
Enhancing Prediction Efficacy with
High-Dimensional Input Via Structural Mixture

Modeling of Local Linear Mappings

by

Chun-Chen Tu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in The University of Michigan
2019

Doctoral Committee:

Senior Researcher Florence Forbes, Co-Chair
Professor Naisyin Wang, Co-Chair
Associate Professor Veronica Berrocal
Dr. Pin-Yu Chen
Professor Kerby Shedden

Chun-Chen Tu

timtu@umich.edu

ORCID iD: 0000-0002-6619-9521

© Chun-Chen Tu 2019

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . viii

LIST OF APPENDICES . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Research challenges . 2
1.3 Dissertation outline . 11

II. Hierarchical Gaussian Locally Linear Mapping 13

2.1 Limitations of Gaussian Locally Linear Mapping (GLLiM) . . 16
2.2 Hierarchical Gaussian Locally Linear Mapping (HGLLiM) . . 21

2.2.1 Model description 22
2.2.2 HGLLiM model with partially-latent responses . . . 24

2.3 Estimation procedure . 25
2.3.1 The EM algorithm for HGLLiM 26
2.3.2 Robust estimation procedure 29
2.3.3 Tuning parameter selection 32

2.4 Numerical results . 36
2.4.1 The face dataset . 37
2.4.2 The orange juice dataset 41

2.5 Conclusion . 44

III. Parallel Model Training of HGLLiM 46

3.1 Parallel model training of large-scale datasets 46

ii

3.2 Magnetic resonance vascular fingerprinting 48
3.2.1 Analysis and subsetting of the synthetic data 50
3.2.2 Numerical results 53

3.3 Single-channel source separation 61
3.3.1 Time-frequency masking 63
3.3.2 Using locally linear mappings for source separation . 66

3.4 Numerical results . 67
3.5 Conclusion . 70

IV. Robust Gaussian Locally Linear Mapping 72

4.1 Model specification . 75
4.2 Expectation-Maximization algorithm 80
4.3 Simulation studies . 83

4.3.1 Simulation settings 83
4.3.2 Parameter selection 89

4.4 Numerical investigation using real-world datasets 93
4.4.1 The orange juice data 93
4.4.2 The fingerprint data 95

4.5 Conclusion . 99

V. Zeroth Order Optimization Method for Adversarial Example
Generation . 100

5.1 AutoZOOM . 103
5.2 Efficient mechanism for gradient estimation 105

5.2.1 Random vector based gradient estimation 105
5.2.2 Attack dimension reduction 108
5.2.3 AutoZOOM algorithm 110

5.3 Numerical results . 111
5.3.1 Experimental setup 111
5.3.2 Black-box attacks on MNIST 114
5.3.3 Black-box attacks on CIFAR-10 115
5.3.4 Black-box attacks on ImageNet 116
5.3.5 Dimension reduction and query efficiency 117

5.4 Conclusion . 118

VI. Prediction when Input Signals are Corrupted or Adversari-
ally Perturbed . 119

6.1 Robust preprocessing system 120
6.1.1 Aberrant data detector 121
6.1.2 Aberrant data corrector 126

6.2 Numerical results . 128
6.2.1 Generation of abnormal images 128

iii

6.2.2 Corrupted image reconstruction 129
6.2.3 Detection performance 130
6.2.4 Prediction results 139

6.3 Conclusion . 142

VII. Conclusion and Future Work . 143

APPENDICES . 147

BIBLIOGRAPHY . 165

iv

LIST OF FIGURES

Figure

2.1 The clustering results of the face dataset obtained from GLLiM: (a)
six face images from Cluster 7; (b) scatter plot of T for points within
Cluster 7 and 13 clustered by GLLiM. Data points are from Cluster
7 (circle) and Cluster 13 (triangle). The three variables are (Light,
Pan, Tilt). 20

2.2 The logarithm of the approximated volume of Γ∗kl against the cluster
size. 35

2.3 Results for different user-defined parameters of the face dataset. (a)
The HGLLiM cross-validation results for different K and Lw. (b) The
prediction MSE of different K and different methods against different
dropThresholds. 38

2.4 The prediction MSE of the face dataset under different dimensions
of X. Each image in the face dataset consists of `× ` pixels, where `,
the side length of the image, is the square root of the dimension of X. 39

2.5 The orange juice dataset. The upper panel shows the high-dimensional
data (X) and the lower one shows the low-dimensional data (T). . . 42

2.6 Results for the user-defined parameters of the orange juice dataset.
(a) The HGLLiM cross-validation results for different K and Lw. (b)
The prediction MSE of different K and different methods against
different dropThresholds. 43

3.1 The distribution of parameters (T). The x-axis shows the index of
observations and the y-axis marks the values of each observation in
different dimensions. (a) Dimensions 1 to 3; (b) Dimensions 4 to 6. 52

3.2 The predicted BVf images of one animal from the 9L group using ei-
ther (a) dictionary matching, (b) GLLiM, (c) HGLLiM or (d) GLLiM-
structure. In each plot, the ROI on the left marks the lesion region
and the ROI on the right is from the healthy striatum. 57

v

3.3 The true ADC images and the differences between the true values and
the predicted values against the signal levels of one animal from the
9L group. Differences are normalized by the average true ADC values
in each ROI. (a) The true ADC image. Difference maps between true
values and predicted values against the signal levels using either (b)
the dictionary matching method, (c) GLLiM, (d) HGLLiM or (e)
GLLiM-structure. 60

3.4 An example of the waveform of the music, the voice and their mix. . 61
3.5 The spectrogram of the signals shown in Figure 3.4. 65
3.6 The average CV MSE for different settings of K and Lw 69
3.7 The average CV MSE for different Lw when K = 5 69
4.1 A subset of simulated data from Groups 1–4. The upper and the

lower panels show the high-dimensional Y and the low-dimensional
T, respectively. 85

4.2 Changes of log-likelihood and the relative increment ratio for C =
107, α = 0.05. Within plots (a)–(d), the upper panel shows the
log-likelihood values for different K, and the lower panel shows the
log-likelihood relative increment ratios, changing with K + 1. Plots
(a)–(d) correspond to (a) Case 1; (b) Case 2; (c) Case 3 and (d) Case
4. 91

4.3 The orange juice dataset. The upper panel shows the high-dimensional
data (Y) and the lower panel shows the low-dimensional data (T). . 95

4.4 The fingerprint subset with outliers: (a) data in high dimension (Y)
and (b) data in low dimension (T). 96

5.1 Illustration of attack dimension reduction through a “decoder” in
AutoZOOM for improving query efficiency in black-box attacks. The
decoder has two modes: (i) an autoencoder (AE) trained on unla-
beled natural images that are different from the attacked images and
training data; (ii) a simple bilinear image resizer (BiLIN) that is
applied channel-wise to extrapolate low-dimensional features to the
original image dimension (width × height). In the latter mode, no
additional training is required. 109

5.2 (a) After initial success, AutoZOOM (here D = AE) can further de-
crease the distortion by setting q > 1 in (5.8) to trade more query
counts for smaller distortion in the converged stage, which saturates
at q = 4. (b) Attack dimension reduction is crucial to query-efficient
black-box attacks. When compared to black-box attacks on the origi-
nal dimension, dimension reduction through AutoZOOM-AE reduces
query counts by roughly 35-40% on MNIST and CIFAR-10 and by
at least 95% on ImageNet. 118

6.1 The flowchart of constructing the robust preprocessing system at the
training stage. 121

6.2 The flowchart of the robust preprocessing system at the testing stage. 121

vi

6.3 The normalized coefficients across different principal components of
different image types in Figure 6.4: (a) normal image, (b) corrupted
image and (c) adversarial image. 124

6.4 Examples of different kinds of images. (a) The normal image. (b)
The corrupted image. (c) The adversarial image. (d) The difference
between the adversarial image and the normal image. (e) The recon-
structed image of (b). (f) The difference between the reconstructed
image and the normal image. 129

6.5 The sorted squared differences between corrupted images and their
nearest neighbors in the training dataset. 130

6.6 The classification accuracies under different settings. The left sub-
plot shows the results when the aberrant scores are calculated as
the variance of the high index normalized coefficients under differ-
ent values of PNC and the right subplot shows the results when the
aberrant scores are calculated as the variance of the rolling variance
under different values of Pwindow. The prediction accuracies for the
largest absolute value method are 91.45%, 85.65% and 68.68% when
threshold = 10, 20, 30. 133

6.7 The classification accuracies for different fpr under different settings.
The left subplot shows the results when the aberrant scores are calcu-
lated as the variance of the high index normalized coefficients under
different values of PNC and the right subplot shows the results when
the aberrant scores are calculated as the variance of the rolling vari-
ance under different values of Pwindow. The prediction accuracies for
the largest absolute method are 94.47%, 99.51% and 99.67% when
the fpr is 0.05, 0.01, 0.005, respectively. 134

6.8 The classification accuracies for different multiplier, M , of the fence
under different settings. The left subplot shows the results when
the aberrant scores are calculated as the variance of the high index
normalized coefficients under different values of PNC and the right
subplot shows the results when the aberrant scores are calculated as
the variance of the rolling variance under different values of Pwindow.
The prediction accuracies for the largest absolute method are 95.27%,
98.82% and 99.85% when the multipliers, M , is 2, 3, 4, respectively. 135

6.9 The ROC curve of the aberrant data detector. The area under curve
is 0.9760, 0.9755 and 0.9697 for the method HIV, RV and MAV,
respectively. 136

A.1 The adjacency matrix of GLLiM clusters after permutation and the
identified sub-groups. 151

A.2 The first two principal components and their counterparts obtained
from LFPCA. 154

A.3 The simulated orange juice data with (a) distinct clusters and (b)
overlapped clusters. 154

vii

LIST OF TABLES

Table

2.1 The comparison of original and post cluster-division SE. The im-
proved ratio is calculated as the ratio of difference of SE from pre- to
post cluster-division over the original SE. The value is positive if the
procedure reduces the SE, and negative otherwise. 21

2.2 The value of BIC and K selected by BIC for a given Lw. For a fixed
Lw, row 1: the minimum value of BIC; and row 2: the number of
clusters, K, that achieves this BIC. 34

2.3 The value of BIC and the Lw selected by BIC for a given K. For a
fixed K, row 1: the minimum value of BIC; and row 2: the dimension
of W, Lw, that achieves this BIC. 34

2.4 The prediction MSE and the average cluster number of the face
dataset when dropThreshold = 0.5. 39

2.5 The prediction MSE and the average number of clusters of the orange
juice dataset when dropThreshold = 0.5. 42

3.1 The unique values and the range of microvascular parameters 51
3.2 The size of each group of the fingerprint dataset. 51
3.3 The 50%, 90% and 99% quantiles of squared error using different

methods. The models are built upon 4 microvascular parameters:
Radius, BVf, ADC, and DeltaChi. 56

3.4 The 50%, 90% and 99% quantiles of squared error using different
methods. The models are built upon 4 microvascular parameters:
Radius, BVf and DeltaChi. 56

3.5 The mean predicted values within ROIs of different vascular param-
eters from different categories. 58

3.6 The 50%, 90% 99% quantiles of ADC squared errors for different
methods on different image categories. 59

4.1 The training and testing performances under Case 1 using the known
parameters. 87

4.2 As in Table 4.1, under Case 2. 87
4.3 As in Table 4.1, under Case 3. 88
4.4 As in Table 4.1, under Case 4. 88
4.5 The parameter settings under different cases. 91

viii

4.6 Comparison of the performance of different methods under different
cases when parameters are selected using the reported model selection
strategies. 92

4.7 The prediction performance using different methods. 93
4.8 The top 5 data being removed. 94
4.9 The quantiles of the fingerprint data. Note that the dictionary match-

ing method adopts the microvacular properties from the nearest train-
ing as the predicted values. It is possible that the predicted squared
error equals zero since the synthetic data is generated on a grid. . . 97

4.10 The quantiles of squared errors for the fingerprint data. 98
4.11 The 50%, 90% and 99% quantiles of ADC squared errors for different

methods on different image categories. For each entry, the result for
the best performer from the three methods is underlined. 99

5.1 Performance evaluation of black-box targeted attacks on MNIST. . 115
5.2 Performance evaluation of black-box targeted attacks on CIFAR-10. 116
5.3 Performance evaluation of black-box targeted attacks on ImageNet . 117
6.1 The selected values of PNC and Pwindow under different settings. . . 134
6.2 The performance of the aberrant data detector when specifying threshold

directly. 137
6.3 The performance of the aberrant data detector when specifying threshold

using the FPR approach. 137
6.4 The performance of the aberrant data detector when specifying threshold

using the Fence approach. 138
6.5 The PMSE of different types of images using different prediction mod-

els. 141
6.6 The prediction mean squared errors (PMSE) under different experi-

mental settings. The Baseline column shows the original PMSE. The
rest of the columns present the PMSE using different classification
thresholds when the aberrant scores are calculated using HIV. . . . 142

B.1 Architectures of Autoencoders in AutoZOOM 158
C.1 The prediction performance of different testing cases when setting

the classification threshold directly. The GLLiM forward model is
used for conducting prediction. 159

C.2 The prediction performance of different testing cases when setting the
classification threshold using the FPR method. The GLLiM forward
model is used for conducting prediction. 160

C.3 The prediction performance of different testing cases when setting
the classification threshold using the Fence approach. The GLLiM
forward model is used for conducting prediction. 160

C.4 The prediction performance of different testing cases using FGAM
when the preprocessing system is applied. The classification thresh-
old of the preprocessing system is determined directly. 161

C.5 The prediction performance of different testing cases using FGAM
when the preprocessing system is applied. The classification thresh-
old of the preprocessing system is determined using the FPR approach.161

ix

C.6 The prediction performance of different testing cases using FGAM
when the preprocessing system is applied. The classification thresh-
old of the preprocessing system is determined using the Fence method.162

C.7 The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of
the preprocessing system is determined directly. 163

C.8 The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of
the preprocessing system is determined using the FPR approach. . . 163

C.9 The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of
the preprocessing system is determined using the Fence method. . . 164

x

LIST OF APPENDICES

Appendix

A. Appendix of Chapter IV . 148

B. Appendix of Chapter V . 155

C. Appendix of Chapter VI . 159

xi

ABSTRACT

Regression is a widely used statistical tool to discover associations between vari-

ables. Estimated relationships can be further utilized for predicting new observations.

Obtaining reliable prediction outcomes is a challenging task. When building a regres-

sion model, several difficulties such as high dimensionality in predictors, non-linearity

of the associations and outliers could reduce the quality of results. Furthermore,

the prediction error increases if the newly acquired data is not processed carefully.

In this dissertation, we aim at improving prediction performance by enhancing the

model robustness at the training stage and duly handling the query data at the test-

ing stage. We propose two methods to build robust models. One focuses on adopting

a parsimonious model to limit the number of parameters and a refinement technique

to enhance model robustness. We design the procedure to be carried out on parallel

systems and further extend their ability to handle complex and large-scale datasets.

The other method restricts the parameter space to avoid the singularity issue and

takes up trimming techniques to limit the influence of outlying observations. We

build both approaches by using the mixture-modeling principle to accommodate data

heterogeneity without uncontrollably increasing model complexity. The proposed

procedures for suitably choosing tuning parameters further enhance the ability to de-

termine the sizes of the models according to the richness of the available data. Both

methods show their ability to improve prediction performance, compared to exist-

ing approaches, in applications such as magnetic resonance vascular fingerprinting

and source separation in single-channel polyphonic music, among others. To evaluate

model robustness, we develop an efficient approach to generating adversarial samples,

xii

which could induce large prediction errors yet are difficult to detect visually. Finally,

we propose a preprocessing system to detect and repair different kinds of abnormal

testing samples for prediction efficacy, when testing samples are either corrupted or

adversarially perturbed.

xiii

CHAPTERS I

Introduction

1.1 Motivation

Regression is a widely used statistical tool in all disciplines. One primary goal

of building regression models is to conduct prediction. Given pairs of covariates

and responses, we aim to find the relation between the covariates and responses so

that if a new covariate is observed, one can predict the corresponding response. As

an example, researchers in modern geosciences are interested in recovering physical

parameters using hyperspectral images (Bioucas-Dias et al., 2012; Brown et al., 2000).

Applications of remote sensing include monitoring earthquakes or tracking chemical

contamination. Many of the applications of remote sensing require accurate prediction

results. As natural disasters occur, decisions are made based on the prediction results

and thus if the outcomes are not trustworthy, inappropriate decisions could incur

more loss. A similar application can be found in the field of magnetic resonance

imaging. The goal is to effectively assess microvascular properties such as blood

volume fraction, vessel diameter and blood oxygenation (Lemasson et al., 2016) to

improve diagnosis of brain diseases. Magnetic resonance imaging can assist in brain

disease diagnosis. However, professionals could misjudge a condition if unreliable

results are provided.

Obtaining reliable prediction outcomes is a challenging task. Plenty of factors

1

influence the performance of a regression model, including but not limited to outliers,

high dimensionality, and non-linearity. Moreover, even if when a robust model is built,

one can still obtain unreliable prediction outcomes if the newly observed data are not

carefully processed. For instance, testing data could be corrupted or distorted. For

remote sensing, unknown human-made objects could lead to unexpected prediction

behavior. Noisy samples are commonly seen when data are collected in vivo. These

are abnormal data that could naturally appear when conducting prediction during

the testing stage. On the other hand, malicious inputs can be designed to make a

model fail. These artificially designed inputs can be seen in spam filtering (Fawcett,

2003), fraud detection (Mahoney and Chan, 2002) and object detection (Song et al.,

2018).

In this dissertation, we are interested in obtaining reliable prediction outcomes.

This goal can be achieved through robust learning and prediction at the training and

testing stages. In particular, we focus on building robust regression models for pre-

diction given a dataset with a complicated structure. The model should be capable of

learning non-linear structures under a high-dimensional setting and should be robust

against the presence of outliers. For evaluating model robustness at the testing stage,

we devise a method for generating abnormal data efficiently. The proposed method

is a general algorithm that can be applied to a rich class of models. Moreover, we

propose a preprocessing system to cope with abnormal testing data. The system

is applied to existing predictive methods, and we show that with the preprocessing

system, the prediction performance can be improved.

1.2 Research challenges

Building a robust regression model on real-world datasets is a vexing problem. For

one thing, the curse of dimensionality could severely influence model performance; for

2

another, the presence of outliers could lead to unreliable model outcomes; lastly, the

data may possess sophisticated associations between covariates and responses, which

could make it difficult to strike a balance between model complexity and model capa-

bility. For the training stage, we focus on three commonly seen issues when building

regression models on real-world datasets – namely, high dimensionality, outliers and

non-linearity between covariates and responses.

Training with high-dimensional covariates

High-dimensional data analysis has drawn great attention as a consequence of rapid

advancement in technology. Data have become easier to collect, but associations be-

tween high-dimensional covariates and low-dimensional responses are more difficult to

analyze. When building models with high-dimensional predictors, we often encounter

situations in which the number of parameters is larger than the sample size. This

leads to unstable estimation and might reduce the quality of the model performance.

Even worse, if data are correlated, it is necessary to estimate covariance matrices

for model-based methods. The covariance matrices estimated in this situation are

not full-rank, which leads to numerical issues when there is a need to calculate the

inverse of the covariance matrices. A common practice is to reduce the dimensional-

ity of the data and then perform a regression analysis on the reduced space. As an

example, principal component regression (PCR) adopts principal component analysis

(PCA) for dimension reduction. The regression analysis is then conducted on the

responses and the PCA loadings. PCR can effectively reduce the dimension of the

predictors’ space to overcome the difficulty of high dimensionality. However, PCR ex-

cludes principal components with low variance, which may be critical to conduct the

regression analysis (Jolliffe, 1982). Partial least squares (PLS) (Turkmen and Billor,

2013) treats covariates and responses as two separate systems and decomposes these

two systems into matrices with score vectors multiplied by matrices with loadings.

3

The regression mapping is then estimated by finding the strongest linear relationship

between two score vectors. The performance of PLS depends on the relation between

the covariances of covariates and responses. Thus, if there is no strong associations

between the covariances of covariates and responses, one would experience reduction

in the model quality. Sliced inverse regression (SIR, Li 1991) exchanges the role of

covariates and responses. It is designed to find the dimension reduction space and

the results highly depend on the selection of slices. In addition, the method is not

designed for prediction and thus the solution could be sub-optimal.

Sparsity assumption is another class of methods to overcome high dimensionality

(Städler et al., 2010; Tibshirani, 1996; Yi and Caramanis, 2015). This category of

methods considers the situation that not every predictor is informative for model

construction. The presence of non-informative predictors might increase the model

variance and worsen its predictive performance. When building the model, this type

of methods only uses a subset of the predictors. This can be done by adding an extra

L1 penalty term to the objective function. The penalty term would suppress the value

of the regression coefficients, which makes some of the regression coefficients become

zeroes. Zero regression coefficients imply that the corresponding covariates have no

contribution when conducting prediction. The prediction variance can be effectively

reduced by ruling out non-informative covariates.

With the increasing necessity to handle high-dimensional settings, parsimonious

models have gained much attention in recent years. Parsimonious models generally

refer to some model instances where the number of parameters is reduced compared

to the full parameterization. When dealing with high-dimensional data, the goal is to

find a good compromise between model flexibility and parsimony. Complex models

cannot be estimated accurately in most real-life settings because of data insufficiency,

and simple models may not be able to capture the full data structure. In terms of the

number of parameters, the largest costs usually come from high-dimensional covari-

4

ance matrices. Diagonal covariance matrices are parsimonious and are often tractable

in high dimensions. However, they cannot capture complex dependence structures.

Significant gains are then expected from adopting parsimonious covariance represen-

tations. In model-based clustering (Banfield and Raftery, 1993; Fraley and Raftery,

2002), covariance matrices are decomposed using eigenvalues and eigenvectos. The

number of parameters can be reduced by assuming constraints on the eigendecom-

position. Factor models (McLachlan and Peel, 2000) that induce a decomposition

into a diagonal and low-rank matrix also result in a parsimonious parameterization.

In a mixture of regressions context, the work of Subedi et al. (2013) uses a cluster-

weighted factor analyzer (CWFA) approach when the number of covariates is large.

The high dimensionality issue is overcome by imposing constraints on the covariance

matrix of the high-dimensional variables. Gaussian Locally Linear Mapping (GLLiM)

(Deleforge et al., 2015) also adopts a factor model similar to parameterization for high-

dimensional covariance matrices but with a different interpretation.

Training with non-linear associations

Linear regression is a common statistical approach to establish the relationship be-

tween covariates and responses. However, the assumption of linearity may not always

be valid. Especially when conducting regression analysis on real-world datasets, the

associations between covariates and responses are often beyond linear. To properly

model complicated associations while maintaining tractability, non-linear mappings

can be handled through a transformation of the data into a so-called feature space

using kernel methods. For example, kernel SIR (Wu, 2008) proposed a hybrid SIR

together with kernel methods to deal with non-linear data. Kernel SIR is a powerful

tool for dimension reduction and feature extraction for non-linear data. Other ex-

amples of kernel methods include Elisseeff and Weston (2002), Lawrence (2005) and

Thayananthan et al. (2006) to name a few. All kernel methods share a common issue

5

of how to select an appropriate kernel function. A proper kernel function can only be

chosen heuristically and is usually data-dependent, which results in a time-consuming

tuning process.

Another solution to non-linear data is to utilize a mixture of regression mod-

els (De Veaux, 1989; Frühwirth-Schnatter, 2006; Goldfeld and Quandt, 1973). Data

are broken down into several clusters with each cluster following linear associations

between covariates and responses. These clusters form a mixture, and thus the rela-

tionship learned in this manner is non-linear. The conventional mixture of regressions

is not appropriate for regression because it assumes assignment independence (Hen-

nig, 2000). This indicates that the assignments to each of the regression components

are independent of the covariate values. In contrast, when a mixture of locally linear

models is considered, one can let the membership indicator of the mixture component

depend on the values of the covariates. Consequently, when extended with assignment

dependence, models in the family of mixtures of regressions are more likely to be suit-

able for regression applications. In Baek et al. (2010), local linearity is used to group

data with similar regression structures, and thus the number of parameters can be

reduced through grouping. The Gaussian cluster-weighted (CW) model (Gershenfeld,

1997) also adopts mixtures to approximate non-linear associations. The CW model is

extended with the factor analyzer approach (CWFA) (Subedi et al., 2013) to handle

a large number of covariates. Qiao and Minematsu (2009) proposed a mixture of

probabilistic linear regressions (MPLR) to learn the non-linear mappings. MPLR is

claimed to be a more general framework than the methods based on Gaussian mixture

model and can achieve better performance for the task of voice conversion. However,

the parameter estimation procedure requires the sample size to be sufficiently large

to estimate covariance matrices properly. Otherwise, numerical issues could arise

when the dimension of the predictor is larger than the number of samples. GLLiM

also adopts local linearity. With a carefully designed framework, the model parame-

6

ters can be efficiently estimated and the issue of high dimensionality can be bypassed.

Training with outliers and achieving stability

At the training stage, two factors could affect the robustness of the model: outliers and

stability. Outliers are defined as abnormal data that do not follow the major pattern

in the dataset. When estimating model parameters, traditional methods often target

minimizing mean squared errors between the responses and the predicted values. If

outliers exist, the squared errors corresponding to these outliers will be larger than

those of other normal data. Thus, the estimation procedure tends to reduce the

squared errors of outliers, which increases the squared errors of normal data. Methods

like classical multiple linear regression and PLS are known to be sensitive to outliers.

One class of methods aims to alleviate the impact of outliers. Examples like Least

Median of Squares (LMS) (Rousseeuw, 1984) replaces the least sum of squares with

the least median of squares. Since the median cannot be influenced much by extreme

values, LMS enhances model robustness against outliers. On the other hand, if a

Gaussian distribution is used for the model-based method, the influence of outliers

can be mitigated by using a Student’s t distribution instead of a Gaussian distribution

for the error terms (Archambeau and Verleysen, 2007; Peel and McLachlan, 2000;

Perthame et al., 2018; Yao et al., 2014).

Another typical approach to handle outliers is to detect and trim them. Cook’s

distance (Cook, 1977) is a commonly used metric for detecting outliers. Though

Cook’s distance suffers from several drawbacks, it is widely used and implemented

in a variety of applications. The trimming approach is adopted in Cuesta-Albertos

et al. (1997) to remove abnormal samples with low likelihood of belonging to the

current model, which enhances the robustness of k-means clustering when equality

of variances is assumed. The trimming problem becomes much harder for heteroge-

neous data (Garćıa-Escudero and Gordaliza, 2007). To cope with the heterogeneous

7

problem, Gallegos and Ritter (2005) use the “spurious-outliers model” to define a

likelihood function based on normal samples and abnormal samples. By maximizing

the likelihood function specified in the spurious-outliers model, abnormal samples

are naturally trimmed out. The estimation procedure is then performed on the re-

maining training samples and, as a consequence, is no affected by the influence of

outliers. In Neykov et al. (2007), a similar trimmed likelihood framework is adopted.

The trimmed likelihood estimator can robustly fit the mixture models and provide

reliable estimates when abnormal data exist.

Model stability is a well-known issue for the likelihood-based approach in the

mixture context. The likelihood function could be unbounded, which indicates that a

global maximum likelihood estimate does not exist. This is also known as the singu-

larity problem since the likelihood function approaches infinity at singular points. A

large amount of research has been done to resolve the singularity issue. One solution

is to add a penalty term to the covariance matrices (Ciuperca et al., 2003; Ridolfi

and Idier, 2001; Snoussi and Mohammad-Djafari, 2002). In Chen and Tan (2009),

the authors found that the penalized likelihood estimator is strongly consistent if the

penalty function satisfies several conditions. Another method to tackle the singular-

ity problem is to restrict the relative ratio between variances or covariance matrices.

In Hathaway (1985), the relative ratio constraint is imposed on univariate Gaussian

mixtures. The constrained likelihood is statistically well-posed and the strong con-

sistency of the estimators is shown. The idea is extended in Garćıa-Escudero et al.

(2008), where the constraint is applied to eigenvalues.

Generating adversarial data for robustness evaluation

A robust training process does not necessarily imply that one can obtain reliable

prediction outcomes from the testing data. Traditional machine learning algorithms

assume the data generating process is independent of the model. However, in many

8

real-world applications, this assumption is invalid. As an example, the performance

of a spam filtering model can quickly downgrade after it is deployed. Spammers learn

to insert non-spam words into emails to fool the filter. As the spam filter is updated

with these tricks, spammers develop new techniques to bypass the filter (Brückner

et al., 2012; Fawcett, 2003). These endless arms races occur in other fields as well,

such as fraud detection (Fawcett and Provost, 1997), web search (Mahoney and Chan,

2002) and ad-blocking (Tramèr et al., 2018). These carefully crafted data are called

adversarial data. This kind of data is intentionally generated to make the target

model fail. Therefore, to evaluate the robustness of a prediction process, one should

consider adversarial examples as a kind of possible input. Also, an efficient approach

to generating adversarial examples is necessary to effectively assess model robustness.

The generation of adversarial data is often formulated as an optimization problem.

A loss function is carefully designed so that the optimizer of the function could cause

model failure while fulfilling some constraints (e.g., the magnitude of perturbations is

less than some upper bound so that it looks like its normal counterpart). Effective ad-

versarial example generation methods include the fast gradient sign method (Kurakin

et al., 2017), Carlini and Wagner’s (C&W) attack (Carlini and Wagner, 2017) and the

elastic-net attack (Chen et al., 2018). These methods assume that the model infor-

mation is transparent when generating adversarial examples, which is often referred

to as the ”white-box” setting. On the other hand, researchers also consider the situa-

tion where the information is limited to the input-output relationship. The so-called

”black-box” setting is more practical but more challenging. Under the ”black-box”

setting, methods like those proposed by Chen et al. (2017) and Nitin Bhagoji et al.

(2018) estimate coordinate-wise gradients directly through model queries. However,

to successfully generate adversarial examples, these methods require a large number

of queries and thus are not efficient.

9

Improving prediction efficacy with abnormal inputs

The testing data could contain abnormal samples. If one blindly applies predictive

models to aberrant data, the prediction efficacy could be reduced. To mitigate the in-

fluence of abnormal testing data, repair processes are necessary to make the problem-

atic data points as close to the regular entries as possible. Data can be reconstructed

from their closest representations in the latent space (Bhagoji et al., 2017; Elad and

Aharon, 2006; Mairal et al., 2009). Since the latent space is learned from the regular

samples, abnormal noises or corruptions would be eliminated from the reconstructed

data. Nearest neighbors can also be utilized to restore the data. Barnes et al. (2009)

proposed to use random sampling to search patch matches. These patches can be

used to repair the corrupted parts. The task of image restoration can also be done

by utilizing deep neural networks. Deep neural networks learn hidden representations

and reconstruct images through convolutional filters (Pathak et al., 2016; Yang et al.,

2017; Iizuka et al., 2017; Liu et al., 2018), which can produce much more meaningful

repair results.

The repair processes need not be applied to regular data. To determine if repair

is required, an extra detection stage is devised (Wang and Zhang, 1999; Roy et al.,

2016). Outlier detection can be used in the detection procedure if the abnormal data

possess visible irregular patterns. However, adversarial samples are usually similar

to their normal counterparts. The differences between adversarial samples and nor-

mal ones can even be imperceptible. This makes detecting adversarial examples a

challenging task. Grosse et al. (2017) adopted maximum mean discrepancy (MMD)

(Gretton et al., 2012) for testing whether two sets of data are drawn from the same

underlying distribution. However, bootstrapping is required for this method to ap-

proximate p-values, which makes the detection procedure computationally intensive.

PCA whitening is utilized in Hendrycks and Gimpel (2017) to detect adversarial im-

ages. The coefficients of abnormal data after PCA whitening are different from those

10

of the normal ones, and can be utilized to conduct the detection.

1.3 Dissertation outline

This dissertation is organized as follows:

� Chapter II proposes a structured mixture model named Hierarchical Gaussian

Locally Linear Mapping (HGLLiM) as a heuristic method for building models

robustly. HGLLiM adopts a hierarchical structure which enables shared covari-

ances and latent factors to limit the number of parameters. A robust estimation

procedure is devised for model stability. Two moderate-size datasets are used

to show the flexibility of HGLLiM as well as its robustness against outliers.

� Chapter III discusses the parallelization extension of HGLLiM. The paralleliza-

tion technique can substantially reduce model building time. Two large-scale

datasets are used to demonstrate the broad applicability of HGLLiM for han-

dling complex data for prediction.

� Chapter IV establishes Robust-GLLiM (RGLLiM), which achieves the goal of

robustness through trimming outliers and restricting relative cluster sizes. The

devised Expectation-Maximization (EM) algorithm can nicely incorporate out-

lier trimming and cluster size controlling in an integrated framework. Studies

on real-world datasets and simulations show that the model performance can

be improved with regard to the robustness concern.

� Chapter V develops the Autoencoder-based Zeroth Order Optimization Method

(AutoZOOM) for generating adversarial examples efficiently under black-box

settings. AutoZOOM adopts dimension reduction and random gradient vector

estimation to accelerate the generation process. Results of the image classifica-

tion task illustrate that AutoZOOM is an efficient approach for assessing model

11

robustness.

� Chapter VI proposes a preprocessing system for obtaining reliable prediction

results. The system contains an aberrant data detector to distinguish normal,

corrupted and adversarial data, and an aberrant data corrector to modify prob-

lematic observations before conducting a prediction. Through reconstruction

and nearest neighbor surrogates, prediction errors can be considerably reduced.

The proposed system is a generic method that different predictive models can

adopt. Results of three existing prediction methods illustrate the general usage

of the proposed system.

12

CHAPTERS II

Hierarchical Gaussian Locally Linear Mapping

Building a regression model for prediction is widely used in all disciplines. A

large number of applications consist of learning the association between responses

and predictors and focusing on predicting responses for newly observed samples. In

this work, we go beyond simple linear models and focus on predicting low-dimensional

responses using high-dimensional covariates when the associations between responses

and covariates are non-linear. Non-linear mappings can be handled through different

techniques such as kernel methods (Elisseeff and Weston, 2002; Wu, 2008) or local

linearity (De Veaux, 1989; Frühwirth-Schnatter, 2006; Goldfeld and Quandt, 1973).

