
User Interface Evaluation with Machine Learning Methods

by

Yanxun Mao

A dissertation submitted in partial fulfillment

 of the requirements for the degree of

Doctor of Philosophy

(Industrial and Operations Engineering)

in the University of Michigan

2019

Doctoral Committee:

Professor Yili Liu, Chair

Professor Daniel Burns

Assistant Professor Clive D’Souza

Assistant Professor Xi Jessie Yang

Yanxun Mao

myx@umich.edu

ORCID iD: 0000-0002-7968-7110

© Yanxun Mao 2019

 ii

To

Xuedong Mao

Yan Yan

Changyu Yan

Pojing Liu

&

Jimei Yan

 iii

Acknowledgements

I would like to reflect on the people who have supported and helped me throughout my

PhD study. Firstly, I would like to express my sincere gratitude to my adviser Dr. Yili Liu for the

continuous support of my research, for his patience, motivation, and valuable guidance. Equally

important appreciation must go to Dr. Daniel Burns, Dr. Clive D’Souza and Dr. Xi Jessie Yang

who kindly served as my dissertation committee members and provided insightful comments,

tremendous encouragement, and valuable suggestions. Their willingness to give their time so

generously has been very much appreciated.

I would also like to extend my thanks to many professors, Paul Green, Seth Guikema and

Nadine Sarter, as well as many staff members in the Horace H. Rackham School of Graduate

Studies, and Matt Irelan, Wanda Dobberstein, Tina Picano Sroka from Department of Industrial

and Operations Engineering at the University of Michigan for providing me fellowship and

graduate student instructor positions that support my study and dissertation work.

Finally, I must express my very profound gratitude to my parents and to my girlfriend for

providing me with unfailing support and continuous encouragement throughout my years of

study and through the process of researching and writing this thesis. This accomplishment would

not have been possible without them.

 iv

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures ix

Abstract xii

Chapter 1 Introduction 1

Chapter Summary 1

1.1 Research Motivation 1

1.2 Scope of the Research 2

1.2.1 Types of User Interfaces 2

1.2.2 User Interface Attributes to Evaluate 3

1.2.3 Types of Evaluation Methods 4

1.3 Two Phases of the Research with Machine Learning Methods 6

1.3.1 Reasons to Implement Machine Learning Methods 6

1.3.2 Two Phases of the Research 7

1.3.3 Relationship between the Two Phases 9

1.4 Practical and Scientific Values of the Research 10

Chapter 2 Literature Review 12

Chapter Summary 12

2.1 Literature Review on Usability Evaluation 12

2.1.1 Types of Usability Evaluation Methods 12

 v

2.1.2 Development of Usability Evaluation Methods 14

2.2 Literature Review on Machine Learning Methods 21

2.2.1 Overview of Machine Learning Methods 21

2.2.2 Phase I Candidate Implementation Methods 24

2.2.3 Phase I Modeling Method Selection 26

2.2.4 Phase II Candidate Implementation Methods 27

2.2.5 Phase II Modeling Method Selection 29

Chapter 3 Phase I Computational Modeling and Experiment 31

Chapter Summary 31

3.1 Objectives and Challenges of Phase I Modeling 31

3.1.1 Objectives of Phase I Modeling 31

3.1.2 Challenges of Phase I Modeling 32

3.2 Description of Phase I Modeling 35

3.2.1 User Interface of Phase I Modeling 35

3.2.2 Other Components of Phase I modeling 37

3.3 Implementation of Phase I Modeling 39

3.3.1 Data Collection 39

3.3.2 Normalization 41

3.3.3 Model Training 42

3.3.4 Verification 43

Chapter 4 Phase I Results and Discussions 45

Chapter Summary 45

4.1 Classification Results 45

4.1.1 Overview of Classifiers’ Training Results 45

4.1.2 Case A Classifier 47

4.1.3 Case B Classifier 49

4.1.4 Case C Classifier 51

4.1.5 Case D Classifier 53

4.2 Findings and Discussions 55

4.2.1 Training Data 55

4.2.2 Training Process 57

4.2.3 Training Result 57

 vi

4.2.4 Implications for User Interface Design 59

Chapter 5 Phase II Computational Modeling and Experiment 61

Chapter Summary 61

5.1 Objectives and Challenges of Phase II Evaluation Model 61

5.1.1 Objectives of Phase II Modeling 61

5.1.2 Challenges of Phase II Modeling 63

5.2 Model Description 66

5.2.1 Overview of Phase II Modeling 66

5.2.2 Assumptions of Phase II Modeling 67

5.2.3 Structure of Phase II Modeling 70

5.2.4 Components of Phase II Modeling 71

5.3 Implementation Methods 88

5.3.1 Data collection 88

5.3.2 Model Training 89

5.3.3 Evaluation Quantity 90

Chapter 6 Phase II Results and Discussions 91

Chapter Summary 91

6.1 Simulated Interaction Results 91

6.2 Model Verification Study 100

6.3 Findings and Discussions 107

6.3.1 Fitts’ Law Testing 107

6.3.2 Avoidance of Non-target Buttons 109

6.4 Quantitative Index for Analyzing User Interface: Suggestions and Future Research 110

Chapter 7 Summary 113

Chapter Summary 113

7.1 Summary of the Research 113

7.1.1 Phase I Summary 113

7.1.2 Phase II Summary 114

7.2 Benefits and Limitations 115

7.2.1 Benefits 115

7.2.2 Limitations 116

 vii

7.3 Future Research 117

Appendix 119

Bibliography 125

 viii

List of Tables

Table 3-1: User interface of Phase I model training data ... 40

Table 4-1:Summary of Phase I classification results. ... 46

Table 5-1: Reward feedback from environment for a simple user interface interaction. . 73

Table 5-2: Q table for interaction with user interface with one button. 73

Table 5-3: Agent’s possible actions and its related state change and reward received. ... 78

Table 6-1: Parameters for simulated user interface interaction results. 91

 ix

List of Figures

Figure 1-1: Three types of user interface evaluation methods: User centered evaluation,

expert centered evaluation, and model based evaluation (Scholtz, 2004) 5

Figure 3-1: Different types of user interface widgets ... 35

Figure 3-2: User interface for Phase I data collection .. 40

Figure 3-3: User interface example for four cases. Upper left: Case A; Upper right: Case

B; Lower left: Case C; Lower right: Case D... 41

Figure 4-1: Case A data distribution. X-axis indicates usability evaluation ratings and Y-

axis indicates the number of participants under some range of ratings .. 47

Figure 4-2: Case B data distribution ... 49

Figure 4-3: Case C data distribution ... 51

Figure 4-4: Case D data distribution ... 53

Figure 4-5: Case A, B and C satisfaction training data... 55

Figure 4-6: Future research for data collection ... 57

Figure 5-1: Objectives of Phase II user interface evaluation, interaction analysis, usability

evaluation and design suggestions are organized in a hierarchy way. Interaction analysis serves

as the foundation of usability evaluation. Design suggestions are based on the result of usability

evaluation. Dashed lines represent the methodology applied to achieve each objective. 62

Figure 5-2: Bridge the gap between user interface and interaction directly 66

 x

Figure 5-3: Left figure a) refers to continuous time interaction model and right figure b)

refers to discrete time interaction model. .. 68

Figure 5-4: Phase II evaluation model structure. .. 70

Figure 5-5: Agent learns to interact with user interface. Without interaction data,

interaction is like lattice random walk. ... 73

Figure 5-6: User interface as the model of environment is a collection of user interface

image pixels excluding content of widget labels. Model of environment can fully represent what

users see on a user interface. ... 76

Figure 5-7: Case without action Stay might lead different interaction results. Sign in each

cell represents for reward. ... 79

Figure 5-8: User interface which needs to be assigned with reward function 84

Figure 5-9: Training data B... 84

Figure 5-10: Training data C... 85

Figure 5-11: Training data C... 85

Figure 5-12: Comparison to training data ... 85

Figure 5-13: Contribution to user interface A and its task.. 86

Figure 5-14: Phase II data collection user interface. ... 89

Figure 6-1: Phase II evaluation model structure generated by tensorflow board. 92

Figure 6-2: Interaction training process after 100 episodes .. 93

Figure 6-3: Interaction training process after 500 episodes .. 94

Figure 6-4: Interaction training process after 1000 episodes .. 95

Figure 6-5: Interaction training process after 4500 episodes .. 96

 xi

Figure 6-6: Upper right area within rectangle is much larger than that in lower left area

within rectangles. Based on Monto Carlo method, the probability that influential human behavior

reward falls in upper right area is larger than that in lower left area. ... 97

Figure 6-7: Loss function gradually converges at first 600 steps while neural network

updates parameters .. 98

Figure 6-8: Abrupt increase in loss function refers to exploration of new policies and

neural network needs to be updated its parameters. ... 99

Figure 6-9: Number of tasks that simulated interaction results are within the envelop of

collected interaction results. .. 101

Figure 6-10: Test Case 1 ... 102

Figure 6-11: Test Case 2 ... 103

Figure 6-12: Test Case 3 ... 103

Figure 6-13: Test Case 4 ... 104

Figure 6-14: Test Case 5 ... 104

Figure 6-15: Test Case 6 ... 105

Figure 6-16: Test Case 7 ... 105

Figure 6-17: Test Case 8 ... 106

Figure 6-18: Test Case 9 ... 106

Figure 6-19: Test Case 10 ... 107

Figure 6-20: Task 1 ... 107

Figure 6-21: Average cursor velocity vs Distance from current position to target button

... 108

Figure 6-22: Task 2 ... 108

 xii

Abstract

With the increasing complexity of user interfaces and the importance for usability

evaluation, efficient methods for evaluating the usability of user interfaces are needed. Through

this dissertation research, two computational models built with machine learning methods are

introduced to evaluate user interface usability.

This research consists of two phases. Phase I of the research implements the method of

support vector machine to evaluate usability from static features of a user interface such as

widget layout and dimensions. Phase II of the research implements the method of deep Q

network to evaluate usability from dynamic features of a user interface such as interaction

performance and task completion time.

Based on the research results, a well-trained Phase I model can distinguish and classify

user interfaces with common usability issues and is expected to recognize those issues when

sufficient data is provided. Phase II model can simulate human-interface interaction and generate

useful interaction performance data as the basis for usability analysis. The two phases of the

research aim to overcome the limitations of traditional usability evaluation methods of being

time-consuming and expensive, and thus have both practical and scientific values. From the

practical perspective, this research aims to help evaluate and design user interfaces of computer-

based information systems. For example, today’s application software development on computer

based information system always integrates many functions or task components into one user

interface page. This function integration needs to be carefully evaluated to avoid usability issues

 xiii

and the competitive field of software development requires an evaluation process with short

cycles. Phase I and Phase II of the research provide an efficient but not necessarily

comprehensive usability evaluation tool to meet some of the demands of the field. From the

scientific perspective, this research aims to help researchers make quantifiable predictions and

evaluations of user interfaces. Qualitative theories and models are important, but often

insufficient for rigorous understanding and quantitative analysis. Therefore, this research work

on computational model-based interface evaluation has important theoretical value in advancing

the science of studying human behavior in complex human-machine-environment systems.

 1

Chapter 1 Introduction

Chapter Summary

This chapter first introduces the motivation of this dissertation research. Next, it clarifies

the research scope including the user interface type, the interface attributes to evaluate, and their

definitions. Then, it briefly discusses two phases of the research including their research goals,

methods and relationship between them. Lastly, it discusses the practical and scientific values of

the research.

1.1 Research Motivation

User interface as a connection between humans and machines is widely used in almost

every field of work. High penetration rates of the computer, Internet and portable devices also

verify that interacting with user interface has become part of many people’s lives. It will be very

beneficial to properly design user interfaces, which could improve efficiency of work, reduce

errors or bring convenience to people’s lives.

In the design of user interfaces, one problem is the contradiction between the integration

of functions or information in user interfaces and the limited information processing resources of

humans. Heavily function-integrated user interfaces or information intensive user interfaces

could lead to failure of information acquisition, incorrect operations or even some lethal results.

Another problem gradually shows up when an increasing amount of applications of portable

 2

devices go into market. Due to the short development cycle of those applications, the time-

consuming and high cost limitations of lab-based user interface evaluations are magnified and

create difficulty in following the pace of development. These two problems together motivate

this research effort.

1.2 Scope of the Research

In the following, types of user interfaces to be studied, attributes of user interfaces to be

evaluated, and types of evaluation methods to be built in the research will be discussed.

1.2.1 Types of User Interfaces

Based on different input and output sources, user interfaces can be categorized into

physical panel user interface, touch screen user interface, and so on. Different types of user

interfaces have different interactive modes. There may exists one general evaluation method that

can consider all the features of these interactive modes and evaluate all types of user interfaces

with one model. However, it creates too much difficulty for data collection and analysis.

Therefore, as a stepping stone for user interface evaluation with machine learning method, this

research only focuses on one specific type of user interface, i.e., visual user interface on

computer based information systems. To reduce the complexity and difficulty of modeling, user

interfaces used for evaluation in this research are restricted to widgets button and textbox. Cursor

navigation and left click of mouse are the only two operations to interact with user interface in

the domain of this research.

 3

1.2.2 User Interface Attributes to Evaluate

As mentioned in the Research Motivation section, properly designing a user interface has

significant values in many aspects. Systematically evaluating a user interface is the foundation of

successful design. Two aspects of user interfaces are usually used for evaluation: usability and

utility. They reflect two groups of interaction performance between user interfaces and users.

This dissertation research focuses on usability evaluation. Usability has the dictionary meaning

of ease of use and it is not an exclusive attribute of user interface evaluation. International

Organization for Standardization (ISO 9241-11, 1998) defines usability as “The effectiveness,

efficiency and satisfaction with which specified users achieve specified goals in particular

environments. effectiveness: the accuracy and completeness with which specified users can

achieve specified goals in particular environments.”. Jakob Nielson and Ben Shneiderman

(1993) define usability for user interface from five aspects: learnability, efficiency,

memorability, errors, and satisfaction. Learnability, efficiency and memorability refer to the ease

of accomplishing tasks when the system is used by a novice user, used by an expert user and

only used occasionally, respectively. Errors can be counted during performance observation and

rated based on severity. Satisfaction refers to how pleasant a user feels when using the design.

The main method of this research is to capture user’s responses as basis for statistical analysis.

Definition of usability in this research needs to be clear and operational. Therefore, usability in

this research is defined from two aspects: efficiency and satisfaction.

Efficiency is defined as the ease of accomplishing tasks which can be measured by

quantities such as task completion time in this research. In Nielson and Shneiderman’s

definition, it can be noticed that the performances of novice user, expert user and occasional user

are distinguished, because for different groups of users the same user interface may provide

 4

different experience. However, in this research with machine learning method, this difference

only appears in the training data of different groups of users and does not generate difference at

the methodology level. Once evaluation model for efficiency is built it can generate evaluation

results for learnability, efficiency and memorability, as defined by Nielson and Shneiderman, by

inserting the training data of different groups of users. Therefore, efficiency is defined without

specifying user groups. During experiment, data collected to train the model is only from novice

users due to time and budget limitations. Thus, experimental results actually reflect evaluation of

learnability in Nielson and Shneiderman’s definition.

Satisfaction is defined as how pleasant a user feels when viewing the design. This

definition in comparison with Nielson and Shneiderman’s definition more emphasizes the user

interface’s function of presenting information. In other words, satisfaction in this research

focuses on evaluating the static features of user interface.

Error is not included in this evaluation for two reasons. First, error in comparison with

other aspects of usability is complicated. It is hard to define error in user interface interaction.

For example, trivial actions or mis-clicks are difficult to classify. Also, it is hard to determine

whether all errors should be counted equally. Second, during data collection error cannot be

forced. Studying error in user interface evaluation requires a large amount of data. Therefore, in

the domain of the current research, error is not evaluated.

1.2.3 Types of Evaluation Methods

Currently, there exist many types of user interface evaluation methods. These evaluation

methods can be divided into three main types as shown in Figure 1-1.

 5

Figure 1-1: Three types of user interface evaluation methods: User centered evaluation, expert

centered evaluation, and model based evaluation (Scholtz, 2004)

 User centered evaluation mainly refers to empirical evaluation with experiments on

real users or potential users with methods such as formative methods and summative methods.

Expert centered evaluation mainly refers to evaluation performed by expert evaluators,

including formal evaluation with some analysis technique and heuristic evaluation. Model based

evaluation mainly refers to evaluation with computerized procedures such as GOMS model. To

compare these types of evaluation methods, two aspects are taken into account, method cost and

method performance. Method cost is used to describe the time, expense and labor cost of the

evaluation method. Method performance is used to describe the amount of usability issues the

method can compare or recognize. User centered evaluation method has the best method

performance by being able to discover most usability issues under lab condition, but it is also

characterized with have the time consuming and labor intensive limitations. Model based

evaluation method has the lowest method cost but limited feedback of usability issues. Expert

centered evaluation method is a compromise between method cost and method performance.

(Scholtz, 2004)

In Research Motivation, the second problem raises a new demand to reduce the method

cost. To optimize lab controlled experiment procedures with the same method performance, it is

difficult to reduce the method cost since the cost of labor and time is unavoidable in user

 6

centered evaluation or expert evaluation. Therefore, this research builds a model-based

evaluation method, focusing on improving its method performance while keeping the method

cost low.

1.3 Two Phases of the Research with Machine Learning Methods

1.3.1 Reasons to Implement Machine Learning Methods

The most extravagant part of user centered evaluation method and expert centered

evaluation method is that each time evaluator works, their work only applies to one specific user

interface. Evaluators have to repeat their work even if “similar” usability issues have been

encountered many times elsewhere. Expert evaluation is essentially an experience summary of

those “similarities”. This research can be treated as an attempt to implement computational

models to help summarize and integrate evaluators’ work. The focus is not to discover user

interface design heuristics in a mathematical language, but to find the way about how to use data

to find patterns of potential or unknown heuristics for user interface evaluation. Therefore, the

needed implementation method should have the ability to discover implicit patterns from data,

which is exactly machine learning method family’s specialty. Machine learning methods refer to

a group of stochastic methods widely used in different fields and have produced many successful

applications. For example, using reinforcement learning and deep learning algorithm to play

Atari video games, implementing advanced tree search and deep neural networks to play Go

game, Image recognition and auto driven cars although are not mature enough for industrial

application however have shown many gratifying improvements and are worth expecting. These

promising results offer confidence to use machine learning methods in tackling problems of user

 7

interface evaluation. More important, machine learning methods have two intrinsic similarities

with user interface interaction. First, user interface interaction is a stochastic process. Different

users have different ways to interact with the same user interface. Even the same individual

cannot reproduce exactly the same interaction. Machine learning method is essentially a

stochastic method to organize and analyze data. Second, the user interface evaluation process is a

kind of pattern recognition problem. User interface evaluation is a process to label an instance of

user interface in a desired way. Discovering patterns shared by the same label of instances is

what machine learning method is good at. (Murphy, 2012)

1.3.2 Two Phases of the Research

This research contains two phases: Phase I static user interface evaluation, evaluating the

satisfaction aspect of usability and Phase II dynamic user interface evaluation, evaluating the

efficiency aspect of usability. Since satisfaction is defined as how pleasant users feel in viewing

a user interface, static feature evaluation focuses on static features such as widget position,

dimension and other design features of different types of user interface components. Dynamic

interaction evaluation focuses on dynamic features such as operation smoothness and task

completion time. In other words, Phase I and Phase II of the research correspond to two main

functions of a user interface, namely information presentation and interaction.

