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Abstract 

 

With the increasing complexity of user interfaces and the importance for usability 

evaluation, efficient methods for evaluating the usability of user interfaces are needed. Through 

this dissertation research, two computational models built with machine learning methods are 

introduced to evaluate user interface usability.  

This research consists of two phases. Phase I of the research implements the method of 

support vector machine to evaluate usability from static features of a user interface such as 

widget layout and dimensions. Phase II of the research implements the method of deep Q 

network to evaluate usability from dynamic features of a user interface such as interaction 

performance and task completion time.  

Based on the research results, a well-trained Phase I model can distinguish and classify 

user interfaces with common usability issues and is expected to recognize those issues when 

sufficient data is provided. Phase II model can simulate human-interface interaction and generate 

useful interaction performance data as the basis for usability analysis.  The two phases of the 

research aim to overcome the limitations of traditional usability evaluation methods of being 

time-consuming and expensive, and thus have both practical and scientific values. From the 

practical perspective, this research aims to help evaluate and design user interfaces of computer- 

based information systems. For example, today’s application software development on computer 

based information system always integrates many functions or task components into one user 

interface page. This function integration needs to be carefully evaluated to avoid usability issues 



 xiii 

and the competitive field of software development requires an evaluation process with short 

cycles. Phase I and Phase II of the research provide an efficient but not necessarily 

comprehensive usability evaluation tool to meet some of the demands of the field. From the 

scientific perspective, this research aims to help researchers make quantifiable predictions and 

evaluations of user interfaces. Qualitative theories and models are important, but often 

insufficient for rigorous understanding and quantitative analysis. Therefore, this research work 

on computational model-based interface evaluation has important theoretical value in advancing 

the science of studying human behavior in complex human-machine-environment systems. 
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Chapter 1 Introduction 

Chapter Summary 

This chapter first introduces the motivation of this dissertation research. Next, it clarifies 

the research scope including the user interface type, the interface attributes to evaluate, and their 

definitions. Then, it briefly discusses two phases of the research including their research goals, 

methods and relationship between them. Lastly, it discusses the practical and scientific values of 

the research. 

1.1 Research Motivation 

User interface as a connection between humans and machines is widely used in almost 

every field of work. High penetration rates of the computer, Internet and portable devices also 

verify that interacting with user interface has become part of many people’s lives. It will be very 

beneficial to properly design user interfaces, which could improve efficiency of work, reduce 

errors or bring convenience to people’s lives.  

In the design of user interfaces, one problem is the contradiction between the integration 

of functions or information in user interfaces and the limited information processing resources of 

humans. Heavily function-integrated user interfaces or information intensive user interfaces 

could lead to failure of information acquisition, incorrect operations or even some lethal results. 

Another problem gradually shows up when an increasing amount of applications of portable 



 2 

devices go into market. Due to the short development cycle of those applications, the time-

consuming and high cost limitations of lab-based user interface evaluations are magnified and 

create difficulty in following the pace of development. These two problems together motivate 

this research effort. 

1.2 Scope of the Research 

In the following, types of user interfaces to be studied, attributes of user interfaces to be 

evaluated, and types of evaluation methods to be built in the research will be discussed. 

1.2.1 Types of User Interfaces 

Based on different input and output sources, user interfaces can be categorized into 

physical panel user interface, touch screen user interface, and so on. Different types of user 

interfaces have different interactive modes. There may exists one general evaluation method that 

can consider all the features of these interactive modes and evaluate all types of user interfaces 

with one model. However, it creates too much difficulty for data collection and analysis. 

Therefore, as a stepping stone for user interface evaluation with machine learning method, this 

research only focuses on one specific type of user interface, i.e., visual user interface on 

computer based information systems. To reduce the complexity and difficulty of modeling, user 

interfaces used for evaluation in this research are restricted to widgets button and textbox. Cursor 

navigation and left click of mouse are the only two operations to interact with user interface in 

the domain of this research. 
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1.2.2 User Interface Attributes to Evaluate 

As mentioned in the Research Motivation section, properly designing a user interface has 

significant values in many aspects. Systematically evaluating a user interface is the foundation of 

successful design. Two aspects of user interfaces are usually used for evaluation: usability and 

utility. They reflect two groups of interaction performance between user interfaces and users. 

This dissertation research focuses on usability evaluation. Usability has the dictionary meaning 

of ease of use and it is not an exclusive attribute of user interface evaluation. International 

Organization for Standardization (ISO 9241-11, 1998) defines usability as “The effectiveness, 

efficiency and satisfaction with which specified users achieve specified goals in particular 

environments. effectiveness: the accuracy and completeness with which specified users can 

achieve specified goals in particular environments.”. Jakob Nielson and Ben Shneiderman 

(1993) define usability for user interface from five aspects: learnability, efficiency, 

memorability, errors, and satisfaction. Learnability, efficiency and memorability refer to the ease 

of accomplishing tasks when the system is used by a novice user, used by an expert user and 

only used occasionally, respectively. Errors can be counted during performance observation and 

rated based on severity. Satisfaction refers to how pleasant a user feels when using the design. 

The main method of this research is to capture user’s responses as basis for statistical analysis. 

Definition of usability in this research needs to be clear and operational. Therefore, usability in 

this research is defined from two aspects: efficiency and satisfaction. 

Efficiency is defined as the ease of accomplishing tasks which can be measured by 

quantities such as task completion time in this research. In Nielson and Shneiderman’s 

definition, it can be noticed that the performances of novice user, expert user and occasional user 

are distinguished, because for different groups of users the same user interface may provide 
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different experience. However, in this research with machine learning method, this difference 

only appears in the training data of different groups of users and does not generate difference at 

the methodology level. Once evaluation model for efficiency is built it can generate evaluation 

results for learnability, efficiency and memorability, as defined by Nielson and Shneiderman, by 

inserting the training data of different groups of users. Therefore, efficiency is defined without 

specifying user groups. During experiment, data collected to train the model is only from novice 

users due to time and budget limitations. Thus, experimental results actually reflect evaluation of 

learnability in Nielson and Shneiderman’s definition. 

Satisfaction is defined as how pleasant a user feels when viewing the design. This 

definition in comparison with Nielson and Shneiderman’s definition more emphasizes the user 

interface’s function of presenting information. In other words, satisfaction in this research 

focuses on evaluating the static features of user interface. 

Error is not included in this evaluation for two reasons. First, error in comparison with 

other aspects of usability is complicated. It is hard to define error in user interface interaction. 

For example, trivial actions or mis-clicks are difficult to classify. Also, it is hard to determine 

whether all errors should be counted equally. Second, during data collection error cannot be 

forced. Studying error in user interface evaluation requires a large amount of data. Therefore, in 

the domain of the current research, error is not evaluated. 

1.2.3 Types of Evaluation Methods 

Currently, there exist many types of user interface evaluation methods. These evaluation 

methods can be divided into three main types as shown in Figure 1-1. 
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Figure 1-1: Three types of user interface evaluation methods: User centered evaluation, expert 

centered evaluation, and model based evaluation (Scholtz, 2004) 

 User centered evaluation mainly refers to empirical evaluation with experiments on 

real users or potential users with methods such as formative methods and summative methods. 

Expert centered evaluation mainly refers to evaluation performed by expert evaluators, 

including formal evaluation with some analysis technique and heuristic evaluation. Model based 

evaluation mainly refers to evaluation with computerized procedures such as GOMS model. To 

compare these types of evaluation methods, two aspects are taken into account, method cost and 

method performance. Method cost is used to describe the time, expense and labor cost of the 

evaluation method. Method performance is used to describe the amount of usability issues the 

method can compare or recognize. User centered evaluation method has the best method 

performance by being able to discover most usability issues under lab condition, but it is also 

characterized with have the time consuming and labor intensive limitations. Model based 

evaluation method has the lowest method cost but limited feedback of usability issues. Expert 

centered evaluation method is a compromise between method cost and method performance. 

(Scholtz, 2004) 

In Research Motivation, the second problem raises a new demand to reduce the method 

cost. To optimize lab controlled experiment procedures with the same method performance, it is 

difficult to reduce the method cost since the cost of labor and time is unavoidable in user 
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centered evaluation or expert evaluation. Therefore, this research builds a model-based 

evaluation method, focusing on improving its method performance while keeping the method 

cost low.  

1.3 Two Phases of the Research with Machine Learning Methods 

1.3.1 Reasons to Implement Machine Learning Methods 

The most extravagant part of user centered evaluation method and expert centered 

evaluation method is that each time evaluator works, their work only applies to one specific user 

interface. Evaluators have to repeat their work even if “similar” usability issues have been 

encountered many times elsewhere. Expert evaluation is essentially an experience summary of 

those “similarities”. This research can be treated as an attempt to implement computational 

models to help summarize and integrate evaluators’ work. The focus is not to discover user 

interface design heuristics in a mathematical language, but to find the way about how to use data 

to find patterns of potential or unknown heuristics for user interface evaluation. Therefore, the 

needed implementation method should have the ability to discover implicit patterns from data, 

which is exactly machine learning method family’s specialty. Machine learning methods refer to 

a group of stochastic methods widely used in different fields and have produced many successful 

applications. For example, using reinforcement learning and deep learning algorithm to play 

Atari video games, implementing advanced tree search and deep neural networks to play Go 

game, Image recognition and auto driven cars although are not mature enough for industrial 

application however have shown many gratifying improvements and are worth expecting. These 

promising results offer confidence to use machine learning methods in tackling problems of user 
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interface evaluation. More important, machine learning methods have two intrinsic similarities 

with user interface interaction. First, user interface interaction is a stochastic process. Different 

users have different ways to interact with the same user interface. Even the same individual 

cannot reproduce exactly the same interaction. Machine learning method is essentially a 

stochastic method to organize and analyze data. Second, the user interface evaluation process is a 

kind of pattern recognition problem. User interface evaluation is a process to label an instance of 

user interface in a desired way. Discovering patterns shared by the same label of instances is 

what machine learning method is good at. (Murphy, 2012)  

1.3.2 Two Phases of the Research 

This research contains two phases: Phase I static user interface evaluation, evaluating the 

satisfaction aspect of usability and Phase II dynamic user interface evaluation, evaluating the 

efficiency aspect of usability. Since satisfaction is defined as how pleasant users feel in viewing 

a user interface, static feature evaluation focuses on static features such as widget position, 

dimension and other design features of different types of user interface components. Dynamic 

interaction evaluation focuses on dynamic features such as operation smoothness and task 

completion time. In other words, Phase I and Phase II of the research correspond to two main 

functions of a user interface, namely information presentation and interaction. 

Phase I modeling aims to build a satisfaction classifier to distinguish user interfaces with 

different satisfaction levels. Specially, given two user interfaces in the domain of this research, 

Phase I model can predict their satisfaction level and compare which one of them is more 

satisfying for the user group of training data. The whole process consists of two steps: 

Step 1 (Phase I): Data collection 
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Data for Phase I modeling is used as the basis to discover user interface design patterns. 

It consists of a feature vector, which is used to describe features of an instance of user interface 

being studied, and a satisfaction score, which is a scalar quantity used to describe the satisfaction 

aspect of usability provided by participants’ subjective ratings.  

Step 2 (Phase I): Training process 

The training process for Phase I modeling refers to implementing selected machine 

learning method and using collected data to tune the parameters of the corresponding classifier 

for stochastically best predicting and comparing satisfaction levels for a new instance of user 

interface. 

Different from Phase I model’s direct prediction on satisfaction level, Phase II modeling 

aims to first build an agent to interact with user interface mimicking human’s behavior, and then 

using agent’s interaction results as the basis to evaluate the efficiency aspect of usability with 

quantities such as task completion time. In other words, Phase II modeling simulates interaction 

on user interface first and then applying simulated results as the dynamic interaction evaluation’s 

foundation. It could be asked why Phase II modeling does not implement the same classification 

method to directly evaluate interaction based on participants’ subjective ratings. There are two 

reasons for it. First, as mentioned above about similarities between user interface interaction and 

machine learning method, user interface interaction can be regarded as a stochastic process. 

Performing tasks on a user interface, there does not exist correct or wrong interactions. There 

only exists interaction with high probability or low probability. Using one interaction result to 

evaluate efficiency of a user interface is not persuasive, and discovering the distribution of all the 

interactions for one user interface with one task is costly and time consuming. Therefore, 

building an interaction simulator becomes a good solution since it can generate a batch of 
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interaction results and the generated interaction results can be used to evaluate efficiency of 

usability. Second, an interaction simulator has generality in simulating interaction results that 

have not been shown before. The feature of generality can, to some degree, predict new possible 

usability issues. Phase II modeling also contains two steps: 

Step 1 (Phase II): Data collection 

Data for Phase II modeling is used as the basis to train agent mimicking human user 

behavior to interact with user interface. It consists of a task definition vector, a feature vector that  

is used to describe features of an instance of user interface being studied, and trace of interaction. 

Trace of interaction refers to a list of specific actions that the user would perform for a specific 

task.   

Step 2 (Phase II): Training process 

Training process for Phase II modeling refers to implementing selected machine learning 

method and using collected data to train agent’s interaction with the user interface for the best 

mimicking of human user behavior. 

1.3.3 Relationship between the Two Phases 

Phase I and Phase II of the research, as mentioned above, evaluate the satisfaction and 

efficiency aspects of usability. It is difficult to combine the two phases into one for two reasons. 

First, user interface as a connection between the user and the machine has both the information 

presenting and instruction receiving functions. The two phases of the research correspond to the 

two functions of user interface, respectively. Relationship between the design requirement of a 

user interface to achieve the best information presenting function and to achieve the best 

instruction receiving function is still not clear. Second, there might exist correlations between the 

design requirement of user interface to achieve the best information presenting function and to 
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achieve the best instruction receiving function. For example, some designs of user interfaces are 

beneficial to both information presenting and instruction receiving. Therefore, it is difficult to 

use weighed factors to combine the two aspects of usability evaluations.  

Phase I and Phase II of the research are not regarded as two evaluators for evaluating the 

two aspects of usability, efficiency and satisfaction, independently. They are actually two 

checkpoints to identify usability issues. For example, if the distance between two widgets of a 

user interface is too small or even overlapping, both Phase I and Phase II evaluators will provide 

low evaluation results for this issue. However, if the distance between two widgets of a user 

interface gradually increases, there must exist an interval of distance that high evaluation result 

shows up first in one of the two evaluators, since distance between two widgets for satisfaction 

evaluation is different from that for efficiency. In summary, the two phases of evaluators have 

their own emphasis on different aspects of usability but they are not necessarily fully 

independent of each other or cover all types of usability issues. 

1.4 Practical and Scientific Values of the Research 

From the practical perspective, this research aims to help evaluate and design user 

interfaces of computer based information systems. For example, today’s application software 

development on computer based information systems always integrates many functions or task 

components into one user interface page. This function integration needs to be carefully 

evaluated to avoid usability issues, and the competitive field of software development requires an 

evaluation process with a short cycle. Phase I and Phase II of the research provide an efficient 

but not necessarily comprehensive usability evaluation tool to meet the demand of the field.  
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From the scientific perspective, this research aims to help researchers make quantifiable 

predictions and evaluations of user interfaces. Qualitative theories and models are important, but 

often insufficient for rigorous understanding and quantitative analysis. Therefore, this research 

work on computational model-based interface evaluation has important theoretical value in 

advancing the science of studying human behavior in complex human-machine-environment 

systems. 
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Chapter 2 Literature Review 

Chapter Summary 

This chapter first gives literature review about usability evaluation of user interfaces. 

Then, it briefly introduces machine learning methods that can be possibly used to build user 

interface evaluation models. Based on a  comparison of these machine learning methods, it 

discusses the selection of machine learning methods for Phase I and Phase II user interface 

usability evaluation, respectively. 

2.1 Literature Review on Usability Evaluation 

2.1.1 Types of Usability Evaluation Methods 

User interface usability evaluation methods can be categorized into three groups: user 

centered evaluation, expert centered evaluation and model based evaluation (Scholtz, 2004). The 

following part describes what these evaluation methods are in detail. 

User centered evaluation usually refers to empirical usability testing, which mainly 

includes two types of evaluations: formative evaluation and summative evaluation. Formative 

evaluation is an informal evaluation method and is done by obtaining verbal data from users for 

early design of user interfaces. In the formative evaluation process, evaluation is commonly 

conducted through paper prototypes. Summative evaluation is a formal evaluation method and is 

done by documenting usability characteristics of user interface. In the summative evaluation 
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process, evaluation is commonly done through having representative users interacting with the 

user interface and discovering usability issues. User centered evaluation method involves 

participation of real users and thus is more possible to discover usability issues. However, the 

whole process of user centered evaluation is often expensive and time consuming. (Scholtz, 2004) 

Expert based evaluation usually refers to usability inspection method as a group of 

evaluation methods that directly review user interface for discovering usability issues including 

heuristic evaluation, cognitive walkthroughs, pluralistic walkthroughs, formal usability 

inspections, consistency inspections, standards inspections, and feature inspections, guideline 

reviews. Expert based evaluation method is developed as a more efficient substitute for user 

centered evaluation method. In comparison with user centered evaluation methods, expert based 

evaluation methods are less expensive and less time consuming. However, it does not provide 

solutions to those discovered usability issues. Besides, the accuracy of expert-based evaluation 

methods is being doubted by some scholars (Scholtz, 2004). 

