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ABSTRACT

Ion trap is one of the most promising candidates for quantum computing. High-fidelity

gates have been demonstrated in small ion crystals and schemes like ion shuttling have

been proposed for larger systems. This thesis discusses the possibility of direct quantum

computing on a large ion crystal in a Paul trap, without any shuttling of the ions. We

first review a scheme to entangle two ions in a small ion crystal mediated by the collective

phonon modes and analyze the gate errors. The generalization to larger systems is divided

into three parts. (1) We present numerical methods to solve all the normal modes of the ion

crystal, including the micromotion, up to arbitrary precision. The stability of the crystal

under infinitesimal perturbation is ensured when all the normal modes have real frequencies.

For finite disturbance, direct molecular dynamics simulation will be needed; after discussing

some potential problems in the simulation, we give a rule of thumb for the ion crystal to be

stable at a given temperature. (2) We show that when designing an entangling gate between

two nearby ions, all the ions far away can be neglected, so that only a small number of

normal modes are relevant. Similarly, distant entangling gates can be applied in parallel

and the crosstalk is shown to decay cubically with the distance between these gates. (3)

Then we present numerical methods to include the solved micromotion into the design of

the entangling gates efficiently, again up to arbitrary precision. Thus we conclude that the

xxi



design and the implementing of entangling gates are scalable in a large ion crystal. Finally

we consider a near-term application to simulate an all-to-all coupled Ising model in a small

to medium-sized ion crystal.
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Chapter 1

Introduction

Since its birth in the early 20th century, quantum mechanics has dramatically changed

various fields of natural science: from interactions of elementary particles in the microscopic

level with extraordinary precision, to a wide range of phases of matter and their transitions

in the macroscopic level. While deepening our understanding of nature, quantum mechanics

has also contributed significantly to the human society. It is the foundation of new materials

such as semiconductors and superconductors, and new technologies like laser and nuclear

magnetic resonance. Besides, quantum mechanics is fundamentally different in its conception

from classical mechanics, through the phenomena such as superposition and entanglement. It

is widely believed, although not proven yet, that this fact alone can bring out computational

power beyond any machines and protocols based on classical physics. This leads us to the

study of quantum computation.

In order to implement quantum computation, we need a physical system which supports

some basic quantum operations. These operations include [3, 4]:

1. A high-fidelity universal gate set. A common choice of the universal gate set consists
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of single-qubit gates H, S and T , and two-qubit controlled-NOT (CNOT) gate. (See

Sec. 1.1 for more details about these gates.)

2. High-fidelity initialization of the qubits to a certain state, say |0⟩.

3. High-fidelity measurement of the qubits in a certain basis, say the computational basis

of |0⟩ and |1⟩.

Besides, the qubits must have long coherence time such that multiple quantum operations

can be performed before the information is lost. Last but not least, the realization of the

qubit register and these operations must be scalable because for realistic problems we will

need thousands to millions of high-fidelity logical qubits, each of which may require tens

of thousands of faulty physical qubits through the quantum error correction (QEC) process

(see e.g. Ref. [5]).

There are many possible candidates as the platform of quantum computing, like trapped ions

[6, 7], superconducting circuits [8], NV centers [9], quantum dots [10], anyons in topological

systems [11], etc. Each system has its own advantages and disadvantages. For example,

superconducting qubits benefit from the mature micro-fabrication technology of chips for

classical computers, and they can be designed to have strong coupling with each other and

hence short gate time; in comparison, trapped ions have much longer coherence time and

gates can be realized at higher fidelity, but also much more slowly. On the other hand, qubits

based on anyons, a.k.a. topological qubits, are far more difficult to build; but once it is done,

it will have much higher fidelity and hence require much less overhead for error correction.

