
Classical Computation in the Quantum World

by

Cupjin Huang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor Yaoyun Shi, Chair
Professor Christopher Peikert
Professor Márió Szegedy, Rutgers University
Professor Kim Winick

Cupjin Huang

cupjinh@umich.edu

ORCID ID: 0000-0002-7466-8033

©Cupjin Huang 2019

To my family

ii

Acknowledgments

This thesis would not be possible without the influence of many people.
I am very fortunate to be advised by Professor Yaoyun Shi. Yaoyun has contributed a lot to
the industrial effort for developing quantum computers, and that has influenced me a lot. I
would like to thank Yaoyun for the great opportunities he has offered me at this special stage
of quantum computation. I would also like to thank my lab mates Kevin Sung, Fang Zhang
and Mike Newman. Special thanks to Mike Newman, who has been a great collaborator,
and an oracle for English writing ever since my graduate program started.
For most of the year of 2018, I have been a research intern at Alibaba Quantum Lab (AQL).
Although only at its nascent stage, AQL has already gathered many brilliant people, and I
feel very lucky to have the chance to work with some of them. I would like to thank Jianxin
Chen and Xun Gao for their advisory in both research and programming, and interns Rui
Chao and David Ding for inspiring discussions inside and outside of work. I would like to
thank in particular my supervisor during the internship, Professor Márió Szegedy. He has
been an insightful mentor, a passionate colleague, and a personable friend. His advice and
guidance have proved invaluable for my research career.
I learned much from discussion and collaboration with many people. Valuable experience
has gained from working with my advisor and group members, my internship colleagues,
my collaborators Yuxiang Yang, Giulio Chiribella and András Gilyén, and various others
for insightful discussions. Special thanks to Professors Ken Brown at Duke University
for the invitation to visit. I have learned a lot from one week of the visit to Ken’s and
Jungsang’s groups at Duke. I would also like to thank the organizers and participants of
Summer Cluster: Challenges in Quantum Computation at Simons Institute, Summer 2018.
I have benefited a lot from the inspiring talks and discussions with an excellent group of
people.
I am very grateful for my committee members Yaoyun, Márió, Chris Peikert and Kim
Winick for their service. Also, I would like to thank the administrative staff in the CSE
department, for their kind and timely assistance in my moments of need.
Most of the work covered in this thesis is supported by NSF and Alibaba Group USA.
Most of all, I would like to thank my family, especially my parents and my fiancé, for their
constant and unconditional love and support.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Appendices . ix

Abstract . x

Chapter

1 Introduction . 1

1.1 Quantum computation in the NISQ era 1
1.2 Overview of results . 3

1.2.1 Resillience of quantum hashing against classical leakage 3
1.2.2 Limitations on strong simulation of quantum computation 4
1.2.3 Finding angle sequences in quantum signal processing 4
1.2.4 Transversal code switching for general stabilizer codes 5

1.3 Dissertation Outline . 6
1.3.1 Works appearing . 7

2 Preliminaries . 8

2.1 Asymptotic notations . 8
2.2 Matrix norms and functions . 9
2.3 Quantum states, measurements and channels 10

2.3.1 Pure quantum systems . 10
2.3.2 Mixed quantum systems . 11
2.3.3 Norms and metrics . 14

2.4 Universal gate sets . 15

3 Resilience of quantum hash against classical leakage 18

3.1 Introduction . 19
3.1.1 The problem and the motivation 19
3.1.2 Quantum cryptographic hash functions 20
3.1.3 Main result . 21
3.1.4 Implications on quantum-proof randomness extraction 23
3.1.5 Sketch of proofs . 23

iv

3.2 Preliminaries . 24
3.2.1 Quantum conditional min-entropy 25

3.3 The Separation Lemma . 26
3.3.1 Conversion parameters and the Separation Lemma 26
3.3.2 Characterizing the conversion parameter 27
3.3.3 Proof of the Separation Lemma 32

3.4 Resilience of quantum hashing against classical leakage 33
3.4.1 A lightweighted verification scheme resilient against classical

leakage . 36
3.5 Implications of the Separation Lemma on quantum-proof extractors . . . 38
3.6 Related Works . 41

4 Limitations of monotone quantum simulation 42

4.1 Introduction . 42
4.1.1 Overview of classical simulation 42
4.1.2 Strong and weak simulations . 43
4.1.3 Limitation of monotone simulation methods 45

4.2 Preliminaries . 46
4.3 Monotone method . 47

4.3.1 The skeleton of a tensor network 47
4.3.2 Monotone methods . 48

4.4 An unconditional lower bound for monotone methods 51
4.5 Remarks and open questions . 55

5 Limitations of general strong quantum simulations 57

5.1 Conditional lower bounds for strong simulators with respect to number
of qubits . 58
5.1.1 Reversible evaluation of a SAT formula 60
5.1.2 Reducing SAT to strong simulation 64
5.1.3 Relating the parameters . 64

5.2 Conditional lower bounds in terms of T -gate count 65
5.2.1 The sparsification lemma . 66
5.2.2 From 3-SAT to Clifford+T . 66

5.3 Conclusion . 69
5.3.1 Summary . 69
5.3.2 Open problems . 70

6 Finding angle sequences in quantum singal processing 71

6.1 Introduction . 72
6.1.1 Main result . 72
6.1.2 Application . 73

6.2 Quantum signal processing . 73
6.3 Algebras associated with quantum signal processing 76
6.4 The syntactic versus semantic view . 77
6.5 Star operation, unitary and Hermitian elements, degree 78

v

6.6 The main lemma . 80
6.7 Algorithm . 82
6.8 Experimental results . 85
6.9 Discussion . 89

7 Transversal switching between stabilizer codes 92

7.1 Introduction . 92
7.1.1 Results . 93

7.2 Preliminaries . 94
7.2.1 Classical codes . 94
7.2.2 Quantum codes . 95
7.2.3 Transversality . 97

7.3 The rSRA schematic . 98
7.3.1 Preparing the generator matrices 100
7.3.2 Applying the transformation . 102

7.4 Distance bounds . 102
7.5 Discussion . 105

8 Summary and conclusions . 108

8.1 Resillience of quantum hashing against classical leakage 108
8.1.1 Summary . 108
8.1.2 Future work . 109

8.2 Limitations of classical strong simulations 109
8.2.1 Summary . 109
8.2.2 Future work . 110

8.3 Numerically stable algorithm for angle finding 111
8.3.1 Summary . 111
8.3.2 Future work . 111

8.4 Transversal switching between stabilizer codes 112
8.4.1 Summary . 112
8.4.2 Future work . 112

Appendices . 113

Bibliography . 126

vi

LIST OF FIGURES

4.1 Examples of tensors. 46
4.2 Example of a (closed) tensor network. 46
4.3 Example of a monotone arithmetic circuit computing the polynomial (x1 +

2x2)x3. 47
4.4 The left-hand diagram represents the skeleton associated to the quantum cir-

cuit 〈0|H1H2⊗CX1→2⊗H1⊗I2|0〉, where the subscripts indicate the wires on
which the gates act. According to the variables introduced in the right-hand di-
agram, its associated polynomial is p(x1, . . . , x20) = x1x10x11x20(x2x6x12x16+
x3x8x14x18). 48

4.5 The relation between strong quantum simulation and monotone methods. A
monotone method is any map from closed skeletons to monotone arithmetic
circuits that makes the diagram commute. 49

4.6 Preprocessing a tensor network to reduce the cost of contraction. 50
4.7 The skeleton we use to prove Theorem 4.2. The whole circuit is depicted in

(a), and the gadget G is depicted in (b). The nonzero locations of the red com-
ponent are shown in (c) and the nonzero locations of the blue component are
shown in (d). To obtain a quantum circuit, we can replace the red components
with Hadamard gates and the blue components with CNOT gates. 52

4.8 The tensor network Tperm that realizes the permanent. 53
4.9 A pictorial proof of Theorem 4.2. To contract the network in Figure 4.8, first

fix a labeling of the edges and then multiply together the corresponding tensor
elements from each tensor. Then, sum over all such labelings. Note that if any
of these tensor elements is zero, then the corresponding term in the sum is also
zero. We now illustrate that there is a one-to-one correspondence between the
nonzero terms in the sum and the terms in the n by n permanent. Namely for
every permutation π ∈ Sn, the product x1,π(1) . . . xn,π(n) appears as a nonzero
term, and every other term is zero. In this figure, the wires with thicker lines
are labeled 1, while the thinner lines are labeled 0. One can check that no
other labeling contributes to the sum. To visualize this, we have listed all the
nonzero labeling combinations for the A, B, C, D, E, and X tensors. 54

5.1 SAT instance φ expressed as a binary tree. 61
5.2 The construction that restores the input and ancilla wires after an untidy com-

putation of f(x) and produces the output on the added wire b. Initially, the
output of U was sent to wire a. 62

vii

5.4 Explicit decomposition of the Toffoli gate into Clifford+T gates with mini-
mum T -count. 68

6.1 An illustration of a quantum signal processing circuit. State preparation and
post selection operators are omitted for simplicity. 74

6.2 The algorithm DECOMPOSE. 85
6.3 The running time for angle finding using the halving method. Here the error

tolerance and the scaling factor is fixed to 10−3 and 0.7 respectively. The run-
ning time scales as a cubic function with respect to the degree of the Laurent
polynomial, hence also cubic with respect to the evolution time parameter τ .
Note that an instance with τ = 1200 can be efficiently solved within 5 minutes. 87

6.4 The achievable parameter regions for the Hamiltonian simulation problem
with machine precision, with the carving and the halving method. Note that
the y-axis is log scaled. 88

6.5 Comparison of the final l∞ error of the angle finding algorithm, over random-
coefficient instances of different degrees. For each degree, 10 random-coefficient
instances are given as input to the angle-finding algorithm, and the final l∞ er-
rors are averaged to generate the plot. Note that the x-axis is log-scaled for
clarity. Regarding error rate above 0.05 as failure, the carving method would
fail when the degree approaches 100, whereas the halving method still behaves
numerically stable up to degree 5000. The anomalous blue point at degree
n = 90 is possibly due to a hard instance from the distribution. 89

6.6 Algorithm COMPLETE (real Laurent polynomial A, error tolerance parameter ε) 90
6.7 Time scaling of the completion phase, using the root-finding and the iterative

least square method respectively. For the iterative least square method, the
termination condition is set such that the unitarity, namely ‖UU∗ − I‖ goes
below 10−8. The blue dots represent experiment results for the iterative least
square method, whereas the red dots are for experiments with root finding. It
can be observed that iterative least square method has a constant factor advan-
tage over root finding in terms of the running time. 90

B.1 The Algorithm SPARSIFY. 116
B.2 The Algorithm REDUCE. 116

D.1 A generic circuit switching between adjacent codes using Shor-style measure-
ment. 125

viii

LIST OF APPENDICES

A Proof of the Cotlar-Stein Lemma . 113

B Proof of the Sparsification Lemma . 115

C Lemmas for code distance bounds . 121

D Fault-tolerant measurement . 125

ix

ABSTRACT

Quantum computation is by far the most powerful computational model allowed
by the laws of physics. By carefully manipulating microscopic systems governed
by quantum mechanics, one can efficiently solve computational problems that may
be classically intractable; on the contrary, such speed-ups are rarely possible with-
out the help of classical computation, since most quantum algorithms heavily rely
on subroutines that are purely classical. A better understanding of the relation-
ship between classical and quantum computation is indispensable, in particular in
an era where the first quantum device exceeding classical computational power is
within reach.
In the first part of the thesis, we study some differences between classical and
quantum computation. We first show that quantum cryptographic hashing is max-
imally resilient against classical leakage, a property beyond reach for any classical
hash function. Next, we consider the limitation of strong (amplitude-wise) simula-
tion of quantum computation. We prove an unconditional and explicit complexity
lower bound for a category of simulations called monotone strong simulation, and
further prove conditional complexity lower bounds for general strong simulation
techniques. Both results indicate that strong simulation is fundamentally unscal-
able.
In the second part of the thesis, we propose classical algorithms that facilitate
quantum computing. We propose a new classical algorithm for the synthesis of
a quantum algorithm paradigm called quantum signal processing. Empirically,
our algorithm demonstrates numerical stability and acceleration of more than one
magnitude compared to state-of-the-art algorithms. Finally, we propose a ran-
domized algorithm for transversally switching between arbitrary stabilizer quan-
tum error-correcting codes. It has the property of preserving the code distance and
thus might prove useful for designing fault-tolerant code-switching schemes.

x

CHAPTER 1

Introduction

1.1 Quantum computation in the NISQ era

History of quantum computation. The dream of harnessing quantum mechanics to
solve difficult computational problems has emerged from the age of Feynman [1], where
a prototype of a quantum computing device was proposed to simulate the intrinsically
quantum-mechanical behavior of microscopic particles. Quantum computing has since
been studied extensively. In the mid-1990s, two of the most famous quantum algorithms
were proposed respectively by Shor and Grover, showing the ability to accelerate classi-
cal computing super-polynomially for factorization [2], and quadratically for black-box
search [3]. The theory for designing and analyzing quantum algorithms has been further
developed in the following two decades, and prospective quantum algorithms and heuristics
are believed to enhance classical computation in various fields including discrete optimiza-
tion [4], machine learning [5, 6], chemistry [7, 8], material science [9], just to name a
few.

Recent development in quantum computational devices. Although quantum comput-
ing is theoretically promising, constructing a quantum computer in real life is very difficult.
Since quantum phenomena are only noticeable within the range of nanometers and typically
nanoseconds, controlling quantum systems accurately has been one of the most challeng-
ing tasks in modern physics. Fortunately, with research and industry effort from various
fields including physics, computer science, electrical engineering and so on, performance
of quantum computating hardware has been improved a lot during the last decades. We
are now entering the era of Noisy Intermediate-Scale Quantum computation (NISQ). The
concept of NISQ era was first proposed in [10] to refer to the near-term goal of quantum
computational devices. Based on current technology, it is expected that within a couple of
years people can build a quantum device containing 50-100 physical qubits, where apply-

1

ing each (two-qubit) quantum gate would introduce an error above the magnitude of 0.1%.
With such a high noise rate, any existing error-correcting scheme would introduce more
noise into the device, thus it is not yet feasible to perform error-free quantum computation
on such devices. However, unlike previously existing quantum devices, it is not clear if a
quantum device in the NISQ era can be efficiently simulated on a classical computer (the
naive algorithm would take 250 ∼ 2100 time). Therefore, it is possible that such a quantum
device can outperform current classical computational power, even only on some very spe-
cific computational tasks. Before usign general quantum computation to solve classically
hard computational problems, researchers in the field would like to first demonstrate the po-
tential superiority of quantum computation with respect to their classical counterpart, with
as near-term quantum devices as possible. Such a landmark is called quantum supremacy.

Classical computation in the NISQ era. With Moore’s law coming to an end, people
start to seek for alternatives for classical computational architecture. Quantum computa-
tion provides a novel computational model based on quantum mechanics, and is expected
to further enhance the state-of-the-art computational capability. Theoretically proving
that general-purpose quantum computers are more capable than classical computers (i.e.
BQP 6= BPP) would be impossible without a major breakthrough in complexity theory.
Instead, people have proved advantage of quantum computation for several restricted mod-
els, such as query complexity [11], shallow circuit complexity [12], oracle complexity [13],
just to name a few. Related to this, researchers in quantum information theory have also
discovered many interesting phenomena that are exclusive to quantum information [14].

On the other hand, quantum computation has its own shortcomings. Performing quan-
tum computation is currently prohibitively expensive due to technical limitations. To make
use of quantum mechanics, the system carrying out the computation must be put in a state
where the quantum effects are both noticeable and controllable. Prominent quantum com-
puters need to be put at a close-to-zero temperature (∼ 20mK) to maximally reduce the
uncontrollable thermal fluctuation, while a sophisticated controlling mechanism needs to
be designed in order to drive the evolution of the quantum system at will. Therefore, it
is desirable that computational tasks be delegated to significantly cheaper classical com-
putational resources if possible. With NISQ-era quantum devices, it is an increasingly
important task to enhance quantum computing with classical computational resources.

Overview of the thesis. This thesis summarizes the theoretical research projects the au-
thor have conducted during the graduate program, with a focus on the connection between
classical and quantum computation. The thesis can be divided into the following two parts.

2

The first part of the thesis investigates the limitations of classical computation compared
to quantum computation, in both the contexts of quantum hash and of classical simulation.
We study a property called resilience against classical leakage, which holds true for all
quantum cryptographic hash functions, but is impossible to be satisfied by any classical
hash. We then show explicit complexity lower bounds for strong(amplitude wise) classical
simulation of quantum computation. We propose a broad category of strong simulation
methods called monotone methods, which contains almost all prominent strong simula-
tors. We prove unconditional lower bounds for monotone methods, and conditional lower
bounds for general strong simulation methods based on well-believed conjectures.

The second part of the thesis concerns enhancing quantum computation with classical
algorithms. The author will propose two classical algorithms. The first algorithm synthe-
sizes a wide class of quantum algorithms called quantum signal processing in a numerically
stable way. The second algorithm focuses on designing a switching scheme between quan-
tum error correcting codes, such that the code distance is preserved throughout.

More specifically, we present the following results.

1.2 Overview of results

1.2.1 Resillience of quantum hashing against classical leakage

In Chapter 3, we study the quantum cryptographic hash functions for their resilience against
classical leakage. Cryptographic hash functions are fundamental primitives widely used in
practice. For such a function f : {0, 1}n → {0, 1}m, it is nearly impossible for an adversary
to produce the hash f(x) without knowing the secret message x ∈ {0, 1}n. Unfortunately,
all hash functions are vulnerable under the side-channel attack, meaning that an adversary
can easily forge a hash when exposed to a small amount of information, without knowing
the secret itself. This is because typically m � n and an adversary needs only m bits of
information to be able to forge a hash. This is a grave concern for information security in
practice.

In sharp contrast, we show that when quantum states are used, the leakage allowed can
be almost the entire secret. More precisely, we call a function that maps n bits to m qubits
a quantum cryptographic function if the maximum fidelity between two distinct hashes
is negligible in n. We show that for any k = n − ω(log n), all quantum cryptographic
hash functions remain cryptographically secure when leaking k bits of information. By
the quantum fingerprinting constructions of Buhrman et al. [15], for all m = ω(log n),
there exist such quantum cryptographic hash functions. We also show that one only needs

3

ω(log2 n) qubits to verify a quantum cryptographic hash, rather than the whole classical
information needed to generate one.

Our result also shows a big difference between the set of classical-quantum states with
a certain min-entropy, and the set of joint distributions with the same min-entropy. This
represents a significant barrier for proving quantum security of classical-proof extractors.

1.2.2 Limitations on strong simulation of quantum computation

In Chapter 4 and 5, we consider the problem of classical simulation of n-qubit quantum
circuits. A quantum circuit is a sequence of elementary quantum evolutions that outputs a
quantum state at the end. The quantum state is then measured to give a random classical
outcome. A weak simulator is an algorithm that given an input quantum circuit C, samples
from its output distribution. A strong simulator, on the other hand, calculates the probability
of an outcome x given inputsC and x. It is known that weak simulation of general quantum
circuits is BQP complete and strong simulation is #P complete. What is not known is an
explicit lower bound on the complexity of simulations, or, the fundamental limit to which
quantum computation is “unsimulable” than classical computational power.

We focus on strong simulation. In Chapter [16], we identify a subclass of strong sim-
ulators we call monotone. This subclass encompasses almost all prominent simulation
techniques. We prove an unconditional (i.e. without relying on any complexity-theoretic
assumptions) and explicit lower bound on the running time of simulators within this sub-
class.

In Chapter 5, we relax the constraint of monotonicity and consider hardness of general
strong simulations. Based on the Strong Exponential Time Hypothesis (SETH), we remark
that a universal simulator computing any amplitude to precision 2−n/2 must take at least
2n−o(n) time. We then compare strong simulators to existing SAT solvers, and identify the
time-complexity below which a strong simulator would improve on state-of-the-art SAT
solving. Finally, we investigate Clifford+T quantum circuits with a small number of T -
gates and identify time complexity lower bound in terms of T -gate count below which a
strong simulator would improve on state-of-the-art 3-SAT solving.

1.2.3 Finding angle sequences in quantum signal processing

In Chapter 6, we investigate a paradigm for quantum algorithm design called quantum sig-

nal processing recently proposed in [17]. Quantum signal processing is a novel way of
implementing transformations of eigenvalues of a given unitary operation, using only one
auxiliary ancilla wire. An entire mathematical machinery has been developed to address

4

this problem in a sequence of works [8, 18, 19, 20, 21, 22, 23]. Most of the quantum
algorithms can be formulated as quantum signal processing (or more generally, quantum
singular value transformation [23]) and it is known that QSP-based algorithms achieve
the optimal scaling for various problems including Hamiltonian simulation, matrix inver-
sion, just to name a few. However, within quantum signal processing, there is a classical
preprocessing step of finding angle sequences that is yet to be made numerically stable,
substantially undermining the efficiency of the QSP algorithm.

We describe an algorithm for finding angle sequences in quantum signal processing,
with a novel component we call halving based on a new algebraic uniqueness theorem, and
another we call capitalization. Together, these two algorithmic ideas allow us to find angle
sequences for important applications such as Hamiltonian simulation in standard double
precision arithmetic, native to almost all hardware. The current best method, proposed
in [24], could find the same only in arbitrary precision arithmetic, which needed to be
emulated by software, thus incurring a substantial time overhead. We present experimental
results that demonstrate the performance of the new algorithm.

1.2.4 Transversal code switching for general stabilizer codes

In Chapter 7, we propose a randomized algorithm that switched between arbitrary stabilizer
error correcting codes, while preserving the code distance with high probability.

Quantum error correcting codes encodes logical quantum information into physical
quantum systems in a way that local physical error happening on a few physical qubits
would not corrupt the logical state. Such quantum codes deals with faulty qubits; how-
ever, for sake of general fault-tolerant quantum computation, faulty physical gates must
also be taken into account. It would be desirable that general quantum computation be im-
plemented on a quantum error correcting code, in a way that each logical gate decomposes
as a tensor product of local operations on each individual physical qubit. If one component
in the physical realization of the logical gate is faulty, at most one physical qubits gets cor-
rupted, and such error can still be remedied by the error-correcting procedure. However, a
famous no-go theorem states that general quantum computation is not possible with only
transversal gates on an error-correcting code [25].

Various methods have been proposed in order to get around the no-go result, among
which code swiching is a popular candidate [26, 27, 28, 29, 30]. The idea of code switching
is to choose two (or more) error-correcting codes such that the individual logical transversal
gate sets form a universal gate set when combined together. Logical computation is then
performed by switching back and forth between the codes if necessary, and apply transver-

5

sal logical gates on the appropriate code. Such code switching procedures cannot be made
using only transversal gates according to the Eastin-Knill theorem; however, it is still pos-
sible to switch between some pairs of codes fault-tolerantly, using a slight generalization
of transversal gates called transversal measurment.

A recently proposed scheme, called stabilizer rewiring algorithm (SRA)[31], achieves
switching between arbitrary pair of stabilizer codes, with only transversal gates and mea-
surements. The central idea of the SRA scheme is to slowly deform the starting code to the
target through a series of intermediate codes. However, the SRA scheme fails to guarantee
that logical quantum information is protected by error correcting code throughout.

By introducing randomness and modifying the SRA scheme, we propose a randomized
variant we call rSRA, that preserves the distance of intermediate codes with high proba-
bility. Though not necessarily resulting in an ideal deformation path, the rSRA algorithm
derives its usefulness from its generality. For specific code switching examples, it may
be profitable to modify the circuit using the rSRA as a template, augmented with a larger
class of fault-tolerant manipulations such as local Clifford gates, in order to search for a
fault-tolerant mapping.

1.3 Dissertation Outline

This dissertation is divided into eight chapters. Chapter 2 introduces the basics of quantum
information. This is meant to be an overview of the background knowledge to better un-
derstand this thesis. For a more complete guide on the basics of quantum information, we
recommend [32].

Chapter 3 introduces the quantum cryptographic hash functions and studies the property
of resilience against classical leakage. Chapter 4 and Chapter 5 investigates the limitation
of classical simulation of quantum circuits. Chapter 6 introduces a numerically stable algo-
rithm for finding angles for quantum signal processing. Chapter 7 introduces a randomized
algorithm for switching between different stabilizer codes while preserving the distance.
Each of these chapters is prefaced by an introduction summarizing the background and
results in the context of other work.

Finally, in Chapter 8 we summarize these results. We then give a broad overview of
potential avenues for future work.

6

1.3.1 Works appearing

The work in Chapter 3 is contained almost entirely in [33]. This work was presented as a
poster at the 20th Annual Conference on Quantum Information Processing and at the 7th
International Conference on Quantum Cryptography by the author, and has been submitted
for publication. It was awarded the best poster at the 7th International Conference on
Quantum Cryptography.

The work in Chapter 4 and part of the work in Chapter 5 are drawn from [16], while
the rest of Chapter 5 is drawn from [34]. Part of [16] was presented as a lightning talk at
Simons Institute during Summer Cluster: Challenges in Quantum Computation. The two
works have been combined together and submitted for publication. A result similar to one
of the main results in [34] was shown concurrently in [35]. The two papers [16] and [34]
have been combined and submitted for publication.

The work in Chapter 6 is ongoing at the time of this thesis, and will be found in [36].
It has been presented in part as a poster at the 22nd annual Conference on Quantum Infor-
mation Processing by the author.

Finally, the work in Chapter 7 is contained entirely in [37]. It has been presented as a
poster at the 21st annual Conference on Quantum Information Processing by the author.

In all of the above works, the author of this thesis proposal has appeared as either
the first author or co-first author, but has benefited tremendously from discussions with
his co-authors, supervisors, colleagues, and friends. Other works to which the author has
contributed as a graduate student, but which do not fit into the theme of this thesis, can be
found in [38, 39, 40, 37].

7

CHAPTER 2

Preliminaries

In this chapter, we give a cursory review of quantum information and computation. We will
recall important definitions and theorems that are required for this thesis, without trying to
give a complete overview. We assume that the readers are familiar with linear algebra. We
refer to [32] for more detailed knowledge on quantum computation and quantum informa-
tion. Furthermore, for the sake of clarity, chapter-specific preliminary knowledge will be
placed at the beginning of each individual chapter.

2.1 Asymptotic notations

For two functions f, g : Z+ → R+, we define the asymptotic notations as follows:

• f(n) = O(g(n)) if there exists n0 ∈ Z+ and c, such that f(n) ≤ c · g(n) for all
n ≥ n0;

• f(n) = Ω(g(n)) if there exists n0 ∈ Z+ and c, such that f(n) ≥ c · g(n) for all
n ≥ n0;

• f(n) = Θ(g(n)) if f = O(g(n)) and f = Ω(g(n));

• f(n) = o(g(n)) if for all n′ and c there exists n ≥ n′ such that f(n) < c · g(n);

• f(n) = ω(g(n)) if for all n′ and c there exists n ≥ n′ such that f(n) > c · g(n).

We further denote

• f(n) = poly(n) if f(n) = O(nc) for some c;

• f(n) = poly log(n) if f(n) = poly(log n);

• f(n) = negl(n) if f(n) = o(n−c) for all c > 0.

8

We finally define variants of the big-O notation that we will use throughout the thesis:

• f(n) = Õ(g(n)) if there exists h(n) = poly log(n) such that f(n) = O(g(n) ·h(n));

• f(n) = O∗(g(n)) if there exists h(n) = poly(n) such that f(n) = O(g(n) · h(n)).

The Õ-notation and theO∗-notation simplify asymptotic expressions respectively when
polylogarithmic factors and polynomial factors are not of major concern.

2.2 Matrix norms and functions

For a matrix M ∈ Cm×n, denote M † to be the transposed conjugate of M . A matrix M
always have a singular value decomposition (SVD):

M = UΣV †, (2.1)

where U, V † are isometries (U †U = Ir = V †V = Ir, r being the rank of M), and Σ is a
diagonal matrix with positive diagonal entries, called the singular values, which turn out to
be independent from the choice of U and V . A norm defined on Rr can then be applied to
the singular values of a matrix, thus defining a norm on the space of complex matrices:

1. The `1 norm of the singular values is called the trace norm of the matrix;

2. The `2 norm of the singular values is called the Frobenius norm of the matrix, and

3. The `∞ norm of the singular values is called the operator norm of the matrix, and

4. The `p norm of the singular values is called the Schatten-p norm of the matrix for
p ≥ 1.

A square matrix H ∈ Cd×d is called hermitian if H† = H . For a hermitian matrix
H , it is known that the spectrum of it consists of real numbers, i.e. H can be spectrally
decomposed as

H =
∑

i

ηiαiα
†
i , ηi ∈ R, (2.2)

where α†iαj = δij , i.e. the set of vectors {αi} forms an orthonormal basis of the underlying
Hilbert space Cn. Each ηi is called an eigenvalue of H , with corresponding eigenvector αi.
The singular values of H is the absolute values of the eigenvalues.

When all the eigenvalues are non-negative, the matrix H is said to be positive semidef-
inite (PSD), denoted byH < 0. We write ρ < σ if ρ− σ < 0; note that < is a partial order
on the set of hermitian matrices.

9

Finally, functions defined R or R≥0 can be applied to hermitian or PSD matrices re-
spectively, by simply transforming the eigenvalues according to the function.

2.3 Quantum states, measurements and channels

2.3.1 Pure quantum systems

Pure states. Let us begin with the most basic object in quantum information, i.e. a single
qubit. While a classical bit takes the value from the finite set {0, 1}, the state of a pure
qubit is formalized mathematically as a unit vector in the Hilbert space C2, i.e.

ψ = α ·
(

1

0

)
+ β ·

(
0

1

)
, α, β ∈ C, |α|2 + |β|2 = 1. (2.3)

We adopt the Dirac notation, where a column vector representing a state ψ is written as
|ψ〉. Eq.(2.3) can then be more concisely written as

|ψ〉 = α|0〉+ β|1〉, (2.4)

where {|0〉, |1〉} represents a fixed orthonormal basis of the Hilbert space C2. A row vector
is represented as a ket in the Dirac notation. One convention of the Dirac notation is that
the Hermitian conjugate of |ψ〉 = α|0〉 + β|1〉 is denoted as a bra 〈ψ| := α∗〈0| + β∗〈1|,
where α∗, β∗ are conjugates of α, β respectively. The inner product of a bra 〈φ| and a ket
|ψ〉 is then denoted 〈φ|ψ〉. With this notation, the unit-length constraint |α|2 + |β|2 = 1 can
be concisely written as 〈ψ|ψ〉 = 1.

A quantum state can of course be over a finite set {0, · · · , d − 1}; in this case the
quantum system is called a d-qudit, and a pure d-qudit is represented as a unit vector in the
Hilbert space Cd similar to a pure qubit. More generally we denote the quantum system to
be a (finite) dimensional Hilbert spaceH.

Unitary evolution. Quantum evolutions are linear automorphisms on the space of quan-
tum states. Mathematically, a linear map U : H → H mapping unit vectors to unit vectors
is called a unitary. The set of all d-qudit unitaries forms the unitary group U(d), or SU(d)

by ignoring the global phase.
In some cases, we will also study mappings from a quantum system into another quan-

tum system, where the two quantum systems do not necessarily have the same dimension.
In this case the mapping is described by an isometry rather than a unitary.

10

Quantum measurement. A quantum measurement is represented as an orthonormal ba-
sis M := {|φi〉} of the quantum system H. Upon a measurement M being applied to a
quantum state |ψ〉, the state collapses to one of the states |φi〉 randomly and generates the
corresponding classical outcome i, where

Pr[X = i] = |〈φi|ψ〉|2. (2.5)

One can verify that the values {|〈φi|ψ〉|2}0≤i<d always represent a probability distribution,
and is oblivious of the global phase of |ψ〉. Since the outcomes of the quantum mea-
surements are the only information regarding the quantum process perceivable by classical
beings, it is safe to discard the global phase factor.

2.3.2 Mixed quantum systems

Composite system quantum states. The joint pure state of two quantum systems HA

and HB is described by a unit vector in the product system HA ⊗ HB. However, it is not
always true that such a vector can be described as tensor product of pure quantum states on
individual quantum systems, a phenomenon called quantum entanglement.

