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ABSTRACT

The primary focus of the dissertation is to develop Distributionally Robust Optimiza-

tion (DRO) models and related solution approaches for decision making in energy and

healthcare service systems with uncertainties, which often involves nonlinear constraints

and discrete decision variables. Without assuming specific distributions, DRO techniques

solve for solutions against the worst-case distribution of system uncertainties. In the DRO

framework, we consider both risk-neutral (e.g., expectation) and risk-averse (e.g., chance

constraint and Conditional Value-at-Risk (CVaR)) measures. The aim is twofold: i) devel-

oping efficient solution algorithms for DRO models with integer and/or binary variables,

sometimes nonlinear structures and ii) revealing managerial insights of DRO models for

specific applications.

We mainly focus on DRO models of power system operations, appointment schedul-

ing, and resource allocation in healthcare. Specifically, we first study stochastic Optimal

Power Flow (OPF), where (uncertain) renewable integration and load control are imple-

mented to balance supply and (uncertain) demand in power grids. We propose a Chance-

Constrained OPF (CC-OPF) model and investigate its DRO variant which is reformulated

as a Semidefinite Programming (SDP) problem. We compare the DRO model with two

benchmark models, in the IEEE 9-bus, 39-bus, and 118-bus systems with different flow

congestion levels. The DRO approach yields higher a probability of satisfying the chance

constraints and shorter solution time. It also better utilizes reserves at both generators and

loads when the system has congested flows.

Then we consider appointment scheduling under random service durations with given

xi



(fixed) appointment arrival order. We propose a DRO formulation and derive a conservative

SDP reformulation. Furthermore, we study a scheduling variant under random no-shows

of appointments and derive tractable reformulations for certain beliefs of no-show patterns.

One preceding problem of appointment scheduling in the healthcare service operations

is the surgery block allocation problem that assigns surgeries to operating rooms. We de-

rive an equivalent 0-1 SDP reformulation and a less conservative 0-1 Second-order Cone

Programming (SOCP) reformulation for its DRO model.

Finally, we study Distributionally Robust Chance-Constrained Binary Programs (DCBP)

for limiting the probability of undesirable events, under mean-covariance information. We

reformulate DCBPs as equivalent 0-1 SOCP formulations under two moment-based am-

biguity sets. We further exploit the submodularity of the 0-1 SOCP reformulations un-

der diagonal and non-diagonal matrices. We derive extended polymatroid inequalities via

submodularity and lifting, which are incorporated into a branch-and-cut algorithm incor-

porated for efficiently solving DCBPs. We demonstrate the computational efficacy and

solution performance with diverse instances of a chance-constrained bin packing problem.

xii



CHAPTER 1

Introduction

1.1 Background

In the era of modern business analytics, one of the biggest challenges in Operations Re-
search concerns the development of optimization problems that can accommodate vast
amount of noisy and incomplete data, whilst at the same time truthfully capturing the de-
cision maker’s attitude toward risk and ambiguity. DRO is a generalization of the classical
robust optimization framework (e.g. Ben-Tal et al., 2009; Ben-Tal and Nemirovski, 2002;
Bertsimas and Sim, 2004) complemented with stochastic programming (e.g. Birge and
Louveaux, 2011; Shapiro et al., 2009), which addresses distributional ambiguity neither
addressed by robust optimization nor by stochastic programming. DRO does not assume a
specific probability distribution of system uncertainties but treats uncertain parameters as
random variables with ambiguous probability distribution and seeks for solutions against
the ambiguous probability distribution in a pre-defined ambiguity set. There are several
motivations behind DRO:

1. an accurate estimate of the probability distribution may not be accessible;
2. a probability distribution can evolve over time due to uncertainties’ versatile nature;
3. solutions may be sensitive to the ambiguous probability distribution.

In this dissertation, we mainly focus on developing (scalable) solution approaches for
DRO within several fields including power system operations, appointment scheduling,
and healthcare operations, which have been studied before using effective Operations Re-
search techniques (see, e.g., Bienstock et al., 2014; Erdogan and Denton, 2010; Gupta and
Denton, 2008; Margellos et al., 2014) .

In power systems, with growing penetrations of renewable energy resources such as
wind and solar photovoltaic, their variability increases risks of system operational proce-
dures with integration of renewables (Katiraei and Aguero, 2011; Xie et al., 2011). With the

1



development of load control algorithms, the increasing penetrations of renewables also lead
to additional reserves that can be provided by flexible loads, such as heating and air condi-
tioning. However, the reserve capacity is uncertain because it can be a function of weather
and customer usage pattern (Mathieu et al., 2013a). Although even forecasts of load re-
serves or renewables can be available, forecast errors and also inaccurate information may
lead to frequent operational limits (Qiu and Wang, 2015; Roald et al., 2013). Moreover, an
accurate probability distribution of renewables and load reserves may be hard to acquire
(Carta et al., 2009; Mathieu et al., 2013a; Morgan et al., 2011).

The inaccessibility of accurate probability distributions is also concerned by health-
care industry, where appointment scheduling problems arise in numerous settings, such as
surgery planning in operating rooms, and scheduling outpatient appointments in primary
care and specialty clinics. To plan for appointments’ starting time, current literature as-
sumes a wide range of distributions of appointment durations, such as Gamma distribution
(Denton and Gupta, 2003; Soriano, 1966), uniform distribution (Denton and Gupta, 2003),
exponential distribution (Kaandorp and Koole, 2007), Normal distribution (Denton and
Gupta, 2003), and Log-normal distribution (Cayirli and Veral, 2003; Chen and Robinson,
2014). Moreover, the lack of data increases the difficulty of fitting distributions and data is
even more limited if broken down by surgery types and surgeons (Denton et al., 2007; Mak
et al., 2015).

In the aforementioned application fields, both robust optimization and stochastic pro-
gramming techniques have been widely employed to solve system operational problems
with uncertainty (see, e.g., Begen et al., 2012; Bertsimas et al., 2013; Bienstock et al.,
2014; Denton and Gupta, 2003; Jabr, 2013; Jiang et al., 2012; Mittal et al., 2014a; Pa-
pavasiliou and Oren, 2013; Roald et al., 2013; Vrakopoulou et al., 2013). However, robust
optimization models can lead to overly conservative decisions because they do not exploit
distributional knowledge of uncertainty. Contrary to robust optimization, stochastic pro-
gramming explicitly utilizes distribution information of uncertainty. But as the reasons
mentioned above, an accurate estimate of probability distribution can be hard to access.

In the literature, not many have been done to study these problems under ambiguously
unknown distribution of uncertain parameters and hence this dissertation work fills in this
gap. In the following, we review some basic concepts in DRO and popular choices of
ambiguity sets of probability distributions.
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1.1.1 Distributionally Robust Optimization

We consider DRO models that impose a min-max objective function and/or distributionally
robust constraints to identify an optimal solution by assuming that nature always picks a
worst-case probability distribution against the decision maker’s choice. Specifically, given
x ∈ X ⊂ Rn, we consider a risk measure % of a utility function Q(x, ξ̃) : Rn+m → R,
where ξ̃ ∈ Rm consists of all system uncertainties. The risk measure % can be

1. a risk-neutral system operator %
(
Q(x, ξ̃)

)
= EP

[
Q(x, ξ̃)

]
, the expectation of Q

taken with respect to a given fully known probability distribution of P of ξ̃;

2. risk-averse system operators:

(a) %
(
Q(x, ξ̃)

)
= P

(
Q(x, ξ̃) ≤ QUB

)
, the probability of Q(x, ξ̃) less than its up-

per bound QUB with respect to the distribution P;

(b) %
(
Q(x, ξ̃)

)
= CVaR1−ε

(
Q(x, ξ̃)

)
, the CVaR (see, e.g., Bertsimas and Sim,

2004; Rockafellar and Uryasev, 2002) of Q(x, ξ̃) with a confidence level 0 <

1− ε < 1.

The DRO models impose a generic min-max objective function in the form of

min
x∈X

sup
P∈D

%
(
Q(x, ξ̃)

)
, (1.1)

or/and a generic DR constraint in the form of

inf
P∈D

%
(
Q(x, ξ̃)

)
≥ Q, (1.2)

where Q is a lower bound if % is the CVaR measure and Q can be 0 < 1 − α < 1 a
probability threshold pre-specified according to the decision maker’s tolerance towards risk
if % is the probability measure. The ambiguity set D in (1.1) and (1.2) is a pre-defined set
of all candidate probability distributions of ξ̃ sharing some common characteristics.

1.1.2 Ambiguity Sets

Two typical ways of constructing ambiguity sets are distance-based and moment-based.
The distance-based approaches consider a set of probability distributions within a certain
distance from a nominal distribution. Popular choices of statistical distance measures are
φ-divergence (see, e.g., Ben-Tal et al., 2013; Calafiore, 2007; Jiang and Guan, 2016; Wang
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et al., 2013; Yanıkoğlu and den Hertog, 2013) and Wasserstein metrics (see, e.g., Esfahani
and Kuhn, 2018; Gao and Kleywegt, 2016; Zhao and Guan, 2018).

Another branch of DRO research considers ambiguity sets constructed based on mo-
ment information by requiring candidate probability distributions to satisfy certain moment
conditions (see, e.g., Delage and Ye, 2010; Popescu, 2007; Scarf et al., 1958; Zymler et al.,
2013). Delage and Ye (2010) present tractable reformulations for the DRO variant of an
expectation-based objective function minx∈X supP∈D EP

(
Q(x, ξ̃)

)
, using the conic dual-

ity results from Shapiro (2001) and Bertsimas and Popescu (2005). In this dissertation, we
derive DRO models mainly based on the moment-based ambiguity set proposed by Delage
and Ye (2010) in the form of

D = D(Ξ, µ,Σ, γ1, γ2) =

P :

∫
ξ̃∈Ξ

P(dξ̃) = 1

(EP[ξ̃]− µ)TΣ−1(EP[ξ̃]− µ) ≤ γ1

EP[(ξ̃ − µ)(ξ̃ − µ)T] � γ2Σ

 , (1.3)

where Ξ is the support of ξ̃. The ambiguity set D is determined by an estimated mean µ
(using empirical data) and covariance matrix Σ, and also by parameters γ1 and γ2. The
three constraints ensure that (i) the true mean of ξ̃ lies in a µ-centered ellipsoid bounded
by γ1; and (ii) the true covariance matrix lies in a positive semi-definite cone bounded by
γ2Σ. Parameters γ1 ≥ 0 and γ2 ≥ 1 are to control the ambiguity set size. The selection
of γ1 and γ2 depends on the number of samples, support size, and confidence level (see
Definition 2 in Delage and Ye (2010)). In general, the two parameters reflect decision
makers’ risk preference and control the conservatism of solutions. The larger values of
the two parameters are, the more moment ambiguity the decision maker tolerates and thus
more conservative (robust) solutions are obtained.

1.2 Dissertation Overview

In Chapter 2, we study stochastic OPF, where renewable integration and load control are
implemented to balance supply and demand in power grids but often resulting in uncertain
balancing reserves. We propose a CC-OPF model and investigate its DRO variant under
unknown distribution of random load, renewable productions, and load-control reserve ca-
pacities. We consider DRO models with two types of moment-based ambiguity sets. We
compare the results of the DRO models with two benchmark models, respectively, derived
from Gaussian approximation and scenario approximation approaches, using instances of
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the IEEE 9-bus, 39-bus and 118-bus systems with different flow congestion levels, under
random renewable input, load, and reserve capacities. We demonstrate that the DRO ap-
proach provides an effective distribution-free means for optimizing OPF problems under
ambiguous distributional information. It yields higher probability of satisfying the chance
constraints and shorter solution time. It also better utilizes reserves at both generators and
loads when the system has congested flows.

In Chapter 3, we consider appointment scheduling under random service durations with
given (fixed) appointment arrival order. We consider a sequence of appointments arriving
at a single server and the system operator has to decide arrival time of each appointment to
minimize the total expected total waiting time, while restricting the probability of having
server overtime. We propose a DRO formulation with a min-max objective to constrain the
total waiting time, and a distributionally robust chance constraint on overtime. We derive a
conservative SDP reformulation and conduct computational studies on outpatient treatment
scheduling instances benchmarked with a sampling-based stochastic model. Our results
show that the DRO solutions demonstrate an approximated “dome” shape suggested as in
Denton and Gupta (2003). However, with limited data samples, the “dome” shape pattern
does not appear in the optimal scheduling solutions from the stochastic benchmark model.

In Chapter 4, we further consider randomness of no-shows together with random ser-
vice durations. The probability distribution of the uncertain parameters is assumed to be
ambiguous and only the support and first moments are known. We formulate a class of
DRO models that incorporate the worst-case expectation/CVaR penalty cost of appointment
waiting, server idleness, and overtime into the objective or constraints. Our models flexi-
bly adapt to different prior beliefs of no-show uncertainty. We obtain exact mixed-integer
nonlinear programming reformulations, and derive valid inequalities which strengthen the
reformulations solved by decomposition algorithms. In particular, we derive convex hulls
for special cases of no-show beliefs, yielding polynomial-sized linear programming mod-
els for the least and the most conservative supports of no shows. We test various instances
to demonstrate the computational efficacy of our approaches and to compare the results of
various DRO models given perfect or ambiguous distributional information.

In Chapter 5, we study a preceding problem of appointment scheduling in the healthcare
operations field as surgery block allocation, which assigns surgeries to operating rooms.
Still, under random surgery durations with unknown distributions, we minimize the cost
of opening ORs and surgery assignments while restricting OR overtime risk via a distri-
butionally robust chance constraint in a DRO model. We provide a 0-1 SDP formulation
for the DRO model. To tackle the 0-1 SDP, we develop a cutting-plane approach that
solves a continuous SDP oracle in each separation procedure to iteratively generate valid
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cuts. Also, we derive a less conservative 0-1 SOCP reformulation. Computational tests
are conducted on randomly generated outpatient treatment instances to compare solution
time, in-sample objective values, and out-of-sample reliability performance. We demon-
strate that the cutting-plane method yielded more conservative solutions, and thus having
relatively higher cost with better out-of-sample reliability performance. The cutting-plane
method also took less CPU time to solve.

One type of constraints included in all the above problems is the set of distribution-
ally robust chance constraints on the utilization of resources, which ensure sufficiently
high probabilities of not exceeding the capacity of each resource allocated in service sys-
tems. Moreover, these constraints often involve binary variables to select resources, and
thus we study generic DCBPs under mean-covariance information in Chapter 6. We refor-
mulate DCBPs as equivalent 0-1 SOCP models under two moment-based ambiguity sets.
We further exploit the submodularity in 0-1 second-order cone constraints under diagonal
and non-diagonal matrices. We derive extended polymatroid inequalities to strengthen the
0-1 SOCP reformulations via submodularity and lifting. We propose a branch-and-cut al-
gorithm incorporated with the valid inequalities for efficiently solving DCBPs. We also
demonstrate the computational efficacy and solution performance with diverse instances of
a chance-constrained bin packing problem.
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CHAPTER 2

Distributionally Robust Chance-Constrained
Optimal Power Flow with Uncertain Renewables

and Uncertain Reserves Provided by Loads

2.1 Introductory Remarks

Flexible loads, such as heating and cooling systems, coordinated via load control algo-
rithms are capable of providing reserves to power systems (Bashash and Fathy, 2013;
Braslavsky et al., 2013; Callaway, 2009; Mathieu et al., 2013b; Meyn et al., 2015; Zhang
et al., 2013). However, the capacity (in MW) of reserves that loads could provide is gener-
ally time-varying (Hao et al., 2015; Mathieu et al., 2015). For example, the reserve capac-
ity of an aggregation of air conditioners is a function of weather and load usage patterns
(Mathieu et al., 2013a), which are uncertain. Therefore, when the power system opera-
tor computes the optimal generation and reserve schedule, the future reserve capacity that
will be available from loads is not perfectly known. A conservative option would to fore-
cast the expected reserve capacity and schedule only a portion of it. Instead, we solve a
CC-OPF problem that explicitly considers uncertain reserves from loads, enabling us to
more-effectively use this resource.

CC-OPF problems to manage renewable energy and load uncertainty have been posed
in Bienstock et al. (2014); Roald et al. (2013, 2015); Vrakopoulou et al. (2013); Zhang
and Li (2011), though none of these work considers load reserves or their uncertainty.
Vrakopoulou et al. (2014) formulates a multi-period CC-OPF with uncertain load reserves.
It is solved with a robust reformulation (Margellos et al., 2014) of the scenario approach
(Campi et al., 2009) that makes no assumption on the uncertainty distributions but requires
large numbers of uncertainty samples. Li and Mathieu (2015) reformulates the problem
assuming Gaussian uncertainty. In practice, it may be difficult to obtain large numbers of
uncertainty samples and we would expect the uncertainty to be non-Gaussian.
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In this chapter, which is an extension of our preliminary work (Zhang et al., 2015a), we
formulate a CC-OPF with uncertain load reserves and reformulate it using Distributionally
Robust (DR) optimization (Delage and Ye, 2010), which makes no assumption on uncer-
tainty distributions and does not require large numbers of uncertainty samples. For sim-
plicity of exposition, we use single-period formulation, rather than the multi-period formu-
lation of Li and Mathieu (2015); Vrakopoulou et al. (2014). Using the empirical mean and
covariance (i.e., the first two moments) of a small number of uncertainty samples, we con-
struct a convex ambiguity set for the unknown distribution, yielding an SDP reformulation
Jiang and Guan (2016), and a tractable SOCP reformulation Wagner (2008). We compare
the two DR models with two benchmark approaches, the first of which is an SOCP model
obtained by Gaussian approximation, and the second of which is a large-scale Quadratic
Programming (QP) model obtained by scenario approximation.

There has been significant recent work on robust OPF, CC-OPF, and DR optimization
applied to power system problems. For example, Jabr (2013) formulates a robust OPF
problem in which generator participation factors are chosen to ensure a feasible solution
for all possible renewable energy injections. The formulation is extended to include chance
constraints that manage normally-distributed load forecast error. Ref. Jabr et al. (2015)
further extends the method to a multi-period formulation with energy storage. The method
assumes the uncertainty set is known. CC-OPFs are posed by Bienstock et al. (2014);
Vrakopoulou et al. (2013); Zhang and Li (2011) and solved with scenario-based meth-
ods Vrakopoulou et al. (2013) and analytical reformulation assuming normally-distributed
uncertainty Bienstock et al. (2014); Roald et al. (2013); Zhang and Li (2011). DR opti-
mization has been applied to the dynamic line rating problem Qiu and Wang (2015) and
to quantifying the probability of infeasible dispatch given uncertain wind power injections
Wei et al. (2016). The latter uses data-determined uncertainty moments to derive an SDP
formulation. Ref. Roald et al. (2015) proposes distributionally robust analytical reformula-
tions of a security constrained CC-OPF. Specifically, the mean, covariance, and structured
properties (e.g., symmetry or unimodality) of the uncertainty are used to derive an upper
bound for the inverse cumulative distribution function, resulting in a linear programming
reformulation. Using upper bounds rather than moments, as in Wei et al. (2016) and our
approach, results in conservative solutions. Ref. Lubin et al. (2015) poses a robust CC-
OPF problem assuming the uncertainty is normally-distributed but the parameters of the
normal distributions are unknown. The paper develops a cutting-plane approach that scales
to large systems, and demonstrates the computational efficiency by testing a network with
2209 buses. Note that none of the papers cited in this paragraph consider load reserves or
their uncertainty.
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The contributions of this work are to i) formulate a single-period CC-OPF with uncer-
tain load reserves; ii) reformulate the CC-OPF, using DR optimization with two types of
ambiguity sets, as an SDP and as an SOCP; and iii) compare the cost, reliability, compu-
tational time, and optimal decisions of the approach to that of two benchmark approaches.
Beyond our preliminary work in Zhang et al. (2015a), in this chapter we have i) corrected
the formulation, ii) added a more complete description of the SDP reformulation and de-
rived an SOCP reformulation by using a strengthened ambiguity set, iii) generated results
for the IEEE 39-bus system and IEEE 118-bus system (in Zhang et al. (2015a) we consid-
ered only the IEEE 9-bus system), iv) computed solutions to a variety of additional cases
to put the objective costs in context, and v) included comparisons of the optimal solutions,
which give significant additional insights into the performance of the approaches. Our re-
sults show that the DR approach provides a good trade-off between cost, reliability, and
computational tractability as compared to the other approaches.

The chapter is organized as follows. In Section 2.2, we present the CC-OPF and the
DR reformulation. Section 2.3 presents the two benchmark approaches. Sections 2.4 and
2.5 present the computational results of the three approaches for the IEEE 9-bus and 39-,
118-bus bus systems, respectively. Section 2.6 summarizes the chapter. We note that the
work in this chapter has been published in Zhang et al. (2016).

2.2 Modeling

2.2.1 Nomenclature

A. Numbers

Nline Number of transmission lines

NB Number of buses

NG Number of conventional generators

NW Number of wind power plants

NL Number of loads

m Number of chance constraints

n Number of decision variables
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B. Parameters

P f
W ∈ RNW Forecasted wind production

P f
L ∈ RNL Forecasted load consumption

PG/PG ∈ RNG Min/max generator production

Pline ∈ RNline Line flow limit

c Vector of energy/reserve costs

Bbus ∈ R(NB−1)×(NB−1) Bus susceptance matrix

Bflow ∈ RNline×NB Flow susceptance matrix

εi Violation probability of chance constraint i

C. Random Variables

P̃W ∈ RNW Actual wind production

P̃L ∈ RNL Actual load consumption

P̃L/P̃L ∈ RNL Actual min/max possible load consumption

D. Auxiliary Random Variables

Pmis ∈ R Real-time supply/demand mismatch

RG ∈ RNG Actual generator reserve dispatch

RL ∈ RNL Actual load reserve dispatch

Pinj ∈ RNB Net power injections at each bus

E. Decision Variables

PG ∈ RNG Generator production

RG, RG ∈ RNG Generator up/down-reserve capacities

RL, RL ∈ RNL Load up/down-reserve capacities
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dG, dG ∈ RNG Generator up/down distribution vectors

dL, dL ∈ RNL Load up/down distribution vectors

We formulate a CC-OPF which minimizes the costs of producing energy and providing
reserves while ensuring that stochastic constraints are satisfied with certain probabilities.
We consider a power system in which a fraction of the load at each bus is flexible and can
provide reserves by increasing/decreasing its consumption from its baseline consumption.
However, we assume that each load’s minimum and maximum possible consumption are
uncertain. For example, the minimum/maximum possible consumption of an aggregation
of air conditioners is a function of the number of air conditioners that are switched on,
which is a function of outdoor temperature, which is uncertain. Details on the underlying
flexible load model used within our formulation are given in Section 2.4.2.

As in Bienstock et al. (2014); Roald et al. (2013); Vrakopoulou et al. (2013), we use
the DC (i.e., linearized) power flow approximation. Also, for ease of exposition and results
interpretation, we consider single period (e.g., 1 hour), unlike Vrakopoulou et al. (2014)
which considers a multi-period OPF. We first formulate the CC-OPF and then its DR vari-
ant.

2.2.2 Chance-Constrained OPF

The linear inequalities that involve random variables are

Ãx ≥ b̃ =

{
PG ≤ PG +RG ≤ PG,

P̃L ≤ P̃L +RL ≤ P̃L,

−RG ≤ RG ≤ RG,

−RL ≤ RL ≤ RL,

−Pline ≤ Bflow

[
0

B−1
busP̂inj

]
≤ Pline

}
, (2.1)

which limit generation, load, generator reserves, load reserves, and line flows, respectively.
The notation is defined in Section 2.2.1, with ·̃ used to denote random variables. The vector
of net power injections at each bus is Pinj ∈ RNB is CG(PG+RG)+CW P̃W−CL(P̃L+RL),
where CG, CW , and CL are matrices mapping generators, wind power plants, and loads to
buses; P̂inj ∈ RNB−1 contains the lastNB−1 rows of Pinj;Bbus is the bus susceptance matrix
(including the susceptances between each bus except the slack bus, which is assumed to be
Bus 1) and so the quantity in square brackets is the vector of voltage angles; and Bflow is
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the flow susceptance matrix (which is used to compute the line flows by multiplying each
line susceptance by the difference in voltage angle across the line). The full optimization
problem is

[CC-OPF]:

min cT〈1, PG, P 2
G, RG, RG, RL, RL〉 (2.2)

s.t. Pmis =

NW∑
i=1

(P̃W,i − P fW,i)−
NL∑
i=1

(P̃L,i − P fL,i) (2.3)

NG∑
i=1

PG,i =

NL∑
i=1

P fL,i −
NW∑
i=1

P fW,i (2.4)

NG∑
i=1

dG,i +

NL∑
i=1

dL,i = 1 (2.5)

NG∑
i=1

dG,i +

NL∑
i=1

dL,i = 1 (2.6)

RG = dG max{−Pmis, 0} − dG max{Pmis, 0} (2.7)

RL = dL max{Pmis, 0} − dL max{−Pmis, 0} (2.8)

P
(
Ãix ≥ b̃i

)
≥ 1− εi ∀i = 1, . . . ,m (2.9)

x = 〈PG, RG, RG, RL, RL, dG, dG, dL, dL〉 ≥ 0, (2.10)

where we use 〈·〉 to denote a stacked column vector. The cost vector

c = 〈c0, c1, c2, cG, cG, cL, cL〉

corresponds to “here-and-now” decisions made before realizing the uncertainty; (2.3) cal-
culates the real-time supply/demand mismatch; (2.4) enforces power balance; (2.5)–(2.6)
normalize the distribution vectors, which provide a policy for allocating Pmis to generators
and loads, as in Bienstock et al. (2014); Vrakopoulou et al. (2013); and (2.7)–(2.8) com-
pute the actual reserves provided by generators and loads, respectively. We assume that
there are m constraints in (2.1), and use Ãi to represent the ith row of matrix Ã and b̃i to
represent the ith entry of vector b̃. The number of rows in matrix Ã and entries in vector b̃ is
(2Nline + 4NG + 4NL). Each chance constraint i in (2.9) should be satisfied with probabil-
ity 1 − εi. The decision variables, listed in (2.10), are the generator production, generator
reserve capacities, load reserve capacities, and distribution vectors. Note that the total re-
serve requirement (i.e., the sum of all generator and load reserves capacities) is determined
endogenously, and is a function of the uncertainty.

We assume symmetric reserve dispatch, i.e., dG = dG and dL = dL, since (2.7)–
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(2.8) become linear enabling DR reformulation (the Gaussian approximation approach also
requires this assumption, while the scenario approximation approach does not). However,
we assume unsymmetrical reserve procurement (as in CAISO and ERCOT (MacDonald
et al., 2012)), i.e., RL is not enforced to be equal to RL and RG is not enforced to be equal
to RG. Modeling symmetrical reserve procurement (as in MISO, PJM, NYISO, and NE-
ISO (MacDonald et al., 2012)) reduces the number of decision variables, does not change
the form of the resulting optimization problems, and increases the objective cost.

We could also reformulate the CC-OPF, using Sample Average Approximation (SAA),
as a mixed-integer quadratic program. However, in Zhang et al. (2015a), via extensive
computational studies, we demonstrated that the formulation is computationally intractable,
and leads to solutions that are generally worse than solutions obtained by the approaches in
this chapter, especially when the true distribution of the underlying uncertainty is unknown.
Therefore, we do not include it here.

2.2.3 Distributionally Robust Reformulation

We first introduce the DR approach for reformulating the CC-OPF, which builds an am-
biguity set to bound the probability density function (pdf) of the underlying uncertainty.
Our approach follows that of Jiang and Guan (2016), which we summarize here for com-
pleteness. To the best of our knowledge, this is the first application of this approach to a
CC-OPF problem.

Consider each chance constraint i in (2.9). Suppose that (Ãi, b̃i) = (Ãi(ξ
i), b̃i(ξ

i)),
where ξi includes the random variables affecting constraint i. Specifically, for all chance
constraints except, P̃L ≤ P̃L + RL ≤ P̃L, ξi = 〈P̃W , P̃L〉. For P̃L ≤ P̃L + RL, ξi =

〈P̃W , P̃L, P̃L〉 and for P̃L + RL ≤ P̃L, ξi = 〈P̃W , P̃L, P̃L〉. Then, the DR variants of the
chance constraints are

inf
f(ξi)∈D

Pξi(Ãi(ξi)x ≥ b̃i(ξ
i)) ≥ 1− εi ∀i = 1, . . . ,m. (2.11)

Without loss of generality, we can define Ãi(ξi) and b̃i(ξi) as affine functions of ξi (see
Shapiro et al., 2009), i.e.,

Ãi(ξ
i) = Ai0 +

Ki∑
k=1

Aikξ
i
k, bi(ξ

i) = bi0 +

Ki∑
k=1

bikξ
i
k,

where Ki is the dimension of ξi. Terms Ai0 and bi0 are the deterministic parts of Ãi(ξi) and
b̃i(ξ

i) and terms Aik and bik are the affine coefficients of ξik, ∀k = 1, . . . , Ki. As a result,
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we can reformulate (2.11) as (Āxi )
Tξ ≤ b̄xi , where Āxi = 〈̃bξi1 − Ã

ξ
i1x, . . . , b̃

ξ
iK − Ã

ξ
iKx〉 and

b̄xi = Ãξi0x− b̃
ξ
i0.

For simplicity, we drop the index i of ξi in the following. Given data samples {ξ`}N`=1

of ξ, we calculate the empirical mean vector µ0 = 1
N

∑N
`=1 ξ

` and covariance matrix Σ0 =
1
N

∑N
`=1(ξ` − µ0)(ξ` − µ0)T, and build an ambiguity set (Delage and Ye, 2010)

D =

f(ξ) :

∫
ξ∈RK f(ξ)dξ = 1

(E[ξ]− µ0)TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)T] � γ2Σ0

 ,

where RK is the support of ξ. The ambiguity set D is determined by µ0 and Σ0, and by
parameters γ1 and γ2. The three constraints in D ensure that (i) the integral of pdf f(ξ)

is one; (ii) the true mean of ξ lies in a µ0-centered ellipsoid bounded by γ1; and (iii) the
true covariance matrix lies in a positive semi-definite cone bounded by γ2Σ0. Delage and
Ye (2010) describes how the values of γ1 and γ2 can be chosen based on the data sample
size, risk parameter, and desired confidence. In practice, the values of γ1 and γ2 represent
a decision maker’s risk preference and can be used to change solution conservatism. In
general, larger values of γ1 and γ2 will lead to more conservative (robust) solutions. We
follow Delage and Ye (2010) and set γ1 = 0 and γ2 = 1.

We solve a minimization problem over the ambiguity setD of f(ξ), specifically, Delage
and Ye (2010); Jiang and Guan (2016)

zD = min
f(ξ)

∫
RK

IA(ξ)f(ξ)dξ (2.12)

s.t.
∫
RK

f(ξ)dξ = 1 (2.13)∫
RK

[
Σ0 ξ − µ0

(ξ − µ0)T γ1

]
f(ξ)dξ � 0 (2.14)∫

RK
(ξ − µ0)(ξ − µ0)Tf(ξ)dξ � γ2Σ0, (2.15)

where IA(ξ) is an indicator function which equals 1 if ξ ∈ A = {ξ : (Āxi )
Tξ ≤ b̄xi } and 0

otherwise, and (2.13)–(2.15) are the constraints in set D in integral form. The generalized
inequality for symmetric matrices, X � Y , means that X − Y is a positive semidefinite
matrix; similarly, X � Y , means that Y − X is a positive semidefinite matrix. A DR
chance constraint i is satisfied when zD ≥ 1− εi.

Note that the set D could be very conservative as the worst-case distributions consist
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of few discrete points Vandenberghe et al. (2007). Recent literature investigated inclu-
sion of structural properties (e.g., unimodality) to exclude discrete distributions from the
ambiguity set (see, e.g., Van Parys et al. (2016), Hanasusanto et al. (2015)). Others use
higher order moments and strengthened supports (e.g., Summers et al. (2015)) to reduce
the conservatism of the DR approach. However, the construction of set D also needs to
ensure tractability of the reformulation. In the next subsection, we propose an alternative
ambiguity set that matches the exact mean and covariance, which leads to a tractable SOCP
reformulation.

The DR chance constraints (2.11) are equivalent to the following SDP model (Jiang and
Guan, 2016):

γ2Σ0 ·Gi + 1− ri + Σ0 ·Hi + γ1qi ≤ εiyi (2.16)[
Gi −pi
−pTi 1− ri

]
�

[
0 1

2
Āxi

1
2
(Āxi )

T yi + (Āxi )
Tµ0 − b̄xi

]
(2.17)[

Gi −pi
−pTi 1− ri

]
� 0 (2.18)[

Hi pi

pTi qi

]
� 0 (2.19)

yi ≥ 0, (2.20)

for i = 1, . . . ,m, where we use X · Y to denote the Frobenius inner product of X and
Y (i.e., X · Y = tr(XTY )) and yi ∈ R, ri ∈ R, qi ∈ R, pi ∈ RK , Hi ∈ RK×K ,
and Gi ∈ RK×K . The proof, given in Jiang and Guan (2016), uses conic duality, and is
summarized as follows. Denote SK+ as the set of symmetric positive semidefinite K × K

matrices. Define dual variables ri for (2.13), Gi for (2.14), and

[
Hi pi

pTi qi

]
for (2.15). The

conic dual of (2.12)–(2.15) is (Jiang and Guan, 2016)

zD = max
Gi,Hi,pi,qi,ri

−γ2Σ0 ·Gi + ri − Σ0 ·Hi − γ1qi (2.21)

s.t. (ξ − µ0)T(−Gi)(ξ − µ0) + 2pTi (ξ − µ0)

+ri ≤ IA(ξ), ∀ξ ∈ RK (2.22)

Gi ∈ SK×K+ (2.23)[
Hi pi

pTi qi

]
∈ S(K+1)×(K+1)

+ . (2.24)

As strong duality holds for the primal and dual problems, the existence of feasible solutions
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to (2.11) is equivalent to having zD ≥ 1 − εi, ∀i = 1, . . . ,m. After applying Lemma 1 in
Jiang and Guan (2016), the SDP formulation (2.16)–(2.20) directly follows from the dual
formulation (2.21)–(2.24) by replacing the semi-infinite constraints (2.22) by finite SDP
constraints.

Importantly, note that the above approach for bounding the unknown pdf f(ξ) is general
and allows the uncertainty ξ to be time-varying, correlated, and endogenous. The complete
DR CC-OPF model is

min
x,y,r,H,G,p,q

{(2.2) : (2.3)–(2.8), (2.10), (2.16)–(2.20)∀i = 1, . . .m} .

2.2.4 An Alternative Ambiguity Set and DR Reformulation

In this section, we provide a DR reformulation based on an alternative ambiguity set

D′ =

f(ξ) :

∫
ξ∈RK f(ξ)dξ = 1

E[ξ]− µ0 = 0

E[(ξ − µ0)(ξ − µ0)T] = Σ0

 ,

which requires that the true mean and covariance matrix of ξ, given by any distribution in
setD′, be exactly the empirical mean µ0 and covariance Σ0. When using γ1 = 0 and γ2 = 1

in the set D, we have D′ ⊂ D, and thus this set produces less conservative solutions by
placing more trust in µ0 and Σ0.

With this ambiguity set, the problem can be reformulated as an SOCP, which is more
efficient to compute than the SDP reformation using set D. Specifically, we rewrite the DR
constraints (2.11) as

sup
f(ξ)∈D′

Pξ
(
(Āxi )

Tξ ≥ b̄xi
)
≤ εi ∀i = 1, . . . ,m, (2.25)

which are equivalent to√
(Āxi )

TΣ0Āxi ≤
√

εi
1− εi

(b̄xi − (µ0)TĀxi ) ∀i = 1, . . . ,m. (2.26)

The derivation follows a variant of the Chebyshev inequality and was given in Wagner
(2008) for general DR individual chance constraints. We demonstrate the procedure and
result for the DR CC-OPF as follows. Consider a variant of the Chebyshev inequality for
random variable X with mean µ and variance σ2 as P[X ≥ (1 + δ)µ] ≤ σ2

σ2+µ2δ2
for any

constant 0 ≤ δ ≤ 1. According to Bertsimas and Popescu (2005), there exists a distribution
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in D′ to make the inequality tight. Then, the equivalence between (2.25) and (2.26) can be
established by letting

δ = −1 +
b̄xi

E[(Āxi )
Tξ]

= −1 +
b̄xi

(Āxi )
TE[ξ]

.

Therefore, by using a new ambiguity set D′, we can solve the alternative DR CC-OPF
model

min
x,y,r,H,G,p,q

{(2.2) : (2.3)–(2.8), (2.10), (2.26)} .

2.3 Benchmark Approaches

We compare the DR approach to two benchmark approaches used in the literature to solve
CC-OPF problems. Both use statistical information and derive convex approximations for
the exact CC-OPF.

2.3.1 Reformulation via Gaussian Approximation

Assuming Gaussian uncertainty, the CC-OPF can be reformulated as a convex program
(Bienstock et al., 2014; Roald et al., 2013). Prior research has not applied this approach
to a CC-OPF with uncertain load reserves, with the exception of Li and Mathieu (2015),
which used the multi-period CC-OPF formulation from Vrakopoulou et al. (2014). We
briefly describe the derivation of the convex program. First, consider constraints (2.9) in an
equivalent form

P
(
Ã′ix̄ ≤ b′i

)
≥ 1− εi i = 1, . . . ,m, (2.27)

where only the constraint vector Ã′i is uncertain and the right-hand side scalar b′i is deter-
ministic. This is because for each constraint i of the form (2.9) where both Ãi and b̃i are
random, we can always define an artificial variable xb ∈ R and rewrite Ãix ≥ b̃i as

−Ãix+ b̃ixb ≤ 0 ⇔ 〈−Ãi, b̃i〉T〈x, xb〉 ≤ 0,

for which we enforce xb = 1. Consequently, we have Ã′i = 〈−Ãi, b̃i〉, x̄ = 〈x, xb〉, and
b′i = 0,∀i = 1, . . . ,m in (2.27).

If Ã′i follows a multivariate normal distribution, denoted by N ∼ (µi,Σi) with µi and
Σi being the mean and covariance of Ã′i, respectively, then Ã′ix̄− b′i follows a multivariate
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normal distribution N ∼ (µT
i x̄− b′i, x̄TΣix̄). As a result,

P(Ã′ix̄ ≤ b′i) = Φ

(
b′i − µT

i x̄

x̄TΣix̄

)
i = 1, . . . ,m, (2.28)

following which, constraints (2.9) are equivalent to

b′i − µT
i x̄+ Φ−1(εi)

√
x̄TΣix̄ ≥ 0 i = 1, . . . ,m, (2.29)

where Φ−1(εi) denotes the εi-quantile of the standard normal distribution. We rewrite (2.29)
as

b′i − µT
i x̄ ≥ Φ−1(1− εi)

√
x̄TΣix̄ i = 1, . . . ,m, (2.30)

which are SOCP constraints if Φ−1(1−εi) ≥ 0, i.e., 1−εi ≥ 0.5. This is a mild assumption
since the chance constraints must be satisfied with probabilities much higher than 0.5. The
first benchmark approach solves an SOCP model:

min
x
{(2.2) : (2.3)–(2.8), (2.10), (2.30)} .

If the uncertainties are not Gaussian, then the above model is a convex approximation for
the exact CC-OPF.

2.3.2 Reformulation via Scenario Approximation

Campi et al. (2009) proposes a scenario approximation method for chance-constrained op-
timization problems by enforcing Asix ≥ bsi , ∀i = 1, . . . ,m in all samples s in an approx-
imate sample set Ωap. The samples in Ωap could be (i) data observations or (ii) generated
from a known distribution by using Monte Carlo sampling. It usually requires a large sam-
ple size |Ωap| to guarantee reliability 1− εi with high confidence. Each chance constraint i
in (2.9) is replaced with

Asix ≥ bsi ∀s ∈ Ωap. (2.31)

It is shown in Campi et al. (2009) that |Ωap| ≥ 2
ε
(ln 1

β
+ n) where 1 − β is the confidence

level and n is the dimension of the decision vector x. Therefore, the second benchmark
approach solves a quadratic programming model:

min
x
{(2.2) : (2.3)–(2.8), (2.10), (2.31)} .

A variant of this approach was applied in Vrakopoulou et al. (2013, 2014), which use a
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robust reformulation (Margellos et al., 2014) that reduces the required number of samples
and the computational time. Moreover, one could employ scenario reduction procedures
from the sample average approximation literature to further improve the solution time of
the above model.

2.4 Studies on the IEEE 9-bus System

We first compute solutions for the IEEE 9-bus system using the two benchmark approaches
and the DR approach, assuming unknown distributions of the uncertainties. We refer to the
approaches as:

• A1: Gaussian approximation approach (SOCP)

• A2: Scenario approximation approach (QP)

• A3: Distributionally robust approach (SDP)

• A4: DR approach with ambiguity set D′ (SOCP)

All computational tests are performed on a Windows 7 machine with Intel(R) Core(TM)
i7-2600 CPU 3.40 GHz and 8GB memory. All models are solved by CVX implemented in
MATLAB with MOSEK as the optimization solver (Grant and Boyd, 2012).

2.4.1 Test System

We obtained parameters for the IEEE 9-bus system from MATPOWER (Zimmerman et al.,
2011), and assume that generator reserves are more expensive than load reserves, specifi-
cally, cG = cG = 10× 1 and cL = cL = 9.8× 1, where 1 is a vector of ones of appropriate
size. If generator reserves are less expensive than load reserves, the optimal solution is
not to use load reserves as they are uncertain and so less valuable to the system. If the
cost of generator and load reserves are set equal, the optimal solution is generally to use
a combination of both types of reserves. This is because use of generator reserves can
increase generator production costs as generators are dispatched sub-optimally to accom-
modate reserve provision, and this makes use of some (less valuable) load reserves cost
effective.

We add one wind power plant at Bus 6 with rated capacity 75 MW and forecasted output
50 MW. We assume 70% of the load at each bus is perfectly forecastable and not flexible.
The remaining load at each bus is flexible but uncertain (in terms of both consumption and
min/max possible consumption). The load forecasts are set equal to the test case loads.
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2.4.2 Flexible Load Modeling

We assume that the flexible loads are aggregations of electric heat pumps, and each can be
modeled as a thermal energy storage unit with power capacity Pc, energy capacity Ec, and
baseline power consumption PL, which all vary with (uncertain) outdoor air temperature
θ̃ (Mathieu et al., 2015). We use Fig. 1 of Vrakopoulou et al. (2014) as a look-up table to
determine Pc(θ̃), Ec(θ̃), and P̃L = PL(θ̃).

If the power system operator does not provide a method to manage the energy states
of energy-constrained reserve resources, the real-time reserve signal will determine the
energy states of the load aggregations at the end of each scheduling period – a zero-mean
signal will result in final energy states equivalent to the initial energy states, while all other
signals will result in final energy states that are different than initial energy states. At the
beginning of each scheduling period, we can compute the capacity (in MW) of reserves
that each load aggregation can provide as a function of its forecasted Pc, Ec, PL, and its
current energy state assuming, in the worst case, that the real-time reserve signal will be
equivalent to its minimum or maximum over the entire scheduling period (e.g., 1 hour).
To mitigate the conservatism that results from computing reserve capacities in this way,
several power system operators in the U.S. are now managing the energy states of energy-
constrained reserve resources. For example, the California ISO uses the 5-minute energy
market to ensure that regulation signals are zero-mean over 15-minute periods California
ISO (2011).

