worst-case scenario would be if the current followed a spiral

path between the electrodes to produce a HV-dependent magnetic field that adds to B0,

imitating an EDM. The comagnetometer mitigates the effect of a leakage current since the
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Figure 7.4: Results of the loop test at TUM in August 2017. (a) The extracted comagne-
tometer frequency ωco/(2π) vs. applied current and (b) δωco vs. δωHe.
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Figure 7.5: (a) ωco vs H loop
yy and (b) vs. H3,loop

yy from the TUM dipole measurement, using
Eq. 7.10.

3He couples to the same leakage-current-induced magnetic field. To test the effectiveness

of the comagnetometer cancellation, we performed a test by wrapping a wire one full turn

around the cell and applying currents ranging from -1 µA to +1 µA. The result of this test is

summarized in Fig. 7.6 and the comagnetometer response measured was

1

2π

∂ωco

∂Iapplied
= −1.36± 0.90 µHz/µA ≤ 1.77 µHz/µA (68% c.l.). (7.13)
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To estimate the systematic error from a leakage current for HeXe2017, we scaled this result

by the maximum leakage current measured. The leakage current was monitored throughout

each run and recorded on a channel in the DAQ. The maximum leakage current measured

per run is provided in Table 7.2. We opted to use the maximum leakage current observed

to estimate a global false EDM rather than a run-by-run correction. Note that the sign of

the correction is unknown. Aside from different cells, the leakage current may be different

run-to-run because of cell-handling and may change even within a run. The maximum

leakage current was 97 pA observed in run C92. Combined with the average |E| = 2.94 kV,

the 68% upper limit on the magnitude of the false EDM is |dfalse
leakage| ≤ 1.2× 10−28 e cm.

Figure 7.6: ωco vs. Iapplied from the simulated leakage current measurement.

7.3 Charging current

Charging currents during HV ramping Icharging = C dV
dt

can magnetize materials on or

near the measurement cell, like the valve o-ring. If a nearby material is magnetized by

charging currents, it may contribute to a false EDM by changing B (first term in Eq. 7.7),

creating a gradient (second term), or changing B̂ (fourth term). The comagnetometer

response to an exaggerated “charging current” was measured by applying current to the
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Run Cell
∣∣Imax

leakage

∣∣ [pA]
∣∣Imax

charging

∣∣ [nA]

C82 PP2 23 15

C83 PP2 33 19

C84 PP2 33 19

C85 PP2 24 18

C86 PP1 28 18

C89 PP1 23 18

C91 PP1 33 16

C92 PP1 97 11

C93 PP2 53 11

C02 PP2 23 11

C08 PP2 33 12

C10 PP1 20 N/A

C12 PP2 24 N/A

C13 PP2 17 N/A

C14 PP2 17 N/A

C15 PP1 20 N/A

Table 7.2: Magnitude of the maximum leakage current and charging current measured per
run. For the last few runs the readout was blanked for the charging current so that the
leakage current could be monitored more accurately without having to rescale the voltmeter.

cell in a pattern similar to an actual charging current. Similar to the leakage current test,

the result was scaled by the maximum measured charging current during HeXe2017 to

determine the false EDM.

The charging current test was performed in the summer of 2018 by applying fixed

charging currents of 10 µA and 20 µA to the cell by shorting out the cell with a wire and

applying±100 or 200 V from the HV supply with current limited by a 10 MΩ series resistor.

The voltage was applied over a time interval and with polarity according the charging current

pattern for a HV sequence of +−−+−+ +− and −+ +−+−−+ and a segment length
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of 100 seconds. The comagnetometer response observed was

1

2π

∂ωco

∂Icharging
= −0.3± 1.2 nHz/µA ≤ 1.23 nHz/µA 68% c.l., (7.14)

combined with a maximum measured charging current of 20 nA, we find for the false EDM

due to charging currents |dfalse
charging| ≤ 1.7× 10−29 e cm.

7.4 Comagnetometer drift

Comagnetometer drift is caused by the third term in Eq. 7.7 which refers to the species-

dependent drifts discussed in Ch. V. To extract an EDM, we must separate the comagne-

tometer drift from an EDM frequency which is modulated by Ê · B̂. Eq. 6.7 illustrates how

a linear drift is separable from an EDM using a Ê flip pattern of + − −+. Similarly, a

pattern of eight cancels up to a quadratic drift, a pattern of 16 cancels up to cubic drift, and a

pattern of 32 cancels up to a quartic drift. We chose to apply HV in a pattern of 36, including

zero HV segments at the beginning and middle, for all runs except two runs that used a

half-pattern of 18. It can be shown that the zero HV segments in the middle do not affect the

quartic drift cancellation. Combining segments in a drift-canceling pattern is essentially an

unweighted average. Because the signal-to-noise decreases with T ∗2 decay of both species,

longer patterns have reduced statistical sensitivity.

There were two approaches considered for evaluating the comagnetometer drift. The

first approach was to compare the results from four, eight, 16, and 32 segment blinded EDM

measurements, and the second approach was to parametrize the drift as a polynomial and

determine the correction ωfalse
drift by fitting ωco vs. time. Both are discussed below. For the

final analysis, we used combined segment frequencies in a sequence of four and used the

polynomial correction method to determine the systematic error from higher order drifts.

Initial corrections were determined with blinded data. Because the blinding EDM shift is

different for each cell, the final correction may change after unblinding.
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7.4.1 Comparing sequence lengths

For the pattern-combination, all segments within a set must be of equal length. For the

runs with shortened segments discussed in Ch. VI, a total of N segments were shortened,

where N is the pattern length. For this comparison, a data set was generated for N = 16

where the first 16 nonzero HV segments of the three irregular data sets (C82, C93, and

C13) were shortened by equal amounts. For a pattern of N , the EDM frequency of a set is

determined from the segment frequencies ωico as shown in Eq. 7.2. The results are provided

in Table 7.3. The blinding was applied as an added frequency, which means the EDM shift

is different for each cell. For comparing the correction from different sequence lengths,

we look at the blinded frequency shifts for each cell separately. For unblinded data, we

perform a E2-weighted average (wi = E2
i /σ

2
i ) for the full data set. This average is added in

Table 7.3 for completeness.

Cell PP1 PP2 avg.

1
2π
ω̄dco(N = 4) [nHz] -21.73 ± 6.61 -19.48 ± 4.15 -19.98 ± 3.40

1
2π
ω̄dco(N = 8) [nHz] -21.91 ± 7.42 -19.17 ± 4.48 -19.74 ± 3.70

1
2π
ω̄dco(N = 16) [nHz] -20.21 ± 10.74 -24.52 ± 5.91 -23.75 ± 4.96

1
2π

[
ω̄dco(4)− ω̄′d(8)

]
[nHz] 0.19 ± 3.37 -0.31 ± 1.69 -0.24 ± 1.46

1
2π

[
ω̄dco(4)− ω̄′d(16)

]
[nHz] -1.51 ± 8.46 5.04 ± 4.02 3.77 ± 3.62

Table 7.3: Comparison of the blinded EDM determined from a weighted average of ωdco for
each cell and sequence length.

7.4.2 Polynomial parametrization

The comagnetometer frequency can be parametrized as

ωco = a0 + a1t+ a2t
2 + · · ·+ sgn(Ê · B̂)ωd, (7.15)
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where an has units of rad/s1+n. For a sequence of N = 4 and equally spaced segments of

length ∆t the frequency extracted from an EDM set is

ωdco =
1

4

4∑
i

ωico = ωd + a2(∆t)2 + 7.5a3(∆t)3 + 40a4(∆t)4 + · · · = ωd + ωfalse
drift . (7.16)

For each run, ωco vs. time (as seen in Fig. 7.1) was fit to 2nd, 3rd, and 4th order polynomials.