Model-based evaluation methods refer to implement modeling techniques to simulate 

users’ behavior interacting user interface and discover usability issues. GOMS model is one of 

the most famous model-based evaluation methods. GOMS model consists of goals, operators, 

methods and selection rules (Kieras, 1994). In comparison with user centered evaluation methods 

and expert evaluation methods, model-based evaluation method is less expensive and multiple 

rounds of usability testing can be done repeatedly. However, as indicated by Scholtz, task level 

cognitive task analysis is very time consuming (Scholtz, 2004). 

Another classification way of user interface evaluation is complete empirical usability 

testing, which is effective but expensive, and the usability inspection method, which has lower 

cost by using expert review or direct analysis on user interface. Inspection method includes 
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expert evaluation method and model based evaluation method mentioned above. (Novick & 

Hollingsed, 2007) 

2.1.2 Development of Usability Evaluation Methods 

Early stage of Usability Evaluation 

Researchers have started to pay attention to the quality of “user interface” several 

decades ago. At that time, it was under the name of ergonomics and focused mainly on the 

physical control panels (Shackel, Ergonomics for a Computer, 1959). In 1967, Michael Scriven 

developed formative and summative evaluation, which served as the basics for empirical 

usability testing. In 1971, the concept of ease of use was proposed but not well defined (Miller, 

1971). After 1975, platform style guidelines appeared to aid the design process and some of them 

remain to be in continuous use nowadays. In 1979, the concept of usability was gradually formed. 

John Bennett published the first paper with usability in its title (Bennett, 1979). Some companies 

like IBM established usability labs to perform summative usability testing, and metrics for user 

performance gradually came into shape. In 1980, the think-aloud method was introduced into 

usability testing and became one of the most widely used methods (Ericsson & Simon, 1980). In 

1983, GOMS model was developed and became one of the most widely known theoretical 

concepts in research on user interface interaction (Card, Newell, & Moran , 1983). GOMS model 

is a group of predictive models for user performance mainly used to evaluate usability and 

improve efficiency of user interfaces. GOMS model was then further adapted to different kinds 

applications and generated great effect to later model-based usability evaluation methods. In 

1985, Jeff Kelley developed the OZ paradigm (now known as Wizard of Oz) method in his 

dissertation and came into widely use in the usability engineering as well as ergonomics and 
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psychology. From 1986 to 1988, models of iterative design, Motif style guide and SUMI QUIS 

were established in succession (Card & Moran , 1986).  

Modern usability establishment 

Shackel (1990) defined usability as efficiency, effectiveness and satisfaction. From the 

early 90s, the topic of usability attracted more widespread interests. Many researchers or scholars 

contributed to the field of usability testing. A large amount of usability evaluation methods is 

established and put into use. The rapidly developing field requires an effective method to 

evaluate user interface usability. A comparison between traditional empirical usability testing 

and “faster and cheaper” methods is widely discussed in the field (Jeffries & Desurvire, Usability 

testing vs. heuristic evaluation: was there a contest?, 1992; Desurvire, Kondziela, & Atwood, 

1992; Jeffries, Miller, Wharton, & Uyeda, 1991; Desurvire H. W., 1994; Novick & Hollingsed, 

2007). Traditional empirical usability testing evaluates user interface usability and discovers 

usability problems through observing actual users while they are interacting with a target user 

interface. Since recruiting real users to participate empirical usability testing is expensive and its 

whole process is time consuming, “faster and cheaper” evaluation methods showed up.  “Faster 

and cheaper” methods usually refer to usability inspection methods as a set of cost effective 

ways of user interface evaluation (Nielsen, Usability Inspection Methods, 1994). Inspection 

methods, rather than discovering problems from observing real users, directly review user 

interfaces and discover usability issues based on experience or guidelines (Nielsen & Molich, 

Heuristic Evaluation of User Interfaces, 1990). Heuristic evaluation method was one the most 

widely used inspection methods. Heuristic evaluation is done by looking at a user interface and 

trying to discover usability issues based one’s own opinion. Smith and Mosier (1986) proposed a 

large number of rules as user interface evaluation guidelines. In practice, usability heuristics 



 16 

proposed by Nielsen and Molich as a substitute for empirical user testing are more commonly 

used. Nine user interface evaluation heuristics proposed in 1990 (Nielsen & Molich, Heuristic 

Evaluation of User Interfaces, 1990) are: (1) Simple and natural dialogue; (2) Speak the user’s 

language; (3) Minimize the user memory load; (4) Be consistent; (5) Provide Feedback; (6) 

Provide clearly marked exits; (7) Provide shortcuts; (8) Good Error Message; (9) Prevent Errors. 

The developers of these nine heuristics also mentioned the major advantages of heuristic 

evaluation, namely 1) low evaluation cost, 2) evaluation procedure is intuitive and easy to 

motivate participants to join, 3) evaluation does not require advance planning, and 4) evaluation 

can be performed in the early stage of development. They also designed four empirical tests to 

test the practical applicability of heuristic evaluation. Results indicate that heuristic evaluation is 

difficult to perform and researchers should not rely on individual’s result. They pointed out that a 

disadvantage of heuristic evaluation is that it sometimes identifies usability problems without 

providing suggestions for improvement and the method is biased by the current mindset of the 

evaluators and normally does not generate breakthroughs in the evaluated design (Nielsen & 

Molich, Heuristic Evaluation of User Interfaces, 1990). Nielsen (1994) further refined and 

updated user interface evaluation heuristics to: (1) Visibility of system status; (2) Match between 

system and the real world; (3) User control and freedom; (4) Consistency and standards; (5) 

Error prevention; (6) Recognition rather than recall; (7) Flexibility and efficiency of use; (8) 

Aesthetic and minimalist design; (9) Help users recognize, diagnose, & recover from errors. The 

modified list of nine heuristics is based on factor analysis of 249 usability problems. Nielsen 

concluded that the modified heuristics succeeded in explaining discovered usability problems 

and its ability to discover new problems remains to be seen (Nielsen, Enhancing the explanatory 

power of usability heuristics, 1994). These nine heuristics remain to be used until now. 
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In addition to heuristic evaluation, there are also many other usability inspection methods. 

Some typical inspection methods are cognitive walkthrough, pluralistic usability walkthrough, 

formal usability inspection, feature inspection, consistency inspection and standards inspection 

(Nielsen, Usability Inspection Methods, 1994).  

Cognitive walkthrough evaluates a user interface for its ease of exploratory learning 

through cognitive modeling (Wharton, Rieman, Lewis, & Polson, 1994). It simulates one’s 

problem solving process and checks if this cognitive modeling can complete tasks or lead to 

correct actions (Nielsen, Usability Inspection Methods, 1994). Cognitive walkthrough consists of 

two phases: a preparatory phase and an analysis phase. The preparatory phase determines four 

key issues: interfaces, users, tasks, actions. In the analysis phase, evaluators go through the 

following four steps (Novick & Hollingsed, 2007):  

1. set a goal to be completed within the system.  

2. determine available actions.  

3. select the action that leads closer to the goal.  

4. perform the action and evaluate the feedback given by the system.  

Cognitive walkthrough has some disadvantages: 1) It requires filling out evaluation forms 

repeatedly, 2) It can only find out limited range of problems, and 3) It has difficulty in defining 

availability of actions to users.  

Pluralistic usability walkthrough modifies the traditional usability walkthrough and it 

involves representative users, product developers, members of the product team, and usability 

experts in the evaluation process (Bias, 1994). Pluralistic usability walkthrough is done by 

having a meeting of representative users, product developers, members of the product team, and 

usability experts to discuss user interface dialogue elements (Nielsen, Usability Inspection 
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Methods, 1994). This method does not have to be applied after user interface design is fully 

accomplished. On the other hand, the approach must be limited to representative rather than 

comprehensive user paths through the interface. The pluralistic walkthrough method appears to 

be in active use for assessing usability (Novick & Hollingsed, 2007). 

Formal usability inspection combines heuristic evaluation and simplified form of 

cognitive walkthrough to implement six steps of procedures (Kahn & Prail, 1994; Nielsen, 

Usability Inspection Methods, 1994).  It works faster, and it is more thorough and more technical 

than in the pluralistic walkthrough (Novick & Hollingsed, 2007). It appears that little research 

has been conducted on formal usability inspections (Novick & Hollingsed, 2007). Other usability 

inspection methods include feature inspection, consistency inspection and standards inspection, 

which only evaluate one aspect of usability issues and are less widely used in current user 

interface evaluation, and therefore they not illustrated in detail here.  

Modern usability Development 

After modern usability was established, the development in the usability field showed 

two main features.  

First, research on usability gradually became mature and the system of usability testing 

became more rigorous. Research on the usability topic was divided in more detail gradually. 

Lewis examined experiment sample size for usability studies (Lewis, 1994). The concept of 

usability became a standard in ISO (International Organization for Standardization). Evaluators, 

as a key factor of usability testing, were also examined (Jacobsen & John, 1998). Some 

researchers summarized existing methods and made comparisons about these methods (Gray & 

Salzman, 1998).  
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Second, user interface as the subject of usability evaluation was dramatically influenced 

by software, Internet and portable devices. Three major changes after 2000 are listed below. 

1. Software usability testing became the topic of research interest. 

2. Usability testing data started to be collected remotely and analyzed stochastically. 

3. Usability evaluation was influenced by massive use of portable devices. 

These changes influenced usability evaluation methods through making new 

requirements to user interface design and further produced more usability evaluation methods.  

As software development arose dramatically, software user interface became the main 

user interface to perform usability evaluation. The field made large efforts to adapt to this change. 

For example, in 1998, the Industry Usability Reporting Project was initiated by National Institute 

of Standards and Technology and many industry companies (NIST, 1998). The goal was to 

develop a usability reporting format with shared customer (software purchaser) data. More than 

40 companies were involved in this project including some major manufacturers. This is a big 

effort in building standard for usability testing in the history. This project produced Common 

Industry Format for Usability Test Reports (CIF). In the past there were many different ways to 

report usability evaluation results. CIF became a very important effort to communicate between 

software developer and software purchaser. Almost at the same time of the Industry Usability 

Reporting Project, great development of Internet gradually changes the field of usability. After 

the year of 2000, Internet became popular in people’s daily life. More people have access to 

Internet worldwide. It made remote user interface usability testing come true. Users started to 

participate from their normal work locations using their normal browser, and there was no real 

time observation helping to reduce performance difference between lab condition and real 

condition (Tullis, Fleischman, Mcnulty, Cianchette , & Bergel, 2002). After 2007, smartphone 
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and other portable devices went into market and dramatically challenged user interface design. 

As the different ways of interaction with computer based information system and various screen 

dimensions, these portable devices had very different requirements on user interface design as 

well as usability testing methods. After 2010, large amounts of applications on portable devices 

gave usability testing new challenges. Compared with lab based user interface usability 

evaluation, applications of portable devices went into and out of the market rapidly, which 

required usability testing to be conducted quickly and cheaply. Traditional usability testing 

methods still hold their scientific values in the field. However, it is also worthwhile to further 

develop practically useful usability testing methods to follow the rapid development pace. 

In summary, the type, amount and interaction method of user interfaces that an individual 

use all had big changes in the past two decades. Correspondingly, many new user interface 

evaluation methods were built to adapt to these changes. These methods showed diversity on the 

whole and had the trend of becoming more quantitative and cost efficient. 

Quantitative evaluation method for usability evaluation developed from many directions. 

Tom Tullis and Bill Albert (2008) rigorously studied user experience metrics and reviewed 

performance metrics, self-reported metrics, behavioral and physiological metrics, and so on, and 

provided instructive advice to evaluate through measuring user experience. Sauro and Lewis 

(2012) systematically studied and summarized how to implement statistic tools to evaluate user 

interface usability.  

Cost efficient methods are mainly beneficial from widely used Internet and large data 

availability. Tom Tullis et al (2002) compared lab-conditioned usability testing and remote Web-

based usability testing of Web sites and indicated that both the lab and remote evaluations 

capture similar information about the usability of a site. It built foundation of remote user 
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interface evaluation and show a possibility to make usability evaluation more cost efficient. Bill 

Albert, et al (2010) conducted large-scale online user experience studies, taking advantage of 

Internet and big data availability to improve cost efficiency of usability evaluation.  

These new development in usability evaluation, cost efficiency and quantitative analysis 

met the recent years’ flourishment of machine learning methods. The topic of “As Machine 

Learning and AI perform Magic, how can UX professionals help?” was discussed in User 

Experience Professionals Association (UXPA) conference in 2017. The discussion raised 

possible role change for UX professional in facing the rapidly developing AI field in order to 1) 

define overall user experience at strategic level; 2) understand the ecosystem that users interact 

with and the feedback loop for machine learning; 3) expand user scenarios for user research and 

design. Carol Smith (UXPA 2018) indicated that there were many remaining technical 

challenges to implement machine learning methods for user experience study. Therefore, this 

research will be an attempt to implement machine learning methods to evaluate the usability of 

user interface with the aim to build quantitative and cost efficient usability evaluation models 

with computerized procedures.  

2.2 Literature Review on Machine Learning Methods 

2.2.1 Overview of Machine Learning Methods 

As mentioned above, rapidly developing machine learning methods provide a new 

possibility to build quantitative and cost efficient usability evaluation models with computerized 

procedures. However, machine learning methods refer to a group of probabilistic methods. To 
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select the proper machine learning method for usability evaluation, a literature review of 

candidate machine learning methods needs to be conducted. 

Generally, machine learning methods can be divided into three types: 1) predictive or 

supervised machine learning methods; 2) descriptive or unsupervised machine learning methods; 

and 3) reinforcement learning methods.  

Supervised machine learning methods aim to build mapping from inputs 𝑥 to outputs 𝑦 

with given labeled pairs of input 𝑥 and output 𝑦. These methods are always applied in 

classification such as email spam filtering, image classification, handwriting recognition and face 

detection.  

Unsupervised learning aims to discover useful data patterns with given input data 𝑥. In 

comparison with supervised data, unsupervised data have to discover relationship from input 

data and find out data patterns underneath without labels of data. Unsupervised machine learning 

methods are usually applied in discovering latent factors, image inpainting, collaborative 

filtering and market basket analysis.  

Reinforcement learning is different from traditional machine learning methods, 

supervised and unsupervised machine learning methods, in the sense that it does not learn from 

existing examples or data directly. Reinforcement learning aims to learn how to act or behave 

from environment feedback, reward or punishment signals, and is widely applied in tasks 

involving decision making. In comparison with supervised and unsupervised machine learning 

methods, reinforcement learning adjusts and forms mapping action strategies to accumulated 

rewards rather than discover or recognize potential data pattern. In other words, an agent of 

reinforcement learning keeps trying to interacts with the environment and learns to make 

decision of action that maximizes the total accumulative rewards (Sutton & Barto, 1998).  



 23 

Phase I modeling of this dissertation research is a classification problem and the 

classification feature is clearly the usability evaluation score. Therefore, supervised machine 

learning method is the proper implementation method.  

Phase II modeling of this dissertation research is to build an interaction simulator to 

mimic human users’ behaviors. There exist two possibilities for machine learning method 

implementation: 

1. Implementation of a supervised machine learning method through directly mapping user 

interface and task to the distribution of users’ interaction traces. Mathematical 

representations of the user interface and the task together serve as a feature vector. Users’ 

interaction traces serve as the data labels.  

2. Implementation of a reinforcement learning method through regarding the user interface 

as the interaction environment and defining the tasks with proper set of reward functions. 

Implementation of a supervised machine learning method on Phase II of the research 

theoretically works, but has many practical difficulties. First, task and user interface cannot form 

a mapping to a single interaction trace because interaction of human users is a stochastic process. 

It requires data set of very large size to tune parameters and train the model. Second, the label of 

each instance of the data is the distribution of interaction traces, which is multidimensional. To 

adapt multidimensional labels to many supervised machine learning methods will further 

increase the size of the required training data. Third, as the trace of interaction has randomness, it 

is hard to distinguish the classification results due to differences in user interface design or in 

individual users. 

Implementation of the reinforcement learning method on Phase II of the research is 

therefore more suitable from the following three aspects. First, reinforcement learning is a 
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learning process from interaction. The goal of Phase II modeling is to learn human user’s 

interaction. Second, user interface in reinforcement learning is treated as the interaction 

environment, which greatly simplifies the mathematical complexity of the model and also makes 

the model more flexible to adapt to new types of user interfaces. Third, reinforcement learning 

method would be less sensitive to the size of the training data with proper reward function set. 

For supervised machine learning methods, if not enough data are provided, failure of task 

completion might happen, but for the reinforcement learning method, only the human behavior 

mimic level is influenced and task completion will not be influenced. Based on these 

considerations, Phase II modeling of this research implements the reinforcement learning method. 

2.2.2 Phase I Candidate Implementation Methods 

Based on the discussion above, Phase I candidate implementation method should be 

supervised classification method. The following part of this section will go through the candidate 

implementation methods for Phase I modeling from the current widely used machine learning 

methods including K nearest neighbors algorithm (KNN), Naïve Bayes, neural networks (NN), 

support vector machine (SVM) and logistic regression (Murphy, 2012).  