In this thesis we will focus on the ion trap system, describing the way to realize high-

fidelity quantum gates, the scalability, and its potential near-term applications. In particular,

we consider the possibility of quantum computing on a large ion crystal using direct laser
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control. We will review a scheme for high-fidelity entangling gates in small ion crystals in

Chapter 2, and then generalize it to large crystals in Chapter 3. This generalization will

be divided into the following three parts. (1) The equilibrium configuration and all the

normal modes of the ion crystal, including the micromotion, will be solved up to arbitrary

precision. Once we find an equilibrium configuration with all the normal mode frequencies

being real, its stability under infinitesimal perturbation is guaranteed; for finite disturbance,

direct molecular dynamics simulation will be needed, and we give a rule of thumb for the

ion crystal to be stable at a given temperature. (2) We will show that the design of an

entangling gate between two nearby ions is insensitive to all the ions far away, so that

we only need to consider a small number of normal modes and thus the gate fidelity can

be optimized efficiently. Similarly, distant entangling gates can be applied in parallel and

the crosstalk is shown to decay cubically with the distance between these gates. (3) Finally

numerical methods will be presented to include the solved micromotion into the design of the

entangling gates efficiently, again up to arbitrary precision. After discussing the scalability of

the scheme, we will go back to small to medium-sized ion crystals in Chapter 4 for a potential

near-term application in quantum simulation, using many of the techniques developed in the

previous chapters.

In the remaining of this chapter, some background knowledge will be reviewed about quan-

tum computing and about the ion trap.

1.1 Basics about Quantum Computing

The contents of this section and more details can be found in many textbooks, e.g. Ref. [4].

The basic computational unit of a classical computer is a bit, a system consisting of two
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distinct states which are often labelled as 0 and 1. Its counterpart in quantum computing

is a two-level system called quantum bit (qubit). Mathematically, the (pure) state of a

qubit can be represented by a normalized vector in C2, while that of n qubits by a vector

in the tensor-product space C2n. It is often convenient to use Dirac notation to represent

a quantum state. For example, a qubit state can be denoted as |ψ⟩ = α|0⟩ + β|1⟩, where

|0⟩ and |1⟩ are the two basis vectors of C2 (which is called the computational basis). The

Hermitian conjugate of a state vector |ψ⟩ is represented by reversing the bracket ⟨ψ|; and

putting the two notations together we get the regular matrix multiplication, in this case the

inner product, ⟨ϕ|ψ⟩, which is a c-number describing the projection of one state on the other.

The tensor product of two qubit states is denoted as |ψ⟩A ⊗ |ϕ⟩B, where the subscripts A

and B label the two qubits; often we omit the ⊗ symbol and the subscripts as |ψ⟩|ϕ⟩ while

the labels of the qubits can be inferred from their order.

Coherent evolution of the qubit system, a.k.a. quantum gate, is described by unitary opera-

tors on the state vectors. In Dirac notation, the effect of a unitary operator U on a state |ψ⟩

is simply denoted by U |ψ⟩. Given a basis, the unitary operator U can be represented in the

matrix form, which is often denoted by the same symbol U . Here we show some commonly

used unitary operators. For single-qubit gates, we have three Pauli operators

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 , (1.1)

Hadamard gate

H =
1√
2

 1 1

1 −1

 , (1.2)
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phase gate

S =

 1 0

0 i

 , (1.3)

and π/8 gate

T =

 1 0

0 eiπ/4

 . (1.4)

For two-qubit gates, we have the controlled-NOT (CNOT)

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.5)

As is mentioned earlier, H, S, T and CNOT form a universal gate set, which means that

an arbitrary (multi-qubit) gate can be approximated to arbitrary precision using just these

four types of gates (assuming we can apply these gates on any single qubit or any pair of

two qubits). For example, we have σz = S2 and σx = HσzH. Actually we have S = T 2 so

we only need H, T and CNOT for the universal gate set. The reason why we include S in

the set is that it is relatively easy to implement H, S and CNOT fault-tolerantly, but much

more difficult for T gate. (See e.g. Ref. [4] for more details about fault-tolerant quantum

computing.) Hence it is preferred to compile the desired gate into H, S and CNOT, and use

T gate only when necessary.