Phase I modeling aims to build a satisfaction classifier to distinguish user interfaces with

different satisfaction levels. Specially, given two user interfaces in the domain of this research,

Phase I model can predict their satisfaction level and compare which one of them is more

satisfying for the user group of training data. The whole process consists of two steps:

Step 1 (Phase I): Data collection

 8

Data for Phase I modeling is used as the basis to discover user interface design patterns.

It consists of a feature vector, which is used to describe features of an instance of user interface

being studied, and a satisfaction score, which is a scalar quantity used to describe the satisfaction

aspect of usability provided by participants’ subjective ratings.

Step 2 (Phase I): Training process

The training process for Phase I modeling refers to implementing selected machine

learning method and using collected data to tune the parameters of the corresponding classifier

for stochastically best predicting and comparing satisfaction levels for a new instance of user

interface.

Different from Phase I model’s direct prediction on satisfaction level, Phase II modeling

aims to first build an agent to interact with user interface mimicking human’s behavior, and then

using agent’s interaction results as the basis to evaluate the efficiency aspect of usability with

quantities such as task completion time. In other words, Phase II modeling simulates interaction

on user interface first and then applying simulated results as the dynamic interaction evaluation’s

foundation. It could be asked why Phase II modeling does not implement the same classification

method to directly evaluate interaction based on participants’ subjective ratings. There are two

reasons for it. First, as mentioned above about similarities between user interface interaction and

machine learning method, user interface interaction can be regarded as a stochastic process.

Performing tasks on a user interface, there does not exist correct or wrong interactions. There

only exists interaction with high probability or low probability. Using one interaction result to

evaluate efficiency of a user interface is not persuasive, and discovering the distribution of all the

interactions for one user interface with one task is costly and time consuming. Therefore,

building an interaction simulator becomes a good solution since it can generate a batch of

 9

interaction results and the generated interaction results can be used to evaluate efficiency of

usability. Second, an interaction simulator has generality in simulating interaction results that

have not been shown before. The feature of generality can, to some degree, predict new possible

usability issues. Phase II modeling also contains two steps:

Step 1 (Phase II): Data collection

Data for Phase II modeling is used as the basis to train agent mimicking human user

behavior to interact with user interface. It consists of a task definition vector, a feature vector that

is used to describe features of an instance of user interface being studied, and trace of interaction.

Trace of interaction refers to a list of specific actions that the user would perform for a specific

task.

Step 2 (Phase II): Training process

Training process for Phase II modeling refers to implementing selected machine learning

method and using collected data to train agent’s interaction with the user interface for the best

mimicking of human user behavior.

1.3.3 Relationship between the Two Phases

Phase I and Phase II of the research, as mentioned above, evaluate the satisfaction and

efficiency aspects of usability. It is difficult to combine the two phases into one for two reasons.

First, user interface as a connection between the user and the machine has both the information

presenting and instruction receiving functions. The two phases of the research correspond to the

two functions of user interface, respectively. Relationship between the design requirement of a

user interface to achieve the best information presenting function and to achieve the best

instruction receiving function is still not clear. Second, there might exist correlations between the

design requirement of user interface to achieve the best information presenting function and to

 10

achieve the best instruction receiving function. For example, some designs of user interfaces are

beneficial to both information presenting and instruction receiving. Therefore, it is difficult to

use weighed factors to combine the two aspects of usability evaluations.

Phase I and Phase II of the research are not regarded as two evaluators for evaluating the

two aspects of usability, efficiency and satisfaction, independently. They are actually two

checkpoints to identify usability issues. For example, if the distance between two widgets of a

user interface is too small or even overlapping, both Phase I and Phase II evaluators will provide

low evaluation results for this issue. However, if the distance between two widgets of a user

interface gradually increases, there must exist an interval of distance that high evaluation result

shows up first in one of the two evaluators, since distance between two widgets for satisfaction

evaluation is different from that for efficiency. In summary, the two phases of evaluators have

their own emphasis on different aspects of usability but they are not necessarily fully

independent of each other or cover all types of usability issues.

1.4 Practical and Scientific Values of the Research

From the practical perspective, this research aims to help evaluate and design user

interfaces of computer based information systems. For example, today’s application software

development on computer based information systems always integrates many functions or task

components into one user interface page. This function integration needs to be carefully

evaluated to avoid usability issues, and the competitive field of software development requires an

evaluation process with a short cycle. Phase I and Phase II of the research provide an efficient

but not necessarily comprehensive usability evaluation tool to meet the demand of the field.

 11

From the scientific perspective, this research aims to help researchers make quantifiable

predictions and evaluations of user interfaces. Qualitative theories and models are important, but

often insufficient for rigorous understanding and quantitative analysis. Therefore, this research

work on computational model-based interface evaluation has important theoretical value in

advancing the science of studying human behavior in complex human-machine-environment

systems.

 12

Chapter 2 Literature Review

Chapter Summary

This chapter first gives literature review about usability evaluation of user interfaces.

Then, it briefly introduces machine learning methods that can be possibly used to build user

interface evaluation models. Based on a comparison of these machine learning methods, it

discusses the selection of machine learning methods for Phase I and Phase II user interface

usability evaluation, respectively.

2.1 Literature Review on Usability Evaluation

2.1.1 Types of Usability Evaluation Methods

User interface usability evaluation methods can be categorized into three groups: user

centered evaluation, expert centered evaluation and model based evaluation (Scholtz, 2004). The

following part describes what these evaluation methods are in detail.

User centered evaluation usually refers to empirical usability testing, which mainly

includes two types of evaluations: formative evaluation and summative evaluation. Formative

evaluation is an informal evaluation method and is done by obtaining verbal data from users for

early design of user interfaces. In the formative evaluation process, evaluation is commonly

conducted through paper prototypes. Summative evaluation is a formal evaluation method and is

done by documenting usability characteristics of user interface. In the summative evaluation

 13

process, evaluation is commonly done through having representative users interacting with the

user interface and discovering usability issues. User centered evaluation method involves

participation of real users and thus is more possible to discover usability issues. However, the

whole process of user centered evaluation is often expensive and time consuming. (Scholtz, 2004)

Expert based evaluation usually refers to usability inspection method as a group of

evaluation methods that directly review user interface for discovering usability issues including

heuristic evaluation, cognitive walkthroughs, pluralistic walkthroughs, formal usability

inspections, consistency inspections, standards inspections, and feature inspections, guideline

reviews. Expert based evaluation method is developed as a more efficient substitute for user

centered evaluation method. In comparison with user centered evaluation methods, expert based

evaluation methods are less expensive and less time consuming. However, it does not provide

solutions to those discovered usability issues. Besides, the accuracy of expert-based evaluation

methods is being doubted by some scholars (Scholtz, 2004).

Model-based evaluation methods refer to implement modeling techniques to simulate

users’ behavior interacting user interface and discover usability issues. GOMS model is one of

the most famous model-based evaluation methods. GOMS model consists of goals, operators,

methods and selection rules (Kieras, 1994). In comparison with user centered evaluation methods

and expert evaluation methods, model-based evaluation method is less expensive and multiple

rounds of usability testing can be done repeatedly. However, as indicated by Scholtz, task level

cognitive task analysis is very time consuming (Scholtz, 2004).

Another classification way of user interface evaluation is complete empirical usability

testing, which is effective but expensive, and the usability inspection method, which has lower

cost by using expert review or direct analysis on user interface. Inspection method includes

 14

expert evaluation method and model based evaluation method mentioned above. (Novick &

Hollingsed, 2007)

2.1.2 Development of Usability Evaluation Methods

Early stage of Usability Evaluation

Researchers have started to pay attention to the quality of “user interface” several

decades ago. At that time, it was under the name of ergonomics and focused mainly on the

physical control panels (Shackel, Ergonomics for a Computer, 1959). In 1967, Michael Scriven

developed formative and summative evaluation, which served as the basics for empirical

usability testing. In 1971, the concept of ease of use was proposed but not well defined (Miller,

1971). After 1975, platform style guidelines appeared to aid the design process and some of them

remain to be in continuous use nowadays. In 1979, the concept of usability was gradually formed.

John Bennett published the first paper with usability in its title (Bennett, 1979). Some companies

like IBM established usability labs to perform summative usability testing, and metrics for user

performance gradually came into shape. In 1980, the think-aloud method was introduced into

usability testing and became one of the most widely used methods (Ericsson & Simon, 1980). In

1983, GOMS model was developed and became one of the most widely known theoretical

concepts in research on user interface interaction (Card, Newell, & Moran , 1983). GOMS model

is a group of predictive models for user performance mainly used to evaluate usability and

improve efficiency of user interfaces. GOMS model was then further adapted to different kinds

applications and generated great effect to later model-based usability evaluation methods. In

1985, Jeff Kelley developed the OZ paradigm (now known as Wizard of Oz) method in his

dissertation and came into widely use in the usability engineering as well as ergonomics and

 15

psychology. From 1986 to 1988, models of iterative design, Motif style guide and SUMI QUIS

were established in succession (Card & Moran , 1986).

Modern usability establishment

Shackel (1990) defined usability as efficiency, effectiveness and satisfaction. From the

early 90s, the topic of usability attracted more widespread interests. Many researchers or scholars

contributed to the field of usability testing. A large amount of usability evaluation methods is

established and put into use. The rapidly developing field requires an effective method to

evaluate user interface usability. A comparison between traditional empirical usability testing

and “faster and cheaper” methods is widely discussed in the field (Jeffries & Desurvire, Usability

testing vs. heuristic evaluation: was there a contest?, 1992; Desurvire, Kondziela, & Atwood,

1992; Jeffries, Miller, Wharton, & Uyeda, 1991; Desurvire H. W., 1994; Novick & Hollingsed,

2007). Traditional empirical usability testing evaluates user interface usability and discovers

usability problems through observing actual users while they are interacting with a target user

interface. Since recruiting real users to participate empirical usability testing is expensive and its

whole process is time consuming, “faster and cheaper” evaluation methods showed up. “Faster

and cheaper” methods usually refer to usability inspection methods as a set of cost effective

ways of user interface evaluation (Nielsen, Usability Inspection Methods, 1994). Inspection

methods, rather than discovering problems from observing real users, directly review user

interfaces and discover usability issues based on experience or guidelines (Nielsen & Molich,

Heuristic Evaluation of User Interfaces, 1990). Heuristic evaluation method was one the most

widely used inspection methods. Heuristic evaluation is done by looking at a user interface and

trying to discover usability issues based one’s own opinion. Smith and Mosier (1986) proposed a

large number of rules as user interface evaluation guidelines. In practice, usability heuristics

 16

proposed by Nielsen and Molich as a substitute for empirical user testing are more commonly

used. Nine user interface evaluation heuristics proposed in 1990 (Nielsen & Molich, Heuristic

Evaluation of User Interfaces, 1990) are: (1) Simple and natural dialogue; (2) Speak the user’s

language; (3) Minimize the user memory load; (4) Be consistent; (5) Provide Feedback; (6)

Provide clearly marked exits; (7) Provide shortcuts; (8) Good Error Message; (9) Prevent Errors.

The developers of these nine heuristics also mentioned the major advantages of heuristic

evaluation, namely 1) low evaluation cost, 2) evaluation procedure is intuitive and easy to

motivate participants to join, 3) evaluation does not require advance planning, and 4) evaluation

can be performed in the early stage of development. They also designed four empirical tests to

test the practical applicability of heuristic evaluation. Results indicate that heuristic evaluation is

difficult to perform and researchers should not rely on individual’s result. They pointed out that a

disadvantage of heuristic evaluation is that it sometimes identifies usability problems without

providing suggestions for improvement and the method is biased by the current mindset of the

evaluators and normally does not generate breakthroughs in the evaluated design (Nielsen &

Molich, Heuristic Evaluation of User Interfaces, 1990). Nielsen (1994) further refined and

updated user interface evaluation heuristics to: (1) Visibility of system status; (2) Match between

system and the real world; (3) User control and freedom; (4) Consistency and standards; (5)

Error prevention; (6) Recognition rather than recall; (7) Flexibility and efficiency of use; (8)

Aesthetic and minimalist design; (9) Help users recognize, diagnose, & recover from errors. The

modified list of nine heuristics is based on factor analysis of 249 usability problems. Nielsen

concluded that the modified heuristics succeeded in explaining discovered usability problems

and its ability to discover new problems remains to be seen (Nielsen, Enhancing the explanatory

power of usability heuristics, 1994). These nine heuristics remain to be used until now.

 17

In addition to heuristic evaluation, there are also many other usability inspection methods.

Some typical inspection methods are cognitive walkthrough, pluralistic usability walkthrough,

formal usability inspection, feature inspection, consistency inspection and standards inspection

(Nielsen, Usability Inspection Methods, 1994).

Cognitive walkthrough evaluates a user interface for its ease of exploratory learning

through cognitive modeling (Wharton, Rieman, Lewis, & Polson, 1994). It simulates one’s

problem solving process and checks if this cognitive modeling can complete tasks or lead to

correct actions (Nielsen, Usability Inspection Methods, 1994). Cognitive walkthrough consists of

two phases: a preparatory phase and an analysis phase. The preparatory phase determines four

key issues: interfaces, users, tasks, actions. In the analysis phase, evaluators go through the

following four steps (Novick & Hollingsed, 2007):

1. set a goal to be completed within the system.

2. determine available actions.

3. select the action that leads closer to the goal.

4. perform the action and evaluate the feedback given by the system.

Cognitive walkthrough has some disadvantages: 1) It requires filling out evaluation forms

repeatedly, 2) It can only find out limited range of problems, and 3) It has difficulty in defining

availability of actions to users.

Pluralistic usability walkthrough modifies the traditional usability walkthrough and it

involves representative users, product developers, members of the product team, and usability

experts in the evaluation process (Bias, 1994). Pluralistic usability walkthrough is done by

having a meeting of representative users, product developers, members of the product team, and

usability experts to discuss user interface dialogue elements (Nielsen, Usability Inspection

 18

Methods, 1994). This method does not have to be applied after user interface design is fully

accomplished. On the other hand, the approach must be limited to representative rather than

comprehensive user paths through the interface. The pluralistic walkthrough method appears to

be in active use for assessing usability (Novick & Hollingsed, 2007).

Formal usability inspection combines heuristic evaluation and simplified form of

cognitive walkthrough to implement six steps of procedures (Kahn & Prail, 1994; Nielsen,

Usability Inspection Methods, 1994). It works faster, and it is more thorough and more technical

than in the pluralistic walkthrough (Novick & Hollingsed, 2007). It appears that little research

has been conducted on formal usability inspections (Novick & Hollingsed, 2007). Other usability

inspection methods include feature inspection, consistency inspection and standards inspection,

which only evaluate one aspect of usability issues and are less widely used in current user

interface evaluation, and therefore they not illustrated in detail here.

Modern usability Development

After modern usability was established, the development in the usability field showed

two main features.

First, research on usability gradually became mature and the system of usability testing

became more rigorous. Research on the usability topic was divided in more detail gradually.

Lewis examined experiment sample size for usability studies (Lewis, 1994). The concept of

usability became a standard in ISO (International Organization for Standardization). Evaluators,

as a key factor of usability testing, were also examined (Jacobsen & John, 1998). Some

researchers summarized existing methods and made comparisons about these methods (Gray &

Salzman, 1998).

 19

Second, user interface as the subject of usability evaluation was dramatically influenced

by software, Internet and portable devices. Three major changes after 2000 are listed below.

1. Software usability testing became the topic of research interest.

2. Usability testing data started to be collected remotely and analyzed stochastically.

3. Usability evaluation was influenced by massive use of portable devices.

These changes influenced usability evaluation methods through making new

requirements to user interface design and further produced more usability evaluation methods.

As software development arose dramatically, software user interface became the main

user interface to perform usability evaluation. The field made large efforts to adapt to this change.

For example, in 1998, the Industry Usability Reporting Project was initiated by National Institute

of Standards and Technology and many industry companies (NIST, 1998). The goal was to

develop a usability reporting format with shared customer (software purchaser) data. More than

40 companies were involved in this project including some major manufacturers. This is a big

effort in building standard for usability testing in the history. This project produced Common

Industry Format for Usability Test Reports (CIF). In the past there were many different ways to

report usability evaluation results. CIF became a very important effort to communicate between

software developer and software purchaser. Almost at the same time of the Industry Usability

Reporting Project, great development of Internet gradually changes the field of usability. After

the year of 2000, Internet became popular in people’s daily life. More people have access to

Internet worldwide. It made remote user interface usability testing come true. Users started to

participate from their normal work locations using their normal browser, and there was no real

time observation helping to reduce performance difference between lab condition and real

condition (Tullis, Fleischman, Mcnulty, Cianchette , & Bergel, 2002). After 2007, smartphone

 20

and other portable devices went into market and dramatically challenged user interface design.

As the different ways of interaction with computer based information system and various screen

dimensions, these portable devices had very different requirements on user interface design as

well as usability testing methods. After 2010, large amounts of applications on portable devices

gave usability testing new challenges. Compared with lab based user interface usability

evaluation, applications of portable devices went into and out of the market rapidly, which

required usability testing to be conducted quickly and cheaply. Traditional usability testing

methods still hold their scientific values in the field. However, it is also worthwhile to further

develop practically useful usability testing methods to follow the rapid development pace.

In summary, the type, amount and interaction method of user interfaces that an individual

use all had big changes in the past two decades. Correspondingly, many new user interface

evaluation methods were built to adapt to these changes. These methods showed diversity on the

whole and had the trend of becoming more quantitative and cost efficient.

Quantitative evaluation method for usability evaluation developed from many directions.

