
Cross-Layer System Design for Autonomous Driving

by

Shih-Chieh Lin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2019

Doctoral Committee:

Assistant Professor Jason Mars, Co-Chair
Assistant Professor Lingjia Tang, Co-Chair
Assistant Professor Steve Oney
Associate Professor Thomas F. Wenisch

Shih-Chieh Lin

shihclin@umich.edu

ORCID iD: 0000-0002-8218-6253

© Shih-Chieh Lin 2019

To my parents, Yu-Chin Shih and Chi-Chou Lin.

ii

ACKNOWLEDGEMENTS

Pursuing the doctoral degree is one of the most ambitious decisions in my life that

has shaped me to who I am today. This dissertation would not have been possible

without the guidance of my advisors and colleagues. My advisors, Jason and Lingjia,

I can not thank you enough for how much I have learned from you. Jason, you

encourage me to explore my ability and inspire me to confront any challenge with

confidence. Lingjia, you drive me to pursue my excellence and teach me to defend

my work. My dissertation committee, Jason, Lingjia, Tom and Steve, I thank you

for your insights and guidance in constructing this dissertation.

I am grateful to be one of the members of Clarity Lab. I could not have enjoyed

working with you more, which enlightens me to be a better researcher. We had

countless nights debating and brainstorming ideas. Specifically, I want to thank

Yunqi for being my mentor for both research and life. You teach me how to be

confident in my research, be proud of my achievement, and be a humble and resilient

person. You are and will always be the role model that I chase.

Lastly, nobody has been more important to me in the pursuit of this journey than

my significant other, Ya-Wen, and my family, Yu-Chin, Chi-Chou, Hsiang-Lin and

Man-Lin. You have been staying with me through all the ups and downs in the life.

You will always be my Sirius in my starry sky at night, thank you. I am fortunate

enough to have the greatest family in the world. You always remind me of being a

kind and humble person. Thank you for always being by my side and share those good

and bad times with me. A Ph.D. life could be tough, but becomes better because

iii

of all of you. You are the reason why I became who I am today. To all my family,

friends and all those who wished me well, thank you from the bottom of my heart.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Motivation . 2
1.1.1 Architectural Constraints 2
1.1.2 Algorithmic Bottlenecks 4
1.1.3 Human-Vehicle Interaction 5

1.2 Cross-Layer System Design for Autonomous Driving 7
1.2.1 Architectural Implications of Autonomous Driving . 7
1.2.2 Accelerating Object Recognition for Streaming Videos 8
1.2.3 Conversational In-Vehicle Digital Assistant 9

1.3 Summary of Contributions 10

II. Background and Related Work 12

2.1 Autonomous Driving System Architectures 12
2.1.1 Autonomous Driving Systems 12
2.1.2 Architectural Acceleration on Autonomous Driving 13

2.2 Accelerating DNN Techniques for Autonomous Driving 13
2.2.1 DNN Architecture Acceleration 13
2.2.2 Object Detection Acceleration in Videos 14

2.3 Autonomous Driving In-Vehicle Interfaces 16
2.3.1 User Interfaces for Cars 16

v

2.3.2 In-vehicle Voice Interfaces 16

III. The Architectural Implications of Autonomous Driving: Con-
straints and Acceleration . 18

3.1 Autonomous Driving . 19
3.1.1 Level of Automation 19
3.1.2 Current Industry Status 20
3.1.3 Autonomous Driving Pipeline 22
3.1.4 Design Constraints 25

3.2 End-to-End System . 31
3.2.1 Algorithmic Components 31
3.2.2 System Characterization 35

3.3 Accelerating Autonomous Driving 37
3.3.1 Accelerator Platforms 39
3.3.2 Porting Methodology 39

3.4 Evaluation . 44
3.4.1 Acceleration Results 44
3.4.2 End-to-End Performance 48
3.4.3 Power Analysis . 49
3.4.4 Scalability Analysis 51

3.5 Summary . 52

IV. Accelerating Object Recognition for Streaming Videos 53

4.1 Characterizing State-of-the-Art Object Recognition 54
4.1.1 Faster R-CNN Review 54
4.1.2 Characterization . 55

4.2 Proposed Method . 57
4.2.1 Feature Reuse . 57
4.2.2 Region Reuse . 58

4.3 Experiments . 60
4.3.1 Accuracy Analysis 62
4.3.2 Acceleration Results 63
4.3.3 End-to-End Performance Analysis 65

4.4 Summary . 68

V. Adasa: A Conversational In-Vehicle Digital Assistant for Au-
tonomous Driving . 69

5.1 Understanding Drivers’ Information Needs 70
5.2 System Design . 71

5.2.1 Design Objectives 72
5.2.2 System Overview: The Life of a Query 74
5.2.3 Hardware Apparatus 75

vi

5.2.4 Vehicle-data Ingestor 77
5.2.5 Intelligent Assistant 78

5.3 Evaluation . 82
5.3.1 Participants . 83
5.3.2 Adasa . 83
5.3.3 The Route . 84
5.3.4 Tasks . 84
5.3.5 Procedure . 86
5.3.6 Questionnaire . 88

5.4 Results . 88
5.4.1 Quantitative System Analysis 89
5.4.2 Subjective User Feedback 90

5.5 Discussion . 93
5.5.1 Response Length 93
5.5.2 Query Completeness 94

5.6 Summary . 94

VI. Conclusion . 97

BIBLIOGRAPHY . 99

vii

LIST OF FIGURES

Figure

3.1 Overview of a state-of-the-art autonomous driving system. 24
3.2 Driving distance per charge reduction contributed by the computing

engine alone and the entire system in aggregate. 30
3.3 Overview of the object detection engine (DET). 32
3.4 Overview of the object tracking engine (TRA). 33
3.5 Overview of the localization engine (LOC). 34
3.6 Latency of each algorithmic component on a multicore CPUs system

in the end-to-end autonomous driving system. 36
3.7 Cycle breakdown of the object detection (DET), object tracking (TRA)

and localization (LOC) engines. 37
3.8 Diagram of our DNNs implementation on FPGAs. 40
3.9 Diagram of our implementation of Feature Extraction (FE) on FPGAs. 42
3.10 Acceleration results across various accelerator platforms. 45
3.11 The mean and 99.99th-percentile latency of running different algo-

rithmic components across different configurations. 49
3.12 The power consumption and the corresponding driving range reduc-

tion of running different algorithmic components across different con-
figurations. 50

3.13 Performance scalability regarding camera resolutions of various con-
figurations. 51

4.1 Faster R-CNN framework overview and the computational profile
breakdown. 55

4.2 Overview of our proposed method, which is built based on Faster
R-CNN framework. 56

4.3 Speedup achieved in feature extraction network and classifier network
with respect to different ratio of inputs. 63

4.4 Speedup of end-to-end processing latency achieved when applying
feature reuse and region reuse. 65

4.5 AoD ratio and the associated end-to-end processing latency recorded
with baseline and our methods applied running in KITTI benchmark. 66

viii

4.6 AoD ratio and the associated end-to-end processing latency with
baseline and our methods applied running on KITTI benchmark pre-
sented in histogram. 67

5.1 Overview of Adasa system. 73
5.2 Adasa real-system setup. 76
5.3 An Amazon Mechanical Turk task assignment example. 80
5.4 The map of the 11.7 miles route. It includes 7 miles highway and 4.7

miles suburban road to accommodate the use of both ACC and LKS. 84
5.5 The average scores of the participants’ feedback across different ques-

tions in the questionnaire. 91

ix

LIST OF TABLES

Table

3.1 Summary of autonomous driving vehicles under experimentation in
leading industry companies. 21

3.2 Computing platform specifications. 38
3.3 Feature Extraction (FE) ASIC specifications. 43
4.1 Accuracy (i.e., mAP) analysis results on KITTI benchmark. 62
4.2 End-to-end performance speedup across three datasets. 68
5.1 Summary of tasks assigned during the driving study. 85
5.2 Targeted assessments of questions in questionnaire. 87

x

ABSTRACT

Autonomous driving has gained tremendous popularity and becomes one of the

most emerging applications recently, which allows the vehicle to drive by itself with-

out requiring help from a human. The demand of this application continues to grow

leading to ever increasing investment from industry in the last decade. Unfortunately,

autonomous driving systems remain unavailable to the public and are still under de-

velopment even with the recent considerable advancement achieved in our community.

Several key challenges are observed across the stack of autonomous driving systems

and must be addressed to bridge the gap.

This dissertation investigates cross-layer autonomous driving systems from hard-

ware architecture, software algorithms to human-vehicle interaction. In the hardware

architecture layer, we investigate and present the design constraints of autonomous

driving systems. With an end-to-end autonomous driving system framework we built,

we accelerate the computational bottlenecks identified and thoroughly investigate the

implications and trade-offs across various accelerator platforms. In the software algo-

rithm layer, we propose an accelerating technique for object recognition, which is one

of the critical bottlenecks in autonomous driving systems. We exploit the similarity

across frames in streaming videos for autonomous vehicles and reuse the intermediate

outputs computed in the algorithm to reduce the computation required and improve

the performance. In the human-vehicle interaction layer, we design a conversational

in-vehicle interface framework which enables drivers to interact with vehicles by us-

ing natural human language to improve the usability of autonomous driving features.

We also integrate this framework into a commercially available vehicle and conduct

a real-world driving study.

xi

CHAPTER I

Introduction

Autonomous driving has attracted a significant amount of interest in the past

few years as many companies in technology industry and automotive industry, such

as Google, Tesla, Uber, Ford and BMW, have invested large amount of capital and

engineering power on investigating and developing such application. Autonomous

driving is an emerging application powered by Artificial Intelligence (AI) techniques

to enable vehicles to understand the environment and move toward the destination

without little or even no human input. Despite the significant advancements in our

community to boost the power of autonomous driving in the last decade, vehicles

equipped with autonomous driving capability are still largely under experiements

and several cruicial hurdles observed prevent such applications from being available

in the real-world use cases.

Particularly, three key challenges observed across the stack of autonomous driving

systems from hardware architecture, software algorithms to human-vehicle interac-

tion and must be addressed to bridge the gap between this emerging application

and our community. First, the design constraints of architecting autonomous driv-

ing systems from hardware perspective remain unclear when applying state-of-the-art

AI techniques (e.g., computer vision, machine learning and robotics), which recently

leverage more sophisticated computation. To better understand the architectural im-

1

plications of such systems, an in-depth investigation to explore the viability of using

different hardware platforms must be conducted. Second, the significant improv-

ing accuracy these algorithms and techniques are able to achieve introduces increas-

ingly amount of computation resulting in higher processing latency even with modern

hardware accelerators. To tackle the performance bottleneck, these techniques used

in autonomous driving applications must be carefully redesigned from algorithmic

perspective to explore the accelerating opportunities and improve the performance.

Finally, an estimated 73% of drivers with autonomous driving features-enabled vehi-

cles have not even attempted to use these features [22], which is mainly due to drivers

have difficulty understanding these features and they are unsure how to activate and

use autonomous driving features. To improve the usability of autonomous driving

systems built in cars, it is important to investigate the gap and build an effective

in-vehicle interface that help to bridge the gap.

This dissertation investigates these key challenges in leveraging state-of-the-art

machine learning, deep learning algorithms to architect cross-layer autonomous driv-

ing systems from hardware architecture, software algorithms to human-vehicle inter-

action and proposes novel autonomous driving designs to address these key challenges.

1.1 Motivation

This section motivates the need for investigating autonomous driving systems

across the stack from the perspective of hardware architecture, software algorithm

and human-vehicle interaction in the context of the critical challenges facing modern

autonomous driving applications.

1.1.1 Architectural Constraints

Many automotive companies like Google, Uber, Tesla, Mobileye and others have

recently invested significantly in the future application known as autonomous driving

2

systems. The autonomous driving system allows the vehicle to drive by itself with-

out requiring help from a human. The vehicle equipped with autonomous driving

capability detects the environment, locates its position, and operates the vehicle to

get to the specified destination safely without human input. Demand of this appli-

cation continues to grow leading to ever increasing investment from industry. Intel

recently acquired Mobileye, a leader in computer vision-based autonomous driving

technology, for $15.3 billion [155]. Reports show that by 2035, automobiles with au-

tonomous driving features are expected to capture 25% of the automotive market,

which translates to 18 million vehicles [47], and the size of the autonomous driving

vehicle market is expected to leap to $77 billion by 2035 [47].

Despite the recent advancements in autonomous driving systems contributed by

industry leaders like Google, Tesla and Mobileye, autonomous driving vehicles are

still largely under experimentation and research. As such, architecting the right

autonomous driving system still largely remains an open research question.

Architecting autonomous driving systems is particularly challenging for a number

of reasons. These systems must make the “correct” operational decision at all times

to avoid accidents, thereby advanced machine learning, computer vision and robotic

processing algorithms, typically computationally intensive, are employed to deliver

the required high precision. Despite the large amount of computation, it is critical

for such mission critical system to be able to react to the traffic condition at real-time,

which means the processing always needs to finish at strict deadlines. Furthermore,

the system needs to perform the necessary computation under certain power budget

to avoid negatively impacting the driving range and fuel efficiency of the vehicle by

large amounts.

To address these challenges as a research community, there are several key research

questions arise:

1. What are the design constraints for building autonomous driving systems?

3

2. What are the computational profile and bottlenecks of a state-of-the-art end-

to-end autonomous driving system?

3. What architecture should we use when building such systems to meet all the

design constraints?

1.1.2 Algorithmic Bottlenecks

With the recent advances in computer vision especially leveraging machine learn-

ing techniques, video understanding has become one of the emerging applications

drawing increasing amount of attention in both academia and industry. Automatic

video understanding facilitates analysis on volumes of videos that are so large that

it is infeasible for human to process (e.g., YouTube has more than 5 billion videos

uploaded and users upload more than 400 hours of videos every minute [30]), power

applications like video summarization, video captioning. In addition to analyzing

large volumes of data offline, it presents the opportunity of using computer vision to

assist human beings in various tasks like driving in an online real-time fashion (i.e.,

autonomous driving).

To better support such applications, precision is one of the critical factors that our

research community has put in a lot of effort in the last couple decades, resulting in a

huge boost in video understanding which in turn significantly increased the feasibility

of these applications. As opposed to hard coding decision rules in conventional expert

systems, much of the recent advance can only be achieved thanks to the data-driven

approach we have been taken, which learns from large corpus of real-world samples.

Specifically, Convolutional Neural Networks (CNNs) have been proven to be one of

the most effective machine learning techniques in video understanding. In particular,

Faster R-CNN [136] along with quite a few other R-CNN based algorithms have been

consistently standing on the top of the PASCAL VOC object detection benchmark

leaderboard, outperforming many other conventional techniques.

4

However, the constant improving accuracy these CNN-based algorithms can achieve

does not come free. They have become increasingly complex with more number of

layers in the network architecture as well as more complex structure within each layer,

which drives up the computational power required to process such networks, result-

ing in higher and higher processing latency. With such computationally expensive

algorithms, it is nearly infeasible to perform any meaningful analysis at large scales

especially at the rate these videos get produced. Furthermore, such long processing

latency makes it extremely difficult, if possible, for video understanding to perform

any real-time tasks such as object detection and tracking in autonomous driving.

Researchers have proposed various ideas to reduce the processing latency by trad-

ing off accuracy. Network pruning [56, 59, 107, 57, 72, 143, 177, 2] is one common

technique that prunes out redundant parameters to reduce the size of the neural net-

works. Weight quantization [70, 134, 69, 175, 29, 101, 83, 28] utilizes data types with

reduced accuracy, like fixed-point numbers, when processing such neural networks to

cut down the cost of algorithmic operations. However, these techniques all sacrifice

a certain amount of accuracy to achieve the performance improvement, which makes

them less attractive for real-world applications especially mission-critical ones like

autonomous driving.

1.1.3 Human-Vehicle Interaction

Advanced Driver Assistance Systems (ADAS) are one of the fastest growing au-

tonomous driving applications and have recently started to become widely deployed

across the newer vehicle fleet. ADAS features are designed to either warn or assist

in the control of a vehicle to help reduce the effects of human error while driving.

For example, Lane Keeping System (LKS), which vibrates the steering wheel to alert

drivers when their vehicles drift out of the lane, and Adaptive Cruise Control (ACC),

which adjusts a vehicle’s speed to maintain a certain distance from other vehicles, are

5

two widely-used ADAS features.

While the available data on the influence of ADAS features is limited, some studies

have estimated a promising influence on the real-world driving experience. One study

estimates that ADAS may help drivers prevent 28% of all crashes if all new car

purchases included ADAS [53]. The market for ADAS has grown significantly and

nearly all major automakers (including Ford, Chrysler, BMW, and Audi) integrate

ADAS into their vehicles. The market for ADAS is projected to continue growing:

McKinsey & Co. researchers have predicted the ADAS market will double its size in

the next three years, reaching $35 billion in annual revenue [41].

However, an estimated 73% of drivers with ADAS-enabled vehicles have not even

attempted to use these features [22]. This is due to a number of factors [35, 89],

including the fact that ADAS are relatively new and constantly evolving. Many

drivers are not familiar with ADAS and rarely read their owner’s manuals on how

to use them [124]. Specifically, there are gulfs of evaluation [123] (i.e., drivers have

difficulty assessing the state of ADAS, such as if they are activated) and gulfs of

execution [123] (i.e., drivers are unsure how to activate and use ADAS). Because

ADAS features could help the driver maintain control of their vehicle, it is important

to build user interfaces that help to bridge these gulfs.

Building an effective interface for ADAS is challenging for several reasons.

1. It is unclear what information drivers need to effectively use ADAS features.

2. The interface can not require any complex visual-manual interactions because

asking the driver to perform such operations while driving could reduce safety.

3. These are complicated systems whose behavior depends on a complex combina-

tion of system states and vehicle contexts. For example, ACC might appear to

be deactivated because the feature is malfunctioning, the system is in a state

where it is not used, or the feature is inactive and the driver must be able to

6

distinguish between these three states.

4. Drivers often feel unclear what their roles entail when ADAS features are acti-

vated.

1.2 Cross-Layer System Design for Autonomous Driving

In this section, we summarize the proposed cross-layer system design for emerging

autonomous driving applications.

1.2.1 Architectural Implications of Autonomous Driving

This dissertation first investigates the design constraints for autonomous driving

systems and six classes of constraints are identified including performance, predictabil-

ity, storage, thermal, power and others, and has arrived at some unique observations

about autonomous driving systems. For instance, we discover it is critical for the sys-

tem to be able to finish the end-to-end processing at a latency less than 100 ms and

a frame rate higher than 10 frames per second, to react fast enough to the constantly

changing traffic condition. To capture the stringent performance predictability re-

quirements of such mission critical real-time system, tail latency (i.e., high quantiles

of the latency distribution) should be used to quantify the performance of the system.

We also find the power consumption of such system is heavily magnified (almost dou-

bled) by the increased cooling load to remove heat generated by the computing system

to keep the passenger cabin within a tolerable temperature, making it challenging to

leverage power-hungry computational platforms without significantly degrading the

vehicle driving range and fuel efficiency.

To understand the computational profile of such systems, we first need to ad-

dress the challenge of there being a lack of publicly available end-to-end experimen-

tal frameworks that are representative of the state-of-the-art autonomous driving

7

systems, which places a significant obstacle for our community to investigate these

systems. Therefore, we build an end-to-end autonomous driving system based on

most recently published system designs from academic research [86] and industry

practitioners [162]. The algorithmic components we use represent the most up-to-

date advancements in relevant fields, as they have won the corresponding machine

learning challenges recently (e.g., YOLO [135] won the multi-object detection chal-

lenge [37]). In this architecture (detailed in Section 3.1.3), the video captured by

cameras are streamed into an object detection engine to detect interested objects and

a localization engine to locate the vehicle based on the nearby landmarks in paral-

lel. The detected object coordinates are then fed into an object tracking engine that

tracks the moving objects to predict their moving trajectories. The output of the

object detection engine and the localization engine is then fused onto the same 3D

coordinate space to plan out the operational decisions.

With this end-to-end experimental framework, we discover three computational

bottlenecks, namely object detection, object tracking and localization, dominate the

majority of the computation. These computationally expensive bottlenecks prevent

conventional multicore CPU systems from meeting the design constraints of such

systems. Thus, we conduct an in-depth investigation to explore the viability of ac-

celerating these algorithmic components using various accelerators including GPUs,

FPGAs and ASICs, and we provide insights on how future architecture designs should

evolve for this emerging and fast growing application.

1.2.2 Accelerating Object Recognition for Streaming Videos

In this work, we explore the opportunities of reducing the amount of data needs

to be processed by the same neural networks without sacrificing the accuracy of the

neural networks themselves. One unique insight we observe in this work is large

fraction of the pixels remain the same across adjacent frames in continuous video

8

recordings. Exploiting this insight, we design a technique with an emphasis on Faster

R-CNN [136] that reuses the understanding (e.g., objects detected or recognized) we

have already gained in areas that did not change across frames, and only feeds the

changing areas, which is significantly smaller, to the neural networks to process. For

instance, like in an autonomous driving system, intermediate outputs like the feature

maps and the region of interests (ROIs) extracted from the previous frame can be

reused for the next frame as long as the pixels in the corresponding area haven’t

changed. By avoid having to send the entire frame to the costly neural networks to

process, we can significantly reduce the total area the complex and time-consuming

neural networks need to process, thereby reducing the overall processing latency, while

still achieving the same accuracy.

1.2.3 Conversational In-Vehicle Digital Assistant

Currently drivers interact with ADAS features through controls on their steering

wheel and indicators displayed on the dashboard. In this work, we propose to add

a third modality: a speech-based conversational interface for ADAS features. We

designed and built Adasa, the first speech-based conversational interface for ADAS.

Adasa’s features are based on our analysis of over 9,000 conversations between drivers

and Ford’s customer service division and includes additional training data generated

by crowd workers. We built Adasa upon the state-of-the-art conversational machine

learning platform, Lucida [61], which allows drivers to interact with Adasa in un-

constrained natural language in real-time. Drivers can simply ask questions or issue

commands after enabling Adasa by pressing a single button on the steering wheel.

Adasa can handle queries that do not require the current vehicle’s status (e.g.,

the meaning of a symbol on the dashboard), system diagnostic questions related to

the vehicle and ADAS state (e.g., “why is my wheel vibrating?”), or commands to

control ADAS features via natural language. We integrated Adasa into a commercially

9

available vehicle and conducted a user study on 15 drivers in a real-world driving

environment.