An F -test (Eq. 6.8) was used to determine the significance of each increasing order and the

results for each run are provided in Table 7.4. The corrections for each run were determined

from the fitted polynomial coefficients and ωfalse
drift was evaluated using Eq. 7.16 and the

appropriate segment numbers and intervals. The blinded, drift-uncorrected result using a

Run Cell P1,2 P2,3 P3,4 order

C82 PP2 1.0000 0.8644 0.8460 4
C83 PP2 0.9756 0.8489 0.0795 3
C84 PP2 1.0000 0.9756 0.4538 3
C85 PP2 0.9004 0.4811 0.1358 2
C86 PP1 0.9792 0.8852 0.8569 4
C89 PP1 0.1351 0.5741 0.4716 none
C91 PP1 1.0000 0.3362 0.6506 2
C92 PP1 1.0000 0.7330 0.7044 4
C93 PP2 1.0000 0.9855 0.5512 3
C02 PP2 1.0000 0.0412 0.9432 2
C08 PP2 0.9947 0.9992 0.0080 3
C10 PP1 1.0000 0.8880 0.8583 4
C12 PP2 0.9851 0.3748 0.0845 2
C13 PP2 0.5387 1.0000 0.3969 3
C14 PP2 0.9998 0.7233 0.5158 3
C15 PP1 0.9936 0.8500 0.7783 4

Table 7.4: Probabilities from F -tests of increasing polynomial order. The last column is
the order used to fit and obtain the correction coefficients based on a probability threshold
P ≥ 0.6. No correction was applied to C89.

sequence length of N = 4 and weighting by wi = E2
i /σ

2
i for the different cells

1

2π
ωdco = −20.14± 3.39 nHz. (7.17)
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After drift correction using the polynomial orders for each run provided in Table 7.4 based

on an F -test probability P ≥ 0.6 for adding another order and ωfalse
drift evaluated for each

EDM set,
1

2π
ωd = −20.25± 3.53 nHz. (7.18)

The difference between these two numbers gives a false EDM frequency of 1
2π
ωfalse

drift =

−0.11 ± 0.98 nHz and a false EDM of dfalse
drift = (−2.16 ± 6.73) × 10−28 e cm. After

unblinding, these numbers changed slightly because the blind EDM shift was slightly

different for each cell. Therefore, the final EDM correction was

dfalse
drift = (−0.84± 6.63)× 10−28 e cm (7.19)

7.5 Cell motion

Electrostatic force between the HV electrode and the grounded safety electrode may

cause HV-correlated cell movement. There are a few sources of false EDMs due to translation

and rotation of the cell. Translation of the cell causes the cell to experience a different

magnetic environment; in particular different magnetic gradients couple to ωco through the

second term in Eq. 7.7 and a slightly different B couples to the first term. Rotation of the

cell additionally may cause rotation of B̂ in the case of magnetized cell components like the

o-ring, which couples to ωco through the earth rotation term in Eq. 7.7 and species-dependent

shifts. We were unable to complete a direct study of the comagnetometer response due to

cell motion but were able to set a limit of the cell motion systematic effect by other means

discussed below.
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Figure 7.7: ωco and applied HV vs. time for run C84 (top). Linear drift can be canceled by
combining frequencies in a sequence of four (bottom). Higher order drifts can be further
corrected using the procedure outlined in the text.

7.5.1 Estimates of cell motion

7.5.1.1 Laser beam measurement

A limit of the HV-correlated cell motion was obtained in 2018 through a test using a

laser beam aimed at the cell electrode and reflected on the wall of the BMSR-2. The cell axis

was along ŷ as it is during the experiment. An angle φ corresponds to the rotation around

ẑ, and the angle θ corresponds to rotation about x̂. The motion of the beam’s reflection on

the wall was observed as the HV was changed by ±9 kV. The rotation was calibrated by
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rotating the cell φ = +5◦ and −5◦, which moved the reflection on the wall x′ =283 mm and

334 mm, respectively, and results in a calibration factor of ∂φ
∂x′

= ∂θ
∂x′
≈ 0.28 mrad/mm. The

observed shifts for ∆HV = 18 kV were

∆x = 0± 0.3 mm, ∆φ = 0± 0.1 mrad,

∆z = 0± 0.2 mm, and ∆θ = 0± 0.06 mrad.
(7.20)

Combining with the calibration factor and the high voltage magnitude of 6 kV for each

EDM run, we find

∆φ ≈ ∆θ ≈ 5.5 µrad/kV · 6 kV = 33 µrad. (7.21)

7.5.1.2 Estimate of cell translation from precession amplitudes

An estimate of cell translation can be derived from observed precession amplitude mod-

ulation due to HV polarity switching combined with numerical calculations of the change in

flux ΦB through a SQUID loop 0.034 m from the center of the cell. The dependence is

1

ΦB

dΦB

dx
= −0.05 cm−1,

1

ΦB

dΦB

dy
= −0.05 cm−1,

1

ΦB

dΦB

dz
= −0.91 cm−1. (7.22)

The worst-case scenario for motion along x or y is

∆x = ∆y = 0.20 m
(

∆S

S

)
, (7.23)

where S is the spin precession amplitude for 3He or 129Xe. To estimate ∆S/S a method

similar to the EDM pattern analysis was used on the precession amplitudes for each segment.

An 8-segment pattern analysis on the 3He amplitudes was used to get

∆S

S
= −6.24× 10−5 ± 8.53× 10−5, or

∣∣∣∣∆SS
∣∣∣∣ ≤ 1.6× 10−4 (68% c.l.), (7.24)
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which provides a limit of

∆x ≤ 3× 10−5 m or ∆y ≤ 3× 10−5 m. (7.25)

7.5.2 Rotation

To estimate the change in ωco due to cell rotation, during HeXe2018 we measured ωco

while changing the angle ±5◦ near the nominal cell orientation along ŷ or φ = 270◦ in the

coordinate system of the room. Fig. 7.8 shows the results, where the segment lengths were

chosen to be short enough to ensure linear phase.

Let α be the angle deviation from the nominal B0 direction. Recall from Eq. 7.4

and Eq. 7.7 that the shift in ωco due to rotation is ∝ cos(ρ′ − α) ≈ cos ρ′ sinα where

ρ′ = ρ−90◦sgn[B̂0]. Using this and that we expect a term proportional to sin2 α from species-

dependent drifts, we expect comagnetometer drift due to rotation to have the following

dependence

ωrotation
co = b0 + b1 sinα + b3 sin2 α, (7.26)

where the coefficients bn all have units of rad/s. Using the data in Fig. 7.8b,

b0

2π
= 4.9 µHz

b1

2π
= 1.6 µHz

b2

2π
= 44.2 µHz. (7.27)

For small angles α the shift is

δωrot
co ≈ α

∂ωco

∂α
= b1α + 2b2α

2. (7.28)

Then, using αHV ≤ 33 µrad for 6 kV,

ωfalse
rotation

2π
≤ 0.06 nHz

dfalse
rotation ≤ 4.2× 10−29 e cm.

(7.29)
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Figure 7.8: ωco vs. time (top) and ωco vs. α (bottom) for angle dependence measurement.

7.5.3 Translation

Cell translation influences ωco through the first, second, and fourth terms of Eq. 7.7

corresponding to a change in the magnitude ofB and changes in magnetic gradients. Because

we do not have a direct measurement of the comagnetometer response to cell translation, we

address both contributions individually using available data to estimate the false EDM. For

future HeXeEDM measurements, the comagnetometer response to cell translation will be

directly measured.
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7.5.3.1 Effect of translation on B dependence

The change in the comagnetometer frequency due to cell translation is

ωfalse
translation =

∂ωco

∂x
∆x, ωfalse

translation =
∂ωco

∂y
∆y, ωfalse

translation =
∂ωco

∂z
∆z. (7.30)

Then, using values from Table 7.1 we estimate for a HV-correlated change ∆y ≤ 3×10−5 m

ωfalse
translation

2π
=

1

2π

∂ωco

∂B

∂B

∂y
∆y =

(
3

Hz
T

)(
30

nT
m

)
∆y ≤ 2.7× 10−3 nHz, (7.31)

which corresponds to a false EDM of

dfalse
translation ≤ 1.9× 10−30 e cm. (7.32)

7.5.3.2 Effect of cell motion in the presence of fixed external magnetic gradients

Cell motion within a fixed nonuniform field may produce a false EDM proportional

to (Hyy)
3 [112]. Possible sources include a fixed dipole near the cell, or any permanently

magnetized component of the SQUID dewar or the MSR. Gradients from a source on the

cell, like a magnetized o-ring, should not contribute because the source moves with the cell.