Mixed quantum states. Given an entangled state |ψ〉AB on the composite system AB,
there is still a way of defining the local quantum state of |ψ〉 on the subsystem A. To see
this, consider a quantum measurement {|φi〉 ⊗ |σj〉}0≤i<dimHA,0≤j<dimHB . The measure-
ment results in a joint distribution (X, Y) ∈ [dimHA]× [dimHB]. Consider the marginal
distribution of X:

Pr[X = i] =
∑

j

Pr[X = i, Y = j] (2.6)

=
∑

j

|(〈φi| ⊗ 〈σj|)|ψ〉|2 (2.7)

=
∑

j

Tr[|ψ〉〈ψ|(|φi〉〈φi| ⊗ |σj〉〈σj|)] (2.8)

= Tr[|ψ〉〈ψ|(|φi〉〈φi| ⊗
∑

j

|σj〉〈σj|)] (2.9)

= Tr[|ψ〉〈ψ|(|φi〉〈φi| ⊗ I)] (2.10)

= Tr[TrB[|ψ〉〈ψ|]|φi〉〈φi|]. (2.11)

11

Here the partial trace TrB is a linear mapping defined by

TrB[|i〉〈j|A ⊗ |k〉〈l|B] = 〈l|k〉 · |i〉〈j|. (2.12)

It can be seen that the marginal distribution of the outcome does not depend on the mea-
surement on subsystem B at all, and the outcome distribution of any local measurement
is completely characterized by the unit-trace, positive semidefinite operator TrB[|ψ〉〈ψ|]
mapping fromHA toHA.

Denote the set of linear mappings from HA to HB as L(HA,HB), with L(H) :=

L(H,H). The state of a quantum system is in the most general case described by a density

operator, i.e. a positive semidefinite matrix in L(H) with unit trace. The set of all such
operators is denoted as S(H). The density operator associated to a pure state |ψ〉 is simply
the rank-1 matrix |ψ〉〈ψ|. A density operator with rank greater than 1 cannot be described
by a state vector, and is called a mixed state. For a quantum state ρAB of the joint system
AB, we sometimes write ρA := TrB[ρAB] and ρB := TrA[ρAB] to denote the states on the
subsystems A and B.

Purification. Any density operator ρ can always be written as ρ =
∑

i pi|ψi〉〈ψi|, where
pi ≥ 0,∀i and

∑
i pi = 1. This indicates that a density operator can be regarded as

probabilistic mixtures of pure states. Another useful way to look at density operators is
through purification. By spectral decomposition, there is a unique decomposition ρ =∑dimH−1

i=0 pi|ψi〉〈ψi| where {|ψi〉}0≤i<dimH forms an orthonormal basis. Then it is easy to
verify that

ρ = TrB[|φ〉〈φ|], |φ〉 =
dimH−1∑

i=0

√
pi|ψi〉 ⊗ |i〉B, (2.13)

where {|i〉B}0≤i<dimH is an arbitrary choice of orthonormal vectors in a reference system
B. This indicates that a density operator can always be regarded as the marginal state of a
pure state on a composite system, by introducing a (possibly imaginary) reference system
B. The pure state |φ〉 is called a purification of ρ. All purifications of ρ are equivalent
under local unitaries on the reference system.

Classical-quantum states. A special type of quantum states are the classical quantum
states, i.e. states of the form

ρXE =
∑

x

|x〉〈x| ⊗ ρx. (2.14)

12

It is called classical-quantum since the X part of the state is purely classical. In the case
that the E subsystem is discarded, we recover a classical probability distribution

ρX = TrE[ρXE] =
∑

x

Tr[ρx] · |x〉〈x|. (2.15)

Quantum channels. Quantum channels are mixed state extensions of unitary evolutions
in the pure state picture. A quantum channel is a linear mapping from a quantum system
to possibly another quantum system, C : S(HA) → S(HB). Mathematically, a quantum
channel is a completely positive, trace-preserving (CPTP) map: for any reference system
HC and any joint state ρ on the composite system HA ⊗ HC , the result state one gets by
applying the channel C locally on the system HA is still a quantum state, in the composite
systemHB ⊗HC .

Two most basic examples of quantum channels are isometries (unitaries) V(·) = V ·V †
and partial traces T (·) = TrB[·]. According to the famous Stinespring’s dilation theorem,
any quantum channel C can be written as an isometry followed by a partial trace, i.e. C =

T ◦ V . The isometry V is called the purification of C, and similar to the case with mixed
states, all purifications of a quantum channel are equivalent under local unitaries on the
reference system.

There are two common ways of representing a quantum channel, namely the Choi-
Jamiołkowski representation and the Kraus operator decomposition.

Choi-Jamiołkowski representation maps a channel CA→B to the state

ρC := (CA→B ⊗ IC)(|Φ〉〈Φ|AC), (2.16)

where the system C is chosen with the same dimension as that of A, and

|Φ〉AC :=
1√

dimHA

∑

i

|i〉A ⊗ |i〉B (2.17)

is the so-called Bell state. The mapping C can then be conveniently written as

C(σ) = TrC [ρC(I ⊗ σT)]. (2.18)

Kraus operator decomposition is to write a channel C in the form

C(·) :=
∑

i

Ai · A†i , (2.19)

13

where the Kraus operators {Ai} satisfy the equality
∑

iA
†
iAi = I . A mapping is

CPTP if and only if it has a Kraus operator decomposition.

POVM measurements. The most general quantum measurements of quantum states are
called positive-operator-valued measurements (POVMs). A POVM is a set of positive
semidefinite operators {Mi}0≤i<s summing up to I . Applying a POVM on a quantum
state ρ yields a random classical outcome X with probability specified By

Pr[X = i] = Tr[Miρ]. (2.20)

2.3.3 Norms and metrics

Trace distance. Trace distance is a measure of distance between quantum states by the
trace norm of the difference, i.e.

T (ρ, σ) :=
1

2
‖ρ− σ‖tr =

1

2
Tr[
√

(ρ− σ)2] = max
04M4I

Tr[M(ρ− σ)]. (2.21)

Operationally, the trace distance is the maximum statistical distance between distributions
generated by a single POVM applied to each individual state.

Fidelity. Fidelity is a measure of closeness between two quantum states. For two pure
states |φ〉 and |ψ〉, the fidelity is defined as

F (|φ〉, |ψ〉) := |〈φ|ψ〉|. (2.22)

More generally, the fidelity of two mixed state is defined as

F (ρ, σ) := max
|ρ〉,|σ〉

F (|ρ〉, |σ〉), (2.23)

where |ρ〉, |σ〉 are taken over purifications of ρ and σ respectively. It can be proven that

F (ρ, σ) = Tr[
√√

ρσ
√
ρ]. (2.24)

Fidelity is not a metric on the space of quantum states; in fact, F (ρ, σ) = 1 if and only
if ρ = σ. However it relates very nicely to the trace distance:

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√

1− F 2(ρ, σ). (2.25)

14

2.4 Universal gate sets

Throughout this section, we work in the pure quantum system picture, i.e. we only consider
pure quantum states, unitary evolutions and projective measurements. Furthermore, we
assume that the quantum system we work on is the system of n qubits for a certain integer
n. The underlying Hilbert space is then (C2)⊗k ∼= C2k .

Although all unitaries are physically realizable in principle, for computational purposes
there are unitaries that are easy to implement and ones that are difficult to implement.

Gates. We consider the implemetation of a unitary in the circuit model, i.e. we try to
implement a unitary by composing a finite sequence of basic unitaries we call gates. The
sequence of gates is called a quantum circuit and the length of the sequence is called the
size of the quantum circuit. The set of gates we consider as the basic building blocks are
called a gate set.

Examples of quantum gates. Usually, we restrict quantum gates to be unitary operations
acting only on a constant number of qubits. This is a natural restriction to the current
quantum architecture in that one can only hope to accurately manipulate a constant number
of qubits in unit time. Here we give some common example of quantum gates:

• Pauli gates: the single qubit gates

X :=

(
0 1

1 0

)
,Y :=

(
0 −i
i 0

)
,Z :=

(
1 0

0 −1

)
(2.26)

form the single qubit Pauli group P = {±1,±i} × {I,X,Y,Z}. More generally,
the Pauli group on n qubits Pn is defined by Pn = P⊗n, and its generators can be
chosen to be X and Z gates on each individual qubit.

• Clifford gates: the Hadamard gate H, phase gate S and controlled-not gate CNOT

are defined as follows:

H :=
1√
2

(
1 1

1 −1

)
, S :=

(
1 0

0 i

)
,CNOT :=

1

1

1

1

. (2.27)

These gates acting on all qubits (CNOT on all pairs of qubits) generate the Clifford

15

group Cn. It is the normalizer of the Pauli group Pn in U(2n), i.e.

Cn := {U ∈ U(2n)|UPnU † = Pn}. (2.28)

• Toffoli gate: The Toffoli gate is a gate on three qubits:

TOFFOLI :=

1

1

1

1

1

1

1

1

(2.29)

• T gate: The T gate is a single qubit gate

T :=

(
1 0

0 exp{iπ/4}

)
. (2.30)

Universal gate set. Since the set of all unitaries on C2k forms a continuous Lie group, it
is not possible that all unitaries be generated as finite sequences drawn from a finite gate
set. Instead, we define a gate set to be universal if the group of unitaries generated by a
gate set is a dense subgroup of SU(2k). Solovay-Kitaev theorem shows that the length of
the sequence for approximating an arbitrary unitary to ε precision scales polylogrithmically
with respect to 1/ε. It also follows that all universal gate sets are equivalent in the sense
that any circuit in one gate set can be approximated using another gate set with at most
polynomial overhead.

The following are two examples of universal gate sets :

• {H, S,CNOT,T}. The gates H, S and CNOT generate the Clifford groupand the
famous Gottesman-Knill theorem [41] states that such a Clifford circuit can be simu-
lated in polynomial time classically. The T gate introduces non-Cliffordness into the
gate set and they together generate a dense subgroup of SU(2n).

• {X,CNOT,TOFFOLI,H}. The gates X,CNOT and TOFFOLI form a universal
gate set for classical reversible computation, in that it always maps one computa-
tional basis state onto another, and all permutations of computational basis states

16

can be implemented using X,CNOT and TOFFOLI, potentially with help of ancilla
qubits. Together with the Hadamard gate H, this gate set generates a dense subgroup
of SO(2n). Although not universal in the most general sense, this gate set is univer-
sal in that there is an efficient way of converting a polynomial-sized quantum circuit
into one consisting of only X,CNOT,TOFFOLI and H, such that the outcome dis-
tribution is arbitrarily well approximated.

17

CHAPTER 3

Resilience of quantum hash against classical
leakage

In this chapter, we investigate the differences between classical and quantum hash functions
in the setting of the side-channel attack.

Cryptographic hash functions are fundamental primitives widely used in practice. For
such a function f : {0, 1}n → {0, 1}m, it is nearly impossible for an adversary to produce
the hash f(x) without knowing the secret message x ∈ {0, 1}n. Unfortunately, all hash
functions are vulnerable under the side-channel attack, which is a grave concern for infor-
mation security in practice. This is because typically m � n and an adversary needs only
m bits of information to be able to forge the hash.

In sharp contrast, we show that when quantum states are used, the leakage allowed can
be almost the entire secret. More precisely, we call a function that maps n bits tom qubits a
quantum cryptographic hash function if the maximum fidelity between two distinct hashes
is negligible in n. We show that for any k = n − ω(log n), all quantum cryptographic
hash functions remain cryptographically secure when leaking k bits of information. By
the quantum fingerprinting constructions of Buhrman et al. [15], for all m = ω(log n),
there exist such quantum cryptographic hash functions. We also show that one only needs
ω(log2 n) qubits to verify a quantum cryptographic hash, rather than the entire classical
information needed to generate one.

Our result also shows that to approximately produce a small amount of quantum side
information on a classical secret, it may require almost the full information of the secret.
This large gap represents a significant barrier for proving quantum security of classical-
proof extractors.

18

3.1 Introduction

3.1.1 The problem and the motivation

Cryptographic hash functions are a fundamental primitive used widely in today’s crypto-
graphic systems. They are considered “workhorses of modern cryptography”.1 For sim-
plicity, we focus our discussions on keyless (cryptographic) hash functions, each of which
is an efficiently computable function h from some message spaceM to some digest space

T [42, 43, 44]. Ideally, we want the hash function to have the following properties. First,
the digest should be much shorter than the message. Depending on applications, the follow-
ing security properties are desirable [44]. (1) Collision resistant: It is computationally in-
feasible to find any “collision”, i.e., two distinct messages x and x′, such that h(x) = h(x′).
(2) Preimage Resistance: It is computationally infeasible to invert h. (3) Second Preimage

Resistance: Given any message x, it should be computationally infeasible to find x′ 6= x

with h(x′) = h(x).
Prominent examples of widely used cryptographic hash functions include SHA-256 and

SHA-512, part of the SHA-2 algorithms that were designed by NSA and are US Federal
Standards. These algorithms are used in UNIX and LINUX for secure password hashing, in
Bitcoin for proof-of-work. As a motivating example, we consider how proof-of-work can
be carried out through a hash. Suppose that Alice receives a trove of valuable documents
x ∈ {0, 1}n, and Bob claims that he was the person producing and sending it. To prove
his claim, he sends Alice a tag t ∈ {0, 1}m, which supposedly is the result of applying a
cryptographic hash function h : {0, 1}n → {0, 1}m on x. Alice simply checks if t = h(x).
Accept if yes, reject otherwise. By the collision resistance property, it is nearly impossible
that Bob can produce h(x) without knowing x.

In practice, there may be information leakage of the message over time due to infor-
mation transmission, adversarial attacks, etc. Therefore, it is rather desirable if the hash
function is resilient against information leakage. We ask: how many bits ` about the mes-
sage x can be leaked before the adversary is able to forge the tag h(x) easily?

Cleary, ` ≤ m, since if the tag h(x) itself is known to the adversary, he does not need
to know more about x to pass the verification. This is rather disappointing, since m is
typically much smaller than n. We then ask: what if a quantum tag is used instead? If the
leakage is quantum, by the same reasoning, m remains a trivial and rather low upper-bound
on `. This leads us to our central question: Can a quantum hash function be much more

resilient to classical leakage?

1Bob Schneier, https://www.schneier.com/essays/archives/2004/08/
cryptanalysis_of_md5.html.

19

https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html
https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html

3.1.2 Quantum cryptographic hash functions

By a “quantum hash function,” we simply mean a classical-to-quantum encoding φ :

{0, 1}n → C2m that maps x ∈ {0, 1}n to a pure m-qubit state |φx〉. In a seminal pa-
per, Buhrman et al. [15] introduced the notion of quantum fingerprinting. In their most
general form, a quantum fingerprinting is the following.

Definition 3.1 (Generalized Quantum Fingerprinting (Buhrman et al. [15])). A function

φ : {0, 1}n → C2m is a (n,m, δ) (generalized) quantum fingerprinting where

δ := max
x,x′:x 6=x′

|〈φx|φx′〉| .

We use the convention that φ := |φ〉〈φ| represent the projector for the pure state |φ〉.
If one replaces the predicate h(x) = h(x′) by the fidelity F (φx, φx′) = |〈φx|φx′〉|, one
sees that δ precisely quantifies the extent of collision resistance. For concreteness, we
define what we mean by quantum cryptographic hash function as follows. For a function
δn ∈ (0, 1), we say δn is negligible in n if δn ≤ 1/nc for all c > 0 and all sufficiently large
n.

Definition 3.2 (Quantum cryptographic hash function). A (n,m, δ)-quantum fingerprinting

φ is called a quantum cryptographic hash function if δ = negl(n).

We note that while classical cryptographic hash functions necessarily rely on compu-
tational assumptions for security, their quantum counterparts can achieve the three secu-
rity properties (1-3) information-theoretically. We now proceed to formulate our leakage
problem precisely. We consider average-case security and model classical side-channel in-
formation using a joint distribution of random variables XY called the side information

state, ηXY :=
∑

x,y px,y|x〉〈x| ⊗ |y〉〈y| on {0, 1}n × {0, 1}n′ . Here X represents the input
message to be hashed and is uniformly distributed, and Y represents the side information.
The largest probability of correctly guessing x conditioned on y is pg := pg(X|Y)η :=∑

y maxx px,y. The conditional min-entropy is Hmin(X|Y)η := − log pg(X|Y)η. We quan-
tify the amount of leakage by k := n−Hmin(X|Y)η.

The adversary is given the Y sub-system and creates a classical-quantum- (cq-) state
ρXE , called the forgery state, through local quantum operations mapping the classical side
information Y to the quantum side information E. The verification scheme for φ is the
following measurement on the joint state XE: V :=

∑
x |x〉〈x| ⊗ φx. The probability of

the forgery state to pass the verification scheme is then es := Tr(V ρ). Given the leakage
`, the optimal passing probability of a forgery state is denoted by e∗s(`) as a function of the

20

leakage `. In this setting, it is clear that e∗s(n) = 1, since a party knowing the entire secret
message can pass the test with probability 1. We can now define security precisely.

Definition 3.3 (Resilience against classical leakage). A (n,m, δ)-quantum cryptographic

hash function φ is said to be σ-resilient against ` bits of classical leakage if for all forgery

state ρ obtained from ` bits of side information, the probability of passing the verification

scheme e∗s(`) ≤ σ. If no σ is specified, it is assumed that σ = negl(n).

3.1.3 Main result

We show that quantum cryptographic hash functions can be extremely resilient to classical
leakage. Our main theorem is informally stated below.

Theorem 3.1 (Main Theorem; Theorem 3.4). For all n and k = n − ω(log n), all quan-

tum cryptographic hash functions acting on n bits are resilient against k bits of classical

leakage.

Buhrman et al. [15] showed that for all n and δ ∈ (0, 1), there exists a (n,m, δ) quantum
fingerprinting for m = log n + O(log 1/δ) for which explicit constructions can be derived
from [45]. We thus have the following corollary.

Corollary 3.1. For all n, k = n−ω(log n), andm = ω(log n), there exist efficient quantum

cryptographic hash functions resilient to leaking k bits of information.

One drawback of the verification scheme is that the verifier has to get access to full
information about the original message X in order to perform the verification. In some
cases, this would be a heavy burden on the verifier. One natural question to ask is that if
it is possible to develop a lightweight verification scheme where the verifier does not need
to read the whole message. More formally, let the verifier now receive k qubits of advice

state and m bits of the forgery state provided by the adversary. An (n, k,m) verification
scheme V would then be a joint measurement on the advice state together with the forgery
state. This generalizes the original verification where k = n and V =

∑
x |x〉〈x| ⊗ φx.

Out next result shows that by increasing the hash a little bit we can dramatically reduce
the size of the system needed by the verifier:

Theorem 3.2 (Theorem 3.5, informally stated). For all n, fix k = m = ω(log2 n), ` ≤
n − ω(log n). There exists a verification scheme V acting on k + m qubits, together with

an ensemble of k-qubit states {ρx} such that

21

Soundness: No adversary with less than ` bits of classical side information can pass the

test with non-negligible probability, i.e.,

sup
Y :n−Hmin(X|Y)σ≤`

sup
{σY }

EXY Tr[V (ρX ⊗ σY)] ≤ negl(n). (3.1)

Completeness: Anyone knowing full information of the secret message x can pass the test

with probability 1, i.e.,

∀x,Tr[V (ρx ⊗ ρx)] = 1. (3.2)

Arunachalam et al. [46] showed that Ω(n) copies of a quantum cryptographic hash
based on linear codes is necessary to recover the original n-bit classical message, regard-
less of the length of the hash itself. Our result shows the complementary aspect that only
ω(log n) copies are sufficient to ensure that the prover holds the classical message.

Our central technical result is the following. Recall that pg := 2`−n is the optimal
guessing probability of the message conditioned on the `-bit side information.

Lemma 3.1 (Lemma 3.2, informally stated). For any (n,m, δ) quantum fingerprinting φ

and any leakage of ` classical bits, the probability of the forgery state passing the verifica-

tion scheme satisfies

es ≤ pg + δ.

This implies that

O(pg + δ2) ≤ e∗s ≤ pg + δ, (3.3)

by considering the cheating strategy of guessing x first and then applying φ. Consequently,
when δ = negl(n), the above inequality means that e∗s is negligible if and only if pg is
negligible.

Since ` = n − O(log n) is the threshold for pg(`) to be non-negligible, the bound
Eq. (3.3) show that for quantum cryptographic hash functions, the leakage resilience can
approach the maximum of n−O(log n) bits.

One counterpart of this result is shown in [46], saying that Ω(n) copies of quantum
fingerprints would be necessary for an adversary to recover the original message with non-
negligible probability. Thus, the quantum cryptographic hash functions based on finger-
printing have the following property: The hash itself is efficiently computable, but it is
information-theoretically resilient to recovery of the message from the hash and to recov-
ery of the hash from partial information of the message.

22

3.1.4 Implications on quantum-proof randomness extraction

Our result reveals some stark contrast between quantum and classical side information.
This difference shows the difficulty of establishing the quantum security of classical-proof
extractors. Roughly speaking, a randomness extractor is a deterministic algorithm which
turns weakly random sources into near uniform [47, 48, 49]. These are fundamental objects
with a wide range of applications in computational complexity, cryptography, and other
areas [50, 51, 52, 53, 54]. In particular, they accomplished the important tasks of privacy
amplification [55, 50, 56], by decoupling the correlation between the output and the side
information.

A major open problem in randomness extraction is whether every classical-proof ran-
domness extractor for k min-entropy sources is secure against quantum adversaries with a
comparable amount but quantum side information. Loss of parameter is already shown to
be inevitable in [57], but possibilities still remain in the case where the ranges of parameters
are relevant to most typical applications.

If all quantum side information can be constructed from a comparable amount of clas-
sical side information, we would have resolved this major problem positively. Our result
shows that this approach would necessarily fail. For details, see Section 3.5.

Theorem 3.3 (Theorem 3.7, informally stated). There exists a family of classical-quantum

states with almost maximal conditional min-entropy, yet arbitrarily far in distance from any

quantum state generated from local operations on some classical distribution with constant

conditional min-entropy.

3.1.5 Sketch of proofs

We approach the Seperation Lemma (Lemma 3.2) by first considering the following prob-
lem. Suppose that one has access to the Y part of a joint distribution ηXY and is able to
apply a quantum channel on Y . Their goal is to generate a certain desired cq-state ρXE .
Fix the state ρXE and consider the set of joint distributions that can be used to generate
ρXE . The infimum of guessing probabilities among the set, called the conversion param-

eter, has a nice representation that can be lower bounded. Put into the context of hashing
verification, an adversary trying to pass the verification test is essentially trying to forge
the message-hash cq-state. This cannot be done if the adversary starts from a piece of side
information, from which the probability of guessing the message correctly is below the
conversion parameter. This indicates that a certain amount of classical information must
have already been leaked to the adversary.

23

In the end, the proof reduces to estimating the operator norm of
∑

i Ti, where Ti’s are
projections to the fingerprint states, thus pairwise almost orthogonal. Cotlar-Stein Lemma
gives us the desired bound.

3.2 Preliminaries

Let us start from a brief recap of classical information theory. For a distribution p over a
finite set X , we define the support of it to be

Supp(p) := {x ∈ X |p(x) > 0}. (3.4)

The Shannon entropy of p, denoted H(p), quantifies the amount of information con-
tained in one sample of p:

H(p) :=
∑

x∈Supp(p)

−p(x) log(p(x)). (3.5)

The Rényi entropy is a parametrized family of Shannon entropy:

Hα(p) :=
1

1− α log

 ∑

x∈Supp(p)

p(x)α

 , α ∈ R+ \ {1}. (3.6)

The Shannon entropy serves as a special case of the Rényi entropy as the limit for α → 1.
For a fixed distribution, the Rényi entropies are monotonically decreasing with respect to
α. We have the max-entropy at α = 0: Hmax(p) := log |Supp(p)| and the min-entropy

when α approaches infinity: Hmin(p) := − log maxx p(x). For a random variable X ∼ p,
we write H(X) := H(p).

For joint distributions p ∼ X × Y , joint entropies can be defined similarly. The con-
ditional Rényi entropies quantify the amount of information X ∈ X could provide given
that Y ∈ Y has already been known, where XY is a joint sample from the distribution p.
Denote pY the marginal distribution of p on Y . The conditional Rényi entropy is defined as

Hα(X|Y)p :=
∑

y∈Supp(pY)

pY (y)Hα(X|Y = y) = Ey∼pY [Hα(X|Y = y)]. (3.7)

24

3.2.1 Quantum conditional min-entropy

The min-entropy of a random variable X is defined as the negative logarithm of the proba-
bility of the most probable outcome. Operationally, this probability denotes the maximum
probability that a party can guess the value of X without any prior knowledge despite its
distribution.

Generalized to joint distributions, the conditional min-entropy of a random variable
conditioned on another random variable Y denotes the negative logarithm of the maximum
expected probability of successfully guessing the value of X , upon a (possibly) correlated
message Y is revealed.

For a classical-quantum state ρXE =
∑

x∈X |x〉〈x| ⊗ ρx, there are no longer properly
defined conditional distributions conditioned on a “value” of E. Instead, we adopt the
operational meaning of guessing probabiltiy. Given a quantum message E, one is asked to
make the best guess of the message X . The most general thing such a party can perform is
a POVM {Mx}x∈X . The probability of successfully guessing X is then

p =
∑

x∈X

Tr[ρxMx]. (3.8)

Taking the maximum over all possible POVMs, we define the guessing probability of
X conditioned on a quantum system E to be

pg(X|E)ρ := max
Mx<0;

∑
xMx=I

∑

x

Tr[ρxMx]. (3.9)

The conditional min-entropy for classical-quantum states are then defined as

Hmin(X|E)ρ := − log pg(X|E)ρ. (3.10)

Applying duality results in semidefinite programming, there is a nice formulation of the
guessing probability:

pg(X|E)ρ = min
σ:σ<ρx,∀x

Tr[σ], (3.11)

i.e. the guessing probability is the minimum trace of any PSD operator which is a common

roof of all subnormalized states {ρx}x∈X .

25

3.3 The Separation Lemma

3.3.1 Conversion parameters and the Separation Lemma

Given a cq-state ρXE :=
∑

x |x〉〈x| ⊗ ρx, we are now interested in determining the least
amount of classical correlation, measured by the conversion parameter, that one needs in
order to generate ρ by applying a quantum channel on the side information.

Definition 3.4 (Conversion Parameter). Let ρXE ∈ S≤(X ⊗ E) be a cq-state. The conver-
sion parameter of X conditioned on E is defined as

p↓(X|E)ρ := inf
ηXY ,C
I⊗C(η)=ρ

pg(X|Y)η. (3.12)

By monotonicity of guessing probability under quantum channels acting on the side
information, we have p↓(X|E)ρ ≥ pg(X|E)ρ.

The definitions above would be less interesting if we do not allow the existence of an
extra error term ε for the following reason. For a state ρ with the form

ρXE =
∑

x

qx|x〉〈x| ⊗ |ψx〉〈ψx|, (3.13)

where |ψx〉 for each x are distinct, the only classical side information to generate ρ loss-
lessly would be the classical message itself; but if we allow the generated state to be ε-close
to the desired state ρ, we may be able to approximate ρ using classical information with
significantly lower guessing probability.

Definition 3.5 (Smooth Conversion Parameter). Let ε ≥ 0 and ρXE ∈ S=(X ⊗ E). Then

the ε-smoothed conversion parameter of X conditioned on E is defined as

pε↓(X|E)ρ := inf
ηXY ,C

‖I⊗C(η)−ρ‖tr≤ε

pg(X|Y)η. (3.14)

One might suspect that, with a reasonable error tolerance, an arbitrary cq-state could
be approximately generated from a classical joint distribution with similar guessing prob-
ability. The Separation Lemma, however, proves the opposite. When the quantum side
information has a particular form, even approximating the state with a constant error re-
quires almost the entire classical message in the beginning.

26

Lemma 3.2 (Separation Lemma). For all δ > 0, ε ≥ 0 and state

ρXE =
∑

qx|x〉〈x| ⊗ |ψx〉〈ψx|

with maximum overlap
δ = max

x,y:x 6=y
|〈ψx|ψy〉|,

we have

1− ε/2 ≤ (1− δ)pε↓(X|E)ρ + δ, (3.15)

or equivalently,

pε↓(X|E)ρ ≥ 1− ε

2(1− δ) . (3.16)

3.3.2 Characterizing the conversion parameter

The starting point of proving Lemma 3.2 is a better understanding of the smoothed con-
version parameter pε↓(X|E)ρ for given parameter ε. Recall that for guessing probability
pg(X|E)ρ, we have

pg(X|E)ρ = min
σ:∀x,σ<ρx

Tr[σ] (3.17)

by SDP duality of quantum guessing probability. Similarly, we can obtain a rather nice
formulation of the (smoothed) conversion parameter using the following lemma:

Lemma 3.3. Let ε ≥ 0 and ρXE =
∑

x |x〉〈x| ⊗ ρx ∈ S=(X ⊗ E), then

pε↓(X|E)ρ = min
pS ,ρ̂S∑

x ‖
∑
x∈S pS ρ̂S−ρx‖tr≤ε

∑

S

pS, (3.18)

where S ranges over all nonempty subsets of X .

Before proceeding to the proof of the lemma, we want to first narrow down the set of
classical side information we need to consider in this context. The next lemma shows that
it suffices to consider a special subclass of joint distributions we call conditionally uniform.

Lemma 3.4. Let ηXY =
∑

xy pxy|x〉〈x| ⊗ |y〉〈y| be a classical-classical- (cc-) state. Then

there exists a cc-state η′XS ∈ S=(X ⊗ (2X \ {∅})) with the following three properties:

1. pg(X|Y)η = pg(X|S)η′;

2. There exists a classical channel CS→Y such that (I ⊗ C)(η′) = η;

27

3. η′ is conditionally uniform: that is, the conditional distribution of X conditioned on

S is the uniform distribution US , i.e.

Pr[X|S = s]η′ =
1

|s|δX∈s. (3.19)

Lemma 3.4 indicates that conditionally uniform distributions are universal in the sense
that all joint distributions can be generated from a conditionally uniform distribution with
the same guessing probability, by only applying a channel on the side informaiton. For the
purpose of determining the (smoothed) conversion parameter of a state ρXE , we can then
without loss of generality assume that the state is being generated from a conditionally uni-
form distribution. This greatly simplifies the problem of determining conversion parame-
ters, and leads to a nice representation of conversion parameters as stated in Lemma 3.3.

Proof. We provide a constructive proof. For sake of simplicity we will use classical prob-
ability notations, i.e. ηXY will be identified as the classical joint distribution pXY .

All subset of X form a directed acyclic graph under containment relations, therefore
we can recursively define

pS(y) = min
x∈S

p(x, y)−
∑

S(S′
pS′(y) (3.20)

for all nonempty S ⊆ X . Let p̂S =
∑

y pS(y) and CS = Supp(pS(y)). We claim that the
distribution

p′(x, S) = p̂Sδx∈S, (3.21)

together with the channel
C(y|S) = pS(y)/p̂S (3.22)

satisfies our requirements for η′.
First we need to show that p′XS is indeed a distribution, and C is indeed a classical

channel. It suffices to show that pS(y) ≥ 0 for all S and y.
To prove this, we apply induction on size of the set to prove two things:

• pS(y) ≥ 0 for all S and y;

• For all S1 and S2 where no one contains the other, we have CS1 ∩ CS2 = ∅.
The base case is when |S|, |S1|, |S2| ≥ |X |. Apparently we have S = S1 = S2 = X , so the
second statement is true. For the first one, we have by construction

pX (y) = min
x
p(x, y) ≥ 0. (3.23)

28

Let’s move on to the induction step. Assume now that for all S1, S2 where

• |S1|, |S2| > k

• S1, S2 (S1 ∪ S2

we have pS(y) ≥ 0 for all y and CS1 ∩ CS2 = ∅. Then for a given y and a subset S
with |S| = k, the collection of subsets {S ′|y ∈ Supp(S ′), S (S ′} must form a chain
S ′1 (S ′2 (· · · (S ′m under containment relations. Then

pS(y) = min
x∈S

p(x, y)−
∑

S(S′
pS′(y) (3.24)

= min
x∈S

p(x, y)−
m∑

i=1

pS′i(y) (3.25)

= min
x∈S

p(x, y)−
(

min
x∈S′1

p(x, y)−
m∑

i=2

pS′i(y)

)
−

m∑

i=2

pS′i(y) (3.26)

= min
x∈S

p(x, y)−min
x∈S′1

p(x, y) (3.27)

≥ 0. (3.28)

Also, for S1, S2 not contained in each other and with size ≥ k, we have

pS1(y) = min
x∈S1

p(x, y)−
∑

S1(S′
pS′(x, y) (3.29)

=

(
min
x∈S1

p(x, y)− min
x∈S1∪S2

p(x, y)

)
−

∑

S1⊆S′,S2 6⊆S′
pS′(y) (3.30)

≤ min
x∈S1

p(x, y)− min
x∈S1∪S2

p(x, y) (3.31)

and similarly
pS2(y) ≤ min

x∈S2

p(x, y)− min
x∈S1∪S2

p(x, y) (3.32)

using the induction hypothesis pS(y) ≥ 0 for all |S| ≥ k. As

min
x∈S1∪S2

p(x, y) = min{min
x∈S1

p(x, y),min
x∈S2

p(x, y)}, (3.33)

we know that either pS1(y) = 0 or pS2(y) = 0, which results in that y /∈ CS1 ∩CS2 . As this
holds for an arbitrary y, we must have CS1 ∩ CS2 = ∅. This completes the induction step.

