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Abstract

Coarsening is a fundamental phenomenon that occurs in a wide range of engineering materials,

from polymer blends to cast aluminum alloys to functional nanostructured materials. The physics

of coarsening is well understood. Differences in interfacial curvatures provide a driving force for

mass transport, and the resulting evolution reduces the overall interfacial energy of the system as

the average length scale of microstructural features increases. For simple particulate systems, such

as those consisting of spherical precipitates at low volume fractions, analytical descriptions for

the evolution are available and provide powerful tools for engineers to predict the microstructure

for a given material and processing conditions. However, it is more difficult to predict the evo-

lution of complex, well-connected structures like those present in dendritic solid-liquid systems

and nanoporous metals. In these cases, simulations are necessary in order to develop fundamental

understanding of coarsening and to gain the ability to predict microstructures that undergo coars-

ening. This dissertation consists of a series of simulation studies of coarsening of microstructures

with complex morphologies. The simulation results and theories obtained here represent a funda-

mental contribution to the understanding of coarsening in complex microstructures.

Coarsening with phases that have dissimilar mobilities is a condition typical of experimen-

tal solid-liquid systems. In a two-dimensional simulation, coarsening with dissimilar mobilities

resulted in a morphological transition, as the initially complex, labyrinthine microstructure trans-

forms into a system of high-mobility particles in a low-mobility matrix. In contrast, coarsening

in three dimensions with dissimilar mobilities resulted in a stable bicontinuous structure after an

initial transient stage. In this transient stage, we observed a theoretically predicted relationship

between the coarsening rate constant and the variance of scaled mean curvature.

Another important class of coarsening systems is those evolving by surface diffusion, includ-

xix



ing nanoporous metals. Intermediate volume fractions (between 36% and 50% minority phase) re-

sulted in bicontinuous structures that coarsened self-similarly; that is, their morphologies became

time-invariant when scaled by an evolving length scale. Morphologies of structures coarsening via

surface diffusion were quantitatively different from those coarsening via bulk diffusion, but the

difference was smaller than that of volume fraction. Simulations at a lower volume fraction, 32%,

found coexistence of independent particles with well-connected domains.

The effect of regularization in a phase field model with strongly anisotropic interfacial energy

was quantified to understand and mitigate the error. An asymptotic analysis was performed to

derive the expression for the effective interfacial energy for a given input interfacial energy. Simu-

lated equilibrium shapes confirmed the prediction. The result can be used to parameterize the input

anisotropic interfacial energy to implement desired interfacial anisotropy.

To examine the origin of the ubiquity of the coarsening power law (the length scale proportional

to the cubed root of time) two-dimensional simulations were conducted with a bimodal particle

distribution. Particles with small radii were found to dominate the overall evolution within these

simulations. The small particles evolved self-similarly, leading to agreement with the theoretical

t1/3 power law despite a lack of self-similarity in the overall structure. This set of simulations ver-

ified the existence of inactive length scales in coarsening, which was hypothesized in experiments.

Additionally, a model was developed to study the role of topological singularities (pinching-off

of necks) in bicontinuous structures during coarsening. Preventing topological singularities was

found to reduce the coarsening rate, but further analysis of the data is required to fully understand

the role of topological singularities.
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Chapter 1

Introduction

1.1 Motivation

Interfaces between phases in a physical system disrupt the inter-atomic or inter-molecular inter-

actions that stabilize the phases, increasing the free energy of the system. This interfacial energy

provides a thermodynamic driving force for evolution: the system can reduce its total free energy

by reducing the total area of interface. The process by which a two-phase system evolves to reduce

its total interfacial area is known as coarsening or Ostwald ripening [1].

Coarsening, in a broad sense, is ubiquitous in both our natural environment and in engineered

materials. One can observe it, for example, in the foam bubbles that compose the head of a freshly

poured pint of beer, or in the water particles that precipitate on one’s glasses upon entering a warm,

humid building from the cold. In both of these cases, small particles, because of their relatively

high surface area in proportion to their volume, disappear from the system, and their material is

absorbed into larger particles that increase in size. Figure 1.1 [2] illustrates this process in a solid-

liquid system composed of Sn-rich particles in a Pb-rich liquid. As the system evolves in time, the

Sn-rich particles (light phase) increase in size and decrease in number, resulting in a decrease of

the interfacial area of the system.

Coarsening plays a fundamental role in materials science because it affects the microstructure

of materials (the shapes and distributions of phases at small length scales), which in turn affects

the properties of materials [3]. Materials properties determine their performance in applications.
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Figure 1.1: Optical micrographs of Pb-Sn alloy microstructure following coarsening at 185 ◦C, just
above the eutectic temperature, for the indicated time. The light phase is primary Sn-rich particles
and the dark phase is eutectic Pb-Sn. Adapted from Ref. [2] (not subject to copyright).

For example, nickel-base superalloys are commonly used in applications that require high strength

at high temperatures, such as turbine disks in the hot section of jet engines [4]. Their resistance to

deformation at high temperatures (creep) is affected by the size and distribution of micro- or nano-

scale Ni3(Al,Ti) (γ ′-phase) particles [5]. An example Ni-base alloy microstructure is illustrated

in Fig. 1.2 [5]. Small γ ′-phase particles initially precipitate into the Ni matrix, then grow until

the particle and matrix phases are near equilibrium, and finally they coarsen [6]. Small particles

disappear and large particles grow via diffusion through the Ni matrix.

Cast aluminum alloys provide another example. They are widely used for structural compo-

nents in the aerospace and automotive industries [7], where strength and toughness are required.

The mechanical properties of these alloys depend in part on the spacing between arms of the

dendritic structure that results from solidification [8, 9]. As shown in Fig. 1.3 [10], coarsening in-

creases this arm spacing, as smaller features (tertiary dendrite arms) are eliminated and the larger

features (primary and secondary dendrite arms) increase in size.

The driving force for coarsening is greater when the length scale of the system is smaller, and

therefore coarsening is a particularly important process at the nano-scale [11]. Nanoporous metal-

lic structures [11, 12, 13, 14] have been the subject of recent interest for functional applications

[15, 16, 17, 18], and as materials with tunable mechanical properties [19, 20]. These applications
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Figure 1.2: SEM micrograph of rounded cuboidal type γ ′ particles in a nickel-base superalloy
(IN-100, as-cast). Reprinted from Ref. [5] with permission.

Figure 1.3: Cross-sections of dendritic microstructure during coarsening, showing Al-rich den-
drites (red phase) in Cu-rich liquid (blue phase) at four different times: (a) 8.40 min, (b) 25.12 min,
(c) 47.62 min, and (d) 78.15 min. Sample was prepared by directional solidification of Al-
19wt%Cu and was coarsened at a temperature of 558 ◦C. Reprinted from Ref. [10].
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Figure 1.4: SEM images of nanoporous gold. Samples were prepared by dealloying 28at.% Au-72
at.% Ag alloy in 35% nitric acid solution at 80 ◦C for 72h and coarsening at (from left to right)
300 ◦C, 400 ◦C, 500 ◦C, and 600 ◦C for 2 h. Adapted from Ref. [19] with permission.

rely on high surface area and small feature sizes, both of which are affected by coarsening. Fig-

ure 1.4 shows the evolution of nanoporous gold during coarsening [21]. The mechanism for mass

transport in these structures is thought to be diffusion of atoms along the surface (i.e., surface diffu-

sion) [16, 22], as opposed to diffusion through the liquid phase or Ni matrix phase in the previous

examples (i.e., bulk diffusion).

Given the fundamental role of coarsening in materials science, it is unsurprising that it has

garnered considerable theoretical interest [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The seminal

theory of coarsening is that of Lifshitz and Slyozov [23] and Wagner [24] (hereafter LSW), which

is valid in the limit of low volume fraction of the precipitate phase. This theory predicts how a

microstructure that consists of spherical particles evolves in time, specifically how particles grow

or shrink based on their size relative to a critical radius. As part of the theory, LSW derived a

particle size distribution that was time-invariant when scaled by the critical radius, which evolves in

time. This time-invariance after scaling is known as self-similarity [33]. The kinetics of evolution

of the critical radius were determined analytically, and it was found to follow a t1/3 power law

during self-similar evolution. Finally, LSW also predicted that initial particle size distributions

different from the self-similar distribution would converge toward it over time.

LSW theory has inspired a considerable body of literature, including direct experimental com-

parisons [34, 35] and theoretical extensions to higher volume fractions [25, 26, 27, 30]. Ele-

ments of LSW theory have also been combined with theories of nucleation and growth to develop

more complete descriptions of precipitation kinetics, notably the analytical model of Langer and
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Schwartz [6] and the numerical model of Kampmann and Wagner [36]. These models form the

basis of commercial tools for predicting precipitation in multicomponent alloys, such as the TC-

PRISMA c© module developed by Thermo-Calc Software AB [37, 38]. As materials science and

engineering continues to move toward a framework of ICME- integrated computational materials

engineering [39], fundamental models like LSW theory are becoming essential components of the

more complex tools that are being developed for engineering applications.

The present work addresses a limitation common to LSW theory and the related theories dis-

cussed in Refs. [28, 29, 31, 32]: they assume that the microstructure consists of particles embedded

in a matrix. While this type of morphology is very widely observed, there are also systems with

more complex microstructures, where both phases are well-connected or even bicontinuous. In a

bicontinuous structure, both phases are fully connected; a path can be found to connect any two

points within the same phase without crossing the interface. Dendritic microstructures (e.g., Fig.

1.3) are one family of complex microstructures that are of particular technological importance

because of their presence during metal casting [10, 40, 41, 42, 43, 44, 45, 46]. Bicontinuous mi-

crostructures include polymer blends [47, 48, 49] and nanoporous metallic structures (e.g., Fig.

1.4), which, as noted before, are being investigated for functional [15, 16, 17, 18] and structural

[19, 20] applications. Clearly, coarsening of complex microstructures is of considerable interest to

the broader materials science community.

The overall objective of this dissertation is to build a foundation for a theory of the coars-

ening of complex microstructures, which would enable predictions of microstructural evolution

just as coarsening theories do for particle-matrix systems. Such a theory could be employed in

computational tools, for example, to predict microstructures resulting from thermal treatment of

cast components. A foundation is necessary because of the difficulty of modeling coarsening in

complex microstructures. Certain facts about the coarsening dynamics are known, such as the evo-

lution of local curvature [42, 50, 51] and the evolution of global microstructure quantities (area and

volume) [52], but additional facts or assumptions are necessary to make analytical predictions.

To gain more insight into the dynamics, we perform phase field simulations of the coarsening
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of complex microstructures, similarly to Refs. [53, 54, 55]. We extend the previous work by

incorporating conditions that are expected in experimental systems: mobilities that are dissimilar

between the phases (expected in solid-liquid systems [44, 45]) and surface diffusion (expected in

nanoporous metallic structures [13, 16]). We also begin to examine anisotropic interfacial energy,

which is present when one phase or both phases are crystalline. Results from these simulations

provide a basis for comparison to experiments.

Furthermore, by manipulating the conditions of our simulations, we can test hypotheses in ways

that are difficult (if not impossible) to do experimentally. We can isolate parameters, such as the

transport coefficients (i.e., the mobilities) of the phases, while keeping all of the other conditions,

such as the initial morphology and interfacial energy, constant. We can isolate morphology itself

by specifying the initial geometry, and examine geometric factors in coarsening. We can even ma-

nipulate the coarsening dynamics directly, by kinetically inhibiting processes such as topological

singularities. The differences and similarities between conditions will help future authors develop

and test hypotheses about the dynamics. This dissertation itself contains supporting evidence for

two such hypotheses (the first is introduced in Section 2.3.2 and applied in Sections 4.5.4 and 8.1

and the second is described in Chapter 7), which represent contributions to our understanding of

the coarsening of complex microstructures.

1.2 Dissertation outline

This dissertation consists of a series of simulation studies using the phase field approach to probe

the effects of different conditions on the coarsening process. Chapters 1-3 contain general intro-

ductory information and methods, while our principal results are contained in Chapters 4-8.

Chapter 2 contains background regarding the theory of coarsening as it is applied in this work,

starting with geometric definitions. The thermodynamic assumptions of the theory are explained,

and the equations governing coarsening dynamics are presented from a classical (i.e., sharp in-

terface) perspective. Two theoretical methods for understanding coarsening are introduced: the
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power laws for self-similar evolution and the geometrically general theory of DeHoff [52].

Chapter 3 introduces the simulation methods in general terms, since each Chapter has dis-

tinct variants of the model or initial conditions. The phase field model and numerical methods

are presented. A rescaling procedure is provided that enabled us to compare our results to litera-

ture results with different parameters. Finally, the methods used to characterize and quantify the

simulated structures are given.

In Chapter 4, coarsening of a two-phase system in which the phases had dissimilar mobilities

is studied at 50/50 (50%) volume fraction. The model for dissimilar mobilities is introduced, and

results in two dimensions (2D) and three dimensions (3D) are presented and discussed. In 2D,

a morphological transition during coarsening is identified when the mobility is dissimilar that is

not observed when the mobility is constant. The 3-D simulations with dissimilar mobilities re-

sulted in bicontinuous morphologies that evolved self-similarly. The transient coarsening kinetics

in the three-dimensional simulations are observed to match a theoretical prediction by DeHoff

[52] that related the variance in scaled curvature to the instantaneous coarsening rate constant.

Based on theory and simulations, The primary difference in the kinetics of coarsening between the

dissimilar-mobility and constant mobility is identified.

In Chapter 5, 3-D simulations of coarsening via surface diffusion are presented. Self-similar

coarsening via surface diffusion is observed at 50% and 36/64 (36%) volume fractions. These

self-similarly evolving structures had bicontinuous morphologies, similar to those observed dur-

ing coarsening via bulk diffusion. Quantitative differences were found between these surface- and

bulk-diffusion cases, but overall the difference between morphologies due to coarsening mecha-

nism is smaller than the effect of volume fraction. Coarsening via surface and bulk diffusion is also

examined at 32% volume fraction, which resulted in structures with both a single well-connected

domain (typical of bicontinuous structures) and a number of independent particles. Sensitivity

of the structures to volume fraction is confirmed by examining coarsening via bulk diffusion at

30% volume fraction, in which the initial structure is observed to break up rapidly into particles.

Finally, the surface-diffusion model is compared to an alternative model that had been used in
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previous literature.

Chapter 6 examines a phase field model for evolution with regularized strongly anisotropic

interfacial energy. The interfacial energy is found to be affected by the regularization, and a Cahn-

Hoffman ξ -vector is derived for the modified interfacial energy. This model is found to converge to

the correct coarsening dynamics for the modified interfacial energy by an asymptotic analysis. Ex-

cellent agreement is obtained for the particle shapes away from the regularized corners, confirming

the analysis, and the simulated corner shapes were found to agree with sharp interface predictions

for the Willmore regularization (i.e., mean curvature squared).

In Chapter 7, the existence of inactive length scales in coarsening is demonstrated in a two-

dimensional simulation. Particles with small radii were found to dominate the overall evolution

of a system with a bimodal particle size distribution. The small particles evolved self-similarly,

leading to agreement with the theoretical t1/3 power law despite a lack of self-similarity in the

overall structure.

Chapter 8 contains two sections of preliminary work. Additional simulation results with con-

stant mobility are provided that support the relationship between the variance in scaled curvature

and the instantaneous coarsening rate constant that was derived in Chapter 4. The relationship is

confirmed for different volume fractions and initial morphologies. A model is provided for kineti-

cally inhibiting topological singularities in bicontinuous microstructures. Preliminary results with

this model indicate that topological singularities are important kinetically, but further analysis of

the data is required to fully understand their role in the coarsening process.

Chapter 9 contains conclusions, applications for the presented work, and suggested directions

for future work.
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Chapter 2

Theoretical background

A rigorous theoretical foundation is necessary to ground our inquiry into coarsening. In this

chapter, we present the fundamental physical relationships governing the dynamics of coarsen-

ing, and introduce methods to model coarsening analytically based on these relationships. We

begin with definitions of the relevant geometric quantities, including curvature, interfacial veloc-

ity, and the surface gradient and Laplacian. Then, starting from a standard description of the bulk

thermodynamics of materials, we define the thermodynamic framework for our presentation of

the dynamics. These provide the necessary background to introduce the Gibbs-Thomson effect,

which relates interfacial geometry to chemical potential. Gradients in chemical potential provide

the driving force for mass transport, for which two mechanisms are introduced, bulk and surface

diffusion. Finally, two theoretical methods for modeling coarsening are introduced: the power law

for dynamic scaling and the geometrically general theory of DeHoff [52].

2.1 Surface kinematics

Here, we important concepts regarding the geometry of the interface, such as curvature, interfacial

velocity, and the surface gradient and Laplacian. This section is split into two subsections corre-

sponding to different ways of defining coordinates on the interface. First, we consider the classical

approach from differential geometry, in which the interface is parametrized by surface coordinates.

This is convenient when such a parametrization is available (i.e., for test problems), and when the

interface is evolving in time. The second approach does not explicitly parametrize the interface, in-
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stead defining quantities in terms of three-dimensional (3-D) Cartesian coordinates. This approach

contains definitions and identities that are used in Chapter 6.

2.1.1 Differential geometry

Here, we define the geometric concepts used in subsequent Chapters in terms standard to differ-

ential geometry. The information about curvature is primarily drawn from Kreyszig [56], while

relations for interfacial evolution are drawn from Refs. [50, 57]. We consider the interface as a

surface, S, embedded in a volume, Ω, of a 3-D Euclidean space with Cartesian coordinates. The

surface is described mathematically by a function, ~f (u1,u2), that maps surface coordinates (u1,u2)

to the 3-D Cartesian coordinates (x1,x2,x3) of points on the surface. The Monge parametrization

is a useful example,

~f = [u1,u2,z(u1,u2)] , (2.1)

where the function z(u1,u2) gives the ‘height’ of the surface above the x3 = 0 plane. The partial

derivatives of ~f with respect to the surface coordinates u1 and u2 are vectors tangent to the surface.

Taking the cross product of ∂~f/∂u1 and ∂~f/∂u2 and normalizing, we obtain the unit normal vector

~n,

~n =±
∂~f
∂u1
× ∂~f

∂u2∣∣∣ ∂~f
∂u1
× ∂~f

∂u2

∣∣∣ , (2.2)

where the choice of sign represents the orientation of the surface. The surface divides the domain

Ω into two subdomains, Ω+ and Ω−, which contain the two phases β and α , respectively. To

specify the orientation of interfaces in this Chapter, we define that the normal vector points from

Ω− to Ω+, i.e., from β phase to α phase.

The tangent vectors ∂~f/∂u1 and ∂~f/∂u2 are also used to obtain the metric tensor of ~f , defined

as

gi j =
∂~f
∂ui
· ∂~f

∂u j
, (2.3)

This tensor is used to relate distances and areas in the surface coordinates to distances and areas on
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the surface. For example, gi j is used to express the element of area dA at some point on S in terms

of the surface coordinates,

dA =
√

det(gi j)du1du2. (2.4)

The quantity
√

det(gi j) is the area of the parallelogram formed by ∂~f/∂u1 and ∂~f/∂u2, and it is

also the denominator in Eq. 2.2 The contravariant metric tensor gi j is defined as the inverse of gi j,

gi j =
1√

det(gi j)

 g22 −g12

−g12 g11

 . (2.5)

Now we consider how to calculate curvature. The second fundamental form of ~f can be written as

hi j =−
∂~f
∂ui
· ∂~n

∂u j
. (2.6)

The sign of this equation determines the sign of curvature relative to the orientation of the interface

(the direction in which the normal is pointing). With the normal vector pointing from β phase to

α phase, as defined previously, spherical particles of β phase have positive curvature. Multiplying

hi j by the contravariant metric tensor gi j results in the shape operator [58], h j
i ,

h j
i =

2

∑
k

gk jhik. (2.7)

The principal curvatures κ1 and κ2 are the eigenvalues of h j
i , where in this work κ2 ≥ κ1 by con-

vention. The mean curvature H and Gaussian curvature K are related to the trace and determinant

of h j
i , respectively:

H =
1
2

tr
(

h j
i

)
=

1
2
(κ1 +κ2) , (2.8)

K = det
(

h j
i

)
= κ1κ2. (2.9)

Curvature represents the rate of change of the normal vector along the surface. This can be easily

visualized when the interface is a curve in two dimensions (2D), which can be described as a 3-D
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surface with cylindrical symmetry. This parametrization can be expressed as ~f = [x(u1),y(u1),u2],

and the element of arc ds of the curve is given by

ds =

√(
dx
du1

)2

+

(
dy
du1

)2

du1. (2.10)

Defining the orientation angle θ as the angle between the normal vector to the surface and a fixed

reference vector in the x1− x2 plane, the scalar curvature κ of the 2-D curve is simply [59]

κ =
∂θ

∂ s
. (2.11)

Scalar curvature κ is related to the 3-D curvatures by H = κ/2, K = 0, and κ2 = κ and κ1 = 0

when κ > 0 (κ1 = κ and κ2 = 0 otherwise).

Parametric definitions of surfaces are useful for describing evolving interfaces. Evolution can

be defined such that while the interface S changes, the domain of surface coordinates U stays

constant, and therefore the surface coordinates (u1,u2) ∈ U are unchanging. Accordingly, we

define the normal motion of the interface by

∂~f
∂ t

= vn~n, (2.12)

where vn is the normal velocity. With the evolution of the surface defined in this way, evolution

equations for the quantities defined in Eqs. 2.3-2.9 can be obtained via application of the rules of

partial differentiation. For example, the element of area defined in Eq. 2.4 evolves according to

∂

∂ t
dA =−2vnHdA. (2.13)

See Ref. [57] (Lemma 3.2 and Corollary 3.6) for proof in the case vn = −2H. The evolution of
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mean curvature itself is given by

∂H
∂ t

= vn
(
2H2−K

)
+

1
2

∇
2
Svn, (2.14)

where ∇2
Svn denotes the surface Laplacian of vn,

∇
2
Svn =

2

∑
i

2

∑
j

1√
det(g)

∂

∂u j

(
gi j
√

det(g)
∂vn

∂ui

)
. (2.15)

Eq. 2.14 is derived in Ref. [50] for general interfacial velocities, and in Ref. [57] (Corollary 3.5)

for the case vn =−2H.

2.1.2 Surface derivatives in Cartesian coordinates

Surface derivatives can also be expressed in 3-D Cartesian coordinates without explicit reference

to the surface coordinates. This will be convenient for the derivations in Chapter 6. Following Ref.

[60], the projection tensor Pi j is defined using the normal vector~n,

Pi j = δi j−nin j, (2.16)

where δi j is the Kronecker delta (δi j = 0 if i 6= j, δi j = 1 if i = j). Multiplication of a three-

dimensional vector ~w by the projection tensor, i.e., P~w = ∑ j Pi jw j, projects ~w into the tangent

plane of the surface. Similarly, ~w is tangent to the surface if it satisfies P~w = ~w. Ref. [60] defines

the surface gradient of a scalar ψ as

∇Sψ = P∇ψ, (2.17)

where ∇ψ is the 3-D gradient of ψ (or, strictly speaking of the extension of ψ to 3D in the vicinity

of the interface). Similarly, the surface gradient of a vector ~w is defined as

∇S~w = P∇~w. (2.18)
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and its surface divergence as

∇S ·~w = tr(P∇~w). (2.19)

The surface Laplacian of ψ is then

∇
2
Sψ = P∇ · (P∇ψ) . (2.20)

With these definitions, the shape tensor can be expressed as

h j
i =−∇S~n. (2.21)

Considering this form of h j
i as a 3×3 matrix, it has at most rank = 2, since that is the rank of the

projection tensor Pi j. This form of h j
i therefore contains the same information as the tensor defined

in Eq. 2.7; it has eigenvalues κ1, κ2, and zero, and the mean curvature can be expressed succinctly

as

H =−1
2

∇S ·~n. (2.22)

2.2 Coarsening dynamics

Here, we present the dynamics of coarsening from a theoretical perspective. This dynamics pro-

vides the starting point for the theoretical methods described in the next section, and the results in

Chapters 4, 5, 7, and 8 consist of simulations of this dynamics using the phase field method. First,

we describe the bulk thermodynamics, defining the bulk free energy density and chemical poten-

tial. Then we introduce the Gibbs-Thomson effect, which relates interfacial geometry to chemical

potential. Gradients in chemical potential provide the driving force for mass transport, and two

transport mechanisms are introduced, bulk and surface diffusion. The transport mechanism deter-

mines the evolution of the interface, completing the description of the coarsening dynamics.
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2.2.1 Bulk thermodynamics

We begin by considering a bulk system, i.e., neglecting the effect of the interface. This will mo-

tivate an important assumption, constant molar volumes of both phases, and allow us to define

important quantities, such as the chemical potential and bulk free energy density. We consider a

closed system with two components, A and B, at constant temperature and constant pressure. The

Gibbs free energy of a single phase is a function of temperature, pressure, and the number of moles

of each component, NA and NB [61], G(T,P,NA,NB). We can define the molar Gibbs free energy

Gm by [31, 62],

G(NA,NB) = NGm(X), (2.23)

where N = NA +NB denotes the total number of moles of α and X is the mole fraction of A,

X = NA/N.

If two phases, α and β , are present, then the average mole fraction of the system is X̄ =

(Nα/N)Xα +(Nβ/N)Xβ , where Xα and Xβ are the mole fractions of the phases, which are assumed

to have uniform composition. The total Gibbs free energy of this system is given by

G(NA,NB) = NαGm
α(Xα)+Nβ Gm

β
(Xβ ). (2.24)

The chemical potentials for each phase are [31]

µ
m
α =

∂Gm
α

∂Xα

, µ
m
β
=

∂Gm
β

∂Xβ

, (2.25)

The system is at chemical equilibrium when µm
α = µm

β
. The equilibrium compositions Xe

α and Xe
β

at which µm
α = µm

β
can be found by constructing the common tangent of Gα(X) and Gβ (X), which

is illustrated in Fig. 2.1 [61]. The number of moles of α phase, Nα , present in a two-phase mixture

at equilibrium is determined by the lever rule, i.e.,

Nα = N
X̄−Xβ

Xα −Xβ

, (2.26)
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Figure 2.1: Illustration of Gibbs free energy as a function of composition for a two-component
system. The dotted line is the common tangent, which indicates the equilibrium Gibbs free energy
of the two-phase system, and Xe

α and Xe
β

indicate the equilibrium compositions of the phases.

and the total volume of α-phase, Vα , is determined by its molar volume V m
α by Vα = NαV m

α .

It is important to note that an additional assumption is required to fix the total volume of this

system, V =Vα +Vβ . The phase field models employed here are derived for phase transformations

near critical points [62, 63, 64], where it is reasonable to assume that the molar volumes of the

phases are equal and constant, V m
α =V m

β
=V m. This assumption has also been adopted for model-

ing binary solid-liquid mixtures [65], and in both cases it fixes the total system volume. Therefore

we adopt it here. Other assumptions are possible for late-stage coarsening, notably constant vol-

ume fractions of the phases [52]. With volume and pressure both fixed, the chemical potentials

with respect to the Gibbs free energy and Helmholtz free energy are the same [66],

µ
m =

∂Fm

∂X
=

∂Gm

∂X
, (2.27)

where Fm is the Helmholtz free energy per mole.