In general, conventional methods adopting local linearity assume assignment inde-

pendence and are considered inadequate for regression (Hennig, 2000). Alternatively,

one can utlilze a mixture-modeling strategy and let the membership indicator of a

mixture component depend on the values of the covariates. Gaussian Locally Linear

Mapping (GLLiM Deleforge et al., 2015) follows this principle.

GLLiM groups data with similar regression associations together. Within the

same cluster, the association can be considered as locally linear, which can then be

resolved under the classical linear regression setting. Besides adopting the framework

of model-based clustering (Banfield and Raftery, 1993; Fraley and Raftery, 2002),

GLLiM also takes on a factor-model based parameterization (Baek et al., 2010; Bou-

13

veyron et al., 2007; McLachlan and Peel, 2000; Xie et al., 2010) to accommodate

high-dimensional and potentially dependent covariates (see Equation (2.10)). In par-

ticular, high-dimensional variables are postulated as a sum of two components: one

that is linearly related to low-dimensional responses, and another which can be pro-

jected onto a factor model and then be presented as augmented latent variables. This

data augmentation approach is applicable in many application scenarios, whenever

certain variables are only partially observed or are corrupted with irrelevant informa-

tion. The augmentation step, with added latent variables, acts as a factor analyzer

modeling for the noise covariance matrix in the regression model. GLLiM is based

on joint modeling of both responses and covariates, observed or latent. This joint

modeling framework allows for the use of an inverse regression strategy to handle

high-dimensional data.

However, when the covariate dimension is much higher than the response di-

mension, GLLiM may result in erroneous clusters at the low dimension, leading to

potentially inaccurate predictions. Specifically, when the clustering is conducted at

a high joint dimension, the distance at a low dimension between two members of the

same cluster could remain large. As a result, a mixture component might contain

several sub-clusters and/or outliers, violating the Gaussian assumption of the model.

This results in a model misspecification effect that can seriously impact prediction

performance. We demonstrate this phenomenon with a numerical example in Section

2.1. A natural way to lessen this effect is to increase the number of components in

the mixture, making each linear mapping even more local. But this practice also

increases the number of parameters to be estimated. Estimating parameters in a par-

simonious manner is required to avoid over-parameterization. In addition, increasing

the number of clusters could isolate some data points or lead to singular covariance

matrices. Hence, a robust estimation procedure for model stability is also necessary.

In order to provide reliable prediction results, we propose a parsimonious approach

14

combined with a robust estimation procedure which we refer to as Hierarchical Gaus-

sian Locally Linear Mapping (HGLLiM) to construct a stable model for predicting

low-dimensional responses. HGLLiM inherits advantages from GLLiM for handling

high-dimensional, non-linear regression with partially-latent variables. In terms of

the number of parameters, the largest costs usually come from high-dimensional co-

variance matrices. On this front, HGLLiM follows a two-layer hierarchical clustering

structure in which we reduce the number of covariance parameters in the model.

HGLLiM also includes a pruning algorithm for eliminating outliers as well as de-

termining an appropriate number of clusters. The number of clusters and training

outliers determined by HGLLiM can be further used by GLLiM for improving pre-

diction performance.

With the goal of investigating the flexibility in accommodating data structures

and the ability to protect from influences of outliers, we evaluate our method on two

datasets with different characteristics. The face dataset contains facial images, the

associated angles of faces and the source of the light. There is no obvious cluster

structure at first glance, nor the existence of real outliers. We use this dataset to

evaluate the ability of HGLLiM to handle modeling regression through local linear

approximations. The orange juice dataset contains continuous spectrum predictors

and some abnormal observations. Using this dataset, we aim to show that HGLLiM is

robust and can effectively identify outlying observations. We use these two moderate-

size datasets to demonstrate how the method works on data with different features and

demonstrate the insensitivity of tuning parameter selection in a wide range of selection

domains. The analyses of two large-scale complex datasets using the parallelization

technique can be seen in Chapter III.

We first start by introducing the framework of GLLiM in Section 2.1 and discuss

the issue of GLLiM in the high-dimensional setting using the face dataset an example.

The details of HGLLiM are presented in Section 2.2. The experimental results for

15

two real datasets are provided in Section 2.4. Finally, Section 2.5 concludes this work

with a discussion.

2.1 Limitations of Gaussian Locally Linear Mapping (GLLiM)

Gaussian Locally Linear Mapping (GLLiM) can be boiled down to a joint Gaus-

sian mixture model of both responses and covariates. It can be viewed as an affine

instance of mixture of experts as formulated in Xu et al. (1995) or as a Gaus-

sian cluster-weighted (CW) model (Gershenfeld, 1997) with multivariate responses.

GLLiM adopts an inverse regression technique to overcome high dimensionality and

approximate non-linear associations through Gaussian mixtures. Consider modeling

the association between Y ∈ RL and X ∈ RD where D � L. The ultimate goal is to

predict Y given observed X; however, GLLiM begins with estimating the mapping

from Y to X. We assume a linear relationship between X and Y within a given

cluster. Denote a missing variable Z as the cluster indicator such that if Z = k then

X = AkY + bk +Ek, where matrix Ak ∈ RD×L and vector b ∈ RL define the mapping

from Y to X and Ek is the error term following Gaussian distribution with zero mean

and covariance matrix Σk ∈ RD×D. The joint density of (X, Y) can be decomposed

in inverse direction and forward direction:

p(X = x, Y = y; θ) =
K∑
k=1

p(X = x|Y = y, Z = k; θ)p(Y = y|Z = k; θ)p(Z = k; θ)

(2.1)

=
K∑
k=1

p(Y = y|X = x, Z = k; θ∗)p(X = x|Z = k; θ∗)p(Z = k; θ∗)

(2.2)

Equation (2.1) decomposes the joint density using the inverse regression relation-

ship from low-dimensional data (Y) to high-dimensional data (X). In contrast, the

16

forward regression relationship from high-dimensional data (X) to low-dimensional

data (Y) is expressed in Equation (2.2). With the assumption of Gaussianity, the

structure for the inverse direction is defined by:

p(X = x|Y = y, Z = k; θ) = N (x;Aky + bk,Σk). (2.3)

p(Y = y|Z = k; θ) = N (y; ck,Γk), (2.4)

p(Z = k; θ) = πk,

where θ = {ck,Γk, πk, Ak, bk,Σk}Kk=1 is the collection of the inverse model parameters

with K mixtures. The equality between Equation (2.1) and Equation (2.2) addresses

the relationship between θ and the forward model parameter θ∗ = {c∗k,Γ∗k, π∗k, A∗k, b∗k,Σ∗k}Kk=1.

The relationship between θ and θ∗ is described as follows:

c∗k = Akck + bk,

Γ∗k = Σk + AkΓkA
>
k ,

π∗k = πk,

A∗k = Σ∗kA
>
k Σ−1k ,

b∗k = Σ∗k(Γ
−1
k ck − A>k Σ−1k bk),

Σ∗k = (Γ−1k + A>k Σ−1k Ak)
−1.

Finally, the prediction is done by:

E[Y |X = x] =
K∑
k=1

π∗kN(x; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN(x; c∗j ,Γ

∗
j)

(A∗kx+ b∗k) (2.5)

One feature of GLLiM is that Y need not be completely observable. That is, Y

17

can be decomposed as observed component T and latent component W ,

Y =

 T
W

 , (2.6)

where T ∈ RLt , W ∈ RLw and Lw+Lt = L. Assuming that T and W are independent

given Z, we have

ck =

ctk
cwk

 ,Γk =

Γtk 0

0 Γwk

 and Ak =

[
Atk, A

w
k

]
(2.7)

It follows that, for a given cluster k, we can rewrite the relationship between X

and Y as:

X = AtkT + AwkW + bk + Ek (2.8)

= AtkT + bk + Awk c
w
k + E ′k, (2.9)

where E ′k ∈ RD×D follows a Gaussian distribution with zero mean and covariance

matrix:

Σ′k = Σk + Awk ΓwkA
w>
k . (2.10)

The high-dimensional covariance matrix is modeled by the sum of the regression error

from T to X and the component formed by latent variables. When Σk is diagonal,

this structure is that of factor analysis with at most Lw factors, and represents a

flexible compromise between a full covariance matrix with O(D2) parameters on one

side, and a diagonal covariance matrix with O(D) parameters on the other.

The issue with GLLiM is that the high dimensionality of the data may have an

unexpected impact on the posterior probability of the cluster assignment. When the

18

dimensions of X and Y satisfy D � L, this comes from the following observation:

in the E-step, the posterior probabilities of sample n belonging to cluster k, rnk

(Equation (27) in Deleforge et al., 2015) is computed as:

rnk = p(Zn = k|xn, yn; θ) =
πkp(xn, yn|Zn = k; θ)∑K
j=1 πjp(xn, yn|Zn = j; θ)

(2.11)

for all n and all k, where p(xn, yn|Zn = k; θ) can be computed as p(xn|yn, Zn =

k; θ)p(yn|Zn = k; θ). The first term is a density with a much higher dimension (D) so

that its value could dominate the product. In addition, yn can be decomposed into

two parts: the observed variable tn and the latent variable wn. The component wn

reflects the remaining variation in xn that cannot be explained by xn’s association

with tn. When wn accounts for explaining most of the variation in xn, the clustering

outcome would highly depend on wn and weaken the ability to detect sub-clusters in

T .

Therefore, although GLLiM assumes that within each cluster p(Y = y|Z = k; θ) is

Gaussian and centered at ck, in practice, the model groups data according to the high-

dimensional term and could fail to impose the Gaussian shape on the tn’s. In other

words, the model rather chooses the clusters to satisfy the assumption in Equation

(2.3). And this induces clustering of the (xn, yn)’s into groups within which the same

affine transformation holds. Thus, a cluster could contain several sub-clusters and/or

outliers since the Gaussian assumption on T , as part of the Y , in Equation (2.4) is

sometimes neglected. This may cause a serious impact on the estimation of ck and

Γk, and consequently on the prediction step.

We illustrate this issue by presenting an example using the face dataset (Tenen-

baum et al., 2000). This dataset contains 698 images (of size 64 × 64 and being

further condensed to 32 × 32). The pose of each image is defined by three variables

in T : Light, Pan and Tilt, as shown in Figure 2.1 (a). We adopt GLLiM to predict

19

these T ’s (low-dimensional) using the image (high-dimensional). The superiority of

GLLiM in prediction, comparing to multiple existing approaches, for this data set

was numerically illustrated in Deleforge et al. (2015).

(a) (b)

Figure 2.1: The clustering results of the face dataset obtained from GLLiM: (a) six
face images from Cluster 7; (b) scatter plot of T for points within Cluster 7 and 13
clustered by GLLiM. Data points are from Cluster 7 (circle) and Cluster 13 (triangle).
The three variables are (Light, Pan, Tilt).

Figure 2.1(b) shows the scatter plot of T within Clusters 7 and 13, grouped by

GLLiM. By visual inspection, both clusters seem to consist of two or more sub-

clusters. In GLLiM, samples within the same cluster are assumed to follow Gaussian

distributions. This sub-cluster structure, however, violates the assumption and po-

tentially increases the prediction errors. We demonstrate the difference in prediction

performance before and after accounting for the sub-cluster structure in Table 2.1. We

use prediction squared error (SE) for testing data pre- and post cluster-division. We

observe that the prediction errors are mostly reduced if we account for the sub-cluster

structure.

Dividing samples at low dimensions is an effective and straightforward solution

for this issue. However, we could obtain small sub-clusters after division and then

increase the prediction variance. In Table 2.1, Images 114 and 223 were assigned to

small and/or tight local clusters and the prediction of T for these two images became

20

Image ID GLLiM cluster Original SE Post-Division SE Improved ratio

56 7 0.306 0.043 86.03%
223 7 0.016 0.180 -1039.83%
293 7 0.060 0.023 61.27%
302 7 0.087 0.003 96.99%
114 13 0.114 0.118 -2.93%
204 13 0.307 0.073 76.19%
294 13 3.119 0.120 96.15%

Table 2.1: The comparison of original and post cluster-division SE. The improved
ratio is calculated as the ratio of difference of SE from pre- to post cluster-division
over the original SE. The value is positive if the procedure reduces the SE, and
negative otherwise.

worse after cluster-division. Conceptually, small clusters could damage prediction

performance for several reasons: the small number of observations in such a cluster

leads to estimates with large variation; a small cluster with a small covariance matrix

determinant (volume) could lead to instability of the whole likelihood-based algo-

rithm, and a small/tight cluster could consider a close-by testing sample unfit and

force it to be predicted by another less suitable cluster with a larger within-cluster

covariance. The last consideration is not relevant to model building but plays an

important role in prediction precision.

This observation motivates us to look into enhancing prediction stability by con-

trolling cluster sizes and eliminating outliers in the training dataset.

2.2 Hierarchical Gaussian Locally Linear Mapping (HGLLiM)

Hierarchical Gaussian Locally Linear Mapping (HGLLiM) is proposed to strike a

balance between model flexibility and variation reduction in the estimated predictive

model, with the goal of predicting the low-dimensional observable variables, T , using

the high-dimensional X. This predictive model does not need to be the true model but

should be effective in prediction. To present the fundamental concepts with clarity, we

will first describe the model structure when Y = T, with minimum required notations.

21

The scenario of Y containing W is easily extended in Section 2.2.2.

2.2.1 Model description

The joint probability, p(X = x, Y = y; θ), of high-dimensional predictor X and

low-dimensional response Y can be written as:

K∑
k=1

M∑
l=1

p(X = x|Y = y, Z = k, U = l; θ)p(Y = y|Z = k, U = l; θ)p(Z = k, U = l; θ),

where θ denotes the vector of parameters; Z and U are, respectively, latent global

and local cluster assignments. The locally linear relationship between X and Y is

given by the mixture model below:

X =
K∑
k=1

M∑
l=1

I(Z = k, U = l)(AklY + bkl + Ek),

where I is the indicator function, Akl ∈ RD×L and bkl ∈ RD map Y onto X, and

Ek ∈ RD×D is the error term that absorbs the remaining uncertainty. Recall that D

and L are dimensions of X and Y, respectively, and D >> L. Here, we let the local

cluster size M(k) ≡ M for notational simplicity only. We assume, within the k-th

global cluster, that all local clusters share the same error structure, which follows a

zero-mean Gaussian distribution with covariance matrix Σk. That is, we have,

p(X = x|Y = y, Z = k, U = l; θ) = N (x;Akly + bkl,Σk).

The model is completed by assuming Y follows a mixture of Gaussian and defining a

prior for clustering assignment:

p(Y = y|Z = k, U = l, θ) = N (y; ckl,Γkl),

p(Z = k, U = l, θ) = ρkl,

22

where ckl ∈ RL, Γkl ∈ RL×L and
∑K

k=1

∑M
l=1 ρkl = 1. The vector of parameters in the

inverse regression model, θ, is given by

θ = {ckl,Γkl, ρkl, Akl, bkl,Σk}K,Mk=1,l=1.

The inverse conditional density can be written as:

p(X = x|Y = y; θ) =
K∑
k=1

M∑
l=1

ρklN (y; ckl,Γkl)∑K
i=1

∑M
j=1 ρijN (y; cij,Γij)

N (x;Aklx+ bkl,Σk),

and the conditional density in the forward regression model is expressed as:

p(Y = y|X = x; θ∗) =
K∑
k=1

M∑
l=1

ρ∗klN (x; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (x; c∗ij,Γ

∗
ij)
N (y;A∗kly + b∗kl,Σ

∗
kl),

where θ∗ denotes the parameter vector in the forward regression model:

θ∗ = {c∗kl,Γ∗kl, ρ∗kl, A∗kl, b∗kl,Σ∗kl}
K,M
k=1,l=1.

Note that θ∗ has closed-form expressions as functions of θ, which makes it computa-

tionally efficient. The relation is obtained analytically with:

c∗kl = Aklckl + bkl,

Γ∗kl = Σk + AklΓklA
>
kl,

ρ∗kl = ρkl,

A∗kl = Σ∗klA
>
klΣ
−1
k ,

b∗kl = Σ∗kl(Γ
−1
kl ckl − A

>
klΣ
−1
k bkl),

and Σ∗kl = (Γ−1kl + A>klΣ
−1
k Akl)

−1.

23

The prediction can be done by taking the expectation over the forward conditional

density:

E[Y |X = x] =
K∑
k=1

M∑
l=1

ρ∗klN (x; c∗kl,Γ
∗
kl)∑K

i=1

∑M
j=1 ρ

∗
ijN (x; c∗ij,Γ

∗
ij)

(A∗klx+ b∗kl) (2.12)

2.2.2 HGLLiM model with partially-latent responses

Recall that the low-dimensional data Y ∈ RL contains a latent component W .

Namely, Y > = (T>,W>), where T ∈ RLt is observed and W ∈ RLw is latent and

thus L = Lt+Lw. It is assumed that T and W are independent given Z, and so are W

and U. According to the decomposition of Y , the corresponding mean (ckl), variance

(Γkl) and regression parameters (Akl) of Y , at the local-cluster level, are given as:

ckl =

ctkl
cwk

 , Γkl =

Γtkl 0

0 Γwk

 , and Akl = [Atkl A
w
k]. (2.13)

That is, when Z = k, U = l, at the local-cluster level, T ∼ N (ctkl,Γ
t
kl); when

Z = k, at the global-cluster level, W ∼ N (cwk ,Γ
w
k). It follows that locally, the

association function between the high-dimensional Y and low-dimensional X can be

written as:

X =
K∑
k=1

I(Z = k)


M∑
l=1

I(U = l)(AtklT + bkl) + AwkW + Ek

 . (2.14)

Finally, the parameter vector θ in the inverse regression model is rewritten as: θ =

{ρkl, ctkl,Γtkl, Atkl, bkl, cwk , Γwk , Awk ,Σk}K,Mk=1,l=1.

It follows that (2.14) can be equivalently rewritten as

X =
K∑
k=1

I(Z = k)


M∑
l=1

I(U = l)(AtklT + bkl) + Awk c
w
k + E ′k

 , (2.15)

24

where the error vector E ′k is modeled by a zero-centered Gaussian variable with a

D ×D covariance matrix given by

Σ′k = Σk + Awk ΓwkA
w>
k . (2.16)

Considering realizations of variables T and X, the addition of the latent W naturally

leads to a covariance structure, namely (2.16), where Awk ΓwkA
w>
k is at most of rank

Lw. When Σk is diagonal, this structure is that of factor analysis with at most Lw

factors, and represents a flexible compromise between a full covariance with O(D2)

parameters on one side, and a diagonal covariance with O(D) parameters on the

other.

Using the same number of total clusters and considering the fact that Σk and

Awk are only estimated at the global-cluster level, we note that the total number

of parameters needed to model the covariances, Σk, and the latent transformation

coefficients, Awk , using HGLLiM is 1/M of that required by using GLLiM. In addition,

the key emphasis of HGLLiM is to conduct prediction. As shown in (2.13), (2.15),

and (2.16) at the local vs. global-cluster levels, we now separate the estimation of

the mean association functions, which play a key role in prediction, from that of

high-dimensional covariance matrices, so that the means can be obtained even more

locally. Together with the current dependence structures being stably estimated at

the global-cluster level using more data points per cluster, the HGLLiM provides a

strong prediction tool built on a structure facilitating sensible approximations to the

true underlying distribution of low-dimensional T and high-dimensional X.

2.3 Estimation procedure

In this section, an EM algorithm for HGLLiM is provided for parameter estima-

tion. We then present an extended version, tailored for ensuring stability and outlier

25

trimming. The selection of tuning parameters is also discussed.

2.3.1 The EM algorithm for HGLLiM

The HGLLiM model contains three sets of latent variables: Z1:N = {ZN}Nn=1,

U1:N = {Un}Nn=1 and W1:N = {Wn}Nn=1. The first two sets of variables indicate the

global and the local cluster assignments and the last one is the latent covariates.

The model parameters, θ, as defined in Equation (2.12), can be estimated using the

Expectation-Maximization (EM) algorithm (Dempster et al., 1977). We can divide

the EM algorithm for HGLLiM into several steps: an E-Z,U step for estimating the

posterior probability of being assigned to a global or a local cluster, an E-W step for

finding an estimation of latent variable W and a maximization step for estimating

parameters at the local and global cluster levels.

E-Z,U Step:

We denote the posterior probability of observation n being assigned to global cluster

k, local cluster l, based on the observed data, to be

rnkl = p(Zn = k, Un = l|tn, xn; θ); (2.17)

and we let,

rnk = p(Zn = k|tn, xn; θ). (2.18)

The posterior probability of sample n being assigned to local cluster (k, l) is given by

rnkl = p(Zn = k, Un = l|tn, xn; θ)

=
ρklp(tn, xn|Zn = k, Un = l; θ)∑K

i=1

∑M
j=1 ρijp(tn, xn|Zn = i, Un = j; θ)

,

where p(tn, xn|Zn = k, Un = l; θ) = p(xn|tn, Zn = k, Un = l)p(tn|Zn = k, Un = l). The

first term is given by p(xn|tn, Zn = k, Un = l) = N (xn;Atkltn+bkl+A
w
k c

w
k , A

w
k ΓwkA

w>
k +

26

Σk). Recall that the second term p(tn|Zn = k, Un = l) = N (t; ctkl,Γ
t
kl).

A direct derivation shows that

rnk = p(Zn = k|tn, yn; θ)

=
M∑
l=1

rnkl.

E-W Step:

The distribution p(wn|Zn = k, tn, xn; θ) can be shown to be Gaussian with mean µwnk

and covariance matrix Swk . The estimation of the mean and covariance matrix is given

by:

µ̃wnk =
M∑
l=1

rnkl
rnk

S̃wk

(
Aw>k Σ−1k (xn − Atkltn − bkl) + (Γwk)−1cwk

)
,

S̃wk =
{

(Γwk)−1 + Aw>k Σ−1k Awk

}−1
. (2.19)

The maximization step consists of two sub-steps. The first step aims to estimate

parameters for a Gaussian Mixture Model and the second one focuses on estimating

parameters for mapping.

M-GMM Step:

In this step we only consider the parameters related to the Gaussian Mixture Model.

In particular, we want to estimate {ρkl, ctkl,Γtkl, }
K,M
k=1,l=1. Hereinafter, we let rkl =∑N

n=1 rnkl and rk =
∑N

n=1 rnk. We obtain:

ρ̃kl =
rkl
N
,

c̃tkl =

∑N
n=1 rnkltn
rkl

,

and Γ̃tkl =

∑N
n=1 rnkl(tn − c̃kl)(tn − c̃tkl)>

rkl
.

27

M-mapping Step:

The M-mapping step aims to estimate {Atkl, bkl, Awk ,Σk}K,Mk=1,l=1. It is assumed that T

and W are independent given the cluster assignment. Based on this, we could update

Awk first:

Ãwk = X̃kṼ
>
k (Swk + ṼkṼ

>
k)−1 (2.20)

where

Ṽk =
1
√
rk

[
√
r1k(µ̃

w
1k − µ̃wk), ...,

√
rNk(µ̃

w
Nk − µ̃wk)],

X̃k =
1
√
rk

[
√
r1k(x1 −

M∑
l=1

r1kl
r1k

x̃kl), ...,
√
rNk(xN −

M∑
l=1

rNkl
rNk

x̃kl)],

µ̃wk =
N∑
n=1

rnk
rk
µ̃wnk,

x̃kl =
N∑
n=1

rnkl
rkl

xn.

Note the difference between how X and V are being centered. For X, we center it

against the local cluster mean, while we let V be centered at the global-cluster level.

Once we obtain Awk we subtract the latent variables component from X and update

Atkl and bkl, accordingly. Letting x∗nk = xn − Ãwk µ̃wnk, we get:

Ãtkl = X̃∗klT̃
>
kl (T̃klT̃

>
kl)
−1,

b̃kl =
N∑
n=1

rnkl
rkl

(x∗nk − Ãtkltn),

28

where

T̃kl =
1
√
rkl

[
√
r1kl(t1 − t̃kl), ...,

√
rNkl(tN − t̃kl)],

X̃∗kl =
1
√
rkl

[
√
r1kl(x

∗
1k − x̃kl), ...,

√
rNkl(x

∗
Nk − x̃kl)],

t̃kl =
N∑
n=1

rnkl
rkl

tn,

x̃kl =
N∑
n=1

rnkl
rkl

x∗nk.

Finally, we can update Σk by:

Σ̃k = Ãwk S̃
w
k Ã

w
k +

N∑
n=1

rnk
rk

[xn −Rn][xn −Rn]>, (2.21)

where Rn =
∑M

l=1
rnkl

rnk
(Ãtkltn + b̃kl)− Ãwk µ̃wnk.

2.3.2 Robust estimation procedure

The EM algorithm as stated in Section 2.3.1 gives the key structure of the method.

However, even with the inversion step, the prediction procedure still involves a high-

dimensional predictor and elevated variation in estimated parameters, induced by

small clusters or abnormal observations, that could lead to reduced prediction qual-

ity. Stability can be achieved by constraining the sizes of the clusters (controlling

both covariance volume and prediction variance) and trimming outliers. We design

a robust estimation procedure to refine the standard EM algorithm with the pur-

pose of enhancing model stability, which consequently leads to improved prediction

performance.

Let
∑N

n=1 rnkl represent the cluster size for cluster (k, l). Each data point in a

cluster whose cluster size is smaller than a pre-determined minSize is reassigned to

other clusters. The point is kept when the prediction squared error is less than a

29

pre-determined dropThreshold ; otherwise, it would be excluded from the current EM

iteration when updating the estimated parameters. With the data points within a

cluster playing a dominating role in estimating within-cluster parameters, the cluster

size plays the role of the sample size in estimation: when the sample size is too small,

the prediction quality deteriorates even if the assumed structure is correct. Improved

prediction performance might be achieved by assigning such a data point within a

small cluster to another cluster that shares similar structures. If no such a cluster can

be identified, then the data point is excluded from the construction of the prediction

model. The algorithm is shown in Algorithm 2.1 and described as follows:

1. The algorithm is initialized by adopting the parameters θ, mean and covariance,

µ̃wnk, S̃
w
k , of latent W of the k-th cluster, and cluster assignment rnkl obtained

from the EM algorithm described in Section 2.3.1.

2. The estimating procedure iterates through the following sub-steps until the

algorithm converges:

(a) Trimming step: In order to remove outliers, we scan through all local

clusters and remove all samples whose in-sample prediction squared errors

are greater than a pre-determined dropThreshold. The prediction squared

error for the n-th sample is calculated as:

E2
n = ||tpredn − tn||22, (2.22)

where tn is the true value and tpredn is the prediction from Equation (2.12).

Note that the low-dimensional data {tn}Nn=1 are standardized before train-

ing so that each dimension would be equally weighted. The samples with

in-sample prediction squared error larger than dropThreshold are consid-

ered outliers and are temporarily removed by assigning rn∗kl to be 0 at that

30

iteration of the maximization step, where n∗ indicates the training sample

whose E2
n∗ > dropThreshold.

(b) Maximization step with a cluster size constraint: The estimation of θ is the

same as in the Maximization step described in Section 2.3.1 but with an

additional cluster size constraint. Before estimating parameters for each

local cluster (k, l), we first check the associated cluster size. If the cluster

size is smaller than the given minSize, we force the training data originally

assigned to this cluster to either be assigned to other clusters during the E-

step in updating cluster-assignment Z, and U , or, if no appropriate cluster

can be found, to be trimmed during the next Trimming Step.

(c) Update step for the latent variables: Estimation of µ̃wnk, S̃
w
k and rnkl are

done using the E-W and E-Z,U step described in Section 2.3.1.

31

Algorithm 2.1 Robust estimation procedure for HGLLiM

Input : Observed data pair {tn, xn}Nn=1; global cluster number K;

local cluster number M ; prediction trim threshold dropThreshold;

minimum cluster weight minSize.

Output : Model parameter θ fulfills the requirement of the prediction error and

the minimum cluster size.

while the likelihood does not converge do

// Trim

Calculate prediction tpred for all n

Update rnkl ← 0 for all n such that ||tpredn − tn||22 > dropThreshold

// M step with cluster weight constraint minSize

Compute cluster weight rkl ←
∑N

n=1 rnkl

for k = 1 to K do

for l = 1 to M do

if rkl < minSize then

remove cluster (k, l)

else

θkl ←Maximization(t, x, rnkl, µ
w
k , S

w
k)

end

end

end

// E-step

Update rnkl, µ
w
k and Swk using θ

end

2.3.3 Tuning parameter selection

For HGLLiM, there are several user-defined parameters: the dimension of the

latent variables Lw, the number of global clusters K, the number of local clusters

32

M , the minimum allowed cluster size minSize and the maximum allowed in-sample

prediction error dropThreshold. Through the changes in these tuning parameters,

the algorithm can be used to analyze all kind of data. We identify default recom-

mendations for certain parameters that work for almost all cases, and suggest simple

procedures that can be used to select others.

� K and Lw: The number of clusters, K, reflects the number of local linear asso-

ciations between covariates and responses. On the other hand, the number of

latent factors, Lw, models the variation that cannot be captured by these linear

associations. The combination of (K,Lw) influences the ability to capture the

mean and covariance structure of the relationship between X and Y . Select-

ing K and Lw through cross-validation is time-consuming, particularly because

there could be a large set of potential K to be considered. We propose a method

to restrict the searching space via the use of BIC. Using the face dataset as an

example, Table 2.2 shows the cluster number selected using BIC when Lw is

fixed, while Table 2.3 shows the number of latent factors selected by BIC when

K is fixed. These two tables show the roles played by K and Lw in terms of

how they compensate for each other. The model complexity increases as we

increase K or Lw. Therefore, BIC prefers the combination of either a small K

with a large Lw or a large K with a small Lw. It is also known that BIC is

conservative. Thus the parameters are most likely underestimated. Though it

matters less here, with additional sub-clustering steps in HGLLiM, we slightly

adjust the K and Lw selected by BIC to improve prediction performance. We

construct a search grid of K and Lw as follows. First, we select K using BIC

under a small Lw. This cluster number is called KBIC . Next, we fix the cluster

number to KBIC and select the corresponding number of latent factors, LK
BIC

w .

To identify the possible range of K and Lw, we increase the cluster number and

select the corresponding number of latent factors. As an example, we could set

33

Lw=0 Lw=1 Lw=2 Lw=8 Lw=9 Lw=10

BIC -8.75e+05 -9.35e+05 -9.48e+05 -1.08e+06 -1.09e+06 -1.11e+06
K 14 13 10 6 6 6

Table 2.2: The value of BIC and K selected by BIC for a given Lw. For a fixed
Lw, row 1: the minimum value of BIC; and row 2: the number of clusters, K, that
achieves this BIC.

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40

BIC -1.11e+06 -1.03e+06 -9.72e+05 -9.33e+05 -8.90e+05 -8.53e+05 -8.14e+05 -8.09e+05
Lw 10 8 7 3 1 1 0 0

Table 2.3: The value of BIC and the Lw selected by BIC for a given K. For a fixed K,
row 1: the minimum value of BIC; and row 2: the dimension of W, Lw, that achieves
this BIC.

the cluster number as KBIC + 15 and find the corresponding number of latent

factors, LK
BIC+15

w , again by BIC. Note that LK
BIC+15

w is smaller than LK
BIC

w . If

not, we can use K = KBIC + 20 or even KBIC + 25, until the resulting Lw is

smaller than LK
BIC

w , and this K would be the upper bound we use for values

of K. Applying an equal consideration of preventing being too conservative, we

could extend the search range of LK
BIC

w to LK
BIC

w +2. Finally, cross-validation is

conducted within the range of (KBIC , KBIC +15) and (LK
BIC+15

w , LK
BIC

w +2) for

searching for the combination of K and Lw that achieves the best performance.

� M : It is assumed that there would be one or more local clusters within each

global cluster. The choice of M depends on the nature of the data structure.

We found that the final result would not be sensitive to M ; the EM algorithm

combined with the refining algorithm would adjust itself and unneeded local

clusters would be dissolved.

� minSize: A two-dimensional grid search cross-validation algorithm can be used

to search for the best combination of minSize and dropThreshold, and we

34

have explored this option. However, this practice could be time-consuming.

To obtain an appropriate suggested value for minSize we calculate the matrix

volume of Γ∗kl, the covariance matrix used in prediction, and look for the drop-

off. Using the face dataset as an example, we implement HGLLiM with K = 15,

M = 5 and set Lw = 2. The volume of Γ∗kl is approximated by the product of

the top three eigenvalues. Figure 2.2 shows the relationship between volumes

of Γ∗kl versus cluster sizes. A small covariance matrix is likely to cause a surge

in likelihood and difficulties for the nearby testing sample to be classified as a

member of the cluster, both leading to inflation of the prediction mean squared

error. Figure 2.2 suggests that small covariance matrices could be expected

when the cluster size is smaller than 4. In view of this, we set minSize = 5

for this case. Our empirical experiences imply that this simple approach leads

to outcomes comparable to those of the more complicated two-dimensional grid

search algorithm.

0 5 10 15 20 25 30

Cluster size

-25

-20

-15

-10

-5

0

5

A
p
p
ro
xi
m
at
ed

lo
g(
V
ol
u
m
e)

of
Γ
∗ k
l

Figure 2.2: The logarithm of the approximated volume of Γ∗kl against the cluster size.

� dropThreshold: With minSize being fixed, dropThreshold could be simply

estimated by a K-fold cross-validation. From the experimental results, we es-

tablish that the prediction mean squared error is not sensitive to the choice of

dropThreshold within a reasonable range. We show this using the outcomes in

Section 2.4.

35

2.4 Numerical results

In this section, we analyze two moderate-size datasets to demonstrate how the

method works for data with different features and the insensitivity of tuning param-

eter selection on a wide range of selection domains. The analysis of two large-scale

complex datasets can be seen in Chapter III. Key features of each dataset, and thus the

type of data they represent, are reported in the corresponding subsections. Through-

out, we use squared error (Equation (2.22)) to evaluate the prediction performance for

each data point. We also calculate the prediction mean squared error (MSE) among

all testing samples with MSE =
∑Ntest

n=1 E2
n/Ntest, where Ntest is the total number of

testing samples.