1.3 Summary of Contributions

This dissertation identifies the crucial bottlenecks in autonomous driving systems

across the stack and proposes a thorough cross-layer system design to improve au-

tonomous driving applications. A summary of specific contributions is as follows:

• Architectural Implications of Autonomous Driving - We identify and

present the design constraints of autonomous driving systems in terms of per-

formance, predictability, storage, thermal and power. Despite the stringent

real-time performance constraints, the power consumption of such system is

heavily magnified by the increased cooling load to remove the heat generated

by the computing system, resulting in significant impact on the fuel efficiency

and driving range of the vehicle. To investigate the design of autonomous driv-

ing systems, we build an end-to-end system whose architecture aligns with latest

industry products. The models and algorithmic components we employ in this

system are representative of the state-of-the-art techniques, as they recently

won the corresponding machine learning challenges and awards. We identify

three computational bottlenecks, including object detection, object tracking

and localization, in the end-to-end system that must be accelerated to meet all

the design constraints. To thoroughly investigate the implications and trade-

offs across devices when accelerating these bottlenecks, we implement them on

three different accelerator platforms including GPUs, FPGAs and ASICs and

provide a quantitative analysis. We explore the landscape of acceleration-based

autonomous driving design choices across the three accelerator platforms and

discuss the implication trade-offs for future architecture among performance,

10

power and scalability.

• Computation Reuse of Object Recognition for Videos - We identify

performance bottlenecks and acceleration opportunities in Faster R-CNN in

real-world video understanding applications via system characterization. Based

on the insight that majority of the frames in continuous videos do not change,

we propose a novel method to reuse intermediate results of unchanged regions

across frames, to reduce the amount of complex neural network computations,

thereby improving the processing latency. The proposed method could be ap-

plied to existing two-stage object detectors (e.g., Faster R-CNN) directly with-

out the need to re-train models or depend on specific hardware. We demonstrate

the proposed idea can achieve substantial performance improvement (i.e., up to

1.27×) without sacrificing the accuracy of the algorithm.

• Adasa: A Conversational In-Vehicle Digital Assistant - We conduct an

analysis of over 9,000 discussions between drivers and customer service repre-

sentatives from a major auto manufacturer about ADAS to better understand

drivers’ information needs. We then propose Adasa, an in-vehicle digital assis-

tant, that allows the driver to ask questions or command and control in human

natural language while driving to help drivers understand the features and im-

prove the usability. An evaluation of Adasa deployed on a production vehicle

is conducted, which demonstrates the effectiveness of the proposed system in

improving the usability of these ADAS features. Insights gained through our

user study in terms of how the digital assistant system design affects the overall

user experience, and how traffic conditions impact user interaction, including

response length and query completeness.

11

CHAPTER II

Background and Related Work

In this Chapter, we survey the related literature and provide the background

relevant to the topics covered in this dissertation. This includes prior works on

autonomous driving system architectures, autonomous driving in-vehicle interfaces,

and deep learning techniques for autonomous driving applications.

2.1 Autonomous Driving System Architectures

2.1.1 Autonomous Driving Systems

Prior work has surveyed the common algorithmic components for autonomous

driving systems [86]. However, the algorithms presented by Kato et al. are quite

outdated, which do not represent the state-of-the-art autonomous driving systems.

To address this, we design and develop an end-to-end autonomous driving system

with recently developed algorithms that offer significantly higher accuracy. Geiger et

al. design and develop a benchmark suite of computer vision applications for studying

and evaluating autonomous driving systems [45]. Amer et al. present a review of the

state-of-the-art algorithmic components used for path tracking in autonomous driving

systems [4].

12

2.1.2 Architectural Acceleration on Autonomous Driving

There is also a large body of work accelerating machine learning-based applica-

tions using various accelerator platforms [74, 55, 18, 62, 60, 108, 43, 148, 17, 16, 34,

105, 21, 3, 33, 88, 84, 178, 77, 139]. Specifically, GPUs have been shown to offer

orders of magnitude performance improvement over multicore CPUs [65, 62, 60, 139].

This is because many machine learning algorithms spend a large fraction of their

execution time performing matrix multiplication, which can be parallelized on the

large number of threads offered by GPUs. The commonality exists in these machine

learning algorithms, especially DNNs, allows researchers to design ASICs to acceler-

ate them, which offer even higher performance benefits and energy efficiency [55, 18,

17, 16, 34, 105, 3, 33, 84]. FPGAs have been discussed as another alternative, which

also provide high performance and energy efficiency with the additional capability

of reconfiguring the fabric programmatically [108, 43, 148]. In addition to computa-

tion, prior work also explored novel memory architectures to bring memory closer to

processors [21, 3, 88].

2.2 Accelerating DNN Techniques for Autonomous Driving

The computational requirements and applicability of deep neural networks (DNNs)

and convolutional neural networks (CNNs) [95, 96] have prompted researchers to de-

sign novel DNN architecture to improve the efficiency [75, 65, 104, 69, 70, 57, 56, 82,

18, 127, 163]. Besides, many prior works have investigate how to accelerate object

detection applied on video recognition, which usually incorporates temporal and con-

textual information in videos [76, 12, 176, 100, 184, 185, 186, 126]. We then provide

a brief survey on related works.

13

2.2.1 DNN Architecture Acceleration

Network Pruning - There has been a large body of works improving the DNN

efficiency via neural network pruning, which is a technique that iteratively prunes

redundant parameters from the neural network and reduce the number of neurons

in the DNNs [56, 59, 107, 57, 72, 143, 177, 2]. Han et al. [56, 57] investigated the

crucial connections in the DNNs while learning and proposed a method to prune

the unimportant connections, which is able to reduce the number of parameters by

a factor of 9× on AlexNet [92]. Yang et al. [177] introduced energy-aware pruning

which exploit the energy consumption of CNNs to guide the pruning process. Luo

et al. [107] proposed a filter level pruning method called ThiNet, which identifies the

importance for each filter and discard those trivial filters to improve the efficiency.

Our method aims to investigate on reusing intermediate features of DNNs, which can

be further optimized by network pruning approaches.

Weight Quantization - Many prior works investigate on reducing the precision

for both floating-point and fixed-point formats of weights [70, 134, 69, 175, 29, 101,

83, 28]. Courbariaux et al. [28] investigated the neural network performance with

three different precisions (i.e., floating-point, fixed-point and dynamic fixed-point)

and found that using low precision is able to achieve sufficient performance. Hubara et

al. [69] proposed Binarized Neural Networks (BNNs) where a neural network consists

of binary weights and activations (i.e., +1, -1) and demonstrated significant speedup

achieved. Rastegari et al. [134] presented XNOR-Net and BWN which apply binary

values on both weights and inputs and are able to perform accurately and efficiently

on ImageNet [140]. However, quantizing weights lead to loss of accuracy and models

are required to be retrained depending on the methods applied whereas our method

is able to achieve almost lossless accuracy and can be applied directly on pretrained

models.

14

2.2.2 Object Detection Acceleration in Videos

Sparsity - Exploiting sparsity in DNNs achieves remarkable success by reducing

the redundancy of matrix multiplication [170, 15, 54, 104, 149, 50, 51] and is widely

used for video recognition tasks [55, 126, 94]. Liu et al. [104] introduced Sparse Con-

volutional Neural Networks (SCNNs) to reduce over 90% of parameters via maximum

sparsity. Wen et al. [170] then proposed Structured Sparsity Learning (SSL) to regu-

larize the structures of DNNs and identify and compact structure from complex DNNs

to improve sparsity. Han et al. [55] investigated on compressed network model and

proposed a sparse matrix-vector multiplication compute unit to improve the perfor-

mance by orders of magnitudes. Pan et al. [126] proposed to generate sparse inputs

by subtracting two consecutive frames which is then processed with a sparsity-aware

hardware accelerator to achieve computational savings [55]. Nonetheless, specialized

hardware is required to execute such sparse matrix-vector multiplication, which limit

the design spaces to specific CNN models as well as hardware platforms.

Optical Flow - Various optical flow-based approaches have been utilized for

video recognition tasks and achieve substantial success [40, 13, 71, 146]. Optical flow

has also been utilized to solve vision tasks such as pose estimation, frame prediction

and attribute transfer [128, 130, 183]. Fischer et al. [40] first applied deep CNNs

to estimate the flow motion and demonstrate competitive accuracy. For improving

video recognition performance, Zhu et al. [184, 185, 186] then based on FlowNet [40]

proposed Deep Feature Flow (DFF), which executes expensive CNNs only on sparse

key frames and propagates the corresponding deep feature maps to other frames via a

flow field to advance the performance of video recognition tasks. However, it requires

to re-train the proposed DNNs (i.e., FlowNet) when applying various object detection

algorithms, which makes DFF less feasible to such rapid changing eras. In contrast,

our proposed method can be plugged easily with existing two-stage object detectors

(e.g., Faster R-CNN) to improve the efficiency for video recognition tasks.

15

Overall, Our method focuses on factorizing the size of inputs and targets at reusing

features of DNNs in videos can be employed to various DNN models directly without

the need to retrain models to further improve the inference performance.

2.3 Autonomous Driving In-Vehicle Interfaces

In general, the number and complexity of systems available to drivers has increased

significantly [87]. HCI researchers have investigated how to improve in-vehicle user

interfaces for systems like driving assistance, infotainment, entertainment and car-

integrated mobile devices [11, 42, 106, 152, 171].

2.3.1 User Interfaces for Cars

To help drivers use these systems without being too distracted while driving,

different types of in-vehicle interfaces have been built and studied [44, 87, 93, 98, 125,

144, 180]. However, most of these interfaces have been visual or tactile. Kern et al.

explore the design space of driver-based automotive user interfaces, including a set

of inputs (e.g., button, touchscreen and pedals) and outputs (e.g., multi-functional

display, digital and analog speedometer) modalities [87]. Visual user interfaces in

vehicles have been investigated, but the results show that driving experience and

behavior would be affected notably, and these interfaces may distract drivers from

the primary driving tasks (i.e., driving and focusing on the traffic) [85, 150]. On

the other hand, Ohn-Bar et al. investigate how gesture interfaces for the in-vehicle

systems should be designed to improve the driving experience. They present the

feasibility to have gestural interfaces deployed in the cars for a wide range of in-

vehicle functionalities [125]. Lee et al. study the implications for drivers when using

voice interfaces and touch interfaces on semi-automated systems and find that drivers

who use the voice interface to control automated driving have lower nervousness and

make fewer driving mistakes than those who use the touch interface [98].

16

2.3.2 In-vehicle Voice Interfaces

There is a large body of work showing that voice interfaces allow drivers to ef-

fectively focus on driving and the environment. Among all the interface modalities,

voice interfaces help improve driving safety compared to other interface modalities

[8, 52, 90, 97, 98, 106, 121, 161]. Researchers also find that voice interfaces affect

human behavior, as well as emotion. Graham et al. evaluate users’ experience of

using voice interfaces to perform secondary tasks while driving. Despite the fact

that voice interface is slower, less accurate, and leading to lower task performance,

the results show that users still consider it easy to learn and logical, expressing the

preference over manual interface [52]. In addition, prior works present that drivers

spend more time keeping their eyes on the road when using a speech interface than a

manual interface [8, 121]. From the industrial point of view, in-vehicle voice interfaces

are now widely deployed in commercialized vehicles such as Ford Sync [23], Toyota

Entune [27] and GMMyLink [24]. Even mobile devices are designed to be able to con-

nect to in-vehicle infotainment and entertainment systems via CarPlay [5] or Android

Auto [49]. These technologies leverage advanced speech recognition techniques to al-

low users to interact with systems like navigation or multimedia entertainment via

voice commands. However, recent commercial products mostly rely on constrained

speech (i.e., using specific terms or formats) which can be distracting while driving

as it may require a higher cognitive demand than unconstrained natural speech. In

fact, interacting with conversational systems using natural human language is still

challenging and remains a crucial problem [58, 171, 172]. In this work, we employ

advanced machine learning techniques to design Adasa and enable drivers to interact

with vehicles in unconstrained natural language in real-time. None of these afore-

mentioned speech-based systems are particularly designed for ADAS features, which

we found to be a gap and may directly affect the drivers’ in-vehicle experience while

driving as more ADAS features are introduced.

17

CHAPTER III

The Architectural Implications of Autonomous

Driving: Constraints and Acceleration

Autonomous driving systems have attracted a significant amount of interest re-

cently, and many industry leaders, such as Google, Uber, Tesla and Mobileye, have

invested large amount of capital and engineering power on developing such systems.

Building autonomous driving systems is particularly challenging due to stringent per-

formance requirements in terms of both making the safe operational decisions and

finishing processing at real-time. Despite the recent advancements in technology,

such systems are still largely under experimentation and architecting end-to-end au-

tonomous driving systems remains an open research question.

To investigate this question, we first present and formalize the design constraints

for building an autonomous driving system in terms of performance, predictabil-

ity, storage, thermal and power. We then build an end-to-end autonomous driv-

ing system using state-of-the-art award-winning algorithms to understand the design

trade-offs for building such systems. In our real-system characterization, we identify

three computational bottlenecks, which conventional multicore CPUs are incapable

of processing under the identified design constraints. To meet these constraints, we

accelerate these algorithms using three accelerator platforms including GPUs, FP-

GAs and ASICs, which can reduce the tail latency of the system by 169×, 10×, and

18

93× respectively. With accelerator-based designs, we are able to build an end-to-

end autonomous driving system that meets all the design constraints, and explore

the trade-offs among performance, power and the higher accuracy enabled by higher

resolution cameras.

3.1 Autonomous Driving

To investigate autonomous driving systems, we first present a formal taxonomy of

such systems defined at different levels of automation ranging from no automation to

full automation, as well as where the current industry stands based on this taxonomy.

We then introduce the computational pipeline of the state-of-the-art highly automated

autonomous driving systems. Based on this pipeline, we investigate and formalize the

design constraints of architecting such systems.

3.1.1 Level of Automation

To facilitate the development of highly autonomous vehicles (HAVs), the Na-

tional Highway Traffic Safety Authority released a guideline for autonomous driving

systems [166] in which they referred to the six levels of automation defined by SAE

International [141].

• No Automation (Level 0) – The human driver must complete all driving

tasks even with warnings from vehicles.

• Driver Assistance (Level 1) – The automated system shares steering and

acceleration/deceleration responsibility with the human driver under limited

driving conditions (e.g., high speed cruising), and the driver handles the re-

maining driving tasks (e.g., lane change).

• Partial Automation (Level 2) – The automated system fully controls the

19

steering and acceleration/deceleration of vehicles under limited driving condi-

tions, and the human driver performs remaining driving tasks.

• Conditional Automation (Level 3) – The automated system handles all

driving tasks under limited driving conditions, and expects that the human

driver will respond to requests to intervene (i.e., resume driving).

• High Automation (Level 4) – The automated system handles all driving

tasks under limited driving conditions even if the human driver does not respond

to requests to intervene.

• Full Automation (Level 5) – The automated system takes full control of

all driving tasks under all driving conditions that can be managed by a human

driver.

In summary, level 1 and 2 of automation are still mostly driving assistance, where the

human driver still handles a substantial portion of the driving tasks at all times under

all conditions. Autonomous driving systems can take full driving responsibility at

level 3-5 of automation under certain driving conditions, which are typically referred

as HAVs. As they represent the future of autonomous driving systems, we focus on

HAVs at level 3-5 for the rest of the work.

3.1.2 Current Industry Status

To understand where current industry stands, we survey the industry leaders in the

level of automation, the computing platform and sensors they leverage as presented

in Table 3.1. As shown in the table, even leading industry companies like Tesla

and Waymo can only achieve level 2 or 3 of automation, where the human driver

is still heavily involved in the control of the vehicle. It demonstrates the challenges

in building autonomous driving vehicles and motivates our research community to

investigate this emerging application.

20

Table 3.1: Summary of autonomous driving vehicles under experimentation in leading
industry companies.

Manufacturer Mobileye [114] Tesla [159, 36] Nvidia/Audi [156] Waymo [169, 157, 48]

Automation level 2 level 2 level 3 level 3
Platform SoCs SoCs + GPUs SoCs + GPUs SoCs + GPUs
Sensor camera camera, radar lidar, camera, radar lidar, camera, radar

Looking at the computing platforms and sensors these industry leaders use, most

of them leverage a combination of SoCs and GPUs to provide the large amount of

computational capacity needed for autonomous driving systems. Another interesting

observation is both Nvidia/Audi and Waymo, who are able to build experimentation

autonomous driving vehicles at level 3 of automation, use Light Detection and Rang-

ing (LIDAR) as part of the sensing devices, which is a remote sensing device used

to examine surroundings of the vehicle at high precision by sending light beams. Al-

though the high precision makes LIDAR a great fit as a sensing device for autonomous

driving systems, the extreme high cost of LIDAR has been one of the primary rea-

sons that prevent such systems from being commercially available on the market.

Commercially available LIDAR devices are as expensive as $75,000 USD [167], which

is much higher than the cost of the vehicle itself, even for some luxury cars. As a

result, the industry has been trying to move away from LIDAR devices, and build

vision-based autonomous driving systems instead, using only cameras and radars that

are much cheaper for sensing the surroundings. For instance, companies like Mobil-

eye [115, 117] and Tesla [158] have recently announced their plan for focusing on

vision-based autonomous driving systems which are composed of mainly cameras and

radars as sensing devices. Therefore, we focus on vision-based autonomous driving

systems in this work.

21

3.1.3 Autonomous Driving Pipeline

The task of autonomous driving is to operate the vehicle to reach a given desti-

nation, with the data captured on various real-time sensors such as video cameras,

laser scanners, and milliwave radars. The autonomous driving system then performs

the necessary processing to recognize the driving environments and makes operating

decisions. Such system is often composed of three major components: scene recog-

nition for localizing the vehicle at decimeter-level and tracking nearby objects, path

planning for generating the future paths, and vehicle control for physically operat-

ing the vehicle to follow the planned paths [86]. These algorithm components are

the basis of most modern autonomous driving systems, which has been confirmed by

the self-driving car Udacity built [162], and also aligns with how Mobileye designs

their autonomous driving systems [115]. A detailed diagram of these components is

presented in Figure 5.1.

The captured sensing data is first fed to an object detector (step 1a in Figure 5.1)

and a localizer (step 1b in Figure 5.1) in parallel. The object detector detects the

objects of interest around the vehicle, such as other vehicles, pedestrians, and traffic

signals. The detected objects are then passed to an object tracker (step 1c in Fig-

ure 5.1) to associate the detected objects with their movements in the past, to predict

the trajectories of moving objects. In parallel, the localizer determines the location

of the vehicle at high precision. Subsequently, the object movement information from

object tracker and the vehicle location information from localizer is combined and

projected onto the same 3D coordinate space by a sensor fusion engine (step 2 in

Figure 5.1).

The fused information about the vehicle location and moving objects is then passed

to the motion planning engine to assign path trajectories (step 3 in Figure 5.1), such as

lane change and setting the vehicle’s velocity. The mission planning engine calculates

the detailed operating motions to realize the planned paths and determine the routing

22

path from source to destination (step 4 in Figure 5.1). The vehicle control engine

simply follows the planned paths and trajectories by operating the vehicle (step 5 in

Figure 5.1).

23

F
u

s
io

n

In
fo

O
b

je
c

t

M
o
v
e
m

e
n
t

A
li

g
n

O
b

je
c

t

C
o
o
rd

in
a
te

D
e
te

c
to

r
T

ra
c

k
e

r

V
e

h
ic

le

L
o

c
a

ti
o

nF
u
s
io

n

Im
a

g
e

L
o

c
a
li
ze

r
M

is
s

io
n

 P
la

n
n

e
r

M
o

ti
o

n
 P

la
n

n
e

r

A
c

c
e

le
ra

te
?

S
te

e
ri
n

g
?

A
c
ti
o
n

P
la

n
n

in
g

In
fo

rm
a

ti
o

n

(1
a

)

(1
b

)

(1
c

)
(2

)

(2
)

(3
)

(4
)

(5
)

F
ig
u
re

3.
1:

O
ve
rv
ie
w

of
a
st
at
e-
of
-t
h
e-
ar
t
au

to
n
om

ou
s
d
ri
v
in
g
sy
st
em

,
w
h
ic
h
is
d
es
ig
n
ed

b
as
ed

on
re
ce
n
t
p
u
b
li
ca
ti
on

s
[8
6]

an
d

sp
ec
ifi
ca
ti
on

s
re
le
as
ed

b
y
in
d
u
st
ry

co
m
p
an

ie
s
[1
62
,
11
5]
.
T
h
e
v
id
eo

ca
p
tu
re
d
b
y
ca
m
er
as

ar
e
st
re
am

ed
in
to

b
ot
h
th
e
ob

je
ct

d
et
ec
ti
on

en
gi
n
e
to

d
et
ec
t
ob

je
ct
s
(1
a)

an
d
th
e
lo
ca
li
za
ti
on

en
gi
n
e
to

lo
ca
te

th
e
ve
h
ic
le

(1
b
)
in

p
ar
al
le
l.

T
h
e
d
et
ec
te
d
ob

je
ct
s

th
en

ar
e
p
as
se
d
to

th
e
ob

je
ct

tr
ac
k
in
g
en
gi
n
e
to

tr
ac
k
m
ov
in
g
ob

je
ct
s
(1
c)
.
T
h
e
ve
h
ic
le

lo
ca
ti
on

an
d
th
e
tr
ac
ke
d
ob

je
ct
s
ar
e

p
ro
je
ct
ed

in
to

th
e
sa
m
e
3D

co
or
d
in
at
e
sp
ac
e
b
y
th
e
fu
si
on

en
gi
n
e
(2
),

w
h
ic
h
w
il
l
b
e
co
n
su
m
ed

b
y
th
e
m
ot
io
n
p
la
n
n
er

(3
)
to

m
ak
e
op

er
at
io
n
al

d
ec
is
io
n
s
(5
).

T
h
e
m
is
si
on

p
la
n
n
er

is
on

ly
in
vo
ke
d
w
h
en

th
e
ve
h
ic
le

d
ev
ia
te
s
fr
om

th
e
or
ig
in
al

ro
u
ti
n
g
p
la
n

ge
n
er
at
ed

b
y
th
e
n
av
ig
at
io
n
se
rv
ic
es

li
ke

G
o
og
le

M
ap

s
(4
).

24

3.1.4 Design Constraints

Despite the extremely detailed regulations on conventional automobiles (e.g.,

crash test, fuel economy, vehicle inspection), regulatory authorities have only re-

cently started forming these regulations regarding autonomous driving vehicles. In

the Federal Automated Vehicle Policies published by the U.S. Department of Trans-

portation [166], it was only mentioned that “significant emphasis should be placed

on software development, verification and validation” without any specific details.