1. K nearest neighbors Method 

K nearest neighbors algorithm (KNN) is a non-parametric classification method. 

It classifies data points on the basis of K nearest data points’ votes. Different settings of 

K value will lead to different classification results. Also, the vote weights can be adjusted 

to derive weighted adjusted K nearest neighbors algorithm (WAKNN). (Murphy, 2012) 

2. Naïve Bayes Method 

Naïve Bayes method is a classifier based on Bayesian Theorem under the 

assumption that different features are strongly independent to each other. It classifies data 
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point with maximum likelihood estimation (MLE), which maximizes the likelihood 

function with given observations. (Murphy, 2012) 

3. Neural Network Method 

Neural Network method can also serve as the classifier. It consists of at least two 

layers and each layer consists of nodes. Each node connects with every node in adjacent 

layers using linear combination function and activation function. The first layer, also 

known as input layer, is used to input feature vectors; the last layer, also known as output 

layer, is used to output classification results. It classifies data point using neural network 

structures to approximate classification functions. (lan Goodfellow, 2016) 

4. Support Vector Machine Method 

Support vector machine (SVM) is a discriminative classifier formally defined by a 

separating hyperplane. The algorithm produces an optimal hyperplane, which classifies 

new instances of data into categories given labeled training data. For example, in a two-

dimensional space the separating hyperplane is a line. Data point falling on one side of 

the line belongs to one category. If the input data is not linear separable, kernelization 

tricks can be applied for classification. Kernelization tricks refer to mapping original data 

from input space to high dimensional feature space so that the linearly inseparable data 

can be linearly separated in higher dimensional space. One thing to notice is that 

increasing the dimensionalities will lead “the curse of dimensionality” since the required 

size of the training data increases exponentially with the dimensionality increasing. If 

there is not enough data provided, support vector machine model might be under the risk 

of overfitting (Murphy, 2012). 

5. Logistic Regression Method 
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Logistic regression classifier is very similar to support vector machine classifier. 

The difference is that support vector machine implements hinge loss function and logistic 

regression implements logistic loss. 

2.2.3 Phase I Modeling Method Selection 

In the following discussion, four Phase I candidate implementation methods are 

compared and support vector machine method is selected as Phase I modeling implementation 

method. 

In comparison with support vector machine method, K nearest neighbors algorithm has 

the advantage of having fast training speed, but has the disadvantage of not being able to handle 

many irrelevant features and having relatively low predictive accuracy. Naïve Bayes method, as 

mentioned above, needs to work under the assumption that different features are strongly 

independent to each other, which Phase I Modeling does not hold. Neural network and logistic 

regression methods are relatively more competitive to support vector machine method. 

Neural network classifier has better predictive performance compared with support vector 

machine. A well-trained neural network classifier has higher predictive accuracy and faster 

predictive speed. However, it is not selected because of its two deficiencies. First, training a 

neural network classifier is very time consuming and relates to many complicated parameter 

tuning. Second, classification reason of neural network is harder to interpret. Support vector 

machine classification is also hard to interpret, but it classifies data points through maximizing 

the “gap” between different groups, and therefore separating hyperplane as classification 

boundary may provide more information to analyze classification reasons.  

Logistic regression method as mentioned above is very similar to support vector machine 

method in mathematics and performance with a difference on loss function. Logistic loss 
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function of logistic regression diverges faster than hinge loss function of support vector machine 

and cannot reach zero under confident classification. In other words, logistic regression classifier 

is more sensitive to outlier data point. However, usability evaluation cannot avoid collecting data 

from participants with strong individual preference or bias. Support vector machine can better 

handle these outliers and reduce outlier’s effect. Therefore, support vector machine is more 

suitable as the Phase I implementation method. 

After comprehensive consideration of classification performance including accuracy and 

speed, robustness to usability evaluation data and modeling difficulty, support vector machine is 

selected as the implementation method for Phase I evaluation modeling. Detailed implementation 

for Phase I modeling will be introduced in Chapter 3. 

2.2.4 Phase II Candidate Implementation Methods 

Based on the discussion above, Phase II candidate implementation method should be in 

the reinforcement learning method family. The following part of this section will go through the 

candidate implementation methods for Phase II modeling, including Q learning method, state 

action reward state action (SARSA) method, deep Q network method, policy gradient method 

and actor critic method. 

1. Q learning Method 

Q learning is one type of widely used reinforcement learning method. It includes a 

very important action-state mapping table called Q table. Q table is adjusted during the 

learning process to maximize expected accumulated total future reward for each action at 

each state. Columns of the Q table represent the actions. Rows of the Q table represent 

the states. The value of each cell will be the maximum of expected future reward for that 

given state and action. The action value function of Q learning method takes two inputs, 
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state and action and returns the expected future reward of that action at that state as 

output. Before the training process, the Q-table can be initialized with an arbitrary 

number. During the training process, the Q-table will be updated for better estimation of 

expected action value under state. The whole process can be summarized in four steps: 1) 

Initialize Q table; 2) Choose and perform action; 3) Receive feedback reward from 

environment; 4) Update Q table. After training process, action values on Q table can well 

estimate true action values therefore help agent make better decisions to maximize total 

expected accumulative rewards (Sutton & Barto, 1998). 

2. State Action Reward State Action Method 

State Action Reward State Action method (SARSA) is a similar reinforcement 

learning method to Q-learning. Difference between SARSA and Q-learning is that 

SARSA is an on-policy algorithm which means SARSA method updates the Q-value 

based on the action performed by the current policy rather than the greedy policy. Policy 

in reinforcement learning refers to a strategy to select a series of actions. (Sutton & Barto, 

1998) 

3. Deep Q Network Method 

Deep Q network (DQN) can be regarded as a modification of Q learning method. 

The main difference is that DQN implements a Neural Network to estimate the Q-value 

function in substitute of the Q table in Q learning method. The input of the network is the 

state and the output of the network is the action value under the state. Besides, DQN is 

different with Q learning method from experience replay and separate target network 

which are used to reduce the effect of training sample’s correlation and improve the 

stability of the training respectively. (Volodymyr Mnih, 2013) 
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4. Policy Gradient Method 

Policy gradient method is a policy-based method. Rather than learning a value 

function, Policy gradient method uses the policy function directly updating the value 

policy. A policy function can be either deterministic or stochastic. A deterministic policy 

maps the state to action directly which is usually used in deterministic environments. A 

stochastic policy generates a probability distribution over actions. The stochastic policy is 

used when the environment is uncertain. (Sutton & Barto, 1998) 

5. Actor Critic 

Actor-critic method is a combination of value based method and policy based 

method. The policy and value estimation are done by actor and critic respectively. Critic 

criticizes the actions made by the actor. After each action selection by actor, critic 

evaluates whether the situation gets better or not. (Sutton & Barto, 1998) 

2.2.5 Phase II Modeling Method Selection 

Deep Q network (DQN) is selected as the implementation method for Phase II modeling. 

Five reinforcement learning methods mentioned in the previous section can be divided into two 

categories: value based method and policy based method. Generally speaking, policy based 

method is more appropriate to solve problems of high dimensional action space, since it is hard 

to build action tables. Therefore, it seems that policy based method is suitable for Phase II 

modeling implementation. However, after careful consideration it can be noticed that there exists 

a dilemma for policy based method. On one hand, in policy based method, policy is used as a 

whole to be updated and optimized to achieve a compelling goal, in the case of Phase II 

modeling which is task completion. At this time policy serves as a decision variable. However, 

on the other hand, task completion is not the only goal of interaction simulation of Phase II. 
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More important, interaction simulation of Phase II needs to mimic human user’s behavior, 

otherwise task completion becomes meaningless. Therefore, policy also serves as the objective 

function. The solution of this optimization problem is the training data itself. It could be argued 

that it is possible to set task completion as objective function while setting human behavior 

mimics as a constraint. But unfortunately, quantitatively measuring the similarity between 

different traces of interactions is a more complicated topic beyond the scope of this research. If 

the similarity between different traces of interaction can be quantitatively measured, building 

interaction simulator then becomes trivial. 

Since policy based methods are not suitable for Phase II modeling, the focus is turned to 

value based methods. Among the five candidate methods for Phase II modeling, only Q learning 

method and deep Q network method do not have any component of policy value estimation. And 

in comparison with Q learning method, deep Q network method is more powerful in solving 

more complex problems. Moreover, deep Q network method in comparison with Q learning 

method has better generality. For states that the Q-learning agent has not been encountered, it is 

difficult for Q learning to make good decisions. In other words, Q-learning agent does not have 

the ability to estimate values for unseen states. Neural network structure of deep Q network 

method approximates action value function, which enables the deep Q network agent to make a 

better decision for an unseen state. 

After comprehensive comparison among the five candidate implementation methods for 

Phase II modeling, deep Q network is the most appropriate method to implement. Detailed 

implementation for Phase II modeling will be introduced in Chapter 5. 

 



 31 

Chapter 3 Phase I Computational Modeling and Experiment 

Chapter Summary 

This chapter first introduces the objectives and challenges of Phase I evaluation model. 

Then it introduces the modeling scope, procedures and framework of Phase I evaluation model. 

Lastly, it described detailed implementation methods, including data collection and 

computational methods. 

3.1 Objectives and Challenges of Phase I Modeling 

3.1.1 Objectives of Phase I Modeling 

Based on the discussions in Chapter 1 and Chapter 2, the purpose of Phase I evaluation 

model is to classify user interface based on the satisfaction aspect of usability with the selected 

support vector machine method.  

User interface as an interaction media between human and machine involves two ways of 

communications. First, human user receives information from interface to process. Second, 

human user makes decision and gives instruction or acts on the user interface. In the first stage of 

communication, user interface serves its function of information presentation. Many usability 

issues could show up during this stage. User interface can be regarded as a static image. Through 

conducting research on features of the static image, the satisfaction aspect of usability can be 

evaluated.  
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Different from empirical usability testing, Phase I evaluation model does not include any 

actual dynamic interactions between the human and the interface. The scope of Phase I model is 

restricted to viewing and evaluating the static features of user interface. Phase II modeling will 

focus on evaluating a user interface based on dynamic interactions. It may be argued that when 

viewing a user interface, users would have already imagined how they would interact with a user 

interface. Therefore, static features of a user interface cannot be separated with evaluation of 

interactions. Truly, users might imagine how they plan to interact with a user interface before 

actually interacting with it. However, imagining to interact with a user interface is not the same 

as actually interacting with a user interface. For example, when widgets of user interface do not 

have clear boundary, it is easy to make mistakes even if it has been imagined successfully in the 

mind. Therefore, Phase I research is an attempt to capture usability issues from viewing interface 

as a static image.  

3.1.2 Challenges of Phase I Modeling 

During the implementation of support vector machine for Phase I modeling, three 

challenges are encountered. 

First, user interfaces have too many feature inputs. User interface regarded as an image 

can be very complicated. To completely represent a user interface with a vector so that the image 

of user interface could be fully restored from this vector, all pixel values of the user interface 

need to be included. However, the size of the required training data increases exponentially with 

the size of the feature inputs. Implementing methods such as convolutional neural network to 

abstract useful information from pixel vector deviates from the main topic of this research. 

Therefore, it is necessary to manually select features as input training data.  
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Second, data points in the feature space of training data might be not linearly separable. 

There are two alternative solutions: soft margin support vector or kernel function mapping to 

high dimensional space. Soft margin support vector machine is a support vector machine 

allowing incorrect classification. The challenge is if collected sample is highly non-linear, it may 

reduce the prediction accuracy of soft margin support vector machine. The other alternative is to 

use kernelization trick to increase the dimensionality of sample space and classify data in high 

dimension space with corresponding hyperplane. It is safe to say that linearly non-separable data 

is dividable in a space with enough dimensions. However, this alternative has its own challenges, 

the choice of kernel function and the curse of dimensionality. There are many prevailing kernel 

function such as polynomial kernel, Gaussian kernel, radius basis function and sigmoid kernel. 

Different problem fits different type of kernels. If the choice of kernel can be solved by testing 

different kernels’ results, curse of dimensionality is real barrier. Curse of dimensionality refers to 

the size of sample increases exponentially as the dimension increases which means 

implementation of support vector machine method increases required size of data to avoid 

overfitting. In dealing of this, it needs to either reduce the feature input or increase the size of 

collected data. Therefore, the dimension of the feature vector needs to be carefully designed 

based on the size of the training data. 

The third challenge of Phase I modeling is the interpretation of the classification results. 

It is a common challenge for many other machine learning methods. Support vector machine 

classifies user interface through maximizing the “gap” between different groups. However, the 

classification results cannot directly benefit user interface design. As mentioned in method 

selection of Phase II modeling, it indicates that separating hyperplane as boundary of 

classification may serve as a breach to interpret classification results. Then, how to properly 
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interpret coefficients of hyperplane becomes a challenge. 
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3.2 Description of Phase I Modeling 

Before describing Phase I model framework, it is necessary to briefly introduce the 

important components of Phase I modeling.  

3.2.1 User Interface of Phase I Modeling 

In the Introduction chapter, it has been mentioned that this research focuses on the visual 

user interface on computer based information system. And the discussion of Phase I modeling 

challenges mentions that to reduce the dimension of the feature vector, the number of features to 

be studied has to match the size of the training data. Therefore, it is necessary to make 

simplifications to the user interface in Phase I modeling. 

Widgets on User Interface 

A user interface consists of different functional widgets. Based on their functions, they 

can be divided into three types, as shown in Figure 3-1. 

 
Figure 3-1: Different types of user interface widgets 

Among all these different types of widgets, two widgets namely button and textbox are 

included. First, button and textbox are most commonly used widgets in all types of user 

interfaces. It is hard to see a user interface without these two widgets. Therefore, these two 

widgets are more representative than others. Second, button and textbox are two very intuitive 
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user interface widgets. It does not require training to know how to operate these two widgets. To 

reduce the number of variables, all widgets are in the shape of rectangle. 

Framework of User Interface 

The satisfaction aspect of usability is also influenced by the dimensions of user 

interfaces. Since Phase I of the research only evaluates from the static view of a user interface, 

related settings of user interface framework are dimensions and background color of user 

interface. The settings of user interface framework need to be as simple as possible to reduce the 

complexity of the Phase I modeling. The perceived dimensions of user interface framework are 

dependent on screen resolution, screen size and pixel size. User interface framework of Phase I 

modeling is 400×300 pixels on a 15 inches screen with 2880×1800 resolution. The background 

color is set as white to maximally reduce the effect of individual’s preference. 

Generation of User Interface 

To collect satisfaction data for classifier training, sample user interfaces are needed for 

participants’ subjective ratings. Generation of sample user interfaces consists of layouts of each 

widget. The central position of each widget is randomized within the range of the user interface 

framework. It may lead to widget’s overlapping with the boundary of user interface, which can 

be used to study extreme conditions for the design of user interface static view. The dimensions 

of each widget are randomized within the range of 100 by 100 pixels. The reason to limit the 

dimensions of widget is to collect data of higher density in feature space in order to generate 

more statistics results, since the goal of Phase I modeling is to build satisfaction evaluation 

method, not to find out the optimal dimensions for user interface widgets. Generation of user 

interface does not avoid extreme conditions of user interface design such as overlapping but the 

generation process will guarantee at least part of each widget can be shown to the participants. 
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3.2.2 Other Components of Phase I modeling 

Features 

There might be many features or combinations of different features influencing the 

evaluation of satisfaction. When manually selecting features of a user interface, only the most 

important features can be included. Most important features should be able to decide the 

framework of a user interface and reflect a large proportion of static view of a user interface. 

Therefore, layout of the user interface including dimension and position of each widget is 

selected as features of interest for Phase I modeling. Features like color, which are strongly 

influenced by individual’s preference, are not included. Each widget takes a four dimensional 

space in the feature vector, namely horizontal position, vertical position, horizontal dimension 

and vertical dimension. The total dimensionality of feature vector depends on the number of 

widgets on user interface. 

Satisfaction Levels 

Phase I model evaluates satisfaction of a user interface with a quantitative continuous 

scale ranging from 0 to 100, representing the satisfaction level from low to high. Since the datum 

line of different individuals might be different, absolute values of raw data need to be normalized 

in order to compare with each other. Normalization is performed with the satisfaction evaluation 

of the same five user interfaces. No user interface examples are provided to normalize 

satisfaction evaluation scores.  

Implementation Methods 

Support vector machine is selected as the implementation method of Phase I modeling. 

Feature vectors 𝑋 and labels 𝑌 are used to train the classifier. 
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 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] 3-1 

 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑛] 3-2 

Support vector machine classifies data points through a separating hyperplane. There may 

exist more than one hyperplane, which can separate training data. The “gap” between two groups 

of training data can be used as performance measurement for classification. This “gap” can be 

represented as the distance between hyperplane and closest point of data on both sides. Optimal 

hyperplane is the hyperplane that maximizes this distance. Support vector machine can be 

mathematically formulated as: 

1

𝑚
∑ 𝑙(ω ⋅ 𝑥𝑖 + 𝑏, 𝑦𝑖)

𝑚

𝑖=1

+ ||ω||
2
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑚𝑖𝑛𝑖|ω ⋅ 𝑥𝑖| = 1 

3-3 

 

Feature vector 𝑋 consists of layout of each widget and label 𝑌 refers to the satisfaction 

subjective rating.  