We calculate and compare the MSE or the quantiles of squared errors across

several methods:

1. HGLLiM: This is the proposed method. The user-defined parameters K and Lw

are set to values using the method described in Section 2.3.3. The number of

local clusters M is set to 5 to reflect the possible sub-cluster structure. In each

global cluster, the number of local clusters varies and depends on the structure

of the dataset. Some of the local clusters would be dissolved so the number

of local clusters could be less than M . The initial cluster assignment is done

by dividing the GLLiM clustering outcomes at the low dimension using the R

package mclust (R Core Team, 2019; Scrucca et al., 2017). As stated before,

the robust version of the EM algorithm is used throughout the experiments.

We set minSize = 5 for all of the analyses and post-analysis checks in the

neighborhood of 5 suggest this is an appropriate choice. The prediction MSE

using different values of dropThreshold would be calculated and compared.

2. GLLiM: The original GLLiM algorithm. GLLiM is compared to other methods

under the same settings of K and Lw. The initial cluster assignment is done

36

by applying a Gaussian mixture model to a dataset that combines the low-

dimensional T and high-dimensional X together.

3. GLLiM-structure: This method adopts the number of clusters learned struc-

turally by HGLLiM. In addition, outliers identified by HGLLiM are removed

from the training dataset. We adopt the same tuning parameters as GLLiM

and the initial conditions are obtained from the outcomes of HGLLiM. The

key difference between GLLiM-structure and HGLLiM is that GLLiM-structure

uses locally estimated covariance, which may be more appropriate for a large

dataset with more local dependence features. Its effectiveness also suggests an

additional usage of HGLLiM, in terms of structure learning and identification

of outliers.

2.4.1 The face dataset

The face dataset, consisting of 698 samples, was analyzed in the original GLLiM

paper (Deleforge et al., 2015). For this dataset, we are interested in predicting the

pose parameters (Lt = 3) using the image information. The size of each image is

condensed to 32 × 32, and thus D = 1024 . In addition, T is standardized so that

all three dimensions are equally weighted. The histograms of the three T variables

bear no clustering structure. Consequently, the mixture modeling serves the purpose

of local linear approximation and inverse regression is utilized to circumvent the

difficulties encountered in high-dimensional regression.

In each run of cross-validation investigation, we follow the procedure in Deleforge

et al. (2015) and select 100 testing samples and keep the remaining 598 as train-

ing samples. We repeat this procedure 20 times to establish 2000 testing samples.

According to the approach described in Section 2.3.3, we run cross-validation on K

from 10 to 25, Lw from 1 to 15. The cross-validation results in Figure 2.3(a) suggest

that K = 20, Lw = 9. It is noted that the prediction errors decrease with increasing

37

values of Lw. This phenomenon suggests that the high-dimensional X are dependent

and that accounting for such dependency via the latent W leads to improvement in

prediction. It is also observed that the change in prediction error is relatively small

when Lw exceeds a certain value. Therefore, we fix the number of latent factors and

compare the prediction performance under K = 10, K = 15 and K = 25.

(a)

2 4 6 8 10 12 14

Lw

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

C
V

 M
S

E

K=10
K=15
K=20
K=25

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dropThreshold

0.0285

0.029

0.0295

0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033

M
S

E

HGLLiM K=10
GLLiM Structure K=10
HGLLiM K=15
GLLiM Structure K=15

HGLLiM K=20
GLLiM Structure K=20
HGLLiM K=25
GLLiM Structure K=25

Figure 2.3: Results for different user-defined parameters of the face dataset. (a) The
HGLLiM cross-validation results for different K and Lw. (b) The prediction MSE of
different K and different methods against different dropThresholds.

Figure 2.3(b) shows prediction outcomes under different values of dropThreshold.

We observe that for different methods and different K, the prediction MSEs are not

sensitive to the values of dropThreshold. Thus, we compare the prediction MSE of

HGLLiM and GLLiM-structure when dropThreshold = 0.5 to GLLiM in Table 2.4.

The prediction MSE for GLLiM decreases as K increases, which indicates that more

clusters could be helpful to capture the non-linear relationship between X and T . For

HGLLiM, we observe that the prediction MSE is not sensitive to the choice of K.

In addition, the numbers of clusters are similar under different choices of K. This

indicates that HGLLiM could adjust itself to reach the number of clusters suitable

to its setting. As for GLLiM-structure, the prediction MSEs are slightly smaller

than those of HGLLiM. This is because GLLiM-structure estimates all parameters

using local clusters and local covariances, and the prediction would be less biased

38

K=10 K=15 K=20 K=25

MSE #Cluster MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.0711 10.00 0.0441 15.00 0.0369 20.00 0.0321 25.00
HGLLiM 0.0314 43.90 0.0318 51.35 0.0294 53.75 0.0295 53.45
GLLiM-structure 0.0307 43.90 0.0301 51.35 0.0291 53.75 0.0288 53.45

Table 2.4: The prediction MSE and the average cluster number of the face dataset
when dropThreshold = 0.5.

when the local structures sufficiently differ. In the face dataset, there is no obvious

cluster structure and, as a result, clustering only serves the purpose of improving local

approximation. Thus, the prediction MSE for GLLiM-structure would be smaller.

However, the differences in prediction MSEs between HGLLiM and GLLiM-structure

are small, which implies that the settings learned from HGLLiM are appropriate, even

though HGLLiM imposes a global-cluster structure when there is none. Overall, the

prediction performance for HGLLiM is similar when K = 20 and K = 25. As for

GLLiM-structure, the MSE is smaller when K = 25 but the difference is negligible.

10 12 14 16 18 20 22 24 26 28 30
The side length of the image, ℓ

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
S

E

GLLiM
HGLLiM

Figure 2.4: The prediction MSE of the face dataset under different dimensions of X.
Each image in the face dataset consists of `× ` pixels, where `, the side length of the
image, is the square root of the dimension of X.

We further investigate the phenomenon described in Section 2.1. Specifically, as

the dimension of X becomes higher, not only does the number of covariance param-

39

eters increase, but there is also a higher chance the clusters formed by GLLiM could

contain sub-clusters and/or outliers, which could decrease the prediction quality. We

use Cluster 7 as our reference to create two clusters. There are two sub-clusters within

Cluster 7. We first identify the center of each sub-cluster using the low-dimensional

T and find the 30 nearest samples to each center. We randomly select 25 data points

from each sub-cluster as the training data and use the rest of the data points as the

testing samples. Thus, there will be 50 training samples and 10 testing samples. The

procedure is repeated 20 times and the results are aggregated together to evaluate

the model performance.

To investigate the prediction performance under the different dimensions of X, we

resize the face image to `× ` pixels, where we denote ` the side length of the image

so that the dimension of X is D = `× `. For GLLiM, we set the number of clusters,

K, to be 2 and the dimension of the latent variables, Lw, to be 9. For HGLLiM, we

have one global cluster and two local clusters, that is, K = 1,M = 2. As suggested in

Figure 2.3(a), we let Lw = 9 since this setting results in smaller cross-validation MSE.

We disable the robust estimation step, which is equivalent to setting minSize = 0,

dropThreshold = ∞, as described in Section 2.3.2; also see Section 2.3.3. Figure

2.4 shows the result of prediction MSE under different dimensions of X. When the

dimension of X is low, GLLiM can outperform HGLLiM. However, as the dimension

of X increases, we observe that the prediction error of GLLiM increases, suffering

from the potentially less suitable cluster assignments. On the other hand, HGLLiM

maintains appropriate clustering results, and thus the prediction performance remains

similar for all image sizes, if not slightly improved with the increasing dimension of

X and the enhanced information in the images with higher resolution.

40

2.4.2 The orange juice dataset

The orange juice dataset contains the spectra measured on different kinds of orange

juice (N = 218). The goal is to use the spectra to predict the level of sucrose (Lt = 1).

We follow the step described in Perthame et al. (2018) and decompose the spectra

on a spline basis with (D = 134) to make D ≈ N . This dataset is known for the

presence of outliers; the realization of X and T is given in Figure 2.5.

We set up the following prediction evaluation procedure. In each run, we randomly

select 20 testing samples from the main population (excluding outliers). The remain-

ing 198 samples (including outliers, unless otherwise specified) are used for training.

These outliers were identified through Leave One Out Cross Validation (LOOCV)

using GLLiM, with K = 10 and Lw = 2. Although the set of outliers may differ

for different selections of K, Lw, the severe outliers are always selected and they are

included here. We identify 11 points, which are the observations with the top 5% of

the prediction E2’s (above 4.8) among all data points, as outliers. Removing outliers

from testing data prevents the summarized outcomes from being overwhelmed by

the prediction results of few points, which potentially makes the differences among

methods less obvious. All methods were evaluated using the same settings.

Figure 2.6(a) shows the cross-validation results, which suggest the use of K = 5,

Lw = 8. For comparison purposes, we also provide MSE results for K = 10 and

K = 15. The rest of the setting is the same as the experimental setting used for the

face dataset.

To evaluate the influence of outliers on GLLiM, we conduct an analysis in which we

use the same cluster number as in GLLiM-structure but without removing training

outliers. This method is referred to as GLLiM-outlier. In addition, we consider

SLLiM in Perthame et al. (2018), provided by the R package xLLiM (Perthame

et al., 2017). SLLiM is a counterpart of GLLiM that accommodates abnormal samples

using Student’s t-distributions. Precisely, the high-dimensional X is modeled by a

41

Figure 2.5: The orange juice dataset. The upper panel shows the high-dimensional
data (X) and the lower one shows the low-dimensional data (T).

mixture of K generalized multivariate Student’s t-distributions, using the structure

given in Section 5.5 (p.94) of Kotz and Nadarajah (2004). We also compare SLLiM

performances by using the same cluster number learned structurally by HGLLiM. We

refer to the resulting procedure as “SLLiM-structure.” We use the default settings in

xLLiM for the remaining SLLiM configurations.

Figure 2.6(b) shows the prediction MSE for different dropThresholds. The pre-

diction MSEs vary, mainly reflecting the high variation in this dataset, partially due

K=5 K=10 K=15
MSE #Cluster MSE #Cluster MSE #Cluster

GLLiM 0.1259 5.00 0.1210 10.00 0.0918 15.00
HGLLiM 0.0587 9.95 0.0681 11.85 0.0692 12.80
GLLiM-structure 0.0621 9.95 0.0742 11.85 0.0746 12.80
GLLiM-outlier 0.0976 9.95 0.1171 11.85 0.1044 12.80
SLLiM 0.1039 5.00 0.0788 10.00 0.0706 15.00
SLLiM-structure 0.0907 9.95 0.0747 11.85 0.0721 12.80

Table 2.5: The prediction MSE and the average number of clusters of the orange juice
dataset when dropThreshold = 0.5.

42

(a)

2 4 6 8 10 12 14 16

Lw

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
V

 M
S

E

K=5
K=10
K=15

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dropThreshold

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
S

E

HGLLiM K=5
GLLiM Structure K=5

HGLLiM K=10
GLLiM Structure K=10

HGLLiM K=15
GLLiM Structure K=15

Figure 2.6: Results for the user-defined parameters of the orange juice dataset. (a)
The HGLLiM cross-validation results for different K and Lw. (b) The prediction
MSE of different K and different methods against different dropThresholds.

to outliers. For a small dropThreshold, the number of identified training outliers is

higher than expected. This reduces the training data size and makes the prediction

unreliable. As dropThreshold reaches a reasonable value, the prediction performance

becomes better. However, more and more abnormal training samples are included in

the training dataset as dropThreshold keeps increasing. These outlying data enlarge

the model variance and downgrade the prediction performance. Table 2.5 shows the

results for dropThreshold = 0.5. We observe that for K = 5, the cluster number is

not sufficiently large for GLLiM to capture the non-linear trend in the data, which

results in a relatively large prediction MSE. HGLLiM, on the other hand, adjusts

the cluster number automatically and the prediction errors are smaller. In addition,

HGLLiM removes training outliers that would decrease the model performance. This

explains why even though the cluster number is as large as K = 15 (larger than the av-

erage size of 12.8 used in GLLiM-structure), GLLiM still suffers from large prediction

errors. We further observe the benefit of removing outliers by comparing GLLiM-

structure and GLLiM-outlier. The prediction errors for GLLiM-structure are smaller

than those produced by GLLiM-outlier, and the only difference between GLLiM-

structure and GLLiM-outlier is whether training outliers, identified by HGLLiM, are

43

removed. There are 11 outliers in the training dataset. HGLLiM could effectively

identify and remove all of them. In addition to these outliers, some potential outlying

samples that could result in an unstable model are trimmed as well. Overall, about

6% to 10% of the training samples would be removed by HGLLiM.

SLLiM and SLLiM-structure use t-distributions to accommodate the existence

of outliers. They are expected to perform better than their Gaussian counterparts

(GLLiM and GLLiM-outlier). When K, the cluster number, is small, there would be

more samples in each cluster and thus the cluster size,
∑N

n=1 rnkl for cluster (k, l),

would be large. In contrast, when K is large, samples would be divided into more

clusters, which decreases the cluster size. It is observed that when K is small, ac-

commodating outliers with t-distributions is not as effective as removing them by

comparing SLLiM-structure and GLLiM-structure. When the number of clusters

becomes larger, outliers can be assigned to a cluster with less influence on the pre-

diction and thus we can obtain similar prediction performance from SLLiM-structure

and GLLiM-structure. However, removing outliers would reduce the cluster size and

result in unstable prediction performance. To provide reliable model performance,

HGLLiM controls the cluster size via the tuning parameter minSize. In addition,

HGLLiM estimates the covariance matrices under global-cluster level, and this esti-

mation is more reliable compared to GLLiM-structure, which estimates covariance

matrices locally. SLLiM does not remove any samples, and thus the performance

would be better than that of GLLiM-structure when the cluster number, K, is large.

Although removing outliers is more effective, accommodating outliers may still be an

alternative to combat outliers when the cluster size is the concern.

2.5 Conclusion

We propose HGLLiM as a parsimonious and structured version of GLLiM. HGLLiM

adopts a two-level hierarchical structure of clusters. The assumed structure enables

44

us to assess the parameters in the mean association functions more locally without

suffering from the clustering outcomes being dominated by the dependence structures

in the high-dimensional predictors. Under the same construction, we also estimate

the reduced number of covariance parameters with more data points. In addition, we

implement a robust version of HGLLiM to enhance model stability and reduce pre-

diction variation. HGLLiM further leads to a post-learning version of GLLiM, called

GLLiM-structure. By using local means and local variances, with unfitted points

removed, GLLiM-structure tends to reach improved empirical performances.

The motivation behind HGLLiM and GLLiM-structure is to obtain precise pre-

dictions by constructing stable training models. Eliminating the existence of small

clusters and removing outliers assist in achieving this goal. The fact that HGLLiM

only focuses on preserving primary structures learned from the training dataset may

reduce the quality of its predictions of rare data points, which are insufficiently pre-

sented therein. Nevertheless, by utilizing the largest membership posterior probability

rnkl among all clusters (k, l) and by recognizing when this maximum is likely to be

much smaller than those obtained from the majority of the data, we can identify such

testing samples with unreliable prediction results.

Despite the drawback that the resulting training model obtained by HGLLiM may

or may not reflect the exact true model that generates all the data, it nevertheless

captures the critical structure and establishes a model that can be stably estimated

using the data available. HGLLiM can still provide reliable prediction outcomes for

the majority of the data and is the recommended approach as a starting point when

analyzing data with a complicated structure.

45

CHAPTERS III

Parallel Model Training of HGLLiM

Model building time is a critical issue for large-scale and complex datasets. Under

the HGLLiM framework, as the number of samples increases, the time it takes to

compute the posterior probability in the expectation step increases. In addition, it

takes longer for the EM algorithm to converge, and it becomes more difficult to find

a proper initial setting as the structure of the dataset becomes more complicated.

To accelerate the model building process, we propose parallel HGLLiM, which is an

extension of HGLLiM utilizing the hierarchical structure for parallel training. We use

two complicated large-scale datasets to demonstrate the usage of the parallelization

technique and the power of HGLLiM for modeling complex associations over a large

number of observations.

3.1 Parallel model training of large-scale datasets

Parallel HGLLiM starts by subsetting the dataset into smaller groups. With

the hierarchical model structure of HGLLiM, the model can be broken down into

smaller sub-models and these sub-models can be trained separately. The hierarchical

model structure also provides a simple way to aggregate sub-models back into the

full model. HGLLiM determines local clusters using the low-dimensional data T .

Thus, subsetting the dataset according to T would be a straightforward practice.

46

Categorical variables are suitable references for subsetting a dataset. However, the

subsetting strategy is not limited to categorical variables, nor is it limited to T as

well. As long as we can easily determine the group membership using X information,

we could subset the dataset and accelerate the training procedure.

Once we determine the group membership, each group is trained separately. A

group contains K global clusters and a global cluster contains up to M local clus-

ters. When conducting the prediction, we should aggregate the model parameters

from all groups. Denote θg = {cgkl,Γgkl, ρgkl, Agkl, bgkl,Σgk}Kg ,Mg

k=1,l=1 as the model pa-

rameter for group g; Kg, Mg are the corresponding global/local cluster numbers

with g = {1, ..., G}. The aggregated HGLLiM model parameter can be expressed as

θ = {θg}Gg=1. Let V be the latent variable for group assignment. We obtain:

p(X = x|Y = y, V = g, Z = k, U = l; θ) = N (x;Agkly + bgkl,Σgk) (3.1)

The hierarchical model structure can be completed by

p(Y = y|V = g, Z = k, U = l; θ) = N (y; cgkl,Γgkl), (3.2)

p(V = g, Z = k, U = l; θ) = ρgkl
Ng

N
= φgkl, (3.3)

where Ng is the number of samples within group g and N =
∑G

g=1Ng. The inverse

and forward conditional density can be written as:

47

p(X = x|Y = y) =

G∑
g=1

Kg∑
k=1

Mg∑
l=1

φgklN (y; cgkl,Γgkl; θ)∑G
i=1

∑Kg

j=1

∑Mg

m=1 φijmN (y; cijm,Γijm; θ)
N (x;Agkly + bgkl,Σgk; θ),

(3.4)

p(Y = y|X = x) =

G∑
g=1

Kg∑
k=1

Mg∑
l=1

φ∗gkN (x; c∗gk,Γ
∗
gk; θ

∗)∑G
i=1

∑Kg

j=1

∑Mg

m=1 φ
∗
ijmN (x; c∗ijm,Γ

∗
ijm; θ∗)

N (y;A∗gklx+ b∗gkl,Σ
∗
gkl; θ

∗),

(3.5)

where θ∗ = {θ∗g}Gg=1 and θ∗g is the forward model parameter that corresponds to θg.

The prediction can be conducted by

E[Y |X = x] =
G∑
g=1

Kg∑
k=1

Mg∑
l=1

φ∗gklN (x; c∗gkl,Γ
∗
gkl; θ

∗)∑G
i=1

∑Kg

j=1

∑Mg

m=1 φ
∗
ijmN (x; c∗ijm,Γ

∗
ijm; θ∗)

(A∗gklx+ b∗gkl).

(3.6)

Note that for testing data xn, the probability of being assigned to group g, global

cluster k and local cluster l is

rngkl =
φ∗gklN (xn; c∗gkl,Γ

∗
gkl; θ

∗)∑G
i=1

∑Kg

j=1

∑Mg

m=1 φ
∗
ijmN (xn; c∗ijm,Γ

∗
ijm; θ∗)

. (3.7)

3.2 Magnetic resonance vascular fingerprinting

It is of great interest to the scientific community to be able to efficiently assess

microvascular properties, such as blood volume fraction, vessel diameter, and blood

oxygenation the in brain so that the ability to diagnose and manage brain diseases

can be improved. Recently, a new approach called magnetic resonance vascular fin-

gerprinting (MRvF) was proposed as an alternative to overcome the limitations of

48

analytical methods in measuring microvascular properties. The approach was built

on a system in which “fingerprints” in every voxel are compared to a dictionary ob-

tained from numerical simulations (Ma et al., 2013). Finding the closest match to

a fingerprint record in the dictionary allows a direct link between the parameters

of the simulations and the microvascular variable (also referred to as a “parameter”

in these studies). In this first approach of Ma et al. (2013), the authors use the

nearest neighbor search in Euclidian distance to find the match. In Lemasson et al.

(2016), the investigators simulate MR signals from a virtual voxel. The parameter

inputs of the simulations, including blood volume fraction and mean vessel radius,

among others, are varied to construct a dictionary of possible signal evolutions. They

also use the nearest neighbor search, though not with Euclidian distance, to iden-

tify a match. The goal of our study is to build a model-based system that carries

out the same prediction tasks these investigators are interested in: taking a high-

dimensional fingerprint as an input and predicting the low-dimensional parameter(s)

as the outcome. In addition, the model we construct would assist investigators in

having a better understanding of the complexity of the system. The existing nearest

neighbor search/match methods do not help to understand the association and the

underlying structure of the system. Furthermore, it is known that a nearest neighbor

prediction approach may not work that well for data bearing high variation noises,

a phenomenon we illustrate empirically in Section 3.2.2. In Lemasson et al. (2016),

their search/match procedure is effective in predicting a parameter, Blood Volume

Fraction (BVf), at an aggregated level. Precisely, the true and predicted means of

BVf over voxels of a given region are practically the same. However, the performances

of the method in predicting another parameter, Apparent Diffusion Coefficient (ADC,

not discussed in the published work), at the voxel level, are less ideal.

A synthetic magnetic resonance vascular fingerprint (hereafter referred to as fin-

gerprint) dataset composed of 1, 383, 648 observations was created to serve as a

49

“search/match” library. Each observation in the library consists of a fingerprint mea-

surement and associated parameters: mean vessel radius (Radius), Blood Volume

Fraction (BVf) and a measurement of blood oxygenation (DeltaChi). One goal is to

predict these parameters (Lt = 3) using the fingerprint measurement (D = 32). In

addition to these three parameters, other parameters (variables) that have influence

over the fingerprint measurements include Apparent Diffusion Coefficient (ADC),

vessel direction (Dir) and vessel geometry (Geo).

3.2.1 Analysis and subsetting of the synthetic data

To speed up the model building procedure, we take advantage of the subsetting

and parallelization technique described in Section 3.1. The synthetic dataset is ana-

lyzed and subsetted based on the analysis in this section. In Table 3.1, we summarize

the values and the range of the microvascular parameters (t1 ∼ t6) of the finger-

print dictionary. The values for each parameter are shown in Figure 3.1. There are

1,383,648 observations in the synthetic dictionary. The dataset is divided to cover

as many kinds of data as possible for cross-validation purposes. First, we use t6 to

form Group 1 (t6 = 1) and Group 2 (t6 = 2). Our exploratory analysis shows high

complexity when t6 = 3. Thus, it is necessary to separate more groups on t6 = 3 to

reflect the complexity. For data with t6 = 3, we divide t1 into 3 categories and con-

sider 6 different values in t5. All together, for t6 = 3, we construct 18 groups (Group

3 to Group 20). The available size of each group is shown in Table 3.2.

To construct 20-fold cross-validation, the testing sample size is picked so that all

data within the smallest group would be used. The smallest group size is 2030 (Group

3 to Group 14). Within these groups, we select 102 testing samples from each group.

Some data could have replicates, but the number of replicates would be no more than

2. This aims to make the number consistent through all groups and folds. After

excluding testing data, we randomly pick 10,000 for Group 1 and Group 2 as training

50

Parameter Parameter meaning No. of unique values Range

t1 R (µm) 38 0.5 ∼ 1000
t2 BV (%) 47 0.25 ∼ 50
t3 ADC (µm · s−1) 33 2× 10−10 ∼ 18× 10−10

t4 DeltaChi (ppm) 29 0 ∼ 1.4
t5 Direction (radians) 6 0, 0.314, 0.628, 0.943, 1.257, 1.571
t6 Geometry 3 1, 2, 3

Table 3.1: The unique values and the range of microvascular parameters

Group ID Value Available Size

Group1 t6 = 1 1052352
Group2 t6 = 2 233856
Group3 t1 category1, t5 value1 2030
Group4 t1 category1, t5 value2 2030
Group5 t1 category1, t5 value3 2030
Group6 t1 category1, t5 value4 2030
Group7 t1 category1, t5 value5 2030
Group8 t1 category1, t5 value6 2030
Group9 t1 category2, t5 value1 2030
Group10 t1 category2, t5 value2 2030
Group11 t1 category2, t5 value3 2030
Group12 t1 category2, t5 value4 2030
Group13 t1 category2, t5 value5 2030
Group14 t1 category2, t5 value6 2030
Group15 t1 category3, t5 value1 12180
Group16 t1 category3, t5 value2 12180
Group17 t1 category3, t5 value3 12180
Group18 t1 category3, t5 value4 12180
Group19 t1 category3, t5 value5 12180
Group20 t1 category3, t5 value6 12180

Table 3.2: The size of each group of the fingerprint dataset.

samples. For Group 3 to Group 14, the remaining 1928 samples would become the

training data. For Group 15 to Group 20, we pick 2000 training samples. As a result,

within each fold, there would be 55136 training samples (10,000 from Group 1 and

Group 2, 1928 from Group 3 to Group 14, 2000 from Group 15 to Group 20) and

2040 testing data (102 from each group).

For HGLLiM and GLLiM-structure, it takes about 549.86 and 362.94 seconds, re-

51

(a)

(b)

Figure 3.1: The distribution of parameters (T). The x-axis shows the index of obser-
vations and the y-axis marks the values of each observation in different dimensions.
(a) Dimensions 1 to 3; (b) Dimensions 4 to 6.

spectively, for each method to complete the EM computation. In comparison, it takes

19341.51 and 14107.63 seconds without using the parallel computing strategy. We

evaluate and compare the performance of different methods through cross-validation

and show that the model-based methods can achieve comparable results.

52

3.2.2 Numerical results

Our current study consists of two components. Through cross-validation, we first

evaluate the feasibility and effectiveness of the parallel computation algorithms and

compare the performance of different methods on the synthetic dataset. We then ap-

ply these methods to a fingerprint dataset collected from an animal study; in which,

besides predicting the variable BVf (the main goal of Lemasson et al. (2016)), we

focus on predicting another variable, ADC, a more challenging scenario which has

not been reported before. The synthetic library is divided into 20 groups, and we

apply the parallelization techniques to accelerate the model building process. When

conducting the analysis of the animal study, we add a small amount of the in vivo

data to the training dataset. We noted that fingerprint samples from the real world

are noisier than their synthetic counterparts and thus this practice, as a calibration

step, enables the training model to readily accommodate the real fingerprint samples

in prediction. The ratio of the synthetic samples to the real image samples is 4 to 1.

The cluster number and latent factor number are selected using the method described

in Section 2.3.3 and are set to K = 1240 and Lw = 9. We evaluate and compare the

performance of different methods on the synthetic dataset through cross-validation.

The cross-validation results in predicting Radius, BVf and DeltaChi demonstrate that

the model-based methods (GLLiM/HGLLiM/GLLiM-structure) can achieve compar-

ative prediction performance. Next, we apply these methods to a fingerprint data set

collected from an animal study.

In Lemasson et al. (2016), numerical performances of a dictionary matching method

were presented. For comparison purposes, we implement the dictionary matching

method adopted in Lemasson et al. (2016). The coefficient of determination (r2) is

used to measure the similarity between a testing sample and the training samples (dic-

tionary). The coefficient of determination, r2, between a testing sample xtest ∈ RD

and a training sample xtrain ∈ RD is calculated as:

53

r2 = 1−
∑D

d=1(x
test
d − xtraind)2∑D

d=1(x
test
d − x̄test)2

, (3.8)

where x̄test = 1
D

∑D
d=1 x

test
d and the subscript d is used to denote the index of the

dimension. The matched fingerprint is the training fingerprint with the largest r2

and we predict the parameters of the testing data using the matched fingerprint.

Cross-validation results for the synthetic fingerprint dataset

Table 3.3 shows the 50%, 90% and 99% quantiles of the prediction squared errors

for different parameters using different methods through cross-validation. The out-

comes reported under the 50th and 90th percentiles give the indication of “average”

and “almost-all” prediction performances for each method. The 99th percentile val-

ues allow the comparisons of worse-case scenarios. We observe that the prediction

is close to the true value for 90% of the predicted values. Using GLLiM, we obtain

slightly larger values of E2 for Radius. However, all four methods reach similar val-

ues of E2 for Radius at the 99% quantile. For BVf, GLLiM performs worse than

other methods but its 99% squared error level is still acceptable. The prediction

performances of BVf for all methods are better than those of other parameters, with

the relationship between BVf and Y being the strongest among all parameters. For

DeltaChi, the E2’s for dictionary matching are larger than those of other methods at

the 90% quantile level. At the 99% quantile level, its performances become similar to

those of HGLLiM and GLLiM-structure. Note that the model is built using Radius,

BVf, ADC and DeltaChi. The parameter ADC is included to evaluate the prediction

performance on real image data. However, note that adding a weakly informative

parameter such as ADC to the model would downgrade the prediction performance.

If predicting ADC is not the major task, we could obtain lower prediction error when

training the model with Radius, BVf and DeltaChi. The results of using 3 parameters

are shown in Table 3.4.

54

On the other hand, when adopting dictionary matching, testing data are com-

pared to fingerprint observations, which are associated with 6 parameters as shown

in Figure 3.1. With all parameters embedded inside fingerprint observations, the dic-

tionary matching method actually uses information from 6 parameters. If we restrict

the parameter space, i.e. only consider Radius, BVf and DeltaChi, there would be

multiple fingerprints associated with the same set of the restricted parameters. To

evaluate the performance under a restricted parameter setting, we randomly select a

fingerprint as the representative for the same set of parameters. Table 3.4 shows the

cross-validation results on the restricted synthetic fingerprint dataset.

Comparing Table 3.4 to Table 3.3, we observe improvement on 90% quantiles

for model-based methods, which indicates that we could obtain better prediction

outcomes by removing ADC from the training data. In contrast, the results of the

dictionary matching method become worse. This is a natural consequence of lacking

sufficient details to categorize and distinguish samples in the dictionary. If the re-

maining parameters are insufficient to reflect the data complexity, testing data will

likely be matched to an inadequate member within the dictionary and, as a result, we

would obtain a large prediction error. This comparison shows the difference between

the dictionary matching method and the model-based method. For the dictionary

matching method, we hope to enumerate all possible distinctions in the dictionary.

Thus, the prediction performance deteriorates when this goal cannot be achieved.

However, this may not apply to model-based methods, where the most appropriate

model among the ones being considered is used to conduct prediction. The perfor-

mance could improve when weakly informative parameter covariates are removed.

The animal study dataset contains samples from 115 rats categorized into 5 dif-

ferent groups: healthy, 3 kinds of tumors (9L, C6 and F98) and stroke. For each rat,

there are 5 brain slices of 128×128 voxels and each voxel contains 32-dimension finger-

print information. For each slice, the lesion (unhealthy) and the striatum (healthy)

55

Dictionary matching GLLiM HGLLiM GLLiM-structure

50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius < 10−4 0.2843 21.44 < 10−4 0.3114 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 < 10−4 0.0023 < 10−4 < 10−4 0.0406 < 10−4 < 10−4 0.0091 < 10−4 < 10−4 0.0242

DeltaChi < 10−4 0.0143 0.3571 < 10−4 0.0132 0.5972 < 10−4 0.0009 0.2236 < 10−4 0.0007 0.3361

Table 3.3: The 50%, 90% and 99% quantiles of squared error using different methods.
The models are built upon 4 microvascular parameters: Radius, BVf, ADC, and
DeltaChi.

Dictionary Matching GLLiM HGLLiM GLLiM-structure

50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius 0.2144 69.3636 82.5297 < 10−4 0.2916 21.44 < 10−4 0.2144 21.44 < 10−4 0.2144 21.44
BVf < 10−4 0.2277 0.2277 < 10−4 < 10−4 0.0261 < 10−4 < 10−4 0.0068 < 10−4 < 10−4 0.0269

DeltaChi < 10−4 0.0571 0.7000 < 10−4 0.0108 0.6385 < 10−4 0.0013 0.2012 < 10−4 0.0005 0.3158

Table 3.4: The 50%, 90% and 99% quantiles of squared error using different methods.
The models are built upon 4 microvascular parameters: Radius, BVf and DeltaChi.

areas are labeled, and they form the region of interest (ROI). Figure 3.2 shows the

predicted BVf image using different methods. As indicated in Lemasson et al. (2016),

the values of true BVf are not available at the voxel level, and instead, they are

measured over the whole ROI. Nevertheless, the comparison between the true values

and those obtained by the dictionary matching method, at the ROI level, indicates

that the method has successfully provided a close-to-truth match; see Lemasson et al.

(2016). Table 3.5 shows the mean prediction results within the ROI’s obtained by

different methods. The three additional methods considered here, besides the dic-

tionary matching method used in Lemasson et al. (2016), are GLLiM, HGLLiM and

GLLiM-structure. All four methods provide similar results in predicting BVf.

There are 1,385,509 samples in the real image dataset. For the dictionary match-

ing method, using a parallel for-loop (parfor) and a pre-processing technique (Lemas-

son et al. (2016)), it took about 2.4 hours (precisely 8639.53 seconds) to match the

whole animal image samples to the training dataset (N train = 1, 383, 648). A direct

computation without parfor and pre-processing took 429507.79 seconds and reached

the same outcomes. For the model-based method, utilizing the grouped structure

and the parallel computing technique, it takes 1058.32/2133.51/1922.37 seconds for

56

(a)

Dictionary matching

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 0

2

4

6

8

10

12

14

16

18

20

(b)

GLLiM

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 0

2

4

6

8

10

12

14

16

18

20

(c)

HGLLiM

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 0

2

4

6

8

10

12

14

16

18

20

(d)

GLLiM Structure

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 0

2

4

6

8

10

12

14

16

18

20

Figure 3.2: The predicted BVf images of one animal from the 9L group using either
(a) dictionary matching, (b) GLLiM, (c) HGLLiM or (d) GLLiM-structure. In each
plot, the ROI on the left marks the lesion region and the ROI on the right is from
the healthy striatum.

GLLiM/HGLLiM/GLLiM-structure to process the animal image dataset. Thus, the

prediction procedure of GLLiM/HGLLiM/GLLiM-structure is much more efficient

than the dictionary matching method.

The parameter ADC was not thoroughly investigated in Lemasson et al. (2016).