A stationary dipole The comagnetometer response to translation in the presence of a

stationary dipole would ideally be measured directly by translating the cell a known amount

and measuring the comagnetometer response. In the absence of such a measurement, we

use the loop-test result which measured the comagnetometer response to a dipole close to

the cell and a measure of the HV-correlated change in B (∆B)HV determined from analysis

of the 3He frequencies.

Assuming the third term in Eq. 7.7 is proportional to (Hyy)
3 and by cell movement or
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other means, Hyy changes,

δωco ∝ δ(Hyy)
3 ≈ (Hyy)

2δHyy. (7.33)

For a dipole at a distance rdipole much larger than its size, the derivatives along y are

proportional to By, therefore

δωco ∝ (Hyy)
2δBz, or

∂ωco

∂By

= H2
yy. (7.34)

Comparing the gradients from the loop-test and from a fixed dipole,

Hdipole
yy

H loop
yy

=
Bdipole
y

Bloop
y

r2
loop

r2
dipole

, (7.35)

we see that for any dipole outside the measurement cell, we can combine the loop-test

with a measure of (∆B)HV to estimate an upper limit on any HV-correlated effect that

changes Hyy, like leakage currents, charging currents, cell rotation, and cell translation in

a nonuniform field. Since we have set limits through other means for all but the last one,

we use this method to set a conservative upper limit on the false EDM from cell translation.

Recall from the TUM loop-test (Fig. 7.4b),

∂ωco

∂ωHe
= (−1.55± 0.28)× 10−3. (7.36)

(∆B)HV was extracted using a 4-segment EDM pattern analysis on Y -SQUID-corrected

3He frequencies. The SQUID-correction was performed as described in Ch. V. The resulting

HV-correlated 3He frequency change was

∆ωHVHe = −181.4± 124.4 nHz. (7.37)
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Combining these,
1

2π
ωfalse

translation ≤ 0.37 nHz (68% c.l.),

dfalse
translation ≤ 2.6× 10−28 e cm.

(7.38)

7.6 Geometric phase

The geometric phase is the phase accumulation of the spins as they diffuse in a combined

magnetic field gradient and motional magnetic field (E× v/c2), and is a false EDM because

it reverses with E. It is a small effect with our experimental conditions. At room temperature,

using 〈vHe〉 ≈ 1575 m/s and 〈vXe〉 ≈ 241 m/s, the motional magnetic field Bmot
He ≈ 5 nT and

Bmot
Xe ≈ 0.8 nT. Since B0 = 2.6 µT, under the adiabatic approximation the spins remain

aligned with B0. The adiabatic condition can also be described as ω0τcorr � 1 where τcorr

is the time it takes for the spins to sample the cell and is on the order of seconds because

DHe = 1.3 cm2/s and DXe = 0.2 cm2/s. Note that the mean free path λ = 3D/v ≈ 250 nm

for both 3He and 129Xe which means that the velocity changes directions on a time scale of

λ/ 〈v〉 . 1 ns, randomizing the geometric phase accumulation between collisions.

Ref. [113] (Eq. 70) provides an estimation of the frequency shift in the diffusion

approximation in 2D for cylindrical geometry, where R ≈ 1 cm is the cell radius

ωGP =

(
γ2REGyy

2c2ω2
0

)
4

x2
1,1(x4

1,1 − 1)

ω2
0

1 + (ω0R2/Dx2
1,1)2

. (7.39)

This is valid for nEDM cells considered in Ref. [113] that have a large radius-to-length ratio.

We expect this to be an upper limit for our cylindrical cells where the length is proportional

to the diameter and motion along the cell axis reduces radial diffusion. For 129Xe and 3He

after scaling the diffusion constants for motion in 2D

ωXe
GP = 8.0× 10−14 rad/s, and ωHe

GP = 3.4× 10−12 rad/s. (7.40)
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Combining the two to get the comagnetometer shift and false EDM,

1

2π

∣∣ωfalse
GP

∣∣ = 1.8× 10−13 Hz,

dfalse
GP < 1.3× 10−31 e cm.

(7.41)

7.7 E uncertainty

An estimation of the uncertainty in the spatial average Ē in the presence of the safety

electrode was performed by collaboration member Tianhao Liu using finite element analysis

software (COMSOL) and determined to be within 10%. The deviation δE couples to the

EDM

dδE ≤
δE

E
dA(129Xe) (7.42)

determined using dA(129Xe) after unblinding which resulted in

dδE ≤ 2.6× 10−29 e cm. (7.43)

7.8 E2 effects

The two cells used in HeXe2017 have different lengths, so they have different electric

field strengths within for the same applied HV. Therefore, we have data for E = 0, 2.75,

and 3.24 kV/cm. The final E2 false EDM was determined from the unblinded HV segment

frequencies. The frequencies shown in Fig. 7.9 are the residuals from a 4th order polynomial

fit of ωico of each run, totaling 539 values. The electric field per segment is determined

from the average value of the HV recorded by the DAQ for the segment divided by the

measurement cell length. The slope of the linear fit is

1

2π

∂ωco

∂E2
= 0.10± 0.87

nHz
(kV/cm)2 . (7.44)
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The EDM correction is determined from the precision with which we reverse the HV,

which was measured to to be ∆HV ≤ 10 V; therefore, |E+ − E−| ≤ 3.3 V/cm and

|E2
+ − E2

−| ≤ 0.02 kV2/cm2. For the false EDM we have

1

2π
ωfalse
E2 =

1

2π

∂ωco

∂E2
|E2

+ − E2
−| ≤ 0.017 nHz (68% c.l.),

dfalse
E2 ≤ 1.2× 10−29 e cm.

(7.45)

Figure 7.9: Residual frequencies from polynomial fits of ωico vs. averaged E2 per segment.

7.9 Correlations

The consistency of the EDM measurements was checked under different conditions

including gas pressure, measurement cell, HV ramp rate, HV segment length, and HV

polarity at the start of a sequence of four, and B̂0 (See Fig. 7.10). Each of these couples to

the systematic effects discussed previously. Varying gas pressure couples to the first and

second term of Eq. 7.7 because of differences in the chemical shift and averaging of magnetic

gradients within the cell. The two measurement cells used have different dimensions and

therefore both the size and time structure (from different T1) of the comagnetometer drift may
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change. For different HV ramp rates, the charging current changes. Correlations with HV

segment length and HV polarity may indicate a systematic error from the comagnetometer

drift correction. B̂0 couples to the earth’s rotation and to the gradients from any nearby

stationary dipole. The differences are shown in Table 7.5. No significant correlations were

observed.

The final systematic error for each of the effects discussed for the HeXe2017 analysis is

provided in Table 7.6. The systematic error from leakage current, charging currents and cell

motion were determined from auxiliary measurements. In the case of cell translation, the

error was determined from a combination of an auxiliary measurement and 3He frequency

study of the HeXe2017 data where the 3He frequency error is dominated by B drift. The

geometric phase error is a calculation and E uncertainty is a scaling of the measured value

for the EDM. All of these errors are independent and can be added in quadrature. Both the

comagnetometer drift error and the E2 effect error were determined from the EDM data,

which means that the error is statistics-limited and that the errors are have some correlation.

Therefore, these errors were added arithmetically first and then in quadrature with the other

errors. The comagnetometer drift is the only systematic correction. All other effects were

upper limits either because the comagnetometer response was not observed when the effect

was scaled up in auxiliary measurements or because the sign is unknown as in the case of

leakage currents. The total systematic error was determined to be 7.3× 10−28 e cm.
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Figure 7.10: Weighted average of EDM measurements by parameter: cell, pressure, B̂0,
HV ramp rate, HV start polarity, HV segment length, and an EDM uncertainty cut for
σid < 1.8× 10−26 e cm (14 measurements) or σid > 1.8× 10−26 e cm (106 measurements).
The dotted line is the weighted average of all EDM measurements dA(129Xe) and the shaded
region is σdA .