Assuming a one hour scheduling period and that a load aggregation providing reserves
must be able to operate at full capacity for 15-minutes, which is consistent with California
ISO (2011), we compute

P̃L = max
(
PL(θ̃)− 4(Ec(θ̃)/2), 0

)
(2.32)

P̃L = min
(
PL(θ̃) + 4(Ec(θ̃)/2), Pc(θ̃)

)
(2.33)

where the first values within the min/max operators ensure that the energy constraints
are not violated and the second values ensure that the power constraints are not violated.
Specifically, we assume that initially the heat pumps are operating normally, and so their
initial energy state is half their energy capacity. Then, they can increase or decrease their
aggregate power consumption by four times Ec(θ̃)/2 (since there are four 15-minute in-
tervals in one hour) unless the resulting power consumption would violate their power
constraints, i.e., the aggregate power must be between 0 and Pc(θ̃).
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2.4.3 Random Sample Generation and Selection

We use forecasted and actual outdoor air temperatures from eleven weather stations in
Switzerland to compute temperature errors, and then add these errors to assumed temper-
ature forecasts at each load bus θf = [13, 10, 14]T ◦C to create temperature samples, with
which we compute samples of P̃L, P̃L, and P̃L. We scale the samples to be consistent with
our load forecast assumptions. Additionally, we use scaled versions of the wind power
samples used in Vrakopoulou et al. (2014), which were computed by applying the Markov
chain mechanism developed in Papaefthymiou and Klockl (2008) to forecasted and actual
hourly wind power data from Germany from 2006-2011.

We generate 10, 000 i.i.d. samples of P̃W , P̃L, P̃L, P̃L, which comprise the support set
Ω. For A1, A3 and A4, we assume a decision maker only has limited knowledge of Ω, and
so we randomly select 20 samples from Ω. With these samples, we construct the ambiguity
set of the unknown pdf by computing their empirical mean and covariance, which we use
to build the SOCP constraints (2.30) in A1, the SDP constraints (2.16)–(2.20) in A3, and
the SOCP constraints (2.26) in A4. For A2, we use the bound in Campi et al. (2009) to
choose the number of samples for the approximate sample set Ωap in (2.31). Specifically,
for 1 − εi = 95% and a confidence parameter β = 0.05, we select 900 random samples
since the bound |Ωap| ≥ 2

ε
(ln 1

β
+ n) = 932 where n = 21 is the dimension of decision

variable vector for the 9-bus system. For 1−εi = 90% and β = 0.05, we select 500 random
samples.

After solving the CC-OPF with A1–A4, we fix the optimal solutions x and test their
performance on all 10,000 samples in the support set Ω. For each approach, we re-solve
the optimization problem and test the solution ten times, and report the average, maximum,
and minimum objective cost, solution reliability (the percent of samples for which the
constraints are satisfied when x is fixed), and CPU time.

2.4.4 Results and Solution Patterns

Table 2.1 shows the results for the 9-bus system with no congestion (which occurs when we
use the test case line flow limits). We observe that A1 solves the fastest and A2 the slowest.
The CPU time taken by A2 also depends on the probability of chance constraint violation
as 1− εi = 95% requires many more samples than 1− εi = 90%. In contrast, the solution
time of A1, A3 and A4 are independent of the probability of chance constraint violation,
and only depend upon the problem size. Both A2 and A3 yield higher objective costs than
A1. However, A1 results in much lower reliability since the underlying uncertainty is not
Gaussian, while A2, A3 and A4 result in reliabilities above the requirements. Note that
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Table 2.1: Cost, Reliability, and CPU Time of A1–A4 for the IEEE 9-Bus System with No
Congestion

A1: Gaussian A2: Scenario A3: DR (SDP) A4: DR (SOCP)
1− εi = 95% 90% 95% 90% 95% 90% 95% 90%

avg 4392.63 4330.41 4758.32 4738.73 4875.35 4633.57 4875.41 4633.61
Objective cost max 4478.08 4394.57 4895.40 4812.65 5102.61 4789.59 5102.65 4789.62

min 4308.60 4262.52 4678.17 4649.48 4652.84 4480.48 4652.92 4480.59
avg 84.47 75.63 99.65 99.57 99.43 97.45 99.65 97.95

Reliability (%) max 94.07 86.69 99.87 99.83 99.83 99.56 99.83 99.74
min 65.40 61.98 99.36 99.26 97.60 90.99 98.80 91.94
avg 0.03 0.03 15.21 3.51 0.47 0.46 0.44 0.37

CPU Time (s) max 0.05 0.06 15.41 3.85 0.55 0.53 0.36 0.41
min 0.03 0.02 14.88 3.34 0.34 0.41 0.39 0.34

A3 and A4 perform similarly in terms of cost, reliability, and CPU time. Since, given our
choice of γ1 and γ2 we have D′ ⊆ D, A4 should result in objective cost values that are
less than or equal to those of A3 in each instance. However, in some instances, due to
solver limitations for handling SDP models, some results produced with A3 are not fully
optimized (i.e., CVX reported “solved/inaccurate”). In contrast, all of the results produced
with A4 are fully optimized. Thus, A3 sometimes produces lower costs than A4. When
1 − εi = 90%, A1 performs substantially worse than when 1 − εi = 95%, while A2, A3
and A4 yield similar reliability results as they are less sensitive to the change in 1 − εi. In
the remainder of the chapter, we use 1 − εi = 95%, which is more reasonable for power
systems.

To put the objective costs in context, we computed the solution to three additional cases.
Case 1 assumes no uncertainty, and so we solve a deterministic problem that results in no
reserve procurement. Case 2 assumes wind and load uncertainty, but that loads cannot
provide reserves, which is consistent with power system operation today. Case 3 assumes
that loads can provide reserves, and they are certain (in terms of both consumption and
min/max possible consumption) giving us an upper-bound on the cost reductions possible
with load reserves. Each is solved with A3. The results for the uncongested system are
shown in Table 2.2 along with the comparable results of the complete formulation (referred
to as Case 4), i.e., the results of A3 for 1− εi = 95% from Table 2.1. Case 1 has the lowest
cost, while Case 2 has the highest. Comparing Case 2 and Case 3 gives the maximum
possible value of load reserves, while comparing Case 3 and Case 4 gives the cost of load
uncertainty.

We also explore the performance of the approaches under congestion. Specifically, we
decrease the line flow limit of the transmission line between Buses 5 and 6 from 150 MW
to 40 MW, resulting in congestion on multiple lines. The results are shown in Table 2.3. All
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Table 2.2: Objective Costs of Various Uncertainty Cases for the IEEE 9-Bus System with
No Congestion (1− εi = 95%, ∀i)

Case 1 Case 2 Case 3 Case 4
avg 4099.97 4891.11 4352.64 4875.35

Objective cost max - 5122.41 4402.08 5102.61
min - 4664.12 4292.27 4652.84

Table 2.3: Cost, Reliability, and CPU Time of A1–A4 for the IEEE 9-Bus System with
Congestion (1− εi = 95%, ∀i)

A1 A2 A3 A4
avg 4428.72 4884.12 5030.31 5036.35

Objective cost max 4538.47 5036.97 5328.71 5330.85
min 4345.12 4789.28 4767.10 4767.12
avg 78.69 99.44 99.27 99.53

Reliability (%) max 91.94 99.79 99.81 99.85
min 63.52 99.12 97.93 98.43
avg 0.05 48.93 6.40 0.47

CPU Time (s) max 0.19 49.44 6.77 0.52
min 0.02 48.22 6.08 0.42

four approaches yield higher costs as compared to the uncongested cases in Table 2.1. A1’s
reliability is poor; its optimal solution can only satisfy the chance constraints in 78.69% of
the samples within Ω. In contrast, A2, A3 and A4 achieve higher reliability than required.
In each case, the CPU time increases when the system is congested;however, the increase
for A4 is small, especially as compare to the increase for A3.

In Fig. 2.1, we plot the optimal generator production and reserve capacities for each
generator/load in each approach for 1− εi = 95% for both the uncongested and congested
cases. The values plotted are the average over the 10 runs and R∗ denotes the sum of the
up and down reserve capacities, i.e., R + R. In Table 2.4 we show the optimal reserve
procurement given by the three approaches for 1 − εi = 95% for both the uncongested
(UC) and congested (C) cases. In the column “Generator Reserves” we list the sum of all
generator reserves, i.e.,

∑3
j=1 R

∗
G,j and “Load Reserves” are defined similarly. The last col-

umn “Total Reserves” is the sum of the generator reserves and load reserves. We can make
several observations from Fig. 2.1 and Table 2.4. First, when the system is not congested,
the generator production is the same for each approach; however, with congestion the gen-
erator production is different for each approach and generators provide more of the total
reserves. A1 procures the fewest reserves (corresponding to the lowest cost solution) and
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Figure 2.1: Optimal generator production and reserve capacities for each generator/load in
the IEEE 9-bus system.

A3/A4 the most (corresponding to the highest cost solution). For each approach, the total
reserves procured by the uncongested and congested system is approximately the same.

Table 2.4: Reserves procured by A1–A4 in the IEEE 9-bus system

Generator Reserves Load Reserves Total Reserves

UC
A1 4.7× 10−5 29.86 29.86
A2 5.19 61.89 67.07
A3 0.34 78.77 79.11
A4 0.42 78.70 79.12

C
A1 1.2× 10−4 29.86 29.86
A2 13.06 54.01 67.07
A3 6.63 72.47 79.10
A4 24.91 54.21 79.12
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2.5 Studies on the IEEE 39-bus System and IEEE 118-bus
System

2.5.1 Test System and Sample Generation/Selection

We also tested all approaches on the IEEE 39-bus system and both A1 and A4 on the IEEE
118-bus system. We were unable test A2 or A3 on the 118-bus system as the required CPU
times were extremely large. However, it is worth noting that SDP solvers are not yet mature
and it is expected that it will become feasible to solve large SDP problems in the near term,
which would make A3 more useful.

We obtained test system parameters from MATPOWER (Zimmerman et al., 2011), and
again assume cG = cG = 10 × 1, and cL = cL = 9.8 × 1. We add one wind power plant
at Bus 6 with rated capacity 300 MW and forecasted output 200 MW. For the 118-bus
system, we add three wind power plants at Buses 6, 8, and 15, each with rated capacity 300
MW and forecasted output 200 MW. We treat each wind power injection as an uncorrelated
random variable. We assume 95% of the load at each bus is perfectly forecastable and not
flexible, and the remaining load is flexible but uncertain, with the load forecasts set equal
to the test case loads.

The temperature for each load bus is randomly selected between 10◦C and 15◦C, and
we use the same procedures as used for the 9-bus system to generate 10,000 i.i.d. samples
of P̃W , P̃L, P̃L, P̃L, which comprise the support set Ω. For A1, A3 and A4, we still use
20 samples randomly picked from the set Ω, but A2 now requires 4000 samples within Ωap

since the number of decision variables increases to n = 103. Moreover, the number of
chance constraints increases to m = 216 as compared to m = 42 in the 9-bus system.

Using the test case line flow limits, the system is not congested. For comparison, we
also run cases with congestion. Specifically, we decrease the line flow limit of the trans-
mission line between Buses 2 and 3 from 500 MW to 350 MW and between Buses 13 and
14 from 600 MW to 200 MW. To produce congestion in the 118-bus system, we set all line
flow limits to 180 MW.

2.5.2 Results and Solution Patterns

We report the objective cost, reliability, and CPU time of approaches A1–A4 for the un-
congested system in Table 2.5 and the congested system in Table 2.6. For comparison,
the objective costs of Cases 1–4 (as defined in Section 2.4.4) for the uncongested system
solved with A3 are in Table 2.7. Figure 2.2 shows the optimal reserve procurement (av-
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Table 2.5: Cost, Reliability, and CPU Time of A1–A4 for the IEEE 39-Bus System with
No congestion (1− εi = 95%)

A1 A2 A3 A4
avg 39232.81 40822.56 40214.75 40223.52

Objective cost max 39351.18 40952.34 40489.98 40541.92
min 39060.95 40685.37 39772.05 39764.59
avg 85.13 99.89 93.89 99.65

Reliability (%) max 92.28 99.92 97.97 99.82
min 71.61 99.84 86.34 99.11
avg 0.10 998.11 427.05 0.76

CPU Time (s) max 0.12 1036.17 745.54 0.95
min 0.09 971.84 286.75 0.67

Table 2.6: Cost, Reliability, and CPU Time of A1–A4 for the IEEE 39-Bus System with
Congestion (1− εi = 95%)

A1 A2 A3 A4
avg 42350.49 45489.17 44765.94 44787.62

Objective cost max 42788.23 45871.69 45676.41 45744.09
min 41888.16 45187.54 43996.11 44070.00
avg 72.38 99.79 93.25 99.10

Reliability (%) max 86.90 99.87 98.23 99.77
min 60.47 99.70 85.74 96.60
avg 0.10 1003.45 502.69 0.72

CPU Time (s) max 0.12 1040.64 666.80 0.78
min 0.09 978.80 395.95 0.63

Table 2.7: Objective Costs of Various Uncertainty Cases for the IEEE-39 Bus System with
No Congestion (1− εi = 95%, ∀i)

Case 1 Case 2 Case 3 Case 4
avg 38629.05 40259.96 39423.98 40214.75

Objective cost max - 40581.04 39566.85 40489.98
min - 39796.61 39217.81 39772.05
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Figure 2.2: Optimal reserve capacities R∗ for each generator/load in the IEEE 39-bus sys-
tem.

Table 2.8: Cost, Reliability, and CPU Time of A1 and A4 for the IEEE 118-Bus System
(1− εi = 95%)

Uncongested Congested
A1 A4 A1 A4

avg 105060 107530 105480 108120
Objective cost max 105430 108790 105860 109390

min 104710 106360 105110 106920
avg 29.68 96.57 24.23 95.30

Reliability (%) max 44.62 98.71 40.90 98.63
min 13.89 92.58 10.11 89.49
avg 7.90 10.71 7.69 11.78

CPU Time (s) max 8.69 13.05 8.41 12.76
min 7.50 9.72 7.36 10.95
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Table 2.9: Reserves procured by A1– A4 in the IEEE 39-bus system

Generator Reserves Load Reserves Total Reserves

UC
A1 0.01 61.60 61.61
A2 0.07 223.76 223.83
A3 2.64 159.03 161.67
A4 0.04 162.66 162.70

C
A1 15.59 46.02 61.61
A2 56.01 167.82 223.83
A3 21.11 141.04 162.15
A4 37.83 124.89 162.72

Table 2.10: Reserves procured by A1 and A4 in the IEEE 118-bus system

Generator Reserves Load Reserves Total Reserves

UC
A1 49.62 64.22 113.84
A4 94.85 206.23 301.07

C
A1 51.65 62.19 113.84
A4 104.96 196.10 301.06

eraged over the 10 runs) in each approach in the uncongested and congested systems and
Table 2.9 summarizes the generator, load, and total reserves procured by each approach in
the uncongested and congested systems.

In the 39-bus system, A3 and A4 are less costly than A2, since they procure less re-
serves. Again, A1 is the least expensive, with the best CPU time and the worst reliability.
Comparing A3 and A4, A4 achieves higher reliability with significantly lower CPU time
and only a slight increase in cost. A2’s reliability is slightly better than A4’s (both are well-
above the reliability requirement), but its CPU time is three orders of magnitude larger. It is
also worth noting that A2 requires 5583.30 seconds on average to read in data and construct
the models (this time is not included in “CPU seconds”) while the average time for A3 and
A4 are 298.13 and 21.05 seconds, respectively.

Without congestion, the generator reserves are barely used (they are not clearly visible
in the plot, but the totals are listed in Table 2.9). However, with congestion generator
reserves, especially from generators 30 and 32 increase. Again, for each approach, the
total reserves procured by the system are approximately the same in the uncongested and
congested cases.

For the 118-bus system, we report the objective cost, reliability, and CPU time of A1
and A4 for the uncongested and congested system in Table 2.8. Table 2.10 summarizes
the generator, load, and total reserves procured by both approaches in the uncongested and
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congested systems. In both the uncongested and congested cases, A4 achieves reliabilities
above the requirement with modest CPU time (around 10 seconds) demonstrating that the
approach should scale to realistically-sized systems. In contrast, A1’s reliabilities are well-
below the requirement (25-30%, rather than the required 95%). However, the cost of A4’s
solution is higher, since more reserves are procured, as seen in Table 2.10.

.

2.6 Concluding Remarks

In this chapter, we proposed a single-period CC-OPF with uncertain reserves from loads.
We reformulated the problem using DR optimization and two different ambiguity sets re-
sulting in an SDP problem and an SOCP problem, and compared it to two other reformu-
lations. We conducted a number of computational experiments on the uncongested and
congested IEEE 9-bus, 39-bus, and 118-bus systems, and compared the results of the three
approaches in terms of objective cost, reliability, CPU, and optimal solution. We find that
use of load reserves, even when their reserve capacities are uncertain, decreases system op-
erational costs. We also find that, in contrast to the Gaussian approximation approach, the
DR approach yields solutions with reliabilities close to the specified requirements. Addi-
tionally, both DR approach require less computation time than the scenario approximation
approach, which requires large numbers of uncertainty samples (900 for the 9-bus system
and 4000 for the 39-bus system). Furthermore, the DR reformulation that uses SOCP pro-
duces solutions with reliabilities above the requirements and requires only modest CPU
time (approximately 10 seconds for the IEEE 118-bus system with multiple wind power
plants and congestion). In summary, the DR approach, which relies on moments calculated
from small uncertainty sample sets (here we use only 20) but makes no assumption on the
underlying uncertainty distributions, provides a good trade-off between performance and
computational tractability.
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CHAPTER 3

Distributionally Robust Appointment Scheduling
with Moment-Based Ambiguity Set

3.1 Introductory Remarks

This chapter studies the problem of scheduling a set of appointments with a fixed order
of arrivals on a single server. The server does not only refer to a person or a machine
but a general service provider which can be an operating room in surgery planning (see,
e.g., Denton and Gupta, 2003), an agent in call-center (see, e.g., Gurvich et al., 2010), a
computing server in cloud computing data center (see, e.g., Shen and Wang, 2014), or a
prototype vehicle in test planning (see, e.g., Shi et al., 2017), depending on specific appli-
cation settings. The service durations are random and may be correlated. We assign each
appointment an arrival time and minimize the expected total waiting time of all the appoint-
ments, subject to constrained risk of having server overtime. The traditional stochastic
optimization methods require full knowledge of the distribution of uncertain parameters.
We employ an ambiguity set of the unknown probability distribution function based on the
first and the second moment information. We study a DR formulation that minimizes the
worst-case (i.e., maximum) expected waiting time over the ambiguity set, and limits the
worst-case overtime risk over the same ambiguity set.

Scheduling under uncertainty has been considered for many applications and the related
problems are solved by using simulation, optimization, and approximation algorithms (see,
e.g., Begen and Queyranne, 2011; Berg et al., 2014; Epstein et al., 2012; Ge et al., 2013;
Klassen and Yoogalingam, 2009; Mittal et al., 2014b). A common goal is to balance ap-
pointment waiting, server idleness, and server overtime. Some studies also optimize the
sequence of appointments in addition to scheduling their arrival time (Denton and Gupta,
2003; Denton et al., 2007; Mak et al., 2014, 2015; Mittal et al., 2014b). The stochastic
optimization literature often assume known distributions of the random service durations
(Begen and Queyranne, 2011; Denton and Gupta, 2003; Erdogan and Denton, 2013). On
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the other hand, Epstein et al. (2012); Mittal et al. (2014b) focus on robust scheduling model
variants and seek “universal” scheduling/sequencing decisions under different uncertain
cost structures. We refer to Gabrel et al. (2014) for a thorough review of robust optimiza-
tion approaches and relevant robust scheduling applications, Pinedo (2016) for a survey
of scheduling theories and applications, and Cayirli and Veral (2003); Gupta and Denton
(2008) for comprehensive reviews of healthcare scheduling.

Meanwhile, DR approaches have been developed to address the issue of distributional
ambiguity in the traditional stochastic programs, by utilizing statistical information of data
samples for constructing ambiguity sets of the unknown distributions. We refer to (Delage
and Ye, 2010; Zymler et al., 2013) for the representative work that uses moment-based
ambiguity sets for optimizing DR expectation-based or chance-constrained models. In
particular, by using an ambiguity set based on the first two moments, Jiang and Guan
(2016) successfully reformulate DR chance constraints as semidefinite programs (SDPs)
based on conic duality.

The issue of distributional ambiguity has received increasing attention in the recent
stochastic appointment scheduling literature. For example, both Kong et al. (2013) and
Mak et al. (2015) consider DR scheduling problems, and minimize the worst-case expected
waiting time of appointments and server overtime. In particular, Kong et al. (2013) consider
a cross-moment ambiguity set and derive a copositive programming reformulation. Mak
et al. (2015) derive a second-order conic program by only using marginal moments in the
ambiguity set. We refer to Deng and Shen (2016); Deng et al. (2016); Qi (2016) for other
recent papers that formulate DR models for server planning and/or appointment schedul-
ing by using either moment- or density-based ambiguity sets. Based on the structures of
the related reformulations, they discuss continuous or discrete optimization methods for
computing the optimal results.

In this problem, we optimize a DR objective that concerns the worst-case expected
waiting time, subject to a DR chance constraint for restricting the server overtime. The am-
biguity sets in both DR subproblems follow the moment-based form discussed in Jiang and
Guan (2016). Different from the previous work, our model incorporates the distributional
ambiguity and worst-case analysis in both the objective function of waiting time and the
chance constraint of overtime. As the main technical contribution, we utilize special dual
structures of the scheduling constraints and also the techniques in Jiang and Guan (2016)
to reformulate an SDP approximation of the DR model, which can be solved directly by
off-the-shelf solvers. The computational efficacy of our approach depends on the efficiency
of solving general continuous SDPs. We demonstrate the effect of distributional ambiguity
by comparing the results of our SDP model with the ones of a sampling-based stochas-
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tic program on small-scale instances of outpatient treatment scheduling (involving six ap-
pointments). One can generalize the study in this chapter to broader service optimization
problems with similar structures, e.g., DR inventory control under random demand with
unknown distributions (Mak et al., 2014).

The rest of the chapter is organized as follows. Section 3.2 formulates the DR chance-
constrained scheduling problem and specifies the ambiguity set. Section 3.3 derives a con-
servative SDP approximate model of the DR problem. In Section 3.4, we demonstrate the
computational results and solution patterns given by the DR approach, and compare them
with those of the benchmark stochastic program based on discrete samples of outpatient
treatment planning data. We note that the work in this chapter has been published in Zhang
et al. (2017).

Assumptions and Notation. We use |X| to denote the cardinality of setX , and useX ·Y
to denote the Frobenius inner product of X and Y , i.e., X · Y = tr(XTY ). We denote SK+
as the set of symmetric positive semidefinite K ×K matrices. The generalized inequality
for symmetric matrices, X � Y , where X, Y ∈ SK+ , means that X − Y ∈ SK+ . Similarly,
X � Y means that Y −X ∈ SK+ .

3.2 DR Appointment Scheduling with Chance-constrained
Overtime

A set of appointments 1, . . . ,m sequentially arrive at a single server, for which we plan an
arrival time of each appointment. This is equivalent to assigning time intervals xj between
each arrival pair of appointment j and appointment j + 1, for all j = 1, . . . ,m − 1. Let
x = [x1, . . . , xm−1]T. We consider the feasible region:

x ∈ X :=

{
x :

m−1∑
j=1

xj ≤ T, xj ≥ 0, ∀j = 1, . . . ,m− 1

}
,

where T represents the time limit of operating the server. The service durations of the
m appointments are denoted by random vector s = [s1, . . . , sm]T where sj is the time
of serving appointment j, ∀j = 1, . . . ,m. Instead of knowing the exact distribution of
random parameter s, we are given a set of data samples {sk}Kk=1, with estimated mean and
covariance matrix given by µs0 = 1/K

∑K
k=1 s

k and Σs
0 = 1/K

∑K
k=1(sk − µs0)(sk − µs0)T.

Let Ξs and f s be the support and the probability density function of the random parameter
s, respectively. We consider the same ambiguity set DsM as the one used in Delage and Ye
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(2010); Jiang and Guan (2016), given by

DsM = DsM(Ξs, µs0,Σ
s
0, γ1, γ2) =

f s :

∫
s∈Ξs

f sds = 1

(E[s]− µs0)T(Σs
0)−1(E[s]− µs0) ≤ γ1

E[(s− µs0)(s− µs0)T] � γ2Σs
0

 .

(3.1)
The constraints in DsM ensures that (i) values of f s sum to 1 over the support Ξs; (ii) the
mean of s lies in an ellipsoid of size proportional to γ1 centered at the empirical mean µs0;
(iii) the true covariance matrix lies in a positive semidefinite cone bounded by a matrix
inequality of γ2Σs

0. We use parameters γ1 and γ2 to control the conservativeness of optimal
solutions. In this chapter, we set Ξs = Rm.

Define wj as the waiting time variable of appointment j, for j = 1, . . . ,m. Without
loss of generality, appointment 1 always arrives at time 0, and thus w1 = 0. Let hj be
a unit penalty cost of the waiting time of appointment j, for all j = 1, . . . ,m. The goal
is to minimize the maximum expected waiting penalty, while ensuring that the minimum
probability of having no overtime is no less than 1− α.

We formulate the DR chance-constrained scheduling problem as

[DRCC-S]: min
x∈X

max
fs∈DsM

Efs
[

min
w

m∑
j=2

hjwj

]
(3.2a)

s.t. wj + xj−1 ≥ sj−1 + wj−1, ∀j = 2, . . . ,m (3.2b)

inf
fs∈DsM

P

(
m−1∑
j=1

xj + wm + sm ≤ T

)
≥ 1− α (3.2c)

w1 = 0, wj ≥ 0, ∀j = 2, . . . ,m, (3.2d)

where the objective function (3.2a) minimizes the maximum expected cost of total waiting
time for any distribution f s ∈ DsM . The arrival times of appointments j − 1 and j are∑j−2

i=1 xi and
∑j−1

i=1 xi, respectively, for all j = 2, . . . ,m. The starting time of appointment
j is calculated as its arrival time plus possible waiting time of appointment j, i.e.,

∑j−1
i=1 xi+

wj , which will be no earlier than completing appointment j − 1, at time
∑j−2

i=1 xi +wj−1 +

sj−1. Canceling out
∑j−2

i=1 xi in the two terms, we have constraints (3.2b) hold for all j =

2, . . . ,m. The DR chance constraint (3.2c) enforces the worst-case (minimum) probability
of finishing all the appointments before the time limit T being no less than 1 − α for any
f s ∈ DsM , in which the value of

∑m−1
j=1 xj +wm + sm represents the time of completing the

last appointment m. The waiting time of appointment 1 is set to be zero and all the waiting
times are nonnegative according to constraints (3.2d).

33



3.3 Solution Methods for DRCC-S

In this section, we develop reformulations of the DR objective (3.2a) and the DR chance
constraint (3.2c), to solve DRCC-S as a monolithic model. The DRCC-S in model (3.2) in-
volves recourse variables wj, ∀j = 1, . . . ,m, which we eliminate during the reformulation
process and derive an approximated SDP that only involves continuous decision vector x.

3.3.1 Reformulating the DR objective (3.2a)

To reformulate the DR expectation-based objective (3.2a), we specify the inner problem of
DRCC-S, for any given x ∈ X , as follows.

max
fs

∫
s∈Ξs

(
min

w∈Γw(x,s)

m∑
j=2

hjwj

)
fsds (3.3a)

s.t.
∫
s∈Ξs

f sds = 1 (3.3b)∫
s∈Ξs

(s− µs0)(s− µs0)Tf sds � γ2Σs
0 (3.3c)∫

s∈Ξs

[
Σs

0 s− µs0
(s− µs0)T γ1

]
f sds � 0, (3.3d)

where in the objective (3.3a), Γw(x, s) :=
{
w ∈ Rm

+ : (3.2b), (3.2d)
}

represents the set of
feasible w-solutions that satisfy constraints (3.2b) and (3.2d). Constraints (3.3b), (3.3c)
and (3.3d) are related to the three constraints in set DsM specified in (3.1). Model (3.3)
computes the worst-case (maximum) expected total waiting time for any f s realization in
the ambiguity set DsM .

Denote χij =

0 if 1 ≤ i = j ≤ m− 1∑j
l=i+1 hl if 1 ≤ i < j ≤ m− 1

. For each k, j such that 1 ≤ k ≤

j ≤ m− 1, let vector ākj = [0, . . . , 0︸ ︷︷ ︸
k−1

, χkj, χ(k+1)j, . . . , χjj, 0, . . . , 0︸ ︷︷ ︸
m−1−j

]T. We utilize the one-

to-one correspondence (see Mak et al., 2014, 2015) between partitions of the set {1, . . . ,m}
of appointments and extreme points of the feasible region of appointment scheduling, de-
fined by (3.2b) and (3.2d), to derive equivalent convex reformulation of the inner problem
(3.3).

Proposition 1. The inner problem (3.3) has the same optimal objective value as the one of
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the following SDP:

min
ε,G′,H′,p′,q′

m−1∑
i=1

εi + γ2(Σs
0 ·G′)− (µs

0)TG′µs
0 + Σs

0 ·H ′ − 2(µs
0)Tp′ + γ1q

′ (3.4a)

s.t.

[
G′ −( 1

2 ā
kj + p′ +G′µs

0)

−( 1
2 ā

kj + p′ +G′µs
0)T

∑j
i=k εi +

∑j
i=k χijxi

]
� 0, ∀1 ≤ k ≤ j ≤ m− 1,(3.4b)

G′ � 0, G′ ∈ Rm×m,

[
H ′ p′

(p′)T q′

]
� 0,

[
H ′ p′

(p′)T q′

]
∈ R(m+1)×(m+1). (3.4c)

Proof. We employ conic duality (see Shapiro, 2001) and a special structure in the dual
problem of Model (3.3) to show the above result. First, we associate dual variables r′ ∈ R,

G′ ∈ Rm×m, and

[
H ′ p′

(p′)T q′

]
∈ R(m+1)×(m+1) with constraints (3.3b), (3.3c) and (3.3d),

respectively. We formulate the dual of Model (3.3) as

min
G′,H′,p′,q′,r′

r′ + γ2(Σs
0 ·G′)− (µs0)TG′µs0 + Σs

0 ·H ′ − 2(µs0)Tp′ + γ1q
′ (3.5a)

s.t. r′ ≥ min
w∈Γw(x,s)

m∑
j=2

hjwj + 2sT(p′ +G′µs0)− sTG′s, ∀s ∈ Rm (3.5b)

r′ ∈ R, G′ � 0,

[
H ′ p′

(p′)T q′

]
� 0. (3.5c)

We consider the minimization problem on the right-hand side of the constraint (3.5b):

min
w

{
m∑
j=2

hjwj : (3.2b), (3.2d)

}
. (3.6)

We associate dual variables δi, i = 1, . . . ,m− 1 with constraints (3.2b), and formulate the
dual of model (3.6) as

max
δ

m−1∑
j=1

δj(sj − xj) (3.7a)

s.t. δj−1 − δj ≤ hj, ∀j = 2, . . . ,m− 1 (3.7b)

δm−1 ≤ hm (3.7c)

δj ≥ 0, ∀j = 1, . . . ,m− 1. (3.7d)

We use Γδ := {δ : (3.7b)–(3.7d)} to denote the dual feasible region, which is independent
on the decision x and uncertainty s. According to Mak et al. (2015), the values of extreme
points of set Γδ have either δm−1 = hm or δm−1 = 0, depending on whether wm = 0 or
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wm > 0, respectively, which result from the complementary slackness formed between
the primal (3.6) and the dual (3.7). We use the value of δm−1 as an incumbent solution,
and rearrange inequalities in (3.7b) as δj−1 ≤ δj + hj, ∀j = 2, . . . ,m − 1. Recursively,
following the complementary slackness, the optimal value of wj determines that whether
δj−1 takes the upper bound value δj + hj or the lower bound value 0.

Then, there is a one-to-one correspondence between an extreme point of set Γδ and a
partition of the set {1, . . . ,m−1} into intervals. For each interval {k, . . . , j} ⊂ {1, . . . ,m−
1} in the partition, the corresponding extreme-point solution has δj = 0, and δi =

∑j
l=i+1 hl

for all i = k, . . . , j − 1. That is, for each interval {k, . . . , j} in the partition and i ∈
{k, . . . , j}, the value of δi is given by χij , whose value was specified in Proposition 1.

Thus, define indicating binary variables tkj, ∀1 ≤ k ≤ j ≤ m− 1, such that tkj = 1 if
interval {k, . . . , j} belongs to the partition (i.e., tkj = 1 if δi = χij), and tkj = 0 otherwise.
The variables tkj represent a valid partition if and only if each element i only belongs to
one interval, stated as

i∑
k=1

m−1∑
j=i

tkj = 1, ∀i = 1, . . . ,m− 1. (3.8)

Denote set Γt = {tkj : (3.8), tkj ≥ 0, ∀1 ≤ k ≤ j ≤ m − 1}, where we relax the binary
variables tkj as continuous variables. Still, any extreme point of the set Γt has binary-
valued tkj , because the coefficient matrix in (3.8) has a consecutive-ones property and is
thus totally unimodular.

Recall constraint (3.5b). We reformulate its right-hand side by the equivalent maxi-
mization model (3.7) following the strong duality, yielding:

r′ ≥ max
s∈Rm

max
δ∈Γδ

m−1∑
i=1

δi(si − xi) + 2sT(p′ +G′µs0)− sTG′s (3.9a)

= max
δ∈Γδ

max
s∈Rm

m−1∑
i=1

δi(si − xi) + 2sT(p′ +G′µs0)− sTG′s. (3.9b)

We can interchange the order of maxδ∈Γδ and maxs∈Rm , because the objective function
is bounded with respect to δ and s. We form the relationship between the partitions and
extreme points in Γδ with the above dual formulation. Moreover, constraint (3.9b) is equiv-
alent to

max
t∈Γt

m−1∑
k=1

m−1∑
j=k

max
s∈Rm

(
j∑
i=k

χij(si − xi) + 2sT(p′ +G′µs0)− sTG′s

)
tkj. (3.10)

To convert problem (3.10) as a minimization problem, we associate dual variables
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εi, i = 1, . . . ,m− 1 with the constraints in Γt, and formulate the dual problem as

min
ε

m−1∑
i=1

εi (3.11a)

s.t.
j∑
i=k

εi ≥
j∑
i=k

χij(si − xi) + 2sT(p′ +G′µs0)− sTG′s ∀s ∈ Rm, ∀1 ≤ k ≤ j ≤ m− 1.(3.11b)

Note that constraint (3.11b) is equivalent to
∑j

i=k εi ≥ maxs
∑j

i=k χij(si− xi) + 2sT(p′+

G′µs0)− sTG′s, ∀s ∈ Rm, which can be written as an SDP[
G′ −(1

2
ākj + p′ +G′µs0)

−(1
2
ākj + p′ +G′µs0)T

∑j
i=k εi +

∑j
i=k χijxi

]
� 0, ∀1 ≤ k ≤ j ≤ m− 1, (3.12)

with the values of ākj specified in Proposition 1, for each k, j such that 1 ≤ k ≤ j ≤ m−1.
Finally, combining (3.5a), (3.5c), (3.9b), (3.11a), and (3.12), we show that the SDP model
(3.4) is equivalent to the inner problem (3.3), and thus complete the proof.

Next we combine the reformulation (3.4) with the outer minimization problem in the
objective function (3.2a). According to Propositions 2 and 1, we can conclude the following
result.

Theorem 3.1. The optimal solution to DRCC-S can be solved via a conservative SDP
model

[R-DRCC-S]: min {(3.4a) : (3.14a)–(3.14d), (3.4b)–(3.4c), x ∈ X} .

3.3.2 Reformulating the DR chance constraint (3.2c)

A w-solution in constraint (3.2c) needs to satisfy constraints (3.2b) and (3.2d), which are
equivalent to w1 = 0 and wj = max{0, sj−1−xj−1 +wj−1}, for j = 2, . . . ,m. Recursively
substituting wj−1 in wj, j = 2, . . . ,m, we have

wj = max
k=1,...,j−1

{
j−1∑
i=k

(si − xi), 0

}
= max

k=1,...,j

{
j−1∑
i=k

(si − xi)

}
,

where the last equality follows the convention that
∑j−1

i=j (si − xi) = 0.
We replace wm = maxk=1,...,m

{∑m−1
i=k (si − xi)

}
in the DR chance constraint (3.2c),
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yielding an equivalent DR joint chance constraint as follows.

inf
fs∈DsM

P

m−1∑
j=1

xj + max
k=1,...,m

{
m−1∑
i=k

(si − xi)

}
+ sm − T ≤ 0

 ≥ 1− α

⇔ inf
fs∈DsM

P

 max
k=1,...,m


m∑
i=k

si +
k−1∑
j=1

xj − T

 ≤ 0

 ≥ 1− α

⇔ inf
fs∈DsM

P

 m∑
i=k

si +

k−1∑
j=1

xj − T ≤ 0, ∀k = 1, . . . ,m

 ≥ 1− α. (3.13)

We derive a reformulation of (3.13) by using a result studied in (Jiang and Guan, 2016) for
reformulating and solving general DR joint chance constraints.

Proposition 2. (Jiang and Guan, 2016) The DR variant of a joint chance constraint in (3.13)
can be approximated by a conservative SDP as:

·G+ 1− r + Σs
0 ·H + γ1q ≤ αλ (3.14a)[

G −p
−(p)T 1− r

]
�

[
M 1

2
(c+ 2Mµs0)

1
2
(c+ 2Mµs0)T λ+ (µs0)TMµs0 + cTµs0 + d

]
(3.14b)[

M 1
2
(c− āk)

1
2
(c− āk)T d+ T −

∑k−1
j=1 xj

]
� 0 ∀k = 1, . . . ,m (3.14c)

λ ≥ 0, r ∈ R, M ∈ Sm×m+ ,[
G −p
−(p)T 1− r

]
∈ S(m+1)×(m+1)

+ ,

[
H p

(p)T q

]
∈ S(m+1)×(m+1)

+ , (3.14d)

where āk = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
m−k+1

]T ∈ Rm, for k = 1, . . . ,m. (The elements in each āk, k =

1, . . . ,m are coefficients of s1, . . . , sm in the DR chance constraint (3.13).)

We describe the key idea in (Jiang and Guan, 2016) for proving Proposition 2 as follows.
Denote a variable matrixM ∈ Sm×m+ , a variable vector c ∈ Rm, and a variable scalar d ∈ R.
We can bound the piecewise linear function maxk=1,...,m

{∑m
i=k si +

∑k−1
j=1 xj − T

}
from

above by a quadratic function sTMs + cTs + d for some appropriately assigned values of
M , c, and d, such that

inf
fs∈DsM

P
(
sTMs+ cTs+ d ≤ 0

)
≤ inf

fs∈DsM
P

(
max

k=1,...,m

{
m∑
i=k

si +
k−1∑
j=1

xj − T

}
≤ 0

)
.

Therefore, the DR chance constraint inffs∈DsM P
(
sTMs+ cTs+ d ≤ 0

)
≥ 1 − α implies

38



the DR joint chance constraint (3.13) (or equivalently (3.2c)). Following conic duality,
(Jiang and Guan, 2016) show that (3.14a), (3.14b), and (3.14d) are equivalent to the above
DR chance constraint with the quadratic function; (3.14c) ensures that the quadratic func-
tion is always above the piecewise linear function. As a result, the SDP model in Proposi-
tion 2 serves as a conservative approximation to (3.13) (and to (3.2c)), which indicates that
its optimal solution can satisfy (3.2c), but could be too conservative such that the left-hand
side of (3.2c) is satisfied at a probability level higher than 1 − α. The details of the proof
of Proposition 2 are given in Jiang and Guan (2016).

3.4 Computational Results

We show the computational results for DRCC-S by solving R-DRCC-S, and compare them
with the results of a sampling-based stochastic linear program that minimizes the expected
penalty of overtime and waiting time (see, e.g., Denton and Gupta, 2003). The benchmark
model considers discrete samples of the random variable s, given by s1, . . . , sK , where K
is the number of samples, and let pk be the probability that s = sk, for all k = 1, . . . , K,
such that

∑K
k=1 pk = 1. Given a scheduling solution x, both of the overtime and waiting

time depend on the realization of the random service durations s, and therefore, we define
W k ≥ 0 and wkj , j = 1, . . . ,m as auxiliary decision variables representing overtime of
the server and waiting time of appointments, respectively, for each k = 1, . . . , K. We
penalize the overtime by a unit cost hW and penalize each appointment j’s waiting time by
a unit cost hj , ∀j = 1, . . . ,m. We minimize the expected total penalty cost of waiting and
overtime in the following benchmark model.
[Stoch-S]:

min
x ∈ X,w1, . . . , wK

W1, . . . ,WK

K∑
k=1

pk(
m∑
j=2

hjw
k
j + hWW

k) (3.15a)

s.t. wkj + xj−1 ≥ skj−1 + wkj−1, ∀j = 2, . . . ,m, ∀k = 1, . . . , K(3.15b)
m−1∑
j=1

xj + wkm + skm −W k ≤ T, ∀k = 1, . . . , K (3.15c)

W k ≥ 0, wk1 = 0, wkj ≥ 0, ∀j = 2, . . . ,m, ∀k = 1, . . . , K,(3.15d)

The constraints (3.15b), (3.15c), (3.15d) are generalized from the previous constraints
(3.2b), (3.2c), (3.2d), respectively. They are specified for each sample k, for all k =

1, . . . , K, and compute the values of wkj and W k dependent on the values of x and sk.
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3.4.1 Computational Setup

We test m = 6 appointments and set the operating time limit T = 8 hours. We use hj = 1

for each appointment j as the unit waiting time cost, and set hW = 5 as the unit overtime
cost, used in both the DR model and the benchmark model. The computation consists of
two phases: First, we compute optimal solutions of DRCC-S and Stoch-S by using a limited
number of scenarios (i.e., training data); second, we fix the solutions in test data which
involves a large number of scenarios sampled from the underlying true distribution. We
consider an application of outpatient treatment planning, where the true distribution f s of
the random service time s often follows Lognormal (see Gul et al., 2011), and we generate
the training data based on two distributional types: Lognormal and Gamma, where the latter
indicates a misspecification of the true distribution. In this chapter, we use 20 scenarios for
the training data and 10, 000 scenarios for the test data. We generate the realized service
duration of each appointment in the training/test data by following a given distribution type
with both the mean value and standard deviation being 12.5 minutes in all the scenarios. For
DRCC-S, we test two overtime risk levels: α = 5% and 10%. All computational tests are
performed on a Windows 7 machine with Intel(R) Core(TM) i7-2600 CPU 3.40 GHz and
8GB memory. We solve all the models by implementing CVX in MATLAB with MOSEK
as the optimization solver.

3.4.2 Results and Solution Patterns

We run the first phase of computation under Lognormal and Gamma distributed training
data, and depict optimal solution patterns to DRCC-S with α = 5%, 10%, and to Stoch-S
in Figure 3.1. For R-DRCC-S, we show the results for the case when (γ1, γ2) = (1, 2).