The main reason is that the predicted ADC values, obtained using the dictionary

matching approach, were not comparable to the ones measured in vivo by MRI. With

the in vivo ADC values available at the voxel-level, being able to understand how the

synthetic and real measurements differ for a given parameter is scientifically important

57

Dictionary matching GLLiM HGLLiM GLLiM-structure

9L
Radius 21.85 20.14 22.12 21.52
BVf 14.49 14.33 14.71 14.25
DeltaChi 0.98 0.93 1.03 0.94

C6
Radius 13.59 16.01 13.67 13.81
BVf 4.17 4.01 4.25 4.52
DeltaChi 0.77 0.76 0.79 0.74

F98
Radius 11.56 13.14 11.13 11.23
BVf 3.86 3.96 4.01 3.97
DeltaChi 0.65 0.66 0.62 0.61

Stroke
Radius 14.69 13.51 14.31 14.41
BVf 4.22 4.49 4.13 4.25
DeltaChi 0.60 0.63 0.62 0.63

Healthy
Radius 8.16 7.96 8.54 8.34
BVf 3.58 3.51 3.63 3.56
DeltaChi 0.76 0.72 0.74 0.80

Table 3.5: The mean predicted values within ROIs of different vascular parameters
from different categories.

to developing new instruments and to future knowledge advancements. Here, we study

ADC and use it to evaluate the prediction performances of different methods. Figure

3.3 shows the true ADC image and the images of the differences between the true and

predicted ADC values. The differences are shown in the ratio against the signal levels

for each ROI. Most of the predictions made by dictionary matching deviate from

the true values. On the other hand, HGLLiM and GLLiM-structure provide better

ADC images. There are some voxels with extreme differences (dark red or dark blue)

that all methods cannot predict well. When no suitable training information can

be provided by the synthetic fingerprint data, the prediction quality on these voxels

tends to be dreadful regardless of which method is used.

Table 4.11 shows the 50%, 90% and 99% quantiles of the ADC squared errors.

We still obtain some predictions with large errors using GLLiM/HGLLiM/GLLiM-

structure. However, for the majority of the data, the squared errors are smaller than

58

Dictionary matching GLLiM HGLLiM GLLiM-structure

50% 90% 99% 50% 90% 99% 50% 90% 99% 50% 90% 99%

9L 1.1180 3.9803 10.6829 0.2392 0.5684 14.5668 0.1132 0.7613 11.8721 0.1018 0.7154 10.9574
C6 1.1208 4.4719 14.4888 0.3043 2.6091 26.7575 0.3252 1.9840 22.5427 0.3138 1.7764 20.0213
F98 1.0994 4.2373 14.4888 0.3802 3.4129 55.4479 0.2951 2.3672 35.3199 0.2801 2.4129 50.8133

Stroke 1.1663 5.8045 14.8888 0.4779 4.5668 66.1164 0.3218 3.0975 55.7821 0.3192 3.1424 53.9315
Health 1.0931 3.8086 7.7912 0.2131 1.2510 14.5668 0.1527 1.1087 11.9597 0.1054 1.1145 13.2165

Table 3.6: The 50%, 90% 99% quantiles of ADC squared errors for different methods
on different image categories.

those obtained by the dictionary matching method. We determine that there is no

suitable cluster to conduct prediction for these data. For GLLiM/HGLLiM/GLLiM-

structure, if a suitable cluster for conducting prediction does not exist, the cluster

with the closest Mahalanobis distance is applied for prediction. However, the largest

membership posterior probability rngkl among all g, k, l in Equation (3.7) would be

smaller than the majority of the data. This information could be utilized to identify

unreliable prediction results. The worst case of dictionary matching seems to produce

smaller prediction error when being compared to other methods. Nevertheless, this

is due to the nature of the difference among approaches. The dictionary matching

method always makes predictions using values obtained from a member in the dictio-

nary, so that its prediction error cannot go beyond what would be provided by the

possible values in the dictionary. This phenomenon does not apply to model-based

methods. When the prediction is conducted on data outside of the range of the train-

ing dataset, the prediction error could become considerably large, as shown by the

outcome of 99 percentiles of prediction squared errors. As a result, even though dic-

tionary matching seems to outperform other model-based methods in these extreme

cases, it does not necessarily indicate that the dictionary method is practically useful

for these cases, with the outcomes being so much worse when predicting the rest of

the dataset. Our model-based approaches, on the other hand, do have the advantage

of identifying these troublesome cases for further consideration.

59

(a)

True ADC

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 0

500

1000

1500

(b)

Dictionary matching difference against signal level

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 -1.5

-1

-0.5

0

0.5

1

1.5

(c)

GLLiM difference against signal level

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 -1.5

-1

-0.5

0

0.5

1

1.5

(d)

HGLLiM difference against signal level

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 -1.5

-1

-0.5

0

0.5

1

1.5

(e)

GLLiM Structure difference against signal level

40 50 60 70 80 90

25

30

35

40

45

50

55

60

65

70 -1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.3: The true ADC images and the differences between the true values and the
predicted values against the signal levels of one animal from the 9L group. Differences
are normalized by the average true ADC values in each ROI. (a) The true ADC
image. Difference maps between true values and predicted values against the signal
levels using either (b) the dictionary matching method, (c) GLLiM, (d) HGLLiM or
(e) GLLiM-structure.

60

3.3 Single-channel source separation

Single-channel source separation (SCSS) aims to separate different sources from

a mix of sound sources. As an example, a sound mix could contain a singing voice

and a musical accompaniment as shown in Figure 3.4. The goal of SCSS is to extract

the singing voice and the musical accompaniment using the given mixture. The task

becomes even more challenging if one wants to separate the musical accompaniment

into different instruments such as piano, guitar, drums, etc.

Figure 3.4: An example of the waveform of the music, the voice and their mix.

SCSS can be treated as a preprocessing procedure of other algorithms. By sepa-

rating sound sources, one can apply different techniques to different sound sources and

obtain a better sound effect. Nowadays, audio data are often stored in mono or stereo

format, i.e., one or two sound channels. However, people usually own equipment with

more than two channels. The task of upmixing is to determine the transformation

from a mono or stereo sound source to a system with a higher number of channels,

and SCSS is an important preprocessing step for the mixing algorithm (Fitzgerald,

2011). Furthermore, the accuracy of automatic speech recognition can be improved

61

by isolating the voice source from the background noise (Maas et al., 2012). Similarly,

the performance of music information retrieval can be improved when different types

of instruments are separated (Hsu and Jang, 2010).

SCSS is a challenging problem since only one mixed sound source is given and

one has to generate more than one different sources. A great amount of effort has

been made to address the problem. Several approaches adopt low-rank approxima-

tion (Sprechmann et al., 2012; Yang, 2013). People adopt matrix factorization to

find meaningful bases and weights for separation. Examples include non-negative

matrix factorization (NMF) (Grais and Erdoğan, 2012; Schmidt and Olsson, 2006;

Virtanen, 2007) and PCA (Huang et al., 2012). However, this assumption may not

always be valid, and thus the separated results may not be satisfactory. Recently,

neural networks have drawn plenty of attention. It is known that neural networks

can approximate a wide variety of functions (Hornik et al., 1989). For the problem

of SCSS, people utilize different structures of neural networks that can effectively

separate sound sources. The use of the feed-forward network is based on the uni-

versal approximation theorem (Grais et al., 2016; Narayanan and Wang, 2013). It

shows the capability of modeling the complicated relationship between a mixed sound

source and individual ones. However, this type of network requires many parame-

ters and could be easily overfitted. A convolutional neural network (CNN) adopts

shared-weights architecture (Grais and Plumbley, 2017; Simpson et al., 2015), and

thus the number of parameters is smaller. However, CNN assumes shift invariant, and

thus it cannot capture the complicated time correlation between audio samples. A

recurrent neural network (RNN) models the temporal behavior between neighboring

audio samples (Huang et al., 2014, 2015; Maas et al., 2012). Nevertheless, the com-

plex structure of RNN makes it harder to converge. All of the neural network-based

methods are subject to similar issues: tuning. There are many hyperparameters such

as the number of layers, number of neurons, etc. The choice of activation types, the

62

choice of algorithm for optimization and plenty of other factors can affect the perfor-

mance of neural networks. Thus, it is time-consuming to figure out the appropriate

combination of settings that could give satisfactory results.

In this work, we seek model-based approaches to separate the mixed sound sources

into different ones. We adopt GLLiM and HGLLiM to model non-linear mappings

between mixed sound sources and the time-frequency masks. In the following sections,

we first describe the details of constructing the time-frequency mask. Next, we explain

how locally linear mappings can be applied to the single-channel source separation

problem using the subsetting and parallelization technique. Finally, we compare the

prediction results of the model-based methods to the results obtained from neural

networks.

3.3.1 Time-frequency masking

Time-frequency masking is a widely adopted approach for source separation (Grais

et al., 2016; Huang et al., 2014; Simpson et al., 2015; Weninger et al., 2014). How

humans perceive audio in the frequency domain has been extensively studied. The

audible frequency range of the human ear is roughly 20 Hz to 20k Hz. This indicates

that we only have to focus on the data within this frequency range. In addition, the

frequency range of the human voice is approximately 300 Hertz to 3000 Hertz. Thus,

when dealing with the voice signal, the data outside of this range can be eliminated

to reduce model variance.

However, processing the data on the pure frequency domain would neglect the

correlation between neighboring audio samples in the time domain. Thus, people

usually transform audio data into the time-frequency domain so that we can analyze

the frequency changes through different time frames. Short-time Fourier Transform

(STFT) is a widely used tool to analyze sound data.

Short-time Fourier Transform (Allen, 1982) is a Fourier-based analysis that ex-

63

tracts local frequency features. It differs from the traditional Fourier transform by

applying the transformation to different time frames. The audio data can be divided

into different segments and Fourier transform can be applied. Since different segments

come from different time frames, we can observe the changes over different frequencies

and different time points. In practice, the time signal would be divided into over-

lapped frames to reduce the boundary effect. Let x(t) denote the audio signal in a

discrete time domain indexed by time t. The STFT of x(t) can be expressed as

X(m, f) =
∞∑

t=−∞

x(t)w(t−m)e−j2πft, (3.9)

where m is the quantized time variable and f is the quantized frequency variable.

The window function w(·) is also discrete and is usually a Hanning window or a

Gaussian window. To visualize the changes over time and frequency, one often draws

the spectrogram with the squared magnitude of the STFT results:

S(m, f) = |X(m, f)|2. (3.10)

Figure 3.5 illustrates the spectrogram of the data shown in Figure 3.4 with the

window size equal to 1024 points.

The problem of source separation can be formulated as follows. Given the mixture

signal x(t), which is a mix of two sound sources s1(t) and s2(t) such that x(t) =

s1(t) + s2(t), let X(m, f) be the STFT of x(t). We formulate the separation as:

X(m, f) = S1(m, f) + S2(m, f), (3.11)

where S1(m, f) and S2(m, f) are two unknown STFTs of the separated sources. In

this framework the difference of phase angles is ignored. Thus, the magnitude of the

64

Figure 3.5: The spectrogram of the signals shown in Figure 3.4.

mixture spectrum can be approximated by the sum of the magnitude of the sources:

|X(m, f)| ≈ |S1(m, f)|+ |S2(m, f)|. (3.12)

The notation can be simplified when expressing the spectrum with the matrix form:

|X| = |S1| + |S2|. A time-frequency mask M ∈ [0, 1] is a matrix that scales the

spectrum according to the contribution of different sources. We can obtain the STFT

of sources using M by:

Ŝ1 = M ◦X, (3.13)

Ŝ2 = (1−M) ◦X, (3.14)

where ◦ denotes element-wise multiplication and 1 is a matrix of ones. The main

purpose is to find the M that can produce satisfactory separation. A common for-

65

mulation of M is the so-called soft mask:

M =
S1

S1 + S2

, (3.15)

where division and addition are both element-wise operations.

3.3.2 Using locally linear mappings for source separation

HGLLiM and GLLiM model the associations between the high-dimensional data

X and the low-dimensional data Y . For the problem of source separation, we aim to

predict the mask M time frame by time frame. That is, each column in the spectrum

matrix is treated as a data point with the number of features equal to the number

of Fourier transform points. We further split the mask across the frequency axis into

disjoint subsets (banks) so that the mask in each bank is at low dimension. The goal

of HGLLiM/GLLiM is to find the associations between the spectrum matrix and the

mask values in a bank. We train the HGLLiM/GLLiM for different banks separately

utilizing the parallelization technique. The separated models are aggregated together

to perform prediction. Given two sources s1(t), s2(t) and their mixture x(t), the

training process is as follows:

1. Calculate the STFT of s1(t), s2(t) and x(t). Denote the spectrum matrix as S1,

S2 and X. Denote the size of these three spectrum matrices as D × N , where

D is the number of frequency bins and N is the number of samples.

2. Calculate M = S1/(S1+S2), where division and addition are both element-wise

operations.

3. Given a bank number G, separate M into banks along the frequency axis.

66

Denote Y1 as the time-frequency mask in the first bank, we have:

Y1 =


m1

...

mB

 , (3.16)

where mi denotes the i-th row of M and B = dD
G
e with d·e being the ceiling

function. We can adopt a similar approach to construct Y2, ..., YG.

4. Apply HGLLiM/GLLiM to construct models on (X, Y1), (X, Y2), ..., (X, YG).

The steps of predicting the time-frequency mask of the testing mixture xtest(t) are

as follows:

1. Calculate the STFT of xtest(t). Denote the spectrum matrix as X test.

2. Predict the time-frequency mask of each bank and combine them as M test.

3. Apply mask values on X test to obtain Ŝtest1 and Ŝtest2 (Equation (3.13), (3.14)).

4. Conduct inverse STFT on Ŝtest1 and Ŝtest2 to get ŝtest1 and ŝtest2 .

3.4 Numerical results

The DSD100 dataset (Liutkus et al., 2017) contains 100 songs, which are split

into 50 training songs and 50 testing songs. Each song is recorded in four different

sources: vocals, bass, drums and others. Since our goal is to separate the mixed

source into the singing voice (vocals) and the musical accompaniment, we mix the

bass, drums and others into one soundtrack. This soundtrack is referred to as “mu-

sic”. The soundtracks of voice (vocals) and music are then mixed together. We apply

STFT using the following settings: a Hanning window with 1024 points length and

overlap interval of 512 points are used. The Fourier transform is taken at 1024 points,

67

and because of the symmetric property of the Fourier transform, the first 513 points

are used. We clip every song into one-minute segments and adopt STFT analysis

on these segments. The STFT result of each song (X) contains 5166 sample points.

We note the dependencies between neighboring samples. To reduce the dependency,

we only pick one STFT frame out of five when building the model. This leads to

51660 training samples for the whole training dataset. We split the dimension of T

into 20 banks and thus Lt = 26 for the first 19 banks and Lt = 19 for the last one.

The training process is accelerated with parallelization, which builds the model upon

different songs and banks in parallel.

Cross-validation results on the training dataset

We apply GLLiM to each song for different settings of K and Lw for parameter selec-

tion. A 5-fold cross-validation is performed, and the average of the cross-validation

testing prediction MSE over different banks is used to evaluate the settings. Figure

3.6 shows the cross-validation MSE (CV MSE) over 50 songs under different settings

of K and Lw. Figure 3.6 shows the CV MSE under different settings of K and Lw.

According to the cross-validation results averaged over 50 songs, K = 5 and Lw = 15

would be a suitable setting.

We also investigate the setting with larger values of Lw. Figure 3.7 shows the

CV MSE for different Lw when K = 5. The CV MSE is 0.09195, 0.09006, 0.08979

and 0.0893 for K = 15, 20, 25, 30. That is, we obtain about 3% better prediction

performance when increasing Lw from 15 to 30. However, increasing Lw from 15 to

30 would require more parameters, and thus even though we can obtain better CV

MSE by setting larger values of Lw, we still set Lw = 15.

For GLLiM, the overall testing prediction MSE is 0.1172 when K = 5, Lw = 15.

For HGLLiM, we simply set M = 5, minSize = 5, dropThreshold = 0.5 as suggested

in Section 2.3.3 and let K = 5, Lw = 15. The testing prediction MSE is 0.0993, which

68

Figure 3.6: The average CV MSE for different settings of K and Lw

Figure 3.7: The average CV MSE for different Lw when K = 5

69

outperforms GLLiM by about 15%. Using the information learned by HGLLiM, the

testing prediction MSE is 0.1002 for GLLiM-structure.

As a comparison, we implement the soft mask neural network in Grais et al. (2016).

The input and output layers are of size 513. For the hidden layers, we construct three

fully connected layers with size 513 as well. We train the network using the ADAM

optimizer with the learning rate set to 10−4. The model is trained for 1000 epochs.

The testing prediction MSE is 0.0806.

For the neural network, it takes about 4 hours to train on an Nvidia Tesla K80

GPU. Note that K80 GPU is more than 10 times faster than CPU when training

the neural network. When K = 5, Lw = 15, it takes about 68.4 seconds for GLLiM

to train the model for a single bank. As for HGLLiM, under K = 5, Lw = 15 and

M = 5, it takes 219.6 seconds for the model training. The training time for GLLiM-

structure is about 187.5 seconds. If full parallelization is considered, the training

process can be finished within 4 minutes. However, this would require using a lot of

computing resources at the same time. If we parallelize the training process on each

song and train different banks sequentially, the training process would take about

22.8/73.2/62.5 minutes for GLLiM/HGLLiM/GLLiM-structure. The training time

of HGLLiM/GLLiM/GLLiM-structure is much faster compared to the training time

of the neural networks.

3.5 Conclusion

Parallel model training is an effective technique to accelerate the training pro-

cess. We present how the parallelization practice can be readily accommodated

by HGLLiM’s hierarchical model structure. Results of the fingerprint dataset show

that HGLLiM can provide comparable prediction performance for one case and much

smaller prediction errors for the other, compared to the dictionary matching method,

in only 25% of the computational time. In the case of the sound dataset, parallel

70

HGLLiM can save about 70% of the training time compared to the neural networks.

71

CHAPTERS IV

Robust Gaussian Locally Linear Mapping

Mixtures of regressions (De Veaux, 1989), as a regression extension of the mixture

of densities model, establish the associations between covariates and responses under

the scenarios when mixtures exist. Complicated mappings can be broken down into

simpler setups using mixtures, and combining direct linear associations established

from mixtures can approximate the sophisticated non-linear relationship. Mixtures

of regressions are widely used in different scientific fields. In speech engineering,

identifying a mapping function from one feature space of the source to another feature

space is known as voice conversion, which is a technique widely used for speech

enhancement and language education for non-native speakers (Qiao and Minematsu,

2009; Stylianou et al., 1998; Toda et al., 2008; Zen et al., 2009). Other applications

of mixture regression include age-identification, where one estimates a subject’s age

based on his/her facial image. The task is typically formulated as a nonlinear mapping

problem that maps several facial features to different ages (Han et al., 2017; Huang

et al., 2017). In modern geosciences, researchers are interested in recovering physical

parameters using hyperspectral images (Bioucas-Dias et al., 2012; Brown et al., 2000).

As an example, given remotely sensed data of Mars, researchers aim to estimate

the chemical composition of the Mars surface (Deleforge et al., 2015). Mixtures of

regressions are utilized to build sophisticated mappings from high-dimensional data

72

(hyperspectral images) to low-dimensional data (physical parameters). In Section 4.4,

we will provide two additional applications. In the analysis of the orange juice dataset,

one uses the high-dimensional spectra to predict the level of sucrose in the juice.

In the analysis of the magnetic resonance vascular fingerprint (MRvF) dataset, the

goal is to efficiently assess microvascular properties, such as blood volume fraction,

vessel diameter, and blood oxygenation in the brain using these MRvF data. All

these applications share a common characteristic: predicting a low-dimensional vector

variable of interest using high-dimensional features.

Under the high-dimensional setting, data analysis requires special attention. For

example, estimating a covariance matrix of high dimension is difficult since the co-

variance matrix will be singular as the sample size is smaller than the dimension. A

significant amount of effort has been made to mitigate the impact of the curse of high

dimensionality. Principal component analysis (PCA) is a commonly used practice to

reduce dimensions. One disadvantage of using PCA is that the outcomes are difficult

to interpret. Furthermore, it is shown that projecting from data on the first few

principle directions may not effectively recover the cluster structure (Chang, 1983;

McLachlan and Peel, 2000). Another approach is to adopt parsimonious models. In

(Banfield and Raftery, 1993), covariance matrices are decomposed into different com-

ponents. With different constraints on these components, the required number of

parameters can be reduced and one can obtain various kinds of parsimonious models.

Low-rank approximation such as factor analysis (McLachlan et al., 2003) provides an

additional alternative to decompose high-dimensional covariance matrices. Examples

include the factor regression model (Bernardo et al., 2003), the cluster-weighted factor

analyzers (CWFA) model (Subedi et al., 2013), mixtures of common factor analyzers

(Baek et al., 2010) and Gaussian Locally-Linear Mappings (GLLiM) (Deleforge et al.,

2015).

GLLiM, albeit being a flexible and powerful tool to predict responses using high-

73

dimensional features, is known to be sensitive to abnormal data. In mixture modeling,

parameters are often estimated by maximum likelihood estimation (MLE) through

Expectation-Maximization (EM) algorithms. However, it is well known that MLE

is sensitive to outliers. Trimmed likelihood estimators (Cuesta-Albertos et al., 2008;

Neykov et al., 2007) are one solution to mitigate the influence of outliers. Data

that are unlikely to fit the assumed model are trimmed to eliminate their influence

over the estimation. In Markatou (2000), the authors utilized weighted likelihood

where the weights are determined by a function that downweighs data points with

large residuals. Also see Hadi and Luceño (1997), Müller and Neykov (2003) and

Vandev and Neykov (1998) for more references. Garćıa-Escudero et al. (2008) used a

spurious-outliers model (Gallegos and Ritter, 2005), which decomposes the likelihood

into two parts (normal and abnormal data), to handle outliers. It is shown that with

a mild assumption on the likelihood function of abnormal data, maximizing such a

likelihood function on the full dataset is equivalent to maximizing the likelihood of

the normal data. Thus, the outlier removal step can be easily incorporated into the

EM procedure. Another family mitigates the impact of outliers by adopting robust

estimators (Bai et al., 2012) or utilizing robust distributions such as t- (Chamroukhi,

2016; Perthame et al., 2018) or Laplace distributions (Song et al., 2014).

Another factor that impacts robustness is model stability. The global MLE fails

to exist because of the unboundedness of the likelihood function (Day, 1969). When

there is more than one cluster, we can construct a cluster centered at a non-zero point

and the likelihood will approach infinity as the variance of the mixture (component)

decreases to zero. This is also referred to as the “singularity issue” since the problem

occurs at several singular points. A common solution is to adopt penalized likelihood

(Ciuperca et al., 2003). By penalizing small clusters, we can avoid solutions that

lead to infinite likelihood. Furthermore, by carefully selecting the penalized function,

the maximum penalized likelihood estimator is found to be strongly consistent (Chen

74

and Tan, 2009). In the context of Bayesian analysis, the role of the penalized term is

replaced by a prior distribution, which shares a similar idea of avoiding small clusters

(Fraley and Raftery, 2007). An alternative strategy to tackle the unboundedness

of likelihood is to restrict the relative size between clusters. This can be done by

adopting a constraint on the relative values on variances (Hathaway, 1985), covariance

determinants (McLachlan and Peel, 2004) or eigenvalues of the covariance matrices

(Garćıa-Escudero et al., 2008).

In this work, we propose a robust Gaussian mixture regression model called

RGLLiM (RGLLiM), which builds upon a Gaussian mixture framework for finding

high-dimensional non-linear mappings. Our approach focuses on improving model ro-

bustness by trimming outliers and by applying a constraint on the relative values of

cluster-level eigenvalues. For the latter, we concentrate on building a stable inverse-

regression-based prediction. An Expectation-Maximization algorithm is devised to

estimate model parameters. A simulation and an experiment on real datasets show

that the model performance can be improved with regard to the robustness concern.

4.1 Model specification

There are three specific sub-components that are crucial to the setup of RGLLiM.

We will start with the original structure under the regular GLLiM.

Gaussian mixture regressions

The goal is to predict low-dimensional data Y ∈ RL using high-dimensional data

X ∈ RD, where D >> L. Let Z denote the latent variable indicating the cluster

assignment and assume that there are K mixtures in total; the joint distribution of

75

X, Y under the GLLiM framework is expressed in the inverse regression setup:

p(X = x, Y = y; θ) =
K∑
k=1

p(X = x|Y = y, Z = k; θ)p(Y = y|Z = k; θ)p(Z = k; θ)

(4.1)

where θ = {ck,Γk, πk, Ak, bk,Σk}Kk=1 is the collection of the inverse model parame-

ters. Equation (4.1) describes the inverse relationship mapping from X to Y . The

hierarchical structure is defined by:

p(X = x|Y = y, Z = k; θ) = N (x;Aky + bk,Σk). (4.2)

p(Y = y|Z = k; θ) = N (y; ck,Γk), (4.3)

p(Z = k; θ) = πk.

Nevertheless, the goal here is to predict the low-dimensionalX with the high-dimensional

Y. This can be achieved by considering the corresponding forward model,

p(X = x, Y = y; θ) =
K∑
k=1

p(Y = y|X = x, Z = k; θ∗)p(X = x|Z = k; θ∗)p(Z = k; θ∗),

(4.4)

where

θ∗ = {c∗k,Γ∗k, π∗k, A∗k, b∗k,Σ∗k}Kk=1

consists of the forward regression parameters. The relationship between θ and θ∗ is

76

described as follows:

c∗k = Akck + bk,

Γ∗k = Σk + AkΓkA
>
k , (4.5)

π∗k = πk,

A∗k = Σ∗kA
>
k Σ−1k ,

b∗k = Σ∗k(Γ
−1
k ck − A>k Σ−1k bk),

Σ∗k = (Γ−1k + A>k Σ−1k Ak)
−1.

In addition, one further considers the corresponding hierarchical structure:

p(Y = y|X = x, Z = k; θ∗) = N (y;A∗kx+ b∗k,Σ
∗
k). (4.6)

p(X = x|Z = k; θ∗) = N (x; c∗k,Γ
∗
k), (4.7)

p(Z = k; θ∗) = π∗k.

Using the K-mixtures, the prediction of Y is done by taking the expectation over

the forward conditional density:

E[Y |X = x; θ∗] =
K∑
k=1

π∗kN(x; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN(x; c∗j ,Γ

∗
j)

(A∗kx+ b∗k), (4.8)

in which θ is estimated in the inverse regression, while the prediction is conducted

using θ∗ as functions of the estimated θ. Recall that the GLLiM procedure eases the

estimation task by considering the inverse regression, in which the dimension of the

predictors is kept low; and as such, GLLiM avoids the challenging aspects of finding

the regression coefficients for a set of high-dimensional predictors.

Under the GLLiM framework, X can be partially latent. That is, X can be

77

decomposed as observed component T and latent component W . That is,

X =

 T
W

 , (4.9)

where T ∈ RLt , W ∈ RLw and Lw+Lt = L. Assuming that T and W are independent

given Z, we have

ck =

ctk
cwk

 ,Γk =

Γtk 0

0 Γwk

 and Ak =

[
Atk, A

w
k

]
. (4.10)

Trimmed likelihood

Let {xn, tn}Nn=1 be the realization for X and T. Let P = P(T,X) be the probability mea-

sure induced by the joint distribution of X and T. GLLiM uses cluster analysis based

on the inverse regression setup in (4.1), with Y replaced by T to obtain estimated θ.

Let D(T,X; θ) = p(T = t,X = x; θ). The corresponding trimmed likelihood setup in

GLLiM is to identify θ̂ that maximizes

N∑
n=1

[
log{D(tn, xn; θ)}IRC

o (θ)(tn, xn)
]
, (4.11)

where IA(·) denotes the indicator function of set A, and data within the partition R0

are considered outliers. Specifically, one uses the indicator function to keep all data

points within the complement of R0(θ), namely Rc
0(θ), in the trimmed log-likelihood.

At the population level, we denote

L(θ, P) = EP

[
log{D(T,X; θ)}IRC

o (θ)(T,X)
]
. (4.12)

78

Conceptually, the goal is to construct an estimator of θ belonging to a pre-determined

domain that, at the population level, maximizes L(θ, P) subject to P (IRC
o (θ)(T,X)) ≥

1− α. Garćıa-Escudero et al. (2008) proposed to create an additional cluster to con-

tain those data points to be trimmed off and a corresponding procedure to carry out

the outlier classification. We adopt the identical procedure under the inverse regres-

sion setting.

The eigenvalue ratio constraint

For the stability concern, we aim to put constraints on covariance matrices and re-

strict the parameter space for θ, or equivalently θ∗. This type of restriction is an

extension of those introduced by Hathaway (1985) for scalar data. The procedure

allows avoiding the singularities introduced by potentially very different covariance

matrices by controlling the ratio between the maximum and the minimum eigenval-

ues of these matrices. Following the mixture regression structure in Garćıa-Escudero

et al. (2017), such constraints should be imposed on Σk’s and Γk’s. Here, we consider

a different direction by putting Eigenvalue Ratio (ER) constraints on Γ∗k given in

Equation (4.5). Denote λd(·) as the d-th eigenvalue of the input matrix. Specifically,

the ER constraint requires

maxk maxd λd(Γ
∗
k)

mink mind λd(Γ∗k)
≤ C, (4.13)

where C ≥ 1 is a fixed constant. That is, the relative size of Γ∗k for all k is controlled by

restricting the ratio between the maximum and minimum eigenvalues. For simplicity,

we use Γ∗k to denote the covariance matrix fulfilling the ER constraint. If the original

Γ∗k does not fulfill the requirement, we update Γ∗k using the method described in the

79

later section and the corresponding forward parameters are updated accordingly by

π∗k = πk

c∗k = Akck + bk

Σ∗k = Γk − ΓkA
>
k (Γ∗k)

−1AkΓk (4.14)

A∗k = ΓkA
>
k (Γ∗k)

−1 (4.15)

b∗k = ck − ΓkA
>
k (Γ∗k)

−1(Akck + bk) (4.16)

Finally the prediction is done by E[Y |X = x; θ∗] using Equation (4.8).

4.2 Expectation-Maximization algorithm

Given the training dataset {xn, tn}Nn=1, the latent component {wn}Nn=1 and the

cluster-indicator variable {Zn}Nn=1, we can estimate the parameters using the Expectation-

Maximization algorithm under the ER constraint. Note that without the ER con-

straint, the complete data likelihoods, as if Z were observed, parametrized using θ

and θ∗ can be considered to be equivalent. To overcome the high dimensionality issue

when estimating large covariance matrices, we first consider the inverse regression

setting in Equation (4.1), estimate the inverse parameters, θ, and check the validity

of the ER constraint. If the ER constraint is satisfied, we directly obtain θ∗ from θ

and carry out the prediction. On the other hand, if the ER constraint is not fulfilled,

we then convert the inverse parameters to the forward parameters and update Γ∗k.

The target function based on the inverse parameters is now updated from Equation

(4.12) to

EP [log p((X,T,W ; θ)IA(θ)(X,T)], (4.17)

accounting for the latent W and maximizing over all possible sets of A(θ) for the

80

optimal set of Rc
0(θ).

The EM algorithm contains a maximization step to estimate parameters and

two expectation steps for estimating, two posterior distributions, p(Z|(y, t); θ) and

p(W |(y, t, Z); θ).

E-W step

The E-W step that aims to estimate the distribution p(wn|Zn = k, tn, yn; θ) is Gaus-

sian with mean µwnk and covariance matrix Swk where:

µwnk = Swk

(
Aw>k Σ−1k (yn − Atktn − bk) + (Γwk)−1cwk

)
,

Swk =
(
(Γwk)−1 + Awk Σ−1k Awk

)−1
E-Z step

The original EM algorithm presented in Deleforge et al. (2015) only depends on

the inverse parameters. However, the estimation of the cluster assignment posterior

probability rnk should depend on Γ̃∗k if the ER constraint is not satisfied. The posterior

probability of cluster assignment is given by

rnk = p(Zn = k|yn, tn; θ∗) =
π∗kp(yn, tn|Zn = k; θ∗)∑K
j=1 π

∗
jp(yn, tn|Zn = j; θ∗)

,

where

p(yn, tn|Zn = k; θ∗) = p(tn|yn, Zn = k; θ∗)p(yn|Zn = k; θ∗)

p(tn|yn, Zn = k; θ∗) = N (tn; µ̃k, Σ̃k),

µ̃k = ctk + ΓtkA
t>
k (Γ∗k)

−1(yn − Atkctk − Awk cwk − bk)

Σ̃k = Γtk − ΓtkA
t>
k (Γ∗k)

−1AtkΓ
t
k (4.18)

p(yn|Zn = k; θ∗) = N (yn;Atkc
t
k + Awk c

w
k + bk,Γ

∗
k),

81

For more details, please refer to Appendix A.1. We update the posterior proba-

bility with

rnk =


1 if rnk = maxk{rn1, ..., rnK}

0 otherwise

(4.19)

to form disjoint partitions.

C step

In the concentration step (C Step) data are removed from the current iteration follow-

ing the procedure given in Garćıa-Escudero et al. (2008). This can be done by setting

the posterior probability rnk to zero. Consider the discriminant functions defined as

Lk((yn, tn); θ∗) = πkp(T = tn, Y = yn|Z = k; θ∗)

L((yn, tn); θ∗) = max{L1((yn, tn); θ∗), ...,LK((yn, tn); θ∗)}.

Given 0 < α < 1 as a fixed trimming level, we let Lα denote the α-quantile of

{L((y1, t1); θ
∗), ...,L((yN , tN); θ∗)}. Considering n∗ ∈ {n|L({yn, xn}; θ) < Lα}, we set

rn∗k = 0 for all k = 1, ..., K.