In quantum mechanics, observables are represented by Hermitian operators A (A = A†).

The possible values of this observable is given by the eigenvalue λ of A: A|ψλ⟩ = λ|ψλ⟩,
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where the corresponding eigenvector |ψλ⟩ describes the state of the system after the mea-

surement. For quantum computing, usually we consider measurements in the computa-

tional basis. Measurements in the other bases can be converted to the computational basis

through suitable unitary transformations. For an n-qubit state the probability to measure

|x⟩ ≡ |x1⟩|x2⟩ · · · |xn⟩ (x = 0, 1, · · · , 2n− 1 and x1 · · · xn is its binary representation) is given

by |⟨x|ψ⟩|2, and the classical outcome of this measurement is simply the binary string x.

One special and extremely useful example of Hermitian operators is the Hamiltonian H of a

system. The eigenvalues of a time-independent Hamiltonian give the possible energy levels;

and the evolution of the system over time t is governed by a unitary U = e−iHt if we choose

suitable units. For a time-dependent Hamiltonian H(t), the unitary evolution becomes more

complex; and usually this is how we implement a quantum gate on the system. We will see

some examples in the later chapters.

In reality however, the qubit system is unavoidably interacting with the environment and thus

will gradually lose its coherence. Then the state of the system can in general be represented

by a density operator (density matrix) ρ =
∑

i pi|ψi⟩⟨ψi|, which is a mixture of several pure

states (hence it is also called a mixed state) according to a classical probability distribution

{pi} with
∑

i pi = 1. By definition, a density matrix is Hermitian and positive semi-definite,

and has a trace of 1. Accordingly, the evolution of the system is generally described by a

quantum channel, a linear map which converts one density matrix to another. A quantum

channel can always be written in the Kraus form C(ρ) =
∑

k ckρc
†
k where {ck} are linear

operators satisfying a normalization condition
∑

k c
†
kck = I. The probability to find the

state ρ in the computational basis state |x⟩ is now ⟨x|ρ|x⟩.

Since there are unavoidably errors in the preparation and the evolution of the quantum

system, it is desired to have some quantities characterizing the distance between the real
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and the ideal state. One common choice in the experiment is fidelity. Suppose the ideal

state is a pure state |ψ⟩ and the actual state we get is described by a density matrix ρ,

then the fidelity is defined as F = ⟨ψ|ρ|ψ⟩, the probability to find ρ in |ψ⟩ in a projection

measurement. More generally, for two mixed states ρ and σ, the fidelity is defined as

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

. (1.6)

Note that our definition here is different from that in Ref. [4] by a square. Strictly speaking,

fidelity is not a distance measure, because it approaches 1 rather than 0 as the two states get

closer, but it is widely used in the experiments because of its clear meaning of a probability.

We can also use fidelity to characterize the difference between two quantum channels: given

an initial state |ψ⟩, the similarity between two channels C1 and C2 can be described by

F (C1(|ψ⟩⟨ψ|), C2(|ψ⟩⟨ψ|)). This quantity, however, depends on the choice of the initial state.

For a state-independent measure, we can average over all possible pure states

F (C1, C2) =
∫
dψF (C1(|ψ⟩⟨ψ|), C2(|ψ⟩⟨ψ|)), (1.7)

where the integration is over the Fubini-Study measure [12]. For the purpose of quantum

computing, we are mainly interested in the closeness between a quantum channel C and an

ideal unitary operator U . In this case we have [13]

F (C, U) =
∑

j tr[UU
†
jU

†C(Uj)] + d2

d2(d+ 1)
, (1.8)

where d is the dimension of the system and {Uj} is an orthogonal basis for unitary operators

of dimension d with the normalization tr[U †
jUk] = δjkd. For example, if we have n qubits,
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then d = 2n and {Uj} can be chosen as the Pauli basis {I, σx, σy, σz}⊗n.