  



 39 

3.3 Implementation of Phase I Modeling 

3.3.1 Data Collection 

38 participants from 18 to 26 years old University of Michigan students were recruited 

through emails in three batches to participate in the one-hour user interface evaluation study. 

Participants are from group of normal novice users. Recruited participants are required to have 

three years of experience of using any user interface on computer based information system. 

Participants should not have participated in the research before or have any usability evaluation 

experience. 3 subjects were initially recruited to test data collection user interface. 25 subjects’ 

data were used as training data for the layout study and 5 subjects’ data were used as verification 

data. Another 5 subjects’ data were used to perform secondary study. Each subject was told to 

provide evaluation on 105 randomly generated prompted user interfaces with white background 

in gray scale of 400 × 300 pixels including button and textbox based on their satisfaction level 

of user interface. Each subject was required to drag an evaluation bar to indicate their satisfaction 

level to the user interface. Evaluation bar ranges from 0 to 100 referring to satisfaction level low 

to high. User interface of Phase I data collection is as shown in Figure 3-2. 
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Figure 3-2: User interface for Phase I data collection 

Collected data were divided into four cases. Each case contains different number of 

widgets as shown in Table 3-1. 

Case Number 
Number of widgets 

in user interface 

Feature vector 

dimensionality 

Number of user interfaces 

of the case 

A 2 8 100 

B 4 16 800 

C 8 32 800 

D 16 64 800 

Table 3-1: User interface of Phase I model training data 

For example, in case B the number of widgets is four. Each widget needs to be 

represented with horizontal position, vertical position, horizontal dimension and vertical 

dimension so that the total dimensionality of Case B is 16. 800 user interfaces with labels of 
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satisfaction are used as training data to tune parameters of classifier. An example of user 

interface for each case is shown in Figure 3-3. 

 

Figure 3-3: User interface example for four cases. Upper left: Case A; Upper right: Case 

B; Lower left: Case C; Lower right: Case D. 

3.3.2 Normalization 

At least five user interfaces are the same for all participants. These user interfaces’ 

satisfaction ratings are used to perform data normalization and calibrate datum line of different 

participants. Participants are not told which user interfaces will be used for normalization. 

Normalized satisfaction evaluation results may exceed the upper limit of 100.  
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3.3.3 Model Training 

Distribution Examination 

Continuous scale of satisfaction evaluation provides freedom to select the position of 

classification. Before implementing support vector machine to classify, distribution of calibrated 

data are examined and possible classification positions are selected to insert a separating 

hyperplane. Separating hyperplane should avoid high density area since it cannot generate a 

well-defined boundary for different groups. Therefore, all the local minimum of satisfaction 

distribution are examined and classified with support vector machine training process. This is 

general principle to select classification boundary. In actual implementation of support vector 

machine, selection of classification boundary will be addressed on case basis. 

Training Classifier with Support Vector Machine 

Support vector machine can well classify linearly separable data points. For linearly 

inseparable data points, support vector machine needs to perform some adjustments based on the 

degree of linear inseparability. 

Three methods of support vector machine family are tried in sequence to train classifiers.  

These three methods are: 

1. Linear support vector machine 

2. Soft margin support vector machine 

3. Kernelized support vector machine 

First, linear support vector machine method is always used first to classify linear 

separable data. If collected data is not linear separable, soft margin support vector machine is the 

next attempt. Soft margin support vector machine allows incorrect classification in training data. 

It has good classification performance with fuzzy boundaries. At last, if groups of data points not 
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only have fuzzy boundaries but also mixed together, kernel function is involved to increase the 

dimensionality of sample space. Kernelization tricks is powerful in making linearly inseparable 

data points linearly separable at cost of increasing required size of training data otherwise may 

lead to overfitting. Therefore, kernel function needs to be carefully selected and tested. There are 

many different types kernel functions. Phase I model makes the following kernel function 

attempts when implementing kernelized support vector machine method. These kernel functions 

are most widely used and best performance them will be selected to tune classifier parameters: 

a) Linear kernel function: 

 𝐾(v1, v2) =< 𝑣1, 𝑣2 > 3-4 

b) polynomial kernel function: 

 𝐾(𝑣1, 𝑣2) = (𝛾 < 𝑣1, 𝑣2 > +𝑐)𝑛 3-5 

c) Radius basis function: 

 𝐾(𝑣1, 𝑣2) = eγ||v1−v2||
2

 3-6 

d) Sigmoid function: 

 𝐾(𝑣1, 𝑣2) = 𝑡𝑎𝑛ℎ(γ < v1, v2 > +c) 3-7 

e) Gaussian function 

 

𝐾(𝑣1, 𝑣2) = 𝑒
−

||𝑣1−𝑣2||
2

2

2σ2  

3-8 

 

3.3.4 Verification 

Verification study is conducted on four formal cases of Phase I evaluation model. Five 

participants’ data are inserted to be tested in trained model. Classification accuracy rate is used to 

measure the performance of the classifier. Overfitting may be found during verification in view 
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of bad classification performance. In this case, support vector machine objective function may be 

adjusted through adding an extra term to penalize the number of parameters. 
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Chapter 4 Phase I Results and Discussions 

Chapter Summary 

This Chapter presents the training results of classifier and a discussion about Phase I 

modeling. It firstly presents classification results of four cases of Phase I evaluation model 

individually. Then a verification study of classification model is conducted. After verification, 

findings and discussions of Phase I modeling are introduced. 

4.1 Classification Results 

4.1.1 Overview of Classifiers’ Training Results 

Classification results are summarized in Table 4-1. After attempts to all the local 

minimum area of distribution of satisfaction ratings, two to three categories can be classified for 

all cases. Other possible classification positions are either inseparable with five kernelization 

methods mentioned above or of low predictive classification accuracy. 
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Case 
Number of classified 

categories 
Methods Kernel function 

A 3 Kernelized SVM RBF 

B 3 Kernelized SVM RBF 

C 2 Kernelized SVM RBF 

D 2 Kernelized SVM Gaussian 

Table 4-1:Summary of Phase I classification results. 

From Table 4-1, it can be noticed that all the cases of classifiers implement kernelized 

support vector machine method, which means all the satisfaction data points are not linearly 

separable. After testing five candidate kernel functions, Case A, B and C implements RBF kernel 

function and Case D implements Gaussian kernel function to achieve best predictive 

classification accuracy. In the following, four cases of classifiers are discussed in detail.  
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4.1.2 Case A Classifier 

Training data distribution of Phase I evaluation model of Case A is summarized in Figure 

4-1. As mentioned in Chapter 3, all local minimum areas of distribution density are candidate 

places to insert separating hyperplanes. 

 
Figure 4-1: Case A data distribution. X-axis indicates usability evaluation ratings and Y-

axis indicates the number of participants under some range of ratings 

Therefore, support vector machine methods are implemented to classify the area around 

30-40 and 70-80 intervals, since local minimum area of 50-60 has low predictive accuracy rate of 

verification. There are two possible options to implement support vector machine method. 

1. Data points within 30-40 and 70-80 intervals are eliminated to avoid fuzzy 

boundaries between groups while tolerance value 𝐶 of support vector machine is 

set to be less than 1 , which means the classifier allows mistakenly classified data. 
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2. It is also applicable to find two exact numbers within interval of 30-40 and 70-80 

as classification position. The tolerance value 𝐶 of support vector machine is set 

to be 1 ,which does not allow any mistakenly classified data around boundaries. 

The advantage of the second option is the inclusion of two intervals’ data and is more 

scientifically rigorous. However, since the measurement accuracy of subjective rating is 

unknown, it is hard to select one value within interval over others. Also, Inclusion of two 

intervals’ data might not be able to improve the predictive classification performance but lead to 

fuzzy boundaries. Therefore, option 1 is easier to implement in comparison with options 2. Case 

A study implements option 1. 

After the training of classifier, verification test is conducted. The verification data of 

Case A consists of 20 user interfaces. Among 20 test cases, four of them are mistakenly 

predicted and the prediction accuracy rate is 80%. 
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4.1.3 Case B Classifier 

Training data distribution of Phase I evaluation model of Case B is summarized in Figure 

4-2. Local minimum area is the interval of 10-20. Using the interval of 10-20 as the classification 

point may not be proper since in comparison with other intervals of data, its density value is high 

which might not provide a clear boundary. Also, if applying option 2 implementation method, 

exclusion of data within interval of 10-20 causes a large amount of data loss. 

 
Figure 4-2: Case B data distribution 

Considering the problems mentioned above, adjustment of classification position 

selection is made. In Case B, classification positions are selected within the big range of data 

sparsity namely long range of interval without data points in it. Similar to selecting local 

minimum areas, the selection of method also aims to provide clean boundaries between groups. 
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Based on the discussion above, separate hyperplane is placed at evaluation scores of 30 

(28-33) and 80 (78-85). The first group ranges from evaluation score of 0 to 30. The second 

group ranges from evaluation score of 30 to 80. And the third group ranges from 80 to 100. 

Tolerance value C of support vector machine is set to be 1, which does not allow any mistaken 

classified data during the process of training.  

After the training of the classifier, verification test is conducted. The verification data of 

Case B consists of 160 user interfaces. Among 160 test cases, thirteen of them are mistakenly 

predicted and the prediction accuracy rate is 91.9%. 
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4.1.4 Case C Classifier 

Training data distribution of Phase I evaluation model of Case C is summarized in Figure 

4-3. Local minimum areas are the intervals of 10-20, 50-60 and 80-90.  

 
Figure 4-3: Case C data distribution 

Though interval of 80-90 is a local minimum area, its density is about the same level as 

the both adjacent intervals. Therefore, separating hyperplane is placed at interval of 30-40 and 

interval of 50-60. Second option of support vector machine implementation is selected.  

After the classifier is found, verification test is conducted. The size of verification data is 

160. Among 160 test cases, 3 of them are mistakenly predicted. Therefore the prediction rate is 

98.1%.  
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One thing to notice is that the distribution of Case C training data is right skewed. As 

mentioned previously, user interfaces of training data are generated through randomly layout 

widgets. With the number of widgets increases, the chance of generating user interface with high 

satisfaction evaluation becomes low, which also explains the asymmetric of Case C training data 

distribution. When the total number of widgets reaches 16, this asymmetric of training data 

distribution becomes more severe, Therefore, in Case D, extreme conditions including 

overlapping or edge cutting are manually eliminated. 
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4.1.5 Case D Classifier 

Training data distribution of Phase I evaluation model of Case D is summarized in Figure 

4-4. Local minimum areas are the intervals of 20-30, 40-50, 60-70 and 80-90.  

 
Figure 4-4: Case D data distribution 

Though intervals of 20-30, 40-50 and 80-90 are local minimum areas, their densities are 

about the same level as the both adjacent intervals. 

Separating hyperplane is placed at evaluation scores of 60-70. The first group ranges 

from interval of 0-60. The second group ranges from interval of 70 to 100.  
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After classifier is found, verification test is conducted. The size of verification data is 

160. Among 160 test cases, three of them are mistakenly predicted. Therefore the prediction rate 

is 98.1%. 
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4.2 Findings and Discussions 

In this section, findings and discussions of Phase I modeling are introduced from four 

aspects: data collection, training process, training result and implications of user interface design. 

4.2.1 Training Data 

 

Figure 4-5: Case A, B and C satisfaction training data 

In comparison with the distribution of collected data of Cases A, B and C, it is easy to 

notice that all these distributions are right skewed. Case D is excluded since extreme conditions 

of Case D are eliminated. Besides, with the increasing number of the widgets on the user 

interface, this right skewed characteristics becomes serious as shown in Figure 4-5. User 

interfaces of Phase I training data are all generated by computer through randomly laid out 

widgets on user interfaces, which means high satisfaction user interfaces are not uniformly 

distributed with the number of widgets on user interface. In other words, user interfaces with 

more widgets are harder to design. This fact raises two questions to researchers: 

1. How to explain why high satisfaction user interface design with more number of 

widgets is harder to generate? 

2. How to properly generate user interfaces for data collection to obtain symmetric data 

sets? 
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For the first question, a probabilistic model can be used to give estimation of difficulty 

level of user interface with different number of widgets. Considering design of user interface as a 

process of laying out widgets on a user interface, then for an empty user interface the probability 

to put first widget on an empty user interface within area of 𝑊1 in order to maintain the 

satisfaction level  𝑆 ≥ 𝑠 is : 

 𝑃1 = 𝑃(𝑤1 ∈ 𝑊1|𝑆 ≥  𝑠) 4-1 

For the second widget, the probability to put second widget on an user interface with a 

widget within area of 𝑊2 in order to maintain the satisfaction level  𝑆 ≥ 𝑠 is : 

 𝑃2 = 𝑃(𝑤2 ∈ 𝑊2|𝑆 ≥ 𝑠, 𝑤1 ∈ 𝑊1) 4-2 

Therefore, the total probability to generate user interface with satisfaction level  𝑆 ≥ 𝑠 is: 

 𝑷𝑺 = ∏ 𝑃(𝑤𝑖 ∈ 𝑊𝑖|𝑆 ≥ 𝑠, 𝑤1 ∈ 𝑊1, . . . , 𝑤𝑖−1 ∈ 𝑊𝑖−1)

𝑖=1

 
4-3 

Since 𝑃𝑖 ≥ 𝑃𝑖+1, when the number of widgets increases, generation of high satisfaction user 

interface decreases even faster. 

The biggest barrier for the second question is the lack of user interfaces with high 

satisfaction levels.  In this research, it has been proved that randomly generation of user interface 

has low efficiency to produce user interface with high satisfaction level. It is necessary to have 

an algorithm to generate user interface while receiving feedback and assimilating experience 

from human participants. A possible future research could be combining support vector machine 

with reinforcement learning method. As mentioned in Literature Review,  reinforcement learning 

method learns to act based on environment feedback. Generating user interface for participants is 

a process of laying out widgets on a user interface. Agent of reinforcement learning makes action 

to lay out widgets with different positions and dimensions. Support vector machine serves as 
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environment to provide feedback to agent. Relationship among participants, agent of 

reinforcement learning and support vector machine is as shown in Figure 4-6. 

 

Figure 4-6: Future research for data collection 

This will not only make the data collection process of support vector machine faster but 

also build a user interface designer with reinforcement learning method that can directly benefit 

to user interface design and serve as good tool to verify results of support vector machine. 

4.2.2 Training Process 

During the training process, it has been mentioned in implementation method that all 

local minimum areas need to be examined. However, during actual implementation of Case B, 

separating hyperplane is selected within the big range of data sparsity namely long range of 

interval without data points in it. This selection is essentially the same as the local minimum area 

method. They both aim to insert a separating hyperplane where it has lower density of data 

points so that the boundaries of different groups will be clean and easy to analyze. 

4.2.3 Training Result 

It is important to first discuss what have been done in Phase I research. In one sentence, 

Phase I modeling classifies the satisfaction aspect of usability with feature vector consisting of 

dimensions and positions. With simplification of user interface and limited number of user 
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interface features included, Phase I modeling is immature to be directly used for currently using 

real world user interface. The real value of Phase I model is to explore a way to use kernel 

functions to study the factors that may influence the satisfaction level.  

Kernel function is used to solve non-linear classification problem through involving new 

dimensions. In other words, its essential meaning is to use kernel function to re-combine the 

features of interest so that the internal connections between different features will appear. 

For example, in this research, Cases A, B and C of best performance with support vector 

machine RBF kernel function is not a coincidence. In the selection features to be included in 

feature vector, dimensions and positions are involved. RBF kernel function is a function whose 

values are only dependent on the distance to original point. With Euclidean distance, 

independent features of horizontal position 𝑥 and vertical position 𝑦 are combined into RBF 

function input √𝑥2 + 𝑦2 which makes RBF function suitable to be used to implement distance 

related features of user interface. It also answers why RBF kernel function has the best 

classification performance.  

This research only involves dimension and position features establishing possible 

connection to RBF function. In future research, more connections between user interface features 

and kernel functions can be established. It will be very beneficial from these connections. On one 

side, kernel function can be directly used to classify related features for user interface attributes 

of interest as is performed in this research. On the other side, this connection can serves as a 

basis to quantitatively study the design of user interface. 

Another issue worth mentioning is the necessary number of categories used for usability 

subjective ratings. Although during the data collection, continuous scale of evaluation data is 

collected, it is very hard to find more than four gaps to insert separating hyperplane for more 
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detailed classification. Based on the classification results of this research, more than three 

categories of satisfaction subjective rating may be unnecessary. Some categories might be trivial 

or can be combined with adjacent categories.  

4.2.4 Implications for User Interface Design 

This section introduces some design implications based on the Phase I modeling results 

from general implications to detailed implications. 

1. Avoid obvious usability issues 

From the classification results, it can be noticed that within classification group 

long range of satisfaction scores are not separable, which means as long as user interface 

does not have obvious usability issues normal users cannot sense the difference of small 

changes. 