Therefore, many of the design constraints we discuss in this section are derived from

published materials by industry practitioners like Toyota [80], Udacity [162] and Mo-

bileye [115].

3.1.4.1 Performance Constraints

To avoid car accidents, the autonomous driving system needs to be able to “under-

stand” the real-time traffic condition and react to it fast enough. While autonomous

vehicles have the potential to reduce traffic casualties, the actual performance re-

quirement for autonomous driving system is still largely undefined. According to

prior work in driver-assistance systems [118], the reaction time of an autonomous

driving system is determined by two factors.

• Frame rate: The frame rate determines how fast the real-time sensor data

can be fed into the process engine.

• Processing latency: The processing latency of recognizing scenes and making

operational decisions determines how fast the system can react to the captured

sensor data.

Human drivers take varying amount of time to respond based on the level of expecta-

tion and action chosen. For example, human drivers take 600 ms to react when they

are expecting a possible interruption and 850 ms otherwise [79]. A typical driver takes

25

0.96 s to release accelerator, 2.2 s to reach maximum breaking, and 1.64 s to begin

steering to avoid an accident [110]. The fastest possible action by a human driver

takes 100–150 ms [122, 160]. To provide better safety, autonomous driving systems

should be able to react faster than human drivers, which suggests the latency for

processing traffic condition should be within 100 ms. This aligns with the industry

standards recently published by Mobileye [147] and the design specifications from

Udacity [162].

In addition to processing latency, autonomous driving systems also need to fre-

quently update their “understanding” to keep up with the continuously changing

real-time traffic condition. In other words, the frame rate needs to be high, in case

the real-time traffic condition changes drastically between two neighboring frames.

To react quickly to the constantly changing traffic condition, the system should be

able to react faster than human reaction time, which suggests a frequency of once

every 100 ms. This also aligns with the frame rate of the collision prevention assistant

systems built by Mobileye [116].

Performance Constraints: Autonomous driving system should be able to process

current traffic conditions within a latency of 100 ms at a frequency of at least once

every 100 ms.

3.1.4.2 Predictability Constraints

Autonomous driving is one of the mission critical applications that must be per-

formed at real-time. What this means is the processing fails if not completed within a

specific deadline, thereby the performance predictability is critical. Not being able to

process in real-time can put the passengers in danger, and sometimes result in fatal

accidents. Therefore, the performance of autonomous driving systems needs to be

extremely predictable for them to be widely adopted. The predictability is defined as

both the temporal aspects (i.e., meeting the specified timing deadline) and the func-

26

tional aspects (i.e., making the correct operational decisions). From an architect’s

point of view, we focus on the predictability of the temporal aspects.

Specifically, the predictability of the processing latency is critical for the au-

tonomous driving system to quickly react to the real-time traffic condition reliably.

To capture the non-determinism of large-scale distributed systems, tail latency, de-

fined as the high quantiles of the latency distribution (e.g., 95th-, 99th- percentile

latency), is often used to evaluate the performance of such systems instead of mean

latency. As we will show in Section 3.2.2, the localization algorithm has large per-

formance variability, which is challenging for the autonomous driving system to react

to the real-time traffic. As a result, tail latency, high quantiles like 99.99th- per-

centile or even worst case latency, should be used to evaluate the performance of such

systems to reflect the stringent predictability requirements. We will also empirically

demonstrate why tail latency should be used in Section 3.4.1.2.

Predictability Constraints: Due to the large performance variability of autonomous

driving systems, tail latency (e.g., 99th-, 99.99th- percentile latency) should be used as

the metric to evaluate the performance, in order to capture the stringent predictability

requirement.

3.1.4.3 Storage Constraints

While GPS technology has been commonly adopted to identify the vehicle location

for navigation systems, it does not provide the necessary level of precision (e.g.,

precision at decimeter-level is needed to keep the vehicle staying in certain lanes [99])

and the spacial accessibility [9] to localize the vehicle (step 1b in Figure 5.1) for

autonomous driving tasks. Therefore, prior map-based localization has been widely

used to provide localization capability at centimeter-level precision [173, 174, 182,

111, 151, 120], where the surrounding view is transformed into feature descriptions

to map the feature points stored in the prior map to identify the location of the

27

vehicle. However, it is infeasible to transmit the prior map from the cloud all the

time, because the vehicle does not always have access to the Internet and the vehicle

still needs to perform the necessary autonomous driving tasks even under limited

accessibility. Therefore, the prior map needs to be stored on the autonomous driving

vehicle.

However, prior maps of large environments (e.g., an entire country) consume sig-

nificant amount of storage space. For example, a prior map of the entire United States

takes 41 TB of storage space on an autonomous driving system [165].

Storage Constraints: Tens of TBs of storage space is needed to store the prior

maps in large environments required by autonomous driving systems to localize the

vehicle (e.g., 41 TB for an entire map of the U.S.).

3.1.4.4 Thermal Constraints

There are two aspects of thermal constraints in autonomous driving systems: 1)

the temperature of the space to hold the computing system needs to be within the

operating range the system can operate under; 2) the heat generated by the computing

system should have relatively small impact on the thermal profile of the vehicle (e.g.,

not heat up the engine, which can potentially affect the reliability of the vehicle).

There are typically two temperature zones in modern autonomous driving vehicles:

in the climate controlled passenger cabin or outside of [80]. Outside the passenger

cabin, the operating temperature can get up to +105°C ambient [80], which is higher

than most general-purpose computer chips could safely operate under (e.g., a typical

Intel processor can only operate at temperature lower than 75°C [73]). Therefore, the

autonomous driving system should be placed inside the climate controlled passenger

cabin to avoid having to build climate control functionality for additional zones.

However, the passengers may no longer be able to tolerate the increased tem-

perature when the computing system is placed inside the passenger cabin without

28

additional cooling infrastructure. For instance, a computing system that consumes

1kW power (e.g., 1 CPU and 3 GPUs operating at full utilization) will raise the

temperature by 10°C in a minute if no additional cooling is added in the passenger

cabin [39]. In conclusion, additional air conditioning load needs to be added to re-

move heat generated by the autonomous driving systems to keep the passenger cabin

temperature tolerable.

Thermal Constraints: The computing system of autonomous driving vehicle needs

to be put into the climate controlled passenger cabin to be able to operate safely,

which means additional cooling capacity needs to be added to remove the additional

heat generated by the computing system to maintain a tolerable temperature in the

passenger cabin.

3.1.4.5 Power Constraints

In gasoline powered cars, the electrical system is typically on the order of 1-2 kW

provided by the car’s alternator [113, 129], which could be increased at the cost of

reduction in fuel efficiency of the vehicle [142]. The exact reduction varies depending

on the fuel efficiency of the car, but a rule of thumb for gas powered cars is that the

miles per gallon (MPG) rating will be reduced by one for every additional 400 W of

power consumption [38] (e.g., an additional 400 W power consumption translates to

a 3.23% reduction in MPG for a 2017 Audi A4 sedan with 31 MPG originally [7]).

Similarly, the additional power consumption will reduce the total driving range of

electric vehicles (EVs) [158] due to the limited battery capacity.

The total power consumption of the autonomous driving system includes the con-

sumption of the computing system, storage overhead (Section 3.1.4.3) and cooling

overhead (Section 3.1.4.4). While the power consumption of the computing system

heavily depends on the computing platform (e.g., CPUs, GPUs), a typical storage

system consumes around 8 W to store every 3 TB data [145]. To remove the addi-

29

CPU+
FPGA

CPU+
GPU

CPU+
3GPUs

CPU+
FPGA

CPU+
GPU

CPU+
3GPUs

0

500

1000

1500

2000

2500

P
o
w

e
r

(W
)

Computing engine alone Entire system in aggregate

Power

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
ri

v
in

g
 R

a
n

g
e
 R

e
d

u
c
it

o
n

 (
%

)

Driving Range Reduction

Figure 3.2: Driving distance per charge reduction contributed by the computing
engine alone (on left) and the entire system in aggregate (on right) with respect to
the additional power consumption generated by autonomous driving systems. The
power consumption is heavily magnified by the storage engine and especially the
cooling overhead resulting in driving range reductions as much as 11.5%.

tional heat generated by the system, a typical automobile air conditioner consumes

around 77% of the cooling load to dissipate the heat (i.e., a coefficient of performance

of 1.3, representing the ratio of useful cooling provided to work required [81]). That

is to say, a 100 W system imposes 77 W cooling overhead to remove the additional

heat generated by the system.

In Figure 3.2, we analyze the reduction in driving range of a Chevy Bolt [19] as

additional power needs are placed on an electric vehicle. The first three sets of bars on

the left represent the power consumption and driving range reduction contributed by

the computing engine only, and the ones on the right show the corresponding metrics

for the entire system in aggregate (i.e., including storage and cooling overhead). Sur-

prisingly, the computing engine only contributes about half of the power consumption

and the driving range reduction, where the storage engine and especially the cooling

overhead almost double the impact. For example, a computing engine equipped with

1 CPU and 3 GPUs operating at full utilization alone only reduces the driving range

by 6%, while the entire system experiences almost doubled reduction (i.e., 11.5%).

30

Power Constraints: The power consumption of autonomous driving system con-

sists of the consumption of the computing engines and the storage engine, and is

heavily magnified by the required cooling capacity to remove the additional heat.

Having a power-hungry system can significantly degrade the vehicle fuel efficiency

(e.g., as much as 11.5%).

3.1.4.6 Other Constraints

Additionally, there are also other constraints that we are not focusing on in this

work. Any equipment used in the car should be able to sustain the impulse and

vibration of the vehicles. Sudden impulses can range somewhere between 50 g to 500 g

(g is used to measure impulse and stands for gravitational force) and vibrations can

be up to 15 g and 100–2000 Hz [80]. Hardware reliability is also a constraint in real-

time systems, where airplanes typically employ triple-modular-redundancy to provide

the safety guarantee [179]. However, autonomous driving vehicles experience much

less environment variability (e.g., temperature, atmospheric pressure) than airplanes,

which makes it less likely for rare events like radiation-induced soft errors to occur.

3.2 End-to-End System

Due to the lack of a publicly available experimental framework, we build an end-

to-end workload to investigate the architecture implications of autonomous driving

vehicles. In this section, we detail the state-of-the-art algorithmic components that

constitute this end-to-end autonomous driving system and the design decisions in

choosing these algorithmic components. We then characterize the end-to-end system

to understand its computational profile and the potential bottlenecks for meeting all

the design constraints.

31

NN

Current Image (x0, y0, c0)Grid Cells (x1, y1, c1)

(x3, y3, c3)(x2, y2, c2)

Figure 3.3: Overview of the object detection engine (DET). It partitions the input
image into sub-regions and predicts the coordinates of detected objects and the con-
fidence for each sub-region using Deep Neural Networks (DNNs).

3.2.1 Algorithmic Components

To build a representative end-to-end system for the state-of-the-art autonomous

driving system, we select the best publicly available algorithms from the correspond-

ing machine learning benchmark suites (e.g., VOT benchmark [91] for object tracking

tasks).

3.2.1.1 Object Detection

For object detection (DET), we use YOLO [135], a DNN-based detection algo-

rithm, which outperforms all the other multiple object detection algorithms in both

accuracy and speed on VOC benchmark suite [37]. Figure 3.3 presents an overview

of the algorithm. It first partitions the image into sub-regions and predicts the co-

ordinates of detected objects and the confidence for each region through fully con-

volutional networks. A threshold is then used to filter out the objects detected with

lower probabilities. In the output. we focus on four categories that we care the most

in autonomous driving, including vehicles, bicycles, traffic signs and pedestrians.

3.2.1.2 Object Tracking

For object tracking (TRA), we use GOTURN [64], a DNN-based single object

tracking algorithm, which outperforms most state-of-the-art trackers in speed and

32

Previous Image: tn-1

Current Image: tn
Region

NN

Target Position

Crop

Crop

Target

Figure 3.4: Overview of the object tracking engine (TRA). It crops the next image
into a search region and the previous image into the tracking target only based on
previous results. It then uses Deep Neural Networks (DNNs) to locate the target
object in the search region.

accuracy in the VOT object tracking benchmark [91]. As shown in Figure 3.4, it

crops the current image into a search region and the previous image into the tracking

target only based on the previous result. Both the search region and the target are

then fed as inputs to the neural networks, which generates the bounding box of the

target to be tracked in the current image.

A pool of trackers is launched initially to wait for incoming tracking requests

to avoid the initialization overhead. To record the number of objects tracked, we

implement a tracked object table to store the objects that are being tracked currently.

A threshold is set to determine whether an object is passing or leaving if it does not

appear in ten consecutive images. We remove it from the tracked object table and

set the tracker idle to wait for more incoming tracking requests.

3.2.1.3 Localization

For localization (LOC), we use ORB-SLAM [119], which has been ranked top of the

available open source algorithms for localizing the vehicle on the KITTI datasets [45],

as well as on the TUM benchmark suite [153]. Besides the high accuracy, the algo-

rithm is also capable of localizing the vehicle regardless of viewpoints, which makes

33

Image Map Update

Loop Closing

Local Mapping

ORB Extractor

rBRIEF Descriptor

oFAST Feature Selector

Relocalization

Pose Prediction
(Motion Model)

or

Figure 3.5: Overview of the localization engine (LOC). The algorithm takes images
as input and extracts interesting features such as landmarks, and then generates a
descriptor for each of the extracted features. The feature descriptors are consumed
to locate the vehicle and predict vehicle poses.

it a great fit for autonomous driving systems. Figure 3.5 presents the details of the

algorithm. The incoming video stream is fed into the ORB extractor to detect feature

points using oFAST algorithm. The rBRIEF algorithm is then invoked to generate

descriptions of the extracted feature points.

ORB-SLAM then attempts to match the current descriptions with the prior map

database (as mentioned in Section 3.1.4.3) to localize the vehicle position. It uses a

constant motion model to identify the location if the matching succeeds, otherwise

it relocalizes the position by using a wider search in the map around the location

identified last time.

In addition, the algorithm needs to update the map in case the current surround-

ings are different from the prior map (e.g., the map is built under different weather

conditions). Lastly, loop closing is executed periodically to detect the potential tra-

jectory loop when the vehicle is moving in order to calibrate the vehicle position based

on the map database.

3.2.1.4 Fusion

The fusion engine (FUSION) retrieves the coordinates of the objects being tracked

by the trackers, and combines with the current vehicle location provided by the local-

ization engine. The combined information is transformed into the same 3D coordinate

space, and sent to the motion planning engine to make vehicle operation decisions.

34

3.2.1.5 Motion Planning

For motion planning (MOTPLAN), we use the algorithms in the Autoware, which

is a recently published open-source framework [86]. It leverages a graph-search based

approach to find the minimum-cost path in space lattices when the vehicle is in

an large opening area like parking lot or rural area [131]. When the vehicle is in

structured areas (e.g., downtown area in cities), it uses conformal lattices with spatial

and temporal information to adapt the motion plan to the environment [112, 164].

3.2.1.6 Mission Planning

For mission planning (MISPLAN), we also adopt the implementation from the

state-of-the-art Autoware framework [86]. The policy is a rule-based approach which

takes the traffic rules and the driving area condition to determine the routing path

trajectory, which aligns with what industry leader Mobileye has been using [147]. The

algorithm operates the vehicle to follow the route generated by navigation systems

such as Google Maps. It is only executed once unless the vehicle deviates from planned

routes.

3.2.2 System Characterization

To understand the computational profile and identify the potential bottlenecks in

autonomous driving systems, we characterize our system using representative KITTI

dataset [45] on an Intel server compiled with Intel Math Kernel Library (MKL), and

the hardware specifications are listed in Table 3.2.

Figure 3.6 shows the measured mean, 99th- and 99.99th-percentile latency for

each of the algorithmic components. Mission Planning (MISPLAN) is not included

because it is only invoked once at the beginning to plan the route and will not be

executed again unless the vehicle deviates from the routing path. As shown in the

figure, the latency contributed by each of DET, TRA, and LOC individually has

35

DET TRA LOC FUSION MOTPLAN
10

-1

10
0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7734.4

1334.0

294.2

0.1

0.5

Mean

P99

P99.99

Figure 3.6: Latency of each algorithmic component on a multicore CPUs system in
the end-to-end autonomous driving system. The latency contributed by each of object
detection engine (DET), object tracking engine (TRA), and localization engine (LOC)
has already exceeded the latency requirement of the end-to-end system. These three
components dominate the end-to-end latency, and thereby are the computational
bottlenecks that prevent us from meeting design constraints.

already exceeded the end-to-end system latency constraints at 100 ms, and these

three components dominate the system latency. Therefore, we conclude DET, TRA

and LOC as the computational bottlenecks of our autonomous driving system, and

we will focus on them for the rest of the work.

We then characterize DET, TRA and LOC in details to investigate where they

spend most of their computing cycles. Figure 3.7 shows the cycle breakdown of each

algorithmic component. From the figure, we can easily identify that Deep Neural

Networks (DNNs) is the most computational intensive portion in DET and TRA, as

they consume 99.4% and 99.0% of the execution time respectively. Unlike the other

two DNN-based algorithms, Feature Extraction (FE) consumes more than 85% of the

execution time in LOC. These large fractions indicate the DNN portion in DET and

TRA, and the FE portion in LOC are good candidates for acceleration in order to

meet the strict real-time processing performance constraints for autonomous driving

systems.

36

99.4%

0.6%

DET

DNN

Others

99.0%

1.0%

TRA

DNN

Others

85.9%

14.1%

LOC

FE

Others

Figure 3.7: Cycle breakdown of the object detection (DET), object tracking (TRA)
and localization (LOC) engines. The Deep Neural Networks (DNNs) portion in DET
and TRA, and the Feature Extraction (FE) portion in LOC account for more than
94% of the execution in aggregation, which makes them ideal candidates for acceler-
ation.

3.3 Accelerating Autonomous Driving

As demonstrated in Section 3.2.2, conventional multicore CPU systems are not

suitable to meet all the design constraints, particularly the real-time processing re-

quirement. Therefore, we port the critical algorithmic components to alternative

hardware acceleration platforms, and investigate the viability of accelerator-based

designs. In this section, we detail our design and implementation on these accelera-

tor platforms, and evaluate their performance in regards to the design constraints of

autonomous driving systems.

37

T
ab

le
3.
2:

C
om

p
u
ti
n
g
p
la
tf
or
m

sp
ec
ifi
ca
ti
on

s.
*:

D
S
P

(D
ig
it
al

S
ig
n
al

P
ro
ce
ss
or
)

C
P
U

G
P
U

F
P
G
A

A
S
IC

(C
N
N
)

A
S
IC

(F
C
)

A
S
IC

(L
O
C
)

M
o
d
e
l

In
te
l
X
eo

n
E
5
-2
6
3
0
v
3

N
V
ID

IA
T
it
a
n
X

(P
a
sc
a
l)

A
lt
er
a
S
tr
a
ti
x
V

T
S
M
C

6
5
n
m

T
S
M
C

4
5
n
m

A
R
M

4
5
n
m

F
r
e
q
u
e
n
c
y

3
.2
0
G
H
z

1
.4

G
H
z

8
0
0
M
H
z

2
0
0
M
H
z

8
0
0
M
H
z

4
G
H
z

#
C
o
r
e
s

1
6

3
5
8
4

2
5
6
*

N
/
A

N
/
A

N
/
A

M
e
m

o
r
y

1
2
8
G
B

1
2
G
B

2
G
B

1
8
1
.5

K
B

N
/
A

N
/
A

M
e
m

o
r
y

B
W

5
9
.0

G
B
/
s

4
8
0
.0

G
B
/
s

6
.4

G
B
/
s

N
/
A

N
/
A

N
/
A

38

3.3.1 Accelerator Platforms

We focus on three different state-of-the-art computing platforms including GPUs,

FPGAs and ASICs, and use multicore CPUs as our baseline. The detailed specifica-

tions of the hardware are listed in Table 3.2. The multicore CPU platform we use

is a server-grade dual-socket machine with 8 cores on each socket, which represents

a more conventional computing system design. The GPU accelerator we study is a

latest Nvidia Titan X GPU with Pascal microarchitecture with 12 GB on-board mem-

ory, which offers powerful computing capability with 3584 cores. For FPGA platform,

we employ an Altera Stratix V development board equipped with 256 Digital Signal

Processors (DSPs) and large reconfigurable fabric. Lastly, we explore ASIC designs

using prior work built on TSMC 65nm and 45nm technology [18, 55], and also build

our own implementation using ARM 45nm technology.

3.3.2 Porting Methodology

3.3.2.1 GPU Implementation

To port the three bottleneck algorithmic components (i.e., DET, TRA and LOC)

to GPUs, we leverage highly optimized machine learning software libraries. In par-

ticular, we implement the YOLO [135] object detection algorithm using the cuDNN

library provide by Nvidia [20]. We port GOTURN [64] object tracking algorithm to

GPUs using Caffe [78], which again allows us to benefit from the highly optimized

cuDNN library [20]. The ORB-SLAM [119] algorithm used for localization is ported

to GPUs with OpenCV library [10].

3.3.2.2 FPGA Implementation

To port the three bottleneck algorithmic components to FPGAs, we focus on the

most time-consuming algorithms, namely DNN and Feature Extraction (FE), which

39

Memory
Ctrl

WeightBuffer

InputBuffer

OutputBuffer

…

PE

PE

PE

HdrDc_unit

PE

Image

Predict

Figure 3.8: Diagram of our DNNs implementation on FPGAs. The limited on-chip
memory on FPGAs is not sufficient to hold all the network architecture configurations,
so the networks are executed layer by layer. For each layer, the memory controller
initiates the data transfer and the layer definition is used by the header decoder unit
(HdrDc unit) to configure the layer. Processing Elements (PEs) consumes data in
the WeightBuffer and InputBuffer to compute the output and store it to the Out-
putBuffer. To hide the data transfer latency, we implement double buffering for all
buffers.

account for almost 95% of the total execution cycles. We build our own optimized

implementations on an Altera Stratix V platform and detail our implementation of

these two algorithms in the following sections.

DNNs on FPGAs Despite the high memory bandwidth and large external mem-

ory, the Altera Stratix V platform has limited on-chip memory which is insufficient

to hold all the neural network architecture configurations (i.e., the network topol-

ogy and weights of the neurons) and the intermediate results, because the advanced

state-of-the-art DNNs we use have complex and deep network architectures.