We then proceed to prove that p′ andC satisfies the three properties listed in Lemma 3.4.
Note that p′ is conditionally uniform by construction, so it suffices to show just the first two
properties.

29

1. To see property 1 of Lemma 3.4, note that the guessing probability of p and p′ are re-
spectively pg(X|Y)p =

∑
y maxx p(x, y) and pg(X|S)p′ =

∑
S p̂S =

∑
y

∑
S pS(y).

It then suffices to prove that
∑

S pS(y) = maxx p(x, y) holds for all y.

One direction is easy to prove: for all x we have

∑

S

pS(y) ≥
∑

{x}⊆S

pS(y) (3.34)

= p(x, y)−
∑

{x}(S

pS(y) +
∑

{x}(S

pS(y) (3.35)

= p(x, y), (3.36)

thus
∑

S pS(y) ≥ maxx p(x, y). To prove the other direction, let’s look more in detail
into what we have proved so far. For every subset S, we have shown that the sum∑

S(S′ pS′(y) can be reduced to summation on a chain. Without loss of generality,
this chain can be completed to maximal length such that the difference of cardinalities
of adjacent terms on this chain is 1, as additional terms would not change the final
result. As ∑

S

pS(y) =
∑

∅(S

pS(y), (3.37)

there exists a chain ∅ (S1 (· · · (S|X | = X such that |Si| = i and

∑

S

pS(y) =

|X |∑

i=1

pSi(y). (3.38)

As |S1| = 1, there must exists x∗ such that S1 = {x∗}. Then

∑

S

pS(y) =

|X |∑

i=1

pSi(y) = p(x∗, y) ≤ max
x

p(x, y), (3.39)

which proves the opposite direction of property 1.

2. For property 2, denote p′′XY the joint distribution we get from applying C onto p′. We

30

have

p′′(x, y) =
∑

S

p′(x, S)C(y|S) (3.40)

=
∑

S

δx∈S p̂S · pS(y)/p̂S (3.41)

=
∑

x∈S

pS(y) (3.42)

= p{x}(y) +
∑

{x}(S

pS(y) (3.43)

= p(x, y)−
∑

{x}(S

pS(y) +
∑

{x}(S

pS(y) (3.44)

= p(x, y). (3.45)

This proves property 2, which finishes the entire proof of Lemma 3.4.

With Lemma 3.4, we are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Recall the definition of ε-smoothed conversion parameter:

pε↓(X|E)ρ = inf
ηXY ,CY→E

‖(I⊗C)(η)−ρ‖≤ε

pg(X|Y)η. (3.46)

For every η, by Lemma 3.4, there exists a conditionally uniform joint distribution η′XS =∑
S pS(

∑
x∈S |x〉〈x|)⊗|S〉〈S|with the same guessing probability as η, and an ε-approximation

of ρ can also be generated from η′ via local channel on the side information. Note that the
guessing probability of η′ is

∑
S pS . A general quantum channel acting on the side infor-

mation can be characterized as follows without loss of generality:

C ′2X→E(·) =
∑

S

〈S| · |S〉ρ̂S. (3.47)

Then we have
(I ⊗ C ′)(η′) =

∑

S

(
∑

x∈S

|x〉〈x|)⊗ pS ρ̂S, (3.48)

which leads to
‖(I ⊗ C ′)(η′)− ρ‖tr =

∑

x

‖
∑

x∈S

pS ρ̂S − ρx‖tr. (3.49)

31

Lemma 3.3 is then proved by observing that a minimum can always be achieved since the
set of conditionally uniform distributions over X × (2X \ {∅}) is compact.

3.3.3 Proof of the Separation Lemma

With a nice formulation of the conversion parameter, we are now ready to proceed to the
proof of the Separation Lemma (Lemma 3.2). In the proof of Lemma 3.2, we will make
use of Cotlar-Stein Lemma, which gives a good estimate of the operator norm of the sum
of near-orthogonal operators. We will attach the proof of the Cotlar-Stein Lemma in Ap-
pendix A for completeness.

Lemma 3.5 (Cotlar-Stein Lemma). For a set of unit vectors {|ψ1〉, |ψ2〉, · · · , |ψn〉} with

maximum fidelity maxi,j:i 6=j |〈ψi|ψj〉| ≤ δ, we have

λmax

(
n∑

i=1

|ψi〉〈ψi|
)
≤ 1 + (n− 1)δ. (3.50)

Proof of Lemma 3.2. By Lemma 3.3, we take a conditionally uniform distribution

ηXZ =
∑

S

pS(
∑

x∈S

|x〉〈x|)⊗ |S〉〈S|, (3.51)

together with an ensemble of quantum states {ρ̂S}S 6=∅, such that

pg(X|Z)η =
∑

S

pS = pε↓(X|E)ρ, (3.52)

∆ := ‖ρ− σ‖tr ≤ ε, (3.53)

where σ :=
∑

S pS(
∑

x∈S |x〉〈x|)⊗ ρ̂S .
We bound ∆ from the left by noticing that

∆ = ‖ρ− σ‖tr (3.54)

= max
‖V ‖∞≤1

Tr[V (ρ− σ)⊗ pS ρ̂S)] (3.55)

= 2 max
‖V ‖∞≤1,V <0

Tr[V (ρ− σ)]. (3.56)

(3.57)

Take V ∗ :=
∑

x |x〉〈x| ⊗ |ψx〉〈ψx|. One can easily check that Tr[V ∗ρ] = 1 and thus

32

Tr[V ∗σ] ≥ 1− ε/2. It then suffices to upper bound Tr[V ∗σ].

Tr[V ∗σ] =
∑

x

〈ψx|
∑

x∈S

pS ρ̂S|ψx〉 (3.58)

=
∑

S

pSTr[ρ̂S
∑

x∈S

|ψx〉〈ψx|] (3.59)

≤
∑

S

pSλmax(
∑

x∈S

|ψx〉〈ψx|). (3.60)

(3.61)

By the Cotlar-Stein Lemma, we have

λmax(
∑

x∈S

|ψx〉〈ψx|) ≤ 1 + (|S| − 1)δ. (3.62)

Combining this with pε↓(X|E)ρ =
∑

S pS and 1 =
∑

S pS|S|,

Tr[V ∗σ] ≤
∑

S

pSλmax

(∑

x∈S

|ψx〉〈ψx|
)

(3.63)

≤
∑

S

pS (1 + (|S| − 1)δ) (3.64)

= pε↓(X|E)ρ(1− δ) + δ. (3.65)

Lemma 3.2 is proven by combining Tr[V ∗σ] ≥ 1 − ε/2 with Tr[V ∗σ] ≤ pε↓(X|E)ρ(1 −
δ) + δ.

3.4 Resilience of quantum hashing against classical leak-
age

Now let us consider the setting of quantum hashing. For the sake of simplicity, we as-
sume that the classical message X is uniformly distributed over {0, 1}n, and all parties are
computationally unbounded.

Suppose now that a prover A, either adversarial or honest, upon obtaining some side
information Y of X , wants to show that he has full access to the classical message X . To
show this, he needs to pass a test held by a verifier V who has full access to X . One way
to do this is to send V an m-bit hash M , and V will accept or reject based on the classical
messages X and M .

33

If the adversary wants to cheat as best as he can, the optimal strategy would be applying
a deterministic mapping on the side information Y ; similarly, if the verifier wants to dis-
tinguish adversarial parties from honest ones as best as he can, the optimal strategy would
also be a deterministic algorithm. Therefore we can safely assume that both A and V are
deterministic mappings.

Definition 3.6. A mapping h : {0, 1}n → {0, 1}m is called σ-resilient against k bits of

information leakage if for all classical side information Y of X such that Hmin(X|Y) ≥
n− k and for all mappings f : Y → {0, 1}m, we have

Pr
XY

[f(Y) = h(X)] ≤ σ. (3.66)

Here Y is defined as the support of Y . If σ is not specified then it is assumed that σ =

negl(n).

Ideally, one would want a hash function to be both short and resilient against much
information leakage. Unfortunately these two requirements cannot be achieved at the same
time. If an m-bit verification scheme V is resilient against k bits of classical leakage,
one must have m = k + ω(log n). This can be seen as follows: suppose otherwise that
m = k +O(log n). Then an adversarial prover, upon getting the first k bits of the message
an honest party would send to the verifier, guesses the remaining O(log n) bits uniformly
at random. Such a prover would then have an inverse polynomial probability of passing the
test.

Now suppose that both the verifier and the prover have access to quantum power, while
the information leakage still remains classical. Now the prover can send an m-qubit quan-
tum system ρ to the verifier, and the verifier would perform a joint measurement on both
X and ρ to determine whether to accept or not. Denote the state space of X, Y and M
respectively by X ,Y andM.

Definition 3.7 (Resilience of quantum fingerprinting against classical information leakage).
An (n,m, δ) quantum fingerprinting φ is called σ-resilient against k bits of classical infor-

mation leakage if for all classical side information Y of X such that Hmin(X|Y) ≥ n− k
and all quantum channel CY→M, we have

Tr[V · (I ⊗ C)(ηXY)] ≤ σ, (3.67)

where

ηXY =
∑

x,y

Tr[X = x, Y = y]|x〉〈x| ⊗ |y〉〈y|, (3.68)

34

and

V =
∑

x

|x〉〈x| ⊗ φx. (3.69)

When σ is not specified, it is assumed that σ = negl(n).

In the case where the inputs of can be assumed classical, it is safe to replace a general
channel by mapping each classical information to a state. Therefore, C can be specified by

C(·) =
∑

y

〈y| · |y〉ρy. (3.70)

Then the passing probability Tr[V · (I ⊗ C)(ρXY)] can be written as EXY [Tr[φXρY]].
In sharp contrast to the classical case, the Separation Lemma implies that there exists

a (n,m, δ) quantum fingerprinting resilient against k bits of classical information leakage,
where k is much larger than m. In fact we have the following theorem.

Theorem 3.4. For all n,m, and k = n − ω(log n), all quantum cryptographic hash func-

tions mapping n bits to m qubits are resilient against k bits of classical information leak-

age. Furthermore, such functions always exist, and can be constructed efficiently when

m = ω(log n).

Before proving this theorem, note that this theorem is tight on both sides. If k =

n − O(log n), then an adversary knowing the side information can guess correctly the
actual value of X with probability inverse polynomial, thus the success probability would
also be non-negligible; on the other hand, if m = O(log n), there is certainly no (n,m)-
cryptographic hash functions. We claim that an adversary with zero side information can
still pass the test with non-negligible probability in this case.

To see this, let’s start from the completeness condition. This is saying that there exist
ρx’s such that EX [Tr[MXρX]] = 1. This can only happen when each term is 1, which in
turn implies that Tr[Mx] ≥ 1 for all x. Now suppose the adversary has no side information
about the classical message, so the best he can do is to prepare a state ρ. The success
probability will then be

EXTr[MXρ] ≤ λmax(EX [MX]), (3.71)

which can be approached when ρ0 = |ψ0〉〈ψ0|, |ψ0〉 being the eigenvector corresponding
to the largest eigenvalue of EX [MX]. The operator norm can be lower bounded from the
trace by

λmax(EX [MX]) ≥ Tr[EX [MX]

dimM ≥ 1

poly(n)
, (3.72)

resulting in a non-negligible passing probability without any side information.

35

Now let us proceed to the proof of Theorem 3.4.

Proof of Theorem 3.4. Take an (n,m, δ) quantum fingerprinting φ, where δ will be speci-
fied later. We know that such a finderprinting exists for m = O(log n + 2 log 1

δ
), therefore

there exists δ = negl(n) such that φ is a quantum cryptographic hash. The verification
scheme associated to this quantum fingerprinting is then

V =
∑

x

|x〉〈x| ⊗ φx. (3.73)

Upon getting k = n− l bits of classical information, the guessing probability of the adver-
sary to the classical message is upper bounded by 2−l. Following the proof of the Separa-
tion Lemma, the probability that the adversary pass the test es is upper bounded by 2−l + δ,
which is still a negligible function of n given l = ω(log n).

3.4.1 A lightweighted verification scheme resilient against classical leak-
age

Our verification scheme is maximally resilient to classical leakage of information. How-
ever, it is still not good enough because the verifier may need to get full access to the whole
message. One may ask if it is possible that the verifier only use a small amount of infor-
mation from the message to perform the verification scheme, yet the verification is still
resilient to classical leakage.

To formulate this idea, we generalize the definition of a verification scheme V = (C,M)

with three parameters (n, k,m) played by two players A and B as follows:

1. A joint distributionXY , where the marginal distribution ofX ∈ {0, 1}n is uniformly
random, is generated by nature.

2. A gets the k-qubit quantum state ρX = C(|X〉〈X|) and B gets the side-information
string Y .

3. B generates an m-qubit quantum state µY and sends it to A.

4. A performs a joint measurement M on the state ρX ⊗ µY . The game is successful if
and only if the measurement accepts. The overall success probability is thus

eV = EXY [M(ρX ⊗ µY)]. (3.74)

36

For a given `, define the optimal success probability over all classical leakage Y where
H(X|Y) ≥ ` to be e∗V (`). We can then define the resilience formally:

Definition 3.8. A (n, k,m)-verification scheme V = (C,M) is called σ-resilient to ` bits

of classical leakage if we have

• Completeness: e∗V (n) = 1, and

• Soundness: e∗V (`) ≤ σ.

In the case where σ is not specified, it is assumed that σ is negligible.

Interestingly, one can use the power of quantum side information to reduce the size of
the advice state.

Theorem 3.5. For all n, there exists a (n, k,m)-verification scheme V which is resilient to

` bits of classical leakage whenever

k = m = ω(log2 n), n− ` = ω(log n). (3.75)

Proof. Proof by construction. Take t,m′ =
√
k = ω(n). We first fix a (n,m′)-quantum

cryptographic hash function φ. for a given message x, the advice state would just be t-fold
tensor product of φx’s, namely

ρx := φ⊗tx . (3.76)

Upon receiving the hash µY consisting of t parts ofm′-qubit states, the verifier performs
SWAP test between all t pairs of φX and each of the qubit states, accepts if all SWAP tests
pass and rejects otherwise. Note that an honest party having full access to X would be able
to produce φ⊗tX perfectly, thus successes with probability 1.

To see that this scheme is resilient against classical leakage, assume now that the state
received by the verifier is a forgery state µY . Regarding both ρX and µY as t-partite states,
we use ρTX , µ

T
Y , SWAP T to denote the marginal state on subsystems T ⊆ [t] and the swap

between the two subsystems respectively. The measurement corresponding to one copy of

37

SWAP test is I+SWAP
2

, thus the success probability will be

eV =EXY
[

Tr[(I + SWAP)⊗t(ρX ⊗ µY)]

2t

]
(3.77)

=
1

2t

∑

T∈[t]

EXY

[
Tr[
⊗

i∈T

SWAP i(ρX ⊗ µY)]

]
(3.78)

=
1

2t

∑

T∈[t]

EXY
[
Tr[SWAP T (ρTX ⊗ µTY)]

]
(3.79)

=
1

2t

∑

T∈[t]

EXY [Tr[ρTX · µTY]]. (3.80)

(3.81)

Here the third line comes by tracing out irrelevant states, and the fourth line comes from
the identity Tr[SWAP (ρ⊗σ)] = Tr[ρσ]. For each term Tr[ρTX ·µTY] with nonempty T and
any i ∈ T , we have

Tr[(ρTX · µTY)] ≤ Tr[(φi ⊗ IT\{i})µTY] = Tr[φxρ
i
Y]. (3.82)

This gives us

eV ≤
1

2t
+ max

i
EXY Tr[ρiY φX]. (3.83)

By Theorem 3.4, forall Y such that Hmin(X|Y) ≥ `, i ∈ [t], EXY Tr[ρiY φX] = negl(n)

given that φ is a quantum cryptographic hash function. e∗V (`) = negl(n) then comes from
that t = ω(log n).

3.5 Implications of the Separation Lemma on quantum-
proof extractors

Let us now recall the setting of seeded extractor. A seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m takes a weak random source X as well as a much shorter, uniform and
independent seed Y and outputs a nearly uniform distribution. Rigorously we have the
following definition.

Definition 3.9 (Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called an

(k, ε)-extractor if for all random source X such that − log pg(X) ≥ k, we have

‖Um − Ext(X ⊗ Ud)‖ ≤ ε. (3.84)

38

When used in the setting of privacy amplification, one would consider the case where
there is a leakage of the random source. The output of the extractor then need to not only
be close to uniform, but also be almost independent of the side information. Depending on
whether the leakage is classical or quantum, we have the following definitions for classical-

proof and quanutm-proof extractors respectively.

Definition 3.10 (Classical-proof Extractor). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m
is called an (k, ε)-classical-proof extractor if for all random source X with classical side

information Y such that − log pg(X|Y) ≥ k, we have

‖Um ⊗ Y − Ext(X ⊗ Ud)Y ‖ ≤ ε. (3.85)

Definition 3.11 (Quantum-proof Extractor). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m
is called an (k, ε)-quantum-proof extractor if for every classical-quantum state ρXE such

that − log pg(X|E) ≥ k, we have

‖Um ⊗ ρE − (Ext⊗ I)(ρXE)‖tr ≤ ε. (3.86)

Intensive research on all three kinds of extractors has been done over the years. Fortu-
nately, the following theorem says that a good extractor is essnetially a good classical-proof
extractor, up to very little parameter loss:

Theorem 3.6 ([58]). Any (k, ε)-extractor is a (k + log 1/ε, 2ε)-classical-proof extractor.

One long-standing open problem, then, is whether a classical-proof extractor is es-
sentially a quantum-proof extractor with roughly the same parameter. Currently the best
result is that a (k, ε)-classical proof extractor is a (k + log 2/ε, O(2m/2

√
ε))-extractor. For

nonexponential blow-up of parameters, Gavinsky et al. [57] showed that there exists a
(k − Θ(n), ε)-classical extractor which is not secure against O(log n) qubits of quantum
side information. Proving a result without exponential blowup on the parameter in the
practical range, however, is a very challenging problem.

The Separation Lemma here suggests that such a result without a drastic blowing up on
the error parameter may not exist. To see this, we need to define some sets first.

Definition 3.12. For every k, define the following sets:

• C(k) is the set of all cq-states ρXE that can be generated from a classical random

source XY with

− log max
y
pg(X|Y = y) ≥ k (3.87)

via a channel acting only on the Y part;

39

• CC(k) is the set of all cq-states ρXE that can be generated from a classical random

source XY with

− log pg(X|Y) ≥ k (3.88)

via a channel acting only on the Y part;

• CQ(k) is the set of all cq-states ρXE such that − log pg(X|E)ρ ≥ k.

Clearly we have C(k) ⊆ CC(k) ⊆ CQ(k). To see the importance of these sets,
we introduce alternative, though equivalent definitions of extractors, classical-proof and
quantum-proof extractors:

Definition 3.13 (Alternative definition for extractors). A functionExt : {0, 1}n×{0, 1}d →
{0, 1}m is called a (k, ε)-extractor (classical-proof extractor, quantum-proof extractor), if

for all cq-states ρXE ∈ C(k) (CC(k), CQ(k)) with X ∈ {0, 1}n we have

‖Um ⊗ ρE − (Ext⊗ I)(ρXE)‖tr ≤ ε. (3.89)

The proof of Theorem 3.6 essentially makes use of the fact that every state ρXE in
CC(k + log 1/ε) is ε-close to the set C(k), and thus a (k, ε)-extractor, when applied to ρ,
would introduce at most 2ε error from the state Um⊗ρE due to monoticity of trace distance.
If one could obtain similar results between CQ(k) and CC(k), then we could easily prove
that a classical-proof extractor is secret quantum-proof.

This turns out to not be the case according to Separation Lemma. Recall our definition
of ε-smooth conversion parameter pε↓(X|E)ρ, which measures the least guessing probability
of a classical distribution we need in order to generate the desired state ρ, i.e.

d(ρ, CC(k)) ≤ ε⇔ − log pε↓(X|E)ρ ≥ k. (3.90)

Theorem 3.7. For any k, there exists a cq-state ρXE where X ∈ {0, 1}k(1+o(1)) such that

ρ ∈ CQ(k) while d(ρ, CC(2)) ≥ 0.98.

Proof. Fix δ = 0.02 and ε = 0.98. By the Johnson-Lindenstrauss Lemma, we have a
cq-state

ρXE = 2−n
∑

x∈{0,1}n
|x〉〈x| ⊗ |ψx〉〈ψx| ∈ S=(X ⊗ E) (3.91)

such that log dim E = O(log n) and maxx 6=x′ |〈ψx|ψx′〉|. For given k, there exists n =

k(1 + o(1)) such that n−O(log n) ≥ k. With that n, we have

− log pg(X|E)ρ ≥ k ⇒ ρ ∈ CQ(k) (3.92)

40

as well as
− log pε↓(X|E)ρ ≤ 2. (3.93)

By the Separation Lemma, we have

pε↓(X|E)ρ ≥ 1− δ − ε/2⇒ d(ρ, CC(2)) ≥ 0.98. (3.94)

The Separation Lemma suggests that an arbitrary classical extractor may not be quantum-
proof, i.e. the sets CQ(k) and CC(k) are spatially separated. Nevertheless, one may still
prove that a classical extractor is quantum-proof, but in order to do that, one might need to
use additional properties of the extractor, other than that it can extract randomness from all
states in CC(k).

3.6 Related Works

Buhrman et al. [15] introduced the notion and provided the constructions of quantum fin-
gerprinting. The application they focused on was for message identification. For our cryp-
tographic applications, we are primarily interested in instances of a negligible fidelity. They
did not discuss properties of quantum fingerprinting in an adversarial context like ours. It
was observed and explored by [59] that quantum fingerprinting satisfies the security prop-
erties of cryptographic hash functions.

Side-channel attack is a major paradigm studied in the classical information security
and cryptography community due to its high level of threat in practice [60, 61, 62, 63,
64, 65]. Side-channel key recovery attack has in particular drawn much attention [60].
However, these classical works address problems that necessarily require computational
assumptions and many other works focus on the hardware aspects. To the best of our
knowledge, this work is the first studying information theoretical security of quantum cryp-
tography against classical side-channel attack.

41

CHAPTER 4

Limitations of monotone quantum simulation

In this chapter and Chapter 5, we turn our focus to classical simulation of quantum com-
putation. In particular, we focus on the problem of strong (amplitude-wise) simulation of
quantum circuits, and identify a subclass of simulators we call monotone. This subclass
encompasses almost all prominent simulation techniques. We prove an unconditional (i.e.
without relying on any complexity-theoretic assumptions) and explicit (n − 2)(2n−3 − 1)

lower bound on the running time of simulators within this subclass. Assuming the Strong
Exponential Time Hypothesis (SETH), we further remark that a universal simulator com-
puting any amplitude to precision 2−n/2 must take at least 2n−o(n) time. We then compare
strong simulators to existing SAT solvers, and identify the time-complexity below which
a strong simulator would improve on state-of-the-art general SAT solving. Finally, we
investigate Clifford+T quantum circuits with a small number of T -gates. Using the sparsi-
fication lemma, we identify time complexity lower bounds in terms of T -gate count below
which a strong simulator would improve on state-of-the-art 3-SAT solving.

4.1 Introduction

4.1.1 Overview of classical simulation

Simulating quantum mechanics with classical computational power has been a long-standing
problem for nearly two decades [1]. However, only very recently have people been able to
accurately control quatum systems in a regime where classical simulation starts to appear
challenging. Recently announced quantum processors with intermediate size and reason-
able fidelity parameters [66, 67] are pushing the boundary of what classical simulations
can handle. With this push, a series of works [68, 69, 70, 71, 72, 73, 74, 75, 38] have
been dedicated to keep up with the recent improvement of quantum processors. However,
were quantum computation to be genuinely more powerful than classical computation (i.e.

42

BPP (BQP), we classical beings cannot hope to win this race in the long term. How-
ever, there are still many good reasons to try:

Verification of NISQ devices. As quantum processors are entering into the NISQ era [10],
it is important that noise in the quantum devices be fully characterized. Classical sim-
ulation of such devices may prove invaluable in verifying that the quantum devices is
behaving as expected, and identifying the type and possible physical origin of noise.
Only then can physical devices resulting in the noise be improved, corresponding
error correcting schemes be designed, and the overall fidelity of quantum processors
be further increased.

Testing quantum algorithms and heuristics. With fully fault-tolerant quantum comput-
ing still out of reach, several quantum heuristics have been proposed in order to make
use of errorneus quantum devices to solve real-life problems [4, 76, 77]. With the
presence of insuppressable error, it is often very hard to obtain provable performance
guarantees for these heuristics. One way to practically test the performance of these
heuristics is via classical simulation [78]. Classical simulation can help determin-
ing promising candidates from the heuristics, and help guide the design of near-term
quantum devices to better incorporate with such algorithms.

Identifying quantum supremacy. One fundamental question for the quantum computa-
tion community is to identify the boundary beyond which quantum computers could
achieve something genuinely unattainable classically. This landmark, first proposed
in [79] as quantum supremacy, represents the point beyond which behaviors of quan-
tum mechanics would be practically infeasible to verify, and we would have to trust
quantum mechanics instead of our limited ability to simulate it classically. In order
to obtain more faith in this leap, it is vital that we classical beings push the boundary
as far as possible. Only then will quantum supremacy be meaningful.

4.1.2 Strong and weak simulations

One major division within the landscape of quantum simulators is between strong and weak
simulation. Strong quantum simulators compute the amplitude of a particular outcome,
whereas weak simulators only sample from the output distribution of a quantum circuit.

Despite the implication of hardness from their names, we emphasize that no reduction
from one type of simulation to the other exist either way where only polynomial overhead
incurs. On the one hand, given an instance of strong simulation, the amplitude to be cal-
culated could be exponentially small, thus it takes exponentially large number of trials of

43

weak simulation to be able to estimate such small quantity with a reasonable precision. On
the other hand, weak simulation of an input circuit can be done by evaluating a sequence of
probability values via strong simulation over a series of augmented circuits. However, since
the augmented circuits have different sizes from the size of the input circuit for weak simu-
lation, such reduction does not immediately establish a relationship between comlexities of
strong and weak simulations with the same input size. Had the complexity of strong sim-
ulation be exponential, such reduction would result in an exponential algorithm for weak
simulation with a bigger exponent.

If one only wishes to design a classical computational device that tries to immitate the
behavior of a quantum device, then weak simulation would suffice the purpose. However,
strong simulation plays an important, and in some cases indispendible role for the following
reasons:

• As a testbed of quantum computational devices, the purpose of simulation is often to
extract or verify certain quantative properties of the quantum system being simulated.
In many cases, such properties can be calculated with great accuracy if strong simula-
tion is available, while estimating them from random outcomes of a weak simulation
might require an prohibitive number of trials.

Let us take quantum supremacy experiments as an example. Since the proposal of
quantum supremacy, theorists and experimentalists have been designing and imple-
menting experiments, in order to demonstrate that currently existing or near-term
quantum devices have the ability to achieve some task that is practically intractable
for classical computing power to achieve.

With no error correction scheme for current quantum architectures at hand, predom-
inant quantum supremacy proposals focus on supposedly hard sampling problems.
It is widely believed that certain quantum circuits can produce classical distributions
that are hard to sample from a classical computer. However, this does not directly
lead to a verification scheme for quantum devices claiming to have sampled from
such a distribution. One proposal by Aaronson and Chen [75] relates the hardness of
quantum circuit sampling to a verification scheme they call Heavy Output Genera-
tion:

Problem 4.1 (Problem 1, [80]). Given as input a random quantum circuit C (drawn

from some suitable ensemble), generate output strings x1, ..., xk, at least a 2/3 frac-

tion of which have greater than the median probability in the output distribution of

C.

44

To test whether a quantum device acheives quantum supremacy, one just run it re-
peatedly to get (supposedly) random classical outcomes x1, · · · , xk, and apply strong
simulation to test whether ≥ 2/3 of the outcomes have probability greater than the
median. It is concievable that classical devices cannot pass this test without pro-
hibitive overhead. However, such scheme requires accurate compotation of the prob-
abilities {pi}1≤i≤k, and would not be possible without a strong simulator at hand.

• Even when weak simulation is the ultimate goal, there are not yet many weak simu-
lation techniques that is intrinsically different from a strong simulation routine. Al-
though there are stabilizer-based weak simulators that works well with dominantly
Clifford circuits [41, 81, 82, 83], for most general quantum circuits, it is not known
how weak simulation can be done significantly faster than using strong simulation as
a subrountine.

Strong simulation, on the other hand, has a natural representation in the context
of matrix multiplication, or tensor network contraction in general [84]. Although
exponentially-sized intermediate matrices or tensors might be inevitable, the prob-
lem of pushing the boundary for large matrix multiplication has long been a central
topic in classical architecture design. Such accelaration for matrix multiplication has
been native to most classical computational devices, especially GPUs and supercom-
puters. Those accelarations can be conviniently harnessed in order for a larger scale
strong simulation.

4.1.3 Limitation of monotone simulation methods

Although strong simulation is of great importance, here we give compelling evidence that
it is fundamentally unscalable. This is hardly surprising: it is well-known that perfectly
accurate strong simulation is #P -hard. However, we give explicit, and in some contexts
unconditional evidence for the hardness of strong simulation.

We identify a large class of simulation techniques we call monotone. This class includes
most of the known techniques for general quantum circuit simulation. We place uncondi-
tional lower bounds on simulators within this class. In particular, we show that there exists
a simple quantum circuit which will take any such simulator at least (n−2)(2n−3−1) time
to simulate. Following the proof, we also find a O(n2 · 2n) algorithm for computing the
permanent function with a monotone arithmetic circuit, which is not known before.

45

4.2 Preliminaries

Tensor Networks. A tensor is simply a multidimensional array. The number of dimensions
of the array is called the rank of the tensor. The simplest examples of tensors are vectors and
matrices, which are rank-1 and rank-2 tensors, respectively. Tensors are usually expressed
graphically, see Figure 4.1. For simplicity, we assume that each index runs over {0, 1}.

= ivvi

(a) A vector is a 1-tensor.

,
= i

MMij
j

(b) A matrix is a 2-tensor.

,
=Ti1i2...in T

i1
i2

in

(c) An n-tensor.

Figure 4.1: Examples of tensors.

A tensor network is a collection of tensors together with identifications among the open
indices of the tensors. Throughout the paper, we restrict ourselves to closed tensor net-
works. These are tensor networks representing a scalar obtained by summing over all
identified open indices. See Figure 4.2 for an example. The shape of a tensor network is
the information given by the ranks of each tensor, together with the identifications of the
open indices. In particular, it is the information which tells you how to contract the tensor
network, but not what the values of the tensors are.

=

β
A

∑
β,γ,δ∈{0,1}

AβBβγCβDβγEγδδ

C D

B

E
γ

δ

Figure 4.2: Example of a (closed) tensor network.

Monotone Arithmetic Circuits. In a monotone arithmetic circuit, each gate has fan-in
degree 2 and is either a +-gate or a ×-gate. Furthermore, we assume that there is a single
output node, see Figure 4.3 for an example.
Quantum Circuits. In a quantum circuit C, each gate has the same in- and out-degree, and
represents a unitary matrix. The width of a quantum circuit w(C), is the number of input
nodes to the circuit. A special case of a quantum circuit is a classical reversible circuit,
which will be introduced in Subsection 5.1.1.

46

x1 x2 x3

×

+

+

Figure 4.3: Example of a monotone arithmetic circuit computing the polynomial (x1 +
2x2)x3.

4.3 Monotone method

When proving a lower bound, the model is at least as important as the bound itself. If
the model is too restrictive, then the lower bound loses its worth. In this section, we in-
troduce the monotone method, which describes a strong quantum simulation methodology.
Although the model is restrictive enough to permit unconditional lower bounds, it also
encompasses the majority of existing strong simulation techniques.

Before we define a monotone method rigorously, we describe it informally as a game.
The game is played between a referee and you, and the aim of the game is to simulate a
quantum circuit. First, the referee hands you a picture of a quantum circuit, but with some
information missing. He has erased all of the nonzero coefficients in the gates appearing,
replacing each with a different variable. You are allowed to spend as long as you like
preparing your strategy; you may even use infinite time to do so.