Tom Tullis and Bill Albert (2008) rigorously studied user experience metrics and reviewed

performance metrics, self-reported metrics, behavioral and physiological metrics, and so on, and

provided instructive advice to evaluate through measuring user experience. Sauro and Lewis

(2012) systematically studied and summarized how to implement statistic tools to evaluate user

interface usability.

Cost efficient methods are mainly beneficial from widely used Internet and large data

availability. Tom Tullis et al (2002) compared lab-conditioned usability testing and remote Web-

based usability testing of Web sites and indicated that both the lab and remote evaluations

capture similar information about the usability of a site. It built foundation of remote user

 21

interface evaluation and show a possibility to make usability evaluation more cost efficient. Bill

Albert, et al (2010) conducted large-scale online user experience studies, taking advantage of

Internet and big data availability to improve cost efficiency of usability evaluation.

These new development in usability evaluation, cost efficiency and quantitative analysis

met the recent years’ flourishment of machine learning methods. The topic of “As Machine

Learning and AI perform Magic, how can UX professionals help?” was discussed in User

Experience Professionals Association (UXPA) conference in 2017. The discussion raised

possible role change for UX professional in facing the rapidly developing AI field in order to 1)

define overall user experience at strategic level; 2) understand the ecosystem that users interact

with and the feedback loop for machine learning; 3) expand user scenarios for user research and

design. Carol Smith (UXPA 2018) indicated that there were many remaining technical

challenges to implement machine learning methods for user experience study. Therefore, this

research will be an attempt to implement machine learning methods to evaluate the usability of

user interface with the aim to build quantitative and cost efficient usability evaluation models

with computerized procedures.

2.2 Literature Review on Machine Learning Methods

2.2.1 Overview of Machine Learning Methods

As mentioned above, rapidly developing machine learning methods provide a new

possibility to build quantitative and cost efficient usability evaluation models with computerized

procedures. However, machine learning methods refer to a group of probabilistic methods. To

 22

select the proper machine learning method for usability evaluation, a literature review of

candidate machine learning methods needs to be conducted.

Generally, machine learning methods can be divided into three types: 1) predictive or

supervised machine learning methods; 2) descriptive or unsupervised machine learning methods;

and 3) reinforcement learning methods.

Supervised machine learning methods aim to build mapping from inputs 𝑥 to outputs 𝑦

with given labeled pairs of input 𝑥 and output 𝑦. These methods are always applied in

classification such as email spam filtering, image classification, handwriting recognition and face

detection.

Unsupervised learning aims to discover useful data patterns with given input data 𝑥. In

comparison with supervised data, unsupervised data have to discover relationship from input

data and find out data patterns underneath without labels of data. Unsupervised machine learning

methods are usually applied in discovering latent factors, image inpainting, collaborative

filtering and market basket analysis.

Reinforcement learning is different from traditional machine learning methods,

supervised and unsupervised machine learning methods, in the sense that it does not learn from

existing examples or data directly. Reinforcement learning aims to learn how to act or behave

from environment feedback, reward or punishment signals, and is widely applied in tasks

involving decision making. In comparison with supervised and unsupervised machine learning

methods, reinforcement learning adjusts and forms mapping action strategies to accumulated

rewards rather than discover or recognize potential data pattern. In other words, an agent of

reinforcement learning keeps trying to interacts with the environment and learns to make

decision of action that maximizes the total accumulative rewards (Sutton & Barto, 1998).

 23

Phase I modeling of this dissertation research is a classification problem and the

classification feature is clearly the usability evaluation score. Therefore, supervised machine

learning method is the proper implementation method.

Phase II modeling of this dissertation research is to build an interaction simulator to

mimic human users’ behaviors. There exist two possibilities for machine learning method

implementation:

1. Implementation of a supervised machine learning method through directly mapping user

interface and task to the distribution of users’ interaction traces. Mathematical

representations of the user interface and the task together serve as a feature vector. Users’

interaction traces serve as the data labels.

2. Implementation of a reinforcement learning method through regarding the user interface

as the interaction environment and defining the tasks with proper set of reward functions.

Implementation of a supervised machine learning method on Phase II of the research

theoretically works, but has many practical difficulties. First, task and user interface cannot form

a mapping to a single interaction trace because interaction of human users is a stochastic process.

It requires data set of very large size to tune parameters and train the model. Second, the label of

each instance of the data is the distribution of interaction traces, which is multidimensional. To

adapt multidimensional labels to many supervised machine learning methods will further

increase the size of the required training data. Third, as the trace of interaction has randomness, it

is hard to distinguish the classification results due to differences in user interface design or in

individual users.

Implementation of the reinforcement learning method on Phase II of the research is

therefore more suitable from the following three aspects. First, reinforcement learning is a

 24

learning process from interaction. The goal of Phase II modeling is to learn human user’s

interaction. Second, user interface in reinforcement learning is treated as the interaction

environment, which greatly simplifies the mathematical complexity of the model and also makes

the model more flexible to adapt to new types of user interfaces. Third, reinforcement learning

method would be less sensitive to the size of the training data with proper reward function set.

For supervised machine learning methods, if not enough data are provided, failure of task

completion might happen, but for the reinforcement learning method, only the human behavior

mimic level is influenced and task completion will not be influenced. Based on these

considerations, Phase II modeling of this research implements the reinforcement learning method.

2.2.2 Phase I Candidate Implementation Methods

Based on the discussion above, Phase I candidate implementation method should be

supervised classification method. The following part of this section will go through the candidate

implementation methods for Phase I modeling from the current widely used machine learning

methods including K nearest neighbors algorithm (KNN), Naïve Bayes, neural networks (NN),

support vector machine (SVM) and logistic regression (Murphy, 2012).

1. K nearest neighbors Method

K nearest neighbors algorithm (KNN) is a non-parametric classification method.

It classifies data points on the basis of K nearest data points’ votes. Different settings of

K value will lead to different classification results. Also, the vote weights can be adjusted

to derive weighted adjusted K nearest neighbors algorithm (WAKNN). (Murphy, 2012)

2. Naïve Bayes Method

Naïve Bayes method is a classifier based on Bayesian Theorem under the

assumption that different features are strongly independent to each other. It classifies data

 25

point with maximum likelihood estimation (MLE), which maximizes the likelihood

function with given observations. (Murphy, 2012)

3. Neural Network Method

Neural Network method can also serve as the classifier. It consists of at least two

layers and each layer consists of nodes. Each node connects with every node in adjacent

layers using linear combination function and activation function. The first layer, also

known as input layer, is used to input feature vectors; the last layer, also known as output

layer, is used to output classification results. It classifies data point using neural network

structures to approximate classification functions. (lan Goodfellow, 2016)

4. Support Vector Machine Method

Support vector machine (SVM) is a discriminative classifier formally defined by a

separating hyperplane. The algorithm produces an optimal hyperplane, which classifies

new instances of data into categories given labeled training data. For example, in a two-

dimensional space the separating hyperplane is a line. Data point falling on one side of

the line belongs to one category. If the input data is not linear separable, kernelization

tricks can be applied for classification. Kernelization tricks refer to mapping original data

from input space to high dimensional feature space so that the linearly inseparable data

can be linearly separated in higher dimensional space. One thing to notice is that

increasing the dimensionalities will lead “the curse of dimensionality” since the required

size of the training data increases exponentially with the dimensionality increasing. If

there is not enough data provided, support vector machine model might be under the risk

of overfitting (Murphy, 2012).

5. Logistic Regression Method

 26

Logistic regression classifier is very similar to support vector machine classifier.

The difference is that support vector machine implements hinge loss function and logistic

regression implements logistic loss.

2.2.3 Phase I Modeling Method Selection

In the following discussion, four Phase I candidate implementation methods are

compared and support vector machine method is selected as Phase I modeling implementation

method.

In comparison with support vector machine method, K nearest neighbors algorithm has

the advantage of having fast training speed, but has the disadvantage of not being able to handle

many irrelevant features and having relatively low predictive accuracy. Naïve Bayes method, as

mentioned above, needs to work under the assumption that different features are strongly

independent to each other, which Phase I Modeling does not hold. Neural network and logistic

regression methods are relatively more competitive to support vector machine method.

Neural network classifier has better predictive performance compared with support vector

machine. A well-trained neural network classifier has higher predictive accuracy and faster

predictive speed. However, it is not selected because of its two deficiencies. First, training a

neural network classifier is very time consuming and relates to many complicated parameter

tuning. Second, classification reason of neural network is harder to interpret. Support vector

machine classification is also hard to interpret, but it classifies data points through maximizing

the “gap” between different groups, and therefore separating hyperplane as classification

boundary may provide more information to analyze classification reasons.

Logistic regression method as mentioned above is very similar to support vector machine

method in mathematics and performance with a difference on loss function. Logistic loss

 27

function of logistic regression diverges faster than hinge loss function of support vector machine

and cannot reach zero under confident classification. In other words, logistic regression classifier

is more sensitive to outlier data point. However, usability evaluation cannot avoid collecting data

from participants with strong individual preference or bias. Support vector machine can better

handle these outliers and reduce outlier’s effect. Therefore, support vector machine is more

suitable as the Phase I implementation method.

After comprehensive consideration of classification performance including accuracy and

speed, robustness to usability evaluation data and modeling difficulty, support vector machine is

selected as the implementation method for Phase I evaluation modeling. Detailed implementation

for Phase I modeling will be introduced in Chapter 3.

2.2.4 Phase II Candidate Implementation Methods

Based on the discussion above, Phase II candidate implementation method should be in

the reinforcement learning method family. The following part of this section will go through the

candidate implementation methods for Phase II modeling, including Q learning method, state

action reward state action (SARSA) method, deep Q network method, policy gradient method

and actor critic method.

1. Q learning Method

Q learning is one type of widely used reinforcement learning method. It includes a

very important action-state mapping table called Q table. Q table is adjusted during the

learning process to maximize expected accumulated total future reward for each action at

each state. Columns of the Q table represent the actions. Rows of the Q table represent

the states. The value of each cell will be the maximum of expected future reward for that

given state and action. The action value function of Q learning method takes two inputs,

 28

state and action and returns the expected future reward of that action at that state as

output. Before the training process, the Q-table can be initialized with an arbitrary

number. During the training process, the Q-table will be updated for better estimation of

expected action value under state. The whole process can be summarized in four steps: 1)

Initialize Q table; 2) Choose and perform action; 3) Receive feedback reward from

environment; 4) Update Q table. After training process, action values on Q table can well

estimate true action values therefore help agent make better decisions to maximize total

expected accumulative rewards (Sutton & Barto, 1998).

2. State Action Reward State Action Method

State Action Reward State Action method (SARSA) is a similar reinforcement

learning method to Q-learning. Difference between SARSA and Q-learning is that

SARSA is an on-policy algorithm which means SARSA method updates the Q-value

based on the action performed by the current policy rather than the greedy policy. Policy

in reinforcement learning refers to a strategy to select a series of actions. (Sutton & Barto,

1998)

3. Deep Q Network Method

Deep Q network (DQN) can be regarded as a modification of Q learning method.

The main difference is that DQN implements a Neural Network to estimate the Q-value

function in substitute of the Q table in Q learning method. The input of the network is the

state and the output of the network is the action value under the state. Besides, DQN is

different with Q learning method from experience replay and separate target network

which are used to reduce the effect of training sample’s correlation and improve the

stability of the training respectively. (Volodymyr Mnih, 2013)

 29

4. Policy Gradient Method

Policy gradient method is a policy-based method. Rather than learning a value

function, Policy gradient method uses the policy function directly updating the value

policy. A policy function can be either deterministic or stochastic. A deterministic policy

maps the state to action directly which is usually used in deterministic environments. A

stochastic policy generates a probability distribution over actions. The stochastic policy is

used when the environment is uncertain. (Sutton & Barto, 1998)

5. Actor Critic

Actor-critic method is a combination of value based method and policy based

method. The policy and value estimation are done by actor and critic respectively. Critic

criticizes the actions made by the actor. After each action selection by actor, critic

evaluates whether the situation gets better or not. (Sutton & Barto, 1998)

2.2.5 Phase II Modeling Method Selection

Deep Q network (DQN) is selected as the implementation method for Phase II modeling.

Five reinforcement learning methods mentioned in the previous section can be divided into two

categories: value based method and policy based method. Generally speaking, policy based

method is more appropriate to solve problems of high dimensional action space, since it is hard

to build action tables. Therefore, it seems that policy based method is suitable for Phase II

modeling implementation. However, after careful consideration it can be noticed that there exists

a dilemma for policy based method. On one hand, in policy based method, policy is used as a

whole to be updated and optimized to achieve a compelling goal, in the case of Phase II

modeling which is task completion. At this time policy serves as a decision variable. However,

on the other hand, task completion is not the only goal of interaction simulation of Phase II.

 30

More important, interaction simulation of Phase II needs to mimic human user’s behavior,

otherwise task completion becomes meaningless. Therefore, policy also serves as the objective

function. The solution of this optimization problem is the training data itself. It could be argued

that it is possible to set task completion as objective function while setting human behavior

mimics as a constraint. But unfortunately, quantitatively measuring the similarity between

different traces of interactions is a more complicated topic beyond the scope of this research. If

the similarity between different traces of interaction can be quantitatively measured, building

interaction simulator then becomes trivial.

Since policy based methods are not suitable for Phase II modeling, the focus is turned to

value based methods. Among the five candidate methods for Phase II modeling, only Q learning

method and deep Q network method do not have any component of policy value estimation. And

in comparison with Q learning method, deep Q network method is more powerful in solving

more complex problems. Moreover, deep Q network method in comparison with Q learning

method has better generality. For states that the Q-learning agent has not been encountered, it is

difficult for Q learning to make good decisions. In other words, Q-learning agent does not have

the ability to estimate values for unseen states. Neural network structure of deep Q network

method approximates action value function, which enables the deep Q network agent to make a

better decision for an unseen state.

After comprehensive comparison among the five candidate implementation methods for

Phase II modeling, deep Q network is the most appropriate method to implement. Detailed

implementation for Phase II modeling will be introduced in Chapter 5.

 31

Chapter 3 Phase I Computational Modeling and Experiment

Chapter Summary

This chapter first introduces the objectives and challenges of Phase I evaluation model.

Then it introduces the modeling scope, procedures and framework of Phase I evaluation model.

Lastly, it described detailed implementation methods, including data collection and

computational methods.

3.1 Objectives and Challenges of Phase I Modeling

3.1.1 Objectives of Phase I Modeling

Based on the discussions in Chapter 1 and Chapter 2, the purpose of Phase I evaluation

model is to classify user interface based on the satisfaction aspect of usability with the selected

support vector machine method.

User interface as an interaction media between human and machine involves two ways of

communications. First, human user receives information from interface to process. Second,

human user makes decision and gives instruction or acts on the user interface. In the first stage of

communication, user interface serves its function of information presentation. Many usability

issues could show up during this stage. User interface can be regarded as a static image. Through

conducting research on features of the static image, the satisfaction aspect of usability can be

evaluated.

 32

Different from empirical usability testing, Phase I evaluation model does not include any

actual dynamic interactions between the human and the interface. The scope of Phase I model is

restricted to viewing and evaluating the static features of user interface. Phase II modeling will

focus on evaluating a user interface based on dynamic interactions. It may be argued that when

viewing a user interface, users would have already imagined how they would interact with a user

interface. Therefore, static features of a user interface cannot be separated with evaluation of

interactions. Truly, users might imagine how they plan to interact with a user interface before

actually interacting with it. However, imagining to interact with a user interface is not the same

as actually interacting with a user interface. For example, when widgets of user interface do not

have clear boundary, it is easy to make mistakes even if it has been imagined successfully in the

mind. Therefore, Phase I research is an attempt to capture usability issues from viewing interface

as a static image.

3.1.2 Challenges of Phase I Modeling

During the implementation of support vector machine for Phase I modeling, three

challenges are encountered.

First, user interfaces have too many feature inputs. User interface regarded as an image

can be very complicated. To completely represent a user interface with a vector so that the image

of user interface could be fully restored from this vector, all pixel values of the user interface

need to be included. However, the size of the required training data increases exponentially with

the size of the feature inputs. Implementing methods such as convolutional neural network to

abstract useful information from pixel vector deviates from the main topic of this research.

Therefore, it is necessary to manually select features as input training data.

 33

Second, data points in the feature space of training data might be not linearly separable.

There are two alternative solutions: soft margin support vector or kernel function mapping to

high dimensional space. Soft margin support vector machine is a support vector machine

allowing incorrect classification. The challenge is if collected sample is highly non-linear, it may

reduce the prediction accuracy of soft margin support vector machine. The other alternative is to

use kernelization trick to increase the dimensionality of sample space and classify data in high

dimension space with corresponding hyperplane. It is safe to say that linearly non-separable data

is dividable in a space with enough dimensions. However, this alternative has its own challenges,

the choice of kernel function and the curse of dimensionality. There are many prevailing kernel

function such as polynomial kernel, Gaussian kernel, radius basis function and sigmoid kernel.

Different problem fits different type of kernels. If the choice of kernel can be solved by testing

different kernels’ results, curse of dimensionality is real barrier. Curse of dimensionality refers to

the size of sample increases exponentially as the dimension increases which means

implementation of support vector machine method increases required size of data to avoid

overfitting. In dealing of this, it needs to either reduce the feature input or increase the size of

collected data. Therefore, the dimension of the feature vector needs to be carefully designed

based on the size of the training data.

The third challenge of Phase I modeling is the interpretation of the classification results.

It is a common challenge for many other machine learning methods. Support vector machine

classifies user interface through maximizing the “gap” between different groups. However, the

classification results cannot directly benefit user interface design. As mentioned in method

selection of Phase II modeling, it indicates that separating hyperplane as boundary of

classification may serve as a breach to interpret classification results. Then, how to properly

 34

interpret coefficients of hyperplane becomes a challenge.

 35

3.2 Description of Phase I Modeling

Before describing Phase I model framework, it is necessary to briefly introduce the

important components of Phase I modeling.

3.2.1 User Interface of Phase I Modeling

In the Introduction chapter, it has been mentioned that this research focuses on the visual

user interface on computer based information system. And the discussion of Phase I modeling

challenges mentions that to reduce the dimension of the feature vector, the number of features to

be studied has to match the size of the training data. Therefore, it is necessary to make

simplifications to the user interface in Phase I modeling.

Widgets on User Interface

A user interface consists of different functional widgets. Based on their functions, they

can be divided into three types, as shown in Figure 3-1.