An overview of our design is presented in Figure 3.8. Our implementation is capa-

40

ble of executing all the types of layers used in DET and TRA, including convolutional

layers, pooling layers, ReLu layers and fully connected layers. The implementation is

composed of four major components: memory controller, buffers, header decoder unit

(HdrDc unit) and the processing elements (PEs). The memory controller first initiates

the data transfer between the host device and the FPGA accelerator, and the layer

definition (i.e., layer type, weights) is fed to the header decoder unit (HdrDc unit)

to configure the layer. Each buffer stores the corresponding neural network weights,

input values, and internal temporary variables until the execution of the layer has

been completed. Each PE, primarily consists of multiply-accumulate (MAC) units

instantiated by the digital processing processors (DSPs) on the fabric, then performs

the necessary computation on the data stored in the WeightBuffer and InputBuffer

and writes the output to the OutputBuffer. To hide the data transferring latency,

we implement double buffering for all buffers to prefetch the needed data in advance

while executing the current layer. Overall, we are able to achieve an utilization higher

than 80% on the available adaptive logic modules (ALMs) and DSPs.

FE on FPGAs Feature extraction (FE) dominates the computation time in LOC,

so we focus on porting FE when porting to FPGAs. There are two major components

in the algorithm ORB we use: oFAST that extracts the feature points and rBRIEF

that computes a descriptor for each feature point. An overview of our design is

summarized in Figure 3.9.

For oFAST, we implement an image buffer (ImgBuffer) and a feature point buffer

(FtrPntBuffer) using shift register, and the mask window is assigned to the corre-

sponding register. As the input data streaming into the buffer, they are filtered by

the mask window so the feature detector only receive the data it needs. Orient unit

is implemented with an atan2 Lookup Table (LUT), to avoid the extensive use of

multipliers and dividers of computing atan2 naively.

41

Image

ImgBuffer

Feature
Detector

Orient_unit

FtrPntBuffer

NMS_unit

MaskWdw OrtWdw

(x
 , y

) &
 T

h
e
ta

Pattern LUT
(256 x 4)

Rotate_unit

Rotate_unit

BinTest_unit

DscpBuffer

Descriptor

oFAST

rBRIEF

Memory

Figure 3.9: Diagram of our implementation of Feature Extraction (FE) on FPGAs.
As the input images streaming into the image buffer (ImgBuffer), they are filtered by
the mask window (MaskWdw). The feature detector extracts the features of interest
and store them into the feature point buffer (FtrPntBuffer). It is then consumed by
the rotate unit to rotate the corresponding coordinates, and the generated feature
descriptors are stored into the descriptor buffer (DscpBuffer). To optimize the per-
formance of our design, we implement all the complex trigonometric functions with
Lookup Tables (LUTs) to avoid the extensive use of multipliers and dividers, which
reduces the latency by a factor of 1.5×.

42

Table 3.3: Feature Extraction (FE) ASIC specifications.

Specification
Technology ARM Artisam IBM SOI 45 nm

Area 6539.9 um2

Clock Rate 4 GHz (0.25 ns/cycle)
Power 21.97 mW

For rBRIEF, we store the pattern information in the pattern LUT on-chip. Ro-

tate unit is implemented to rotate to the corresponding coordinates. Similarly to how

we implement atan2 for oFAST, we implement sin and cos functions using LUTs to

avoid the extensive use of multipliers and dividers. Due to the limited on-chip memory

available, we execute one binary test at a time and store the result into the descriptor

buffer (DscpBuffer) iteratively. As a result, 256 iterations are required to complete

one feature point description. However, because of the simplicity of this design, we

can achieve high clock rate and thereby low latency. By synthesizing on real systems,

we demonstrate our FE implementation can execute at a frequency of 250MHz on

the Stratix V development board. By implementing complex trigonometric functions

with LUTs, we improve the performance of FE by a factor of 1.5×.

3.3.2.3 ASIC Implementation

We employ previously published ASIC implementations for DNNs [18, 55]. Due to

the limited published ASIC implementation of feature extraction (FE), we implement

our FE ASIC design and synthesize it with modern technology.

We implement FE ASIC following similar design as our FPGA implementation

described in Figure 3.9 in Verilog and synthesize it using ARM Artisam IBM SOI

45 nm library. We verify the result and evaluate the design with post-synthesis

simulation. Table 3.3 shows the details of of FE ASIC implementation, where we are

able to achieve a clock frequency as high as 4 GHz. This is largely due to the simplicity

of our design, as well as the optimized design with re-timing pipeline. Despite the

43

more cycles needed for the entire pipeline, we achieve better performance comparing

to more complex implementations we previously experimented with. Additionally,

we are able to achieve a 4× reduction in latency by replacing complex trigonometric

function computations with LUTs.

3.4 Evaluation

In this section, we conduct thorough evaluations of various acceleration platforms

to explore the design landscape. We focus on the three computational bottlenecks

identified in Section 3.2.2 as they constitute more than 94% of the end-to-end execu-

tion. In particular, we would like to answer the following questions in this section:

• How much speedup can these accelerators achieve for autonomous driving (Sec-

tion 3.4.1)?

• Can accelerator-based autonomous driving systems meet the performance and

predictability constraints (Section 3.4.2)?

• How does the power consumption of accelerator-based autonomous driving sys-

tems affect the vehicle (Section 3.4.3)?

• How scalable are such systems regarding the growing camera resolutions (Sec-

tion 3.4.4)?

3.4.1 Acceleration Results

Figure 3.10 presents the acceleration results we are able to achieve across mean

latency, 99.99th-percentile latency and the measured power consumption on the four

computing platforms we investigate. We measure the performance and power on

real systems for CPUs, GPUs, and FPGAs using Watts Up power meter [66]. For

ASICs, we reference prior work [18, 55] for performance and power measurements for

44

DET TRA LOC
10

0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7150.0

799.0

40.8

11.2
5.5

20.3

369.6
536.0

27.1

95.9

1.8

10.1

CPU

GPU

FPGA

ASIC

(a) Mean Latency Across Platforms.

DET TRA LOC
10

0

10
1

10
2

10
3

10
4

L
a
te

n
c
y
 (

m
s
)

7734.4

1334.0

294.2

14.3
6.4

54.0

369.6
536.0

27.1

95.9

1.8

10.1

CPU

GPU

FPGA

ASIC

(b) 99.99th-Percentile Latency Across Platforms.

DET TRA LOC
0

20

40

60

80

100

120

P
o
w

e
r
 (

W
)

51.2

106.9

53.854.0 55.0 53.0

21.5 22.7 19.0

7.9 9.3
0.1

CPU

GPU

FPGA

ASIC

(c) Power Consumption Across Platforms

Figure 3.10: Acceleration results across various accelerator platforms. The latency
of running DET or TRA alone on CPUs or FPGAs has already exceeded the end-
to-end latency constraints, which suggests they are not viable candidates for running
the complex DNN-based DET and TRA algorithms that demand large amount of
computational resources.

45

the two DNN-based algorithms object detection (DET) and object tracking (TRA),

and extrapolate them based on the amount of processing units needed. For our own

ASIC implementation of the feature extraction (FEs) algorithm, we use the power

estimated in the post-synthesis result and simulate the performance with our post-

synthesis module.

3.4.1.1 Mean Latency

As shown in Figure 3.10a, it is impractical to run either DET or TRA on the

multicore CPU systems, as the latency of each individual component is already sig-

nificantly higher than the end-to-end system latency constraints (i.e., 100 ms). This

is because both of these components are using DNN-based algorithms, which de-

mands large amount of computing capacity that conventional multicore CPUs does

not offer. On the contrary, GPUs provide significantly lower mean latency across all

three workloads benefiting from the massive parallel processing power provided by

the large number of processors. Although FPGAs achieve significant latency reduc-

tion comparing to CPUs, their mean latency for DET (i.e., 369.6 ms) and TRA (i.e.,

536.0 ms) are still too high to meet the latency constraints at 100 ms. This is largely

due to the limited number of DSPs available on the fabric. To support these com-

plex DNN-based algorithms, large amount of DSPs on FPGAs are needed to provide

significant compute power, which can be achieved by much advanced FPGAs (e.g.,

Xilinx VC709 FPGA board [181]). As we expected, ASICs can achieve significant

latency reduction, where the mean latency for executing TRA is as low as 1.8 ms.

Note the reason why DET runs slower on ASICs than GPUs is because of the limited

clock frequency at 200 MHz this particular design can operate at, which does not

preclude similar designs with high clock frequencies to outperform GPUs.

Finding 1. Multicore CPUs are not viable candidates for running object detection

(DET) and object tracking (TRA), which are composed of complex DNN-based algo-

46

rithms that demand large amount of computational resources. The limited number of

DSPs becomes the main bottleneck preventing FPGAs from meeting the performance

constraints.

3.4.1.2 Tail Latency

Figure 3.10b presents the 99.99th-percentile latency across four platforms. As

we can see from the figure, although multicore CPUs can execute the localization

algorithm within the performance constraints on average (i.e., mean latency), they

suffer from high tail latency across all three workloads. This empirically demonstrated

our observation in Section 3.1.4.2 that due to its large performance variability, tail

latency should be used to evaluate the performance of autonomous driving systems to

meet the performance predictability constraints. The other computing platforms do

not experience any significant increase from mean latency to the tail latency, which

is highly preferable for such mission-critical real-time applications.

Finding 2. Due to the large performance variability of localization algorithm, tail

latency should be used to evaluate the performance of autonomous driving systems to

meet the real-time constraints, whereas conventional metrics like mean latency can

easily cause misleading conclusions.

3.4.1.3 Power Consumption

We present the power consumption across 4 platforms for each algorithmic bottle-

neck in Figure 3.10c. Note that these measurements focus on the computing system

only and do not count the power consumption of the storage engine or the impact

of the thermal constraints. The measurements are taken for a single camera, where

the end-to-end system consists of multiple cameras (e.g., eight for Tesla [159]) and

each camera is paired with a replica of the computing engine to be able to process

camera streams from different angles. We will discuss the end-to-end system power

47

consumption in Section 3.4.3.

As shown in the figure, specialized hardware platforms like FPGAs and ASICs offer

significantly higher energy efficiency comparing to general-purpose platforms such

as conventional multicore CPUs and GPUs. For instance, running DET on ASICs

reduces the power consumption by almost a factor of 7 comparing to CPUs and GPUs.

Although the measured power consumption of the computing engine for individual

camera is relatively low, remember that the computing engines need to be replicated

to handle multiple camera streams and the storage engine and thermal constraints

will heavily magnify end-to-end system power as mentioned in Section 3.1.4.5. As we

will demonstrate empirically in Section 3.4.3, the choice of accelerator platform has

a significant impact on the vehicle driving range and fuel efficiency.

Finding 3. Specialized hardware like FPGAs and ASICs offers significantly higher

energy efficiency comparing to conventional general-purpose platforms like multiple

CPUs and GPUs for autonomous driving tasks.

3.4.2 End-to-End Performance

We then investigate the end-to-end system performance of these accelerator-based

autonomous driving system designs. Figure 3.11 presents the mean latency and the

99.99th-percentile latency of the end-to-end system across different configurations.

The x-axis denotes the configuration, where the color of each grid represents the

computing platform each algorithmic component is running on (e.g., a red dotted

box on the x-axis represents running LOC on ASIC). For example, the 2nd left-most

set of bars in the figure represents the latency of running DET and TRA both on

GPUs, and LOC on CPUs. Note the end-to-end latency is determined by the slowest

path between LOC and DET + TRA, because they are executed in parallel.

We observe in the figure that certain configurations (e.g., LOC on CPUs, DET

and TRA on GPUs) can meet the performance constraints at 100ms latency when

48

7.5
0

100

200

300

L
a
te

n
c
y
 (

m
s
)

CPU GPU FPGA ASIC

DET

TRA

LOC

7.9s 9.1s

100ms processing time

Mean

99.99th-Percentile

Figure 3.11: The mean and 99.99th-percentile latency of running different algorithmic
components across different configurations denoted on x-axis. For each configuration,
the color of each grid represents the computing platform each algorithm is running
on (e.g., a red dotted grid represents running LOC on ASICs). There are several
configurations that meet the performance constraints at tail latency of 100 ms, which
means accelerator-based designs are viable for autonomous driving systems.

mean latency is considered, but are no longer viable when considering the tail latency.

This again confirms our observation that tail latency should be used when evaluating

autonomous driving systems. In addition, none of the viable designs has multicore

CPUs due to the inherent non-determinism and unpredictability. With acceleration,

we are able to reduce the end-to-end tail latency from 9.1s (i.e., on multicore CPUs)

to 16.1ms to meet the real-time processing constraints.

Finding 4. Accelerator-based design is a viable approach to build autonomous

driving systems, and accelerator platforms with high performance predictability (e.g.,

ASICs) are preferable to meet the real-time processing constraints.

3.4.3 Power Analysis

In this section, we investigate the power consumption of the end-to-end accelerator-

based autonomous driving systems and quantify the corresponding impact on the

driving range and fuel efficiency of the vehicle. The results are evaluated based on

a Chevy Bolt [19]. As mentioned in Section 3.1.4.5, the system power consumption

includes the both computing engine and the storage engine, and will then be magni-

fied by the required cooling capacity to remove the additional heat. We assume the

system needs to store the map of the United States (i.e., 110 W power for 41 TB

storage space), and is equipped with 8 cameras (i.e., the same as Tesla [159]) each

49

7.5
0

500

1000

1500

2000

2500

P
o
w

e
r

(W
)

CPU GPU FPGA ASIC DET TRA LOC

Power

0.0
2.5
5.0
7.5
10.0
12.5
15.0

D
ri

v
in

g
 R

a
n

g
e

 R
e
d

u
c
it

o
n

 (
%

)

10% Driving Range Reduction 5% Driving Range Reduction Driving Range Reduction

Figure 3.12: The power consumption and the corresponding driving range reduction
of running different algorithmic components across different configurations. Config-
urations equipped with GPUs consume significant amount of power and reduce the
driving range up to 12% while ASICs approaches can achieve efficiency which only
reduce the driving range by 2%.

connecting to a replica of the computing system.

Figure 3.12 presents the end-to-end power consumption of the same set of accelerator-

based autonomous driving system configurations as Figure 3.11, where we use the

same notation on x-axis to denote the system configurations. The light blue bars and

left y-axis show the total power consumption of the end-to-end system, and the dark

blue bars and right y-axis show its corresponding driving range reduction. While

mentioned in Section 3.4.2 that powerful accelerators like GPUs can deliver the com-

putation at low latency, it is shown in the figure that most of the configurations

equipped with GPUs draw large amount of power (i.e., more than 1,000 W), which

results in significant reductions in the driving range of the vehicle. In particular,

performing all computing tasks on GPUs can reduce the vehicle driving range by as

much as 12%, which dilutes the benefit of using GPUs. To minimize this negative

impact, specialized hardware like FPGAs and ASICs are needed to reduce the driving

range reduction to within 5%.

Finding 5. While power-hungry accelerators like GPUs can deliver the compu-

tation at low latency, the driving range of the vehicle can be significantly reduced by

as much as 12%, largely due to the magnifying effect of the thermal constraints in

such systems. Specialized hardware like FPGAs and ASICs are needed to restrain the

impact under 5%.

50

HHD HD (720p) HD+ FHD (1080p) QHD (1440p)

Resolution (Width)

0

25

50

75

100

125

150

L
a
te

n
c
y
 (

m
s
)

CPU GPU FPGA ASIC DET TRA LOC

Figure 3.13: Performance scalability regarding camera resolutions of various config-
urations. Although some configurations can meet the design constraints at Full HD
(FHD) resolution, none of them can sustain higher resolutions like Quad HD (QHD).
This suggests computational capacity still remains the bottleneck that prevents us
from achieving the higher accuracy enabled by higher resolution cameras.

3.4.4 Scalability Analysis

Besides the processing latency, the performance predictability of autonomous driv-

ing systems is also determined by the functional aspects – the accuracy of making

the correct operational decisions. As demonstrated by prior work [6], increasing

camera resolution can significantly boost the accuracy of the autonomous driving

systems by sometimes as much as 10%. For example, doubling the input resolution

can improve the accuracy of VGG16, a DNN-based state-of-the-art object detection

algorithm, from 80.3% to 87.4%. Therefore, we investigate the system scalability of

our accelerator-based autonomous driving systems in supporting future higher reso-

lution cameras. We modify the resolution of the benchmarks to study this question,

and present the end-to-end latency as a function of the input camera resolution in

Figure 3.13 of various accelerator-based configurations. As we can see from the figure,

51

although some of the ASIC- and GPU-accelerated systems can still meet the real-time

performance constraints at Full HD resolution (1080p), none of these configurations

can sustain at Quad HD (QHD).

Finding 6. Computational capability still remains the bottleneck that prevents us

from benefiting from the higher system accuracy enabled by higher resolution cameras.

3.5 Summary

In this Chapter, we first present and formalize the design constraints in perfor-

mance, predictability, storage, thermal and power when building autonomous driving

systems. To investigate the design of such systems, we build a representative end-to-

end autonomous driving system using state-of-the-art machine learning algorithmic

components. Using this system, we then identify three computational bottlenecks,

namely localization, object detection and object tracking. To design a system that

meets all the design constraints, we explore three different accelerator platforms to

accelerate these computational bottlenecks. We show that GPU-, FPGA-, and ASIC-

accelerated systems can reduce the tail latency of these algorithms by 169×, 10×, and

93× respectively. Based on these accelerated system designs, we further explore the

tradeoffs among performance, power and future scalability of autonomous driving

systems. We find that while power-hungry accelerators like GPUs can predictably

deliver the computation at low latency, their high power consumption, further mag-

nified by the cooling load to meet the thermal constraints, can significantly degrade

the driving range and fuel efficiency of the vehicle. We also demonstrate that compu-

tational capability remains the bottleneck that prevents us from benefiting from the

higher system accuracy enabled by higher resolution cameras.

52

CHAPTER IV

Accelerating Object Recognition for Streaming

Videos

Recent advances in computer vision especially using deep learning algorithms have

made it feasible to leverage automatic video understanding to facilitate meaningful

offline analytic on collections of videos as well as assisting human beings like au-

tonomous driving. However, such algorithms, such as Faster R-CNN, are quite com-

putationally expensive, making it extremely difficult to process massive volumes of

videos or perform any real-time tasks. Prior work in improving the latency of such

applications often comes at the price of reduced overall accuracy, which makes them

a lot less promising for mission-critical applications like autonomous driving.

In this Chapter, we propose a lossless technique on Faster R-CNN to improve the

processing performance of video understanding without reduced accuracy by exploit-

ing computation reuse opportunities. Based on our observation that the majority of

the pixels do not change across adjacent frames in continuous videos, we can reduce

the amount of computation required for each frame via only processing sub-regions

changed and reusing existing intermediate results from previous frames for regions

remained same. Unlike prior work that requires to sacrifice a certain amount of ac-

curacy to achieve the performance improvement, which makes them less attractive

for real-world applications like autonomous driving, our approach is able to reduce

53

redundant computation to improve the overall performance while still providing the

same accuracy. In our evaluation in KITTI, ImageNet VID and Cityscapes bench-

marks, we are able to achieve up to 1.27× speedup with nearly lossless accuracy (i.e.,

< 1%).

4.1 Characterizing State-of-the-Art Object Recognition

In this section, we first review the architecture of one of the most decent object

recognition algorithm, namely Faster R-CNN, then we characterize Faster R-CNN

to understand the computational profile and identify the potential opportunities for

acceleration.

4.1.1 Faster R-CNN Review

Faster R-CNN [136] is originally proposed to solve object detection problems,

which take images as input, and identify classes of objects and corresponding po-

sitions in images. Region proposal network (RPN) is introduced in Faster R-CNN

to address the computation bottlenecks encountered by prior works [46, 63]. The

entire framework consists of three key components: (1) feature extraction network,

(2) region proposal network, and (3) classifier network, as shown in Figure 4.1 (left).

Images received from camera or memory are first sent to feature extraction network

to extract a set of feature maps. Region proposal network then takes those feature

maps to identify the coordinates of potential regions (i.e., region proposals) and cor-

responding objectiveness scores. For each region proposal, features within the region

are first pooled into fixed size feature maps (i.e., ROI pooling [46]) then object class

probabilities are computed and corresponding detection boundaries are regressed by

the classifier network.

54

Feature

Extraction

Network

… …

RPN RoI

Pooling Classifier
RPN

Classifier

Feature

Extraction

Figure 4.1: Faster R-CNN framework overview (left) and the computational profile
breakdown (right). The entire architecture consists of three types of networks: (1)
feature extraction network, (2) region proposal network, and (3) classifier network.
The cycle breakdown of the end-to-end execution time is shown in the right figure.
Feature extraction network and classifier network dominate the end-to-end latency
(i.e., over 84% execution time) and thereby are the computational bottlenecks and
good candidates for further acceleration.

4.1.2 Characterization

To understand the computational profile and identify the potential bottlenecks in

Faster R-CNN architecture, we use Tensorflow Object Detection API [68] to charac-

terize Faster R-CNN and evaluate the processing profile with KITTI object detection

benchmark [45], which composed of almost 15,000 images and a total of 80,256 objects

labeled. The characterization is conducted on a TitanX Pascal GPU and the break-

down of the measured execution time on the entire pipeline is shown in Figure 4.1

(right). The latency contributed by feature extraction network and classifier network

individually dominate the end-to-end execution time (i.e., over 84% of execution time

spent in these two network). Therefore we conclude feature extraction network and

classifier network as the computational bottlenecks of the full pipeline and design

acceleration method to improve the performance of these two components.

55

 N
e

w

⇒
 c

la
s
s
if
y

A
re

a
 o

f

D
if
fe

re
n
c
e

(A
o

D
)

F
a

s
te

r
R

-C
N

N
 O

b
je

c
t

D
e

te
c

to
r

R
e

u
s
e

P
a

rt
ia

l

U
p

d
a

te

X

Id
e

n
ti

c
a

l

⇒

 s
k
ip

R
e

u
s
e

t
v
id

e
o

 f
ra

m
e

s

F
ra

m
e

[0
]

F
ra

m
e

[1
]

F
e

a
tu

re

E
x
tr

a
c

ti
o

n

N
e

tw
o

rk

R
P

N

…
…

…
…

R
o

I

P
o

o
li
n

gC
la

s
s
if

ie
r

F
e

a
tu

re

E
x
tr

a
c

ti
o

n

N
e

tw
o

rk

…
…

R
P

N

…
…

R
o

I

P
o

o
li
n

gC
la

s
s
if

ie
r

F
ig
u
re

4.
2:

O
ve
rv
ie
w

of
ou

r
p
ro
p
os
ed

m
et
h
o
d
,
w
h
ic
h
is

b
u
il
t
b
as
ed

on
F
as
te
r
R
-C

N
N

fr
am

ew
or
k
[6
8,

13
6]
.
T
h
e
fi
rs
t
fr
am

e
is

p
as
se
d
to

F
as
te
r
R
-C

N
N

p
ip
el
in
e
(t
op

),
w
h
ic
h
ge
n
er
at
es

al
l
th
e
in
te
rm

ed
ia
te

fe
at
u
re

m
ap

s,
re
gi
on

p
ro
p
os
al
s
an

d
th
e
fi
n
al

d
et
ec
ti
on

re
su
lt
s.