When you are finally ready, you must commit to a monotone arithmetic circuit, with
inputs given by the variables. Your monotone arithmetic circuit must simulate the origi-
nal circuit with perfect accuracy no matter what values the variables take, and the time-
complexity of your task is measured only by the length of your arithmetic circuit. With this
game in mind, we set out to define a monotone method.

4.3.1 The skeleton of a tensor network

In the game we describe, the partial information about the circuit is very specific. Infor-
mally, we call the picture that the referee gives us the skeleton of the quantum circuit. More
generally, we can consider the quantum circuit as a closed tensor network, and define an
associated skeleton.

47

Skeleton of a Tensor Network. The skeleton of a tensor network is the hypergraph asso-
ciated to the tensor network along with the locations of the nonzero entries in each tensor.
Furthermore, we call the skeleton closed if the hypergraph is closed.

We further define the (closed) skeleton of a quantum circuit as the skeleton of its asso-
ciated tensor network. To any closed skeleton, we can define an associated polynomial.

Associated Polynomial. Given a closed skeleton S, we can associate to it a polynomial
p(S) in the following way. First, replace each nonzero entry in each tensor appearing with
a different variable. We can then regard S as a closed tensor network. Define p(S) to be
the polynomial obtained from contracting S.

See Figure 4.4 for an example of a quantum circuit, its skeleton, and its associated poly-
nomial. Note that p(S) is independent of the sequence of contractions and has nonnegative
coefficients. To any quantum circuit C, we can also define the polynomial p(C) to be the
polynomial associated to its skeleton.

∗
0

∗
0

∗
0

∗
0

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ 0
0 ∗
0 ∗
∗ 0

,

x1

0

x11

0

x10

0

x20

0

x2 x3

x4 x5

x6 x7

x8 x9

x16 x17

x18 x19

x12 0
0 x13

0 x14

x15 0

Figure 4.4: The left-hand diagram represents the skeleton associated to the quantum circuit
〈0|H1H2 ⊗ CX1→2 ⊗ H1 ⊗ I2|0〉, where the subscripts indicate the wires on which the
gates act. According to the variables introduced in the right-hand diagram, its associated
polynomial is p(x1, . . . , x20) = x1x10x11x20(x2x6x12x16 + x3x8x14x18).

4.3.2 Monotone methods

We will now define a monotone method. For any arithmetic circuit A, let p(A) be its
associated polynomial.

Monotone Method. A monotone method M is a mapping from closed skeletons to mono-

tone arithmetic circuits that preserves the associated polynomials: for all closed skeletons
S, p(M(S)) = p(S). We define the monotone complexity of the skeleton S under the map-
ping M as |M(S)|. We can further extend a monotone method to a mapping on quantum
circuits through their associated skeletons.

In particular, M itself can take exponential time to compute or even be non-uniform,
allowing for uncomputable strategies. The complexity is measured only in terms of the

48

complexity of the resulting arithmetic circuit. See Figure 4.5 for a high-level description
relating strong quantum simulators to monotone methods.

Quantum
Circuits

Closed

Networks
Closed

Skeletons
Associated
Polynomial

Monotone
Arithmetic
Circuits

Tensor
Network
Values

〈0|U |0〉

Strong
Quantum
Simulation

Monotone
Method

Tensor

Figure 4.5: The relation between strong quantum simulation and monotone methods. A
monotone method is any map from closed skeletons to monotone arithmetic circuits that
makes the diagram commute.

To demonstrate the applicability of this model, we give a list of prominent strong sim-
ulation techniques, and show that they are all monotone methods.

1. Feynman’s path integral [85] is the simplest example of a monotone method applied
to general tensor network contraction, involving only additions and multiplications
of all coefficients appearing in the circuit.

2. Markov and Shi [84] proposed a tensor network contraction algorithm consisting of
two phases. In the first phase, a nearly optimal ordering of contractions is decided.
In the second phase, the tensor network is contracted accordingly. Given a general
tensor network, finding the optimal ordering of contractions is an NP-hard problem;
although there may be a contraction ordering with low complexity, finding it may
take exponential time. One could carefully choose the tradeoff between these two
phases so that the total complexity is split evenly.

In the second phase, contracting the tensors one by one is realized by a monotone
arithmetic circuit. In particular, the algorithm itself is a monotone method. The
complexity of the second phase alone is counted in the complexity of our model.

3. Several works [72, 71, 38, 73] preprocess the quantum circuit in a way that simplifies
the tensor network, and ultimately results in a lower complexity during contraction.
Specifically, they reduce the complexity of contracting diagonal gates. This pre-
processing is oblivious to the nonzero coefficients of the gates. After deciding an
order of contractions, the resulting procedure is realized by a monotone arithmetic

49

circuit with respect to the non-zero entries. The preprocessing step is illustrated in
Figure 4.6.

=diag(V)
V

(a) Simplification of a one-qubit diago-
nal gate.

diag(M) = M

(b) Simplification of a two-qubit diago-
nal gate.

CZ
1 1
1 −1H T

=

H

1 e
iπ
4

(c) Naively contracting the left tensor network takes 32+8 = 40 multiplication
steps. Since the CZ and T gates are both diagonal, we can simplify the tensor
network. The network on the right reduces the number of multiplications to
8 + 4 = 12.

Figure 4.6: Preprocessing a tensor network to reduce the cost of contraction.

4. In [75], Aaronson and Chen propose a family of algorithms suited to different time-
space trade-offs. These algorithms interpolate between naively evaluating the circuit,
and implementing a variation of Savitch’s theorem. Given a quantum circuit, one can
decide the optimal algorithm according to the space and time constraints. Whichever
algorithm you choose, the resulting process can be described by a monotone arith-
metic circuit.

There are many more techniques that qualify as monotone methods, such as clever
sparse matrix multiplication. However, there are also many tricks which do not fit into
the monotone method. There exist tensor contractions which are non-monotone, first aug-
menting the network to introduce time-saving cancellations. Most famous among these is
Strassen’s fast matrix multiplication algorithm [86]. Recognizing that a circuit belongs to
a restricted family such as Clifford or matchgate circuits can give exponential time savings
[41, 87, 81, 88, 89]. Even recognizing small circuit identities may save on complexity [71],
although this problem may be hard in general [90]. Finally, monotone methods are oblivi-
ous to the unitarity of the gates, which might be taken advantage of. However, for general

50

quantum circuit simulation, we emphasize that the majority of savings are performed by
tricks that fit within the monotone method framework.

4.4 An unconditional lower bound for monotone methods

We will now prove an unconditional lower bound on the time-complexity of a strong quan-
tum simulator that uses a monotone method. The proof concept is simple: we will re-
purpose the simulator to evaluate the permanent polynomial with constant overhead. Us-
ing existing unconditional lower bounds on monotone circuit evaluation of the permanent
polynomial [91], we can impose unconditional lower bounds on the time-complexity of the
simulator.

Permanent. The permanent of an n × n matrix M is given by
∑

σ∈Sn
∏n

i=1Mi,σ(i). The
permanent polynomial for n× n matrices, given by replacing each entry Mij of the matrix
M by a distinct variable xij , is then

p(x11, . . . , xnn) :=
∑

σ∈Sn

n∏

i=1

xi,σ(i). (4.1)

We note that there have been several works relating hard polynomial problems to the hard-
ness of quantum circuits [92, 93], and the permanent polynomial is a particularly prominent
example [94, 95].

Theorem 4.1 (Jerrum & Snir). A monotone arithmetic circuit computing the permanent

polynomial for n× n matrices must have size at least n(2n−1 − 1).

First, we construct a hard family of skeletons, parametrized by n. This family is hard in
the sense that a monotone restriction of its associated polynomial computes the permanent
of an n × n matrix. We then use Theorem 4.1 to lower bound the time-complexity of any
monotone method applied to this skeleton. Finally, we find one (among many) quantum
circuits with this skeleton. We conclude the following.

Theorem 4.2. There exists a quantum circuit C of width n+ 2 and depth 3n2 + 1 such that

for any monotone method M , |M(C)| ≥ n(2n−1 − 1).

We want to re-emphasize that this lower bound is explicit and unconditional.

Proof of Theorem 4.2. Consider the skeleton S defined in the figure below.

51

n

GGG

n

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

∗
0

(a) Skeleton defined in terms of G.

n

n

b b b

b b b

(b) Gadget G used in Figure 4.7a.

[
∗ ∗
∗ ∗

]
=

ba
b

a

(c)

∗ 0
0 ∗
0 ∗
∗ 0

=

cb

a
c

b

b

a

(d)

Figure 4.7: The skeleton we use to prove Theorem 4.2. The whole circuit is depicted in
(a), and the gadget G is depicted in (b). The nonzero locations of the red component are
shown in (c) and the nonzero locations of the blue component are shown in (d). To obtain
a quantum circuit, we can replace the red components with Hadamard gates and the blue
components with CNOT gates.

The polynomial p(S) defined by the skeleton in Figure 4.7 is not the permanent poly-
nomial. However, we can replace the variables of p(S) with a combination of xij , 0, and
1 so that it becomes the permanent of the matrix (xij). Thus, if there were a monotone
arithmetic circuit computing p(S), then a potentially smaller circuit would compute the
permanent polynomial. The replacements are shown in Figure 4.8. The pictorial proof that
the resulting circuit computes the permanent polynomial can be found in Figure 4.9.

52

X

〈0||0〉

X

X

X

〈0|

〈0|

〈0|

〈0|

〈0|

|0〉

|0〉

|0〉

|0〉

|0〉

E

n

GnG2G1

n

(a) Tensor network Tperm.

C b

b

C b

bD

C b

b

n

n

A A A

Bi,1

Bi,2

Bi,n

ℓ(i−1),1

ℓ(i−1),2

ℓ(i−1),n

ℓi,1

ℓi,2

ℓi,n

ai,0 bi,1 bi,2 bi,n

ai,1 ai,2 ai,n

(b) Gadget Gi in Figure 4.7d.

1 0
0 1

0 0
1 0

=

cb
A

a
c

b

b

a ,

1 0
0 1

0 xij

0 0

=

cb
Bi,j

a

c

b

b

a ,
[
0 1
1 0

]
=

ba
X

b

a ,

[
1 1
1 1

]
=

ba
C

b

a ,
[
0 0
1 0

]
=

ba
D

b

a ,
[
1 0
1 0

]
=

ba
E

b

a

Figure 4.8: The tensor network Tperm that realizes the permanent.

53

Bi,n

Bi,2

Bi,1

AAA

n

n

b

bC

D b

bC

b

bC

ℓ(i−1),1

ℓ(i−1),2

ℓ(i−1),n

ℓi,1

ℓi,2

ℓi,n

ai,0 bi,1 bi,2 bi,n

ai,1 ai,2 ai,n

=A A A A+ +

=B B B B+ +

=C C C C+ + C+

=D D

=E E E+

=X X X+

Figure 4.9: A pictorial proof of Theorem 4.2. To contract the network in Figure 4.8, first fix
a labeling of the edges and then multiply together the corresponding tensor elements from
each tensor. Then, sum over all such labelings. Note that if any of these tensor elements
is zero, then the corresponding term in the sum is also zero. We now illustrate that there
is a one-to-one correspondence between the nonzero terms in the sum and the terms in the
n by n permanent. Namely for every permutation π ∈ Sn, the product x1,π(1) . . . xn,π(n)
appears as a nonzero term, and every other term is zero. In this figure, the wires with
thicker lines are labeled 1, while the thinner lines are labeled 0. One can check that no
other labeling contributes to the sum. To visualize this, we have listed all the nonzero
labeling combinations for the A, B, C, D, E, and X tensors.

54

4.5 Remarks and open questions

In this chapter, we proved explicit lower bounds for existing strong simulation methods.
Almost all prominent simulation methods fall into the class of monotone methods, which
only focus on the locations of non-zero entries (i.e. the skeleton of the tensor network) and
are oblivious and monotone with respect to the nonzero coefficients. We then reduce the
problem of computing the permanent using monotone arithmetic circuits to evaluating a
quantum circuit using monotone methods. Therefore, the hardness of the former implies
the hardness of the latter.

It is worth noting that probably most skeletons have large monotone complexity using
any monotone method, and our reduction to a skeleton for the permanent is just a choice.
We choose the permanent as one of the few candidates for which an unconditional mono-
tone lower bound is known. Also, the result focuses on the worst-case complexity of strong
simulation by artificially constructing hard instances that cannot be simulated efficiently.
For example, we reduce to the permanent to apply a known unconditional lower-bound to
a particular closed skeleton. While we can probably show that many closed skeletons are
hard by manipulating the proof of [91], proving average-case hardness for general strong
simulation might require a worst- to average-case reduction, similar to [93].

Also worth noting is that many hard skeletons may be realized by easy circuits. In
the proof of Theorem 4.2, the quantum circuit we construct from Figure 4.7 is Clifford,
and so it can be simulated in polynomial time classically. Probably, there are quantum
circuits which realize the same skeleton and are fundamentally hard to simulate. Monotone
methods cannot distinguish between the two: they are oblivious to certain circuit structures
altogether.

Interestingly, in the proof of Theorem 4.2, contracting the tensor Tperm from left to right
yields a monotone circuit computing the permanent in time O(n22n). To our knowledge,
this is the fastest such monotone algorithm. If restricted to monotone circuits, naive enu-
meration over all permutations takes time Ω(n!), whereas a Savitch-type trick (as in [75])
reduces the time complexity to O(4n). The fastest general algorithms computing the per-
manent are non-monotone, and run in roughlyO(n2n) time [96, 97]. It would be interesting
if our method could be modified to yield a monotone circuit matching the lower bound of
n(2n−1 − 1).

We have considered only the total time-complexity of a simulator. More generally, one
may be interested in restricting to space-efficient simulators. Along this line, there is the
Feynman path-integral which has time complexity O(2nd). More recently, Aaronson and
Chen [75] use Savitch’s Theorem to show that one can achieve an O(dn) time-complexity.

55

Does there then exist an even faster space-efficient strong simulator with time-complexity
O(d · 2n)? Can we fine-tune such a simulator to achieve a general time-space tradeoff, as
in [75]?

56

CHAPTER 5

Limitations of general strong quantum
simulations

In this chapter, we continue the topic of explicit lower bounds for strong simulation pro-
posed in Chapter 4. We investigate the time complexity of general strong simulation meth-
ods which are not necessarily monotone, by relating the problem of strong simulation to
widely believed computational assumptions. Assuming the Strong Exponential Time Hy-
pothesis, we remark that there exist simple quantum circuits for which any strong simulator
with accuracy 2n/2 must take at least 2n−o(n) time to simulate. We further compare strong
simulators to state-of-the-art SAT solvers. We identify parameter thresholds on strong sim-
ulators above which such a simulator would imply immediate gains on existing solvers.

We further address the hardness of simulation for Clifford+T circuits in terms of the
number of T gates, where we employ the sparsification lemma [98] to identify the effi-
ciency threshold below which a strong simulator would improve on state-of-the-art 3-SAT
solving. In particular, assuming the regular Exponential Time Hypothesis, we conclude
that strong simulation also takes time exponential in the T -count. Regarding strong simu-
lation of Clifford+T circuits with low T -count, a non-monotone strong simulator has been
constructed by Bravyi and Gosset [81] (and extended in [82]) with a relevant exponential
factor of 20.47N , N being the number of T -gates (also called T -count) of a given circuit.

While these bounds are concerned with algorithmic complexity rather than clever mem-
ory allocation and parallelization, they indicate that strong simulation of hundreds of qubits
is fundamentally intractable. In [81, 82], a weak simulator is proposed with a relevant expo-
nential factor of 20.23N . Although such a simulator does not offer an advantage in simulat-
ing general quantum circuits, it illustrates the advantage of weak simulation. Our evidence
for the fundamental hardness of strong simulation indicates that intrinsically different weak

simulators must be the focus in order to scale up.

57

5.1 Conditional lower bounds for strong simulators with
respect to number of qubits

Theorem 4.2 only holds for monotone simulation methods. To prove a super-polynomial
lower bound on general strong simulation, we turn to a conditional hardness argument1. In
this section we prove that 2n−o(n) is a lower bound for any strong simulator with accuracy
2−n under the Strong Exponential Time Hypothesis (SETH).

Recall that conditional hardness always takes the form: if problem A is hard then prob-
lem B is hard; although a conditional hardness proof does not deliver absolute evidence
for the hardness of B, it is protected by the hardness of A. The best choice for A is then a
problem for which we have overwhelming evidence of hardness.

One of the most studied problems in computer science is the SAT problem together
with its special cases, k-SAT for different k.

The SAT Problem. The input for SAT with size parameters n and m is a Boolean formula

φ(x1, . . . , xn) =
m∧

i=1

(
ki∨

j=1

li,j

)
li,j ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} (5.1)

where li,j are called literals and the sub-expressions Ci =
∨ki
j=1 lij are called clauses.

Without loss of generality we require that every variable has at most one occurrence in
every clause, implying ki ≤ n for 1 ≤ i ≤ m. We are interested in formulas φ with
polynomial length: m = nO(1).

Given φ, the task is to determine whether there exists an assignment xi → {0, 1} (1 ≤
i ≤ n) such that φ(x1, . . . , xn) = 1, i.e. if φ is satisfiable. For this specific task, one
can assume that each clause of the input problem is of length at least 2 since all singleton
clauses can be easily eliminated.

The k-SAT Problem. The k-SAT problem is the SAT problem with the restriction that
every instance φ has every ki at most k.

The following two questions are unresolved.

Problem 5.1. Can the 3-SAT problem be solved in time (1 + ε)npoly(m) for every ε > 0?

Algorithms have been repeatedly improved upon [99, 100, 101, 102] to reach the current

state of the art at around 1.3n time.
1Note that an unconditional proof would yield an advance in one of the hardest problems in theoretical

computer science, showing P 6= #P ; no algorithm can count the number of solutions of Boolean expressions
of size n in time nO(1).

58

Problem 5.2. Can the SAT problem be solved in time 2αnpoly(m) for some α < 1, when

m = poly(n)? The best current algorithm [103] runs in time 2n

2n/O(logm/n) .

An improved algorithm for SAT would make a tremendous impact on many areas of
computer science. This has lead to the somewhat widespread belief that reducing the time-
complexity of the SAT problem will hit a hard limit. This belief has been formalized in the
following two commonly held hypotheses.

Exponential Time Hypothesis (ETH). The answer to Problem 5.1 is no. There is an ε > 0

such that the time complexity of 3-SAT is at least (1 + ε)npoly(m).

Strong Exponential Time Hypothesis (SETH). The answer to Problem 5.2 is no. Any
algorithm deciding SAT must take at least 2n−o(n)poly(m) time.

We show that if a strong quantum simulator can reach a certain efficiency, then the
SETH would be refuted. This efficiency is quantified in terms of both the time-complexity
and accuracy of the simulator.

Theorem 5.1. Assume the SETH holds. Then a universal quantum simulator which can

approximate any output amplitude to precision 2−n/2 on a quantum circuit with poly(n)

operations must take at least 2n−o(n) time.

The proof of Theorem 5.1 uses a reduction from SAT to argue that if the simulator can
determine an amplitude up to a certain precision, then it could solve a corresponding SAT
problem. The reduction can be summarized as follows.

(i) For a SAT instance φ construct a reversible circuit C ′ = C ′φ with sub-linear space
overhead and polynomial time overhead which can compute φ(x) for an assignment
x.

(ii) Choose a basis state (e.g. |0 . . . 0〉) which counts the number of assignments satisfy-
ing φ in its amplitude when running Cφ, a quantum circuit constructed from C ′:

〈0 . . . 0|Cφ|0 . . . 0〉 =
| {x ∈ {0, 1}n | φ(x) = 1} |

2n
(5.2)

Step (i) is purely classical while step (ii) utilizes the quantum power of the simulator.
Any lower-bound on the time-complexity of SAT then implies a lower bound on the time
complexity of the simulator. Theorem 5.1 utilizes the strongest conjectured lower bounds
available for SAT to imply the sharpest conjectured lower bounds for the parameters of a
strong simulator. To push our bounds even further, we determine the threshold parameters
beyond which a simulator would improve upon the best known algorithms solving SAT.

59

Theorem 5.2. Assume there is a strong simulator that runs in time 2n

2n/o(logm/n)
. Then this

would improve on the running time of the best SAT solver.

In section 5.1.1 we address point (i). Next, in section 5.1.2, we address point (ii) and
prove Theorems 5.1 and 5.2.

5.1.1 Reversible evaluation of a SAT formula

In this section we construct a reversible circuit C ′ evaluating a given SAT formula using
sub-linear space overhead and polynomial time overhead. This problem was first efficiently
solved by Charles H. Bennett in 1989 [104]. For the sake of completeness and explicit con-
stants, we reproduce the argument here, but emphasize that our construction follows [104].
Bennett expresses the problem in the language of Turing Machines rather than circuits,2

but the proof ideas are otherwise identical.

Reversible Circuits. A reversible classical circuit consists of reversible gates. A reversible
classical gate F is simply an invertible function F : {0, 1}d → {0, 1}d, for some d. Typ-
ically d is one, two, or three. An important example of a reversible classical gate is the
Toffoli gate TOFFOLI(x, y, z) = (x, y, z ⊕ (x ∧ y)) acting on 3 bits.

Universal Gate Set. Throughout, our choice of universal gate set for reversible computa-
tion is

G = {TOFFOLI,CNOT,NOT}. (5.3)

The above choice influences the circuits for which our lower bound argument holds
up to constants. The particular gate set we have chosen has the nice property that all its
elements are self-inverse.

Tidy Computation. We say a reversible circuit C : {0, 1}n+a(n)+1 → {0, 1}n+a(n)+1 tidily

computes a function f : {0, 1}n → {0, 1} if

∀ x ∈ {0, 1}n, y ∈ {0, 1}, C(x, 0a(n), y) = (x, 0a(n), y ⊕ f(x)). (5.4)

We call the a(n) extra bits the ancilla bits. The tidiness comes from the fact that the
input and the ancilla bits are restored by the end of the computation. From the perspective
of quantum circuits, every reversible gate can be seen as a unitary transformation. By
linearity, the action of a reversible circuit C computing f in Equation (5.4) can be extended
to an action on the Hilbert space C{0,1}n:

2A uniform rather than non-uniform computational device.

60

C applied to
∑

x αx|x, 0a(n), 0〉 is
∑

x αx|x, 0a(n), f(x)〉.

Note that the ancilla bits are decoupled from the input and output registers.

Lemma 5.1 (MAIN, [104]). Suppose φ is a SAT formula with n variables and m clauses.

Then there is a circuit C ′ that tidily computes φ with

s(C ′) ≤ 8× 3dlogne+dlogme − 1, w(C ′) ≤ n+ 2(dlog ne+ dlogme). (5.5)

C1 Cm
b b bb b

∧ ∧

b

b

b

b

b

b

b

b

b

b

b

b

∧

⌈log(n)⌉

⌈log(m)⌉

Figure 5.1: SAT in-
stance φ expressed as a
binary tree.

Our proof scheme follows that in [104]. Notice that φ can
be written as a binary tree with ANDs and ORs as in Figure
5.1. Thus, we will first implement ANDs and ORs of cir-
cuits in a reversible way. We will then recursively compose
C ′ = C ′φ by exploiting the binary tree structure. In the rest
of the section, we will prove Lemma 5.1 using these steps.
To get the best constants we first define the following.

Untidy Computation. We say that a reversible circuit
C : {0, 1}n+a(n)+1 → {0, 1}n+a(n)+1 untidily computes a
function f : {0, 1}n → {0, 1} if C(x, 0, 0) = (∗, ∗, f(x))

for all x ∈ {0, 1}n.

Lemma 5.2. We can convert a circuit U that untidily computes f into a circuit that tidily

computes f . The conversion doubles the size of the circuit along with adding one extra

CNOT gate and one extra ancilla wire, as shown in Figure 5.2.

Proof. The circuit in Figure 5.2 executes UGU−1, where G is a CNOT gate acting on the
new output wire (b in the figure), and controlled by the old output (a in the figure). More
precisely,

|x, 0, 0︸︷︷︸
a

, 0︸︷︷︸
b

〉 U−→ |α, β, f(x), 0〉 G−→ |α, β, f(x), f(x)〉 U−1

−→ |x, 0, 0, f(x)〉

|x, 0, 0︸︷︷︸
a

, 1︸︷︷︸
b

〉 U−→ |α, β, f(x), 1〉 G−→ |α, β, f(x),¬f(x)〉 U−1

−→ |x, 0, 0,¬f(x)〉

Observe that the added wire carries the output, while the original output wire serves as an
ancilla.

The main building blocks of C ′ that implement binary AND and OR as reversible cir-
cuits come from the following lemma.

61

w

ss

b

U−1U

wire a

wire b

f(x)

Figure 5.2: The construction that restores the input and ancilla wires after an untidy com-
putation of f(x) and produces the output on the added wire b. Initially, the output of U was
sent to wire a.

Lemma 5.3. Suppose U1 and U2 untidily compute f1 and f2 with width at most w and sizes

s1 and s2, respectively. Then there is a circuit of width at most w+ 2 and size 2s1 + s2 + 2

that untidily computes f1 ∧ f2, and a circuit of width at most w + 2 and size 2s1 + s2 + 5

that untidily computes f1 ∨ f2.

Note that in Lemma 5.3, we could have performed tidy computations rather than untidy
computations with meager overhead. We avoid this for two reasons. First, the untidy
computation has a simpler circuit. Second, the constant factor loss will culminate in a
polynomial loss due to the iterative construction in the proof of Theorem 5.1. Thus, it is
more economical to untidily compute everything until the end, and then make the circuit
tidy by employing Lemma 5.2. The bounds are specific to the gate set G, which results in
the slight asymmetry between the AND and OR circuits.

Proof of Lemma 5.3. The reversible AND and OR of the circuits, with the appropriate sizes
and widths, are constructed explicitly below.

U1 U−1
1

b

s1 s1

w U2

b

s2

b

s2s1s1

X

b

b

U2w

b

U−1
1U1

X

X

Circuit for f1 ∧ f2 Circuit for f1 ∨ f2

Corollary 5.1. Untidily computing f1 ∧ . . . ∧ fn takes width at most w + 2dlog ne and

size at most 3dlog2 ne(s + 1)− 1, where s and w are the simultaneous size and width upper

bounds for circuits that untidily-compute the set of fi.

62

Corollary 5.2. Untidily computing f1 ∨ . . .∨ fn takes width at most w+ 2dlog ne and size

at most 3dlog2 ne(s+ 5
2
)− 5

2
.

The Reversible Circuit for φ = C1 ∧ . . . ∧ Cm. We first create circuits C1, . . . , Cm that
untidily compute clauses C1, . . . , Cm, using Corollary 5.2. From these circuits, we then
construct a reversible circuit that untidily computes their conjunction, using Corollary 5.1.
The resulting circuit will untidily compute φ with the following parameters.

Corollary 5.3. Suppose φ has n variables and m clauses. Then we can untidily compute

φ using a reversible circuit of width at most w + 2(dlog ne + dlogme) and size at most

4× 3dlog2 ne+dlog2me − 1.

Finally, the centerpiece Lemma 5.1 then follows from applying Lemma 5.2 to the untidy
circuit in Corollary 5.3.

63

5.1.2 Reducing SAT to strong simulation

n

C ′

H

H

H

H

H

H

H

H

X

The construction of
Cφ, where C ′ comes
from Section 5.4.

Given a SAT instance φ with n variables and m clauses, we
would like to construct a quantum circuit Cφ so that

ϑ := 〈0 . . . 0|Cφ|0 . . . 0〉 =
| {x ∈ {0, 1}n | φ(x) = 1} |

2n
.

(5.6)
Let C ′φ be a (classical) reversible circuit coming from

Lemma 5.1 that tidily computes φ. Then the quantum circuit
Cφ on the right satisfies Equation 5.6.

5.1.3 Relating the parameters

By comparing the parameters of φ and Cφ, we can tie the com-
plexity of the approximate strong simulation problem to the complexity of the SAT prob-
lem.

Proof of Theorem 5.1. Suppose we had a strong simulator that could approximate ϑ to
within an additive error of 2−n/2. Then running the simulator on Cφ, we would be able
to tell if φ is satisfiable or not: if ϑ < 2−n/2 then φ is not satisfiable, otherwise it is.

Let the number of qubits of Cφ be n′ = w(Cφ) and its size be s = s(Cφ). Suppose we
could run this simulator in time 2(1−c)n′sO(1) for some c > 0. Then, substituting the bounds
for w(Cφ) and s(Cφ) in Lemma 5.1, we obtain a running time of

2(1−c)(n+2 logn+2 logm)(nm)log2 3 = 2(1−c)n(mn)O(1). (5.7)

This would contradict the SETH.

Proof of Theorem 5.2. Suppose that our simulator can approximate amplitude ϑ to within
accuracy 2−n/2 and in time 2n

2n/o(logm/n)
. Then this simulator would solve the SAT problem

in time 2n+2 logn+2 logm

2n/o(logm/n)
, which is better than 2n

2n/O(logm/n) , beating the currently known best
SAT solver [103].

Note that a simple padding argument further extends Theorem 5.1 to the following.

Corollary 5.4. Assume the SETH and let 0 < α ≤ 1. Then any strong simulator with

approximation precision 2−αn/2 must take 2αn−o(n) time.

64

5.2 Conditional lower bounds in terms of T -gate count

Recent results [81, 82] have shown that a quantum circuit can be strongly simulated in time
O∗(20.47N), where N is the number of T = Z1/4-gates in an otherwise Clifford circuit3.
As Clifford+T gates form a universal gate set, this simulation method yields a substantial
speed-up on circuits that are predominantly Clifford. However, we show that such strong
simulation method would necessarily scale exponentially with respect to the number of
T -gates.

Theorem 5.3. Assuming the Exponential Time Hypothesis (ETH), there is an ε > 0 such

that any strong simulation that can determine if 〈0|C|0|〉 6= 0 of a polynomial-sized quan-

tum circuit C formed from the Clifford+T gate set with N T -gates takes time at least 2εN .

To express an explicit lower bound, we have the following theorem.

Theorem 5.4. Assume that there exists a strong simulator that, for any Clifford+T circuit

with N T -gates, can determine if 〈0|C|0〉 6= 0 in time O(22.2451×10−8N). Then this would

improve on the current state-of-the-art 3-SAT solver by achieving an O(1.3n) runtime for

m = poly(n), where n denotes the number of variables of the 3-SAT instance and m

denotes the number of clauses.

Theorem 5.3 relies on the following.

Lemma 5.4 (Corollary 2, [98]). Assuming the ETH, there exists constant a > 0 such that

any classical algorithm solving 3-SAT instances with length L takes 2aL time, where again

L is the length of the formula.

Finally, to compute explicit constants, Theorem 5.4 requires the following.

Lemma 5.5. Assume that a classical algorithm solves 3-SAT in time O(23.1432×10−7L),

where L is the length of the formula, m2 is the number of 2-clauses, m3 is the number of

3-clauses, so that m = m2 +m3 and L = 2m2 + 3m3 − 1.

Then one can create a 3-SAT solver that achieves an O(1.3n) running-time for m =

poly(n), where n denotes the number of variables of the 3-SAT instance and m denotes

the number of clauses.

The rest of the section will be arranged as follows. We first describe the sparsification
lemma, which was developed in [98] to address the type of reduction found in Lemmas 5.4

3With slight abuse of notation, we also allow the inverse of the T -gate (T † = P †T) in the gate set and
define the T -count of the circuit to be the number of T and T † gates altogether.

65

and 5.5. The necessity of the sparsification lemma comes from reducing the 3-SAT problem
to quantum circuits, as the number of T -gates in the reduced instance will depend on L,
the length of the 3-SAT instance, rather than n, the number of variables. The reduction
from 3-SAT to strong simulation of quantum circuits is described at the end of this section,
while a full proof of the sparsification lemma with explicit constants is provided in the
Appendix B.

5.2.1 The sparsification lemma

Recall that 3-SAT problems are SAT problems with the promise that each clause contains at
most 3 literals. The length L of an instance is the number of AND/OR gates in the formula,
namely L =

∑m
i=1 ki − 1. We are interested in formulae φ with polynomial length. For

3-SAT, we have L = 2m2 + 3m3 − 1 where m2 is the number of 2-clauses and m3 is the
number of 3-clauses.

Due to subsequent improvements [99, 100, 101, 102] the current state-of-the-art 3-SAT
solver takes time ≈ 1.3n (and in fact, the precise exponent is slightly worse). A classical
algorithm breaking this bound would have a huge impact on theoretical computer science.