2. Widgets closer to upper left corner has higher satisfaction level 

As discussed above, Case A, B and C implements RBF kernel function, which is 

suitable to perform distance related feature analysis. Based on the classification results, 

smaller values of kernel function result higher satisfaction scores. Therefore, it can be 

inferred that widgets closer to upper left corner has higher satisfaction levels. 

3. Features satisfaction sensitivities ranked from high to low are vertical dimensions, 

horizontal dimensions, horizontal positions and vertical positions.  

Based on the analysis of feature coefficients for all cases, sensitivities of feature 

satisfaction are ranked as above. It represents with each unit feature change how much it 

influences the satisfaction level. Coefficients of vertical dimensions are higher than 

horizontal dimensions in three of the four cases. Coefficients of horizontal dimensions 
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are higher than horizontal positions in all cases. Coefficient of horizontal positions and 

vertical positions are about the same. 
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Chapter 5 Phase II Computational Modeling and Experiment 

Chapter Summary 

This chapter introduces the objectives and challenges of modeling including research 

motivation and expectation. Then model description is introduced to provide a framework of 

Phase II evaluation. Lastly, it describes in detail the implementation methods including four 

components of interaction simulation, data collection and evaluation method. 

5.1 Objectives and Challenges of Phase II Evaluation Model 

5.1.1 Objectives of Phase II Modeling 

 

Generally, the practically significant purpose or primary goal of user interface evaluation 

is to find out usability issues. In practice, most of the usability issues are found in observing 

interaction process between user and interface. Even for heuristic evaluation, most of its 

heuristics and design guidelines still need to learn and summarize observation results of user-

interface interaction. Thus, it is believed that focusing on interaction process is a fundamental 

way to perform user interface evaluation. This does not seperate “interaction-based” user 

interface evaluation methods from others. But in the aspects of digging out new usability issues 

and adapting to different kinds of user interfaces, the “interaction-based” user interface 

evaluation is irreplaceable.  
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“Interaction-based” user interface evaluation is a subset of user-centered evaluation or 

empirical usability testing and therefore inherits the disadvantages that these methods share: 

expensive and time consuming. Cost of recruiting participants, performing experiment and 

analyzing feedbacks consumes a large amount of money and labor. It is needed to create a 

computational model that is capable of interacting with user interface and completing well- 

defined tasks on user interfaces to save the resources and shorten the evaluation period.  

 

Figure 5-1: Objectives of Phase II user interface evaluation, interaction analysis, usability 

evaluation and design suggestions are organized in a hierarchy way. Interaction analysis serves 

as the foundation of usability evaluation. Design suggestions are based on the result of usability 

evaluation. Dashed lines represent the methodology applied to achieve each objective. 

Specifically, the objective of Phase II user interface evaluation is to build a simplified 

and useful computational model that simulates user-interface interaction in a form suitable for 

analyzing human-computer interaction, performing usability evaluation and providing user 

interface design suggestions, as shown in Figure 5-1. As mentioned earlier, the most important 

part of user interface design is to understand the interaction process. Phase II evaluation method 

evaluates user interface through evaluating the interaction process. However, the interaction 

process is a complicated behavior involving many cognitive activities that have not been 
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thoroughly studied. Inclusion of too much details in modeling makes the generated result hard to 

analyze and assimilate. Phase II evaluation model, like other simulation models, generates 

prediction results in addition to producing evaluation results. The prediction result of Phase II 

evaluation model is the trace of interaction in time domain for a specific task. Trace refers to a 

list of actions that users perform for a specific task including all relative action reproduceable 

information for the task. Simulated interaction trace helps to observe and understand human-

computer interaction process corresponding to the goal of “analyzing human-computer 

interaction”. Performing usability evaluation requires the model being able to compare user 

interfaces with different levels of usability. Providing user interface design suggestions requires 

the model being able to actively suggest improved designs of user interfaces based on the 

original design. Suggesting good designs of user interface does not mean generating 

mathematically converged optimized design result but refer to improve usability of the original 

design of the user interface with adjustments based on the simulated trace of interaction.  

5.1.2 Challenges of Phase II Modeling 

There are three main challenges involved in achieving the objectives mentioned above. 

These challenges are not only barriers but also lead to the key contributions of this research. In 

the following, three challenges are introduced. How these challenges are solved will be 

addressed in the implementation of Phase II modeling. 

The first challenge in Phase II evaluation model is to set up proper reward function 

considering both task completion and human factors. To apply reinforcement learning method, it 

is usually required to have a clear goal. For the majority of applications of reinforcement 

learning, there is a compelling reward or reward function based on this clearly defined goal to 

describe desired action or expected behavior. In user interface interaction, the goal is to complete 
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interaction task through cursor navigation and button click. However, setting reward function 

based on this straightforward goal will lead to a “perfect” interaction since discounting factor in 

reinforcement learning method leads navigation path to a shortest path. Different from many 

other reinforcement learning applications, Phase II evaluation model does not aim at improving 

the  performance of machines in interaction tasks but acting imperfectly as real humans. In the 

human-interface interaction, humans do not always perform the best strategy or policy to 

complete a task. Cursors might go along with an irrational strategy a trivial loop or pass the 

target button without pressing. How to properly involving or modeling those human factors 

becomes the first barrier of the Phase II research. 

The second challenge in Phase II evaluation model is how to describe the influence of 

different widgets on human interface interaction. User interface consists of different widgets. 

Those widgets work together and produce effects on human’s behavior. Size, position and other 

physical characteristics might cause different influences. What makes it more complicated is that 

the influence of these widgets might change over time. For example, when target widget is not 

decided, all widgets impose the same amount of influence on human’s interaction. Gradually, 

when users figure out the target widget, the influence of target widget may increase and that of 

non-target widget may decrease. Thus, second challenge requires modeling proper distribution of 

rewards describe single widget’s influence on user interaction behavior. 

The third challenge in Phase II evaluation model is how to perform evaluation with 

simulated interactions. After generating simulation interaction trace of user interface, there is no 

existing method to extract information from interaction as a base for user interface adjustment 

for usability improvement. The simulated trace of interaction now serves as raw input for user 
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interface evaluation. The problem is how to properly manage these traces of interaction to 

evaluate the efficiency aspect of usability.  
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5.2 Model Description 

5.2.1 Overview of Phase II Modeling 

User interface interaction involves a two-way communication between human and user 

interface. Human users take information from user interface as an input, cognitively process the 

information and generate actions on user interface as output. There are many researches working 

on bridging input information and output actions through modeling related cognitive activities 

and simulating and predicting human interface interaction such as MHP and ACTR modeling. A 

question is then raised that whether it is possible to directly bridge the gap between input 

information and output actions minimizing cognitive modeling in simulating user interface 

interaction as shown in Figure 5-2.  

 

Figure 5-2: Bridge the gap between user interface  

and interaction directly 

Cognitive modeling has special advantage in explaining what happens in human’s mental world 

but does not take full advantage of observed interaction results. In Phase II evaluation model, it 

minimizes cognitive modeling and only cares observed interaction results. It believes that 

different levels of cognitive activities will show difference in interaction results. For example, if 
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hesitation occurs during interaction, cursor shows different path pattern with that of normal use. 

Therefore Phase II model simulates interaction from user interface and task directly without 

including cognitive modeling. 

5.2.2 Assumptions of Phase II Modeling 

Phase II research selectively makes some proper assumptions and reasonable 

simplifications to enable model to generate useful results. In the following, it will introduce 

assumptions the Phase II modeling. 

The first assumption of Phase II evaluation modeling is that user interface interaction is 

assumed to be a Markov Chain Process characterized with memorylessness. Future user interface 

interaction is only determined by current state of interaction. Previous interaction path and 

actions will have no effect on future interaction path and actions. Mathematically shown as 

equation 5-1, 

 𝑃𝑟(Xn+1 = x | X1 = x1, X2 = x2, ⋯ , Xn = xn) = 𝑃𝑟(𝑋𝑛+1 = 𝑥 |𝑋𝑛 = 𝑥𝑛)  (5-1) 

This assumption practically fits the feature of user interface interaction. User interface 

interaction is a goal orient task. Users’ past interaction will not influence the way how they 

complete task in the future. In other words, users do not try to avoid or repeat their past actions 

and do not care about these past actions at all. They interact with user interface and achieve 

target goal as if cursor is initially in the current position. Therefore, in Phase II evaluation model 

next action is only determined by displayed user interface and current cursor position.  

The second assumption is in Phase II evaluation model user interface interaction is 

assumed to a discrete time task. When modeling trace of interaction, there are two possibilities, 

in continuous time domain and in discrete time domain. Continuous time modeling has 

advantage in researching on interaction policy. Discrete time modeling has advantage in 
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researching on action value or state value of interaction. Policy refers to strategy to complete a 

task. Action refers to each step of completing a task. For example, for a task of navigating from 

Button A to Button B on a user interface, Figure 5-3 

 

Figure 5-3: Left figure a) refers to continuous time interaction model and right figure b) refers to 

discrete time interaction model. 

In continuous time model, each policy is indivisible is the smallest unit to research on. 

Navigation traces, solid line and dashed line, from Button A to Button B shown on Figure 5-2-a  

are two specific policies to complete task. Human operators take navigation from Button A to 

Button B as one output action. In discrete model, interaction is decomposed to five navigation 

actions: move up, move down, move left, move right, stay and a decision making action: click. If 

the step width of navigation action is small enough, the navigation path of discrete time model 

has negligible difference with that of continuous time model. And discrete time model has 

advantages over continuous model in modeling user interface interaction. Continuous model 

focuses on interaction policy and try to research on human interaction pattern on policy level. 

Under the condition of lack of enough experimental data, it cannot obtain reliable results. Also, 

staying on policy level to research on interaction pattern ignores many details of interaction. If an 
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interaction trace is regarded as a good result of interaction then the whole trace of interaction is 

regarded to be good but what part of interaction trace really works and contributes cannot be 

analyzed.  

The third assumption of Phase II evaluation model is that interaction between human and 

interface is a series of goal oriented careful actions, which means it does not include aimless 

operations on user interface. In real world use of user interface, it happens that human users 

generate irrational or non-goal oriented actions. An example of non-goal oriented action was 

found in early stage of data collection. At the beginning of data collection, a user interface 

including cursor is shown to participants and asks participants to complete tasks. After 

completion of the task, participants repeat this process for multiple rounds. The problem happens 

each time when user interface was just shown to participants. Some participant has a habit of 

shaking cursor in order to find cursor position. This shaking action is irrelevant to user interface 

itself and somehow influences learning process of agent’s interaction. In the later experiment of 

user interface interaction, cursor position is always shown to participants to avoid unnecessary 

actions. Therefore, in the evaluation model of Phase II, we try to only model interaction related 

to tasks. More details will be mentioned in experiment design. 

Two user interface interaction issues excluded from Phase II evaluation model are also worth 

mentioning. 

1. Error: Phase II evaluation model does not model errors, including errors due to decision 

making and errors due to misconduct. Errors due to decision making always involves 

complicated cognitive activities. Errors due to misconduct might be related to user 

interface design. However, this design issue can be reflected through observing 

interaction result of successful completion of task.  
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2. Linguistics and semiotics: Labels of widget plays an important role in user interface 

design. In the user interface design, language and symbol are most commonly used to 

label a widget. Human users need to understand these labels to be able to properly 

operate on a user interface. However, understanding label and making decision based on 

label content requires a series of cognitive processing. Linguistics and semiotics are too 

big topics to be discussed. Research about what are proper labels for a user interface 

widget to improve usability is beyond the scope of this research. Therefore, in the scope 

of the Phase II evaluation model widget is only labeled with one capitalized English letter 

avoiding influence from linguistic and semiotics aspects.  

5.2.3 Structure of Phase II Modeling 

Figure 5-4 shows the model structure of Phase II evaluation method. From the user 

interface to user interface evaluation, it goes through three main steps of interaction simulation, 

quantity analysis, user interface evaluation and manipulation.  

 

Figure 5-4: Phase II evaluation model structure.  

In interaction simulation, an agent learns to use interface through interaction and 

feedback from environment. The motivation of agent is to maximize total accumulative rewards. 

Rewards describe the expected behavior of agent. In Phase II evaluation model, expected 
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behaviors are first completion of task and second in a similar way to human users. The essential 

part of interaction is to properly set reward value to guide agent’s behavior.  

In the quantity analysis, simulated user interface interaction results are being analyzed to 

compare usability of different design of user interfaces. Since there is no single metric to 

measure all aspects of usability, Phase II evaluation model implement  different quantities and 

collect information from simulated user interface evaluation results to evaluate one aspect of a 

user interface usability. 

In the user interface manipulation, widgets of user interface are being manipulated at the 

aim of improve usability of interface based on quantities mentioned above. Since those quantities 

can only reflect one aspect of user interface usability and many factors of user interface design 

are highly correlated, unrestricted changes made to user interface may lead to extreme conditions. 

Therefore in user interface manipulation, restricted manipulation to user interface aims to receive 

usability improved interface. Unrestricted manipulation can help to find special design of user 

interface or innovate the future of user interface design.  

5.2.4 Components of Phase II Modeling 

In this section, different components of Phase II modeling are introduced. User interface 

and type widgets used in Phase II modeling are the same as Phase I modeling. Therefore, it is not 

repeated here.  

Different from Phase I evaluation method, Phase II Model emphasizes the importance of 

interaction during the user interface evaluation. The whole process does not directly implement 

human evaluation results as the basis but mimics human users’ interaction results as the 

evaluation basis, which makes it possible to jump out of the box evaluating a user interface. The 



 72 

core idea of reinforcement learning is trial-error learning. This process is similar to the learning 

process of humans. As indicated by Thorndike: 

“Of several responses made to the same situation, those which are accompanied or closely followed by 

satisfaction to the animal will, other things being equal, be more firmly connected with the situation, so that, 

when it recurs, they will be more likely to recur; those which are accompanied or closely followed by 

discomfort to the animal will, other things being equal, have their connections with that situation weakened, so 

that, when it recurs, they will be less likely to occur. The greater the satisfaction or discomfort, the greater the 

strengthening or weakening of the bond” (Thorndike, 1911, p.244) 

The learning process of reinforcement learning does not provide instructions directly. 

However, it adjusts or corrects agent’s behavior through a reward function and a value function.  

Starting with an agent interacting with a user interface and trying to complete task of 

clicking button A as shown in Figure 5-5. The Agent can choose one of six actions: Move up, 

Move down, Move right, Move Left, Stay and Click each round of action. Agent needs to firstly 

navigate to button A and secondly click button A to complete the task. If modeled with Q 

learning method,  reward values are shown in the Table 5-1. State of the agent refers to cursor 

position. Then it has a size of 400 by 300 pixels has 256400×300states. Under each state, agent 

can perform 6 actions. The framework of Q table is shown in Table 5-2. Each cell in Q table 

refers to action value of action 𝑎, 𝑄𝜋(𝑠, 𝑎), under policy 𝜋 at state 𝑠. Action value of action 𝑎 

represents for value to choose action 𝑎 under specific state. 
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Figure 5-5: Agent learns to interact with user  

interface. Without interaction data, interaction 

is like lattice random walk. 

 

Move Up Move Down Move Right Move Left Stay Click 

0 0 0 0 0 

+1: within gray circle 

-1: outside of gray circle 

  Table 5-1: Reward feedback from environment for a simple user interface interaction. 

States Move Up Move Down Move Right Move Left Stay Click 

1       

2       

⋯       

Table 5-2: Q table for interaction with user interface with one button. 

𝑄𝜋(𝑠, 𝑎) can be represented as the expected total rewards of future rewards. 

 𝑄𝜋(𝑠, 𝑎) = 𝑬[𝑟𝑡+1 + 𝜆𝑟𝑡+2 + 𝜆2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] (5-2) 

𝜆 is discounting factor to indicate action value discount in future. 𝜆 ranges from 0 to 1. The 

larger 𝜆 is, the more probably agent traverses to high reward position directly. The smaller 𝜆 is, 
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the more probably agent traverses as many as non-zero reward position. Using Bellman function, 

action value function can be expressed as 

 𝑄𝜋(𝑠, 𝑎) = 𝑬𝐬′  [𝑟 + 𝜆 𝑄𝜋(𝑠′, 𝑎′)|𝑠, 𝑎] (5-3) 

During the process of interacting with user interface, agent updates Q table to find out true action 

value under each state. 

 𝑄(𝑠𝑡, 𝑎𝑡) ⟵ 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝜆 max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)) (5-4) 

𝛼 ∈ (0,1) refers to stepwise to update Q table since during learning process expressing 

𝑄𝜋(𝑠′, 𝑎′) with 𝑚𝑎x𝑎𝑄(𝑠𝑡+1, 𝑎) is an approximation. Therefore, each time update Q table, 

action value only moves towards true value by step width 𝛼. Each step of selecting actions, 𝜖 −

𝑔𝑟𝑒𝑒𝑑𝑦 is used for policy 𝜋. Under this policy, agent has probability of 1 − 𝜖 to select actions 

based on current Q table and probability of 𝜖 to select action randomly. This policy consider both 

of the exploration and exploitation. Exploitation keeps learning from interaction to obtain more 

accurate Q table value and exploration helps to update Q table and discover new policy.  