F
or

th
e
fo
ll
ow

in
g
fr
am

e
(b
ot
to
m
)
in

th
e
v
id
eo
,
th
e
A
re
a
of

D
iff
er
en
ce

(A
oD

)
is
fi
rs
t
ge
n
er
at
ed

b
y
p
er
fo
rm

in
g

fr
am

e
d
iff
er
en
ce

b
et
w
ee
n
cu
rr
en
t
fr
am

e
an

d
p
re
v
io
u
s
fr
am

e.
A
oD

is
th
en

se
n
t
to

fe
at
u
re

ex
tr
ac
ti
on

n
et
w
or
k
to

ge
n
er
at
e
p
ar
ti
al

fe
at
u
re

m
ap

s,
w
h
ic
h
ar
e
u
p
d
at
ed

to
th
e
p
re
se
rv
ed

fe
at
u
re

m
ap

s.
W
e
p
er
fo
rm

th
e
sa
m
e
co
m
p
u
ta
ti
on

on
th
e
en
ti
re

fe
at
u
re

m
ap

s
in

re
gi
on

p
ro
p
os
al

n
et
w
or
k
(R

P
N
).

In
th
e
cl
as
si
fi
er

n
et
w
or
k
,
w
e
on

ly
p
ro
ce
ss

n
ew

p
ro
p
os
al
s
ge
n
er
at
ed

fr
om

R
P
N

an
d
u
p
d
at
e

th
e
fi
n
al

d
et
ec
ti
on

re
su
lt
s.

56

4.2 Proposed Method

Our goal is to analyze the acceleration opportunities in Faster R-CNN architecture

for videos. The key challenge is to achieve processing improvement without causing

accuracy degradation. Also, employing complex methods introduces significant com-

putation overhead, and ends up with limited or even worse processing performance.

We propose two computation reuse methods which enable us to achieve significant

performance improvement without sacrificing accuracy, which is shown in Figure 4.2.

4.2.1 Feature Reuse

When applying Faster R-CNN on a video, which can be considered as sequences of

consecutive frames, we keep processing each frame by executing the same procedure

including feature extraction, region proposal and classification. Recall that in the

feature extraction network stage, we extract a set of 2D features from the original im-

age by performing sequences of convolutional computation, where a set of convolving

filters are applied on the input image. However, the context between two consecutive

frames might be highly similar and thus share alike spatial features, which suggests

that a large portion of feature maps used for region proposal network might be identi-

cal and only small portion of them provides new information. Extracting new features

from entire frames repetitively prevents us from utilizing the features obtained from

previous frame and thus leads to redundant computation executed.

To address this issue, we propose to reuse features processed in previous frames

and apply feature extraction only on the differences of two adjacent frames. As

presented in Figure 4.2, we process the first image entirely and obtain the detection

outcomes as well as its intermediate outputs. The image and all of its intermediate

outputs (e.g., feature maps) will be preserved for future updating. For the following

frame, we first perform frame differencing to obtain the area of difference (AoD)

between frames. In the frame differencing stage, we calculate the per-pixel absolute

57

difference between two images and perform a binary thresholding then to generate

a better quality of frame difference results and avoid noises in images. The color in

each individual pixel will be set to white if it is higher than the binary threshold,

and black otherwise. The contours of frame difference results are then identified and

considered as the area of difference (AoD) between the current frame and the previous

frame, which are used as the inputs for the feature extraction network. Note that

AoD represent the region that is different between two consecutive frames and also

the new spatial information that Faster R-CNN needs to understand and detect. We

consider the extreme outer contour as the region that will be used and the size of

AoD depends on the differencing result. We then perform feature extraction on the

AoD to generate associated feature maps, which takes less processing latency since

smaller inputs are fed. Finally, the corresponding region of previous feature maps is

updated with the new feature maps extracted from the current frame and considered

as the complete feature maps for the region proposal network. To conclude, instead of

processing the entire frame, we identify the differences between two frames and only

compute AoD to extract new features needed for the current frame, which results in

significant performance improvement in the feature extraction network stage and we

present the result in Section 4.3.2.

4.2.2 Region Reuse

In the previous section, we proposed an approach to reuse the preserved feature

maps from previous frame and update it with partial feature maps extracted from

area of differences (AoD) in the feature extraction network stage. We now explore the

acceleration opportunity in the classifier network stage, which is the other computa-

tional bottleneck observed in our characterization. As we discussed in Section 4.1,

for each region proposal generated from region proposal network, features within the

region are first pooled into fixed size feature maps and then the classifier network

58

iteratively computes the class probabilities of objects and the associated detection

boundaries are also regressed to generate the final positions. The number of region

proposals is usually large (typically between 100 to 300) [68] in order to propose good

quality of regional boxes and achieve decent accuracy for object detection. Com-

puting these proposals iteratively causes a significant overhead and lead to the key

bottleneck in classifier network.

To address this issue, we propose to reduce iterations of classifying proposals by

identifying identical ones and reuse the results preserved in the previous execution in

the classifier network stage. As presented in Figure 4.2, we use the region proposal

network to process feature maps entirely to obtain a complete list of region proposal

boxes, which is then preserved for the following comparison and reuse. With the

high spatial similarity observed between two consecutive frames in videos, a portion

of region proposals generated by region proposal network are usually similar or even

identical. After generating the proposals from the following frame, we examine them

with the preserved region proposals from the previous frame and pinpoint those differ-

ences. We then send only those different proposals (i.e., detection boundaries different

from previous preserved region proposals, and the values inside each detection bound-

ary differ from previous proposals) to classifier network to perform classification and

regression. All identical (i.e., the size and the position of detection boundaries as well

as the values inside detection boundaries are exactly the same) proposals between

following frame and previous frame won’t be processed again and we directly use the

previous classification results for these proposals in the current frame. Last, those

region proposals and classification results are updated for the next coming frame.

Note that in the region proposal network stage, the entire feature maps are processed

entirely to ensure the quality of region proposals and we reduce the amount of itera-

tions in the classifier network stage instead to achieve faster processing performance

and avoid repeating similar computation.

59

4.3 Experiments

In this section, we evaluate the efficacy of our methods on improving processing

performance. We first validate the recognition accuracy achieved against baseline,

which is detailed in Section 4.3.1. We then examine the processing performance

on each of the key components: feature reuse, region reuse with respect to varying

input ratios as well as an ablation study in Section 4.3.2. The complete end-to-end

performance analysis is finally evaluated in Section 4.3.3.

Dataset - We evaluate our methods on accuracy and processing performance by

using the KITTI dataset [45]. KITTI dataset is a representative real-world benchmark

dedicated to autonomous driving applications and consists of 21 training sequences

and 29 test sequences. We mainly evaluate on the object tracking benchmark since

it presents continuous image sequences for us to apply our methods, while the object

detection benchmark is composed of over 15,000 independent images. Two classes

including car and pedestrian are well-annotated in the benchmark and evaluated

in our results. Besides KITTI, we also report our results on ImageNet VID [140],

and Cityscapes [26] at the end of the section. ImageNet VID is an extensive video

dataset for object detection, which contains 3862, 555 and 937 fully-annotated video

snippets in training, validation and test sets respectively. The frame rate is 25-30

fps for most of snippets. We evaluate the end-to-end performance of our method

on the test set. Cityscapes is recent released large-scale dataset collected for urban

scene understanding and autonomous driving, which contains snippets of street scenes

collected from 50 different cities, at a frame rate of 17 fps. The evaluation is performed

on the test videos provided for qualitative and quantitative analysis.

Implementation Details - Our implementation is based on Tensorflow Object

Detection API [68]. We use the pretrained Faster R-CNN with ResNet-50 model,

which is trained on COCO dataset [103], as the baseline and implement feature reuse

and region reuse methods. First, we adjust the image resizer in the pre-processing step

60

in order to process varying size of frames instead of fixed size of frames. We then utilize

Tensorflow Graph Editor library [1] to manipulate intermediate feature maps and

ROIs in the computation graph created by the pretrained model. We add updating

steps after feature maps and ROIs generated in feature extraction network and region

proposal network respectively. To update existing feature maps, we implement a

mapping process to identify the corresponding positions and update the feature maps

for following the region proposal network. We then pinpoint new ROI outcomes

comparing to ones generated from previous feature maps by using a hash table to store

the outcomes and make the comparison. We keep the top 100 proposals generated

from RPN for the object classification. The same Non-Maximum Suppression (NMS)

in the baseline is applied to the final detection output for each class separately. Note

that we use multicore Intel Xeon E5-2630 v3 CPUs to perform the pre-processing

(i.e., identifying AoD) and post-processing steps (i.e., NMS) and TitanX Pascal GPU

is employed for feature extraction network, region proposal network and classifier

network.

Evaluation Metrics - We conduct the accuracy analysis by using mean Average

Precision (mAP), where the public code is provided by KITTI [45]. Three varying

difficulties are evaluated including easy, moderate and hard, which are defined based

on the size of bounding boxes, occlusion level and truncation level (e.g., moderate

level is defined as (1) the height of bounding box: 25 pixels, (2) occlusion level:

partly occluded and (3) truncation level: 30%). Since ground truth annotations for

the testing set are not released, we evaluate mAP by using the training set with

labels provided as our validation set. Note that we use the pretrained Faster R-CNN

model provided by Tensorflow Object Detection API [68], which is trained on COCO

dataset [103]. We use the same pretrained model for the baseline and our method

running on the validation set for the accuracy analysis. For the speedup analysis,

we evaluate across three datasets (i.e., KITTI, ImageNet VID and Cityscapes) and

61

Class Car Pedestrian
Difficulty Easy Moderate Hard Easy Moderate Hard
Baseline 77.27% 69.47% 61.55% 68.62% 65.08% 54.58%
Ours 76.51% 68.64% 60.92% 68.29% 64.75% 54.40%
Error 0.76% 0.83% 0.63% 0.33% 0.33% 0.18%

Table 4.1: Accuracy (i.e., mAP) analysis results on KITTI benchmark. We use the
pretrained Faster R-CNN model [68] trained on COCO dataset [103] as our baseline
and apply our methods to validate the recognition accuracy results. We consider car
and pedestrian as the target classes followed by [45]. We observe subtle errors (i.e.,
less than 1%) across easy, moderate, and hard level of difficulties between baseline and
our method, which demonstrate that we are able to achieve comparable recognition
accuracy while improving the execution time during inferences. See Section 4.3.1 for
details.

measure the mean processing latency for inferences on the test set and calculate the

geometric mean of the processing latency across videos in each dataset. We then

report the performance improvement (i.e., speedup) comparing against baseline. We

execute the baseline and our method on each video for 5 iterations then calculate the

average processing latency to exclude deviations during runtime.

4.3.1 Accuracy Analysis

In this section, we investigate the accuracy implication when applying our method

on the baseline framework across varying classes and difficulties. To evaluate the ac-

curacy, we conduct the detection experiment defined in KITTI benchmark across two

types of classes: car and pedestrian and report accuracy results and the associated

error. Note that we consider ’car’, ’bus’ and ’truck’ as ’car’-type object in the de-

tection results since they are considered as the same class in KITTI benchmark (i.e.,

car). The results are presented in Table 4.1 and subtle accuracy difference (i.e., <

1%) observed in the result is mainly caused during the pre-processing stage, in which

we set a threshold to filter out insignificant frame differences and refine the quality of

AoD for following computation. This pre-determined threshold could be varied de-

62

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Input Ratios

1.0×

1.5×

2.0×

2.5×

3.0×

S
p

ee
d

u
p

 (
N

o
rm

l.
 t

o
 F

u
ll

 I
m

ag
e)

Feature Extraction Network

Region Proposal Network

Classifier Network

Figure 4.3: Speedup achieved in feature extraction network and classifier network
with respect to different ratio of inputs (i.e., the size of AoDs and the number of
region proposals respectively), showing that processing smaller inputs improves the
execution time effectively. Note that the region proposal network is not accelerated
since it is not the key computational bottleneck in Faster R-CNN.

pending on the content of the video and here we present a fixed threshold value and

its corresponding accuracy results. Overall, the results demonstrate near identical

accuracy can be achieved across varying difficulties when applying our methods on

KITTI benchmark.

4.3.2 Acceleration Results

We then investigate the accelerated performance after we demonstrate that nearly

no loss in the overall recognition accuracy can be achieved with our methods. The

actual speedup that can be achieved by our methods is primarily determined by the

size of input ratios. As demonstrated in prior works [102], decreasing the size of

inputs processed can significantly accelerate the processing performance since the

processing latency is highly proportional to the amount of computation performed

(i.e., the size of images). Therefore, we first evaluate the actual speedup achieved

63

by feature reuse and region reuse with respect to different input ratios, an ablation

study under varying AoD ratios is then conducted.

Speedup Achieved by Our Methods - We alter the size of input images for

feature extraction network and adjust the number of region proposals for classifier

network to evaluate the impact of different input ratios on the speedup. Note that

we feed the same size of feature maps (i.e., entire feature maps) for regional proposal

network. The speedup is calculated by measuring the mean latency on the real

hardware platform (i.e., TitanX Pascal GPU). As shown in Figure 4.3, the input

ratios are denoted in x-axis and the associated speedup comparing to the original size

is presented in y-axis. The computation latency can be accelerated by up to 2.9×

in feature extraction network and over 2.2× speedup can be achieved in classifier

network, which suggests that applying our methods indeed improves the execution

performance in Faster R-CNN effectively.

Ablation Study - Figure 4.4 presents the end-to-end speedup across different

AoD ratios, where we use the same notation on both x-axis and y-axis in Figure 4.3

to denote the speedup and AoD ratios. The black bars (left of three bars) show

the speedup when applying feature reuse only, the red bars (middle of three bars)

show the speedup when applying both feature reuse and region reuse, and the light

yellow bars (right of three bars) represent the speedup when applying both methods

and take data communication overhead (i.e., transferring images between CPU and

GPU) into account. While we are able to achieve up to 2.35× when processing 10%

size of frame as shown in the figure, it presents cutoff points where it becomes worse

when processing larger ratio of AoD. For example, processing over 80% size of frame

leads to worse performance due to the pre-processing overhead. Note that this cutoff

point varies and changes depending on the pre-processing methods. In this case, we

observe that re-processing the entire frame is a better approach when the ratio of

AoD is regarded over 80%. In the following experiment, this tradeoff point would be

64

 10% 20% 30% 40% 50% 60% 70% 80% 90%

Area of Differences (AoDs) Percentage

0.0×

0.5×

1.0×

1.5×

2.0×

2.5×
S

p
ee

d
u

p
 (

N
o

rm
l.

 t
o

 F
u

ll
 I

m
ag

e)

End-to-end (Feature reuse)

End-to-end (Feature reuse + Region reuse)

End-to-end (Feature reuse + Region reuse + Data communication)

Figure 4.4: Speedup of end-to-end processing latency achieved when applying feature
reuse and region reuse, as well as considering data communication cost with respect
to different ratio of AoDs. The speedup performance becomes worse in larger ratio of
AoD (e.g., over 80% when applying both methods and considering the communication
cost) due to the pre-processing cost and results in re-processing the entire frame a
better approach.

considered and we compute either AoD or the entire image depending on the ratio

to optimize the overall end-to-end performance (i.e., process AoD when the ratio is

below 80%, re-process the entire frame otherwise).

4.3.3 End-to-End Performance Analysis

In this section, we investigate the end-to-end performance against baseline. We

start by evaluating the impact of ratio of AoD on the end-to-end performance. Fig-

ure 4.5 shows the AoD ratios (on top) in every frame and the associated end-to-end

processing latency running with baseline (black dash line) and our method (yellow

line) during a 30 seconds video example. The processing latency of baseline is mostly

static over time, which is expected since DNN execution is deterministic given the

65

0 50 100 150 200 250

0

50

100

A
o
D

 R
at

io
 (

%
)

0 50 100 150 200 250
0

50

100

L
at

en
cy

 (
m

s)

Proposed Method Baseline

Figure 4.5: AoD ratio (on top) and the associated end-to-end processing latency
(on bottom) recorded with baseline (Faster R-CNN alone) and our methods applied
running in KITTI benchmark. Our methods are able to achieve significant speedup
when small AoD detected, and dynamically switch to process the original frame in-
stead when large portion of AoD detected to meet comparable processing latency as
baseline.

same size of images. On the other hand, the processing latency of our method might

differ since it depends on the size of images. The AoD ratios vary depending on the

content of videos and as shown in the figure, AoD ratios remain in low percentage

(e.g., between frame 0 to frame 160), which translate to faster performance as de-

picted in the yellow line. In addition, our method is able to identify increasing ratio

of AoD (e.g., between frame 160 to frame 250) and maintains comparable perfor-

mance against baseline. We further evaluate the end-to-end performance results in

Figure 4.6, in which we present the distribution of AoD ratios, the latency of baseline

66

0 20 40 60 80 100
0.0

0.1

0.2
P

ro
b
ab

il
it

y
AoD Ratio (%)

0 20 40 60 80 100

Latency (ms)

0.0

0.1

0.2

P
ro

b
ab

il
it

y

Proposed Method

Baseline

Figure 4.6: AoD ratio (top) and the associated end-to-end processing latency (bot-
tom) with baseline (Faster R-CNN alone) and our methods applied running on KITTI
benchmark presented in histogram. The processing latency is significantly improved
after applying our methods and even faster performance can be achieved with subtle
changes between frames (e.g., <3% AoD ratio).

and our method. We observe that the end-to-end performance has been significantly

improved. Specifically, we are able to detect only small portion of images changes in

the video and achieve even faster speedup.

Table 4.2 shows the overall performance improvement achieved by our method

across three datatsets (i.e., KITTI, ImageNet VID and Cityscapes). We evaluate

the test sets in each dataset with both the baseline (i.e., Original Faster R-CNN)

and our method. We calculate the geometric mean speedup across all the videos

in each dataset (e.g., we calculate the geometric processing latency for both the

baseline and our method across 937 videos in ImageNet VID dataset then calculate

67

Dataset Performance improvement
KITTI [45] 1.22×

ImageNet VID [140] 1.27×
Cityscapes [26] 1.24×

Table 4.2: End-to-end performance speedup across three datasets (i.e., KITTI, Ima-
geNet VID and Cityscapes). We observe up to 1.27 × processing improvement could
be achieved which demonstrates that our method is effective across varying datasets.

the speedup accordingly). Overall, we observe up to 1.27 × speedup across three

large-scale datasets. Besides, since the processing performance of our method is

highly proportional to the ratio of AoD, we find that under certain scenarios (e.g.,

left or right turn of a car) the ratio of AoD increases significantly and therefore

leads to the amount of computation increases. However, we are able to maintain

competitive performance against baseline even though the ratio of AoD is relatively

large (e.g., over 80%) since we identify the cutoff point and prevent us from having

worse performance against baseline as mentioned in Section 4.3.2.

4.4 Summary

We identify key computational bottlenecks in Faster R-CNN architecture and pro-

pose two new computation reuse approaches: (1) feature reuse, and (2) region reuse

for Faster R-CNN in videos, which enables us to reuse all the intermediate computed

outputs (e.g., feature maps, region proposals and detection results) between consec-

utive frames and avoid redundant computation. Our proposed methods effectively

leverage previous computed outputs and execute DNNs on partial inputs (e.g., AoD

and region proposals) to achieve real-time video understanding. Our experiments

verified that our methods can substantially improve the processing performance by

as much as 1.27× on three large-scale datasets with nearly no loss in the overall

recognition accuracy.

68

CHAPTER V

Adasa: A Conversational In-Vehicle Digital

Assistant for Autonomous Driving

Advanced Driver Assistance Systems (ADAS) come equipped on most modern

vehicles and are intended to assist the driver and enhance the driving experience

through features such as lane keeping system and adaptive cruise control. However,

recent studies show that few people utilize these features for several reasons. First,

ADAS features were not common until recently. Second, most users are unfamil-

iar with these features and do not know what to expect. Finally, the interface for

operating these features is not intuitive.

To help drivers understand ADAS features, we present a conversational in-vehicle

digital assistant that responds to drivers’ questions and commands in natural lan-

guage. With the system prototyped herein, drivers can ask questions or command

using unconstrained natural language in the vehicle, and the assistant trained by us-

ing advanced machine learning techniques, coupled with access to vehicle signals, re-

sponds in real-time based on conversational context. Results of our system prototyped

on a production vehicle are presented, demonstrating its effectiveness in improving

driver understanding and usability of ADAS.

69

5.1 Understanding Drivers’ Information Needs

To understand what information drivers need and what the critical problems are

that prevents them from utilizing ADAS features, we first conducted an in-depth

analysis on customer verbatims describing the real problems that the owners of ve-

hicles equipped with ADAS features encounter. These verbatims collected by Ford

Customer Service Division (FCSD) via customer call center services include over 9,000

cases provided for analysis consisting of owners of Ford Fusion, Ford Explorer, Lin-

coln MKS and Lincoln MKT equipped with ADAS features from 2013 to 2017. From

these verbatims, we identify three primary question categories:

• Division of driving responsibility between the driver and ADAS –

More than 4,400 out of the 9,000 (i.e., 48.9%) verbatims ask about the expected

division of driving responsibility between the driver and the ADAS feature. For

example, drivers complain LKS does not keep the vehicle in its lane after it has

been switched on, which is because LKS only engages when the vehicle speed

is higher than its operational threshold (i.e., 40 miles per hour) and the lane

marking lines are visible.

• Interface to activate ADAS features – Over 2,000 cases (i.e., 23.1%) ask

how to turn on certain ADAS features (e.g., LKS). This is primarily because

drivers are not familiar with these features and they often have a hard time

recognizing the buttons to turn them on and off. This demonstrates that there

is a gulf of execution that prevents most drivers from utilizing ADAS features.

• Meaning of instrument cluster iconography – 1,300 out of 9,000 (i.e.,

14.5%) verbatims ask about the symbols on the dashboard because quite a few

ADAS features present different symbols dynamically depending on the real-

time surrounding environment (e.g., a typical ACC shows a vehicle symbol on

70

the dashboard only when there is a vehicle ahead) which also shows that most

drivers encounter issues of understanding.