Figure 3-1: Different types of user interface widgets

Among all these different types of widgets, two widgets namely button and textbox are

included. First, button and textbox are most commonly used widgets in all types of user

interfaces. It is hard to see a user interface without these two widgets. Therefore, these two

widgets are more representative than others. Second, button and textbox are two very intuitive

 36

user interface widgets. It does not require training to know how to operate these two widgets. To

reduce the number of variables, all widgets are in the shape of rectangle.

Framework of User Interface

The satisfaction aspect of usability is also influenced by the dimensions of user

interfaces. Since Phase I of the research only evaluates from the static view of a user interface,

related settings of user interface framework are dimensions and background color of user

interface. The settings of user interface framework need to be as simple as possible to reduce the

complexity of the Phase I modeling. The perceived dimensions of user interface framework are

dependent on screen resolution, screen size and pixel size. User interface framework of Phase I

modeling is 400×300 pixels on a 15 inches screen with 2880×1800 resolution. The background

color is set as white to maximally reduce the effect of individual’s preference.

Generation of User Interface

To collect satisfaction data for classifier training, sample user interfaces are needed for

participants’ subjective ratings. Generation of sample user interfaces consists of layouts of each

widget. The central position of each widget is randomized within the range of the user interface

framework. It may lead to widget’s overlapping with the boundary of user interface, which can

be used to study extreme conditions for the design of user interface static view. The dimensions

of each widget are randomized within the range of 100 by 100 pixels. The reason to limit the

dimensions of widget is to collect data of higher density in feature space in order to generate

more statistics results, since the goal of Phase I modeling is to build satisfaction evaluation

method, not to find out the optimal dimensions for user interface widgets. Generation of user

interface does not avoid extreme conditions of user interface design such as overlapping but the

generation process will guarantee at least part of each widget can be shown to the participants.

 37

3.2.2 Other Components of Phase I modeling

Features

There might be many features or combinations of different features influencing the

evaluation of satisfaction. When manually selecting features of a user interface, only the most

important features can be included. Most important features should be able to decide the

framework of a user interface and reflect a large proportion of static view of a user interface.

Therefore, layout of the user interface including dimension and position of each widget is

selected as features of interest for Phase I modeling. Features like color, which are strongly

influenced by individual’s preference, are not included. Each widget takes a four dimensional

space in the feature vector, namely horizontal position, vertical position, horizontal dimension

and vertical dimension. The total dimensionality of feature vector depends on the number of

widgets on user interface.

Satisfaction Levels

Phase I model evaluates satisfaction of a user interface with a quantitative continuous

scale ranging from 0 to 100, representing the satisfaction level from low to high. Since the datum

line of different individuals might be different, absolute values of raw data need to be normalized

in order to compare with each other. Normalization is performed with the satisfaction evaluation

of the same five user interfaces. No user interface examples are provided to normalize

satisfaction evaluation scores.

Implementation Methods

Support vector machine is selected as the implementation method of Phase I modeling.

Feature vectors 𝑋 and labels 𝑌 are used to train the classifier.

 38

 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] 3-1

 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑛] 3-2

Support vector machine classifies data points through a separating hyperplane. There may

exist more than one hyperplane, which can separate training data. The “gap” between two groups

of training data can be used as performance measurement for classification. This “gap” can be

represented as the distance between hyperplane and closest point of data on both sides. Optimal

hyperplane is the hyperplane that maximizes this distance. Support vector machine can be

mathematically formulated as:

1

𝑚
∑ 𝑙(ω ⋅ 𝑥𝑖 + 𝑏, 𝑦𝑖)

𝑚

𝑖=1

+ ||ω||
2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑚𝑖𝑛𝑖|ω ⋅ 𝑥𝑖| = 1

3-3

Feature vector 𝑋 consists of layout of each widget and label 𝑌 refers to the satisfaction

subjective rating.

 39

3.3 Implementation of Phase I Modeling

3.3.1 Data Collection

38 participants from 18 to 26 years old University of Michigan students were recruited

through emails in three batches to participate in the one-hour user interface evaluation study.

Participants are from group of normal novice users. Recruited participants are required to have

three years of experience of using any user interface on computer based information system.

Participants should not have participated in the research before or have any usability evaluation

experience. 3 subjects were initially recruited to test data collection user interface. 25 subjects’

data were used as training data for the layout study and 5 subjects’ data were used as verification

data. Another 5 subjects’ data were used to perform secondary study. Each subject was told to

provide evaluation on 105 randomly generated prompted user interfaces with white background

in gray scale of 400 × 300 pixels including button and textbox based on their satisfaction level

of user interface. Each subject was required to drag an evaluation bar to indicate their satisfaction

level to the user interface. Evaluation bar ranges from 0 to 100 referring to satisfaction level low

to high. User interface of Phase I data collection is as shown in Figure 3-2.

 40

Figure 3-2: User interface for Phase I data collection

Collected data were divided into four cases. Each case contains different number of

widgets as shown in Table 3-1.

Case Number
Number of widgets

in user interface

Feature vector

dimensionality

Number of user interfaces

of the case

A 2 8 100

B 4 16 800

C 8 32 800

D 16 64 800

Table 3-1: User interface of Phase I model training data

For example, in case B the number of widgets is four. Each widget needs to be

represented with horizontal position, vertical position, horizontal dimension and vertical

dimension so that the total dimensionality of Case B is 16. 800 user interfaces with labels of

 41

satisfaction are used as training data to tune parameters of classifier. An example of user

interface for each case is shown in Figure 3-3.

Figure 3-3: User interface example for four cases. Upper left: Case A; Upper right: Case

B; Lower left: Case C; Lower right: Case D.

3.3.2 Normalization

At least five user interfaces are the same for all participants. These user interfaces’

satisfaction ratings are used to perform data normalization and calibrate datum line of different

participants. Participants are not told which user interfaces will be used for normalization.

Normalized satisfaction evaluation results may exceed the upper limit of 100.

 42

3.3.3 Model Training

Distribution Examination

Continuous scale of satisfaction evaluation provides freedom to select the position of

classification. Before implementing support vector machine to classify, distribution of calibrated

data are examined and possible classification positions are selected to insert a separating

hyperplane. Separating hyperplane should avoid high density area since it cannot generate a

well-defined boundary for different groups. Therefore, all the local minimum of satisfaction

distribution are examined and classified with support vector machine training process. This is

general principle to select classification boundary. In actual implementation of support vector

machine, selection of classification boundary will be addressed on case basis.

Training Classifier with Support Vector Machine

Support vector machine can well classify linearly separable data points. For linearly

inseparable data points, support vector machine needs to perform some adjustments based on the

degree of linear inseparability.

Three methods of support vector machine family are tried in sequence to train classifiers.

These three methods are:

1. Linear support vector machine

2. Soft margin support vector machine

3. Kernelized support vector machine

First, linear support vector machine method is always used first to classify linear

separable data. If collected data is not linear separable, soft margin support vector machine is the

next attempt. Soft margin support vector machine allows incorrect classification in training data.

It has good classification performance with fuzzy boundaries. At last, if groups of data points not

 43

only have fuzzy boundaries but also mixed together, kernel function is involved to increase the

dimensionality of sample space. Kernelization tricks is powerful in making linearly inseparable

data points linearly separable at cost of increasing required size of training data otherwise may

lead to overfitting. Therefore, kernel function needs to be carefully selected and tested. There are

many different types kernel functions. Phase I model makes the following kernel function

attempts when implementing kernelized support vector machine method. These kernel functions

are most widely used and best performance them will be selected to tune classifier parameters:

a) Linear kernel function:

 𝐾(v1, v2) =< 𝑣1, 𝑣2 > 3-4

b) polynomial kernel function:

 𝐾(𝑣1, 𝑣2) = (𝛾 < 𝑣1, 𝑣2 > +𝑐)𝑛 3-5

c) Radius basis function:

 𝐾(𝑣1, 𝑣2) = eγ||v1−v2||
2

 3-6

d) Sigmoid function:

 𝐾(𝑣1, 𝑣2) = 𝑡𝑎𝑛ℎ(γ < v1, v2 > +c) 3-7

e) Gaussian function

𝐾(𝑣1, 𝑣2) = 𝑒
−

||𝑣1−𝑣2||
2

2

2σ2

3-8

3.3.4 Verification

Verification study is conducted on four formal cases of Phase I evaluation model. Five

participants’ data are inserted to be tested in trained model. Classification accuracy rate is used to

measure the performance of the classifier. Overfitting may be found during verification in view

 44

of bad classification performance. In this case, support vector machine objective function may be

adjusted through adding an extra term to penalize the number of parameters.

 45

Chapter 4 Phase I Results and Discussions

Chapter Summary

This Chapter presents the training results of classifier and a discussion about Phase I

modeling. It firstly presents classification results of four cases of Phase I evaluation model

individually. Then a verification study of classification model is conducted. After verification,

findings and discussions of Phase I modeling are introduced.

4.1 Classification Results

4.1.1 Overview of Classifiers’ Training Results

Classification results are summarized in Table 4-1. After attempts to all the local

minimum area of distribution of satisfaction ratings, two to three categories can be classified for

all cases. Other possible classification positions are either inseparable with five kernelization

methods mentioned above or of low predictive classification accuracy.

 46

Case
Number of classified

categories
Methods Kernel function

A 3 Kernelized SVM RBF

B 3 Kernelized SVM RBF

C 2 Kernelized SVM RBF

D 2 Kernelized SVM Gaussian

Table 4-1:Summary of Phase I classification results.

From Table 4-1, it can be noticed that all the cases of classifiers implement kernelized

support vector machine method, which means all the satisfaction data points are not linearly

separable. After testing five candidate kernel functions, Case A, B and C implements RBF kernel

function and Case D implements Gaussian kernel function to achieve best predictive

classification accuracy. In the following, four cases of classifiers are discussed in detail.

 47

4.1.2 Case A Classifier

Training data distribution of Phase I evaluation model of Case A is summarized in Figure

4-1. As mentioned in Chapter 3, all local minimum areas of distribution density are candidate

places to insert separating hyperplanes.

Figure 4-1: Case A data distribution. X-axis indicates usability evaluation ratings and Y-

axis indicates the number of participants under some range of ratings

Therefore, support vector machine methods are implemented to classify the area around

30-40 and 70-80 intervals, since local minimum area of 50-60 has low predictive accuracy rate of

verification. There are two possible options to implement support vector machine method.

1. Data points within 30-40 and 70-80 intervals are eliminated to avoid fuzzy

boundaries between groups while tolerance value 𝐶 of support vector machine is

set to be less than 1 , which means the classifier allows mistakenly classified data.

 48

2. It is also applicable to find two exact numbers within interval of 30-40 and 70-80

as classification position. The tolerance value 𝐶 of support vector machine is set

to be 1 ,which does not allow any mistakenly classified data around boundaries.

The advantage of the second option is the inclusion of two intervals’ data and is more

scientifically rigorous. However, since the measurement accuracy of subjective rating is

unknown, it is hard to select one value within interval over others. Also, Inclusion of two

intervals’ data might not be able to improve the predictive classification performance but lead to

fuzzy boundaries. Therefore, option 1 is easier to implement in comparison with options 2. Case

A study implements option 1.

After the training of classifier, verification test is conducted. The verification data of

Case A consists of 20 user interfaces. Among 20 test cases, four of them are mistakenly

predicted and the prediction accuracy rate is 80%.

 49

4.1.3 Case B Classifier

Training data distribution of Phase I evaluation model of Case B is summarized in Figure

4-2. Local minimum area is the interval of 10-20. Using the interval of 10-20 as the classification

point may not be proper since in comparison with other intervals of data, its density value is high

which might not provide a clear boundary. Also, if applying option 2 implementation method,

exclusion of data within interval of 10-20 causes a large amount of data loss.

Figure 4-2: Case B data distribution

Considering the problems mentioned above, adjustment of classification position

selection is made. In Case B, classification positions are selected within the big range of data

sparsity namely long range of interval without data points in it. Similar to selecting local

minimum areas, the selection of method also aims to provide clean boundaries between groups.

 50

Based on the discussion above, separate hyperplane is placed at evaluation scores of 30

(28-33) and 80 (78-85). The first group ranges from evaluation score of 0 to 30. The second

group ranges from evaluation score of 30 to 80. And the third group ranges from 80 to 100.

Tolerance value C of support vector machine is set to be 1, which does not allow any mistaken

classified data during the process of training.

After the training of the classifier, verification test is conducted. The verification data of

Case B consists of 160 user interfaces. Among 160 test cases, thirteen of them are mistakenly

predicted and the prediction accuracy rate is 91.9%.

 51

4.1.4 Case C Classifier

Training data distribution of Phase I evaluation model of Case C is summarized in Figure

4-3. Local minimum areas are the intervals of 10-20, 50-60 and 80-90.

Figure 4-3: Case C data distribution

Though interval of 80-90 is a local minimum area, its density is about the same level as

the both adjacent intervals. Therefore, separating hyperplane is placed at interval of 30-40 and

interval of 50-60. Second option of support vector machine implementation is selected.

After the classifier is found, verification test is conducted. The size of verification data is

160. Among 160 test cases, 3 of them are mistakenly predicted. Therefore the prediction rate is

98.1%.

 52

One thing to notice is that the distribution of Case C training data is right skewed. As

mentioned previously, user interfaces of training data are generated through randomly layout

widgets. With the number of widgets increases, the chance of generating user interface with high

satisfaction evaluation becomes low, which also explains the asymmetric of Case C training data

distribution. When the total number of widgets reaches 16, this asymmetric of training data

distribution becomes more severe, Therefore, in Case D, extreme conditions including

overlapping or edge cutting are manually eliminated.

 53

4.1.5 Case D Classifier

Training data distribution of Phase I evaluation model of Case D is summarized in Figure

4-4. Local minimum areas are the intervals of 20-30, 40-50, 60-70 and 80-90.

Figure 4-4: Case D data distribution

Though intervals of 20-30, 40-50 and 80-90 are local minimum areas, their densities are

about the same level as the both adjacent intervals.

Separating hyperplane is placed at evaluation scores of 60-70. The first group ranges

from interval of 0-60. The second group ranges from interval of 70 to 100.

 54

After classifier is found, verification test is conducted. The size of verification data is

160. Among 160 test cases, three of them are mistakenly predicted. Therefore the prediction rate

is 98.1%.

 55

4.2 Findings and Discussions

In this section, findings and discussions of Phase I modeling are introduced from four

aspects: data collection, training process, training result and implications of user interface design.

4.2.1 Training Data

Figure 4-5: Case A, B and C satisfaction training data

In comparison with the distribution of collected data of Cases A, B and C, it is easy to

notice that all these distributions are right skewed. Case D is excluded since extreme conditions

of Case D are eliminated. Besides, with the increasing number of the widgets on the user

interface, this right skewed characteristics becomes serious as shown in Figure 4-5. User

interfaces of Phase I training data are all generated by computer through randomly laid out

widgets on user interfaces, which means high satisfaction user interfaces are not uniformly

distributed with the number of widgets on user interface. In other words, user interfaces with

more widgets are harder to design. This fact raises two questions to researchers:

1. How to explain why high satisfaction user interface design with more number of

widgets is harder to generate?

2. How to properly generate user interfaces for data collection to obtain symmetric data

sets?

 56

For the first question, a probabilistic model can be used to give estimation of difficulty

level of user interface with different number of widgets. Considering design of user interface as a

process of laying out widgets on a user interface, then for an empty user interface the probability

to put first widget on an empty user interface within area of 𝑊1 in order to maintain the

satisfaction level 𝑆 ≥ 𝑠 is :

 𝑃1 = 𝑃(𝑤1 ∈ 𝑊1|𝑆 ≥ 𝑠) 4-1

For the second widget, the probability to put second widget on an user interface with a

widget within area of 𝑊2 in order to maintain the satisfaction level 𝑆 ≥ 𝑠 is :

 𝑃2 = 𝑃(𝑤2 ∈ 𝑊2|𝑆 ≥ 𝑠, 𝑤1 ∈ 𝑊1) 4-2

Therefore, the total probability to generate user interface with satisfaction level 𝑆 ≥ 𝑠 is:

 𝑷𝑺 = ∏ 𝑃(𝑤𝑖 ∈ 𝑊𝑖|𝑆 ≥ 𝑠, 𝑤1 ∈ 𝑊1, . . . , 𝑤𝑖−1 ∈ 𝑊𝑖−1)

𝑖=1

4-3

Since 𝑃𝑖 ≥ 𝑃𝑖+1, when the number of widgets increases, generation of high satisfaction user

interface decreases even faster.

The biggest barrier for the second question is the lack of user interfaces with high

satisfaction levels. In this research, it has been proved that randomly generation of user interface

has low efficiency to produce user interface with high satisfaction level. It is necessary to have

an algorithm to generate user interface while receiving feedback and assimilating experience

from human participants. A possible future research could be combining support vector machine

with reinforcement learning method. As mentioned in Literature Review, reinforcement learning

method learns to act based on environment feedback. Generating user interface for participants is

a process of laying out widgets on a user interface. Agent of reinforcement learning makes action

to lay out widgets with different positions and dimensions. Support vector machine serves as

 57

environment to provide feedback to agent. Relationship among participants, agent of

reinforcement learning and support vector machine is as shown in Figure 4-6.

Figure 4-6: Future research for data collection

This will not only make the data collection process of support vector machine faster but

also build a user interface designer with reinforcement learning method that can directly benefit

to user interface design and serve as good tool to verify results of support vector machine.

4.2.2 Training Process

During the training process, it has been mentioned in implementation method that all

local minimum areas need to be examined. However, during actual implementation of Case B,

separating hyperplane is selected within the big range of data sparsity namely long range of

interval without data points in it. This selection is essentially the same as the local minimum area

method. They both aim to insert a separating hyperplane where it has lower density of data

points so that the boundaries of different groups will be clean and easy to analyze.

4.2.3 Training Result

It is important to first discuss what have been done in Phase I research. In one sentence,

Phase I modeling classifies the satisfaction aspect of usability with feature vector consisting of

dimensions and positions. With simplification of user interface and limited number of user

 58

interface features included, Phase I modeling is immature to be directly used for currently using

real world user interface. The real value of Phase I model is to explore a way to use kernel

functions to study the factors that may influence the satisfaction level.

Kernel function is used to solve non-linear classification problem through involving new

dimensions. In other words, its essential meaning is to use kernel function to re-combine the

features of interest so that the internal connections between different features will appear.