When trying to lower bound the running time of a 3-SAT solver in terms of L and not of
n, the ETH initially seems to be of little help, as L can be as large cubic in n. The following
sparsification Lemma, however, gives the desired n to L conversion.

Lemma 5.6 (Sparsification lemma, [98]). Given any ε > 0, there is an algorithm Aε that,

on any 3-SAT instance φ with n variables, outputs a list ` = φ1, · · · , φk of 3-SAT instances

in time Oε(2
εn), satisfying:

• k ≤ Oε(2
εn);

• each formula φi has length at most c(ε)n, where c(ε) does not depend on n;

• φ is satisfiable if and only if one of the generated sub-instances are satisfiable: φ =∨l
i=1 φi.

Among the consequences of the sparsification lemma are Lemmas 5.4 and 5.5. To prove
Lemma 5.5, we must also compute the constants implicit in the sparsification lemma. These
can be found in the Appendix.

5.2.2 From 3-SAT to Clifford+T

Here we give a reduction from the 3-SAT problem to the problem of strongly simulating
quantum circuits, with the following properties.

66

(i) For a 3-SAT instance φ with length L, we construct a quantum circuit C ′φ with 2L

Toffoli gates and poly(L) NOT and CNOT gates, which can compute φ(x) for any
assignment x.

(ii) We choose a basis state (e.g. |0 . . . 0〉) which counts the number of assignments
satisfying φ in its amplitude when running Cφ, a quantum circuit constructed from
C ′φ, satisfying

〈0 . . . 0|Cφ|0 . . . 0〉 =
| {x ∈ {0, 1}n | φ(x) = 1} |

2n
. (5.8)

Lemma 5.7. Suppose φ is a SAT formula with length L. Then, in time polynomial in L, we

can construct a reversible circuit C ′ that computes φ with at most 2L Toffoli gates such that

all ancilla bits are restored to their original |0〉 state.

Before proving Lemma 5.7, we first define a specific form of reversible computation
called diagonal computation.

Diagonal Computation. We say that a reversible circuit C : {0, 1}n → {0, 1}n+a(n)+1

diagonally computes a function f : {0, 1}n → {0, 1} if for all x, C(x, 0, 0) = (x, ∗, f(x)).

Diagonal computation is a special type of untidy computation, where the inputs on the
input wires are preserved after the computation. This helps us compose diagonal com-
putation circuits in a gate-efficient manner. The name diagonal comes from the fact that
diagonal computation can be regarded as a controlled unitary of a quantum circuit, thus
being block-diagonal in its matrix form.

Lemma 5.8. Suppose U1 and U2 diagonally compute f1 and f2 with at most a1 and a2
ancilla wires and t1 and t2 Toffoli gates, respectively, over the same set of input wires.

Then there exists:

(a) a circuit with at most a1 + a2 + 2 ancilla wires and t1 + t2 Toffoli gates that diagonally

computes f1 ∧ f2,

(b) a circuit with at most a1 + a2 + 2 ancilla wires and t1 + t2 Toffoli gates that diagonally

computes f1 ∨ f2,

(c) a circuit with at most a1 ancilla wires and t1 Toffoli gates that diagonally computes

¬f1, and

(d) a circuit with at most a1 + 1 ancilla wires and 2t1 Toffoli that tidily computes f1.

67

Proof of Lemma 5.8. The reversible diagonal AND, OR and NOT of the circuits, with the
appropriate sizes and widths, are constructed explicitly below. Moreover, a circuit diago-
nally computing f1 is also untidily computing f1, and so (d) can be proven by converting
untidy circuits to tidy circuits.

(a) Circuit for f1 ∧ f2. (b) Circuit for f1 ∨ f2.
(c) Circuit for ¬f1.

Property (i) is a direct application of Lemma 5.7. For property (ii), we use the follow-
ing standard Toffoli decomposition [32].

Lemma 5.9. A Toffoli gate can be written as composition of 7 T -gates and 8 Clifford gates.

Proof of Lemma 5.9. The circuit computing a Toffoli gate with 7 T -gates and 8 Clifford
gates is explicitly constructed below in Fig. 5.4.

Figure 5.4: Explicit decomposition of the Toffoli gate into Clifford+T gates with minimum
T -count.

Combining Lemmas 5.7 and 5.9, we obtain the following.

Corollary 5.5. Given a 3-SAT formula φ with n variables and length L, one can efficiently

construct a quantum circuit Cφ consisting of only Clifford gates and at most 14L T -gates,

so that

〈0|Cφ|0〉 =
|{x ∈ {0, 1}n|φ(x) = 1}|

2n
. (5.9)

68

Consequently, strong simulation of such a circuit up to accuracy 2−n/2 is as hard as deter-

mining whether φ is satisfiable.

Proof of Theorem 5.3. Assume that Theorem 5.3 is false. Then for any ε > 0 we have a
quantum circuit simulator that runs in time O(2

ε
14
N), where N is the number of T -gates

and the size of the circuit is O(N). If we apply the reduction in Corollary 5.5, then we can
solve the 3-SAT problem in time O(2εL), contradicting Lemma 5.4.

Proof of Theorem 5.4. According to Corollary 5.5 a 3-SAT instance of length L reduces
to the strong simulation problem of a linear size quantum circuit with Clifford gates and
at most N(= 14L) T -gates. If there were a solution to the simulation problem with run-
ning time O(22.2451×10−8N), then any 3-SAT instance of length L could be solved in time
O(22.2451×10−8×14L) = O(23.1432×10−7L), contradicting Lemma 5.5.

5.3 Conclusion

5.3.1 Summary

For general strong simulators, we showed that they can be harnessed to solve the #SAT
problem if the simulation method meets a certain accuracy. The #SAT problem is not only
#P-hard; it is widely believed that solving #SAT takes about 2n time under the Strong
Exponential Time Hypothesis. This allows us to prove an explicit conditional lower bound
on all strong simulation methods with high accuracy.

Recently, there has been focus on Clifford+T quantum circuit simulation, and more
generally on other magic-state inspired simulation methods [82]. It is then natural to ask
whether the running time could scale sub-exponentially in terms of T -gate count. We
demonstrated that such a simulator would violate the Exponential Time Hypothesis. More-
over, we showed an explicit exponential lower bound which, if violated, would result in
an improvement on state-of-the-art 3-SAT solving. Unfortunately, the overhead required to
adapt strong simulation to 3-SAT solving greatly diminishes this constant. It would be of
great practical interest to find a larger lower-bound for this exponent.

Furthermore, we would expect that similar arguments could be used to prove lower
bounds on stabilizer rank, which is the quantity relevant to the running time of simulators
in [81, 82]. However, we cannot immediately conclude exponential lower bounds on stabi-
lizer ranks as computing the decomposition itself (rather than its exponential scaling) may
be the bottleneck for strong simulation. Furthermore, as stabilizer rank lower bounds do

69

not have obvious far-reaching complexity theoretic implications, it is reasonable to hope
for unconditional restrictions [82].

Our bounds focus on general quantum circuits, showing that there exist hard instances
with reasonable size that cannot be evaluated efficiently using current simulation methods.
However, such reductions might not be applicable if the circuit is drawn from a restricted
class (for example, circuits consisting of only Clifford gates). Proving that a certain re-
stricted class of quantum circuits admits a hard instance requires additional effort [105].
We also suspect that most quantum circuits are hard to simulate in a stronger sense, but we
leave this consideration to future work.

5.3.2 Open problems

Larger Additive Gaps. Theorem 5.1 addresses the hardness of strong simulation up to
accuracyO(2−n), but it could be that strong simulation up to accuracyO(2−n/2) would also
take 2n−o(n) time. Approximation up to accuracy 2−n/2 is particularly interesting because
2−n/2 is the typical value of an amplitude over a randomly chosen basis vector. A more
general question is determining, for some a < b, the complexity of deciding whether an
amplitude is at most a or at least b. An avenue for proving such results may come from the
hardness of approximating the #SAT problem.

Lower Bounds on Weak Simulators. Can we prove explicit lower bounds for weak simu-
lators? It is well known that there can be no efficient weak simulator unless PH collapses
to the third level. However, it is plausible that some weak simulators may run in sub-
exponential (e.g. 2

√
n) time, which may be affordable in the near future.

Superior Weak Simulators. Given the compelling evidence that strong simulation is hard,
can we design a weak simulator that runs general quantum circuits in time o(d · 2n)? The
simulator constructed by Bravyi and Gosset [81] is an excellent example of the potential
gains afforded by weak (versus strong) simulation.

70

CHAPTER 6

Finding angle sequences in quantum singal
processing

Among the recent breakthroughs in the area of quantum algorithms, quantum signal pro-
cessing receives much attention for its simplicity and extendability. First proposed in a sem-
inal paper by Low and Chuang [106], quantum signal processing has been used to design
various algorithms with optimal query complexity and/or gate complexity [106, 18, 23].

The QSP algorithm uses an ancilla qubit as a control qubit and a controlled version of
any given unitary U . The goal of the algorithm is to perform a spectral transformation of the
unitary U in a black-box manner, by only querying the controlled U rather than classically
look into the matrixU . The central idea of the algorithm can be best described as alternating
between applying a single qubit rotation on the ancilla wire, and applying a controlled U
from the ancilla wire to the data qubits. Thanks to a rich algebraic structure theorem, all
appropriately normalized polynomials of the unitary U can be implemented this way, given
that the single qubit rotation angles are chosen carefully. Though theoretically appealing,
one potential drawback of the QSP algorithm is the lack of a numerically stable algorithm of
finding the desired single qubit rotations (called the angle sequence) given the polynomial
to be implemented. When the degree of the polynomial we want to implement is high, one
often needs to perform very high accuracy arithmetics, which could be infeasible in some
scenarios.

In this chapter, we describe an algorithm for finding angle sequences in quantum signal
processing, with a novel component we call halving based on a new algebraic unique-
ness theorem, and another we call capitalization. Together, these two algorithmic ideas
allow us to find angle sequences for important applications such as Hamiltonian simulation
in standard double precision arithmetic, native to almost all hardware. The current best
method [24] could find the same only in arbitrary precision arithmetic, which needed to be
emulated by software, thus incurring a substantial time overhead. We present experimental
results that demonstrate the performance of the new algorithm.

71

6.1 Introduction

Many recent works in quantum computation consider the problem of transforming the spec-
trum of an unknown unitary in a black box manner. In a sequence of works [8, 18, 19, 20,
21, 22, 23] an entire mathematical machinery was developed to address this problem. In
particular, a novel paradigm called qubitization was introduced by [20, 21], which is an
elegant technique based on quantum signal processing [17]. Quantum signal processing
achieves polynomial transformations in a very efficient way using only a few ancilla qubits
with the help of a sequence of single qubit rotation gates. In [23] these techniques were fur-
ther developed to produce a Quantum Singular Value Transformation (QSVT) algorithm,
with a wide range of applications from Hamiltonian simulation to Gibbs sampling. How-
ever, finding a sequence of angles for the rotation gates to achieve a desired transformation
can be a challenging (classical) task [107]. In order to demonstrate the practicality of quan-
tum algorithms based on quantum signal processing, it is important to show that there is an
efficient classical algorithm to find the angles. This question was very recently addressed
by Haah [24], who showed that this is indeed the case and that the problem can be treated
more elegantly by considering Laurent polynomials, that is, polynomials with both positive
and negative powers.

6.1.1 Main result

The main result of our work can be best summarized as a new algorithm for finding these
angles, which shows surprising numerical stability. Specifically, our work presents novel
contributions to this field in two ways:

1. We further develop the mathematics of quantum signal processing by defining and
analyzing the algebras that naturally arise from the problem, which we identify as
Cayley-Dickson algebras [108]. In particular, we prove a uniqueness of decomposi-
tion theorem in the algebra, which is the basis for a new algorithm we call halving.

2. We conduct numerical experiments implementing this new algorithm that also make
use of a new method we call capitalization. Together, these two algorithmic ideas al-
low us to perform quantum signal processing for high degree polynomials in, for the
first time, standard double precision arithmetic. The previous method of Haah [24]
could only do this using high precision arithmetic. As this needs to be emulated by
software, a substantial time overhead is incurred.

72

6.1.2 Application

One of the main applications of quantum signal processing is Hamiltonian simulation. The
complexity of simulating Hamiltonians has been a highly studied topic [109, 110, 8, 106,
111], with many results achieving optimal complexity with respect to certain parameters.
As quantum computing enters the noisy intermediate-scale quantum (NISQ) [10] era, it be-
comes increasingly important to optimize the size of the quantum circuits. The algorithmic
techniques previously developed include Linear Combination of Unitaries [8] and Qubiti-
zation [20]. These techniques proved to be very useful for constructing efficient quantum
algorithms for other problems as well. In our work we apply our algorithm to the Hamilto-
nian simulation problem, conducting numerical experiments simulating Hamiltonian evo-
lution to time scales two or more orders of magnitude longer than what was previously
possible [107].

6.2 Quantum signal processing

Quantum signal processing [17] is like a no-look pass in basketball: our goal is to build a
quantum circuit that transforms a black box operator — we may call it the signal — without
peeking into the box itself. The black box operator is in most cases a quantum circuit itself,
so it is unitary. This will be our assumption throughout.

An example of signal processing is when we run W twice (C = WW). The new
operator becomes W 2 regardless of what W is, and in the process we did not look at W .
In this very simple case the Hilbert space, H , of our circuit C was the same as the Hilbert
space of W — no ancilla wires were added. In more interesting cases we assume that we
have access to a particular controlled version of W , which we denote by W̃ and which acts
on the Hilbert space H̃ = C2 ⊗H as [24]:

W̃ =

(
W 0

0 W−1

)
. (6.1)

By making good use of the extra control wire we can now design circuits that alternate
between one-qubit actions on the control wire and W̃ operations. It will be convenient to
write our circuit as

C = M ·R′dW̃R′d−1 · · ·R′1W̃ ·R′0. (6.2)

where every R′j is Rj ⊗ IH , and M is a post-selection operation:

73

Post-selection Operator. Consider a quantum circuit C = M · C ′ with one ancilla qubit
and N input wires, which, setting the ancilla qubit to |0〉, runs

C ′ =

(
C ′00 C ′01

C ′10 C ′11

)
C ′00, C

′
01, C

′
10, C

′
11 ∈ M(2N ,C) (6.3)

and finally performs a post-selection operation M on the ancilla wire. This latter operation
declares success if the ancilla is measured 0 in the computational basis and outputs the state
in the input wires; otherwise it runs C ′ again and again, until success is attained, and only
then outputs. A small calculation shows that the thus-obtained action on theN qubits is not
unitary (although C ′ itself unitary) but is defined by the linear operator C ′00 in the fashion:
|ψ〉 → C′00|ψ〉

|C′00|ψ〉|
. The success probability matters: the post-selection process works well if

the probability of success, which is |C ′00|ψ〉|, is not very small.

In equation (6.2) we assume that Rj (0 ≤ j ≤ d) is an arbitrary element of SU(2), the
group of two dimensional unitary matrices with unit determinant. Later we will restrict Rj

to be X-rotations, which will still allow us to build most, if not all, of the useful signal pro-
cessing circuits. Figure 6.1 illustrates the structure of a typical quantum signal processing
circuit.

Figure 6.1: An illustration of a quantum signal processing circuit. State preparation and
post selection operators are omitted for simplicity.

Laurent Polynomials. Because the blocks of W̃ are W , W−1, or zero, and because each
rotation R′j only linearly combines the four blocks of the operator it receives, the sequence
of operations in equation (6.2) without the final M represents an operator whose all four
blocks are Laurent polynomials [24] ofW , i.e. polynomials with both positive and negative
powers. The final M just picks the top left block of this operator which is itself an operator
on the non-ancilla wires and has the form F (W) =

∑n
−n ciW

i for some n and ci. It is easy
to see that n ≤ d. From what we have said about post-selection, C acts on H according
to |ψ〉 → F (W)|ψ〉

|F (W)|ψ〉| . The effect of C on an arbitrary operator W is said to be described by
F (w) =

∑n
−n ciw

i if F (W) is the operator to which C transforms W .

74

In practice (Hamiltonian simulation, etc.), the Laurent polynomial F is given to us, and
our goal is to design the sequence R0, R1, . . . , Rd, which produces it. A small but very
useful lemma will help us achieve this goal:

Lemma 6.1. If C has the effect
∑n
−n ciW

i on all one dimensional unitary operators W ∈
U(1), then it has the same Laurent polynomial as effect on all unitary operators.

For the proof of the lemma let us investigate how C ′ acts on a state |φ〉︸︷︷︸
ancilla

⊗ |ψ〉︸︷︷︸
H

, where |ψ〉

is an eigenvector of W with eigenvalue eiθ. The R′j operations change only the first register
and not the second. The operator W̃ gives a controlled phase shift of the second register,

which by the “kick-back” effect can be represented as a

(
eiθ 0

0 e−iθ

)
operation on the

first register and no change on the second register. Therefore the subspace C2⊗|ψ〉 remains
invariant under C ′ and furthermore, restricted to this subspace, C ′ acts as if we plugged in
for W̃ the controlled (i.e. “tilde”) version of the one dimensional unitary (eiθ). This is
already sufficient to argue that W is transformed in the same way as the one dimensional
unitaries, since all its eigenvectors uniformly do so.

We can in fact explicitly give F (w) =
∑n
−n ciw

i. Let w denote eiθ and w̃ denote
eiθσz = diag(w,w−1). Then, when we plug in the one dimensional w into C ′, we get:

C ′(w) =

(
C ′00(w) C ′01(w)

C ′10(w) C ′11(w)

)
= Rd · w̃ ·Rd−1 · · · ·R1 · w̃ ·R0. (6.4)

Here C ′00(w), . . . , C ′11(w) are Laurent polynomials of w. Finally, with M we get F (w) =

C ′00(w).

An algebra emerges. The design goal is now clear: Find 1-qubit unitaries R0, . . . , Rn

and Laurent polynomials C ′01(w), C ′10(w), C ′11(w) such that equation (6.4) holds with
F (w) = C ′00(w). Later we will see that it is sufficient to restrict ourselves to d ≤ n.
Further, we also have the restriction that C ′ is unitary for all unit complex numbers w.

Let M(2, C[w,w−1]) denote the ring of 2 by 2 matrices over the Laurent polynomials
with complex coefficients. We may view this ring as an algebra over the real or over the
complex numbers. It turns out that the most natural view of the algebras that arise in our
investigation is to treat them as algebras over the real numbers. This algebra certainly
contains all operators that, when we treat w as a single unknown, we may ever encounter
in the expression (6.4) as a partial product.

A way to attain our goal is then to do the following two steps:

75

1. Completion: Find C ′01(w), C ′10(w), C ′11(w) such that these together with C ′00(w) =

F (w) form the four components of C ′ ∈ M(2,C[w,w−1]) that is unitary for every
value of w.

2. Decomposition: Find rotations R0, R1, · · · , Rd such that the product

Rd · w̃ ·Rd−1 · · ·R1 · w̃ ·R0 (6.5)

gives C ′. That indeed d = n can be taken we will prove later.

These two steps are the way to go in Haah’s paper [24]. We will propose a new algo-
rithm for the second step based on a new theorem as well as a new method for preprocessing
F , and obtain excellent experimental results. The fact that a rich, well-structured subset of
elements of M(2, C[w,w−1]) can be split as a product of degree-one elements was first
observed in [17]. We strengthen this result with a uniqueness theorem that allows us to do
the decomposition in a binary tree manner rather than sequentially. Our experiments show
a substantial increase in numerical stability when we do the decomposition this way.

6.3 Algebras associated with quantum signal processing

In the previous section we have seen how quantum signal processing translates to a task of
1. Completion and then 2. Decomposition in M(2, C[w,w−1]). In this section we define
two useful sub-algebras of M(2, C[w,w−1]), where both 1. and 2. are already possible and
the number of free parameters is reduced. We would like to remind the reader that we view
M(2, C[w,w−1]) as an infinite-dimensional algebra over the real numbers.

The Low algebra. To define the smaller of the two sub-algebras of M(2, C[w,w−1]) (and
for practical purposes the more interesting one), we write down a general element of the
algebra in terms of the variable

w̃ =

(
w 0

0 w−1

)
. (6.6)

The motivation comes from the paper of Low et al. [17] that implicitly worked in this
algebra. Let I,X, Y, Z be the Pauli matrices as usual. Then already expressions of the form

A(w̃) +B(w̃) · iX A,B ∈ R[x, x−1] (6.7)

76

contain all operators that when we treat w as a single unknown we may ever encounter as
a partial product when R0, . . . , Rd are all X-rotations:

RX(α) = cosα · I + sinα · iX. (6.8)

Low et al. has shown that this is all we need when our target F has real coefficients and
satisfies a parity constraint. Furthermore, if we change the post-selection by introducing a
more general final measurement, this framework encapsulates a very rich set of F ’s, so we
need not go further.

The Haah algebra. If we nevertheless want to obtain all possible Laurent polynomials
in the upper left corner including those with complex coefficients, there is a bigger sub-
algebra [24] of M(2, C[w,w−1]) that accomplishes that. The elements of this sub-algebra
are written as

A(w̃) +B(w̃) · iX + C(w̃) · iY +D(w̃) · iZ A,B,C,D ∈ R[x, x−1]. (6.9)

6.4 The syntactic versus semantic view

Let us make here some clarifying remarks about our expressions. When writing down poly-
nomials, one way of viewing them (Laurent or otherwise) is semantic. In this interpretation
polynomials are functions from a set (often a field F, vector space, algebraic variety) to
a ring, module, etc. Another way of viewing polynomials is syntactic. In this case two
polynomials are different if the sequence of their coefficients differ (formal polynomials).

The two views can lead to different definitions. Consider for instance x3 in GF(2). By
Fermat’s little theorem (or simply by checking both replacements in GF(2)) we conclude
that semantically x3 is the same as x. Syntactically however they are obviously different.

In our case the domain over which we should view expressions (6.7) and (6.9) is the
unit circle U(1) = {w | |w| = 1}. This is because when we instantiate w, it is a one dimen-
sional unitary operator, that is a phase. Now, w̃ is an element of M(2, C[w,w−1]), giving
matrix values to expressions (6.7) and (6.9) with Laurent polynomials as elements. We
may then ask whether it can occur that two expressions in (6.9) do not equal syntactically,
but they equal semantically. It is easy to show however, using the fundamental theorem of
algebra, that this may not happen. This permits us to switch back and forth between the
two interpretations as suits us.

77

6.5 Star operation, unitary and Hermitian elements, de-
gree

To define the star operation in M(2, C[w,w−1]) we take the semantic view: the star, M∗

of an element M ∈ M(2, C[w,w−1]) will have the property that if we instantiate M and
M∗ over any given w ∈ U(1), then we get two matrices that are conjugate transposes of
each other. Thus e.g. w̃∗ = w̃−1, because w and w−1 are conjugates of each other for any
w ∈ U(1). On constant matrices (i.e. without the variable w) the star operator works as
usual:

(iX)∗ = −iX , (iY)∗ = −iY , (iZ)∗ = −iZ. (6.10)

In general, if a, b, c, d ∈ C[w,w−1] and we obtain a∗ from a by conjugating the coefficients
and swapping w and w−1 (similarly for b, c, d), then we can define the star operation and
unitarity for an element in M(2,C[w,w−1]) as

(
a b

c d

)∗
=

(
a∗ c∗

b∗ d∗

)
; M is unitary ↔ MM∗ = I. (6.11)

This definition leads to:

Lemma 6.2. The Haah and Low algebras are closed under the star operation of M(2,
C[w,w−1]).

Cayley-Dickson Algebras. The Haah and Low algebras are Cayley-Dickson algebras,
although we do not directly use this fact.

Hermitian elements. Let us now determine the Hermitian and anti Hermitian elements
of the Haah algebra. Notice that the following elements of the Haah algebra are Hermitian:

w̃j + w̃−j, (w̃j − w̃−j) · iZ, j ∈ N (6.12)

and therefore all their linear combinations.

Lemma 6.3. The set of the Hermitian elements of the Haah algebra consists exactly of

linear combinations of w̃j + w̃−j , (w̃j − w̃−j) · iZ (n ∈ N).

Proof. First notice that the following elements and therefore all their linear combinations
are anti-Hermitian, i.e. M∗ = −M :

w̃j − w̃−j, w̃±j · iX, w̃±j · iY, (w̃j + w̃−j) · iZ, j ∈ N. (6.13)

78

Next notice that the elements in expressions (6.12) and (6.13) together span the Haah alge-
bra. This finishes the proof, since if a Hermitian element M is written as M1 +M2, where
M1 is Hermitian and M2 is anti-Hermitian, then M2 = M −M1 must be both Hermitian
and anti-Hermitian, so M2 must be zero.

We remark that the set of all Hermitian elements of the Haah algebra form an algebra,
which is also the center of the Haah algebra (since both iX and iZ are in the Haah algebra,
the center can only contain elements that are proportional to I).

Degree. Each element M(w) of M(2,C[w,w−1]) has a degree, which is the maximum
absolute value of any exponent of w that ever occurs in M .

Lemma 6.4. In equation (6.9) the maximum degree among A, B, C and D as formal

Laurent polynomials coincides with the above notion of degree.

When we multiply regular polynomials the degrees add up. The same does not hold for
Laurent polynomials, especially ones with matrix coefficients. The next lemma, crucial for
our main lemma, gives a case in the Haah algebra when we can be certain that the degrees
do add up.

Lemma 6.5. Let M be a Hermitian element of the Haah algebra and M ′ be an arbitrary

element of M(2,C[w,w−1]). Then degMM ′ = degM + degM ′.

Proof. Let M be of degree n. By Lemma 6.3 we can assume that M =
∑n

j=0 λj(w̃
j +

w̃−j) + µj(w̃
j − w̃−j) · iZ where λj, µj ∈ R and λn ± µni 6= 0. Let

M ′ =

(
A(w) B(w)

C(w) D(w)

)
∈ M(2,C[w,w−1]) (6.14)

be of degree n′. We show that the degree of MM ′ is n+n′. Clearly, it is sufficient to show
that the degree of M ′′ = λn(w̃n + w̃−n)M ′+µn(w̃n− w̃−n) · iZM ′ is n+n′. We can write
M ′′ as
(

((λn + µni)w
n + (λn − µni)w−n)A(w) ((λn + µni)w

n + (λn − µni)w−n)B(w)

((λn − µni)wn + (λn + µni)w
−n)C(w) ((λn − µni)wn + (λn + µni)w

−n)D(w)

)

(6.15)
and it is straightforward to see that the highest degree term cannot cancel whether the
exponent is positive or negative.

79

Parity Subgroups. We will in particular be interested in elements of M(2,C[w,w−1])

with parity, that is, they are in the parity subgroup:

Definition 6.1 (Parity subgroup of real Laurent polynomials). The parity subgroup P =

P0 ∪ P1 ⊂ R[w,w−1] is defined to be the subgroup of Laurent polynomials with parity

constraint, that is, an element of this group either has even parity:

P0 =

{
p(w) =

n∑

k=−n

pkw
k | pk = 0 for all odd k

}
(6.16)

or odd:

P1 =

{
p(w) =

n∑

k=−n

pkw
k | pk = 0 for all even k

}
. (6.17)

Note that P is closed under multiplication but not addition. Starting from P , we can
define the parity subgroup of the Haah algebra as the set of elements of the form

A(w̃) +B(w̃) · iX + C(w̃) · iY +D(w̃) · iZ, A,B,C,D ∈ Pε, ε ∈ {0, 1} (6.18)

and similarly for the Low algebra. Note that both the element w̃ and the rotations Ri ∈
SU(2) satisfy parity constraints, thus all elements we can hope to get form the composition
of w̃ and one-qubit rotations must be parity elements.

Remark Note that not all unitary elements satisfy the parity constraint. The element
(2I + (w + w−1)iX + (w − w−1)Y)/

√
8 would be a counterexample.

Low et al. [17] proved an interesting unique decomposition theorem about its unitary
elements, which is then generalized by Haah [24] as follows:

Theorem 6.1 ([17, 23, 24]). For every unitary parity element U in the Haah albegra with

degree d, there exists a unique decomposition of U into degree-0 and degree-1 terms:

U(w) = Rd · w̃ ·Rd−1 · · ·R1 · w̃ ·R0 (6.19)

Moreover, when U lies in the Low algebra, R0, R1, . . . , Rd are all X-rotations.

6.6 The main lemma

Assume we are given a unitary element, U , of the Haah algebra to be decomposed into
a product of linear terms. Instead of solving for one linear term at a time as in [24], we

80

want to decompose U as U1U2 where U1 and U2 have degrees roughly half of that of U .
For any element of the Haah algebra it is proven that such decomposition exists, but is it
unique? Conceivably, it could occur that U = V1V2, where V1 and V2 are not unitary. And
if we find V1 and V2 instead of U1 and U2, we cannot continue with the decomposition. A
consequence of our Main Lemma is that this is impossible.

Lemma 6.6 (Main Lemma). Let M be in the Haah algebra, M ′ in M(2,C[w,w−1]). Then

degMM ′ ≥ degM ′ − degM + degM∗M. (6.20)

Proof. Since degM = degM∗ we have that degM∗MM ′ ≤ degM + degMM ′. On the
other hand M∗M is a Hermitian element of the Haah algebra, so by Lemma 6.5 we have
that degM∗MM ′ = degM∗M + degM ′, which completes the proof.

We can now prove:

Corollary 6.1. Let U be a degree-d unitary parity element of the Haah algebra. Then the

set of equations

deg(V ∗U) ≤ d− l,
deg(V) ≤ l,

V (w = 1) = I,

V ∈ P lmod2

(6.21)

has a unique solution V which is a unitary element of the Haah algebra. Moreover, V lies

in the Low algebra if U does.

Proof. We only prove the first part of the theorem. The second is an easy consequence. By
Theorem 6.1, U can be decomposed as

U = Rd · w̃ ·Rd−1 · · · · ·R1 · w̃ ·R0, (6.22)

where R0, . . . , Rd are all unique. Take

V = Rd · w̃ ·Rd−1 · · · · ·Rd−l+1 · w̃ ·
d∏

i=d−l+1

R−1i . (6.23)

It is easy to see that V satisfies the set of equations.

81

To prove uniqueness, suppose that there exists another element V ′ which satisfies the
equations. By Lemma 6.6,

d− l ≥ deg V ′
∗
U ≥ degU − deg V ′ + deg V ′V ′

∗ ≥ d− l + deg V ′V ′
∗
. (6.24)

Therefore, deg V ′V ′∗ ≤ 0. We leave this as an inequality since the degree of the zero
Laurent polynomial is negative infinite. However, since V ′(1) = I , V ′∗(1) = I and so
V ′V ′∗ is not zero. Thus, the inequality is actually an equality and so V ′must be proportional
to a unitary. As V ′(1) = I , V ′ itself is a parity unitary and therefore must be equal to V by
Theorem 6.1.

Note that the conditions on the degrees in Corollary 6.1 are inequalities, but the solution
we obtain in the end will satisfy them with equality. This is because the degree of a product
can be at most the sum of the degrees.

6.7 Algorithm

We now provide an outline of our angle finding algorithm for quantum signal processing.
Let F (w) ∈ R[w,w−1] be the function that we wish our circuit to have the effect of. It will
be natural for us to define the norm of a Laurent polynomial as

‖F‖ ≡ max
w∈U(1)

|F (w)|. (6.25)

Now, it is clear that a necessary condition for a circuit to have the effect of F is that ‖F‖ < 1

so that the completion can be done. This is also actually sufficient, as shown in [17, 23, 24]
and as we will see in the following.

Capitalization In many applications of quantum signal processing, F (w) contains terms
with very small coefficients, especially for the higher order terms. This can arise for in-
stance when we are trying to achieve the effect of some analytic function and we use a
Taylor series approximation. In [24], this is cited as the primary source of numerical insta-
bility. We propose an ad hoc solution by a procedure we call capitalization. Namely, given
that we wish to perform quantum signal processing to some error tolerance ε, we can add
leading order terms to F (w) with coefficients on the order of ε and then run our algorithm.
Combined with our new algorithm, we show in our experiments that this does extremely
well empirically, allowing us to solve instances orders of magnitude larger than what was
previously possible, for example in [107].

82

A similar preprocessing technique was used in [24], where all the coefficients of the
given Laurent polynomial are rounded to multiples of ε/n, where n is the degree. This
would be an alternative way to resolve the numerical instability.