M step

The M step is targeting on estimating θ = {ck,Γk, πk, Ak, bk,Σk}Kk=1 and applying the

ER constraint on Γ∗k. The first part is the same as described in Deleforge et al. (2015)

and thus is omitted here. We focus on putting the ER constraint on Γ∗k. Maximizing

the log-likelihood function against Γ∗k is equivalent to minimizing:

N∑
n=1

K∑
k=1

rnk
(
log |Γ∗k|+ trace((Γ∗k)

−1Sk)
)
, (4.20)

where Sk is the high-dimensional sample covariance matrix and can be obtained

82

using the inverse parameters Sk = Σk + AkΓkA
>
k . Denote Sk = VkΛkV

>
k , where

Λk = diag(λk1, ..., λkD) and Vk is the matrix composed by eigenvectors of Sk. Using

the results in Garćıa-Escudero et al. (2008), minimizing Equation (4.20) is equivalent

to minimizing
N∑
n=1

K∑
k=1

rnk

D∑
d=1

(
log(λmkd) +

λkd
λmkd

)
, (4.21)

where λmk,d is the truncated eigenvalue defined as:

λmkd =


dkd if λkd ∈ [m,Cm]

m if λkd < m

Cm if λkd > Cm

(4.22)

The high-dimensional covariance matrix is updated by

Γ∗k = VkΛ
m
k V

>
k , (4.23)

where Λm
k = diag(λmk,1, ..., λ

m
k,D) is the matrix with truncated eigenvalues on the diago-

nal. At the forward regression setting, to avoid singularity, it is also necessary to add

an extra constraint so that Σ̃k for all k is a valid covariance matrix. This requirement

is carried out by finding the appropriate m. Details can be found in Appendix A.2.

4.3 Simulation studies

4.3.1 Simulation settings

We simulated datasets with different cluster structures using the orange juice

dataset. Recall that the orange juice dataset contains the spectra (Y) and the corre-

sponding level of sucrose (T) measured on different kinds of orange juice. In addition,

the dataset contains several abnormal data that could impair the model performance.

83

We follow the procedure in Perthame et al. (2018) to make D ≈ N . There are 218

samples and, the dimension of each spectrum is 134 after the pre-processing pro-

cedure. Details of identifying cluster information and simulation procedure can be

found in Appendix A.3.

Using the procedure described in Appendix A.3, we identify four groups. Figure

4.1 shows an illustration of these groups. Groups 1, 2 and 4 are distinct subsets, while

Groups 2 and 3 overlap. We adopt a procedure similar to that described in Section

2.4.2, and identify 11 outliers which will be used to evaluate the robustness of different

methods. We simulate the data under four cases: distinct clusters without outliers,

distinct clusters with outliers, overlapped clusters without outliers and overlapped

clusters with outliers. Hereafter, we will refer to them as Case 1 to Case 4. In

each simulation, we chose 3 clusters: we simulate data from Groups 1, 2 and 4 for

the distinct-cluster scenarios (Cases 1 and 2), and from Groups 1, 2 and 3 for the

overlapped-cluster scenarios (Cases 3 and 4), respectively. We generate 200 data

points for each cluster: 100 for the training dataset, and 100 for the testing dataset.

Consequently, each simulation consists of 300 normal training data and 300 testing

data. For the cases with outliers, there are 11 additional abnormal data, and thus,

the sizes of the training datasets for Cases 2 and 4 are 311.

We first compare the performance of different methods when the tuning param-

eters are ideally determined. That is, for all methods, we set K = 3, Lw = 8. Fur-

thermore, we consider three different settings of RGLLiM, RGLLiM 1 to RGLLiM 3,

with (C = 105, α = 0), (C = 105, α = 0.05) and (C = ∞, α = 0.05), respectively. In

addition, we also compare the performance to that of SLLiM (Perthame et al., 2018),

which is an alternative approach to “robustify” the regular GLLiM.

The numerical properties of the methods are evaluated using the prediction mean

squared errors (PMSE), clustering accuracy and the Rand index (Rand, 1971). The

PMSE is calculated as 1
N

∑N
n=1 ||t̂n − t||22, where N is the total number of the data;

84

0 20 40 60 80 100 120 140

Wavelength

0

0.5

1

1.5

S
pe

ct
ra

Data in Y

Group 1 Group 2 Group 3 Group 4

0 5 10 15 20 25 30 35 40

Index

-2

-1

0

1

2

S
uc

ro
se

 le
ve

l

Data in T

Figure 4.1: A subset of simulated data from Groups 1–4. The upper and the lower
panels show the high-dimensional Y and the low-dimensional T, respectively.

tn, t̂n are the n-th true and predicted values, respectively. We are also interested

in clustering accuracy. The associations between Y and T differ across different

clusters. Thus, the clustering results are important to establish the estimated model.

For clustering, the labels may switch between two clusters; thus we have to find the

mapping between the true clusters and the estimated ones. We establish the mapping

based on the majority of the data coming from each true cluster. As an example, if

most of the data points coming from true cluster 1 are assigned to estimated cluster

2, we will treat true cluster 1 and estimated cluster 2 as the same cluster. Every

sample coming from true cluster 1 that is assigned to estimated cluster 2 is regarded

as achieving a correct assignment. However, the clustering accuracy may not be

informative when two clusters merge together. Thus, we further use the Rand index

85

to assess the quality of the cluster assignment. In addition, we provide the PMSEs

for the data points that are clustered correctly (Corr. cluster) and those that are

assigned erroneously (Mis. cluster).

86

Criteria GLLiM RGLLiM 1 RGLLiM 2 RGLLiM 3 SLLiM

Training
PMSE 1.102e-08 1.102e-08 1.195e-08 1.059e-08 6.314e-09
(Corr. class) 1.102e-08 1.102e-08 1.195e-08 1.059e-08 6.314e-09
(Miss class) - - - - -
Cluster accuracy 100.00 100.00 100.00 100.00 100.00
Rand index 1.0000 1.0000 1.0000 1.0000 1.0000

Testing
PMSE 1.103e-08 1.103e-08 1.316e-08 1.209e-08 6.313e-09
(Corr. class) 1.103e-08 1.103e-08 1.316e-08 1.209e-08 6.313e-09
(Miss class) - - - - -
Cluster accuracy 100.00 100.00 100.00 100.00 100.00
Rand index 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.1: The training and testing performances under Case 1 using the known
parameters.

Criteria GLLiM RGLLiM 1 RGLLiM 2 RGLLiM 3 SLLiM

Training
PMSE 0.007529 0.006892 9.867e-09 3.947e-05 0.001918
(Corr. class) 0.007529 0.006892 9.867e-09 3.934e-05 0.00192
(Miss class) - - - - 1.071e-05
Cluster accuracy 100.00 100.00 100.00 100.00 99.90
Rand index 0.9777 1.0000 1.0000 1.0000 0.9322

Testing
PMSE 0.007529 0.006892 1.06e-08 6.307e-05 0.001918
(Corr. class) 0.007529 0.006892 1.06e-08 6.307e-05 0.001918
(Miss class) - - - - -
Cluster accuracy 100.00 100.00 100.00 100.00 100.00
Rand index 0.9777 1.0000 1.0000 1.0000 0.9331

Table 4.2: As in Table 4.1, under Case 2.

Table 4.1 to Table 4.4 show the performance of different methods under the four

different cases. Case 1 is the simplest scenario, and all methods can recover the cluster

assignment perfectly. RGLLiM will add some biases when C < ∞; thus we see that

the performance of RGLLiM 1 and RGLLiM 2 is slightly worse than that of other

methods. However, the prediction performance is still satisfactory. In Case 2, the

training dataset contains several outliers. Even though all methods can recover the

87

Criteria GLLiM RGLLiM 1 RGLLiM 2 RGLLiM 3 SLLiM

Training
PMSE 0.01566 0.01248 0.01216 0.01188 0.01753
(Corr. class) 0.01478 0.01291 0.01284 0.01213 0.01835
(Miss class) 0.02476 0.00919 0.005545 0.009198 0.000126
Cluster accuracy 91.23 88.43 90.67 91.47 95.53
Rand index 0.7771 0.8128 0.8069 0.8090 0.6608

Testing
PMSE 0.02866 0.02609 0.02676 0.02667 0.02737
(Corr. class) 0.02872 0.02591 0.02605 0.02651 0.02737
(Miss class) 0.02454 0.02993 0.04577 0.03656 -
Cluster accuracy 98.47 95.43 96.37 98.43 100.00
Rand index 0.8104 0.8445 0.8147 0.8266 0.6433

Table 4.3: As in Table 4.1, under Case 3.

Criteria GLLiM RGLLiM 1 RGLLiM 2 RGLLiM 3 SLLiM

Training
PMSE 0.02515 0.02536 0.02219 0.02088 0.0286
(Corr. class) 0.02466 0.02504 0.02195 0.02126 0.02958
(Miss class) 0.04788 0.02816 0.02373 0.01799 4.971e-09
Cluster accuracy 97.90 89.50 87.63 87.99 96.70
Rand index 0.7653 0.7910 0.8058 0.7977 0.6959

Testing
PMSE 0.02798 0.02905 0.02426 0.02708 0.03056
(Corr. class) 0.02783 0.029 0.02428 0.02683 0.03056
(Miss class) 0.09181 0.03022 0.02407 0.0331 -
Cluster accuracy 99.77 95.77 92.67 96.00 100.00
Rand index 0.7755 0.8029 0.8140 0.8076 0.6878

Table 4.4: As in Table 4.1, under Case 4.

correct cluster assignment perfectly, we observe that the prediction errors increase

when the outlier removal technique is not adopted (GLLiM and RGLLiM 1). The

presence of outliers can distort the parameter estimation, which impairs the predic-

tion performance. This shows the necessity of outlier removal. On the other hand,

SLLiM mitigates the impact of outliers by assuming t-distributed clusters. We see

that the performance of SLLiM is better than that of GLLiM and RGLLiM 1, but is

still worse compared to RGLLiM 2 and RGLLiM 3. Case 3 is the scenario in which

88

two clusters overlap. Under this case, all methods perform similarly except SLLiM.

The fact of high clustering accuracy but low Rand index shows that overlapped clus-

ters are merged together. Suppose we have data points from cluster 1 and 2 being

mapped to the identical estimated training cluster. When calculating clustering accu-

racy, as long as the data points coming from one true cluster are assigned to the same

estimated cluster, the cluster assignment is regarded as correctly obtained. However,

the overall estimated cluster assignments are pretty different from the original true

assignment, which causes the low Rand index. For Case 4, a similar phenomenon

happens to GLLiM. Because of the outliers, it is more likely to form large clusters,

and these large clusters will absorb other clusters through EM iterations. With the

constraint of relative cluster size, we obtain rather balanced clustering results using

RGLLiM. We also reach a higher Rand index using RGLLiM, which indicates that

the original clustering assignments are better recovered when the ER constraint is

adopted, compared to other methods. As for RGLLiM 3, even though no ER con-

straint is applied, by trimming outliers during the estimation process, it results in a

similar outcome.

4.3.2 Parameter selection

The parameters can be selected using cross-validation. The first task is to de-

termine the range of each tuning parameter. For parameters (Lw, C, α), the range

is easy to determine. The parameter Lw reflects the latent structure and, based on

what is reported in other publications and our own experiences, a number smaller

than 20 should be sufficient. The upper bound of the constant C can be found by

simply performing RGLLiM with a very large C and calculating the eigenvalue ratio

between the estimated Γ∗k. This practice will provide a useful upper bound of C. The

value of α is supposed to be small. By evaluating the data points being trimmed, we

can determine whether a larger than necessary α has been chosen. Determining the

89

maximum value of K, on the other hand, is a challenging task since its value could

vary widely, so as to reflect different data intrinsic structures. In this section, we

propose a method to find the upper bound of K when performing cross-validation.

To determine the upper bound of K, we select α > 0 so as to eliminate the impact

of outliers. The value of α should be small. In addition, there is an interactive trend

between K and Lw. For a large K, we would obtain simple within-cluster structures,

and thus the value of Lw tends to be small. For a smaller K, the cluster structure

would be more complicated and thus one might need a larger Lw to capture the latent

structure. In order to find the upper bound of K, we could choose a small Lw, e.g.,

Lw = 0 or Lw = 2. As for C, due to the nature of the constraints, we observe that a

less restrictive constraint would lead to selecting a smaller K. Thus, we could pick an

arbitrary large C. We next calculate the relative increment ratio of the log-likelihood.

The relative increment ratio is calculated as the difference between two consecutive

log-likelihoods of K and K + 1 divided by the log-likelihood of K + 1.

Figure 4.2 shows the log-likelihood and the log-likelihood relative increment ratio

under different cases. For each case, we set C = 107, α = 0.05. We choose 1%

as the threshold and pick the K for which the corresponding log-likelihood relative

increment ratio first drops below 1% as the upper bound. From Figure 4.2, if Lw = 0

is considered, selecting the upper bound of K to be 15 seems to be sufficient. If we use

Lw = 2, the upper bound of K would be 8 for Cases 1, 3 and 4. For Case 2, we could

select 5 as the upper bound of K. We enlarge these selected upper bounds to 20 and

further pick K = 30, 50 to evaluate the performance of using a larger-than-needed K.

We next compare the results when the tuning parameters are determined using the

reported model selection techniques. For GLLiM and SLLiM, the tuning parameters

are selected using BIC. We use the method reported in this section to select the tuning

parameters for RGLLiM. We choose K from values of 2 to 10, 30, 50; Lw from values

of 5 to 20; C from 105, 107, ∞ and α from 0, 0.05, 0.1. The parameters selected

90

(a)

0 2 4 6 8 10 12 14 16 18 20

K

0.5

1

1.5

2

Lo
g-

lik
el

ih
oo

d

105

Lw=0
Lw=2

0 2 4 6 8 10 12 14 16 18 20

K+1

0

5

10

Lo
g-

lik
el

ih
oo

d
in

cr
ea

si
ng

 r
at

io
(%

)

(b)

0 2 4 6 8 10 12 14 16 18 20

K

0.5

1

1.5

2

Lo
g-

lik
el

ih
oo

d

105

Lw=0
Lw=2

0 2 4 6 8 10 12 14 16 18 20

K+1

0

5

10

Lo
g-

lik
el

ih
oo

d
in

cr
ea

si
ng

 r
at

io
(%

)

(c)

0 2 4 6 8 10 12 14 16 18 20

K

0.8

1

1.2

1.4

1.6

Lo
g-

lik
el

ih
oo

d

105

Lw=0
Lw=2

0 2 4 6 8 10 12 14 16 18 20

K+1

-10

-5

0

5

10

Lo
g-

lik
el

ih
oo

d
in

cr
ea

si
ng

 r
at

io
(%

)

(d)

0 2 4 6 8 10 12 14 16 18 20

K

0.8

1

1.2

1.4

1.6

Lo
g-

lik
el

ih
oo

d

105

Lw=0
Lw=2

0 2 4 6 8 10 12 14 16 18 20

K+1

-10

-5

0

5

10

Lo
g-

lik
el

ih
oo

d
in

cr
ea

si
ng

 r
at

io
(%

)

Figure 4.2: Changes of log-likelihood and the relative increment ratio for C = 107,
α = 0.05. Within plots (a)–(d), the upper panel shows the log-likelihood values for
different K, and the lower panel shows the log-likelihood relative increment ratios,
changing with K + 1. Plots (a)–(d) correspond to (a) Case 1; (b) Case 2; (c) Case 3
and (d) Case 4.

under each case are shown in Table 4.5.

GLLiM RGLLiM SLLiM
Case 1 K = 3, Lw = 10 K = 3, Lw = 10, C = 107, α = 0 K = 3, Lw = 8
Case 2 K = 3, Lw = 11 K = 3, Lw = 12, C = 107, α = 0.05 K = 3, Lw = 10
Case 3 K = 3, Lw = 6 K = 3, Lw = 11, C = 107, α = 0 K = 3, Lw = 6
Case 4 K = 3, Lw = 12 K = 3, Lw = 8, C = 105, α = 0.05 K = 3, Lw = 6

Table 4.5: The parameter settings under different cases.

Table 4.6 shows the prediction performance under different cases. The prediction

91

MSEs for GLLiM on Case 2 and Case 4 are larger than those for RGLLiM and SLLiM

because of the outliers. For RGLLiM, the overall performance is similar to what we

have obtained when the parameter settings are ideally chosen. As for SLLiM, it selects

parameters that are close to the true ones and thus reaches a similar performance.

GLLiM RGLLiM SLLiM

Training
Case 1 1.102e-08 1.102e-08 6.314e-09
Case 2 0.0003334 7.863e-07 3.347e-08
Case 3 0.01557 0.01328 0.01802
Case 4 0.0228 0.02219 0.03584

Testing
Case 1 1.103e-08 1.103e-08 6.313e-09
Case 2 0.0003334 8.341e-09 3.374e-08
Case 3 0.02803 0.02521 0.02568
Case 4 0.03027 0.02426 0.03480

Table 4.6: Comparison of the performance of different methods under different cases
when parameters are selected using the reported model selection strategies.

92

4.4 Numerical investigation using real-world datasets

4.4.1 The orange juice data

The orange juice data is used in the simulation study in the previous section. In

this section we evaluate the performance of different methods when applied to the

dataset itself. We ran 20 experiments. For each experiment, the training and testing

datasets were selected as follows. There are 218 samples in the orange juice dataset.

We randomly selected 20 data points from a subset of the data, excluding outliers, as

the testing samples. The rest of the 198 data points, including outliers, are treated

as the training samples. This setup enables us to clearly assess the impact of out-

liers in each training dataset, without letting deteriorated performances in predicting

outliers in the testing samples mask the quality of the prediction of regular data

points. We compared the performance of several methods, including GLLiM, SLLiM

and RGLLiM. All methods were randomly initialized 10 times and the result with

the largest likelihood was selected. We followed the tuning procedures described in

Perthame et al. (2018) for GLLiM and SLLiM. We fixed K = 10 and selected Lw

using BIC for GLLiM and SLLiM. For RGLLiM, the tuning parameters were selected

through cross-validation.

GLLiM SLLiM RGLLiM

PMSE 0.4360 0.3337 0.1287

Table 4.7: The prediction performance using different methods.

Table 4.7 shows the average prediction MSE over 20 experiments. With no ro-

bustness control, GLLiM behaves unsurprisingly the worst among the three methods.

SLLiM mitigates the influence of outliers through having t-distributed clusters, but

it does not contain any mechanism for controlling the relative cluster sizes. RGLLiM

controls the relative cluster sizes to prevent forming clusters which are either too small

or too large. By mitigating the impact of outliers on clustering, RGLLiM achieves

93

better prediction performance.

We next analyze the outliers identified by using different choices of C. We de-

note RGLLiM(105) and RGLLiM(∞) as the RGLLiM approaches with C = 105

and C = ∞, respectively. The rest of the tuning parameters are kept the same:

K = 10, Lw = 10 and α = 0.05. The top 5 outliers identified by these two settings are

shown in Table 4.8. The only common outlier identified by both settings is data point

133. This indicates that the choices of C can influence the identification of outliers.

To evaluate which choice provides a better selection of outliers, we calculate the pre-

diction MSE as follows. By setting α = 0.05, RGLLiM will remove 10 data points. We

let A be the set of the data points removed by RGLLiM(105), and B, by RGLLiM(∞).

We calculate the prediction MSE of B \ A using the RGLLiM(105) model and vice

versa, where the set B \A contains the outliers identified by RGLLiM(∞) but not by

RGLLiM(105). That is, we are actually calculating the in-sample prediction MSE of

RGLLiM(105). Similarly, we can obtain the in-sample prediction MSE for set A \ B

of RGLLiM(∞). The in-sample prediction MSEs of RGLLiM(105) and RGLLiM(∞)

are 0.0104 and 0.0147, respectively. A smaller in-sample prediction MSE indicates

that the data points fit better with other training data points. Thus, RGLLiM(105

) provides a slightly better selection of outliers. The top 5 outliers identified by

RGLLiM(105) are shown in Figure 4.3, and we note that the data points with recog-

nizable abnormal patterns are identified.

Top 5 outliers

RGLLiM C = 105 37, 42, 130, 133, 194
RGLLiM C =∞ 133, 137, 140, 150, 192

Table 4.8: The top 5 data being removed.

94

Figure 4.3: The orange juice dataset. The upper panel shows the high-dimensional
data (Y) and the lower panel shows the low-dimensional data (T).

4.4.2 The fingerprint data

The fingerprint dataset is introduced and fully analyzed in Chapter III. As a

reminder, we are interested in predicting the microvascular properties mean vessel

radius (Radius) and Blood Volume Fraction (BVf), and the measurement of blood

oxygenation (DeltaChi) using the fingerprints. As shown in Figure 4.4, the dictionary

contains several measurements of the fingerprint with extreme values and this could

result in robustness concerns during the model-building exercise. We first analyze a

subset with potential outliers and demonstrate the necessity of robustness control.

Next, we evaluate the performance of the dictionary matching method (Lemasson

et al., 2016), GLLiM and RGLLiM using the synthetic dataset. Finally, the results

on the data acquired from in vivo experiments are presented.

4.4.2.1 Subset with abnormal data

As the analysis described in Section 3.2.1, we separate the full synthesized dataset

into 20 groups. To demonstrate the advantage of the proposed method for robust-

ness, we first select a complex subset with outliers. Visually notable outliers mostly

95

appear in Group 3 to Group 8, with apparently high peaks in the high-dimensional

X (fingerprint). The 98% percentile of the peak values is 26.3612. Using this as the

decision threshold, we identify 244 outliers out of 12180 data. Since the Radius (t1)

is fixed in Groups 3 to 8, we focus on predicting BV (t2) and DeltaChi (t4). We

randomly select 5000 normal data and 200 abnormal data to form a training dataset.

We show this selected subset with outliers in Figure 4.4.

For method evaluation, we select 1000 testing samples from the normal data.

The tuning parameters are selected through cross-validation. For GLLiM, we select

K = 200, Lw = 20. The resulting testing MSE is 0.002151. For RGLLiM, we select

K = 150, Lw = 20, C = 1010, α = 0.05, and obtain the testing MSE of value 0.001228,

a 43% reduction of that obtained by GLLiM.

(a) (b)

Figure 4.4: The fingerprint subset with outliers: (a) data in high dimension (Y) and
(b) data in low dimension (T).

4.4.2.2 Performance on the synthetic data

The synthetic dataset is separated into 20 folds. Table 4.9 shows the results of

the dictionary matching, GLLiM and RGLLiM. The numbers of training and testing

data for each group are described in Section 3.2.1. For RGLLiM, the cross-validation

suggests the choice of K = 100, Lw = 20, C = 1010, α = 0.02. For GLLiM, we provide

96

results with K = 100 and Lw = 20, as a comparison. The models estimated from each

group are combined together into the final model used for prediction. Table 4.9 shows

the 50%, 90% and 99% quantiles of the squared prediction errors, which indicates the

“average”, “almost-all” and the “worst” performances of different methods. BVf

is the microvascular parameter of the most interest, and RGLLiM outperforms the

other two methods. As for Radius, RGLLiM is slightly worse than GLLiM for the

90% quantile, but its performance is better on the median. As for DeltaChi, RGLLiM

performs better than GLLiM on the 90% quantile but worse than GLLiM on the 99%

quantile. This is because RGLLiM trims off outliers to reach robustness in estimation,

and this practice may lead to worse performance for certain extreme cases.

Dictionary matching GLLiM RGLLiM

50% 90% 99% 50% 90% 99% 50% 90% 99%

Radius 0 0.2843 21.44 1.2189× 10−3 0.2074 21.44 1.1075× 10−3 0.2141 21.44
BVf 0 0 0.0023 8.113× 10−15 1.744× 10−8 2.267× 10−4 1.08× 10−27 3.676× 10−8 1.398× 10−4

DeltaChi 0 0.0143 0.3571 2.548× 10−10 4.125× 10−7 0.01646 2.385× 10−10 3.387× 10−7 0.03113

Table 4.9: The quantiles of the fingerprint data. Note that the dictionary matching
method adopts the microvacular properties from the nearest training as the predicted
values. It is possible that the predicted squared error equals zero since the synthetic
data is generated on a grid.

97

4.4.2.3 Performance on the in vivo fingerprint data

In order to evaluate the prediction quality on the in vivo fingerprint data, we first

locate the best-matched dictionary data point for each in vivo fingerprint measure-

ment. We include the data within the region of the interest (ROI) whose r2 > 0.8

(Lemasson et al., 2016). There are 88113 fingerprints inside the ROI, correspond-

ing to 44956 unique dictionary fingerprints. Most included dictionary data points

belong to Group 1 (96.85%). The second and the third largest groups that contain

the matched dictionary fingerprint are Group 2 (1.75%) and Group 18 (1.21%). In

addition to the synthetic training data, we also include a small number of in vivo

fingerprint data. Since the fingerprints from the animal study are noisier than the

synthetic ones, adding the in vivo fingerprints enables the model to accommodate

the in vivo samples in prediction. The ratio of the synthetic samples to the in vivo

samples is 4 to 1. The cross-validation outcomes suggest the choice of the tuning

parameters as K = 150, Lw = 10, C = 1010, α = 0.05 for RGLLiM. We compare

the results to GLLiM with K = 150, Lw = 10. Since there is no ground truth for

the Radius, BVf and DeltaChi of the in vivo fingerprints, we compare the prediction

results of GLLiM and RGLLiM to the results obtained by the dictionary matching

method. Table 4.10 shows the results. We note that for both methods, the predicted

values of BVf are close to the ones obtained by the dictionary matching method. As

for DeltaChi, RGLLiM outcomes are uniformly closer to the targets than GLLiM

outcomes. The same does not hold for Radius, with the 99% quantile of squared

errors obtained by RGLLiM being higher than those obtained by GLLiM.

GLLiM RGLLiM

50% 90% 99% 50% 90% 99%

Radius 2.7029× 10−4 0.0060 0.1118 2.0809× 10−4 0.0054 0.1760
BVf 2.9514× 10−6 4.9759× 10−5 7.1762× 10−4 1.1152× 10−6 3.2134× 10−5 5.6165× 10−4

DeltaChi 0.0022 0.0349 0.3553 0.0016 0.0338 0.3035

Table 4.10: The quantiles of squared errors for the fingerprint data.

98

Dictionary matching GLLiM RGLLiM

50% 90% 99% 50% 90% 99% 50% 90% 99%
9L 1.1180 3.9803 10.6829 0.4535 2.8226 4.7301 0.2004 2.0813 4.7020
C6 1.1208 4.4719 14.4888 0.9198 5.1085 14.1683 0.7610 6.3971 15.3170
F98 1.0994 4.2373 14.4888 0.9886 5.3409 15.1071 0.7135 4.1853 13.5320

Stroke 1.1663 5.8045 14.8888 1.0368 3.1978 4.7664 0.1270 2.5659 4.7033
Health 1.0931 3.8086 7.7912 1.4402 8.9761 30.9789 0.9876 8.9632 30.7002

Table 4.11: The 50%, 90% and 99% quantiles of ADC squared errors for different
methods on different image categories. For each entry, the result for the best per-
former from the three methods is underlined.

The ground truth of ADC is available, and thus we compare the quality of the

predictions of ADC using all three methods in Table 4.11. We observe that both

RGLLiM and GLLiM outperform the dictionary matching method and that RGLLiM

predicts better than GLLiM, in general, as shown by the median comparisons. A

tradeoff of the robustness control of RGLLiM is that the prediction performance of

some extreme cases would be slightly worse.

4.5 Conclusion

In this chapter we proposed RGLLiM to combat outliers and to avoid the sin-

gularity issue. Outliers are removed by maximizing the trimmed likelihood. The

singularity issue is resolved by putting a constraint on the relative cluster size. Re-

sults on the simulated and the real orange juice dataset demonstrate that RGLLiM is

insensitive to outliers. In addition, with the ER constraint, RGLLiM can better iden-

tify abnormal data. Using the fingerprint dataset, we show that RGLLiM is capable

of handling datasets with complicated structures. RGLLiM establishes the primary

patterns of the data, which may sacrifice the prediction performance in some extreme

instances. However, these extreme cases can be easily detected by users using the

posterior probabilities as discussed in Chapter III. Moreover, the cluster structure

and the outliers identified by RGLLiM can be utilized for further analyses.

99

CHAPTERS V

Zeroth Order Optimization Method for

Adversarial Example Generation

Traditional machine learning algorithms assume no interaction between the data

generating process and the model. However, in many real-world applications, this

assumption is invalid. As an example, the performance of a spam filtering model can

downgrade quickly after it is deployed. Spammers learn to insert non-spam words

into email to fool the filter. As the spam filter is updated with these tricks, spammers

develop new techniques to bypass the filter (Brückner et al., 2012; Fawcett, 2003).

Similar arms races can be found in other fields such as fraud detection (Fawcett and

Provost, 1997), web search (Mahoney and Chan, 2002), malware detection (Xu et al.,

2016) and ad-blocking (Tramèr et al., 2018).

Recently, deep neural network (DNN) methods have shown their superiority in

many fields such as image classification (LeCun et al., 2015), object detection (Red-

mon et al., 2016) and speech synthesis (Van den Oord et al., 2016). These methods

are widely deployed as products or services to make human life more convenient.

However, studies have highlighted the vulnerability of DNNs to adversarial pertur-

bations (Goodfellow et al., 2015a; Szegedy et al., 2013). In other words, well-trained

models can be easily fooled when adding imperceptible noise to the input data. The

risk can be amplified to become a severe security problem if the model is deployed

100

for safety-critical or security-sensitive applications such as autonomous driving, face

recognition, malware detection and security screening.

An effective way to robustify machine learning models is to exploit the information

of these malicious inputs. Models are not only trained on normal data but also trained

on adversarial examples (Dalvi et al., 2004; Huang et al., 2011; Madry et al., 2018).

Therefore, an efficient way to generate adversarial examples is necessary to train

robust models.

In general, adversarial attacks can be formulated as an optimization problem. The

objective function of the problem is designed so that the adversarial perturbation is

minimized while the attack goal is achieved. The majority of the previous work on

attacking DNNs assumes a “white-box” setting, in which the complete information

of the model, such as model architecture and model parameters, is known. This

essentially allows an attacker to evaluate the target network from both the input-

to-output direction and the output-to-input direction. In particular, an attacker

can “query” the network by applying a test image to the network and observe the

corresponding response produced at the outputs. An attacker is also allowed to

perform “back-propagation” on the network; the output gradients can propagate

through the network to the input image. A network under the white-box setting is

considered relatively easy to attack since all the information is transparent and the

optimization problem can be solved efficiently through optimization algorithms such

as gradient descent or its variants. Existing powerful white-box methods include the

fast gradient sign method (Kurakin et al., 2017), Carlini and Wagner’s (C&W) attack

(Carlini and Wagner, 2017) and the elastic-net attack (Chen et al., 2018).

Knowing the entire model information is a strong assumption. In practice, at-

tackers have limited knowledge of the model. The only information available to the

attackers are the inputs and the corresponding outputs of the model. Under this

black-box setting, the gradient-based methods are impractical. In Papernot et al.

101

(2017), the authors proposed to train a substitute model through model queries, per-

form white-box adversarial attacks on the substitute model and utilize the transfer-

ability of the adversarial examples (Papernot et al., 2016) to attack the target model.

However, training a substitute model for DNN is a challenging problem owing to its

nature of high dimensionality and non-linearity. The performance of the black-box

attacks highly depends on the transferability of the substitute model to the target

model and is often unsatisfactory. Authors in Chen et al. (2017); Nitin Bhagoji et al.

(2018) proposed to estimate the coordinate-wise gradients directly through model

queries. The coordinate-wise gradient estimation considerably increases the attack

success rate but requires an excessive number of queries to the target model. Even

though several techniques such as importance sampling and random feature group-

ing are applied to accelerate the optimization process, the number of queries is still

unreasonable.

In this work, we propose the Autoencoder-based Zeroth Order Optimization Method,

AutoZOOM, to improve the query efficiency of gradient-estimation and gradient-

descent-based black-box attacks. One unique feature of AutoZOOM is the use of

reduced attack dimensions when mounting black-box attacks, which is an unlabeled

data-driven technique (autoencoder) for attack acceleration and has not been studied

thoroughly in existing attacks. AutoZOOM is a general method so that it can be

applied to a wide variety of models. In this work, we demonstrate the abilities of

AutoZOOM on two commonly seen machine learning tasks: classification and regres-

sion. We use classification examples to illustrate the efficiency of AutoZOOM. The

regression example is used to show the general usage of AutoZOOM as well as the

fact that adversarial examples are indeed an issue in the field of machine learning and

that we should take adversarial inputs into account so as to enhance the prediction

performance.

102

5.1 AutoZOOM

Considering the high-dimensional covariate x ∈ RD and the corresponding low-

dimensional response y ∈ RL, we aim to generate adversarial images that are visually

similar to x but that would result in model failure. Model failure indicates that the

model would produce the wrong predicted class under a classification scenario or that

it would result in large prediction errors (e.g., PMSE). A set of allowed perturbations

S ⊆ RD is introduced to data point x so as to control the difference between the

adversarial image and the original input data. Given a loss function L(x, y), the

generation of adversarial examples can be formulated as follows:

max
ε∈S
L(x+ ε, y) (5.1)

where S is the “threat model” defined as S = {ε : ‖ε‖p/D ≤ δ} (p ≥ 1). In other

words, we would like to find a small perturbation under `-p norm that would lead to

a large loss.

Depending on the task of the target model, there are two kinds of problem for-

mulations. One is for classification purposes and the other is for regression purposes.

Regression

Under a regression framework such as GLLiM, the adversarial examples are the ones

that will result in large prediction loss. Here we use prediction mean squared error to

evaluate the prediction performance. Denote the regression function FR : RD 7→ RL.

Let (x, y) denote the natural input x and its ground-truth response y. The prediction

loss can be defined as:

L(x, y) = ||FR(x)− y||22 (5.2)

103

With a Lagrangian multiplier, solving Equation (5.1) is equivalent to:

max
ε

{
||FR(x+ ε)− y||22 − λ||ε||22

}
, (5.3)

where λ is the penalty term that would satisfy the constraint of S. In practice, a

suitable value of λ could be found by binary search.

Classification

The task of classification also falls into the high-to-low mapping setting. For a high-

dimensional sample x ∈ RD, we aim to predict its scores belonging to L classes. Two

types of classification attacks are discussed. One is the so-called targeted attack,

which indicates that there is a specific class label an attacker desires to change to. As

for an untargeted attack, as long as the predicted class is different from the original

one, the attack is considered as success. Considering the classification function FC :

RD 7→ RL that, similarly, takes D-dimensional data as an input and yields a vector

for prediction scores of L classes, we intend to generate adversarial examples from

a data pair (x, y), where x is the input data and y is the ground-truth of the class

label under one-hot encoding. For a targeted attack, we aim to alter x such that it is

classified as class y′ 6= y. We next define the loss function for classification as follows:

L(x, y′) = max

[
max
j,j 6=y′

(Fc(x))j − (Fc(x))y′ , 0

]
. (5.4)

Here we use subscripts (·)j to denote the j-th element of the predicted scores.