Source Correction (e cm) Sys. Error (e cm)

Leakage current 0 1.2× 10−28

Charging currents 0 1.7× 10−29

Comagnetometer drift −8.4× 10−29 6.6× 10−28

E-correlated cell motion (rotation) 0 0.4× 10−28

E-correlated cell motion (translation) 0 2.6× 10−28

E2 effects 0 1.2× 10−29

E uncertainty 0 2.6× 10−29

Geometric phase 0 1.3× 10−31

Total −8.4× 10−29 7.3× 10−28

Table 7.6: All false EDM sources discussed in the text and their associated systematic
error. The total systematic error was determined by first adding the correlated errors
(comagnetometer drift and E2 effects) arithmetically and then adding each in quadrature.
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CHAPTER VIII

Conclusion

8.1 Results

After all systematic corrections and unblinding, for the weighted average of 120 EDM

measurements, we find

dA(129Xe) = [0.26± 2.33 (stat.)± 0.73 (sys.)]× 10−27 e cm, (8.1)

which represents an upper limit of

dA(129Xe) ≤ 4.81× 10−27 e cm (95% c.l.). (8.2)

This result is a factor of 1.4 improvement over the previous result by Rosenberry [23] with

one week of data compared to six months and includes an extensive study of systematic

effects.
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Figure 8.1: The final corrected and unblinded EDM measurements (top). dA(129Xe) was
determined from the weighted average of the 120 measurements. Below is a histogram of
the EDM measurements and the red curve is a gaussian with mean µ = 0 and width σ = 1.
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8.2 Future work

There is another EDM data set available from HeXe2018 with a (very preliminary)

sensitivity at the ≈ 5× 10−28 level. In HeXe2018, with better gas purity and adjustments to

the gas mixture, 3He polarization was improved by a factor of 10 and 129Xe polarization by

a factor of two. A better leakage current measurement was completed, and leakage current

to the grounded safety electrode was monitored during the measurements. Combined with

the systematic analysis in this work and an additional cell-motion study, a new and more

sensitive result is expected in the near future.

Other independent analysis methods are currently being investigated including using an

in-phase and quadrature (IQ) method of phase extraction (discussed in Appendix B) and an

alternative EDM extraction method using fitting of the phase data for each run.

Longer term HeXeEDM work includes investigation of cell shape to reduce comagne-

tometer drift following recent studies of 129Xe–3He comagnetometers [114], development

of a flow-through gas system for automated cell filling and continuous running, bipolar

HV, an upgraded dewar with lower SQUID noise, a larger electric field by increasing cell

gas pressure, and higher precision π/2 pulses using improved external magnetometry. The

BMSR-2 was also recently upgraded and now features a higher shielding factor.

With modest improvements in signal-to-noise, longer run-times enabled by an automated

flow-through gas system, and reduction of comagnetometer drift, significant improvement

in the statistical sensitivity is expected. The estimated statistical sensitivity (see Appendix B

for a derivation) is

σd = C(τ, T ∗2 )
h

2E0

√
24

2πτ

1

SNR
, (8.3)

where τ is the integration time which is the HV dwell time, C(τ, T ∗2 ) > 1 is a coefficient

taking into account the signal decay from T ∗2 , and SNR is the dimensionless signal-to-

noise ratio dependent on bandwidth and integration time. Assuming a 20% improvement

in amplitudes over HeXe2018, τ = 800 seconds, E0 = 5 kV/cm, an improved SQUID
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sensitivity of 2 fT/
√

Hz, and T ∗2 decays of approximately 10, 000 seconds for each species,

the estimated statistical sensitivity for 30 days of run-time with 50% efficiency is σd ∼

2.5× 10−29 e cm. However, the biggest limitation to the sensitivity is the comagnetometer

drift. As the experiment signal-to-noise increases, the comagnetometer drift is apparent on

shorter timescales and the integration time must be decreased. In order to reach∼ 10−29 e cm

sensitivity, significant reduction of the drift is necessary through optimization of cell shape

and π/2 pulsing.

8.3 Global EDM context

To demonstrate the impact of an improved 129Xe EDM result in the context of the broader

landscape of EDM measurements, we return to the framework described in Section 2.2.2.

Using Eq. 2.12 and current best limits at the 95% c.l. for dn [22], dHg [24], and dRa [25]

dn = 3.6× 10−26 e cm

dHg = 7.4× 10−30 e cm

dRa = 1.4× 10−23 e cm,

(8.4)

we can determine the influence of reduced 129Xe EDM limits. The result is shown in

Table 8.1 and shows with the eventual sensitivity of 3× 10−29 e cm we are twice as sensitive

to BSM hadronic CP-violating parameters d̄sr
n , ḡ(0)

π , and ḡ(1)
π . This result assumes no other

improvements in other EDM systems before the eventual 3× 10−29 e cm for the 129Xe EDM,

but in the next few years we expect improvements for dRa [25] and for dn from multiple

experiments [5]. Combined with more sensitive EDM measurements of dRa and dn, we

expect significant advancement in our sensitivity to BSM CP-violation in the coming years.
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95% c.l. [e cm] d̄sr
n ḡ

(0)
π ḡ

(1)
π C

(0)
T

6.6× 10−27 [23] 6.0× 10−22 4.0× 10−8 1.2× 10−8 1.3× 10−6

4.8× 10−27 (this work) 5.2× 10−22 3.5× 10−8 1.0× 10−8 1.2× 10−6

5× 10−28 3.2× 10−22 2.1× 10−8 7.1× 10−9 1.2× 10−6

3× 10−29 3.0× 10−22 2.0× 10−8 6.7× 10−9 1.2× 10−6

Table 8.1: Impact of reduced 129Xe EDM limits on the 95% confidence levels for the low
energy CPV parameters d̄sr

n , ḡ
(0)
π , ḡ

(1)
π , and C(0)

T .
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APPENDICES
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APPENDIX A

Data tables

In the following tables, we provide the fitted coefficients and errors for the polynomial

fits of the comagnetometer drift of each HeXe2017 run and the corresponding drift correction

to the EDM (Table A.1)and the uncorrected and corrected EDMs, both in units of frequency

(Table A.2) and EDMs (Table A.3).
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APPENDIX B

Frequency extraction

This appendix provides a derivation of maximum frequency resolution (also referred to

as the Cramer-Rao Lower Bound [36]) of two analysis methods: the in-phase and quadrature

(IQ) method and the time-series analysis (block-fitting) which was the chosen analysis

method for HeXe2017. In the IQ method, the in-phase and quadrature signals are used to

obtain the phase as a function of time, and a linear fit of that phase provides the frequency.

Below, we first review the derivations of the maximum frequency resolution (assuming white

phase noise) using the IQ method for frequency extraction in the case of a single-frequency

signal with no decay and then a decaying single-frequency signal. In the second section, we

do the same calculations for the block-fitting technique.

B.1 IQ method

B.1.1 Single frequency with no decay

The voltage signal observed from spin precession, V (t) can be described as the follow-

ing:

V (t) = V0 sin(ω0t+ φ0) + n(t), (B.1)
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where n(t) is additive white voltage noise with power σ2
V . The IQ procedure for determining

the frequency is detailed below. First, we need to determine σφ as a function of σV . Then,

we can determine σf from a linear fit of the phases. Starting with two orthogonal reference

signals

Vref1 = sin(ωref t)

Vref2 = cos(ωref t),

we multiply the original signal by each reference signal

V1 = V0 sin(ω0t+ φ0) sin(ωref t) + n(t) · sin(ωref t)

V2 = V0 sin(ω0t+ φ0) cos(ωref t) + n(t) · cos(ωref t).