Completion via root finding The first step is completion, namely finding a unitary U in
the Low algebra such that the upper left corner of U is F (w). To do this, we simply solve
for the real Laurent polynomial G such that F (w̃) + G(w̃) · iX is a unitary element of the
Low algebra. It is not difficult to see that this translates to the equation

F (w)F (w−1) +G(w)G(w−1) = 1. (6.26)

As done in [17, 23, 24], this equation can be solved using a root finding method. Namely,
we solve for the roots of the expression

1− F (w)F (w−1) (6.27)

over all complex numbers. Then, all real roots will come in pairs {ri, 1/ri}i while all
non-real complex roots will come in quadruples {zj, 1/zj, z̄j, 1/z̄j}j . Hence,

1− F (w)F (w−1) ∝
∏

i

(w − ri)(1/w − ri)
∏

j

(w − zj)(1/w − zj)(w − z̄j)(1/w − z̄j).

(6.28)

Evaluating this at w = 1, the constant of proportionality has to be real and positive by the
constraint on F . Denoting this by α, we conclude

G(w) =
√
α
∏

i

(w − ri)
∏

j

(w − zj)(w − z̄j) (6.29)

is a possible solution.1 Note that by construction G(w) is a real Laurent polynomial.

Decomposition via halving We now give an algorithm for the decomposition step in
quantum signal processing motivated by Corollary 6.1. Let U be a degree d parity unitary
in the Low algebra. We wish to find unitaries V1, V2 of degree l, d − l respectively such
that U = V1V2. This could be done by expressing V ∗1 as a collection of real variables

1This is not unique since, for instance, we could have chosen the same with w 7→ 1/w.

83

{xn, x′n}ln=−l using the structure of Low algebra elements:

V ∗1 =
l∑

n=−l

Xnw
n (6.30)

where Xn is of the form

Xn =

(
xn ix′n

ix′−n x−n

)
. (6.31)

Note that the parity condition will eliminate half of the variables. The unitary U can be put
into a similar form:

U =
d∑

n=−d

Anw
n (6.32)

so that

V ∗1 U =
d+l∑

n=−d−l

∑

|n1|≤l,|n2|≤d
n1+n2=n

Xn1An2

wn. (6.33)

Then, we can enforce the condition that V ∗1 U is of degree at most d − l by setting for
n < −d+ l and n > d− l:

∑

|n1|≤l,|n2|≤d
n1+n2=n

Xn1An2 = 0, (6.34)

where 0 here is the zero matrix. This gives a system of linear equations for the real vari-
ables. We also add the additional linear equations from V (1) = I:

Tr

[
σµ

d2∑

n=−l

Xn

]
= (1, 0, 0, 0), (6.35)

where σµ is the vector of Pauli matrices preceded by I . By Corollary 6.1 this system of
linear equations has a unique solution and returns a degree l parity unitary V ∗1 such that
V ∗1 U is of degree d− l.

However, in real implementations the element we are to decompose might not be ex-
actly unitary. This may be due to numerical imprecision or errors introduced in the com-

84

pletion step. We therefore propose to solve the linear system by least squares. This gives a
recursive algorithm:

procedure DECOMPOSE(M)
if degM = 1 then

return {M}
else

solve least squares problem:
degM∗

1M ≤ degM − ddegM
2
e,

degM1 ≤ ddegM2 e,M1(1) = I ,
M1 ∈ PddegM

2
e mod 2

return DECOMPOSE(M1)∪ DECOMPOSE(M∗
1M)

end if
end procedure

Figure 6.2: The algorithm DECOMPOSE.

6.8 Experimental results

We perform numerical experiments implementing our algorithms and compare them to
existing methods. The algorithm given in [24] also used root finding for completion but
implemented decomposition differently. Namely, given a degree d unitary U in the Low
algebra, they sequentially solve for the single qubit rotations Li = Ri in equation (6.19)
from i = d to 1. More specifically, they start with U , and solve for Ld such that

deg(w̃−1 · L∗d · U) ≤ n− 1. (6.36)

The same is then repeated for L∗dU to obtain Ld−1 and so on. We shall refer to this method
as carving. Due to the iterative nature of this method, the error introduced at the beginning
would blow up during the carving process. Therefore, it requires very high precision arith-
metic in the completion step. Our halving algorithm, on the other hand, can be performed
with standard 64-bit machine precision throughout.

In the following, we report the results of experiments in which we tested our algorithm
using the Python numpy package on a MacBook Pro with 2.9 GHz Intel Core i5 processor
and 8 GB memory.

85

Hamiltonian simulation. Hamiltonian simulation is one of the most important applica-
tions of quantum signal processing [107, 24, 23]. Formally, the problem is the following.
Given a Hermitian H , with ‖H‖ ≤ 1, and time-interval for the evolution τ , we wish to im-
plement the unitary e−iHτ . When quantum walk is used [112, 113], the unitary W can be
implemented with a quantum circuit, whose eigenvalues ∓e±iθλ are associated with those
λ from the Hamiltonian as

sin θλ = λ/2. (6.37)

The task is then to achieve the effect of the function F : eiθ → e2iτ sin θ. More specifically,

F (w) = exp

(
τ
w2 − w−2

2

)
=
∑

k∈Z

Jk(τ)w2k, (6.38)

where Jk are the Bessel functions of the first kind. In Equation (6.38), the function F (w)

is already in the form of Laurent series whose coefficients decrease exponentially. One
can approximate F (w) up to an additive error ε for w ∈ U(1) by truncating it into n =

Ω(τ + log(1/ε)) terms [24],

F̂ε(w) =

n/2∑

k=−n/2

Jk(τ)w2k (6.39)

where, in experiments, n can be chosen as 2d e
2
τ + ln(1/ε)e [24]. Empirical results also

suggest that one needs to scale down F̂ε(w) by a factor η ∈ (0, 1), in order to have more
numerical stability during the root-finding completion. However, the downscaling would
decrease the success probability in the post-selection by a factor of η. This can be regarded
as a tradeoff between the classical preprocessing phase versus the actual time complexity
of the algorithm.

Specifically, the inputs to the algorithm are the time-interval τ , error tolerance ε and
scaling factor η. We then further truncate the list of coefficients of η · F̂ε(w) to standard
double precision. The resulting Laurent polynomial would be the input of the angle-finding
algorithm.

Running time scaling with respect to τ . We performed angle decomposition for differ-
ent τ , with fixed error tolerance ε = 0.001 and η = 0.7. For the experiments, the Laurent
polynomial is truncated to guarantee an error upper bound of ε/10, with capitalizing pa-
rameter, i.e. the coefficients of the appended highest- and lowest-degree terms set to ε/3.
The detailed numerical results are illustrated in Fig. 6.3.

86

Figure 6.3: The running time for angle finding using the halving method. Here the error
tolerance and the scaling factor is fixed to 10−3 and 0.7 respectively. The running time
scales as a cubic function with respect to the degree of the Laurent polynomial, hence also
cubic with respect to the evolution time parameter τ . Note that an instance with τ = 1200
can be efficiently solved within 5 minutes.

Comparison to the carving method. To compare the performance of the halving and
the carving method, we compare the capability of carving and halving with respect to the
time-interval of the evolution and the error tolerance. The problem of angle finding be-
comes more difficult with larger τ and smaller ε. We call a parameter pair (τ, ε) achievable

with respect to an angle-finding method, if that angle finding method can output a Laurent
polynomial ε-close to the Hamiltonian simulation function eτ

w2−w−2

2 within machine preci-
sion. Again, the Laurent polynomial is truncated to guarantee an error upper bound ε/10,
with capitalizing parameter, set to ε/3.

The numerical results for the achievable region for the parameters are illustrated in
Fig. 6.4. It can be seen that the halving method has a far bigger achievable region than that
of the carving method.

Random-coefficient experiment. We further demonstrate the performance of the halv-
ing algorithm via a family of random distributions over the set of Laurent polynomials with
a given degree n, which we call the random-coefficient distribution. First, n+ 1 real num-
bers F−n, F−n+2, . . . , Fn are sampled i.i.d. uniformly at random from [−1, 1]. Then, the
polynomial F (w) =

∑n
k=−n,n−k even Fkw

k is rescaled to infinity norm η for a fixed scaling
factor η = 0.5.

Note that the random-coefficient instances do not experience exponential decay of the
leading coefficient, thus there is no need for initial capitalization. Without a small leading

87

Figure 6.4: The achievable parameter regions for the Hamiltonian simulation problem with
machine precision, with the carving and the halving method. Note that the y-axis is log
scaled.

coefficient, Fig. 6.5 effectively shows the dependency of the final error with respect to the
degree of the random instance. The carving method performed well up to degree 100,
and then the averaged error quickly blows up, whereas the averaged error for the halving
method stayed under 10−6 throughout the experiments, up to the highest degree 5000 for
which an experiment was carried out.

Empirical error analysis. In [24], an error analysis is carried out to show that the preci-
sion pc needed for carving scales as poly(n, log(1/ε)) in order to solve for angle sequences
for a Laurent polynomial with degree n and error tolerance ε.

Also, when the leading coefficients are decaying exponentially, the carving algorithm
would suffer from numerical instability, although this issue can be easily resolved by setting
each coefficient to be a multiple of ε/n. The same issue occurred to the halving algorithm
as well but this was resolved by capitalization.

Denoting the magnitude of the largest leading coefficients δ, it is plausible that

pc = poly(n, log(1/ε), log(1/δ)).

Our experimental results gives evidence that the precision ph needed for halving scales
as

ph = poly(log n, log(1/ε), log(1/δ)),

since it does not suffer from the error blow-up from the iterative carving. If so, then the
halving method would be a truly numerically stable algorithm. Further theoretical work

88

Figure 6.5: Comparison of the final l∞ error of the angle finding algorithm, over random-
coefficient instances of different degrees. For each degree, 10 random-coefficient instances
are given as input to the angle-finding algorithm, and the final l∞ errors are averaged to
generate the plot. Note that the x-axis is log-scaled for clarity. Regarding error rate above
0.05 as failure, the carving method would fail when the degree approaches 100, whereas
the halving method still behaves numerically stable up to degree 5000. The anomalous blue
point at degree n = 90 is possibly due to a hard instance from the distribution.

needs to be done to demonstrate that it is indeed the case.

6.9 Discussion

An alternative algorithm for completion. Recall that in completion we are given a Lau-
rent polynomial A(w) ∈ R[w,w−1] of degree d and we need to find B(w) ∈ R[w,w−1]

such that
A(w̃) +B(w̃) · iX (6.40)

is unitary. This can be solved using an iterative method with some initial guess of a Laurent
polynomial B′ which we choose to be also of degree d. Then, we solve for a degree d
perturbation δB such that A(w̃) + (B′(w̃) + δB(w̃)) · iX is unitary. Taking a first order
approximation, we get the following Laurent polynomial equation:

A(w−1)A(w) +B′(w−1)δB(w) + δB(w−1)B′(w) +B′(w−1)B′(w) = 1. (6.41)

Again, we can solve equation (6.41) by converting it into a linear system where the vari-
ables are the coefficients of δB. Since we took a first order approximation, this system
might not have a solution. Therefore we again take a least squares approach to obtain the

89

following algorithm:

procedure COMPLETE(A, ε)
generate random real Laurent polynomial B′

set M = A(w̃) +B′(w̃) · iX
while ‖M∗M − I‖ > ε do

solve least squares problem: M + δB(w̃) · iX is unitary
set M = M + δB(w̃) · iX

end while
end procedure

Figure 6.6: Algorithm COMPLETE (real Laurent polynomial A, error tolerance parameter
ε)

We compare this to the root-finding approach used by [17] and [24] and our heuristic
of iterative least squares. Starting from a random perturbation B′, experiments showed that
this procedure converges well on most input instances. By setting a unitarity threshold ε,
it is observed that the iterative least square method terminates earlier than the root finding
approach. See Fig. 6.7 for details.

Figure 6.7: Time scaling of the completion phase, using the root-finding and the iterative
least square method respectively. For the iterative least square method, the termination
condition is set such that the unitarity, namely ‖UU∗ − I‖ goes below 10−8. The blue dots
represent experiment results for the iterative least square method, whereas the red dots are
for experiments with root finding. It can be observed that iterative least square method has
a constant factor advantage over root finding in terms of the running time.

90

More efficient angle finding algorithm. Both the algorithm in [24] and the algorithm
in this chapter run in time Õ(n3), n being the degree of the instance of consideration. It
would be desirable if a classical algorithm with substantial acceleration compared to these
two algorithms can be invented.

The bottleneck of a faster algorithm lies in the root-finding algorithm during the com-
pletion phase. Given a Laurent polynomial F ∈ R[w,w−1] of degree d, the goal is to
find another Laurent polynomial of the same degree G ∈ R[w,w−1] such that F (w̃) +

G(w̃) · iX is unitary throughout. The current algorithm solves G by computing the roots
for G(w)G(w−1) = 1 − F (w)F †(w−1) and assigning them appropriately to G. It would
be desirable if either the roots can be implied from specialized inputs for the problem, or
solving for the roots can be circumvented at all with the design of a novel algorithm. We
leave this to future work.

Theoretical guarantee for numerical stability. The halving algorithm proves numerical
stability in practice, in particular in the problem of finding angle sequences for Hamiltonian
simulation. However, it is yet to be shown that the halving algorithm is guaranteed to be
stable numerically.

The bottleneck of the problem lies in an upper bound on the condition number of the
system of linear equations Eqn. (6.21). With an upper bound polynomial with respect to
the degree n and the largest leading coefficient δ, we would be able to show that an initial
error would propagate only with a factor polynomial to n and δ in one step of halving, and
consequently in logarithmic levels of the recursive halving algorithm. The algorithm would
then be guaranteed to be numerically stable. We leave this to future work.

Derandomization. In the halving algorithm, randomness is introduced in the completion
phase, where one pair of the complex roots out of a quadruple, or one real root out of a
pair needs to be picked. Our experiment shows that different roots selected would result in
different numerical stability, and potentially influence the performance of the angle finding
algorithm. Further study needs to be done for the completion part in order to resolve this
issue.

91

CHAPTER 7

Transversal switching between stabilizer codes

In this chapter, we study the problem of switching between stabilizer codes while preserv-
ing the error-correcting property throughout. More specifically, we propose a randomized
variant of the stabilizer rewiring algorithm (SRA), a method for constructing a transversal
circuit mapping between any pair of stabilizer codes. As gates along this circuit are ap-
plied, the initial code is deformed through a series of intermediate codes before reaching
the final code. With this randomized variant, we show that there always exists a path of
deformations which preserves the code distance throughout the circuit, while using at most
linear overhead in the distance. Furthermore, we show that a random path will almost al-
ways suffice, and discuss prospects for implementing general fault-tolerant code switching
circuits.

7.1 Introduction

It is an oft-cited fact that no quantum error-correcting code can implement a universal
transversal logical gate set [25, 114, 115]. As a result, there have been several attempts
to circumvent this no-go theorem to achieve universal fault-tolerant quantum computation.
These candidates include magic state distillation [116, 117], gauge fixing [118, 119], and
more recently pieceable fault-tolerance [120, 121]. These last two candidates can be seen
as a special case of the more general approach of code switching [27, 26, 28, 29, 30].

Code switching is a natural idea: given two codes, map information encoded in one
code to information encoded in the other. For this mapping to be fault-tolerant, we must
often perform several intermediate error-correction steps to ensure that faults do not grow
out of hand. Thus, it is essential that during a circuit switching between codes, the extremal
error-correcting codes are deformed through a series of intermediate error-correcting codes
from one to another. This notion of intermediate error-correction was used in [26] to imple-
ment universal transversal computation by switching between the Steane and Reed-Muller

92

codes, whose complementary transversal gate sets are universal when taken together. How-
ever, universal fault-tolerant computation is not the only consideration in choosing error-
correcting codes, and different codes can be tailored to different tasks. For this reason, it
would be nice to have a way of converting between different quantum codes fault-tolerantly.

Simply decoding and re-encoding information is undesirable, since the bare infor-
mation becomes completely unprotected during this transformation. Past work has suc-
ceeded in constructing fault-tolerant circuits for switching between particular quantum
error-correcting codes fault-tolerantly, while providing guarantees that these circuits are
optimal within some framework [27].

Recently, [31] considered switching between generic stabilizer codes, and proposed
the stabilizer rewiring algorithm (SRA) for constructing a transversal circuit mapping be-
tween any pair of stabilizer codes. The circuit complexity scales quadratically with the
code length, and depends on a choice of presentation for the code generators. Different
presentations will result in different circuits mapping between different sets of at most n
intermediate codes. This circuit necessarily fails to be fault-tolerant when these intermedi-
ate codes have low distance. This leads to the central question: is there an efficient way of

fault-tolerantly converting between generic stabilizer codes?

7.1.1 Results

Towards this goal, we propose a randomized variant of the SRA, the randomized SRA
(rSRA). We show that for any pair of stabilizer codes, with at most linear overhead with
respect to the distance of the codes, there always exists a transversal circuit that maps
between intermediate codes of high distance. Furthermore, using slightly more overhead,
such a path can be found with high probability. In particular, we show the following.

Theorem 7.1 (Theorem 7.2, Informal). For any two [[n, k, d]] stabilizer codes S1 and S2,

the rSRA scheme gives a transversal circuit mapping from S1 to S2 where each intermediate

code has distance at least d with probability 1− ε, using

m = O

(
d log

n

d
+ log

1

ε

)
(7.1)

ancilla qubits.

This distance-preserving property is a necessary, but not sufficient condition to ensure
a fault-tolerant mapping. So while the algorithm does not necessarily yield a fault-tolerant
conversion, it gives a universal upper bound on the number of ancilla qubits required for
distance-preserving transversal code transformation. As was noted in [31], the usefulness

93

of this scheme is in its generality. While the upper bound may be of independent conceptual
interest, we hope that with modification, the rSRA can be applied as a useful schema for
searching for fault-tolerant paths between small codes.

7.2 Preliminaries

7.2.1 Classical codes

We start the preliminaries with classical error correcting codes. Throughout this section,
all additions and multiplications are done in the binary field Z2.

An [n, k] code C is a subset of T := Zn2 , where k := log |C|. Such a code is called an
[n, k, d] code, where

d := min
u,v∈C,u6=v

‖u− v‖1. (7.2)

Here, we use ‖ · ‖1 to denote the Hamming distance. An [n, k, d] code is known to correct
bd−1

2
c bits of error; that is to say, given a perturbed code u′ and the promise that u′ = u+δu

for some u ∈ C and ‖δu‖1 ≤ bd−12 c, such a u must be unique. In the presence of only bit
flip errors with weight at most bd−1

2
c, a codeword can be transmitted losslessly since such

error can always be corrected.
A code is most generally represented as a subset of Zn2 of size 2k, thus might not be

manageable due to the exponential size. A restricted subset of error correcting codes, called
linear codes, are defined to be k-dimensional linear subspaces of Zn2 rather than arbitrary
subsets of size 2k.

One of the concise representation for linear codes is the check matrix. For any [n, k, d]

linear code C, there exists S ∈ Z(n−k)×n
2 such that C = ker(S), and

d = min
v∈ker(S)

‖v‖1. (7.3)

Moreover, any element c′ ∈ T not in the code C would generate a nonzero syndrome

Sc′ ∈ Zn−k2 that only depends on the perturbation of c′ from a codeword. Once a low-
weight error e is found such that Sc′ = Se, it is guaranteed that c′ ⊕ e is a codeword; for
decoding a [n, k, d] linear code, one can just compute the syndrome and finding the lowest
weight error e that generates the given syndrome.

94

7.2.2 Quantum codes

Extending the idea of classical codes, an [[n, k]] quantum codeC is simply a 2k dimensional
subspace in the Hilbert space (C2)⊗n. Such a code is said to have distance d, or equivalently
being an [[n, k, d]]-code, if for every set B of less than d qubits, there exists a recovery
channel fully restoring the encoded states by only acting on the rest n− d+ 1 qubits:

∀B : |B| < d,∃RB, ∀|φ〉 ∈ C,RB(TrB[|φ〉〈φ|]) = |φ〉〈φ|. (7.4)

One of the biggest differences between quantum and classical error correcting codes is
the presence of superposition, and thus the presence of the phase flip error Z in addition to
the bit flip error X . Classical codes would necessarily fail to be quantum error-correcting
codes for the following reason. Consider two distinct classical codewords x and y and
assume that they differ on the first bit without loss of generality. The state 1√

2
(|x〉−|y〉) can

either be regarded as an undisturbed encoded state, or another codeword state 1√
2
(|x〉−|y〉)

with a Z error on the first qubit. With the two scenarios identical to any recovery channel,
it is not possible that the single qubit Z error can be perfectly corrected.

The quantum counterpart of linear codes is called stabilizer codes. Recall from Sec-
tion 2.4 the n-qubit Pauli group Pn. Then a stabilizer group S ⊆ Pn is an abelian subgroup
of the Pauli group not containing −I . To any such stabilizer group S, we can associate a
subspace CS ⊆ (C2)⊗n defined as the simultaneous +1-eigenspace of all the operators in
S. We call such a subspace CS a stabilizer code.

For a stabilizer code CS with parameters [[n, k, d]], there exists a more concise expres-
sion of the code distance d in terms of the stabilizer group S. The normalizer NPn(S)

represents the set of logical Pauli operators for CS , and so

d := min
L∈N (S)\S

(|L|) (7.5)

where | · | denotes the weight of the Pauli operator. Note that the smallest number of
stabilizers generating the corresponding stabilizer subgroup is n− k.

Given any stabilizer group S, if we choose a generating set GS for S, we can define a
syndrome map

SynG : Pn −→ {0, 1}n−k (7.6)

SynG(e)i =

0 if [e, gi] = 0

1 if {e, gi} = 0
(7.7)

95

for G = (g1, . . . gn−k). Then equivalently,

d = min
L∈ker(SynG)\S

(|L|) (7.8)

and is independent of the choice of G.
Another convenient formalism for describing stabilizer groups is as subspaces of sym-

plectic vector spaces over the binary field F2, and we will use the two formulations inter-
changeably. For any P ∈ Pn, if

P ∝ Xa1Zb1 ⊗Xa2Zb2 . . .⊗XanZbn (7.9)

then we can associate to P the vector ~P := (~a|~b)T ∈ F2n
2 . We can equip F2n

2 with a
symplectic bilinear form

〈~v, ~w〉 := ~vTB~w (7.10)

where B is the 2n× 2n block matrix defined by

B =

(
0 I

I 0

)
. (7.11)

Then Paulis P,Q commute if any only if their associated vectors ~P , ~Q are orthogonal in
this vector space. Thus, we can equivalently define a stabilizer group as a self-orthogonal
subspace of this vector space. A generator matrix G is then a choice of basis for this
subspace, so that forC an [[n, k]] code,Gwill be a rank (n−k) matrix of shape 2n×(n−k).
The syndrome map can then be similarly defined as

SynG(~P) = GTB ~P . (7.12)

Further note that for any A ∈ GL(F2, n − k), for any generator matrix G for S, GAT is
also a generator matrix for S. The syndrome map satisfies

SynGAT (~P) = (GAT)TB ~P = AGTB ~P = A · SynG(~P). (7.13)

So any action on the generator matrix induces a corresponding action on the syndrome
vectors themselves.

96

7.2.3 Transversality

A quantum error-correcting code alone can be used to store quantum information in a way
that is resistent to external noise. However, the error-correcting property does not suffice
in order to perform quantum computation on the encoded logical information.

Fault tolerance. We call a circuit C on a class of encoded inputs t-fault-tolerant if it is
t-fault-tolerant in the exRec formalism [122]. Formally, given error correction procedure
EC, C is t-fault-tolerant if for any choice of t faulty components in the combined circuit
EC · C · EC, a faultless version of EC applied to the output of the combined circuit can
successfully recover the data. If t ≥ 1 we may simply call the circuit fault-tolerant.

Transversal gates. Fault-tolerance takes into account both errors on the physical qubits
and errors on the quantum operations that act on the physical qubits. One easiest way to
achieve fault-tolerance is through transversal gates. Suppose that a logical gate UL acts on l
logical systems A1, . . . , Al, corresponding to l physical systems B1, . . . , Bl. We label each
qubit system Bij as the j-th physical qubit in the i-th physical state. The gate UL is called
transversal, if it is decomposable as follows:

UL = U1 ⊗ U2 ⊗ · · · ⊗ Un, (7.14)

where each Uj acts on the physical qubits Bij, 1 ≤ i ≤ l.
One can observe that a transversal logical gate is fault-tolerant. If one initial qubit or

one single component in the logical gate is faulty, the error would only corrupt at most one
physical qubit in each logical qubit. The data can be fully restored by performing error
correction procedure after appying the transversal logical operation.

It would be desirable to find an error-correcting code which admits a universal transver-
sal gate set; however, this has been proven to be impossible, a result known as the Eastin-
Knill theorem [25].

Code switching. Among the attempts people have been trying to circumvent this no-go
result, a general approach called code-switching has been proposed. The central idea of
code switching is the following. Although no single code admits a universal transversal
logical gate set, there are pairs of codes whose transversal logical gate sets are universal
when combined together. One example is the [[7,1,3]] Steane code with transversal Clif-
ford gates, and the [[15, 1, 3]] Reed-Muller code with transversal T -gates. To perform
universal fault-tolerant quantum computation, one just needs to switch back and forth be-

97

tween such pairs of codes. Of course, switching between the two codes cannot be done via
only transversal gates according to the Eastin-Knill Theorem.

Transversal measurement. One way of fault-tolerantly switching between a pair of
codes is through transversal measurement. For measurements with a binary outcome, we
sometimes represent the POVM {M0,M1} by the difference P = M0 −M1. Recall that
M0 + M1 = I so M0 and M1 can be fully recovered given P . A transversal measurement
P is one that can be decomposed into tensor products on each physical qubit:

P = P1 ⊗ P2 ⊗ · · · ⊗ Pn. (7.15)

A circuit for performing transversal measurements fault-tolerantly is first proposed
by [123], and an illustration is given in Appendix D. Note that although such measurement
is performed individually on each physical qubit, the classical outcomes of the measure-
ments are then gathered together to produce further instructions for the quantum circuit.
This introduces non-local information propogation that a transversal gate cannot achieve.

Finally, we call a circuit transversal if every operation in the circuit can be implemented
through transversal gates and transversal measurements. A code switching scheme is called
transversal if it only involves transversal gates and transversal measurements.

7.3 The rSRA schematic

The rSRA modifies the SRA presented in [31], whose central insight is the following.
Consider two stabilizer groups S, S ′ with generating sets G,G′ satisfying the following
nice property:

G = {g, g1, . . . , gl} (7.16)

G′ = {g′, g1, . . . , gl} (7.17)

where {g, g′} = 0. We call two such codes for which one can choose such generating sets
adjacent. Then one can readily check that the Clifford gate 1√

2
(1 + g′g) maps information

encoded in the stabilizer code defined by G to the same information encoded in the stabi-
lizer code defined by G′. Letting |ψ〉G denote a logical state in the code associated to G,

98

we see that

∀i, gi ·
1√
2

(1 + g′g)|ψ〉G =
1√
2

(1 + g′g)gi|ψ〉G (7.18)

=
1√
2

(1 + g′g)|ψ〉G; (7.19)

g′ · 1√
2

(1 + g′g)|ψ〉G =
1√
2

(g′ + g′g′g)|ψ〉G (7.20)

=
1√
2

(g′ + g)|ψ〉G (7.21)

=
1√
2

(g′ + g)g|ψ〉G (7.22)

=
1√
2

(1 + g′g)|ψ〉G. (7.23)

Eq. 7.18 holds since [gi, g] = 0 and [gi, g
′] = 0 for all i. Eq. 7.19 holds since all the gi’s

stabilize |ψ〉G. Eq. 7.21 and Eq. 7.23 hold since g′ and g both square to the identity as Pauli
operators. Finally, Eq. 7.22 holds since g stabilizes |φ〉G.

The insight is that this mapping can be done transversally. While the Clifford trans-
formation described need not be transversal, it can be simulated by a transversal Pauli
measurement supplemented by a transversal Pauli gate controlled on classical information.
This is similar to gauge-fixing, in which one measures a logical operator of the gauge and
then applies a corresponding logical gauge operator conditioned on the outcome. To see
this, consider the circuit described by:

1. Measure g′.

2. Apply g conditioned on measurement outcome −1.

Let P± denote the projector onto the +1/−1 eigenspace of g′. Then, if the measurement
outcome is +1,

1√
2

(1 + g′g)|ψ〉G =
1√
2

(1 + g′)|ψ〉G =
√

2P+|ψ〉G. (7.24)

Furthermore,
If the measurement outcome is −1,

99

1√
2

(1 + g′g)|ψ〉G =
1√
2

(g − gg′)|ψ〉G (7.25)

=
1√
2
g(1− g′)|ψ〉G (7.26)

=
√

2gP−|ψ〉G. (7.27)

Thus, we see that we can transversally perform the mapping |ψ〉G → |ψ〉G′ .
Now consider the more general case in which we have (non-adjacent) S, S ′ describing

[[n, k]] and [[n′, k]] codes respectively. We now describe a general randomized algorithm
for outputting a circuit switching between these two codes, similar to [31], and will later
show that this circuit is distance-preserving with high probability. The inputs are arbitrary
generator matrices G,G′ for stabilizer groups S, S ′, along with a choice of ancilla size
m ∈ N.

7.3.1 Preparing the generator matrices

1. Append |0〉 ancilla to the smaller code so that the codes are of equal size. We now
assume that both codes are [[n, k]] codes.

2. Append |0〉⊗m to the first code, and |+〉⊗m to the second. Note that this is equivalent
to defining a pair of new stabilizer codes

Ŝ = 〈S ⊗ I⊗m, I⊗n ⊗ Z ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ Z〉, (7.28)

Ŝ ′ = 〈S ′ ⊗ I⊗m, I⊗n ⊗X ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗X〉. (7.29)

3. Choose GA = G′A to be a basis for the subspace defined by Ŝ ∩ Ŝ ′.

4. Choose GB to extend the basis of GA to a basis for N (Ŝ ′) ∩ Ŝ and choose G′B to
extend the basis of GA to a basis for N (Ŝ) ∩ Ŝ ′.

5. Choose GC to extend the basis GA ∪GB to a basis for Ŝ and G′C to extend the basis
G′A ∪G′B to a basis for Ŝ ′.

6. Let H be the commutativity matrix for GC , G
′
C defined by H := G′C

TBGC . By
Lemma C.2, H is invertible with dimension |GC | × |GC |, where |GC | ≥ m. So we

100

can choose M,N ∈ GL(F2, |GC |) : MTHN = I|GC | and redefine

GC ← GC ·M (7.30)

G′C ← G′C ·N. (7.31)

7. Choose uniformly at random V, V ′ ∈r F|GC |×|GB |2 and a U ∈r GL(F2, |GC |).

8. Redefine

GT
C ← U(V GT

B +GT
C) (7.32)

G′C
T ← (U−1)

T
(V ′G′B

T
+G′C

T
) (7.33)

(7.34)

Note that this does not change the commutativity matrix since

U(V GT
B +GT

C)B(G′C +G′BV
′T)U−1 = I|GC |. (7.35)

9. Let GB = {g1, . . . , g|GB |} and G′B = {g′1, . . . , g|G′B |}. For each gi ∈ GB, choose gi
satisfying

[gi, GA] = 0 (7.36)

[gi, GC] = 0 (7.37)

[gi, G
′
C] = 0 (7.38)

[gi, {gi+1, . . . , g|GB |}] = 0 (7.39)

[gi, {g′i+1, . . . , g
′
|GB |}] = 0 (7.40)

[gi, {g1, . . . , gi−1}] = 0 (7.41)

{gi, gi} = 0 (7.42)

{gi, g′i} = 0. (7.43)

To see that such a choice of gi always exists, note that it must satisfy at most 2n affine
linear equations, all of which are linearly independent, in a space of dimension 2n.

Now that we have prepared the generator matrices, we will step-by-step map between
adjacent codes transversally.

101

7.3.2 Applying the transformation

10. For 1 ≤ i ≤ |GB| indexing the elements of GB, perform the transformation gi 7→ gi.
Note that the resulting stabilizer codes are adjacent, and so the preceding discussion
gives a transversal circuit for each mapping.

11. For 1 ≤ i ≤ |GC | indexing the elements of GC , perform the transformation gi 7→ g′i.
Again, since the codes are adjacent, the mapping can be done transversally.

12. For 1 ≤ i ≤ |GB| indexing the elements of G′B, perform the transformation gi 7→ g′i

starting from i = |GB| and working backwards towards i = 1. Again, we have a
transversal circuit for each mapping.