As a method to characterize the gate errors, fidelity has the advantage that it is relatively easy

to measure in the experiment and also to calculate analytically. However, it underestimates

the effects of coherent errors, such as an over-rotation [14]. In this sense another measure,

diamond norm, is preferred to describe the distance between two channels [15]:

∥C1 − C2∥⋄ ≡ max
|ψ⟩∈HS⊗HA

⟨ψ|ψ⟩=1

∥(∆S ⊗ IA)(|ψ⟩⟨ψ|)∥1 (1.9)

where HS is the system Hilbert space which the two channels act on and HA is an ancilla

Hilbert space which has the same dimension as HS; ∆ ≡ C1 − C2 is the difference of the

two channels and I is the identity channel on the ancilla A; ∥ · ∥1 is the trace norm, which

is defined as the sum of all the singular values of the input argument, i.e. the 1-norm of

the eigenvalues. What is special for the diamond norm is that it makes use of entanglement

between the system and the ancilla. It is usually difficult to derive an analytical expression

for the diamond norm, but given the quantum channels, it can still be computed efficiently

through semi-definite programming [16].

1.2 Ion Trap

Ions are charged microscopic particles. Ions of the same species are identical and usually

have well-studied level structures. The transitions between these levels can be controlled

by laser at very high precision. In order to realize the individual control of the ions as is

required for quantum computing, we want to confine and separate the ions in space. This

is usually done with a confining electromagnetic field; the ions will then naturally form a
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crystal (Wigner crystal) at low temperature due to their Coulomb repulsion. Paul trap is one

such method to capture ions with radio-frequency (RF) electric field [17]. It is popular for

quantum computing because it can produce a static crystal (with possibly small oscillations

around the equilibrium positions which will be specified below) as compared to the Penning

trap where ions are constantly rotating [18].

1.2.1 Trapping Potential and Equation of Motion

Earnshaw’s theorem tells us that a static electric field in vacuum cannot confine a charged

particle in all three directions in space (see e.g. Ref. [19]). Paul trap comes from the idea that

if the electric field is oscillating in its directions such that the ions feel alternating focusing

and defocusing forces, on average there can be a confining field in all directions.

Near the center of the trap, we can expand the electric potential to the quadratic terms [20]

Φ =
1

2

(
αx2 + βy2 + γz2

)
U +

1

2

(
α′x2 + β′y2 + γ′z2

)
Ũ cosωrft, (1.10)

where we assume that the static and the RF fields have their principle axes aligned in the

same directions.

Suppose we have N identical ions inside the trap, and the ion has electric charge Ze where

e > 0 is the elementary charge. Let us define dimensionless parameters

ax =
4ZeUα

mω2
rf

, (1.11)

qx = −
2ZeŨα′

mω2
rf

. (1.12)
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We further use dimensionless time and spatial coordinates with time unit T = 2/ωrf and

length unit L = (Z2e2/4πϵ0mω
2
rf)

1/3. Then we get the dimensionless equation of motion

(EOM):

d2xi
dt2

+ (ax − 2qx cos 2t)xi − 4
∑
j ̸=i

xi − xj
[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]

3
2

= 0, (1.13)

and similar expressions for y and z directions. Here i = 1, 2, · · · , N corresponds to each ion.

For convenience, we can write these trapping parameters into vector forms: a = (a1, a2, a3)

and q = (q1, q2, q3), with the subscript 1, 2, 3 corresponding to the x, y and z directions.

Note that the divergence of the trapping electric field is zero, so
∑

i ai = 0 and
∑

i qi = 0.

If N = 1 the Coulomb interaction term in the above equation is omitted and we recover the

standard form of Mathieu equation [21]. For certain values of ai and qi, Mathieu equation

has quasi-periodic solutions, which means the trapping in this direction is stable. These

conditions together give the stability region of a single ion in the Paul trap. As an example we

consider a linear Paul trap with trapping parameters a = (−a, −a, 2a) and q = (q, −q, 0).