Here, the noise terms have power σ2
V /2 and are uncorrelated. Rewriting the above,

V1 =
V0

2
[cos((ω0 − ωref )t+ φ0)− cos((ω0 + ωref )t+ φ0)]

V2 =
V0

2
[sin((ω0 − ωref )t+ φ0) + sin((ω0 + ωref )t+ φ0)] ,

we note that there is a low-frequency term and a high-frequency term. The high-frequency

term is filtered out with a low-pass filter for the in-phase and quadrature signals. Defining

ω ≡ ω0 − ωref we have φ(t) ≡ ωt+ φ0, which is discretized as shown below with ti = τ
N
i

φi = φ0 + ωti. (B.2)

Finally,

V i
I =

V i
0

2
cosφi V i

Q =
V i

0

2
sinφi φi = arctan

V i
Q

V i
I

. (B.3)
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Now we can determine the errors (dropping the index for the moment):

σ2
φ =

(
VI

V 2
Q + V 2

I

)2

σ2
VQ

+

(
−VQ

V 2
Q + V 2

I

)2

σ2
VI

σ2
φ =

(
VI

V 2
Q + V 2

I

)2
σ2
V

2
+

(
−VQ

V 2
Q + V 2

I

)2
σ2
V

2

=
σ2
V

2

[(
cosφ

V0/2

)2

+

(
sinφ

V0/2

)2
]

=
σ2
V

2

(
2

V0

)2

=
2σ2

V

V 2
0

We find that the uncertainty per point for phase and voltage are related by

σiφ =

√
2σiV
V i

0

(B.4)

Aside:

The following is from Bevington [107] Chapter 6. For a linear function

y(x) = a+ bx,

the uncertainty in b after a least-squares fit is

σ2
b =

1

∆

∑ 1

σ2
i

where

∆ =

∣∣∣∣∣∣∣
∑

1
σ2
i

∑
xi
σ2
i∑

xi
σ2
i

∑ x2i
σ2
i

∣∣∣∣∣∣∣ =
∑ 1

σ2
i

∑ x2
i

σ2
i

−
(∑ xi

σ2
i

)2

.
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We can obtain ω from a linear fit of the phase

σ2
ω =

1

∆

N∑
i=1

1

σ2
φi

=
1

∆

N∑
i=1

V 2
0

2σ2
V

=
1

∆
N
V 2

0

2σ2
V

(B.5)

where

∆ =
∑ 1

σ2
i

∑ t2i
σ2
i

−
(∑ ti

σ2
i

)2

=
( τ
N

)2
(
V 2

0

2σ2
V

)2
N N∑

i=1

i2 −

(
N∑
i=1

i

)2


=
( τ
N

)2
(
V 2

0

2σ2
V

)2(
1

12
N2(N2 − 1)

)
= (τ)2

(
V 2

0

2σ2
V

)2(
1

12
(N2 − 1)

)
≈ τ 2

12

(
N
V 2

0

2σ2
V

)2

. (B.6)

Finally,

σf =

√
24

2πτ

σV /
√
N

V0

=

√
24

2πτ

1

SNR
. (B.7)

B.1.2 Single frequency with exponential decay

With exponential decay our signal is

V (t) = V0 e
−t/T2 sin(ωreft+ φ(t)). (B.8)
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The calculation is the same, but now we replace V i
0 with V ′i0 = V0 e

−ti/T2 .

σ2
ω =

1

∆

N∑
i=1

1

σ2
φi

=
1

∆

N∑
i=1

(V ′i0 )2

2σ2
V

=
1

∆

V 2
0

2σ2
V

N∑
i=1

e
−
(

2τ
NT2

)
i

=
1

∆

V 2
0

2σ2
V

N∑
i=1

e− 2τ
NT2︸ ︷︷ ︸
β

i

=
1

∆

V 2
0

2σ2
V

N∑
i=1

βi =
1

∆

V 2
0

σ2
V

[
β

β − 1

(
βN − 1

)]

=
1

∆

V 2
0

2σ2
V

[
1

1− e
2τ
NT2

(
e
− 2τ
T2 − 1

)]

Using, for small x, 1
1−ex ≈ −

1
x
,

σ2
ω =

1

∆
N
V 2

0

2σ2
V

(
T2

τ

1− e−
2τ
T2

2

)
︸ ︷︷ ︸

This term→ 1 as T2 →∞

Next,

∆ =
∑ 1

σ2
i

∑ t2i
σ2
i

−
(∑ ti

σ2
i

)2

=

(
V 2

0

2σ2
V

)2 ( τ
N

)2
[∑

βi
∑

i2βi −
(∑

iβi
)2
]

The leading term is:

∆ ≈
(
V 2

0

2σ2
V

)2 ( τ
N

)2 N4T 2
2

16τ 4

[
e
− 4τ
T2

(
−4τ 2e

2τ
T2 − 2T 2

2 e
2τ
T2 + T 2

2 e
4τ
T2 + T 2

2

)]
=

(
N
V 2

0

2σ2
V

)2
T 4

2

16τ 2

[
1−

(
4
τ 2

T 2
2

+ 2

)
e
−2τ
T2 + e

−4τ
T2

]
︸ ︷︷ ︸

This does, in fact, reduce to τ2/12 as expected in the limit that T2 →∞

(B.9)
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If τ = T2 this simplifies to

=

(
N
V 2

0

2σ2
V

)2
τ 2

16

[
1− 6e−2 + e−4

]
Finally, we have

σ2
ω =

2σ2
V

V 2
0 N

12τ

T 3
2

2

3
· 1− e−

2τ
T2

1−
(

4 τ2

T 2
2

+ 2
)
e
−2τ
T2 + e

−4τ
T2


σf = C(τ, T2)

√
24

2πτ

σV /
√
N

V0

, (B.10)

where

C(τ, T2) =

√√√√√2

3

τ 3

T 3
2

· 1− e−
2τ
T2

1−
(

4 τ2

T 2
2

+ 2
)
e
−2τ
T2 + e

−4τ
T2

(B.11)

For τ = T2,

σf =

(√
2

3
· 1− e−2

1− 6e−2 + e−4

) √
24

2πτ

σV /
√
N

V0

σf ≈ (1.7)

√
24

2πτ

σV /
√
N

V0

= (1.7)

√
24

2πτ

1

SNR
. (B.12)

B.2 Block-fitting method

For the block-fitting method, the measurement time τ is split up so that

τ = nτ0

where n is the number of blocks and τ0 is the block size. Each block is fitted separately

using the separable nonlinear least-squares method detailed below to determine a phase and

amplitude for each block.

132



Separable nonlinear least-squares: The variable projection method

The following is an overview of the method described in Ref. [109], Section 2.a

Given a set of observations yi the residuals for a model that is a linear combination

of nonlinear functions can be written as

ri(a,α) = yi −
n∑
j=1

ajπj(α; ti).

Here, a and α describe the linear and nonlinear parameters to be determined. The

functional to be minimized is

‖r(a,α)‖2
2 = ‖y −Π(α)a‖2

2

where Π(α) is a matrix composed of the nonlinear functions πj(α; ti) evaluated at

all ti-values. If the nonlinear parameters αk are known, the linear parameters can be

determined by solving the linear least-squares problem

a = Π(α)+y

where Π(α)+ is the Moore-Penrose generalized inverse of Π(α). Replacing a in this

form in the original functional, the minimization problem becomes

min
α

1

2

∥∥(I−Π(α)Π(α)+
)

y
∥∥2

2
.

In the above form of the functional, the linear parameters have been eliminated so

we can define

r2(α) =
(
I−Π(α)Π(α)+

)
y
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which is called the variable projection (VP) of y. The functional 1
2
‖r2(α)‖2

2 is the VP

functional.

The VP method requires first minimization of the VP functional to obtain the optimal

values for the nonlinear parameters αk which are used to obtain the linear least-squares

problem a = Π(α)+y. This is then solved to obtain the linear parameters aj .
aI’ve slightly changed the notation, using π/Π instead of φ/Φ to avoid confusion later in the text

since I use φ and Φ for phases.

B.2.1 Single frequency with no decay

Suppose we are starting with a voltage signal that can be described as

V (t) = V0 sin Φ(t) (B.13)

where

Φ(t) = ω0t+ φ(t). (B.14)

B.2.1.1 Method description

First, we will divide up the voltage signal into blocks of length τ0. There are N = fs · τ

total points in the data set and n blocks of length τ0. We will use the index m for blocks

and i or j for points. Each block has Nb points, where Nb = fs · τ0. For simplicity, we’ll set

t0 = ti=1 = 0.

The resulting data to be analyzed can be written in the form

V m(t) = V m
0 sin Φm(t) (B.15)

where t = [0, τ0]. The same time interval is used for each block of voltage data. This choice

will become clear later. The goal is to determine V m
0 and Φm for each block. Next, we do a
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separable nonlinear least-squares fit, where the fit function is

f(t) = A sin(ωt) +B cos(ωt). (B.16)

The fitted parameters are the linear parameters Am, Bm and the nonlinear parameter ωm.