We summarize the observations as follows. First, under limited data samples and distri-
butional ambiguity, optimal scheduling solutions from the stochastic benchmark model do
not demonstrate a “dome” shape as shown in the literature (Denton and Gupta, 2003) when
large scale data samples are available. (In a dome shape, the inter-arrival time is shorter for
earlier and later appointments, and is longer for the middle ones.) Second, we are able to
demonstrate an approximate “dome” shape of the DRCC-S solutions. As 1 − α increases
in the DR constraint (3.2c) , we observe decreased inter-arrival time to prevent overtime.

Next, we conduct the second phase of computation to evaluate the performance of
solutions to DRCC-S and to Stoch-S in the test data with 10, 000 scenarios. “DR(1,2)”
and “DR(0,1)” in Table 3.1 indicate the results for R-DRCC-S with (γ1, γ2) = (1, 2) and
= (0, 1), respectively. We compute the solution reliability as the percentage of “overtime-
free” scenarios in the test data, and present the results for the cases when training data
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Figure 3.1: Solution patterns with (γ1, γ2) = (1, 2) using Lognormal and Gamma dis-
tributed data

follows “Lognormal” or “Gamma”. The reliability results associated with DR(1,2) are all
better than those given by Stoch-S. Specifically, when we solve the models with Gamma
distributed training data, the reliability results become much better; meanwhile, DR(0,1)
could perform worse than the desirable reliability 1−α = 90%, due to that we use smaller
γ1, γ2, and thus a smaller, more risk-seeking ambiguity set.

Table 3.1: Reliability of optimal solutions to DRCC-S and Stoch-S models

Approach 1− α Lognormal Gamma
Stochastic N/A 94.44% 89.29%

DR(1,2)
95% 99.67% 99.30%
90% 97.00% 92.13%

DR(0,1)
95% 96.75% 91.63%
90% 73.84% 24.80%

In Table 3.2, we also report the overtime and waiting time statistics based on the test
data. The average waiting time given by Stoch-S solutions is shorter than that given by
DRCC-S solutions, while the standard deviation of waiting time in the latter is smaller.
Also, DRCC-S solutions provide shorter overtime, in terms of expectation, standard devia-
tion, and ≥ 50% higher quantiles. This reflects that while trading off between appointment
waiting and server overtime, the DR approach emphasizes more on ensuring shorter over-
time with sufficiently high probability subject to unknown distributions.

3.5 Concluding Remarks
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Table 3.2: Overtime and waiting time statistics (in minute)

Avg. Std. Quantiles
50% 75% 90% 99%

Stochastic
Wating time 2.94 22.34 0.00 0.00 0.00 85.97

Overtime 1.14 7.43 0.00 0.00 0.00 32.36

DR(1,2) with Lognormal training data
with 1− α = 95%

Wating time 3.66 18.84 0.00 0.63 10.38 49.53
Overtime 0.12 3.09 0.00 0.00 0.00 0.00

In this chapter, we study the problem of scheduling a set of appointments’ arrival time with
a preset fixed order of arrivals on a single server. Our DRO problem has distributional
ambiguity and worst-case analysis in both the objective function of appointment waiting
time and the chance constraint of server overtime. We derived a conservative approximation
as SDP which can be directly solved by off-the-shelf solvers. Our computational tests on
outpatient treatment scheduling demonstrated that the DRO solutions have an approximate
“dome” shape while the solutions by solving the stochastic benchmark model do not have,
when only limited data samples are available.
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CHAPTER 4

Integer Programming for Distributionally
Robust Appointment Scheduling with Random

No-shows and Service Durations

4.1 Introductory Remarks

We consider an appointment scheduling problem that involves a single server and a set of
appointments following a fixed order of arrivals. A system operator needs to schedule an ar-
rival time for each appointment with random no-shows and service duration. This problem
is fundamental for establishing service quality and operational efficiency in many service
systems, and has been studied in the context of surgery planning in hospitals (see, e.g.,
Denton and Gupta, 2003), call-center staffing (see, e.g., Gurvich et al., 2010), and cloud
computing server operations (see, e.g., Shen and Wang, 2014). Random no-shows are of-
ten observed in outpatient appointment scheduling (e.g., Berg et al., 2014; Lee et al., 2005),
which may cause equipment and personnel idleness and losses of opportunities of serving
other appointments. As observed by Ho and Lau (1992), random no-shows affect the per-
formance of an appointment system more than random service durations. Additionally,
even though many administrative mechanisms exist to reduce the likelihood of no-shows,
it is not entirely possible to eliminate no-shows and their negative impacts (see, e.g., Bar-
ron, 1980; Moore et al., 2001). In view of these challenges, Cayirli and Veral (2003) point
out that a better approach is to adapt the appointment schedule to the anticipated no-shows.

A common goal is to minimize the expected cost associated with appointment waiting
time, server idle time, and overtime if the distributional information is fully accessible. In
Section 4.1.1, we provide an extensive review of the literature on variants of stochastic
appointment scheduling under specific objectives, metrics, and applications. In reality, it
is challenging to accurately estimate the probability distribution of no-shows and service
durations. The data of no-shows could be limited because of low probability of occurrence
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and the heterogeneity of appointments. In view of a wide range of plausible substitutes
(e.g., Log-Normal, Normal, and Uniform) for modeling the service-time uncertainty, one
could easily misspecify its distribution. Then with ambiguous estimates of no-show and
service-duration distributions, we could schedule unnecessarily long (respectively, short)
time in between appointments, resulting in significant server idleness (respectively, ap-
pointment waiting or server overtime). To address the distributional ambiguity issue, Kong
et al. (2013) propose a DR model using a cross-moment ambiguity set that consists of all
distributions with common mean and covariance of the random service durations. They
obtain a copositive cone programming reformulation and solve a semidefinite program to
approximate the optimal results. The most relevant to this chapter, Mak et al. (2015) study
a DR model using a marginal-moment ambiguity set of the random service durations. They
obtain tractable reformulations by successfully solving a nonconvex optimization problem
based on a binary encoding of its feasible region. More importantly, both Kong et al.
(2013) and Mak et al. (2015) point out that DR models can yield appointment schedules
that (1) perform stably under various probability distributions of service durations and (2)
improve the appointment system performance under extreme scenarios. These observa-
tions motivate us to study DR models when faced with both no-show and service duration
uncertainty.

In this chapter, we generalize the DR appointment scheduling model in Mak et al.
(2015) by incorporating heterogeneous no-shows and their distributional ambiguity. We
aim to produce appointment schedules with good out-of-sample performance, even only
given a few historical data. To the best of our knowledge, this chapter is the first to consider
both discrete (no-shows) and continuous (service durations) randomness for DR appoint-
ment scheduling. This generalization results in a challenging Mixed-Integer Nonlinear
Programming (MINLP) problem, to which the approach by Mak et al. (2015) fails to solve.
The main contribution of the chapter is to derive effective integer programming approaches
for solving the generalized DR model, including valid inequalities that effectively accel-
erate the computation of the MINLP (see our computational studies in Section 4.5). We
also show that these valid inequalities recover the convex hulls for two important special
cases, leading to polynomial-sized Linear Programming (LP) reformulations that are com-
putationally tractable and can be implemented in desktop solvers to benefit practitioners.
We note that the work in this chapter has been published in Jiang et al. (2015).
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4.1.1 Literature Review

The studies of stochastic appointment scheduling (see, e.g., Berg et al., 2014; Erdogan and
Denton, 2013; Gupta and Denton, 2008) often assume uncertain service durations following
fully known distributions. Denton and Gupta (2003) formulate a two-stage stochastic LP
model for appointment scheduling and demonstrate that the optimal time intervals allocated
in between appointments form a “dome shape” if the unit idleness costs are high relative
to the unit waiting costs. Mittal et al. (2014b), Begen and Queyranne (2011), Begen et al.
(2012), and Ge et al. (2013) develop approximation algorithms for deriving near-optimal
solutions to various stochastic or robust appointment scheduling problems. Pinedo (2016)
conducts a comprehensive survey of various scheduling problems including their models,
theories, and applications.

Ho and Lau (1992) are among the first to take into account no-show uncertainty in
scheduling problems. They propose a heuristic approach to double book the first two ar-
rivals and subsequently schedule the remaining appointments. Erdogan and Denton (2013)
incorporate no-shows into a stochastic LP model by Denton and Gupta (2003), and also dis-
cuss a stochastic dynamic programming variant of the problem. Cayirli and Veral (2003);
Hassin and Mendel (2008); Liu et al. (2010); Robinson and Chen (2010) demonstrate the
impact of no-shows on static and dynamic appointment scheduling, and discuss general
policies to mitigate negative effects such as system idleness. A number of heuristic policies
and approximation algorithms have been proposed to schedule appointments under uncer-
tain no-shows (see, e.g., Cayirli et al., 2012; Kong et al., 2018; LaGanga and Lawrence,
2012; Lin et al., 2011; Luo et al., 2012; Muthuraman and Lawley, 2008; Parizi and Ghate,
2015; Zacharias and Pinedo, 2014; Zeng et al., 2010). To our best knowledge, no papers
have handled no-shows in a DR framework, which could lead to intractable binary integer
programming models due to the discrete nature of 0-1 no-shows (see our computational
studies later in Section 4.5.)

In this chapter, we assume a fixed sequence of appointment arrivals. We refer to Denton
et al. (2007); Gupta and Denton (2008); He et al. (2015); Mak et al. (2014, 2015); Mancilla
(2009) for studies that also involve sequencing decisions, and Denton et al. (2010); Gurvich
et al. (2010); Shylo et al. (2012) for studies that optimize server allocation under random
service durations. Deng et al. (2016) and Deng and Shen (2016) analyze integrated models
for optimizing server allocation, appointment sequencing, scheduling decisions under ser-
vice time uncertainty, and formulate chance constraints for restricting server overtime use.
For DR appointment scheduling, we refer to Kong et al. (2013, 2018); Mak et al. (2015);
Zhang et al. (2017). For generic DR optimization using moment-based ambiguity sets,
we refer to Bertsimas et al. (2010); Bertsimas and Popescu (2005); Delage and Ye (2010);
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Scarf et al. (1958).

4.1.2 Contributions of the Chapter

We summarize the main contributions of this chapter as follows.

1. Depending on system operators’ risk preferences, we formulate DR models that in-
corporate the worst-case expected/CVaR of waiting, idleness, and overtime costs as
objective or constraints. Meanwhile, the DR models can flexibly adapt to different
prior beliefs of the maximum number of consecutive no-shows, covering from the
least conservative case (i.e., no consecutive no-shows) to the most conservative case
(i.e., arbitrary no-shows).

2. We develop effective solution approaches for each DR model. The exact reformula-
tions of the DR models result in mixed-integer trilinear programs. We linearize and
derive valid inequalities to strengthen the reformulations, which can significantly
reduce computational time of solving various instances by using decomposition al-
gorithms. For special no-show beliefs, our derivation leads to polynomial-sized LP
reformulations that can readily be implemented in LP solvers.

3. We test diverse instances to show the computational efficacy and demonstrate the per-
formance of DR models under various uncertainties and levels of conservativeness.
We provide guidelines for choosing appropriate DR models and no-show beliefs,
depending on historical no-show rates, computation budget, and targeted tradeoffs
between quality of service and operational cost.

4.1.3 Structure of the Chapter

The remainder of the chapter is organized as follows. In Section 4.2, we formulate the DR
expectation/CVaR models and their variants based on different risk preferences. In Section
4.3, we derive an MINLP of the DR expectation model, as well as valid inequalities for
accelerating a generic cutting-plane algorithm. In Section 4.4, we derive polynomial-sized
LP reformulations for special cases of no-show beliefs. In Section 4.5, we test various
instances to demonstrate the computational efficacy and solution performance of different
DR models. In Section 4.6, we summarize the chapter and provide future research direc-
tions. In the e-companion (EC), we describe models and approaches for problems under
a general waiting-time cost and a DR CVaR setting, respectively. We also present all the
proofs there.
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Notation: The convex hull of a setX is denoted by conv(X). The abbreviation “w.l.o.g.”
represents “without loss of generality.” We follow the convention that

∑j
k=i ak = 0 if

i > j.

4.2 Formulations of DR Appointment Scheduling

We consider n appointments arriving at a single server following a fixed order of arrivals
given as 1, . . . , n. Each appointment i has a random service duration si. We interpret the
possibility of random no-show for appointment i by a 0-1 Bernoulli random variable qi
such that qi = 1 if appointee i shows up, and qi = 0 otherwise. The goal is to optimize
the decision of scheduling an arrival time for each appointment, or equivalently, assigning
time intervals between appointments i and i+ 1 for all i = 1, . . . , n− 1.

4.2.1 Modeling Waiting, Idleness, and Overtime under Uncertainty

Let variable xi represent the scheduled time interval between appointments i and i + 1,
∀i = 1, . . . , n − 1. Under random no-shows and service durations, one or multiple of
the following three scenarios can happen: (i) an appointment cannot start on time due to
overtime operations of previous appointments, (ii) the server is idle and waiting for the
next appointment due to an early finish or no-shows of previous appointments, and (iii)
the server cannot finish serving all appointments within a given time limit, denoted by
T . For all i = 1, . . . , n, let variable wi represent the waiting time of appointment i, and
variable ui represent the server idle time after finishing appointment i. Also, let variable W
represent the server’s overtime beyond the fixed time limit T to finish all n appointments.
The feasible region of decision x is defined as

X =

{
x : xi ≥ 0, ∀i = 1, . . . , n,

n∑
i=1

xi = T

}
, (4.1)

to ensure that we assign nonnegative time in between all consecutive appointments, and
appointment n is scheduled to arrive before the end of the service horizon T . The dummy
variable xn ≥ 0 represents T −

∑n−1
i=1 xi, i.e., the time from the scheduled start of the last

appointment to the server time limit.
Given decision x ∈ X and a realization of uncertain parameters (q, s), the appointment

waiting time w = [w1, . . . , wn]T and server idleness u = [u1, . . . , un]T are given by

wi = max{0, qi−1si−1+wi−1−xi−1}, and ui−1 = max{0, xi−1−qi−1si−1−wi−1}, ∀i = 2, . . . , n.

(4.2)
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We denote nonnegative parameters cw
i , cu

i , and co as unit penalty costs of waiting, idleness
of appointment i, and server overtime, respectively, which satisfy cu

i+1 − cu
i ≤ cw

i+1 for all
i = 1, . . . , n − 1. This assumption is standard (see Denton and Gupta (2003); Ge et al.
(2013); Kong et al. (2013); Mak et al. (2015)). In fact, if this assumption does not hold and
cu
i+1 > cu

i + cw
i+1 for some i, then the system operator would rather enforce idleness even

if appointment i + 1 has arrived and keep it waiting, which is not realistic due to practical
concerns. Under this assumption, we can formulate a linear program to compute the total
cost of waiting, idleness, and overtime for given x, q, s:

Q(x, q, s) := min
w,u,W

n∑
i=1

(cw
i wi + cu

iui) + coW (4.3a)

s.t. wi − ui−1 = qi−1si−1 + wi−1 − xi−1 ∀i = 2, . . . , n (4.3b)

W − un = qnsn + wn − xn (4.3c)

wi ≥ 0, w1 = 0, ui ≥ 0, W ≥ 0, ∀i = 1, . . . , n. (4.3d)

The objective function (4.3a) minimizes a linear cost function of the waiting, idleness, and
overtime. Constraints (4.3b) yield either the waiting time of appointment i or the server’s
idle time after finishing appointment i−1, both of which will have the same solutions values
as given by (4.2) (see Proposition 1 in Ge et al. (2013)). Similarly, constraint (4.3c) yields
either the over time W or the idle time un. Since appointment 1 always arrives at time
0, we have w1 = 0 and all the waiting, idleness, and overtime variables are nonnegative
according to constraints (4.3d).

In (4.3), note that the waiting time costs cw
i wi are modeled from the perspective of

servers (e.g., operating rooms). In particular, we assume that appointment no-shows take
place after the server has been set up for serving the appointments. Hence, the waiting
time costs stem from equipment and personnel idleness, as well as from the losses of op-
portunities of serving other appointments, and they are incurred regardless whether the ap-
pointments show up. From the perspective of appointments, the waiting time costs should
be modeled as cw

i wiqi, i.e., the waiting time costs are waived if an appointment does not
show up. In this chapter, we focus on the DR models and solution methods for the former
case, i.e., server-based waiting time costs. In A.1, we elaborate how our DR approaches can
adapt for a more general setting that incorporates both server-based and appointment-based
waiting time costs.
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4.2.2 Supports and Ambiguity Set

The classical stochastic appointment scheduling approaches seek an optimal x ∈ X to
minimize the expectation of random cost Q(x, q, s) subject to uncertainty (q, s) with a
known joint probability distribution denoted as Pq,s. We assume that Pq,s is only known
belonging to an ambiguity set F(D,µ, ν) that is determined by the support D of (q, s) and
the mean values µ = [µ1, . . . , µn]T and ν = [ν1, . . . , νn]T, where µi represents the mean
E[si], and νi represents the average show-up probability E[qi] of appointment i for each
i = 1, . . . , n. We consider support D = Dq × Ds where Dq is the support of random
no-show parameter q and Ds is the support of random service duration parameter s. We
assume upper and lower bounds of the duration of each appointment i and accordingly

Ds := {s ≥ 0 : sL
i ≤ si ≤ sU

i , ∀i = 1, . . . , n} .

The full support Dq = {q : q ∈ {0, 1}n} contains all no-show scenarios. However, it often
leads to over-conservative schedules. In this chapter, we parameterize the no-show support
by an integer K ∈ {2, . . . , n + 1} such that Dq = D

(K)
q rules out consecutive no-shows in

any K consecutive appointments. Accordingly,

D(K)
q :=

{
q ∈ {0, 1}n :

i+K−1∑
j=i

qj ≥ 1, ∀i = 1, . . . , n−K + 1

}
.

Note that (i) whenK = 2,D(2)
q rules out all consecutive no-shows, and (ii) whenK = n+1,

we have D(n+1)
q = {0, 1}n = Dq as the full support. Also, the parameterized supports

D
(2)
q ⊂ D

(3)
q ⊂ · · · ⊂ D

(n+1)
q form a spectrum of conservativeness levels, with D(2)

q be-
ing the least conservative and D(n+1)

q being the most general/conservative. In practice, the
system operator has the flexibility to select parameter K according to her targeted con-
servativeness, regardless whether the ruled-out realizations may still occur. The conserva-
tiveness refers to the trade-off between optimality and robustness (see, e.g., Ben-Tal and
Nemirovski, 2000; Bertsimas and Sim, 2004). If we select K = n + 1, then support
D

(n+1)
q ≡ {0, 1}n contains all possible no-show scenarios and so is most robust. Mean-

while, Dq = D
(n+1)
q leads to the largest value of supPq,s∈F(D,µ,ν) EPq,s [Q(x, q, s)] among

all K ∈ {2, . . . , n + 1}. In this sense, D(n+1)
q is the most conservative. On the contrary,

D
(2)
q is the least conservative because it leads to the smallest values of P{q ∈ D(K)

q } and
supPq,s∈F(D,µ,ν) EPq,s [Q(x, q, s)] among all K ∈ {2, . . . , n+ 1}.

Although D(K)
q with K 6= n + 1 does not contain all possible no-shows, we can select

a value of K such that P{q ∈ D
(K)
q } exceeds a sufficiently high probability. In Section
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4.2.4, we provide a practical and rigorous guideline for how to select the value of K. More
importantly, D(K)

q can lead to better out-of-sample performance. For example, the DR
schedules given by D(2)

q outperform those using D(n+1)
q in the out-of-sample simulations,

in which arbitrary consecutive no-shows may still happen (see Section 4.5.4).
We specify the ambiguity set F(D,µ, ν) as

F(D,µ, ν) :=

Pq,s ≥ 0 :

∫
Dq×Ds dPq,s = 1∫
Dq×Ds si dPq,s = µi ∀i = 1, . . . , n∫
Dq×Ds qi dPq,s = νi ∀i = 1, . . . , n

 , (4.4)

where Pq,s matches the mean values of service durations and no-shows. The ambiguity set
F(D,µ, ν) does not incorporate higher moments (e.g., variance and correlations) of service
time and no-shows for several reasons. First, with a small amount of data, it is often unclear
whether/how the service time and no-shows are correlated. Second, the introduction of
higher moments undermines the computational tractability of the DR models, which can
be achieved by using F(D,µ, ν) and the solution algorithm derived later. Finally, as we
find in the computational study (see Section 4.5), the DR models based on F(D,µ, ν)

already provide near-optimal results, and the benefit of incorporating higher moments is
not significant in our case.

4.2.3 DR Models with Different Risk Measures

We consider DR appointment scheduling models that impose a min-max DR objective
and/or DR constraints. Specifically, given x ∈ X , we consider a risk measure % of
Q(x, q, s) where

1. a risk-neutral system operator sets %(Q(x, q, s)) = EPq,s [Q(x, q, s)], i.e., the ex-
pected total cost of waiting, idleness, and overtime;

2. a risk-averse system operator sets %(Q(x, q, s)) = CVaR1−ε (Q(x, q, s)), i.e., the
CVaR of the total cost with 1− ε ∈ (0, 1) confidence.

Then, the DR models impose a generic min-max DR objective in the form

min
x∈X

sup
Pq,s∈F(D,µ,ν)

%(Q(x, q, s)), (4.5a)
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and/or generic DR constraints in the form

sup
Pq,s∈F(D,µ,ν)

%(Q(x, q, s)) ≤ Q. (4.5b)

where Q ∈ R represents a bounding threshold for the risk measure from above. Both
DR objective (4.5a) and constraints (4.5b) protect the risk measure by hedging against
all probability distributions in F(D,µ, ν). A DR model can impose either or both of
DR objective (4.5a) and constraints (4.5b), and can use either expectation or CVaR as
risk measures in (4.5a)–(4.5b), i.e., %(Q(x, q, s)) = EPq,s [Q(x, q, s)] or %(Q(x, q, s)) =

CVaR1−ε (Q(x, q, s)). Furthermore, the system operator can tune the cost parameters cw
i , cu

i ,
and co to let Q(x, q, s) represent different consequences (e.g., performance metric, quality
of service, resource opportunity cost, etc.) associated with waiting, idleness, and overtime
in (4.5a)–(4.5b). For example, by setting co = 1 and cu

i = cw
i = 0 for all i, we use

sup
Pq,s∈F(D,µ,ν)

CVaR1−ε (Q(x, q, s)) ≤ Q (4.6)

to constrain the CVaR of overtime W below threshold Q. The CVaR constraints provide a
safe guarantee on the performance metrics with high probabilities. For this particular cost
parameter setting, constraint (4.6) guarantees that infPq,s∈F(D,µ,ν) Pq,s

{
W ≤ Q

}
≥ 1− ε,

i.e., the overtime W is controlled under threshold Q with the smallest possible probability
being no less than 1 − ε. This provides an appropriate “end-of-the-day” guarantee (see,
e.g., Shylo et al., 2012; Wang et al., 2014; Zhang et al., 2015b). For presentation brevity,
we have relegated the discussions on the CVaR-based model to A.2.

4.2.4 Guideline of Selecting Parameter K

In practice, a system operator may evaluate the probability of the random variables q =

(q1, . . . , qn) belonging to D(K)
q , i.e., P(q ∈ D(K)

q ). Then, she can select a value of K such
that P(q ∈ D(K)

q ) exceeds a given threshold such as 90%. To this end, she can gradually
increase K from 2 until P(q ∈ D(K)

q ) exceeds the threshold for the first time.

Observation 4.1. P(q ∈ D(K)
q ) = 1 if K > n. If 2 ≤ K ≤ n and the components of q are

jointly independent, then P(q ∈ D(K)
q ) = 1− [Qn]1,m(K)+1, where m(i) := 1

2
i(2n− i+ 3)

for i = 0, . . . , K and Q represents a (m(K) + 1) × (m(K) + 1) matrix such that (1)
Qm(i)+j,i+j+1 = νi+j for all i = 0, . . . , K − 1 and j = 1, . . . , n− i, (2) Qm(i)+j,m(i+1)+j =

1−νi+j for all i = 0, . . . , K−2 and j = 1, . . . , n− i, (3) Qm(K−1)+j,m(K)+1 = 1−νK−1+j

for all j = 1, . . . , n−K+1, and (4)Qm(K)+1,m(K)+1 = Qm(i),m(i) = 1 for all i = 1, . . . , K.
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Proof. Proof of Observation 4.1 If K > n, it is clear that we cannot have K consecutive
no-shows and so P(q ∈ D

(K)
q ) = 1. If 2 ≤ K ≤ n, we construct a Markov chain with

m(K)+1 states, where statem(i)+j represents i consecutive no-shows in the first i+j−1

appointments for all i = 0, . . . , K−1 and j = 1, . . . , n−i+1, and statem(K)+1 represents
that K consecutive no-shows happen. By construction, matrix Q is the one-step transition
matrix of this Markov chain, where states m(K) + 1 and m(i) for all i = 1, . . . , K are
absorbing. Thus, [Qn]1,m(K)+1, representing component (1,m(K) + 1) of matrix Qn, is
equal to the probability of having K consecutive no-shows in the n appointments.

Using Observation 4.1, the selection of K can be conveniently done in a spreadsheet.
In Figure 4.1, we display an example of P(q ∈ D

(K)
q ) with n = 10, K = 1, . . . , 11,

and νi = 0.1, . . . , or 0.9 for all i = 1, . . . , 10. We observe that K = 2 is sufficient
for P(q ∈ D

(K)
q ) ≥ 90% when νi ≤ 0.1, i.e., when the no-show probability for each

appointment is no greater than 0.1. This observation motivates us to select Dq = D
(2)
q for

scheduling appointments with low no-show probabilities.
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Figure 4.1: An example of P(q ∈ D(K)
q ) for n = 10 appointments

Next, we develop reformulations and solution methods. For presentation brevity, we
only analyze DR expectation models in Sections 4.3 and 4.4. We present the results of DR
CVaR models in A.2. All the proofs are organized in A.3 (for DR expectation models) and
A.4 (for DR CVaR models).
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4.3 Cutting-Plane Approach and Valid Inequalities for DR
Expectation Models

We analyze the DR expectation models by specifying a generic objective form (4.5a) as

min
x∈X

sup
Pq,s∈F(D,µ,ν)

EPq,s [Q(x, q, s)] , (4.7)

which minimizes the worst-case expected cost of waiting, idleness, and overtime. We first
consider the inner maximization problem supPq,s∈F(D,µ,ν) EPq,s [Q(x, q, s)] for a fixed x ∈
X , where Pq,s is the decision variable. It can be detailed as a linear functional optimization
problem

max
Pq,s≥0

∫
Dq×Ds

Q(x, q, s)dPq,s (4.8a)

s.t.
∫
Dq×Ds

si dPq,s = µi ∀i = 1, . . . , n (4.8b)∫
Dq×Ds

qi dPq,s = νi ∀i = 1, . . . , n (4.8c)∫
Dq×Ds

dPq,s = 1, (4.8d)

where Dq = D
(K)
q for some K ∈ {2, . . . , n + 1}. Letting ρi, γi, and θ be dual variables

associated with constraints (4.8b), (4.8c), and (4.8d), respectively, we present problem (4.8)
in its dual form as

min
ρ∈Rn,γ∈Rn,θ∈R

n∑
i=1

µiρi +
n∑
i=1

νiγi + θ (4.9a)

s.t.
n∑
i=1

siρi +
n∑
i=1

qiγi + θ ≥ Q(x, q, s) ∀(q, s) ∈ Dq ×Ds. (4.9b)

Here ρ = [ρ1, . . . , ρn]T, γ = [γ1, . . . , γn]T, and θ are unrestricted, and (4.9b) are associated
with primal variables Pq,s, ∀(q, s) ∈ Dq × Ds. Under the standard assumptions that µi
belongs to the interior of set {

∫
Dq×Ds si dQq,s : Qq,s is a probability distribution over Dq×

Ds}, and that νi belongs to the interior of set {
∫
Dq×Ds qi dQq,s : Qq,s is a probability distribution over Dq×

Ds} for each appointment i, strong duality holds between (4.8) and (4.9). Furthermore, for
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a fixed (ρ, γ, θ), constraints (4.9b) are equivalent to

θ ≥ max
(q,s)∈Dq×Ds

{
Q(x, q, s)−

n∑
i=1

(ρisi + γqi)

}
.

Thus, due to the objective of minimizing θ, the dual formulation (4.9) is equivalent to

min
ρ∈Rn,γ∈Rn

{
n∑
i=1

µiρi +
n∑
i=1

νiγi + max
(q,s)∈Dq×Ds

{
Q(x, q, s)−

n∑
i=1

(ρisi + γiqi)

}}
. (4.10)

4.3.1 MINLP Reformulation and a Generic Cutting-Plane Approach

Note that Q(x, q, s) is a minimization problem and thus in (4.10) we have an inner max-
min problem. We next analyze the structure of Q(x, q, s) for given solution x and realized
value of (q, s). We formulate Q(x, q, s) in (4.3) in its dual form as

Q(x, q, s) = max
y

n∑
i=1

(qisi − xi)yi (4.11a)

s.t. yi−1 − yi ≤ cw
i ∀i = 2, . . . , n (4.11b)

−yi ≤ cu
i ∀i = 1, . . . , n (4.11c)

yn ≤ co, (4.11d)

where variable yi−1 represents the dual associated with each constraint i in (4.3b) for all
i = 2, . . . , n, and variable yn represents the dual of constraint (4.3c). Constraints (4.11b),
(4.11c), (4.11d) are related to primal variables wi, i = 2, . . . , n, ui, i = 1, . . . , n, and W
in (4.3), respectively. Therefore, formulation (4.10) is equivalent to

min
ρ,γ

{
n∑
i=1

µiρi +
n∑
i=1

νiγi + max
(q,s)∈Dq×Ds

{
Q(x, q, s)−

n∑
i=1

(ρisi + γiqi)

}}
(4.12a)

= min
ρ,γ

{
n∑
i=1

µiρi +
n∑
i=1

νiγi + max
y∈Y

h(x, y, ρ, γ)

}
, (4.12b)

where Y represents the feasible region of variable y in (4.11) given by (4.11b)–(4.11d), and

h(x, y, ρ, γ) := max
(q,s)∈Dq×Ds

{
n∑
i=1

(qisi − xi)yi −
n∑
i=1

(ρisi + γiqi)

}
. (4.12c)

The derivation of h(x, y, ρ, γ) follows that we can interchange the order of max(q,s)∈Dq×Ds

and maxy∈Y in (4.12a). Combining the inner problem in the form of (4.12b) with the outer
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minimization problem in (4.7), we derive a reformulation of the DR expectation model
(4.7) as:

min
x∈X,ρ,γ,δ

n∑
i=1

µiρi +
n∑
i=1

νiγi + δ (4.13a)

s.t. δ ≥ max
y∈Y

h(x, y, ρ, γ) ≡ max
y∈Y,(q,s)∈Dq×Ds

{
n∑
i=1

(qisi − xi)yi −
n∑
i=1

(ρisi + γiqi)

}
.

(4.13b)

Next, we analyze structural properties of maxy∈Y h(x, y, ρ, γ) as a function of variables x,
ρ, and γ.

Lemma 4.1. For any fixed variables x, ρ, and γ, maxy∈Y h(x, y, ρ, γ) < +∞. Further-
more, function maxy∈Y h(x, y, ρ, γ) is convex and piecewise linear in x, ρ, and γ with a
finite number of pieces.

We refer to A.3.1 for a detailed proof. Lemma 4.1 indicates that constraint (4.13b)
essentially describes the epigraph of a convex and piecewise linear function of decision
variables in model (4.13). This observation facilitates us applying a separation-based de-
composition algorithm to solve model (4.13) (or equivalently, the DR expectation model
(4.7)), presented in Algorithm 4.1. This algorithm is finite because we identify a new
piece of the function maxy∈Y h(x, y, ρ, γ) each time when the set {L(x, ρ, γ, δ) ≥ 0} is
augmented in Step 7, and the function has a finite number of pieces according to Lemma
4.1.

The main difficulty of the above decomposition algorithm lies in solving the separation
problem (4.14). In general, this problem is a mixed-integer trilinear program because of
the integrality restrictions on variables qi and the trilinear terms qisiyi in the objective func-
tion. This creates obstacles for optimally solving the separation problem if presented in its
current form. In Section 4.3.2, we linearize and reformulate the separation problem (4.14)
as a Mixed-Integer Linear Programming (MILP) that can readily be solved by optimization
solvers. Moreover, we will derive valid inequalities to strengthen this MILP, and test their
computational efficiency later.

4.3.2 MILP Reformulation of the Separation Problem and Valid In-
equalities

Our approach is inspired by Mak et al. (2015), where the authors point out that an opti-
mal solution y∗ to a similar separation problem but not involving no-shows, exists at an
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Algorithm 4.1: A decomposition algorithm for solving DR expectation model (4.7).
Input: feasible regions X , Y , and Dq ×Ds; set of cuts {L(x, ρ, γ, δ) ≥ 0} = ∅

1 Solve the master problem

min
x∈X,ρ,γ,δ

n∑
i=1

µiρi +
n∑
i=1

νiγi + δ

s.t. L(x, ρ, γ, δ) ≥ 0

and record an optimal solution (x∗, ρ∗, γ∗, δ∗).
2 With (x, ρ, γ) fixed to be (x∗, ρ∗, γ∗), solve the separation problem

max
y∈Y

h(x, y, ρ, γ) ≡ max
y∈Y,(q,s)∈Dq×Ds

{
n∑
i=1

(qisi − xi)yi −
n∑
i=1

(ρisi + γiqi)

}
(4.14)

and record an optimal solution (y∗, q∗, s∗).
3 if δ∗ ≥

∑n
i=1(q∗i s

∗
i − x∗i )y∗i −

∑n
i=1(ρ∗i s

∗
i + γ∗i q

∗
i ) then

4 stop and return x∗ as an optimal solution to formulation (4.7).
5 else
6 add the cut δ ≥

∑n
i=1(q∗i s

∗
i − xi)y∗i −

∑n
i=1(s∗i ρi + q∗i γi) to the set of cuts

{L(x, ρ, γ, δ) ≥ 0} and go to Step 2.
7 end

extreme point of polyhedron Y . They then successfully decompose the separation problem
by appointment for each i = 1, . . . , n and reformulate it by using the extreme points of Y .
Different in this chapter, for fixed x, ρ, and γ, the separation problem is a mixed-integer
trilinear program involving binary variables qi, i = 1, . . . , n. Moreover, except for the case
Dq = D

(n+1)
q = {0, 1}n, h(x, y, ρ, γ) is not decomposable by appointment in view of the

cross-appointment nature of Dq. Therefore, the approach in Mak et al. (2015) is no longer
applicable, and maxy∈Y h(x, y, ρ, γ) becomes much more challenging.

Our analysis consists of the following steps. We start by showing the convexity of
h(x, y, ρ, γ) in variable y. Then, it follows from fundamental convex analysis that maxi-
mizing convex function h(x, y, ρ, γ) on polyhedron Y will yield an optimal solution at one
of the extreme points of Y . Also considering the cost of idleness, we extend the result of
extreme-point representation in Mak et al. (2015) and reformulate the separation problem
(4.14) using a polynomial number of binary variables to replace the continuous variables
yi, i = 1, . . . , n.

Lemma 4.2. For fixed x, ρ, and γ, function h(x, y, ρ, γ) is convex in variable y.

We refer to A.3.2 for a proof. According to Lemma 4.2, an optimal solution y∗ to the
separation problem (4.14) exists at one of the extreme points of Y having linear constraints
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(4.11b)–(4.11d). Consider

Y =
{
co ≥ yn ≥ −cu

n, yn + cw
n ≥ yn−1 ≥ −cu

n−1, · · · , y2 + cw
2 ≥ y1 ≥ −cu

1

}
. (4.15)

It can be observed that any extreme point ŷ of Y satisfy (i) either ŷn = −cu
n or ŷn = co, and

(ii) for all i = 1, . . . , n− 1, dual constraint ŷi+1 + cw
i+1 ≥ ŷi ≥ −cu

i is binding at either the
lower bound or the upper bound.

This observation motivates us to establish an alternative formulation of (4.14) using
new binary variables. For notation convenience, we define a dummy variable yn+1, which
always takes the lower-bound value −cu

n+1 := 0. There is a one-to-one correspondence
between an extreme point of Y and a partition of the integers 1, . . . , n + 1 into intervals.
For each interval {k, . . . , j} ⊆ {1, . . . , n+ 1} in the partition, yj takes on the lower bound
value−cu

j and other yi equal to their upper bounds, i.e., yi = yi+1 +cw
i+1, ∀i = k, . . . , j−1.

As a result, for each interval {k, . . . , j} in the partition and i ∈ {k, . . . , j}, the value of yi
is given by:

yi = πij :=

{
−cu

j +
∑j

`=i+1 c
w
` 1 ≤ i ≤ j ≤ n,

co +
∑n

`=i+1 c
w
` 1 ≤ i ≤ n, j = n+ 1,

(4.16)

and yn+1 = πn+1,n+1 := 0. Define binary variables tkj for all 1 ≤ k ≤ j ≤ n + 1, such
that tkj = 1 if interval {k, . . . , j} belongs to the partition (i.e., tkj = 1 if yi = πij) and
tkj = 0 otherwise. For a valid partition, we require each index i belonging to exactly one
interval, and thus

∑i
k=1

∑n+1
j=i tkj = 1, ∀i = 1, . . . , n + 1. For notation convenience, we

define xn+1 = qn+1 = sn+1 := 0. Using binary variables tkj , we reformulate the separation
problem (4.14) as

max
t

max
(q,s)∈Dq×Ds

n+1∑
k=1

n+1∑
j=k

(
j∑
i=k

(qisi − xi)πij

)
tkj −

n∑
i=1

(ρisi + γiqi) (4.17a)

s.t.
i∑

k=1

n+1∑
j=i

tkj = 1 ∀i = 1, . . . , n+ 1 (4.17b)

tkj ∈ {0, 1}, ∀1 ≤ k ≤ j ≤ n+ 1. (4.17c)

Note that the objective function (4.17a) contains trilinear terms qisitkj with binary variables
qi, tkj , and continuous variables si. To linearize formulation (4.17), we define pikj ≡ qitkj

and oikj ≡ qisitkj for all 1 ≤ k ≤ j ≤ n + 1 and k ≤ i ≤ j. Also, we introduce the
following McCormick inequalities (4.18a)–(4.18b) and (4.18c)–(4.18d) for variables pikj
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and oikj , respectively.

pikj − tkj ≤ 0, (4.18a)

pikj − qi ≤ 0, pikj − qi − tkj ≥ −1, pikj ≥ 0, (4.18b)

oikj − sL
ipikj ≥ 0, oikj − sU

i pikj ≤ 0, (4.18c)

oikj − si + sL
i(1− pikj) ≤ 0, oikj − si + sU

i (1− pikj) ≥ 0. (4.18d)

Thus, the separation problem (4.14) is equivalent to an MILP as:

max
t,q,s,p,o

n+1∑
k=1

n+1∑
j=k

j∑
i=k

(πijoikj − xiπijtkj)−
n∑
i=1

(ρisi + γiqi) (4.19a)

s.t. (4.17b)–(4.17c), (4.18a)–(4.18d), (4.19b)

si ∈ [sL
i , s

U
i ], q ∈ Dq ⊆ {0, 1}n. (4.19c)

We can replace Steps 3–8 of Algorithm 4.1 proposed in Section 4.3 based on this MILP
reformulation:

3 With (x, ρ, γ) fixed to be (x∗, ρ∗, γ∗), solve formulation (4.19) and record an optimal

solution (t∗, q∗, s∗, p∗, o∗) if δ∗ ≥
∑n+1

k=1

∑n+1
j=k∑j

i=k(πijo
∗
ikj − x∗iπijt∗kj)−

∑n
i=1 (ρ∗i s

∗
i + γ∗i q

∗
i ) then

4 stop and return x∗ as an optimal solution to formulation (4.7);
5 else
6 add the cut δ ≥

∑n+1
k=1

∑n+1
j=k

∑j
i=k

(
πijo

∗
ikj − πijt∗kjxi

)
−
∑n

i=1 (s∗i ρi + q∗i γi) to

the set of cuts {L(x, ρ, γ, δ) ≥ 0} and go to Step 2;
7 end

Remark 4.1. We note that Algorithm 4.1 applies to various types of no-show support Dq.
For example, we can specify Dq = {q ∈ {0, 1}n :

∑n
i=1(1− qi) ≤ Qmax}, where Qmax

represents the maximum number of no-shows. In this case, we only need to replace the
definition of Dq in (4.19c) when applying Algorithm 4.1. In fact, Algorithm 4.1 is general
regardless of the specific form of setDq, to select which we take into account the operator’s
beliefs and/or preferences, and the computational tractability. In this chapter, we specify
Dq = D

(K)
q due to its flexibility (see Section 4.2.4) and computational tractability (see

Proposition 3 and Theorem 4.2).

We further identify a set of valid inequalities to strengthen formulation (4.19). We
summarize the valid inequalities in the following proposition and delegate its proof in
A.3.3. The inequalities (4.20a)–(4.20f) can be added to the MILP (4.19) solved in Step
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3, to strengthen the reformulation.

Proposition 3. The following inequalities are valid for setF = {(t, q, s, p, o) : (4.19b)–(4.19c)}:

i∑
k=1

n+1∑
j=i

pikj = qi ∀i = 1, . . . , n+ 1, (4.20a)

si −
i∑

k=1

n+1∑
j=i

(oikj − sL
ipikj) ≥ sL

i ∀1 ≤ i ≤ n+ 1, (4.20b)

si −
i∑

k=1

n+1∑
j=i

(oikj − sU
i pikj) ≤ sU

i ∀1 ≤ i ≤ n+ 1, (4.20c)

i+K−1∑
`=i

p`kj ≥ tkj ∀1 ≤ k < j ≤ n+ 1, ∀k ≤ i ≤ j −K + 1,

(4.20d)
i−K+2∑
k=1

i∑
`=i−K+2

p`ki +
n+1∑
j=i+1

p(i+1)(i+1)j ≥
i−K+2∑
k=1

tki ∀i = K − 1, . . . , n, (4.20e)

i∑
k=1

piki +
i+K−1∑
`=i+1

n+1∑
j=i+K−1

p`(i+1)j ≥
n+1∑

j=i+K−1

t(i+1)j ∀i = 1, . . . , n−K + 2.

(4.20f)

Remark 4.2. Note that the above inequalities hold valid for all K = 2, . . . , n+ 1. We also
note two features that (i) valid inequalities (4.20a)–(4.20f) are polynomially many, and (ii)
all coefficients of these inequalities are in closed-form. Features (i) and (ii) can significantly
accelerate Algorithm 4.1, because Feature (i) ensures that model (4.14) (i.e., (4.19) after
reformulation) remains small by incorporating these inequalities, and Feature (ii) implies
that we do not need to separate these inequalities.