Its stability region is shown in Fig. 1.1

In the limit of small a and q, the alternating field can be approximated by a static pseudo-

potential [22], which has the form of a harmonic trap with trapping frequencies ωx, ωy and

ωz. To the lowest order, we have ωi ≈
√
ai + q2i /2 [20] with the frequency unit ωrf/2. The

equilibrium positions of the ions can then be computed by minimizing the potential energy

using for example the Newton’s method [23]. When q is not a small parameter, there will

be non-negligible oscillations in ions’ equilibrium configuration at the RF frequency, a.k.a.

micromotion. We will describe how to compute these periodic trajectories as well as the

small oscillations around them in Chapter 3.
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Figure 1.1: Stability region of a single ion in the Paul trap with trapping parameters a =
(−a, −a, 2a) and q = (q, −q, 0). The stability region extends to the upper right direction,
but for ion trap quantum computing we are mainly interested in the region of q ≪ 1. Another
symmetric region exists for negative q, but a must be positive.
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1.2.2 Cooling and Heating

A realistic ion trap has a finite potential depth, hence some cooling mechanism is needed to

reduce the kinetic energy of the ions such that they can be held in the trap. It is usually

realized by Doppler cooling through a red-detuned laser beam to a cyclic transition of the

ion [20]. Consider two levels |g⟩ and |e⟩ of the ion (not necessarily the qubit levels) with a

transition frequency ω0 = (Ee − Eg)/~ and a laser beam with frequency ω and wave vector

k in the lab frame. If the ion is moving at the velocity of v, the frequency of the laser will

be ω − k · v in the frame of the ion due to the Doppler effect. The Hamiltonian of the ion

(in a rotating frame) can be written as [24]

H = ~
∆− k · v

2
σz + ~

Ω

2
σx, (1.14)

where ∆ ≡ ω − ω0 is the detuning of the laser and Ω is the Rabi frequency.

Next we include the spontaneous emission of the excited state. The evolution of the density

matrix of the ion is now governed by a master equation [25]

ρ̇ = − i
~
[H, ρ] +

Γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (1.15)

where Γ describe the spontaneous emission rate, σ+ converts |g⟩ to |e⟩ and σ− from |e⟩

to |g⟩. Strictly speaking, each transition between the two levels is accompanied with the

absorption or emission of a photon and hence an exchange of momentum between the ion

and the electromagnetic field. However, here we will assume that the Doppler cooling is a

slow process such that the internal levels of the ion can reach a stable state at each velocity,

and then the occupation of the excited state gives the rate of exchange of momentum, which
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in turn tells us how the velocity of the ion changes. Note that this assumption is no longer

true when we consider the micromotion, which is at a frequency comparable to the absorption

and emission of the photons.

Written in the component form, the evolution of the density matrix is governed by

ρ̇gg = i
Ω

2
ρge − i

Ω

2
ρeg + Γρee, (1.16)

ρ̇ee = −i
Ω

2
ρge + i

Ω

2
ρeg − Γρee, (1.17)

ρ̇ge =

[
−Γ

2
− i(∆− k · v)

]
ρge + i

Ω

2
ρgg − i

Ω

2
ρee, (1.18)

ρ̇eg =

[
−Γ

2
+ i(∆− k · v)

]
ρge − i

Ω

2
ρgg + i

Ω

2
ρee. (1.19)

As is mentioned above, we solve the stable solution for a slowly varying velocity v by setting

all the time derivatives to zero. Then we recover the Eq. (99) of Ref. [20]:

ρee =
s/2

1 + s+ 4(∆− k · v)2/Γ2
, (1.20)

where s = 2Ω2/Γ2. The number of scattered photons per unit time is given by Γρee. During

one cycle of absorption and emission of photons, the average momentum change of the ion

is simply ~k because the spontaneous emission is random in its direction; thus we get an

effective force of ~Γρeek on the ion. In the limit of small velocity, this force can be linearized

as [20]