As shown in the previous section, this can also be written as

f(t) = V0 sin(ωt+ φ) (B.17)

defining V as the amplitude and φ as the phase at t = 0. Therefore, from the fitted parameters

we can obtain V m
0 and φm. Note that, because of the way we have defined the time interval

of the fit, the latter is the phase at the beginning of the block. To determine the accumulated

phase Φ(t), where here t = 0, τ0, . . . , (n− 1)τ0, we use the following

Φm = φm +
{

Φm−1 + ωm−1τ0 −
(
Φm−1 + ωm−1τ0

)
mod(2π)

}
(B.18)

where the term in brackets is simply the number of cycles until the current block. Note that

this is a slightly different definition for Φ than previously used in Eq. B.15. Previously, Φ(t)

denoted time-evolution of the phase within a block, but from now on we will use it only

for time-evolution from block-to-block. Any time-evolution within a block will be made

explicit (i.e. using ωt).

B.2.1.2 Error determination: Part 1

Now, we will discuss the errors of V m
0 and Φm. We will begin by determining the error of

the fitted parameters Am, Bm and ωm from the separable nonlinear least-squares fit. Recall

that the data for each block is

V m
i = V m

0 sin (Φm + ωm0 ti) (B.19)
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with ti = τ
N
i = τ0

Nb
i. Dropping the block index and using the notation in the above overview

of VP method, the linear parameters a = (A,B) and nonlinear α = ω. We have

ri = Vi −
2∑

k=1

akπk(ω, ti)

where π1(t) = sin(ωt) and π2(t) = cos(ωt) evaluated at points ti for i = 1, 2, . . . , Nb

compose the columns of matrix Π(ω). The VP of V is

rV P (ω) =
(
I−Π(ω)Π(ω)+

)
V

or

rV Pi =

Nb∑
j

(
δij −

2∑
k

π(ω)ikπ(ω)+
kj

)
Vj.

For the first part of the VP method, the nonlinear minimization problem, the χ2 to be

minimized is

χ2
nlin =

Nb∑
i

[
1

σi

Nb∑
j

(
δij −

2∑
k

π(ω)ikπ(ω)+
kj

)
Vj

]2

(B.20)

where σi is the voltage error per point σV .

If Π(ω) = (sinωt, cosωt), a suitable pseudoinverse is Π+(ω) = 1
2
(cscωt, secωt)T .

After the optimum value for ω has been determined, which we’ll denote as ω̂, we can then

solve the linear problem,  A

B

 =
1

2

 csc ω̂t

sec ω̂t

V. (B.21)
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Aside:

The following is from Bevington [107] Chapter 7. For a function that is linear in its

parameter ak:

y(x) =
m∑
k=1

akfk(x).

Then, using

∆ =

∣∣∣∣∣∣∣∣∣∣

∑ f1(xi)f1(xi)

σ2
i

∑ f1(xi)f2(xi)

σ2
i

· · ·∑ f2(xi)f1(xi)

σ2
i

∑ f2(xi)f2(xi)

σ2
i

· · ·
...

... . . .

∣∣∣∣∣∣∣∣∣∣
,

we can determine the parameters

a1 =
1

∆

∣∣∣∣∣∣∣∣∣∣

∑
yi
f1(xi)

σ2
i

∑ f1(xi)f2(xi)

σ2
i

· · ·∑
yi
f2(xi)

σ2
i

∑ f2(xi)f2(xi)

σ2
i

· · ·
...

... . . .

∣∣∣∣∣∣∣∣∣∣
,

a2 =
1

∆

∣∣∣∣∣∣∣∣∣∣

∑ f1(xi)f1(xi)

σ2
i

∑
yi
f1(xi)

σ2
i
· · ·∑ f2(xi)f1(xi)

σ2
i

∑
yi
f2(xi)

σ2
i
· · ·

...
... . . .

∣∣∣∣∣∣∣∣∣∣
, etc.

Then, from the symmetric matrix

αlk ≡
∑[

1

σ2
i

fl(xi)fk(xi)

]
,

we can determine the covariance matrixσ2 = α−1, where the diagonal elements provide

the errors σ2
ak

.

Let’s calculate ∆, parameters A and B, and the symmetric matrix α. We are assuming
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ω0 ≈ ω̂ ≡ ω. First, with ti = τ0
Nb
i:

∆ =

Nb∑
i=1

1

σ2
i

sin2(ωti)

Nb∑
i=1

1

σ2
i

cos2(ωti)−

(
Nb∑
i=1

1

σ2
i

sin(ωti) cos(ωti)

)2

=

(
1

σ2
V

)2
 Nb∑
i=1

sin2(ωti)

Nb∑
i=1

cos2(ωti)−

(
Nb∑
i=1

sin(ωti) cos(ωti)

)2


=

(
1

σ2
V

)2
1

4

(
N2
b − csc2(

ωτ0

Nb

) sin2(ωτ0)

)
≈
(

1

σ2
V

)2
N2
b

4

{
1− sin2 ωτ0

ωτ0

}

Since sin2 x/x2 is strongly peaked at x = 0 and ωτ0 is not likely to be small, we can neglect

the second term in brackets.

≈
(

1

σ2
V

)2
N2
b

4

Next,

A =
1

∆

[
Nb∑
i=1

Vi
σ2
i

sin(ωti)

Nb∑
i=1

1

σ2
i

cos2(ωti)−
Nb∑
i=1

Vi
σ2
i

cos(ωti)

Nb∑
i=1

1

σ2
i

sin(ωti) cos(ωti)

]

=
1

∆

(
V0

σ4
V

)[ Nb∑
i=1

sin(ωti + Φ) sin(ωti)

Nb∑
i=1

cos2(ωti) . . .

−
Nb∑
i=1

sin(ωti + Φ) cos(ωti)

Nb∑
i=1

sin(ωti) cos(ωti)

]

=
1

∆

(
V0

σ4
V

)[
−1

8
cos Φ

(
N2
b cos

(
2ωτ0

Nb

)
−N2

b − cos(2ωτ0) + 1

)
csc2

(
τ0ω

Nb

)]
≈ 1

∆

(
V0

σ4
V

)
N2
b cos Φ

(
2ω2τ 2

0 + cos(2ωτ0)− 1

8ω2τ 2
0

)
≈ 1

∆

(
V0

σ2
V

)
N2
b cos Φ

(
1

4

)
=
(
σ2
V

)2 4

N2
b

(
V0

σ4
V

)
N2
b

4
cos Φ

= V0 cos Φ

138



Similarly, we find B = V0 sin Φ. We can now determine α

αjk =
∑
i

1

σ2
i

π̂j(ti)π̂k(ti)

Using ω̂ti = ω̂ τ0
Nb
i ≡ ξi

α =
1

σ2
V

 ∑
sin2 ξi

∑
sin ξi cos ξi∑

sin ξi cos ξi
∑

cos2 ξi


≈ 1

2

Nb

σ2
V

 1 0

0 1


which gives us

σ2
A = σ2

B =
2σ2

V

Nb

(B.22)

Noting that σφ = σΦ we can obtain an expression for the phase error

σ2
Φ =

(
B

A2 +B2

)2

σ2
A +

(
A

A2 +B2

)2

σ2
B

=
2σ2

V

Nb

(
1

A2 +B2

)
=

2σ2
V

Nb

(
1

V 2
0

)

Finally we have

σΦ =
√

2

(
σV /
√
Nb

V0

)
=
√

2n

(
σV /
√
N

V0

)
(B.23)

To get the frequency from the previously determined Φ(t), where t = 0, τ0, 2τ0, . . . (n−

1)τ0, we again use a linear fit to obtain the same result as the IQ method,

σ2
ω =

1

∆

n−1∑
i=0

1

σ2
Φi

=
1

∆

n−1∑
i=0

V 2
0 Nb

2σ2
V

=
1

∆
nNb

V 2
0

2σ2
V

=
1

∆
N
V 2

0

2σ2
V

(B.24)
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where we used N = nNb.