For example, in this research, Cases A, B and C of best performance with support vector

machine RBF kernel function is not a coincidence. In the selection features to be included in

feature vector, dimensions and positions are involved. RBF kernel function is a function whose

values are only dependent on the distance to original point. With Euclidean distance,

independent features of horizontal position 𝑥 and vertical position 𝑦 are combined into RBF

function input √𝑥2 + 𝑦2 which makes RBF function suitable to be used to implement distance

related features of user interface. It also answers why RBF kernel function has the best

classification performance.

This research only involves dimension and position features establishing possible

connection to RBF function. In future research, more connections between user interface features

and kernel functions can be established. It will be very beneficial from these connections. On one

side, kernel function can be directly used to classify related features for user interface attributes

of interest as is performed in this research. On the other side, this connection can serves as a

basis to quantitatively study the design of user interface.

Another issue worth mentioning is the necessary number of categories used for usability

subjective ratings. Although during the data collection, continuous scale of evaluation data is

collected, it is very hard to find more than four gaps to insert separating hyperplane for more

 59

detailed classification. Based on the classification results of this research, more than three

categories of satisfaction subjective rating may be unnecessary. Some categories might be trivial

or can be combined with adjacent categories.

4.2.4 Implications for User Interface Design

This section introduces some design implications based on the Phase I modeling results

from general implications to detailed implications.

1. Avoid obvious usability issues

From the classification results, it can be noticed that within classification group

long range of satisfaction scores are not separable, which means as long as user interface

does not have obvious usability issues normal users cannot sense the difference of small

changes.

2. Widgets closer to upper left corner has higher satisfaction level

As discussed above, Case A, B and C implements RBF kernel function, which is

suitable to perform distance related feature analysis. Based on the classification results,

smaller values of kernel function result higher satisfaction scores. Therefore, it can be

inferred that widgets closer to upper left corner has higher satisfaction levels.

3. Features satisfaction sensitivities ranked from high to low are vertical dimensions,

horizontal dimensions, horizontal positions and vertical positions.

Based on the analysis of feature coefficients for all cases, sensitivities of feature

satisfaction are ranked as above. It represents with each unit feature change how much it

influences the satisfaction level. Coefficients of vertical dimensions are higher than

horizontal dimensions in three of the four cases. Coefficients of horizontal dimensions

 60

are higher than horizontal positions in all cases. Coefficient of horizontal positions and

vertical positions are about the same.

 61

Chapter 5 Phase II Computational Modeling and Experiment

Chapter Summary

This chapter introduces the objectives and challenges of modeling including research

motivation and expectation. Then model description is introduced to provide a framework of

Phase II evaluation. Lastly, it describes in detail the implementation methods including four

components of interaction simulation, data collection and evaluation method.

5.1 Objectives and Challenges of Phase II Evaluation Model

5.1.1 Objectives of Phase II Modeling

Generally, the practically significant purpose or primary goal of user interface evaluation

is to find out usability issues. In practice, most of the usability issues are found in observing

interaction process between user and interface. Even for heuristic evaluation, most of its

heuristics and design guidelines still need to learn and summarize observation results of user-

interface interaction. Thus, it is believed that focusing on interaction process is a fundamental

way to perform user interface evaluation. This does not seperate “interaction-based” user

interface evaluation methods from others. But in the aspects of digging out new usability issues

and adapting to different kinds of user interfaces, the “interaction-based” user interface

evaluation is irreplaceable.

 62

“Interaction-based” user interface evaluation is a subset of user-centered evaluation or

empirical usability testing and therefore inherits the disadvantages that these methods share:

expensive and time consuming. Cost of recruiting participants, performing experiment and

analyzing feedbacks consumes a large amount of money and labor. It is needed to create a

computational model that is capable of interacting with user interface and completing well-

defined tasks on user interfaces to save the resources and shorten the evaluation period.

Figure 5-1: Objectives of Phase II user interface evaluation, interaction analysis, usability

evaluation and design suggestions are organized in a hierarchy way. Interaction analysis serves

as the foundation of usability evaluation. Design suggestions are based on the result of usability

evaluation. Dashed lines represent the methodology applied to achieve each objective.

Specifically, the objective of Phase II user interface evaluation is to build a simplified

and useful computational model that simulates user-interface interaction in a form suitable for

analyzing human-computer interaction, performing usability evaluation and providing user

interface design suggestions, as shown in Figure 5-1. As mentioned earlier, the most important

part of user interface design is to understand the interaction process. Phase II evaluation method

evaluates user interface through evaluating the interaction process. However, the interaction

process is a complicated behavior involving many cognitive activities that have not been

 63

thoroughly studied. Inclusion of too much details in modeling makes the generated result hard to

analyze and assimilate. Phase II evaluation model, like other simulation models, generates

prediction results in addition to producing evaluation results. The prediction result of Phase II

evaluation model is the trace of interaction in time domain for a specific task. Trace refers to a

list of actions that users perform for a specific task including all relative action reproduceable

information for the task. Simulated interaction trace helps to observe and understand human-

computer interaction process corresponding to the goal of “analyzing human-computer

interaction”. Performing usability evaluation requires the model being able to compare user

interfaces with different levels of usability. Providing user interface design suggestions requires

the model being able to actively suggest improved designs of user interfaces based on the

original design. Suggesting good designs of user interface does not mean generating

mathematically converged optimized design result but refer to improve usability of the original

design of the user interface with adjustments based on the simulated trace of interaction.

5.1.2 Challenges of Phase II Modeling

There are three main challenges involved in achieving the objectives mentioned above.

These challenges are not only barriers but also lead to the key contributions of this research. In

the following, three challenges are introduced. How these challenges are solved will be

addressed in the implementation of Phase II modeling.

The first challenge in Phase II evaluation model is to set up proper reward function

considering both task completion and human factors. To apply reinforcement learning method, it

is usually required to have a clear goal. For the majority of applications of reinforcement

learning, there is a compelling reward or reward function based on this clearly defined goal to

describe desired action or expected behavior. In user interface interaction, the goal is to complete

 64

interaction task through cursor navigation and button click. However, setting reward function

based on this straightforward goal will lead to a “perfect” interaction since discounting factor in

reinforcement learning method leads navigation path to a shortest path. Different from many

other reinforcement learning applications, Phase II evaluation model does not aim at improving

the performance of machines in interaction tasks but acting imperfectly as real humans. In the

human-interface interaction, humans do not always perform the best strategy or policy to

complete a task. Cursors might go along with an irrational strategy a trivial loop or pass the

target button without pressing. How to properly involving or modeling those human factors

becomes the first barrier of the Phase II research.

The second challenge in Phase II evaluation model is how to describe the influence of

different widgets on human interface interaction. User interface consists of different widgets.

Those widgets work together and produce effects on human’s behavior. Size, position and other

physical characteristics might cause different influences. What makes it more complicated is that

the influence of these widgets might change over time. For example, when target widget is not

decided, all widgets impose the same amount of influence on human’s interaction. Gradually,

when users figure out the target widget, the influence of target widget may increase and that of

non-target widget may decrease. Thus, second challenge requires modeling proper distribution of

rewards describe single widget’s influence on user interaction behavior.

The third challenge in Phase II evaluation model is how to perform evaluation with

simulated interactions. After generating simulation interaction trace of user interface, there is no

existing method to extract information from interaction as a base for user interface adjustment

for usability improvement. The simulated trace of interaction now serves as raw input for user

 65

interface evaluation. The problem is how to properly manage these traces of interaction to

evaluate the efficiency aspect of usability.

 66

5.2 Model Description

5.2.1 Overview of Phase II Modeling

User interface interaction involves a two-way communication between human and user

interface. Human users take information from user interface as an input, cognitively process the

information and generate actions on user interface as output. There are many researches working

on bridging input information and output actions through modeling related cognitive activities

and simulating and predicting human interface interaction such as MHP and ACTR modeling. A

question is then raised that whether it is possible to directly bridge the gap between input

information and output actions minimizing cognitive modeling in simulating user interface

interaction as shown in Figure 5-2.

Figure 5-2: Bridge the gap between user interface

and interaction directly

Cognitive modeling has special advantage in explaining what happens in human’s mental world

but does not take full advantage of observed interaction results. In Phase II evaluation model, it

minimizes cognitive modeling and only cares observed interaction results. It believes that

different levels of cognitive activities will show difference in interaction results. For example, if

 67

hesitation occurs during interaction, cursor shows different path pattern with that of normal use.

Therefore Phase II model simulates interaction from user interface and task directly without

including cognitive modeling.

5.2.2 Assumptions of Phase II Modeling

Phase II research selectively makes some proper assumptions and reasonable

simplifications to enable model to generate useful results. In the following, it will introduce

assumptions the Phase II modeling.

The first assumption of Phase II evaluation modeling is that user interface interaction is

assumed to be a Markov Chain Process characterized with memorylessness. Future user interface

interaction is only determined by current state of interaction. Previous interaction path and

actions will have no effect on future interaction path and actions. Mathematically shown as

equation 5-1,

 𝑃𝑟(Xn+1 = x | X1 = x1, X2 = x2, ⋯ , Xn = xn) = 𝑃𝑟(𝑋𝑛+1 = 𝑥 |𝑋𝑛 = 𝑥𝑛) (5-1)

This assumption practically fits the feature of user interface interaction. User interface

interaction is a goal orient task. Users’ past interaction will not influence the way how they

complete task in the future. In other words, users do not try to avoid or repeat their past actions

and do not care about these past actions at all. They interact with user interface and achieve

target goal as if cursor is initially in the current position. Therefore, in Phase II evaluation model

next action is only determined by displayed user interface and current cursor position.

The second assumption is in Phase II evaluation model user interface interaction is

assumed to a discrete time task. When modeling trace of interaction, there are two possibilities,

in continuous time domain and in discrete time domain. Continuous time modeling has

advantage in researching on interaction policy. Discrete time modeling has advantage in

 68

researching on action value or state value of interaction. Policy refers to strategy to complete a

task. Action refers to each step of completing a task. For example, for a task of navigating from

Button A to Button B on a user interface, Figure 5-3

Figure 5-3: Left figure a) refers to continuous time interaction model and right figure b) refers to

discrete time interaction model.

In continuous time model, each policy is indivisible is the smallest unit to research on.

Navigation traces, solid line and dashed line, from Button A to Button B shown on Figure 5-2-a

are two specific policies to complete task. Human operators take navigation from Button A to

Button B as one output action. In discrete model, interaction is decomposed to five navigation

actions: move up, move down, move left, move right, stay and a decision making action: click. If

the step width of navigation action is small enough, the navigation path of discrete time model

has negligible difference with that of continuous time model. And discrete time model has

advantages over continuous model in modeling user interface interaction. Continuous model

focuses on interaction policy and try to research on human interaction pattern on policy level.

Under the condition of lack of enough experimental data, it cannot obtain reliable results. Also,

staying on policy level to research on interaction pattern ignores many details of interaction. If an

 69

interaction trace is regarded as a good result of interaction then the whole trace of interaction is

regarded to be good but what part of interaction trace really works and contributes cannot be

analyzed.

The third assumption of Phase II evaluation model is that interaction between human and

interface is a series of goal oriented careful actions, which means it does not include aimless

operations on user interface. In real world use of user interface, it happens that human users

generate irrational or non-goal oriented actions. An example of non-goal oriented action was

found in early stage of data collection. At the beginning of data collection, a user interface

including cursor is shown to participants and asks participants to complete tasks. After

completion of the task, participants repeat this process for multiple rounds. The problem happens

each time when user interface was just shown to participants. Some participant has a habit of

shaking cursor in order to find cursor position. This shaking action is irrelevant to user interface

itself and somehow influences learning process of agent’s interaction. In the later experiment of

user interface interaction, cursor position is always shown to participants to avoid unnecessary

actions. Therefore, in the evaluation model of Phase II, we try to only model interaction related

to tasks. More details will be mentioned in experiment design.

Two user interface interaction issues excluded from Phase II evaluation model are also worth

mentioning.

1. Error: Phase II evaluation model does not model errors, including errors due to decision

making and errors due to misconduct. Errors due to decision making always involves

complicated cognitive activities. Errors due to misconduct might be related to user

interface design. However, this design issue can be reflected through observing

interaction result of successful completion of task.

 70

2. Linguistics and semiotics: Labels of widget plays an important role in user interface

design. In the user interface design, language and symbol are most commonly used to

label a widget. Human users need to understand these labels to be able to properly

operate on a user interface. However, understanding label and making decision based on

label content requires a series of cognitive processing. Linguistics and semiotics are too

big topics to be discussed. Research about what are proper labels for a user interface

widget to improve usability is beyond the scope of this research. Therefore, in the scope

of the Phase II evaluation model widget is only labeled with one capitalized English letter

avoiding influence from linguistic and semiotics aspects.

5.2.3 Structure of Phase II Modeling

Figure 5-4 shows the model structure of Phase II evaluation method. From the user

interface to user interface evaluation, it goes through three main steps of interaction simulation,

quantity analysis, user interface evaluation and manipulation.

Figure 5-4: Phase II evaluation model structure.

In interaction simulation, an agent learns to use interface through interaction and

feedback from environment. The motivation of agent is to maximize total accumulative rewards.

Rewards describe the expected behavior of agent. In Phase II evaluation model, expected

 71

behaviors are first completion of task and second in a similar way to human users. The essential

part of interaction is to properly set reward value to guide agent’s behavior.

In the quantity analysis, simulated user interface interaction results are being analyzed to

compare usability of different design of user interfaces. Since there is no single metric to

measure all aspects of usability, Phase II evaluation model implement different quantities and

collect information from simulated user interface evaluation results to evaluate one aspect of a

user interface usability.

In the user interface manipulation, widgets of user interface are being manipulated at the

aim of improve usability of interface based on quantities mentioned above. Since those quantities

can only reflect one aspect of user interface usability and many factors of user interface design

are highly correlated, unrestricted changes made to user interface may lead to extreme conditions.

Therefore in user interface manipulation, restricted manipulation to user interface aims to receive

usability improved interface. Unrestricted manipulation can help to find special design of user

interface or innovate the future of user interface design.

5.2.4 Components of Phase II Modeling

In this section, different components of Phase II modeling are introduced. User interface

and type widgets used in Phase II modeling are the same as Phase I modeling. Therefore, it is not

repeated here.

Different from Phase I evaluation method, Phase II Model emphasizes the importance of

interaction during the user interface evaluation. The whole process does not directly implement

human evaluation results as the basis but mimics human users’ interaction results as the

evaluation basis, which makes it possible to jump out of the box evaluating a user interface. The

 72

core idea of reinforcement learning is trial-error learning. This process is similar to the learning

process of humans. As indicated by Thorndike:

“Of several responses made to the same situation, those which are accompanied or closely followed by

satisfaction to the animal will, other things being equal, be more firmly connected with the situation, so that,

when it recurs, they will be more likely to recur; those which are accompanied or closely followed by

discomfort to the animal will, other things being equal, have their connections with that situation weakened, so

that, when it recurs, they will be less likely to occur. The greater the satisfaction or discomfort, the greater the

strengthening or weakening of the bond” (Thorndike, 1911, p.244)

The learning process of reinforcement learning does not provide instructions directly.

However, it adjusts or corrects agent’s behavior through a reward function and a value function.

Starting with an agent interacting with a user interface and trying to complete task of

clicking button A as shown in Figure 5-5. The Agent can choose one of six actions: Move up,

Move down, Move right, Move Left, Stay and Click each round of action. Agent needs to firstly

navigate to button A and secondly click button A to complete the task. If modeled with Q

learning method, reward values are shown in the Table 5-1. State of the agent refers to cursor

position. Then it has a size of 400 by 300 pixels has 256400×300states. Under each state, agent

can perform 6 actions. The framework of Q table is shown in Table 5-2. Each cell in Q table

refers to action value of action 𝑎, 𝑄𝜋(𝑠, 𝑎), under policy 𝜋 at state 𝑠. Action value of action 𝑎

represents for value to choose action 𝑎 under specific state.

 73

Figure 5-5: Agent learns to interact with user

interface. Without interaction data, interaction

is like lattice random walk.

Move Up Move Down Move Right Move Left Stay Click

0 0 0 0 0

+1: within gray circle

-1: outside of gray circle

 Table 5-1: Reward feedback from environment for a simple user interface interaction.

States Move Up Move Down Move Right Move Left Stay Click

1

2

⋯

Table 5-2: Q table for interaction with user interface with one button.

𝑄𝜋(𝑠, 𝑎) can be represented as the expected total rewards of future rewards.

 𝑄𝜋(𝑠, 𝑎) = 𝑬[𝑟𝑡+1 + 𝜆𝑟𝑡+2 + 𝜆2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] (5-2)

𝜆 is discounting factor to indicate action value discount in future. 𝜆 ranges from 0 to 1. The

larger 𝜆 is, the more probably agent traverses to high reward position directly. The smaller 𝜆 is,

 74

the more probably agent traverses as many as non-zero reward position. Using Bellman function,

action value function can be expressed as

 𝑄𝜋(𝑠, 𝑎) = 𝑬𝐬′  [𝑟 + 𝜆 𝑄𝜋(𝑠′, 𝑎′)|𝑠, 𝑎] (5-3)

During the process of interacting with user interface, agent updates Q table to find out true action

value under each state.

 𝑄(𝑠𝑡, 𝑎𝑡) ⟵ 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝜆 max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)) (5-4)

𝛼 ∈ (0,1) refers to stepwise to update Q table since during learning process expressing

𝑄𝜋(𝑠′, 𝑎′) with 𝑚𝑎x𝑎𝑄(𝑠𝑡+1, 𝑎) is an approximation. Therefore, each time update Q table,

action value only moves towards true value by step width 𝛼. Each step of selecting actions, 𝜖 −

𝑔𝑟𝑒𝑒𝑑𝑦 is used for policy 𝜋. Under this policy, agent has probability of 1 − 𝜖 to select actions

based on current Q table and probability of 𝜖 to select action randomly. This policy consider both

of the exploration and exploitation. Exploitation keeps learning from interaction to obtain more

accurate Q table value and exploration helps to update Q table and discover new policy.