F (v) = F0(1 + κk · v/Γ), (1.21)

where

F0 = ~kΓ
s/2

1 + s+ 4∆2/Γ2
(1.22)
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and

κ =
8∆/Γ

1 + s+ 4∆2/Γ2
. (1.23)

F0 simply shifts the equilibrium position of the ion in the trap, while the additional velocity-

dependent term gives the damping of the ion along the direction of the laser beam (assume

∆ < 0). In the experiment, the direction of the laser is chosen to be at an angle to all the

three principle axes of the trap, thus the motion in all these directions can be cooled.

Doppler cooling, however, cannot lead to arbitrarily low temperature, due to the randomness

in the absorption and emission of the photons. It can be shown that the minimum tempera-

ture is of the order kBT ∼ ~Γ [20]. To further lower the temperature, other techniques such

as sideband cooling are needed. However, as we will see in the following chapters, ground-

state cooling is not necessary for quantum gates in ion trap, although low temperature will

definitely improve the gate fidelity.

As is mentioned, the above arguments no longer hold if the micromotion is included. This

effect was studied in Refs. [25, 26], and it can be understood qualitatively as follows: the

micromotion produces an additional sideband structure at the shifted frequencies of nωrf

(n = 0,±1,±2, · · · ), thus if the laser frequency is close to one sideband, the detuning ∆

in the above equations should be replaced by the detuning to that sideband. Therefore

a blue-detuned laser beam can still lead to cooling if it is closely red-detuned to a higher

sideband, and vice versa for a red-detuned laser beam. In Chapter 3 we will consider the

simulation of the classical motion of the ions. There we will take a different approach by

modelling the scattering of the photons semiclassically using the quantum trajectory method

(see Sec. 3.1.4).

Once we get an ion crystal at low temperature, we need to turn off the cooling lasers to
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apply the gates. During this process, however, the ions are subjected to the heating from

their environment. Typical heating sources are the electric noise on the electrodes and the

collision with background neutral atoms. Usually the electric noise is at a long wavelength

compared with the ion separations and hence it mainly heats the center-of-mass mode of the

crystal. This knowledge can help us to estimate the effect of heating on the gate performance

in Chapter 2.

The collision rate of the ions with the background gases is proportional to the pressure

of the gases, and the kinetic energy of these atoms or molecules are proportional to the

environmental temperature. Thus this heating rate can be reduced by improving the quality

of the vacuum chamber or by placing the chamber into a refrigerator: it is not a fundamental

limit for ion trap. Besides, remaining gases in the vacuum chamber are dominated by light

molecules such as hydrogen [27]. Therefore only a small fraction of their kinetic energies can

be transferred to the heavy ions (suppose we use 171Yb+ ions) in an elastic collision. Actually,

Ref. [27] computes the elastic collision rate to be γelastic = 0.132/s at the pressure of 5 nPa

and the temperature of 300K, and the inelastic Langevin collision rate γLangevin = 0.006/s.

Ref. [28] observes an average lifetime of about 5 min for a 53-ion chain and in rare cases

even up to 30 min. Therefore this heating source shall not be a significant problem during

the operation of the entangling gates, which is typically of the order 10−4 s (see Chapter 2).

However, note that the collision rate is also proportional to the number of ions, so as we use

more and more ions it may finally become an important source of error.
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1.2.3 Raman Transition

For some ions commonly used for quantum computing such as 171Yb+, 9Be+ and 43Ca+, the

qubit levels are chosen to be two hyperfine ground states [29–32]. The advantage is a very

long lifetime of the qubit, but these two levels are not directly coupled by an electric dipole

transition and furthermore the transition is not at a typical laser frequency. To control the

qubit states, we need two laser beams on the ion with a third ancilla level: this process is

known as Raman transition [24].