If the j-th element is the largest, the model will classify the input as class j. The

loss function is designed to be zero if the attack succeeds. Namely, the loss function

becomes zero if the score of being predicted as the targeted class y′ is larger than that

of other classes.

104

The generation of the adversarial example can be formulated as :

min
ε

{
max

[
max
j,j 6=y′

(Fc(x+ ε))j − (Fc(x+ ε))y′ , 0

]
+ λ||ε||22

}
. (5.5)

5.2 Efficient mechanism for gradient estimation

There are two major contributions of this work. First, we adopt the dimension

reduction technique to accelerate the attack process. We attack in the reduced space

and scale up the perturbation to the original size. This technique allows us to reduce

the query counts effectively. The other technique is to estimate the gradient vector.

In contrast to coordinate-wise gradient estimation, the gradient vector is much more

efficient since the gradient of the whole image is updated. As a comparison, to

estimate the gradient of the whole image using the coordinate-wise method, it requires

W × H × C numbers of calculation, where W is the width of the image, H is the

height of the image and C is the number of the color channels.

5.2.1 Random vector based gradient estimation

As a first attempt to enable gradient-free black-box attacks on DNNs, the authors

in Chen et al. (2017) use the symmetric difference quotient method (Lax and Terrell,

2014) to evaluate the gradient ∂f(x)
∂xi

of the i-th component by

gi =
f(x+ hei)− f(x− hei)

2h
≈ ∂f(x)

∂xi
(5.6)

using a small h. Here ei denotes the i-th elementary basis. Albeit contributing to

powerful black-box attacks and being applicable to large networks like ImageNet,

the nature of coordinate-wise gradient estimation step in Equation (5.6) must incur

an enormous amount of model queries and is hence not query-efficient. For exam-

ple, the ImageNet dataset has D = 299 × 299 × 3 ≈ 270, 000 input dimensions,

105

rendering coordinate-wise zeroth order optimization based on gradient estimation

query-inefficient.

To improve query efficiency, we dispense with coordinate-wise estimation and

instead propose a scaled random full gradient estimator of ∇f(x), defined as

g = b · f(x+ βu)− f(x)

β
· u, (5.7)

where β > 0 is a smoothing parameter, u is a unit-length vector that is uniformly

drawn at random from a unit Euclidean sphere, and b is a tunable scaling parameter

that balances the bias and variance trade-off of the gradient estimation error.

Averaged random gradient estimation.

To effectively control the error in gradient estimation, we consider a more general gra-

dient estimator, in which the gradient estimate is averaged over q random directions

{uj}qj=1. That is,

g =
1

q

q∑
j=1

gj, (5.8)

where gj is a gradient estimate defined in Equation (5.7) with u = uj. The use of

multiple random directions can reduce the variance of g in Equation (5.8) for convex

loss functions (Duchi et al., 2015; Liu et al., 2018).

Below we establish an error analysis of the averaged random gradient estimator

in Equation (5.8) for studying the influence of the parameters b and q on estimation

error and query efficiency.

Theorem 5.1. Assume f : Rd 7→ R is differentiable and its gradient ∇f(·) is L-

Lipschitz.1 Then the mean squared estimation error of g in (5.8) is upper bounded

1A function W (·) is L-Lipschitz if ‖W (w1)−W (w2)‖2 ≤ L‖w1−w2‖2 for any w1, w2. For DNNs
with ReLU activations, L can be derived from the model weights as in Szegedy et al. (2013).

106

by

E‖g −∇f(x)‖22 ≤ 4(
b2

D2
+

b2

Dq
+

(b−D)2

D2
)‖∇f(x)‖22

+
2q + 1

q
b2β2L2. (5.9)

Proof. The proof is given in Appendix B.

Here we highlight important implications based on Theorem 5.1: (i) The error

analysis holds when f is non-convex ; (ii) In DNNs, the true gradient ∇f can be

viewed as the numerical gradient obtained via back-propagation; (iii) For any fixed

b, selecting a small β (e.g., we set β = 1/D in AutoZOOM) can effectively reduce

the last error term in Equation (5.9), and we therefore focus on optimizing the first

error term; (iv) The first error term in Equation (5.9) exhibits the influence of b and

q on the estimation error, and is independent of β. We further elaborate on (iv) as

follows. Fixing q and letting η(b) = b2

D2 + b2

Dq
+ (b−D)2

D2 be the coefficient of the first

error term in Equation (5.9), then the optimal b that minimizes η(b) is b∗ = Dq
2q+D

.

For query efficiency, one would like to keep q small, which then implies b∗ ≈ q and

η(b∗) ≈ 1 when the dimension D is large. On the other hand, when q →∞, b∗ ≈ D/2

and η(b∗) ≈ 1/2, which yields a smaller error upper bound but is query-inefficient.

We also note that by setting b = q, the coefficient η(b) = b2

D2 + b2

Dq
+ (b−D)2

D2 ≈ 1 and

thus is independent of the dimension D and the parameter q.

Adaptive random gradient estimation.

Based on Theorem 5.1 and our error analysis, in AutoZOOM we set b = q in Equation

(5.7) and propose to use an adaptive strategy for selecting q. AutoZOOM uses q = 1

(i.e., the fewest possible model evaluations) to first obtain rough gradient estimates for

solving Equation (5.1) until a successful adversarial image is found. After the initial

attack success, it switches to using more accurate gradient estimates with q > 1 to

107

fine-tune the image quality. The trade-off between q (which is proportional to query

counts) and distortion reduction will be investigated in Section 5.3.

5.2.2 Attack dimension reduction

Dimension-dependent convergence rate using gradient estimation. Different

from the first-order convergence results, the convergence rate of zeroth order gradient

descent methods has an additional multiplicative dimension-dependent factor D. In

the convex loss setting the rate is O(
√
D/I), where I is the number of iterations

(Nesterov and Spokoiny, 2017; Liu et al., 2018; Gao et al., 2014; Wang et al., 2018).

The same convergence rate has also been found in the nonconvex setting (Ghadimi

and Lan, 2013). The dimension-dependent convergence factor D suggests that vanilla

black-box attacks using gradient estimations can be query inefficient when the (vec-

torized) image dimension D is large, due to the curse of dimensionality in convergence.

This also motivates us to propose using an autoencoder to reduce the attack dimen-

sion and improve query efficiency in black-box attacks.

In AutoZOOM, we propose to perform random gradient estimation from a re-

duced dimension D′ < D to improve query efficiency. Specifically, as illustrated in

Figure 5.1, the additive perturbation to an image x0 is actually implemented through

a “decoder” Dec : RD′ 7→ RD such that x = x0 + Dec(δ′), where δ′ ∈ RD′ . In

other words, the adversarial perturbation δ ∈ RD to x0 is in fact generated from a

dimension-reduced space, with an aim of improving query efficiency due to the re-

duced dimension-dependent factor in the convergence analysis. AutoZOOM provides

two modes for such a decoder Dec:

• An autoencoder (AE) trained on unlabeled data that are different from the

training data to learn reconstruction from a dimension-reduced representation. The

encoder Enc(·) in an AE compresses the data to a low-dimensional latent space

108

Figure 5.1: Illustration of attack dimension reduction through a “decoder” in Au-
toZOOM for improving query efficiency in black-box attacks. The decoder has two
modes: (i) an autoencoder (AE) trained on unlabeled natural images that are differ-
ent from the attacked images and training data; (ii) a simple bilinear image resizer
(BiLIN) that is applied channel-wise to extrapolate low-dimensional features to the
original image dimension (width × height). In the latter mode, no additional training
is required.

and the decoder Dec(·) reconstructs an example from its latent representation. The

weights of an AE are learned to minimize the average L2 reconstruction error. Note

that training such an AE for black-box adversarial attacks is one-time and is entirely

offline (i.e., no model queries needed). Our proposal of AE is motivated by the insight-

ful findings in Goodfellow et al. (2015b) that a successful adversarial perturbation is

highly relevant to some human-imperceptible noise patterns resembling the shape of

the target class, known as “shadow.” Since a decoder in AE learns to reconstruct data

from latent representations, it can also provide distributional guidance for mapping

adversarial perturbations to generate these shadows.

• A simple channel-wise bilinear image resizer (BiLIN) that scales a small image to

a large image via bilinear extrapolation. Note that no additional training is required

for BiLIN.

109

Algorithm 5.1 AutoZOOM for black-box attacks on DNNs

Input : Black-box DNN model F , original example x0, attack objective L(·, ·),

decoder Dec(·) ∈ {AE,BiLIN}, initial coefficient λini, query budget

Q

Output : Least distorted successful adversarial example

while query count ≤ Q do

1. Exploration: use x = x0 +Dec(δ′) and apply the random gradient estimator

in Equation (5.8) with q = 1 to the downstream optimizer (e.g., ADAM) for

solving Equation (5.1) until an initial attack is found.

2. Exploitation (post-success stage): continue to fine-tune the adversarial

perturbation Dec(δ′) for solving Equation (5.1) while setting q ≥ 1 in Equation

(5.8).

end

We also note that for any reduced dimension D′, the setting b∗ = q is optimal in

terms of minimizing the corresponding estimation error from Theorem 5.1, despite

the fact that the gradient estimation errors of different reduced dimensions cannot

be directly compared. In Section 5.3 we will report the superior query efficiency in

black-box attacks achieved with the use of AE or BiLIN as the decoder, and discuss

the benefit of attack dimension reduction.

5.2.3 AutoZOOM algorithm

Algorithm 5.1 summarizes the AutoZOOM framework to query-efficient black-box

attacks on DNNs. We also note that AutoZOOM is a general acceleration tool that is

compatible with any gradient-estimation-based black-box adversarial attack obeying

the attack formulation in Equation (5.1). It also has some theoretical estimation

error guarantees and query-efficient parameter selection based on Theorem 5.1. The

details on adjusting the regularization coefficient λ and the query parameter q based

110

on run-time model evaluation results will be discussed in Section 5.3.

5.3 Numerical results

Under the classification scenario, the definition of a successful attack is straight-

forward. We can check the classification results of the generated outcomes. If a

generated sample can fool the classifier (i.e. the classification result changes), the

attack is a success. We use the classification scenario to illustrate the efficiency of

AutoZOOM in terms of query counts. Results for AutoZOOM attacking the regres-

sion application will be demonstrated in Chapter VI.

5.3.1 Experimental setup

We compare AutoZOOM-AE (D = AE) and AutoZOOM-BiLIN (D = BiLIN)

with two different baselines: (i) standard ZOO implementation2 with bilinear scaling

(same as BiLIN) for dimension reduction; (ii) ZOO+AE, which is ZOO with AE.

Note that all attacks indeed generate adversarial perturbations based on the same

reduced attack dimensions.

We assess the performance of different attack methods on several representative

benchmark datasets, including MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky,

2009) and ImageNet (Russakovsky et al., 2015). MNIST contains digit numbers from

zero to nine. It is a dataset with a relatively simple image structure. The image is

under grayscale, and thus there is only one color channel. The CIFAR-10 dataset

contains small-size colorful images. There are 10 classes with a somewhat complexed

image structure. The width and the height of the image are both 32 pixels and

there are three color channels. ImageNet is a collection of real-life photos. There are

1000 labels with more complicated image structures. Thus it would be challenging to

modify an image to fit a certain class. We use MNIST and CIFAR-10 to illustrate the

2https://github.com/huanzhang12/ZOO-Attack

111

https://github.com/huanzhang12/ZOO-Attack

capability and effectiveness of AutoZOOM. Imagenet is used to show the superiority

of AutoZOOM for sophisticated real-world examples. For MNIST and CIFAR-10, we

use the same DNN image classification models3 as in (Carlini and Wagner, 2017).

For ImageNet, we use the Inception-v3 model (Szegedy et al., 2016). All experiments

were conducted using TensorFlow Machine-Learning Library (Abadi et al., 2016) on

machines equipped with an Intel Xeon E5-2690v3 CPU and an Nvidia Tesla K80

GPU.

All attacks used ADAM (Kingma and Ba, 2015) for solving Equation (5.1) with

their estimated gradients and the same initial learning rate 2 × 10−3. On MNIST

and CIFAR-10, all methods adopt 1,000 ADAM iterations. On ImageNet, ZOO and

ZOO+AE adopt 20,000 iterations, whereas AutoZOOM-BiLIN and AutoZOOM-AE

adopt 100,000 iterations. Note that due to different gradient estimation methods, the

query counts (i.e., the number of model evaluations) per iteration of a black-box attack

may vary. ZOO and ZOO+AE use the parallel gradient update of Equation (5.6) with

a batch of 128 pixels, yielding 256 query counts per iteration. AutoZOOM-BiLIN and

AutoZOOM-AE use the averaged random full gradient estimator in Equation (5.8),

resulting in q+ 1 query counts per iteration. For a fair comparison, the query counts

are used for performance assessment.

The performances of different methods are evaluated using the metrics described

below:

� Query reduction ratio: We use the mean query counts of ZOO with the

smallest λini as the baseline for computing the query reduction ratio of other

methods and configurations.

� TPR and initial success: We report the true positive rate (TPR), which

measures the percentage of successful attacks fulfilling a pre-defined constraint

` on the normalized (per-pixel) L2 distortion, as well as the query counts of their

3https://github.com/carlini/nn_robust_attacks

112

https://github.com/carlini/nn_robust_attacks

first successes. We also report the per-pixel L2 distortions of initial successes,

where an initial success refers to the first query count that finds a successful

adversarial example.

Post-success fine-tuning. When implementing AutoZOOM in Algorithm 5.1,

on MNIST and CIFAR-10 we find that AutoZOOM without fine-tuning (i.e., q =

1) already yields similar distortion as ZOO. We note that ZOO can be viewed as

coordinate-wise fine-tuning and is thus query-inefficient. On ImageNet, we will inves-

tigate the effect of post-success fine-tuning on reducing distortion.

Autoencoder Training. In AutoZOOM-AE, we use convolutional autoencoders for

attack dimension reduction, which are trained on unlabeled datasets that are different

from the training dataset and the attacked natural examples.

The implementation details are given in Table B.1. Note that the autoencoder

designed for ImageNet uses bilinear scaling to transform the data size from 299×299×

Dep to 128×128×Dep, and also back from 128×128×Dep to 299×299×Dep. This

is to allow easy processing and handling for the autoencoder’s internal convolutional

layers. The normalized mean squared errors of our autoencoder trained on MNIST,

CIFAR-10 and Imagenet are 0.0027, 0.0049 and 0.0151, respectively, which lies within

a reasonable range of compression loss.

On MNIST, the convolutional autoencoder (CAE) is trained on 50,000 randomly

selected hand-written digits from the MNIST8M dataset.4 On CIFAR-10, the CAE

is trained on 9,900 images selected from its test dataset. The remaining images are

used in black-box attacks. On ImageNet, all the attacked natural images are from

10 randomly selected image labels, and these labels are also used as the candidate

attack targets. The CAE is trained on about 9000 images from these classes. The

architectures for all of the autoencoders used in AutoZOOM are shown in Table B.1.

To adjust the regularization coefficient λ in Equation (5.1), in all methods we set

4http://leon.bottou.org/projects/infimnist

113

http://leon.bottou.org/projects/infimnist

its initial value λini ∈ {0.1, 1, 10} on MNIST and CIFAR-10, and set λini = 10 on

ImageNet. Furthermore, for balancing the distortion Dist and the attack objective

Loss in Equation (5.1), we use a dynamic switching strategy to update λ during the

optimization process. Per every S iteration, λ is multiplied by 10 times the current

value if the attack has never been successful. Otherwise, it divides its current value

by 2. On MNIST and CIFAR-10, we set S = 100. On ImageNet, we set S = 1, 000.

At the instance of initial success, we also reset λ = λini and the ADAM parameters

to the default values, as doing so can empirically reduce the distortion for all attack

methods.

5.3.2 Black-box attacks on MNIST

For MNIST, we randomly select 50 correctly classified images from their test sets,

and perform targeted attacks on these images. Since there are 10 classes in MNIST,

each selected image is attacked 9 times, targeting all but its true class. For all attacks,

the ratio of the reduced attack-space dimension to the original one (i.e., D′/D) is 25%.

Table 5.1 shows the performance evaluation on MNIST with various values of λini,

the initial value of the regularization coefficient λ in Equation (5.1). We use the

performance of ZOO with λini = 0.1 as a baseline for comparison. For example, with

λini = 0.1 and 10, the mean query counts required by AutoZOOM-AE to attain an

initial success are reduced by 93.21% and 98.57%, respectively. One can also observe

that allowing larger λini generally leads to fewer mean query counts at the price of

slightly increased distortion for the initial attack. The noticeable huge difference in

the required attack query counts between AutoZOOM and ZOO/ZOO+AE validates

the effectiveness of our proposed random full gradient estimator in Equation (5.7),

which dispenses with the coordinate-wise gradient estimation in ZOO but still retains

comparable true positive rates, thereby greatly improving query efficiency.

114

Method λini
Attack success

rate (ASR)
Mean query count

(initial success)

Mean query
count reduction

ratio (initial success)

Mean per-pixel
L2 distortion

(initial success)

True positive
rate (TPR)

Mean query count
with per-pixel L2

distortion ≤ 0.004

0.1 99.44% 35,737.60 0.00% 3.50×10−3 96.76% 47,342.85
ZOO 1 99.44% 16,533.30 53.74% 3.74×10−3 97.09% 31,322.44

10 99.44% 13,324.60 62.72% 4.85×10−3 96.31% 41,302.12
0.1 99.67% 34,093.95 4.60% 3.43×10−3 97.66% 44,079.92

ZOO+AE 1 99.78% 15,065.52 57.84% 3.72×10−3 98.00% 29,213.95
10 99.67% 12,102.20 66.14% 4.66×10−3 97.66% 38,795.98
0.1 99.89% 2,465.95 93.10% 4.51×10−3 96.55% 3,941.88

AutoZOOM-BiLIN 1 99.89% 879.98 97.54% 4.12×10−3 97.89% 2,320.01
10 99.89% 612.34 98.29% 4.67×10−3 97.11% 4,729.12
0.1 100.00% 2,428.24 93.21% 4.54×10−3 96.67% 3,861.30

AutoZOOM-AE 1 100.00% 729.65 97.96% 4.13×10−3 96.89% 1,971.26
10 100.00% 510.38 98.57% 4.67×10−3 97.22% 4,855.01

Table 5.1: Performance evaluation of black-box targeted attacks on MNIST.

5.3.3 Black-box attacks on CIFAR-10

As for CIFAR-10, 50 correctly classified testing images are selected as well. We

then perform targeted attacks on these selected images. Similar to MNIST, there are

10 classes in the CIFAR-10 dataset. Thus, each selected image is attacked 9 times,

targeting other classes other than its true one. For all attacks, we reduce the original

attack-space dimension from 32× 32× 3 to 8× 8× 3 (D′/D = 6.25%).

For CIFAR-10, we report similar query efficiency improvements as displayed in

Table 5.2. In particular, comparing the two query-efficient black-box attack meth-

ods (AutoZOOM-BiLIN and AutoZOOM-AE), we find that AutoZOOM-AE is more

query-efficient than AutoZOOM-BiLIN, but at the cost of an additional AE training

step. AutoZOOM-AE achieves the highest attack success rates (ASRs) and mean

query reduction ratios for different values of λini. In addition, their true positive rates

(TPRs) are similar but AutoZOOM-AE usually takes fewer query counts to reach the

same L2 distortion. We note that when λini = 10, AutoZOOM-AE has a higher TPR

but also needs slightly more mean query counts than AutoZOOM-BiLIN to reach the

same L2 distortion. This suggests that there are some adversarial examples for which

it is difficult for a bilinear resizer to reduce their post-success distortions but which

can be handled by an AE.

115

Method λini
Attack success

rate (ASR)
Mean query count

(initial success)

Mean query
count reduction

ratio (initial success)

Mean per-pixel
L2 distortion

(initial success)

True positive
rate (TPR)

Mean query count
with per-pixel L2

distortion ≤ 0.0015

0.1 97.00% 25,538.43 0.00% 5.42×10−4 100.00% 25,568.33
ZOO 1 97.00% 11,662.80 54.33% 6.37×10−4 100.00% 11,777.18

10 97.00% 10,015.08 60.78% 8.03×10−4 100.00% 10,784.54
0.1 99.33% 19,670.96 22.98% 4.96×10−4 100.00% 20,219.42

ZOO+AE 1 99.00% 5,793.25 77.32% 6.83×10−4 99.89% 5,773.24
10 99.00% 4,892.80 80.84% 8.74×10−4 99.78% 5,378.30
0.1 99.67% 2,049.28 91.98% 1.01×10−3 98.77% 2,112.52

AutoZOOM-BiLIN 1 99.67% 813.01 96.82% 8.25×10−4 99.22% 1,005.92
10 99.33% 623.96 97.56% 9.09×10−4 98.99% 835.27
0.1 100.00% 1,523.91 94.03% 1.20×10−3 99.67% 1,752.45

AutoZOOM-AE 1 100.00% 332.43 98.70% 1.01×10−3 99.56% 345.62
10 100.00% 259.34 98.98% 1.15×10−3 99.67% 990.61

Table 5.2: Performance evaluation of black-box targeted attacks on CIFAR-10.

5.3.4 Black-box attacks on ImageNet

We selected 50 correctly classified images from the ImageNet test set to perform

random targeted attacks and set λini = 10 and the attack dimension reduction ratio

to 1.15%.

As described in Algorithm 5.1, adaptive random gradient estimation is integrated

into AutoZOOM, offering a quick initial success in attack generation followed by a

fine-tuning process to effectively reduce the distortion. This is achieved by adjusting

the gradient estimate averaging parameter q in Equation (5.8) in the post-success

stage. In general, averaging over more random directions (i.e., setting larger q) tends

to better reduce the variance of gradient estimation error, but at the cost of increased

model queries. Figure 5.2 (a) shows the mean distortion against query counts for

various choices of q in the post-success stage. The results suggest that setting some

small q but q > 1 can further decrease the distortion at the converged phase when

compared with the case of q = 1. Moreover, the refinement effect on distortion

empirically saturates at q = 4, implying a marginal gain beyond this value. These

findings also demonstrate that our proposed AutoZOOM indeed strikes a balance

between distortion and query efficiency in black-box attacks.

The results are summarized in Table 5.3. Note that compared to ZOO, AutoZOOM-

AE can significantly reduce the query count required to achieve an initial success by

116

Method
Attack success

rate (ASR)
Mean query count

(initial success)

Mean query
count reduction

ratio (initial success)

Mean per-pixel
L2 distortion

(initial success)

True positive
rate (TPR)

Mean query count
with per-pixel L2

distortion ≤ 0.0002

ZOO 76.00% 2,226,405.04 (2.22M) 0.00% 4.25×10−5 100.00% 2,296,293.73
ZOO+AE 92.00% 1,588,919.65 (1.58M) 28.63% 1.72×10−4 100.00% 1,613,078.27

AutoZOOM-BiLIN 100.00% 14,228.88 99.36% 1.26×10−4 100.00% 15,064.00
AutoZOOM-AE 100.00% 13,525.00 99.39% 1.36×10−4 100.00% 14,914.92

Table 5.3: Performance evaluation of black-box targeted attacks on ImageNet

99.39% (or 99.35% to reach the same L2 distortion), which is a remarkable improve-

ment since this means a reduction of more than 2.2 million model queries given the

fact that the dimension of ImageNet (≈ 270K) is much larger than that of MNIST

and CIFAR-10.

5.3.5 Dimension reduction and query efficiency

In addition to the motivation from the O(
√
D/I) convergence rate in zeroth-

order optimization (Section 5.2.2), as a sanity check, we corroborate the benefit of

attack dimension reduction to query efficiency in black-box attacks by comparing

AutoZOOM (here we use D = AE) with its alternative operating on the original

(non-reduced) dimension (i.e., δ′ = D(δ′) = δ). Tested on all three datasets and

aforementioned settings, Figure 5.2 (b) shows the corresponding mean query count

to initial success and the mean query reduction ratio when λini = 10 in all three

datasets. When compared to the attack results of the original dimension, attack

dimension reduction through AutoZOOM reduces query counts on MNIST by roughly

35-40% and CIFAR-10 and by at least 95% on ImageNet. This result highlights the

importance of dimension reduction for query-efficient black-box attacks. For example,

without dimension reduction, the attack on the original ImageNet dimension cannot

even be successful within the query budget (Q = 200K queries).

117

(a) Post-success distortion refine-
ment

(b) Dimension reduction v.s.
query efficiency

Figure 5.2: (a) After initial success, AutoZOOM (here D = AE) can further de-
crease the distortion by setting q > 1 in (5.8) to trade more query counts for smaller
distortion in the converged stage, which saturates at q = 4. (b) Attack dimension
reduction is crucial to query-efficient black-box attacks. When compared to black-
box attacks on the original dimension, dimension reduction through AutoZOOM-AE
reduces query counts by roughly 35-40% on MNIST and CIFAR-10 and by at least
95% on ImageNet.

5.4 Conclusion

The attack gain in AutoZOOM-AE versus AutoZOOM-BiLIN could sometimes

be marginal, while we also note that there is room for improving AutoZOOM-AE

by exploring different AE models. However, we advocate AutoZOOM-BiLIN as a

practically ideal candidate for query-efficient black-box attacks when testing model

robustness, due to its easy-to-mount nature and its not having any additional training

cost. While learning effective low-dimensional representations of legitimate images is

still a challenging task, black-box attacks using significantly fewer degrees of freedom

(i.e., reduced dimensions), as demonstrated in this paper, are certainly plausible,

leading to new implications for model robustness.

118

CHAPTERS VI

Prediction when Input Signals are Corrupted or

Adversarially Perturbed

Prediction efficacy often relies on the prediction model being insensitive to outlying

training data points. A common practice is to choose the predictive model to be

robust to outliers. How to build such a predictive model has been extensively studied

in different fields. Nevertheless, this practice puts a restriction on users’ choice of

predictive methods. Alternatively, when information about normal data exists, one

can use a selected robust platform to preprocess or to screen new data entries. Users

could then apply their preferred predictive methods to the processed new data. In

this work, we propose a preprocessing method to handle two commonly seen types of

abnormal data. The abnormal data is referred to as “corrupted” if a small portion

of the data is contaminated. This could happen if the data collection process is

defective. Another kind of abnormal data, adversarial data are malicious inputs that

are designed to fool the model, which could be seen when users try to hack the system.

The preprocessing includes two stages. At the first stage, we determine the type

of the query data. If the query data is normal, the predictive model can be applied

to the data directly. On the other hand, if the query data is abnormal (corrupted or

adversarial), corrections would be made at the second stage before applying the pre-

dictive model. Each stage corresponds to a building block. The aberrant data detector

119

is responsible for determining the type of query data. The aberrant data corrector

would conduct data correction if needed. Based on the detection results, the aberrant

data corrector would correct the query data using different strategies. Prediction is

then performed on the preprocessed data using the user-preferred method.

Throughout this work, we use image data as an example to demonstrate the capa-

bility of the proposed preprocessing system. However, the preprocessing framework

is not limited to image data. Following the description of abnormal data, corrupted

images are ones with a small area of distortion. Images can be corrupted for different

reasons. One possible cause is that the light source could be blocked when taking the

picture which causes a shadow. Another possibility is that the images have deterio-

rated because of physical damage such as scratches or stains. The deteriorated area

could be small but could severely downgrade the prediction performance. Adversarial

images are another kind of abnormal data. Studies have shown that machine learning

methods are vulnerable to adversarial perturbations (Dalvi et al., 2004). The success

of deceiving object detectors in the real world (Eykholt et al., 2018; Kurakin et al.,

2017) brings the issue to a new level since the vulnerability may cause irreparable

loss. In Chapter V we discuss an efficient method to generate adversarial examples.

We adopt the proposed method, AutoZOOM, in this chapter to generate adversarial

testing images to evaluate the reliability of the proposed system.

6.1 Robust preprocessing system

The robust preprocessing system consists of two building blocks: the aberrant

data detector and the aberrant data corrector. The aberrant data detector classifies

the query data into three categories: normal, corrupted and adversarial. Based on

the classification results, the aberrant data corrector performs different correction

methods on the query data. No further process is applied if a sample is identified as

normal. If a sample is classified as corrupted, we utilize the inverse regression learned

120

Figure 6.1: The flowchart of constructing the robust preprocessing system at the
training stage.

Figure 6.2: The flowchart of the robust preprocessing system at the testing stage.

under the GLLiM framework for data reconstruction. As for adversarial data, we use

the nearest neighbors in the training dataset as surrogate for prediction.

6.1.1 Aberrant data detector

The aberrant data detector is responsible for classifying the query data into three

categories. The detector is built on principal component analysis (PCA) whitening.

To perform PCA whitening, we first calculate the singular vectors and singular values

121

of the training data. As a new testing data point comes in, we calculate its aberrant

score and compare the score with a pre-defined threshold. If the aberrant score is

greater than threshold, the testing data point is classified as abnormal (corrupted

or adversarial). Otherwise, it is normal data. The mechanism can essentially differ-

entiate normal data from abnormal data. We further extend the approach so that

two kinds of abnormal data, corrupted data and adversarial data, can be identified

separately.

The flowchart for building an aberrant data detector at the training stage is shown

in Figure 6.1. We first center the training data around zero and perform the singular

value decomposition. Denote X train ∈ RN×D as the centered training dataset where

N is the number of the training samples and D is the dimension of the sample. We

decompose the training dataset as X train = UΣV > where U is an N × N unitary

matrix, Σ is an N × D diagonal matrix and V is a D × D unitary matrix. Letting

x̃n ∈ RD be the normalized coefficients of the n-th sample in X train, we have

x̃n,i =
xn · vi
σi

, (6.1)

where vi is the i-th column vector of matrix V and σi is the i-th singular value

following in descending order.

PCA whitening projects a query image onto the principal components extracted

from the training dataset. The projected coefficients are normalized by the singular

values (σi) corresponding to the principal components, which we refer to as the nor-

malized coefficients. These normalized coefficients can be used to detect abnormal

images. As shown in Figure 6.3, the normalized coefficients for a normal image lie

within a small range while those for an abnormal image might not. In particular,

the scale of the high-indexed normalized coefficients for a problematic image could be

large. For a normal image, even after the normalized coefficients are scaled by small

122

singular values, the resulting coefficients are still within a certain range. On the other

hand, we would obtain larger coefficients from the last few principal components when

they correspond to those being distorted or perturbed. These coefficients are those

we observe in Figure 6.3 (b) and (c). Based on the normalized coefficients at high

indexes, we can distinguish normal data from abnormal (corrupted and adversarial)

data.

Calculate the aberrant score

In Hendrycks and Gimpel (2017), the authors calculated the variance of the high-

indexed normalized coefficients as aberrant scores. Hereinafter, we refer to this

method as high index variance (HIV). We denote PNC as the portion of the high

index normalized coefficients used to calculate the variance. As an example, if the

data dimension (D) is 1024 and PNC = 10, we would use the last 103 normalized co-

efficients (the 992-th to the 1024-th) to calculate the variances. We further consider

other approaches to calculating aberrant scores. The rolling variance (RV) method

would calculate the variances using the normalized coefficients in a sliding window.

The length of the sliding window is defined by a parameter Pwindow, which is the

portion of the consecutive normalized coefficients included in the sliding window.

The aberrant score is the maximum value of all of the rolling variances. Finally, the

maximum absolute value (MAV) method treats the normalized coefficients with the

largest absolute values as the aberrant scores.

Determine the classification threshold

In Figure 6.1, we calculate the aberrant score strain for each training sample. The

next step is to determine the threshold for classification. Three methods are pro-

posed. First, we can directly assign (DA) the threshold. The threshold is selected

to reach the best detection results. Under this scenario, both normal and abnormal

123

(a)

(b)

(c)

Figure 6.3: The normalized coefficients across different principal components of dif-
ferent image types in Figure 6.4: (a) normal image, (b) corrupted image and (c)
adversarial image.

124

images are used. In the second approach, we propose to control the false positive

rate, fpr, of wrongly detecting abnormal data. That is, given a false positive rate

fpr, the threshold is set to the 1 − fpr quantile of the aberrant scores obtained

from the normal training data. Our last proposed approach is to locate the so-called

“fence” which is commonly used in the boxplots. We calculate the mean, µscore and

the standard deviation, σscore of the aberrant scores, and the fence is calculated as

µscore +M × σscore, so that the distance between the fence and the mean is M times

standard deviation. We note that the last two approaches do not utilize abnormal en-

tries and can accommodate the scenarios when only normal data are available. These

three methods are referred to as “DA”, “FPR” and “Fence,” respectively.

Differentiate corrupted and adversarial data

By comparing the aberrant score and the pre-determined threshold, we can classify

the testing data as normal or abnormal. To further differentiate corrupted and adver-

sarial samples, we take advantage of the following observations. In Figure 6.3, there

are only few extreme normalized coefficients for adversarial data. On the other hand,

no obvious spike appears on the normalized coefficients of corrupted data. Thus, we

can remove the spikes and re-calculate the aberrant score again. If the classification

result changes, we classify the query data as an adversarial entry, and otherwise as a

corrupted entry.

The flowchart of the aberrant data detector at the testing stage is shown in Figure

6.2. For each testing data, xtest ∈ RD, we first calculate the aberrant score stest using

the results of SVD on the training dataset (V,Σ). The aberrant score is compared

to threshold. If stest < threshold, it is classified as a normal sample. Otherwise, it

is an abnormal sample. We next find its nearest neighbor in the training dataset,

denoted as xNN , and calculate the normalized coefficients of xNN , denoted as x̃NN .

We replace the normalized coefficients of x̃test. Denoting x̃′ as the new normalized

125

coefficient vector after replacement, x̃′ is constructed as follows:

x̃′i =


x̃NNi if |x̃testi | > cutoff,

x̃testi otherwise,

(6.2)

where the subscript i denotes the i-th normalized coefficient of x̃test, x̃NN and x̃′; cutoff

is a pre-defined value to identify spike coefficients. The process described in Equation

(6.2) is referred to as spike-replacement, where we replace the spike coefficients with

normal ones. We then calculate the aberrant score of x̃′ as s′ and compare s′ to

threshold. The testing sample is classified as an adversarial sample if the aberrant

score is less than threshold, and as a corrupted sample otherwise.