Modeling mentioned above is prototype at the beginning Phase II evaluation modeling. It

generated some results and also reminds some places to improve. There are two important issues

worth mentioning. Firstly, interaction model mentioned above has way too many states of

interaction. It includes user interface into interaction states. On a user interface of gray scale with

𝑛 × 𝑚 pixels, each pixel values from 0 to 255 in total of 256 possibilities. Then the total number

of states reaches 256𝑛×𝑚. It may need to involve convolutional neural network to help pattern

recognition which is very consuming. Its advantage is if successful it can provide a general

interaction agent with all user types interfaces but also requires large computational capacity and

sufficient data to support it. Therefore, rather than including user interface design into states of

interaction, only cursor position is included in states of interaction and user interface is regarded

 75

as interaction environment. Apparently, this model setting has disadvantage that every time user

interface changes model needs to repeat learning process. However, it greatly reduces the

computational workload. Secondly, it can be noticed that agent is a strictly rational and goal

oriented operator. It hunts to gain more accumulative rewards. Except for providing positive

reward feedback to agent for completing interaction task, it also needs to provide positive reward

feedback to agent for actions that mimic human’s behavior. Otherwise, it could happen that

providing proper discounting factor 𝜆 agent should theoretically be able to complete interaction

task in a most efficient but robotic way which very rare human users navigate in. Phase II

evaluation model is built based on prototype above. It has two parts: interaction simulation

method and evaluation method. Interaction simulation serves as basis of evaluation and consist

of four main components: action, reward function, value function and model of environment. We

will firstly introduce four components of interaction simulation

Model of Environment

Phase II evaluation model takes pixel value of user interface as raw input in gray scale.

Each pixel value ranges from 0 to 255. Model of environment is user interface with its widgets

and does not include content information labeled on these widgets as shown in Figure 5-6.

 76

Figure 5-6: User interface as the model of environment is a collection of user interface image

pixels excluding content of widget labels. Model of environment can fully represent what users

see on a user interface.

Figure 5-6 left-side represents for original user interface and Figure 5-6 right represents for

model of environment for agent to interact on. User interface has white background and each

widget has clear border to indicate clickable area (to avoid the same color of background and

widget and clickable area is not clear). Model of environment can be mathematically represented

by a matrix of 𝑈. The dimension of 𝑈 is determined by the size of user interface. Each element

of 𝑈 is the pixel value of user interface image. Usually matrix norms are used to measure the

distance of matrices such as 𝑝 − 𝑛𝑜𝑟𝑚𝑠 shown as equation 5-5.

 || ⋅ ||𝑝 = √∑ ∑ (𝑈1𝑖𝑗
− 𝑈2𝑖𝑗

)
𝑝

𝑚

𝑗=1

𝑛

𝑖=1

𝑝

 (5-5)

Matrix norms are commonly used to reflect similarity between two interfaces. However, norms

provide absolute values of distance between matrix. In Phase II evaluation model, we are looking

for a percentage value of similarity. Therefore, we use a cosine value of matrix to describe the

similarity between user interfaces as shown in equation 5-6.

 77

𝐼 =
(∑ 𝑈1𝑖𝑗𝑖,𝑗 ⋅ 𝑈2𝑖𝑗

)
2

(∑ 𝑈1𝑖𝑗

2
𝑖,𝑗) × (∑ 𝑈2𝑖𝑗

2
𝑖,𝑗)

(5-6)

If user interface 𝑈1and 𝑈2 are exactly the same, then 𝐼 is equal to 1. The more different 𝑈1and 𝑈2

are, the closer 𝐼 is to zero.

Actions

Agent has six possible actions to interact with user interface, Move up, Move down, Move left,

Move right, Stay and Click. Agent interact with model of environment is under discrete time

domain. Each step or unit of time, agent can choose one of the six actions. Each action made

might cause state change and receive rewards. Expected actions made lead to positive rewards

and unexpected actions made lead to negative rewards. Detailed information of actions is

summarized in Table 5-3. Table 5-3 summarizes possible changes of state and possible rewards

by each action.

 78

Actions State Reward

Move up

1. Horizontal position keeps the

same.
2. Vertical position -1 pixel to new

state if current position of cursor

is not adjacent to the upper
border of user interface; vertical

position keeps the same if current

position of cursor is adjacent to
the upper border of user interface.

3. Interaction continues

Positive rewards proportional to reward

density at next state from collected human

user interface interaction data.

Move down

1. Horizontal position keeps the
same.

2. Vertical position +1 pixel to new

state if current position of cursor
is not adjacent to the lower

border of user interface; vertical

position keeps the same if current

position of cursor is adjacent to

the lower border of user interface.

3. Interaction continues

Positive rewards proportional to reward

density at next state from collected human
user interface interaction data.

Move Left

1. Vertical position keeps the same.
2. Horizontal position -1 pixel to

new state if current position of

cursor is not adjacent to the left
border of user interface; vertical

position keeps the same if current
position of cursor is adjacent to

the left border of user interface.

3. Interaction continues

Positive rewards proportional to reward
density at next state from collected human

user interface interaction data.

Move Right

1. Vertical position keeps the same.
2. Horizontal position +1 pixel to

new state if current position of

cursor is not adjacent to the right
border of user interface; vertical

position keeps the same if current

position of cursor is adjacent to

the right border of user interface.

3. Interaction continues

Positive rewards proportional to reward
density at next state from collected human

user interface interaction data.

Stay

1. Horizontal position keeps the
same.

2. Vertical position keeps the same

3. Interaction continuous

Positive rewards proportional to reward

density at current state from collected human
user interface interaction data.

Click

1. Horizontal position keeps the
same.

2. Vertical position keeps the same

3. Interaction stops if last target
button is clicked; otherwise

interaction continuous

1. Positive rewards if acting on target
button clickable zone in sequence.

2. Otherwise negative rewards.

Table 5-3: Agent’s possible actions and its related state change and reward received.

From Table 5-3, it can be noticed that agent interaction with user interface only stops

when clicking all target buttons in sequence. Otherwise agent keeps trying until success. One

thing worth mentioned is action Stay. Action Stay is very special among one of the five

navigation actions from two aspects:

1. It does not lead any change in states;

2. It can still gain rewards;

 79

The existence of action Stay seems useless but it is a necessary component to Phase II evaluation

model for two reasons.

1. In observing user interface interaction, it exists that cursor stays on a position.

2. Action Stay helps model to measure time regardless of reward distribution.

Phase II evaluation model is a discrete time model but is not measured real time. Measuring real

interaction time is influenced by many factors such as cursor speed settings, DPI settings of

mouse and screen resolution. Therefore, Phase II evaluation model uses action step as unit to

measure time. Each step of action represents for a unit of time. Like a ticker-tape timer, Agent

keeps making action with constant interval of ‘one step’ making. If printing a dot on cursor

position of user interface after each action, connecting these dots generates the path of

interaction. The speed of cursor at a position is inverse proportional to the density of dots at the

position.

Figure 5-7: Case without action Stay

might lead different interaction results.

Sign in each cell represents for reward.

 80

Without action Stay, it might happen that cursor oscillates between high reward current position

and low reward adjacent position. This oscillation can also be used to approximate steps

spending on one position but it influences and complicates reward settings on whole user

interface. For example, a high positive reward position is surrounded by negative reward position

as shown in Figure 5-7. Each cell represents a pixel on user interface. Sign in each represents for

positive or negative reward. If agent has no option to stay, the reward to enter high reward

position A becomes much lower since reduced reward by adjacent negative reward and

discounted future rewards. Another concern is that if action Stay can keep gaining reward at the

same position cursor can be trapped in a high reward position. Notice discounting factor 𝜆 is less

than 1. The total rewards from non-target area is bounded by:

∑ 𝜆𝑖−1

𝑖

𝑟𝑖 ≤
𝑚𝑎𝑥{𝑟𝑖}

1 − 𝜆

(5-7)

Therefore, if target reward is properly set, cursor will not be trapped before task completion.

More details about setting up rewards will be discussed in discussion of reward function.

Reward function

Reward function plays a very important role in reinforcement learning. Generally, reward

function describes how agent should act or what are expected behaviors of agent. In Phase II

evaluation model, two behaviors are praised: 1) Action that complete interaction task. 2) Action

that mimics human’s behavior. Action that complete interaction task is straight to define. As long

as agent chooses action Click action within the area of desired button, agent receives rewards.

The problem is how to set proper rewards for agent acting in a similar way to humans. Question

then becomes what can be regarded as similar to human’s behavior on a user interface interaction.

Human user interface interaction has both properties of uncertainty and trend. On one side,

 81

human user interface interaction cannot be expressed using a function or a curve. There exist

individual differences in interaction habits. There also exists randomization within individual’s

human interaction. The same interaction task performed by the same human user cannot obtained

exactly the same interaction result. Therefore, user interface interaction has randomization

process. On the side, human users can always complete task even though every time their

interaction traces are not the same. It seems that there exists a trend to task completion.

Phase II evaluation model has non-stochastic settings for target button reward function and

stochastic settings for human behavior reward function. One thing to clarify is that interaction

result is different with reward function. Reward function refers to desired or expected position

that interaction might pass. Interaction result refers how agent or user actually interacts with user

interface and may not pass all the positive reward positions. If discounting factor 𝜆 = 1,

interaction results pass all positive reward positions. If factor 𝜆 < 1, interaction results may

sacrifice present reward in exchange of long term rewards. To build stochastic reward functions

for human behavior, human data of interaction result is required. However, to collect user

interface interaction results under different states of cursor and different types of user interfaces

is impossible. Required data size is too large to collect. A user interface of size 400 by 300 pixels

requires 400 ⋅ 300 ⋅ 256400⋅300interaction data to cover human interaction under different

conditions at least once. Therefore, it cannot be avoided to approximate undiscovered interaction

states and model of environments’ interaction results.

One way to approximate undiscovered interaction states and model of environments’

interaction result is to use data from the most similar task under a similar user interface and

implement Monte Carlo method to find reward function. Similarities of tasks are measured using

initial cursor position and the center of the target button position. Similarity of user interfaces is

 82

determined by pixel matrix cosine value 𝐼. Suppose an interaction task is defined by initial

position 𝑃 and end position 𝑄. Matrix cosine is 𝐼. An undiscovered interaction states and model

of environments’ interaction result can be approximated with equation 5-8 and 5-9.

 𝑇 = argmin 𝑇𝑖
||𝑃 − 𝑃𝑖|| + ||𝑄 − 𝑄𝑖|| (5-8)

𝑈 = argmin 𝑈𝑘
𝐼 = argmin 𝑈𝑘

(∑ 𝑈𝑖𝑗𝑖,𝑗 ⋅ 𝑈𝑘𝑖𝑗
)

2

(∑ 𝑈𝑖𝑗
2

𝑖,𝑗) × (∑ 𝑈𝑘𝑖𝑗

2
𝑖,𝑗)

(5-9)

If 𝑇 and 𝑈 have at least one instant of intersection, intersection can be directly used as interaction

result to set up reward function. This solution can generate accurate results under the condition

of sufficient training data cover all conditions’ user interface interaction result but is also

vulnerable to condition that has not been met. If the absolute value of min 𝑇𝑖
||𝑃 − 𝑃𝑖|| +

||𝑄 − 𝑄𝑖|| or min 𝑈𝑘

(∑ 𝑈𝑖𝑗𝑖,𝑗 ⋅𝑈𝑘𝑖𝑗
)

2

(∑ 𝑈𝑖𝑗
2

𝑖,𝑗)×(∑ 𝑈𝑘𝑖𝑗
2

𝑖,𝑗)
 is large, interaction results cannot provide useful guide to

set up reward function or even misleading.

The other way is to involve all the collected data of user interaction results to

approximate undiscovered interaction states and model of environments’ interaction result. The

problem of previous solution is that the most similar task and user interface might have bias

which may mislead agent’s behavior. If user interface interaction can be approximated based on

average of all interaction results, unsymmetrical effect or biased of collected interaction results

can be canceled internally. This method does not require sufficient data to cover interaction

results of all conditions and only requires symmetric sampling during data collection.

Undiscovered interaction result 𝐷 is expressed as combination of collected interaction results 𝐷𝑖

as shown in equation 5-10.

 83

 𝐷 = ∑ 𝛽𝑖

𝑖

𝐷𝑖
(5-10)

 𝐷𝑖 = 𝐼𝑖 ⋅ 𝑈𝑖 (5-11)

Parameter 𝛽𝑖 represent for contribution of collected interaction result 𝐷𝑖 and are related to

similarity of user interfaces and interaction tasks.

 𝛽𝑖 ∝ 𝐼 (5-12)

𝛽𝑖 ∝ 1 −

|𝑃𝑥−𝑃𝑖
𝑥|

𝑊
 and 𝛽𝑖 ∝ 1 −

|𝑃𝑦−𝑃𝑖
𝑦

|

𝐻

(5-13)

𝛽𝑖 ∝ 1 −

|𝑄𝑥−𝑄𝑖
𝑥|

𝑊
 and 𝛽𝑖 ∝ 1 −

|𝑄𝑦−𝑄𝑖
𝑦

|

𝐻

(5-14)

Besides, discounting factor 𝜆 can reduce the effect of misleading human interaction reward since

the large ||𝑃 − 𝑃𝑖|| + ||𝑄 − 𝑄𝑖|| value increases cost to obtain human interaction rewards.

For non-stochastic settings for target button reward, it requires properly setting up

rewards for target button rewards to avoid failing to complete task since Phase II evaluation

model does not model error. Suppose human interaction rewards are bounded by 𝑟 and target

button reward is 𝑅𝑡𝑎𝑟𝑔𝑒𝑡. Then the total reward received from human interaction rewards is

bounded by:

 ∑ 𝑟1

𝑖

+ 𝜆𝑟2 + 𝜆2𝑟3 + ⋯ ≤ ∑ 𝑟

𝑖

+ 𝜆𝑟 + 𝜆2𝑟 ⋯ =
𝑟

1 − 𝜆

(5-15)

The maximization reward from target button is:

 𝜆||𝑃−𝑄||
1𝑅𝑡𝑎𝑟𝑔𝑒𝑡 (5-16)

To guarantee the task completion, it needs to have:

 𝜆||𝑃1−𝑃2||
1

+||𝑄1−𝑄2||
1𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ≥

𝑟

1 − 𝜆
⟹ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ≥

𝑟

𝜆||𝑃1−𝑃2||
1

+||𝑄1−𝑄2||
1(1 − 𝜆)

(5-17)

 84

Since target button reward is 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 has highest positive reward, then the total rewards obtained

by agent is bounded by:

𝑅𝑡𝑜𝑡𝑎𝑙 ≤

1

1 − 𝜆
⋅ 𝑅𝑡𝑎𝑔𝑟𝑒𝑡

(5-18)

which means if all reward value 𝑟, 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 < ∞ and 𝜆 ∈ (0,1) total rewards always converge.

Example

An example is provided to introduce how reward function is obtained. Suppose reward function

for user interface A performing navigation task from Button A to Button B is needed as shown in

Figure 5-8: User interface which needs

to be assigned with reward function

Three sets of training data B, C and D are implemented to provide reward function for user

interface A and its task as shown from Figure 5-9 to Figure 5-11.

Figure 5-9: Training data B

 85

Figure 5-10: Training data C

Figure 5-11: Training data C

After compare three sets of training data with user interface A, training data of B, C and D have

different user interface similarities and task similarities with user interface A its task. Therefore,

they have different contribution to user interface A and its task.

Figure 5-12: Comparison to training data

 86

Figure 5-13: Contribution to user interface A and its task

The contributions from training data B, C and D are based on equations from 5-9 to 5-14.

Value function

In the prototype mentioned previously, Q learning method is used to implement model and Q

table is the core of Q learning method. Q table is a reference dictionary recording estimation of

each action under different states. During interaction with model of environment, Q table is

updated through approximating 𝑄𝜋(𝑠𝑡+1, 𝑎) as 𝑚𝑎x𝑎𝑄(𝑠𝑡+1, 𝑎) and moving towards true value

by learning rate 𝛼. Q table is basically a mapping from (𝑠, 𝑎) to action value 𝑄𝜋(𝑠, 𝑎) under

policy 𝜋. Deep Q network replaces Q table with neural network to generate Q value. Neural

network has structure of nodes and layers. A neural network has an input layer, an output layer

and hidden layers. Each layer consists of nodes. Each node connects with every node in next

layer. Node value is equal to linear combination of previous layer with bias going through

activation function. In general, neural network can be regarded as a function estimator based on

inputs and outputs as shown in equation 5-19.

 87

 (𝑠, 𝑎) ⟹ Neural network: 𝑓(⋅) ⟹ 𝑄(𝑠, 𝑎) (5-19)

Action value can be then represented by:

 𝐴𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = 𝑄(𝑠, 𝑎) = 𝑓(𝑠, 𝑎, 𝜔) (5-20)

𝜔 represents for parameters of neural network. State 𝑠 is a of high dimensional in comparison

with action 𝑎. To keep the neural network neat, input layer of neural network only includes states

𝑠 and output layer of neural network generates a vector representing for values of actions. Then

the neural network of Q value can be shown in equation 5-21.

 𝑄(𝑠) = 𝑓(𝑠, 𝜔) (5-21)

Using neural network rather than Q table to generate Q values has several benefits. First, neural

network has better generality than Q table. Q table do not update Q table for state that has not

been met before. When encountering new state, Q learning selects and executes action based on

its initial value. Neural network can produce Q value based on parameter 𝜔 therefore has better

chance to make better option. Second, neural network is neat and consistent in structure. When

the total number of states have exponential growth, Q table becomes a very long 2D table and is

very difficult to build and update. Third, estimating Q value with neural network has good

connection with convolution neural network for user interface evaluation of high dimensional

sensory input. One challenge of neural network is model selection determining how many layers

of neural network and how many nodes each. There is no clear rule corresponding to structure of

neural network for specific type of problem. Some tests are necessary in training neural network

for better results. In Phase II evaluation model, we use neural network with two hidden layers.

Each layer has 10 nodes. To solve for parameters of neural network, RMS propagation method is

implemented to minimize loss function. Similar to Q learning method, difference between target

Q value and current value can be used as loss function.

 88

𝐿(𝜔) = 𝐄 [(𝑟 + 𝜆 maxa'𝑄𝜋(𝑠′, 𝑎′, 𝜔) − 𝑄𝜋(𝑠, 𝑎, 𝜔))

2

]
(5-22)

Deep Q network uses experience replay updating parameters to get over data correlation and

non-stationary distribution. While performing mini-batch stochastic gradient descent

optimization, it assumes independence between sample data so that noise of data cancels within

mini-batch. Neural network model as a supervised machine learning method also requires data

with independent distribution. In reinforcement learning method sample data is correlated. While

agent interacting with user interface, it stores (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into mini-batch and randomly

choose data from mini-batch of 5 to train.

5.3 Implementation Methods

5.3.1 Data collection

30 participants of 18 to 26 years old University of Michigan students were recruited through

emails in three batches to participate in one hour user interface evaluation study. Participants are

from group of normal novice users. Recruited participants are required to have three years’

experience of using any user interface on computer based information system. Participants

should not have participated the research before or have any usability evaluation experience.