Additionally, phase field models employ volumetric free energy densities, i.e., energy per vol-

ume rather than energy per mole. The volumetric free energy density is denoted by f (X), and it is
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related to the molar Helmholtz free energy by the molar volume,

f (X) =
Fm(X)

V m . (2.28)

We denote the chemical potential with respect to f (X) by µ , having used µm for the chemical

potential with respect to the molar Gibbs free energy Gm. The chemical potential µ is given by

µ =
∂ fα(X)

∂X
. (2.29)

Since V m is constant, the condition for chemical equilibrium between phases is µα = µβ , just as

for chemical potentials with respect to the molar Gibbs free energies.

2.2.2 Interfacial energy and Gibbs-Thomson effect

The addition of an interface increases the energy of the system. Interfacial energy can be anisotropic,

where it depends on the orientation of the interface relative to a crystalline lattice, or isotropic,

where it has no such dependence. The anisotropic case is considered in Chapter 6, and therefore

we will consider only isotropic interfacial energy here. The excess interfacial energy per unit area

is denoted by γ , and the total energy of a two-phase system, including both bulk and interface

contributions, can be written as

F =Vα fα(Xα)+Vβ fβ (Xβ )+ γA. (2.30)

The phases can change volume by absorbing more or less mole fraction, X , than their bulk equi-

librium mole fractions Xe
α and Xe

β
. This change in volume increases the total bulk free energy,

Vα fα(X)+Vβ fβ (X), from its bulk equilibrium state, but it can reduce the total interfacial energy

γA.

The balance between the increase in bulk energy and the decrease in interfacial energy (i.e., the

equilibrium condition) depends on the geometry of the interface. The Gibbs-Thomson equation
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[66, 67] describes local equilibrium at a curved interface,

µ = µ
e +

2γH
(Xβ −Xα)

, (2.31)

where H is the mean curvature of the interface and µe is the bulk equilibrium chemical potential of

the two-phase system (which is also the chemical potential at a planar interface, H = 0). Note that

the factor 2H here also appears in Eq. 2.13 for the evolution of the element of area at a point on the

surface. In both cases it denotes how much area changes due to a normal motion of the interface.

The change in X resulting from this change in chemical potential can be found by expanding

the chemical potential about the equilibrium mole fraction [31], e.g.,

µα = f ′α(Xα) = f ′(Xe
α)+∆Xα f ′′(Xe

α)+O
[
(∆Xα)

2] , (2.32)

for the α-phase, where ∆Xα is the change in mole fraction, ∆Xα =Xα−Xe
α . The notation O

[
(∆Xα)

2]
signifies that the next term is proportional to ∆Xα . Assuming ∆Xα is small, Eqs. 2.31-2.32 allow

∆Xα to be expressed as,

∆Xα = 2Hlc
α , (2.33)

where the quantity

lc
α =

γ

(Xe
β
−Xe

α) f ′′α(X
e
α)

, (2.34)

is known as the capillary length of the α phase [31]. We will refer to the effect of curved interfaces

on composition and chemical potential due to Eqs. 2.31 and 2.33 as the Gibbs-Thomson effect.

The Gibbs-Thomson effect is closely related to the effect of interfaces on fluids. For fluids,

the Young-Laplace equation relates pressure in the fluid to the quantity 2γH, rather than chemical

potential [68, 69, 70, 71]. The contribution of Gibbs [67] was to relate the effect of interfacial

energy to chemical potential, which is more physically appropriate than pressure for describing

evolution in solids [66, 72]. Differences in chemical potential caused by the Gibbs-Thomson

effect provide the driving force for coarsening. Transport mechanisms, the topic of the next two
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subsections, are necessary for that driving force to result in evolution.

2.2.3 Coarsening via bulk diffusion

Coarsening in many systems occurs via diffusive mass transport through the bulk of the phases, i.e.,

by bulk diffusion. Here we obtain equations that govern X (and, by the definition in Eq. 2.29, µ)

in the bulk, and an expression for the velocity of the interface. Together with the Gibbs-Thomson

equation, which determines µ at the interface, these equations describe the dynamics of coarsening

via bulk diffusion.

The principles of irreversible thermodynamics [73, 74] dictate that a gradient in µ results in a

flux ~j of X ,

~j =−M∇µ, (2.35)

where the Onsager coefficient M is the chemical mobility of X . The mole fraction X is locally

conserved, and its evolution in time is therefore governed by the continuity equation,

∂X
∂ t

+∇ ·~j = 0. (2.36)

Combining Eqs. 2.35 and 2.36 yields the diffusion equation,

∂X
∂ t

= ∇ ·M∇µ, (2.37)

which describes the evolution of the mole fraction X in the bulk of the phases. The motion of the

interface is determined by a mass balance,

vnX |+−+~n ·~j|+−+∇s ·~j = 0, (2.38)

where |+− denotes quantities evaluated on either side of the interface (i.e., X |+− = (Xα −Xβ )), and

∇s· denotes the surface divergence. The terms containing ~j in Eq. 2.38 differ from Eq. 2.36 because
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the normal fluxes are discontinuous at the interface. For bulk diffusion, the surface term ∇s ·~j is

neglected [75], leaving

vn =−
~n ·~j|+−

X |+−
, (2.39)

as the expression for the motion of the interface. When the diffusion field is in fact time-dependent,

Eqs. 2.37 and 2.39 correspond to growth rather than coarsening [31, 76]. Once the diffusion field

has reached steady state, the chemical potential satisfies the Laplace equation,

∇
2
µ = 0. (2.40)

Eqs. 2.31, 2.39, and 2.40 govern the dynamics of coarsening via bulk diffusion. They were first

presented in this form by Mullins and Sekerka [75].

2.2.4 Coarsening via surface diffusion

Coarsening via surface diffusion occurs due to the same driving force as bulk diffusion under

circumstances where transport is limited to the interface (e.g., in deeply quenched polymer blends

[77] and nanoporous metals at low temperatures [16, 22, 78]). Since in this case the transport,

interfacial motion, and chemical potential are all defined at the interface, the dynamics can be

expressed in a single governing equation, first derived by Mullins [79]. This equation is,

vn =−η∇
2
s H, (2.41)

where the coefficient η contains the interfacial energy and transport coefficient for surface diffu-

sion, and ∇2
s is the surface Laplacian.
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2.3 Theoretical methods for coarsening

As noted in Chapter 1, an extensive literature exists for coarsening of particulate systems (see,

e.g., Refs. [23, 24, 28, 29, 31, 32]). Models for particulate systems take advantage of geometric

assumptions, like spherical symmetry of the particle and the concentration or chemical potential

field around it. This section instead focuses on two theoretical methods that are applicable to any

two-phase system: dynamic scaling and the geometrically general theory of DeHoff [52].

2.3.1 Dynamic scaling

Dynamic scaling (i.e., self-similarity) is the time independence of the morphology when it is scaled

by the time-dependent characteristic length scale of the evolving system [33]. It can refer to scaling

of the evolving geometry itself (e.g., in the case of a single spherical particle) or to statistical

descriptions of the morphology. For example, distribution f (r, t), where r has dimension length,

satisfies f [r/L(t1), t1] = f [r/L(t2), t2] for any times t1 and t2 during self-similar evolution, where

L(t) is the time-dependent characteristic length scale.

Scaling power laws that relate time and L during self-similar evolution are specified by the

dimensionality of the governing equations for the problem The power laws for coarsening via bulk

and surface diffusion were first obtained by Herring [80], and we will use a method from Ref. [81]

to derive them here. Scaling dimensional quantities by the characteristic time scale T and length

scale L reduces the governing equations to the power law relationship between T and L. All of the

remaining physical and geometric parameters go into the coefficient for this power law, which will

be time-invariant if the evolution is self-similar.

Considering surface diffusion (Eq. 2.41) first, the scaled interfacial velocity is ṽn = vnT/L, the

scaled surface Laplacian is ∇̃2
s = L2∇2

s , and the scaled mean curvature is H̃ = LH. Substituting the

scaled quantities into Eq. 2.41 results in

vn
T
L
=−ηL2

∇̃
2
s LH̃
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T = L4
(
−η

∇̃2
s H̃
ṽn

)
. (2.42)

Thus, the length scale evolves according to T 1/4 during self-similar coarsening via surface diffu-

sion.

For coarsening via bulk diffusion, the scaling relationship is captured by the Gibbs-Thomson

equation (Eq. 2.31) and the interfacial mass balance (Eq. 2.39). The Laplace equation (Eq. 2.40)

determines ∇µ but does not otherwise affect scaling. Defining the scaled chemical potential µ̃ =

2γH̃/X |+− and scaled gradient ∇̃ = L∇, and reusing ṽn and H̃ from the surface diffusion case, the

evolution of the interface can be expressed as

ṽn
T
L
=

L2~n · ∇̃µ̃|+−
X |+−

T = L3

(
~n · ∇̃µ̃|+−

X |+−

)
. (2.43)

Thus, the power law for self-similar coarsening via bulk diffusion is T ∝ L3.

The scaling power laws are geometrically general [82]; they apply to both the large-scale coars-

ening dynamics considered in this work and to self-similar evolution of simple geometries, like

a nearly flat plane [83]. This makes the scaling power laws important tools for understanding

coarsening within complex microstructures, and they will be applied throughout subsequent chap-

ters. It should also be noted that while a self-similarly evolving system must coarsen according

to the scaling power law for its dynamics, the reverse is not necessarily true. Systems that do

not exhibit self-similarity can and do exhibit coarsening kinetics that agree with the power law

[10, 40, 43, 84, 85]. In Chapter 7, we show that this can occur when a length scale is kinetically

inactive during coarsening. Features can be sufficiently large that they contribute negligibly to

the coarsening rate, which is then determined by a self-similarly evolving population of smaller

features.
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2.3.2 Geometrically general theory

Here, we describe a geometrically general theory of coarsening for bulk diffusion developed by

DeHoff [52], which will be applied in Chapters 4 and 8. The core of the theory is an observation

that every point on the interface is connected to one other point (its connected neighbor) via a

line of constant flux through each phase in which diffusion occurs. The gradient of the chemical

potential normal to the interface can be represented as,

~n ·∇µ =
2γ

(Xβ −Xα)

(H−Hn)

λ
, (2.44)

where Hn is the mean curvature of the connected neighbor interface and λ , the diffusional inter-

action distance, results from a linearization of ∇µ , λ = ∆µ/(~n ·∇µ). DeHoff’s theory considers

diffusional interactions through a single phase, resulting in the following expression for the veloc-

ity of the interface,

vn =
KD

λ
(Hn−H), (2.45)

where the kinetic coefficient KD is 2Mγ/(Xβ −Xα)
2.

On its own, Eq. 2.45 does not provide any additional information about the coarsening problem,

since Hn and λ are determined by the solution to the Laplace equation (Eq. 2.40) However, when

combined with the following geometric identities [52],

∂Vβ

∂ t
=
∫

S
vndA, (2.46)

∂A
∂ t

=−
∫

S
2vnHdA, (2.47)

it can provide useful information about the evolution of the entire structure. DeHoff supplements

Eqs. 2.45, 2.46, and 2.47 with two additional assumptions to obtain a relationship used in Chapter

4. The first assumption is that the volume of β phase is constant in time, i.e., dVβ/dt = 0 in Eq.
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2.46. With this assumption, the averages of H and Hn over the surface are equal,

〈Hn〉= 〈H〉 . (2.48)

The second assumption is that H, Hn, and λ are statistically uncorrelated. Using these assumptions,

the following expression can be derived by substituting Eq. 2.45 into Eq. 2.47,

dA
dt

=−2AKD

〈
1
λ

〉(〈
H2〉−〈H〉2) , (2.49)

where the quantity
〈
H2〉−〈H〉2 is the variance of mean curvature. In summary, if its assumptions

are satisfied, this theory relates the change in total area of the system to a measure of the global

morphology, the variance of mean curvature.
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Chapter 3

Methods

This chapter describes how the dynamics described in Chapter 2 were investigated in practice,

including the methods for conducting simulations and characterizing the resulting structures. We

begin by introducing the phase field model. Specific variants of this model will be introduced in

subsequent chapters, but the numerical schemes and parameters that they have in common are sum-

marized here. We also provide a procedure for rescaling dimensional quantities to compare them

between simulations with different parameters. Finally, we describe our methods for characteriz-

ing the structures resulting from simulations, including characteristic length, interfacial curvatures,

and topology.

3.1 Phase field model

Coarsening was simulated in this dissertation using phase field models, which have been widely

adopted to study microstructure evolution in materials science (see reviews [86, 87, 88]). Phase

field models consider interfaces as diffuse transitions in a continuous variable, such as density or

composition. This approach was pioneered by van der Waals for fluids [89, 90], and it is widely

used in the physics of critical phenomena [62, 63]. It was first applied to phase transformations in

materials science by Cahn and Hilliard [64], and it is their model that will be used here.

The continuous variable we employ is the conserved order parameter φ , which may be inter-

preted as a dimensionless scaled concentration (e.g., φ = (X −Xα)/(Xβ −Xα)). The free energy
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functional F [φ ,∇φ ] of the Cahn-Hilliard model is [64],

F [φ ,∇φ ] =
∫

Ω

[
f (φ)+

ε2

2
|∇φ |2

]
dV, (3.1)

where ε is the gradient energy coefficient, and Ω is the domain. Bulk free energy densities f (X)

were described in Chapter 2, and the only difference is that the energy of both phases is now

described by a single function, f (φ). For this to result in a two-phase system, f (φ) must be non-

convex (i.e., f ′′(φ) < 0). This allows the coexistence at equilibrium of two phases with different

equilibrium compositions, φ
+
0 and φ

−
0 .

The chemical potential of the Cahn-Hilliard model is the first variation of F [φ ,∇φ ] with respect

to φ ,

µ = f ′(φ)− ε
2
∇

2
φ . (3.2)

When φ is locally conserved, it evolves according to a generalized diffusion equation [73, 74, 87,

91, 92] that incorporates the chemical potential in Eq. 3.2,

∂φ

∂ t
= ∇ ·M∇µ. (3.3)

Combining Eqs. 3.2 and 3.3, the Cahn-Hilliard equation is then

∂φ

∂ t
= ∇ ·M∇

[
f ′(φ)− ε

2
∇

2
φ
]
. (3.4)

We apply this equation and its variants in subsequent chapters. Concentration-dependent mobility

is employed in Chapter 4 to study coarsening with dissimilar mobilities between the phases. Two

variants with concentration-dependent mobility are examined to study surface diffusion in Chapter

5, and most of our results were obtained with a model in which the chemical potential was also

modified (the RRV model, labeled after its authors, Rätz, Ribalta and Voigt). A variant with

interfacial energy anisotropy is analyzed in Chapter 6. Chapter 7 employs Eq. 3.4 as written here,

and Chapter 8 uses a mobility that is a function of space and time. The specifics of those variants
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are discussed in their respective chapters, and information common to them is presented here.

Our simulations often begin with a homogeneous initial condition, where the order parameter

is randomly distributed about an average value that satisfies f ′′(φ)< 0. At early times, the Cahn-

Hilliard equation models phase separation, specifically spinodal decomposition [92, 93, 94, 95].

Regions of phase form separated by a diffuse interface with thickness proportional to ε . As the

phases reach their equilibrium concentrations, the dynamics of the phase field model converge to

the coarsening dynamics introduced in Chapter 2, Eqs. 2.31, 2.39, and 2.40. This convergence

can be established mathematically by analysis of the asymptotic limit of zero interfacial thickness

[76, 96], i.e., ε→ 0. More information about this method is given in Chapter 6, where it is applied

to a model for systems with regularized strongly anisotropic interfacial energy.

Additional information about the model can be obtained by specifying the bulk free energy,

which is [64, 92, 97]

f (φ) =
W
4

φ
2(φ −1)2 (3.5)

in subsequent chapters. The minima of f (φ), φ
+
0 = 1 and φ

−
0 = 0, correspond to the equilibrium

concentrations of two phases in contact at a planar interface. The parameter W controls the height

of the energy barrier between the two energy minima. The interfacial energy γ is given by [64]

γ = ε
2
∫ +∞

−∞

(
dφ

dx

)2

dx = ε

∫
φ
+
0

φ
−
0

√
2 f (φ)dφ =

1
6

ε

√
W
2
, (3.6)

and the one-dimensional profile of a planar interface is

φ(x) =
1
2

[
1+ tanh

(
2x
Lε

)]
(3.7)

where the interfacial width parameter Lε is

Lε = 4ε

√
2

W
. (3.8)

This width parameter is derived using the relationship f (φ) = ε2

2

(
∂φ

∂x

)2
, which is valid at equi-
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librium [64]. The maximum of f (φ) therefore corresponds to the maximum of ∂φ/∂x, and Lε

represents a lower bound for the distance in x between φ = 0 and φ = 1,

Lε =
∆φ

max(∂φ/∂x)
=

1
1
ε

f (0.5)
= 4ε

√
2

W
. (3.9)

A comparison between this expression and the expressions for capillary length and γ , Eqs. 2.34

and 3.6, reveals that the interfacial width of the Cahn-Hilliard model is tied to its capillary length

for a given form of f (φ). The capillary length of the φ = 0 phase is

lc =
γ

f ′′(0)
=

1
6ε

√
W
2

W
2

=
1

24
Lε . (3.10)

3.2 Numerical methods

Finite differences were employed to solve the Cahn-Hilliard equation numerically. The spatial

domain was discretized by a uniform grid. The Laplacian of the order parameter in Eq. 3.2 was

approximated by the conventional five-point stencil in two dimensions (2D), which contains seven

points in three dimensions (3D) [98]. This can be expressed as

∇
2
φi, j =

1
4∆x2

(
φi+1, j +φi−1, j +φi, j+1 +φi, j−1−4φi, j

)
+O(∆x2), (3.11)

where i and j are the indices of the grid points in the x and y directions and O(∆x2) indicates that

the leading order truncation error is proportional to ∆x2. This approximation of the Laplacian is

also used for the term ∇ ·M∇µ when the mobility is constant.

Chapters 3, 4, and 8 include models where M is spatially varying, either due to a dependence on

φ (Chapters 4 and 5) or due to an explicit spatial dependence (Chapter 8). In these cases, ∇ ·M∇µ

in Eq. 3.4 was approximated by computing M(φ)∇µ on half-points (i.e., halfway between grid

points), and taking a centered difference to find the divergence ∇ ·M(φ)∇µ on the grid points. In
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2D, this approximation is

∇ ·M∇µ =
1

(∆x)2

(
1
2
[
M(φi+1, j)+M(φi, j)

]
(µi+1, j−µi, j)−

1
2
[
Mi, j +Mi−1, j

]
(µi, j−µi−1, j)

+
1
2
[
M(φi, j+1)+M(φi, j)

]
(µi, j+1−µi, j)−

1
2
[
M(φi, j)+M(φi, j−1)

]
(µi, j−µi, j−1)

)
+O(∆x2). (3.12)

This is similar to an approximation in Ref. [99], although they computed M(φ) using φ on the

half-point, e.g., M[1
2(φi, j +φi−1, j)].

Periodic boundary conditions were enforced in all simulations. That is, in one dimension,

φ(0, t) = φ(Lx, t) and φ ′(0, t) = φ ′(Lx, t) at all times t, where Lx is the length of the domain. These

were implemented by extending the grid outside of its domain to ‘ghost points,’ into which order

parameter or chemical potential values were copied from the opposite edge/face of the domain.

Random initial conditions were employed extensively, and were implemented by assigning values

to grid points sampled from a uniform random distribution centered about the desired average

composition.

The time discretization was an explicit Euler scheme. Denoting the value of the order parameter

at iteration n by φn, this scheme can be expressed as

φn+1 = φn +∆t
(

∂φ

∂ t

)
n
+O(∆t) (3.13)

where ∆t is the timestep and O(∆t) indicates that the truncation error is proportional to ∆t. The

order parameter was output at regular intervals in time. Simulation times reported in this disser-

tation are exact, and only the necessary level of precision is provided (e.g., 4× 103 rather than

4.00×103).
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Table 3.1: Summary of constant mobility bulk diffusion simulations. Each simulation is indicated
by the chapters in which they are referenced, the average order parameter 〈φ〉, the initial condition
(RN for random noise, or AC for phase-separated by Allen-Cahn dynamics), the length of the cubic
domain, Lx, and the duration of the simulation, t f .

Chapters 〈φ〉 IC Lx t f
4,5, 8.1 0.50 RN 1024 4×105

5, 8.1 0.36 RN 1024 106

8.1 0.34 RN 1280 1.2×106

5, 8.1 0.32 RN 1024 106

5 0.30 RN 1024 4×105

8.1 0.50 AC 800 1.6×105

8.2 0.50 RN 512 4×105

3.3 Simulation parameters

All of the coarsening simulations in this dissertation (i.e., excluding the equilibrium shape calcula-

tions in Chapter 6) have parameters ε2 = 0.2 and W = 0.4, which result in an interfacial energy of

γ = 1/30 and interfacial width parameter of Lε = 4 from Eqs. 3.6 and 3.8, respectively. The grid

spacing in coarsening simulations was ∆x = 1, resulting in 3-5 points through the interface. The

timestep of coarsening simulations was ∆t = 0.05, except for simulations with the RRV surface-

diffusion model, which had ∆t = 0.04. Simulations were conducted in cubic domains with side

lengths Lx from the initial time t = 0 to a final time t f . The parameters for coarsening simulations

with constant mobility are summarized in Table 3.1. RN indicates that the simulation is initialized

via random noise about the average composition specified by 〈φ〉, and the AC initial condition is

described in Section 8.1.

3.4 Nondimensionalization and rescaling

Solutions to Eq. 3.4 with different parameters correspond to solutions to a dimensionless Cahn-

Hilliard equation scaled in length and time. To make comparisons to other works that use different

forms of the Cahn-Hilliard equation and associated parameters (i.e., [55] and [100]), here we

provide a procedure for rescaling to match our parameters. In addition to the parameters ε , M, and
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W , the primary difference is in the bulk free energy, f (φ), that affects the range of φ between the

two equilibrium values. We consider only models with the same functional forms of the bulk free

energy that can be rescaled to a dimensionless function g(φ̃) by

g(φ̃) = 16
(

1
4
− φ̃

2
)2

=
1
F̂

f
(

φ −φc

Φ̂

)
,

where F̂ is the height of the double well free energy that is used as the energy density scale, Φ̂ is the

difference between the two equilibrium concentrations, and φc is the midpoint of the equilibrium

concentrations. The concentration φc only shifts the concentration range and will not affect spatial

or temporal scaling.

While any scaling length can be chosen for nondimensionalization, we select one that is asso-

ciated with the interfacial width to rescale all models. The scaling length L̂ can now be defined

as

L̂ =
εΦ̂√
2F̂

, (3.14)

which is a generalization of Lε in Eq. 3.8. The characteristic time T̂ associated with L̂ is then

determined by dimensional analysis of Eq. 3.4,

Φ̂

T̂
=

M
L̂2

F̂
Φ̂

T̂ =
Φ̂2L̂2

MF̂
(3.15)

Defining the dimensionless coordinates t̃ = t/T̂ , x̃ = x/L̂, and the dimensionless concentration

φ̃ = (φ −φc)/Φ̂, the non-dimensional Cahn-Hilliard equation is now given by

∂ φ̃

∂ t̃
= ∇̃

2 [g′(φ̃)−2∇̃
2
φ̃
]
. (3.16)

For two given simulations A and B, we can now rescale the simulation time tA from simulation
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A to that corresponding to the time tB as measured in simulation B:

t̃ =
tA
T̂A

=
tB
T̂B

tB =

(
T̂B

T̂A

)
tA. (3.17)

To compare the coarsening rate constant k in Eq. 4.3 between simulations, we define the dimension-

less coarsening rate constant k̃ = kT̂/L̂3. The coarsening rate constant kA measured in simulation

A can now be rescaled to match the length and time scales employed in simulation B:

k̃ =
kAT̂A

L̂3
A

=
kBT̂B

L̂3
B

kB =

(
T̂AL̂3

B

T̂BL̂3
A

)
kA. (3.18)

Eqs. 3.17 and 3.18 were used to compare the timescale in Ref. [100] and the coarsening rate

constant in Ref. [55], respectively, to the corresponding values in Chapter 4.

3.5 Characterization methods

Simulated structures were characterized in terms of characteristic length, morphology, and topol-

ogy. The characteristic length is defined as the domain volume per unit of interfacial area, denoted

by S−1
V [40, 42, 53], and S−1

V is also used to denote the analogous characteristic length in two dimen-

sions, the ratio of area to interfacial length. In the following subsections, we define the quantities

by which curvature and topology are characterized, and the methods by which those quantities are

calculated. We also introduce the scaled quantities that enable evaluation of self-similarity.
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3.5.1 Interfacial morphology

The order parameter data resulting from the simulation was post-processed using a level-set based

method [101]. The interface of each structure was approximated as a triangular mesh of the φ = 0.5

isosurface. Mean curvature H and Gaussian curvature K were calculated on the simulation grid

and interpolated to the centers of mesh triangles. Surface integrals were discretized using the mesh

faces:
∫

S qdA = ∑i qiAi, where qi and Ai correspond to the value of q and the area of the ith mesh

face.

This method was used to calculate statistics of interfacial morphology, including average mean

curvature 〈H〉, standard deviation of mean curvature σH , and the interfacial shape distribution

(ISD). The ISD [41, 42] is a probability density function that represents the probability of finding

a point on the interface with a specific pair of principal curvatures, (κ1,κ2), which are related to H

and K by H = (κ1 +κ2)/2 and K = κ1κ2. The ISD can be defined mathematically as

P(κ ′1,κ
′
2) =

1
A

∫
S

δ (κ1−κ
′
1)δ (κ2−κ

′
2)dA, (3.19)

where δ (x) is the delta function. Figure 4.8 shows this type of ISD, and additional examples can

be found in Chapters 5 and 8. Analogously to the 3-D case, we define the ISD of a 2-D structure

as the probability of a point on the interface having a specific scalar curvature κ , i.e.,

P(κ) =
∫

S δ (κ−κ ′)ds∫
S ds

. (3.20)

This type of ISD is shown in Fig. 4.3. In Chapter 7, a radius-of-curvature distribution is employed

instead. This takes the form,

P(R) =
∫

S δ (R−R′)ds∫
S ds

, (3.21)

where R = 1/κ is the radius of curvature. Figures 7.7 and 7.6 are examples of this type of ISD.
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3.5.2 Topology

Topology of the structures was evaluated in terms of the genus density gV = g/V of the φ = 1

phase. The genus of a closed surface is related to its Euler characteristic by χ = 2−2g [102]. We

note that a different relationship, χ = 1−g, applies to the Euler characteristic of one of the phase

volumes [20, 103].