4.4 LP Reformulations of the DR Expectation Model

In this section, we present tractable reformulations of the DR expectation model (4.7) as
we derive the convex hull of separation problem (4.14) for Dq = D

(2)
q (i.e., no conservative

no-shows) and Dq = D
(n+1)
q (i.e., arbitrary no-shows). This leads to polynomial-sized

LP reformulations of model (4.7). We note that these LP reformulations are derived for
these the special cases and do not simplify the general model. For the general cases (i.e.,
Dq = D

(K)
q with 3 ≤ K ≤ n), we can apply Algorithm 4.1 to solve model (4.7) and obtain
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a globally optimal appointment schedule.
Case 1. (No Consecutive No-Shows) Recall that F represents the mixed-integer feasible
region of formulation (4.19), i.e., F = {(t, q, s, p, o) : (4.19b)–(4.19c)}. We show that the
valid inequalities identified in Proposition 3 are sufficient to describe conv(F ). We first
notice that when K = 2: (i) inequalities (4.20d) are equivalent to pikj + p(i+1)kj ≥ tkj for
all 1 ≤ k < j ≤ n + 1 and k ≤ i ≤ j − 1, and (ii) inequalities (4.20e) and (4.20f) are
identical and equivalent to

i∑
k=1

piki +
n+1∑
j=i+1

p(i+1)(i+1)j ≥
i∑

k=1

tki ∀i = 1, . . . , n. (4.21)

This leads to the following theorem, of which a proof is relegated to A.3.4.

Theorem 4.1. Polyhedron

CF := {(t, q, s, p, o) : (4.17b), (4.18a), (4.18c), (4.20a)–(4.20d), (4.21)}

is the convex hull of set F , i.e., CF = conv(F ).

Therefore, we can reformulate the separation problem (4.14) as an LP model:

max
t,q,s,p,o

n+1∑
k=1

n+1∑
j=k

j∑
i=k

(πijoikj − xiπijtkj)−
n∑
i=1

(ρisi + γiqi)

s.t. (t, q, s, p, o) ∈ CF.

To combine the separation problem with the outer minimization problem in (4.13), we
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present the above reformulation in its dual form:

min
n+1∑
i=1

(αi + sU
i τ

U
i − sL

iτ
L
i ) (4.22a)

s.t.
j∑
i=k

(αi − σikj) +

j−1∑
i=k

λikj +

min{j,n}∑
i=j

φi ≥ −
j∑
i=k

πijxi ∀1 ≤ k ≤ j ≤ n+ 1,

(4.22b)

ζi ≤ γi ∀1 ≤ i ≤ n,

(4.22c)

τ L
i − τ U

i ≤ ρi ∀1 ≤ i ≤ n,

(4.22d)

σikj + sL
iϕ

L
ikj − sU

iϕ
U
ikj + ζi − sL

iτ
L
i + sU

i τ
U
i −

min{j−1,i}∑
`=max{k,i−1}

λ`kj

−
max{2i−j,i−1}∧n∑
`=min{2i−k−1,i}∨1

φ` ≥ 0 ∀1 ≤ k ≤ j ≤ n+ 1,∀k ≤ i ≤ j,

(4.22e)

− ϕL
ikj + ϕU

ikj + τ L
i − τ U

i ≥ πij ∀1 ≤ k ≤ j ≤ n+ 1,∀k ≤ i ≤ j,

(4.22f)

ϕL
ikj, ϕ

U
ikj, τ

L
i , τ

U
i , λikj, φi, σikj ≥ 0 ∀1 ≤ k ≤ j ≤ n+ 1, ∀k ≤ i ≤ j,

(4.22g)

where we denote a ∨ b := max{a, b} and a ∧ b := min{a, b} for a, b ∈ R for notation
convenience. Here the dual variables αi, σikj , ϕ

L/U

ikj , ζi, τ
L/U

i , λikj , and φi are associated with
constraints (4.17b), (4.18a), (4.18c), (4.20a), (4.20b)–(4.20c), (4.20d), and (4.21) respec-
tively (after transforming all “≥” inequalities into the “≤” form), and constraints (4.22b)–
(4.22f) are associated with primal variables tkj , qi, si, pikj , and oikj respectively. In (4.22b),
the term

∑min{j,n}
i=j φi becomes φj for all 1 ≤ j ≤ n, and will disappear for j = n + 1.

In (4.22e), when k ≤ i < j, the term −
∑min{j−1,i}

`=max{k,i−1} λ`kj becomes −λikj − λ(i−1)kj;
when k < i = j, it becomes a singleton −λ(i−1)kj; and when k = i = j, it does not
appear. Similarly, when 2 ≤ k = i = j ≤ n, the term −

∑max{2i−j,i−1}∧n
`=min{2i−k−1,i}∨1 φ` becomes

−φi − φi−1; when j > i = k or k = i = j = n + 1, the term only contains −φi−1; when
k < i = j or 1 = k = i = j, the term only contains −φi; and in all other cases, i.e.,
when 1 ≤ k < i < j ≤ n + 1, the term does not appear. We can then reformulate the DR
expectation model in an LP form as follows.
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Theorem 4.2. Under no-consecutive no-show assumption, i.e., Dq = D
(2)
q , the DR expec-

tation model (4.7) is equivalent to the following linear program:

min
n∑
i=1

µiρi +
n∑
i=1

νiγi +
n+1∑
i=1

(αi + sU
i τ

U
i − sL

iτ
L
i )

s.t. (4.22b)–(4.22g),
n∑
i=1

xi = T, xn+1 = 0, xi ≥ 0 ∀i = 1, . . . , n.

Case 2. (Arbitrary No-Shows): Given Dq = {0, 1}n and Ds =
∏n

i=1[sL
i , s

U
i ], the opti-

mization problem defining function h(x, y, ρ, γ) (see (4.12c)) is separable by each appoint-
ment, i.e.,

h(x, y, ρ, γ) = max
(q,s)∈Dq×Ds

{
n∑
i=1

(qisi − xi)yi −
n∑
i=1

(ρisi + γiqi)

}

=
n∑
i=1

max
qi∈{0,1}, si∈[sL

i ,s
U
i ]
{(qisi − xi)yi − (ρisi + γiqi)} .

To reformulate separation problem (4.14), recall the observations on polyhedron Y in Sec-
tion 4.3.2 and again we represent the extreme points of Y based on variables tkj . It follows
that

max
y∈Y

h(x, y, ρ, γ) = max
t≥0

n+1∑
k=1

n+1∑
j=k

(
j∑
i=k

max
qi∈{0,1}, si∈[sL

i ,s
U
i ]
{(qisi − xi)πij − (ρisi + γiqi)}

)
tkj

(4.23a)

s.t.
i∑

k=1

n+1∑
j=i

tkj = 1 ∀i = 1, . . . , n+ 1 (4.23b)

tkj ∈ {0, 1}, ∀1 ≤ k ≤ j ≤ n+ 1. (4.23c)

Because the constraint matrix formed by (4.23b)–(4.23c) is totally unimodular (TU), we
can relax the integrality constraints (4.23c) without loss of optimality. Hence, formulation
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(4.23a)–(4.23c) is an LP model in variables tkj and we can take its dual as:

min
α,β

n+1∑
i=1

αi (4.24a)

s.t.
j∑
i=k

αi ≥
j∑
i=k

βij, ∀1 ≤ k ≤ j ≤ n+ 1 (4.24b)

βij ≥ max
qi∈{0,1}, si∈[sL

i ,s
U
i ]
{(qisi − xi)πij − (ρisi + γiqi)} ,

∀i = 1, . . . , n, ∀j = i, . . . , n+ 1 (4.24c)

βn+1,n+1 = 0, (4.24d)

where dual variables αi, i = 1, . . . , n + 1 are associated with constraints (4.23b), con-
straints (4.24b) are associated with variables ykj , each variable βij represents the value
of maxqi∈{0,1},si∈[sL

i ,s
U
i ] {(qisi − xi)πij − (ρisi + γiqi)}, and βn+1,n+1 = 0 because qn+1 =

sn+1 = πn+1,n+1 = 0. Finally, for each i = 1, . . . , n, the related objective function
(qisi − xi)πij − (ρisi + γiqi) is linear in variables qi and si, and thus each of constraints
(4.24c) is equivalent to

βij ≥ − πijxi − sL
iρi (4.25a)

βij ≥ − πijxi − sU
i ρi (4.25b)

βij ≥ − πijxi − sL
iρi − γi + sL

iπij (4.25c)

βij ≥ − πijxi − sU
i ρi − γi + sU

iπij, (4.25d)

because qi ∈ {0, 1} and si ∈ {sL
i , s

U
i } at optimality. It follows that model (4.13) (i.e., the

DR expectation model (4.7)), is equivalent to the following LP model when Dq = D
(n+1)
q :

min
x,ρ,γ,α,β

n∑
i=1

µiρi +
n∑
i=1

νiγi +
n+1∑
i=1

αi

s.t. (4.24b), (4.24d), (4.25a)–(4.25d),
n∑
i=1

xi = T, xn+1 = 0, xi ≥ 0, ∀i = 1, . . . , n.

4.5 Computational Results

We conduct numerical experiments on the three variants of the DR expectation model (4.7),
namely, E-D(2)

q , E-D(n+1)
q , and E-D(K)

q (K = 3, . . . , n), yielded by Dq = D
(2)
q , D

(n+1)
q ,

and D(K)
q , respectively. For benchmark, we also solve a stochastic linear program (SLP)

63



that minimizes the expected total cost of waiting, server idleness, and overtime via the SAA
approach (Kleywegt et al., 2002). We briefly describe the key computational procedures as
follows. First, we follow a distribution belief to generateN i.i.d. samples, of which we ran-
domly pick a small subset of data to compute the empirical mean and support information,
and use them to compute the (in-sample) optimal solutions and optimal objective values to
the DR models.

For the SLP, we solve an LP model:

SLP: min
x,w,u,W

1

N

N∑
m=1

n∑
i=1

(cw
i w

m
i + cu

iu
m
i ) + coWm (4.26a)

s.t. wmi − umi−1 = qmi−1s
m
i−1 + wmi−1 − xi−1 ∀i = 2, . . . , n, m = 1, . . . , N(4.26b)

Wm − umn = qmn s
m
n + wmn +

n−1∑
i=1

xi − T ∀m = 1, . . . , N (4.26c)

n−1∑
i=1

xi ≤ T (4.26d)

xi ≥ 0 ∀i = 1, . . . , n− 1 (4.26e)

wmi ≥ 0, wm1 = 0, umi ≥ 0, Wm ≥ 0, ∀i = 1, . . . , n, m = 1, . . . , N(4.26f)

where qmi and smi are realizations of parameter qi and si of appointment i in scenario m,
respectively, for all i = 1, . . . , n and m = 1, . . . , N . Variables wmi , umi , and Wm represent
recourse waiting time of appointment i, server idle time after serving appointment i, and
server overtime in scenario m, respectively, for all m = 1, . . . , N . Constraints (4.26b) and
(4.26c) obtain the waiting time/idle time/overtime values for each appointment dependent
on values of xi and (qmi , s

m
i ).

Section 4.5.1 describes how to set the parameter for the above models; Section 4.5.2
compares the CPU time and details of solving E-D(2)

q , E-D(n+1)
q , E-D(K)

q , and SLP. In
Section 4.5.3, we illustrate optimal objective values given by E-D(K)

q withK = 2, . . . , n for
different settings of time limit T and no-show probabilities. In Section 4.5.4, we compare
the performance of optimal schedules of E-D(2)

q , E-D(n+1)
q , and SLP via out-of-sample

simulation tests. Specifically, we follow a certain distribution to generate N ′ data samples,
which represent realizations of random service durations and no-shows. The distributions
used for generating the in-sample and out-of-sample data could be different, and when they
are the same and N is sufficiently large, the SLP is considered being optimized under the
“perfect information” (Birge and Louveaux, 2011). In reality, it is hard to know the exact
true distribution, and thus we also test the case where the distribution is “misspecified.”
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4.5.1 Experiment Setup

We follow procedures in the appointment scheduling literature (e.g., Denton and Gupta,
2003; Mak et al., 2015) to generate random instances as follows. For most instances, we
consider n = 10 appointments, each having a random service duration si with the mean
µi ∼ U [36, 44] (i.e., uniformly sampled in between the values below and above 10% of 40

minutes) and the standard deviation σi = 0.5µi. We set T =
∑n

i=1 µi + R ·
√∑n

i=1 σ
2
i

where scalar R adjusts the length of time limit T . Note that in this setting T does not take
into consideration the no-show probabilities. In Section 4.5.5, we report the results when
T does depend on the no-show probabilities. Each appointment i has a probability νi of
showing up, and we test ν1 = · · · = νn = 0.8 or ν1 = · · · = νn = 0.6. To approximate the
upper and lower bounds sU

i and sL
i of each service duration si, we respectively use the 80%-

and 20%-quantile values of theN in-sample data. We set the ratio cw
i : cu

i : co = 1 : 0.5 : 10

in all the DR models and in SLP.
We sample N = 1000 realizations (qm1 , s

m
1 ), . . . , (qmn , s

m
n ), m = 1, . . . , N by following

Log-Normal distributions with the given means and standard deviations of si and proba-
bility 1 − νi of no-shows for each i = 1, . . . , n. (The Log-Normal distribution possesses
the long-tail property and has been shown accurately describing the shape of service-time
distributions in many service systems (see, e.g., Gul et al., 2011, for a study of five-year
outpatient surgical data in Mayo Clinic).) We optimize the SLP model by using all the
N data points, and only use 20 randomly picked data samples from the N -data set to cal-
culate the first moments of service durations and no-shows, used in all the DR models.
Given the optimal schedules produced by different models, we generate N ′ = 10, 000 i.i.d.
data samples from certain distributions with details given in Section 4.5.4, to evaluate the
performance of each schedule.

We increase the size of instances with n = 10, 15, . . . , 50 appointments in Section
4.5.2 to compare the CPU time of different models and approaches. For each instance, we
generate N = 1000 i.i.d. data samples of service durations and no-shows by following the
same procedures as above. All LP (i.e., E-D(2)

q , E-D(n+1)
q , and SLP) and MILP (i.e., E-

D
(K)
q with K = 3, . . . , n) models are computed in Python 2.7.10 using Gurobi 5.6.3. The

computations are performed on a Windows 7 machine with Intel(R) Core(TM) i7-2600M
CPU 3.40 GHz and 8GB memory. The CPU time limit is set as 3 hours for solving each
instance.
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4.5.2 CPU Time and Computational Details

In this section, we increase the problem size from n = 10 to n = 50 appointments, and
compare CPU time of optimizing different DR models and the SLP. We first vary R =

0, 0.25, 0.5, 0.75, 1, and find that the CPU time of all the models are similar for different
R values and no-show probabilities. Thus, we fix R = 0 and use T =

∑n
i=1 µi = 380.24

minutes. We consider νi = 0.6 for all appointments i = 1, . . . , n, and test ten replications
for each instance. Table 4.1 reports the average CPU time (in second) of solving models
E-D(2)

q , E-D(n+1)
q , SLP, and E-D(K)

q with K = 0.3n and K = 0.7n. Note that the first three
are LP models, and specifically, there are O(n3) variables and O(n3) constraints in the
two LP models E-D(2)

q and E-D(n+1)
q , but O(nN) variables and constraints in SLP. The E-

D
(0.3n)
q and E-D(0.7n)

q models are solved via Algorithm 4.1, and we present the average time
for solving the MILP models with (see columns “Ineq.”) and without (see columns “w/o”)
the valid inequalities in Proposition 3. For instances that take longer than 3 hours to solve,
we instead report the optimality gap values (in %) achieved at the end of the computation
process.

Table 4.1: Average CPU time (in second) of solving DR models and SLP with R = 0 and
1− νi = 0.4

n E-D(2)
q E-D(n+1)

q SLP
E-D(0.3n)

q E-D(0.7n)
q

w/o Ineq. w/o Ineq.
10 0.03 0.00 3.10 6.70 10.68 3.44 1.95
15 0.16 0.01 7.24 52.74 47.56 20.28 4.23
20 0.38 0.01 10.44 158.50 106.67 72.96 15.12
25 2.85 0.02 16.97 409.88 270.60 266.34 47.18
30 5.12 0.05 20.91 1000.38 187.81 823.14 101.68
35 11.50 0.05 28.18 10658.06 401.91 7994.79 340.76
40 28.87 0.15 32.32 (5.76%) 808.38 (10.98%) 614.75
45 26.55 0.20 39.07 (12.49%) 1739.49 (10.24%) 1491.17
50 24.64 0.45 44.49 (31.77%) 3271.83 (43.63%) 3393.62

In Table 4.1, the CPU time of both E-D(2)
q and E-D(n+1)

q are shorter than the one of SLP,
especially after n ≥ 40. The time for solving E-D(2)

q is longer than solving E-D(n+1)
q , due

to the many more constraints involved in the former. Note that the time presented in Table
4.1 is only for solving all the models, but does not include the time spent on reading in
data and constructing the constraints, which is negligible for all the DR models, but grows
quickly for SLP, ranging from 30 seconds to 60 seconds when n ≥ 35.

All the DR LP models and SLP are efficiently solved for n = 10, . . . , 50, while the
MILP models E-D(K)

q with either small or large K-values are computationally intractable,
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reflected by the long CPU seconds taken by instances with n = 35, 40, 45, 50, especially
when no valid inequalities were added. The addition of valid inequalities in Proposition 3
drastically speeds up the decomposition algorithm, and the effect is much more significant
when n ≥ 35. For instance, none of the n = 40, 45, 50 cases were solved within 3 hours
without the valid inequalities, and the average optimality gaps could be as large as 30% ∼
45% when n = 50. In contrast, after adding the valid inequalities, the decomposition
algorithm quickly converges, and on average, it only takes no more than 15, 30, and 60
minutes to optimize the MILPs over instances with n = 40, 45, and 50, respectively.

Next, we present more details of solving the E-D(K)
q MILPs. Table 4.2 illustrates the

number of constraints (“# of Cons.”), the total number of branching nodes (“# of Nodes”),
the average CPU seconds taken by the master problem and the subproblem in each iteration,
and the number of iterations in the decomposition algorithm before it converges to the
optimum or reaches the time limit (“# of Cuts”) for solving both E-D(0.3n)

q and E-D(0.7n)
q ,

with or without the valid inequalities.

Table 4.2: Computational details of solving the MILP models E-D(0.3n)
q and E-D(0.7n)

q

Models n
with Ineq. w/o Ineq.

# of Cons. # of Nodes
Avg. Time (s)

# of Cuts # of Cons. # of Nodes
Avg. Time (s)

# of Cuts
Master Sub Master Sub

E-D(0.3n)
q

10 2239 790 0.00 0.22 48 2023 1810 0.00 0.13 49
15 6271 1363 0.01 0.61 77 5742 8510 0.01 0.62 83
20 13346 2572 0.03 1.04 99 12435 19112 0.03 1.52 102
25 24637 2865 0.08 2.38 110 22979 31602 0.11 3.83 104
30 40686 32 0.23 2.00 84 38247 54697 0.22 9.04 108
35 62932 0 0.51 3.95 90 59116 1245441 0.53 86.12 123
40 91602 0 1.05 7.28 97 86459 677713 2.63 632.67 17
45 128499 0 1.60 16.52 96 121153 387066 7.30 1342.76 8
50 173437 0 3.09 27.48 107 164071 324952 17.57 3582.45 3

E-D(0.7n)
q

10 2097 0 0.01 0.06 29 2019 525 0.00 0.13 25
15 5882 0 0.01 0.11 35 5736 1975 0.02 0.56 35
20 12626 0 0.04 0.28 48 12427 6674 0.05 1.41 50
25 23287 0 0.11 0.71 58 22969 19704 0.13 3.79 68
30 38636 0 0.23 1.50 59 38235 52000 0.27 10.02 80
35 59691 0 0.48 3.63 83 59102 848133 0.42 82.86 96
40 87154 0 0.93 6.06 88 86443 880188 3.90 1538.97 7
45 122121 0 2.07 15.07 87 121135 385058 7.89 1192.12 9
50 165207 0 3.06 28.36 108 164051 268133 18.05 10786.87 1

In Table 4.2, we observe that the valid inequalities in Proposition 3 slightly increase
the number of constraints, but significantly tighten the MILPs, directly reflected by the
significantly reduced branching-and-bound nodes in all the instances. In particular, the
decomposition algorithm obtains integer solutions at the root node in each iteration for
solving E-D(0.3n)

q when n ≥ 35, and for E-D(0.7n)
q given any values of n we test. Moreover,

the valid inequalities significantly reduce the CPU seconds of computing the separation
subproblem in each iteration, especially for instances with n = 35, 40, 45, 50. Lastly, by
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adding the valid inequalities to the MILP models, the decomposition algorithm takes almost
constant number of iterations to converge (i.e., being around 100 iterations when n ≥ 20).
However, if no valid inequalities were added, the number of iterations first increases as we
increase n from 10 to 35, and drastically decreases as we continue increasing n to 50.

4.5.3 Optimal Objective Values and Scheduling Solution Patterns

We compare the optimal objective values of the E-D(K)
q models with K = 2, . . . , n +

1, and plot their value changes for instances with R = 0, 0.25, 0.5, 0.75, 1 and no-show
probabilities 1 − νi = 0.2, 0.4 for all i = 1, . . . , n when n = 10. Recall that parameter
K represents the minimum number of consecutive appointments in which consecutive no-
shows are ruled out. Therefore, as K increases, the support D(K)

q becomes larger, which
leads to smaller feasible region for the scheduling decision vector x, and thus the optimal
objective value is nondecreasing for K = 2, . . . , n + 1. Figure 4.2 illustrates the optimal
objective values, in which Figure 4.2(a) corresponds to 1 − νi = 0.2, ∀i = 1, . . . , n and
Figure 4.2(b) corresponds to larger no-show probabilities 1− νi = 0.4, ∀i = 1, . . . , n.
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Figure 4.2: Optimal objective values of E-D(K)
q for different settings of parameter R (time

limit) and 1− νi (no-show probability)

Table 4.3 presents the detailed optimal objective values in Figure 4.2. Note that the
optimal objective values of E-D(2)

q and E-D(n+1)
q respectively provide valid lower and upper

bounds for the optimal objective value of any E-D(K)
q models with K = 3, . . . , n. For each

combination of R and 1 − νi, we mark the first K-value when the optimal objective value
of E-D(K)

q equals to the upper bound, i.e., the optimal objective value of E-D(n+1)
q .

In Table 4.3, when the no-show probability is smaller (i.e., 1−νi = 0.2, ∀i = 1, . . . , n),
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Table 4.3: Optimal objective value changes according to the value of K and no-show prob-
abilities

No-show R E-D(2)
q

E-D(K)
q , with K =

E-D(n+1)
q3 4 5 6 7 8 9 10

1− νi = 0.2

0 843.38 851.08 851.08 851.08 851.08 851.08 851.08 851.08 851.08 851.08
0.25 745.74 751.32 751.32 751.32 751.32 751.32 751.32 751.32 751.32 751.32

0.5 651.18 652.54 652.54 652.54 652.54 652.54 652.54 652.54 652.54 652.54
0.75 561.32 561.32 561.32 561.32 561.32 561.32 561.32 561.32 561.32 561.32

1 473.69 473.69 473.69 473.69 473.69 473.69 473.69 473.69 473.69 473.69

1− νi = 0.4

0 409.11 677.66 794.41 840.70 842.91 842.91 842.91 842.91 842.91 842.91
0.25 371.47 600.99 713.55 752.87 752.87 752.87 752.87 752.87 752.87 752.87

0.5 336.21 534.22 633.12 665.24 665.24 665.24 665.24 665.24 665.24 665.24
0.75 301.89 472.07 553.93 578.61 578.61 578.61 578.61 578.61 578.61 578.61

1 270.55 410.02 475.67 492.69 492.69 492.69 492.69 492.69 492.69 492.69

the differences between the upper and lower bounds are very small, indicating that the two
LP models E-D(2)

q and E-D(n+1)
q can already provide tight approximations for the MILPs

of E-D(K)
q with K = 3, . . . , n. Considering the long CPU time of solving the MILPs in

Table 4.1, one can avoid directly solving E-D(K)
q (K = 3, . . . , n), and instead use K = 2

or K = n + 1. On the other hand, when the no-show probability is larger (i.e., 1 − νi =

0.4, ∀i = 1, . . . , n), the differences between the results of E-D(2)
q and E-D(n+1)

q become
larger when R is smaller. In such a case, the choices of different K values will lead to
significantly different objective costs. A decision maker can choose either E-D(2)

q or E-
D

(n+1)
q to optimize the schedule x based on his/her risk preference. Alternatively, he/she

can firstly use the two LP models to quickly compute the bounds of the optimal objective
value for a general E-D(K)

q for any K = 3, . . . , n, and then optimize the E-D(K)
q model

for some K by employing the valid inequalities in Proposition 3 and the decomposition
algorithm.

We demonstrate in Figure 4.3 the optimal schedules of instances with n = 10 appoint-
ments, produced by E-D(2)

q , E-D(n+1)
q , and SLP for R = 0, 1 and 1 − νi = 0.2, 0.4, ∀i =

1, . . . , n. The points (i, xi) of every model in each subfigure correspond to the time interval
(in minute) assigned in between the arrivals of appointments i and i+1, for all i = 1, . . . , 9.

As shown in Figure 4.3, SLP almost equally distributes the time in between each arrival
and schedules a long interval after the last appointment, for all combinations of 1−νi andR
values. As compared to SLP, both E-D(2)

q and E-D(n+1)
q schedule longer inter-arrival time

for the early appointments. Intuitively, E-D(2)
q and E-D(n+1)

q intend to mitigate the wait-
ing time that may accumulate due to long service durations (also reflected by the shorter
waiting time for the DR models in Tables 4.4 and 4.5, reported later in Section 4.5.4). Ad-
ditionally, to mitigate the random no-shows, E-D(2)

q and E-D(n+1)
q intend to double book

later appointments (reflected by the small x8 or x9 value in all cases). When the no-show
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Figure 4.3: Appointment schedules produced by E-D(2)
q , E-D(n+1)

q , and SLP for different
settings of parameter R (time limit) and 1− νi (no-show probability)
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probability is relative small (i.e., 1 − νi = 0.2, ∀i = 1, . . . , n) and the time limit T is
sufficiently long (i.e., R = 1), both E-D(2)

q and E-D(n+1)
q yield the same optimal schedule

(also reflected by the same optimal objective value of the two models in Table 4.3).

4.5.4 Results of Out-of-Sample Performance

We compare the out-of-sample simulation performance of the optimal schedules of E-D(2)
q ,

E-D(n+1)
q , and SLP (see Figure 4.3) under (i) “perfect information” and (ii) misspecified

distributional information. Note that E-D(2)
q and E-D(n+1)

q models produce solutions that
differ the most under large no-show probabilities, and thus we focus on the case when
1 − νi = 0.4, ∀i = 1, . . . , n. We examine three cases of the time limit T , by using
R = 0, 0.5, 1.

We generate two sets of N ′ = 10, 000 i.i.d. out-of-sample data (qm1 , s
m
1 ), . . . , (qmn , s

m
n ),

m = 1, . . . , N ′ of the random vector (q, s) following the procedures as follows.

• Perfect Information: We use the same distribution (i.e., Log-Normal) and parameter
settings as the ones for generating theN in-sample data to sample theN ′ data points.

• Misspecified Distribution: We keep the same mean values µi of the random si, νi
of the random qi, and standard deviation σi of the random si for each appointment
i = 1, . . . , n. Therefore, the moment information used in all the DR models and in
the SLP remain the same, but we vary the distribution type, as well as correlations
among the random service durations and no-shows. Specifically, we follow posi-
tively correlated truncated Normal distributions with supports [0, sU

i ], ∀i = 1, . . . , n

to generate realizations sm1 , . . . , s
m
n and follow positively correlated Bernoulli distri-

butions to generate realizations qm1 , . . . , q
m
n for m = 1, . . . , N ′. The parameters of

the truncated Normal distributions and the Bernoulli distributions are designed by
following standard statistical methods1, in order to yield positive data correlations
and also to keep the first two moments of the N ′ out-of-sample data the same as the
ones of the N in-sample data.

To measure the out-of-sample performance of each solution given by E-D(2)
q , E-D(n+1)

q ,
and SLP, we fix x as an interested solution in Model (4.26), but use parameters (qm1 , s

m
1 ), . . .,

(qmn , s
m
n ), m = 1, . . . , N ′. We then compute wmi , u

m
i , W

m as the waiting time (WaitT),
idle time (idleT), and overtime (OverT) in each scenario m, for m = 1, . . . , N ′. Table 4.4
displays means and quantiles of WaitT, IdleT, and OverT, yielded by the optimal solution
of each model under perfect distributional information.

1See https://en.wikipedia.org/wiki/Truncated_normal_distribution.

71

https://en.wikipedia.org/wiki/Truncated_normal_distribution


Table 4.4: Out-of-sample performance of optimal schedules given by E-D(2)
q , E-D(n+1)

q ,
and SLP under perfect information with no-show probabilities 1− νi = 0.4, ∀i = 1, . . . , n

Metrics Model
R = 0 (in minute) R = 0.5 (in minute) R = 1 (in minute)

WaitT OverT IdleT WaitT OverT IdleT WaitT OverT IdleT

Mean
E-D(2)

q 10.06 13.97 16.62 7.33 11.26 19.31 5.50 9.18 22.06
E-D(n+1)

q 6.62 49.27 20.15 4.87 33.59 21.54 3.33 28.11 23.96
SLP 11.20 3.50 15.57 8.70 2.29 18.41 6.70 1.64 21.31

Median
E-D(2)

q 0.00 0.00 12.27 0.00 0.00 14.68 0.00 0.00 20.47
E-D(n+1)

q 0.00 44.92 15.47 0.00 29.22 19.29 0.00 24.93 21.79
SLP 0.00 0.00 8.19 0.00 0.00 12.95 0.00 0.00 17.45

75%-QT
E-D(2)

q 8.40 19.94 33.32 1.79 14.95 34.99 0.00 9.12 40.25
E-D(n+1)

q 0.00 72.90 45.40 0.00 52.22 45.40 0.00 45.27 47.16
SLP 11.94 0.00 28.83 6.49 0.00 34.38 1.33 0.00 37.08

95%-QT
E-D(2)

q 50.88 35.42 46.62 40.08 26.06 48.64 33.52 19.27 50.14
E-D(n+1)

q 40.51 117.78 50.33 30.68 90.84 50.33 22.03 76.66 50.33
SLP 54.03 23.75 43.20 45.89 12.61 46.05 38.41 7.54 49.85

Based on Table 4.4, both E-D(2)
q and E-D(n+1)

q yield slightly better waiting time on
average and at different quantiles than the SLP. The E-D(2)

q model results in overtime that
is close to the one of SLP (which has perfect distributional information). But the optimal
schedule of E-D(n+1)

q performs badly on average and at all quantiles. For example, when
R = 0, the schedule by E-D(2)

q lasts 10 minutes longer than the 3-minute average overtime
given by the SLP optimal schedule, while the optimal schedule of E-D(n+1)

q lasts about
46 minutes longer on average. This is due to the overly conservative no-show support
assumption used by E-D(n+1)

q . When the distributional information is accurate, E-D(n+1)
q

results in over-conservative schedules that perform badly especially in the overtime metric.
Table 4.5 illustrates the means and quantiles of WaitT, IdleT, and OverT, yielded by

optimal schedules of the three models under misspecified distributional information.
From Table 4.5, we observe that both DR models yield much better (i.e., 30%–70%

shorter) waiting time per appointment than the optimal schedule given by the SLP, when
the distribution type becomes different but the first two moments remain unchanged from
the assumed case. The time reduction is reflected in all the metrics, including the mean
and 50% to 95% quantiles of the random WaitT, for both R = 0 and R = 1. On the other
hand, the three models yield similar IdleT, and the optimal schedule given by E-D(n+1)

q

yields slightly longer idle time per appointment, but much longer OverT than both E-D(2)
q

and SLP. This observation indicates that the optimal schedules given by SLP can become
suboptimal when the probability distributions are misspecified, while E-D(2)

q can produce
schedules that are less sensitive to misspecification of distribution types.
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Table 4.5: Out-of-sample performance of optimal schedules given by E-D(2)
q , E-D(n+1)

q ,
and SLP under misspecified distribution with no-show probabilities 1 − νi = 0.4, ∀i =
1, . . . , n

Metrics Model
R = 0 (in minute) R = 0.5 (in minute) R = 1 (in minute)

WaitT OverT IdleT WaitT OverT IdleT WaitT OverT IdleT

Mean
E-D(2)

q 19.89 42.30 13.93 15.75 34.24 16.08 11.51 27.39 18.36
E-D(n+1)

q 12.14 69.59 16.65 10.20 52.16 17.87 8.26 44.56 20.07
SLP 29.32 38.36 13.53 24.30 31.04 15.76 19.61 24.54 18.07

Median
E-D(2)

q 0.00 0.00 5.52 0.00 0.00 9.62 0.00 0.00 14.15
E-D(n+1)

q 0.00 46.25 8.61 0.00 30.62 11.83 0.00 30.56 15.64
SLP 0.00 0.00 5.09 0.00 0.00 9.16 0.00 0.00 13.00

75%-QT
E-D(2)

q 15.34 41.98 27.16 10.70 27.98 30.95 4.91 19.47 35.42
E-D(n+1)

q 6.95 93.23 33.03 2.44 65.31 34.86 0.00 53.56 39.49
SLP 27.64 11.57 26.36 21.18 0.00 30.33 15.06 0.00 34.45

95%-QT
E-D(2)

q 109.75 241.69 46.59 89.11 212.08 49.77 65.02 182.47 48.78
E-D(n+1)

q 62.06 241.69 49.77 58.20 212.08 49.77 52.26 182.47 50.08
SLP 147.84 241.63 43.20 130.09 212.02 46.05 110.73 182.41 49.84

4.5.5 No-Show-Dependent Time Limit

In this section, we make the time limit T depend on the no-show probabilities and report
the scheduling solution patterns of SLP, E-D(2)

q , and E-D(n+1)
q , together with their out-of-

sample performance under perfect information and misspecified distributional information.
More specifically, we keep all experiment settings the same as in Sections 4.5.3–4.5.4, ex-
cept for setting T =

∑n
i=1 νiµi + R ·

√∑n
i=1[(νi − ν2

i )µ2
i + νiσ2

i ] to take into account the
no-show probabilities. Note that EPq,s [qisi] = νiµi and Var(qisi) = (νi− ν2

i )µ2
i + νiσ

2
i if qi

and si are independent. Additionally, νi < 1 and so in this setting the time limit is shorter
than that in Sections 4.5.3–4.5.4. First, we report the out-of-sample performance under
perfect information in Table 4.6 and that under misspecified distributional information in
Table 4.7. From these two tables, we make similar observations as in Section 4.5.4. Under
perfect information, as compared to SLP, E-D(2)

q yields shorter waiting time, longer over-
time, and similar idle time, while E-D(n+1)

q yields a much longer overtime in all settings.
Under misspecified distributional information, both DR models result in significant reduc-
tion in waiting time and E-D(2)

q yields similar overtime and idle time as SLP does, while
E-D(n+1)

q still performs poorly in overtime. This confirms our conclusion that E-D(2)
q can

produce near-optimal schedules that are less sensitive to misspecification of distribution
types.

Additionally, we demonstrate in Figure 4.4 the optimal schedules produced by E-D(2)
q ,

E-D(n+1)
q , and SLP for R = 0, 1 and 1 − νi = 0.2, 0.4, ∀i = 1, . . . , n. By comparing

this figure with Figure 4.3, we observe that SLP now intends to double book the first ap-
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Table 4.6: Out-of-sample performance of optimal schedules given by E-D(2)
q , E-D(n+1)

q ,
and SLP under perfect information with no-show probabilities 1− νi = 0.4, ∀i = 1, . . . , n
and no-show-dependent time limit

Metrics Model
R = 0 (in minute) R = 0.5 (in minute) R = 1 (in minute)

WaitT OverT IdleT WaitT OverT IdleT WaitT OverT IdleT

Mean
E-D(2)

q 29.75 52.56 5.06 26.94 28.26 6.37 18.47 21.00 9.37
E-D(n+1)

q 30.74 124.71 12.28 22.62 102.41 13.78 14.77 79.93 15.27
SLP 34.51 39.40 3.75 28.43 22.56 5.80 21.54 12.76 8.55

Median
E-D(2)

q 14.16 42.62 0.00 10.80 8.63 0.00 0.00 0.00 0.00
E-D(n+1)

q 0.00 119.87 0.00 0.00 96.78 0.00 0.00 75.74 4.96
SLP 19.02 23.80 0.00 11.99 0.00 0.00 4.30 0.00 0.00

75%-QT
E-D(2)

q 42.48 77.75 2.48 37.84 44.71 6.73 24.86 33.50 14.68
E-D(n+1)

q 43.24 161.90 24.03 30.07 136.99 25.83 14.59 111.36 25.83
SLP 48.38 63.39 0.00 39.89 34.70 5.39 29.54 13.68 13.06

95%-QT
E-D(2)

q 98.19 145.32 34.88 92.85 109.04 40.23 75.06 90.94 37.75
E-D(n+1)

q 126.95 226.24 48.05 100.50 200.02 48.05 73.78 166.14 48.05
SLP 108.56 135.82 23.36 95.45 99.25 28.36 81.38 71.52 33.42

Table 4.7: Out-of-sample performance of optimal schedules given by E-D(2)
q , E-D(n+1)

q ,
and SLP under misspecified distribution with no-show probabilities 1 − νi = 0.4, ∀i =
1, . . . , n and no-show-dependent time limit

Metrics Model
R = 0 (in minute) R = 0.5 (in minute) R = 1 (in minute)

WaitT OverT IdleT WaitT OverT IdleT WaitT OverT IdleT

Mean
E-D(2)

q 52.66 103.65 4.64 49.78 80.99 6.11 37.38 65.68 8.31
E-D(n+1)

q 41.02 158.23 10.10 31.34 132.34 11.25 22.33 106.81 12.43
SLP 62.29 100.52 4.33 55.23 80.26 6.04 46.12 63.99 8.14

Median
E-D(2)

q 14.74 36.78 0.00 11.91 2.20 0.00 2.93 0.00 0.00
E-D(n+1)

q 4.25 138.88 0.00 0.00 110.64 0.00 0.00 80.42 0.00
SLP 22.36 33.41 0.00 15.86 3.80 0.00 7.58 0.00 0.00

75%-QT
E-D(2)

q 62.00 165.04 2.48 56.99 127.71 6.72 37.89 91.01 13.90
E-D(n+1)

q 50.66 211.26 17.45 35.39 185.49 20.42 19.92 148.20 23.49
SLP 78.78 164.73 3.43 68.43 127.40 9.10 53.96 90.38 13.88

95%-QT
E-D(2)

q 217.42 395.80 32.63 211.46 358.47 36.04 177.68 321.14 37.39
E-D(n+1)

q 169.15 395.85 47.52 140.08 358.53 47.52 108.03 321.20 47.52
SLP 236.10 395.80 23.36 219.89 358.47 28.44 198.36 321.14 31.64
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Figure 4.4: Appointment schedules produced by E-D(2)
q , E-D(n+1)

q , and SLP for differ-
ent settings of parameter R (time limit) and 1 − νi (no-show probability) under no-show-
dependent time limit

75



pointment (reflected by the small x1 value in three cases) and otherwise behaves similarly.
Additionally, E-D(n+1)

q yields similar schedules when the no-show probability is low, but
it starts overbooking towards the end when no-shows become more likely (reflected by the
small xi values, i ≥ 6, when 1− νi = 0.4). Similar pattern changes also happen in E-D(2)

q

schedules: E-D(2)
q intends to double book later appointments when the no-show probabil-

ity is low; but when no-shows become more likely, it double books earlier appointments
as well. An intuitive explanation is that as the time limit T becomes shorter and no-shows
become more likely, double booking can simultaneously mitigate long waiting time and
long idle time (also reflected in Tables 4.6–4.7).

4.6 Concluding Remarks

In this chapter, we studied moment-based DR models of the stochastic appointment schedul-
ing problem under uncertainty arising from no-shows and service durations. Our ap-
proaches are suitable for an appointment scheduler who has a limited amount of data and
considers ambiguous distributions of the two co-existing uncertainties. We derived the fol-
lowing insights on DR appointment scheduling models: (i) one can improve the DR mod-
els’ ability of utilizing distributional information by using reasonably conservative supports
and (ii) the DR model with the least conservative support of no-shows obtains near-optimal
schedules under perfect information, and outperforms other DR models and the stochastic
program if the distributional type is misspecified.

Based on the computational results, we derived the following recommendations for the
practitioners: (i) if the appointment scheduler has accurate information on the no-show
probabilities and service duration distributions, then she can double book the first appoint-
ment to better reduce the disruptive effects of no-shows, (ii) if the distributional information
is ambiguous, then she can double book the later appointments to yield more stable per-
formance, and (iii) under ambiguous distributions, she should double book earlier appoint-
ments as well, as the no-show probabilities increase or as the time limit becomes shorter
(relative to the number of appointments).
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CHAPTER 5

Solving 0-1 Semidefinite Programs for
Distributionally Robust Allocation of Surgery

Blocks

5.1 Introductory Remarks

In this chapter, we study a server allocation problem in a specific context to allocate surgery
blocks to operating rooms (ORs). The goal is to minimize the total cost of opening ORs,
while guaranteeing a low risk of having OR overtime. The problem follows a standard
setting of OR planning under random surgery durations that has been studied by a variety
of recent papers from different aspects (see. e.g., Deng et al., 2016; Denton et al., 2010;
Shylo et al., 2012). The majority of the related literature employs stochastic optimization
methods that require full knowledge of the exact distribution of the underlying uncertainty.
One of the main purposes of this chapter is to provide new paradigms for deriving more
reliable solutions for the case when a decision maker only knows limited data from past ex-
periences about the time duration of completing each surgery, but not the full distributional
information.

We introduce the detailed problem context as follows. A surgery scheduler opens ORs
with limited total operating hours for completing surgeries in a daily base. Each surgery
can be operated in a given subset of ORs and has a random duration time. The probabilities
of undesirable outcomes such as OR overtime need to be restricted, usually through some
quality-of-service requirement specified before making the decisions. The random time
for completing different surgeries could be correlated or independent in all our models.
We also allow heterogeneous surgery durations, meaning that the random surgery time in
different ORs may follow different distribution types and parameters.

In this chapter, we restrict the OR overtime through individual OR-based chance con-
straints, which yields an alternative formulation to the minimization of the expected artifi-
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cial penalty cost of OR overtime. The latter is traditionally seen in the stochastic program-
ming literature (e.g., Denton et al., 2010). We refer to Deng et al. (2016); Shylo et al. (2012)
for the motivation of applying chance-constrained programming for ensuring the quality of
service in OR planning, including (i) the difficulty of accurately estimating the cost associ-
ated with unit time delay in each OR and (ii) the drastic change of optimal solutions given
small changes of the penalty cost parameter.

In this chapter, we consider a DR chance-constrained model, which minimizes the to-
tal cost of operating ORs and assignments, while restricting the worst-case probability of
OR overtime under distributional ambiguity. Such an approach is emerging and has shown
great power for modeling various optimal decision making problems under limited data
or rapidly-changing complex environment. We follow the well-developed DR optimiza-
tion theories in Delage and Ye (2010), and use the mean vector and covariance matrix to
construct the ambiguity set of the unknown distribution function of the jointly distributed
surgery durations. Then, following a recent result in Jiang and Guan (2016) for solving
generic DR chance constraints, we reformulate the DR model as a SDP problem but with
binary variables (used for modeling decisions of opening ORs and surgery block assign-
ment), which cannot be directly optimized in off-the-shelf solvers. To tackle the 0-1 SDP,
we develop a cutting-plane approach that solves a continuous SDP oracle in each separation
procedure for iteratively generating valid cuts. Also, we propose a 0-1 SOCP reformula-
tion deduced from a tighter ambiguity set, solving which does not require implementing
the cutting-plane algorithm. We test instances of an outpatient treatment application, to
compare different approaches, specifically in terms of their solution time, in-sample objec-
tive values, out-of-sample reliability performance. We note that the work in this chapter
has been published in Zhang et al. (2018b).