Collected data was divided into two groups, 25 subjects’ data were used as training data for

interaction simulation and 5 subjects’ data were used as verification data. Each subject was told

to perform a user interface interaction task on a prompted user interface based on instruction on

the screen. When experiment started, task instruction was shown on the bottom of the

experiment window and an empty user interface with a free move cursor was shown on the top

of the experiment window. When subject was ready, he/she left clicked mouse anywhere within

 89

the window to start. Every 20±1 milliseconds, cursor position was recorded as human interaction

data. After subject successfully completed task, this trial of experiment ended. New trail of

experiment showed up and repeated. Data collection user interface is as shown in Figure 5-14.

Figure 5-14: Phase II data collection

 user interface.

5.3.2 Model Training

Deep Q net work is implemented to train agent’s behavior. With assigned reward

function on user interface and defined six possible actions, agent keeps interacting with user

interface gaining feedback to update parameters of neural network in order to achieve maximum

of total expected accumulative rewards.

 90

5.3.3 Evaluation Quantity

Four components mentioned above work together and generate simulated user interface

interaction results. The remaining question is how to properly use generated interaction results to

evaluate a user interface and makes adjustment to it to improve its usability. There does not exist

a quantity or metric describe user interface usability from interaction results. Therefore, during

data analysis we brainstormed following quantities to evaluate some aspects of usability.

1. Number of learning episodes: Agent needs to learn how to interact with a user when it

meets a user interface for first time. From initially random lattice walk to finally interact

as expected, it goes through a long learning process. The length of learning process can to

some degree reflect the learning difficulty to use interface.

2. Interaction steps (Interaction time): Interaction steps is not a measure of total travel

distance but a measure of time like a ticker-tape timer. On the same dimension user

interface, interaction steps can reflect efficiency to complete interaction tasks.

3. Proportion of action Stay: Action Stay is special among five navigation actions as

mentioned earlier. Stay action is selected at high reward position. If the proportion of

Stay is large, agent stays much during interaction which shows users have hesitation

during interaction.

 91

Chapter 6 Phase II Results and Discussions

Chapter Summary

This Chapter presents the results of Phase II evaluation model. It first presents the

simulated user interface evaluation result including their learning process and interaction

performance. Then a verification study of simulated interaction results using human data of

interaction is conducted. After verification, quantity analysis and user interface suggestions are

discussed. Lastly, it mentions the benefits and limitations Phase II evaluation model.

6.1 Simulated Interaction Results

The generated model is tested on different user interfaces. Table 6-1 shows the

parameters used in Phase II evaluation model.

Learning rate: 𝛼 Reward decay: 𝜆 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 Memory size Batch Size

0.01 0.9 0.9 500 32

Table 6-1: Parameters for simulated user interface interaction results.

Figure 6-1 shows the structure of Phase II evaluation model. Phase II evaluation training on

average 4000 episodes. It estimates 120000 states’ value under 6 actions. Trained neural network

can work well in estimating these 720000 values. Network structure of Phase II evaluation model

is shown in Figure 6-1.

 92

Figure 6-1: Phase II evaluation model structure generated by tensorflow board.

 93

User interface consisting of three buttons, T, J and W is used as an example to demonstrate

simulation of user interface interaction. Task is to navigate to button T and click button T. The

initial position of cursor is set to be in the middle of the user interface. User interface is designed

to test whether interaction simulation is able to complete task under a simple condition. Figures

6-2 to 6-5 show agent’s interaction with interface during different periods of learning process.

Figure 6-2: Interaction training process after 100 episodes

Figure 6-2 shows the training process after 100 episodes training. It can be noticed that

agent is exploring states like random lattice walk. At this stage, agent cannot give good estimates

to the true value of each state under different actions.

 94

Figure 6-3: Interaction training process after 500 episodes

With Agent updated neural network for Q value, agent behavior becomes more effective.

Before not all the state value is well estimated, exploration behavior may lead to large deviation

to task completion. 𝜖 = 0.9 means every 10 steps of actions there will be a random action. This

random action selection does not follow the Q value generated by neural network to make

decisions. The advantage of using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy is to increase the chance to find better

policy to complete tasks and mimic of human behaviors.

 95

Figure 6-4: Interaction training process after 1000 episodes

After 1000 episodes’ training, some neat and efficient interaction starts to show up often.

It indicates that estimated Q value is close to the true value. From this time point, the training

progress starts to become slow since parameter update becomes slow. Sometimes, it could

happen that agent traps at suboptimal solution during this period of training.

 96

Figure 6-5: Interaction training process after 4500 episodes

After 4500 episodes’ training, the agent is able to interact with user interface in a human

understandable way. It indicates that neural network can almost estimate Q value of all states

well. Further training might improve performance. From Figure 6-2 to Figure 6-5, agent tends to

navigate more on the right side of the user interface. In Figure 6-5, agent does not go straight to

target button. There usually exists two possibilities: 1) Agent is trapped in a suboptimal position

2) Human behavior rewards distributed more on the right side of user interface than that of left

side. User interface is divided by 2 by 2 squares. The average human behavior rewards are:

0.89 0.88

0.68 0.74

 97

From human interaction rewards distribution, human users navigating with this user

interface tend to be on the upper area of user interface. This phenomenon is reasonable and can

be explained with Monte Carlo method. In implementation method, we have mentioned that

coefficient of user interaction distribution is related to similarity of the task. Dashed rectangle is

the most influential area to user interaction results. From the graph, it can be noticed that upper

right area within rectangle is much larger than that in lower left area within rectangles.

Figure 6-6: Upper right area within rectangle is much larger than that in lower left area

within rectangles. Based on Monto Carlo method, the probability that influential

human behavior reward falls in upper right area is larger than that in lower left area.

 98

Figure 6-7: Loss function gradually converges at first 600 steps while neural

network updates parameters

Figure 6-7 shows the relationship between cost of loss function and training steps. Before

100 steps, loss function fluctuates which means neural network cannot correctly estimate true

state values. After 100 states, loss function gradually converges which means current state value

estimation is consistent with environment feedback and parameter adjustment.

Figure 6-8 shows loss function in a long run. Before 5000 steps, neural network keeps

low cost of loss function which means it already updates parameters and successfully estimates

all state values that it has met. At around 5000 steps, there is an abrupt increase of loss function.

Abrupt increase means estimated state value has huge difference with actual findings. Neural

network needs to readjust parameters to correctly estimate each state value under different

 99

actions. This usually happens when agent explores actions under new state. It is helpful for agent

to jump out of trap of local maxima and search for better policies.

Figure 6-8: Abrupt increase in loss function refers to exploration of

new policies and neural network needs to be updated its parameters.

 100

6.2 Model Verification Study

After modeling the interaction simulation, I conducted a verification study between

simulated user interface interaction results and collected human interaction results. Five

participants’ user interface interaction data are used to perform this verification study. I tested 10

user interface tasks. All these tasks are from human interaction results of five participants in

verification group. Agent is asked to perform exactly the same ten task as participants. Since

agent simulated interaction and collected data of human interaction perform the same task under

the same user interface environment, they are expected to have similar interaction results. A

problem is what mathematical model can be used to measure the similarity between user

interaction results. Variation analysis is usually used to analyze distribution of data but when

used to measure the similarity of user interface interaction this method does not work well

without assuming some correct interaction pattern. Variation within human data of interaction is

large. Therefore variation does not always contain necessary information to verify interaction

results. The original intention to use reinforcement learning method rather than other supervised

machine learning method to research on interaction is interaction pattern is unknow. The

difficulty to verify whether a simulated interaction result is similar to human interaction results is

that human interaction results themselves are stochastic process. In the probability view of

interaction results, no interaction results can be regarded as wrong. There is only interaction

results with low probability. Therefore, we use envelop of human interaction results to verify the

simulated interaction results. Envelop of human interaction results can be regarded as a high

probability area in which interaction result may show like electron cloud. Envelop refers to a

curve tangent to each of a family of curves. Simulated interaction results are usually not

 101

mathematically smooth and not enough data can be obtained to support finding mathematical

envelop of interaction results. Thus, the combination of parts of interaction results that enclosed

maximum of area is approximately regarded as envelop of interaction results. Therefore,

verification study is conducted through visually checking whether simulated interaction results

fully, partially or not in envelop of interaction results. Interaction results within envelop means

there is high probability that statistically they are reliable and can be treated as human interaction

results. It cannot be used as criteria to judge whether a curve is human interaction results.

Figure 6-9: Number of tasks that simulated interaction results are within the

envelop of collected interaction results.

Figure 6-9 shows the results of verification studies. Results of two test cases are fully

within the area of envelops. Results of seven test cases are partially within the area of envelops.

One result of test case is outside of envelop.

 102

Five different participants perform ten one-step interaction tasks under ten user

interfaces. Green button is the target button to complete task and during experiment participants

only see buttons with color of gray scale. Initial position of cursor is randomly set within user

interface. Task is to navigate from current position cursor to target button area and click button.

Black curves on each user interface refer to collected human interaction results. Red curve on

each user interface represents for the simulated interaction results. Since in Phase II evaluation

error is not included, agent keeps interacting with user interface until successfully complete

tasks. In the 10 test cases, agents’ of interaction are trained around 1000 to 2000 episodes.

Verification result is visualized in Figure 10 to Figure 19.

 Figure 6-10: Test Case 1

 103

Figure 6-11: Test Case 2

Figure 6-12: Test Case 3

 104

Figure 6-13: Test Case 4

Figure 6-14: Test Case 5

 105

Figure 6-15: Test Case 6

Figure 6-16: Test Case 7

 106

Figure 6-17: Test Case 8

Figure 6-18: Test Case 9

 107

Figure 6-19: Test Case 10

6.3 Findings and Discussions

6.3.1 Fitts’ Law Testing

With user interface interaction simulator, Fitts’ Law can be compared or tested on it. Two

tasks are simulated.

One Button User Interface – constant button size, various distances

 Figure 6-20: Task 1

 108

Task 1 is performed with constant button size and various navigation distances.

Figure 6-21: Average cursor velocity vs Distance from

current position to target button

From Figure 6-21, it shows that average cursor velocity and distance from current

position to target button is of linear relationship. Then

 𝑑𝑆

𝑑𝑡
= −𝐶 ⋅ 𝑆 ⟹ −

1

C ⋅ S
dS = dt ⟹ t =

1

C
(ln S − 𝑙𝑛 𝑆0)

(6-1)

It indicates that the relationship between distance and navigation time satisfies Fitts’ Law.

One Button User Interface – constant distance, various button sizes

Figure 6-22: Task 2

 109

Task 2 is performed with constant distance and various button sizes. Simulated

interaction does not show correlations between the width of button and interaction steps. This

test reflects one limitation of Phase II simulator that interaction simulation cannot simulate

acceleration of cursor movement.

6.3.2 Avoidance of Non-target Buttons

In this verification study, each task is trained 2000 episodes due to time constraint. Agent

might still need more training for more efficient interaction results. 10 test cases above all

complete tasks in a neat way. In the verification results, Case 5 interacts with user interface

outside of the human interaction result envelop. Following the interaction process with Case 5

agent, it can be found out that agent seems to avoid non targeted button to complete tasks.

Similar behaviors can be also found in Case 8, 9 and 10. This phenomenon is strange in two

ways:

1. No high rewards are founded near the boundary of the non-target widget.

2. Non-target widget avoidance is not expected to receive best accumulative rewards

This phenomenon can be explained with two possible reasons:

1. Not enough training is provided. From the Case 5 and cases with similar phenomenon,

agent avoids passing non-target buttons. Passing other buttons achieves a more efficient

way to gain more rewards but agent does not select it. It can be guessed that agent does

not estimate true state value of position on non-target buttons. In previous interaction

experience, agent is being punished by choosing Click option on non-target buttons

which also influences agent’s estimate to state value of other actions. Besides, policy of

passing other button without any Click action is an event of low probability. In other

words, agent is not very possible to try this policy and find it.

 110

2. Neural network is a function approximation method with good feature of generality.

Every time agent interacts with user interface by clicking non-target button, negative

rewards might influence state value estimation around non-target button area.

3. In Phase II evaluation model, combination of collected interaction results is used to

generate reward distribution for user interface interaction. If the reward density around

the boundary of the non-target button is high, then it is possible to lead agent around the

boundaries.

6.4 Quantitative Index for Analyzing User Interface: Suggestions and Future Research

In implementation methods, I have mentioned three quantitative indexes that can be used

directly to reflect the interaction performance of a user interface and two manipulation methods.

Three evaluation indexes are learning episodes, total interaction steps and proportion of stays to

evaluate usability of a user interface. These quantities reflect one aspect of usability related to

user interface interaction.

Learning episodes

 Learning episodes refer to required number of episodes for agent to learn how to interact

with user interface. Each episode agent keeps interacting with user interface until the completion

of task. Each episode is basically one interaction strategy to complete a task. In exhaustive

method, the number of total states can reflect the interaction complexity of a user interface.

Reinforcement learning method accelerates learning process in comparison with exhaustive

method but does not change the influence of interface complexity to learning process. Therefore,

in evaluation model, quantity of learning episode is involved to reflect the complexity of a user

interface.

 111

Interaction steps

Interaction steps refer to total number of actions in one episode after training process is

done or loss function converges. Inclusion of the action Stay and human interaction results as

input data makes interaction steps be able to reflect relative length of time interacting with a user

interface. Based on Phase II evaluation model data collection mechanism, speed of cursor is

reverse proportional to the density of interaction. In area of cursor slowly moving, it has the high

reward. In high reward area except target button, agent may choose to stay to gain more rewards

which in turn reflects interaction time.

Proportion of action Stay

Following discussion of interaction steps, action Stay is most probably selected around

high reward area. High reward area means slow cursor movement around. Therefore, proportion

of stay can reflect levels of hesitation during interaction.

User interface suggestion

With these evaluation quantities, another question is whether it is possible to use these

three quantities to suggest better performance user interface. Currently, the performance of user

interface suggestion is quite limited. With simulated user interface, three evaluation quantities

can be obtained. A common way to suggest improved user interface is to set different variables,

simulate interaction results changing the value of these variables and make suggestions based on

the change of the three quantities. There is a challenge in each of these steps.

1. Set different variables: A user interface consists of many different widgets. Each

widget has many different feature to be considered. Widgets and their features are

relatively independent. The input space of a user interface is huge and complicated.

 112

2. Simulate interaction results changing the value of these variables: Large amount of

interaction simulation consumes computational resources and requires long time to

execute.

3. Make suggestions based on the change of the three quantities: This steps relates how

to manipulate user interface and suggest a user interface with better usability.

Simulated user interaction results can provide information related to interaction only.

It does not consider anything about user interface design.

Third problem is big a barrier. I tested some cases of user interface suggestions with

quantities and manipulation methods mentioned above. Two manipulation methods are

considered as relatively ‘safe’ to use in avoiding unpredictable conditions in comparison of other

free manipulation methods. However, during the test, it always happens that suggested user

interface has overlapped widgets.

Suggested user interface with overlapped widgets cannot be used since human users do

not know how to interact with overlapped buttons. Although it does not have practical use, it

pushes the limit of interaction efficiency and makes a simple state that the best way to reduce the

complexity level of user interface and shorten task completion time is to lay widgets of user

interface together. The problem is human users cannot interact widgets laid up together only if

the widgets on the surface are always the expected widgets.

In the future research, there can be two directions. One is to design a series of systematic

manipulations to make changes to user interface. These manipulations are strictly restricted by

well-defined rules fully considering human factors. Then simulated interaction results can be

used to suggest improved user interfaces. Establishment of manipulation rules can be hard since

factors that influence usability of a user interface are highly correlated.

 113

Chapter 7 Summary

Chapter Summary

This chapter first gives a summary of the research. Then it talks about benefits and

limitations of the research. At the end of this chapter, it discusses future research directions.

7.1 Summary of the Research

7.1.1 Phase I Summary

Phase I of the research is about static feature evaluation focusing on features such as the

layout and dimensions of the widgets. It implements support vector machine to train classifiers

for four different cases.

On the aspect of data collection, it explains the reasons for data asymmetry and provides

a solution for future user interface subjective rating with combination of support vector machine

and reinforcement learning method.

On the aspect of implementation method, it discuses the advantages and disadvantage of

two ways to select separating hyperplane’s insertion place. More important, it clarifies the

relationship between kernel function and satisfaction and emphasizes the important connection

between features of user interface and kernel function. It also indicates that to have good

classification performance, it is necessary to find out kernel function the features of interest

correspond to.

 114

Phase I modeling results also suggest that the number of categories used for usability

subjective ratings does not exceed three. Otherwise, some categories might be trivial or can be

combined with adjacent categories.

Lastly, Phase I Modeling also provides some implications for user interface design:

1. Avoid obvious usability issues. As long as user interface does not exist obvious

usability issues, normal users cannot sense the difference of small changes.

2. Widgets closer to the upper left corner have higher satisfaction levels.

3. Features satisfaction sensitivities ranked from from high to low are vertical

dimensions, horizontal dimensions, horizontal positions and vertical positions. In the

design of user interface widgets, extra cares are needed for those feature with high

sensitivity.

7.1.2 Phase II Summary

Phase II of the research is mainly about dynamic interaction evaluation, focusing on

dynamic features of user interface such as task completion time and task completion smoothness.

It implements deep Q network to simulate human interaction behavior and uses interaction steps

and proportion of action Stay as the evaluation quantities.

The interaction simulator is verified with envelop of human interaction data. A

phenomenon is observed in the simulated results that agent shows the behavior of avoiding non-

target widgets. This phenomenon is worth mentioning because based on the distribution of

rewards agent is not expected to avoid non-target widgets. However, since the agent movement

is a stochastic process, agent has the possibility to choose this option. This phenomenon is

reasonable when viewed from the human side, since avoidance of crossing non-target buttons

can reduce the error rate. This shows that the trained agent is generative in interacting with user

 115

interface. Even if interaction does not show up in training data, agent can still explore and

generate reasonable interaction results to mimic human’s behavior.

Phase II modeling is then verified with Fitts’ Law on the variable of target distance. As a

major component of Phase II evaluation model, interaction engine simulates a simple task of

cursor navigation and generated results satisfying Fitts’ Law. This verification validates that

Phase II evaluation results at least has value in simulating interaction task without complicated

cognitive processing.

In Phase II modeling the reward distribution settings cannot simulate interaction

movements in the second derivative order. Based on the research finding, the agent of Phase II

modeling cannot well simulate cursor’s acceleration. Selected evaluation quantities do not relate

to acceleration of cursor. However, it is not flawless when the interaction engine simulating

cursor movement within a small range.