Euler characteristic χ of the mesh was calculated using Euler’s formula [104], χ =V −E +F ,

where V is the number of vertices, E the number of edges, and F the number of faces. We perform

this calculation so that our periodic structure represents a small unit cell of a much larger structure

that is closed at some external boundary. To correctly calculate the genus density corresponding

to the larger structure, the contribution of elements (edges and vertices) at domain boundaries

was halved to account for those elements being shared between two unit cells [103]. Another

consideration is that any independent particles in the structure represent separate closed surfaces

and add +2 to the Euler characteristic. The number of independent particles N was calculated using

the LABEL_REGION function in IDL, with an additional algorithm to account for connections

through the periodic boundaries. The genus density gV was then calculated as gV = (N− 1
2 χ)/V .

Topology is related to interfacial curvature via the Gauss-Bonnet theorem, which is expressed as

gV =
1

4πV

∫
S

KdA (3.22)

for gV as computed here.

3.5.3 Morphological scaling

To assess whether the dynamic scaling hypothesis (Section 2.3.1) is being satisfied, we have re-

ported morphological and topological quantities that are scaled by the characteristic length, S−1
V .

Scaled mean curvature is H/SV , scaled Gaussian curvature is K/S2
V , and scaled genus density is

gV S−3
V . The ISDs are reported in terms of scaled principal curvatures κ1/SV and κ2/SV . Addi-

tionally, we note that the Gauss-Bonnet theorem (Eq. 3.22) can be expressed in terms of scaled
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quantities as
1

4π

∫
S KS−2

V dA
A

= gV S−3
V . (3.23)

That is, the scaled genus density gV S−3
V is proportional to the average of the scaled Gaussian

curvature K/S2
V over the interface.
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Chapter 4

Simulation of coarsening in two-phase

systems with dissimilar mobilities

4.1 Introduction

As discussed in Chapter 1, many experimental systems have two phases with dramatically different

mobilities, especially solid-liquid systems [41, 42, 44, 45, 46]. To help bridge the gap between

these systems and the idealized systems that have been considered in previous simulation studies

[53, 54, 55], we examine how dissimilar mobilities of two phases affects the coarsening of an

otherwise idealized system.

To numerically implement dissimilar mobilities of the two phases, we employ a concentration-

dependent mobility. Such an approach was originally used to study phase separation via surface

or interfacial diffusion [105, 106] and spinodal decomposition with a glassy phase [99, 107, 108].

They have also been applied to two-dimensional (2-D) studies of coarsening with dissimilar mo-

bilities [100, 109, 110]. Sheng et al. [109] studied coarsening in both the one-sided (zero mobility

in one phase) and dissimilar-mobility cases. They found a fitted coarsening exponent of 1/3.3

(i.e., L ∝ t1/3.3) and scaling of the pair correlation function, a measure of morphology, by the first

moment of the structure function, one of the characteristic length scales they examined. Similarly,

Ju et al. [110] reported a fitted coarsening exponent of 1/3.2 for the one-sided case. However, in

contrast to those results, Dai and Du predicted [100] reported agreement with the t1/3 power law.
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In three dimensions, simulations of coarsening with a one-sided mobility were recently carried out

[111], but the resulting morphologies were not characterized.

In this chapter, we aim to understand how dissimilar mobilities affects the coarsening mor-

phology and kinetics of complex microstructures in two and three dimensions (2D and 3D, respec-

tively). We present a general phase field model for evolution via bulk diffusion of a two-phase

system with dissimilar mobilities. Then, we present simulations with dissimilar mobilities in 2D

and 3D with large sample microstructures. Coarsening kinetics and morphological evolution are

analyzed, and morphologies are quantified using statistical measures such as the interfacial shape

distribution (ISD) [41, 42, 112]. Results with constant mobility are presented for comparison. In

the 2-D case, our results address the question of whether coarsening dynamics follow the theo-

retical t1/3 power law introduced in Section 2.3.1. In the three-dimensional (3-D) case, we relate

morphology and kinetics using the model introduced in Section 2.3.2.

4.2 Model

In order to study coarsening in systems where the phases have dissimilar mobilities, we employ

the Cahn-Hilliard equation with concentration-dependent mobility. The form of the concentration-

dependent mobility M(φ) determines its sensitivity to changes in concentration. Following the

approach taken in phase field modeling of solid-liquid systems [113, 114], we express M(φ) in the

general form

M(φ) = (M+−M−)h(φ)+M−, (4.1)

where M(φ+
0 ) = M+ and M(φ−0 ) = M− are the desired bulk mobilities (M+ > M− in this study),

and h(φ) is a smooth interpolation function that satisfies h(φ+
0 ) = 1 and h(φ+

0 ) = 0. Changes in

mobility resulting from deviation in concentration in the bulk (e.g., due to the Gibbs-Thomson

effect) can affect dynamics if the corresponding bulk mobility is set to be small [81, 115, 116,

117, 118], and the form of h(φ) determines how much M(φ) changes when φ deviates from its
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equilibrium values, φ
±
0 . We therefore select the polynomial interpolation function,

h(φ) = φ
3(10−15φ +6φ

2), (4.2)

to sharpen the transition of the mobility from M− to M+ near φ = 0.5. As in the sinusoidal inter-

polation used in Ref. [109], this polynomial form reduces the sensitivity of M(φ) to the deviation

of φ from its bulk values compared to linear interpolation, which has been used more commonly

[100, 109, 110].

The effect of the choice of interpolation function on the mobility of the low-mobility phase can

be demonstrated by considering a small difference in concentration ω , where φ = φ
−
0 +ω , and

expanding the mobility in a Taylor series about φ
−
0 . For linear h(φ), M(φ) = M−−ωh′(φ−0 )+

O(ω2). For our choice of h(φ), M(φ) = M−− 1
6ω3h′′′(φ−0 )+O(ω4). That is, our choice of inter-

polation function reduces the difference between the desired and actual bulk mobilities, |M(φ)−

M−|, to O(ω3) because it satisfies h′(φ±0 ) = h′′(φ±0 ) = 0. In principle, |M(φ)−M−| could be

reduced to arbitrary order m by requiring that h(m)(φ±0 ) = 0, but increasing m results in a sharper

transition of h(φ) through the interface (see Fig. 4.1). The interpolation function in Eq. 4.2 rep-

resents a compromise between being able to smoothly resolve M(φ) through the interface and

reducing |M(φ)−M±| in the bulk, which is important when one of the mobilities is small.

4.3 Numerical and Characterization Methods

Our simulations are conducted by evolving φ according to the Cahn-Hilliard equation, Eq. 3.4,

with the concentration-dependent mobility defined by Eqs. 4.1 and 4.2. We set M+ = 1 and M− =

10−2 for the simulations with dissimilar mobilities, and M = 1 for the simulations with constant

mobility. The sign convention for mean curvature is such that low-mobility-phase convex bodies

(e.g., spheres) have positive curvatures.

In 2D, we perform one simulation with constant mobility and one simulation with dissimilar

mobilities. In 3D, we perform one simulation with constant mobility and two simulations with
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Figure 4.1: Comparison of interpolation functions h(φ) using the analytical interfacial profile
φ(x) = 1

2 [1+ tanh(x/2)] (blue dotted curve). The black solid curve is the interpolation function
employed in this work. The interpolation function using a sine function from Ref. [85] is also
shown by the red dashed curve.

dissimilar mobilities, one with dissimilar mobilities for the entire simulation, and another with

constant mobility for phase separation and dissimilar mobilities for subsequent coarsening. We

chose to conduct a single simulation for each setup (rather than multiple simulations with smaller

domains) to ensure that the simulation domains contained statistically representative structures

and that the results are not affected by the periodic boundary conditions imposed on the domain

boundaries over the longer simulation times required to examine coarsening. Our simulations were

initialized with random noise, and therefore increasing domain size should have the same effect

on statistical significance as the averaging of multiple simulations, and the larger domain has the

advantage of reduced boundary effects.

4.4 2-D Simulations

Two 2-D simulations were conducted, one with constant mobility and one with dissimilar mobili-

ties, in square domains with sides of length Lx = Ly = 2844. Both were initialized with the same

random concentration values uniformly distributed within the interval 0.40− 0.60. This results
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in volume fractions of 50% for both phases at late times, although in the dissimilar-mobilities

structure more low-mobility phase is initially present due to its slower rejection of solute.

4.4.1 Morphology

Figure 4.2 depicts the morphology of the simulated 2-D structures during coarsening. The constant

mobility structure is shown in Figs. 4.2a-c, and the dissimilar mobilities structure is shown in Figs.

4.2d-e. The portions of the simulated domain presented in Fig. 4.2 are chosen to have the same

characteristic area (with the side length 45S−1
V ), enabling us to directly observe morphological

changes without the effects of the change in S−1
V . Figures 4.2a and 4.2d show the structures at

t = 4× 103, near the end of phase separation. Both structures appear to consist of alternating

layers of each phase. While in many locations the layers appear to be flat, they bend and terminate

such that the isotropy of the overall structures is preserved. The dissimilar-mobility structure

appears to have more high-mobility-phase particles than low-mobility-phase particles, while in the

constant-mobility structure, the phases appear to have statistically the same morphology.

As the simulations progress, the constant-mobility structure forms large percolating regions

of each phase that contain smaller regions of the opposite phase (Figs. 4.2b and 4.2c). The ini-

tially layered structures that were dominated by nearly flat interfaces evolve to more sinuous ones.

Overall, these morphological changes are subtle. In contrast, the dissimilar-mobility structure

undergoes a significant morphological transition from the initial layered structure to a structure

consisting of high-mobility-phase particles in a low-mobility matrix (Figs. 4.2e and 4.2f). This

transition occurs through both the disappearance of low-mobility-phase particles and the evolu-

tion of high-mobility-phase regions toward their circular equilibrium shape. High-mobility-phase

particles also disappear and coalesce, but not rapidly enough to reduce their predominance in the

overall structure.

The morphological evolution seen in the simulated structures is quantified by the changes in

the ISDs, which are shown in Fig. 4.3. The nearly flat interfaces that are predominant in the

layered morphology observed at t = 4×103 correspond to peaks at κ/SV = 0 on the ISDs in Fig.
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4.3. In the constant-mobility case, the ISD (Fig. 4.3a) is symmetric about κ/SV = 0, which is

consistent with the symmetry between the phases: they have the same volume fraction (50%) and,

with constant mobility, the same transport kinetics. As the constant-mobility structure evolves, the

peak of the ISD remains centered at κ/SV = 0, but it broadens over time, with standard deviation

σκ/SV increasing from 1.0 to 1.3. These changes can be understood in terms of the evolution of

three overlapping populations in the ISD: one corresponding to the population having nearly flat

interfaces centered at κ/SV = 0 and two symmetric populations corresponding to high-curvature

features (particles and end-caps of layers) containing each phase appearing between κ/SV = −2

and κ/SV = −1 and κ/SV = 1 and κ/SV = 2 In the constant-mobility ISD, the populations of

high-curvature features increase symmetrically, while the population with nearly flat interfaces

decreases. This may appear unintuitive based on the Gibbs-Thomson condition, but it is not a

contradiction because the curvatures are scaled by the characteristic length scale, and overall the

interfacial energy is lowered by the reduction of interfaces with large unscaled curvatures as well

as the nearly flat interfaces.

The dissimilar-mobility ISD (Fig. 4.3b) is asymmetric at t = 4×103, with more interface hav-

ing negative curvature than positive curvature. Negative curvature corresponds to convex high-

mobility-phase features, and the asymmetry of the t = 4× 103 ISD is consistent with the greater

prevalence of high-mobility-phase particles in Fig. 4.2d. The morphological transition observed in

Figs. 4.2d-f is represented in the ISD by the growth of the population centered around κ/SV =−1.3

and by the decay of population with positive curvature. The growth near κ/SV =−1.3 is due to the

longevity of high-mobility-phase domains surrounded by low-mobility-phase matrix observed in

Figs. 4.2e and 4.2f. The disappearance of the population with positive curvature corresponds to the

loss of low-mobility-phase particles and the evolution of domains of high-mobility phase toward

their equilibrium shape, as discussed earlier. Based on the ISDs in Fig. 4.3b, evolution during this

simulation is clearly not self-similar, and unlike the constant mobility case, the structure continues

to undergo significant evolution even at the latest time we examined.

41



Figure 4.2: Evolution of morphologies in 2D during coarsening with constant mobility (a-c) and
dissimilar mobilities (d-f). Each subfigure depicts φ within a square subdomain with side length
45S−1

V . In (d-f), blue indicates the low-mobility phase, while yellow corresponds to the high-
mobility phase.

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob
ab
ilit
y

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob
ab
ilit
y

(a) (b)

Figure 4.3: Time evolution of interfacial shape distributions (ISDs) of the 2-D structures, (a) coars-
ened with constant mobility, and (b) coarsened with dissimilar mobilities. ISDs are shown cor-
responding to four times, t = 4×103 (blue curve/x-symbols), t = 6.4×104 (red curve/triangles),
t = 2.48×105 (yellow curve/squares), and t = 6.4×105 (purple curve/diamonds), which are spaced
approximately equally in t1/3.
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4.4.2 Kinetics

The theoretical t1/3 power law for the characteristic length S−1
V is expressed as

S−3
V (t)−S−3

V (0) = kt, (4.3)

where k is the coarsening rate constant. S−3
V is plotted vs. time in Figs. 4.4a and 4.4b for the

constant-mobility and dissimilar-mobility cases, respectively. In the constant-mobility case, the

coarsening rate constant increases during an initial transient stage, consistent with the results of

[119]. At later times (t > 2.48× 105), a linear fit was used to evaluate convergence to the power

law in Eq. 4.3. Good agreement was found, with R2 = 0.99996, and the equation of fit was S−3
V =

0.409t − 8.93× 103. In the dissimilar-mobility case, coarsening rate constant k appears to be

decreasing with time over the course of the simulation. Evaluating the coarsening rate constant

at the beginning and end of the simulation (t < 2× 104 and 6.2× 105 < t, respectively), we find

that k decreases from 0.181 to 0.067, a factor of 2.7. The coarsening rate will likely continue to

decrease in this case until the scaled morphology reaches a steady state, which may be a particulate

structure with circular high-mobility-phase domains embedded in the low-mobility phase.

4.4.3 Discussion

In the dissimilar-mobility case, the complex layered structure resulting from phase separation was

observed to transform over time into a system of high-mobility-phase particles in a low-mobility

matrix. This transition can be explained in terms of the diffusive interactions between neighboring

patches of interface. Interfaces can interact through both phases, but an interface will only coarsen

if it has different curvature than the interfaces it is interacting with. We classify two types of geo-

metric features: those that can coarsen via interactions through the high-mobility phase and those

that cannot. The first type consists of low-mobility-phase particles (which are surrounded by high-

mobility phase) and non-circular high-mobility-phase regions, especially those with complex or

elongated shapes. The second type consists of circular high-mobility-phase particles, surrounded
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Figure 4.4: Coarsening kinetics of the 2-D structures with (a) constant mobility and (b) dissimilar
mobilities. S−3

V is plotted vs. time (blue squares) to evaluate adherence to the power law, and a
linear fit (solid black line) is provided for the constant-mobility case.

by low-mobility phase, which can only evolve via interactions through the low-mobility phase be-

cause all of the interfaces exposed to that domain of high-mobility phase have the same curvature.

The asymmetry in kinetics between these two types of features drives the morphologies observed in

Figs. 4.2 and 4.3: low-mobility-phase particles disappear, complex high-mobility-phase particles

become circular, and circular high-mobility-phase particles persist. The circular high-mobility-

phase particles eventually become the most prevalent feature in the structure.

This morphological transition explains the observed decrease in coarsening rate constant. The

area fraction of the circular high-mobility-phase particles surrounded by low-mobility phase in-

creases over time because its evolution is controlled by the diffusion across the low-mobility phase,

leading to slower evolution than that controlled by the diffusion across the high-mobility phase.

Sheng et al. [109] found L ∝ t1/3.3 instead of the theoretically predicted t1/3 power law, which is

consistent with a decrease in the coarsening rate constant (k in Eq. 4.3) over time. We observe a

decrease in k, although we do not attribute it to a change in the underlying power law, which is

based on the scaling of the governing equations. In contrast, Dai and Du [100] reported agreement

with the t1/3 power law. We can compare their results to ours using the rescaling methodology
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described in Section 3.4.

Dai and Du [100] use f (φ) = 1
4(φ

2 − 1)2, ε = 0.05, and M = 1. The difference in order

parameter between the phases at equilibrium is Φ̂ = 2 and the height of the double-well free energy

is F̂ = 0.25. Based on Eqs. 3.14 and 3.15, the characteristic length of their system is L̂ = 0.1414

and the characteristic time is T̂ = 0.32. In contrast, the present work uses f (φ) = W
4 φ 2(1− φ)2

(with W = 0.4), ε =
√

0.2, and M = 1, which results in Φ̂ = 1 and F̂ = W/64 = 0.00625. Thus,

our characteristic length is L̂ = 4 and time is T̂ = 2560. Dai and Du [100] fit the kinetics of a 2-D

simulation with a one-sided mobility using times up to t = 8. Applying Eq. 3.17, this corresponds

to

t =
2560
0.32

×8 = 6.4×104

with our parameters, which is ten times smaller than the latest time in Fig. 4.4. Agreement with

the t1/3 power law within this early timescale is consistent with our results since the decrease in

coarsening rate constant is more evident at later times.

The morphological transition would have been difficult to observe without our use of the ISD

to characterize the morphologies of our simulated structures. The structure function and pair cor-

relation function, employed by Sheng et al. [109] to characterize their structures, were previously

found to be insensitive to the difference between complex percolating domains and particles em-

bedded in a matrix [95]. Those types of morphology are clearly differentiated in the ISD, and we

were able to observe a transition from one type to the other.

4.5 3-D Simulations

Three 3-D simulations were conducted with domains of size Lx = Ly = Lz = 1024, initialized with

φ uniformly distributed within 0.40− 0.60 and generated with the same set of random numbers.

The first simulation used constant mobility at all times. The second simulation, dissimilar mobili-

ties PS IC (phase-separated initial condition), employed constant mobility until t = 104 when phase

separation was complete, and dissimilar mobilities for subsequent coarsening. The third simula-
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tion, dissimilar mobilities RN IC (random noise initial condition), was conducted with dissimilar

mobilities for the duration of the simulation, 0 < t ≤ 4× 105. Two simulations were conducted

for the dissimilar-mobility case in 3D in order to determine whether the self-similar state is initial-

condition dependent, which was not necessary in the 2-D case because of the lack of a self-similar

state.

4.5.1 Morphology

All three simulation conditions resulted in qualitatively similar bicontinuous microstructures. A

representative morphology is shown in Fig. 4.5 for the dissimilar-mobility case. Specifically, Fig.

4.5 shows the φ = 0.50 isosurface of the dissimilar-mobility PS IC structure at time t = 4× 105

within a cubic subdomain with side length 8S−1
V . The isosurface is colored by scaled mean and

Gaussian curvature in Figs. 4.5a and 4.5b, respectively. The predominant high-curvature features

are necks, four of which are circled. These necks have negative Gaussian curvatures with large

magnitudes. Mean curvatures can be positive or negative depending on which phase the neck

contains: positive for necks containing low-mobility phase and negative for necks containing high-

mobility phase. Negative Gaussian curvature indicates that interfaces are hyperbolic, i.e., they

have oppositely signed principal curvatures. As evident in Fig. 4.5, most of the interfaces are

either hyperbolic or nearly planar. Elliptic interfaces (with principle curvatures of the same sign)

with large positive Gaussian curvatures are also present. However, they are rare and are most

likely products of the pinching of necks, which disappear relatively quickly because the same-

signed principle curvatures add to the magnitude of the mean curvature that determines the driving

force for evolution via the Gibbs-Thomson condition.

Figure 4.6a defines four types of interfaces based on regions of the ISD, which are: 1) nearly

flat interfaces, 2) interfaces near the peak of the ISD, 3) interfaces associated with the necks of

the low-mobility phase, and 4) interfaces associated with the necks of the high-mobility phase.

These interfaces are identified by red highlights in Fig. 4.6b.1-4. As in Fig. 5, the structure is for

the dissimilar mobilities PS IC case at time t = 4× 105. Nearly flat interfaces in Fig. 4.6b.1 are

46



(a)
0.0 1.0 2.0-1.0-2.0
H/SV

(b)
0.0 5.0 10.0-5.0-10.0
K/S

V
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Figure 4.5: Late-time interfacial morphology for the dissimilar-mobility PS IC case at time t =
4×105. The φ = 0.50 iso-surface is shown colored by (a) scaled mean curvature and (b) Gaussian
curvature within a cubic subdomain with side length 8S−1

V = 283. Four necks are circled, two of
which contain high-mobility phase (negative H/SV ) and two of which contain low-mobility phase
(positive Gaussian curvature).

present on the structure in small round patches and larger non-circular areas. Interfaces near the

ISD peak, highlighted in Fig. 4.6b.2, are present in thin strips of area, some of which appear to

partially enclose areas of nearly flat interfaces. Necks were previously identified in Fig. 4.5, and,

by comparing it against Figs. 4.6b.3 and 4.6b.4, we observe that regions 3) and 4) of the ISD do

correspond to necks in the structures, although some neck areas in Fig. 4.5 are out of the limit of

regions 3) and 4) and thus are not highlighted.

Figure 4.7 shows how the integrated probability over each of these ISD regions identified in Fig.

4.6 evolves during coarsening. The constant-mobility case and the dissimilar-mobility case with

the phase separated initial condition (dissimilar mobilities PS IC) are identical at t = 104 because

both are simulated with M = 1 during the phase separation stage. However, the latter quickly

diverges from the constant mobility case, and the probabilities of both dissimilar-mobility cases

converge over time to the same late-time values in all of the four types of interfaces. As compared

to the constant-mobility structure, the dissimilar-mobility structures have less interfacial area that

is nearly flat or near the ISD peak (Figs. 4.7a and 4.7b), and significantly more interfacial area

corresponding to high-mobility-phase necks (4.7d), along with slightly more low-mobility-phase
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Figure 4.6: (a) ISD and (b) structures identifying four different types of interface: 1) nearly flat
interfaces, 2) interfaces at the ISD peak, 3) high-mobility-phase necks, and 4) low-mobility-phase
necks. The ISD and structures shown are for the dissimilar-mobility PS IC case at time t = 4×105.

necks (4.7c).

The constant-mobility ISD does not evolve substantially, except for a slight increase in the

amount of area corresponding to necks at early times. The neck probabilities must be statistically

identical in the constant-mobility ISD due to kinetic and compositional symmetries, and therefore

the observed changes in neck probabilities at late times represent statistical uncertainty due to our

finite sample size. In all cases, the morphologies quantified in Fig. 4.7 appear to have converged

by t > 2×105 (t1/3 > 58).

Figure 4.8 shows late-time ISDs for the constant-mobility, dissimilar-mobility PS IC, and

dissimilar-mobility RN IC 3-D cases, time-averaged over the interval 2× 105 < t ≤ 4× 105. All

three ISDs are concentrated around the line of zero mean curvature, H = (κ1+κ2)/2 = 0, which is

indicated by a dashed line extending from the origin to the upper left corner. All cases have average

scaled mean curvature 〈H/SV 〉= 0.00. However, the dissimilar-mobility ISDs are broader than the

constant-mobility ISD, having a larger standard deviation of scaled mean curvature, σH/SV = 0.37

vs. σH/SV = 0.32.
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Figure 4.7: Time evolution of the integrated probability (i.e., the area fraction) of the four types
of interfacial shape identified in Fig. 4.6 for the three 3-D simulations performed: constant mobil-
ity (blue triangles), dissimilar mobilities with phase separated initial condition (red squares), and
dissimilar mobilities with random noise initial condition (yellow diamonds).
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Figure 4.8: Late-time ISDs for the (a) constant mobility, (b) dissimilar mobilities with phase sep-
arated initial condition, and (c) dissimilar mobilities with random noise initial condition, time-
averaged over the interval 2×105 < t ≤ 4×105.

As was inferred in Fig. 4.7c and 4.7d, the dissimilar-mobility ISDs in Fig. 4.8b and 4.8c are

slightly asymmetric, with more area corresponding to high-mobility-phase necks than to low-

mobility-phase necks. This asymmetry originates from the asymmetry in kinetics of coarsening of

the two populations of necks. Low-mobility-phase necks are surrounded by high-mobility phase,

and they disappear more rapidly than necks containing the high-mobility phase surrounded by the

low-mobility phase [120, 121]. High-mobility-phase necks disappear more slowly, and therefore

become more prevalent in the structure compared to low-mobility-phase necks. However, unlike

high-mobility-phase particles in the 2-D case, they can still evolve away through the diffusion

within the neck region. Thus, the structure does appear to reach a bicontinuous steady state, unlike

the 2-D dissimilar-mobility case.

4.5.2 Kinetics

Coarsening kinetics of the 3-D structures are illustrated in Fig. 4.9, which shows the cube of char-

acteristic length, S−3
V , vs. time for each simulation alongside linear fits. The dissimilar-mobility

conditions have very similar coarsening rates, with equations of fit S−3
V = 0.112t−191 for PS IC

and S−3
V = 0.111t +905 for RN IC, while the constant-mobility case coarsens more quickly, with
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Figure 4.9: Coarsening kinetics for the 3-D structures. The cube of the characteristic length, S−3
V ,

is plotted vs. time for the three simulations: constant mobility (blue triangles), dissimilar mobilities
with phase separated initial condition (red squares), and dissimilar mobilities with random noise
initial condition (yellow diamonds). Linear fits are shown as solid black lines.

S−3
V = 0.180t + 905. The coarsening rate constant for the constant-mobility case (the coefficient

of t in the fit) is in reasonable agreement with a literature value [55] of 0.173 after rescaling as

described in Section 3.4. All cases produce excellent fits, with R2 = 0.99998 and R2 = 0.99986

for the dissimilar-mobility PS IC and RN IC cases, respectively, and R2 = 0.99996 for the constant

mobility case.

Transient coarsening kinetics are observed in Fig. 4.9 prior to steady-state. In the constant-

mobility case, the rate of change of S−3
V (i.e., the instantaneous coarsening rate constant, dS−3

V /dt)

decreases as it approaches steady state. The instantaneous coarsening rate constant of the dissimilar-

mobility PS IC structure increases over time while that of the dissimlar-mobility RN IC structure

decreases, resulting in a crossover of their S−3
V vs. time plots in Fig. 4.9 near t = 4×104.
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4.5.3 Convergence of ISDs

Convergence of the time-dependent ISDs, denoted by P(t) to the average ISDs, denoted by P̄, is

depicted in Fig. 4.10, which plots the L1 norm of the difference P(t)− P̄ vs. time. This quantity,

||P(t)− P̄||1, is the integral of the absolute difference |P(t)− P̄| over the domain of the ISD.