Let us denote the two qubit levels as |0⟩ and |1⟩, and the ancilla level as |e⟩ (see Fig. 1.2).

Define the transition frequency between |0⟩ and |1⟩ as ω01 = (E1 − E0)/~ and similarly for

ω0e and ω1e. These levels are coupled by two off-resonant laser beams at the frequencies of

ω1 and ω2 with the Rabi frequencies Ω1 and Ω2.

|0〉

|1〉

|e〉
∆ = ω1 − ω0e

δ = ω1 − ω2 − ω01

ω1, Ω1

ω2, Ω2

Figure 1.2: Schematic diagram of the three levels and the two Raman beams. (From Ref. [1],
c⃝2018 American Physical Society.)

The Hamiltonian of the system (after rotating wave approximation) is

H =~ω01|1⟩⟨1|+ ~ω0e|e⟩⟨e|+ ~
(
Ω1

2
e−iω1t|e⟩⟨0|+ Ω∗

1

2
eiω1t|0⟩⟨e|

)
+ ~

(
Ω2

2
e−iω2t|e⟩⟨1|+ Ω∗

2

2
eiω2t|1⟩⟨e|

)
. (1.24)
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Define ∆ ≡ ω1 − ω0e, δ ≡ ω1 − ω2 − ω01. Now we move to an interaction picture [33] with

H0 = ~(ω1 − ω2)|1⟩⟨1|+ ~ω0e|e⟩⟨e| (1.25)

and get the interaction Hamiltonian

HI = −~δ|1⟩⟨1|+ ~
(
Ω1

2
|e⟩⟨0|e−i∆t + h.c.

)
+ ~

(
Ω2

2
|e⟩⟨1|e−i∆t + h.c.

)
. (1.26)

This Hamiltonian fits exactly into the framework of Ref. [34], and we can get an effective

time-independent Hamiltonian

Heff =− ~δ|1⟩⟨1|+ ~
|Ω1|2

4∆
(|0⟩⟨0| − |e⟩⟨e|) + ~

|Ω2|2

4(∆− δ)
(|1⟩⟨1| − |e⟩⟨e|)

+ ~
1

4(∆− δ/2)
(Ω1Ω

∗
2|1⟩⟨0|+ Ω∗

1Ω2|0⟩⟨1|) , (1.27)

with the relative error of the order O(δ2/∆2), and a time-dependent modulation of the order

O(|Ω1(2)|/|∆|):

K(t) =
i

2∆

(
Ω1|e⟩⟨0|e−i∆t − Ω∗

1|0⟩⟨e|ei∆t
)
+

i

2(∆− δ)
(
Ω2|e⟩⟨1|e−i∆t − Ω∗

2|1⟩⟨e|ei∆t
)
. (1.28)

The complete time evolution from t1 to t2 is governed by

U(t2, t1) = e−iK(t2)e−iHeff(t2−t1)eiK(t1). (1.29)

Assuming |∆| ≫ |Ω1|, |Ω2|, δ, the error terms and the time-dependent modulation can be

neglected. The second and third terms of the above effective Hamiltonian give the AC Stark

17



shift of the levels due to the off-resonant driving [24, 30]; while the first and the last terms

describe the effective coupling between the two qubit levels |0⟩ and |1⟩. Specifically, it is a

coupling term with detuning δ (and small corrections due to the level shifts) and effective

Rabi frequency Ωeff = Ω1Ω
∗
2/2(∆− δ/2) ≈ Ω1Ω

∗
2/2∆.
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Chapter 2

Entangling Gates in Ion Trap

In this chapter we will study how the entangling gates can be realized in ion trap with

high fidelity. It is mainly based on the author’s published paper [1]. In Sec. 2.1 we review

a commonly used scheme to realize the XX entangling gate between any pair of ions in a

small to medium-sized ion crystal. We will describe the scheme for a 1D ion chain, but the

generalization to 2D or 3D is not difficult and will be discussed further in Chapter 3. Then

in Sec. 2.2 we discuss the robustness of the gate under fluctuation in gate parameters and

estimate the errors from the approximations in the formulation and the neglected physical

effects. To give a concrete example, we optimize the gate design for several ion pairs in a

linear chain of 19 171Yb+ ions, which is about the size of the current experimental platform

for the demonstration of a logic qubit.