5.1.1 Literature Review

We categorize the most relevant literature into three categories as follows.

5.1.1.1 Distributionally Robust Optimization and Chance-Constrained Programming

DR approaches handle the issue of unknown distributions in traditional stochastic pro-
gramming, by utilizing statistical information of historical data samples to prevent making
decisions that will perform badly in some future circumstances. To illustrate, consider a
stochastic program mina∈A Eξ[c(a, ξ)] as an example, where a is a decision vector and ξ is
a random parameter vector, both affecting a random cost c(a, ξ). The goal is to minimize
the expected cost for a given distribution of ξ with probability function f(ξ). When the
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exact form of f(ξ) is not known, we optimize against the worst-case outcome, and build
an ambiguity set D of possible probability distribution functions for ξ. The DR problem,
which minimizes the worst-case expected cost over possible f(ξ) ∈ D, is given by

min
a∈A

max
f(ξ)∈D

Eξ[c(a, ξ)].

The key challenge in DR optimization lies in constructing an ambiguity set D of f(ξ)

to derive tractable yet not too conservative solutions depending on the amount of available
data. Scarf et al. (1958) are the first to consider a DR inventory-control problem, with set
D consisting of linear constraints on moments of random demand. We refer to Bertsimas
et al. (2010); Delage and Ye (2010) for the representative work that uses moment-based
ambiguity sets for deriving reformulations of generic DR models.

Meanwhile, chance-constrained programs (cf. Shapiro et al., 2009) are commonly used
for restricting the probability of undesirable outcomes to a small and controllable value.
They provide powerful stochastic optimization tools for guaranteeing the quality of service
under uncertainty. A DR variant of a chance constraint ensures that the probability of un-
desirable outcomes given by the worst-case distribution in an ambiguity set is no more than
a given risk tolerance. Jiang and Guan (2016); Zymler et al. (2013) develop reformulations
and solution methods for general DR chance constraints by constructing an ambiguity set
based on the first two moments of random data. They derive equivalent SDPs for replacing
the DR chance constraints by using the conic duality (Shapiro, 2001).

5.1.1.2 Stochastic or Robust Surgery Planning

Next, we review the most related literature in the optimization of healthcare systems, es-
pecially for surgery planning under uncertainty. A common objective is to find the best
solution that balances conflicting criteria such as operational cost and quality of service
(i.e., the chance of having no overtime in the open ORs focused in our chapter). Blake
and Donald (2002) formulate an integer programming model for allocating similar surgery
types to ORs. Denton et al. (2010) consider allocating surgery blocks of the same specialty
with random time duration to ORs, where there exist a fixed cost of opening an OR and a
unit cost for over-utilization that might occur in each open OR. The authors minimize the
total cost of opening ORs and the expected penalty cost of overtime in all ORs. They for-
mulate the problem as a two-stage stochastic mixed-integer program, solved by an integer
L-shaped method using finite samples of surgery durations. Shylo et al. (2012) are among
the first to use a chance constraint for restricting the OR overtime, while minimizing the
total cost of opening ORs and the expected idle time in ORs. They assume that the surgery
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durations follow a multivariate Normal distribution, and reformulate the problem as an
equivalent semidefinite program. Deng et al. (2016) investigate an integrated problem of
allocating and scheduling surgeries in multiple ORs, with additional binary variables that
determine the sequence of performing surgeries in each OR. They consider a DR chance
constraint on OR overtime due to unknown distributions of surgery durations. They refor-
mulate the DR chance-constrained problem as a regular chance-constrained program with
0-1 variables based on φ-divergence functions used for constructing the ambiguity set.

5.1.1.3 Stochastic Bin Packing and Variants

By viewing each OR as a bin and all the surgeries as items to be packed in the bins, our
model is a special case of the stochastic bin packing problem with random item sizes.
Zhang et al. (2015b) study a DR chance-constrained model for stochastic bin packing by
assuming the distributions of the random item sizes are ambiguous, but the random size
of each item in their model does not change in different bins. They discuss a branch-and-
price algorithm based on a column generation procedure. Focusing on an application of the
stochastic bin packing problem, Deng et al. (2016) study a surgery planning problem that
optimizes the allocation of surgeries to ORs and limits the the OR overtime using a joint
DR chance-constraint, solved by using an ambiguity set constructed based on statistical φ-
divergence measures. Shen and Wang (2014) consider the stochastic bin packing structure
in the operations of Cloud Computing systems, and formulate a mixed-integer linear pro-
gramming model for solving the problem based on finite samples of the random processing
time of computational jobs.

Stochastic knapsack is another classical resource allocation problem, which packs a
subset of items with random sizes to an open bin, and maximizes the total value of packed
items. Both the stochastic knapsack and stochastic bin packing problems concern about
uncertain item sizes in knapsack constraints. Kleinberg et al. (2000) relate the two mod-
els in bandwidth allocation problems in telecommunication, and propose approximation
algorithms for solving the chance-constrained variant of the stochastic bin packing model
by assuming that each random item size follows a Bernoulli distribution. Kosuch and
Lisser (2010) focus on stochastic knapsack problem variants, one with simple recourse
and the other with a chance constraint. They provide upper bounds in a branch-and-bound
framework for optimizing the two model variants. Cheng et al. (2014) construct SDP re-
laxations for optimizing DR knapsack constraints. Han et al. (2016) propose a pseudo-
polynomial time algorithm for a chance-constrained binary knapsack problem with Nor-
mally distributed item sizes.
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5.1.2 Contributions and Organization of the chapter

The main contributions of the chapter are as follows. First, we consider the standard OR
planning problem from a new angle by taking into account ambiguous distributions, and
apply risk-averse measures to evaluate undesirable random outcomes (e.g., the OR overtime
risk in our study). Second, we propose a DR chance-constrained model based on moment-
based ambiguity sets of the unknown distribution, and formulate an equivalent 0-1 SDP.
Third, we develop a cutting-plane algorithm and an alternative 0-1 SOCP for approximating
the optimal solution to the 0-1 SDP. Fourth, we demonstrate the data-driven aspect of using
the DR approach through cross-sample computational studies.

The remainder of the chapter is organized as follows. Section 5.2 describes the DR
chance-constrained model and the moment-based distributional ambiguity set. In Section
5.3, we reformulate the problem as a 0-1 SDP and propose a cutting-plane algorithm for
iteratively approximating the results. In Section 5.4, we extend the results in Delage and
Ye (2010) to approximate the original ambiguity set, which results in an alternative model
as a 0-1 SOCP. In Section 5.5, we compare the computational efficacy of the cutting-plane
algorithm and directly solving the 0-1 SOCP. We test instances randomly generated from
real data of hospital outpatient treatment time and compare the results of the two methods.
Section 5.6 summarizes the chapter and states future research avenues.

Assumptions and Notation. We use |X| to denote the cardinality of set X , and denote
X · Y as the Frobenius inner product of X and Y , i.e., X · Y = tr(XTY ). We denote SK+
as the set of symmetric positive semidefinite K ×K matrices. The generalized inequality
for symmetric matrices, X � Y , where X, Y ∈ SK+ , means that X − Y ∈ SK+ . Similarly,
X � Y , means that Y −X ∈ SK+ . We use 〈·〉 to denote a stacked column vector.

5.2 DR Chance-Constrained Model

Consider a set I of ORs and a set J of surgeries. For each pair of surgery j ∈ J and OR
i ∈ I , binary parameter ρij indicates whether or not surgery j can be operated in OR i,
such that ρij = 1 if yes, and ρij = 0 otherwise. Vector s = 〈sij, i ∈ I, j ∈ J〉 represents
the random service durations, where sij is the time of completing surgery j in OR i. We
assume a fixed cost τ zi and time limit Ti of operating OR i, ∀i ∈ I . Let τ yij be a fixed cost
of assigning surgery j in OR i, ∀i ∈ I, j ∈ J .

We define variables zi ∈ {0, 1}, i ∈ I such that zi = 1 if we operate OR i and zi = 0

otherwise. Also, we define variables yij ∈ {0, 1} for the assignment of surgery j to OR i
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for all j ∈ J and i ∈ I , such that yij = 1 if surgery j is processed in OR i, and yij = 0

otherwise. We minimize the total cost of operating a subset of ORs in I to complete all the
surgeries in J , and ensure that the probability of having overtime on each OR i is no more
than αi, where 0 < αi < 1 is a given risk level for each i ∈ I . The DR chance-constrained
model is given by:

min
z,y

∑
i∈I

τ zi zi +
∑
i∈I

∑
j∈J

τ yijyij (5.1a)

s.t. yij ≤ ρijzi ∀i ∈ I, j ∈ J (5.1b)∑
i∈I

yij = 1 ∀j ∈ J (5.1c)

yij, zi ∈ {0, 1} ∀i ∈ I, j ∈ J (5.1d)

inf
f(si)∈Di

Pf(si)

{∑
j∈J

sijyij ≤ Tizi

}
≥ 1− αi, ∀i ∈ I (5.1e)

where Pf(si) {·} denotes the probability of event · under a given distribution function f(si)

of the random vector si = 〈sij, ∀j ∈ J〉, for each OR i ∈ I . The objective function (5.1a)
minimizes the total cost of operating ORs and assigning surgeries to open ORs. Constraints
(5.1b) and (5.1c) ensure that surgeries are only assigned to open ORs, and each surgery can
only be allocated to one OR, respectively. Constraints (5.1d) ensure binary values of both
variables zi and yij . In the DR chance constraints (5.1e), we designate a moment-based
ambiguity set, Di, of the pdf f(si). The sum,

∑
j∈J sijyij , is the total service time for

completing all the surgeries on OR i, which needs to be no more than Ti with at least
probability 1− αi, for any PDF in the ambiguity set Di. That is, we ensure the worst-case
(i.e., the minimum) probability of on-time surgery completion at each OR i being no less
than 1− αi, for each i ∈ I .

In this chapter, we utilize the moment-based ambiguity set in Delage and Ye (2010) to
characterize possible PDF f(si) for each i ∈ I as follows. We consider D = ∪i∈IDi, with
set Di being specified as

DMi (Ξi, µ
0
i ,Σ

0
i , γ1, γ2) =

f(si) :

∫
si∈Ξi

f(si)dsi = 1

(E[si]− µ0
i )

T(Σ0
i )
−1(E[si]− µ0

i ) ≤ γ1

E[(si − µ0
i )(si − µ0

i )
T] � γ2Σ0

i

 , (5.2)

where Ξi denotes the support of random parameter si, and we let Ξi = R|J |, ∀i ∈ I (rather
than R|J |+ ) in our later derivation of the solution approaches. Moreover, µ0

i and Σ0
i represent

the empirical mean vector and the covariance matrix of surgery-duration vector si, for all
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i ∈ I , respectively. Scalars γ1, γ2 ≥ 0 adjust the size of the ambiguity set DMi . Note that
the three constraints in DMi ensure that (i) values of f(si) sum to 1 over the support set Ξi;
(ii) the mean of si lies in an ellipsoid of size proportion to γ1 centered at the empirical mean
µ0
i ; (iii) the true covariance matrix lies in a positive semidefinite cone bounded by a matrix

inequality of γ2Σ0
i . Parameters γ1 and γ2 further control the conservativeness of optimal

solutions given by the DR model that uses DMi , for all i ∈ I (Delage and Ye, 2010). One
can also differentiate the values of γ1 and γ2 for different OR i ∈ I .

5.3 An Equivalent 0-1 SDP and Cutting-plane Algorithm

In this section, we reformulate the DR chance constraints (5.1e) with Di = DMi by using
SDP constraints, and develop a cutting-plane algorithm for optimizing the resulting 0-1
SDP.

For each OR i, the worst-case probability in the DR chance constraint (5.1e) is equiva-
lent to the optimal objective value of the following problem:

zDMi = min
f(si)

∫
R|J|

I{si:∑j∈J sijyij≤Tizi}(si) (5.3a)

s.t.
∫
R|J|

f(si)dsi = 1 (5.3b)∫
R|J|

[
Σ0
i si − µ0

i

(si − µ0
i )

T γ1

]
f(si)dsi � 0 (5.3c)∫

R|J|
(si − µ0

i )(si − µ0
i )

Tf(si)dsi � γ2Σ0
i , (5.3d)

where IA(ξ) is an indicator function given set A and uncertainty ξ, such that IA(ξ) = 1, if
ξ ∈ A, and IA(ξ) = 0 otherwise. Constraints (5.3b)–(5.3d) are equivalent to the moment-
matching constraints of the set DMi in (5.2). The optimal objective value zDMi returns the
worst-case probability of having no overtime on OR i achieved over the ambiguity setDMi .
Therefore, we satisfy the DR chance constraints (5.1e) if zDMi ≥ 1− αi, for each i ∈ I .

Theorem 5.1. (Adopted from Jiang and Guan (2016)) Given a solution ŷi = 〈ŷij, ∀j ∈ J〉
and ẑi, for OR i, the optimization problem (5.3) leads to the following SDP constraints that
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are equivalent to the DR chance constraints:

SDP(ŷi, ẑi): γ2Σ0
i ·Gi + 1− ri + Σ0

i ·Hi + γ1qi ≤ αiλi (5.4a)[
Gi −pi
−pTi 1− ri

]
−

[
0 1

2
ŷi

1
2
ŷTi λi + ŷTi µ

0
i − Tiẑi

]
� 0 (5.4b)[

Gi −pi
−pTi 1− ri

]
∈ S(|J |+1)×(|J |+1)

+ ,

[
Hi pi

pTi qi

]
∈ S(|J |+1)×(|J |+1)

+ ,

λi ≥ 0. (5.4c)

The proof follows Jiang and Guan (2016) that reformulates a generic DR chance con-
straint as an SDP, and we specify the proof details for our problem in Appendix B.1.

Following Theorem 5.1, we can formulate |I| such SDPs for replacing all the DR
chance constraints in (5.1e). As a result, the DR chance-constrained model (5.1) is equiva-
lent to solving a 0-1 SDP as

min
z,y

{∑
i∈I

τ zi zi +
∑
i∈I

∑
j∈J

τ yijyij : (5.1b), (5.1c), (5.1d), (5.4a)–(5.4c) in SDP(yi) ∀i ∈ I

}
.

(5.5)
However, formulation (5.5) cannot be directly optimized by off-the-shelf solvers and

we derive a cutting-plane algorithm as follows. We iteratively solve the following relaxed
master problem and subproblems consisting of SDP constraints (5.4a)–(5.4c), to verify
whether a given allocation solution satisfies the DR chance constraint (5.1e) for each i ∈ I .
The relaxed master problem is given by

[MP]: min
z,y

∑
i∈I

τ zi zi +
∑
i∈I

∑
j∈J

τ yijyij (5.6a)

s.t. (5.1b), (5.1c), (5.1d)

Cliyi ≤ clizi, i ∈ I, l = 1, . . . , ki (5.6b)

where in constraints (5.6b), for i ∈ I , Cliyi ≤ clizi, l = 1, . . . , ki are sets of cuts associated
with OR i cumulatively added by solving the subproblems described later. The parameters
Cli and cli are the coefficients of variable yi and of variable zi of each cut i, respectively.

At each iteration, given a tentative binary solution (ŷ, ẑ), where ŷ = 〈ŷi, i ∈ I〉 and
ẑ = 〈ẑi, i ∈ I〉, from a relaxation of MP, we check its feasibility for the DR chance
constraints (5.1e) by solving subproblems derived from the SDP(ŷi, ẑi), ∀i ∈ I in Theorem
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5.1:

[SUBi(ŷi, ẑi)]: P (ŷi, ẑi) = min
Gi,pi,ri,Hi,qi,λi

γ2Σ0
i ·Gi + 1− ri + Σ0

i ·Hi + γ1qi − αiλi(5.7a)

s.t. (5.4b), (5.4c).

Note that the optimal objective value of each subproblem SUBi(ŷi, ẑi) needs to be no more
than zero, and then the inequality (5.4a) in the SDP(ŷi, ẑi) can be ensured. Otherwise,
(5.4a) is violated and so is the corresponding DR chance constraint (5.1e) associated with
OR i. To derive a valid cut, we examine the dual of SUBi(ŷi, ẑi) given by
[SUBi(ŷi, ẑi)-Dual]:

D(ŷi, ẑi) = max
Qi,di,ui,vi

ŷTi di + (ŷTi µ
0
i − Tiẑi)ui (5.8a)

s.t.

[
γ2Σ0

i vi

vTi 1

]
−

[
Qi di

dTi ui

]
� 0 (5.8b)

ui − αi ≥ 0 (5.8c)[
Σ0
i −vi

−vTi γ1

]
� 0 (5.8d)

vi ∈ R|J |,

[
Qi di

dTi ui

]
∈ S(|J |+1)×(|J |+1)

+ , (5.8e)

where

[
Qi di

dTi ui

]
are dual matrix variables associated with the constraint (5.4b) in SUBi(ŷi, ẑi),

and vi is the dual vectors corresponding to vector pi. Furthermore, the strong duality holds,
i.e., P (ŷi, ẑi) = D(ŷi, ẑi) for any given (ŷi, ẑi). Note that P (ŷi, ẑi) ≤ 0, ∀i ∈ I implies
the satisfaction of every chance constraint in (5.1e). Until every SUBi(ŷi, ẑi) for each i has
their optimal objective value ≤ 0 for a solution (ŷ, ẑ) given by MP in (5.6), we claim its
optimality to the original 0-1 SDP and thus to Formulation (5.1).

When D(ŷi, ẑi) > 0 for any i ∈ I , due to the strong duality, we have P (ŷi, ẑi) > 0 for
the same i ∈ I . Thus, we can generate a valid inequality (5.6b) specified as

(d̂i + ûiµ
0
i )

Tyi − ûiTizi ≤ 0, (5.9)

into the MP in (5.6) to cut off (ŷi, ẑi), where d̂i and ûi are optimal solutions to SUBi(ŷi, ẑi)-
Dual. Since there are finite many binary solutions of (y, z) and each cut in the form of (5.9)
cuts off at least one solution, the cutting-plane algorithm terminates in finite iterations.

The SUBi(ŷi, ẑi)-Dual is a small-scale SDP with only continuous variables and can
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be solved quickly in the state-of-the-art convex optimization solvers. Moreover, we can
compute SUBi(ŷi, ẑi)-Dual for all i ∈ I in parallel to further speed up the computation.
The implementation details of the cutting-plane approach are given in Algorithm 5.1.

Algorithm 5.1: A cutting-plane algorithm for optimizing the reformulated 0-1 SDP
(5.5) of the DR model (5.1) with the ambiguity set D = DMi
1 Set ki = t = 0, ∀i ∈ I , l← −∞, INF=FALSE, and CUTFOUND=TRUE
2 while INF=FALSE and CUTFOUND=TRUE do
3 Set CUTFOUND=FALSE, t← t+ 1. Solve the relaxed master problem MP. Let

(ẑt, ŷt) be an optimal solution and objt be the optimal objective value. If the
problem is infeasible, set INF=TRUE

4 for i ∈ I do
5 Solve SUBi(ŷti , ẑ

t
i)-Dual (5.8), and let (Q̂i, d̂i, ûi, v̂i) be an optimal solution

6 if (d̂i + ûiµ
0
i )

Tŷti > ûiTiẑ
t
i then

7 Let Cki+1
i = (d̂i + ûiµ

0
i )

T and cki+1
i = ûiTi as the cut coefficients in

(5.6b).
8 Add the corresponding cut (5.6b) (or equivalently (5.9)) into the MP.
9 Set ki ← ki + 1 and CUTFOUND=TRUE

10 end
11 end
12 Set l← objt in MP.
13 end
14 if INF=TRUE then
15 Claim that the DR model (5.1) is infeasible.
16 else
17 Return (ẑt, ŷt) as one optimal solution to the 0-1 SDP (5.5) as well as to the DR

model (5.1).
18 end

5.4 An Alternative 0-1 SOCP Approximation

Alternatively, we propose a method to approximate the optimal results, which requires
solving a 0-1 SOCP without implementing of a cutting-plane algorithm. The derivation is
based on a general result given in Proposition 4 first shown by Wagner (2008), specified in
our notation below.

Proposition 4. Denote an ambiguity set

DCi = DCi (Ξi, µi,Σi) =

f(si) :

∫
si∈Ξi

f(si)dsi = 1,

E[si] = µi

E[(si − µi)(si − µi)T] = Σi

 . (5.10)
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Given risk parameter αi, the mean vector µi and covariance matrix Σi of the service dura-
tion vector si, an individual DR chance constraint (i.e., the inner constraint only has one
row)

inf
f(si)∈DCi

Pf(si)

{
sTi yi ≤ Tizi

}
≥ 1− αi (5.11)

is equivalent to √
yTi Σiyi ≤

√
αi

1− αi
(Tizi − (µi)

Tyi), ∀i ∈ I. (5.12)

The proof follows Theorem 2.2 in Wagner (2008).

Theorem 5.2. Given the risk parameter αi, ∀i ∈ I , the empirical mean vector µ0
i and co-

variance matrix Σ0
i of the service duration vector si, solutions to the DR chance constraints

(5.1e) can be approximated by the following second-order conic constraints with binary
variables yi, i ∈ I:√

1

1− a− b

(
1 +

√
αib

1− αi

)√
yTi Σ0

i yi ≤
√

αi
1− αi

(
Tizi − (µ0

i )
Tyi
)
, ∀i ∈ I. (5.13)

Proof. Recall that the equivalence between the DR chance-constrained model (5.1) and the
0-1 SDP (5.5) given ambiguity set D = DMi , following the result in the previous Theorem
5.1. Furthermore, given empirical mean µ0

i and covariance Σ0
i of the set of samples {sni }Nn=1

of the random vector si, let µi and Σi be the true mean and covariance of each si, i ∈ I

based on the true PDF f(si), respectively. Delage and Ye (2010) show the following:
Consider the ambiguity set DMi = DMi (Ξi, µ

0
i ,Σ

0
i , γ1, γ2), with

γ1 =
b

1− a− b
, γ2 =

1 + b

1− a− b
.

for some scalars a and b. Now if (µi,Σi) satisfies

(µ0
i − µi)T(Σi)

−1(µ0
i − µi) ≤ b, (5.14)

Σi �
1

1− a− b
Σ0
i , (5.15)

then any f(si) ∈ DCi (Ξi, µi,Σi) can satisfy the constraints in set DMi (Ξi, µ
0
i ,Σ

0
i , γ1, γ2)

with probability greater than or equal to 1 − δ (defined as the confidence level). Here the
sample size N needs to be sufficiently large to obtain reliable empirical µ0

i and Σ0
i , and the

threshold size value depends on the confidence level 1 − δ, support Ξi, and the dimension
of the uncertainty si. (We refer the interested readers to Delage and Ye (2010) for detailed
discussion about the theoretical sample size and its solution guarantee. The values of a and
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b in (5.14)–(5.15) also depend on the confidence level 1 − δ, support Ξi, dimensionality,
and moreover, the sample size N .)

Following the above result, we decompose the reformulation of DR chance constraint
(5.1e) into two steps: First, we consider (5.11) with the ambiguity setDi = DCi (Ξi, µi,Σi).
Second, we require (5.11) holds for any µi and Σi that satisfy (5.14)–(5.15). According to
Proposition 4, (5.11) is equivalent to (5.12) given µi and Σi, for all i ∈ I . Thus, the above
two steps for reformulating the DR chance constraint (5.1e) for a given yi are equivalent to

Z2(yi) = max
µi,Σi
{Z1(yi, µi,Σi) : (5.14)− (5.15)} ≤ 0, for any feasible yi, i ∈ I, (5.16)

where
Z1(yi, µi,Σi) =

√
yTi Σiyi −

√
αi

1− αi
(Tizi − (µi)

Tyi). (5.17)

Now to optimize model (5.16), we first maximize Z1(yi, µi,Σi) over variable µi, i.e.,
we maximize (µi)

Tyi with constraint (5.14). Let t = (Σi)
−1/2(µi − µ0

i ). We consider

max
µi

(µi)
Tyi = max

t
((Σ0

i )
1
2yi)

Tt+ (µ0
i )

Tyi (5.18a)

s.t. ‖t‖2 ≤
√
b. (5.18b)

One solution is t̂ =
√
b((Σ0

i )
1
2yi)/‖(Σ0

i )
1
2yi‖2, which is along the direction of (Σ0

i )
1
2yi

with maximum length of t, because (5.18) maximizes a linear objective function of t with
coefficient (Σ0

i )
1
2yi over a ball centered at the origin with radius

√
b.

Denote µ̂i as an optimal solution to the maximization problem (5.18), then

(µ̂i)
Tyi = ((Σ0

i )
1
2yi)

Tt̂+ (µ0
i )

Tyi =
√
b(yi)TΣ0

i yi + (µ0
i )

Tyi. (5.19)

Now,

Z1(yi, µ̂i,Σi) =

(
1 +

√
αib

1− αi

)√
yTi Σiyi −

√
αi

1− αi
(
Tizi − (µ0

i )
Tyi
)
. (5.20)

Replacing (5.17) with (5.20) in the overall formulation (5.16), we have an optimal solution
to (5.16) as Σ̂i = 1/(1 − a − b)Σ0

i . Therefore, the corresponding optimal objective value
of (5.16) is

Ẑ2(yi) =

√
1

1− a− b

(
1 +

√
αib

1− αi

)√
yTi Σ0

i yi −
√

αi
1− αi

(
Tizi − (µ0

i )
Tyi
)
≤ 0,

88



which is exactly (5.13). This completes the proof.

Following Theorem 5.2, we can reformulate the DR chance-constrained model as a 0-1
SOCP:

min
z,y

{∑
i∈I

τ zi zi +
∑
i∈I

∑
j∈J

τ yijyij : (5.1b), (5.1c), (5.1d), (5.13)

}
. (5.21)

Remark 5.1. If the confidence level 1−δ is closed to 1, then almost all f(si) ∈ DCi (Ξi, µi,Σi),
with (µi,Σi) satisfying (5.14)–(5.15), is in the set DMi . In such a case, the solutions to the
0-1 SOCP are less conservative than those to the DR chance-constrained model (5.1).

5.5 Computational Results

We conduct computational studies to demonstrate the results of the cutting-plane approach
(i.e., Algorithm 5.1) for optimizing the 0-1 SDP (5.5) and directly solving the 0-1 SOCP
(5.21). We consider the SAA approach (Luedtke and Ahmed, 2008) as a benchmark, which
optimizes the MILP reformulation of the chance-constrained model. We test diverse in-
stances, report the CPU time of the three approaches, and compare their solutions in terms
of the in-sample results (e.g., the optimal objective value, and whether or not they satisfy
the 0-1 SDP constraints (5.4a)–(5.4c)), as well as the out-of-sample performance (e.g., the
reliability of having no overtime in each open OR given by the solutions).

5.5.1 Experimental Setup

We consider 32 surgeries and 6 ORs. Each OR has the same opening cost, and thus we set
τ zi = 1 for all i ∈ I . The cost of assignment yij , τ

y
ij uniformly distributes on the interval

[0, 0.1], ∀i ∈ I, j ∈ J . We assume that the duration time of each surgery follows Log-
normal distribution, which has a long-tail property and has been shown in the literature well
fitting the shape of the distribution type of service time (Berg et al., 2014). We consider
four types of surgeries denoted as “`M`V”, “`MhV”, “hM`V”, “hMhV”, where “`” and “h”
refer to “low” and “high”, respectively, and “M” and “V” refer to “Mean” and “Variance”,
respectively. Following (Berg et al., 2014), we use 12.5 minutes as the low mean of duration
time, and use 25 minutes as the high mean. The low standard deviation is set as 0.3 of the
mean value, and the high standard deviation equals to the mean duration. We evenly divide
the 32 surgeries into four types and have 8 surgeries for each type, called “mixed” samples.

Using the Monte Carlo sampling approach, we generate training samples, having each
surgery following a Log-Normal distribution with its mean and variance specified as above.
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We generate 20 i.i.d. sampled scenarios of surgery durations (which can be considered as
historical data points) to compute the empirical mean and covariance. We implement the
cutting-plane algorithm for optimizing the 0-1 SDP and also solve the 0-1 SOCP approx-
imation directly in solvers. We examine the results of optimal solutions given by the two
approaches, including optimal objective values and whether the optimal solution to the 0-1
SOCP can satisfy constraints in the 0-1 SDP. According to Theorem 5.1, the latter verifies
whether or not solutions given by 0-1 SOCP satisfy the original DR chance constraints
(5.1e). For the MILP reformulation in the SAA approach, we generate 1000 scenarios by
following the same distribution and Monte Carlo sampling.

We examine the out-of-sample performance of each solution by testing them in refer-
ence samples with 10,000 scenarios, representing realizations in practice. As the surgery
scheduler may not know the exact distribution of random surgery durations while using
the DR approach, the 20 in-sample data and the 10,000 out-of-sample data do not neces-
sarily follow the same distribution. In specific, we simulate solutions given by the above
three approaches in five sets of test samples, each of which has 10,000 i.i.d. scenarios.
The five sets of data samples either have one type of surgeries from “`M`V”, “`MhV”,
“hM`V”, “hMhV,” or we equally mix all the four types of surgeries. The duration time
of each surgery follows a Log-Normal distribution with corresponding mean and standard
deviation values.

Finally, each OR has 8-hour (i.e., 480-minute) time limit to operate, exceeding which
the operation time is considered as overtime. We set parameter (γ1, γ2) = (0, 1) in all the
DR chance constraints associated with the 6 ORs. The computations are performed on a
Windows 7 machine with Intel(R) Core(TM) i7-2600 CPU 3.40 GHz and 8GB memory.
All continuous SDPs and 0-1 SOCPs are solved by CVX implemented in Matlab with
MOSEK as the optimization solver.

5.5.2 Computational Results

Table 5.1 presents the optimal solutions and CPU time (in second) given by solving the
0-1 SDP via the cutting-plane algorithm, the 0-1 SOCP approximation, and the SAA-based
MILP. We vary the reliability level 1−αi in each chance constraint related to OR i as 95%,
90%, ∀i ∈ I .

In Table 5.1, the cutting-plane algorithm opens one more OR than the 0-1 SOCP for
1 − αi =95% and 90%, ∀i ∈ I . The MILP opens two ORs regardless of the choice of
1− αi. Consequently, the cutting-plane method yields the highest objective cost and more
conservative solutions as compared to the other two methods. In terms of CPU time, the
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Table 5.1: CPU time (in second) and optimal solutions given by the three benchmark ap-
proaches

1− αi Approach CPU (sec) Obj. Cost # of open ORs # of surgeries in each OR

95%
Cutting-plane 10.86 4.50 4 (8, 9, 7, 8)

0-1 SOCP 124.50 3.66 3 (11, 11, 10)
MILP 107.47 2.95 2 (16, 16)

90%
Cutting-plane 7.77 3.65 3 (12, 11, 9)

0-1 SOCP 40.95 3.00 2 (16, 16)
MILP 109.04 2.95 2 (16, 16)

cutting-plane approach significantly outperforms directly solving the 0-1 SOCP and MILP.
The 0-1 SOCP does not necessarily provide exact solutions to the original DR chance-

constrained model (5.1). Thus, we check the feasibility of our solutions in the constraints
in SDP(ŷi) for each given solution ŷi. We generate 10 training samples, each with 20
scenarios, and optimize them by solving the corresponding 0-1 SOCPs. Out of the ten
optimal solutions, only seven solutions satisfy the SDP constraints.

In the out-of-sample simulation, besides instances with equally mixed surgery types,
we also simulate the solutions in test samples that have only one type of surgeries. All
out-of-sample tests contain 10,000 data points. We omit the performance details in test
samples having “mixed”, “`M`V”, “`MhV”, and “hM`V” surgeries, as the solutions given
by all the three approaches perform equally well. That is, all the solutions meet the the
desired reliability 1− αi with respect to each OR i ∈ I in all the four cases.

Table 5.2: Average reliability performance of optimal solutions of the three approaches in
test samples with only “hMhV” surgeries

1− αi Approach OR #1 OR #2 OR #3 OR #4

95%
Cutting-plane 0.99 0.99 1.00 0.99

0-1 SOCP 0.98 0.98 N/A* 0.99
MILP 0.81 N/A N/A 0.82

90%
Cutting-plane 0.96 0.98 N/A 0.99

0-1 SOCP 0.81 0.81 N/A N/A
MILP 0.81 N/A N/A 0.82

* N/A: the corresponding OR is not open and thus no reliability result.

In Table 5.2, we report the average reliability of the ten solutions given by each ap-
proach in the test sample with all surgeries being “hMhV.” The out-of-sample reliability of
having no overtime in each open OR is shown under the last four columns in Table 5.2. The
solutions of the cutting-plane method can achieve very high reliability in all the open ORs
(usually greater than 95%), while the 0-1 SOCP leads to solutions that achieve lower relia-
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bility values than the desired ones, especially when 1− αi = 90%. In particular, when the
desired reliability values of having no overtime in each open OR are 90%, the 0-1 SOCP
can only provide solutions that achieve 0.81 probability of having no overtime in ORs #1
and #2. Under 1−αi = 95% and 90%, the reliability levels achieved by MILP solutions are
quite low in all open ORs. This result again demonstrates that the exact 0-1 SDP (solved
by the cutting-plane algorithm) is more conservative than the 0-1 SOCP approximation and
the SAA-based MILP.

5.6 Concluding Remarks

In this chapter, we considered OR planning under random surgery durations, and incor-
porated chance constraints to restrict undesirable OR overtime. We studied a DR model
variant by assuming unknown distributions of the uncertainty, and built an ambiguity set
based on the first and the second moments of random service durations. The DR chance
constraints can be replaced by SDP constraints, but the replacement resulted in a 0-1 SDP
with binary variables indicating the decisions of opening ORs and assigning surgeries. To
tackle the 0-1 SDP, we developed a cutting-plane algorithm, and also a 0-1 SOCP approx-
imation. Both approaches can be implemented in off-the-shelf solvers to provide exact
or relaxed solutions to the original problem. Via computational studies, we demonstrated
that the cutting-plane method yielded more conservative solutions, having relatively higher
cost, and better out-of-sample reliability performance. Moreover, the cutting-plane method
took less CPU time than the other approaches.

Our formulation and solution approaches can be applied to a wide variety of appli-
cations that involve server allocation and bin packing procedures (e.g., surgery planning,
cloud computing server planning, etc.), under the circumstances that the service time is
random and has unknown distributions. In our future research, we plan to analyze more
related applications, and analyze special problem structures.
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CHAPTER 6

Ambiguous Chance-Constrained Binary
Programs under Mean-Covariance Information

6.1 Introductory Remarks

We consider chance-constrained binary programs that involve a set of individual chance
constraints. More specifically, we consider I individual chance constraints and, for each i ∈
[I] := {1, . . . , I}, let yi ∈ {0, 1}J be a binary decision vector such that yi := [yi1, . . . , yiJ ]>

and t̃i be the corresponding random coefficients such that t̃i := [t̃i1, . . . , t̃iJ ]>. Then, we
consider the following individual chance constraints:

P

{
t̃>i yi ≤ Ti

}
≥ 1− αi ∀i ∈ [I], (6.1)

where Ti ∈ R, P represents the joint probability distribution of {t̃ij : i ∈ [I], j ∈ [J ]}, and
each αi represents an allowed risk tolerance of constraint violation that often takes a small
value (e.g., αi = 0.05).

The individual chance constraints have wide applications in service and operations
management, providing an effective and convenient way of controlling capacity violation
and ensuring high quality of service. For example, in surgery allocation, yi represents
yes-no decisions of allocating J surgeries in operating rooms (OR) i, for all i ∈ [I]. The
operational time limit of each OR (i.e., Ti) is usually deterministic, but the processing time
of each surgery (i.e., t̃ij) is usually random due to the variety of patients, surgical teams,
and surgery characteristics. Then, chance constraints (6.1) make sure that each OR will not
go overtime with a large probability, offering an appropriate “end-of-the-day” guarantee.

Chance-constrained programs are difficult to solve, mainly because the feasible re-
gion described by constraints (6.1) is non-convex in general (Prékopa, 2003). Nonethe-
less, promising special cases have been identified to recapture the convexity of chance-
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constrained models. In particular, if {t̃ij : j ∈ [J ]} are assumed to follow a Gaussian
distribution with a known mean µi and covariance matrix Σi, then the chance constraints
(6.1) are equivalent to the Second-order Cone (SOC) constraints

µ>i yi + Φ−1(1− αi)
√
y>i Σiyi ≤ Ti ∀i ∈ [I], (6.2)

where Φ(·) represents the cumulative distribution function of the standard Gaussian distri-
bution. In this case, feasible binary solutions yi to constraints (6.2) can be quickly found
by off-the-shelf optimization solvers. In another promising research stream, the probabil-
ity distribution P of t̃ij is replaced by a finite-sample approximation, leading to a SAA
of the chance-constrained model (Luedtke and Ahmed, 2008; Pagnoncelli et al., 2009).
The SAA model is then recast as a mixed-integer linear program (MILP), on which many
strong valid inequalities can be derived to accelerate the branch-and-cut algorithm (see,
e.g., Küçükyavuz, 2012; Liu et al., 2016; Luedtke, 2014; Luedtke et al., 2010; Song et al.,
2014).

However, a basic challenge of the chance-constrained approach is that the perfect knowl-
edge of probability distribution P may not be accessible. Under many circumstances, we
only have a series of historical data that can be considered as samples taken from the true
(while ambiguous) distribution. As a consequence, the solution obtained from a chance-
constrained model can be sensitive to the choice of distribution P we employ in (6.1) and
hence perform poorly in out-of-sample tests. This phenomenon is often observed when
solving stochastic programs and is called the optimizer’s curse (Smith and Winkler, 2006).
A natural way of addressing this curse is that, instead of a single estimate of P, we employ
a set of plausible probability distributions, termed the ambiguity set and denoted D. Then,
from a robust perspective, we ensure that chance constraints (6.1) hold valid with regard to
all probability distributions belonging to D, i.e.,

inf
P∈D

P

{
t̃>i yi ≤ Ti

}
≥ 1− αi ∀i ∈ [I], (6.3)

and accordingly we call (6.3) distributionally robust chance constraints (DRCCs).
In this chapter, we consider DCBP that involve binary yi-variables and DRCCs (6.3).

Without making the Gaussian assumption on P, we show that a DCBP is equivalent to a
0-1 SOC program when D is characterized by the first two moments of t̃i. Furthermore,
building upon existing work on valid inequalities for submodular/supermodular functions,
we exploit the submodularity of the 0-1 SOC program to derive valid inequalities. As
demonstrated in extensive computational experiments of bin packing instances, these valid
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inequalities significantly accelerate the branch-and-cut algorithm for solving the related
DCBPs. Notably, the proposed submodular approximations and the resulting valid inequal-
ities apply to general 0-1 SOC programs than DCBPs.

The remainder of the chapter is organized as follows. Section 6.2 reviews the prior
work related to optimization techniques used in this chapter and stochastic bin packing
problems. Section 6.3 presents two 0-1 SOC representations, respectively, for DRCCs
under two moment-based ambiguity sets. Section 6.4 utilizes submodularity and lifting to
derive valid inequalities to strengthen the 0-1 SOC formulations. Section 6.5 demonstrates
the computational efficacy of our approaches for solving different 0-1 SOC reformulations
of a DCBP for chance-constrained bin packing, with diverse problem sizes and parameter
settings. Section 6.6 summarizes the chapter and discusses future research directions. We
note that the work in this chapter has been published in Zhang et al. (2018a).

6.2 Prior Work

Chance-constrained binary programs with uncertain technology matrix and/or right-hand
side are computationally challenging, largely because (i) the non-convexity of chance con-
straints and (ii) the discrete variables. The majority of existing literature requires full dis-
tributional knowledge of the random coefficients and applies the SAA approach to approx-
imate the models as MILPs. For example, Song et al. (2014) considered a generic chance-
constrained binary packing problem using finite samples of the random item weights,
and derived lifted cover inequalities to accelerate the computation. For generic chance-
constrained programs, the SAA approach and valid inequalities for the related MILPs have
been well studied in the literature (see, e.g., Küçükyavuz, 2012; Luedtke, 2014; Luedtke
and Ahmed, 2008; Luedtke et al., 2010). We also refer to Deng et al. (2016); Shen and
Wang (2014); Shylo et al. (2012) for wide applications of chance-constrained binary pro-
grams, mainly in service systems and operations. As compared to the existing work, this
chapter waives the assumption of full distributional information and only relies on the first
two moments of the uncertainty.

DRO has received growing attention, mainly because it provides effective modeling
and computational approaches for handling ambiguous distributions of random variables
in stochastic programming by using available distributional information. Moment informa-
tion has been widely used for building ambiguity sets in various DRO models (see, e.g.,
Bertsimas et al. (2010); Delage and Ye (2010); Wiesemann et al. (2014)). Using moment-
based ambiguity sets, Calafiore and El Ghaoui (2006); Chen et al. (2010); Cheng et al.
(2014); El Ghaoui et al. (2003); Jiang and Guan (2016); Wagner (2008); Zymler et al.
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(2013) derived exact reformulations and/or approximations for DRCCs, often in the form
of SDPs. In special cases, e.g., when the first two moments are exactly matched in the
ambiguity set, the SDPs can further be simplified as SOC programs. While many existing
ambiguity sets exactly match the first two moments of uncertainty (see, e.g., El Ghaoui
et al., 2003; Wagner, 2008; Zymler et al., 2013), Delage and Ye (2010) proposed a data-
driven approach to construct an ambiguity set that can model moment estimation errors.
In this chapter, we consider both types of moment-based ambiguity sets. To the best of
our knowledge, for the first time, we provide an SOC representation of DRCCs using the
general ambiguity set proposed by Delage and Ye (2010).

Meanwhile, DRO has received much less attention in discrete optimization problems,
possibly due to the difficulty of solving 0-1 nonlinear programs. For example, most off-the-
shelf solvers cannot directly handle 0-1 SDPs, which often arise from discrete optimization
problems with DRCCs. To the best of our knowledge, our results on chance constraints are
most related to Cheng et al. (2014) that studied DRCCs in the binary knapsack problem
and derived 0-1 SDP reformulations. As compared to Cheng et al. (2014), we investigate
a different ambiguity set and derive a 0-1 SOC representation. Additionally, we solve the
0-1 SOC reformulation to global optimality instead of considering an SDP relaxation as in
Cheng et al. (2014).