Differences between ISDs are sensitive to ISD resolution, which was ∆κ1/SV = ∆κ2/SV = 0.08 in

this paper. Since the integrals of the ISDs themselves are unity (because of the normalization in Eq.

3.19), this measure of difference requires no additional normalization. In all cases shown in Fig.

S1, ||P(t)− P̄||1 has converged to small, stable values (0.02− 0.03) before t1/3 = 58, indicating

that the average ISDs are representative of the converged, self-similar morphologies.

These values of ||P(t)−P̄||1 during the converged regime provide an estimate of the uncertainty

of our ISDs, which can be used to assess the statistical significance of the differences between ISDs

for different conditions. The L1-normed difference between dissimilar-mobility ISDs is 0.019, and

the L1-normed difference between either of them and the constant-mobility ISD is 0.135. The

time-averaged dissimilar-mobility structures are therefore statistically indistinguishable, and they

differ significantly from the constant-mobility structure. The values of ||P(t)− P̄||1 during the

converged regime can also be used to assess when the structure has converged. In Fig. 4.9, kinetics

were fitted over a timescale determined by the ad hoc criterion ||P(t)− P̄||1 ≤ 0.030.

4.5.4 Application of geometrically general model

The coarsening dynamics of the 3-D structures can be interpreted using a theoretical model by

DeHoff [52]. In his work, coarsening is modeled through the diffusional interactions of pairs of

interfaces, referred to as communicating neighbors, over some interaction distance λ . The normal

velocity of a surface element with mean curvature H and communicating with a neighbor element

with mean curvature Hn is given by

vn = KD
1
λ
(Hn−H) (4.4)
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Figure 4.10: Plot of ||P(t)− P̄||1 vs. t1/3 illustrating convergence of ISDs for the 3-D cases: con-
stant mobility (blue triangles), dissimilar mobilities with phase separated initial condition (red
squares), and dissimilar mobilities with random noise initial condition (yellow diamonds).

where the kinetic coefficient KD is 2Mγ for the phase field model defined by Eqs. 3.4 and 3.5.

This velocity results from a diffusive flux driven by the difference in curvature between the surface

element and its neighbor element. To obtain a relationship between rate of change of total area,

dA/dt, and the morphology, DeHoff used Eq. 4.4 with two additional assumptions: that volume

fraction is constant, and that λ , H, and Hn are all uncorrelated. The resulting relationship can be

written as
dA
dt

=−2KD

〈
1
λ

〉
Aσ

2
H , (4.5)

where σ2
H is the variance of mean curvature, σ2

H =
〈
H2〉−〈H〉2, and the brackets denote an area-

weighted average over the interfaces.

The rate of change of total area is related to the instantaneous coarsening rate constant of our

system, k(t) = dS−3
V /dt, by

dS−3
V

dt
=−3S−3

V
1
A

dA
dt

. (4.6)

Substituting DeHoff’s relationship, Eq. 4.4, for dA/dt and scaling morphological quantities by S−1
V

yields
dS−3

V
dt

= 6KD
σ2

H/SV

λ̂
, (4.7)
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where λ̂ = S−1
V 〈1/λ 〉−1. Eq. 4.7 relates the coarsening rate constant to the scaled morphology with

a single unknown parameter, the scaled average interaction distance λ̂ . For determination of this

parameter in our systems, we note that Eq. 4.7 is formulated for diffusion through a single phase.

This is a reasonable assumption for the dissimilar-mobility cases, as we can neglect transport

through the low-mobility phase. For a bicontinuous structure with constant mobility, fluxes through

each phase should contribute equally to the interfacial velocity, and we should have double the

coarsening rate as compared to Eq. 4.7. This can be expressed by

dS−3
V

dt
= 6NKD

σ2
H/SV

λ̂
, (4.8)

where N denotes the number of phases (one or two) with fluxes that contribute to the interfacial

velocity.

To examine the relationship presented in Eq. 4.8, (dS−3
V /dt)/N is plotted against σ2

H/SV
in

Fig. 4.11 for the three 3-D simulations. The coarsening rate constants are calculated from the

data in Fig. 4.9 by a centered difference between output steps, i.e., k(tn+1/2) = [S−3
V (tn+1)−

S−3
V (tn)]/(tn+1− tn), where tn is the time of the nth output step. The variance in scaled curvature

σ2
H/SV

was calculated at tn+1/2 by a simple average. The earliest data points (calculated between

t = 104 and t = 2×104) are circled, and the final data points (calculated between t = 3.9×105 and

t = 4×105) are noted by black symbols. A single fit to Eq. 4.8 using all of the data is shown as a

solid black line.

In the 3-D constant-mobility case, σ2
H/SV

is nearly constant throughout the evolution, and λ̂

was found to be 0.44 when Eq. 4.8 was fitted only to this data set. The two 3-D dissimilar-mobility

cases, PS IC and RN IC, have similar trends, and when Eq. 4.8 is fit to the dissimilar-mobility

datasets we obtain λ̂ = 0.48. Therefore, the primary difference in kinetics due to highly dissimilar

mobilities can be interpreted as a factor of two decrease (due to the negligible contribution of the

low-mobility phase). Furthermore, it appears that higher morphological driving force (σ2
H/SV

) does

indeed increase the coarsening rate constant. This is most apparent in the case where dissimilar-
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mobility simulation was initialized with the constant-mobility phase separation morphology (the

PS IC case). The simulation data for this case begins close to the cluster of points from the constant-

mobility case, where the structure has comparatively smaller σ2
H/SV

than its final state, and the

instantaneous rate constant is smaller than its counterpart that was initialized with random noise

(RN IC). As σ2
H/SV

increases, the rate constant increases, eventually reaching the cluster of values

from the RN IC simulation. Eq. 4.8 also appears to hold for the early stage of the RN IC simulation,

where the structure resulting from the random noise initial condition has a distribution in H than

the self-similar structure (see the circled yellow triangle in Fig. 4.11). Additional constant-mobility

simulations demonstrating this relationship are provided in Section 8.1.

There are also changes in kinetics that cannot be explained by the evolution of σ2
H/SV

. In both

of the simulations that evolve with the same dynamics from random noise (constant mobility and

dissimilar mobilities RN IC), there is a decrease in dS−3
V /dt at early times. In the constant-mobility

simulation, there is no change in σ2
H/SV

to explain the decrease in dS−3
V /dt, and in the dissimilar-

mobility RN IC simulation, the change in dS−3
V /dt is larger than predicted by the fit (the solid

black line in Fig. 4.11) for its change in σ2
H/SV

. These decreases in dS−3
V /dt could be interpreted

in the model as an increase in the average interaction distance λ̂ in Eq. 4.8. However, as a property

of the diffusion field, λ̂ is difficult to assess independently, and therefore other morphological or

kinetic effects cannot be ruled out.

4.6 Conclusions

Coarsening of a two-phase system in which the phases had dissimilar mobilities was studied at

50% volume fraction. Simulations were conducted in two and three dimensions using the Cahn-

Hilliard model with a concentration-dependent mobility formulated to reduce the effect of small

deviations in concentration, such as those due to the Gibbs-Thomson effect. Simulations with

constant mobility were conducted for comparison. The simulated morphologies were characterized

by the characteristic length, statistics of mean curvature, and the interfacial shape distribution
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Figure 4.11: Plot of (dS−3
V /dt)/N, the instantaneous coarsening rate constant per number of phases

with contributing fluxes, vs. the variance of scaled mean curvature, σ2
H/SV

, for the 3-D simulations:
constant mobility (blue triangles), dissimilar mobilities with phase separated initial condition (red
squares), and dissimilar mobilities with random noise initial condition (yellow diamonds). A fit of
Eq. 4.8 to all three data sets is indicated by a solid black line. The earliest data points (calculated
between t = 104 and t = 2× 104) are circled, and the final data points (calculated between t =
3.9×105 and t = 4×105) are noted by black symbols.
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(ISD). Quantitative analysis of the ISD was applied to the 3-D simulation results.

A morphological transition during coarsening was identified in two dimensions when the mo-

bility was dissimilar, which was not observed when the mobility was constant. In this transition,

an initially layered structure transforms into a system of high-mobility-phase particles embedded

in a low-mobility matrix. This morphological transition resulted in a decrease of the coarsening

rate constant over time, which explains why previous studies [109, 110] did not find agreement

with the L ∝ t1/3 power law but rather suggested smaller coarsening exponents. Morphological

evolution was also observed in the 2-D constant-mobility case, and its kinetics agreed with the t1/3

power law after an initial transient stage.

The 3-D simulations resulted in bicontinuous morphologies that evolved self-similarly. Close

agreement was found between the late-time morphologies of two dissimilar-mobility simulations

that differed only in their initial conditions. The self-similar morphology for the dissimilar-mobility

cases has greater variance in scaled mean curvature than the constant-mobility morphology. The

dissimilar-mobility morphology also possesses slight asymmetry caused by the asymmetry in mo-

bility: it contains more area corresponding to necks surrounded by low-mobility phase, which

evolve more slowly, than area corresponding to necks surrounded by high-mobility phase, which

evolve more quickly.

Based on theory and simulations, the primary difference in the kinetics of coarsening between

the dissimilar-mobility and constant mobility systems were determined to be a factor of two smaller

kinetic coefficient in the dissimilar-mobility case due to the lack of diffusion in one of the phases.

The coarsening kinetics of the 3-D cases agreed well with the theoretical t1/3 power law after initial

transient stages. The transient coarsening kinetics in the 3-D simulations were observed to match

a theoretical prediction by DeHoff [52] that related the variance in scaled curvature, σ2
H/SV

, to the

instantaneous coarsening rate constant, k = dS−3
V /dt, calculated between simulation output step).

DeHoff’s theory assumes that the distances of diffusional interactions between neighboring inter-

faces are uncorrelated to the curvatures of the interfaces. Applying this theory to the coarsening

of bicontinuous structures, we obtained similar scaled average diffusional interaction distances for
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the constant- and dissimilar-mobility cases. The resulting expression for the instantaneous kinetic

coefficient provides a practical analytical model for materials engineering, as well as fundamen-

tal understanding, of the coarsening phenomena that is ubiquitous in a broad range of materials

systems. Additional simulation evidence in support of this model is presented in Section 8.1.
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Chapter 5

Coarsening of bicontinuous microstructures

via surface diffusion

5.1 Introduction

Surface diffusion is thought to be the mechanism for coarsening in nanoporous metallic structures

[11, 16, 22, 78]. These nanostructures are of technological interest due to their tunable mechanical

properties [19, 20, 122, 123] and functional applications including catalysis [15, 16], actuation

[124], sensing [18], and electrochemical supercapacitors [17]. Performance in all of these appli-

cations is dependent on the length scale of the nanostructures, which increases during coarsening.

Coarsening therefore represents both a method for tuning properties and a challenge to be over-

come for engineering applications [11].

Nanoporous metallic structures are typically created by electrochemical dealloying [11, 13],

in which the less noble element of the alloy is removed and a porous structure (composed of the

more noble element) remains. Electrochemical dealloying can be driven by an applied potential or

it can occur via free corrosion, where the alloy is in contact with an electrolyte without an applied

potential [123]. Since antiquity, electrochemical dealloying has been used to produce nanoporous

gold leaf from Au-Ag alloys [14]. Nanoporous gold continues to be the most widely studied system

produced by electrochemical dealloying [15, 16, 17, 18, 19, 20, 22, 78, 122, 123, 124], although

nanostructures composed of Ni [125], Pt [126], and other noble elements [127] have also been
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fabricated.

Experimental studies of coarsening in nanoporous gold [16, 22, 128] indicate that characteristic

length scales evolve according to the t1/4 power law for surface diffusion, as discussed in Chapter 2.

Recent work also indicates that evolution of nanoporous gold during coarsening may be self-similar

[21]. However, little is known theoretically about coarsening via surface diffusion beyond the

power law. There is no analytical theory that can predict the self-similar morphology. Simulations

are therefore necessary, but they have yet to result in predictions of self-similar morphologies in

three dimensions (3D).

Several studies have examined coarsening via surface diffusion in two dimensions using contin-

uum [77, 100, 105, 106, 109, 110, 129, 130] and atomistic- or molecular-scale kinetic Monte Carlo

[77, 130] methods, but only one kinetic Monte Carlo study [78] has examined a three-dimensional

(3-D) system. This 3-D study [78] investigated coarsening within individual nanoporous nanopar-

ticles. Self-similar coarsening was not observed in the study, as the particles densified over time to

reduce the area of their external surface (the surface composed of the outer boundary of the parti-

cle, as opposed to the surface within the porous structure), eventually consisting of nearly 100%

solid phase. Simulations that have observed self-similar coarsening via bulk diffusion [53, 54, 55]

have relied upon large sample microstructures with periodic boundary conditions that avoid the

effect of an external surface. We adopt this approach to study coarsening via surface diffusion.

The results show that the self-similar states exist, and we characterize differences in self-similar

morphology between structures that coarsen via surface and via bulk diffusion.

The evolution of a surface by interfacial-energy-driven surface diffusion was first described at

the continuum scale by Mullins [79, 131], and was introduced in Eq. 2.41 in Chapter 2. As evident

in the governing equation (Eq. 2.41), namely

vn =−η∇
2
s H, (5.1)

evolution via surface diffusion is fully specified by the local geometry of the surface. Correspon-
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dence between this sharp interface model and a phase field model was first demonstrated by Cahn et

al. [132]. They examined a modified Cahn-Hilliard model for spinodal decomposition in a deeply

quenched system. In this system, mobility is concentration-dependent and zero in both phases at

their equilibrium compositions. Two types of bulk free energy f (φ) were considered, the double-

obstacle potential [133], depicted in Fig. 5.1a, and the low-temperature limit of a regular solution

model,

f (φ) = T̃ [φ lnφ +(1−φ) ln(1−φ)]+φ(1−φ), (5.2)

where T̃ is the scaled temperature. The low temperature limit T̃ → 0 corresponds to φ
+
0 → 1 and

φ
−
0 → 0. It also corresponds to f ′′(φ±0 )→ ∞. The effect of this limit is elucidated by Eq. 2.33,

which we restate here in terms of the order parameter φ ,

∆φ =− 2γH
(φ+

0 −φ
−
0 ) f ′′(φ±0 )

. (5.3)

The low-temperature limit therefore results in ∆φ → 0, i.e., asymptotically small changes in bulk

concentration. The double-obstacle potential has ∆φ = 0, i.e., constant bulk concentration, al-

though Eq. 5.3 is no longer valid because f (φ) is no longer smooth [133]. Considering the phys-

ical two-phase, two-component system, these bulk free energies eliminate the solubility of the

non-majority component in each bulk phase. Deviations from the bulk equilibrium concentrations

are therefore asymptotically small or zero in the regular solution and double-obstacle cases, respec-

tively, and the concentration-dependent mobility is therefore asymptotically small or zero. Zero

mobility in the bulk suppresses bulk diffusion and leaves surface diffusion (i.e., Eq. 2.41) as the

only transport mechanism in the system.

Many subsequent authors [100, 105, 106, 109, 110, 134, 135] have employed the double-well

potential (Fig. 5.1b) for the bulk free energy instead of the double-obstacle potential (Fig. 5.1a) or

regular solution model. The double-well potential permits solubility in the bulk phases, which can

allow some bulk diffusion to occur even if the mobility is set to zero at the equilibrium composi-

tions of the phases [116, 117, 118]. Diffusion through the bulk can be eliminated by a modification
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Figure 5.1: Possible forms of bulk free energy function f (φ) for use in phase field models for
surface diffusion: (a) the double-obstacle potential, f (φ) ∝ |φ(1− φ)| for φ ∈ [0,1], f (φ) = ∞

otherwise, and (b) the double-well potential, f (φ) ∝ φ 2(φ −1)2.

to the chemical potential proposed by Rätz, Ribalta, and Voigt (RRV) [136]. The modified chemi-

cal potential in the RRV model is non-variational; it no longer represents the variational derivative

of the free energy functional (Eq. 3.1) with respect to the order parameter. Using the variational

derivative as the chemical potential guarantees that the free energy functional is monotonically

decreasing [131], and it is not known whether this is the case for the RRV model. However,

asymptotic analyses of the RRV model show that it corresponds to interfacial-energy-driven sur-

face diffusion (Eq. 2.41), and numerical agreement between the phase field and sharp interface

models has been demonstrated [136, 137]. We therefore adopt the RRV model to study coarsening

of bicontinuous microstructure via surface diffusion.

5.2 Phase field model

We now describe the RRV model as it is employed in this study. Specifically, we consider a system

with isotropic interfacial energy and in the limit of fast attachment kinetics (i.e., kinetics that are

surface-diffusion limited, rather than attachment-rate limited). To ensure that φ is constant in

the bulk, the RRV model modifies the Cahn-Hilliard equation, Eq. 3.4, by dividing the chemical

potential by a stabilizing function, g(φ) ∝ f (φ),

∂φ

∂ t
= ∇ ·M(φ)∇

1
g(φ)

[
f ′(φ)− ε

2
∇

2
φ
]
, (5.4)
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The RRV model also uses a concentration-dependent mobility of the form M(φ) ∝ f (φ), which is

zero at the equilibrium concentrations, M(φ±0 ) = 0.

The sharp interface dynamics of this model was analyzed in Refs. [136, 137]. The shape of the

diffuse interface at leading order is unchanged by g(φ), since it results from a balance of the terms

of µ (i.e., setting µ = 0 in Eq. 3.2). The stabilizing function causes higher-order changes to the

chemical potential at the interface (e.g., due to the Gibbs-Thomson effect) to vanish away from the

interface. The phases therefore have no driving force to change from the bulk equilibrium values

of φ , and the mobility is zero throughout the bulk.

Following the analysis of Rätz et al. [136], the sharp interface kinetic coefficient α can be

determined in terms of the phase field model parameters. This relationship can be expressed as

α =
ε

(φ+
0 −φ

−
0 )

∫
φ
+
0

φ
−
0

M(φ)√
2 f (φ)

dφ
γ∫ φ

+
0

φ
−
0

g(φ)dφ

, (5.5)

where γ , the interfacial energy, is given by Eq. 3.6

5.2.1 Simulation parameters

The RRV model consisting of Eqs. 3.2 and 5.4 was used to simulate phase separation and coars-

ening via surface diffusion. The bulk free energy was specified by Eq. 3.5, and the mobility and

stabilizing function were chosen to be M(φ) = g(φ) = φ 2(1−φ)2. Parameters of the phase field

model were W = 0.4 and ε2 = 0.2, which result in a sharp interface kinetic coefficient η = 1/6.

Singularity of 1/g(φ) was avoided by the addition of a small positive constant, σ = 10−12, to the

denominator: 1/g(φ)≈ 1/[g(φ)+σ ].

This model was simulated in cubic domains, Lx = Ly = Lz = 1024, with periodic boundary

conditions. The domain was discretized by a uniform Cartesian grid with ∆x = 1, which resulted in

3-5 points through the interface. Eqs. 3.2 and 5.4 were solved numerically using finite differences.

Explicit (forward Euler) timestepping was used with ∆t = 0.04, and simulations were initialized

with random noise.
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5.3 Results

This section describes the results of simulations at two average system compositions, 〈φ〉 = 0.50

and 〈φ〉 = 0.36. Our discussion of the coarsening results focuses initially on the evolution of

the scaled morphologies. Convergence to self-similar coarsening is demonstrated, and agreement

with the t1/4 power law is found during the self-similar regime. The self-similar structures are

then characterized in greater detail using samples of the structures, statistics of morphology and

topology, and interfacial shape distributions. The differences between surface- and bulk-diffusion

morphologies are analyzed and discussed.

5.3.1 Evolution of scaled morphology and topology

Fig. 5.2 depicts the evolution of the moments of mean curvature and the scaled topology. Average

scaled mean curvature 〈H/SV 〉, standard deviation of scaled mean curvature σH/SV , and scaled

genus density gV S−3
V are plotted vs. characteristic length, which enables a direct comparison be-

tween the surface- and bulk-diffusion cases. In the structures with 〈φ〉= 0.50, scaled genus density

converges quickly, and the first and second moments of scaled mean curvature (Fig. 5.2a and 5.2b)

undergo little, if any, evolution. This indicates that the morphologies resulting from phase separa-

tion are close to the self-similar coarsening morphologies. More substantial evolution is observed

at 〈φ〉= 0.36: for both coarsening mechanisms, the average and standard deviation of scaled mean

curvature decrease, while scaled genus density increases. In all four cases, bulk and surface dif-

fusion with 〈φ〉 = 0.50 and 〈φ〉 = 0.36, there is a late time (large S−1
V ) regime at which all of the

quantities in Fig. 5.2 appear to be stable.

We focus on scaled genus density to quantify convergence to the stable state, since all four cases

experience some genus density evolution. To quantify convergence, we examine the standard devi-

ation of gV S−3
V within an interval [S−1

V −5,S−1
V +5], i.e., within a moving window 10S−1

V wide. We

denote this quantity σg(S−1
V ), and plot it vs. S−1

V in Fig. 5.3a. Structures were considered converged

for all S−1
V greater than the S−1

V at which σg initially drops below a critical value, σg(S−1
V ) = 0.001,
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Figure 5.2: Quantitative evolution of the bulk- and surface-diffusion structures. (a) average scaled
mean curvature 〈H/SV 〉, (b) standard deviation of scaled mean curvature σH/SV , and (c) scaled
genus density gV S−3

V are plotted vs. the characteristic length S−1
V for all four cases: bulk diffu-

sion 〈φ〉= 0.36 (yellow downward triangles), surface diffusion 〈φ〉= 0.36 (blue diamonds), bulk
diffusion 〈φ〉= 0.50 (purple rightward triangles), and surface diffusion 〈φ〉= 0.50 (red squares).
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which is indicated by the dotted line in Fig. 5.3a. Based on this criterion, the surface-diffusion

〈φ〉= 0.50 and 〈φ〉= 0.36 structures converged by S−1
V = 19.1 and S−1

V = 32.4 respectively, while

the bulk-diffusion 〈φ〉= 0.50 and 〈φ〉= 0.36 structures converged by S−1
V = 21.5 and S−1

V = 46.7.

The converged (i.e., self-similar) regime of evolution then consists of all characteristic lengths

available for each structure after its characteristic length of convergence.

To verify that the criterion σg(S−1
V )≤ 0.001 adequately represents convergence of the morphol-

ogy, we plot convergence of ISDs in Fig. 5.3b. For each structure, the ISD was averaged in S−1
V

over the self-similar regime, and the average ISDs are denoted by P̄(κ1/SV ,κ2/SV ), in contrast

to the time-dependent ISDs P(κ1/SV ,κ2/SV ; t). Fig. 5.3b plots the integrated absolute difference

between P(t) and P̄ (i.e., the L1 normed difference ||P̄−P(t)||1) vs. characteristic length. This

difference is always small for the 〈φ〉= 0.50 cases, which is consistent with the minimal evolution

of 〈H/SV 〉 and σH/SV in Fig. 5.2. For the 〈φ〉 = 0.36 cases, the difference ||P̄−P(t)||1 decreases

substantially during coarsening to low, stable values, indicating convergence of the ISD. We note

that the integral of the absolute value of an ISD (i.e., its L1 norm ||P||1) is equal to unity, as it is a

probability density function. Thus, the difference ||P̄−P(t)||1 is already a relative difference with

respect to either ISD. For example, P̄ for bulk diffusion with 〈φ〉= 0.36 differs by 40% from P(t)

at the earliest available time.

Across all cases, ||P̄−P(t)||1 appears to increase slowly with S−1
V after convergence. This could

correspond to slow, long-term evolution of the ISD, but we note that increasing S−1
V decreases in

the size of the statistical sample (i.e., the total interfacial area) used to generate the ISDs. With

less area binned at the same ISD resolution (κ1/SV = κ2/SV = 0.125), the ISD begins to contain

more noise. To demonstrate this effect, the differences P(t)− P̄ are plotted in Fig. 5.4 in the middle

of the self-similar regime for each case (i.e., the midpoint of the self-similar interval in S−1
V ). In

Fig. 5.4, the magnitude of P(t)− P̄ increases from Fig. 5.4a to Fig. 5.4d, matching the increase in

S−1
V . The larger differences present at higher S−1

V appear to be uncorrelated: they change rapidly

in sign, especially near the peak. Thus, much of the differences ||P̄− P(t)||1 in Fig. 5.3b are

attributable to noise, and the total amount of evolution during the self-similar regime is likely to be
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Figure 5.3: Measures of convergence of (a) the scaled genus density and (b) the scaled ISD, both
plotted vs. characteristic length. In (a), the quantity σg(S−1

V ) represents the standard deviation of
gV S−3

V within an interval centered at S−1
V . The critical value of σg used to assess convergence,

0.001, is indicated as a dotted line. In (b) quantity ||P(t)− P̄||1 is the integrated absolute difference
(i.e., the L1 normed difference) between a self-similar average ISD P̄ and the time-dependent ISD
P(t). All four conditions are shown in (a) and (b): bulk diffusion 〈φ〉= 0.36 (yellow downward tri-
angles), surface diffusion 〈φ〉= 0.36 (blue diamonds), bulk diffusion 〈φ〉= 0.50 (purple rightward
triangles), and surface diffusion 〈φ〉= 0.50 (red squares).

even less than that quantified by ||P̄−P(t)||1. Regardless of their source, the values of ||P̄−P(t)||1

after convergence can be interpreted as a measure of uncertainty of the ISDs. For the 〈φ〉 = 0.50

structures, they are in the range 0.01−0.03, and for the 〈φ〉= 0.36 structures, they are in the range

0.02−0.04.

5.3.2 Kinetics

As discussed above, the simulation results provide evidence that all of the structures converge to a

self-similar state, where scaled morphological and topological statistics are constant. During self-

similar coarsening via surface diffusion (Eq. 2.41), the time evolution of the characteristic length

S−1
V must follow the t1/4 power law, which can be expressed as

S−4
V (t)−S−4

V (0) = kt, (5.6)
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Figure 5.4: Differences between time-averaged and time-dependent ISDs, P(t)− P̄, for each con-
dition in the middle of its self-similar regime: (a) surface diffusion, 〈φ〉= 0.50, (b) bulk diffusion,
〈φ〉= 0.50, (c) surface diffusion, 〈φ〉= 0.36, and (d) bulk diffusion, 〈φ〉= 0.36.
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Figure 5.5: Kinetics of coarsening for both surface-diffusion cases, 〈φ〉 = 0.36 (blue diamonds)
and 〈φ〉= 0.50 (red squares). Characteristic length S−1

V is plotted vs. the translated time (t− t0)1/4.
Fits to Eq. 5.6 within the self-similar regime are shown as solid black lines, and the dotted lines
indicate extensions of the fits to earlier times, prior to convergence.

where k is the coarsening rate constant. The time evolution of S−1
V is shown in Fig. 5.5 for the

surface-diffusion simulations. Fits to Eq. 5.6 within the self-similar regime are shown as solid

lines, and the dotted lines indicate extensions of the fits to earlier S−1
V . The initial times t0 in Fig.