One could argue that auto manufacturers provide comprehensive information

about these questions in the vehicle owner’s manual. However, many drivers are

still found to be confused about ADAS features for two reasons, thereby not being

able to utilize them in their vehicles. First, it is tedious to read the printed user

manuals due to their lengthiness (i.e., often hundreds of pages). Second, these ques-

tions should be addressed in real time, as opposed to conventional approaches where

drivers could not and should not read user manuals while driving. This is because

only 3.16% users actually read the printed user manual when they encounter issues

like this, as reported by prior work [124]. Feedback from the Ford user experience

design team further confirms these observations. Expecting all users to carefully read

the owner’s manual may be overly optimistic, and these 9,000 verbatims we analyzed

have demonstrated that to be the case. Therefore, we conclude an improved and

more natural user interface is required to improve the usability of ADAS features.

5.2 System Design

To enhance the current user interface for ADAS features and improve its usability,

we present Adasa, an in-vehicle digital assistant based on the insights we gained from

our analysis of over 9,000 real user verbatims. Adasa allows the driver to ask any

question or command and control in natural human language while driving, and the

assistant analyzes the human speech in real-time and combines it with the contextual

information about vehicle status (e.g., what mode ACC is currently operating in) to

provide responses accordingly in human speech.

In this section, we first formalize the design objectives for Adasa. We then present

an overview of the components in Adasa, and walk through the life of an example

71

query to illustrate the workflow of the system. Lastly, we present the details of the

key hardware apparatus and software components.

5.2.1 Design Objectives

To improve the system through real-world testing and subjective evaluation be-

yond the insights we gained from analyzing the call center verbatims, we formalize

the following items as the key design objectives of an in-vehicle digital assistant:

1. Intelligent understanding – The digital assistant is able to understand in-

complete questions and identify out-of-scope queries properly.

2. Real-time processing – The digital assistant has the ability to process queries

and respond with the requested information to drivers in real-time in a dynamic

driving environment.

3. Accurate responses – The digital assistant can provide useful information

regarding driver’s questions and control the vehicle correctly.

72

S
p

e
e

c
h

-t
o

-t
e

x
t

Q
u

e
ry

 C
la

s
s
ifi

c
a

ti
o

n

E
x
e

c
u

ti
o

n

L
o

g
ic

S
ig

n
a

l

I/
O

In
te

ll
ig

e
n

t
A

s
s
is

ta
n

t
V

e
h

ic
le

-d
a

ta
 I

n
g

e
s
to

r

D
ri

v
e

r
A

d
a

s
a

V
e

h
ic

le

V
e

h
ic

le

S
ta

te

R
e

p
o

s
it

o
ry

O
B

D
-I

I
P

o
rt

T
e

x
t-

to
-S

p
e

e
c

h

W
h

a
t

d
o

e
s
 A

C
C

 d
o

?

Is
 m

y
 A

C
C

 O
N

?

A
C

C
 h

e
lp

s
 y

o
u

 …

Y
o

u
r

A
C

C
 i
s
 O

N
 a

n
d

th

e
 g

a
p

 l
e
v
e
l
is

 3

K
n

o
w

le
d

g
e

B
a

s
e

V
e

h
ic

le
  

In
te

rf
a

c
e

❶
❷

❸

❹
❺

❻

❽
❾

❼

❿

F
ig
u
re

5.
1:

O
ve
rv
ie
w

of
A
d
as
a
sy
st
em

,
w
h
ic
h
is
d
es
ig
n
ed

b
as
ed

on
re
ce
n
t
p
u
b
li
ca
ti
on

s
[6
1]

an
d
in
te
gr
at
ed

w
it
h
a
co
m
m
er
ci
al
ly

av
ai
la
b
le

ve
h
ic
le

[2
5]
.
D
ri
ve
r’
s
vo
ic
e
ca
p
tu
re
d
b
y
th
e
m
ic
ro
p
h
on

e
is

tr
an

sl
at
ed

in
to

it
s
te
x
t
eq
u
iv
al
en
t
(
1
)
an

d
is

p
as
se
d
to

Q
u
er
y
C
la
ss
ifi
er

to
id
en
ti
fy

th
e
ty
p
e
of

q
u
er
y
(
2
).

E
x
ec
u
ti
on

L
og
ic

op
er
at
es

th
e
q
u
er
y
(
3
)
an

d
re
tr
ie
ve
s
th
e
in
fo
rm

at
io
n

n
ee
d
ed

fr
om

ei
th
er

K
n
ow

le
d
ge

B
as
e
(
4
)
or

th
e
ve
h
ic
le

(
5
)
d
ep

en
d
s
on

th
e
ty
p
e
of

q
u
er
y.

V
eh
ic
le
-d
at
a
In
ge
st
or

re
ce
iv
es

th
e

C
A
N

d
at
a
th
ro
u
gh

th
e
ve
h
ic
le

in
te
rf
ac
e
an

d
re
co
rd
s
th
e
st
at
u
s
of

ea
ch

si
gn

al
in

V
eh
ic
le

S
ta
te

R
ep

os
it
or
y
(
6
-
7
).

O
n
ce

th
e

re
su
lt

is
p
as
se
d
b
ac
k
to

E
x
ec
u
ti
on

L
og
ic

(
8
),

th
e
re
sp
on

se
is

co
n
ve
rt
ed

to
a
W
A
V

fi
le

an
d
ou

tp
u
t
to

th
e
sp
ea
ke
r
to

an
sw

er
d
ri
ve
r’
s
q
u
es
ti
on

s
(
9
-
10

).

73

5.2.2 System Overview: The Life of a Query

Adasa provides a voice-enabled user interface for drivers to ask questions about

and command and control ADAS features using natural human language, without

requiring any complex operations that may distract them from driving. The system

leverages contextual information of vehicle state and feature status (e.g., what mode

ACC is currently operating in) by accessing the signals from the standard OBD-II

port. This allows drivers to ask questions like “what does the green symbol on my

dashboard mean?” without knowing it is related to ACC. In addition, the system is

able to send control signals via OBD-II port to enable or disable features to allow

drivers to make commands such as “can you help me turn on adaptive cruise control?”

instead of knowing or asking about and then pressing the activation buttons on the

steering wheel. Leveraging the state-of-the-art framework for building intelligent

assistant, Adasa is trained to answer a wide range of questions covering the most

frequently asked ones we identified in our analysis on real user verbatims from Ford,

and is capable of delivering responsive feedback at real-time.

Figure 5.1 presents a high-level diagram of the system components and how user

queries are handled in Adasa. Adasa is composed of hardware apparatus and software

components. On the hardware side, Adasa consists of a compute device and a vehicle

interface device. On the software side, Adasa consists of an Intelligent Assistant

runtime, and a Vehicle-data Ingestor runtime.

To illustrate how these components are integrated, we walk through the life of

a query step-by-step in Figure 5.1. The life of a query begins with a user’s voice

input. After the driver activates the system to begin listening by pressing the voice

activation button on the steering wheel, the voice input will be sent to the Speech-to-

Text engine of Adasa (step 1) deployed on the computing device. This voice input is

then transcribed into its text equivalent (step 2). The text of the query is classified by

the Query Classifier, where different intents will be given a different label (step 3). For

74

example, questions like “what does adaptive cruise control do?” and “what is adaptive

cruise control?” will be labeled as the same class because they are both querying

about the functionality of ACC, but questions such as “will lane keeping system steer

the vehicle for me?” will be labeled as a different class. The label generated by

the Query Classifier will then be sent to the Execution Logic for further analysis.

Depending on the intent label of the query, the Execution Logic needs to either fetch

the necessary information from a vehicle-specific knowledge base (step 4), or sends

a request to the Vehicle-data Ingestor to obtain/modify the values of certain vehicle

signals(step 5). The Vehicle-data Ingestor runs an asynchronous Signal I/O callback

which continuously intakes message streams from the vehicle via a Vehicle Interface

plugged into the OBD-II port in the vehicle (step 6), and maintains a lookup table

containing the updated values of all the vehicle signals internally in its Vehicle State

Repository (step 7). Upon receiving a request from the Execution Logic, Vehicle-data

Ingestor searches the current values of the requested signals, updates the signals if

the request is a command, and otherwise sends the corresponding signals back to the

Execution Logic (step 8). Combining all this information, Execution Logic composes

a response accordingly in text format, and sends the response to the Text-to-Speech

engine (step 9) and produces a WAV file. The resulting WAV file of the response is

played back to the driver through the in-vehicle speakers (step 10), informing drivers

with the information they requested.

In the following subsections, we describe each of these components in detail.

5.2.3 Hardware Apparatus

5.2.3.1 Vehicle

As shown in Figure 5.2-(B), we employ a 2017 Lincoln Continental Reserve Sedan

which is equipped with the Technology Package including ACC. As part of its driver

assistance suite, the vehicle is also equipped with LKS, blind spot information system

75

(A) (B) (C) (D)

Figure 5.2: (A) The proposed digital assistant, Adasa, identifies user’s questions or
commands regarding ADAS features in human language and responds with answers
or actions accordingly. (B) Adasa is integrated into a commercially available vehicle
for evaluation and a real-world driving user study. (C) Adasa is able to access vehi-
cle CAN signals via Bluetooth to conduct system diagnosis or system control. (D)
Adasa setup, driver enables Adasa by pressing the button on the wheel to start the
conversation.

with cross traffic alert, radars and 360 degree camera technology for pre-collision assist

and pedestrian detection [25].

5.2.3.2 OBD-II Port and Vehicle Interface

Our vehicle provides an on-vehicle diagnostic system called On-Board Diagnostic

(OBD) system, which gives us access to the internal signals of the vehicle through the

Controller Area Network (CAN). OBD-II is an industry standard of such a system

implemented in all cars manufactured in the United States from 1996 onward. This

standard specifies the pin mapping, the protocol and the message format of the in-

vehicle diagnostic connector, and provides engine control, and monitors parts of the

body, accessory devices, as well as the diagnostic control network of the car. The

interface of OBD-II system (referred as the OBD-II port in this work) is usually

located within the realm of the driver’s seat, underneath the instrument panel or

near the footwell. To access the necessary information (e.g., the status of the targeted

ADAS features) from the OBD-II port, we plug in a vehicle interface programmed

with customized firmware. Vehicle interface is a piece of hardware device that bridges

the vehicle and the host device via the OBD-II port. It decodes CAN messages

into the software-recognizable format, and sends the decoded results over a common

76

interface, such as USB and Bluetooth, to the host devices. In this work, we use

the widely deployed Ford Reference Vehicle Interface (VI), which is a standard open

source hardware implementation of the vehicle interface, as shown in Figure 5.2-(C).

Since the publicly available standard firmware (Type-3 firmware) for a 2017 Lin-

coln Continental using a Ford Reference VI could not directly access ADAS data, we

first reprogrammed and customized the firmware for proprietary access to both LKS

and ACC information. An Intrepid Control Systems neoVI is then used to perform

additional processing on and writing of CAN signals to allow Adasa to overwrite

the vehicle’s internal control of ADAS features as part of our prototype. Instead

of connecting the OBD VI to our system through a long USB cable in the driver’s

footwell, which may pose a safety hazard while driving, we enabled a wireless connec-

tion between the VI and Adasa via Bluetooth. As shown in the Figure 5.2-(C), Ford

Reference VI plugged into the in-vehicle OBD-II port and two blue LEDs show that

VI is successfully recognized by and registered to the vehicle as well as connected to

Adasa via Bluetooth.

5.2.4 Vehicle-data Ingestor

We built the Vehicle-data Ingestor by using an open-source OpenXC library to

communicate using CAN data between the VI and Adasa with the read and write

function enabled. To sustain the consistency of the information between the vehicle

and our system, we implemented our Vehicle-data Ingestor in a callback fashion (i.e.,

where the Vehicle-data Ingestor is able to refresh its own data periodically as the VI

receives updates from the vehicle). The stream of CAN data is then analyzed by a

sub-procedure in the Vehicle-data Ingestor named Vehicle-State Repository. Vehicle-

state repository records the most recent history of the data, extracts updates to each

signal from the data, and maintains a lookup table that contains the latest status of

each signal. In addition, as Adasa is requested to control and change the status of

77

ADAS features, Vehicle-data Ingestor sends the signal to VI and updates both the

lookup table in Vehicle-State Repository, as well as the CAN data inside the vehicle,

to ensure the consistency in both sides.

5.2.5 Intelligent Assistant

Intelligent Assistant is designed to understand drivers’ questions, process the query

coupled with the status of ADAS obtained from Vehicle-data Ingestor, and respond

to drivers accordingly. We employ a state-of-the-art speech-based framework, namely

Lucida [61], to structure our implementation, including automatic speech recognition

and query classification. We describe the details of each component in the following

sections.

5.2.5.1 Speech-to-Text Engine

The first major component in the Intelligent Assistant is a speech-to-text inter-

face. This interface allows drivers to ask the questions in natural language, providing

drivers an uninterrupted way to interact with Adasa and access the ADAS features.

Adasa builds on the open-source Lucida framework [61], which by default uses Google

Speech API [154] for automatic speech recognition (ASR). Despite the noisy on-road

environment in our user study, we observed very low error rate, which is similar to

prior work reported [168]. It first processes and extracts feature vectors representing

the voice segments, and submits the feature vectors to a speech recognition kernel to

transcribe drivers’ utterances. The transcribed texts then serve as the input to the

next engine.

5.2.5.2 Query Classifier

To access the necessary vehicle information for each query precisely, Adasa needs

to first understand the intent of the query. For this we leverage the findings explored

78

in our pilot study, and conclude three types of input queries:

1. Inquiry (FAQ) - Queries regarding the explanation of the ADAS features are

considered as Inquiry (FAQ). For example, “How does the lane keeping system

work?”, “What is the gray speedometer on my dashboard?”.

2. Symptom Diagnosis - Queries regarding the symptoms or status of the ADAS

features are considered as Symptom Diagnosis. For instance, “Is my lane keep-

ing system active?”, “I just turned on adaptive cruise control, but why is it not

working?”.

3. Command and Control - Queries regarding enabling, disabling and changing

the status of ADAS features are considered as Command and Control. For

example, “Can you turn on lane keeping system for me?”, “Please increase the

gap distance.”.

One straightforward way to classify queries is to hand-assign a class label for every

possible utterance, and use a dictionary-like structure to store the mapping between

queries and labels. During runtime, class label of an input query is determined by

applying string matching between the query and the keys in the key space of the

dictionary. However, this approach is impractical in real-world driving scenarios since

drivers might not have prior knowledge about ADAS and are unfamiliar with the exact

terminology. In addition, natural language speech is imprecise and hard to predict.

Especially, utterances can significantly deviate from correct grammar during driving

since drivers need to focus on the traffic conditions. These observations show that

Adasa should be able to handle incomplete and ambiguous sentences which render

the hand-coding approach infeasible.

We address these challenges by employing a machine learning based classifier to

automate the process of query classification. To encapsulate a large scope of questions

for our query classifier, we collect a large amount of training data by using crowd

79

Figure 5.3: An Amazon Mechanical Turk (MTurk) task assignment example. We
asked the MTurk workers to rephrase the statement, “what does it mean if I see a red
line and a grey line on the dashboard?” with the picture of the entire dashboard and a
red bounding box around the area of inquiry in order to help the workers understand
the questions and task at hand.

sourcing on Amazon Mechanical Turk (MTurk) [14] via the following steps: First, we

analyze the customer verbatims and the feedback described in Section 5.1 to identify

the scope of query classes that we have to cover. Second, for each of these classes, we

create a task assignment on MTurk, in which we provide a textual description of a

driving scenario and a query example to ask under that scenario. We then ask MTurk

workers to provide five rephrases of that query. To better contextualize the MTurk

workers, we also include a picture of the dashboard of the targeted scenario in the

assignment for the workers to gain a better understanding about what they would

experience if they were in the vehicle. For example, as shown in the Figure 5.3, we

have assignments in which there are questions such as ”what does it mean if I see a

red line and a grey line on the dashboard?” With the picture of the instrument cluster

provided, the workers understand the questions precisely and easily. Third, we collect

the completed assignment, manually remove the redundant rephrases, and evaluate

the quality of the rest of the rephrases. We include only the qualified rephrases in

our final training data. Finally, we train our classifier with this training dataset by

utilizing support vector machine (SVM) and deploy the trained classifier in Adasa.

We use the unigram and the bigram representations of the input query as features,

80

which is commonly used in text classification. For instance, an input query of “what

is cruise control” will be transformed into {’what’: 1, ’is’: 1, ’cruise’: 1, ’control’:

1, ’what is’: 1, ’is cruise’: 1, ’cruise control’: 1}, where the keys are unigrams and

bigrams in the query and the values are their occurrences. We use both unigram and

bigram to capture the spatial ordering of words. Overall, over 4500 training data is

collected and 73 classes are implemented including 49 Inquiry classes, 11 Symptom

Diagnosis classes and 13 Command and Control classes.

Query Classifier outputs a probability distribution for each query, which represents

the probability of the query falling into each of the topics. A high probability on one

class means the classifier is confident that the query belongs to the corresponding

topic. When drivers ask a query that is not covered by the scope the system is trained

to understand (e.g., “how is the weather in San Diego?”), the output probability

distribution will not have any class with a high enough probability (i.e., greater than

0.5). The system identifies such queries as out-of-scope, and respond with “I am not

trained to handle this topic yet. Please ask me about adaptive cruise control and lane

keeping systems.”

5.2.5.3 Execution Logic

Once the input query is analyzed and classified, Execution Logic then accesses

the necessary information and answers the query. Depending on the intent label of

the query, Execution Logic fetches information from different sources. To compose a

response for Inquiry (FAQ) queries, we build a vehicle-specific knowledge base that

contains the static information about the vehicle and ADAS features. Adasa accesses

the target entry and retrieves the corresponding answer.

To answer Symptom Diagnosis queries, on the other hand, Adasa needs to access

the states of different features of the vehicle. Adasa, based on the targeted ADAS

feature and the intent of the diagnostic query, composes a request and sends it to

81

Vehicle-data Ingestor which decodes the request and seeks for the current status of or

a recent update to the targeted signals. Once the requested value is obtained, Vehicle-

State Repository returns the result to Execution Logic. We enable non-blocking multi-

threaded access from Execution Logic to Vehicle-State Repository, which ensures that

Execution Logic can access vehicle states in a timely manner. Finally, Execution Logic

applies the returned value and composes a textual response correspondingly.

To complete Command and Control queries, Adasa requires to send control signals

into the vehicle via VI to alter the ADAS functions. When Execution Logic receives

the intent of query from Query Classifier, control signals mapped to the corresponding

CAN data messages are generated and transmitted to the VI via Bluetooth and

modify the value on the CAN bus inside the vehicle. Also, Execution Logic updates

the states of the target signal in Vehicle-State Repository and composes a textual

response to indicate that the command is completed.

5.2.5.4 Text-to-Speech Engine

The output textual response is then translated to speech by the text-to-speech

module, where Google Chrome Speech Synthesis library is employed [154]. Several

attributes such as the voice of gender, speech rate, pitch and volume can be cus-

tomized for different users. We use standard Google Female English and set rate,

pitch and volume as default. The output speech then is played by the speaker.

5.3 Evaluation

To evaluate our system in improving the perceived usability of ADAS features,

we conducted a user study in a real-world driving environment. In this study, each

participant interacted with Adasa while driving a 2017 Lincoln Continental Reserve

equipped with the Technology Package, which includes ACC and LKS. During the

driving study, we focused on ACC and LKS, and encouraged participants to ask

82

Adasa any question, including questions that were beyond the scope of these two

ADAS features, so as to obtain complete feedback based on their overall experiences.

The study setup is detailed in the following sections.

5.3.1 Participants

We recruited 15 participants: 11 male, 4 female, ages 24—35 (M = 27.1, SD = 3.2).

Each participant had a valid US driver’s license and was covered by an auto insurance

policy sponsored by the university. 80% (12 out of 15) participants did not have prior

experience with ADAS, but had sufficient driving experience (M = 8.7, SD = 5.1

driving years). Note that sufficient driving experience is required since participants

would be asked to interact with Adasa during the driving study. Participants were

recruited through email announcements at the authors’ university.

5.3.2 Adasa

As Figure 5.2-(D) shows, we built Adasa and deployed it in the Lincoln Continental

described above to conduct the study. Adasa ran on a laptop placed next to the driver

seat and connected through Bluetooth to Ford Reference VI to transmit CAN data

via OBD-II port. The left blue light on the VI shows CAN data could be accessed

successfully and the right blue light shows the data from the VI was received by

Adasa. We prototyped a voice interface with a front-end web application, where

participants could ask questions via this interface. To enable Adasa and start the

conversation, participants were instructed to press the button on the steering wheel

to enable voice recording and send the query to the internal modules of Adasa. The

laptop would output the answer using human voice through the speaker in the laptop

once Adasa retrieves the results.

83

Figure 5.4: The map of the 11.7 miles route. It includes 7 miles highway and 4.7
miles suburban road to accommodate the use of both ACC and LKS.

5.3.3 The Route

Participants drove on a predefined 11.7 mile (18.8 km) route, which consisted of 9

segments, as Figure 5.4 shows. The carefully planned route consists of 7 miles (11.3

km) highway and 4.7 miles (7.5 km) suburban road, allowing participants to have

enough time and diversity in driving scenarios to accommodate the use of both the

LKS and ACC systems. Participants took an average of 20 minutes to complete this

route. Participants were asked to complete a different task in every segment, as the

next subsection describes.

5.3.4 Tasks

The detailed tasks are shown in the Table 5.1. The first segment (segment 0)

is designed for the participants to become familiar with operating the vehicle and

asking Adasa questions. Segment 1 consists of another portion of the local road

including several stop signs where the participants were asked to turn on LKS. In

this segment, participants continued driving while LKS is enabled on the local road.

84

Table 5.1: Summary of tasks assigned during the driving study.

Segment # Task
0 Start driving and be familiar with the vehicle

1 Turn on the lane keeping system

2 Get on highway and stay in right-most lane

3 Turn the adaptive cruise control to standby

4 Turn the adaptive cruise control to active

5 Drift out of lane slightly to drive on the lane line

6 Turn off the adaptive cruise control

7 Drift out of lane slightly to drive on the lane line

8 Turn off the lane keeping system

The participants are then asked to get on the highway after finishing segment 1

and stay in the rightmost lane while keeping the vehicle speed at 60 miles per hour

for safety. After entering the highway, the participants were asked to turn ACC to

standby mode and active mode in segment 3 and segment 4 respectively. These two

segments were designed for the participants to experience the ACC feature and ask

Adasa questions if they chose to do so. In the segment 5, the participants were asked

to drift out of lane slightly at the right-most lane to experience the LKS feature

while ensuring that the vehicle is under control and the speed limit is followed. In

segment 6, the participants were asked to get off the highway, turn off the ACC, and

drive back to the starting location. Segment 7 was designed to let the participants

experience LKS in the local area. This segment is a straight urban road with only

one traffic light. During this segment, the participants were asked to test LKS again

by drifting out slightly to step on the lane line. Finally, participants were asked to

turn off LKS and drive to the end location. We expected drivers would encounter

most of the driving scenarios when executing tasks during the drive, although this

is not always possible. For example, even when ACC is set to active, it can still be

hard to expect the driver to experience the Stop-and-Go function (i.e., detect when

the vehicle ahead has stopped, and resume after the vehicle ahead moves) since the

traffic conditions on road may vary.