∆ =
∑ 1

σ2
i

∑ t2i
σ2
i

−
(∑ ti

σ2
i

)2

=

(
V 2

0

σ2
V

Nb

2

)2
τ 2

n2

n n−1∑
i=0

i2 −

(
n−1∑
i=0

i

)2


=

(
V 2

0

σ2
V

Nb

2

)2

τ 2

(
1

12
(n2 − 1)

)
≈ τ 2

12

(
V 2

0

σ2
V

N

2

)2

.

Finally,

σf =

√
24

2πτ

σV /
√
N

V0

. (B.25)

B.3 Comparison with simulated data

To confirm the estimations of the Cramer-Rao Lower Bound (CRLB) from Eqs. B.7,

B.10, and B.25, we compared the results of frequency extraction using both the block-fitting

method and the IQ method using simulated data. The datasets were generated as sinusoidal

signals with additive white Gaussian noise. We compare the results of simulated data with

and without decay for one and two frequency signals. Then, for two frequency signals, we

added common-mode frequency drift, similar to a B0 drift. Each dataset of a given type (e.g.,

a single frequency with decay) has the same signal with different white noise. Note that the

IQ method errors are underestimated because the signals are filtered and the autocorrelation

was not accounted for when determining error bars from the linear phase fits.

All data sets were 1000 seconds long. The data with signal decay had a decay time

constant of T2 = 1000 s. The data with B0 drift had a drift of 100 pT/hr. The frequencies

were determined from the simulated B0 using the 129Xe and 3He gamma ratios. For single

frequency data, the frequency was ≈ 30.7 Hz. For two frequency data, the second frequency

was ≈ 84.5 Hz.
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Figure B.1: The extracted frequencies from the IQ method and for varying block-lengths
using the block-fitting method for single-frequency data without signal decay.
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Figure B.2: The extracted frequencies from the IQ method and for varying block-lengths
using the block-fitting method for single-frequency data with signal decay.
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Figure B.4: The extracted frequencies from the IQ method and for varying block-lengths
using the block-fitting method for two-frequency data without signal decay but with an
added “B0” drift of 100 pT/hr. The second added frequency was f2 = rf1. After extracting
individual frequencies they were the first frequency was “comagnetometer”-corrected using
fcomagnetometer = f1 − rf2.

We find that the calculated frequency resolution using Eq. B.10 and the frequency errors

using the block-fitting method are in good agreement.
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Figure B.5: The extracted frequencies from the IQ method and for varying block-lengths
using the block-fitting method for two-frequency data with signal decay and added B0 drift.
The second added frequency was f2 = rf1. After extracting individual frequencies they
were comagnetometer-corrected fcomagnetometer = f1 − rf2.
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APPENDIX C

Monte Carlo study

We used simulated data to perform a Monte Carlo (MC) experiment as a test of the

accuracy of the analysis method used for HeXe2017. In particular, to test the extracted

statistical error and to evaluate the validity of the drift correction method. Additionally, the

study clarifies bias with respect to analysis parameters.

To investigate the validity of the frequency resolution estimate in the case of noise that is

only locally white as is the case for SQUID data, we performed a study using simulated data

with real noise instead of additive white Gaussian noise which was used in the numerical

studies presented in Appendix B.

Simulated data generation

A set of simulated data was generated using the parameters in Table C.1. For each run,

a spin precession signal was generated with the same amplitude and T ∗2 decay time for

each species as in the actual run. The B0 drift was generated as a random walk process

(see Fig. C.1) and the species-dependent drifts ωsdXe/He(t) as a decaying exponential with

randomized T1 between 5000–15000 seconds and randomized amplitudes between 0 and

1 µHz.
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The frequencies were generated using

ω0
He(t) = γHeB0(t) + ωsdHe(t) (C.1)

and similarly for ω0
Xe(t). Both frequencies were integrated to generate Φ0

He(t) and

Φ0
Xe(t). The Advanpix Multiprecision Computing Toolbox for MATLAB [115] was used

for greater precision for the phases. To Φ0
Xe(t), a false EDM phase shift corresponding to

−3 × 10−27 e cm was added, using the high-voltage monitor signal from the run and the

length of each cell.

Figure C.1: An example of 15 generated random-walk B0 drifts.

Next, the spin precession signal was generated using the phases and the real run ampli-

tudes and T ∗2 times from Table C.1. The signals had the form

Z(t) = A0
Xe cos Φ0

Xe(t)e
−t/T ∗2,Xe + A0

He cos Φ0
He(t)e

−t/T ∗2,He . (C.2)
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These 16 generated signals were added to the real noise spectra of the 16 runs for each

of the MC cases. Each of the MC cases used the same 16 noise spectra but a different

frequency. The real noise spectra were obtained by applying a sharp band-stop filter to the

129Xe and 3He frequencies in the data. The MC frequencies were added sufficiently far away

to avoid the filtered portion of the frequency spectrum. The MC frequencies were chosen to

be in a portion of the frequency spectrum that was also flat and at least 10 mHz away from

any other previously chosen MC frequency [36].

Results

The data were divided into blocks and HV segments and analyzed using the method

described in Chapter VI. The results for this analysis are shown for N = 100 MC cases

in Fig. C.4. The comagnetometer drift was corrected using two methods: (1) the method

outlined in Chapter VII Section 7.4 and (2) EDM extraction directly from a polynomial fit.

The results are shown in Fig. C.5. The extracted EDM is ≈ 1.7 σ from with the input EDM,

and the error bar is consistent with the standard error of the 100 cases. Another method

was investigated using a polynomial fit containing an additional EDM term. In this method,

Eq. 7.15 was used directly as the fitting function for the segment frequencies and the EDM

and error were fit outputs. The results are shown in Fig. C.6 and are consistent with the first

method. The results for all three methods are provided in Tables C.2 and C.3.

To determine if the deviation from the input EDM is a fluctuation or the result of a

systematic error in the drift correction, further study is required. If the result is due to a bias,

the bias is . 4× 10−28. This possibility can be investigated with another MC study on a

data set with no added comagnetometer drift. Further investigation into the discrepancy

between the standard error and the extracted mean error is also required. The discrepancy

may be a result of the bandstop filter used to generate the noise data from the real precession

data.
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[10−27e cm] EDM extracted err. standard err. standard dev.

Uncorrected −3.650 0.225 0.243 2.431

Method 1 −3.382 0.229 0.243 2.432

Method 2 −3.424 0.223 0.249 2.492

Table C.2: Results from an average of the MC EDMs for each method. All values are in units
of 10−27e cm. The standard error is σ/

√
N , where σ is the standard deviation of the EDM

values and N = 100 is the number of MC cases. The input EDM was −3 × 10−27 e cm.
The data used are in Table C.3.

Figure C.3: Histograms of the uncorrected MC EDM values (top), after drift-correction
using the polynomial fit method of the HeXe2017 analysis (middle), and using polynomial
fit with an EDM term (bottom). The red curves are fits to a gaussian distribution.
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Figure C.7: A histogram of the χ2 values from the uncorrected MC EDMs and the drift-
corrected MC EDMs using Method 1. The histogram has been normalized to unit area and
the χ2 probability density function for 119 degrees of freedom is also shown.
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APPENDIX D

Choice of analysis parameters

For the HeXe2017 analysis, the analysis parameters chosen were: use of Z1 over the

gradiometer Zgrad, FIR high-pass filtering < 5 Hz, 6-parameter fit, 20 second block size,

[−τ/2, τ/2] block interval, 4 HV segments for each EDM sequence, and linear fit of phases

to determine frequency. The following is a discussion about the use of the high-pass filter to

remove baseline drift in order to use a 6-parameter fit.

The filtered data are shifted by time delay that is the same for all frequencies that needs

to be corrected so that the HV timing is unaffected. The filter used and the correction are

Listing D.1: Matlab code for creating FIR filter (requires Signal Processing Toolbox)

1 hpFilt = designfilt('highpassfir','StopbandFrequency',0.5,'

PassbandFrequency',5,'StopbandAttenuation',100,'

PassbandRipple',.001,'SampleRate',f_sample);

2 D = mean(grpdelay(hpFilt));

3 zdata = filter(hpFilt,[zdata;zeros(D,1)]);

4 zdata = zdata(D+1:end)

where f_sample is the sampling frequency 915.5245 Hz.
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Figure D.1: Magnitude response for the FIR high-pass filter used for the HeXe2017 analysis.