Modeling mentioned above is prototype at the beginning Phase II evaluation modeling. It 

generated some results and also reminds some places to improve. There are two important issues 

worth mentioning. Firstly, interaction model mentioned above has way too many states of 

interaction. It includes user interface into interaction states. On a user interface of gray scale with 

𝑛 × 𝑚 pixels, each pixel values from 0 to 255 in total of 256 possibilities. Then the total number 

of states reaches 256𝑛×𝑚. It may need to involve convolutional neural network to help pattern 

recognition which is very consuming. Its advantage is if successful it can provide a general 

interaction agent with all user types interfaces but also requires large computational capacity and 

sufficient data to support it. Therefore, rather than including user interface design into states of 

interaction, only cursor position is included in states of interaction and user interface is regarded 
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as interaction environment. Apparently, this model setting has disadvantage that every time user 

interface changes model needs to repeat learning process. However, it greatly reduces the 

computational workload. Secondly, it can be noticed that agent is a strictly rational and goal 

oriented operator. It hunts to gain more accumulative rewards. Except for providing positive 

reward feedback to agent for completing interaction task, it also needs to provide positive reward 

feedback to agent for actions that mimic human’s behavior. Otherwise, it could happen that 

providing proper discounting factor 𝜆 agent should theoretically be able to complete interaction 

task in a most efficient but robotic way which very rare human users navigate in. Phase II 

evaluation model is built based on prototype above. It has two parts: interaction simulation 

method and evaluation method. Interaction simulation serves as basis of evaluation and consist 

of four main components: action, reward function, value function and model of environment. We 

will firstly introduce four components of interaction simulation  

Model of Environment 

Phase II evaluation model takes pixel value of user interface as raw input in gray scale. 

Each pixel value ranges from 0 to 255. Model of environment is user interface with its widgets 

and does not include content information labeled on these widgets as shown in Figure 5-6.   
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Figure 5-6: User interface as the model of environment is a collection of user interface image 

pixels excluding content of widget labels. Model of environment can fully represent what users 

see on a user interface.  

Figure 5-6 left-side represents for original user interface and Figure 5-6 right represents for 

model of environment for agent to interact on. User interface has white background and each 

widget has clear border to indicate clickable area (to avoid the same color of background and 

widget and clickable area is not clear). Model of environment can be mathematically represented 

by a matrix of 𝑈. The dimension of 𝑈 is determined by the size of user interface. Each element 

of 𝑈 is the pixel value of user interface image. Usually matrix norms are used to measure the 

distance of matrices such as 𝑝 − 𝑛𝑜𝑟𝑚𝑠 shown as equation 5-5.  

 || ⋅ ||𝑝 = √∑ ∑ (𝑈1𝑖𝑗
− 𝑈2𝑖𝑗

)
𝑝

𝑚

𝑗=1

𝑛

𝑖=1

𝑝

 (5-5) 

Matrix norms are commonly used to reflect similarity between two interfaces. However, norms 

provide absolute values of distance between matrix. In Phase II evaluation model, we are looking 

for a percentage value of similarity. Therefore, we use a cosine value of matrix to describe the 

similarity between user interfaces as shown in equation 5-6. 
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𝐼 =
(∑ 𝑈1𝑖𝑗𝑖,𝑗 ⋅ 𝑈2𝑖𝑗

)
2

(∑ 𝑈1𝑖𝑗

2
𝑖,𝑗 ) × (∑ 𝑈2𝑖𝑗

2
𝑖,𝑗 )

 

(5-6) 

If user interface 𝑈1and 𝑈2 are exactly the same, then 𝐼 is equal to 1. The more different 𝑈1and 𝑈2 

are, the closer 𝐼 is to zero.  

Actions 

Agent has six possible actions to interact with user interface, Move up, Move down, Move left, 

Move right, Stay and Click. Agent interact with model of environment is under discrete time 

domain. Each step or unit of time, agent can choose one of the six actions. Each action made 

might cause state change and receive rewards. Expected actions made lead to positive rewards 

and unexpected actions made lead to negative rewards. Detailed information of actions is 

summarized in Table 5-3. Table 5-3 summarizes possible changes of state and possible rewards 

by each action.  

  



 78 

Actions State Reward 

Move up 

1. Horizontal position keeps the 

same. 
2. Vertical position -1 pixel to new 

state if current position of cursor 

is not adjacent to the upper 
border of user interface; vertical 

position keeps the same if current 

position of cursor is adjacent to 
the upper border of user interface. 

3. Interaction continues 

Positive rewards proportional to reward 

density at next state from collected human 

user interface interaction data. 

Move down 

1. Horizontal position keeps the 
same. 

2. Vertical position +1 pixel to new 

state if current position of cursor 
is not adjacent to the lower 

border of user interface; vertical 

position keeps the same if current 

position of cursor is adjacent to 

the lower border of user interface. 

3. Interaction continues 

Positive rewards proportional to reward 

density at next state from collected human 
user interface interaction data. 

Move Left 

1. Vertical position keeps the same. 
2. Horizontal position -1 pixel to 

new state if current position of 

cursor is not adjacent to the left 
border of user interface; vertical 

position keeps the same if current 
position of cursor is adjacent to 

the left border of user interface. 

3. Interaction continues 

Positive rewards proportional to reward 
density at next state from collected human 

user interface interaction data. 

Move Right 

1. Vertical position keeps the same. 
2. Horizontal position +1 pixel to 

new state if current position of 

cursor is not adjacent to the right 
border of user interface; vertical 

position keeps the same if current 

position of cursor is adjacent to 

the right border of user interface. 

3. Interaction continues 

Positive rewards proportional to reward 
density at next state from collected human 

user interface interaction data. 

Stay 

1. Horizontal position keeps the 
same. 

2. Vertical position keeps the same 

3. Interaction continuous 

Positive rewards proportional to reward 

density at current state from collected human 
user interface interaction data. 

Click 

1. Horizontal position keeps the 
same. 

2. Vertical position keeps the same 

3. Interaction stops if last target 
button is clicked; otherwise 

interaction continuous 

1. Positive rewards if acting on target 
button clickable zone in sequence. 

2. Otherwise negative rewards. 

Table 5-3: Agent’s possible actions and its related state change and reward received.  

From Table 5-3, it can be noticed that agent interaction with user interface only stops 

when clicking all target buttons in sequence. Otherwise agent keeps trying until success. One 

thing worth mentioned is action Stay. Action Stay is very special among one of the five 

navigation actions from two aspects: 

1. It does not lead any change in states; 

2. It can still gain rewards; 



 79 

The existence of action Stay seems useless but it is a necessary component to Phase II evaluation 

model for two reasons. 

1. In observing user interface interaction, it exists that cursor stays on a position. 

2. Action Stay helps model to measure time regardless of reward distribution. 

Phase II evaluation model is a discrete time model but is not measured real time. Measuring real 

interaction time is influenced by many factors such as cursor speed settings, DPI settings of 

mouse and screen resolution. Therefore, Phase II evaluation model uses action step as unit to 

measure time. Each step of action represents for a unit of time. Like a ticker-tape timer, Agent 

keeps making action with constant interval of ‘one step’ making. If printing a dot on cursor 

position of user interface after each action, connecting these dots generates the path of 

interaction. The speed of cursor at a position is inverse proportional to the density of dots at the 

position.  

 

Figure 5-7: Case without action Stay 

might lead different interaction results.  

Sign in each cell represents for reward. 
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Without action Stay, it might happen that cursor oscillates between high reward current position 

and  low reward adjacent position. This oscillation can also be used to approximate steps 

spending on one position but it influences and complicates reward settings on whole user 

interface. For example, a high positive reward position is surrounded by negative reward position 

as shown in Figure 5-7. Each cell represents a pixel on user interface. Sign in each represents for 

positive or negative reward. If agent has no option to stay, the reward to enter high reward 

position A becomes much lower since reduced reward by adjacent negative reward and 

discounted future rewards. Another concern is that if action Stay can keep gaining reward at the 

same position cursor can be trapped in a high reward position. Notice discounting factor 𝜆 is less 

than 1. The total rewards from non-target area is bounded by: 

 
∑ 𝜆𝑖−1

𝑖

𝑟𝑖 ≤
𝑚𝑎𝑥{𝑟𝑖}

1 − 𝜆
 

(5-7) 

Therefore, if target reward is properly set, cursor will not be trapped before task completion. 

More details about setting up rewards will be discussed in discussion of reward function. 

Reward function 

Reward function plays a very important role in reinforcement learning. Generally, reward 

function describes how agent should act or what are expected behaviors of agent. In Phase II 

evaluation model, two behaviors are praised: 1) Action that complete interaction task. 2) Action 

that mimics human’s behavior. Action that complete interaction task is straight to define. As long 

as agent chooses action Click action within the area of desired button, agent receives rewards. 

The problem is how to set proper rewards for agent acting in a similar way to humans. Question 

then becomes what can be regarded as similar to human’s behavior on a user interface interaction. 

Human user interface interaction has both properties of uncertainty and trend. On one side, 
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human user interface interaction cannot be expressed using a function or a curve. There exist 

individual differences in interaction habits. There also exists randomization within individual’s 

human interaction. The same interaction task performed by the same human user cannot obtained 

exactly the same interaction result. Therefore, user interface interaction has randomization 

process. On the side, human users can always complete task even though every time their 

interaction traces are not the same. It seems that there exists a trend to task completion. 

Phase II evaluation model has non-stochastic settings for target button reward function and 

stochastic settings for human behavior reward function. One thing to clarify is that interaction 

result is different with reward function. Reward function refers to desired or expected position 

that interaction might pass. Interaction result refers how agent or user actually interacts with user 

interface and may not pass all the positive reward positions. If discounting factor 𝜆 =  1, 

interaction results pass all positive reward positions. If factor 𝜆 <  1, interaction results may 

sacrifice present reward in exchange of long term rewards. To build stochastic reward functions 

for human behavior, human data of interaction result is required. However, to collect user 

interface interaction results under different states of cursor and different types of user interfaces 

is impossible. Required data size is too large to collect. A user interface of size 400 by 300 pixels 

requires 400 ⋅ 300 ⋅ 256400⋅300interaction data to cover human interaction under different 

conditions at least once. Therefore, it cannot be avoided to approximate undiscovered interaction 

states and model of environments’ interaction results.  

One way to approximate undiscovered interaction states and model of environments’ 

interaction result is to use data from the most similar task under a similar user interface and 

implement Monte Carlo method to find reward function. Similarities of tasks are measured using 

initial cursor position and the center of the target button position. Similarity of user interfaces is 
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determined by pixel matrix cosine value 𝐼. Suppose an interaction task is defined by initial 

position 𝑃 and end position 𝑄. Matrix cosine is 𝐼. An undiscovered interaction states and model 

of environments’ interaction result can be approximated with equation 5-8 and 5-9. 

 𝑇 = argmin 𝑇𝑖
||𝑃 − 𝑃𝑖|| + ||𝑄 − 𝑄𝑖|| (5-8) 

 

𝑈 = argmin 𝑈𝑘
𝐼 = argmin 𝑈𝑘

(∑ 𝑈𝑖𝑗𝑖,𝑗 ⋅ 𝑈𝑘𝑖𝑗
)

2

(∑ 𝑈𝑖𝑗
2

𝑖,𝑗 ) × (∑ 𝑈𝑘𝑖𝑗

2
𝑖,𝑗 )

 

(5-9) 

If 𝑇 and 𝑈 have at least one instant of intersection, intersection can be directly used as interaction 

result to set up reward function. This solution can generate accurate results under the condition 

of sufficient training data cover all conditions’ user interface interaction result but is also 

vulnerable to condition that has not been met. If the absolute value of min 𝑇𝑖
||𝑃 − 𝑃𝑖|| +

||𝑄 − 𝑄𝑖|| or min 𝑈𝑘

(∑ 𝑈𝑖𝑗𝑖,𝑗 ⋅𝑈𝑘𝑖𝑗
)

2

(∑ 𝑈𝑖𝑗
2

𝑖,𝑗 )×(∑ 𝑈𝑘𝑖𝑗
2

𝑖,𝑗 )
 is large, interaction results cannot provide useful guide to 

set up reward function or even misleading.  

The other way is to involve all the collected data of user interaction results to 

approximate undiscovered interaction states and model of environments’ interaction result. The 

problem of previous solution is that the most similar task and user interface might have bias 

which may mislead agent’s behavior. If user interface interaction can be approximated based on 

average of all interaction results, unsymmetrical effect or biased of collected interaction results 

can be canceled internally. This method does not require sufficient data to cover interaction 

results of all conditions and only requires symmetric sampling during data collection. 

Undiscovered  interaction result 𝐷 is expressed as combination of collected interaction results 𝐷𝑖 

as shown in equation 5-10. 
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 𝐷 = ∑ 𝛽𝑖

𝑖

𝐷𝑖 
(5-10) 

 𝐷𝑖 = 𝐼𝑖 ⋅ 𝑈𝑖 (5-11) 

 

Parameter 𝛽𝑖 represent for contribution of collected interaction result 𝐷𝑖 and are related to 

similarity of user interfaces and interaction tasks. 

 𝛽𝑖 ∝ 𝐼 (5-12) 

 
𝛽𝑖 ∝ 1 −

|𝑃𝑥−𝑃𝑖
𝑥|

𝑊
 and 𝛽𝑖 ∝ 1 −

|𝑃𝑦−𝑃𝑖
𝑦

|

𝐻
 

(5-13) 

 
𝛽𝑖 ∝ 1 −

|𝑄𝑥−𝑄𝑖
𝑥|

𝑊
 and 𝛽𝑖 ∝ 1 −

|𝑄𝑦−𝑄𝑖
𝑦

|

𝐻
 

(5-14) 

Besides, discounting factor 𝜆 can reduce the effect of misleading human interaction reward since 

the large ||𝑃 − 𝑃𝑖|| + ||𝑄 − 𝑄𝑖|| value increases cost to obtain human interaction rewards.  

For non-stochastic settings for target button reward, it requires properly setting up 

rewards for target button rewards to avoid failing to complete task since Phase II evaluation 

model does not model error. Suppose human interaction rewards are bounded by 𝑟 and target 

button reward is 𝑅𝑡𝑎𝑟𝑔𝑒𝑡. Then the total reward received from human interaction rewards is 

bounded by: 

 ∑ 𝑟1

𝑖

+ 𝜆𝑟2 + 𝜆2𝑟3 + ⋯ ≤ ∑ 𝑟

𝑖

+ 𝜆𝑟 + 𝜆2𝑟 ⋯ =
𝑟

1 − 𝜆
 

(5-15) 

The maximization reward from target button is: 

 𝜆||𝑃−𝑄||
1𝑅𝑡𝑎𝑟𝑔𝑒𝑡 (5-16) 

To guarantee the task completion, it needs to have: 

 𝜆||𝑃1−𝑃2||
1

+||𝑄1−𝑄2||
1𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ≥

𝑟

1 − 𝜆
⟹ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ≥

𝑟

𝜆||𝑃1−𝑃2||
1

+||𝑄1−𝑄2||
1(1 − 𝜆)

 
(5-17) 
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Since target button reward is 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 has highest positive reward, then the total rewards obtained 

by agent is bounded by: 

 
𝑅𝑡𝑜𝑡𝑎𝑙 ≤

1

1 − 𝜆
⋅ 𝑅𝑡𝑎𝑔𝑟𝑒𝑡 

(5-18) 

which means if all reward value 𝑟, 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 <  ∞ and 𝜆 ∈ (0,1) total rewards always converge. 

Example 

An example is provided to introduce how reward function is obtained. Suppose reward function 

for user interface A performing navigation task from Button A to Button B is needed as shown in  

 

Figure 5-8: User interface which needs  

to be assigned with reward function 

Three sets of training data B, C and D are implemented to provide reward function for user 

interface A and its task as shown from Figure 5-9 to Figure 5-11. 

 

Figure 5-9: Training data B 



 85 

 

Figure 5-10: Training data C 

 

Figure 5-11: Training data C 

After compare three sets of training data with user interface A, training data of B, C and D have 

different user interface similarities and task similarities with user interface A its task. Therefore, 

they have different contribution to user interface A and its task. 

 

Figure 5-12: Comparison to training data 



 86 

 

Figure 5-13: Contribution to user interface A and its task 

The contributions from training data B, C and D are based on equations from 5-9 to 5-14. 

Value function 

In the prototype mentioned previously, Q learning method is used to implement model and Q 

table is the core of Q learning method. Q table is a reference dictionary recording estimation of 

each action under different states. During interaction with model of environment, Q table is 

updated through approximating 𝑄𝜋(𝑠𝑡+1, 𝑎) as 𝑚𝑎x𝑎𝑄(𝑠𝑡+1, 𝑎) and moving towards true value 

by learning rate 𝛼. Q table is basically a mapping from (𝑠, 𝑎) to action value 𝑄𝜋(𝑠, 𝑎) under 

policy 𝜋. Deep Q network replaces Q table with neural network to generate Q value. Neural 

network has structure of nodes and layers. A neural network has an input layer, an output layer 

and hidden layers. Each layer consists of nodes. Each node connects with every node in next 

layer. Node value is equal to linear combination of previous layer with bias going through 

activation function. In general, neural network can be regarded as a function estimator based on 

inputs and outputs as shown in equation 5-19.  
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 (𝑠, 𝑎) ⟹ Neural network: 𝑓(⋅) ⟹ 𝑄(𝑠, 𝑎) (5-19) 

Action value can be then represented by: 

 𝐴𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = 𝑄(𝑠, 𝑎) = 𝑓(𝑠, 𝑎, 𝜔) (5-20) 

𝜔 represents for parameters of neural network. State 𝑠 is a of high dimensional in comparison 

with action 𝑎. To keep the neural network neat, input layer of neural network only includes states 

𝑠 and output layer of neural network generates a vector representing for values of actions. Then 

the neural network of Q value can be shown in equation 5-21. 