85

5.3.5 Procedure

Upon the participant’s arrival at the starting location, the participant was greeted

and told that his/her help was needed to investigate the driving experience on a ve-

hicle equipped with ADAS features and that he/she would interact with our digital

assistant, Adasa. Also, each participant was required to sign an insurance form to

obtain the university’s approval for participating in the study. After asking for the

participant’s informed consent and checking his/her valid driver license, the partici-

pant was introduced to the vehicle and asked to “please have a seat in the drivers’

seat”. After both the researcher and participants were seated, the researcher showed

the participant the pre-defined route. The participant was then informed that varying

tasks were needed to be performed during each segment and was encouraged to ask

any questions. These questions were not limited to questions about the two ADAS

features, as long as the participants felt they were helpful for resolving their con-

fusion. Since most of the participants were unfamiliar with ADAS features, which

may share vehicle control with the driver, the researcher instructed the participant

to prioritize their safety and allowed them to interrupt the study at any time if they

felt nervous or were in a dangerous situation. The researcher stayed in the vehicle to

guide the participant along the route as well as the tasks needed to be executed along

each segment. As soon as the participant understood all the instructions, he/she was

allowed to start the study and was instructed to utilize the first segment (segment 0)

to get familiar with driving the vehicle.

Upon finishing the route and the arrival at the end location, the participant was

asked to fill out a post-questionnaire regarding his/her driving experience during the

drive. Afterwards, the participant was interviewed by the experimenter for more de-

tailed information, and participants were asked about any further questions regarding

the vehicle, Adasa, or ADAS features. At the point where the participant expressed

he/she had no further questions, the study was deemed formally over.

86

T
ab

le
5.
2:

T
ar
ge
te
d
as
se
ss
m
en
ts

of
q
u
es
ti
on

s
in

q
u
es
ti
on

n
ai
re
.

Q
u
es
ti
on

#
D
es
cr
ip
ti
on

Q
1

I
th

in
k
it

is
a
c
c
e
p
ta

b
le

to
h
a
v
e
a
v
o
ic
e
a
s
s
is
ta

n
t
in

th
e
v
e
h
ic
le
.

Q
2

I
th

in
k
th

is
c
a
r
e
q
u
ip
p
e
d

w
it
h

th
e
v
o
ic
e
a
s
s
is
ta

n
t
is

in
te
ll
ig
e
n
t.

Q
3

T
h
e
v
o
ic
e
a
s
s
is
ta

n
t
h
e
lp
s
m
e
u
n
d
e
r
s
ta

n
d

th
e
fe
a
tu

r
e
s
o
f
a
d
v
a
n
c
e
d

d
r
iv
in
g
a
s
s
is
ta

n
t
s
y
s
te
m
.

Q
4

I
th

in
k
th

e
a
n
s
w
e
r
th

a
t
p
r
o
v
id
e
d

b
y
th

e
v
o
ic
e
a
s
s
is
ta

n
t
is

u
s
e
fu
l.

Q
5

I
th

in
k
th

e
v
o
ic
e
a
s
s
is
ta

n
t
c
a
n

u
n
d
e
r
s
ta

n
d

m
y
q
u
e
s
ti
o
n

a
n
d

p
r
o
v
id
e
a
c
c
u
r
a
te

d
ia
g
n
o
s
is

d
u
r
in
g
d
r
iv
in
g
.

Q
6

T
h
e
v
o
ic
e
a
s
s
is
ta

n
t
m
a
k
e
s
u
s
in
g
th

e
s
e
a
d
v
a
n
c
e
d

d
r
iv
in
g
a
s
s
is
ta

n
c
e
fe
a
tu

r
e
s
m
o
r
e
p
le
a
s
a
n
t.

Q
7

D
r
iv
in
g
th

e
v
e
h
ic
le

w
it
h

th
e
v
o
ic
e
a
s
s
is
ta

n
t
m
a
k
e
s
m
e
n
e
r
v
o
u
s
.

Q
8

T
h
e
r
e
s
p
o
n
s
iv
e
n
e
s
s
a
n
d

r
e
li
a
b
il
it
y
o
f
th

e
v
o
ic
e
a
s
s
is
ta

n
t
m
e
e
t
m
y
e
x
p
e
c
ta

ti
o
n
.

87

5.3.6 Questionnaire

Participants filled out a questionnaire adapted from DeLone and McLean information-

system (IS) success model [31, 32], with questions that evaluate three main aspects

of the system: system quality, information quality and user satisfaction. All ques-

tions in the questionnaire are specifically asked regarding the assistant itself without

considering the quality of the ADAS features. Therefore, the evaluation is scoped

to evaluate the effectiveness of Adasa in improving drivers’ understanding of ADAS

features rather than the usability of ADAS features on the vehicle. The participants

answer each question in the categories with a 10-point Likert scale with anchors 1

= “strongly disagree” and 10 = “strongly agree”. For system quality, the partic-

ipants are asked to evaluate system acceptability, system intelligence and system

helpfulness. For example, ”The digital assistant helps me understand the features of

advanced driver assistance system.” For information quality, the information useful-

ness and the accuracy of the diagnosis are evaluated. One example question is: ”I

think the digital assistant can understand my question and provide accurate diagnosis

during driving.” For the user satisfaction, the participants are asked regarding their

nervousness, pleasantness and if their expectation had been met. The targeted assess-

ments of each question in the questionnaire are shown in Table 5.2. The participants

were also welcome to provide comments at the end of the questionnaire for us to

evaluate the system.

5.4 Results

With the user study conducted in a real-world environment, we are able to investi-

gate drivers’ behaviors and satisfaction when interacting with Adasa. In this section,

we demonstrate the effectiveness of our system via quantitative and qualitative anal-

yses of our user study.

88

5.4.1 Quantitative System Analysis

We perform a quantitative system analysis by evaluating three key metrics: (1)

query understanding, (2) response correctness, and (3) processing latency. Partic-

ularly, query understanding (i.e., understanding the query correctly) and response

correctness (i.e., responding with the correct answer) have been commonly used to

evaluate conversational assistants such as Apple Siri and Amazon Echo [137, 138].

5.4.1.1 Query Understanding

We first evaluate query understanding by quantifying the percentage of the queries

that are categorized into the corresponding intent class correctly, which aligns with

how query understanding has commonly been evaluated in prior studies [137, 138]

on several digital assistants including Amazon Echo, Google Home and Apple Siri.

The experiment including 800 general queries was conducted in April 2017 for Apple

Siri and August 2017 for Amazon Echo and Google Home respectively. To facilitate

a fair comparison, we divide the data we collected via Amazon MTurk into two

completely disjoint sets, the training set and the testing set, and report the accuracy

of our model on the testing set to provide an unbiased evaluation. As shown in prior

studies [137, 138], state-of-the-art digital assistants (e.g., Siri) are able to identify and

understand over 90% of the queries asked. In our evaluation, we find Adasa is also

able to categorize queries at an accuracy of 92.5%, which suggests that our system

can achieve state-of-the-art query understanding.

5.4.1.2 Response Correctness

We then evaluate the response correctness, which can be quantified as the per-

centage of the queries answered correctly by the digital assistant. For Adasa, we

measure the response correctness during the user study, where the participants were

asked to inform the experimenter whether Adasa provided the correct answers or not

89

during the test drive. The results in our user study show that each participant asked

12.88 questions on average (i.e., 1–3 questions per segment) during the study. We

found that Adasa achieves overall 77% response correctness, which aligns with the

subjective user feedback that we present later this section. Overall, we found the

participants highly satisfied with responses provided by the system. Comparing to

the state-of-the-art digital assistants available on the market, our system achieves

a comparable, if not better (i.e., 75.4% correctness on Apple Siri, 65.3% on Google

Home, and 53.6% on Amazon Echo as shown in prior studies [137, 138]), level of

response correctness.

5.4.1.3 Processing Latency

Besides the response correctness, the performance of the system can also be deter-

mined by the processing latency. A well-designed digital assistant should be able to

process queries and respond in real-time, which is also the second key design objec-

tive mentioned in Section 5.2.1. We measure the processing latency with respect to

query types (i.e., inquiry, symptom diagnosis and command and control) in the real

vehicle deployment. The result demonstrates that it merely takes 1.50 seconds (M =

1.50, SD = 0.38) from driver pressing the button to Adasa responding on average.

Specifically, the processing latency across three types of query is 1.17 seconds for FAQ

(M = 1.17, SD = 0.19), 1.57 seconds for diagnosis (M = 1.57, SD = 0.21) and 1.76

seconds for command (M = 1.76, SD = 0.45).

5.4.2 Subjective User Feedback

Figure 5.5 presents the average scores of all the eight questions, where the x-

axis represents different questions regarding Adasa usage with the average scores of

these questions shown on the y-axis. A score of 7 out of 10 or greater was seen in

all cases except ‘nervousness’, which will be discussed later, suggesting that Adasa is

90

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
0

2

4

6

8

10

S
co

re
s

System quality Info quality User satisfaction

9.3

8.0

8.9

7.5 7.4
7.8

3.4

7.1

Figure 5.5: The average scores of the participants’ feedback across different questions
in the questionnaire. We obtain over 7 out of 10 in all cases and the participants are
less nervous when using Adasa (Q7 score = 3.4). It suggests that Adasa is considered
as a helpful and useful system for them to understand and utilize ADAS features in
the vehicle.

considered to be a helpful and useful system for them to understand and utilize ADAS

features in the vehicle, which aligns with the third design objective. An interesting

observation is that 80% participants (12 out of 15) in our study have not used ADAS

features previously since their own vehicles are not equipped with ADAS features,

or they are unfamiliar with them. Adasa improves the understanding of ADAS as

participants provide highly positive feedback (Q3 score = 8.9), showing Adasa is

helpful to understand these features.

5.4.2.1 System Quality

System quality was evaluated by asking participants questions about the following

three aspects: system acceptability, system intelligence, and system helpfulness. As

shown in Figure 5.5, participants considered that an in-vehicle digital assistant like

Adasa “highly acceptable” for in-vehicle use (Q1 score = 9.3) and it could help them

understand the features of ADAS (Q3 score = 8.9). Participants mentioned: “The

91

voice assistant is convenient and makes me drive more safely as I could focus on the

road all the time when driving and get responses I needed”, “It is useful to have while

driving since I can keep my eyes on driving instead of seeing the dashboard.”, “The

voice assistant makes it much easier to access the ADAS features that are complex

in the manual. Using voice is a much more natural way to interact with intelligent

features in the car.”

5.4.2.2 Information Quality

When evaluating the information quality Adasa provided, the expectation regard-

ing the usefulness and the understandability of the information provided by Adasa

are considered. Based on the feedback, most of the responses are precise and easy-to-

understand (Q4 score = 7.5; Q5 score = 7.4). However, we observe that participants

frequently asked questions regarding events that happened a short time ago. For

example, one question was asked: ”What happened 3 minutes ago that my adaptive

cruise control did not work at all?” While Adasa currently is able to only respond to

the queries based on the current status, this significant finding would help us improve

our prototype in the future.

5.4.2.3 User Satisfaction

We evaluate the user satisfaction by considering participants’ pleasantness, ner-

vousness, and if Adasa could meet their expectations during driving. The results

show that participants feel pleasant (Q6 score = 7.8) and Adasa could meet their

expectations (Q8 score = 7.1), as shown in Figure 5.5. For user nervousness, partici-

pants indicated a score between 1 (not feeling nervous at all) and 10 (very nervous).

Based on the results, while the average level of nervousness is low among all the

participants (Q7 score = 3.4), we find two participants provided a score of 8 and a

score of 9 respectively, showing they were highly nervous during driving. They men-

92

tioned that they remained conservative about using these features even though they

considered Adasa helpful for them to understand these features. Apart from these

two participants, other participants gave mostly 1’s and 2’s, showing they did not feel

very nervous using Adasa while driving.

5.5 Discussion

While our results indicate that an in-vehicle digital assistant comparable to Adasa

can indeed improve ADAS feature usability and the overall perceived driving experi-

ence, we also identified numerous practical insights and challenges. Particularly, there

are two common themes arising from our observations: (1) response length; and (2)

query completeness.

5.5.1 Response Length

Participants are able to interact with Adasa in several scenarios (e.g., driving as

in on the highway or statically as in a parking lot). We find that participants react

differently to similar responses in the different environment. For example, participants

often anticipate brief responses while driving in a dynamic environment (e.g., highway,

road intersection) since they are unable to digest the information provided by Adasa

and focus on the road environments simultaneously. In contrast, more thorough

explanations are expected as participants interact with Adasa in a static environment

(e.g., parking lot) to understand how to use these ADAS features. This observation

aligns with our feedback from the questionnaire that 60% (i.e., 9 out of 15) of the

participants commented that they are satisfied with the comprehensive information

provided and are able to readily understand and more quickly familiarize themselves

with those particular ADAS features. Consequently, an Adasa-like system should

be able to identify the current driving status and provide proper length of responses

accordingly since different response lengths are expected depending on driver’s current

93

status.

Finding - Different length of responses are expected in varying driving environ-

ments as drivers might be distracted while driving. A well-designed digital assistant

is capable of identifying the environment and providing proper length of responses.

5.5.2 Query Completeness

We find that questions asked by drivers are usually incomplete and unstructured

because of the following reasons: (1) drivers are unfamiliar with ADAS features so

they are often unable to describe their questions precisely; (2) drivers often pay

attention to the traffic conditions while interacting with Adasa-like system, which

makes it difficult for them to structure complete sentences. However, Adasa is trained

with the training data collected by MTurk, which is mostly comprised of complete

sentences since those workers were unable to experience the system while driving and

respond as such. As a participant mentioned: “Most of the questions that I had the

system could answer, but I had to repeat myself multiple times.” This demonstrates

that drivers focus mostly on the road and their utterances might significantly deviate

from correct grammar or complete sentences. Although our system can achieve up to

77% response correctness, this observation shows that training data for the classifier

should include more diverse queries to build a much robust classifier for an Adasa-like

system.

Finding - Incomplete queries are asked frequently since drivers need to pay atten-

tion to traffic conditions and might not have prior knowledge to describe the questions

precisely.

5.6 Summary

In this Chapter, we present Adasa, a conversational in-vehicle digital assistant that

intakes and answers driver’s questions in natural spoken language. Drivers are able to

94

ask questions about or command and control both ACC and LKS using unconstrained

natural language in the vehicle. The digital assistant trained using advanced machine

learning techniques coupled with access to the vehicle signals responded in real-time

based on conversational and environmental context. Results of the system deployed

onto a production vehicle were presented demonstrating its effectiveness in improving

driver understanding and usability of the ADAS.

We envision a few directions for future work. We believe that an Adasa-like

system could educate drivers about ADAS features and broaden their knowledges

about ADAS. Future studies could also evaluate longer-term learning gains by uti-

lizing Adasa and the impacts to the driving experience. In addition, we anticipate

gathering more variation in training data (e.g., incomplete queries) to further build

a robust in-vehicle digital assistant based on our feedback observation. The ADAS

features presented in this work only constitutes LKS and ACC. Extensions of this

work would consider other features such as forward collision warning (FCW) and

automatic parallel parking for users to understand and utilize these features and to

further improve the driving experience.

Last, we expect that Adasa built in an autonomous vehicle is able to help hu-

mans from two different perspectives: intra- and inter-communication. For intra-

communication, an Adasa-like system could help people with disabilities (e.g., blind

people) to utilize the vehicle. For example, blind people could speak to the car re-

garding their destination and Adasa would be able to understand the content of the

conversation and drive people toward the destination. This application provides the

service for people with disabilities and improve both the usability of the car as well as

their user experience. For inter-communication, vehicles require the ability to com-

municate with other road users (i.e., pedestrians) and understand their intentions so

as to react accordingly. Prior works demonstrate the importance of identifying pedes-

trians’ behavior [133, 109, 132, 67] for autonomous vehicles. Future studies could also

95

evaluate the impact of building Adasa-like system in autonomous vehicles that affects

cars and pedestrians interaction.

We believe that in the future more ADAS features will continue to be introduced

to improve the driving experience and drivers will be able to utilize an Adasa-like

system to interact with the vehicle. We hope Adasa will encourage discussion and

excite more in-vehicle interface design within the HCI community.

96

CHAPTER VI

Conclusion

A widespread interest in autonomous vehicles has grown significantly in recent

years, including from companies such as Google, Tesla, Uber and Ford. Autonomous

vehicles are able to understand their surroundings and make deicisions to take drivers

to the ultimate destination with little human help. However, vehicles equipped with

autonomous driving capability are still largely under experiments and several crit-

ical roadblocks observed prevent them from being available despite the remarkable

improvements in our community. Specifically, key challenges are observed across the

stack of autonomous driving systems from hardware, software to human-vehicle in-

teraction and must be addressed to bridge the gap between such application and our

community. This dissertation investigates cross-layer autonomous driving systems

from hardware, software to human-vehicle interaction and proposes solutions across

the stack to design future autonomous driving systems.

I first present and formalize the design constraints in performance, predictability,

storage, thermal and power when building autonomous driving systems. To investi-

gate the design of such systems, I build a representative end-to-end autonomous driv-

ing system using state-of-the-art machine learning algorithmic components. Using

this system, I then identify three computational bottlenecks and explore three dif-

ferent accelerator platforms to accelerate these computational bottlenecks Based on

97

these accelerated system designs, I further explore the tradeoffs among performance,

power and future scalability of autonomous driving systems. Secondly, I character-

ize the compute profile of object detectors, which is one of the critical bottlenecks in

autonomous driving systems and extract insights regarding how intermediate informa-

tion could be re-utilized. With the insights in mind, I propose two new computation

reuse approaches, which enable us to leverage previous computed understandings and

extract new features in the following frame to improve the processing performance of

autonomous vehicles. Lastly, I conduct an in-depth pilot study and identify huge gaps

between drivers and advanced in-vehicle systems. I design a conversational in-vehicle

digital assistant, Adasa, that intakes and answers driver’s questions in natural human

language to improve the usability and experience. I then integrate Adasa onto a pro-

duction vehicle and conduct a real-world driving study. Results of Adasa deployed

onto a production vehicle were presented demonstrating its effectiveness in improving

driver understanding and usability of advanced in-vehicle systems.

98

BIBLIOGRAPHY

99

BIBLIOGRAPHY

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: a system for large-scale machine
learning.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network comput-
ing. In ACM SIGARCH Computer Architecture News, volume 44, pages 1–13.
IEEE Press, 2016.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural network comput-
ing. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 1–13, June 2016.

[4] N. H. Amer, H. Zamzuri, K. Hudha, and Z. A. Kadir. Modelling and control
strategies in path tracking control for autonomous ground vehicles: A review of
state of the art and challenges. Journal of Intelligent & Robotic Systems, pages
1–30, 2016.

[5] Apple. iOS-CarPlay-Apple, 2017.

[6] K. Ashraf, B. Wu, F. N. Iandola, M. W. Moskewicz, and K. Keutzer.
Shallow networks for high-accuracy road object-detection. arXiv preprint
arXiv:1606.01561, 2016.

[7] Audi USA. 2017 Audi A4 ultra offers highest EPA-estimated fuel economy in
competitive segment, 2017.

[8] A. Barón and P. Green. Safety and usability of speech interfaces for in-vehicle
tasks while driving: A brief literature review. Technical report.

[9] C. Berger and B. Rumpe. Autonomous driving-5 years after the urban chal-
lenge: The anticipatory vehicle as a cyber-physical system. arXiv preprint
arXiv:1409.0413, 2014.

[10] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000.

[11] M. Braun, N. Broy, B. Pfleging, and F. Alt. A design space for conversational in-
vehicle information systems. In Proceedings of the 19th International Conference

100

on Human-Computer Interaction with Mobile Devices and Services, page 79.
ACM, 2017.

[12] A. Broad, M. Jones, and T.-Y. Lee. Recurrent multi-frame single shot detector
for video object detection.

[13] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow
estimation based on a theory for warping. In European conference on computer
vision, pages 25–36. Springer, 2004.

[14] M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk: A
new source of inexpensive, yet high-quality, data? Perspectives on psychological
science, 6(1):3–5, 2011.

[15] S. Changpinyo, M. Sandler, and A. Zhmoginov. The power of sparsity in con-
volutional neural networks. arXiv preprint arXiv:1702.06257, 2017.

[16] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages 269–284,
New York, NY, USA, 2014. ACM.

[17] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. Dadiannao: A machine-learning supercomputer. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-47, pages 609–622, Washington, DC, USA, 2014. IEEE
Computer Society.

[18] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In ACM SIGARCH Com-
puter Architecture News, volume 44, pages 367–379. IEEE Press, 2016.

[19] Chervolet. Chevrolet Bolt EV. http://www.chevrolet.com/bolt-ev-

electric-vehicle, 2017.

[20] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[21] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. Prime:
A novel processing-in-memory architecture for neural network computation in
reram-based main memory. In Proceedings of the 43rd International Symposium
on Computer Architecture, ISCA ’16, pages 27–39, Piscataway, NJ, USA, 2016.
IEEE Press.

[22] S. Choi, F. Thalmayr, D. Wee, and F. Weig. Advanced Driver-Assistance Sys-
tems: Challenges and Opportunities Ahead, 2016. McKinsey&Company.

101

[23] F. M. Company. Ford Sync, 2017.

[24] G. M. Company. Chevrolet MyLink: Take Control Of Your Vehicle’s Technol-
ogy, 2017.

[25] L. M. Company. 2017 LINCOLN CONTINENTAL, 2017.

[26] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3213–3223, 2016.

[27] T. M. Corporation. Toyota-Entune, 2017.

[28] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep neural networks
with low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

[29] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[30] B. S. Craig Smoth. 160 Amazing YouTube Stats and Facts, 2018.

[31] W. H. DeLone and E. R. McLean. Information systems success: The quest for
the dependent variable. Information systems research, 3(1):60–95, 1992.

[32] W. H. Delone and E. R. McLean. The delone and mclean model of informa-
tion systems success: a ten-year update. Journal of management information
systems, 19(4):9–30, 2003.