5.5 were calculated by t0 = S−4
V (0)/k for each case. Equations of fit were S−4

V = 1.59t+1.08×105

for 〈φ〉= 0.36 and S−4
V = 1.05t+1.30×104 for 〈φ〉= 0.50. The fits provided excellent agreement

within the self-similar regime used for fitting: coefficients of correlation were R2 = 0.99986 for

〈φ〉= 0.36 and R2 = 0.99998 for 〈φ〉= 0.50. Prior to the self-similar regime, transient kinetics are

observed: the coarsening rate constant decreases over time to its self-similar value. This decrease

is more substantial for the 〈φ〉 = 0.36 case, which correlates to its longer and more substantial

evolution prior to convergence.

5.3.3 Self-similar morphologies

In this section, we examine the self-similar morphologies that result from surface diffusion and

compare them to the bulk-diffusion cases.
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Structures

Fig. 5.6 shows samples of the surface-diffusion structures from the latest available times with

the same scaled volume, (8S−1
V )3. The 〈φ〉 = 0.50 case at t = 9.6× 105 is shown in Figs. 5.6a-

c, and the 〈φ〉 = 0.36 case at t = 3.2× 106 is shown in Figs. 5.6d-f. The interfaces (i.e., the

φ = 0.50 isosurfaces) are depicted with the φ = 1 phase capped at the sample boundary in Figs.

5.6a and 5.6d, colored by scaled mean curvature H/SV in Figs. 5.6b and 5.6e, and colored by

scaled Gaussian curvature K/S2
V in Figs. 5.6c and 5.6f.

The structures appear to be bicontinuous, and most notable high-curvature features are necks.

These have highly negative Gaussian curvature and mean curvature of either sign, although necks

with negative mean curvature are less common in the 〈φ〉 = 0.36 structure (Fig. 5.6e). Interfaces

with negative Gaussian curvature are known as hyperbolic interfaces, and their principal curvatures

κ1 and κ2 have opposite signs. Interfaces with positive Gaussian curvature are known as elliptic

interfaces, and their principal curvatures have the same sign. More elliptic interfaces are visible in

the 〈φ〉 = 0.36 structure than in the 〈φ〉 = 0.50 structure, but overall they are less common than

hyperbolic interfaces.

Scaled topology and morphological statistics

Table 5.1 compares the average and standard deviation of scaled mean curvature (〈H/SV 〉 and

σH/SV , respectively) and the scaled genus density gV S−3
V of all four cases (surface- and bulk dif-

fusion, 〈φ〉 = 0.50 and 〈φ〉 = 0.36) over the self-similar regime. The structures at 〈φ〉 = 0.50 are

quantitatively similar: the surface-diffusion case has lower σH/SV and slightly lower gV S−3
V , with

no difference in 〈H/SV 〉. The 〈φ〉 = 0.36 cases differ more substantially: the surface-diffusion

structure has lower gV S−3
V , lower σH/SV , and higher 〈H/SV 〉.

Comparing the coarsening mechanisms, we find lower σH/SV and gV S−3
V for surface diffusion

compared to bulk diffusion. The higher 〈H/SV 〉 observed in the surface-diffusion case at 〈φ〉 =

0.36 may also be general for non-symmetric bicontinuous mixtures, but at 〈φ〉= 0.50 the symmetry

between phases requires that 〈H/SV 〉= 0.00. Differences due to coarsening mechanism are smaller
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Table 5.1: Average scaled mean curvature, standard deviation of scaled mean curvature, and scaled
genus density of self-similar structures coarsening via surface and bulk diffusion.

〈φ〉= 0.50 〈φ〉= 0.36
surface bulk surface bulk

〈H/SV 〉 0.00 0.00 0.41 0.38
σH/SV 0.30 0.32 0.36 0.37
gV S−3

V 0.128 0.132 0.114 0.129

than the differences due to system composition, 〈φ〉, except in the case of scaled topology, which

was very similar between the bulk-diffusion structures at 〈φ〉= 0.50 and 〈φ〉= 0.36.

The contribution of independent particles to the scaled topology was also assessed. In the self-

similar structures, two independent particles were observed in the 〈φ〉 = 0.36 surface-diffusion

case, and none were observed in the other cases. These particles are a negligible component of

the overall topology of the structure, which had at minimum g = 1116, and comprise a negligible

fraction of the total volume, with Vf < 10−4. The evolution observed in the 〈φ〉 = 0.36 surface-

diffusion case is therefore representative of a bicontinuous structure.

Interfacial shape distributions

The self-similar average ISDs P̄(κ1/SV ,κ2/SV ) introduced in Section 5.3.1 are shown in Fig. 5.7.

Figs. 5.7a-c depict the 〈φ〉 = 0.50 cases, while Figs. 5.7d-f depict the 〈φ〉 = 0.36 cases. The

surface-diffusion ISDs are Figs. 5.7a and 5.7d, the bulk-diffusion ISDs are Figs. 5.7c and 5.7f,

and Figs. 5.7b and 5.7e show the differences between them. The line κ1 = −κ2 corresponds to

zero mean curvature (H = 0), and is indicated on the ISDs by a dashed line extending from the

origin. The lines κ1 = 0 and κ2 = 0 correspond to zero Gaussian curvature (K = 0), where the

interfacial shape corresponds to that of a cylinder. Hyperbolic interfaces lie in the quadrant κ1 < 0,

κ2 > 0, and they comprise the majority of interfaces in all four ISDs. The 〈φ〉 = 0.50 ISDs are

concentrated closely around the H = 0 line, while the 〈φ〉 = 0.36 ISDs are more diffuse, and are

shifted toward the upper right (higher H = (κ1 +κ2)/2). This is consistent with the differences

between structures in Fig. 5.6, where the 〈φ〉 = 0.36 structure (Fig. 5.6d) had substantially more

areas with large positive scaled mean curvature than the 〈φ〉 = 0.50 structure (Fig. 5.6b). The
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Figure 5.6: Samples of volume (8S−1
V )3 of structures with (a) 〈φ〉 = 0.50 and (b) 〈φ〉 = 0.36

evolved via surface diffusion. The φ = 0.5 isosurface is shown in (a,c) with the φ = 1 phase
capped at the domain boundary, in (b,d) colored by scaled mean curvature, and in (c,f) colored by
scaled Gaussian curvature.
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〈φ〉 = 0.36 ISDs are more diffuse, which is consistent with their higher values of σH/SV in Table

5.1.

At 〈φ〉= 0.50, the difference between ISDs due to coarsening mechanism (Fig. 5.7b) is small.

Quantitatively, ||Psur f − Pbulk||1 = 0.04, which is larger than their time-dependent uncertainties

in Fig. 5.3 (0.01− 0.03). The surface-diffusion ISD has more low-curvature area (i.e., near the

origin), including more elliptic area, and its higher-curvature areas are more closely concentrated

about the H = 0 line than in the bulk-diffusion ISD, which may result in its lower σH/SV in Table

5.1.

The difference between surface- and bulk-diffusion ISDs at 〈φ〉 = 0.36 is shown in Fig. 5.7e.

Quantitatively, ||Psur f −Pbulk||1 = 0.09, which is substantially larger than the variation in time of

either ISD (0.02− 0.04). The line H/SV = 0.38, representing 〈H/SV 〉 of the bulk-diffusion case,

has been drawn onto Fig. 5.7e as a dotted line. The surface-diffusion ISD contains more area to the

upper right of this line (with higher H/SV ) and less area to the lower left of it (with lower H/SV ).

Much of this increase in area at higher H/SV corresponds to elliptic areas with κ1 > 0, which

correspond to ‘caps’ with positive K in Fig. 5.6. The decrease in area at lower H/SV corresponds

to hyperbolic interfaces with highly negative K, i.e., necks in Fig. 5.6. Both of these changes are

expected to reduce gV S−3
V because of the Gauss-Bonnet theorem (Eq. 3.23), matching the trend

in Table 5.1. We note that changing a structure to contain more elliptic areas doesn’t necessarily

reduce its unscaled genus density, g/V , but it does decrease the size of the characteristic volume

S−3
V without increasing genus, thereby resulting in lower scaled genus density.

The differences in morphology due to coarsening mechanism will require additional theoretical

developments to fully explain. One route to such an explanation would examine the topological

changes that occur during coarsening. Since all of the structures have substantial genus density and

a negligible number of particles, the dominant mechanism of topology change is the pinching-off

of necks. This has been studied for surface diffusion [138, 139], and for bulk diffusion when the

diffusivities of the phases are highly dissimilar [120, 121]. Since this process results in hyperbolic

interfaces (necks) turning into elliptic areas (caps), the higher fraction of elliptic area in the surface
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Figure 5.7: Comparison of self-similar average ISDs at (a-c) 〈φ〉 = 0.50 and (d-f) 〈φ〉 = 0.36,
showing (a,d) the surface-diffusion ISDs, (b,e) the difference between bulk- and surface-diffusion
ISDs, Psur f −Pbulk, and (c,f) the bulk-diffusion ISDs. The dotted line in (e) at H/SV = 0.38 indi-
cates the average scaled mean curvature of the bulk-diffusion case (f).

diffusion structures (and the lower gV S−3
V ) may represent slower evolution of caps compared to

necks relative to the bulk-diffusion case. However, self-similar solutions for the pinching-off of

necks by bulk diffusion with uniform diffusivity have not yet been reported, so additional develop-

ment of this hypothesis is left to future work.

5.3.4 Summary

Three-dimensional phase field simulations were conducted of phase separation and coarsening via

surface diffusion at nominal volume fractions of 36% and 50% (average order parameter values

of 〈φ〉 = 0.36 and 〈φ〉 = 0.50 . These simulations resulted in bicontinuous microstructures, with

no independent particles at 50% and a negligible volume and number of particles at 36%. The

74



evolution of morphology and topology was quantitatively analyzed, and convergence to a regime

of self-similar coarsening was demonstrated in each case. Good agreement with the theoretical

t1/4 scaling law was observed during self-similar coarsening, and coarsening kinetics was found to

be sensitive to volume fraction.

Simulations of coarsening via bulk diffusion were conducted to provide a quantitative com-

parison between the self-similar morphologies of each mechanism. At 36%, the surface-diffusion

morphology has notably more positive elliptic area, where both mean and Gaussian curvature are

positive. This correlated to lower scaled genus density and higher average scaled mean curva-

ture than the bulk-diffusion case At 50%, the bulk- and surface-diffusion morphologies were very

similar, with slight differences observed in the ISDs and statistics of mean curvature. With the no-

table exception of scaled genus density, all quantitative characteristics of the structures were more

dependent on volume fraction than coarsening mechanism.

5.4 Coarsening at the limit of bicontinuity

The previous section described results for bicontinuous microstructures at 36% and 50% volume

fractions of minority phase. In a previous study of coarsening via bulk diffusion [55], the topology

of the structures was found to change abruptly from bicontinuous to disconnected (i.e., to a system

of particles) when volume fraction is reduced from 36% to 30%. In this section, we examine

coarsening via surface and bulk diffusion at an intermediate nominal volume fraction, 32%, which

is close to the volume fractions of experimental nanoporous gold microstructures [128].

Simulations of coarsening via both mechanisms were conducted at 〈φ〉= 0.32, and a simulation

of coarsening via bulk diffusion was conducted at 〈φ〉 = 0.30. Besides 〈φ〉, all three simulations

used the same conditions as in the previous section. Structures at 〈φ〉 = 0.32 the end of the sim-

ulations are shown in Fig. 5.8. While overall the structures appear to be well-connected, there

are isolated nearly-spherical particles in both cases, which is consistent with an intermediate state

between the disconnected 30% case and the well-connected 36% case.
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Figure 5.8: Samples of size
(
10S−1

V
)3

of the (a) bulk-diffusion and (b) surface-diffusion structures
at the end of the 〈φ〉= 0.32 simulations, S−1

V = 74.8 for bulk diffusion and S−1
V = 49.2 for surface

diffusion.

A mechanism for separation of particles is shown in Fig. 5.9 for the bulk-diffusion structure at

〈φ〉= 0.32. Initially (Fig. 5.9a), a thin neck is the only connection between a large well-connected

domain of φ = 1 phase and a particle shaped like an elongated droplet. This thin neck narrows in

Fig. 5.9b and has broken off completely in Fig. 5.9c, leaving the particle isolated. The remnants of

the neck have receded by the time shown in Fig. 5.9c, leaving behind smooth interfaces.

The evolution of scaled topology is compared between the 〈φ〉= 0.32 and 〈φ〉= 0.36 structures

in Fig. 5.10. The scaled genus density (Fig. 5.10a) of the 〈φ〉 = 0.32 structures is clearly much

lower than the 〈φ〉= 0.36 structures, and it is very different between coarsening mechanisms. As

at 〈φ〉 = 0.36, the surface-diffusion structure at 〈φ〉 = 0.32 starts with higher genus density than

the bulk-diffusion structure. However, this time it is decreasing during the evolution, while genus

density of the bulk-diffusion structure is increasing.

The evolution of the scaled particle density NV S−3
V is shown in Fig. 5.10b. The bulk-diffusion

structure at 〈φ〉 = 0.32 initially appears to be breaking up, but its scaled particle density starts to

decrease around S−1
V = 42 and eventually stabilizes near 0.003 by the end of the simulation. In

contrast, the surface-diffusion structure at 〈φ〉 = 0.32 appears to be breaking up continuously. In

the bulk-diffusion case, particles have diffusional interactions with the rest of the structure, and

may coarsen preferentially if their mean curvature is higher than that of neighboring interfaces.
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Figure 5.9: Separation of a particle from the main body of phase in the bulk-diffusion 〈φ〉= 0.32
structure at (a) t = 9× 104, S−1

V = 33.5, (b) t = 10× 105, S−1
V = 34.7, and (c) t = 1.1× 105,

S−1
V = 35.8. In (a), the particle is initially attached to a larger domain of φ = 1 phase b a thin neck

(circled in red). This neck shrinks but is still present in (b), and in (c) it has pinched off, separating
the particle from the structure. In (c), the interfaces where the neck used to be have already become
smooth.
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Figure 5.10: Evolution of (a) scaled genus density and (b) scaled particle density for the sim-
ulations at 〈φ〉 = 0.32 and 〈φ〉 = 0.36: 〈φ〉 = 0.32 bulk diffusion (red leftward triangles),
〈φ〉 = 0.32 surface diffusion (blue upward triangles), 〈φ〉 = 0.36 bulk diffusion (purple squares),
and 〈φ〉= 0.36 surface diffusion (yellow diamonds).

In the surface-diffusion case, independent particles can only interact with the main structure if by

chance they come into contact with it again. There is no other mechanism for particles to disappear,

and thus any particles that break away will persist in the structure for long times.

We note, however, that particles still represent a relatively small part of the structures. It is

evident from Fig. 5.10 that there are always more necks or handles in the structure, as represented

by gV S−3
V , than there are particles, represented by NV S−3

V . The particles also represent a small

fraction of the total φ = 1 phase, approximated as the total number of grid points with φ > 0.50.

The evolution of this fraction is shown in Fig. 5.11, and particles never contain more than 5% of

the volume of φ = 1 phase in the bulk-diffusion case, and never more than 1.5% in the surface-

diffusion case.

The ISDs for these mixed bicontinous-particulate structures are depicted in Fig. 5.12 at a small

characteristic length, and in Fig. 5.13 at the end of the simulations. All four ISDs are centered

near the line κ1/SV = 0, which indicates cylindrical interfacial shapes. Initially, the bulk-diffusion

ISD (Fig. 5.12a) has more elliptic interfaces, including some area along the line κ1 = κ2, which

corresponds to spherical interfacial shapes, i.e., particles. The initial surface diffusion ISD (Fig.

5.12b) is less concentrated than the bulk-diffusion ISD. Over time, the bulk-diffusion ISD shifts to

the lower left, with more area near the line κ1 = κ2 in Fig. 5.13a. Meanwhile, the late-time surface
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Figure 5.11: Evolution of the fraction of volume of φ = 1 phase that is composed of particles for
the 〈φ〉= 0.32 bulk-diffusion (blue squares) and surface-diffusion (red diamonds) structures.

diffusion ISD (Fig. 5.13b) has increased area on the line κ1 = κ2 at relatively high curvatures.

Overall, these trends are consistent with the changes in topology observed in Fig. 5.10: in the bulk-

diffusion structure, less elliptic area increases genus density due to the Gauss-Bonnet theorem (Eq.

3.23), while in the surface-diffusion structure more area along the line κ1 = κ2 is consistent with

more particles.

The substantial difference in initial structure between bulk and surface diffusion may be related

to the total volume fraction Vf of φ = 1 phase (approximated as the fraction of grid points with

φ > 0.50). This is plotted vs. S−1
V in Fig. 5.14a. The bulk-diffusion structure has much lower Vf

initially than the surface diffusion structure, although both converge over time toward the nominal

value of 32%. Since the total composition of these systems is fixed, Vf is determined by the

compositions of the phases. A possible reason for such a difference in composition is elucidated

in Fig. 5.14b, which plots Vf vs. 〈H〉, the average unscaled mean curvature. The relationship

between Vf and 〈H〉 appears to be linear for bulk diffusion, which implies that the overall average

compositions of the phases (i.e., the mean field compositions) are set by the area average of mean

curvature, 〈H〉. This is consistent with the relationship between local interfacial composition and

mean curvature given by the Gibbs-Thomson effect, Eq. 2.33. The same mechanism (differences

in volume fraction due to the Gibbs-Thomson effect) is also the most likely cause of the large

differences between initial structures at 〈φ〉= 0.36 found in the previous Section.
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Figure 5.12: ISDs early in the coarsening process (S−1
V ≈ 17) for 〈φ〉 = 0.32 structures simulated

with (a) bulk diffusion and (b) surface diffusion.
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Figure 5.13: ISDs for structures at the end of the 〈φ〉 = 0.32 simulations with (a) bulk diffusion
and (b) surface diffusion. The characteristic lengths are S−1

V = 74.8 and S−1
V = 49.2 for (a) and (b),

respectively.
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Figure 5.14: Evolution of the total volume fraction of φ = 1 phase plotted vs. (a) S−1
V and (b)

〈H〉, the average unscaled mean curvature, for the 〈φ〉 = 0.32 bulk-diffusion (blue squares) and
surface-diffusion (red diamonds) structures.

To illustrate how sensitive the topologies of these structures are to volume fraction, Fig. 5.15

compares the bulk-diffusion cases at 〈φ〉 = 0.32 and 〈φ〉 = 0.30. The scaled scaled particle den-

sities, scaled genus densities, and particle volume fractions of these cases are plotted in Figs.

5.15a, 5.15b, and 5.15b, respectively. Despite the small difference in composition, the transition

from well-connected structure at 〈φ〉 = 0.32 to disconnected structure at 〈φ〉 = 0.30 is stark: the

〈φ〉= 0.30 structure has substantially increased scaled particle density (Fig. 5.15a) and negligible

scaled genus density (Fig. 5.15b). Most importantly, in Fig. 5.15c the volume fraction of indepen-

dent particles (i.e., φ = 1 phase domains not connected to the largest domain) increases to over

90% at 〈φ〉 = 0.30, while it is less than 5% at 〈φ〉 = 0.32. The 〈φ〉 = 0.30 has therefore com-

pletely broken up, and no single domain of φ = 1 phase percolates throughout the structure. The

total genus at the end of the simulation is g = 3.

5.5 Comparison of phase field models

The model of Rätz, Ribalta, and Voigt [136] enabled us to obtain the results in the previous sections.

An alternative model, ostensibly for surface diffusion, was also examined: the Cahn-Hilliard model

(Eq. 3.4) with the concentration-dependent mobility but without the stabilizing function introduced
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Figure 5.15: Evolution of (a) the scaled particle density, (b) the scaled genus density, and (c)
the volume fraction of particles for the 〈φ〉 = 0.30 (red triangles) and 〈φ〉 = 0.32 (blue squares)
bulk-diffusion structures.
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in Eq. 5.4. We will refer to this model as the solubility-permitting (S-P) model, since it differs from

the models examined by Cahn et al. [132]) by permitting solubility of non-majority components

in the bulk phases. Additionally, in the S-P model the order parameter in the bulk will deviate

from its bulk equilibrium values due to the Gibbs-Thomson effect, unlike in the RRV model [115].

The consensus from multiple critiques [115, 116, 117, 118, 137] of the S-P model is that it models

interfacial motion due to surface diffusion and some amount of slow or sub-diffusive transport

through the bulk, which has been likened to porous medium diffusion in the mathematical literature

[116]. Lee et al. [118] note that the contribution of bulk diffusion can be reduced by changing the

form of the mobility, for example by using M(φ) = φ 2(1− φ)2 in place of M(φ) = |φ(1− φ)|.

As they note, the thermodynamic behavior of the S-P model is still different from the deeply

quenched or RRV models, but it is not obvious what role this will play in a dynamic process such

as coarsening. To answer this question, we perform simulations using a form of the solubility-

permitting model.

The specific S-P model we examine is the Cahn-Hilliard equation, Eq. 3.4, with the order

parameter-dependent mobility M(φ) = 16φ 2(1−φ)2. The sharp interface dynamics of this system

does not correspond strictly to surface diffusion, Eq. 2.41, since there is a contribution from bulk

diffusion [115, 116, 118]. However, determining the kinetic coefficient η in Eq. 2.41 enables us

to compare the S-P model to the RRV model. Neglecting the contribution from bulk diffusion, we

obtain η from Ref. [132],

η =
εγ

(φ+
0 −φ

−
0 )2

∫
φ
+
0

φ
−
0

M(φ)√
2 f (φ)

dφ , (5.7)

where the interfacial energy γ is given by Eq. 3.6.

Two simulations were performed using the S-P model, one with 〈φ〉= 0.50 with a domain size

of Lx = Ly = Lz = 1024, and one with 〈φ〉= 0.36 with a domain size of Lx = Ly = Lz = 800. The

parameters ε2 = 0.2 and W = 0.4 were used, which result in η = 4/45. The numerical scheme

was the same as in the previous section, with ∆x = 1 and ∆t = 0.05.

Coarsening kinetics of the S-P and RRV models are compared in Fig. 5.16, which plots S−4
V

vs. the scaled time, t∗ = ηt. With this time scaling, both models correspond to the same surface
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Figure 5.16: Comparison of coarsening kinetics for different models for surface diffusion: the
solubility-permitting (S-P) model at 〈φ〉= 0.36 (yellow leftward triangles) and at 〈φ〉= 0.50 (pur-
ple upward triangles), and the RRV model at 〈φ〉 = 0.36 (blue diamonds) and at 〈φ〉 = 0.50 (red
squares).

diffusion equation,
∂φ

∂ t∗
= ∇

2
s H. (5.8)

Any difference in kinetics is therefore caused by either a difference in morphology or the bulk

diffusion present in the S-P model. Comparing fits of the data in Fig. 5.16 to Eq. 5.6, we find

that the S-P model has a rate constant 5% higher than that of the RRV model at 〈φ〉 = 0.50. The

morphologies resulting from the two models at 〈φ〉 = 0.50 were statistically indistinguishable,

with ||PS-P(t)−PRRV (t)||1 < 0.02 for most of their evolution. The small difference in kinetics can

therefore be attributed to bulk diffusion in the S-P model.

We also compare the evolution of the total free energy (i.e., F in Eq. 3.1) between the RRV and

S-P models at 〈φ〉= 0.50 in Fig. 5.17. Total free energy is expected to decrease monotonically in

time for the S-P model [131], and this is observed in Fig. 5.17. The same behavior is observed for

the RRV model despite its non-variational chemical potential. Energy of the S-P model decreases

slightly faster, which is consistent with its faster coarsening kinetics. Most of the decrease in

energy occurs in the first time increment (corresponding to phase separation), and greater time

resolution in this interval could elucidate additional differences between the models.
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Figure 5.17: Evolution of total energy vs. scaled time at 〈φ〉= 0.50 for the RRV model (solid blue
line) and the S-P model (red dashed line).

There are larger differences in kinetics and morphology between the RRV and S-P models at

〈φ〉 = 0.36. The difference in coarsening rate constant is larger, 12% higher for the S-P model

than the RRV model, and the morphologies are substantially different. Fig. 5.18 compares the

evolution of morphological statistics between the S-P and RRV models for surface diffusion and

the bulk-diffusion case. Figs. 5.18a and 5.18b show the evolution of scaled average mean curvature

and scaled genus density. At the smallest characteristic length (i.e., immediately following phase

separation) the S-P case is much closer in morphology and topology to the bulk-diffusion case than

the RRV case. This results in substantially longer transient behavior for the S-P case than for the

RRV case, despite faster evolution of the morphology with respect to S−1
V for the S-P case.

The cause of this difference in behavior is illustrated in Fig. 5.18c, which plots the volume

fraction of φ = 1 phase (approximated as the fraction of grid points with φ > 0.50) vs. average

mean curvature. Identical linear correlations are observed between these quantities for the bulk and

S-P cases, while the volume fraction of the RRV case converges non-linearly to the nominal volume

fraction, Vf = 〈φ〉= 0.36. This relationship between 〈H〉 and Vf is theoretically predicted for the

bulk-diffusion case (see previous Section). The S-P model has the same bulk thermodynamics as

bulk diffusion, and therefore some relationship between 〈H〉 and Vf is expected. What is interesting

about our result is that the same relationship is observed in both the bulk-diffusion and solubility-
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Figure 5.18: Comparison of morphological evolution with 〈φ〉 = 0.36 between the RRV model
(blue diamonds) and S-P model (red rightward triangles) for surface diffusion, and the bulk-
diffusion case (yellow upward triangles). The evolution of (a) average scaled mean curvature
and (b) scaled genus density are plotted vs. characteristic length, while (c) plots volume fraction
of φ = 1 phase vs. average mean curvature. The axis in (c) is reversed to indicate the evolution of
〈H〉 in time.

permitting models. Reduced mobility in the bulk does not prevent the order parameter in the bulk

from reaching its mean field value, nor does it appear to ‘trap’ the order parameter at non-mean

field values.

The results of this comparison between models complement those of Lee et al. [117, 118].

We find that an order-parameter dependent mobility alone is insufficient to model coarsening via

surface diffusion. Morphology will be substantially affected by interactions with the bulk unless

the thermodynamics of the model are modified as in the RRV [136] or Cahn et al. [132] models.