6.1.2 Aberrant data corrector

Based on the classification results of the aberrant data detector, the aberrant

data corrector would adopt different mechanisms. For the corrupted data, we would

conduct data reconstruction, which utilizes the inverse regression of GLLiM. Recall

that he inverse conditional density of GLLiM can be written as:

K∑
k=1

p(X = x|Y = y, Z = k; θ)p(Y = y|Z = k; θ)p(Z = k; θ)

By taking the expectation over the inverse conditional density, we can predict the

covariate x for a given y as:

E[X|Y = y] =
K∑
k=1

πkN(y; ck,Γk)∑K
j=1 πjN(y; cj,Γj)

(Akx+ bk). (6.3)

First, a GLLiM model is built on the training dataset. Denote GLLiM -Inv(·)

as the GLLiM inverse function in Equation (6.3). Given a response y ∈ RL, we

can reconstruct the high-dimensional data x through x = GLLiM -Inv(y). The

126

reconstruction of the corrupted data can be formulated as follows. Let

y∗ = arg min
y
Sim(xtest, GLLiM -Inv(y)), (6.4)

where Sim(·, ·) is a function measuring the similarity between the testing data xtest

and the reconstructed data, GLLiM -Inv(y). Note that with xtest being a corrupted

image, we leave out the corrupted pixels when measuring the similarity between the

testing image and the reconstructed one. To achieve this goal, we design the similarity

function using the truncated sum of squared differences. The similarity between two

vectors a, b of dimension D for a given truncated quantile q is defined as follows:

Sim(a, b) =
D′∑
i=1

c′i, (6.5)

where we define c as a vector with its i-th entry ci = (ai − bi)
2 and let c′ be a

permutation of c in ascending order, i.e. c′i is the i-th smallest squared difference

between elements in a and b. We define D′ = bD × qc where b·c denotes the floor

function. The truncated sum of squared differences is the summation over the first

D′ smallest squared differences. We will discuss details about the selection of q and

the reconstruction results in Section 6.2.2. The reconstructed image is denoted as

xrec in Figure 6.2, which can be obtained by xrec = GLliM -Inv(y∗).

The output of the aberrant data corrector depends on the results of the detector.

If the testing data is identified as normal, xtest would be provided directly. The

output would be xrec for a corrupted sample. As for an adversarial example, we

use the nearest neighbor in the training dataset, xNN , as the prediction surrogate

since adversarial examples are close to the normal data manifold. After obtaining the

preprocessed data from the corrector, we can apply the selected predictive method

for prediction.

127

6.2 Numerical results

We use the face dataset for demonstration. The original images in the dataset

are treated as normal data. We first discuss the generation of the corrupted and

adversarial images and then demonstrate the performance of data reconstruction.

We next discuss the detection performances under different combinations of settings.

The prediction performances using three predictive models are presented to illustrate

the efficacies of the proposed method for reducing the prediction errors.

6.2.1 Generation of abnormal images

The abnormal images are used for testing the robustness of the correction methods.

We first separate the face dataset into a training dataset and a testing dataset. The

training dataset contains 598 images and the rest of the 100 images are treated as

testing samples. To generate corrupted images from the normal images, we randomly

select an area. The maximum size of the area is set to be 4× 16 (pixel2). Compared

to the original image size, 32 × 32, at most 1/16 of the image will be corrupted.

Next, we set the pixel within the selected area to be masked (replaced with pixel

values of black color), mimicking the occurrence of damage. Figure 6.4(b) shows an

example of the corrupted testing images. Adversarial images are generated using

AutoZOOM. Using the given GLLiM forward model discussed in Section 6.2.4, we

generate adversarial testing data with the restriction of the normalized perturbation

must be less than 0.001 (i.e. ||ε||2/D < 0.001, see Chapter V for more details). The

adversarial example is shown in Figure 6.4(c). In Figure 6.4(d), we plot the difference

between the normal image and its adversarial counterpart. We can observe that the

difference between the normal and the adversarial image is negligible.

128

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Examples of different kinds of images. (a) The normal image. (b) The
corrupted image. (c) The adversarial image. (d) The difference between the adver-
sarial image and the normal image. (e) The reconstructed image of (b). (f) The
difference between the reconstructed image and the normal image.

6.2.2 Corrupted image reconstruction

In this section we demonstrate the ability of the preprocessing method to recon-

struct the corrupted images. Note that we use a similarity function, Sim(·, ·), to

evaluate the reconstruction of the data. To appropriately reconstruct the image, we

use a truncated sum of squared differences between the reconstructed data and the

testing data. Note that only a small number of the pixels are damaged in a cor-

129

rupted image. We only have to consider the reconstruction performance based on

the normal pixels. To investigate how many pixels should be included when calculat-

ing the distance, we calculate the average squared differences of pixels between the

corrupted image and their nearest neighbors in the training dataset. The differences

are sorted and shown in Figure 6.5. We observe there is an abrupt change around

the 90% quantile. Based on this analysis, we set q = 0.9. That is, we only calculate

the similarity using 90% of the squared differences. The GLLiM inverse function is

obtained with 20 clusters (K = 20) and 9 latent factors (Lw = 9). Figure 6.4 (e)

shows the reconstructed image; the difference between the normal image (Figure 6.4

(a)) and the corrupted image (Figure 6.4(e)) is shown in Figure 6.4(f). Comparing

the reconstructed image to the normal image, we can barely see the difference.

Figure 6.5: The sorted squared differences between corrupted images and their nearest
neighbors in the training dataset.

6.2.3 Detection performance

The proposed data detector is built on a basic detector that can only differentiate

normal and abnormal data. For the basic detector, users need to specify the portion

130

of the normalized coefficients used in the calculation of the aberrant score. We first

perform a tuning parameter selection study on PNC , Pwindow under different settings.

Next, the detection performance of the data detector is presented.

When calculating the aberrant scores using a given method (HIV, RV or MAV),

one needs to specify the portion of the normalized coefficients used in the calculation

(PNV) or the window size to calculate the rolling variance (Pwindow). We conduct a

10-fold cross-validation (CV) study on different combinations of aberrant score cal-

culation and classification threshold determination to select the tuning parameters.

The normal images in the CV training dataset are used to calculate the principal

components and the singular values. Using these principal components and singu-

lar values, we calculate the normalized coefficients and aberrant scores of each CV

testing sample, and compare the aberrant scores to threshold, which is determined

by the specified classification threshold. The quality of the detection performances is

shown by a CV study, in which we consider different combinations of aberrant-score

calculation and classification threshold determination. The procedures are described

below.

Calculate the aberrant score:

1. High index variance (HIV): We calculate the variance of the high index normal-

ized coefficients as the aberrant score. The parameter PNC specifies the portion

of the high index normalized coefficients used for calculation. We study the

detection performance when PNC = 5, 10, 20, 30, 40.

2. Rolling variance (RV): The rolling variance is calculated on the normalized

coefficients with the window size defined by the parameter Pwindow, and the

aberrant score is the maximum value of the rolling variance. We investigate the

detection performance when Pwindow = 5, 10, 20, 30, 40.

3. Maximum absolute value (MAV): The aberrant score is the largest absolute

131

value of the normalized coefficients. No extra tuning parameter is needed when

using this method to calculate the aberrant score.

Determine the classification threshold

1. Directly assign (DA): When this method is adopted, we specify the threshold

directly by setting it to be 10, 20, 30.

2. False positive rate (FPR): By specifying the false positive rate, fpr, we will set

the threshold as the 1−fpr quantile of the training aberrant scores and evaluate

the detection performance on the threshold. We set fpr = 0.05, 0.01, 0.005 for

performance evaluation.

3. Fence: We calculate the mean, µscore, and the standard deviation, σscore, of

the aberrant scores. The fence is defined by a tuning parameter M , which is a

multiplier of the standard deviation, and is calculated as fence = µscore +M ×

σscore. We use the fence as the threshold and conduct studies when M = 2, 3, 4.

When using the DA approach, we use the normal training data and the abnormal

training data together to evaluate the classification accuracy. In each fold of CV,

the aberrant data detector is first built based on normal training images. Next, we

calculate the classification accuracy using the CV normal testing images and their

abnormal counterparts (corrupted and adversarial). To make the number of normal

data and abnormal data the same, we double-weighted the normal data. As an ex-

ample, if there are 60 CV testing data, we use 60 CV normal testing data with weight

fraction 50%, 60 CV corrupted testing data with weight fraction 25% and 60 CV ad-

versarial data with weight fraction 25% to calculate the classification accuracy. Figure

6.6 shows the results for the DA approach. When more normalized coefficients are

included to calculate the variance, i.e. large PNC or large Pwindow, we obtain smaller

variance. Thus, we can obtain better classification accuracy when the threshold is

132

small and PNC (Pwindow) is large. We can obtain similar detection accuracy when

threshold = 10 and threshold = 20 if PNC and Pwindow are set to certain appropriate

values. When threshold = 30, the detection accuracy is slightly lower if we use high-

indexed normalized coefficients to calculate the variance. Comparing the results of

using RV to those obtained from HIV, we can obtain better detection results using

RV. The selected parameters are shown in Table 6.1.

Figure 6.6: The classification accuracies under different settings. The left subplot
shows the results when the aberrant scores are calculated as the variance of the
high index normalized coefficients under different values of PNC and the right subplot
shows the results when the aberrant scores are calculated as the variance of the rolling
variance under different values of Pwindow. The prediction accuracies for the largest
absolute value method are 91.45%, 85.65% and 68.68% when threshold = 10, 20, 30.

For the FPR and Fence approaches, only the normal training images are used to

build the aberrant data detector and to determine threshold. Figures 6.7 and 6.8

show the results when using the FPR and Fence to determine the threshold. We ob-

serve that the lower the fpr is, the higher the threshold we need to set, and thus the

higher the accuracy we would obtain in detecting the normal images. Similarly, for

a larger value of M in the Fence approach, we would set a larger value for the fence,

which results in greater accuracy in classifying the normal images. The classification

133

threshold fpr M

10 20 30 0.05 0.01 0.005 2 3 4

PNC 40 10 10 10 5 20 20 5 10
Pwindow 40 10 5 10 5 10 20 5 40

Table 6.1: The selected values of PNC and Pwindow under different settings.

accuracy is not sensitive to the change in the values of PNC or Pwindow. We selected

the values of PNC and Pwindow by CV, which are shown in Table 6.1.

Figure 6.7: The classification accuracies for different fpr under different settings. The
left subplot shows the results when the aberrant scores are calculated as the variance
of the high index normalized coefficients under different values of PNC and the right
subplot shows the results when the aberrant scores are calculated as the variance of
the rolling variance under different values of Pwindow. The prediction accuracies for
the largest absolute method are 94.47%, 99.51% and 99.67% when the fpr is 0.05,
0.01, 0.005, respectively.

Receiver Operating Characteristic (ROC) curve for the basic detector

To evaluate the overall detection performances, we calculate the Receiver Operating

Characteristic (ROC) curve for different approaches to calculating the aberrant score

(HIV, RV and MAV). The results are shown in Figure 6.9, with the area under curve

134

Figure 6.8: The classification accuracies for different multiplier, M , of the fence under
different settings. The left subplot shows the results when the aberrant scores are
calculated as the variance of the high index normalized coefficients under different
values of PNC and the right subplot shows the results when the aberrant scores are
calculated as the variance of the rolling variance under different values of Pwindow.
The prediction accuracies for the largest absolute method are 95.27%, 98.82% and
99.85% when the multipliers, M , is 2, 3, 4, respectively.

(AUC) equaling 0.9760, 0.9755 and 0.9697 for the three methods, respectively. We

observe that the AUCs for HIV and RV are almost the same. The AUC for MAV is

slightly smaller, but the results are still satisfactory. The ROC curves suggest that

the basic detectors built upon these three methods would all be powerful tools to

distinguish normal images from abnormal images.

Classification results for aberrant data detector

Instead of classifying images into two categories (normal v.s. abnormal), we can

further divide the abnormal images into adversarial v.s. corrupted. The mechanism

is basically the same except that if a query sample is identified as abnormal, we would

perform spike-replacement and classify the data point again. Through this extra step,

we are capable of classifying the testing data into three categories. The testing dataset

135

Figure 6.9: The ROC curve of the aberrant data detector. The area under curve is
0.9760, 0.9755 and 0.9697 for the method HIV, RV and MAV, respectively.

contains 100 normal images, 100 corrupted images and 100 adversarial images. We

adopt the settings in Table 6.1 using different aberrant scores calculations and given

thresholds. Our studies show that the performance is not sensitive to cutoff. Thus,

we set cutoff = 30. We calculate the detection accuracy (Acc.), sensitivity (Sen.)

and specificity (Spec.) for each type of image. The sensitivity and the specificity are

calculated using the so-called “one v.s. other” approach. As an example, the true

positives of the normal images are all normal images that are detected as normal;

the false positives of the normal images are all images that are abnormal (could be

corrupted or adversarial) but are detected as normal. Similar calculations are applied

to the corrupted and adversarial images. The results of the aberrant data detector

adopting different methods are shown in Tables 6.2, 6.3 and 6.4. MAV may not

be suitable to calculate the aberrant score, since it can hardly catch the variability.

The sensitivity to the corrupted images is low when we use small fpr or large M .

Satisfactory detection rates are obtained with suitably chosen tuning parameters.

136

threshold = 10 threshold = 20 threshold = 30
Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec.

HIV
Normal 0.95 0.98 0.94 0.95 0.97 0.94 0.92 0.99 0.89
Corrupted 0.98 0.99 0.97 0.97 0.96 0.97 0.95 0.87 0.99
Adversarial 0.95 0.86 1.00 0.96 0.88 0.99 0.96 0.89 1.00

RV
Normal 0.95 0.98 0.94 0.95 0.97 0.94 0.95 0.99 0.93
Corrupted 0.98 0.99 0.97 0.97 0.96 0.97 0.95 0.87 0.99
Adversarial 0.95 0.86 1.00 0.95 0.88 0.98 0.93 0.89 0.95

MAV
Normal 0.91 0.83 0.95 0.86 0.98 0.80 0.73 0.99 0.60
Corrupted 0.98 0.99 0.97 0.89 0.69 0.99 0.77 0.31 1.00
Adversarial 0.91 0.88 0.93 0.95 0.88 0.99 0.96 0.90 0.99

Table 6.2: The performance of the aberrant data detector when specifying threshold
directly.

fpr = 0.05 fpr = 0.01 fpr = 0.005
Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec.

HIV
Normal 0.90 1.00 0.85 0.82 1.00 0.73 0.83 1.00 0.75
Corrupted 0.94 0.83 1.00 0.86 0.58 1.00 0.87 0.61 1.00
Adversarial 0.96 0.88 1.00 0.96 0.88 0.99 0.95 0.87 0.99

RV
Normal 0.91 1.00 0.86 0.84 1.00 0.77 0.83 1.00 0.75
Corrupted 0.93 0.80 1.00 0.83 0.50 1.00 0.86 0.59 1.00
Adversarial 0.94 0.88 0.97 0.91 0.88 0.93 0.94 0.87 0.98

MAV
Normal 0.89 0.98 0.85 0.81 0.99 0.71 0.80 0.99 0.70
Corrupted 0.91 0.80 0.97 0.82 0.53 0.97 0.84 0.51 1.00
Adversarial 0.94 0.84 0.99 0.94 0.84 0.99 0.96 0.90 0.99

Table 6.3: The performance of the aberrant data detector when specifying threshold
using the FPR approach.

137

M = 2 M = 3 M = 4
Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec.

HIV
Normal 0.91 1.00 0.87 0.82 1.00 0.73 0.83 1.00 0.74
Corrupted 0.95 0.86 1.00 0.86 0.59 1.00 0.86 0.57 1.00
Adversarial 0.96 0.88 1.00 0.96 0.88 1.00 0.93 0.86 0.97

RV
Normal 0.91 1.00 0.87 0.84 1.00 0.77 0.83 1.00 0.74
Corrupted 0.95 0.86 1.00 0.84 0.52 1.00 0.86 0.57 1.00
Adversarial 0.96 0.88 1.00 0.92 0.88 0.94 0.93 0.86 0.97

MAV
Normal 0.87 0.98 0.81 0.80 0.99 0.71 0.76 0.99 0.65
Corrupted 0.91 0.73 1.00 0.83 0.52 0.98 0.76 0.29 1.00
Adversarial 0.96 0.90 0.99 0.95 0.86 0.99 0.93 0.90 0.94

Table 6.4: The performance of the aberrant data detector when specifying threshold
using the Fence approach.

138

6.2.4 Prediction results

Our proposed preprocessing system produces “corrected” images that can be used

by other prediction methods. A testing image is passed through the preprocessing

system before applying the chosen prediction method. Depending on the identified

testing data type, the preprocessing method would apply different mechanisms to the

testing data. One can then apply the selected prediction method(s) to the processed

data. These methods need not be GLLiM. We use the following prediction methods

to investigate the efficacies of the preprocessing system.

1. GLLiM: We use the GLLiM forward model for prediction. The GLLiM model

is trained under K = 20, Lw = 9.

2. FGAM: Considering the predictor X and the scalar response Y , the functional

generalized additive model (McLean et al., 2014) builds the relationship between

X and Y as:

g(E[Y |X]) = β0 +

∫
F (X(t), t)dt, (6.6)

where β0 is the intercept, g is a known link function and F is an unspecified

smooth function to be estimated. In our case, we set g(x) = x and let t be

the index of the image pixel. The function F (·, ·) is estimated through tensor-

product B-splines with roughness penalties. FGAM is built using the R package

refund (Goldsmith et al., 2018). We build the model on each dimension of Y

using 100 knots, which leads to three FGAM models. We use the default values

for the rest of the settings.

3. SAM: Similar to lasso (Tibshirani, 1996), the Sparse additive model (Ravikumar

et al., 2009) introduces the L1 penalty to encourage sparse solutions on the

functional coefficients. For the predictor X and the scalar response Y , SAM

139

aims to find the solution that minimizes

E

Y −
D∑
d=1

βdfd(Xd)


2

(6.7)

subject to

D∑
d=1

|βd| ≤ P (6.8)

E[f 2
d] = 1, (6.9)

where fd is a function to be estimated, β = (β1, ..., βD)> is a vector and P is a

scalar constraint. The constraint of β imposes the sparsity of the estimated β.

The model is trained using the R package SAM (Zhao et al., 2014) under the

default setting. We build a predictive model for each dimension of Y separately.

The prediction mean squared errors (PMSE) of normal, adversarial, corrupted

and reconstructed testing datasets are shown in Table 6.5. The testing datasets con-

tain 100 testing images. The reconstructed testing datasets show the outcomes of

the data reconstruction on the corrupted datasets. Note that the adversarial dataset

is generated against the GLLiM forward model. However, the prediction loss is still

large when the other two predictive methods are used, which implies the transfer-

ability of the adversarial examples (Papernot et al., 2016). The improvements on the

reconstructed datasets demonstrate the benefits of adopting the preprocessing sys-

tem. With the data reconstruction procedure, we can effectively reduce the prediction

errors on the corrupted images.

To evaluate the performances under different combinations of the normal and

abnormal images, we conduct numerical experiments on different testing datasets as

follows:

� Case A: The testing datasets contain 100 normal images and 100 corrupted

140

Normal Adversarial Corrupted Reconstructed

GLLiM 0.0199 0.2625 0.3189 0.0437
FGAM 0.4382 0.5454 2.6465 0.4756
SAM 0.1201 0.3176 0.3899 0.1374

Table 6.5: The PMSE of different types of images using different prediction models.

images.

� Case B: The testing datasets contain 100 normal images and 100 adversarial

images.

� Case C: The testing datasets contain 100 normal images, 100 corrupted images

and 100 adversarial images. The normal images are doubled weighted when

calculating the MSE.

Table 6.6 shows the prediction results with (threshold = 10, fpr = 0.05, M = 2)

and without (Baseline) the preprocessing system. In Table 6.6 we summarize the

results when the aberrant scores are calculated using HIV. For the complete results

using different settings of aberrant scores and classification thresholds, please see Ap-

pendix C. By comparing the PMSE under Baseline, GLLiM shows its superiority

against other methods for modeling high-to-low non-linear associations. For each

prediction method, the preprocessing system effectively reduces the prediction er-

rors, which shows that the proposed system is a general approach to robustly handle

normal and abnormal testing entries. We obtain the best prediction performance

using the DA approach. However, it may be time-consuming to identify a suitable

threshold using this approach since the appropriate value for threshold may vary

from dataset to dataset. On the other hand, using the FPR and Fence methods

is more straightforward. We suggest starting with the FPR or Fence method and

using the resulting threshold as a starting point in the follow-up tuning process.

141

Pred. method Test Case Baseline threshold = 10 fpr = 0.05 M = 2

GLLiM
A 0.1694 0.0312 0.0454 0.0415
B 0.1412 0.0707 0.0743 0.0743
C 0.1553 0.0509 0.0598 0.0579

FGAM
A 0.3899 0.1260 0.1373 0.1331
B 0.2188 0.1559 0.1585 0.1585
C 0.2369 0.1410 0.1479 0.1458

SAM
A 2.6465 0.3893 0.5035 0.4407
B 0.491823 0.4700 0.4686 0.4686
C 1.017092 0.4297 0.4861 0.4547

Table 6.6: The prediction mean squared errors (PMSE) under different experimental
settings. The Baseline column shows the original PMSE. The rest of the columns
present the PMSE using different classification thresholds when the aberrant scores
are calculated using HIV.

6.3 Conclusion

The proposed preprocessing system shows its ability to improve prediction per-

formance. The system contains two building blocks: an aberrant data detector and

an aberrant data corrector. The aberrant data detector classifies the testing data

into three categories: normal, corrupted and adversarial. Depending on the identified

category, the aberrant data corrector applies different correction mechanisms. The

data reconstruction process is devised for corrupted data. Using the inverse regres-

sion learned by GLLiM, we can reconstruct the damaged data effectively. Nearest

neighbors are used to replace adversarial samples. Using three existing predictive

models as examples, we demonstrate the generality of the system and elucidate the

necessity of the system for obtaining reliable prediction outcomes.

142

CHAPTERS VII

Conclusion and Future Work

Predicting with regression models is widely used in many fields such as decision

making, disease diagnosis and marketing, among others. It is therefore of crucial

importance to be able to obtain reliable prediction outcomes. This dissertation fo-

cused on improving prediction efficacy in both the training and the testing stages. In

particular, two robust training methods were devised, which can be accelerated using

the proposed parallelization framework when dealing with large-scale datasets. To

evaluate the model’s robustness, we developed an efficient approach to generating ad-

versarial examples. A preprocessing method was then established, which can handle

different types of abnormal testing inputs. Experimental results on both synthetic

and real-world datasets validated the enhancement of prediction performance in both

the training and the testing stage.

In Chapter II, we analyzed in depth Gaussian Locally Linear Mapping (GLLiM)

and proposed a method to reduce its prediction errors. Specifically, GLLiM adopts

a clustering-based approach to approximate non-linear mappings. However, these

clusters can contain sub-clusters or singletons, which can dramatically downgrade

the prediction performance. We established Hierarchical Gaussian Locally Linear

Mapping (HGLLiM), which follows a two-layer hierarchical clustering structure to

accommodate sub-clusters. A robust estimation procedure was devised to remove

143

outliers, which results in improved model stability. Numerical results demonstrated

that HGLLiM could construct models that are robust against both complex data

structures and outliers.

In Chapter III, we extended HGLLiM with a parallelization framework that can

substantially accelerate HGLLiM’s training process. By separating data into distinct

groups, we can train sub-models in a parallelized fashion. The hierarchical structure

enables straightforward model aggregation. Sub-models can be integrated into the

final model by adding an extra latent variable for data groups. The acceleration

technique for HGLLiM was applied to two real-world applications. For the finger-

print dataset, we can achieve a 75% reduction in computational time compared to

the previous method, while maintaining comparable prediction performance on one

microvascular variable, blood volume fraction. Furthermore, the prediction errors on

apparent diffusion coefficient were much smaller than those produced by the previous

method. Another numerical investigation on the sound dataset demonstrated that

parallelized HGLLiM could reduce around 70% of the training time compared to a

neural-network-based approach with similar prediction performance.

In Chapter IV, we proposed Robust Gaussian Locally Linear Mapping (RGLLiM),

which inherits the advantages of GLLiM for tackling high-dimensionality and non-

linearity. For the concern of model stability, RGLLiM further removes outliers and

limits relative cluster sizes. Experimental results showed the capability of RGLLiM

to provide reliable prediction outcomes.

In Chapter V, we devised the Autoencoder-based Zeroth Order Optimization

Method (AutoZOOM) to efficiently generate adversarial examples under the black-

box setting. The adversarial examples are essential for evaluating model robustness

against malicious inputs. AutoZOOM adopts gradient vector estimation and dimen-

sion reduction techniques to improve the efficiency of the generation process. The

experimental results demonstrated that AutoZOOM can generate adversarial exam-

144

ples toward state-of-the-art deep neural networks successfully and efficiently.

In Chapter VI, we established a preprocessing method to enhance prediction per-

formances by carefully handling testing inputs. Data types are determined by the

aberrant data detector. Based on the detection results, different actions are taken

by the aberrant data corrector. For reconstructing corrupted data, we utilized the

inverse associations obtained from GLLiM and showed its capability of repairing dam-

aged images. As for adversarial samples, nearest neighbors are used as surrogates.

We demonstrated the high detection performance of the aberrant data detector for

distinguishing different types of data. Through the preprocessing method, users have

the flexibility of selecting their preferred predictive methods. Results from three pre-

dictive models illustrated that the proposed preprocessing approach can substantially

improve the prediction performance for abnormal testing data.

There are many interesting directions worth further investigation. At the train-

ing stage, we achieve model robustness by removing outliers. A possible alternative

is to estimate model parameters robustly without removing any training samples.

Perthame et al. (2018) achieved this goal through robust clustering. A similar idea

can be applied when estimating the regression parameters. Local linearity is assumed

to tackle the non-linear issue. To relax this restriction, one can apply kernel methods

when learning the inverse associations within clusters.

Adversarial generation can be further improved by adopting other methods such

as the attention technique to find a more representative latent space. In our settings,

all of the output scores are known to the attackers. The work can be further extended

if a more restrictive setting is considered. For example, we may consider the black-

box setting when the attackers only have knowledge of the top-n prediction class or

even only the decision (top-1) of the model.

The robust system can be extended to a more general scenario in which the train-

ing dataset includes abnormal observations. These abnormal data would provide in-

145

correct information when training the aberrant data detector and should be removed.

We could consider different kinds of abnormal data such as data with different kinds

of additive noise. Building a system that is robust against different kinds of abnormal

data could be an interesting and challenging problem.

146

APPENDICES

147

APPENDIX A

Appendix of Chapter IV

A.1 Details for the E-step

For a given cluster, Z = k, the associations among X, T and W can be expressed

as X = AtkT+AwkW+bk+Ek, where T ∼ N (ctk,Γ
t
k), W ∼ N (cwk ,Γ

w
k), Ek ∼ N (0,Σk).

Under the assumption that T and W are independent, we can write the joint density

as:


T

W

X

 = N




ctk

cwk

Atkc
t
k + Awk c

w
k + bk

 ,


Γtk 0 ΓtkA
t>
k

0 Γwk ΓwkA
w>
k

AtkΓ
t
k Awk Γwk Σk + AtkΓ

t
kA

t>
k + Awk ΓwkA

w>
k




148

Consider

E[p(yn|xn, Zn = k; θ)]

=

ctk
cwk

+

Γtk 0

0 Γwk


At>k
Aw>k

 (Σk + AtkΓ
t
kA

t>
k + Awk Γwk Γw>k)−1

xn − bk − [Atk Awk

]ctk
cwk




=

ctk
cwk

+

 ΓtkA
t>
k

ΓwkA
w>
k

 (Σk + AtkΓ
t
kA

t>
k + Awk Γwk Γw>k)−1(xn − Atkctk − Awk cwk − bk)

=

ctk
cwk

+

 ΓtkA
t>
k

ΓwkA
w>
k

 (Γ∗k)
−1(xn − Atkctk − Awk cwk − bk).

Since T and W are independent, we have

E[p(tn|xn, Zn = k; θ)] = ctk + ΓtkA
t>
k (Γ∗k)

−1(xn − Atkctk − Awk cwk − bk).

Next, we replace Γ∗k with its constraint version to obtain µ̃k.

A.2 Finding truncated eigenvalues

We adopt the key results in Fritz et al. (2013) to find m such that Equation (4.21)

is minimized. Consider e1 ≤ e2 ≤ · · · ≤ e2KD obtained by ordering the following

values:

λ1(S1), ..., λd(Sk), ..., λD(SK), λ1(S1)/C, ..., λd(Sk)/C, ..., λD(SK)/C.

149

Also, consider f1, ..., f2KD+1 such that f1 ≤ e1 ≤ f2 ≤ e2 ≤ · · · ≤ f2KD ≤ e2KD ≤

f2KD+1. For each fi, i = 1, ..., 2KD + 1, the corresponding mi is

mi =

∑K
k=1Nk

(∑D
d=1 λk,dI(λk,d < fi) + 1

C

∑D
d=1 λk,dI(λk,d > Cfi)

)
∑K

k=1Nk

(∑D
d=1 I(λk,d < fi) + I(λk,d > Cfi)

) (A.1)

where I is the indicator function and Nk =
∑N

n=1 rnk. We choose the m that minimizes

Equation (4.21), and the corresponding Σ̃k for all k are positive definite. There is a

chance that no m can result in all valid Σ̃k. If this happens, we estimate a lower bound

for m. The covariance matrix of Y (Γ∗k) is the sum of two terms, AtkΓ
t
kA

t>
k , from T , and

(Awk ΓwkA
w>
k +Σk), variances from latent W and the random errors. To make Σ̃k a valid

covariance matrix, Γ∗k cannot be smaller than AtkΓ
t
kA

t>
k . That is Γ∗k−AtkΓtkAt>k should

be positive definite. We can rewrite Γ∗k − AtkΓ
t
kA

t>
k = Γ∗k

(
ILt − (Γ∗k)

−1AtkΓ
t
kA

t>
k

)
.

Thus, the largest eigenvalue of (Γ∗k)
−1AtkΓ

t
kA

t>
k needs to be less than 1. Denote

λmax(A) as the largest eigenvalue of matrix A. We have λmax((Γ
∗
k)
−1AtkΓ

t
kA

t>
k) < 1.

As given in Equation (4.22), the largest eigenvalue of (Γ∗k)
−1 is 1/m. Thus, we choose

m > λmax(A
t
kΓ

t
kA

t>
k). This is the lower bound of m which makes Σ̃k a valid covariance

matrix. If no suitable m is obtainable, we choose m = maxk=1...K λmax(A
t
kΓ

t
kA

t>
k).

A.3 Simulating clustered data

We generate simulated data with a clustered structure based on the orange juice

dataset. We first identify the “core” members of the clusters and use this information

for the simulation.

Using GLLiM, we conduct a 100-fold cross-validation experiment with GLLiM

(K = 10, Lw = 10) and count the times that two data points are clustered together.

For each experiment, GLLiM is randomly initialized 10 times, and the initial values

with the largest likelihood are used. Figure A.1(a) shows the adjacency matrix of the

150

counts after permutation. We pick selected groups so that some groups are completely

different, such as Group 1 and Group 4, and some overlap, such as Group 2, and Group

3.

Figure A.1: The adjacency matrix of GLLiM clusters after permutation and the
identified sub-groups.

Once we identify the core members of different clusters, we simulate data using

the group information obtained from these data points. Denote data coming from the

cluster k as (tn, yn)Nn=1. The estimated parameters are obtained using the following

procedure.

151

1. Estimate the low-dimensional cluster parameter:

ctk =
1

N

N∑
n=1

tn,

Γtk =
1

N

N∑
n=1

(tn − ctk)(tn − ctk)>.

2. Estimate the regression parameters

Atk = Ȳ T̄>(T̄ T̄>)−1,

bk =
1

N

N∑
n=1

(yn − Atktn),

where

T̄ = [(t1 − t̄), ..., (tN − t̄)],

Ȳ = [(y1 − ȳ), ..., (yN − ȳ)],

t̄ =
1

N

N∑
n=1

tn,

ȳ =
1

N

N∑
n=1

yn.

3. The next step is to estimate Awk and Σk. Defining the residual as unk = (yn −

Atktn − bk), the optimal values for Awk and Σk should minimize the following

criterion as in Deleforge et al. (2015):

Qk(A
w
k ,Σk) = −1

2

N∑
n=1

(
log |Σk + AwkA

w>
k |+ u>nk(Σk + AwkA

w>
k)−1unk

)
.

With the assumption that Σk = σ2
kID, we consider two ways of estimating Awk

and Σk. The first one adopts the key results in PPCA. Let Rk = 1
N

∑N
n=1 unku

>
nk

152

be the covariance matrix of the residuals. We obtain

Awk = Uk(Λk − σ2
kILw)1/2,

σ2
k =

∑D
d=Lw+1 λdk

D − Lw
,

where Uk is the matrix containing the first Lw eigenvectors of Rk and λdk denotes

the eigenvalues of Rk with λ1k > · · · > λDk.

An alternative approach is to estimate the eigenfunctions using Functional Prin-

cipal Component Analysis (FPCA). We use the data in Group 1 for illustration.

Figure A.2 shows the first two eigenvectors of the residual covariance matrix

obtained from the classical eigenvalue decomposition and their FPCA counter-

parts. We use the software provided in Chen and Lei (2015) and set ρ1 = 0.7985,

which is selected through cross-validation, to obtain smooth eigenfunctions. In

addition, we choose Lw = 8 to capture the dependence between covariates.

4. To simulate data for a chosen group, we first generate the observed t′n from

the distribution N (ctk,Γ
t
k) and the latent w′n from N (0, ILw). We let the low-

dimensional data be x′n = [t′n;w′n]; the corresponding high-dimensional y′n is

generated from distribution N (Akx
′
n + bk,Σk). Figure A.3 shows the data sim-

ulated from Groups 1–4.