[33] Z. Du, D. D. Ben-Dayan Rubin, Y. Chen, L. He, T. Chen, L. Zhang, C. Wu,
and O. Temam. Neuromorphic accelerators: A comparison between neuro-
science and machine-learning approaches. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, MICRO-48, pages 494–507, New York,
NY, USA, 2015. ACM.

[34] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. Shidiannao: Shifting vision processing closer to the sensor. In
Proceedings of the 42Nd Annual International Symposium on Computer Archi-
tecture, ISCA ’15, pages 92–104, New York, NY, USA, 2015. ACM.

[35] A. Eckert, A. Hohm, and S. Lueke. An integrated adas solution for pedestrian
collision avoidance. In Proceedings of the 23rd International Conference on the
Enhanced Safety of Vehicles, Seoul, Republic of Korea, pages 13–0298, 2013.

[36] Electrek. Elon Musk clarifies Tesla’s plan for level 5 fully autonomous driving:
2 years away from sleeping in the car, 2017.

102

[37] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. http://www.pascal-network.org/challenges/VOC/

voc2012/workshop/index.html, 2012.

[38] R. Farrington and J. Rugh. Impact of vehicle air-conditioning on fuel economy,
tailpipe emissions, and electric vehicle range. In Earth technologies forum, pages
1–6, 2000.

[39] M. A. Fayazbakhsh and M. Bahrami. Comprehensive modeling of vehicle air
conditioning loads using heat balance method. Technical report, SAE Technical
Paper, 2013.

[40] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. Van der
Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convo-
lutional networks. arXiv preprint arXiv:1504.06852, 2015.

[41] M. C. for Future Mobility. Autonomous Driving, 2017.

[42] Y. Forster, F. Naujoks, and A. Neukum. Increasing anthropomorphism and
trust in automated driving functions by adding speech output. In Intelligent
Vehicles Symposium (IV), 2017 IEEE, pages 365–372. IEEE, 2017.

[43] M. Gao, C. Delimitrou, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
C. Kozyrakis. Draf: A low-power dram-based reconfigurable acceleration fabric.
In Proceedings of the 43rd International Symposium on Computer Architecture,
ISCA ’16, pages 506–518, Piscataway, NJ, USA, 2016. IEEE Press.

[44] M. Gärtner, A. Meschtscherjakov, B. Maurer, D. Wilfinger, and M. Tscheligi.
Dad, stop crashing my car!: Making use of probing to inspire the design of
future in-car interfaces. In Proceedings of the 6th International Conference on
Automotive User Interfaces and Interactive Vehicular Applications, pages 1–8.
ACM, 2014.

[45] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[46] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[47] Global Management Consulting. Autonomous Vehicle Adoption Study, 2016.

[48] Google. Are We There Yet? Silicon in Self-Driving Cars., 2016.

[49] Google. Android Auto, 2017.

[50] B. Graham. Sparse 3d convolutional neural networks. arXiv preprint
arXiv:1505.02890, 2015.

103

[51] B. Graham and L. van der Maaten. Submanifold sparse convolutional networks.
arXiv preprint arXiv:1706.01307, 2017.

[52] R. Graham and C. Carter. Comparison of speech input and manual control of
in-car devices while on the move. Personal Technologies, 4(2):155–164, 2000.

[53] B. C. Group. Nearly 10,000 Deaths Could Be Prevented and More Than $250
Billion Saved with Greater Use of Driver Assistance Technologies, 2015.

[54] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In
Advances In Neural Information Processing Systems, pages 1379–1387, 2016.

[55] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
Eie: efficient inference engine on compressed deep neural network. In Computer
Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium
on, pages 243–254. IEEE, 2016.

[56] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[57] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connec-
tions for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015.

[58] J. H. Hansen, P. Angkititrakul, J. P. Plucienkowski, S. Gallant, U. H. Yapanel,
B. L. Pellom, W. H. Ward, and R. A. Cole. ” cu-move”: analysis & corpus de-
velopment for interactive in-vehicle speech systems. In INTERSPEECH, pages
2023–2026, 2001.

[59] B. Hassibi and D. G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Advances in neural information processing systems,
pages 164–171, 1993.

[60] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and its
implications for future warehouse scale computers. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ISCA ’15, pages
27–40, New York, NY, USA, 2015. ACM.

[61] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, et al. Sirius: An open end-to-
end voice and vision personal assistant and its implications for future warehouse
scale computers. In ACM SIGPLAN Notices, volume 50, pages 223–238. ACM,
2015.

[62] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars. Sirius: An

104

open end-to-end voice and vision personal assistant and its implications for
future warehouse scale computers. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 223–238, New York, NY, USA, 2015. ACM.

[63] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convo-
lutional networks for visual recognition. In European conference on computer
vision, pages 346–361. Springer, 2014.

[64] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep
regression networks. In European Conference on Computer Vision, pages 749–
765. Springer, 2016.

[65] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano, S. Mahlke,
L. Tang, and J. Mars. Deftnn: Addressing bottlenecks for dnn execution on gpus
via synapse vector elimination and near-compute data fission. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 786–799. ACM, 2017.

[66] J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D. Reed. Watts up? pro ac power
meter for automated energy recording: A product review. Behavior Analysis
in Practice, 6(1):82, 2013.

[67] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs.
Enhancements of v2x communication in support of cooperative autonomous
driving. IEEE communications magazine, 53(12):64–70, 2015.

[68] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. 2017.

[69] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks. In Advances in neural information processing systems, pages
4107–4115, 2016.

[70] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[71] J. Hur and S. Roth. Joint optical flow and temporally consistent semantic
segmentation. In European Conference on Computer Vision, pages 163–177.
Springer, 2016.

[72] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[73] Intel. Intel Core i7-4790K Processor, 2017.

105

[74] A. Jain, P. Hill, S.-C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano, S. Mahlke,
L. Tang, and J. Mars. Concise loads and stores: The case for an asymmetric
compute-memory architecture for approximation. In Microarchitecture (MI-
CRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–13.
IEEE, 2016.

[75] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist: Efficient
data encoding for deep neural network training. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pages 776–
789. IEEE, 2018.

[76] S. Jain and J. E. Gonzalez. Fast semantic segmentation on video using motion
vector-based feature interpolation. arXiv preprint arXiv:1803.07742, 2018.

[77] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen. Neutrams:
Neural network transformation and co-design under neuromorphic hardware
constraints. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13, Oct 2016.

[78] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093, 2014.

[79] G. Johansson and K. Rumar. Drivers’ brake reaction times. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 13(1):23–27, 1971.

[80] R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher.
The changing automotive environment: high-temperature electronics. IEEE
Transactions on Electronics Packaging Manufacturing, 27(3):164–176, 2004.

[81] K. A. Joudi, A. S. K. Mohammed, and M. K. Aljanabi. Experimental and
computer performance study of an automotive air conditioning system with
alternative refrigerants. Energy conversion and Management, 44(18):2959–2976,
2003.

[82] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

[83] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger, and
A. Moshovos. Proteus: Exploiting numerical precision variability in deep neural
networks. In Proceedings of the 2016 International Conference on Supercom-
puting, page 23. ACM, 2016.

[84] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos.
Stripes: Bit-serial deep neural network computing. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12, Oct 2016.

106

[85] M. F. Jung, D. Sirkin, T. M. Gür, and M. Steinert. Displayed uncertainty
improves driving experience and behavior: The case of range anxiety in an
electric car. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 2201–2210. ACM, 2015.

[86] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada.
An open approach to autonomous vehicles. IEEE Micro, 35(6):60–68, 2015.

[87] D. Kern and A. Schmidt. Design space for driver-based automotive user inter-
faces. In Proceedings of the 1st International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, pages 3–10. ACM, 2009.

[88] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay. Neurocube:
A programmable digital neuromorphic architecture with high-density 3d mem-
ory. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 380–392, June 2016.

[89] P. Koopman and M. Wagner. Challenges in autonomous vehicle testing and
validation. SAE International Journal of Transportation Safety, 4(1):15–24,
2016.

[90] P. Kortum. HCI beyond the GUI: Design for haptic, speech, olfactory, and other
nontraditional interfaces. Morgan Kaufmann, 2008.

[91] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Čehovin, G. Nebehay,
T. Voj́ı̌r, G. Fernández, A. Lukežič, A. Dimitriev, A. Petrosino, A. Saffari, B. Li,
B. Han, C. Heng, C. Garcia, D. Pangeršič, G. Häger, F. S. Khan, F. Oven,
H. Possegger, H. Bischof, H. Nam, J. Zhu, J. Li, J. Y. Choi, J.-W. Choi, J. F.
Henriques, J. van de Weijer, J. Batista, K. Lebeda, K. Öfjäll, K. M. Yi, L. Qin,
L. Wen, M. E. Maresca, M. Danelljan, M. Felsberg, M.-M. Cheng, P. Torr,
Q. Huang, R. Bowden, S. Hare, S. Y. Lim, S. Hong, S. Liao, S. Hadfield, S. Z.
Li, S. Duffner, S. Golodetz, T. Mauthner, V. Vineet, W. Lin, Y. Li, Y. Qi,
Z. Lei, and Z. H. Niu. The Visual Object Tracking VOT2014 Challenge Results,
pages 191–217. Springer International Publishing, Cham, 2015.

[92] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[93] D. M. Krum, J. Faenger, B. Lathrop, J. A. Sison, and A. Lien. All roads lead
to chi: interaction in the automobile. In CHI’08 Extended Abstracts on Human
Factors in Computing Systems, pages 2387–2390. ACM, 2008.

[94] A. R. Kumar, B. Ravindran, and A. Raghunathan. Pack and detect: Fast
object detection in videos using region-of-interest packing. In Proceedings of the
ACM India Joint International Conference on Data Science and Management
of Data, pages 150–156. ACM, 2019.

107

[95] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th international conference on Machine learning, pages
473–480. ACM, 2007.

[96] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[97] J. D. Lee, B. Caven, S. Haake, and T. L. Brown. Speech-based interaction with
in-vehicle computers: The effect of speech-based e-mail on drivers’ attention to
the roadway. Human factors, 43(4):631–640, 2001.

[98] K. J. Lee, Y. K. Joo, and C. Nass. Partially intelligent automobiles and driving
experience at the moment of system transition. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’14.

[99] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle local-
ization in urban environments. In Robotics : Science and Systems (RSS), 2007,
2007.

[100] G. Li, Y. Xie, T. Wei, K. Wang, and L. Lin. Flow guided recurrent neural
encoder for video salient object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3243–3252, 2018.

[101] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Performance guaranteed network
acceleration via high-order residual quantization.

[102] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. Haque, L. Tang, and J. Mars. The
architectural implications of autonomous driving: Constraints and acceleration.
In Proceedings of the 23th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), ASPLOS-23,
Williamsburg, VA, USA, 2018. ACM.

[103] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[104] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 806–814, 2015.

[105] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and
Y. Chen. Pudiannao: A polyvalent machine learning accelerator. In Proceed-
ings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 369–381,
New York, NY, USA, 2015. ACM.

108

[106] V. E.-W. Lo and P. A. Green. Development and evaluation of automotive
speech interfaces: useful information from the human factors and the related
literature. International Journal of Vehicular Technology, 2013, 2013.

[107] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep
neural network compression. arXiv preprint arXiv:1707.06342, 2017.

[108] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and
H. Esmaeilzadeh. Tabla: A unified template-based framework for accelerating
statistical machine learning. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 14–26, March 2016.

[109] M. Matthews, G. Chowdhary, and E. Kieson. Intent communication between
autonomous vehicles and pedestrians. arXiv preprint arXiv:1708.07123, 2017.

[110] D. V. McGehee, E. N. Mazzae, and G. S. Baldwin. Driver reaction time in crash
avoidance research: Validation of a driving simulator study on a test track.
In Proceedings of the human factors and ergonomics society annual meeting,
volume 44, pages 3–320. SAGE Publications, 2000.

[111] C. McManus, W. Churchill, A. Napier, B. Davis, and P. Newman. Distraction
suppression for vision-based pose estimation at city scales. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages 3762–3769.
IEEE, 2013.

[112] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee. Motion planning
for autonomous driving with a conformal spatiotemporal lattice. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 4889–
4895. IEEE, 2011.

[113] J. Miller, A. Emadi, A. Rajarathnam, and M. Ehsani. Current status and future
trends in more electric car power systems. In Vehicular Technology Conference,
1999 IEEE 49th, volume 2, pages 1380–1384. IEEE, 1999.

[114] Mobileye. Autonomous Driving. https://www.mobileye.com/, 2017.

[115] Mobileye. Enabling Autonomous. http://www.mobileye.com/future-of-

mobility/mobileye-enabling-autonomous/, 2017.

[116] Mobileye. Mobileye C2-270 Essentials, 2017.

[117] Mobileye. Mobileye CES 2017 Press Conference, 2017.

[118] M. Mody. ADAS Front Camera: Demystifying Resolution and Frame-Rate.
EETimes, 2016.

[119] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–
1163, 2015.

109

[120] A. Napier and P. Newman. Generation and exploitation of local orthographic
imagery for road vehicle localisation. In Intelligent Vehicles Symposium (IV),
2012 IEEE, pages 590–596. IEEE, 2012.

[121] C. Nass, I.-M. Jonsson, H. Harris, B. Reaves, J. Endo, S. Brave, and
L. Takayama. Improving automotive safety by pairing driver emotion and car
voice emotion. In CHI’05 Extended Abstracts on Human Factors in Computing
Systems, pages 1973–1976. ACM, 2005.

[122] A. Newell and S. K. Card. The prospects for psychological science in human-
computer interaction. Human-computer interaction, 1(3):209–242, 1985.

[123] D. Norman. The design of everyday things: Revised and expanded edition. Basic
Books (AZ), 2013.

[124] D. G. Novick and K. Ward. Why don’t people read the manual? In Proceedings
of the 24th annual ACM international conference on Design of communication,
pages 11–18. ACM, 2006.

[125] E. Ohn-Bar and M. M. Trivedi. Hand gesture recognition in real time for
automotive interfaces: A multimodal vision-based approach and evaluations.
IEEE transactions on intelligent transportation systems, 15(6):2368–2377, 2014.

[126] B. Pan, W. Lin, X. Fang, C. Huang, B. Zhou, and C. Lu. Recurrent residual
module for fast inference in videos.

[127] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally. Scnn: An accelerator for compressed-
sparse convolutional neural networks. In ACM SIGARCH Computer Architec-
ture News, volume 45, pages 27–40. ACM, 2017.

[128] V. Patraucean, A. Handa, and R. Cipolla. Spatio-temporal video autoencoder
with differentiable memory. arXiv preprint arXiv:1511.06309, 2015.

[129] D. J. Perreault and V. Caliskan. Automotive power generation and control.
IEEE Transactions on Power Electronics, 19(3):618–630, 2004.

[130] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose
estimation in videos. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1913–1921, 2015.

[131] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009.

[132] A. Rasouli, I. Kotseruba, and J. K. Tsotsos. Are they going to cross? a bench-
mark dataset and baseline for pedestrian crosswalk behavior. In Proceedings of
the IEEE International Conference on Computer Vision, pages 206–213, 2017.

110

[133] A. Rasouli and J. K. Tsotsos. Autonomous vehicles that interact with pedestri-
ans: A survey of theory and practice. arXiv preprint arXiv:1805.11773, 2018.

[134] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Confer-
ence on Computer Vision, pages 525–542. Springer, 2016.

[135] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[136] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[137] L. V. Research. Faceoff: Amazon echo show VS Google home part II, 2017.

[138] L. V. Research. Siri semester exam grade improves to C from D+, 2018.

[139] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler. vdnn:
Virtualized deep neural networks for scalable, memory-efficient neural network
design. In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, Oct 2016.

[140] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[141] SAE International. AUTOMATED DRIVING, Levels of driving automation
are defined in new SAE International standard J3016. http://www.sae.org/

misc/pdfs/automated_driving.pdf, 2014.

[142] E. M. Schau, M. Traverso, and M. Finkbeiner. Life cycle approach to sus-
tainability assessment: a case study of remanufactured alternators. Journal of
Remanufacturing, 2(1):1–14, 2012.

[143] J. Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[144] A. Schmidt, A. K. Dey, A. L. Kun, and W. Spiessl. Automotive user inter-
faces: human computer interaction in the car. In CHI’10 Extended Abstracts
on Human Factors in Computing Systems, pages 3177–3180. ACM, 2010.

[145] Seagate Technology LLC. Seagate Desktop HDD Specification. http://www.

seagate.com/consumer/upgrade/desktop-hdd/\#specs, 2017.

[146] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical flow with seman-
tic segmentation and localized layers. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3889–3898, 2016.

111

[147] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforce-
ment learning for autonomous driving. NIPS Workshop on Learning, Inference
and Control of Multi-Agent Systems, 2016.

[148] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh. From high-level deep neural models to fpgas. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12, Oct 2016.

[149] S. Shi and X. Chu. Speeding up convolutional neural networks by exploiting
the sparsity of rectifier units. arXiv preprint arXiv:1704.07724, 2017.

[150] D. Sirkin, N. Martelaro, M. Johns, and W. Ju. Toward measurement of situation
awareness in autonomous vehicles. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pages 405–415. ACM, 2017.

[151] A. D. Stewart and P. Newman. Laps-localisation using appearance of prior
structure: 6-dof monocular camera localisation using prior pointclouds. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on,
pages 2625–2632. IEEE, 2012.

[152] D. L. Strayer, J. M. Cooper, J. Turrill, J. R. Coleman, and R. J. Hopman. The
smartphone and the drivers cognitive workload: A comparison of apple, google,
and microsofts intelligent personal assistants. Canadian Journal of Experimen-
tal Psychology/Revue canadienne de psychologie expérimentale, 71(2):93, 2017.

[153] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of rgb-d slam systems. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 573–580. IEEE,
2012.

[154] O. Täckström, D. Das, S. Petrov, R. McDonald, and J. Nivre. Token and
type constraints for cross-lingual part-of-speech tagging. Transactions of the
Association for Computational Linguistics, 1:1–12, 2013.

[155] TechCrunch. Intel buys mobileye in $15.3b deal, moves its automotive unit to
israel, 2017.

[156] TechCrunch. Nvidia is powering the world’s first Level 3 self-driving production
car, 2017.

[157] TechCrunch. Waymo reveals completely homegrown sensor suite for Pacifica
autonomous test car, 2017.

[158] Tesla. Full Self-Driving Hardware on All Cars. https://www.tesla.com/

autopilot, 2017.

[159] Tesla Inc. Tesla Autopilot: Full Self-Driving Hardware on All Cars. https:

//www.tesla.com/autopilot, 2017.

112

[160] S. Thorpe, D. Fize, C. Marlot, et al. Speed of processing in the human visual
system. nature, 381(6582):520–522, 1996.

[161] S. Truschin, M. Schermann, S. Goswami, and H. Krcmar. Designing interfaces
for multiple-goal environments: Experimental insights from in-vehicle speech
interfaces. ACM Transactions on Computer-Human Interaction (TOCHI),
21(1):7, 2014.

[162] Udacity. An Open Source Self-Driving Car. https://www.udacity.com/self-
driving-car, 2017.

[163] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers. Finn: A framework for fast, scalable binarized neural network
inference. In Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.

[164] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, et al. Autonomous driving in urban environ-
ments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425–466,
2008.

[165] U.S. Department of Transportation – Federal Highway Administration.
Highway Statistics 2015. https://www.fhwa.dot.gov/policyinformation/

statistics.cfm, 2015.

[166] U.S. Department of Transportation – National Highway Traffic Safety Adminis-
tration. Federal Automated Vehicles Policy: Accelerating the Next Revolution
in Roadway Safety. https://www.transportation.gov/AV, 2017.

[167] Velodyne. Velodyne HDL-64E LiDAR . http://velodynelidar.com/hdl-

64e.html, 2017.

[168] Venturebeat. Google’s speech recognition technology now has a 4.9% word error
rate, 2017.

[169] Waymo. Introducing Waymo’s suite of custom-built, self-driving hardware,
2017.

[170] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems,
pages 2074–2082, 2016.

[171] F. Weng, P. Angkititrakul, E. E. Shriberg, L. Heck, S. Peters, and J. H. Hansen.
Conversational in-vehicle dialog systems: The past, present, and future. IEEE
Signal Processing Magazine, 33(6):49–60, 2016.

[172] F. Weng, S. Varges, B. Raghunathan, F. Ratiu, H. Pon-Barry, B. Lathrop,
Q. Zhang, H. Bratt, T. Scheideck, K. Xu, et al. Chat: A conversational helper
for automotive tasks. In Ninth International Conference on Spoken Language
Processing, 2006.

113

[173] R. W. Wolcott and R. M. Eustice. Visual localization within lidar maps for
automated urban driving. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pages 176–183. IEEE, 2014.

[174] R. W. Wolcott and R. M. Eustice. Fast lidar localization using multiresolu-
tion gaussian mixture maps. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 2814–2821. IEEE, 2015.

[175] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4820–4828, 2016.

[176] F. Xiao and Y. Jae Lee. Video object detection with an aligned spatial-
temporal memory. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 485–501, 2018.

[177] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional
neural networks using energy-aware pruning. arXiv preprint arXiv:1611.05128,
2016.

[178] R. Yazdani, A. Segura, J. M. Arnau, and A. Gonzalez. An ultra low-power
hardware accelerator for automatic speech recognition. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–12, Oct 2016.

[179] Y. C. Yeh. Triple-triple redundant 777 primary flight computer. In Aerospace
Applications Conference, 1996. Proceedings., 1996 IEEE, volume 1, pages 293–
307. IEEE, 1996.

[180] X. Zabulis, H. Baltzakis, and A. A. Argyros. Vision-based hand gesture recog-
nition for human-computer interaction. The universal access handbook, 34:30,
2009.

[181] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong. Caffeine: Towards uni-
formed representation and acceleration for deep convolutional neural networks.
In Computer-Aided Design (ICCAD), 2016 IEEE/ACM International Confer-
ence on, pages 1–8. IEEE, 2016.

[182] J. Zhang and S. Singh. Visual-lidar odometry and mapping: Low-drift, ro-
bust, and fast. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 2174–2181. IEEE, 2015.

[183] W. Zhang, P. Srinivasan, and J. Shi. Discriminative image warping with at-
tribute flow. In CVPR 2011, pages 2393–2400. IEEE, 2011.

[184] X. Zhu, J. Dai, L. Yuan, and Y. Wei. Towards high performance video object
detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7210–7218, 2018.

114

[185] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-guided feature aggregation
for video object detection. In Proceedings of the IEEE International Conference
on Computer Vision, pages 408–417, 2017.

[186] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep feature flow for video
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2349–2358, 2017.

115