The effect of interactions with the bulk was minimized in our 〈φ〉 = 0.50 simulation due to the

symmetry between the phases, since the average mean curvature (and therefore the mean field

chemical potential) was zero.
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5.6 Conclusions

3-D simulations of coarsening via surface diffusion were performed with large sample microstruc-

tures and periodic boundary conditions using the model proposed by Rätz et al. [136]. At system

compositions of 〈φ〉 = 0.36 and 〈φ〉 = 0.50, which represent nominal volume fractions of φ = 1

phase of 36% and 50%, self-similar coarsening via surface diffusion was observed for the first

time. Scaling of morphology and topology were observed, and coarsening kinetics followed the

predicted t1/4 power law These self-similarly evolving systems had bicontinuous morphologies,

similar to those observed during coarsening via bulk diffusion. Quantitative differences were found

between these surface- and bulk-diffusion cases, with lower scaled genus density and lower stan-

dard deviation of mean curvature in the surface-diffusion case. Yet overall the difference between

morphologies due to coarsening mechanism was smaller than the effect of volume fraction, and

the bulk- and surface-diffusion structures were especially similar at 50%.

Coarsening via surface and bulk diffusion was also examined at a lower volume fraction, with

〈φ〉 = 0.32. These case resulted in structures that contained both a single well-connected domain

(typical of bicontinuous structures) and a number of independent particles. Substantial transient

evolution of the scaled morphology and topology was observed in both structures. In both struc-

tures, particles break off from the larger domain during evolution, but their subsequent evolution

depends on the coarsening mechanism. In the surface-diffusion case, independent particles are

only rarely absorbed into the main domain of φ = 1 phase, and therefore the scaled particle density

is monotonically increasing. In the bulk-diffusion case, particles can shrink and disappear due to

diffusional interactions, and the scaled particle density increases initially and then declines to a low

late-time value. This change in regime in the bulk diffusion case may have been due to changes

in volume fraction over time, which converged toward the nominal value of 32% following a lin-

ear relationship with average unscaled mean curvature, which decreases to zero as the structure

coarsens. Volume fraction may also explain a considerable difference in early-time morphology

and topology between surface- and bulk-diffusion cases. The sensitivity of the structures to vol-
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ume fraction was confirmed by examining coarsening via bulk diffusion at 30% volume fraction,

in which the initial structure was observed to break up rapidly into particles.

Finally, coarsening was examined via alternative model, which employed the concentration-

dependent mobility of the surface-diffusion model but retained the thermodynamics of the bulk-

diffusion model, allowing solubility of the order parameter in the bulk. While this solubility-

permitting model was shown to have similar coarsening kinetics to the surface diffusion model,

including t1/4 power-law coarsening, the morphologies observed initially were closer to those ob-

served for bulk diffusion. This resulted in slow, transient evolution of the scaled morphology, and

self-similar coarsening was not observed. These substantial differences indicate that the solubility-

permitting model does not effectively simulate surface diffusion, complementing the results of

recent analytical studies [116, 117, 118].

In summary, this chapter represents pioneering results for coarsening via surface diffusion, a

phenomenon that is of increasing engineering importance. The morphologies that are presented

here can be compared directly to experimental results. The effects of volume fraction and differ-

ences between the bulk- and surface-diffusion structures that have been observed add to the body

of knowledge regarding coarsening, and will inform future hypotheses about coarsening dynamics.
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Chapter 6

A model for coarsening via bulk diffusion

with strongly anisotropic interfacial energy

6.1 Introduction

The phase field models employed thus far do not include interfacial energy anisotropy, which, as

noted in Chapter 1, is expected when at least one of the phases is crystalline. Interfacial energy

anisotropy is the dependence of the interfacial energy on the orientation of the interface, repre-

sented by an angle θ or normal vector~n, relative to the orientation of the crystal lattice. Interfacial

energy anisotropy plays a key role in processes such as solidification [140, 141], evolution of thin

films [134, 142, 143], nanowire growth [144], and grain boundary evolution [145]. In the ab-

sence of elastic effects, interfacial energy anisotropy fully determines the equilibrium shapes of

individual particles via the well-known Wulff construction [80, 146]. The present work analyzes

the suitability of an existing type of phase field model for strong anisotropy, introduced by Wise

and coauthors [134, 143] for evolution of thin films and by Wheeler [147] for solidification of a

pure material, for the case of transport via bulk diffusion. The sharp interface dynamics corre-

sponding to the phase field model are obtained, and simulated equilibrium shapes of particles are

compared to sharp interface predictions. Our results explain changes to the equilibrium shape that

were observed by Wise et al. [134] that were not predicted by Wheeler’s analysis [147].

We will begin by reviewing the thermodynamics of anisotropic interfaces from a sharp inter-
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face perspective, first in 2D and then in 3D, before proceeding to phase field models for strong

anisotropy. The total interfacial energy Fint of the 2D system is given by [148],

Fint =
∫

S
γ(θ)ds (6.1)

where, as in Chapter 2, s is arclength, S is the interface, θ is the orientation angle, the angle

(measured clockwise) between the interface normal and the fixed reference vector (0,1), and γ

is the interfacial energy. When the interfacial energy γ(θ) is a smooth function of θ , the the

anisotropic equivalent of the Gibbs-Thomson equation (Eq. 2.31) can be obtained [149]:

µ = µ
e +

γ(θ)+ γ ′′(θ)

Xβ −Xα

κ, (6.2)

where the term γ ′′(θ) = ∂ 2γ

∂θ 2 corresponds to the change in orientation of the interface due to a

normal displacement [66], and κ is scalar curvature. At equilibrium, chemical potential must be

constant at all points, and the equilibrium shape of a particle with constant chemical potential (i.e.,

the Wulff shape) can be determined by setting µ to be constant in Eq. 6.2. When anisotropy is

present, the curvature κ varies along the interface to offset the variation γ + γ ′′ [59].

Anisotropy is considered strong [150] when γ(θ) contains cusps (resulting in flat facets at

discrete orientations) or has orientations at which γ + γ ′′ < 0 (resulting in sharp corners in the

equilibrium shape). At cusps in γ(θ), its derivative γ ′ is discontinuous and its second derivative

γ ′′ does not exist, requiring a different form for the Gibbs-Thomson equation from Eq. 6.2. To

avoid this additional complexity, we will focus on interfacial energies with orientations for which

γ + γ ′′ < 0. Facets are still possible in this case, but they will contain a small range of orientations

rather than a single discrete orientation.

When orientations exist for which γ + γ ′′ < 0, the constant-chemical-potential shape contains

lobes, shown in Fig. 6.1, that are truncated to find the equilibrium shape [151]. Orientations for

which γ +γ ′′ < 0 are labeled as unstable, and orientations for which γ +γ ′′ >= 0 but are still miss-

ing from the equilibrium shape are labeled as metastable. An unstable orientation would sponta-
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Figure 6.1: Wulff construction for γ = 1+0.2cos4θ highlighting stable orientations (solid black
line), metastable orientations (solid red lines), and unstable orientations (dashed red lines). Remov-
ing the lobes containing metastable and unstable orientations results in the physical equilibrium
shape.

neously decompose into a corrugated ‘hill-and-valley’ structure of oppositely facing stable facets,

as there is no energy barrier [148], while metastable orientations are energetically unfavorable, but

they have an energy barrier for nucleation of the oppositely facing facet. Therefore metastable

orientations will not decompose without a perturbation. In experimental systems, surfaces may

become unstable due to changes in temperature or vapor pressure [152], and Fig. 6.2 depicts the

hill-and-valley structure resulting from temperature-induced decomposition of a vicinal Si(111)

surface [153]. The decomposition of unstable interfaces has been considered as analogous to spin-

odal decomposition [154, 155, 156], in which there is no energy barrier to prevent a single-phase

state at an unstable composition from decomposing into two stable phases.

Evolution of a curve in 2D with interfacial energy anisotropy was examined by Angenent and

Gurtin [149]. They found that if γ + γ ′′ < 0, the evolution equation was backward parabolic. In

parabolic equations, such as the diffusion equation,

∂φ

∂ t
= ∇

2
φ , (6.3)

fluctuations in initial data are smoothed out, with smaller-wavelength fluctuations disappearing
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Figure 6.2: Ex-situ atomic force microscopy images of a vicinal Si(111) surface (3.5o miscut
angle) annealed at 35 K below the (1× 1)-to-(7× 7) transition temperature for 900 s (left) and
1800 s (right). Reprinted from [153] with permission.

more rapidly than larger wavelength fluctuations [98]. Solutions to the diffusion equation are

also unique for a given initial condition [157]. The opposite behavior is expected for backward

parabolic equations, such as the backwards diffusion equation,

∂φ

∂ t
=−∇

2
φ . (6.4)

Since multiple initial conditions can result in the same solution to the (forward) diffusion equa-

tion, there can be multiple solutions to the backward diffusion equation for the same initial con-

dition. Additionally, since small fluctuations now increase more rapidly than large fluctuations,

solutions to the backwards diffusion equation vary discontinuously with changes in initial data

[98]. Clearly, a particular solution to the backward diffusion equation is not as meaningful as a so-

lution to the (forward) diffusion equation. In mathematical terminology, either of these conditions,

non-uniqueness of solutions and discontinuous dependence on initial data, makes the equation ill-

posed [98]. Angenent and Gurtin [149] note that, as a backward parabolic equation, the evolution

equation with γ + γ ′′ < 0 was ill-posed.

DiCarlo et al. [156] proposed an evolution equation that removes the ill-posedness by including
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a curvature-dependent regularization term into the interfacial energy,

Fint =
∫

S

[
γ(θ)+

1
2

βκ
2
]

ds, (6.5)

where β is the regularization parameter. The regularization term βκ2 penalizes sharp transitions

in orientation (i.e., corners), introducing a physically relevant corner energy into the model [155]

that is not present in the non-regularized energy, Eq. 6.1. This corner energy provides the driving

force for facet coarsening observed in Fig. 6.2, where the number of facets in the system (and

therefore the number of corners) decreases over time. The regularization also results in rounding

of corners over a length scale proportional to β 1/2 [59, 148], which is observed experimentally at

the nanoscale [145, 158].

We now consider interfacial energy anisotropy in a three-dimensional (3-D) system. The

anisotropic Gibbs-Thomson equation in 3D is given by [60],

µ = µ
e +

1
(Xβ −Xα)

3

∑
i

3

∑
j

[
Pi jγ(~n)+

∂ 2γ(~n)
∂ni∂n j

]
h j

i , (6.6)

in terms of the quantities defined in Section 2.1.2, i.e., where Pi j is the projection tensor, Pi j =

δi j−nin j and h j
i is the shape tensor, ∇S~n. For the case where the coordinates x1 and x2 are in the

directions of the principal curvatures κ1 and κ2, this reduces to [66],

µ = µ
e +2Hγ(~n)+

(
∂ 2γ(~n)

∂n2
1

κ1 +
∂ 2γ(~n)

∂n2
2

κ2

)
. (6.7)

An alternative way of expressing Eq. 6.6 was introduced by Cahn and Hoffman [159, 160]. They

define a vector, ~ξ , in terms of a homogeneous extension of γ(~n) γext(r~n) = rγ(~n), where r is a

scalar variable,

~ξ =
∂γext(r~n)

∂ (r~n)
. (6.8)
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The anisotropic Gibbs-Thomson equation in terms of this ξ -vector is [160],

µ = µ
e +

∇s ·~ξ
(Xβ −Xα)

, (6.9)

and the envelope of ξ -vectors is geometrically similar to the equilibrium shape. Strong anisotropy

is of course still present in 3D. The criterion for missing orientations [60, 161] in 3D is the non-

convexity of
[
Pi jγ(~n)+

∂ 2γ(~n)
∂ni∂n j

]
in Eq. 6.6. For sharp interface evolution in 3D, Gurtin and Jabbour

[60] proposed a regularization of the form

Fint =
∫

S

[
γ(~n)+

1
2

β1H2 +
1
2

β2
(
2H2−K

)]
dA, (6.10)

although we will not consider any models for which β2 6= 0. The term H2 in Eq. 6.10 is known as

the Willmore energy [135, 136].

An approach for incorporating general interfacial energies (i.e., any form of γ(~n) was intro-

duced by Kobayashi [140] for a model of solidification. For the Cahn-Hilliard free energy in Eq.

3.1, this method of incorporating anisotropy results in

F =
∫

Ω

[
f (φ)+

1
2
|ε(~n)∇φ |2

]
dV, (6.11)

where the normal vector is calculated using the gradient of the order parameter (e.g.,~n=∇φ/|∇φ |)

and the gradient energy coefficient ε(~n) is proportional to the anisotropic interfacial energy, ε(~n) =

γ(~n)/γ0. The chemical potential for this model is

µ = f ′(φ)−∇ ·
[
|ε(~n)∇φ |~ξ

]
, (6.12)

where ~ξ is the Cahn-Hoffman ξ -vector defined in Eq. 6.8 with r = |∇φ |. In this case, Eq. 6.8

evaluates to

ξi = ε̃ni +Pi j
∂ ε̃

∂n j
, (6.13)
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where Pi j is the projection tensor defined in Chapter 2. It should be noted that specific forms of

anisotropy were considered in phase field models prior to Ref. [140]. Notably, Cahn and Hilliard

[64] incorporated it via a second-rank tensor αi j,

F =
∫

Ω

[
f (φ)+

1
2 ∑

i
∑

j
αi j

∂φ

∂xi

∂φ

∂x j

]
dV. (6.14)

This is a limited form of anisotropy in which the equilibrium shape must be an ellipsoid [150]; in

coordinates where αi j is diagonal, it corresponds to ε(~n) = α11n2
1 +α22n2

2 +α33n2
3. Higher order

tensors [162, 163] and Fourier expansions in orientation angles [164] have been employed to gener-

alize this approach to more complex forms of anisotropy (e.g., cubic and hexagonal symmetries).

However, we focus on the general form in Eq. 6.11, which can, for example, model nearly-flat

facets for crystals with arbitrary symmetries simply by modification of γ(~n) (see e.g., Ref. [144]).

Strong anisotropy results in the ill-posedness of phase field models under the same conditions

as sharp-interface models [150]. There are three main approaches to regularizing this ill-posedness.

One approach is to rely on the numerical method for regularization (e.g., Ref. [165]). Taylor and

Cahn [150] argue that results in this case are meaningful only if the missing orientations are not

present. Another is to convexify the anisotropy [142, 150], which entails modifying γ(~n) such that

all orientations are stable while preserving the strongly anisotropic equilibrium shape, including

the sharp corners. Alternatively, the anisotropy can be designed to have nearly-sharp corners while

preserving convexity [166]. Both of these result in well-posedness, but they cannot model the

decomposition of unstable interfaces, as all orientations are stable [60]. They may still be effective

approximations for strong anisotropy under certain conditions; for example, if the length scale and

energy scale of the rounded corner are small compared to the scale of the overall simulation, and

the decomposition process is not of interest.

The remaining approach is to introduce a higher-order term that penalizes curvature, as in the

sharp interface case. This was initially done via the tensor-based method by Abinandanan and
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Haider [162],

F =
∫

Ω

[
f (φ)+

1
2

α|∇φ |2 +σi jlm
∂ 2φ

∂xi∂x j

∂ 2φ

∂xl∂xm

]
dV. (6.15)

They analyzed the interfacial energy of this system in one dimension and found it to be determined

by the scaling factor σ1/4/
√

α . Furthermore, they found good agreement between calculated Wulff

shapes (using the numerically calculated interfacial energy) and simulated shapes, with the simu-

lated shapes having rounded corners. For general anisotropy, Wise et al. [134, 143] and Wheeler

[147] proposed the regularization energy density freg =
1
2δ 2(∇2φ)2, where δ is the regularization

parameter. Wise et al. introduced this Laplacian-squared regularization into a Cahn-Hilliard model,

F =
∫

Ω

[
f (φ)+

1
2
|ε(~n)∇φ |2 + δ 2

2
(∇2

φ)2
]

dV, (6.16)

while Wheeler [147] considered it for solidification of a pure material. Wheeler also analyzed the

diffuse corner shape resulting from this regularization, but he treated the regularization as a regular

perturbation away from the corner, essentially neglecting its effect on interfacial energy.

A different regularization, freg = 1
2δ 2 ( f ′(φ)−∇2φ

)2 was introduced by Rätz et al. [136],

where it is assumed that f (φ0) = f ′(φ0) = 0 at the equilibrium concentrations of the phases. For

a phase field model with isotropic interfaces, this freg was conjectured by De Giorgi [167] to

approximate H2 (i.e., the regularization energy in Eq. 6.10 with β2 = 0) in the sharp interface limit.

However, the anisotropic phase field model in Eq. 6.11 has an orientation-dependent interfacial

width that results in excess energy at flat interfaces. Torabi et al. [135] solved this inconsistency

by introducing a new formulation of the anisotropy. Including the regularization, the free energy

of this model can be written as

F =
∫

Ω

ε(~n)
[

f (φ)+
1
2
|∇φ |2

]
+

δ 2

2
[

f ′(φ)−∇
2
φ
]2

dV. (6.17)

While this formulation contains the desired chemical potential at the interface, it modifies the bulk

thermodynamics, and a relationship analogous to Eq. 2.33 can be obtained for the order parameter
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in the bulk,

φ =
µ

ε(~n) f ′′(φ+
0 )

. (6.18)

The Torabi et al. model was designed for surface diffusion, in which case there should be µ = 0 in

the bulk. Expanding the regularization energy reveals another possible concern for bulk diffusion,

freg =
1
2

δ
2
([

f ′(φ)
]2−2 f ′(φ)∇2

φ +
(
∇

2
φ
)2
)

(6.19)

Terms containing ∇2φ are expected to go to zero far from the interface [64], but that leaves a

bulk-only term, [ f ′(φ)]2. This quantity is zero at equilibrium, and is therefore likely to be small in

coarsening simulations, but it may be non-negligible for large values of the regularization param-

eter δ .

To model regularized strong anisotropy with bulk diffusion, we re-examine the Laplacian-

squared regularization introduced in Refs. [134, 143, 147]. We consider the effect of the regu-

larization on a planar interface, similarly to Abinandanan and Haider [162], but we additionally

analyze the sharp interface behavior of the model using matched asymptotic expansions. Our ap-

proach differs from that of Wheeler [147] in that we consider the effect of the regularization at

leading order in the inner solution (i.e., in the interface) away from corners. The result of the

asymptotic analysis is that the regularized model contains the correct Gibbs-Thomson condition

for a modified interfacial energy, with no other effect on dynamics up to second order in the in-

terfacial width. This result justifies a comparison between simulated and predicted shapes, as has

been conducted for tensor-based models [162, 168]. Again we go further by demonstrating that

the corner shape with the Laplacian-squared regularization corresponds very well to sharp interface

predictions [59] for the κ2 regularization in Eq. 6.5.
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6.2 Anisotropic phase field model

The free energy of the model we examine is defined by Eq. 6.16. The time evolution of the order

parameter is given by the Cahn-Hilliard equation,

∂φ

∂ t
= ∇

2
µ, (6.20)

where the chemical potential µ is given by the first variation of F ,

µ = f ′(φ)−∇ ·
[
|ε(~n)∇φ |~ξ

]
+δ

2
∇

2(∇2
φ). (6.21)

The vector ~ξ is the Cahn-Hoffman ξ -vector specified by Eq. 6.13.

6.3 Analysis

This section consists of two parts, an analysis of the 1-D time-independent solution to Eqs. 6.20-

6.21 (i.e., a planar interface at equilibrium) and an asymptotic analysis of Eqs. 6.20-6.21. The 1-D

analysis details the effect of the regularization on the interfacial energy, and its principal result is

a modified ξ -vector that includes the effect of the regularization, denoted by ~Ξ, The asymptotic

analysis shows that the model has the correct [160] Gibbs-Thomson condition for the new ξ -vector,

µ =
∇s ·Ξ

(Xβ −Xα)
, (6.22)

and that the behavior in the bulk is unaffected by the regularization to at least second order in the

interfacial width.
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6.3.1 Planar Interface

Before we begin the asymptotic analysis, it will be useful to first consider the problem of a planar

interface at equilibrium. This interface φ(x) minimizes the functional Γ[φ ,∇φ ,∇2φ ],

Γ =
∫ +∞

−∞

(
f (φ)+

1
2

ε
2
φ

2
x +

δ 2

2
φ

2
xx

)
dx, (6.23)

which describes the energy of the interface.

We introduce ζ =
√

δ as the interfacial width parameter. Using a scaled spatial coordinate

z = ζ x and scaled anisotropy ε̃ = ε/ζ , Eq. 6.23 becomes

Γ = ζ

∫ +∞

−∞

(
f (φ)+

1
2

ε
2
φ

2
z +

1
2

φ
2
zz

)
dz, (6.24)

where subscripts by z denote the partial derivatives φz = ∂φ/∂ z, φzz = ∂ 2φ/∂ z2, etc.

Denoting the integrand in Eq. 6.24 by L (φ ,φz,φzz), the Euler-Lagrange equation for this sys-

tem is [169]

0 =
∂L

∂φ
− d

dz
∂L

∂φz
+

d2

dz2
∂L

∂φzz
(6.25)

which upon evaluation results in

0 = f ′(φ)− ε̃
2
φzz +φzzzz, (6.26)

which is simply the 1-D expression for chemical potential, Eq. 6.21, with µ = 0.

An alternative form of the Euler-Lagrange equation can be used to derive a relationship between

the terms in Eq. 6.24. The following equation is equivalent to Eq. 6.25 [64, 169],

0 =
d
dz

(
L −φz

∂L

∂φz
−φzz

∂L

∂φzz
+φz

d
dz

∂L

∂φzz

)
. (6.27)
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Integrating this equation in z gives

const.= L −φz
∂L

∂φz
−φzz

∂L

∂φzz
+φz

d
dz

∂L

∂φzz
, (6.28)

We expect that L , φz, and φzz all go to zero as z→ ∞. Thus the constant of integration must be

zero [64]. Substituting L from Eq. 6.24 gives

0 = f (φ)− 1
2

ε̃
2
φ

2
z −

1
2

φ
2
zz +φzφzzz. (6.29)

Substituting for f (φ) in Eq. 6.24 gives the following expression for the interfacial energy:

Γ = ζ

∫ +∞

−∞

(
ε̃

2
φ

2
z +φ

2
zz−φzφzzz

)
dz. (6.30)

The φzφzzz term can be integrated by parts, noting that φz→ 0 as z→∞, leaving the final expression

Γ = ζ

∫ +∞

−∞

(
ε̃

2
φ

2
z +2φ

2
zz
)

dz, (6.31)

as a simplified form of the interfacial energy.

For the next subsection, we also need to know the effect of ε̃ on Γ, i.e., the effect of the input

anisotropy function on the ‘output’ interfacial energy of the model. Evaluating ∂Γ/∂ ε̃ with Γ

defined as in Eq. 6.24 yields

∂Γ

∂ ε̃
= ζ

∫ +∞

−∞

(
f ′(φ)

∂φ

∂ ε̃
+ ε̃(φz)

2 + ε̃
2
φz

∂ 2φ

∂ ε̃∂ z
+φzz

∂ 3φ

∂ ε̃∂ z2

)
dz, (6.32)

and by integrating by parts we arrive at

∂Γ

∂ ε̃
= ζ ε̃

∫ +∞

−∞

(φz)
2dz+ζ

∫ +∞

−∞

(
f ′(φ)− ε̃

2
φzz +φzzzz

) ∂φ

∂ ε̃
dz. (6.33)
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Comparing the second integral to Eq. 6.25 we note that it equals zero, leaving

∂Γ

∂ ε̃
= ζ ε̃

∫ +∞

−∞

(φz)
2dz (6.34)

We can use Eqs. 6.31 and 6.25 to define the Ξ-vector, which follows the general definition of the

Cahn-Hoffman ξ -vector [159, 160] and uses the homogeneous extension Γext(∇φ) = |∇φ |Γ(~n):

Ξi =
∂ (Γ [(ε̃(~n)] |∇φ |)

∂∇iφ
= Γ

∂ |∇φ |
∂∇φ

+ |∇φ |∂Γ

∂ ε̃

∂ ε̃

∂~n
∂~n

∂∇φ
(6.35)

Noting that ∂ |∇φ |/∂∇iφ = ni and

∂ni

∂∇ jφ
=

1
|∇φ |

(δi j−nin j), (6.36)

Eq. 6.35 can also be written as

Ξi = Γni +∑
j
(δi j−nin j)

∂Γ

∂ ε̃

∂ ε̃

∂n j
=

∂Γ

∂ ε̃
(ξi− ε̃ni)+Γni

This expression uses the ξ as defined in Eq. 6.13, which allows straightforward use of literature

results in the next section.

6.3.2 Asymptotic Analysis

In this section, we analyze the phase field model defined in Eqs. 6.20-6.21 in the limit of an

asymptotically thin interface [76, 170, 171, 172, 173]. As in the previous section, the interfacial

width parameter is defined as ζ =
√

δ . The limit of interest is therefore ζ → 0. To obtain a

balance between the gradient term and the regularization term, we assume that ε̃ = ε/
√

δ is O(1)

with respect to ζ , and the resulting equations are,

∂φ

∂ t
= ∇

2
µ, (6.37)
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µ = f ′(φ)−ζ
2
∇ ·
[
|ε̃(~n)∇φ |~ξ

]
+ζ

4
∇

2(∇2
φ). (6.38)

The approach of this type of analysis is to split the mathematical problem into two parts, an outer

solution in which the terms containing ζ are treated as a regular perturbation [174], and an inner

solution, located in a layer of thickness O(ζ ) about the interface, in which the interface normal

coordinate is scaled by ζ so that all of the terms appear at leading order. These solutions are

matched in successive orders of ζ , and the physics at the interface (i.e., Eqs. 2.31 and 2.39) are

obtained from this matching process. Following Ref. [76], we consider behavior in a late timescale,

t1 = t/ζ .