In the seminal work Nemhauser et al. (1978), the authors identified submodularity in
combinatorial and discrete optimization problems and proved a sufficient and necessary
condition for 0-1 quadratic functions being submodular. We use this condition to ex-
ploit the submodularity of our 0-1 SOC reformulations. Indeed, submodular and super-
modular knapsack sets (the discrete lower level set of a submodular function and discrete
upper level set of a supermodular function, respectively) often arise when modeling util-
ity, risk, and chance constraints on discrete variables. Extended polymatroid inequalities
(see Edmonds (1970); Nemhauser and Wolsey (1999)) can be efficiently obtained through
greedy-based separation procedures to optimize submodular/supermodular functions. Re-
cently, Atamtürk and Bhardwaj (2015); Atamtürk and Narayanan (2009); Bhardwaj (2015)
proposed cover and packing inequalities for efficiently solving submodular and supermod-
ular knapsack sets with 0-1 variables. Our results on valid inequalities are most related to
Atamtürk and Bhardwaj (2018); Bhardwaj (2015) that identified a sufficient condition for
the submodularity of 0-1 SOC constraints and strengthened their formulations by using the
corresponding extended polymatroid inequalities (see Section 2.2 of Atamtürk and Bhard-
waj (2018)). In contrast, we derive a different way to exploit the submodularity of general
0-1 SOC constraints. In particular, we apply the sufficient and necessary condition derived
by Nemhauser et al. (1978) to search for “optimal” submodular approximations of the 0-1
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SOC constraints (see Section 6.4.1).
The main contributions of the chapter are three-fold. First, using the general moment-

based ambiguity set proposed by Delage and Ye (2010), we equivalently reformulate DR-
CCs as 0-1 SOC constraints that can readily be solved by solvers. Second, we exploit
the (hidden) submodularity of the 0-1 SOC constraints and derive extended polymatroid
valid inequalities to accelerate solving DCBP. In particular, we provide an efficient way
of finding “optimal” submodular approximations of the 0-1 SOC constraints in the original
variable space, and furthermore show that any 0-1 SOC constraint possesses submodularity
in a lifted space. The valid inequalities in original and lifted spaces can both be efficiently
separated via the well-known greedy algorithm (see, e.g., Atamtürk and Gómez (2017);
Atamtürk and Narayanan (2008); Edmonds (1970)). Third, we conduct extensive numeri-
cal studies to demonstrate the computational efficacy of our solution approaches.

6.3 DCBP Models and Reformulations

We study DRCCs under two alternatives of ambiguity set D based on the first two mo-
ments of t̃i, i ∈ [I]. The first ambiguity set, denoted D1, exactly matches the mean and
covariance matrix of each t̃i. In contrast, the second ambiguity set, denoted D2, consid-
ers the estimation errors of sample mean and sample covariance matrix (see Delage and Ye
(2010)). In Section 6.3.1, we introduce these two ambiguity sets and their calibration based
on historical data. In Section 6.3.2, we derive SOC representations of DRCC (6.3) under
D1 and D2, respectively. While the former case (i.e., (6.3) under D1) has been well studied
(see, e.g., Calafiore and El Ghaoui (2006); El Ghaoui et al. (2003); Zymler et al. (2013)),
to the best of our knowledge, this is the first work to show the SOC representation of the
latter case based on general covariance matrices (i.e., (6.3) under D2).

6.3.1 Ambiguity Sets

Suppose that a series of independent historical data samples {t̃ni }Nn=1 are drawn from the
true probability distribution P of t̃ij . Then, the first two moments of t̃i can be estimated by
the sample mean and sample covariance matrix

µi =
1

N

N∑
n=1

t̃ni , Σi =
1

N

N∑
n=1

(t̃ni − µi)(t̃ni − µi)>.

Throughout this chapter, we assume that both Σi and the true covariance matrix of t̃i are
symmetric and positive definite. As promised by the law of large numbers, as the data size
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N grows, µi and Σi converge to the true mean and true covariance matrix of t̃i, respectively.
Hence, when N takes a large value, a natural choice of the ambiguity set consists of all
probability distributions that match the sample moments µi and Σi, i.e.,

D1 =

P ∈ P(RJ) :
EP[t̃i] = µi,

EP[(t̃i − µi)(t̃i − µi)>] = Σi, ∀i ∈ [I]

 ,

where P(RJ) represents the set of all probability distributions on RJ .
Under many circumstances, however, the historical data can be inadequate. With a

small N , there may exist considerable estimation errors in µi and Σi, which brings a layer
of “moment ambiguity” into D1 and adds to the existing distributional ambiguity of P. To
address the moment ambiguity and take into account the estimation errors, Delage and Ye
(2010) proposed an alternative ambiguity set

D2 =

P ∈ P(RJ) :
(EP[t̃i]− µi)>Σ−1

i (EP[t̃i]− µi) ≤ γ1,

EP
[
(t̃i − µi)(t̃i − µi)>

]
� γ2Σi, ∀i ∈ [I]

 ,

where γ1 > 0 and γ2 > max{γ1, 1} represent two given parameters. Set D2 designates
that (i) the true mean of t̃i is within an ellipsoid centered at µi, and (ii) the true covariance
matrix of t̃i is bounded from above by γ2Σi−(EP[t̃i]−µi)(EP[t̃i]−µi)> (note that EP[(t̃i−
µi)(t̃i − µi)>] = EP[(t̃i − EP[t̃i])(t̃i − EP[t̃i])

>] + (EP[t̃i]− µi)(EP[t̃i]− µi)>).
Delage and Ye (2010) offered a rigorous guideline for selecting γ1 and γ2 values (see

Theorem 2 in Delage and Ye (2010)) so that D2 includes the true distribution of t̃i with a
high confidence level. In practice, we can select the values of γ1 and γ2 via cross valida-
tion. For example, we can divide the N data points into two halves. We estimate sample
moments (µ1

i , Σ1
i ) based on the first half of the data and (µ2

i , Σ2
i ) based on the second half.

Then, we characterize D2 based on (µ1
i , Σ1

i ), and select γ1 and γ2 such that probability
distributions with moments (µ2

i , Σ2
i ) belong to D2.

6.3.2 SOC Representations of the DRCC

Now we derive SOC representations of DRCC (6.3) for all i ∈ [I]. For notation brevity,
we define vector y := [yi1, . . . , yiJ ] and omit the subscript i throughout this section. First,
we review the celebrated SOC representation of DRCC (6.3) under ambiguity set D1 in the
following theorem.

Theorem 6.1. (Adapted from El Ghaoui et al. (2003), also see Wagner (2008)) The DRCC
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(6.3) with D = D1 is equivalent to the following SOC constraint:

µ>y +

√
1− α
α

√
y>Σy ≤ T. (6.4)

Theorem 6.1 shows that we can recapture the convexity of DRCC (6.3) by employing
ambiguity set D1 to model the t̃ uncertainty. Perhaps more surprisingly, in this case, the
convex feasible region characterized by DRCC (6.3) is SOC representable. It follows that
the continuous relaxation of the DCBP model is an SOC program, which can be solved
very efficiently by standard nonlinear optimization solvers.

Next, we show that DRCC (6.3) under the ambiguity set D2 is also SOC representable.
This implies that the computational complexity of the DCBP remains the same even if we
take the moment ambiguity into account. We present the main result of this section in the
following theorem.

Theorem 6.2. DRCC (6.3) with D = D2 is equivalent to

µ>y +

(
√
γ1 +

√(1− α
α

)
(γ2 − γ1)

)√
y>Σy ≤ T (6.5a)

if γ1/γ2 ≤ α, and is equivalent to

µ>y +

√
γ2

α

√
y>Σy ≤ T (6.5b)

if γ1/γ2 > α.

Rujeerapaiboon et al. (2015) considered an ambiguity set similar to D2 and derived
an SOC representation of DRCCs in portfolio optimization under an assumption of weak
sense white noise, i.e., the uncertainty is stationary and mutually uncorrelated over time
(see Definition 4 and Theorem 5 in Rujeerapaiboon et al. (2015)). In contrast, the SOC
representation in Theorem 6.2 holds for general covariance matrices. We prove Theorem
6.2 in two steps. In the first step, we project the random vector t̃ and its ambiguity set D2

from RJ to the real line, i.e., R. This simplifies DRCC (6.3) as involving a one-dimensional
random variable. In the second step, we derive optimal (i.e., worst-case) mean and covari-
ance matrix in D2 that attain the worst-case probability bound in (6.3). We then apply
Cantelli’s inequality to finish the representation. We present the first step of the proof in
the following lemma.

Lemma 6.1. Let s̃ be a random vector in RJ and ξ̃ be a random variable in R. For a given
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y ∈ RJ , define ambiguity sets Ds̃ and Dξ̃ as

Ds̃ =
{
P ∈ P(RJ) : EP[s̃]>Σ−1EP[s̃] ≤ γ1, EP[s̃s̃>] � γ2Σ

}
(6.6a)

and

Dξ̃ =
{
P ∈ P(R) : |EP[ξ̃]| ≤ √γ1

√
y>Σy, EP[ξ̃2] ≤ γ2(y>Σy)

}
. (6.6b)

Then, for any Borel measurable function f : RJ → R, we have

inf
P∈Ds̃

P{f(y>s̃) ≤ 0} = inf
P∈Dξ̃

P{f(ξ̃) ≤ 0}.

Proof: We first show that infP∈Ds̃ P{f(y>s̃) ≤ 0} ≥ infP∈Dξ̃ P{f(ξ̃) ≤ 0}. Pick a P ∈ Ds̃,
and let s̃ denote the corresponding random vector and ξ̃ = y>s̃. It follows that

EP[ξ̃] = y>EP[s̃]

≤ max
s: s>Σ−1s ≤ γ1

y>s (6.7a)

= max
z: ||z||2 ≤

√
γ1

(Σ1/2y)>z =
√
γ1

√
y>Σy,

where inequality (6.7a) is because EP[s̃]>Σ−1EP[s̃] ≤ γ1. Similarly, we have EP[ξ̃] ≥
−√γ1

√
y>Σy. Meanwhile, note that

EP[ξ̃2] = y>EP[s̃s̃>]y

≤ y>(γ2Σ)y = γ2(y>Σy), (6.7b)

where inequality (6.7b) is because EP[s̃s̃>] � γ2Σ. Hence, the probability distribution of ξ̃
belongs to Dξ̃. It follows that infP∈Ds̃ P{f(y>s̃) ≤ 0} ≥ infP∈Dξ̃ P{f(ξ̃) ≤ 0}.

Second, we show that infP∈Ds̃ P{f(y>s̃) ≤ 0} ≤ infP∈Dξ̃ P{f(ξ̃) ≤ 0}. Pick a P ∈ Dξ̃,
and let ξ̃ denote the corresponding random variable and s̃ =

[
ξ̃/(y>Σy)

]
Σy. It follows that

EP[s̃]>Σ−1EP[s̃] = EP[ξ̃]2
y>Σ

y>Σy
Σ−1 Σy

y>Σy
=

EP[ξ̃]2

y>Σy

≤ γ1y
>Σy

y>Σy
= γ1, (6.7c)
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where inequality (6.7c) is because |EP[ξ̃]| ≤ √γ1

√
y>Σy. Meanwhile, note that

EP[s̃s̃>] = EP

[
ξ̃2 Σy

y>Σy

y>Σ

y>Σy

]
= EP[ξ̃2]

(Σy)(Σy)>

(y>Σy)2

� γ2(y>Σy)
(Σy)(Σy)>

(y>Σy)2
(6.7d)

� γ2(y>Σy)
(y>Σy)Σ

(y>Σy)2
= γ2Σ, (6.7e)

where inequality (6.7d) is because EP[ξ̃2] ≤ γ2(y>Σy) and inequality (6.7e) is because
(Σy)(Σy)> � (y>Σy)Σ, which holds because for all z ∈ RJ ,

z>(Σy)(Σy)>z =
[
(Σ1/2z)>(Σ1/2y)

]2
≤ ||Σ1/2z||2 ||Σ1/2y||2 (Cauchy-Schwarz inequality)

= (y>Σy)(z>Σz)

= z>[(y>Σy)Σ]z.

Hence, the probability distribution of s̃ belongs to Ds̃. It follows that infP∈Ds̃ P{ f(y>s̃) ≤
0} ≤ infP∈Dξ̃ P{f(ξ̃) ≤ 0} because ξ̃ = y>s̃, and the proof is completed. �

Remark 6.1. Popescu (2007) and Yu et al. (2009) showed a similar projection property for
D1, i.e., when the first two moments of s̃ are exactly known. Lemma 6.1 employs a different
transformation approach to show the projection property for D2 when these moments are
ambiguous in the sense of Delage and Ye (2010).

We are now ready to finish the proof of Theorem 6.2.
Proof of Theorem 6.2: First, we define random vector s̃ = t̃−µ, random variable ξ̃ = y>s̃,
constant b = T − µ>y, and set S such that

S = {(µ1, σ1) ∈ R× R+ : |µ1| ≤
√
γ1

√
y>Σy, µ2

1 + σ2
1 ≤ γ2y

>Σy}.
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It follows that

inf
P∈D2

P{t̃>y ≤ T} = inf
P∈Ds̃

P{y>s̃ ≤ b}

= inf
P∈Dξ̃

P{ξ̃ ≤ b} (6.8a)

= inf
(µ1,σ1)∈S

inf
P∈D1(µ1,σ2

1)
P{ξ̃ ≤ b}, (6.8b)

where Ds̃ and Dξ̃ are defined in (6.6a) and (6.6b), respectively, equality (6.8a) follows
from Lemma 6.1, and equality (6.8b) decomposes the optimization problem in (6.8a) into
two layers: the outer layer searches for the optimal (i.e., worst-case) mean and covariance,
while the inner layer computes the worst-case probability bound under the given mean and
covariance. For the inner layer, based on Cantelli’s inequality, we have

inf
P∈D1(µ1,σ2

1)
P{ξ̃ ≤ b} =


(b−µ1)2

σ2
1+(b−µ1)2

, if b ≥ µ1,

0, o.w.

As DRCC (6.3) states that infP∈D2 P{t̃>y ≤ T} ≥ 1 − α > 0, we can assume b ≥ µ1 for
all (µ1, σ1) ∈ S without loss of generality. That is,

b ≥ max
(µ1,σ1)∈S

µ1 =
√
γ1

√
y>Σy.

It follows that

inf
P∈D2

P{t̃>y ≤ T} = inf
(µ1,σ1)∈S

(b− µ1)2

σ2
1 + (b− µ1)2

= inf
(µ1,σ1)∈S

1(
σ1
b−µ1

)2

+ 1
. (6.8c)

Note that the objective function value in (6.8c) decreases as σ1/(b− µ1) increases. Hence,
(6.8c) shares optimal solutions with the following optimization problem:

inf
(µ1,σ1)∈S

−
( σ1

b− µ1

)
. (6.8d)

The feasible region of problem (6.8d) is depicted in the shaded area of Figure 6.1. Fur-
thermore, we note that the objective function of (6.8d) equals to the slope of the straight
line connecting points (b, 0) and (µ1, σ1) (see Figure 6.1 for an example). It follows that
an optimal solution (µ∗1, σ

∗
1) to problem (6.8d), and so to problem (6.8c), lies in one of the
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Figure 6.1: Graphical Solution of Problem (6.8d)

following two cases:

Case 1. If
√
γ1

√
y>Σy ≤ b ≤ (γ2/

√
γ1)
√
y>Σy, then µ∗1 =

√
γ1

√
y>Σy and σ∗1 =

√
γ2 − γ1

√
y>Σy.

Case 2. If b > (γ2/
√
γ1)
√
y>Σy, then µ∗1 = (γ2y

>Σy)/b and
σ∗1 =

√
γ2y>Σy − (γ2y>Σy)2/b2.

Denoting κ(b, y) = b√
y>Σy

, we have

inf
P∈D2

P{t̃>y ≤ T} =


1( √

γ2−γ1
κ(b,y)−√γ1

)2

+1

, if
√
γ1 ≤ κ(b, y) ≤ γ2√

γ1
,

κ(b,y)2−γ2
κ(b,y)2

, if κ(b, y) > γ2√
γ1
.

(6.8e)

Second, based on (6.8e), the DRCC infP∈D2 P{t̃>y ≤ T} ≥ 1 − α has the following
representations:

DRCC ⇔


b√
y>Σy

≥ √γ1 +

√(
1−α
α

)
(γ2 − γ1), if

√
γ1 ≤ b√

y>Σy
≤ γ2√

γ1
,

b√
y>Σy

≥
√

γ2
α
, if b√

y>Σy
> γ2√

γ1
.

It follows that DRCC (6.3) is equivalent to an SOC constraint by discussing the follow-
ing two cases:
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Case 1. If γ1/γ2 ≤ α, then γ2/
√
γ1 ≥

√
γ1 +

√
[(1− α)/α](γ2 − γ1) and γ2/

√
γ1 ≥√

γ2/α. It follows that (i) if
√
γ1 ≤ b/

√
y>Σy ≤ γ2/

√
γ1, then DRCC is equivalent

to b/
√
y>Σy ≥ √γ1 +

√
[(1− α)/α](γ2 − γ1) and (ii) if b/

√
y>Σy > γ2/

√
γ1,

then DRCC always holds. Combining sub-cases (i) and (ii) yields that DRCC (6.3)
is equivalent to b/

√
y>Σy ≥ √γ1 +

√
[(1− α)/α](γ2 − γ1).

Case 2. If γ1/γ2 > α, then γ2/
√
γ1 <

√
γ1 +

√
[(1− α)/α](γ2 − γ1) and γ2/

√
γ1 <√

γ2/α. It follows that (i) if
√
γ1 ≤ b/

√
y>Σy ≤ γ2/

√
γ1, then DRCC always fails

and (ii) if b/
√
y>Σy > γ2/

√
γ1, then DRCC is equivalent to b/

√
y>Σy ≥

√
γ2/α.

Combining sub-cases (i) and (ii) yields that DRCC (6.3) is equivalent to b/
√
y>Σy ≥√

γ2/α.

The proofs of the above two cases are both completed by the definition of b. �
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Figure 6.2: Illustration of the Three SOC Reformulations (6.2), (6.4), and (6.5b) of DRCC
(6.3)

To sum up, we have two exact 0-1 SOC constraint reformulations of DRCC (6.3) under
ambiguity sets D1 and D2, being constraints (6.4), (6.5a)/(6.5b), respectively.

Example 6.1. We consider a DRCC (6.3) with I = 1 (the subscript i is hence omitted),

J = 2, 1 − α = 95%, mean vector µ = [0 0]> and covariance matrix Σ =

[
2 1

1 2

]
. For

the ambiguity set D2, we set γ1 = 1 and γ2 = 2. We note that Φ−1(1 − α) = 1.6449 in
the SOC reformulation (6.2),

√
(1− α)/α = 4.3589 in the SOC reformulation (6.4), and
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√
γ2/α = 6.3246 in the SOC reformulation (6.5b) (since γ1/γ2 > α). Without specifying

the value of T , we depict the boundaries of the second-order cones associated with the three
SOC reformulations in Figure 6.2. From this figure, we observe that the Gaussian approx-
imation leads to the widest cone and so the largest SOC feasible region corresponding to
DRCC (6.3). �

6.4 Valid Inequalities for DCBP

Although 0-1 SOC constraint reformulations can be directly handled by the off-the-shelf
solvers, as we report in Section 6.5, the resultant 0-1 SOC programs are often time-consuming
to solve, primarily because of the binary restrictions on variables. In this section, we derive
valid inequalities for DRCC (6.3), with the objective of accelerating the branch-and-cut al-
gorithm for solving DCBP with individual DRCCs and also general 0-1 SOC programs in
commercial solvers. Specifically, we exploit the submodularity of 0-1 SOC constraints. In
Section 6.4.1, we derive a sufficient condition for submodularity and two approximations of
the 0-1 SOC constraints that satisfy this condition. Using the submodular approximations,
we derive extended polymatroid inequalities. In Section 6.4.2, we show the submodularity
of the 0-1 SOC constraints in a lifted (i.e., higher-dimensional) space. While the extended
polymatroid inequalities are well-known (see, e.g., Atamtürk and Gómez (2017); Atamtürk
and Narayanan (2008); Edmonds (1970)), to the best of our knowledge, the two submodu-
lar approximations and the submodularity of 0-1 SOC constraints in the lifted space appear
to be new and have not been studied in any literature.

6.4.1 Submodularity of the 0-1 SOC Constraints

We consider SOC constraints of the form

µ>y +
√
y>Λy ≤ T, (6.9)

where Λ represents a J × J positive definite matrix. Note that all SOC reformulations
(6.4), (6.5a), and (6.5b) derived in Section 6.3, as well as the SOC reformulation (6.2) of a
chance constraint with Gaussian uncertainty, possess the form of (6.9). Before investigating
the submodularity of (6.9), we review the definitions of submodular functions and extended
polymatroids.
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Definition 6.1. Define the collection of set [J ]’s subsets C := {R : R ⊆ [J ]}. A set
function h: C → R is called submodular if and only if h(R∪{j})−h(R) ≥ h(S ∪{j})−
h(S) for all R ⊆ S ⊆ [J ] and all j ∈ [J ] \ S.

Throughout this section, we refer to a set function as h(R) and h(y) interchangeably,
where y ∈ {0, 1}J represents the indicating vector for subset R ⊆ [J ], i.e., yj = 1 if j ∈ R
and yj = 0 otherwise.

Definition 6.2. For a submodular function h(y), the polyhedron

EPh = {π ∈ RJ : π(R) ≤ h(R), ∀R ⊆ [J ]}

is called an extended polymatroid associated with h(y), where π(R) =
∑

j∈R πj .

For a submodular function h(y) with h(∅) = 0, inequality

π>y ≤ t, (6.10)

termed an extended polymatroid inequality, is valid for the epigraph of h, i.e.,

{(y, t) ∈ {0, 1}J × R : t ≥ h(y)}, if and only if π ∈ EPh (see Edmonds (1970)) .

Furthermore, the separation of (6.10) can be efficiently done by a greedy algorithm (Ed-
monds, 1970), which we briefly describe in Algorithm 6.1.

Algorithm 6.1: A greedy algorithm for separating extended polymatroid inequalities
(6.10).

Input: A point (ŷ, t̂) with ŷ ∈ [0, 1]J , t̂ ∈ R, and a function h that is submodular on

{0, 1}J .

1 Sort the entries in ŷ such that y(1) ≥ · · · ≥ y(J). Obtain the permutation

{(1), . . . , (J)} of [J ];

2 Letting R(j) := {(1), . . . , (j)}, ∀j ∈ J , compute π̂(1) = h(R(1)), and

π̂(j) = h(R(j))− h(R(j−1)) for j = 2, . . . , J;

3 if π̂>ŷ > t̂ then
4 We generate a valid extended polymatroid inequality π̂>y ≤ t;

5 else
6 The current solution (ŷ, t̂) satisfies h(ŷ) ≤ t̂;

7 end
8 return either (ŷ, t̂) is feasible, or a violated extended polymatroid inequality π̂>y ≤ t
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The strength and efficient separation of the extended polymatroid inequality motivate
us to explore the submodularity of function g(y) := µ>y+

√
y>Λy. In a special case, Λ is

assumed to be a diagonal matrix and so the random coefficients t̃ij, j ∈ [J ] for the same i
are uncorrelated. In this case, Atamtürk and Narayanan (2008) successfully show that g(y)

is submodular. As a result, we can strengthen a DCBP by incorporating extended polyma-
troid inequalities in the form π>y ≤ T , where π ∈ EPg. Unfortunately, the submodularity
of g(y) quickly fades when the off-diagonal entries of Λ become non-zero, e.g., when Λ is
associated with a general covariance matrix. We present an example as follows.

Example 6.2. Suppose that [J ] = {1, 2, 3}, µ = [0, 0, 0]>, and

Λ =

 0.6 −0.2 0.2

−0.2 0.7 0.1

0.2 0.1 0.6

 .
The three eigenvalues of Λ are 0.2881, 0.7432, and 0.8687, and so Λ � 0. However, func-
tion g(y) = µ>y+

√
y>Λy is not submodular because g(R∪{j})− g(R) < g(S ∪{j})−

g(S), where R = {1}, S = {1, 2}, and j = 3. �

In this section, we provide a sufficient condition for function g(y) being submodular for
general Λ. To this end, we apply a necessary and sufficient condition derived in Nemhauser
et al. (1978) for quadratic function y>Λy being submodular (see the second paragraph
on Page 276 of Nemhauser et al. (1978), following Proposition 3.5). We summarize this
condition in the following theorem.

Theorem 6.3. (Nemhauser et al. (1978)) Define function h : {0, 1}J → R such that
h(y) := y>Λy, where Λ ∈ RJ×J represents a symmetric matrix. Then, h(y) is submodular
if and only if Λrs ≤ 0 for all r, s ∈ [J ] and r 6= s.

Note that Theorem 6.3 does not assume Λ � 0 and so can be applied to general (convex
or non-convex) quadratic functions. Theorem 6.3 leads to a sufficient condition for function
g(y) being submodular. We summarize the main result of this section in the following
theorem and present a proof.

Theorem 6.4. Let Λ ∈ RJ×J represent a symmetric and positive semidefinite matrix that
satisfies (i) 2

∑J
s=1 Λrs ≥ Λrr for all r ∈ [J ] and (ii) Λrs ≤ 0 for all r, s ∈ [J ] and r 6= s.

Then, function g(y) = µ>y +
√
y>Λy is submodular.
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Proof: As µ>y is submodular in y, it suffices to prove that
√
y>Λy is submodular. Hence,

we can assume µ = 0 without loss of generality. We let f(x) =
√
x and h(y) = y>Λy.

Then, g(y) = f(h(y)).
First, we note that h(y ∨ er) ≥ h(y) for all y ∈ {0, 1}J and r ∈ [J ], where a ∨ b =

[max{a1, b1}, . . . ,max{aJ , bJ}]> for a, b ∈ RJ . Indeed, if yr = 1 then y ∨ er = y and so
h(y ∨ er) = h(y). Otherwise, if yr = 0, then y ∨ er = y + er and so

h(y ∨ er) = y>Λy + 2e>r Λy + e>r Λer

= y>Λy + 2
∑
s: ys=1

Λrs + Λrr

≥ y>Λy + 2
J∑
s=1
s 6=r

Λrs + Λrr

≥ y>Λy = h(y),

where the first inequality is due to yr = 0 and condition (ii), and the second inequality is
due to condition (i). It follows that h(y′) ≥ h(y) for all y, y′ ∈ {0, 1}J such that y′ ≥ y.
Hence, h(y) is increasing.

Second, based on Theorem 6.3, h(y) is submodular due to condition (ii). It follows
that g(y) = f(h(y)) is submodular because function f is concave and nondecreasing and
function h is submodular and increasing (see, e.g., Proposition 2.2.5 in Simchi-Levi et al.
(2014))1. �

6.4 generalizes the sufficient condition in Atamtürk and Narayanan (2008) because
conditions (i)–(ii) are automatically satisfied if Λ is diagonal and positive definite.

For general Λ � 0 that does not satisfy sufficient conditions (i)–(ii), we can approxi-
mate SOC constraint (6.9) by replacing Λ with a matrix ∆ that satisfies these conditions.
We derive relaxed and conservative submodular approximations of constraint (6.9) in the
following theorem.

Theorem 6.5. Constraint (6.9) implies the SOC constraint

µ>y +
√
y>∆Ly ≤ T, (6.11)

where function gL(y) := µ>y +
√
y>∆Ly is submodular and ∆L is an optimal solution of

1Proposition 2.2.5 in Simchi-Levi et al. (2014) assumes that y ∈ Rn and provides a sufficient condition
for g being supermodular. It can be shown that a similar proof of this proposition applies to our case.
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SDP

min
∆
||∆− Λ||2 (6.12a)

s.t. 0 � ∆ � Λ, (6.12b)

2
J∑
s=1

∆rs ≥ ∆rr, ∀r ∈ [J ], (6.12c)

∆rs ≤ 0, ∀r, s ∈ [J ] and r 6= s. (6.12d)

Additionally, constraint (6.9) is implied by the SOC constraint

µ>y +
√
y>∆Uy ≤ T, (6.13)

where function gU(y) := µ>y +
√
y>∆Uy is submodular and ∆U is an optimal solution of

SDP

min
∆
||∆− Λ||2 (6.14a)

s.t. ∆ � Λ, (6.12c)–(6.12d). (6.14b)

Proof: By construction, gL(y) is submodular because ∆L satisfies constraints (6.12c)–
(6.12d) and so conditions (i)–(ii). Additionally, constraint (6.9) implies (6.11) because
∆L satisfies constraint (6.12b) and so ∆L � Λ. Similarly, we obtain that gU(y) is submodu-
lar and constraint (6.9) is implied by (6.13). �

Note that there always exist matrices ∆L and ∆U that are feasible to SDPs (6.12a)–
(6.12d) and (6.14a)–(6.14b), respectively. For example, diag(λmin, . . . , λmin) ∈ RJ×J satisfy
constraints (6.12b)–(6.12d), where λmin represents the smallest eigenvalue of matrix Λ. Ad-
ditionally, diag(λmax, . . . , λmax) ∈ RJ×J satisfy constraints (6.14b), where λmax represents the
largest eigenvalue of matrix Λ.

By minimizing the `2 distance between ∆ and Λ in objective functions (6.12a) and
(6.14a), we find “optimal” approximations of Λ that satisfies sufficient conditions (i)–(ii)
in 6.4. Accordingly, we obtain “optimal” submodular approximations of the 0-1 SOC
constraint (6.9). There are many possible alternatives of the `2 norm in (6.12a) and (6.14a).
For example, formulations (6.12a)–(6.12d) and (6.14a)–(6.14b) remain SDPs if the `2 norm
is replaced by the `1 norm or the `∞ norm. We have empirically tested `1, `2, and `∞ norms
based on a server allocation problem (see Section 6.5.2 for a brief description) and the `2

norm leads to the largest improvement on CPU time. In computation, we only need to
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solve these two SDPs once to obtain ∆L and ∆U. Then, extended polymatroid inequalities
can be obtained from the relaxed approximation (6.11). Additionally, the conservative
approximation (6.13) leads to an upper bound of the optimal objective value of the related
DCBP.

Example 6.3. Recall the 3 × 3 matrix Λ in Example 6.2 and the corresponding function
g(y) = µ>y+

√
0.6y2

1 + 0.7y2
2 + 0.6y2

3 − 0.4y1y2 + 0.4y1y3 + 0.2y2y3 being not submod-
ular. We set µ = [0, 0, 0]> and apply 6.5 to optimize the two SDPs (6.12) and (6.14),
yielding the following two positive semidefinite matrices:

∆L =

 0.35 −0.15 0

−0.15 0.37 0

0 0 0.38

 and

∆U =

 0.83 −0.22 0

−0.22 0.95 0

0 0 0.82

 .
Due to 6.4, gL(y) := µ>y +

√
y>∆Ly =

√
0.35y2

1 + 0.37y2
2 + 0.38y2

3 − 0.3y1y2 and
gU(y) := µ>y +

√
y>∆Uy =

√
0.83y2

1 + 0.95y2
2 + 0.82y2

3 − 0.44y1y2 are submodular.
Now suppose that T = 0.8 and we are given ŷ = [ŷ1, ŷ2, ŷ3]> = [1, 0.5, 0.9]> with

g(ŷ) = µ>ŷ +
√
ŷ>Λŷ = 1.23 > 0.8 = T . First, with respect to constraint gL(y) ≤ T ,

we follow 6.1 to find an extended polymatroid inequality and note that this inequality
is also valid for constraint g(y) ≤ T . Specifically, we sort the entries of ŷ to obtain
ŷ1 ≥ ŷ3 ≥ ŷ2 and {1, 3, 2}, the corresponding permutation. It follows that R(1) = {1},
R(2) = {1, 3}, and R(3) = {1, 3, 2}. Hence, π̂(1) = gL([1, 0, 0]>) = 0.59, π̂(2) =

gL([1, 0, 1]>) − gL([1, 0, 0]>) = 0.26, and π̂(3) = gL([1, 1, 1]>) − gL([1, 0, 1]>) = 0.04.
This generates the extended polymatroid inequality 0.59y1 + 0.26y3 + 0.04y2 ≤ 0.8 that
cuts off ŷ. Second, we can replace constraint g(y) ≤ T with gU(y) ≤ T in a DCBP to
obtain a conservative approximation. �

6.4.2 Valid Inequalities in a Lifted Space

In Section 6.4.1, we derive extended polymatroid inequalities based on a relaxed approx-
imation of SOC constraint (6.9). These valid inequalities might not be facet-defining if
matrix Λ does not satisfy sufficient conditions (i)–(ii) in 6.4. In this section, we show that
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the submodularity of (6.9) holds for general Λ in a lifted (i.e., higher-dimensional) space.
Accordingly, we derive extended polymatroid inequalities in the lifted space.

To this end, we reformulate constraint (6.9) as µ>y ≤ T and y>Λy ≤ (T − µ>y)2, i.e.,
y>(Λ − µµ>)y + 2Tµ>y ≤ T 2. Note that µ>y ≤ T is because T − µ>y ≥

√
y>Λy ≥ 0

by (6.9). Then, we define wjk = yjyk for all j, k ∈ [J ] and augment vector y to vector v =

[y1, . . . , yJ , w11, . . . , w1J , w21, . . . , wJJ ]>. We can incorporate the following McCormick
inequalities to define each wij:

wjk ≤ yj, wjk ≤ yk, wjk ≥ yj + yk − 1, wij ≥ 0. (6.15)

Accordingly, we rewrite (6.9) as [µ>, 0>]v ≤ T and

a>v + v>BNv ≤ T 2, (6.16)

where we decompose (Λ−µµ>) to be the sum of two matrices, one containing all positive
entries and the other containing all nonpositive entries. Accordingly, we define vector a :=

[2Tµ;BP]
> with BP ∈ RJ2

+ representing all the positive entries after vectorization, and ma-

trix BN ∈ R(J+J2)×(J+J2)
− collects all nonpositive entries, i.e., BN =

[
−(Λ− µµ>)− 0

0 0

]
,

where (x)− = −min{0, x} for x ∈ R.
As a>v + v>BNv is a submodular function of v by Theorem 6.3, we can incorporate

extended polymatroid inequalities to strengthen the lifted SOC constraints (6.9). We sum-
marize this result in the following theorem.

Theorem 6.6. Define function h : {0, 1}J+J2 → R such that h(v) := a>v+ v>BNv. Then,
h is submodular. Furthermore, inequality π>v ≤ T 2 is valid for set {v ∈ {0, 1}J+J2

:

h(v) ≤ T 2} for all π ∈ EPh and the separation of this inequality can be done by Algorithm
6.1.

Note that this lifting procedure introduces J2 additional variables wijk for each i. How-
ever, wijk can be treated as continuous variables when solving DCBP in view of the Mc-
Cormick inequalities (6.15), and the number of wijk variables can be reduced by half be-
cause wijk = wikj . In our numerical studies later, we derive more valid inequalities to
strengthen the formulation in the lifted space for distributionally robust chance-constrained
bin packing problems that involve DRCCs, using the bin packing structure.

Example 6.4. Recall Example 6.2 and the corresponding function g(y) being not submod-
ular. We set µ = [0, 0, 0]> and T = 0.8, and rewrite the constraint g(y) ≤ T in the form of
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(6.16) as

0.6v4 + 0.2v6 + 0.7v8 + 0.1v9 + 0.2v10 + 0.1v11 + 0.6v12 − 0.4v1v2 ≤ 0.64,

where v := [y1, y2, y3, w11, w12, . . . , w33]> = [v1, . . . , v12]>. Now suppose that we are
given ŷ = [1, 0.5, 0.9]>. The corresponding v̂ = [1, 0.5, 0.9, 1, 0.5, 0.9, 0.5, 0.25, 0.45,

0.9, 0.45, 0.81]> violates the above inequality. We follow 6.1 to find an extended poly-
matroid inequality in the lifted space of v. Specifically, we sort the entries of v̂ to obtain
v̂1 ≥ v̂4 ≥ v̂3 ≥ v̂6 ≥ v̂10 ≥ v̂12 ≥ v̂2 ≥ v̂5 ≥ v̂7 ≥ v̂9 ≥ v̂11 ≥ v̂8 and the correspond-
ing permutation {1, 4, 3, 6, 10, 12, 2, 5, 7, 9, 11, 8}. It follows that π̂(2) = 0.6, π̂(4) = 0.2,
π̂(5) = 0.2, π̂(6) = 0.6, π̂(7) = −0.4, π̂(10) = 0.1, π̂(11) = 0.1, π̂(12) = 0.7, and all other
π̂(i)’s equal zero. This generates the following extended polymatroid inequality

0.6v4 + 0.2v6 + 0.2v10 + 0.6v12 − 0.4v2 + 0.1v9 + 0.1v11 + 0.7v8 ≤ 0.64

that cuts off v̂. �

6.5 Numerical Studies

We numerically evaluate the performance of our proposed models and solution approaches.
In Section 6.5.1, we present the formulation of a chance-constrained bin-packing problem
with DRCCs and the related 0-1 SOC reformulations. We describe the solution methods
and more valid inequalities based on the bin packing structure. In Section 6.5.2, we de-
scribe the experimental setup of the stochastic bin packing instances. Our results consist of
two parts, which report the CPU time (Section 6.5.3) and the out-of-sample performance
of solutions given by different models (Appendix C.3), respectively. More specifically,
Section 6.5.3 demonstrates the computational efficacy of the valid inequalities we derived
in Section 6.4 for the original or lifted SOC constraints. Appendix C.3 demonstrates that
DCBP solutions can well protect against the distributional ambiguity as opposed to the so-
lutions obtained by following the Gaussian distribution assumption or by the SAA method.

6.5.1 Formulation of Ambiguous Chance-Constrained Bin Packing

For the classical bin packing problem, [I] is the set of bins and [J ] is the set of items, where
each bin i has a weight capacity Ti and each item j, if assigned to bin i, has a random
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weight t̃ij . The deterministic bin packing problem aims to assign all J items to a minimum
number of bins, while respecting the capacity of each bin. If we consider a slightly more
general setting by introducing a cost for each assignment, then the DCBP of bin packing
with DRCCs is presented as:

min
z,y

I∑
i=1

cz
izi +

I∑
i=1

J∑
j=1

cy
ijyij (6.17a)

s.t. yij ≤ ρijzi ∀i ∈ [I], j ∈ [J ] (6.17b)
I∑
i=1

yij = 1 ∀j ∈ [J ] (6.17c)

yij, zi ∈ {0, 1} ∀i ∈ [I], j ∈ [J ], (6.17d)

inf
P∈D

P

{
J∑
j=1

t̃ijyij ≤ Ti

}
≥ 1− αi ∀i ∈ [I], (6.17e)

where cz
i represents the cost of opening bin i and cy

ij represents the cost of assigning item
j to bin i. For each i ∈ [I] and j ∈ [J ], we let binary variables zi represent if bin i is
open (i.e., zi = 1 if open and zi = 0 otherwise), binary variables yij represent if item j

is assigned to bin i (i.e., yij = 1 if assigned and yij = 0 otherwise), and parameters ρij
represent if we can assign item j to bin i (i.e., ρij = 1 if we can and ρij = 0 otherwise). The
objective function (6.17a) minimizes the total cost of opening bins and assigning items to
bins. Constraints (6.17b) ensure that all items are assigned to open bins, constraints (6.17c)
ensure that each item is assigned to one and only one bin, and constraints (6.17e) are the
DRCCs.

In our computational studies, we follow Section 6.3 to derive 0-1 SOC reformulations
of model (6.17) and then follow Section 6.4 to derive valid inequalities in the original and
lifted space for the 0-1 SOC reformulations. We strengthen the extended polymatroid in-
equalities, as well as derive valid inequalities in the lifted space containing variables zi, yij ,
and wijk to further strengthen the formulation as follows. We refer to Appendices C.1 and
C.2 for the detailed proofs of the valid inequalities below, and will test their effectiveness
later.

Theorem 6.7. For all extended polymatroid inequalities π>yi ≤ T with regard to bin i,
∀i ∈ [I], inequality

π>yi ≤ Tzi (6.18a)

is valid for the DCBP formulation. Similarly, for all extended polymatroid inequalities
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π>vi ≤ T 2 with regard to bin i, ∀i ∈ [I], inequality

π>vi ≤ T 2zi (6.18b)

is valid for the DCBP formulation.

Theorem 6.8. Consider set

L =
{

(z, y, w) ∈ {0, 1}I×(IJ)×(IJ2) : (6.17b)–(6.17d), wijk = yijyik, ∀j, k ∈ [J ]
}
.

Without loss of optimality, the following inequalities are valid for L:

wijk ≥ yij + yik +
I∑
`=1
`6=i

w`jk − 1 ∀j, k ∈ [J ] (6.19a)

wijk ≥ yij + yik − zi ∀i ∈ [I], ∀j, k ∈ [J ] (6.19b)
J∑
j=1
j 6=k

wijk ≤
J∑
j=1

yij − zi ∀i ∈ [I], ∀k ∈ [J ] (6.19c)

J∑
j=1

J∑
k=j+1

wijk ≥
J∑
j=1

yij − zi ∀i ∈ [I]. (6.19d)

Remark 6.2. We note that valid inequalities (6.19a)–(6.19d) are polynomially many and all
coefficients are in closed-form. Hence, we do not need any separation processes for these
inequalities, and we can incorporate them in the DCBP formulation without dramatically
increasing its size.

6.5.2 Computational Setup

We first consider I = 6 servers (i.e., bins) and J = 32 appointments (i.e., items) to test
the DCBP model under various distributional assumptions and ambiguity sets. The daily
operating time limit (i.e., capacity) Ti of each server i varies in between [420, 540] minutes
(i.e., 7–9 hours). We let the opening cost cz

i of each server i be an increasing function of Ti
such that cz

i = T 2
i /3600 + 3Ti/60, and let all assignment costs cy

ij, ∀i ∈ [I], j ∈ [J ] vary
in between [0, 18], so that the total opening cost and the total assignment cost have similar
magnitudes. The above problem size and parameter settings follow the literature of surgery
block allocation (see, e.g., Deng et al. (2016); Denton et al. (2010); Shylo et al. (2012)).

To generate samples of random service time (i.e., random item weight), we consider
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“high mean (hM)” and “low mean (`M)” being 25 minutes and 12.5 minutes, respectively.
We set the coefficient of variation (i.e., the ratio of the standard deviation to the mean)
as 1.0 for the “high variance (hV)” case and as 0.3 for the “low variance (`V)” case. We
equally mix all four types of appointments with “hMhV”, “hM`V”, “`MhV”, “`M`V”, and
thus have eight appointments of each type. We sample 10,000 data points as the random
service time of each appointment on each server, following a Gaussian distribution with the
above settings of mean and standard deviation. We will hereafter call them the in-sample
data. To formulate the 0-1 SOC models with diagonal covariance matrices, we use the
empirical mean and standard deviation of each t̃ij obtained from the in-sample data and set
αi = 0.05, ∀i ∈ [I]. Using the same αi-values, we formulate the 0-1 SOC models under
general covariance matrices, for which we use the empirical mean and covariance matrix
obtained from the in-sample data. The empirical covariance matrices we obtain have most
of their off-diagonal entries being non-zero, and some being quite significant.

All the computation is performed on a Windows 7 machine with Intel(R) Core(TM)
i7-2600 CPU 3.40 GHz and 8GB memory. We implement the optimization models and
the branch-and-cut algorithm using commercial solver GUROBI 5.6.3 via Python 2.7.10.
The GUROBI default settings are used for optimizing all the 0-1 programs, and we set
the number of threads as one. When implementing the branch-and-cut algorithm, we
add the violated extended polymatroid inequalities using GUROBI callback class by
Model.cbCut() for both integer and fractional temporary solutions. For all the nodes
in the branch-and-bound tree, we generate violated cuts at each node as long as any exists.
The optimality gap tolerance is set as 0.01%. We also set the threshold for identifying
violated cuts as 10−4, and set the time limit for computing each instance as 3600 seconds.