7.2 Benefits and Limitations

7.2.1 Benefits

Phase I evaluation model has several benefits in comparison with traditional methods.

First, Phase I modeling can reduce individual difference effects on evaluation. Users have their

own preferences for certain interface features; however, these individual preferences cannot

serve as general design guidelines for user interface. User interface evaluation is expected to find

out common features shared by good user interfaces. In traditional heuristic evaluation method,

individual preference and common features cannot be distinguished after evaluation, which

reduces the reliability of the evaluation. A machine learning method is, in other words, a method

 116

of pattern detection from big data analysis, where individual’s preference or difference might be

canceled. Second, Phase I modeling can increase the evaluation efficiency in comparison with

traditional methods. Heuristic evaluation is to look at a user interface and brainstorm good or bad

aspects of a user interface. This procedure is often time consuming and results are hard to

interpret for design improvement. Phase I model, on the contrary, can evaluate a user interface in

a short time without labor involved after the training process and also saves time.

Phase II evaluation model has some benefits in comparison with other evaluation models.

First, Phase II evaluation model provides a systematic framework for user interface interaction

organizing a stochastics model of interaction distribution and reinforcement learning methods. It

provides a stochastic modeling for user interface interaction and combines the distribution of

user interface interaction results with reinforcement learning rewards. Second, Phase II

evaluation model can directly generated useful interaction results of user interface to describe the

interaction. And it only needs human input as training data one time and does not need further

human input. Third, Phase II evaluation model is an accumulative model. With more collected

data, it can provide better prediction of user interface interaction results.

7.2.2 Limitations

Phase I evaluation method has two major limitations. First, Phase I model classifies user

interface with support vector machine method that is difficult to use to revise evaluation standard

for special user interface instances. Its implementation method decreases the flexibility of

evaluation. Since all the evaluation factors or criteria are discovered through big data analysis,

some factors may remain implicit that makes the evaluation standard adjustment more difficult.

Second, divergence of the results may occur. If no proper kernel function is implemented,

support vector machine may sometimes fail to work.

 117

Phase II evaluation model also has some limitations. First, Phase II evaluation model

does not take high dimensional sensory input. In Phase II evaluation model, states of cursors,

position and dimension of widgets are all manually defined, which requires users to have some

knowledge of machine learning. Second, Phase II evaluation model is not productive. Phase II

evaluation model can only be trained to interact with one user interface and one task each time.

User interface change and interaction change both lead to the need to repeat the learning process.

Training time is around 15 to 20 hours for each individual task. Third, Phase II evaluation model

cannot simulate interactions involving complicated cognitive activities such as memory, decision

making and human errors. Phase II evaluation model does not involve any cognitive modeling. It

is a computational model to analyze human-interface interaction behavior. In dealing with tasks

involving cognitive activities beyond simple interactions, Phase II evaluation model is difficult

to make useful predictions.

7.3 Future Research

Based on the discussion above, Phase I of the research leaves an important question for

future research, that is, whether a scalar is enough to well describe the satisfaction level of

usability. Modeling results have shown that for simple user interfaces a scalar rating can provide

satisfying result to sufficiently describe satisfaction of a user interface. However, with the

complexity of a user interface increases, this type of scalar rating seems weak. An assumption

might be made that more complex user interfaces require more complex mathematical forms to

describe them, such as a multi-dimensional vector or a function. Then more concrete questions

 118

such as how to decide proper the mathematical form to describe satisfaction or usability and

whether these forms can be integrated and unified for general user interface are all possible

future research directions. Besides, during the data analysis we found that the number of

satisfying user interfaces increases more slowly than linearity, which means that with the

complexity of user interface increases the chance of getting high satisfaction user interface is

getting smaller. This causes the asymmetric pattern of collected data and therefore leads to

difficulty in data processing and analysis. It is also a challenge to adapt methods to asymmetric

data.

Phase II of the research as discussed above has already built an interaction agent that has

some generality. In future research, it could be possible to further develop interaction agent to

fully equip it with learning ability. Also, as discussed in Chapter 6, task completion efficiency is

constrained with the static view of user interface. For example, the most efficient user interface

is to lay out widgets above each other, since it saves navigation time. However, this design

cannot present necessary information to users to operate, and therefore it is not allowed by static

evaluation. This shows there exists a tradeoff in user design. On one hand, user interfaces need to

guarantee that users can clearly and efficiently perceive and understand information on the user

interfaces. On the other hand, user interfaces need to guarantee users know how to output

operations on user interface. One side is task completion efficiency and the other side is

satisfaction of static view. How to balance these factors and maximize the total usability could be

a good future study after this research.

 119

Appendix

Supplementary Information

Support Vector Machine

High dimensional feature representation, non-linear relationship between inputs and

outputs, extensive computational requirements, Phase I user interface evaluation is a challenging

application of support vector machine. Among all those challenges, biggest challenge is the

choice of kernel, the selection of the kernel function parameters. Good choice of kernel function

is half way of succeeding in classifying. To help readers understand how kernel function works

and its importance, in the following part of this section basic concepts of support vector machine

will be introduced.

Suppose there are input and output sets, 𝒳and 𝒴 and training data set

(𝑥1, 𝑦1), ⋯ , (𝑥𝑚, 𝑦𝑚). The purpose of support vector machine is to predict proper 𝑦 ∈ 𝒴 given

𝑥 ∈ 𝒳, in other word, to find a function 𝑓(⋅) that 𝑦 = 𝑓(𝑥, 𝛼). 𝛼 are parameters of the function.

Through minimizing the overall risk:

Remp(α) =
1

𝑚
∑ 𝑙(𝑓(𝑥𝑖, α), 𝑦𝑖)

𝑚

𝑖=1

Linear Support Vector Machine:

For linearly separable datasets, support vector machine simply chooses a sets of

hyperplane:

 120

1

𝑚
∑ 𝑙(ω ⋅ 𝑥𝑖 + 𝑏, 𝑦𝑖)

𝑚

𝑖=1

+ ||ω||
2

Subject to 𝑚𝑖𝑛𝑖|ω ⋅ 𝑥𝑖| = 1.

If dataset is separated perfectly, then problem becomes:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ||ω||
2

Subject to:

(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1, if 𝑦𝑖 = 1

(ω ⋅ 𝑥𝑖 + 𝑏) ≤ 1, if 𝑦𝑖 = −1

These two constrains can be compacted to:

𝑦𝑖(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1

Then classification function 𝑓(⋅) becomes a quadratic program problem.

If dataset is not separated perfectly, then problem becomes:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ||ω||
2

+ 𝐶 ∑ ξ𝑖

𝑚

𝑖=1

Subject to:

𝑦𝑖(ω ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − ξ𝑖 , ξ𝑖 ≥ 0

A brief summary about formulation mentioned above:

Decision function:

𝑓(𝒙) = 𝛚 ⋅ 𝒙 + 𝑏

Primal formulation:

min: 𝑃(ω, 𝑏) =
1

2
||ω||

2
+ 𝐶 ∑ 𝐻1[𝑦𝑖𝑓(𝑥𝑖)]

𝑖

Hinge loss function 𝐻1(𝑧) = max (0,1 − 𝑧)

 121

 122

Non-linear Support Vector Machine:

Non-linear support vector machine always implements transformation Φ:

𝑥 ⟹ Φ(𝑥)

Then find classification function 𝑓(⋅) that:

𝑓(𝑥) = 𝜔 ⋅ Φ(𝑥) + 𝑏

The decision function becomes:

𝑓(𝑥) = ∑ α𝑖Φ(𝑥𝑖)

𝑚

𝑖=1

⋅ Φ(𝑥) + 𝑏

Φ(𝑥) ⋅ Φ(𝑥𝑖) = 𝐾(𝑥𝑖, 𝑥) is called the kernel function.

Decision function is:

𝑓(𝑥) = ∑ α𝑖Φ(𝑥𝑖)

𝑚

𝑖=1

⋅ Φ(𝑥) + 𝑏 = ∑ α𝑖𝐾(𝑥𝑖, 𝑥)

𝑚

𝑖=1

+ 𝑏

Dual formulation is:

min: 𝑃(ω, 𝑏) =
1

2
||∑ αi

m

i

Φ(xi)||

2

+ 𝐶 ∑ 𝐻1[𝑦𝑖𝑓(𝑥𝑖)]

𝑖

Kernel function 𝐾(⋅,⋅) is used to map from non-linear feature to linear feature. This is

crucially important in building support machine. However, there is no clear rule about how to

select kernel function. Some widely used kernel functions are:

1. Polynomial kernel: 𝐾(𝑥, 𝑥′) = (𝑥 ⋅ 𝑥′ + 1)𝑑

2. RBF kernel: 𝐾(𝑥, 𝑥′) = 𝑒−γ||𝑥−𝑥′||
2

 123

Deep Q Network

Deep Q network (always known as DQN) is a variants of reinforcement learning.

Different with traditional reinforcement learning, DQN substitute Q table with a neural network

in order to solve infinite possible states. In the following of this section, I will introduce basic

structure of deep Q network.

Reinforcement learning provides a framework for decision making and deep learning

provide a frame work for pattern learning. DQN is a combination of decision making and pattern

learning, which generate to some degree a better AI.

Before understanding how reinforcement learning works, three concepts need to be

introduced first, policy, value function and model.

Policy represents for agent’s behavior function mapping from state to action.

Deterministic policy:

𝑎 = 𝜋(𝑠)

Stochastic policy:

𝜋(𝑎|𝑠) = 𝑃[𝑎|𝑠]

Value function is a prediction or estimation for future reward.

From state 𝑠 and action 𝑎 under policy 𝜋, value function can be represented as:

𝑄π(𝑎|𝑠) = 𝐸[𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ |𝑠, 𝑎]

Value function decompose into a Bellman equation:

𝑄π(𝑎|𝑠) = 𝐸𝑠′,𝑎′[𝑟 + γ𝑄π(𝑎′|𝑠′)|𝑠, 𝑎]

To maximize the total expected future rewards:

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥π𝑄π(𝑠, 𝑎) = 𝑄π∗
(𝑠, 𝑎)

Then

 124

π∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎)

Formally, optimal values decompose into a Bellman equation,

𝑄∗(𝑠, 𝑎) = 𝐸𝑠′[𝑟 + γ𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎]

Model is agent’s representation of the environment and is learnt from experience.

To solve traditional Q learning problem, minimize loss function:

𝑙 = (𝑟 + γ max𝑎𝑄(𝑠′, 𝑎′, ω) − 𝑄(𝑠, 𝑎, ω))
2

If the result converges, value table for under actions and states can be obtained. Also the

optimization may be divergent because of correlations between samples or Non-stationary

targets.

To remove correlations, build data-set from agent’s own experience.

𝑙 = (𝑟 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′, 𝜔−) − 𝑄(𝑠, 𝑎, 𝜔))
2

Remove upward bias caused by max𝑎𝑄(𝑠′, 𝑎′, ω)

|𝑟 + γ𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′. ω−) − 𝑄(𝑠, 𝑎,\𝑜𝑚𝑒𝑔𝑎)|

Also, to split Q-network into two channels:

𝑄(𝑠, 𝑎) = 𝑉(𝑠, 𝑣) + 𝐴(𝑠, 𝑎, ω)

𝑉(𝑠, 𝑣) ≈ 𝐸[𝑟𝑡+1 + 𝑟𝑡+2 + ⋯ |𝑠]

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ + γ𝑛−1𝑟𝑡+𝑛 + γ𝑛𝑉(𝑠𝑡+𝑛, 𝑣)

Actor is updated towards target

∂𝑙𝑢

∂𝑢
=

∂ 𝑙𝑜𝑔 π (𝑎𝑡|𝑠𝑡, 𝑢)

∂𝑢
(𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡, 𝑣))

Critic is updated to minimize MSE

𝑙𝑣 = (𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡, 𝑣))
2

 125

Bibliography

Becker, S., & Hinton, G. (1992). A Self-organizing neural network that discovers surfaces in

random-dot stereograms. 355. Nature.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE Tr. Neural Nets.

Bennett, J. L. (1979). The commercial impact of usability in interactive systems. In B. Shackel,

Man Computer Communication, Infotech State of the Art, vol. 2 (pp. 1–17). Maidenhead:

Infotech International.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value

decomposition. Biological Cybernetics.

Bias, R. G. (1994). The pluralistic usability walkthrough: coordinated empathies. In J. Nielsen, &

R. L. Mack, Usability inspection methods (pp. 63 - 76). John Wiley & Sons, Inc.

Card, S., Newell, A., & Moran , T. (1983). The Psychology of Human-Computer Interaction.

Hillsdale: L. Erlbaum Associates Inc.

Dean, T., & Jabazawa, K. (1989). A model of reasoning about persistence and causation.

Computational Intelligence.

Desurvire, H. W. (1994). Faster, cheaper!! Are usability inspection methods as effective as

empirical testing? In H. W. Desurvire, Usability inspection methods (pp. 173 - 202). John

Wiley & Sons, Inc.

Desurvire, H., Kondziela, J., & Atwood, M. E. (1992). What is gained and lost when using

methods other than empirical testing. CHI '92 Posters and Short Talks of the 1992

 126

SIGCHI Conference on Human Factors in Computing Systems (pp. 125-126). Monterey:

ACM.

Elman, J. (1993). Learning and development in neural networks: the importance of starting

small. Cognition.

Ericsson, K., & Simon, H. (1980). Verbal Reports as Data. Psychological Review, 215-251.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism

of patern recognition unaffected by shift in position. Biological Cubernetics.

Giudice, M., Manera, V., & Keysers, C. (2009). Programmed to learn? The ontogeny of mirror

Neurons. . Dev. Sci., .

Gray, W., & Salzman, M. (1998). Damaged merchandise? A review of experiments that compare

usability evaluation methods. Human-Computer Interaction, 203-261.

Hastad, J., & Goldmann, M. (1991). On the power of small-depth threshold circuits.

Computational Complexity.

Hinton, G. (1989). Connectionist learning procedures. Artificial Intelligence, .

Jacobsen, N. E., & John, B. (1998). THE EVALUATOR EFFECT IN USABILITY STUDIES:

PROBLEM DETECTION AND SEVERITY JUDGMENTS. Proceedings of the Human

Factors and Ergonomics Society 42nd Annual Meeting (pp. 1336-1340). Chicago: HFES.

Jeffries, R., & Desurvire, H. (1992). Usability testing vs. heuristic evaluation: was there a

contest? ACM SIGCHI Bulletin Volume 24 Issue 4 (pp. 39 - 41). ACM.

Jeffries, R., Miller, J. R., Wharton, C., & Uyeda, K. (1991). User interface evaluation in the real

world: a comparison of four techniques. CHI '91 Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (pp. 119-124). Louisiana: ACM.

Jordan, M. I. (1998). Learning in Graphical Models. Dordrecht: Kluwer.

 127

Kahn, M. J., & Prail, A. (1994). Formal usability inspections. In J. Nielsen, & R. L. Mack,

Usability inspection methods (pp. 141 - 171). John Wiley & Sons, Inc.

Kirkpatrick, S., Jr., C., & Vecchi, M. (1983). Optimization by simulated annealing. Science.

L' Ecuyer, P. (1994). Efficiency improvement and variance reduction. Proceedings of the 1994

Winter Simulation Conference. Montreal: University of Montreal.

Lewis, J. (1994). Sample Sizes for Usability Studies: Additional Considerations. Human Factors,

368-378.

Memisevic, R., & Hinton, G. (2007). Unsupervised learning of image transformations.

Proceedings of the Computer Vision and Pattern Recognition Conference. Toronto.

Miller, R. B. (1971). Human ease of use criteria and their tradeoffs. Poughkeepsie: IBM,

Systems Development Division, Poughkeepsie Lab.

Mitchell, T. (1997). Machine Learning. New York: McGraw-Hill.

Moller, M. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks.

Nielsen, J. (1994). Enhancing the explanatory power of usability heuristics. CHI '94 Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (pp. 152-158).

ACM.

Nielsen, J. (1994). Usability Inspection Methods. CHI '94 Conference Companion on Human

Factors in Computing Systems (pp. 413-414). Boston: ACM.

Nielsen, J., & Molich, R. (1990). Heuristic Evaluation of User Interfaces. ACM CHI 90 Human

Factors in Computing Systems Conference (pp. 249-256). Washington: ACM.

 128

Novick, D. G., & Hollingsed, T. (2007). Usability Inspection Methods after 15 Years of

Research and Practice. SIGDOC '07 Proceedings of the 25th annual ACM international

conference on Design of communication (pp. 249-255). El Paso: ACM.

Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature.

Russel, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Upper Saddle

River: Prentice Hall,.

Scholtz, J. (2004). Usability Evaluation. National Institute of Standards and Technology,

Volume 1. Retrieved from

http://notification.etisalat.com.eg/etisalat/templates/582/Usability%2520Evaluation_rev1[

1].pdf

Shackel, B. (1959). Ergonomics for a Computer. Design I20, 36 - 39.

Shackel, B. (1990). Human factors and usability. In J. Preece, Human-computer interaction (pp.

27-41). Upper Saddle River: Prentice Hall.

Sietsma, J., & Dow, R. (1991). Creating artificial neural networks that generalize. Neural

Networks.

Smith, S. L., & Mosier, J. N. (1986). GUIDELINES FOR DESIGNING USER INTERFACE

SOFTWARE. The MITRE Corporation.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning - An Introduction. Cambridge:

MIT Press.

Taylor, G., Hinton, G., & Roweis, S. (2006). Modeling human motion using binary latent

variables. Proceedings of the Twentieth Annual Conference on Neural Information

Processing Systems. Vancouver: Advances in Neural Information Processing Systems 19.

 129

Tullis, T., Fleischman, S., Mcnulty, M., Cianchette , C., & Bergel, M. (2002). An empirical

comparison of lab and remote usability testing of websites. Proceedings of Usability

Professionals Conference. Boston.

Von Melchner, L., Pallas, S., & Sur, M. (2000). Visual behaviour mediated by retinal projections

directed to the auditory pathway. Nature.

Wharton, C., Rieman, J., Lewis, C., & Polson, P. (1994). The cognitive walkthrough method: a

practitioner's guide. In J. Nielsen, & R. L. Mack, Usability inspection methods (pp. 105 - 140).

John Wiley & Sons, Inc.

Williams, R., & Zipser, D. (1989). A learning algorithm for continually running fully recurrrent

neural networks. Neural Computation.

Yu, D., Wang, S., & Deng, L. (2010). Sequential labeling using deep-structured conditional

random fields. IEEE Journal of Selected Topics in Signal Processing.