The variables of the outer solution are denoted by µ̂ and φ̂ , and they are expanded in ζ as

φ̂(~x; t1) = φ̂
(0)(~x; t1)+ζ φ̂

(1)(~x; t1)+ζ
2
φ̂
(2)(~x; t1)... (6.39)

µ̂(~x; t1) = µ̂
(0)(~x; t1)+ζ µ̂

(1)(~x; t1)+ζ
2
µ̂
(2)(~x; t1)... (6.40)

where~x are Cartesian coordinates. Following Ref. [76], we consider behavior in a late timescale,

t = O(1/ζ ), and the governing equations for the outer solution are

0 = ∇
2
µ̂, (6.41)

to all orders, and

µ̂
(0) = f ′

(
φ̂
(0)
)
, (6.42)

at leading order, O(1), and

µ̂
(1) = f ′′

(
φ̂
(0)
)

φ
(1), (6.43)

at first order, O(ζ ). These equations are unchanged from Ref. [76]. The anisotropic term and

regularization term therefore do not affect the governing equations for the outer solution to the

orders we consider. Their effect is limited to the boundary conditions of the outer solution at the

interface, which are obtained by matching to the inner solution.
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The behavior of the inner solution is governed by Eqs. 6.37 and 6.38 expressed in local orthog-

onal coordinates at the interface (~s,z), where~s are the surface coordinates and z is a scaled normal

coordinate z = ρ/ζ , where ρ is the signed distance from the interface. The inner solution will be

denoted by µ and φ , and is also expanded in ζ as

φ(~s,z; t1) = φ
(0)(~s,z; t1)+ζ φ

(1)(~s,z; t1)+ζ
2
φ
(2)(~s,z; t1)... (6.44)

µ(~s,z; t1) = µ
(0)(~s,z; t1)+ζ µ

(1)(~s,z; t1)+ζ
2
µ
(2)(~s,z; t1)... (6.45)

With ~x0 and ~s0 denoting the same point on the interface in Cartesian and surface coordinates,

respectively, the matching conditions correspond to the limit z → ∞ at successive orders of ζ

[172],

µ
(0)(~s0,±∞; t1) = µ̂

(0)(~x0±; t1), (6.46)

µ
(1)(~s0,±∞; t1) = µ̂

(1)(~x0±; t1)+ µ̂
(0)(~x0±; t1)+O(1) (6.47)

The Laplacian in the inner coordinates is [76, 172],

∇
2 =

1
ζ 2

∂ 2

∂ z2 +2
1
ζ

H
∂

∂ z
+O(1), (6.48)

and therefore the biharmonic operator ∇2∇2 is,

∇
2
∇

2 =
1

ζ 4
∂ 4

∂ z4 +4
1

ζ 3 H
∂ 3

∂ z3 +O(1/ζ
2). (6.49)

The first two orders of the anisotropic divergence ζ 2∇ · (|ε̃(~n)∇φ |~ξ ) are given by [175],

ζ
2
∇ · (|ε̃∇φ |~ξ ) = ε̃

2
φ
(0)
zz +ζ ε̃

2
φ
(1)
zz +ζ

(
ε̃~ξ ·∇sφ

(0)
z +∇s · ε̃~ξ φ

(0)
z

)
+O(ζ 2) (6.50)

where ε̃ and ~ξ make use of the leading order interface normal vector.
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Leading order

In the interface coordinates, Eqs. 6.20 and 6.21 become, at leading order in ζ ,

0 = µ
(0)
zz (6.51)

and

µ
(0) = f ′(φ (0))− ε̃

2
φ
(0)
zz +φ

(0)
zzzz (6.52)

respectively. The leading order matching condition is [172],

µ
(0)(~s,±∞; t1) = µ̂

(0)(~s,±0; t1), (6.53)

where µ̂(0)(~s,±0; t1) is the outer solution on either side of the interface at the point ~s. It will be

abbreviated as µ̂(0)(±0).

Integrating Eq. 6.51 by z twice and using this matching condition leads to

µ̂
(0)(±0) = f ′(φ (0))− ε̃

2
φ
(0)
zz +φ

(0)
zzzz (6.54)

Adapting the treatment of [76] for the outer solution, which as we have noted is unchanged by

the Laplacian-squared regularization, the chemical potential µ̂(0) will be at equilibrium (i.e., zero)

everywhere by this timescale. Based on Eq. 6.42, φ̂ (0) is constant at its equilibrium values in

each phase. The problem in Eq. 6.54 is therefore exactly the 1-D planar interface at equilibrium

considered in the previous section.

First order

At first order in the expansion, Eq. 6.37 becomes

0 = µ
(1)
zz +2Hµ

(0)
z , (6.55)
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where the µ
(0)
z term disappears because µ(0) is constant. Eq. 6.38 becomes,

µ
(1) = f ′′(φ (0))φ (1)− ε̃

2
φ
(1)
zz +φ

(1)
zzzz−

(
ε̃~ξ ·∇sφ

(0)
z +∇s · ε̃~ξ φ

(0)
z

)
+4Hφ

(0)
zzz , (6.56)

The matching condition at this order is [172]

µ
(1)(~s,z; t1) = µ̂

(1)(±0)+ zµ̂
(0)
z (~s,±0; t1)+O(1) as z→±∞, (6.57)

although again the µ̂
(0)
z (±0) term disappears as µ̂(0)(±0) is constant. Integrating Eq. 6.55 twice

and applying the matching condition yields

µ̂
(1)(±0) = f ′′(φ (0))φ (1)− ε̃

2
φ
(1)
zz +φ

(1)
zzzz−

(
ε̃~ξ ·∇sφ

(0)
z +∇s · ε̃~ξ φ

(0)
z

)
+4Hφ

(0)
zzz , (6.58)

Multiplying both sides by φ
(0)
z and integrating over (−∞,∞) eliminates the φ (1) terms, yielding the

solvability condition [172]

µ̂
(1)(±0)

∫ +∞

−∞

φ
(0)
z dz =−

∫ +∞

−∞

φ
(0)
z

(
ε̃~ξ ·∇sφ

(0)
z +∇s · ε̃~ξ φ

(0)
z −4Hφ

(0)
zzz

)
dz, (6.59)

The LHS of this equation is simply µ̂(1)(±0)φ (0)|+∞
−∞, and the remainder of this subsection will

consist of reducing the RHS of Eq. 6.59 to a form that allows substitution of ~Ξ from Eq. 6.3.1.

Application of identities of vector calculus and integration of the φ
(0)
zzz term by parts yields

RHS =−
∫ +∞

−∞

[
∇s · ε̃~ξ

(
φ
(0)
z

)2
+4H

(
φ
(0)
zz

)2
]

dz. (6.60)

Substituting 2H
(

φ
(0)
zz

)2
= ∇s ·

(
φ
(0)
zz

)2
~n, the RHS can be re-expressed as

RHS =−∇s ·
∫ +∞

−∞

[
ε̃~ξ
(

φ
(0)
z

)2
+2~n

(
φ
(0)
zz

)2
]

dz. (6.61)

Note that the identity 2H = ∇s ·~n was introduced with the opposite sign in Chapter 2; the current
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sign represents the convention in Ref. [176]. Using the expression for the modified interfacial

energy Γ (Eq. 6.31) to substitute for the φ
(0)
zz term in Eq. 6.61 results in

RHS =−∇s ·
[(

ε̃~ξ ζ −~n ε̃2

ζ

)∫ +∞

−∞

(
φ
(0)
z

)2
dz+

1
ζ
~nΓ

]
, (6.62)

Using the expression for ∂Γ/∂ ε̃ (Eq. 6.34) to substitute for the φ
(0)
z term, we have

RHS =− 1
ζ

∇s ·
[

∂Γ

∂ ε̃

(
~ξ −~nε̃

)
+~nΓ

]
(6.63)

Recalling Eq. 6.35, this is exactly − 1
ζ

∇s ·Ξ, and the complete solvability condition (simplified

from Eq. 6.59) is,

µ̂
(1)(±0) =− 1

ζ

∇s ·Ξ
φ (0)

∣∣+∞

−∞

. (6.64)

This is the correct form of the Gibbs-Thomson equation expressed with the Cahn-Hoffman ξ -

vector [160]. We could proceed to derive the equation for interfacial motion (Eq. 2.39), but it is

unchanged from Ref. [76], and therefore we conclude our analysis at this point.

6.4 Equilibrium shapes

This section compares phase field simulations to equilibrium shapes predicted for the modified

interfacial energy Γ. The phase field method, a conservative Allen-Cahn equation, is introduced

first, followed by methods for calculating equilibrium shapes with and without the effect of the

regularization. Finally, comparisons are made between particle shapes and the shapes of the diffuse

corners predicted by the sharp interface theory and simulated using the phase field method.

6.4.1 Phase field method

To reduce the computation time needed for convergence to the equilibrium shape, a globally con-

servative Allen-Cahn equation was employed in place of the (locally conservative) regularized

106



anisotropic Cahn-Hilliard equation (Eqs. 6.20-6.21). This method minimizes the free energy en-

ergy in Eq. 6.16 [177], and a Lagrange multiplier is used to enforce global conservation of φ ,

i.e., ∫
Ω

∂φ

∂ t
dV = 0 (6.65)

The globally conserved Allen-Cahn equation with regularized strong anisotropy is,

∂φ

∂ t
=−M

(
f ′(φ)+λ −∇ ·

[
|ε(~n)∇φ |~ξ

]
+δ

2
∇

2(∇2
φ)
)
, (6.66)

where λ is the Lagrange multiplier, and following [177], λ =
∫

Ω
f ′(φ)dV . Finite differences

discretization of Eq. 6.66 requires a centered difference of the anisotropic divergence ∇ ·
[
|ε∇φ |~ξ

]
,

an example of which can be found in Ref. [134]. The present work improves upon their technique

by using isotropic stencils, which were derived following the methodology in Ref. [178]. Time

discretization consisted of a forward Euler scheme.

An equilibrium shape simulation consisted of a single, initially circular particle centered a

cubic domain with periodic boundary conditions. Bulk free energy was f (φ) = 1
4φ 2(1−φ)2, and

a simple four-fold anisotropy was used [134, 142],

ε(~n) = 1+a
[
4(n4

1 +n4
2 +n4

3)−3
]
. (6.67)

The particle was initialized as a circle with a diffuse interface,

φ(~x) =
1
2

[
1+ tanh

(
|~x−~x0|− r

2

)]
. (6.68)

The particles had initial radius r = 80 and the size of the domain was Lx = Ly = 256. Grid spacing

was ∆x = 0.5, and timestep was ∆t = 0.008 for δ = 1 and ∆t = 0.004 for δ = 2, the two regular-

izations considered. Comparisons to the sharp interface predictions were made using the φ = 0.5

isocontour.
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6.4.2 Sharp interface predictions

Equilibrium shapes were calculated in 2-D incorporating the effect of regularization both at the

regularized corner [59] and far away from it. We will describe the methods for calculating equi-

librium shapes in three stages: calculation of the non-regularized equilibrium shape (the Wulff

shape), calculation of the Wulff shape for the modified interfacial energy Γ, and calculation of

the equilibrium shape with the asymptotic solution for the regularized corner shape [59] and the

modified interfacial energy. The shapes are parametrized by the orientation angle θ . In terms of θ ,

the anisotropy in Eq. 6.67 is,

γ = 1+acos4θ . (6.69)

Arc length of the Wulff shape was calculated by integration [59] of

s =
∫

θ

0

[
γ(θ)+ γ

′′(θ)
]
,dθ , (6.70)

and the x and y coordinates of the Wulff shape were determined by the integrations

x =
∫ s

0
cos(θ)ds, (6.71)

y =−
∫ s

0
sin(θ)ds, (6.72)

which result in the analytical expressions

x = γ
′(θ)cos(θ)+ γ(θ)sin(θ), (6.73)

y =−γ
′(θ)sin(θ)+ γ(θ)cos(θ). (6.74)

For strong anisotropy, this construction results in non-physical lobes in the Wulff shape, which are

illustrated in Fig. 6.1. Unstable orientations satisfy γ +γ ′′ < 0. When γ is symmetric about the ref-

erence orientation (as in Eq. 6.69), the critical angle θc between stable and metastable orientations
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is the solution [59] to

tan(θc)+
γ ′(θc)

γ(θc)
= 0. (6.75)

The physical equilibrium shape results from truncation of the lobes from the Wulff shape [151],

and here it was calculated piecewise: s(θ) was calculated using Eq. 6.70 on the intervals [−π

4 ,−θc]

[θc,
π

4 ]. These segments were joined at the point corresponding to the sharp corner, and their

rotations provided the rest of the equilibrium shape since γ(θ) has four-fold symmetry. This is the

first type of sharp interface prediction we will compare to phase field simulations, and it does not

include any effect of the regularization.

The effect of the regularization on the interfacial energy away from corners was considered

first. This effect was the topic of Section 6.3.1, and the interfacial energy Γ was found to depend on

a single parameter, ε̃ = ε/
√

δ . This dependence was evaluated numerically by solving Eq. 6.66 in

one dimension, and the resulting plot of normalized interfacial energy including the regularization,

Γ/γ0, vs. ε̃ is shown in Fig. 6.3. At ε̃ = 0, this energy is entirely due to the Laplacian-squared

regularization, representing the limit δ → ∞ or ε → 0. As ε̃ increases, Γ/γ0 converges towards it,

such that the effect of the regularization is a small part of the overall interfacial energy by ε̃ = 2.

To determine the equilibrium shape using the regularized interfacial energy, values of Γ(θ)

were calculated from the data in Fig. 6.3 by interpolation, and its derivatives Γ′(θ), and Γ′′(θ)

were calculated using finite differences. The critical angle θc was recalculated by using Eq. 6.75

with Γ(θ) and Γ′(θ), and the equilibrium shape was calculated using Eqs. 6.70-6.72. This is the

second type of equilibrium shape we compare to simulations, in which the effect of regularization

is taken into account in the interfacial energy, but the corner shape is not regularized.

Spencer [59] provides a method for determining the shape of the regularized corner. Consider-

ing θ and s related by Eq. 6.70, the effect of the regularization is to modify θ by

θreg(s) = θ(s)±θc exp
(
±λ s/β

1/2
)
, (6.76)
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Figure 6.3: Plot of normalized interfacial energy Γ/γ0 (red line) as a function of the scaled
anisotropy function ε̃ = ε/

√
δ . This relationship is universal for a given f (φ). The black dot-

ted line indicates the unregularized case, Γ/γ0 = ε̃ .

where

λ =
√

Γ′′(θc)− cos(θc) [Γ′(θc)sin(θc)−Γ(θc)cos(θc)], (6.77)

and β 1/2 is the regularization parameter
√

δπ/A, where A is the particle area. For agreement

between the predicted and simulated shapes, this area must correspond to the particle area, which

was calculated from the φ = 0.5 isocontour using Green’s theorem,

A =
1
2

∫
C

(
x

dy
ds
− y

dx
ds

)
ds. (6.78)

The predicted shape was then scaled to have the same area as the φ = 0.5 isocontour and centered

in the simulation domain. The predicted shape with the regularized corner (i.e., using Eq. 6.76)

was used to set the area for scaling for the other predicted shapes.
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Figure 6.4: Comparison of a simulated equilibrium shape (red line) and the Wulff shape calculated
without considering any effect of the regularization (black line) for a = 0.4, δ = 2.

6.4.3 Results

A comparison between the phase field simulation and the Wulff shape without including the effect

of the regularization is depicted in Fig. 6.4, with parameters a = 0.4 and δ = 2. The simulation

deviates from the predicted shape both at the corner and far away from it. In Fig. 6.5, the same con-

dition (a = 0.4, δ = 2) is compared to the sharp interface prediction for Γ, the modified interfacial

energy, and much better agreement is obtained. This demonstrates the effect of the regularization

on the effective interfacial energy Γ. A regularization-dependent change in the equilibrium shape

was found in previous studies [134, 135], but now we have verified the mechanism for this effect.

The corner shapes are compared between simulations and sharp interface predictions in Fig.

6.6a-c. While it has not been rigorously demonstrated that the Laplacian-squared regularization

should act in the same way as the κ2 regularization (Eq. 6.5), we nevertheless find very good agree-

ment between simulations and predictions. This agreement holds over a range of anisotropies and

regularizations, with better agreement for relatively weaker anisotropy and stronger regularization

(i.e., Fig. 6.6b, with a = 0.2 and δ = 2). The particle shapes themselves are shown in Fig. 6.6a-c,

and good agreement between the predictions and simulations is found in all cases.
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Figure 6.5: Comparison of a simulated equilibrium shape (red line) and the Wulff shape calculated
using Γ(θ), the interfacial energy modified by the regularization, (black line) for a = 0.4, δ = 2.
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Figure 6.6: Comparison of simulated equilibrium shapes (red lines) and the regularized Wulff
shape calculated using Γ(θ) (black dashed lines) at the corner (a-c) and for the entire particle (d-e)
at a = 0.2, δ = 1 (a,d); a = 0.2, δ = 1 (b,e); and a = 0.4, δ = 2 (c,f).

112



6.5 Conclusions

This chapter examined a phase field method for evolution via bulk diffusion when strong anisotropy

is present, which occurs in solid-solid [162] and solid-liquid [46, 168] systems. This model, the

strongly anisotropic Cahn-Hilliard equation with the Laplacian-squared regularization, does not

change the kinetics or thermodynamics of the bulk phase, and it smooths out the sharp corners that

are characteristic of strong anisotropy. However, results in this chapter show that it does affect

interfacial energy. A planar interface at equilibrium was examined in Section 6.3.1. The interfacial

energy was found to be affected by the regularization, and a Cahn-Hoffman ξ -vector was derived

for the modified interfacial energy. In Section 6.3.2, asymptotic analysis of the phase field model

found that it incorporates the correct Gibbs-Thomson condition for the modified Ξ-vector. Equi-

librium shapes simulated with the phase field model were compared to predictions based on the

results of the analysis. Excellent agreement was obtained for the particle shapes away from the reg-

ularized corners, confirming the analysis. Simulated corner shapes were found to agree with sharp

interface predictions for the curvature-squared regularization. These results provide a fundamen-

tal understanding of the strongly anisotropic Cahn-Hilliard equation with the Laplacian-squared

regularization, which will help users of this model determine the effect of the regularization on

interfacial energy, whether it is small enough to be neglected, and how to parametrize their inter-

facial energy to simulate the desired dynamics. This will enable simulations of coarsening and

microstructural evolution in strongly anisotropic systems.
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Chapter 7

Coarsening with inactive length scales

[This chapter is excerpted from Ref. [10], which is subject to a Creative Commons Attribution

4.0 International License]

7.1 Introduction

Two-phase mixtures, from metallic alloys to islands on surfaces, undergo coarsening wherein the

total interfacial area of the system decreases with time. Theory predicts that during coarsening the

average size-scale of a two-phase mixture increases with time as t1/3 when the two-phase mixture

is self-similar, or time independent when scaled by a time-dependent length. However, in many

cases a classical t1/3 power law for the average size scale of a two-phase mixture is observed

without a self-similar two-phase morphology [40, 43, 84, 85, 95]. The most striking example is

given by Marsh and Glicksman [40] who show that even though a structure evolves in a non-self-

similar fashion from a dendritic morphology to a polydisperse array of approximately spherical

particles, the characteristic length scale of the two-phase system still increases as t1/3.

Here, we explain why this temporal power law is so robustly observed even when the mi-

crostructure is not self-similar. We show that there exists an upper limit to the length scales in the

system that are kinetically active during coarsening, which we term the self-similar length scale.

Length scales smaller than the self-similar length scale evolve, leading to the classical temporal

power law for the coarsening dynamics of the system. Longer length scales are largely inactive,

leading to a non-self-similar structure. This result holds for any two-phase mixture with a large
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distribution of morphological length scales.

7.2 Results

To examine the existence of inactive length scales in coarsening and to illustrate that the conclu-

sions are not limited to dendritic structures, we simulate coarsening of a simpler, two-dimensional

microstructure containing second-phase particles with a bimodal particle size distribution. The

two modes of this distribution correspond to populations of large and small particles, where the

difference in radii is sufficiently large such that the large particles may be inactive. Comparing

the overall evolution of this system to the evolution of each population of particles should test the

hypothesis of inactive length scales. This initial microstructure is shown in Fig. 7.1, and details

regarding its generation are provided in the following section.

Coarsening of the structure was simulated using the Cahn-Hilliard equation (Eq. 3.4) with

periodic boundary conditions. The evolution of the structure is depicted in Figs. 7.2-7.4. The

small particles have coarsened, either growing or shrinking and disappearing, and are substantially

fewer in number at later times (Figs.7.3 and 7.4). The large particles have grown at the expense

of their smaller neighbours. Time evolution of the characteristic length, S−1
v , is shown in Fig. 7.5,

and S−1
v increases from 47.2 to 101.5 over the course of the simulation. The fit to the power law

given by Eq. 4.3 is S−3
V (t) = 1.31t +9.66×104, which determines the initial time t0 in Fig. 7.5 as

t0 = −S−3
v (t0)/k = −7.39× 104. While some deviation is apparent at early times, we find excel-

lent agreement overall between the evolution of characteristic length and the expected coarsening

power law, and the coefficient of determination of the fit is R2 = 0.9995.

The temporal evolution of the morphology is described quantitatively in Figs. 7.6 and 7.7. Fig.

7.6 depicts distributions of interfacial radius of curvature, R = 1/κ , scaled by the characteristic

length S−1
V . Fig. 7.7 depicts the distributions of unscaled interfacial radius of curvature. These

distributions are weighted by interfacial length and normalized. Therefore, they represent the

probability that a point on the interface has a particular (scaled or unscaled) radius of curvature.
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Figure 7.1: 2-D initial condition (order parameter) for the phase field simulation of coarsening
with a bimodal initial particle size distribution.
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Figure 7.2: Order parameter at time t = 1.4× 105 during the simulation of coarsening with an
initially bimodal particle size distribution.
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Figure 7.3: Order parameter at time t = 3.7× 105 during the simulation of coarsening with an
initially bimodal particle size distribution.
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Figure 7.4: Order parameter at time t = 7.2×105, the end of the simulation of coarsening with an
initially bimodal particle size distribution.
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Figure 7.5: Characteristic length S−1
V for the structure with an initially bimodal particle size dis-

tribution (blue squares) is plotted vs. time t alongside a fit to the expected coarsening power law
(black line). The times depicted in Figs. 7.1-7.4 are indicated by red symbols.

These distributions would be equivalent to one-dimensional ISDs, except that they are functions

of radius of curvature rather than curvature itself. For visualization, the distributions are plotted

in semilog scale, where log is taken for the horizontal axis. These choices (independent variable,

weighting, and axis scale) were made to clearly represent the two populations with highly disparate

length scales.

Two peaks are present in Figs. 7.6 and 7.7, corresponding to large and small particles. In Fig.

7.6, the small-particle peak remains stationary about R = 0.34 S−1
V over time, indicating that the

small particles coarsen with the same rate as the overall structure. The height and area of the large-

particle peak increase at the expense of the small-particle peak, which means that it contains a

growing proportion of the total interfacial length in the system. In addition, the large-particle peak

shifts leftward, indicating that the large particles are coarsening more slowly than the characteristic

length scale of the system. These trends are confirmed when we examine the unscaled behavior,

shown in Fig. 7.7: the location of the large-particle peak shifts from R = 94 to R = 106, or by 12%,

over the course of the simulation, while the small-particle peak shifts from R = 17 to R = 34, or by
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Figure 7.6: Distributions of scaled radius-of-curvature, RSV = SV/κ , for the structures shown in
Figs. 7.1-7.4. Two peaks are present corresponding to the small and large particle distributions
introduced in the initial condition, and the small-particle peak is stationary.

100%. Thus the change in the small-particle peak is much larger relative to its initial state, which

explains why it dominates the evolution of the overall system. These simulation results support

the hypothesis that there exists a critical length scale that separates populations of interfaces that

evolve self-similarly from those that do not, even though the simulated microstructure is vastly

different from its experimental counterpart. We also identify that the domination of the actively

evolving population is responsible for the t1/3 growth power law observed so universally.

7.3 Methods

Particle coarsening was simulated using the Cahn-Hilliard equation, Eq.3.4. The size of the simu-

lation domain was Lx = Ly = 6400, and the model and discretization parameters are described in

Section 3.3.

The structure used as an initial condition for the simulation was generated in stages. Starting
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Figure 7.7: Distributions of unscaled radius-of-curvature, R = 1/κ , for the structures shown in
Figs. 7.1-7.4. Two peaks are present corresponding to the small and large particle distributions
introduced in the initial condition, and the large-particle peak is approximately stationary.

from a uniformly zero concentration field, large particles were generated sequentially until 〈φ〉 =

0.051. Then small particles were generated until 〈φ〉= 0.210, and finally a uniform concentration

field was added to approximate the mean field concentration during coarsening, resulting in 〈φ〉=

0.218. Details of these stages are given below.

To generate a particle, three random floating-point numbers were sampled from a uniform dis-

tribution over [0,1]. The first two were multiplied by the domain length to set the coordinates of the

particle center, x0 and y0. The remaining number was interpolated onto a discrete cumulative parti-

cle size distribution to determine particle radius R. To prevent the creation of overlapping particles,

the trial is aborted if φ(x,y)> 0.5 within a fixed radius of (x0,y0). This radius, rcontact, corresponds

to the minimum allowed distance between the center of the new particle and the perimeter of any

existing particles. For large particles, rcontact = 384 was used, and for small particles, rcontact = 32.
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If this check was passed, then a new particle was added to the existing concentration field φ0(x,y):

φ(x,y) = φ0(x,y)+
1
2

(
1+ tanh

{[
R−

√
(x− x0)2 +(y− y0)2

]
/2
})

. (7.1)

Since the hyperbolic tangent is zero in most of the domain, only a small part of the total domain,

a square with side length Lsq = 4R+64 centered at (x0,y0), was ever updated each time a particle

was added. If this square was intersected by a domain boundary, then a translation of the particle

would be added to the translation of the square to ensure periodicity. For example, if x0+Lsq > Lx,

then a particle centered at (x0−Lx,y0) with the same radius as the original would be added to a

square centered at (x0−Lx,y0).

To minimize morphological evolution within each mode, the particle size distributions (PSDs)

used for sampling were based on the steady-state PSD for 〈φ〉 ≈ 0.22. This PSD was obtained

from a smaller 16002 phase field simulation with 〈φ〉= 0.221 initialized with a single-modal PSD

with average radius R̄ = 8. The PSD of the single-modal simulation appeared to converge after

t = 5×104, and so the steady state PSD was taken to be the time average over 6×104 ≤ t ≤ 105.

The resulting PSDs are shown in Figure 7.8. They reflect input R̄ values of 16 for small particles

and 96 for large particles. Due to truncation of the steady state PSD at R/R̄ = 2 and R/R̄ = 1.5 for

small and large particles, respectively, these result in actual average radii of 14.6 and 80.9.
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Figure 7.8: Particle size distributions sampled to generate the simulation initial condition. They
are normalized independently, and so do not reflect probability in the final structure, where large
particles would be much less frequent.
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Chapter 8

Preliminary work

This chapter comprises two sections of preliminary work, essentially short chapters that have

neither been published nor considered as comprehensively as Chapters 4-6. The first considers

additional simulation results that support the relationship between kinetics and morphology derived

in Chapter 4, and the second describes a model and results for kinetically inhibiting pinching-off

of necks during coarsening.

8.1 Application of geometrically general theory

Here we consider additional systems in which the geometrically general theory for coarsening

[52] was found to be applicable. The theory was introduced in Chapter 2, but we specifically

examine Eq. 4.8, which was derived in Chapter 4 and applied to relate the coarsening kinetics and

morphologies of 3-D systems with dissimilar mobilities. Eq. 4.8 expresses a linear relationship

between dS−3
V /dt, the instantaneous coarsening rate constant, and σ2

H/SV
, the variance in scaled

mean curvature. The principal assumption of this equation, noted in Chapters 2 and 4, is that H,

the mean curvature of an interface, Hn, the mean curvature of its connected neighbor interface,

and λ , the distance over which they interact, are all uncorrelated. This assumption seemed to be

valid for the bicontinuous structures examined in Chapter 4, and here we test it for structures at

non-50/50 volume fractions, 36/64, 34/66, and 32/68. We also examine the effect of differences

in morphology other than volume fraction by simulating coarsening in a structure at 50/50 that

was phase separated with non-conserved (Allen-Cahn [179]) dynamics.
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8.1.1 Kinetics and morphology at non-50/50 volume fractions

We consider structures with 〈φ〉 = 0.32, 〈φ〉 = 0.34, 〈φ〉 = 0.36, and 〈φ〉 = 0.50, all initialized

by random noise and simulated with the Cahn-Hilliard equation, Eq. 3.4, with constant mobility.