13. Discard the ancilla.

This randomized variant differs from the original SRA in several ways. First, there is
the introduction of ancilla, which we will see are vital for preserving the distance. Next, the
SRA fixes the generating setsG,G′ subject to the sameGA andGC conditions, but with dif-
ferent GB conditions. Namely, the SRA fixes the g to be the product of the complementary
logical operators to those operators in GB and G′B, which can be seen as nontrivial logical
operators on the opposite code. This allows for a certain degree of freedom in choosing
the order in which one converts between the two codes, but restricts the GC ,G′C that are
available to use. Also in the SRA, only the set of valid permutations among GB and GC

are considered, which restricts the search for a distance-preserving mapping. In the rSRA,
we consider the full set of invertible transformations on GC for a better chance of success.
Finally, the transformation described above is symmetric in the sense that switching from
G to G′ or G′ to G after step 9 results in the same set of intermediate codes. We will see
that this simplifies the set of errors we must consider.

7.4 Distance bounds

We now show that, with low overhead and high probability, the described rSRA will yield
a distance-preserving circuit. More specifically, we show that the intermediate codes pre-
serve the distance of the extremal codes.

Theorem 7.2. Let S,S ′ be any two stabilizer codes with parameters [[n1, k, d1]] and [[n2, k, d2]],

respectively. Let

d := min{d1, d2}, n := max{n1, n2} (7.44)

102

. Then, the rSRA will output a distance-preserving circuit mapping information encoded in

S to information encoded in S ′ with probability 1− ε using

m = O(d log
n

d
+ log

1

ε
) (7.45)

ancilla qubits.

Proof. Consider a particular error e : |e| < d. There are four different types of errors to
consider.

(1) e ∈ S ∩ S ′: In this case, e ∈ Span(GA), and so remains passively corrected throughout
the transformation.

(2) e ∈ S \ N (S ′): In this case, we can decompose e = gA + gB + gC where gA ∈
Span(GA), gB ∈ Span(GB), and gC ∈ Span(GC). Furthermore, gC 6= 0, or else e
would be a logical operator of weight < d for S ′. Thus, e must be detected by G′C , and so
it remains detectable after step 11. In particular, before the end of step 11, e must fall out
of the intermediate stabilizer group. Suppose this occurs for the first time when transform-
ing between two adjacent codes whose stabilizer groups differ by g, g′. Then we can write
e = g +

∑
i aigi, and as g′ commutes with all other gi, it must be that {e, g′} = 0. Since g′

remains in each intermediate code up through step 11, e must be detectable throughout.

(3) e ∈ S ′ \ N (S): This error is just an error of type (2) when performing the opposite
transformation from S ′ to S. By symmetry of the scheme, the set of intermediate codes
during this opposite transformation is the same, and so these errors remain detectable by
the preceding argument.

(4) e 6∈ N (S) ∪N (S ′): Let G(0)
C , G

′(0)
C be the bases GC and G′C we choose after step 6 in

the rSRA scheme, and let G(1)
C , G

′(1)
C be the bases we choose after step 8. Note that the

syndrome map for G(1)
C can then be expressed as

Syn
G

(1)
C

(e) = U(V · SynGB(e) + Syn
G

(0)
C

(e)). (7.46)

103

In this case it must be that

(SynGA(e)|SynGB(e)|Syn
G

(0)
C

(e))T 6= 0, (7.47)

(SynGA(e)|SynG′B(e)|Syn
G′

(0)
C

(e))T 6= 0. (7.48)

Note that if SynGA(e) 6= 0, then e is always detectable since each intermediate code
includes the check operators from GA. Thus, we only need to consider the case where
SynGA(e) = 0, and so we can assume that

(SynGB(e)|Syn
G

(0)
C

(e))T 6= 0 (7.49)

and
(SynG′B(e)|Syn

G′
(0)
C

(e))T 6= 0. (7.50)

Let Pe denote the probability that the error e is undetectable in some intermediate code
over the random choices of U , V , and V ′. We divide Pe into three parts. Let Ae denote the
event that Syn

G
(1)
C

(e) = 0, Be the event that Syn
G′

(1)
C

(e) = 0, and let Ce denote the event
that both Syn

G
(1)
C

(e) and SynGC ′(1)(e) are nonzero, yet e becomes undetectable on some
intermediate code during the transformation. Then Pe ≤ Pr[Ae] + Pr[Be] + Pr[Ce]. We
bound Pr[Ae], Pr[Be], and Pr[Ce] separately. To bound Pr[Ae], note that

Syn
G

(1)
C

(e) = U(V · SynGB(e) + Syn
G

(0)
C

(e)). (7.51)

Since U ∈ GL(F2, n − k), Ae occurs if and only if V · SynGB(e) + Syn
G

(0)
C

(e) = 0. If
SynGB(e) = 0, it must be the case that Syn

G
(0)
C

(e) 6= 0, and so Syn
G

(1)
C

(e) 6= 0; otherwise
SynGB(e) 6= 0 and V · SynGB(e) + Syn

G
(0)
C

(e) is uniformly random over {0, 1}|GC |. In
either case, we have

Pr[Ae] ≤ 2−|GC |. (7.52)

Repeating the same argument shows that Pr[Be] ≤ 2−|GC | as well. To bound Pr[Ce], define

v = V · SynGB(e) + Syn
G

(0)
C

(e), (7.53)

w = V ′ · SynG′B(e) + Syn
G′

(0)
C

(e). (7.54)

Since Uv, (U−1)Tw 6= 0, e will be detectable during steps 10 and 12, and so Ce occurs
only if e becomes undetectable during step 11. Specifically, it must be that SynGA(e) =

0, SynGB(e) = 0, and the last 1 in the vector Uv occurs before the first 1 in the vector
(U−1)Tw. This is because we are sequentially replacing the check operators of G with

104

the check operators of G′, and so an error becomes undetectable for some intermediate
code only if we produce some zero syndrome during this sequence of substitutions. By
Lemma C.1, for two nonzero vectors v, w ∈ {0, 1}|GC |, the probability that the last 1 in Uv
comes before the first 1 in (U−1)Tw is bounded by (|GC | − 1) · 2−|GC |.

Summing these three terms, we have Pe ≤ (|GC | + 1) · 2−|GC |. Taking a union bound,
the probability P that any of the intermediate codes fail to detect any error of weight less
than d is upper bounded by

P ≤
∑

e:|e|<d

Pe ≤ |{e : |e| < d}| · (|GC |+ 1) · 2−|GC |. (7.55)

Taking a Chernoff bound, we get that this is in turn upper bounded as

P ≤ 4n+m · e−D(d−1
n+m

|| 3
4
)(n+m) · (|GC |+ 1) · 2−|GC | (7.56)

where D(·||·) is the KL-divergence. By the quantum singleton bound, we can assume
d−1
n+m

< d−1
n
< 3

4
. Furthermore, by Lemma C.2, |GC | is given by rank(GTBG′), which is at

least m. So the probability of failure can be further upper bounded by

P ≤ 4n+m · e−D(d−1
n+m

‖ 3
4
)(n+m) · (m+ 1) · 2−m. (7.57)

It suffices to choosem such that the above quantity is upper bounded by ε in order to achieve
a high probability of success. In particular, the case ε = 1 upper bounds the minimum
number of ancilla qubits required for a fault-tolerant transformation. By Lemma C.3 we
observe that taking

m = O(d log
n

d
+ log

1

ε
) (7.58)

is sufficient for the rSRA scheme to succeed with probability 1− ε.

7.5 Discussion

Theorem 7.2 shows that with high probability, the rSRA will produce a transversal circuit
with intermediate codes that have distances at least the minimum of the distances of the
extremal codes. It is important to note that this does not necessarily imply fault-tolerance.
The reason is because, when measuring g′, the randomness in the outcome prevents us from
using that syndrome bit during error-correction. More specifically, consider the following
two scenarios.

105

1. We project onto the (+1)-eigenspace of g′.

2. We project onto the (−1)-eigenspace of g′ and simultaneously experience an error
that anticommutes with only g′.

Then we cannot distinguish these two scenarios using only our syndrome bits, and so
cannot correct the resulting error. More generally, we can cast the property required for
fault-tolerance in terms of subsystem codes. For every conversion between adjacent codes,
we consider the subsystem code with a single gauge degree of freedom corresponding to
gauge operators g′ and g. Then the resulting conversion will be t-fault-tolerant precisely
when the resulting subsystem code has distance 2t + 1. This is because the redundant
syndrome information can diagnose errors without the syndrome bit associated to g′, and
so ensure that we project onto the correct eigenspace. For this reason, additional techniques
may be required to achieve fault-tolerance using the rSRA, such as error-detection on the
ancilla. We leave this to future work.

These techniques contrast with recent results from [120], where it was shown that piece-
able fault-tolerance offers generic fault-tolerant code switching between stabilizer codes
subject to certain constraints. However, their techniques require that the codes are nonde-
generate and have some set of native fault-tolerant Clifford gates, allowing a fault-tolerant
SWAP gate between different codes. One could also consider preparing a second code state
and using logical teleportation to achieve a fault-tolerant mapping [28].

Practically, on small examples, one finds that often no ancilla qubits are required to
find a distance-preserving circuit, which is desirable as the resulting circuit may then be
fault-tolerant. In general, this can be attributed to a coarse accounting of |GC | in terms of
the number m of ancilla qubits. In most cases, N(S) ∩ N(S ′) will be small, and so the
ancilla will be superfluous.

Moreover, the multi-qubit gate complexity of the algorithm is
∑

P∈{gi}∪GB∪GC |P |, so
that choosing a low weight generating set is ideal for reducing the complexity of the code
switching circuit. For this reason, LDPC codes might provide more efficient code switching
circuits, although preserving the distance may depend on choosing a high weight set of
generators.

This algorithm derives its usefulness from its generality. For specific code switching ex-
amples, it may be profitable to modify the circuit using the rSRA as a template, augmented
with a larger class of fault-tolerant manipulations such as local Clifford gates, in order to
search for a fault-tolerant mapping. For large code sizes, the use of high-weight Shor-style
measurements is limiting as it requires large verified CAT states. Thus, this technique may
be most useful as a step in a concatenated scheme, or simply as a search ansatz.

106

One subtlety about the rSRA is that, while it outputs a distance-preserving circuit
switching between two codes with high probability, this is difficult to check. This follows
from the difficulty of computing the minimum distance of a generic error-correcting code,
which is a co-NP-hard problem in general [124]. Indeed, even when restricting to a partic-
ular distance, this check remains extremely costly. This poses a barrier to derandomizing
the algorithm, which would be one desirable avenue for future improvement.

Another such improvement would be to minimize overhead. One could imagine taking
a random local clifford transformation in order to increase the size of GC , rather than in-
troducing ancilla. Such a strategy would be interesting since locally equivalent codes have
nearly identical properties. Of course, modifying the algorithm to ensure fault-tolerance is
the most important improvement.

If it is true that one can always choose locally equivalent representatives for which the
rSRA provides a distance-preserving conversion without ancilla, this would suggest that all
error-protected information in stabilizer codes is, in some sense, “transversally equivalent”.
This contrasts with the diverse set of equivalence classes of locally unitarily equivalent
codes, which can be identified as distinct submanifolds of Grassmanians. Indeed, it may
be of conceptual interest to interpret these upper-bounds in a broader framework of fault-
tolerance, such as the one investigated in [125].

Similarly, the generality of the rSRA provides an aesthetically nice interpretation of
error-protected information. It suggests that, with the addition of some minimal overhead,
any stabilizer error-protected encoding of information is indeed “transversally equivalent”
to any other.

107

CHAPTER 8

Summary and conclusions

In this thesis, we have studied several problems in the interdisciplinary of classical and
quantum information. We investigated situations where quantum information proves in-
trinsically different from their classical counterpart, and designed classical algorithms that
facilitate quantum computing by providing more robust and accurate implementations. In
particular, we have contributed the following.

8.1 Resillience of quantum hashing against classical leak-
age

8.1.1 Summary

In Chapter 3, we studied the comparison between two properties of a classical-quantum
correlation, namely the amount of initial classical-classical correlation required to generate
it (i.e. the conversion parameter), and the maximum amount of classical-classical correla-
tion it can possibly yield post-measurement (i.e. the guessing probability). Although the
two quantities are obviously the same for classical-classical correlations, we proved an
arbitrary separation between the two quantities for classical-quantum correlations.

As an application, we looked at quantum cryptographic hash functions. Such functions
are examples where the hash itself hardly contains any information of the classical secret
message, yet generating it correctly requires full information of the message. It was then
proved that quantum cryptographic hashing is maximally resilient to classical leakage. The
result also indicated that inherently new approaches must be found in order to prove the
existence of quantum-proof extractors with comparable parameters as their classical coun-
terparts.

108

8.1.2 Future work

Existence of quantum-proof extractors. The result in [33] originated from the author’s
investigation into non-constructive proof of the existence of quantum-proof extractors. One
long-standing open problem is in what range of parameters do (non-constructive) quantum-
proof extractors exist. Probabilistic methods yield existence of randomness extractors with
optimal parameters, and the existence of classical-proof extractors follow naturally; how-
ever, the argument fails for quantum-proof extractors since it is no longer possible to define
conditional distributions conditioned on a pre-measurement quantum state.

One reason that the existence of quantum-proof extractors is hard to prove is the lack of
results to classify classical-quantum states. For classical joint distributions, Lemma 3.4 in-
dicates that in order to prove that a certain function is a classical-proof extractor, it suffices
to evaluate its performance over the set of conditionally uniform distributions. Such a set
is a polyhedron of finite dimension, thus in principle easy to deal with. Classical-quantum
states, on the other hand, does not yet have such a reduction into the finite-dimensional
case. Future work is needed to further investigate the structure of the set of classical-
quantum states with a certain conditional min-entropy (defined as CQ(k) in 3.5).

8.2 Limitations of classical strong simulations

8.2.1 Summary

In Chapter 4 and 5, we studied the limitation of classical strong simulations of quantum
computation.

One natural representation of a general quantum circuit is a tensor network, and almost
all predominant strong simulators achieve strong simulation by tensor network contraction,
with various techniques for resource saving. In particular, all those techniques fall into a
two-step paradigm: first, a monotone arithmetic circuit with respect to certain entries of
the tensor network is constructed, and second, the values of the entries are put into the
monotone arithmetic circuit to yield the result amplitude value. We call strong simulations
in this paradigm monotone. While techniques can be applied to simplify the monotone
arithmetic circuits in the first step, the monotone arithmetic circuit is inherently large on
size if the function to be computed is sufficiently complicated. Applying hardness results of
computing the permanent using monotone arithmetic circuit, we proved an unconditional
and explicit lower bound of the complexity of monotone strong simulation.

For more general strong classical simulations, unconditional lower bounds are no longer
available without a breakthrough in complexity theory (i.e. answering the question whether

109

#P = P), and we go to conditional lower bounds, with a goal of proving lower bounds as
explicit as possible using the most widely-believed computational assumptions. We prove
that strong simulation of general n-qubit quantum circuit with polynomial size takes at
least exponential time in terms of n based on the Exponential Time Hypothesis (ETH); the
exponent can be made explicit based on the Strong Exponential Time Hypothesis (SETH).
We further explore the hardness of strong simulation in terms of the number of T gates in
a Clifford+T circuit, and proved a strong exponential lower bound based on ETH. Lower
bounds with explicit exponents were also computed based on the state-of-the art SAT and
3-SAT solvers.

8.2.2 Future work

Superior weak simulator. Since strong quantum simulation is fundamentally unscal-
able, one must go to weak simulation methods that are intrinsically different from strong
simulation methods. It has been long known that efficient exact (or multiplicatively ap-
proximate) weak simulation would result in the polynomial hierarchy collapsing to the
third level [126], and efficient additively approximate weak simulation would defeat the
purpose of quantum computing (i.e. BQP = BPP). However, how exactly difficult weak
simulation is, and to what size of quantum devices can we hope to perform weak simu-
lation, are important questions yet to be answered. Understanding the difference between
weak and strong simulations, identifying fundamental limitations of weak simulations and
designing efficient weak simulation methods will be increasingly important with the rapid
improvements of quantum devices.

Space efficient strong simulation. Our work only focused on the total time of strong
simulation. Although the results set a boundary beyond which strong simulation would
be almost absolutely intractable, current simulation methods can still be greatly improved
with clever memory allocation and parallelization. In times where space becomes a limiting
factor, we are also interested in space-efficient strong simulators, or the tradeoff between
time and space for strong simulators. Along this line, there is the Feynman path-integral
which has time complexity O(2nd), where n is the number of qubits and d is the number of
indices in the tensor network (linear to the number of gates). More recently, Aaronson and
Chen [75] used Savitchs Theorem to show that one can achieve a O(dn)time-complexity.
Does there then exist an even faster space-efficient strong simulator with time-complexity
O(d · 2n)? Can we fine-tune such a simulator to achieve a general time-space tradeoff, as
in [75]?

110

8.3 Numerically stable algorithm for angle finding

8.3.1 Summary

In Chapter 6, we investigated the problem of finding angle sequences in quantum signal pro-
cessing. Quantum signal processing is a simple and elegant quantum algorithm paradigm
which achieves optimal complexity for various quantum algorithmic tasks. However, one
drawback of quantum signal processing is that there is yet to be a numerically stable algo-
rithm for finding the angles for the single qubit rotations. Although running the quantum
circuit is efficient, designing the quantum circuit itself might suffer from numerical insta-
bility of angle-finding algorithms.

We investigated the problem from an algebraic perspective, by looking at Laurant poly-
nomials over M(2,C), and some subalgebras of it we called Low and Haah algebra re-
spectively. We analyzed the unitary elements with parity lying in those two algebras, and
showed that any element in the unitary parity group is uniquely decomposable. This allows
us to decompose a unitary element in a binary manner by solving over-determined linear
systems, such that initial error would only propagate polynomially with respect to the de-
gree of the element. We further provided experimental evidence that our method is indeed
numerically stable, by showing that angle finding for Hamiltonian simulation can be done
more than one magnitude faster than previous algorithms.

8.3.2 Future work

Theoretical proof for numerical stability. We are yet to be able to show that our method
is theoretically guaranteed to be numerically stable. Such a proof requires either a better
understanding of the linear system we are trying to solve, or a modification of the algorithm
(e.g. using weighted least-square instead of the least-square method). We leave this to
future work.

More efficient angle-finding algorithms. Both our algorithm and the current state-of-
the-art [24] run in time Õ(n3), and it is not clear that such time complexity is the best one
can achieve. To come up with a faster algorithm, one would need to find an alternative
to the root finding step in the completion phase, either by finding roots more quickly for
specialized inputs or by designing a novel algorithm that does not need the root information
at all. We leave this to future work.

111

8.4 Transversal switching between stabilizer codes

8.4.1 Summary

In Chapter 7, we considered the problem if finding a path of deformation from one stabi-
lizer code to another, while the intermediate codes all have a large distance. Based on the
proposal in [31], we proved theoretical upper bounds that any intermediate code fails to
have a large distance using the probabilistic method. With ancilla qubits introduced, this
quantity can be made arbitrarily small, yielding a randomized algorithm for code switching
while preserving the distance with high probability.

8.4.2 Future work

Fault-tolerant switching between stabilizer codes. The result in Chapter 7 derives its
usefulness from its generality. However, there are major drawbacks of the rSRA scheme,
which might be improved in future work to generate a fully fault-tolerant code-switching
scheme:

• The distance-preserving property is unclear how to verify and how to make use of.
Given a stabilizer code, verifying that it is indeed of a certain distance d is a co-
NP-complete problem. Although the probabilistic method almost certainly yields a
distance-preserving deformation path, it is difficult to verify for a single trial that
a distance-preserving path has been found. Moreover, for active error correction,
distance is not the only limiting factor for error correction. Being able to decode a
syndrome, i.e. to find a low-weight error configuration generating a certain syndrome
is necessary for correcting that error. It is not known how one can design efficient
decoders for each of the randomly generated intermediate codes. It would be more
favorable to derandomize the rSRA scheme, such that each individual code has a
provable distance and is equipped with an efficient decoder.

• In some cases, especially when we are switching between non-degenerate codes,
the distance-preserving property automatically yields fault-tolerance. This is not the
case, however, for more general stabilizer codes with degeneracy. It might be the case
that different methods other than sequential deformation are needed to overcome this
issue.

112

APPENDIX A

Proof of the Cotlar-Stein Lemma

We present here the proof of the Cotlar-Stein Lemma used in Chapter 3, Section 3.3 for
completeness.

Lemma A.1 (Cotlar-Stein Lemma). For a set of unit vectors {|ψ1〉, |ψ2〉, · · · , |ψn〉} with

maximum fidelity maxi,j:i 6=j |〈ψi|ψj〉| ≤ δ, we have

λmax

(
n∑

i=1

|ψi〉〈ψi|
)
≤ 1 + (n− 1)δ. (A.1)

Proof. We use the fact that the operator norm is upper bounded by all Schatten p norms,
i.e.

λmax(ρ) = ‖ρ‖∞ = lim
p→∞

(Tr[ρp])1/p . (A.2)

For an arbitrary positive integer m, let’s now bound

‖
n∑

i=1

|ψi〉〈ψi|‖mm = Tr

[
(
n∑

i=1

|ψi〉〈ψi|)m
]
. (A.3)

We have

Tr

[
(
n∑

i=1

|ψi〉〈ψi|)m
]

=
∑

i1,··· ,im∈[n]

Tr

[
m∏

j=1

|ψij〉〈ψij |
]

(A.4)

=
∑

i1,··· ,im∈[n]

m−1∏

j=1

〈ψij |ψij+1
〉 · 〈ψim|ψi1〉 (A.5)

≤
∑

i1,··· ,im∈[n]

m−1∏

j=1

|〈ψij |ψij+1
〉| · |〈ψim|ψi1〉|. (A.6)

(A.7)

113

Using the fact that both |ψim〉 and |ψi1〉 are unit vectors, we have |〈ψim|ψ1〉| ≤ 1. Then

Tr

[
(
n∑

i=1

|ψi〉〈ψi|)m
]
≤

∑

i1,··· ,im∈[n]

m−1∏

j=1

|〈ψij |ψij+1
〉| (A.8)

≤
∑

i1,··· ,im−1∈[n]

m−2∏

j=1

|〈ψij |ψij+1
〉| ·
∑

im

|〈ψim−1|ψim〉| (A.9)

(A.10)

Note that for every im−1, the term
∑

im
|〈ψim−1|ψim〉| can be upper bounded by 1+(n−1)δ.

Repeatedly applying this argument, we have

Tr[(
n∑

i=1

|ψi〉〈ψi|)m] ≤
∑

i1,··· ,im−1∈[n]

m−2∏

j=1

|〈ψij |ψij+1
〉| · (1 + (n− 1)δ) (A.11)

≤
∑

i1,··· ,im−2∈[n]

m−3∏

j=1

|〈ψij |ψij+1
〉| · (1 + (n− 1)δ)2 (A.12)

≤ · · · (A.13)

≤
∑

i1

(1 + (n− 1)δ)m−1 (A.14)

= n · (1 + (n− 1)δ)m−1. (A.15)

Therefore, for every m we have

λmax(
n∑

i=1

|ψi〉〈ψi|) ≤ (1 + (n− 1)δ)1−
1
m · n1/m. (A.16)

The result follows by letting m→∞.

114

APPENDIX B

Proof of the Sparsification Lemma

Given a 3-SAT instance φ = C1 ∧ C2 ∧ . . . Cm, we identify each clause C1, C2, . . . Cm

as a subset of all literals {x1,¬x1, x2,¬x2, . . . , xn,¬xn}. We start from a simple Boolean
identity:

(a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c). (B.1)

This identity implies the following Lemma.

Lemma B.1. For an arbitrary subset {C1, . . . , Cm′} of clauses of φ and for C :=
⋂m′

i=1Ci,

we have φ = φ1 ∨ φ2, where

φ1 = C ∧ Cm′+1 ∧ Cm′+2 ∧ · · · ∧ Cm, (B.2)

φ2 = (C1 \ C) ∧ (C2 \ C) ∧ · · · ∧ (Cm′ \ C) ∧ Cm′+1 ∧ Cm′+2 ∧ · · · ∧ Cm. (B.3)

Given that φ is a 3-SAT instance, both φ1 and φ2 are also 3-SAT instances. Moreover,
we also have the following.

Lemma B.2. Let φ, φ1, φ2 be defined as in Lemma B.1. Then neither of the new instances

has length greater than the original: L(φ) ≥ L(φ1), L(φ2).

Sunflowers. We call a collection C1, . . . , Cm′ of clauses a (k, h)-sunflower (with h > 0) if

• Each Ci contains exactly k literals, and

• C :=
⋂m′

i=1Ci contains h literals.

C is then called the heart of the sunflower and the collection {C1 \ C, · · · , Cm′ \ C} of
clauses are called petals. The algorithm for sparsification then keeps a set of current 3-SAT
formulas whose disjunction is φ. Moreover, it repeatedly replaces a formula in this set with
two formulas as long as it finds a collection of its clauses that is a large sunflower. One of

115

these new formulas is obtained from the original by replacing the sunflower with its petals,
while the other is obtained by replacing the sunflower with its heart.

SPARSIFICATION ALGORITHM. For 3-SAT instances, there are three kinds of sunflowers:
(2, 1)-sunflowers, (3, 2)-sunflowers, and (3, 1)-sunflowers. Consider the following algo-
rithm parametrized by θ1, θ2: 1 ≤ θ1 ≤ θ2 to be determined. Call a sunflower good if it
is a (2, 1)- or (3, 2)-sunflower of size at least θ1, or a (3, 1)-sunflower of size at least θ2.
Among good sunflowers, (2, 1)-sunflowers have higher priority than (3, 2)-sunflowers, and
(3, 2)-sunflowers have higher priority than (3, 1)-sunflowers. Our sparsification algorithm
first creates an empty list `, which is a global variable, and then calls (once) the recursive
SPARSIFY algorithm below.

procedure SPARSIFY(φ)
if φ does not contain a good sunflower then

append φ to `.
else

let C1, C2, . . . , Cm′ be a good sunflower in φ with the highest priority and let
C be the heart

φh =REDUCE(C ∧ Cm′+1 ∧ Cm′+2 ∧ · · · ∧ Cm)
φp =REDUCE((C1\C)∧(C2\C)∧· · ·∧(Cm′\C)∧Cm′+1∧Cm′+2∧· · ·∧Cm)
SPARSIFY(φh); SPARSIFY(φp)

end if
end procedure

Figure B.1: The Algorithm SPARSIFY.

procedure REDUCE(φ)
while φ contains two clauses Ci and Cj , Ci ⊆ Cj do

remove Cj from φ
end while
return φ

end procedure

Figure B.2: The Algorithm REDUCE.

Note that the algorithm traverses through a binary recursion tree rooted at φ, where each
node corresponds to a 3-SAT formula. The set of 3-SAT formulae corresponding to leaf
nodes is the collection of instances in `, which is the list we needed to construct. A recursive
application of Lemma B.1 gives that

∨
φi∈` φi = φ. We further prove the following.

116

• Each leaf node corresponds to a formula of length at most η(θ1, θ2)n, where

η(θ1, θ2) := 2(θ1 + θ2); (B.4)

• There are at most 2γ(θ1,θ2)n nodes in the tree, where

γ(θ1, θ2) := 4θ1×H(
1

4θ21
+

1

θ2
); H(p) := −p log2 p− (1− p) log(1− p). (B.5)

• Our algorithm runs in time O(2γ(θ1,θ2)poly(n)). This follows immediately from the
above.

Maximum Length of Each Leaf Node. Given a 3-SAT instance φ∗, denote the number
of 2-clauses by m2 and the number of 3-clauses by m3. Clearly, L(φ∗) = 2m2(φ

∗) +

3m3(φ
∗) − 1. Let dj(φ∗) be the maximum number of clauses of size j with an nonempty

intersection. We have the following observation (by counting the total number of literals in
2-, respectively 3-, clauses):

2m2(φ
∗) ≤ 2n · d2(φ∗)

3m3(φ
∗) ≤ 2n · d3(φ∗).

For a formula φ∗ on a leaf node, since there are no (2, 1)-sunflowers of size at least θ1,
we have d2(φ∗) < θ1. Similarly, d3(φ∗) < max(θ1, θ2) = θ2. Together with Lemma B.2,
these give:

L(φ∗) = 2m2(φ
∗) + 3m3(φ

∗)− 1 < 2(θ1 + θ2)m(φ∗) ≤ 2(θ1 + θ2)m(φ). (B.6)

Number of Leaf Nodes. To upper bound the number of leaf nodes, we need the notion
of immigrant clauses. For any formula on some node of the recursion tree, call a clause
immigrant if that clause is not present in the root. For any path from the root to a leaf, all
immigrant clauses that newly appear are distinct (i.e. it cannot happen that an immigrant
clause disappears and then reappears later). This leads to the following observation.

Observation B.1. REDUCE only happens when a newly introduced immigrant clause is

contained in previously present clauses.

The high-level idea of the proof is as follows: we show that there are at most a linear
number of immigrant clauses ever introduced. Since in each round at least one immigrant
clause is introduced, the recursion tree has linear depth. Moreover, many immigrant clauses

117

are created whenever the petals of a sunflower are taken, and so there must be few such
steps, further restricting the number of leaves.

Let r2(φ∗) be the maximum number of immigrant 2-clauses with nonempty intersec-
tion. Clearly r2(φ∗) ≤ d2(φ

∗). The following holds for every node in the recursion tree.

Lemma B.3. For every formula φ∗ in the recursion tree, r2(φ∗) ≤ 2θ1 − 1.

Proof. The proof follows by induction from top to bottom. For the root, φ, we have r2(φ) =

0. Next consider a non-top node v on which a new immigrant 2-clause is created, and the
corresponding formula φ∗. There are two cases to consider.

• φ∗ takes the heart of a (3, 2)-sunflower from its parent φ′. Since φ′ does not have a
(2, 1)-sunflower of size θ1, d2(φ′) ≤ θ1 − 1. By only adding one new 2-clause, we
have that

r2(φ
∗) ≤ d2(φ

∗) ≤ d2(φ
′) + 1 ≤ θ1 ≤ 2θ1 − 1. (B.7)

• φ∗ takes the petals of a (3, 1)-sunflower from its parent φ′. Similar to the former
case, d2(φ′) ≤ θ1 − 1. Assume that r2(φ∗) ≥ 2θ1. Then there exists a literal y which
appeared in at least θ1 + 1 of the newly-formed petals. However, this is not possible
as there would be a (3, 2)-sunflower of size at least θ1 + 1 in φ′, and the algorithm
would choose that sunflower instead of a (3, 1)-sunflower.

This leads to the following observation.

Observation B.2. An immigrant clause of size one can only reduce at most 2θ1 − 1 immi-

grant clauses of size two.

There are at most n immigrant 1-clauses introduced (literals corresponding to a single
variable can be immigrant at most once), and so there are at most (2θ1 − 1)n immigrant
2-clauses reduced by them (because in each reduction at most 2θ1−1 immigrant clauses are
eliminated). When the algorithm arrives at a leaf, φ∗, because r2(φ∗) ≤ 2θ1 − 1, we have
that the total number of immigrant 2-clauses that remains is at most (2θ1−1)2n

2
< (2θ1−1)n.

Thus the number of immigrant 2-clauses ever introduced is at most (4θ1 − 2)n. In each
step going down in the recursion tree at least one new immigrant one- or two- clause was
created, and so depth of the recursion tree is at most (4θ1 − 2)n + n < 4θ1n. This alone
would not be sufficient to get a good estimate on the number number of leaves, but we
further observe the following.

118

Each time the petals of a sunflower are taken, either at least θ1 1-clauses are introduced,
or at least θ2 2-clauses are introduced. Therefore, the number of petals taken along a path
from the root to a leaf is at most n

θ1
+ 4θ1n

θ2
. This gives the bound

n
θ1

+
4θ1n
θ2∑

i=0

(
4θ1n

i

)
≤ 2γ(θ1,θ2)n, (B.8)

on the number of leafs, where γ(θ1, θ2) ≤ 4θ1H(1
4θ21

+ 1
θ2

).

Optimization. First, note that Equation B.8 and H(p)/p(1 + log2
1
p
) −→ 1 at p = 0 given

that γ(θ1, θ2) can be arbitrarily small at θ2 = 4θ21 and for θ1 sufficiently large. This, together
with Equation B.6, gives the Sparsification Lemma.

Next, we compute the values for θ1 and θ2 that optimize the hardness reductions from
instances whose size parameters are expressed in terms of n to instances whose size pa-
rameters are expressed in terms of L.

B.1 Proof of Lemma 5.4

In this section, we prove Lemma 5.4 for completeness. Recall Lemma 5.4:

Lemma B.4 (Lemma 5.4, restates). Assuming the ETH, there exists constant a > 0 such

that any classical algorithm solving 3-SAT instances with length L takes 2aL time, where

again L is the length of the formula.