Figure D.2: Phase response for the FIR high-pass filter used for the HeXe2017 analysis.
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Figure D.3: dφ/dω for the FIR high-pass filter used for the HeXe2017 analysis.

A delay would cause the following:

ωfilt
Xe = ωunfilt

Xe +
d

dt

(
dφXe

dω
· δω

)
= ωunfilt

Xe +
dφXe

dω
·
(
γXe

dB

dt
+
dω′Xe

dt

)
(D.1)

where the last term is a species-dependent frequency shift. Then the comagnetometer

frequency is

ωfilt
Xe,co = ωfilt

Xe −
γXe

γHe

ωfilt
He

= ωunfilt
Xe,co +

dφXe

dω
·
(
γXe

dB

dt
+
dω′Xe

dt

)
−
[
dφHe

dω
·
(
γXe

dB

dt
+
γXe

γHe

dω′He

dt

)]

If dφXe

dω
= dφHe

dω
= dφ

dω
as seen above, then

ωfilt
Xe,co = ωunfilt

Xe,co +
dφ

dω
·
(
dω′Xe

dt
− γXe

γHe

dω′He

dt

)

This is a correction on the order of the comagnetometer drift. If the comagnetometer
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drift is ∼ 1 nHz/s then this causes a correction of < 0.6 nHz in the extracted xenon

comagnetometer-corrected frequency. The error bar for each HV segment is typically 50–

100 nHz. Also note that the segment lengths have been chosen such that comagnetometer

drift within a HV segment is below the phase noise, so this term does not affect our extracted

frequencies and errors.

Next, we compare the use of a Z-gradiometer vs. Z1 magnetometer for analysis and

compare m = 6, 7, 8 parameter fits. The 6 parameter fit contains no SQUID offset or

baseline drift terms, the 7-parameter adds the offset, and the 8-parameter fit contains both.

C84 Z-gradiometer and Z1, both filtered and unfiltered, were analyzed with a 6, 7, and 8

parameter fit. For each block fit, we determined the statistic Fχ comparing the 6 and 7 or

the 7 and 8-parameter fit. For the full run, there were 36 segments each with 19 blocks.

Signal m filtered? F avg
χ P avg

Zgrad 6→ 7 no 2.4× 106 1

Zgrad 7→ 8 no 1.3× 10−2 0.0733

Zgrad 6→ 7 yes 2.4× 10−5 0.0039

Zgrad 7→ 8 yes 1.9× 10−5 0.0009

Z1 6→ 7 no 1.5× 104 1

Z1 7→ 8 no 2.2× 10−3 0.0330

Z1 6→ 7 yes 1.8× 10−6 0.0009

Z1 7→ 8 yes 5.6× 10−6 0.0015

Table D.1: Fχ averaged for all blocks and segments and corresponding probabilities.

We find no difference in the results using the 8-parameter fit with unfiltered data and a

6-parameter fit with filtered data.
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Signal m filtered? fEDM (nHz)

Zgrad 6 no 93.92± 866.6

Zgrad 7 no 42.30± 16.8

Zgrad 8 no 42.10± 16.8

Zgrad 6 yes 42.17± 16.8

Zgrad 7 yes 42.18± 16.8

Zgrad 8 yes 42.18± 16.8

Z1 6 no 72.77± 543.21

Z1 7 no 28.73± 15.28

Z1 8 no 28.73± 15.28

Z1 6 yes 28.70± 15.28

Z1 7 yes 28.69± 15.28

Z1 8 yes 28.69± 15.28

Table D.2: Frequencies extracted from each method using a weighted average of sequences
of 4. These frequencies have an additional blind as well as the HeXe2017 blind and should
only be compared with each other.
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Figure D.4: Some comparisons of the filtered (delay corrected) and unfiltered signals. Top
plot is the full unfiltered and filtered signal plotted separately. Bottom the two plotted on the
same graph (with initial offset removed), zoomed in at various intervals.

167



BIBLIOGRAPHY

168



BIBLIOGRAPHY

[1] C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer,
L. Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L. Wright, C. Barnes, M. R.
Greason, R. S. Hill, E. Komatsu, M. R. Nolta, N. Odegard, H. V. Peiris, L. Verde,
and J. L. Weiland, “First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Preliminary Maps and Basic Results,” The Astrophysical Journal
Supplement Series, vol. 148, pp. 1–27, Sept. 2003.

[2] E. W. Kolb and M. S. Turner, The early universe. Addison-Wesley Publishing
Company, 1990.

[3] J. M. Cline, “Baryogenesis,” arXiv e-prints, pp. hep–ph/0609145, Sept. 2006.

[4] A. Sakharov, “Violation of CP invariance, C asymmetry, and Baryon Asymmetry of
the Universe,” JETP Lett., vol. 5, p. 24, 1967.

[5] T. E. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, “Electric dipole moments
of the atoms, molecules, nuclei and particles,” ArXiv e-prints, Oct 2017.

[6] R. D. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles,”
Phys. Rev. Lett., vol. 38, pp. 1440–1443, Jun 1977.

[7] I. B. Khriplovich and S. K. Lamoreaux, CP Violation Without Strangeness. Springer
Berlin Heidelberg, 1997.

[8] E. M. Purcell and N. F. Ramsey, “On the possibility of electric dipole moments for
elementary particles and nuclei,” Phys. Rev., vol. 78, pp. 807–807, Jun 1950.

[9] J. Smith, A Search for a Permanent Electric Dipole Moment of the Neutron. PhD
thesis, Harvard University, 1951.

[10] J. H. Smith, E. M. Purcell, and N. F. Ramsey, “Experimental limit to the electric
dipole moment of the neutron,” Phys. Rev., vol. 108, pp. 120–122, Oct 1957.

[11] T. D. Lee and C. N. Yang, “Question of parity conservation in weak interactions,”
Phys. Rev., vol. 104, pp. 254–258, Oct 1956.

[12] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, “Experimental
test of parity conservation in beta decay,” Phys. Rev., vol. 105, pp. 1413–1415, Feb
1957.

169



[13] R. L. Garwin, L. M. Lederman, and M. Weinrich, “Observations of the failure of
conservation of parity and charge conjugation in meson decays: the magnetic moment
of the free muon,” Phys. Rev., vol. 105, pp. 1415–1417, Feb 1957.

[14] J. I. Friedman and V. L. Telegdi, “Nuclear emulsion evidence for parity nonconser-
vation in the decay chain π+ − µ+ − e+,” Phys. Rev., vol. 105, pp. 1681–1682, Mar
1957.

[15] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, “Evidence for the 2π
decay of the k0

2 meson,” Phys. Rev. Lett., vol. 13, pp. 138–140, Jul 1964.

[16] L. I. Schiff, “Measurability of nuclear electric dipole moments,” Phys. Rev., vol. 132,
pp. 2194–2200, Dec 1963.

[17] P. Sandars, “The electric dipole moment of an atom,” Physics Letters, vol. 14, no. 3,
pp. 194 – 196, 1965.

[18] P. Sandars, “Enhancement factor for the electric dipole moment of the valence electron
in an alkali atom,” Physics Letters, vol. 22, no. 3, pp. 290 – 291, 1966.

[19] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, “Electric dipole moments of
nucleons, nuclei, and atoms: The standard model and beyond,” Progress in Particle
and Nuclear Physics, vol. 71, pp. 21 – 74, 2013. Fundamental Symmetries in the Era
of the LHC.

[20] T. E. Chupp and M. Ramsey-Musolf, “Electric dipole moments: A global analysis,”
Phys. Rev. C, vol. 91, p. 035502, Mar 2015.

[21] N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi, and B. P. Das, “Probing
exotic phenomena at the interface of nuclear and particle physics with the electric
dipole moments of diamagnetic atoms: A unique window to hadronic and semi-
leptonic CP violation,” The European Physical Journal A, vol. 53, p. 54, Mar 2017.

[22] J. M. Pendlebury, S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Bison, K. Bodek,
M. Burghoff, P. Geltenbort, K. Green, W. C. Griffith, M. van der Grinten, Z. D.
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