6.5.3 CPU Time Comparison

We solve 0-1 SOC reformulations or approximations of DCBP, and use either a diagonal
or a general covariance matrix in each model. Our valid inequalities significantly reduce
the solution time of directly solving the 0-1 SOC models in GUROBI, while the extended
polymatroid inequalities generated based on the approximate and lifted SOC constraints
perform differently depending on the problem size. The details are presented as follows.

6.5.3.1 Computing 0-1 SOC models with diagonal matrices

We first optimize 0-1 SOC models with a diagonal matrix in constraint (6.9), of which the
left-hand side function g(y) is submodular, and thus we use extended polymatroid inequal-
ities (6.18a) with π ∈ EPg in a branch-and-cut algorithm. Table 6.1 presents the CPU time
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(in seconds), optimal objective values, and other solution details (including “Server” as the
number of open servers, “Node” as the total number of branching nodes, and “Cut” as the
total number of cuts added) for solving the three 0-1 SOC models DCBP1 (i.e., using am-
biguity set D1), DCBP2 (i.e., using ambiguity set D2 with γ1 = 1, γ2 = 2), and Gaussian
(assuming Gaussian distributed service time). We also implement the SAA approach (i.e.,
row “SAA”) by optimizing the MILP reformulation of the chance-constrained bin packing
model based on the 10,000 in-sample data points. We compare the branch-and-cut algo-
rithm using our extended polymatroid inequalities (in rows “B&C”) with directly solving
the 0-1 SOC models in GUROBI (in rows “w/o Cuts”).

Table 6.1: CPU time and solution details for solving instances with diagonal matrices

Approach Model Time (s) Opt. Obj. Server Opt. Gap Node Cut

B&C
DCBP1 0.73 328.99 3 0.00% 83 82
DCBP2 27.50 366.54 3 0.00% 2146 2624

Gaussian 0.13 297.94 2 0.00% 0 0

w/o Cuts
DCBP1 95.73 328.99 3 0.01% 76237 N/A
DCBP2 LIMIT 380.09 2 9.15% 409422 N/A

Gaussian 0.02 297.94 2 0.00% 16 N/A
SAA MILP 21.20 297.94 2 0.00% 89 N/A

In Table 6.1, the branch-and-cut algorithm quickly optimizes DCBP1 and DCBP2. Es-
pecially, if being directly solved by GUROBI, DCBP2 cannot be solved within the 3600-
second time limit and ends with a 9.15% optimality gap. Solving DCBP1 by using the
branch-and-cut algorithm is much faster than solving the large-scale SAA-based MILP
model, while the solution time of DCBP2 is similar to the latter. The two DCBP models
also yield higher objective values, since they both provide more conservative solutions that
open one more server than either the Gaussian or the SAA-based approach.

6.5.3.2 Computing 0-1 SOC models with general covariance matrices

In this section, we focus on testing DCBP2 yielded by the ambiguity setD2 with parameters
γ1 = 1, γ2 = 2, and αi = 0.05, ∀i ∈ [I]. We use empirical covariance matrices of the
in-sample data. Note that these covariance matrices are general and non-diagonal. We
compare the time of solving the 0-1 SOC reformulations of DCBP2 on ten independently
generated instances. We examine two implementations of the branch-and-cut algorithm:
one uses extended polymatroid inequalities (6.18a) with π ∈ EPgL based on the relaxed
0-1 SOC constraint (6.11), and the other uses the extended polymatroid inequalities (6.18b)
based on the lifted SOC constraint.
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Table 6.2 reports the CPU time (in seconds) and number of branching nodes (in column
“Node”) for various methods. First, we directly solve the 0-1 SOC models of DCPB2 in
GUROBI, without or with the linear valid inequalities (6.19a)–(6.19d), and report their re-
sults in columns “w/o Cuts” and “Ineq.”, respectively. We then implement the branch-and-
cut algorithm, and examine the results of using extended polymatroid inequalities (6.18a)
with π ∈ EPgL (reported in columns “B&C-Relax”) and cuts (6.18b) based on lifted SOC
constraints (reported in columns “B&C-Lifted”). (The latter does not involve valid in-
equalities (6.18a) used in the former.) The time reported under B&C-Relax also involves
the time of solving SDPs for obtaining ∆L and the relaxed 0-1 SOC constraint (6.11). The
time of solving related SDPs are quite small (varying from 1 to 2 seconds for instances of
different sizes) and negligible as compared to the total B&C time. For both B&C meth-
ods, we also present the number of extended polymatroid inequalities (see column “Cut”)
added.

Table 6.2: CPU time of DCBP2 solved by different methods with general covariance ma-
trices

Instance
w/o Cuts Ineq. B&C-Relax B&C-Lifted

Time (s) Node Time (s) Node Time (s) Node Cut Time (s) Node Cut
1 286.29 10409 156.50 795 51.99 9095 702 35.03 618 823
2 433.32 10336 167.91 687 26.63 6524 698 12.34 405 235
3 284.17 10434 206.82 971 70.43 17420 621 29.84 595 729
4 310.11 10302 139.06 656 15.37 2467 723 25.31 419 617
5 329.32 10453 181.83 777 56.53 12349 737 35.09 678 921
6 365.28 10300 168.26 652 23.89 4807 695 26.73 555 595
7 296.55 10759 198.87 873 45.21 11585 738 21.08 440 626
8 278.62 10490 211.05 900 53.84 14540 721 47.78 1064 1686
9 139.24 7771 177.41 632 19.90 3918 645 19.37 216 360

10 297.72 10330 159.52 822 30.36 6877 649 29.43 400 727

In Table 6.2, we highlight the solution time of the method that runs the fastest for each
instance. Note that without the extended polymatroid inequalities or the valid inequalities,
the GUROBI solver takes the longest time for solving all the instances except instance #9.
Adding the valid inequalities (6.19a)–(6.19d) to the solver reduces the solution time by
40% or more in almost all the instances, and drastically reduces the number of branch-
ing nodes. The extended polymatroid inequalities (6.18a)–(6.18b) further reduce the CPU
time significantly (see columns “B&C-Relax” and “B&C-Lifted”). Moreover, for all the
instances having 6 servers and 32 appointments, the algorithm using the extended polyma-
troid inequalities (6.18b) runs faster in eight out of ten instances than the algorithm using
cuts (6.18a) based on relaxed SOC constraints without lifting. It indicates that the extended
polymatroid inequalities generated by the lifted SOC constraints are more effective than
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those generated by the relaxed SOC constraints. This observation is overturned when we
later increase the problem size.

In the following, we continue reporting the CPU time of solving DCBP2 with general
covariance matrix. We vary the problem sizes (i.e., values of I and J) in Section 6.5.3.3,
and vary the values of Λ in the SOC constraint (6.9) in Section 6.5.3.4.

6.5.3.3 Solving 0-1 SOC models under different problem sizes

We use the same problem settings as in Section 6.5.2, and vary I = 6, 8, 10 and J = 32, 40

to test DCBP2 instances with different sizes. We still keep an equal mixture of all the four
appointment types in each instance. Table 6.3 presents the computational time (in seconds),
the total number of branching nodes (“Node”), and the total number of extended polyma-
troid inequalities generated (“Cuts”; if applicable) for solving the 0-1 SOC reformulation
of DCBP2 by directly using GUROBI (“w/o Cuts”) and by using the two implementations
of the extended polymatroid inequalities (“B&C-Relax” and “B&C-Lifted”).

Table 6.3: CPU time of DCBP2 with general covariance matrices for different problem
sizes

Method
J = 32 J = 40

Inst. 1 2 3 4 5 6 7 8 9 10

I = 6

B&C-Relax
Time (s) 51.99 26.63 70.43 15.37 56.53 6.87 12.76 1.59 2.36 12.73

Node 9095 6524 17420 2467 12349 1009 1322 176 285 1270
Cut 702 698 621 723 737 174 604 171 179 602

B&C-Lifted
Time (s) 35.03 12.34 29.84 25.31 35.09 64.58 98.18 91.12 60.11 59.50

Node 618 405 595 419 678 274 484 447 289 234
Cut 823 235 729 617 921 470 690 688 462 394

w/o Cuts
Time (s) 286.29 433.32 284.17 310.11 329.32 1654.31 208.12 1182.46 1580.41 1266.27

Node 10409 10336 10434 10302 10453 10525 1272 10732 10658 10642

I = 8

B&C-Relax
Time (s) 41.57 139.41 55.22 261.24 305.72 23.91 9.73 17.76 27.16 12.98

Node 8342 29042 12267 49820 61334 2130 1240 1561 2607 1024
Cut 737 770 742 803 790 714 199 728 702 690

B&C-Lifted
Time (s) 106.03 28.55 84.64 97.05 13.56 331.29 273.14 307.06 178.41 161.39

Node 678 502 647 634 125 1177 836 1397 457 529
Cut 114 691 128 143 216 1781 1175 2066 703 719

w/o Cuts
Time (s) 866.12 597.43 649.72 683.18 497.15 2265.53 2428.60 2294.62 1781.95 851.99

Node 10338 10305 10309 10306 14386 11441 11219 11708 11128 5241

I = 10

B&C-Relax
Time (s) 3.75 9.28 6.56 3.23 16.71 29.94 80.34 22.58 24.48 339.93

Node 637 972 659 549 2274 2336 7315 1870 1959 34306
Cut 241 552 390 230 741 767 714 736 729 715

B&C-Lifted
Time (s) 108.43 117.44 120.60 22.10 111.37 186.72 714.45 197.42 549.90 661.13

Node 668 785 828 291 779 766 1108 811 896 1209
Cut 108 191 314 281 188 1196 850 1106 568 808

w/o Cuts
Time (s) 987.92 1140.23 183.06 1113.09 1425.83 2382.97 2917.03 LIMIT 2052.42 2451.62

Node 10353 10357 4992 10307 10401 11015 11197 12101 10812 11001

In Table 6.3, we again highlight the solution time of the method that runs the fastest
in each instance. We keep the first five instances we reported in Table 6.2 for instances
with I = 6, J = 32, and report five instances for other (I, J) combinations. From Table
6.3, we observe that both implementations of the extended polymatroid inequalities run
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significantly faster than directly using GUROBI, especially when we increase the problem
sizes (i.e., I increased from 6 to 10, and J increased from 32 to 40). In particular, the CPU
time of directly using GUROBI is consistently 1 or 2 orders of magnitude larger than that
of our approaches. For smaller (I, J)-values (e.g., (I, J) = (6, 32) or (I, J) = (8, 32)), we
see that B&C-Lifted sometimes runs faster than B&C-Relax, but for all the other (I, J)

combinations, the latter completely dominates the former. This is expected because the
cuts (6.18b) are generated in a lifted space with J2 additional variables for each server
i ∈ [I]. Therefore, it makes sense that the scalability of B&C-Lifted is worse than that of
B&C-Relax, which uses cuts (6.18a) without lifting.

6.5.3.4 Solving 0-1 SOC models with different Λ-values in (6.9)

We again focus on instances with I = 6 and J = 32 under the same general covariance
matrix Σ obtained from the in-sample data points. We let Λ := Ω2Σ in the 0-1 SOC
constraint (6.9) and adjust the scalar Ω to obtain different Λ. We want to show how the
computational time of directly using GUROBI increases as we increase Ω, as compared to
using the branch-and-cut algorithm with extended polymatroid inequalities. (The results
of B&C-Lifted are used here and similar observations can be made if the results of B&C-
Relax are used.)

Considering specific cases of the SOC constraint (6.9) for modeling DCBP, we have
Ω = Φ−1(1 − α) = 1.64 for the Gaussian approximation model when α = 0.05, and
Ω =

√
γ2/α = 6.32 for DCBP2 when γ2 = 2 and α = 0.05. We test four values of Ω

equally distributed in between [1.64, 6.32] including the two end points.
Figure 6.3 depicts the average CPU time and the average number of branching nodes

of solving five independent DCBP2 instances for each Ω-setting. Specifically, the four
values 1.64, 3.20, 4.76, and 6.32 of Ω lead to 0.98, 97.68, 299.29, and 363.56 CPU sec-
onds when directly using GUROBI, respectively, together with the significantly growing
number of branching nodes 0, 909.8, 6662, and 10418, respectively. On the other hand,
the branch-and-cut algorithm with the extended polymatroid inequalities respectively takes
1.03, 35.19, 16.09, and 26.63 CPU seconds on average for solving the same instances, and
branches on average 0, 188.6, 247.2, and 374.6 nodes, respectively. This indicates that our
approach is more scalable than directly using the off-the-shelf solvers.
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Figure 6.3: CPU time and number of branching nodes under different Ω-values in constraint
(6.9)

6.6 Concluding Remarks

In this chapter, we considered distributionally robust individual chance constraints, where
the true distributional information of the constraint coefficients is ambiguous and only the
empirical first and second moments are given. The goal is to restrict the worst-case prob-
ability of violating a linear constraint under a given threshold. We provided 0-1 SOC
representations of DRCCs under two types of ambiguity sets. In addition, we derived an
efficient way of obtaining extended polymatroid inequalities for the 0-1 SOC constraints
in both original and lifted spaces. Via extensive numerical studies, we demonstrated that
our solution approaches significantly accelerate solving the DCBP model as compared to
the state-of-the-art commercial solvers. In particular, a branch-and-cut algorithm with ex-
tended polymatroid inequalities in the original space scales very well as the problem size
grows.
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CHAPTER 7

Conclusion

In this dissertation work, we focus on developing scalable solution approaches for DRO
models (especially with integer decisions and nonlinear structures) in various applications
including energy system operations, appointment scheduling, and surgery block allocation
in healthcare industry. Although the solution approaches are developed for specific appli-
cations, the appointment scheduling and bin packing (of which the surgery block allocation
is a special problem setting in healthcare) themself can be adapted to a wide range of ap-
plications. Therefore, the solution approaches are also applicable to other problems (e.g.,
especially to chance-constrained binary programs). Moreover, through extensive compu-
tational experiments, we study the impact of ambiguous probability distribution on the
system operator’s decisions by employing different moment-based ambiguity sets, as an
accurate estimate of system uncertainty’s probability distribution is hard to obtain due to
insufficiency of historical data. In particular, in Chapter 2, we observed that the DRO
approach yields better reliabilities compared to the Gaussian approximation approach by
locating more reserves on generator and load buses and also achieves a good trade-off be-
tween performance and computational efficiency. In Chapter 3, our results demonstrated
that an approximate “dome” shape shown in the solutions of DRO models but not in those of
a sampling-based stochastic model when only limited data samples are available. In Chap-
ter 4, we showed that the DRO models with the least conservative support of no-shows
obtain near-optimal schedules under perfect information and outperform DR models with
other support of no-shows and stochastic program if the distributional type is misspecified.
In Chapter 5, the DRO models yield better out-of-sample reliability performance of not
exceeding server’s capacity compared to the stochastic program. While, the conservatism
of DRO solutions depends on the choice of ambiguity set’s parameters. In Chapter 6, we
derived efficient branch-and-cut algorithms with valid cuts obtained from extended poly-
matroid inequalities in both the original and lifted spaces. We showed that the algorithm
with cuts from the original spaces scales very well as the problem size grows.
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For the future research, we plan to apply the DRO techniques and solution approaches
developed in this dissertation to other power system operation problems, such as trans-
mission expansion planning and building load control. We also plan to investigate DRO
models under other types of ambiguity sets, which could take into account not only the
moment information but also density, support or structural information of their probability
distribution. Moreover, instead of considering one optimization problem in a system, we
plan to investigate systems using DRO models with two or more players, each of which
has optimization problems of their own interests while there are some linking constraints
among them.
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APPENDIX A

Appendix for Chpater 4

A.1 General Waiting Time Costs

In this section, we discuss a general setting that incorporates both server-based and appointment-
based cases to model the waiting costs. We show that the models in Section 4.2 and solution
methods in Section 4.3 can adapt for this general setting. For presentation brevity, we focus
on DR expectation models and the adaptation of methods for DR CVaR models in A.2 is
similar.

To be general, we model the waiting time cost for each appointment i as cs
iwi+c

a
iwiqi =

(cs
i + ca

iqi)wi, where cs
i represents the server-based waiting time cost and ca

i represents the
appointment-based waiting time cost. Note that this setting applies for server-based and
appointment-based cases, because we can set cs

i := 0 or ca
i := 0 if the corresponding cost

does not apply. Accordingly, the general DR expectation model can be formulated as

min
x∈X

sup
Pq,s∈F(D,µ,ν)

EPq,s
[
QG(x, q, s)

]
, (A.1)

where QG(x, q, s) represents the cost function of the waiting, idleness, and overtime under
the general setting. Replacing cw

i wi with (cs
i + ca

iqi)wi in (4.11), we formulate the dual of
QG(x, q, s) as

QG(x, q, s) = max
y

n∑
i=1

(qisi − xi)yi (A.2a)

s.t. yi−1 − yi ≤ cs
i + ca

iqi ∀i = 2, . . . , n (A.2b)

−yi ≤ cu
i ∀i = 1, . . . , n (A.2c)

yn ≤ co, (A.2d)

and we let polyhedron Y G := {y : (A.2b)–(A.2d)} represent the feasible region of variable
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y. As model (A.2) is a linear program in variables y, there exists an optimal solution to
(A.2) that resides at an extreme point of Y G. It can be observed (see, e.g., Mak et al.
(2015); Zangwill (1966, 1969)) that any extreme point ŷ of Y G satisfy (i) either ŷn = −cu

n

or ŷn = co, and (ii) for all i = 1, . . . , n−1, dual constraint ŷi+1+cs
i+1+ca

i+1qi+1 ≥ ŷi ≥ −cu
i

is binding at either the lower bound or the upper bound. Similar to the analysis in Section
4.3.2, we define binary variables tkj for all 1 ≤ k ≤ j ≤ n+ 1 to represent extreme points
ŷ, such that tkj = 1 if ŷj = −cu

j and ŷi = ŷi+1 + cs
i+1 + ca

i+1qi+1, ∀i = k, . . . , j − 1. It
follows that

ŷi = πG
ij :=

{
−cu

j +
∑j

`=i+1(cs
` + ca

`q`) 1 ≤ i ≤ j ≤ n,

co +
∑n

`=i+1(cs
` + ca

`q`) 1 ≤ i ≤ n, j = n+ 1,
(A.3)

where ŷn+1 = πG
n+1,n+1 := 0. Based on this binary representation, we can rewriteQG(x, q, s)

as

QG(x, q, s) = max
t

n+1∑
k=1

n+1∑
j=k

(
j∑
i=k

(qisi − xi)πG
ij

)
tkj

≡
n∑
k=1

n∑
j=k

j∑
i=k

[
(qisi − xi)

(
−cu

j +

j∑
`=i+1

(cs
` + ca

`q`)

)]
tkj +

n∑
k=1

n+1∑
i=k

[
(qisi − xi)

(
co +

n∑
`=i+1

(cs
` + ca

`q`)

)]
tk(n+1) (A.4a)

s.t.
i∑

k=1

n+1∑
j=i

tkj = 1 ∀i = 1, . . . , n+ 1 (A.4b)

tkj ∈ {0, 1}, ∀1 ≤ k ≤ j ≤ n+ 1. (A.4c)

Note that the objective function (A.4a) contains multilinear terms qisitkj and qiq`sitkj with
binary variables qi, q`, and tkj , and continuous variables si. To linearize formulation (A.4),
we define pikj ≡ qitkj , oikj ≡ qisitkj , and ri`kj = qiq`sitkj for all 1 ≤ k ≤ i ≤ j ≤ n + 1

and i + 1 ≤ ` ≤ j. We then linearize the multilinear terms by applying McCormick in-
equalities (4.18a)–(4.18b) for variables pikj , (4.18c)–(4.18d) for variables oikj , and (A.5a)–
(A.5b) as follows for variables ri`kj .

ri`kj ≥ 0, ri`kj − q`si ≤ 0, (A.5a)

ri`kj − oikj ≤ 0, ri`kj − oikj + sU
i (1− q`) ≥ 0. (A.5b)
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If follows that QG(x, q, s) equals to the optimal objective value of the following MILP:

max
t,p,o,r

n∑
k=1

n∑
j=k

j∑
i=k

[(
−cu

j +

j∑
`=i+1

cs
`

)
oikj +

(
cu
j −

j∑
`=i+1

cs
`

)
xitkj +

j∑
`=i+1

ca
`ri`kj

−
j∑

`=i+1

ca
`xip`kj

]
+

n∑
k=1

n+1∑
i=k

[(
co +

n∑
`=i+1

cs
`

)
oik(n+1) −

(
co +

n∑
`=i+1

cs
`

)
xitk(n+1)

+
n∑

`=i+1

ca
`ri`k(n+1) −

n∑
`=i+1

ca
`xip`k(n+1)

]
s.t. (4.18a)–(4.18d), (A.4b), (A.5a)–(A.5b), (A.6a)

tkj, pikj ∈ {0, 1}, ∀1 ≤ k ≤ i ≤ j ≤ n+ 1. (A.6b)

To finish reformulating the general DR expectation model (A.1), we follow a similar dual-
ization process described in Section 4.3 and rewrite formulation (A.1) as

min
x∈X,ρ∈Rn,γ∈Rn,θ∈R

n∑
i=1

µiρi +
n∑
i=1

νiγi + θ (A.7a)

s.t. θ ≥ HG(x, ρ, γ) ≡ max
(q,s)∈Dq×Ds

{
QG(x, q, s)−

n∑
i=1

(ρisi + γiqi)

}
.(A.7b)

Similar to Lemma 4.1, we observe that for any fixed variables x, ρ, and γ, HG(x, ρ, γ) <

+∞. Furthermore, function HG(x, ρ, γ) is convex and piecewise linear in x, ρ, and γ

with a finite number of pieces. Hence, we can adapt Algorithm 4.1 to solve model (A.1)
in a decomposition framework. We present this adaptation in Algorithm A.1. Similar to
Algorithm 4.1, we observe that Algorithm A.1 is finite. Finally, for the separation problem
in Step 3, we remark that (i) feasible region Dq can be set as D(K)

q for K = 2, . . . , n + 1

based on the scheduler’s targeted conservativeness, (ii) the separation problem is an MILP
and can be solved by off-the-shelf software, and (iii) we can incorporate the same valid
inequalities identified in Proposition 3 to accelerate solving the separation problem and
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hence the decomposition algorithm.
Algorithm A.1: A decomposition algorithm for solving general DR expectation
model (A.1).

Input: Feasible regions X and Dq ×Ds; set of cuts {L(x, ρ, γ, θ) ≥ 0} = ∅.
1 Solve the master problem

min
x∈X,ρ,γ,θ

n∑
i=1

µiρi +
n∑
i=1

νiγi + θ

s.t. L(x, ρ, γ, θ) ≥ 0

and record an optimal solution (x∗, ρ∗, γ∗, θ∗);

2 With (x, ρ, γ) fixed to be (x∗, ρ∗, γ∗), solve the separation problem

max
t,p,q,s,o,r

n∑
k=1

n∑
j=k

j∑
i=k

[(
−cu

j +

j∑
`=i+1

cs
`

)
oikj +

(
cu
j −

j∑
`=i+1

cs
`

)
xitkj +

j∑
`=i+1

ca
`ri`kj−

j∑
`=i+1

ca
`xip`kj

]
+

n∑
k=1

n+1∑
i=k

[(
co +

n∑
`=i+1

cs
`

)
oik(n+1) −

(
co +

n∑
`=i+1

cs
`

)
xitk(n+1)+

n∑
`=i+1

ca
`ri`k(n+1) −

n∑
`=i+1

ca
`xip`k(n+1)

]
−

n∑
i=1

(ρisi + γiqi)

s.t. (4.18a)–(4.18d), (A.4b), (A.5a)–(A.5b),

tkj , pikj ∈ {0, 1}, ∀1 ≤ k ≤ i ≤ j ≤ n+ 1, (q, s) ∈ Dq ×Ds

and record an optimal solution (t∗, p∗, q∗, s∗, o∗, r∗);

3 if θ∗ is greater than or equal to the optimal objective value of the separation problem, then
4 stop and return x∗ as an optimal solution to formulation (A.1).

5 else
6 add the cut

θ ≥
n∑
k=1

n∑
j=k

j∑
i=k

[(
−cu

j +

j∑
`=i+1

cs
`

)
o∗ikj +

(
cu
j −

j∑
`=i+1

cs
`

)
t∗kjxi +

j∑
`=i+1

ca
`r
∗
i`kj−

j∑
`=i+1

ca
`p
∗
`kjxi

]
+

n∑
k=1

n+1∑
i=k

[(
co +

n∑
`=i+1

cs
`

)
o∗ik(n+1) −

(
co +

n∑
`=i+1

cs
`

)
t∗k(n+1)xi+

n∑
`=i+1

ca
`r
∗
i`k(n+1) −

n∑
`=i+1

ca
`p
∗
`k(n+1)xi

]
−

n∑
i=1

(s∗i ρi + q∗i γi)
7

to the set of cuts {L(x, ρ, γ, θ) ≥ 0} and go to Step 2.
8 end
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A.2 Solution Approaches for DR CVaR Models

In this section, we reformulate DR CVaR constraints in (4.6) with cost parameters co, cu
i ,

and cw
i . We first represent CVaR by an alternative definition (Rockafellar and Uryasev,

2000, 2002):

CVaR1−ε (Q(x, q, s)) = inf
z∈R

{
z +

1

ε
EPq,s [Q(x, q, s)− z]+

}
,

where [a]+ := max{a, 0} for a ∈ R. It follows that

sup
Pq,s∈F(D,µ,ν)

CVaR1−ε (Q(x, q, s)) = sup
Pq,s∈F(D,µ,ν)

inf
z∈R

{
z +

1

ε
EPq,s [Q(x, q, s)− z]+

}
= inf

z∈R
sup

Pq,s∈F(D,µ,ν)

{
z +

1

ε
EPq,s [Q(x, q, s)− z]+

}
(A.8a)

= inf
z∈R

{
z +

1

ε
sup

Pq,s∈F(D,µ,ν)

EPq,s [Q(x, q, s)− z]+
}
,

(A.8b)

where (A.8a) follows the Sion’s minimax theorem (Sion, 1958) because z+1
ε
EPq,s [Q(x, q, s)− z]+

is convex in z, concave (in particular, linear) in variables Pq,s, and F(D,µ, ν) is weakly
compact.

A.2.1 MILP Reformulation and Decomposition Algorithm

Based on a similar dualization process in Section 4.3 (see the primal and dual formulations
(4.8) and (4.9)), we reformulate the inner maximization problem in (A.8b) as a minimiza-
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tion problem, and combine it with the outer minimization problem to obtain

inf
z,ρ,γ,θ

z +
1

ε

(
n∑
i=1

µiρi +
n∑
i=1

νiγi + θ

)

s.t.
n∑
i=1

siρi +
n∑
i=1

γiqi + θ ≥ [Q(x, q, s)− z]+ ∀(q, s) ∈ Dq ×Ds

= inf
z,ρ,γ,θ

z +
1

ε

(
n∑
i=1

µiρi +
n∑
i=1

νiγi + θ

)

s.t.
n∑
i=1

siρi +
n∑
i=1

γiqi + θ ≥ 0 ∀(q, s) ∈ Dq ×Ds (A.9a)

n∑
i=1

siρi +
n∑
i=1

γiqi + θ ≥ Q(x, q, s)− z ∀(q, s) ∈ Dq ×Ds, (A.9b)

where constraints (A.9a) and (A.9b) are derived based on the definition of [·]+. Thus, the
DR CVaR constraint (4.6) is equivalent to

Q ≥ z +
1

ε

(
n∑
i=1

µiρi +
n∑
i=1

νiγi + θ

)
(A.10a)

min
(q,s)∈Dq×Ds

{
n∑
i=1

ρisi +
n∑
i=1

γiqi

}
+ θ ≥ 0 (A.10b)

θ + z ≥ max
(q,s)∈Dq×Ds

{
Q(x, q, s)−

n∑
i=1

(ρisi + γiqi)

}
, (A.10c)

where constraint (A.10a) is linear, but (A.10b) and (A.10c) need further analysis. First,
we replace constraint (A.10b) by equivalent linear constraints in the following proposition,
whose proof is relegated to A.4.1.

Proposition 5. For fixed ρ and γ, and Dq = D
(K)
q with K ∈ {2, . . . , n + 1}, (A.10b) is

equivalent to linear constraints:

θ +
n−K+1∑
i=1

βi +
n∑
i=1

(sL
iχ

L
i − sU

iχ
U
i − ηi) ≥ 0, (A.11a)

−ηi +

min{i,n−K+1}∑
j=max{i−K+1,1}

βj ≤ γi ∀1 ≤ i ≤ n, (A.11b)

χL
i − χU

i ≤ ρi ∀1 ≤ i ≤ n, (A.11c)

βi, χ
L
i , χ

U
i , ηi ≥ 0 ∀1 ≤ i ≤ n. (A.11d)

128



Second, note that the right-hand side of constraint (A.10c) is equivalent to that of con-
straint (4.13b) in the reformulated DR expectation model, and so the reformulated sepa-
ration problem (4.19) and Algorithm 4.1 described in Section 4.3 can be easily adapted
to handle constraint (A.10c). Furthermore, the valid inequalities (4.20a)–(4.20f) can be
incorporated to accelerate solving the adapted separation problem and implementing the
decomposition algorithm.

A.2.2 LP Reformulations of the DR CVaR Model

We derive LP reformulations for the DR CVaR constraint (4.6) when Dq = D
(2)
q (i.e., no

consecutive no-shows) and when Dq = D
(n+1)
q (i.e., arbitrary no-shows).

Case 1. (No Consecutive No-Shows) Recall that DR CVaR constraint (4.6) is equiv-
alent to constraints (A.10a), (A.11a)–(A.11d) with K = 2, and (A.10c). When Dq =

D
(2)
q , we apply Theorem 4.1 to further reformulate (A.10c) as linear constraints θ + z ≥∑n+1
i=1 (αi + sU

i τ
U
i − sL

iτ
L
i ) and (4.22b)–(4.22g), resulting in the following proposition.

Proposition 6. When Dq = D
(2)
q , the DR CVaR constraint (4.6) is equivalent to linear

constraints (A.10a), (A.11a)–(A.11d) with K = 2,
∑n+1

i=1 (αi + sU
i τ

U
i − sL

iτ
L
i ) ≤ θ + z, and

(4.22b)–(4.22g).

We remark that the LP reformulation in Proposition 6 is of the size O(n3) because
constraints (4.22b)–(4.22g) incorporate O(n3) decision variables and linear constraints. In
this section, we focus on a specific DR CVaR constraint (4.6) that restricts overtime only.
That is, cu

i = cw
i = 0 for all 1 ≤ i ≤ n and co = 1, and Q(x, q, s) = QW (x, q, s) :=

minw,u,W W subject to constraints (4.3b)–(4.3d). Next, we derive a more compact LP
reformulation of this DR CVaR constraint with O(n2) variables and constraints. To that
end, we derive anO(n2) LP reformulation for constraint (A.10c). We begin by specializing
the extreme point representation of polyhedron Y for Q(x, q, s) = QW (x, q, s).

Lemma A.1. When cu
i = cw

i = 0 for all 1 ≤ i ≤ n and co = 1, the set of extreme points
of polyhedron Y defined in (4.15) is {

∑n
`=k e` : k = 1, . . . , n}

⋃
{0n}, where e` represents

an n-dimensional unit vector with component ` equaling to one and any other component
equaling to zero; 0n is an n-dimensional zero vector.

Recall the observation in Section 4.3.2 that each extreme point (y1, . . . , yn+1) of Y
is associated with a partition of set {1, . . . , n + 1} into intervals. The result in Lemma
A.1 follows from (4.16) when the cost parameters take the above specified values. Define
binary variables tk for all 1 ≤ k ≤ n to represent the set of extreme points of Y , such
that tk = 1 if the extreme point is

∑n
`=k e` and tk = 0 otherwise. Note that extreme
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point 0n is represented by tk = 0 for all 1 ≤ k ≤ n. For a valid representation, we
require

∑n
k=1 tk ≤ 1. It follows that the right-hand side of (A.10c) (with Q(x, q, s) =

QW (x, q, s)) is equivalent to

max
t,q,s

n∑
k=1

(
n∑
i=k

(qisi − xi)

)
tk −

n∑
i=1

(ρisi + γiqi)

s.t.
n∑
k=1

tk ≤ 1, q ∈ Dq, s ∈ Ds, t ∈ {0, 1}n

as a mixed-integer bilinear program with binary vectors q and t, and continuous vector s.
We linearize the bilinear terms by defining pki ≡ tkqi and oki ≡ tkqisi for all 1 ≤ k ≤
i ≤ n. Also, we introduce McCormick inequalities (A.12b)–(A.12c) and (A.12d)–(A.12e)
for variables pki and oki, respectively to further reformulate the separation problem as a
mixed-integer linear program:

max
t,q,s,p,o

n∑
k=1

n∑
i=k

(oki − xitk)−
n∑
i=1

(ρisi + γiqi) (A.12a)

s.t. pki − tk ≤ 0 ∀1 ≤ k ≤ i ≤ n, (A.12b)

pki − qi ≤ 0, pki − qi − tk ≥ −1, pki ≥ 0 ∀1 ≤ k ≤ i ≤ n, (A.12c)

oki − sL
ipki ≥ 0, oki − sU

i pki ≤ 0 ∀1 ≤ k ≤ i ≤ n, (A.12d)

oki − si + sL
i(1− pki) ≤ 0, oki − si + sU

i (1− pki) ≥ 0 ∀1 ≤ k ≤ i ≤ n,

(A.12e)
n∑
k=1

tk ≤ 1, (A.12f)

q ∈ Dq, s ∈ Ds, t ∈ {0, 1}n. (A.12g)

Similar as before, we aim to derive the convex hull of the feasible region of problem (A.12),
i.e., the mixed-integer feasible region described by constraints (A.12b)–(A.12g). We denote
the feasible region as set G and derive conv(G) in the following theorem, whose proof is
in A.4.2.

Theorem A.1. WhenDq = D
(2)
q , the following inequalities are valid for setG = {(t, q, s, p, o) :
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(A.12b)–(A.12g)}:

n∑
k=1

pkn ≤ qn, (A.13a)

pki + pk(i+1) ≥ tk ∀1 ≤ k ≤ i ≤ n− 1, (A.13b)
i∑

k=1

(pki − tk) ≥ qi − 1 ∀1 ≤ i ≤ n, (A.13c)

i∑
k=1

(
pki + pk(i+1)

)
≤

i∑
k=1

tk + qi + qi+1 − 1 ∀1 ≤ i ≤ n− 1, (A.13d)

si −
i∑

k=1

(oki − sL
ipki) ≥ sL

i ∀1 ≤ i ≤ n, (A.13e)

si −
i∑

k=1

(oki − sU
i pki) ≤ sU

i ∀1 ≤ i ≤ n. (A.13f)

Furthermore, polyhedron CG := {(t, q, s, p, o) : (A.12b), (A.12d), (A.13a)–(A.13f)} is the
convex hull of set G, i.e., CG = conv(G).

Theorem A.1 provides us a compact LP reformulation of the right-hand side of con-
straint (A.10c) with O(n2) variables and constraints:

max
t,q,s,p,o

n∑
k=1

n∑
i=k

(oki − xitk)−
n∑
i=1

(ρisi + γiqi) (A.14a)

s.t. (t, q, s, p, o) ∈ CG. (A.14b)

Finally, by resorting to the dual formulation of (A.14), we represent constraint (A.10c)
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as

n∑
i=1

(αi − sL
iτ

L
i + sU

i τ
U
i )−

n−1∑
i=1

φi ≤ θ + z (A.15a)

n∑
i=k

(αi − σki) +
n−1∑
i=k

(λki − φi) ≥ −
n∑
i=k

xi ∀1 ≤ k ≤ n, (A.15b)

αi −
min{i,n−1}∑
`=max{i−1,1}

φ` −
max{i,n−1}∑

`=n

ζ ≥ − γi ∀1 ≤ i ≤ n, (A.15c)

τ U
i − τ L

i ≥ − ρi ∀1 ≤ i ≤ n, (A.15d)

σki + sL
iϕ

L
ki − sU

iϕ
U
ki − αi − sL

iτ
L
i + sU

i τ
U
i

+

max{i,n−1}∑
`=n

ζ +

min{i,n−1}∑
`=max{i−1,k}

(φ` − λk`) ≥ 0 ∀1 ≤ k ≤ i ≤ n, (A.15e)

−ϕL
ki + ϕU

ki + τ L
i − τ U

i ≥ 1 ∀1 ≤ k ≤ i ≤ n, (A.15f)

σki, ϕ
L
ki, ϕ

U
ki, ζ, λki, αi, φi, τ

L
i , τ

U
i ≥ 0 ∀1 ≤ k ≤ i ≤ n, (A.15g)

where dual variables σki, ϕ
L/U

ki , ζ , λki, αi, φi, and τ
L/U

i are associated with constraints
(A.12b), (A.12d), (A.13a), (A.13b), (A.13c), (A.13d), and (A.13e)–(A.13f), respectively
(after transforming all “≥” inequalities into the “≤” form), and dual constraints (A.15b)–
(A.15f) are associated with primal variables tk, qi, si, pki, and oki respectively. This results
in an O(n2) LP reformulation of the DR CVaR constraint on overtime.

Proposition 7. When Dq = D
(2)
q , cu

i = cw
i = 0 for all 1 ≤ i ≤ n and co = 1, the DR CVaR

constraint (4.6) on overtime is equivalent to linear constraints (A.10a), (A.11a)–(A.11d)
with K = 2, and (A.15a)–(A.15g).

Case 2. (Arbitrary No-Shows) Recall that DR CVaR constraint (4.6) is equivalent to
constraints (A.10a), (A.11a)–(A.11d) with K = n + 1, and (A.10c). As Dq = D

(n+1)
q , we

can apply the results in Section 4.4 (see Case 2) to further reformulate (A.10c) as linear
constraints θ + z ≥

∑n+1
i=1 αi, (4.24b), (4.24d), and (4.25a)–(4.25d). This results in the

following proposition.

Proposition 8. When Dq = D
(n+1)
q , the DR CVaR constraint (4.6) is equivalent to con-

straints (A.10a), (A.11a)–(A.11d) with K = n+ 1,
∑n+1

i=1 αi ≤ θ+ z, (4.24b), (4.24d), and
(4.25a)–(4.25d).
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A.3 Proofs for the DR Expectation Model

A.3.1 Proof of Lemma 4.1

Proof. Proof of Lemma 4.1 First, feasible regions Y and Dq ×Ds are both independent of
x, ρ, and γ, and bounded. Hence, maxy∈Y h(x, y, ρ, γ) ≡ maxy∈Y,(q,s)∈Dq×Ds{

∑n
i=1(qisi−

xi)yi −
∑n

i=1(ρisi + γiqi)} < +∞. Second, for any fixed y, q, and s,
∑n

i=1(qisi − xi)yi −∑n
i=1(ρisi + γiqi) is a linear function of x, ρ, and γ. It follows that maxy∈Y h(x, y, ρ, γ) is

the maximum of a set of linear functions of x, ρ, and γ, and hence convex and piecewise
linear. Third, it is clear that each linear piece of function maxy∈Y h(x, y, ρ, γ) is associated
with one distinct extreme point of polyhedra Y , Dq, and Ds respectively. Therefore, the
number of pieces of function maxy∈Y h(x, y, ρ, γ) is finite because each of these polyhedra
has a finite number of extreme points. This completes the proof.

A.3.2 Proof of Lemma 4.2

Proof. Proof of Lemma 4.2 For fixed x, ρ, and γ, in view of the definition of func-
tion h(x, y, ρ, γ) in (4.12c), we have h(x, y, ρ, γ) = max(q,s)∈Dq×Ds H(q, s, y), where
H(q, s, y) is a linear function of variable y. It follows that h(x, y, ρ, γ) is the supremum of
a set of convex functions of y, and hence itself convex in variable y.

A.3.3 Proof of Proposition 3

Proof. Proof of Proposition 3 First, because pikj ≡ qitkj , equality (4.20a) can be obtained
via multiplying equalities

∑i
k=1

∑n+1
j=i tkj = 1 by qi on both sides.

Second, because oikj ≡ qisitkj ≡ sipikj , and by equalities (4.20a) and si ∈ [sL
i , s

U
i ], we

have

i∑
k=1

n+1∑
j=i

(oikj − sL
ipikj) = (si − sL

i)
i∑

k=1

n+1∑
j=i

pikj = (si − sL
i)qi ≤ (si − sL

i),

i∑
k=1

n+1∑
j=i

(oikj − sU
i pikj) = (si − sU

i )
i∑

k=1

n+1∑
j=i

pikj = (si − sU
i )qi ≥ (si − sU

i ),

which shows the validity of inequalities (4.20b) and (4.20c).
Third, for 1 ≤ k < j ≤ n+ 1 and k ≤ i ≤ j −K + 1, because

∑i+K−1
`=i q` ≥ 1 by the
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definition of D(K)
q , we have

i+K−1∑
`=i

p`kj =
i+K−1∑
`=i

q`tkj =

(
i+K−1∑
`=i

q`

)
tkj ≥ tkj,

which shows the validity of inequalities (4.20d).
Fourth, for i = 1, . . . , n, because

∑i
k=1

∑n+1
j=i tkj = 1 and

∑i+1
k=1

∑n+1
j=i+1 tkj = 1 by

constraints (4.17b), we have

0 =
i∑

k=1

n+1∑
j=i

tkj −
i+1∑
k=1

n+1∑
j=i+1

tkj =
i∑

k=1

tki −
n+1∑
j=i+1

t(i+1)j. (A.16)

We show the validity of inequalities (4.20e) for all i = K − 1, . . . , n. If
∑i−K+2

k=1 tki = 0,
then the conclusion holds because each pikj ≥ 0. Now suppose that

∑i−K+2
k=1 tki = 1, then∑n+1

j=i+1 t(i+1)j = 1 in view of (A.16). It follows that

i−K+2∑
k=1

i∑
`=i−K+2

p`ki +
n+1∑
j=i+1

p(i+1)(i+1)j =

(
i∑

`=i−K+2

q`

)(
i−K+2∑
k=1

tki

)
+ qi+1

n+1∑
j=i+1

t(i+1)j

=
i+1∑

`=i−K+2

q` ≥ 1,

where the last inequality is due to the definition of D(K)
q .

Finally, we show the validity of inequalities (4.20f) for all i = 1, . . . , n − K + 2. If∑n+1
j=i+K−1 t(i+1)j = 0, then the conclusion holds because each pikj ≥ 0. Now suppose that∑n+1
j=i+K−1 t(i+1)j = 1, then

∑i
k=1 tki = 1 in view of (A.16). It follows that

i∑
k=1

piki +
i+K−1∑
`=i+1

n+1∑
j=i+K−1

p`(i+1)j = qi

(
i∑

k=1

tki

)
+

(
i+K−1∑
`=i+1

q`

)(
n+1∑

j=i+K−1

t(i+1)j

)

=
i+K−1∑
`=i

q` ≥ 1,

where the last inequality is due to the definition of D(K)
q .
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A.3.4 Proof of Theorem 4.1

Recall that polyhedronCF = {(t, q, s, p, o) : (4.17b), (4.18a), (4.18c), (4.20a)–(4.20d), (4.21)}
in Theorem 4.1. We first study the extreme points of polyhedron CF and show their prop-
erties as follows.