Proof. Suppose that for each a > 0, contradictory to Lemma 5.4, there is an algorithm
SOLVEa that solves 3-SAT in time O(2aL). We show that the existence of such a family of
algorithms implies the existence of a family of algorithms that solve 3-SAT in time O(2εn)

for every ε > 0, contradicting the ETH. Given ε > 0, set ε′ = ε/2. Consider the following
algorithm.

1. Given a 3-SAT instance φ over n variables, run the SPARSIFICATION ALGORITHM

and get k 3-SAT instances φ1, . . . , φk, where k ≤ 2ε
′n, each of length at most c(ε′)n.

2. Solve every instance φ1, . . . , φk using the algorithm SOLVEε′/c(ε′)n.

3. If any of the φi are satisfiable, output 1; otherwise output 0.

By the Sparsification Lemma, Step 1 takes time 2ε
′npoly(n) time. Solving an instance in

Step 2 takes time 2
ε′
c(ε′) c(ε

′)n since L ≤ c(ε′)n. The total running time of Step 2 is then

119

2(ε′+ε′)n = 2εn. Finally, Step 3 combines the results from Step 2, and so takes time O(2ε
′n).

The overall running time is then dominated by 2εn.

B.2 Proof of Lemma 5.5

In this section, we present the proof of Lemma 5.5 for completeness. The proof of Lemma 5.5
is very similar to the proof of Lemma 5.4, except that we now have to calculate the explicit
constants. Recall Lemma 5.5:

Lemma B.5 (Lemma 5.5, restated). Assume that a classical algorithm solves 3-SAT in

time O(23.1432×10−7L), where L is the length of the formula, m2 is the number of 2-clauses,

m3 is the number of 3-clauses, so that m = m2 +m3 and L = 2m2 + 3m3 − 1.

Then one can create a 3-SAT solver that achieves an O(1.3n) running-time for m =

poly(n), where n denotes the number of variables of the 3-SAT instance and m denotes

the number of clauses.

Proof. Assume we had a 3-SAT solver SOLVE that runs in time o(23.1432×10−7L) on in-
stances of length L. From it, we construct a 3-SAT solver SOLVE’ that runs in time o(1.3n),
beating the current best 3-SAT solver. Let θ1 = 109.395 and θ2 = 58367.2 . SOLVE’ will
then

• Run the SPARSIFICATION ALGORITHM on input φ to get a list ` of 2γ(θ1,θ2)n sparse
instances in timeO(2γ(θ1,θ2)npoly(n)), each with length η(θ1, θ2)n. We have

∨
φi∈` φi =

φ.

• Use SOLVE to solve each instance φi in time o(23.1432×10−7η(θ1,θ2)n). The total running
time is then less than

23.1432×10−7(η(θ1,θ2)+γ(θ1,θ2))n. (B.9)

• If any of the instances are satisfiable, it outputs 1, otherwise it outputs 0. This step
takes time O(2γ(θ1,θ2)n).

The dominating term in the running time is then 23.1432×10−7(η(θ1,θ2)+γ(θ1,θ2))n. An easy
calculation shows that SOLVE’ runs in o(1.3n), beating the current best bound.

120

APPENDIX C

Lemmas for code distance bounds

In this appendix, we provide proofs of some technical lemmas in Chapter 7 for complete-
ness.

Lemma C.1. Let v, w ∈ {0, 1}n\{0} and U ∈r GL(F2, n). Let i0 = max{i : (U ·v)i = 1}
and i1 = min{i : ((U−1)T · w)i = 1}. Then,

Pr[i0 < i1] ≤ (n− 1) · 2−n. (C.1)

Proof. Let 〈·, ·〉 be the dot product over F2. Note that 〈v, w〉 = 〈U · v, (U−1)T · w〉. If
〈v, w〉 = 1, then there must be at least one entry where both U · v and (U−1)T · w are 1 for
whichever U we choose, and so Pr[i0 < i1] = 0. Therefore we only need to consider the
case in which 〈v, w〉 = 0.

Consider the action ofGL(F2, n) onA defined by U(v, w)→ (U ·v, (U−1)T ·w), where
A = {(v, w)|v, w ∈ {0, 1}n \ {0}, 〈v, w〉 = 0}. We show that the action is transitive by
showing that for all such pairs (v, w), there always exists a U sending (e1, en) to (v, w),
where e1, en are (1, 0, . . . , 0) and (0, 0, 0, . . . , 1), respectively. Given such a (v, w), first
extend v to a basis for w⊥, say (u1 = v, u2, . . . , un−1), and then extend it to the whole
space by adding in un. We claim that U = (u1, · · · , un) is the desired matrix. It is sufficient
to show that the last column w′ of (U−1)T is exactly w. We have UTw′ = en given that
UT (U−1)T = I , and that UTw = en by construction of U . Then, since U is invertible,
w = w′.

A uniformly random distribution over invertible U then induces a uniformly random
distribution over A. Then Pr[i0 < i1] can then be bounded by counting the number of such

121

pairs in A:

Pr[i0 < i1] =

∑n
i0=1 2i0−1(2n−i0 − 1)

(2n − 1)(2n−1 − 1)
(C.2)

=
(n− 2)2n−1 + 1

(2n − 1)(2n−1 − 1)
(C.3)

≤ (n− 1) · 2−n (C.4)

when n ≥ 2. Note that |A| = 0 when n = 1, so Pr[i0 < i1] ≤ (n − 1) · 2−n holds for all
n ≥ 0.

Lemma C.2. Let GA, GB, GC and GA, G
′
B, G

′
C be the matrices defined up to step 5 in the

rSRA scheme. The commutativity matrix H = GT
CBG

′
C is invertible, and its dimension is

|GC |, with |GC | ≥ m.

Proof. For the two codes Ŝ and Ŝ ′, take arbitrary generator matrices G,G′ and define H ′ =
GTBG′. Note that any two choices of generator matrices for the same code differ by an
invertible row transformation, so the rank of H ′ is invariant under different choices of the
generator matrices. In particular, letting G = (GA|GB|GC), G′ = (G′A|G′B|G′C), we have

H ′ =

0

0

H

 . (C.5)

Note that rank(H) = |GC |, or else there would exist a combination of the rows of
G′C

T that are orthogonal to all the columns of GC . Since all the vectors in G′C are already
orthogonal toGA andGB by definition, this cannot happen as no vector inG′C lies inN (S).
The same argument applies to G′C as well. Therefore H is invertible, with rank(H ′) =

rank(H) = |GC |, and is independent of the choice of GC .
To show that |GC | > m, take ḠC = (I⊗n ⊗ Z ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ Z) and

Ḡ′C = (I⊗n ⊗ X ⊗ I⊗m−1, . . . , I⊗n+m−1 ⊗ X), each of size m. By extending them to
generator matrices Ḡ and Ḡ′ for Ŝ and Ŝ ′ respectively, we get a commutativity matrix H̄
with an invertible submatrix of size m×m, namely

ḠT
CBḠ

′
C = Im, (C.6)

and so rank(H̄) = |GC | ≥ m.

122

Lemma C.3. For D(·||·) the KL-divergence, let

P (n,m, d) = 4n+me−D(d
n+m

‖ 3
4
)(n+m) · (m+ 1) · 2−m. (C.7)

Then P < ε for some m = O(d log n
d

+ log 1
ε
).

Proof. Let α = m/n. Then P (n,m, d) < ε can be rewritten as

f(n,m, d) : = log
P (n,m, d)

ε
(C.8)

= log
m+ 1

ε
+ n

(
(2 + α) log 2 (C.9)

− (1 + α)D

(
d

n(1 + α)
‖3

4

))
< 0. (C.10)

We first compute the dominant term, i.e. the α such that

(2 + α) ln 2− (1 + α)D

(
d

n(1 + α)
‖3

4

)
= 0. (C.11)

Doing this we obtain

(2− α

1 + α
) ln 2 = D

(
d

n(1 + α)
‖3

4

)
(C.12)

(2− α

1 + α
) ln 2 ≥ 2 ln 2 +

d

n(1 + α)

(
ln

d

3n(1 + α)
− 1

)
(C.13)

αn ≤ d

ln 2

(
ln

3n(1 + α)

d
+ 1

)
(C.14)

m ≤ 1

ln 2
d(log

n

d
+ (1 + ln 3)), (C.15)

where we have used convexity of D(p‖q) − p ln p with respect to p. Letting α̃ denote the
solution to (2 + α) ln 2 − (1 + α)D

(
d

n(1+α)
‖3
4

)
= 0, we have that m̃ := α̃n = O(d +

d log n
d
).

We now have that f(n, m̃, d) = log m̃+1
ε

. Taking the derivative of f with respect to m,

123

for all α > α̃ we have

∂f(n,m, d)

∂m
= (C.16)

=
1

m+ 1
−D(

d

(n+m)
‖3

4
)− (m+ n)

∂D(d
n+m
‖3
4
)

∂m
(C.17)

≤ 1

m+ 1
− 2 + α̃

1 + α̃
log 2 +

d

m+ n

(
log

d

3(m+ n− d)

)
(C.18)

≤ 1

m+ 1
− 1

1 + α̃
log 2 +

d

n+m

(
log

d

3(n+m− d)

)
(C.19)

≤ − 1

1 + α̃
ln 2 + 0.1 (C.20)

for m ≥ 10. For fixed n, α̃ is monotonically increasing as a function of d. By the quantum
singleton bound, d−1

n
< 1

2
, and α̃ < 3 even in this case. Therefore ∂f(n,m,d)

∂m
≤ −0.05 when

m ≥ 10, so taking

m = m̃+ 20 log
m̃+ 1

ε
+O(1) = O(d log

n

d
+ log

1

ε
) (C.21)

suffices to make f(n,m, d) < 0.

124

APPENDIX D

Fault-tolerant measurement

For completeness, we include a code switching circuit between adjacent codes, using Shor-
style measurement [123]. We assume access to a collection of verified CAT states. Let
g = P1 ⊗ . . . ⊗ Pn and g′ = P ′1 ⊗ . . . ⊗ P ′n. The measurements are done on the supports
of g and g′. To make the diagram simpler, we suppose that the supports include qubits 1, 2,
and n. Then the circuit obtained from the SRA to convert from the code with stabilizer g′

to the adjacent code with stabilizer g is given by the following.

b

b

b

|CAT〉

b

b

b

b

b

b b b

b b b

b

P1

P2

Pw

X

X

X

|ψ〉L

Parity b b

b b b

b

P ′
1

P ′
2

P ′
n

Figure D.1: A generic circuit switching between adjacent codes using Shor-style measure-
ment.

125

BIBLIOGRAPHY

[1] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1982.

[2] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997. Earlier version in FOCS’94. arXiv: quant-ph/9508027

[3] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the 28th ACM Symposium on Theory of Computing (STOC), pages 212–
219, 1996. arXiv: quant-ph/9605043

[4] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate opti-
mization algorithm. arXiv: 1411.4028, 2014.

[5] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for lin-
ear systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:
0811.3171

[6] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal compo-
nent analysis. Nature Physics, 10:631–633, 2014. arXiv: 1307.0401

[7] Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear
combinations of unitary operations. Quantum Information and Computation,
12(11&12):901–924, 2012. arXiv: 1202.5822

[8] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian simulation
with nearly optimal dependence on all parameters. In Proceedings of the 56th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 792–809, 2015.
arXiv: 1501.01715

[9] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby,
P. Bunyk, C. Deng, C. Enderud, et al. Phase transitions in a programmable quantum
spin glass simulator. Science, 361(6398):162–165, 2018.

[10] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
2018. arXiv: 1801.00862

126

https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1307.0401
https://arxiv.org/abs/1202.5822
https://arxiv.org/abs/1501.01715
https://arxiv.org/abs/1801.00862

[11] Andris Ambainis. Understanding quantum algorithms via query complexity. In
Proceedings of International Congress of Mathematicians’2018, 2017. arXiv:
1712.06349

[12] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow
circuits. Science, 362(6412):308–311, 2018. arXiv: 1704.00690

[13] Avishay Tal. Oracle separation of bqp and ph. 2018.

[14] Mark M. Wilde. Quantum information theory. Cambridge University Press, 2013.

[15] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quan-
tum fingerprinting. Physical Review Letters, 87(16):167902, 2001. arXiv:
quant-ph/0102001

[16] Cupjin Huang, Michael Newman, and Márió Szegedy. Explicit lower bounds on
strong quantum simulation. arXiv: 1804.10368, 2018.

[17] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Methodology of reso-
nant equiangular composite quantum gates. Physical Review X, 6(4):041067, 2016.
arXiv: 1603.03996

[18] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for
systems of linear equations with exponentially improved dependence on precision.
SIAM Journal on Computing, 46(6):1920–1950, 2017. arXiv: 1511.02306

[19] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quan-
tum SDP-solvers: Better upper and lower bounds. In Proceedings of the 58th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 403–414, 2017.
arXiv: 1705.01843

[20] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization.
arXiv: 1610.06546, 2016.

[21] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by uniform spectral
amplification. arXiv: 1707.05391, 2017.

[22] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-
encoded matrix powers: improved regression techniques via faster Hamiltonian sim-
ulation. arXiv: 1804.01973, 2018.

[23] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular
value transformation and beyond: exponential improvements for quantum matrix
arithmetics. arXiv: 1806.01838, 2018.

[24] Jeongwan Haah. Product decomposition of periodic functions in quantum signal
processing. arXiv: 1806.10236, 2018.

[25] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum gate
sets. Physical Review Letters, 102:110502, July 2009. arXiv: 0811.4262

127

https://arxiv.org/abs/1712.06349
https://arxiv.org/abs/1704.00690
https://arxiv.org/abs/quant-ph/0102001
https://arxiv.org/abs/1804.10368
https://arxiv.org/abs/1603.03996
https://arxiv.org/abs/1511.02306
https://arxiv.org/abs/1705.01843
https://arxiv.org/abs/1610.06546
https://arxiv.org/abs/1707.05391
https://arxiv.org/abs/1804.01973
https://arxiv.org/abs/1806.01838
https://arxiv.org/abs/1806.10236
https://arxiv.org/abs/0811.4262

[26] Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-tolerant con-
version between the Steane and Reed-Muller quantum codes. Physical Review Let-
ters, 113:080501, 2014. arXiv: 1403.2734

[27] Charles D. Hill, Austin G. Fowler, David S. Wang, and Lloyd C. L. Hollenberg.
Fault-tolerant quantum error correction code conversion. Quantum Information and
Computation, 13(5-6):439–451, 2013. arXiv: 1112.2417

[28] Todd A. Brun, Yi-Cong Zheng, Kung-Chuan Hsu, Joshua Job, and Ching-Yi Lai.
Teleportation-based fault-tolerant quantum computation in multi-qubit large block
codes. 2015. arXiv: 1504.03913

[29] Hector Bombı́n and Miguel Angel Martin-Delgado. Quantum measurements and
gates by code deformation. Journal of Physics A: Mathematical and Theoretical,
42(9):095302, 2009.

[30] Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J. Briegel. Fault-tolerant inter-
face between quantum memories and quantum processors. Nature Communications,
8(1):1321, 2017.

[31] Kristina R. Colladay and Erich J. Mueller. Rewiring stabilizer codes. New Journal
of Physics, 20(8):083030, 2018. arXiv: 1707.09403

[32] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum in-
formation. Cambridge University Press, 2000.

[33] Cupjin Huang and Yaoyun Shi. Quantum hashing is maximally secure against clas-
sical leakage. arXiv: 1701.01091, 2017.

[34] Cupjin Huang, Michael Newman, and Márió Szegedy. Explicit lower bounds
on strong simulation of quantum circuits in terms of t-gate count. arXiv:
1902.04764, 2019.

[35] Tomoyuki Morimae and Suguru Tamaki. Fine-grained quantum computational
supremacy. arXiv: 1901:01637, 2019.

[36] Rui Chao, Dawei Ding, András Gilyén, Cupjin Huang, and Mario Szegedy. Finding
angles for quantum signal processing with machine precision.

[37] Cupjin Huang and Michael Newman. Transversal switching between generic stabi-
lizer codes. arXiv: 1709.09282, 2017.

[38] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi. Clas-
sical simulation of intermediate-size quantum circuits. arXiv: 1805.01450, 2018.

[39] Jarrod R. McClean, Ian D. Kivlichan, Damian S. Steiger, Yudong Cao, E. Schuyler
Fried, Craig Gidney, Thomas Häner, Vojtĕch Havlı́ček, Zhang Jiang, Matthew Nee-
ley, et al. OpenFermion: the electronic structure package for quantum computers.
arXiv: 1710.07629, 2017.

128

https://arxiv.org/abs/1403.2734
https://arxiv.org/abs/1112.2417
https://arxiv.org/abs/1504.03913
https://arxiv.org/abs/1707.09403
https://arxiv.org/abs/1701.01091
https://arxiv.org/abs/1902.04764
https://arxiv.org/abs/1901:01637
https://arxiv.org/abs/1709.09282
https://arxiv.org/abs/1805.01450
https://arxiv.org/abs/1710.07629

[40] Fang Zhang, Cupjin Huang, Michael Newman, Kevin Sung, and Yaoyun Shi. Limi-
tations on testing quantum theory. 2017.

[41] Daniel Gottesman. The heisenberg representation of quantum computers. In Pro-
ceedings of the 22nd International Colloquium on Group Theoretical Methods in
Physics, pages 32–43, 1999. arXiv: quant-ph/9807006

[42] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptog-
raphy. 2015. Available at https://crypto.stanford.edu/˜dabo/
cryptobook/draft_0_2.pdf.

[43] Bart Preneel. Cryptographic hash functions. European Transactions on Telecommu-
nications, 5(4):431–448, 1994.

[44] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Def-
initions, implications, and separations for preimage resistance, second-preimage re-
sistance, and collision resistance. In International Workshop on Fast Software En-
cryption, pages 371–388. Springer, 2004.

[45] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[46] Srinivasan Arunachalam and Ronald de Wolf. Optimal quantum sample complexity
of learning algorithms. Journal of Machine Learning Research, 19(71):1–36, 2018.
arXiv: 1607.00932

[47] Noam Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[48] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[49] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[50] Charles H Bennett, Gilles Brassard, and Jean-Marc Robert. How to reduce your
enemys information. In Conference on the Theory and Application of Cryptographic
Techniques, pages 468–476. Springer, 1985.

[51] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key
cryptography from weak secrets. pages 601–610. ACM, 2009.

[52] Oded Goldreich, Rehovot Israel, and David Zuckerman. Another proof thatBPP ⊆
PH (and more). In Electronic Colloquium on Computational Complexity. Citeseer,
1997.

[53] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators with-
out the XOR lemma. In Proceedings of the 31st ACM Symposium on Theory of
Computing (STOC), pages 537–546. ACM, 1999.

129

https://arxiv.org/abs/quant-ph/9807006
https://crypto.stanford.edu/~dabo/cryptobook/draft_0_2.pdf
https://crypto.stanford.edu/~dabo/cryptobook/draft_0_2.pdf
https://arxiv.org/abs/1607.00932

[54] Dana Moshkovitz. Parallel repetition from fortification. In Proceedings of the 55th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 414–423.
IEEE, 2014.

[55] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli M Maurer. General-
ized privacy amplification. IEEE Transactions on Information Theory, 41(6):1915–
1923, 1995.

[56] Ueli M. Maurer. Secret key agreement by public discussion from common informa-
tion. IEEE Transactions on Information Theory, 39(3):733–742, 1993.

[57] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separations for one-way quantum communication complexity, with ap-
plications to cryptography. In Proceedings of the 39th ACM Symposium on Theory
of Computing (STOC), pages 516–525. ACM, 2007.

[58] Robert T. König and Barbara M. Terhal. The bounded-storage model in the presence
of a quantum adversary. IEEE Transactions on Information Theory, 54(2):749–762,
2008. arXiv: quant-ph/0608101

[59] F. M. Ablayev and A. V. Vasiliev. Cryptographic quantum hashing. Laser Physics
Letters, 11(2):025202, 2013.

[60] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-
30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages
443–461. Springer, 2009.

[61] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
Advances in Cryptology-CRYPTO 2009, pages 18–35. Springer, 2009.

[62] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In Theory of Cryptography Confer-
ence, pages 474–495. Springer, 2009.

[63] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Ef-
ficient public-key cryptography in the presence of key leakage. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 613–631. Springer, 2010.

[64] Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In In-
ternational Workshop on Public Key Cryptography, pages 335–345. Springer, 2002.

[65] Marc Joye and Jean-Jacques Quisquater. Hessian elliptic curves and side-channel
attacks. In International Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 402–410. Springer, 2001.

130

https://arxiv.org/abs/quant-ph/0608101

[66] Julian Kelly, R. Barends, A. G. Fowler, . Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, et al. State preservation by repetitive error
detection in a superconducting quantum circuit. Nature, 519(7541):66, 2015. arXiv:
1411.7403

[67] Chao Song, Kai Xu, Wuxin Liu, Chui-Ping Yang, Shi-Biao Zheng, Hui Deng, Qiwei
Xie, Keqiang Huang, Qiujiang Guo, Libo Zhang, et al. 10-qubit entanglement and
parallel logic operations with a superconducting circuit. Physical Review Letters,
119(18):180511, 2017.

[68] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter,
T. Lippert, H. Watanabe, and N. Ito. Massively parallel quantum computer sim-
ulator. Computer Physics Communications, 176:121–136, January 2007. arXiv:
quant-ph/0608239

[69] Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quan-
tum circuit. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 33. ACM, 2017.

[70] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik. qHiPSTER: The Quantum
High Performance Software Testing Environment. arXiv: 1601.07195, January
2016.

[71] Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Mager-
lein, Edgar Solomonik, and Robert Wisnieff. Breaking the 49-qubit barrier in the
simulation of quantum circuits. arXiv: 1710.05867, 2017.

[72] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simula-
tion of low-depth quantum circuits as complex undirected graphical models. 2017.
arXiv: 1712.05384

[73] Zhaoyun Chen, Qi Zhou, Cheng Xue, Xia Yang, Guangcan Guo, and Guoping Guo.
64-Qubit Quantum Circuit Simulation. arXiv: 1802.06952, 2018.

[74] R. Li, B. Wu, M. Ying, X. Sun, and G. Yang. Quantum supremacy circuit simulation
on Sunway TaihuLight. April 2018. arXiv: 1804.04797

[75] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum
supremacy experiments. In Proceedings of the 32nd IEEE Conference on Com-
putational Complexity (CCC), page 22. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2017. arXiv: 1612.05903

[76] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L. Obrien. A variational eigenvalue
solver on a photonic quantum processor. Nature Communications, 5, 2014. arXiv:
1304.3061

131

https://arxiv.org/abs/1411.7403
https://arxiv.org/abs/quant-ph/0608239
https://arxiv.org/abs/1601.07195
https://arxiv.org/abs/1710.05867
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1802.06952
https://arxiv.org/abs/1804.04797
https://arxiv.org/abs/1612.05903
https://arxiv.org/abs/1304.3061

[77] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The
theory of variational hybrid quantum-classical algorithms. New Journal of Physics,
18(2):023023, 2016. arXiv: 1509.04279

[78] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin.
Quantum approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices. arXiv: 1812.01041, 2018.

[79] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, John M Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14:595–600, 2018. arXiv:
1608.00263

[80] Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th
ACM Symposium on Theory of Computing (STOC), pages 325–338, 2018. arXiv:
1711.01053

[81] Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits
dominated by clifford gates. Physical Review Letters, 116(25):250501, 2016. arXiv:
1601.07601

[82] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and
Mark Howard. Simulation of quantum circuits by low-rank stabilizer decomposi-
tions. 2018. arXiv: 1808.00128

[83] Ryan S. Bennink, Erik M. Ferragut, Travis S. Humble, Jason A. Laska, James J.
Nutaro, Mark G. Pleszkoch, and Raphael C. Pooser. Unbiased simulation of
near-clifford quantum circuits. Physical Review A, 95(6):062337, 2017. arXiv:
1703.00111

[84] Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contract-
ing tensor networks. SIAM Journal on Computing, 38(3):963–981, 2008. arXiv:
quant-ph/0511069

[85] Richard P. Feynman, Albert R. Hibbs, and Daniel F. Styer. Quantum mechanics and
path integrals. Courier Corporation, 1965.

[86] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[87] Leslie G Valiant. Quantum circuits that can be simulated classically in polynomial
time. SIAM Journal on Computing, 31(4):1229–1254, 2002.

[88] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.
Physical Review A, 70(5):052328, 2004. arXiv: quant-ph/0406196

[89] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and quantum
computational resources. Physical Review X, 6(2):021043, 2016.

132

https://arxiv.org/abs/1509.04279
https://arxiv.org/abs/1812.01041
https://arxiv.org/abs/1608.00263
https://arxiv.org/abs/1711.01053
https://arxiv.org/abs/1601.07601
https://arxiv.org/abs/1808.00128
https://arxiv.org/abs/1703.00111
https://arxiv.org/abs/quant-ph/0511069
https://arxiv.org/abs/quant-ph/0406196

[90] Zhengfeng Ji and Xiaodi Wu. Non-identity check remains QMA-complete for short
circuits. arXiv: 0906.5416, 2009.

[91] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line compu-
tations over semirings. Journal of the ACM, 29(3):874–897, 1982.

[92] Ashley Montanaro. Quantum circuits and low-degree polynomials over. Jour-
nal of Physics A: Mathematical and Theoretical, 50(8):084002, 2017. arXiv:
1607.08473

[93] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. Quan-
tum supremacy and the complexity of random circuit sampling. 2018. arXiv:
1803.04402

[94] Terry Rudolph. Simple encoding of a quantum circuit amplitude as a matrix perma-
nent. Physical Review A, 80(5):054302, 2009. arXiv: 0909.3005

[95] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics.
In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages
333–342, 2011. arXiv: 1011.3245

[96] Richard A. Brualdi and Herbert John Ryser. Combinatorial matrix theory, vol-
ume 39. Springer, 1991.

[97] David G. Glynn. The permanent of a square matrix. European Journal of Combina-
torics, 31(7):1887–1891, 2010.

[98] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 566–574. IEEE, 1997.

[100] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. Journal of the ACM, 52(3):337–364, 2005.

[101] T. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 410–414. IEEE, 1999.

[102] Timon Hertli. 3-SAT faster and simpler—Unique-SAT bounds for PPSZ hold in
general. SIAM Journal on Computing, 43(2):718–729, 2014. arXiv: 1103.2165

[103] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between
clause width and clause density for SAT. volume 1, pages 252–260. IEEE, 2006.

[104] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

133

https://arxiv.org/abs/0906.5416
https://arxiv.org/abs/1607.08473
https://arxiv.org/abs/1803.04402
https://arxiv.org/abs/0909.3005
https://arxiv.org/abs/1011.3245
https://arxiv.org/abs/1103.2165

[105] Alexander M. Dalzell, Aram W. Harrow, Dax Enshan Koh, and Rolando L. La Placa.
How many qubits are needed for quantum computational supremacy? arXiv:
1805.05224, 2018.

[106] Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quan-
tum signal processing. Physical Review Letters, 118(1):010501, 2017. arXiv:
1606.02685

[107] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su.
Toward the first quantum simulation with quantum speedup. arXiv: 1711.10980,
2017.

[108] Abraham Adrian Albert. Quadratic forms permitting composition. Annals of Math-
ematics, 43(1):161–177, 1942.

[109] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[110] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Effi-
cient quantum algorithms for simulating sparse Hamiltonians. Communications in
Mathematical Physics, 270(2):359–371, 2007. arXiv: quant-ph/0508139

[111] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quan-
tum algorithm for simulating real time evolution of lattice hamiltonians. arXiv:
1801.03922, 2018.

[112] Andrew M. Childs. On the relationship between continuous- and discrete-time quan-
tum walk. Communications in Mathematical Physics, 294(2):581–603, 2010. arXiv:
0810.0312

[113] Dominic W. Berry and Andrew M. Childs. Black-box Hamiltonian simulation and
unitary implementation. Quantum Information and Computation, 12(1&2):29–62,
2012. arXiv: 0910.4157

[114] Bei Zeng, Andrew Cross, and Isaac L. Chuang. Transversality versus universality for
additive quantum codes. IEEE Transactions on Information Theory, 57:6272–6284,
September 2011. arXiv: 0706.1382

[115] Michael Newman and Yaoyun Shi. Limitations on transversal computation through
quantum homomorphic encryption. Quantum Information and Computation,
18(11& 12):0927–0948, 2018. arXiv: 1704.07798

[116] Austin G. Fowler, Simon J. Devitt, and Cody Jones. Surface code implementation
of block code state distillation, January 2013. arXiv: 1301.7107

[117] Sergey Bravyi and Jeongwan Haah. Magic state distillation with low overhead.
Physical Review A, 86:052329, 2012. arXiv: 1209.2426

[118] Adam Paetznick and Ben W. Reichardt. Universal fault-tolerant quantum compu-
tation with only transversal gates and error correction. Physical Review Letters,
111:090505, April 2013. arXiv: 1304.3709

134

https://arxiv.org/abs/1805.05224
https://arxiv.org/abs/1606.02685
https://arxiv.org/abs/1711.10980
https://arxiv.org/abs/quant-ph/0508139
https://arxiv.org/abs/1801.03922
https://arxiv.org/abs/0810.0312
https://arxiv.org/abs/0910.4157
https://arxiv.org/abs/0706.1382
https://arxiv.org/abs/1704.07798
https://arxiv.org/abs/1301.7107
https://arxiv.org/abs/1209.2426
https://arxiv.org/abs/1304.3709

[119] Hector Bombı́n. Gauge color codes: Optimal transversal gates and gauge fixing in
topological stabilizer codes, August 2015. New Journal of Physics.

[120] Theodore J. Yoder, Ryuji Takagi, and Isaac L. Chuang. Universal fault-tolerant gates
on concatenated stabilizer codes. Physical Review X, 6:031039, March 2016. arXiv:
1603.03948

[121] Theodore J. Yoder. Universal fault-tolerant quantum computation with Bacon-Shor
codes. arXiv: 1705.01686, May 2017.

[122] Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold
for concatenated distance-3 codes. Quantum Information and Computation, 6:97–
165, 3 2006. arXiv: quant-ph/0504218

[123] Peter W. Shor. Fault-tolerant quantum computation. In Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 56–65, 1996.

[124] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating
the minimum distance of a linear code. IEEE Transactions on Information Theory,
49(1):22–37, January 2003.

[125] Daniel Gottesman and Lucy Liuxuan Zhang. Fibre bundle framework for unitary
quantum fault tolerance. arXiv: 1309.7062, 2013.

[126] Michael J. Bremner, Richard Josza, and Dan J. Shepherd. Classical simulation of
commuting quantum computations implies collapse of the polynomial hierarchy.
Proceedings of the Royal Society A, 467, August 2010. arXiv: 1005.1407

135

https://arxiv.org/abs/1603.03948
https://arxiv.org/abs/1705.01686
https://arxiv.org/abs/quant-ph/0504218
https://arxiv.org/abs/1309.7062
https://arxiv.org/abs/1005.1407

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Appendices
	Abstract
	Introduction
	Quantum computation in the NISQ era
	Overview of results
	Dissertation Outline

	Preliminaries
	Asymptotic notations
	Matrix norms and functions
	Quantum states, measurements and channels
	Universal gate sets

	Resilience of quantum hash against classical leakage
	Introduction
	Preliminaries
	The Separation Lemma
	Resilience of quantum hashing against classical leakage
	Implications of the Separation Lemma on quantum-proof extractors
	Related Works

	Limitations of monotone quantum simulation
	Introduction
	Preliminaries
	Monotone method
	An unconditional lower bound for monotone methods
	Remarks and open questions

	Limitations of general strong quantum simulations
	Conditional lower bounds for strong simulators with respect to number of qubits
	Conditional lower bounds in terms of T-gate count
	Conclusion

	Finding angle sequences in quantum singal processing
	Introduction
	Quantum signal processing
	Algebras associated with quantum signal processing
	The syntactic versus semantic view
	Star operation, unitary and Hermitian elements, degree
	The main lemma
	Algorithm
	Experimental results
	Discussion

	Transversal switching between stabilizer codes
	Introduction
	Preliminaries
	The rSRA schematic
	Distance bounds
	Discussion

	Summary and conclusions
	Resillience of quantum hashing against classical leakage
	Limitations of classical strong simulations
	Numerically stable algorithm for angle finding
	Transversal switching between stabilizer codes

	Appendices
	Proof of the Cotlar-Stein Lemma
	Proof of the Sparsification Lemma
	Proof of Lemma 5.4
	Proof of Lemma 5.5

	Lemmas for code distance bounds
	Fault-tolerant measurement
	Bibliography