 𝑄(𝑠) = 𝑓(𝑠, 𝜔) (5-21) 

Using neural network rather than Q table to generate Q values has several benefits. First, neural 

network has better generality than Q table. Q table do not update Q table for state that has not 

been met before. When encountering new state, Q learning selects and executes action based on 

its initial value. Neural network can produce Q value based on parameter 𝜔 therefore has better 

chance to make better option. Second, neural network is neat and consistent in structure. When 

the total number of states have exponential growth, Q table becomes a very long 2D table  and is 

very difficult to build and update. Third, estimating Q value with neural network has good 

connection with convolution neural network for user interface evaluation of high dimensional 

sensory input. One challenge of neural network is model selection determining how many layers 

of neural network and how many nodes each. There is no clear rule corresponding to structure of 

neural network for specific type of problem. Some tests are necessary in training neural network 

for better results. In Phase II evaluation model, we use neural network with two hidden layers. 

Each layer has 10 nodes. To solve for parameters of neural network, RMS propagation method is 

implemented to minimize loss function. Similar to Q learning method, difference between target 

Q value and current value can be used as loss function.  
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𝐿(𝜔) = 𝐄 [(𝑟 + 𝜆 maxa'𝑄𝜋(𝑠′, 𝑎′, 𝜔) − 𝑄𝜋(𝑠, 𝑎, 𝜔))

2

] 
(5-22) 

Deep Q network uses experience replay updating parameters to get over data correlation and 

non-stationary distribution. While performing mini-batch stochastic gradient descent 

optimization, it assumes independence between sample data so that noise of data cancels within 

mini-batch. Neural network model as a supervised machine learning method also requires data 

with independent distribution. In reinforcement learning method sample data is correlated. While 

agent interacting with user interface, it stores (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into mini-batch and randomly 

choose data from mini-batch of 5 to train.  

5.3 Implementation Methods 

5.3.1 Data collection 

30 participants of 18 to 26 years old University of Michigan students were recruited through 

emails in three batches to participate in one hour user interface evaluation study. Participants are 

from group of normal novice users. Recruited participants are required to have three years’ 

experience of using any user interface on computer based information system. Participants 

should not have participated the research before or have any usability evaluation experience. 

Collected data was divided into two groups, 25 subjects’ data were used as training data for 

interaction simulation and 5 subjects’ data were used as verification data. Each subject was told 

to perform a user interface interaction task on a prompted user interface based on instruction on 

the screen. When experiment started, task instruction was shown on the bottom of the  

experiment window and an empty user interface with a free move cursor was shown on the top 

of the experiment window. When subject was ready, he/she left clicked mouse anywhere within 



 89 

the window to start. Every 20±1 milliseconds, cursor position was recorded as human interaction 

data. After subject successfully completed task, this trial of experiment ended. New trail of 

experiment showed up and repeated. Data collection user interface is as shown in Figure 5-14. 

 

Figure 5-14: Phase II data collection 

 user interface. 

5.3.2 Model Training 

Deep Q net work is implemented to train agent’s behavior. With assigned reward 

function on user interface and defined six possible actions, agent keeps interacting with user 

interface gaining feedback to update parameters of neural network in order to achieve maximum 

of total expected accumulative rewards. 
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5.3.3 Evaluation Quantity 

Four components mentioned above work together and generate simulated user interface 

interaction results. The remaining question is how to properly use generated interaction results to 

evaluate a user interface and makes adjustment to it to improve its usability. There does not exist 

a quantity or metric describe user interface usability from interaction results. Therefore, during 

data analysis we brainstormed following quantities to evaluate some aspects of usability.  

1. Number of learning episodes: Agent needs to learn how to interact with a user when it 

meets a user interface for first time. From initially random lattice walk to finally interact 

as expected, it goes through a long learning process. The length of learning process can to 

some degree reflect the learning difficulty to use interface.  

2. Interaction steps (Interaction time): Interaction steps is not a measure of total travel 

distance but a measure of time like a ticker-tape timer. On the same dimension user 

interface, interaction steps can reflect efficiency to complete interaction tasks. 

3. Proportion of action Stay: Action Stay is special among five navigation actions as 

mentioned earlier. Stay action is selected at high reward position. If the proportion of 

Stay is large, agent stays much during interaction which shows users have hesitation 

during interaction. 
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Chapter 6 Phase II Results and Discussions 

Chapter Summary 

This Chapter presents the results of Phase II evaluation model. It first presents the 

simulated user interface evaluation result including their learning process and interaction 

performance. Then a verification study of simulated interaction results using human data of 

interaction is conducted. After verification, quantity analysis and user interface suggestions are 

discussed. Lastly, it mentions the benefits and limitations Phase II evaluation model. 

6.1 Simulated Interaction Results 

The generated model is tested on different user interfaces. Table 6-1 shows the 

parameters used in Phase II evaluation model.  

Learning rate: 𝛼 Reward decay: 𝜆 𝜖 −  𝑔𝑟𝑒𝑒𝑑𝑦 Memory size Batch Size 

0.01 0.9 0.9 500 32 

Table 6-1: Parameters for simulated user interface interaction results. 

Figure 6-1 shows the structure of Phase II evaluation model. Phase II evaluation training on 

average 4000 episodes. It estimates 120000 states’ value under 6 actions. Trained neural network 

can work well in estimating these 720000 values. Network structure of Phase II evaluation model 

is shown in Figure 6-1.  
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Figure 6-1: Phase II evaluation model structure generated by tensorflow board. 
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User interface consisting of three buttons, T, J and W is used as an example to demonstrate 

simulation of user interface interaction. Task is to navigate to button T and click button T. The 

initial position of cursor is set to be in the middle of the user interface. User interface is designed 

to test whether interaction simulation is able to complete task under a simple condition. Figures 

6-2 to 6-5 show agent’s interaction with interface during different periods of learning process.  

 

 

Figure 6-2: Interaction training process after 100 episodes 

Figure 6-2 shows the training process after 100 episodes training. It can be noticed that 

agent is exploring states like random lattice walk. At this stage, agent cannot give good estimates 

to the true value of each state under different actions.  
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Figure 6-3: Interaction training process after 500 episodes 

With Agent updated neural network for Q value, agent behavior becomes more effective. 

Before not all the state value is well estimated, exploration behavior may lead to large deviation 

to task completion. 𝜖 = 0.9 means every 10 steps of actions there will be a random action. This 

random action selection does not follow the Q value generated by neural network to make 

decisions. The advantage of using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy is to increase the chance to find better 

policy to complete tasks and mimic of human behaviors. 
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Figure 6-4: Interaction training process after 1000 episodes 

 

After 1000 episodes’ training, some neat and efficient interaction starts to show up often. 

It indicates that estimated Q value is close to the true value. From this time point, the training 

progress starts to become slow since parameter update becomes slow. Sometimes, it could 

happen that agent traps at suboptimal solution during this period of training. 
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Figure 6-5: Interaction training process after 4500 episodes 

After 4500 episodes’ training, the agent is able to interact with user interface in a human 

understandable way. It indicates that neural network can almost estimate Q value of all states 

well. Further training might improve performance. From Figure 6-2 to Figure 6-5, agent tends to 

navigate more on the right side of the user interface. In Figure 6-5, agent does not go straight to 

target button. There usually exists two possibilities: 1) Agent is trapped in a suboptimal position 

2) Human behavior rewards distributed more on the right side of user interface than that of left 

side. User interface is divided by 2 by 2 squares. The average human behavior rewards are: 

0.89 0.88 

0.68 0.74 
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From human interaction rewards distribution, human users navigating with this user 

interface tend to be on the upper area of user interface. This phenomenon is reasonable and can 

be explained with Monte Carlo method. In implementation method, we have mentioned that 

coefficient of user interaction distribution is related to similarity of the task. Dashed rectangle is 

the most influential area to user interaction results. From the graph, it can be noticed that upper 

right area within rectangle is much larger than that in lower left area within rectangles.  

 

Figure 6-6: Upper right area within rectangle is much larger than that in lower left area 

within rectangles. Based on Monto Carlo method, the probability that influential 

human behavior reward falls in upper right area is larger than that in lower left area. 
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Figure 6-7: Loss function gradually converges at first 600 steps while neural  

network updates parameters  

Figure 6-7 shows the relationship between cost of loss function and training steps. Before 

100 steps, loss function fluctuates which means neural network cannot correctly estimate true 

state values. After 100 states, loss function gradually converges which means current state value 

estimation is consistent with environment feedback and parameter adjustment.  

Figure 6-8 shows loss function in a long run. Before 5000 steps, neural network keeps 

low cost of loss function which means it already updates parameters and successfully estimates 

all state values that it has met. At around 5000 steps, there is an abrupt increase of loss function. 

Abrupt increase means estimated state value has huge difference with actual findings. Neural 

network needs to readjust parameters to correctly estimate each state value under different 
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actions. This usually happens when agent explores actions under new state. It is helpful for agent 

to jump out of trap of local maxima and search for better policies.                                                                                                                                                                                                                                                                

 

Figure 6-8: Abrupt increase in loss function refers to exploration of  

new policies and neural network needs to be updated its parameters. 
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6.2 Model Verification Study 

After modeling the interaction simulation, I conducted a verification study between 

simulated user interface interaction results and collected human interaction results.  Five 

participants’ user interface interaction data are used to perform this verification study. I tested 10 

user interface tasks. All these tasks are from human interaction results of five participants in 

verification group. Agent is asked to perform exactly the same ten task as participants. Since 

agent simulated interaction and collected data of human interaction perform the same task under 

the same user interface environment, they are expected to have similar interaction results. A 

problem is what mathematical model can be used to measure the similarity between user 

interaction results. Variation analysis is usually used to analyze distribution of data but when 

used to measure the similarity of user interface interaction this method does not work well 

without assuming some correct interaction pattern. Variation within human data of interaction is 

large. Therefore variation does not always contain necessary information to verify interaction 

results. The original intention to use reinforcement learning method rather than other supervised 

machine learning method to research on interaction is interaction pattern is unknow. The 

difficulty to verify whether a simulated interaction result is similar to human interaction results is 

that human interaction results themselves are stochastic process. In the probability view of 

interaction results, no interaction results can be regarded as wrong. There is only interaction 

results with low probability. Therefore, we use envelop of human interaction results to verify the 

simulated interaction results.  Envelop of human interaction results can be regarded as a high 

probability area in which interaction result may show like electron cloud. Envelop refers to a 

curve tangent to each of a family of curves. Simulated interaction results are usually not 
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mathematically smooth and not enough data can be obtained to support finding mathematical 

envelop of interaction results. Thus, the combination of parts of interaction results that enclosed 

maximum of area is approximately regarded as envelop of interaction results. Therefore, 

verification study is conducted through visually checking whether simulated interaction results 

fully, partially or not in envelop of interaction results. Interaction results within envelop means 

there is high probability that statistically they are reliable and can be treated as human interaction 

results. It cannot be used as criteria to judge whether a curve is human interaction results. 

 

Figure 6-9: Number of tasks that simulated interaction results are within the  

envelop of collected interaction results. 
 

Figure 6-9 shows the results of verification studies. Results of two test cases are fully 

within the area of envelops. Results of seven test cases are partially within the area of envelops. 

One result of test case is outside of envelop.  
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Five different participants perform ten one-step interaction tasks under ten user 

interfaces. Green button is the target button to complete task and during experiment participants 

only see buttons with color of gray scale. Initial position of cursor is randomly set within user 

interface. Task is to navigate from current position cursor to target button area and click button. 

Black curves on each user interface refer to collected human interaction results. Red curve on 

each user interface represents for the simulated interaction results. Since in Phase II evaluation 

error is not included, agent keeps interacting with user interface until successfully complete 

tasks. In the 10 test cases, agents’ of interaction are trained around 1000 to 2000 episodes. 

Verification result is visualized in Figure 10  to Figure 19. 

 

 

      Figure 6-10: Test Case 1 
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Figure 6-11: Test Case 2 

 
Figure 6-12: Test Case 3 
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Figure 6-13: Test Case 4 

 

Figure 6-14: Test Case 5 
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Figure 6-15: Test Case 6 

 
Figure 6-16: Test Case 7 
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Figure 6-17: Test Case 8 

 
Figure 6-18: Test Case 9 
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Figure 6-19: Test Case 10 

6.3 Findings and Discussions 

6.3.1 Fitts’ Law Testing 

With user interface interaction simulator, Fitts’ Law can be compared or tested on it. Two 

tasks are simulated. 

One Button User Interface – constant button size, various distances 

 

         Figure 6-20: Task 1 
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Task 1 is performed with constant button size and various navigation distances. 

 

Figure 6-21: Average cursor velocity vs Distance from  

current position to target button 

From Figure 6-21, it shows that average cursor velocity and distance from current 

position to target button is of linear relationship. Then 

 𝑑𝑆

𝑑𝑡
= −𝐶 ⋅ 𝑆 ⟹ −

1

C ⋅ S
dS = dt ⟹ t =

1

C
(ln S − 𝑙𝑛 𝑆0) 

(6-1) 

It indicates that the relationship between distance and navigation time satisfies Fitts’ Law. 

One Button User Interface – constant distance, various button sizes 

 

Figure 6-22: Task 2  
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Task 2 is performed with constant distance and various button sizes. Simulated 

interaction does not show correlations between the width of button and interaction steps. This 

test reflects one limitation of Phase II simulator that interaction simulation cannot simulate 

acceleration of cursor movement. 

6.3.2 Avoidance of Non-target Buttons 

In this verification study, each task is trained 2000 episodes due to time constraint. Agent 

might still need more training for more efficient interaction results. 10 test cases above all 

complete tasks in a neat way. In the verification results, Case 5 interacts with user interface 

outside of the human interaction result envelop. Following the interaction process with Case 5 

agent, it can be found out that agent seems to avoid non targeted button to complete tasks. 

Similar behaviors can be also found in Case 8, 9 and 10. This phenomenon is strange in two 

ways: 

1. No high rewards are founded near the boundary of the non-target widget. 

2. Non-target widget avoidance is not expected to receive best accumulative rewards 

This phenomenon can be explained with two possible reasons: 

1. Not enough training is provided. From the Case 5 and cases with similar phenomenon, 

agent avoids passing non-target buttons. Passing other buttons achieves a more efficient 

way to gain more rewards but agent does not select it. It can be guessed that agent does 

not estimate true state value of position on non-target buttons. In previous interaction 

experience, agent is being punished by choosing Click option on non-target buttons 

which also influences agent’s estimate to state value of other actions. Besides, policy of 

passing other button without any Click action is an event of low probability. In other 

words, agent is not very possible to try this policy and find it. 
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2. Neural network is a function approximation method with good feature of generality. 

Every time agent interacts with user interface by clicking non-target button, negative 

rewards might influence state value estimation around non-target button area. 

3. In Phase II evaluation model, combination of collected interaction results is used to 

generate reward distribution for user interface interaction. If the reward density around 

the boundary of the non-target button is high, then it is possible to lead agent around the 

boundaries. 

6.4 Quantitative Index for Analyzing User Interface: Suggestions and Future Research 

In implementation methods, I have mentioned three quantitative indexes that can be used 

directly to reflect the interaction performance of a user interface and two manipulation methods. 

Three evaluation indexes are learning episodes, total interaction steps and proportion of stays to 

evaluate usability of a user interface. These quantities reflect one aspect of usability related to 

user interface interaction.  

Learning episodes 

 

 Learning episodes refer to required number of episodes for agent to learn how to interact 

with user interface. Each episode agent keeps interacting with user interface until the completion 

of task. Each episode is basically one interaction strategy to complete a task. In exhaustive 

method, the number of total states can reflect the interaction complexity of a user interface. 

Reinforcement learning method accelerates learning process in comparison with exhaustive 

method but does not change the influence of interface complexity to learning process. Therefore, 

in evaluation model, quantity of learning episode is involved to reflect the complexity of a user 

interface. 
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Interaction steps 

Interaction steps refer to total number of actions in one episode after training process is 

done or loss function converges. Inclusion of the action Stay and human interaction results as 

input data makes interaction steps be able to reflect relative length of time interacting with a user 

interface. Based on Phase II evaluation model data collection mechanism, speed of cursor is 

reverse proportional to the density of interaction. In area of cursor slowly moving, it has the high 

reward. In high reward area except target button, agent may choose to stay to gain more rewards 

which in turn reflects interaction time. 