These structures correspond to nominal volume fractions of 32/68, 34/66, 36/64, and 50/50,

respectively. The 〈φ〉= 0.50 structure has been previously discussed in Chapters 4 and 5, and the

〈φ〉 = 0.32 and 〈φ〉 = 0.36 structures were compared to surface-diffusion structures in Chapter

5. The remaining structure, 〈φ〉 = 0.34, had a larger domain size, Lx = Ly = Lz = 1280, than the

others, but other parameters were the same.

Coarsening kinetics of the structures are compared in Fig. 8.1 up to t = 8× 105. Consistent

with the results of a previous study [55], we find that coarsening rate constant increases with

decreasing volume fraction of φ = 1 phase (i.e., greater asymmetry between the volume fractions).

The instantaneous coarsening rate constant dS−3
V /dt was calculated by taking centered differences

between the points in Fig. 8.1. The variance of mean curvature σ2
H/SV

was calculated using methods

described in previous Chapters, and the relationship between dS−3
V /dt and σ2

H/SV
is plotted in Fig.

8.2.

In Fig. 8.1, the 〈φ〉= 0.34, 〈φ〉= 0.36, and 〈φ〉= 0.50 structures appeared to follow the same

linear trend. They were fitted together to Eq. 4.8, resulting in λ̂ = 0.44, the same value obtained

for 〈φ〉= 0.50 by itself in Chapter 4. However, the 〈φ〉= 0.34 and 〈φ〉= 0.36 structures undergo

more evolution; σ2
H/SV

decreases substantially in both cases, resulting in a corresponding decrease

in dS−3
V /dt. The 〈φ〉 = 0.32 structure is slightly offset from the fitted line, and a fit to it alone

results in λ̂ = 0.48. Its variance of mean curvature and coarsening rate increase initially then

decrease to near their original values. The different behavior of the 〈φ〉 = 0.32 case is likely due

to its proximity to the limiting volume fraction for bicontinuity discussed in Section 5.4.

In summary, the relationship between kinetics and morphology given by Eq. 4.8 appears to

generalize well to lower volume fractions of φ = 1 phase. For non-50/50 mixtures that are still
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Figure 8.1: Kinetics of coarsening via bulk diffusion for systems with different average composi-
tions. S−3

V is plotted vs. time for 〈φ〉 = 0.32 (blue upward triangles), 〈φ〉 = 0.34 (red diamonds),
〈φ〉= 0.36 (yellow squares), and 〈φ〉= 0.50 (purple downward triangles).

bicontinuous, Eq. 4.8 can be re-expressed to separately account for the fluxes through each phase,

dS−3
V

dt
= 6KD

σ2
H/SV

λ̂+
+6KD

σ2
H/SV

λ̂−
, (8.1)

where λ̂+ and λ̂− are the interaction distances of the phases. For these systems, λ̂ in Eq. 4.8 is

therefore the harmonic mean of the interaction distances for each phase,

2

λ̂
=

1

λ̂+
+

1

λ̂−
. (8.2)

The difference between λ̂+ and λ̂−, if one exists, cannot be calculated from the current simula-

tions, but might be obtainable by simulations with dissimilar mobilities at lower volume fractions.

8.1.2 Kinetics and morphology with different initial conditions

Here, we compare evolution at 〈φ〉 = 0.50 with constant mobility, but different initial morpholo-

gies. The 〈φ〉= 0.50 simulation considered elsewhere in this dissertation was initialized with ran-
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Figure 8.2: Plot of dS−3
V /dt, the instantaneous coarsening rate, vs. the variance of scaled mean

curvature, σ2
H/SV

, for systems with different average compositions: 〈φ〉= 0.32 (blue upward trian-
gles), 〈φ〉= 0.34 (red diamonds), 〈φ〉= 0.36 (yellow squares), and 〈φ〉= 0.50 (purple downward
triangles). A fit of Eq. 4.8 to the 〈φ〉= 0.34, 〈φ〉= 0.36, and 〈φ〉= 0.50 data sets is indicated by
a solid black line with slope 1.80. The earliest data points are circled, and the final data points are
noted by black symbols.

dom noise and evolved with the Cahn-Hilliard equation, Eq. 3.4. In this sub-section, it is referred

to as the RN IC structure, for random noise initial condition. The other simulation considered in

this section was phase separated with the Allen-Cahn equation [179],

∂φ

∂ t
=−

[
f ′(φ)− ε

2
∇

2
φ
]
, (8.3)

and is referred to as the AC IC structure, for Allen-Cahn initial condition. It was parametrized with

the same f (φ) and ε2 as the Cahn-Hilliard model, and the same finite difference approximations

were used, with ∆t = 0.5 and ∆x = 1. The order parameter φ was initialized with random noise in

a domain of size Lx = Ly = Lz = 800. It was evolved with Eq. 8.3 until t = 120, which resulted

in a bicontinuous structure with S−1
V ≈ 13. Re-setting the simulation time to t = 0, the AC IC

simulation was then evolved with the Cahn-Hilliard equation, Eq. 3.4, until t = 1.6×105.

The initial and final ISDs for the AC IC structure are shown in Fig. 8.3, and they differ substan-

tially from those of the RN IC structure (shown in Figs. 4.8 and 5.7). The initial ISD (Fig. 8.3a) is
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Figure 8.3: (a) Initial and (b) final ISDs for the AC IC structure (〈φ〉 = 0.50, coarsened via bulk
diffusion).

very broad, but by t = 1.6×105 (Fig. 8.3b) it becomes more concentrated around the line H = 0,

like the RN IC structure. The coarsening kinetics of these structures are shown in Fig. 8.4. The

AC IC structure coarsens much more quickly than the RN IC structure, reaching a similar final

characteristic length (S−1
V ≈ 40, ten times the interfacial thickness) in less than half of the time.

The relationship between instantaneous coarsening rate constant, dS−3
V /dt, and variance of

scaled mean curvature, σ2
H/SV

, is plotted in Fig. 8.5 for the RN IC and AC IC structures. A fit

of Eq. 4.8 to both data sets is indicated by the solid black line in Fig. 8.5, and it resulted in

λ̂ = 0.44. The faster coarsening rate constant of the AC IC structure is therefore fully explained

by the change in morphology. This example provides a well-controlled validation of Eq. 4.8,

as it lacks any of the possible confounding variables in the previous examples (the difference in

kinetics between constant- and dissimilar mobility structures in Chapter 4 and the differences in

〈φ〉 in the previous subsection). Now that we have independently confirmed λ̂ ≈ 0.44 as the

scaled diffusional interaction distance for 〈φ〉= 0.50, the agreement in λ̂ between different volume

fractions becomes more compelling. This value, λ̂ ≈ 0.44, may a universal constant for coarsening

of bicontinuous structures via bulk diffusion with a constant mobility.

129



0 1 2 3 4

105

0

2

4

6

8
10
4

Figure 8.4: Plot of S−3
V vs. time for coarsening of the RN IC (blue triangles) and AC IC (red

squares) structures via bulk diffusion.
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Figure 8.5: Plot of dS−3
V /dt, the instantaneous coarsening rate, vs. the variance of scaled mean

curvature, σ2
H/SV

, for the RN IC (blue triangles) and AC IC (red squares) structures. A fit of Eq.
4.8 to both data sets is indicated by a solid black line with slope 1.80. The earliest data points are
circled, and the final data points are noted by black symbols.
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8.2 Inhibiting topological singularities

This section describes an effort to inhibit topological singularities in the coarsening of complex

microstructures, with the goal of understanding the role those events play in the coarsening process.

Topological singularities occur in particulate systems when a particle disappears; the particle’s

radius decreases below a critical value, and it dissolves into the matrix phase. In bicontinuous

systems, which have high genus and no independent particles, a topological singularity occurs

when a neck connecting regions of the same phase pinches off, reducing the genus of the structure

by one and leaving behind two ‘caps’ [120, 121]. In both particulate and bicontinuous structures,

topological singularities involve features with high curvature relative to the rest of the structure, and

therefore we expect that inhibiting topological singularities will reduce coarsening rate. The role

of topological singularities in bicontinuous structures is complicated by the fact that the interface

is completely connected, which may cause an interdependence between singularities. If there is

some necessary ordering for the pinching-off events, for example, then halting the pinching-off

events would allow us to stop the coarsening process.

Therefore, we examined how to inhibit the pinching-off of necks in bicontinuous structures.

Two possible approaches were considered: imposing a thermodynamic constraint (i.e., a Lagrange

multiplier) and freezing the kinetics. The thermodynamic approach has been considered previously

for vesicle dynamics (Willmore flow) [180, 181], but adaptation of the technique for coarsening

represents a significant mathematical and numerical challenge. We therefore took the kinetic ap-

proach, and found a simple method that was highly effective at inhibiting topological singularities.

A phase field model was formulated with a mobility that varied continuously in space and dis-

continuously in time. Our code swept through the simulation domain and used criteria based on

the order parameter and its gradient to identify points at the center of necks that were about to

pinch off. The code would then decrease (‘freeze’) mobility in a spherical region around the point,

preventing transport of material from the neck and inhibiting it from pinching off. With appropri-

ate pinching criteria and freezing parameters, this method was able to successfully prevent most
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topological singularities during coarsening simulations.

8.2.1 Methods

This technique employs the Cahn-Hilliard model, Eq. 3.4, with a spatially and temporally depen-

dent mobility M(~x, t). Periodic boundary conditions were employed, and the model parameters are

as described in Chapter 3. Simulations were initialized with random noise at 〈φ〉= 0.50 and coars-

ened with constant mobility until a set time, at which the inhibited-pinching model was activated.

Pinching locations were identified by taking advantage of the symmetry at the necking point.

The ranges of values of φ in the bulk and |∇φ | in the interface are known. Due to the cylindrical

symmetry of the interfaces about the necking point, we expect |∇φ | to be small even as φ takes

a non-bulk value. In the bulk, φ must satisfy f ′′(φ) > 0 to be thermodynamically stable or meta-

stable, which for our choice of f (φ) equates to a requirement that φ > 0.789 or φ < 0.211. For a

planar interface, |∇φ | is equal to 1
ε

√
2 f (φ), which results in |∇φ |= 0.16 at φ = 0.8, for example.

The specific criteria used for simulations were fine-tuned by trial and error.

Once a point ~x0 was identified, mobility was reduced around it by multiplying the mobility

field M(~x, t) by a hyperbolic tangent function that is very small near ~x0 and equal to one far from

~x0,

M(~x, tn) = M(~x, tn−1)
1
2

(
1+ tanh

[
1
2
(|~x−~x0|−R)

])
, (8.4)

where R is the radius of the diffuse sphere in which mobility is reduced. To prevent multiple

mobility reduction events in the same location, an additional criterion M(~x, t)> Mc was used. The

mobility criterion Mc and pinching radius R could be changed to inhibit topological singularities

in different ways.

8.2.2 Results

The first setup that was implemented employed a small pinching radius, R = 6, and a low mobility

cutoff, Mc = 10−4, and criteria |∇φ |< 0.08 and 0.3 < φ < 0.7 for detecting pinching events. The
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low mobility cutoff allowed multiple freezing events in close proximity, but the small size of the

radius meant that all of the freezing was highly localized around the neck. Figure 8.6 illustrates

a typical example of this setup, with (a) showing the initial structure, a Cahn-Hilliard simulation

at t = 5× 104, (b) shows the continuation of that simulation to t = 8× 104 as a baseline, and (c)

shows the inhibited-pinching structure at t = 8×104. The entire domain size, Lx = Ly = Lz = 128,

is shown. Nine pinching-off events occurred in the baseline case (g = 19 from g = 28 in the

initial structure), while none occurred in the inhibited-pinching case. In the inhibited-pinching

case, Fig. 8.6c, topological singularities were successfully inhibited by the formation of long,

kinetically frozen necks, one of which is circled. However, this set of parameters does not seem

to substantially affect evolution; the interfaces around the neck seem to evolve as if it had in fact

pinched off.

Therefore, a second setup was explored, in which a much larger region around the neck was

frozen. In this setup, the radius of freezing was set approximately equal to the characteristic length,

and a higher mobility cutoff, Mc = 0.5, was used, which allowed only one freezing event per

detected pinching event. The detection criteria for this setup were 0.25 < φ < 0.75 and |∇φ | <

0.085. A small-scale (Lx = Ly = Lz = 128) simulation with these parameters is shown in Fig. 8.7.

The inhibited-pinching model was activated after t = 5×104, the condition shown in Fig. 8.7a, and

the freezing radius was R = S−1
V = 22. In Fig. 8.7b, the structure is shown at t = 105, after some

coarsening with the inhibited-pinching model. There are none of the elongated necks observed

in the previous setup (Fig. 8.6c), but there are several narrow necks that appear to blend in with

the structure. These are more apparent at t = 4×105 (Fig. 8.7c), when the interface has begun to

change shape around the frozen zone. As in the previous setup, the genus remained constant at

g = 28, indicating that topological singularities were inhibited.

To assess how inhibiting topological singularities quantitatively affect evolution, larger sim-

ulations (Lx = Ly = Lz = 512) were conducted using the second setup. Starting from the same

constant-mobility simulation, two inhibited-pinching simulations were conducted, one starting at

t = 5×104 with R = S−1
V = 22 and the other starting at t = 105 with R = S−1

V = 27. The constant-
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Figure 8.6: Small-scale (Lx = Ly = Lz = 128) inhibited-pinching simulation with a small freezing
radius, R= 6. The structures shown are (a) the initial Cahn-Hilliard structure ( t = 5×104, g= 28),
(b) the Cahn-Hilliard structure at later time (t = 8× 104, g = 19), and (c) the inhibited-pinching
structure at a later time (t = 8×104, g = 28). Topological singularities have been prevented in (c)
by the kinetic freezing of the necks, one of which is circled in red.
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Figure 8.7: Small-scale (Lx = Ly = Lz = 128) inhibited-pinching simulation with a large freezing
radius, R= 22. The structures shown are (a) the initial Cahn-Hilliard structure ( t = 5×104), (b) the
inhibited-pinching structure after some initial evolution (t = 105), and (c) the inhibited-pinching
structure at a much later time (t = 4× 105). In (c) the locations of the frozen necks are apparent
from the motion of the interface around the frozen zone.
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mobility simulation and inhibited-pinching simulations were continued until t = 4× 105. The

coarsening kinetics (i.e., S−3
V vs. time), evolution of genus g, and evolution of volume-averaged

mobility 〈M(x)〉 of these simulations are shown in Fig. 8.8. Inhibiting pinching reduces the rate of

coarsening apparent in Fig. 8.8a, although not to zero. In Fig. 8.8b, the difference in genus between

the control and the inhibited-pinching simulations R = 22 and R = 27 indicates that most topolog-

ical singularities are being inhibited. Average mobility (Fig. 8.8c) decreases rapidly at early times,

but continues to decrease over the course of the simulations, indicating that freezing events are still

occurring (i.e., pinching-off sites are still being detected).

The change in coarsening rate with inhibited pinching highlights the importance of topological

singularities to the coarsening process. This is not surprising as, based on results in Chapters 4 and

5, we know that necks are some of the highest-curvature features in bicontinuous structures. The

fact that coarsening continues and pinching-off sites continue to be detected suggests that topo-

logical singularities are not strongly dependent upon each other. The exact correlation or lack of

correlation between topological singularities could be determined by a more extensive investiga-

tion of their role in non-inhibited simulations. This provides an interesting topic for future work.

LSW theory achieves part of its simplicity by neglecting correlations between topological features

(i.e., particles). If evolving necks are uncorrelated from each other in bicontinuous structures, then

perhaps an LSW-like theory can be developed to describe their evolution.
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and (c) shows the time evolution of the volume average of the mobility, 〈M(x)〉.
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Chapter 9

Summary, applications, and future work

9.1 Summary

The overall objective of this dissertation was to build a foundation for a theory of coarsening of

complex microstructures. To make progress toward this objective, simulation studies were con-

ducted under idealized conditions using the phase field method. These studies build upon previous

work (Refs. [51, 53, 54, 55]) by examining conditions that are commonly found in experimental

systems, such as coarsening of phases having dissimilar bulk mobilities and coarsening via surface

diffusion. The differences and similarities between conditions will help future authors develop and

test hypotheses about the dynamics of coarsening in complex microstructures, leading eventually

to a comprehensive theory. Already, this dissertation has presented evidence for the validity of

two hypotheses that have immediate practical relevance. We have found a relationship between

coarsening kinetics and global morphology predicted by DeHoff’s geometrically general theory

of coarsening, and we demonstrated how inactive length scales can cause coarsening kinetics to

follow the t1/3 power law even in the absence of self-similarity. In this section, we summarize our

findings, and in the following sections, we discuss applications and future work.

In Chapter 4, coarsening of a two-phase system in which the phases had dissimilar mobilities

was studied at 50/50 (50%) volume fraction. A morphological transition during coarsening was

identified in two dimensions when the mobility was dissimilar, which was not observed when the

mobility was constant. This morphological transition in the dissimilar-mobility structure resulted
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in a decrease of its coarsening rate constant over time, while the kinetics of the constant-mobility

case agreed with the t1/3 power law after an initial transient stage. The 3-D simulations with

dissimilar mobilities resulted in bicontinuous morphologies that evolved self-similarly. The self-

similar morphology for the dissimilar-mobility cases has greater variance in scaled mean curvature

than the constant-mobility morphology, as well as a slight asymmetry between areas corresponding

to high- and low-mobility necks. The coarsening kinetics of the 3-D cases agreed well with the

theoretical t1/3 power law after initial transient stages. The transient kinetics of the 3-D cases

were observed to follow the theoretical relationship between variance in scaled mean curvature,

σ2
H/SV

, and instantaneous coarsening rate constant, k = dS−3
V /dt. Based on theory and simulations,

the primary difference in the kinetics of coarsening between the dissimilar-mobility and constant

mobility systems were determined to be a factor of two smaller kinetic coefficient in the dissimilar-

mobility case due to the lack of diffusion in one of the phases.

In Chapter 5, 3-D simulations of coarsening via surface diffusion were performed using the

model proposed by Rätz et al. [136]. At nominal volume fractions of 36/74 (i.e., 36%) and

50%, the resulting structures were bicontinuous, and self-similar coarsening via surface diffu-

sion was observed. Self-similarity of the structures was evident from scaling of the morphology

and topology. Furthermore, coarsening kinetics followed the predicted t1/4 power law. Differ-

ences in morphology and topology between structures coarsened with bulk and surface diffusion

were quantified, and the structures were found to be very similar at 50% volume fraction. Coars-

ening at 32% volume fraction via both mechanisms resulted in structures that contained both a

single well-connected domain (typical of bicontinuous structures) and a number of independent

particles. Substantial transient evolution of the scaled morphology and topology was observed in

both structures; self-similarity was not observed in the surface diffusion case and could not be

verified conclusively in the bulk diffusion case. In the surface diffusion structure, the number of

particles increased over time, since particles were unable to interact with the rest of the structure

after breaking away. The sensitivity of the structures to volume fraction was confirmed by exam-

ining coarsening via bulk diffusion at 30%, in which the initial structure was observed to break up

139



rapidly into particles. Finally, coarsening was examined via alternative model, which employed the

concentration-dependent mobility of the surface-diffusion model but retained the thermodynamics

of the bulk-diffusion model, permitting solubility in the bulk. While this solubility-permitting

model was shown to have similar coarsening kinetics to the surface diffusion model, the mor-

phologies observed indicated that it does not effectively simulate surface diffusion.

Chapter 6 examined a phase field method for evolution via bulk diffusion when strong anisotropy

is present. The model included an energy term proportional to the square of the Laplacian of the

order parameter to regularize the strong anisotropy, and we studied the effect of this regularization

term on dynamics. A planar interface at equilibrium was examined initially; the interfacial energy

was found to be affected by the regularization, and a Cahn-Hoffman ξ -vector was derived for the

modified interfacial energy. Then, the phase field model was related to sharp interface dynamics

by an asymptotic analysis. The correct Gibbs-Thomson condition was obtained for the modified

ξ -vector, and it was determined that the regularization had no effects on dynamics (other than the

modification to the interfacial energy) up to second order in the interfacial width. Equilibrium

shapes simulated with the phase field model were compared to predictions for the modified ξ -

vector, and excellent agreement was obtained away from the regularized corner. The corner shape

itself was found to agree with predictions for the curvature-squared regularization. The analy-

sis in Chapter 7 will enable future simulations of coarsening that employ the strongly anisotropic

Cahn-Hilliard equation with the Laplacian-squared regularization.

In Chapter 7, the concept of a self-similar length scale was explored. A 2-D simulation was

initialized with populations of large and small particles. Coarsening in this system followed the t1/3

power law for self-similar coarsening, despite the lack of self-similarity of the overall structure.

We found, however, that the small particles coarsen self-similarly, and they controlled the kinetic

behavior because they underwent more evolution than the large particles. The large particles were

larger than the self-similar length scale of the small particle distribution, causing them to be less

active relative to the overall structure.

Chapter 8 contained additional testing of the relationship between variance of scaled mean
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curvature and coarsening rate first applied in Chapter 4 and a study of the role of topological sin-

gularities in the evolution of bicontinuous structures. The relationship between variance of scaled

mean curvature and coarsening rate constant was found to hold in constant-mobility simulations

at average volume fractions of 34%, 36%, and 50%. Dynamics at 32% deviated slightly from the

trend at higher volume fractions. Constant-mobility simulations at 50% with different initial mor-

phologies were also tested, and again the relationship was found to hold. Across all bicontinuous

cases (i.e., excluding 32%), the scaled diffusional interaction distances were the same, λ̂ = 0.44.

To examine the role of topological singularities in the evolution of bicontinuous structures, an al-

gorithm was developed to detect the locations of necks that were in the process of pinching-off. By

freezing the necks (i.e., setting mobility to near zero), it was possible to prevent most topological

singularities from occurring. The resulting evolution was slower, highlighting the importance of

topological singularities to coarsening kinetics. However, further investigation is required to fully

understand their role in the coarsening process.

9.2 Applications

As noted in the Introduction, there are two types of applications of the results in this dissertation,

direct comparison to experiments and testing hypotheses about the dynamics of coarsening in

complex microstructures. Comparison to experiments is already ongoing for the surface-diffusion

results. Collaborators [20, 128] have provided nanoporous gold structural data near 32% volume

fraction. The corresponding surface diffusion structure (introduced in Section 5.4) had increasing

scaled particle density over time. In the simulations, particles detach due to the pinching-off of the

necks of material that connect them to the main structure. The particles can only move or evolve

via surface diffusion, so they remain in place until the main structure comes into contact with them

again. In the experimental system, a particle that breaks away from the structure cannot remain

independent; it will immediately fall under its own weight, and may re-attach itself to the structure

where it lands. It is not yet clear what effect this difference in particle behavior will have on the
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comparison. If a successful comparison is made, or if in the disagreement some new phenomena

is elucidated, this work would contribute substantially to the rapidly emerging research area of

nanoporous materials

We have also applied our simulation results to test hypotheses about coarsening dynamics. We

were able to demonstrate how features larger than a self-similar length scale can be kinetically

inactive, leading to t1/3 evolution without self-similarity. We were also able to demonstrate the re-

lationship between variance of scaled mean curvature and instantaneous coarsening rate in several

bicontinuous structures. This amounts to a validation of the assumption of DeHoff [52] that the

mean curvature at a point, the mean curvature of its connected neighbor point, and the diffusional

interaction distance between the two are all uncorrelated. Other relationships may follow from this

assumption. For example, DeHoff also provides an equation for evolution of average mean curva-

ture, which was not tested here. However, it remains to be seen whether the relationship between

variance of scaled mean curvature and instantaneous coarsening rate is present in experimental

systems. If it is not, then we have identified an important difference between our idealized sys-

tems and real-world microstructures. If it is, then we have identified a powerful tool for predicting

microstructural evolution.

9.3 Future work

From the perspective of theoretical development, the most important item of future work is to

determine why the morphological differences observed between conditions occur. One possibility,

raised in Chapters 4 and 5, is that the kinetics of topological singularities (i.e., the pinching-off

of necks) plays a key role in determining morphology. In structures with dissimilar mobilities

(Chapter 4), the difference in kinetics between necks containing low- and high-mobility phase is

thought to determine their prevalence in the structure. In structures coarsening via surface diffusion

(Chapter 5) it is the relative rates of pinching-off of necks and flattening of the resulting caps that

is hypothesized to be the difference between surface and bulk diffusion cases. The pinching-
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off of necks and flattening of caps are evolution processes that can be modeled analytically. A

good first step would be to determine the self-similar shape and dynamics for pinching-off with

constant mobility, which would complement existing results for surface diffusion [138, 139] and

highly dissimilar mobilities [120, 121]. Examining the effect of a mean field chemical potential

on the pinching-off process might also provide insight into coarsening via bulk diffusion at non-

50/50 volume fractions. This would be especially useful near the limiting volume fraction for

bicontinuity (i.e., between 30/70 and 32/68), where multiple types of topological singularity are

present; pinching-off of necks, disappearance of particles, and coalescence.

The fact that the local geometry is known during topological singularities (at least for pinching-

off of necks and disappearance of particles) presents an intriguing opportunity for modeling. Per-

haps a model can be created to tie the local evolution of necks and caps to that of the larger

structure. This idea originates from particulate models such as LSW theory, which track a single

topological feature (a particle) and determine its evolution based on a mean field independently of

any other individual particle. Ideally, applying an analogous approach to complex microstructures

(e.g., by using the channel size distribution of each phase [182] in place of the particle size distri-

bution) would result in a predictive capability like that of LSW theory. To justify such a model, we

need additional information about how topological singularities interact with each other or other

features during coarsening. In Chapter 8, we presented an algorithm for detecting topological sin-

gularities during a coarsening simulation. While we used this algorithm to prevent topological

singularities, it can also be modified to record them. Sites of topological singularities in the simu-

lation could then be examined for correspondence to theory, as in Refs. [120, 121], or aggregated

to statistically describe all topological singularities that occur under a given condition. This data

could be used to calculate the correlations of different types of topological singularity in space and

time. which would inform the assumptions of a coarsening theory based on topological evolution.

It is also important to extend our understanding of coarsening to different materials systems. In

this dissertation, a phase field model was determined to be suitable for simulating coarsening with

strongly anisotropic interfacial energy via bulk diffusion, and a model for the surface-diffusion case
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exists in literature [135, 136, 144]. The space of possible morphologies resulting from anisotropic

coarsening is beginning to be mapped [165], but the effect of anisotropy on coarsening dynamics

(e.g., pinching-off of necks) has yet to be determined.
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