153

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04
PC1

Classical eigenvector
FPCA eigenvector

0 20 40 60 80 100 120 140
-0.02

-0.01

0

0.01
PC2

Classical eigenvector
FPCA eigenvector

Figure A.2: The first two principal components and their counterparts obtained from
LFPCA.

(a)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

Group 1 Group 2 Group 4

0 10 20 30 40 50 60
-2

-1

0

1

2

(b)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

Group 1 Group 2 Group 3

0 5 10 15 20 25 30
-1

0

1

2

Figure A.3: The simulated orange juice data with (a) distinct clusters and (b) over-
lapped clusters.

154

APPENDIX B

Appendix of Chapter V

B.1 Proof of Theorem 5.1

Recall that the data dimension is D and we assume f to be differentiable and its

gradient ∇f to be L-Lipschitz. Fixing β, consider a smoothed version of f :

fβ(x) =Eu[f(x+ βu)]. (B.1)

Based on Gao et al. (2014), Lemma 4.1-a, we have the relation

∇fβ(x) = Eu
[
D

β
f(x+ βu)u

]
=
D

b
Eu [g] , (B.2)

which then yields

Eu [g] =
b

D
∇fβ(x), (B.3)

155

where we recall that g has been defined in Equation (5.7). Moreover, based on Gao

et al. (2014), Lemma 4.1-a, we have

‖∇fβ(x)−∇f(x)‖2 ≤
βDL

2
. (B.4)

Substituting (B.3) into (B.4), we obtain

‖E[g]− b

D
∇f(x)‖2 ≤

βbL

2
.

This then implies that

E[g] =
b

D
∇f(x) + ε, (B.5)

where ‖ε‖2 ≤ bβL
2
.

Once again, by applying Gao et al. (2014), Lemma 4.1-b, we can easily obtain

that

Eu[‖g‖22] ≤
b2L2β2

2
+

2b2

D
‖∇f(x)‖22. (B.6)

Now, let us consider the averaged random gradient estimator in Equation (5.8),

g =
1

q

q∑
i=1

gi =
b

q

q∑
i=1

f(x+ βui)− f(x)

β
ui.

Due to the properties of i.i.d. samples {ui} and (B.5), we define

v =: E[gi] =
b

D
∇f(x) + ε. (B.7)

156

Moreover, we have

E[‖g‖22] =E


∥∥∥∥∥∥1

q

q∑
i=1

(gi − v) + v

∥∥∥∥∥∥
2

2

 (B.8)

=‖v‖22 + E


∥∥∥∥∥∥1

q

q∑
i=1

(gi − v)

∥∥∥∥∥∥
2

2


=‖v‖22 +

1

q
E[‖g1 − v‖22] (B.9)

=‖v‖22 +
1

q
E[‖g1‖22]−

1

q
‖v‖22, (B.10)

where we have used the fact that E[gi] = E[g1] = v ∀ i. The definition of v in (B.7)

yields

‖v‖22 ≤2
b2

D2
‖∇f(x)‖22 + 2‖ε‖22

≤2
b2

D2
‖∇f(x)‖22 +

1

2
b2β2L2. (B.11)

From (B.6), we also obtain that for any i,

E[‖gi‖22] ≤
b2L2β2

2
+

2b2

D
‖∇f(x)‖22. (B.12)

Substituting (B.11) and (B.12) into (B.10), we obtain

E[‖g‖22] ≤‖v‖22 +
1

q
E[‖g1‖22] (B.13)

≤2(
b2

D2
+

b2

Dq
)‖∇f(x)‖22 +

q + 1

2q
b2L2β2. (B.14)

157

Finally, we bound the mean squared estimation error as

E[‖g −∇f(x)‖22] ≤ 2E[‖g − v‖22] + 2‖v −∇f(x)‖22

≤ 2E[‖g‖22] + 2‖ b
D
∇f(x) + ε−∇f(x)‖22

≤ 4(
b2

D2
+

b2

Dq
+

(b−D)2

D2
)‖∇f(x)‖22

+
2q + 1

q
b2L2β2, (B.15)

which completes the proof.

B.2 Architectures of convolutional autoencoder (CAE)

Dataset: MNIST Training MSE: 2.00×10−3

Reduction ratio / image size / feature map size: 25% / 28×28×1 / 14×14×1
Encoder: ConvReLU-16 → ConvReLU-16 → MaxPool → Conv-1
Decoder: ConvReLU-16 → Reshape-Re-U → ConvReLU-16 → Conv-1

Dataset: CIFAR-10 Training MSE: 5.00×10−3

Reduction ratio / image size / feature map size: 6.25% / 32×32×3 / 8×8×3
Encoder: ConvReLU-16 → ConvReLU-16 → MaxPool → ConvReLU-3 → MaxPool → Conv-3
Decoder: ConvReLU-16 → Reshape-Re-U → ConvReLU-16 → Reshape-Re-U → ConvReLU-16 → Conv-3

Dataset: ImageNet Training MSE: 1.02×10−2

Reduction ratio / image size / feature map size: 1.15% / 299×299×3 / 32×32×3

Encoder:
Reshape-Bi-D → ConvReLU-16→ ConvReLU-16→ MaxPool → ConvReLU-3 →
MaxPool → ConvReLU-3 → MaxPool → Conv-3

Decoder:
ConvReLU-16 → Reshape-Re-U → ConvReLU-16 → Reshape-Re-U → ConvReLU-16 →
Reshape-Re-U → ConvReLU-16 → Reshape-Bi-U → Conv-3

ConvReLU-16: Convolution (16 filters, kernel size: 3×3×Dep) + ReLU activation
ConvReLU-3: Convolution (3 filters, kernel size: 3×3×Dep) + ReLU activation
Conv-3: Convolution (3 filters, kernel size: 3×3×Dep) Conv-1: Convolution (1 filter, kernel size: 3×3×Dep)
Reshape-Bi-D: Bilinear reshaping from 299×299×3 to 128×128×3
Reshape-Bi-U: Bilinear reshaping from 128×128×16 to 299×299×16
Reshape-Re-U: Reshaping by replicating pixels from U × V×Dep to 2U × 2V×Dep
Dep: a proper depth

Table B.1: Architectures of Autoencoders in AutoZOOM

158

APPENDIX C

Appendix of Chapter VI

C.1 Prediction performance under different settings

GLLiM

The PMSE when no preprocessing method is adopted for Cases A, B and C are

0.1694, 0.1412 and 0.1553 respectively.

threshold = 10 threshold = 20 threshold = 30

HIV
Case A 0.031202 0.034754 0.041909
Case B 0.070776 0.072501 0.072036
Case C 0.050989 0.053628 0.056972

RV
Case A 0.031202 0.032552 0.037105
Case B 0.070776 0.072501 0.072036
Case C 0.050989 0.052526 0.054570

MAV
Case A 0.037509 0.050431 0.087487
Case B 0.076682 0.075590 0.075001
Case C 0.057095 0.063011 0.081244

Table C.1: The prediction performance of different testing cases when setting the
classification threshold directly. The GLLiM forward model is used for conducting
prediction.

159

fpr = 0.05 fpr = 0.01 fpr = 0.005

HIV
Case A 0.045412 0.057492 0.061520
Case B 0.074334 0.074334 0.074724
Case C 0.059873 0.065913 0.068122

RV
Case A 0.046637 0.056961 0.061326
Case B 0.074334 0.074334 0.074724
Case C 0.060486 0.065648 0.068025

MAV
Case A 0.043972 0.068211 0.070342
Case B 0.073700 0.072877 0.075001
Case C 0.058836 0.070544 0.072672

Table C.2: The prediction performance of different testing cases when setting the
classification threshold using the FPR method. The GLLiM forward model is used
for conducting prediction.

M = 2 M = 3 M = 4

HIV
Case A 0.041562 0.057526 0.059520
Case B 0.074334 0.074334 0.076563
Case C 0.057948 0.065930 0.068042

RV
Case A 0.041562 0.056070 0.059520
Case B 0.074334 0.074334 0.076563
Case C 0.057948 0.065202 0.068042

MAV
Case A 0.047114 0.070053 0.080792
Case B 0.075850 0.073919 0.075001
Case C 0.061482 0.071986 0.077896

Table C.3: The prediction performance of different testing cases when setting the
classification threshold using the Fence approach. The GLLiM forward model is used
for conducting prediction.

160

FGAM

The PMSE when no preprocessing method is adopted for Cases A, B and C are

2.646522, 0.491823 and 1.017092, respectively.

threshold = 10 threshold = 20 threshold = 30

HIV
Case A 0.389335 0.394444 0.522734
Case B 0.470091 0.461146 0.473503
Case C 0.429713 0.427795 0.498119

RV
Case A 0.389335 0.387740 0.407265
Case B 0.470091 0.461146 0.473503
Case C 0.429713 0.424443 0.440384

MAV
Case A 0.381832 0.640236 1.090812
Case B 0.459141 0.458783 0.459365
Case C 0.420487 0.549509 0.775089

Table C.4: The prediction performance of different testing cases using FGAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined directly.

fpr = 0.05 fpr = 0.01 fpr = 0.005

HIV
Case A 0.503558 0.787858 0.659772
Case B 0.468684 0.468684 0.469046
Case C 0.486121 0.628271 0.564409

RV
Case A 0.457181 0.659355 0.660893
Case B 0.468684 0.468684 0.469046
Case C 0.462932 0.564020 0.564969

MAV
Case A 0.536491 0.848910 0.891867
Case B 0.457288 0.454621 0.459365
Case C 0.496889 0.651765 0.675616

Table C.5: The prediction performance of different testing cases using FGAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined using the FPR approach.

161

M = 2 M = 3 M = 4

HIV
Case A 0.440729 0.788169 0.647107
Case B 0.468684 0.468684 0.471123
Case C 0.454707 0.628427 0.559115

RV
Case A 0.440729 0.659014 0.647107
Case B 0.468684 0.468684 0.471123
Case C 0.454707 0.563849 0.559115

MAV
Case A 0.578610 0.857802 0.978572
Case B 0.459592 0.456740 0.459365
Case C 0.519101 0.657271 0.718969

Table C.6: The prediction performance of different testing cases using FGAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined using the Fence method.

162

SAM

The PMSE when no preprocessing method is adopted for Cases A, B and C are

0.3899, 0.2188 and 0.2369, respectively.

threshold = 10 threshold = 20 threshold = 30

HIV
Case A 0.126032 0.131357 0.137214
Case B 0.155991 0.155740 0.158995
Case C 0.141011 0.143549 0.148105

RV
Case A 0.126032 0.131845 0.134953
Case B 0.155991 0.155740 0.158995
Case C 0.141011 0.143792 0.146974

MV
Case A 0.130786 0.158603 0.223830
Case B 0.158590 0.155227 0.156772
Case C 0.144688 0.156915 0.190301

Table C.7: The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined directly.

fpr = 0.05 fpr = 0.01 fpr = 0.005

HIV
Case A 0.137384 0.177890 0.169134
Case B 0.158538 0.158538 0.158631
Case C 0.147961 0.168214 0.163882

RV
Case A 0.134064 0.171268 0.169590
Case B 0.158538 0.158538 0.158631
Case C 0.146301 0.164903 0.164111

MAV
Case A 0.141921 0.187817 0.194067
Case B 0.155791 0.156024 0.156772
Case C 0.148856 0.171921 0.175419

Table C.8: The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined using the FPR approach.

163

M = 2 M = 3 M = 4

HIV
Case A 0.133141 0.178180 0.168970
Case B 0.158538 0.158538 0.158750
Case C 0.145840 0.168359 0.163860

RV
Case A 0.133141 0.168909 0.168970
Case B 0.158538 0.158538 0.158750
Case C 0.145840 0.163724 0.163860

MAV
Case A 0.152351 0.192249 0.217285
Case B 0.157003 0.156512 0.156772
Case C 0.154677 0.174380 0.187028

Table C.9: The prediction performance of different testing cases using SAM when
the preprocessing system is applied. The classification threshold of the preprocessing
system is determined using the Fence method.

164

BIBLIOGRAPHY

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., and Zheng, X. (2016). Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 265–283.

Allen, J. (1982). Applications of the short time fourier transform to speech processing
and spectral analysis. In International Conference on Acoustics, Speech, and Signal
Processing, Volume 7, pp. 1012–1015. IEEE.

Archambeau, C. and Verleysen, M. (2007). Robust Bayesian clustering. Neural Net-
works 20 (1), 129–138.

Baek, J., McLachlan, G. J., and Flack, L. K. (2010). Mixtures of Factor Analyzers
with Common Factor Loadings: Applications to the Clustering and Visualization
of High-Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32 (7), 1298–1309.

Bai, X., Yao, W., and Boyer, J. E. (2012). Robust fitting of mixture regression models.
Computational Statistics & Data Analysis 56 (7), 2347–2359.

Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian
clustering. Biometrics 49, 803–821.

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). Patch-
Match: a randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics 28 (3), 24.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and
West, M. (2003). Bayesian factor regression models in the large p, small n paradigm.
Bayesian Statistics 7, 733–742.

Bhagoji, A. N., Cullina, D., and Mittal, P. (2017). Dimensionality reduction as a
defense against evasion attacks on machine learning classifiers. arXiv preprint .

165

Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., and
Chanussot, J. (2012). Hyperspectral unmixing overview: Geometrical, statistical,
and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 5 (2), 354–379.

Bouveyron, C., Girard, S., and Schmid, C. (2007). High-dimensional data clustering.
Computational Statistics & Data Analysis 52 (1), 502–519.

Brown, M., Lewis, H. G., and Gunn, S. R. (2000). Linear spectral mixture models
and support vector machines for remote sensing. IEEE Transactions on Geoscience
and Remote Sensing 38 (5), 2346–2360.

Brückner, M., Kanzow, C., and Scheffer, T. (2012). Static prediction games for
adversarial learning problems. Journal of Machine Learning Research 13 (Sep),
2617–2654.

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy, pp. 39–57. IEEE.

Chamroukhi, F. (2016). Robust mixture of experts modeling using the t distribution.
Neural Networks 79, 20–36.

Chang, W.-C. (1983). On using principal components before separating a mixture
of two multivariate normal distributions. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 32, 267–275.

Chen, J. and Tan, X. (2009). Inference for multivariate normal mixtures. Journal of
Multivariate Analysis 100 (7), 1367–1383.

Chen, K. and Lei, J. (2015). Localized functional principal component analysis.
Journal of the American Statistical Association 110 (511), 1266–1275.

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J., and Hsieh, C.-J. (2018). EAD: elastic-net
attacks to deep neural networks via adversarial examples. In AAAI conference on
Artificial Intelligence.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. (2017). ZOO: Zeroth
order optimization based black-box attacks to deep neural networks without train-
ing substitute models. In ACM Workshop on Artificial Intelligence and Security,
pp. 15–26. ACM.

Ciuperca, G., Ridolfi, A., and Idier, J. (2003). Penalized Maximum Likelihood Esti-
mator for Normal Mixtures. Scandinavian Journal of Statistics 30, 45–59.

Cook, R. D. (1977). Detection of Influential Observation in Linear Regression. Tech-
nometrics 19 (1), 15–18.

Cuesta-Albertos, J., Gordaliza, A., Matrán, C., et al. (1997). Trimmed k-means: An
attempt to robustify quantizers. The Annals of Statistics 25 (2), 553–576.

166

Cuesta-Albertos, J. A., Matrán, C., and Mayo-Iscar, A. (2008). Trimming and like-
lihood: Robust location and dispersion estimation in the elliptical model. The
Annals of Statistics 36, 2284–2318.

Dalvi, N., Domingos, P., Sanghai, S., Verma, D., et al. (2004). Adversarial classifi-
cation. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 99–108. ACM.

Day, N. E. (1969). Estimating the components of a mixture of normal distributions.
Biometrika 56 (3), 463–474.

De Veaux, R. D. (1989). Mixtures of linear regressions. Computational Statistics &
Data Analysis 8 (3), 227–245.

Deleforge, A., Forbes, F., Ba, S., and Horaud, R. (2015). Hyper-spectral image
analysis with partially latent regression and spatial markov dependencies. IEEE
Journal of Selected Topics in Signal Processing 9 (6), 1037–1048.

Deleforge, A., Forbes, F., and Horaud, R. (2015). High-dimensional regression with
Gaussian mixtures and partially-latent response variables. Statistics and Comput-
ing 25 (5), 893–911.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39 (1), 1–22.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono, A. (2015). Optimal
rates for zero-order convex optimization: The power of two function evaluations.
IEEE Transactions on Information Theory 61 (5), 2788–2806.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant represen-
tations over learned dictionaries. IEEE Transactions on Image processing 15 (12),
3736–3745.

Elisseeff, A. and Weston, J. (2002). A kernel method for multi-labelled classification.
In Neural Information Processing Systems, pp. 681–687.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A.,
Kohno, T., and Song, D. (2018). Robust physical-world attacks on deep learn-
ing visual classification. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625–1634.

Fawcett, T. (2003). In vivo spam filtering: a challenge problem for kdd. ACM
SIGKDD Explorations Newsletter 5 (2), 140–148.

Fawcett, T. and Provost, F. (1997). Adaptive fraud detection. Data Mining and
Knowledge Discovery 1 (3), 291–316.

167

Fitzgerald, D. (2011). Upmixing from mono-A source separation approach. In Inter-
national Conference on Digital Signal Processing, pp. 1–7. IEEE.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis,
and density estimation. Journal of the American Statistical Association 97 (458),
611–631.

Fraley, C. and Raftery, A. E. (2007). Bayesian regularization for normal mixture
estimation and model-based clustering. Journal of Classification 24 (2), 155–181.

Fritz, H., Garćıa-Escudero, L. A., and Mayo-Iscar, A. (2013). A fast algorithm for
robust constrained clustering. Computational Statistics & Data Analysis 61, 124–
136.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models.
Springer Science & Business Media.

Gallegos, M. T. and Ritter, G. (2005). A robust method for cluster analysis. The
Annals of Statistics 33, 347–380.

Gao, X., Jiang, B., and Zhang, S. (2014). On the information-adaptive variants of
the admm: an iteration complexity perspective. Optimization Online 12, 327–363.

Garćıa-Escudero, L. A. and Gordaliza, A. (2007). The importance of the scales in
heterogeneous robust clustering. Computational Statistics & Data Analysis 51 (9),
4403–4412.

Garćıa-Escudero, L. A., Gordaliza, A., Greselin, F., Ingrassia, S., and Mayo-Iscar, A.
(2017). Robust estimation of mixtures of regressions with random covariates, via
trimming and constraints. Statistics and Computing 27 (2), 377–402.

Garćıa-Escudero, L. A., Gordaliza, A., Matrán, C., and Mayo-Iscar, A. (2008). A
general trimming approach to robust cluster analysis. The Annals of Statistics 36,
1324–1345.

Gershenfeld, N. (1997). Nonlinear inference and cluster-weighted modeling. The
Annals of the New York Academy of Sciences 808 (1), 18–24.

Ghadimi, S. and Lan, G. (2013). Stochastic first-and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Optimization 23 (4), 2341–2368.

Goldfeld, S. M. and Quandt, R. E. (1973). A Markov model for switching regressions.
Journal of Econometrics 1 (1), 3–15.

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean,
M. W., Swihart, B., Xiao, L., Crainiceanu, C., and Reiss, P. T. (2018). refund:
Regression with Functional Data. R package version 0.1-17.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015a). Explaining and harnessing
adversarial examples. In International Conference on Learning Representations.

168

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015b). Explaining and harnessing
adversarial examples. In International Conference on Learning Representations.

Grais, E. M. and Erdoğan, H. (2012). Hidden markov models as priors for regularized
nonnegative matrix factorization in single-channel source separation. In Annual
Conference of the International Speech Communication Association. ISCA.

Grais, E. M. and Plumbley, M. D. (2017). Single channel audio source separation
using convolutional denoising autoencoders. In IEEE Global Conference on Signal
and Information Processing, pp. 1265–1269. IEEE.

Grais, E. M., Roma, G., Simpson, A. J., and Plumbley, M. D. (2016). Single-channel
audio source separation using deep neural network ensembles. In Audio Engineering
Society Convention 140. Audio Engineering Society.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A
kernel two-sample test. Journal of Machine Learning Research 13 (Mar), 723–773.

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P.
(2017). On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280 .

Hadi, A. S. and Luceño, A. (1997). Maximum trimmed likelihood estimators: a uni-
fied approach, examples, and algorithms. Computational Statistics & Data Analy-
sis 25 (3), 251–272.

Han, L., Zhang, D., Huang, D., Chang, X., Ren, J., Luo, S., and Han, J. (2017).
Self-paced mixture of regressions. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1816–1822. AAAI Press.

Hathaway, R. J. (1985). A Constrained Formulation of Maximum-Likelihood Esti-
mation for Normal Mixture Distributions. The Annals of Statistics 13, 795–800.

Hendrycks, D. and Gimpel, K. (2017). Early methods for detecting adversarial images.
In International Conference on Learning Representations (Workshop Track).

Hennig, C. (2000). Identifiablity of models for clusterwise linear regression. Journal
of Classification 17 (2), 273–296.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks 2 (5), 359–366.

Hsu, C.-L. and Jang, J.-S. R. (2010). On the improvement of singing voice separation
for monaural recordings using the mir-1k dataset. IEEE Transactions on Audio,
Speech, and Language Processing 18 (2), 310–319.

Huang, D., Han, L., and De la Torre, F. (2017). Soft-margin mixture of regressions.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 4058–4066.
IEEE.

169

Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. (2011). Adver-
sarial machine learning. In ACM Workshop on Security and Artificial Intelligence,
pp. 43–58. ACM.

Huang, P.-S., Chen, S. D., Smaragdis, P., and Hasegawa-Johnson, M. (2012). Singing-
voice separation from monaural recordings using robust principal component anal-
ysis. In IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 57–60. IEEE.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2014). Singing-
voice separation from monaural recordings using deep recurrent neural networks.
In International Society for Music Information Retrieval, pp. 477–482.

Huang, P.-S., Kim, M., Hasegawa-Johnson, M., and Smaragdis, P. (2015). Joint
optimization of masks and deep recurrent neural networks for monaural source
separation. IEEE/ACM Transactions on Audio, Speech, and Language Process-
ing 23 (12), 2136–2147.

Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Globally and locally consistent
image completion. ACM Transactions on Graphics 36 (4), 107.

Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal
of the Royal Statistical Society: Series C (Applied Statistics) 31 (3), 300–303.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representations.

Kotz, S. and Nadarajah, S. (2004). Multivariate t-distributions and their applications.
Cambridge University Press.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

Kurakin, A., Goodfellow, I., and Bengio, S. (2017). Adversarial machine learning at
scale. In International Conference on Learning Representations.

Lawrence, N. (2005). Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. Journal of Machine Learning Research 6 (Nov),
1783–1816.

Lax, P. D. and Terrell, M. S. (2014). Calculus with applications. Springer.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521 (7553),
436.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86 (11), 2278–2324.

170

Lemasson, B., Pannetier, N., Coquery, N., Boisserand, L. S., Collomb, N., Schuff, N.,
Moseley, M., Zaharchuk, G., Barbier, E., and Christen, T. (2016). MR vascular
fingerprinting in stroke and brain tumors models. Scientific reports 6, 37071.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association 86 (414), 316–327.

Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B. (2018).
Image inpainting for irregular holes using partial convolutions. In Proceedings of
the European Conference on Computer Vision, pp. 85–100.

Liu, S., Chen, J., Chen, P.-Y., and Hero, A. O. (2018). Zeroth-order online alter-
nating direction method of multipliers: Convergence analysis and applications. In
International Conference on Artificial Intelligence and Statistics, Volume 84, pp.
288–297.

Liutkus, A., Stöter, F.-R., Rafii, Z., Kitamura, D., Rivet, B., Ito, N., Ono, N.,
and Fontecave, J. (2017). The 2016 signal separation evaluation campaign. In
P. Tichavský, M. Babaie-Zadeh, O. J. Michel, and N. Thirion-Moreau (Eds.),
Latent Variable Analysis and Signal Separation - 12th International Conference,
LVA/ICA 2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings, Cham,
pp. 323–332. Springer International Publishing.

Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., and Griswold,
M. A. (2013). Magnetic resonance fingerprinting. Nature 495 (7440), 187.

Maas, A. L., Le, Q. V., O’Neil, T. M., Vinyals, O., Nguyen, P., and Ng, A. Y. (2012).
Recurrent neural networks for noise reduction in robust asr. In Annual Conference
of the International Speech Communication Association.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards
deep learning models resistant to adversarial attacks. In International Conference
on Learning Representations.

Mahoney, M. V. and Chan, P. K. (2002). Learning nonstationary models of nor-
mal network traffic for detecting novel attacks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 376–385. ACM.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning
for sparse coding. In International Conference on Machine Learning, pp. 689–696.
ACM.

Markatou, M. (2000). Mixture models, robustness, and the weighted likelihood
methodology. Biometrics 56 (2), 483–486.

McLachlan, G. and Peel, D. (2000). Mixtures of factor analyzers. In In Proceedings
of the Seventeenth International Conference on Machine Learning. Citeseer.

McLachlan, G. and Peel, D. (2004). Finite mixture models. John Wiley & Sons.

171

McLachlan, G. J., Peel, D., and Bean, R. (2003). Modelling high-dimensional data by
mixtures of factor analyzers. Computational Statistics & Data Analysis 41 (3-4),
379–388.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014).
Functional generalized additive models. Journal of Computational and Graphical
Statistics 23 (1), 249–269.

Müller, C. H. and Neykov, N. (2003). Breakdown points of trimmed likelihood esti-
mators and related estimators in generalized linear models. Journal of Statistical
Planning and Inference 116 (2), 503–519.

Narayanan, A. and Wang, D. (2013). Ideal ratio mask estimation using deep neu-
ral networks for robust speech recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 7092–7096. IEEE.

Nesterov, Y. and Spokoiny, V. (2017). Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics 17 (2), 527–566.

Neykov, N., Filzmoser, P., Dimova, R., and Neytchev, P. (2007). Robust fitting of
mixtures using the trimmed likelihood estimator. Computational Statistics & Data
Analysis 52 (1), 299–308.

Nitin Bhagoji, A., He, W., Li, B., and Song, D. (2018). Practical black-box attacks
on deep neural networks using efficient query mechanisms. In Proceedings of the
European Conference on Computer Vision, pp. 154–169.

Papernot, N., McDaniel, P., and Goodfellow, I. (2016). Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:1605.07277 .

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
(2017). Practical black-box attacks against machine learning. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, pp.
506–519. ACM.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Con-
text encoders: Feature learning by inpainting. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2536–2544.

Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling using the t distri-
bution. Statistics and Computing 10 (4), 339–348.

Perthame, E., Forbes, F., and Deleforge, A. (2018). Inverse regression approach to
robust nonlinear high-to-low dimensional mapping. Journal of Multivariate Anal-
ysis 163, 1–14.

Perthame, E., Forbes, F., Deleforge, A., Devijver, E., and Gallopin, M. (2017). xLLiM:
High Dimensional Locally-Linear Mapping. R package version 2.1.

172

Qiao, Y. and Minematsu, N. (2009). Mixture of probabilistic linear regressions: A
unified view of gmm-based mapping techiques. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 3913–3916. IEEE.

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 66 (336), 846–850.

Ravikumar, P., Lafferty, J., Liu, H., and Wasserman, L. (2009). Sparse additive
models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 71 (5), 1009–1030.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 779–788.

Ridolfi, A. and Idier, J. (2001). Penalized maximum likelihood estimation for uni-
variate normal mixture distributions. In AIP Conference Proceedings, Volume 568,
pp. 229–237. AIP.

Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of the Amer-
ican Statistical Association 79 (388), 871–880.

Roy, A., Singha, J., Devi, S. S., and Laskar, R. H. (2016). Impulse noise removal using
svm classification based fuzzy filter from gray scale images. Signal Processing 128,
262–273.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Computer Vision 115 (3), 211–252.

Schmidt, M. N. and Olsson, R. K. (2006). Single-channel speech separation using
sparse non-negative matrix factorization. In International Conference on Spoken
Language Processing.

Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2017). mclust 5: clustering,
classification and density estimation using Gaussian finite mixture models. The R
Journal 8 (1), 205–233.

Simpson, A. J., Roma, G., and Plumbley, M. D. (2015). Deep karaoke: Extract-
ing vocals from musical mixtures using a convolutional deep neural network. In
International Conference on Latent Variable Analysis and Signal Separation, pp.
429–436. Springer.

Snoussi, H. and Mohammad-Djafari, A. (2002). Penalized maximum likelihood for
multivariate Gaussian mixture. In AIP Conference proceedings, Volume 617, pp.
36–46. AIP.

173

Song, D., Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Tramer,
F., Prakash, A., and Kohno, T. (2018). Physical adversarial examples for object
detectors. In {USENIX} Workshop on Offensive Technologies.

Song, W., Yao, W., and Xing, Y. (2014). Robust mixture regression model fitting by
laplace distribution. Computational Statistics & Data Analysis 71, 128–137.

Sprechmann, P., Bronstein, A. M., and Sapiro, G. (2012). Real-time online singing
voice separation from monaural recordings using robust low-rank modeling. In
International Society for Music Information Retrieval, pp. 67–72.

Städler, N., Bühlmann, P., and Van De Geer, S. (2010). `1-penalization for mixture
regression models. TEST 19 (2), 209–256.

Stylianou, Y., Cappé, O., and Moulines, E. (1998). Continuous probabilistic transform
for voice conversion. IEEE Transactions on Speech and Audio Processing 6 (2),
131–142.

Subedi, S., Punzo, A., Ingrassia, S., and McNicholas, P. D. (2013). Clustering and
classification via cluster-weighted factor analyzers. Advances in Data Analysis and
Classification 7 (1), 5–40.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In CVPR, pp. 2818–2826.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 .

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science 290 (5500), 2319–2323.

Thayananthan, A., Navaratnam, R., Stenger, B., Torr, P. H., and Cipolla, R. (2006).
Multivariate relevance vector machines for tracking. In European Conference on
Computer Vision, pp. 124–138. Springer.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological) 58 (1), 267–288.

Toda, T., Black, A. W., and Tokuda, K. (2008). Statistical mapping between articu-
latory movements and acoustic spectrum using a gaussian mixture model. Speech
Communication 50 (3), 215–227.

Tramèr, F., Dupré, P., Rusak, G., Pellegrino, G., and Boneh, D. (2018). Ad-versarial:
Defeating perceptual ad-blocking. arXiv preprint arXiv:1811.03194 .

Turkmen, A. and Billor, N. (2013). Partial least squares classification for high dimen-
sional data using the pcout algorithm. Computational Statistics 28 (2), 771–788.

174

Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499 .

Vandev, D. and Neykov, N. (1998). About regression estimators with high breakdown
point. Statistics: A Journal of Theoretical and Applied Statistics 32 (2), 111–129.

Virtanen, T. (2007). Monaural sound source separation by nonnegative matrix fac-
torization with temporal continuity and sparseness criteria. IEEE Transactions on
Audio, Speech, and Language Processing 15 (3), 1066–1074.

Wang, Y., Du, S., Balakrishnan, S., and Singh, A. (2018). Stochastic zeroth-order
optimization in high dimensions. In International Conference on Artificial Intelli-
gence and Statistics, Volume 84, pp. 1356–1365.

Wang, Z. and Zhang, D. (1999). Progressive switching median filter for the removal
of impulse noise from highly corrupted images. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing 46 (1), 78–80.

Weninger, F., Hershey, J. R., Le Roux, J., and Schuller, B. (2014). Discriminatively
trained recurrent neural networks for single-channel speech separation. In IEEE
Global Conference on Signal and Information Processing, pp. 577–581. IEEE.

Wu, H.-M. (2008). Kernel sliced inverse regression with applications to classification.
Journal of Computational and Graphical Statistics 17 (3), 590–610.

Xie, B., Pan, W., and Shen, X. (2010). Penalized mixtures of factor analyzers with
application to clustering high-dimensional microarray data. Bioinformatics 26 (4),
501–508.

Xu, L., Jordan, M. I., and Hinton, G. E. (1995). An alternative model for mixtures
of experts. In Advances in Neural Information Processing Systems, pp. 633–640.

Xu, W., Qi, Y., and Evans, D. (2016). Automatically evading classifiers. In Network
and Distributed Systems Symposium.

Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., and Li, H. (2017). High-resolution
image inpainting using multi-scale neural patch synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6721–6729.

Yang, Y.-H. (2013). Low-rank representation of both singing voice and music accom-
paniment via learned dictionaries. In International Society for Music Information
Retrieval, pp. 427–432.

Yao, W., Wei, Y., and Yu, C. (2014). Robust mixture regression using the t-
distribution. Computational Statistics & Data Analysis 71, 116–127.

Yi, X. and Caramanis, C. (2015). Regularized EM algorithms: a unified framework
and statistical guarantees. In Advances in Neural Information Processing Systems,
pp. 1567–1575.

175

Zen, H., Tokuda, K., and Black, A. W. (2009). Statistical parametric speech synthesis.
Speech Communication 51 (11), 1039–1064.

Zhao, T., Li, X., Liu, H., and Roeder, K. (2014). SAM: Sparse Additive Modelling.
R package version 1.0.5.

176

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Motivation
	Research challenges
	Dissertation outline

	Hierarchical Gaussian Locally Linear Mapping
	Limitations of Gaussian Locally Linear Mapping (GLLiM)
	Hierarchical Gaussian Locally Linear Mapping (HGLLiM)
	Estimation procedure
	Numerical results
	Conclusion

	Parallel Model Training of HGLLiM
	Parallel model training of large-scale datasets
	Magnetic resonance vascular fingerprinting
	Single-channel source separation
	Numerical results
	Conclusion

	Robust Gaussian Locally Linear Mapping
	Model specification
	Expectation-Maximization algorithm
	Simulation studies
	Numerical investigation using real-world datasets
	Conclusion

	Zeroth Order Optimization Method for Adversarial Example Generation
	AutoZOOM
	Efficient mechanism for gradient estimation
	Numerical results
	Conclusion

	Prediction when Input Signals are Corrupted or Adversarially Perturbed
	Robust preprocessing system
	Numerical results
	Conclusion

	Conclusion and Future Work
	APPENDICES
	Details for the E-step
	Finding truncated eigenvalues
	Simulating clustered data
	Proof of Theorem 5.1
	Architectures of convolutional autoencoder (CAE)
	Prediction performance under different settings

	BIBLIOGRAPHY