Proportion of action Stay 

Following discussion of interaction steps, action Stay is most probably selected around 

high reward area. High reward area means slow cursor movement around. Therefore, proportion 

of stay can reflect levels of hesitation during interaction. 

User interface suggestion 

With these evaluation quantities, another question is whether it is possible to use these 

three quantities to suggest better performance user interface. Currently, the performance of user 

interface suggestion is quite limited. With simulated user interface, three evaluation quantities 

can be obtained. A common way to suggest improved user interface is to set different variables, 

simulate interaction results changing the value of these variables and make suggestions based on 

the change of the three quantities. There is a challenge in each of these steps.  

1. Set different variables:  A user interface consists of many different widgets. Each 

widget has many different feature to be considered. Widgets and their features are 

relatively independent. The input space of a user interface is huge and complicated. 
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2. Simulate interaction results changing the value of these variables: Large amount of 

interaction simulation consumes computational resources and requires long time to 

execute. 

3. Make suggestions based on the change of the three quantities: This steps relates how 

to manipulate user interface and suggest a user interface with better usability. 

Simulated user interaction results can provide information related to interaction only. 

It does not consider anything about user interface design.  

Third problem is big a barrier. I tested some cases of user interface suggestions with 

quantities and manipulation methods mentioned above. Two manipulation methods are 

considered as relatively ‘safe’ to use in avoiding unpredictable conditions in comparison of other 

free manipulation methods. However, during the test, it always happens that suggested user 

interface has overlapped widgets. 

Suggested user interface with overlapped widgets cannot be used since human users do 

not know how to interact with overlapped buttons. Although it does not have practical use, it 

pushes the limit of interaction efficiency and makes a simple state that the best way to reduce the 

complexity level of user interface and shorten task completion time is to lay widgets of user 

interface together. The problem is human users cannot interact widgets laid up together only if 

the widgets on the surface are always the expected widgets.  

In the future research, there can be two directions. One is to design a series of systematic 

manipulations to make changes to user interface. These manipulations are strictly restricted by 

well-defined rules fully considering human factors. Then simulated interaction results can be 

used to suggest improved user interfaces. Establishment of manipulation rules can be hard since 

factors that influence usability of a user interface are highly correlated.  
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Chapter 7 Summary 

Chapter Summary 

This chapter first gives a summary of the research. Then it talks about benefits and 

limitations of the research. At the end of this chapter, it discusses future research directions.  

7.1 Summary of the Research 

7.1.1 Phase I Summary 

Phase I of the research is about static feature evaluation focusing on features such as the 

layout and dimensions of the widgets. It implements support vector machine to train classifiers 

for four different cases.  

On the aspect of data collection, it explains the reasons for data asymmetry and provides 

a solution for future user interface subjective rating with combination of support vector machine 

and reinforcement learning method.  

On the aspect of implementation method, it discuses the advantages and disadvantage of 

two ways to select separating hyperplane’s insertion place. More important, it clarifies the 

relationship between kernel function and satisfaction and emphasizes the important connection 

between features of user interface and kernel function. It also indicates that to have good 

classification performance, it is necessary to find out kernel function the features of interest 

correspond to.  
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Phase I modeling results also suggest that the number of categories used for usability 

subjective ratings does not exceed three. Otherwise, some categories might be trivial or can be 

combined with adjacent categories. 

Lastly, Phase I Modeling also provides some implications for user interface design: 

1. Avoid obvious usability issues. As long as user interface does not exist obvious 

usability issues, normal users cannot sense the difference of small changes. 

2. Widgets closer to the upper left corner have higher satisfaction levels. 

3. Features satisfaction sensitivities ranked from from high to low are vertical 

dimensions, horizontal dimensions, horizontal positions and vertical positions. In the 

design of user interface widgets, extra cares are needed for those feature with high 

sensitivity. 

7.1.2 Phase II Summary 

Phase II of the research is mainly about dynamic interaction evaluation, focusing on 

dynamic features of user interface such as task completion time and task completion smoothness. 

It implements deep Q network to simulate human interaction behavior and uses interaction steps 

and proportion of action Stay as the evaluation quantities.  

The interaction simulator is verified with envelop of human interaction data. A 

phenomenon is observed in the simulated results that agent shows the behavior of avoiding non-

target widgets. This phenomenon is worth mentioning because based on the distribution of 

rewards agent is not expected to avoid non-target widgets. However, since the agent movement 

is a stochastic process, agent has the possibility to choose this option. This phenomenon is 

reasonable when viewed from the human side, since avoidance of crossing non-target buttons 

can reduce the error rate. This shows that the trained agent is generative in interacting with user 
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interface. Even if interaction does not show up in training data, agent can still explore and 

generate reasonable interaction results to mimic human’s behavior. 

Phase II modeling is then verified with Fitts’ Law on the variable of target distance. As a 

major component of Phase II evaluation model, interaction engine simulates a simple task of 

cursor navigation and generated results satisfying Fitts’ Law. This verification validates that 

Phase II evaluation results at least has value in simulating interaction task without complicated 

cognitive processing.  

In Phase II modeling the reward distribution settings cannot simulate interaction 

movements in the second derivative order. Based on the research finding, the agent of Phase II 

modeling cannot well simulate cursor’s acceleration. Selected evaluation quantities do not relate 

to acceleration of cursor. However, it is not flawless when the interaction engine simulating 

cursor movement within a small range. 

7.2 Benefits and Limitations 

7.2.1 Benefits 

Phase I evaluation model has several benefits in comparison with traditional methods. 

First, Phase I modeling can reduce individual difference effects on evaluation. Users have their 

own preferences for certain interface features; however, these individual preferences cannot 

serve as general design guidelines for user interface. User interface evaluation is expected to find 

out common features shared by good user interfaces. In traditional heuristic evaluation method, 

individual preference and common features cannot be distinguished after evaluation, which 

reduces the reliability of the evaluation. A machine learning method is, in other words, a method 
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of pattern detection from big data analysis, where individual’s preference or difference might be 

canceled. Second, Phase I modeling can increase the evaluation efficiency in comparison with 

traditional methods. Heuristic evaluation is to look at a user interface and brainstorm good or bad 

aspects of a user interface. This procedure is often time consuming and results are hard to 

interpret for design improvement. Phase I model, on the contrary, can evaluate a user interface in 

a short time without labor involved after the training process and also saves time. 

Phase II evaluation model has some benefits in comparison with other evaluation models. 

First, Phase II evaluation model provides a systematic framework for user interface interaction 

organizing a stochastics model of interaction distribution and reinforcement learning methods. It 

provides a stochastic modeling for user interface interaction and combines the distribution of 

user interface interaction results with reinforcement learning rewards. Second, Phase II 

evaluation model can directly generated useful interaction results of user interface to describe the 

interaction. And it only needs human input as training data one time and does not need further 

human input. Third, Phase II evaluation model is an accumulative model. With more collected 

data, it can provide better prediction of user interface interaction results.  

7.2.2 Limitations 

Phase I evaluation method has two major limitations. First, Phase I model classifies user 

interface with support vector machine method that is difficult to use to revise evaluation standard 

for special user interface instances. Its implementation method decreases the flexibility of 

evaluation. Since all the evaluation factors or criteria are discovered through big data analysis, 

some factors may remain implicit that makes the evaluation standard adjustment more difficult. 

Second, divergence of the results may occur. If no proper kernel function is implemented, 

support vector machine may sometimes fail to work. 
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Phase II evaluation model also has some limitations. First, Phase II evaluation model 

does not take high dimensional sensory input. In Phase II evaluation model, states of cursors, 

position and dimension of widgets are all manually defined, which requires users to have some 

knowledge of machine learning. Second, Phase II evaluation model is not productive. Phase II 

evaluation model can only be trained to interact with one user interface and one task each time. 

User interface change and interaction change both lead to the need to repeat the learning process. 

Training time is around 15 to 20 hours for each individual task. Third, Phase II evaluation model 

cannot simulate interactions involving complicated cognitive activities such as memory, decision 

making and human errors. Phase II evaluation model does not involve any cognitive modeling. It 

is a computational model to analyze human-interface interaction behavior. In dealing with tasks 

involving cognitive activities beyond simple interactions, Phase II evaluation model is difficult 

to make useful predictions. 

 

 

7.3 Future Research 

Based on the discussion above, Phase I of the research leaves an important question for 

future research, that is, whether a scalar is enough to well describe the satisfaction level of 

usability. Modeling results have shown that for simple user interfaces a scalar rating can provide 

satisfying result to sufficiently describe satisfaction of a user interface. However, with the 

complexity of a user interface increases, this type of scalar rating seems weak. An assumption 

might be made that more complex user interfaces require more complex mathematical forms to 

describe them, such as a multi-dimensional vector or a function. Then more concrete questions 
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such as how to decide proper the mathematical form to describe satisfaction or usability and 

whether these forms can be integrated and unified for general user interface are all possible 

future research directions. Besides, during the data analysis we found that the number of 

satisfying user interfaces increases more slowly than linearity, which means that with the 

complexity of user interface increases the chance of getting high satisfaction user interface is 

getting smaller. This causes the asymmetric pattern of collected data and therefore leads to 

difficulty in data processing and analysis. It is also a challenge to adapt methods to asymmetric 

data. 

Phase II of the research as discussed above has already built an interaction agent that has 

some generality. In future research, it could be possible to further develop interaction agent to 

fully equip it with learning ability. Also, as discussed in Chapter 6, task completion efficiency is 

constrained with the static view of user interface. For example, the most efficient user interface 

is to lay out widgets above each other, since it saves navigation time. However, this design 

cannot present necessary information to users to operate, and therefore it is not allowed by static 

evaluation. This shows there exists a tradeoff in user design. On one hand, user interfaces need to 

guarantee that users can clearly and efficiently perceive and understand information on the user 

interfaces. On the other hand, user interfaces need to guarantee users know how to output 

operations on user interface. One side is task completion efficiency and the other side is 

satisfaction of static view. How to balance these factors and maximize the total usability could be 

a good future study after this research. 
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Appendix 

 

Supplementary Information 

Support Vector Machine 

High dimensional feature representation, non-linear relationship between inputs and 

outputs, extensive computational requirements, Phase I user interface evaluation is a challenging 

application of support vector machine. Among all those challenges, biggest challenge is the 

choice of kernel, the selection of the kernel function parameters. Good choice of kernel function 

is half way of succeeding in classifying. To help readers understand how kernel function works 

and its importance, in the following part of this section basic concepts of support vector machine 

will be introduced.  

Suppose there are input and output sets, 𝒳and 𝒴 and training data set 

(𝑥1, 𝑦1), ⋯ , (𝑥𝑚, 𝑦𝑚). The purpose of support vector machine is to predict proper 𝑦 ∈ 𝒴 given 

𝑥 ∈ 𝒳, in other word, to find a function 𝑓(⋅) that 𝑦 = 𝑓(𝑥, 𝛼). 𝛼 are parameters of the function. 

Through minimizing the overall risk: 

Remp(α) =
1

𝑚
∑ 𝑙(𝑓(𝑥𝑖, α), 𝑦𝑖)

𝑚

𝑖=1

 

Linear Support Vector Machine: 

For linearly separable datasets, support vector machine simply chooses a sets of 

hyperplane: 
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1

𝑚
∑ 𝑙(ω ⋅ 𝑥𝑖 + 𝑏, 𝑦𝑖)

𝑚

𝑖=1

+ ||ω||
2
 

Subject to 𝑚𝑖𝑛𝑖|ω ⋅ 𝑥𝑖| = 1. 

If dataset is separated perfectly, then problem becomes: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ||ω||
2
 

Subject to: 

(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1, if 𝑦𝑖 = 1 

(ω ⋅ 𝑥𝑖 + 𝑏) ≤ 1, if 𝑦𝑖 = −1 

These two constrains can be compacted to: 

𝑦𝑖(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1 

Then classification function 𝑓(⋅) becomes a quadratic program problem. 

If dataset is not separated perfectly, then problem becomes: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ||ω||
2

+ 𝐶 ∑ ξ𝑖

𝑚

𝑖=1

 

Subject to: 

𝑦𝑖(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖 , ξ𝑖 ≥ 0 

A brief summary about formulation mentioned above: 

Decision function: 

𝑓(𝒙) = 𝛚 ⋅ 𝒙 + 𝑏 

Primal formulation: 

min:  𝑃(ω, 𝑏) =
1

2
||ω||

2
+ 𝐶 ∑ 𝐻1[𝑦𝑖𝑓(𝑥𝑖)]

𝑖

 

Hinge loss function 𝐻1(𝑧) = max  (0,1 − 𝑧) 
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Non-linear Support Vector Machine: 

Non-linear support vector machine always implements transformation Φ: 

𝑥 ⟹ Φ(𝑥) 

Then find classification function 𝑓(⋅) that: 

𝑓(𝑥) = 𝜔 ⋅ Φ(𝑥) + 𝑏 

The decision function becomes: 

𝑓(𝑥) = ∑ α𝑖Φ(𝑥𝑖)

𝑚

𝑖=1

⋅ Φ(𝑥) + 𝑏 

Φ(𝑥) ⋅ Φ(𝑥𝑖) = 𝐾(𝑥𝑖, 𝑥) is called the kernel function. 

Decision function is: 

𝑓(𝑥) = ∑ α𝑖Φ(𝑥𝑖)

𝑚

𝑖=1

⋅ Φ(𝑥) + 𝑏 =   ∑ α𝑖𝐾(𝑥𝑖, 𝑥)

𝑚

𝑖=1

+ 𝑏 

Dual formulation is: 

min:  𝑃(ω, 𝑏) =
1

2
||∑ αi

m

i

Φ(xi)||

2

+ 𝐶 ∑ 𝐻1[𝑦𝑖𝑓(𝑥𝑖)]

𝑖

 

Kernel function 𝐾(⋅,⋅) is used to map from non-linear feature to linear feature. This is 

crucially important in building support machine. However, there is no clear rule about how to 

select kernel function. Some widely used kernel functions are: 

1. Polynomial kernel: 𝐾(𝑥, 𝑥′) = (𝑥 ⋅ 𝑥′ + 1)𝑑 

2. RBF kernel: 𝐾(𝑥, 𝑥′) = 𝑒−γ||𝑥−𝑥′||
2
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Deep Q Network 

Deep Q network (always known as DQN) is a variants of reinforcement learning. 

Different with traditional reinforcement learning, DQN substitute Q table with a neural network 

in order to solve infinite possible states. In the following of this section, I will introduce basic 

structure of deep Q network. 

Reinforcement learning provides a framework for decision making and deep learning 

provide a frame work for pattern learning. DQN is a combination of decision making and pattern 

learning, which generate to some degree a better AI. 

Before understanding how reinforcement learning works, three concepts need to be 

introduced first, policy, value function and model. 

Policy represents for agent’s behavior function mapping from state to action. 

Deterministic policy: 

𝑎 = 𝜋(𝑠) 

Stochastic policy: 

𝜋(𝑎|𝑠) = 𝑃[𝑎|𝑠] 

Value function is a prediction or estimation for future reward.  

From state 𝑠 and action 𝑎 under policy 𝜋, value function can be represented as: 

𝑄π(𝑎|𝑠) = 𝐸[𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] 

Value function decompose into a Bellman equation: 

𝑄π(𝑎|𝑠) = 𝐸𝑠′,𝑎′[𝑟 + γ𝑄π(𝑎′|𝑠′)|𝑠, 𝑎] 

To maximize the total expected future rewards: 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥π𝑄π(𝑠, 𝑎) = 𝑄π∗
(𝑠, 𝑎) 

Then 
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π∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎) 

Formally, optimal values decompose into a Bellman equation, 

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′[𝑟 + γ𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎] 

Model is agent’s representation of the environment and is learnt from experience. 

To solve traditional Q learning problem, minimize loss function: 

𝑙 = (𝑟 + γ max𝑎𝑄(𝑠′, 𝑎′, ω) − 𝑄(𝑠, 𝑎, ω))
2
 

If the result converges, value table for under actions and states can be obtained. Also the 

optimization may be divergent because of correlations between samples or Non-stationary 

targets. 

To remove correlations, build data-set from agent’s own experience. 

𝑙 = (𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′, 𝜔−) − 𝑄(𝑠, 𝑎, 𝜔))
2
 

Remove upward bias caused by max𝑎𝑄(𝑠′, 𝑎′, ω) 

|𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′. ω−) − 𝑄(𝑠, 𝑎,\𝑜𝑚𝑒𝑔𝑎)| 

Also, to split Q-network into two channels: 

𝑄(𝑠, 𝑎) = 𝑉(𝑠, 𝑣) + 𝐴(𝑠, 𝑎, ω) 

𝑉(𝑠, 𝑣) ≈ 𝐸[𝑟𝑡+1 + 𝑟𝑡+2 + ⋯ |𝑠] 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + γ𝑛−1𝑟𝑡+𝑛 + γ𝑛𝑉(𝑠𝑡+𝑛, 𝑣) 

Actor is updated towards target 

∂𝑙𝑢

∂𝑢
=

∂ 𝑙𝑜𝑔 π (𝑎𝑡|𝑠𝑡, 𝑢)

∂𝑢
(𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡, 𝑣)) 

Critic is updated to minimize MSE 

𝑙𝑣 = (𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡, 𝑣))
2
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