Proposition 9. Every extreme point (t, q, s, p, o) of CF satisfies the following:

1. tkj, pikj ∈ {0, 1} for all 1 ≤ k ≤ j ≤ n+ 1 and k ≤ i ≤ j;

2. qi ∈ {0, 1} for all 1 ≤ i ≤ n+ 1;

3. pikj = qitkj and oikj = qisitkj for all 1 ≤ k ≤ j ≤ n+ 1 and k ≤ i ≤ j.

Proof. Proof of Proposition 9 Consider arbitrary cost coefficients cq
i and cs

i for all 1 ≤ i ≤
n + 1, ct

kj for all 1 ≤ k ≤ j ≤ n + 1, and cp
ikj and co

ikj for all 1 ≤ k ≤ j ≤ n + 1 and
k ≤ i ≤ j. We construct a related linear program

(LP-CF) min
t,q,s,p,o

n+1∑
i=1

(cq
i qi + cs

isi) +
n+1∑
k=1

n+1∑
j=k

(
ct
kjtkj +

j∑
i=k

(
cp
ikjpikj + co

ikjoikj
))

s.t. (t, q, s, p, o) ∈ CF.

To prove that each extreme point of CF satisfies properties 1, 2, and 3, we show for any
values of ct

kj , c
q
i , c

s
i, c

p
ikj , and co

ikj , there exists an optimal solution (t∗, q∗, s∗, p∗, o∗) to (LP-
CF) that satisfies properties 1, 2, and 3 (cf. Nemhauser and Wolsey, 1999; Wolsey, 1998).

First, in view of equalities (4.20a), we can assume that cq
i = 0 for all 1 ≤ i ≤ n + 1

w.l.o.g., because we can always replace each cp
ikj with cp

ikj + cq
i so that variables pikj will

carry the cost of decisions qi. It follows that we can ignore variables qi in (LP-CF) because
they do not contribute to the objective function and their values entirely depend on pikj
by constraints (4.20a). Also, we note that (i) sL

ipikj ≤ oikj ≤ sU
i pikj by (4.18c), and so

pikj ≥ 0 for all 1 ≤ k ≤ i ≤ j ≤ n+ 1, and (ii) for all 1 ≤ i ≤ n+ 1,
∑i

k=1

∑n+1
j=i pikj ≤∑i

k=1

∑n+1
j=i tkj = 1 by (4.18a) and (4.17b).

Second, we rewrite (LP-CF) as a two-stage formulation as follows:

min
t,p

n+1∑
k=1

n+1∑
j=k

(
ct
kjtkj +

j∑
i=k

cp
ikjpikj

)
+ V (p)

s.t. (t, p) ∈ CFt,p,
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where polyhedron CFt,p := {(t, p) : (4.17b), (4.18a), (4.20d), (4.21)} and V (p) represents
a value function of p defined as

(LP-CF(p)) V (p) := min
s,o

n+1∑
i=1

cs
isi +

n+1∑
k=1

n+1∑
j=k

j∑
i=k

co
ikjoikj

s.t. (s, o) ∈ CFs,o(p),

where

CFs,o(p) =

{
(s, o) : oikj ≥ sL

ipikj ∀1 ≤ k ≤ j ≤ n+ 1, ∀k ≤ i ≤ j, (A.17a)

oikj ≤ sU
i pikj ∀1 ≤ k ≤ j ≤ n+ 1, ∀k ≤ i ≤ j, (A.17b)

si −
i∑

k=1

n+1∑
j=i

(oikj − sL
ipikj) ≥ sL

i ∀1 ≤ i ≤ n+ 1, (A.17c)

si −
i∑

k=1

n+1∑
j=i

(oikj − sU
i pikj) ≤ sU

i ∀1 ≤ i ≤ n+ 1

}
(A.17d)

represents a parametric polyhedron depending on the values of pikj . We solve (LP-CF(p))

by considering its dual formulation

V (p) = max
ψ,ω

n+1∑
i=1

i∑
k=1

n+1∑
j=i

(
sL
ipikjψ

L
ikj − sU

i pikjψ
U
ikj

)
+

n+1∑
i=1

[
sL
i

1−
i∑

k=1

n+1∑
j=i

pikj

ωL
i−

sU
i

1−
i∑

k=1

n+1∑
j=i

pikj

ωU
i

]

s.t. ψL
ikj − ψU

ikj − ωL
i + ωU

i = co
ikj ∀1 ≤ k ≤ j ≤ n+ 1, ∀k ≤ i ≤ j, (A.18a)

ωL
i − ωU

i = cs
i ∀1 ≤ i ≤ n+ 1, (A.18b)

where dual variables ψL/U

ikj and ωL/U

i are associated with primal constraints (A.17a)–(A.17b)
and (A.17c)–(A.17d), respectively (after transforming all “≤” inequalities into the “≥”
form), and dual constraints (A.18a) and (A.18b) are associated with primal variables oikj
and si, respectively. Because pikj ≥ 0 for all 1 ≤ k ≤ i ≤ j ≤ n + 1 and 1 −∑i

k=1

∑n+1
j=i pikj ≥ 0 for all 1 ≤ i ≤ n+ 1, a dual optimal solution to problem (LP-CF(p))

is ψL∗
ikj = (co

ikj + cs
i)

+, ψU∗
ikj = (−co

ikj− cs
i)

+, ωL∗
i = (cs

i)
+, and ωU∗

i = (−cs
i)

+. It follows that

V (p) =
∑n+1

i=1 [sL
i(c

s
i)

+ − sU
i (−cs

i)
+] +

∑n+1
i=1

∑i
k=1

∑n+1
j=i

[
sL
i(c

o
ikj + cs

i)
+ − sU

i (−co
ikj − cs

i)
+ −
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sL
i(c

s
i)

+ + sU
i (−cs

i)
+

]
is a linear function of p. Therefore, (LP-CF) is equivalent to optimiz-

ing a linear function of (t, p) on polyhedron CFt,p. It follows that there exists an optimal
solution (t∗, p∗, s∗, o∗) to (LP-CF) where (t∗, p∗) is an extreme point of polyhedron CFt,p.

Third, we show that all extreme points of CFt,p are integral. To this end, we show
that the constraint matrix describing CFt,p is totally unimodular (TU). For presentation
convenience, we rewrite the constraints defining CFt,p in inequalities as follows:

i∑
k=1

n+1∑
j=i

tkj ≥ 1 ∀i = 1, . . . , n+ 1, (A.19a)

−
i∑

k=1

n+1∑
j=i

tkj ≥ − 1 ∀i = 1, . . . , n+ 1, (A.19b)

−tkj + pikj + p(i+1)kj ≥ 0 ∀1 ≤ k < j ≤ n+ 1, ∀k ≤ i ≤ j − 1,

(A.19c)

−
i∑

k=1

tki +
i∑

k=1

piki +
n+1∑
j=i+1

p(i+1)(i+1)j ≥ 0 ∀i = 1, . . . , n, (A.19d)

tkj − pikj ≥ 0 ∀1 ≤ k ≤ j ≤ n+ 1, ∀k ≤ i ≤ j,

(A.19e)

and we denote the constraint matrix as

CF0
t,p :=



(
∑i

k=1

∑n+1
j=i tkj), ∀1 ≤ i ≤ n+ 1

(−
∑i

k=1

∑n+1
j=i tkj), ∀1 ≤ i ≤ n+ 1

(−tkj + pikj + p(i+1)kj), ∀1 ≤ k < j ≤ n+ 1,∀k ≤ i ≤ j − 1

(−
∑i

k=1 tki +
∑i

k=1 piki +
∑n+1

j=i+1 p(i+1)(i+1)j), ∀1 ≤ i ≤ n

(tkj − pikj), ∀1 ≤ k ≤ i ≤ j ≤ n+ 1


,

where the five row sub-matrices in matrix CF0
t,p are associated with the left-hand side of

constraints (A.19a)–(A.19e), respectively. To show that matrix CF0
t,p is TU, we conduct

pivot operations on the matrix with variables pikj and tkj . Note that a matrix is TU if and
only if it remains TU after pivot operations (Nemhauser and Wolsey, 1999). We conduct
the following pivot operations in order.

1. For all 1 ≤ k ≤ j ≤ n + 1 and k ≤ i ≤ j, pivot with variable pikj based on the
component−1 in sub-matrix (tkj−pikj) (corresponding to constraints (A.19e)). This
pivot operation is equivalent to (a) adding tkj − pikj , for all 1 ≤ k ≤ j ≤ n + 1 and
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k ≤ i ≤ j, to the left-hand side of every constraint (A.19c)–(A.19d) in which variable
pikj has coefficient 1, and (b) multiplying the left-hand side of each constraint (A.19e)
by −1. As a result, the matrix after pivoting becomes

CF1
t,p :=



(
∑i

k=1

∑n+1
j=i tkj), ∀1 ≤ i ≤ n+ 1

(−
∑i

k=1

∑n+1
j=i tkj), ∀1 ≤ i ≤ n+ 1

(tkj), ∀1 ≤ k < j ≤ n+ 1,∀k ≤ i ≤ j − 1

(
∑n+1

j=i+1 t(i+1)j), ∀1 ≤ i ≤ n

(−tkj + pikj), ∀1 ≤ k ≤ i ≤ j ≤ n+ 1


.

Note that sub-matrix (−tkj+pikj+p(i+1)kj) becomes (tkj) because each−tkj+pikj+
p(i+1)kj on the left-hand side of (A.19c) is summed with tkj − pikj and tkj − p(i+1)kj ,
and so the coefficient of each tkj changes from −1 to 1 after pivoting.

2. For all 1 ≤ k < j ≤ n + 1, pivot with variable tkj based on any component 1 in
sub-matrix (tkj) (note that there are multiple components 1 corresponding to each
variable tkj in sub-matrix (tkj) and we can pick any one of them). Since all com-
ponents in each row of sub-matrix (tkj) are zeros except one equaling 1, these pivot
operations (a) make all coefficients of all variables tkj zeros in matrix CF1

t,p as long
as 1 ≤ k < j ≤ n + 1, and (b) keep all coefficients of all variables pikj unchanged.
As a result, the matrix after pivoting becomes

CF2
t,p :=



(tii), ∀1 ≤ i ≤ n+ 1

(−tii), ∀1 ≤ i ≤ n+ 1

(tkj), ∀1 ≤ k < j ≤ n+ 1,∀k ≤ i ≤ j − 1

(t(i+1)(i+1)), ∀1 ≤ i ≤ n(−tii + piii), ∀1 ≤ i ≤ n+ 1

(pikj), 1 ≤ k < j ≤ n+ 1,∀k ≤ i ≤ j − 1


.

It follows that matrix CF2
t,p contains only {−1, 0, 1} entries, has no more than two

nonzero entries in each row, and the sum of the entries is zero for each row containing
two nonzero entries. Hence, matrix CF2

t,p is TU, and so is matrix CF0
t,p.

Therefore, the extreme points of polyhedron CFt,p are integral and so property 1 is proved.
Fourth, to show property 2, we consider any extreme point (t, q, s, p, o) of polyhedron
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CF . By constraints (4.18a) and (4.20a), we have qi =
∑i

k=1

∑n+1
j=i pikj ≤

∑i
k=1

∑n+1
j=i tkj =

1, and so qi ∈ {0, 1} because each pikj ∈ {0, 1} by property 1. This shows property 2.
Finally, to show property 3, we consider any extreme point (t, q, s, p, o) of polyhedron

CF . We show pikj = qitkj by discussing the following cases.

1. If qi = 0, then pikj = 0 for all 1 ≤ k ≤ i and i ≤ j ≤ n + 1 because qi =∑i
k=1

∑n+1
j=i pikj . It follows that pikj = qitkj .

2. If qi = 1, then there exist 1 ≤ k∗ ≤ i and i ≤ j∗ ≤ n+1 such that pik∗j∗ = 1 and any
other pikj = 0. It follows that tk∗j∗ = 1 because pikj − tkj ≤ 0 by constraint (4.18a),
and any other tkj = 0 because

∑i
k=1

∑n+1
j=i tkj = 1 given by (4.17b). Therefore,

we have pik∗j∗ = qitk∗j∗ = 1 and pikj = qitkj = 0 for all other 1 ≤ k ≤ i and
i ≤ j ≤ n+ 1.

For all 1 ≤ i ≤ n+1, since
∑i

k=1

∑n+1
j=i tkj = 1, there exist 1 ≤ k∗ ≤ i and i ≤ j∗ ≤ n+1

such that tk∗j∗ = 1 and any other tkj = 0. Since (t, q, s, p, o) is an extreme point of
polyhedron CF , each oikj satisfies either inequality (A.17a) or (A.17b) at equality, and
each si satisfies either inequality (A.17c) or (A.17d) at equality. We discuss the following
two cases to show oikj = qisitkj .

1. If qi = 0, then pikj = qitkj = 0 for all 1 ≤ k ≤ i and i ≤ j ≤ n+ 1. It follows from
inequalities (A.17a)–(A.17b) that each corresponding oikj = 0. Therefore, we have
oikj = sipikj = 0, or equivalently oikj = qisitkj = 0, for all 1 ≤ k ≤ j ≤ n + 1 and
k ≤ i ≤ j.

2. If qi = 1, then pik∗j∗ = qitk∗j∗ = 1 and pikj = 0 for all other 1 ≤ k ≤ i and
i ≤ j ≤ n + 1. Then, inequalities (A.17a)–(A.17b) yield oikj = sipikj = 0 for all
1 ≤ k ≤ i and i ≤ j ≤ n + 1 such that (k, j) 6= (k∗, j∗). Furthermore, inequalities
(A.17c)–(A.17d) yield

si −
i∑

k=1

n+1∑
j=i

(oikj − sL
ipikj) = si − oik∗j∗ + sL

ipik∗j∗ ≥ sL
i ,

si −
i∑

k=1

n+1∑
j=i

(oikj − sU
i pikj) = si − oik∗j∗ + sU

i pik∗j∗ ≤ sU
i .

It follows that si = oik∗j∗ . Therefore, we have oik∗j∗ = sipik∗j∗ .

We are now ready to show Theorem 4.1.
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Proof. Proof of Theorem 4.1 (CF ⊇ conv(F )) By Proposition 3, since polyhedron CF
consists of either trivial equalities/inequalities or valid inequalities of setF , we have (t, q, s, p, o) ∈
CF if (t, q, s, p, o) ∈ F . It follows that CF ⊇ conv(F ).
(CF ⊆ conv(F )) By Proposition 9, since each extreme point (t, q, s, p, o) of CF satisfies
properties 1, 2, and 3, (t, q, s, p, o) ∈ F . By the Minkowski’s Theorem on polyhedron, we
have x ∈ conv(F ) if x ∈ CF . It follows that CF ⊆ conv(F ). This completes the proof.

A.4 Proofs for the DR CVaR Model

A.4.1 Proof of Proposition 5

Proof. Proof of Proposition 5 We analyze the following two cases based on the value ofK.
When K ∈ {2, . . . , n}: For the embedded minimization problem in constraint (A.10b),
we observe that the constraint matrix of Dq, described by constraints

∑i+K−1
j=i qj ≥ 1 for

all 1 ≤ i ≤ n−K + 1, is an interval matrix and thus TU. It follows that conv(Dq) = {q ∈
[0, 1]n :

∑i+K−1
j=i qj ≥ 1, ∀1 ≤ i ≤ n−K + 1}. Because the feasible regions of variables

q and s (i.e., Dq and Ds) are disjoint in (A.10b), we can replace Dq with conv(Dq) and
obtain

θ + min
q,s

{
n∑
i=1

ρisi +
n∑
i=1

γiqi

}
≥ 0 (A.20a)

s.t. sL
i ≤ si ≤ sU

i ∀1 ≤ i ≤ n, (A.20b)
i+K−1∑
j=i

qj ≥ 1 ∀1 ≤ i ≤ n−K + 1, (A.20c)

qi ≤ 1 ∀1 ≤ i ≤ n, (A.20d)

qi, si ≥ 0 ∀1 ≤ i ≤ n. (A.20e)

Presenting linear program (A.20) in its dual form yields (A.11a)–(A.11d), where dual vari-
ables χL/U

i , βi, and ηi are associated with constraints (A.20b), (A.20c), and (A.20d) respec-
tively, and dual constraints (A.11b) and (A.11c) are associated with primal variables qi and
si, respectively.
When K = n + 1: In this case, Dq = {0, 1}n and so conv(Dq) = [0, 1]n. It follows that
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constraint (A.10b) is equivalent to

θ + min
q,s

{
n∑
i=1

ρisi +
n∑
i=1

γiqi

}
≥ 0

s.t. sL
i ≤ si ≤ sU

i ∀1 ≤ i ≤ n,

qi ≤ 1 ∀1 ≤ i ≤ n,

qi, si ≥ 0 ∀1 ≤ i ≤ n,

Similar to the case whenK ∈ {2, . . . , n}, we can present the embedded LP in its dual form
to obtain the following linear constraints:

θ +
n∑
i=1

(sL
iχ

L
i − sU

iχ
U
i − ηi) ≥ 0,

−ηi ≤ γi ∀1 ≤ i ≤ n,

χL
i − χU

i ≤ ρi ∀1 ≤ i ≤ n,

χL
i , χ

U
i , ηi ≥ 0 ∀1 ≤ i ≤ n.

We note that these linear constraints are equivalent to (A.11a)–(A.11d) because
∑n−K+1

i=1 βi =∑0
i=1 βi = 0 and

∑min{i,n−K+1}
j=max{i−K+1,1} βj =

∑0
j=1 βj = 0. The proof is completed.

A.4.2 Proof of Theorem A.1

We take the following three steps to prove Theorem A.1.
Step 1: We prove the validity of inequalities (A.13a)–(A.13f) in the following proposition.

Proposition 10. When Dq = D
(2)
q , inequalities (A.13a)–(A.13f) are valid for set G =

{(t, q, s, p, o) : (A.12b)–(A.12g)}.

Proof. Proof of Proposition 10 First, since
∑n

k=1 tk ≤ 1 by constraint (A.12f) and qn ≥ 0,
we have

n∑
k=1

pkn = qn

n∑
k=1

tk ≤ qn,

which shows inequality (A.13a).
Second, for all 1 ≤ k ≤ i ≤ n − 1, since qi + qi+1 ≥ 1 by the definition of Dq and

tk ≥ 0, we have
pki + pk(i+1) = tk(qi + qi+1) ≥ tk,
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which shows inequalities (A.13b).
Third, for all 1 ≤ i ≤ n, since ti ≥ 0, ∀i and thus

∑i
k=1 tk ≤

∑n
k=1 tk ≤ 1 by

constraint (A.12f) and since qi ≤ 1 ⇒ qi − 1 ≤ 0, we have

i∑
k=1

(pki − tk) = (qi − 1)
i∑

k=1

tk ≥ qi − 1,

which shows inequality (A.13c).
Fourth, for all 1 ≤ i ≤ n−1 because (a)

∑i
k=1 tk ≤

∑n
k=1 tk ≤ 1 by constraint (A.12f)

and tk ≥ 0, ∀k, and (b) qi + qi+1 ≥ 1 by the definition of Dq, we have

i∑
k=1

(pki + pk(i+1))− (qi + qi+1) = (qi + qi+1)
i∑

k=1

tk − (qi + qi+1)

= (qi + qi+1)

(
i∑

k=1

tk − 1

)
≤

i∑
k=1

tk − 1,

which shows inequality (A.13d).
Finally, for each 1 ≤ i ≤ n, since

∑n
k=1 tk ≤ 1 by constraint (A.12f), and tk, qi ∈ [0, 1],

we have
∑i

k=1 pki = qi(
∑i

k=1 tk) ≤ qi(
∑n

k=1 tk) ≤ 1. Also, because si ∈ [sL
i , s

U
i ], it

follows that

i∑
k=1

(oki − sL
ipki) = (si − sL

i)
i∑

k=1

pki ≤ si − sL
i ,

i∑
k=1

(oki − sU
i pki) = (si − sU

i )
i∑

k=1

pki ≥ si − sU
i ,

which shows inequalities (A.13e)–(A.13f).

Step 2: We show the properties of the extreme points of polyhedron CG in the following
proposition. Recall that CG = {(t, q, s, p, o) : (A.12b), (A.12d), (A.13a)–(A.13f)}.

Proposition 11. Each extreme point (t, q, s, p, o) of CG has the following properties:

1. tk, qi, pki ∈ {0, 1} for all 1 ≤ k ≤ i ≤ n;

2. pki = tkqi and oki = tkqisi for all 1 ≤ k ≤ i ≤ n.

Proof. Proof of Proposition 11 For any ct
k, cq

i , c
s
i, c

p
ki, and co

ki for all 1 ≤ k ≤ i ≤ n, we
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consider linear program

(LP-CG) min
t,q,s,p,o

n∑
i=1

(cq
i qi + cs

isi) +
n∑
k=1

(
ct
ktk +

n∑
i=k

(cp
kipki + co

kioki)

)
s.t. (t, q, s, p, o) ∈ CG.

To prove that each extreme point of CG satisfies properties 1 and 2, we show that for
any ct

k, cq
i , c

s
i, c

p
ki, and co

ki, there exists an optimal solution (t∗, q∗, s∗, p∗, o∗) to (LP-CG)
that satisfies properties 1 and 2. First, we rewrite (LP-CG) as a two-stage formulation as
follows:

min
t,q,p

n∑
i=1

cq
i qi +

n∑
k=1

(
ct
ktk +

n∑
i=k

cp
kipki

)
+ V (p)

s.t. (t, q, p) ∈ CGt,q,p,

where polyhedron CGt,q,p := {(t, q, p) : (A.12b), (A.13a)–(A.13d)} and V (p) represents a
value function of p defined as

(LP-CG(p)) V (p) := min
s,o

{
n∑
i=1

cs
isi +

n∑
k=1

n∑
i=k

co
kioki : (s, o) ∈ CGs,o(p)

}
,

where CGs,o(p) =

{
(s, o) : (A.12d), (A.13e), (A.13f)

}

=

{
(s, o) : oki ≥ sL

ipki ∀1 ≤ k ≤ i ≤ n, (A.21a)

oki ≤ sU
i pki ∀1 ≤ k ≤ i ≤ n, (A.21b)

si −
i∑

k=1

(oki − sL
ipki) ≥ sL

i ∀1 ≤ i ≤ n, (A.21c)

si −
i∑

k=1

(oki − sU
i pki) ≤ sU

i ∀1 ≤ i ≤ n

}
(A.21d)

represents a parametric polyhedron depending on the values of pki. We solve (LP-CG(p))
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by considering its dual formulation

V (p) = max
ψ,ω

n∑
i=1

i∑
k=1

(sL
ipkiψ

L
ki − sU

i pkiψ
U
ki) +

n∑
i=1

[
sL
i

(
1−

i∑
k=1

pki

)
ωL
i

− sU
i

(
1−

i∑
k=1

pki

)
ωU
i

]
s.t. ψL

ki − ψU
ki − ωL

i + ωU
i = co

ki ∀1 ≤ k ≤ i ≤ n, (A.22a)

ωL
i − ωU

i = cs
i ∀1 ≤ i ≤ n, (A.22b)

where dual variables ψL/U

ki and ωL/U

i are associated with primal constraints (A.21a)–(A.21b)
and (A.21c)–(A.21d), respectively (after transforming all “≤” inequalities into the “≥”
form), and dual constraints (A.22a) and (A.22b) are associated with primal variables oki and
si, respectively. Because (i) sL

ipki ≤ oki ≤ sU
i pki by (A.12d), and so pki ≥ 0 for all 1 ≤ k ≤

i ≤ n, and (ii) sL
i(1−

∑i
k=1 pki) ≤ si−

∑i
k=1 oki ≤ sU

i (1−
∑i

k=1 pki) by (A.13e)–(A.13f),
and so 1−

∑i
k=1 pki ≥ 0 for all 1 ≤ i ≤ n, a dual optimal solution to problem (LP-CG(p))

is ψL∗
ki = (co

ki + cs
i)

+, ψU∗
ki = (−co

ki − cs
i)

+, ωL∗
i = (cs

i)
+, and ωU∗

i = (−cs
i)

+. It follows that

V (p) =
∑n

i=1 [sL
i(c

s
i)

+ − sU
i (−cs

i)
+]+

∑n
i=1

∑i
k=1

[
sL
i(c

o
ki+c

s
i)

+−sU
i (−co

ki−cs
i)

+−sL
i(c

s
i)

++

sU
i (−cs

i)
+

]
pki is a linear function of p. Therefore, (LP-CG) is equivalent to optimizing a

linear function of (t, q, p) on polyhedron CGt,q,p. It follows that there exists an optimal
solution (t∗, q∗, s∗, p∗, o∗) to (LP-CG) where (t∗, q∗, p∗) is an extreme point of polyhedron
CGt,q,p.

Second, we show that all extreme points of CGt,q,p are integral. To this end, we
show that the constraint matrix describing CGt,q,p is TU. For presentation convenience,
we rewrite the constraints defining CGt,q,p as follows:

qi + qi+1 +
i∑

k=1

tk −
i∑

k=1

(pki + pk(i+1)) ≥ 1 ∀1 ≤ i ≤ n− 1 (A.23a)

qn −
n∑
k=1

pkn ≥ 0, (A.23b)

−qi −
i∑

k=1

tk +
i∑

k=1

pki ≥ − 1 ∀1 ≤ i ≤ n, (A.23c)

−tk + pki + pk(i+1) ≥ 0 ∀1 ≤ k ≤ i ≤ n− 1, (A.23d)

tk − pki ≥ 0 ∀1 ≤ k ≤ i ≤ n, (A.23e)
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and we denote the constraint matrix as

CG0
t,q,p :=



(qi + qi+1 +
∑i

k=1 tk −
∑i

k=1(pki + pk(i+1))), ∀1 ≤ i ≤ n− 1

(qn −
∑n

k=1 pkn)

(−qi −
∑i

k=1 tk +
∑i

k=1 pki), ∀1 ≤ i ≤ n

(−tk + pki + pk(i+1)), ∀1 ≤ k ≤ i ≤ n− 1

(tk − pki), ∀1 ≤ k ≤ i ≤ n


,

where the five rows of sub-matrices are associated with constraints (A.23a)–(A.23e), re-
spectively. To show that matrix CG0

t,q,p is TU, we conduct pivot operations on the matrix
with variables pki, tk, and qi. Note that a matrix is TU if and only if it remains TU af-
ter pivot operations (cf. Nemhauser and Wolsey, 1999). We conduct the following pivot
operations in order.

1. For all 1 ≤ k ≤ i ≤ n, pivot with variable pki based on the component −1 in
sub-matrix (tk − pki) (corresponding to constraints (A.23e)). This pivot operation is
equivalent to (a) adding tk − pki, for all 1 ≤ k ≤ i ≤ n, to the left-hand side of
every constraint (A.23c)–(A.23d) in which variable pki has coefficient 1, (b) adding
pki − tk, for all 1 ≤ k ≤ i ≤ n, to the left-hand side of every constraint (A.23a)–
(A.23b) in which variable pki has coefficient −1 and (c) multiplying each left-hand
side of constraint (A.23e) by −1. As a result, the matrix after pivoting becomes

CG1
t,q,p :=



(qi + qi+1 −
∑i

k=1 tk), ∀1 ≤ i ≤ n− 1

(qn −
∑n

k=1 tk)

(−qi), ∀1 ≤ i ≤ n

(tk), ∀1 ≤ k ≤ i ≤ n− 1

(−tk + pki), ∀1 ≤ k ≤ i ≤ n


,

Note that sub-matrix (−tk +pki+pk(i+1)) becomes (tk) because the left-hand side of
each constraint (A.23d),−tk +pki +pk(i+1), is summed with tk−pki and tk−pk(i+1)

and so the coefficient of each tk changes from −1 to 1 after pivoting. Meanwhile,
sub-matrix (−qi −

∑i
k=1 tk +

∑i
k=1 pki) becomes (−qi) after pivoting because, for

each 1 ≤ i ≤ n,−qi−
∑i

k=1 tk+
∑i

k=1 pki is summed with tk−pki for all 1 ≤ k ≤ i.

2. For all 1 ≤ k ≤ n − 1, pivot with variable tk based on any component 1 in sub-
matrix (tk) (note that there are multiple components 1 associated with each variable
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tk in (tk) and we can pick any one of them). Since all components in each row of
sub-matrix (tk) are zeros except one equaling 1, these pivot operations (a) make all
coefficients of all variables tk zeros in matrix CG1

t,q,p as long as 1 ≤ k ≤ n − 1, and
(b) keep all coefficients of all variables qi and pki unchanged. As a result, the matrix
after pivoting becomes

CG2
t,q,p :=



(qi + qi+1), ∀1 ≤ i ≤ n− 1

(qn − tn)

(−qi), ∀1 ≤ i ≤ n

(tk), ∀1 ≤ k ≤ i ≤ n− 1(pki), ∀1 ≤ k ≤ i ≤ n− 1

(−tn + pnn),


.

3. For all 1 ≤ i ≤ n, pivot with variable qi based on any component −1 in sub-matrix
(−qi) in CG2

t,q,p. Since (−qi) is an identity matrix, these pivot operations eliminate
all coefficients of variables qi in all other sub-matrices. As a result, the matrix after
pivoting becomes

CG2
t,q,p :=



(0), ∀1 ≤ i ≤ n− 1

(−tn)

(qi), ∀1 ≤ i ≤ n

(tk), ∀1 ≤ k ≤ i ≤ n− 1(pki), ∀1 ≤ k ≤ i ≤ n− 1

(−tn + pnn),


.

It follows that matrix CG3
t,q,p contains only {−1, 0, 1} entries, has no more than two

nonzero entries in each row, and the sum of the entries is zero for each row containing
two nonzero entries. Hence, matrix CG3

t,q,p is TU, and so is matrix CG0
t,q,p.

Therefore, the extreme points of polyhedron CGt,q,p are integral and so property 1 is
proved.

Third, to show property 2, we consider any extreme point (t, q, s, p, o) of polyhedron
CG. Because

∑n
k=1 tk ≤ 1 and each tk ∈ {0, 1} by property 1, we show pki = tkqi by

discussing the following two cases on values of tk.
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1. If tk = 0 for all 1 ≤ k ≤ n, then pki = 0 for all 1 ≤ k ≤ i ≤ n because pki ≤ tk. It
follows that pki = tkqi = 0.

2. If there exists 1 ≤ k∗ ≤ n such that tk∗ = 1, then any other tk = 0. It follows that
pki = 0, and so pki = tkqi = 0 for all 1 ≤ k ≤ i ≤ n and k 6= k∗. For all k∗ ≤ i ≤ n,
constraints (A.13c) yield

−qi −
i∑

k=1

tk +
i∑

k=1

pki = −qi − 1 + pk∗i ≥ −1 ⇒ pk∗i ≥ qi.

Also, for all k∗ ≤ i ≤ n− 1, constraints (A.13d) yield

qi + qi+1 +
i∑

k=1

tk −
i∑

k=1

(pki + pk(i+1)) = qi + qi+1 + 1− pk∗i − pk∗(i+1) ≥ 1

⇒ pk∗i + pk∗(i+1) ≤ qi + qi+1.

It follows that pk∗i + pk∗(i+1) = qi + qi+1 for all k∗ ≤ i ≤ n − 1. Furthermore,
constraint (A.13a) implies qn −

∑n
k=1 pkn = qn − pk∗n ≥ 0, and so qn = pk∗n.

Therefore, qi = pk∗i, or equivalently qi = tk∗pk∗i since tk∗ = 1, for all k∗ ≤ i ≤ n.

Since (t, q, s, p, o) is an extreme point of polyhedronCG, each oki satisfies either inequality
(A.21a) or (A.21b) at equality, and each si satisfies either inequality (A.21c) or (A.21d) at
equality. We discuss the following cases to show oki = sipki = tkqisi.

1. If tk = 0 for all 1 ≤ k ≤ n, then pki = 0 for all 1 ≤ k ≤ i ≤ n because pki ≤ tk. It
follows that oki = 0 by constraints (A.12d). Therefore, oki = sipki = 0.

2. If there exists 1 ≤ k∗ ≤ n such that tk∗ = 1, then any other tk = 0. It follows that
pki = 0, and so oki = sipki = 0 for all 1 ≤ k ≤ i ≤ n and k 6= k∗. Then, for all
k∗ ≤ i ≤ n, inequalities (A.21c)–(A.21d) yield

si −
i∑

k=1

(oki − sL
ipki) = si − ok∗i + sL

ipk∗i ≥ sL
i , (A.24a)

si −
i∑

k=1

(oki − sU
i pki) = si − ok∗i + sU

i pk∗i ≤ sU
i . (A.24b)

Hence, each si satisfies either inequality (A.24a) or (A.24b) at equality. We discuss
the following two sub-cases to finish the proof.
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Sub-case 1. If pk∗i = 0, then ok∗i = 0 by constraints (A.12d). Therefore, ok∗i =

sipk∗i = 0.

Sub-case 2. If pk∗i = 1, then inequalities (A.24a)–(A.24b) imply si = ok∗i. There-
fore, ok∗i = sipk∗i.

Step 3: Finally, we prove Theorem A.1 based on the previous two propositions.

Proof. Proof of Theorem A.1 (CG ⊇ conv(G)) By Proposition 10, since polyhedron
CG consists of either trivial equalities/inequalities or valid inequalities of set G, we have
(t, q, s, p, o) ∈ CG if (t, q, s, p, o) ∈ G. It follows that CG ⊇ conv(G).
(CG ⊆ conv(G)) By Proposition 11, since each extreme point (t, q, s, p, o) of CG satisfies
properties 1, 2, and 3, (t, q, s, p, o) ∈ G. By the Minkowski’s Theorem on polyhedron, we
have x ∈ conv(G) if x ∈ CG. It follows that CG ⊆ conv(G). This completes the proof.
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APPENDIX B

Appendix for Chapter 5

B.1 Proof of Theorem 5.1

Proof. Define dual variables ri for (5.3b),

[
Hi pi

pTi qi

]
for (5.3c), and Gi for (5.3d). The

conic dual problem of (5.3) is

zDM
i

= max
Gi,pi,ri,Hi,qi

γ2Σ0
i ·Gi + 1− ri + Σ0

i ·Hi + γ1qi (B.1a)

s.t. (si − µ0
i )T(−Gi)(si − µ0

i ) + 2(pi)
T(si − µ0

i ) + ri ≤ I{si:∑j∈J(i) sij ŷij≤Tiẑi}(si), ∀si ∈ R|J| (B.1b)

Gi ∈ S|J|×|J|+ ,

[
Hi pi

pTi qi

]
∈ S(|J|+1)×(|J|+1)

+ . (B.1c)

As strong duality holds for the primal and dual problems (Shapiro, 2001), satisfying the
DR chance constraints (5.1e) with the ambiguity set DMi , is equivalent to having solutions
with objective value zDMi ≥ 1 − αi, i ∈ I . After applying Lemma 1 in Jiang and Guan
(2016), the dual problem (B.1) is equivalent to SDP(ŷi, ẑi), after replacing the semi-infinite
constraints (B.1b) with finite number of SDP constraints. This completes the proof.
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APPENDIX C

Appendix for Chapter 6

C.1 Proof of Theorem 6.7

Proof: When zi = 1, inequality (6.18a) reduces to the extended polymatroid inequality.
When zi = 0, we have yij = 0 for all j ∈ [J ] due to constraints (6.17b). It follows that
inequality (6.18a) holds valid.

When zi = 1, inequality (6.18b) reduces to the extended polymatroid inequality. When
zi = 0, we have yij = 0 for all j ∈ [J ] due to constraints (6.17b) and so wijk = 0 for all
j, k ∈ [J ]. It follows that vi = 0 by definition. Hence, inequality (6.18b) holds valid. �

C.2 Proof of Theorem 6.8

Proof: (Validity of inequality (6.19a)) If j = k, then wijk = y2
ij = yij . In this case,

inequality (6.19a) reduces to yij ≥ 2yij +
∑I

`=1
`6=i

y`j − 1, which clearly holds because

yij +
∑I

`=1
6̀=i
y`j =

∑I
i=1 yij ≤ 1. If j 6= k, then we discuss the following two cases:

[1] If max{yij, yik} = 1, then we assume yij = 1 without loss of generality. It follows
that y`j = 0 due to constraints (6.17c) and so w`jk = y`jy`k = 0 for all ` 6= i. Hence,∑I

`=1
6̀=i
w`jk = 0 and inequality (6.19a) reduces to wijk ≥ yij + yik − 1, which holds

valid.

[2] If max{yij, yik} = 0, then yij = yik = 0 and wijk = 0. It remains to show∑I
`=1
6̀=i
w`jk ≤ 1. Indeed, since w`jk ≤ y`j , we have

∑I
`=1
`6=i

w`jk ≤
∑I

`=1
`6=i

y`j ≤∑I
`=1 y`j = 1, where the last equality is due to constraints (6.17c).

(Validity of inequality (6.19b)) This inequality clearly holds valid when zi = 1. When
zi = 0, we have yij = yik = 0 due to constraints (6.17b). It follows that wijk = yijyik = 0
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and so the inequality holds valid.
(Validity of inequality (6.19c)) This inequality holds valid when zi = 0. When zi = 1,
this inequality is equivalent to yik

∑J
j=1
j 6=k

yij ≤
∑J

j=1 yij − 1. We discuss the following two
cases:

[1] If yik = 0, then
∑J

j=1 yij ≥ 1 without loss of optimality because zi = 1. Inequality
(6.19c) holds valid.

[2] If yik = 1, then yik
∑J

j=1
j 6=k

yij =
∑J

j=1
j 6=k

yij . Meanwhile,
∑J

j=1 yij − 1 =
∑J

j=1
j 6=k

yij +

yik − 1 =
∑J

j=1
j 6=k

yij . Inequality (6.19c) holds valid.

(Validity of inequality (6.19d)) This inequality holds valid when zi = 0. When zi = 1, we
have

∑J
j=1 yij ≥ 1 without loss of optimality. It follows that

∑J
j=1 yij = 1 or

∑J
j=1 yij ≥

2, and so (
∑J

j=1 yij − 1)(
∑J

j=1 yij − 2) ≥ 0. Hence,

( J∑
j=1

yij − 1
)( J∑

j=1

yij − 2
)

=
J∑
j=1

y2
ij + 2

J∑
j=1

J∑
k=j+1

yijyik − 3
( J∑
j=1

yij

)
+ 2

=
J∑
j=1

yij + 2
J∑
j=1

J∑
k=j+1

wijk − 3
( J∑
j=1

yij

)
+ 2

= 2
J∑
j=1

J∑
k=j+1

wijk − 2

[( J∑
j=1

yij

)
− 1

]
≥ 0.

Inequality (6.19d) follows. �

C.3 Out-of-Sample Performance of DCBP

Through testing instances of chance-constrained bin packing, we show that DCBP solu-
tions have very low probabilities of violating capacities in all the out-of-sample tests, even
when the distributional information is misspecified. Specifically, we evaluate the out-of-
sample performance of the optimal solutions to the DCBP1, DCBP2, Gaussian-based 0-1
SOC models, and the SAA-based MILP model. To generate the out-of-sample reference
scenarios, we consider either misspecified distribution type or misspecified moment infor-
mation as follows.

• Misspecified distribution type: We sample 10,000 out-of-sample data points from a
two-point distribution having the same mean and standard deviation of each random
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variable t̃ij for i ∈ [I] and j ∈ [J ] as the in-sample data. The service time is realized

as µij + (1−p)√
p(1−p)

σij with probability p (0 < p < 1) and as µij −
√
p(1−p)

(1−p) σij with

probability 1 − p, where µij and σij are the sample mean and standard deviation
of t̃ij obtained from the in-sample data. We set p = 0.3 so that we have smaller
probability of having larger service time realizations.

• Misspecified moments: Alternatively, we sample 10,000 data points from the Gaus-
sian distribution, but only consider the hM`V type of appointments, instead of an
equal mixture of all the four types. In each sample and for each i ∈ [I], we draw a
standard-Gaussian random number ρi, and for each j ∈ [J ], generate a service time
realization as µij + ρiσij .

Performance of solutions under diagonal matrices Under diagonal matrices, both of
the two DCBP models open three servers (i.e., Servers 4, 5, 6 by DCBP1 and Servers 2, 4,
5 by DCBP2), while the Gaussian and SAA approaches only open Servers 4 and 6. We first
use the 10, 000 out-of-sample data points given by misspecified distribution type, namely,
the two-point distribution. Table C.1 reports each solution’s probability of having the total
time of assigned appointments not exceeding the capacity of the server to which they are
assigned.

Table C.1: Solution reliability in out-of-sample data following a misspecified distribution
type

Model Server 2 Server 4 Server 5 Server 6
DCBP1 N/A 1.00 1.00 1.00
DCBP2 1.00 1.00 1.00 N/A

Gaussian N/A 0.69 N/A 0.91
SAA N/A 0.69 N/A 0.91

“N/A”: the server is not opened by using the corresponding method.

Recall that αi = 0.05 for all i used in all four approaches. The reliability results of the
Gaussian and SAA approaches are significantly lower than the desired probability threshold
1−αi = 0.95 on Server 4, and slightly lower than 0.95 on Server 6. On the other hand, the
optimal solutions of DCBP1 and DCBP2 do not exceed the capacity of any open servers.

Next, we use the 10, 000 out-of-sample data points given by misspecified moments.
Table C.2 reports the reliability performance of each optimal solution. The DCBP2 solu-
tion still outperforms solutions given by all the other approaches and achieves the desired
reliability in all the three open servers. The Gaussian and SAA solutions perform poorly
when the moment information is different from the empirical inputs. The DCBP1 solution
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Table C.2: Solution reliability in out-of-sample scenarios with misspecified moments

Model Server 2 Server 4 Server 5 Server 6
DCBP1 N/A 0.94 1.00 1.00
DCBP2 0.98 1.00 0.99 N/A

Gaussian N/A 0.59 N/A 0.89
SAA N/A 0.59 N/A 0.89

“N/A”: the server is not opened by using the corresponding method.

respects the capacities of Servers 5 and 6 with sufficiently high probability (i.e., > 0.95),
but yields a slightly lower reliability (0.94) than the threshold on Server 4.

Performance of solutions under general matrices We optimize all the models under
general matrices by using the empirical covariance matrices of the in-sample data, and
report their corresponding solutions in Table C.3. Each entry illustrates the number of
appointments assigned to an open server. Note that the Gaussian and SAA approaches
yield the same solution of opening servers and assigning appointments.

Table C.3: Optimal open servers and appointment-to-server assignments under general
matrices

Model Server 3 Server 4 Server 5 Server 6
DCBP1 12 N/A 13 7
DCBP2 12 11 9 N/A

Gaussian 15 N/A 17 N/A
SAA 15 N/A 17 N/A

“N/A”: the server is not opened by using the corresponding method.

We test the solutions shown in Table C.3 in the out-of-sample scenarios under misspec-
ified distribution type, and present their reliability performance in Table C.4. We again
show that under general covariance matrices, the DCBP2 model yields the most conserva-
tive solution that does not exceed any open server’s capacity, while DCBP1 only ensures
the desired reliability on Servers 3 and 6, but not on Server 5. The Gaussian and SAA
approaches cannot produce solutions that can achieve the desired reliability threshold on
any of their open servers.
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Table C.4: Solution reliability in out-of-sample scenarios with misspecified moments

Model Server 3 Server 4 Server 5 Server 6
DCBP1 1.00 N/A 0.91 1.00
DCBP2 1.00 1.00 1.00 N/A

Gaussian 0.91 N/A 0.91 N/A
SAA 0.91 N/A 0.91 N/A

“N/A”: the server is not opened by using the corresponding method.
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