2.1 Entanglement through Collective Phonon Modes

For a small number of ions, one scheme to realize the entangling gate, known as the Molmer-

Sorensen (MS) gate, has been proposed for two decades [35]. It utilizes a single phonon
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mode of the ion crystal, typically the center-of-mass mode, to mediate a coupling between

two ions’ internal states, which is insensitive to the phonon number. However, as the number

of ions increases, the motion of the ion crystal becomes progressively more complex and the

crosstalk among different collective modes can lead to errors in the quantum gate [36]. A

straightforward approach to suppress this crosstalk is to weaken the laser driving, but at

the cost of increasing the gate time with the number of ions. One possible solution is to use

an architecture called the quantum charge-coupled device [37–39], where entanglements are

first generated in individual zones and are then distributed to other regions by a classical ion

shuttling technique. Such a shuttling, however, demands exquisite control of ion positions.

Here we will focus on a different approach, where all the collective modes are utilized to

perform optimized entangling gates [40]. In this way, the existence of multiple phonon

modes is no longer a source of error. One can then use amplitude or frequency modulations

to optimize the gate performance.

In this chapter we will consider a linear ion chain and utilize the normal modes in the

transverse direction. The formulation also holds for a 2D ion crystal with small correction

due to the micromotion [41]. We will consider 3D crystals in the next chapter, where the

role of micromotion is more important.

2.1.1 Equilibrium Positions and Transverse Modes

Consider N ions in a linear Paul trap along the z axis. A suitable quartic potential can be

applied in the z direction through external electrodes, making the spacings of ions nearly

uniform [42]. This can make the ion structure more stable against the zigzag shape and it

will also produce a narrower transverse phonon spectrum, allowing more efficient cooling and
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control. For typical experimental parameters, the micromotion is small and can be neglected

for 1D ion chain in a linear Paul trap. Then we can calculate the equilibrium configuration

as well as the collective oscillation modes by effectively treating the trap as a static pseudo-

potential. An estimation for the introduced error can be found in Sec. 2.2.2 and a more

general consideration of micromotion can be found in Chapter 3.

Therefore we consider the following potential energy

U =
∑
i

(
−1

2
α2z

2
i +

1

4
α4z

4
i

)
+
∑
i<j

e2

4πϵ0 |zi − zj|
(2.1)

with α2, α4 > 0. By defining the length unit l0 ≡ (e2/4πϵ0α2)
1/3, dimensionless coordinate

ui ≡ zi/l0 and dimensionless potential energy V ≡ 4πϵ0l0U/e
2, we get

V =
∑
i

(
−1

2
u2i +

1

4
γ4u

4
i

)
+

1

2

∑
i̸=j

1

|ui − uj|
, (2.2)

where γ4 ≡ α4l
2
0/α2 is a dimensionless constant which completely determines the shape of the

equilibrium configuration. For a given number of ions and γ4, we can minimize the potential

energy to find the equilibrium positions using Newton’s method [23], with the gradient and

the Hessian matrix of the potential energy given by

∂V

∂um
= −um + γ4u

3
m −

∑
j ̸=m

um − uj
|um − uj|3

, (2.3)

∂2V

∂u2m
= −1 + 3γ4u

2
m +

∑
j ̸=m

2

|um − uj|3
, (2.4)

∂2V

∂um∂un
= − 2

|um − un|3
(m ̸= n). (2.5)
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For the example we use in Sec. 2.2 (17 ions for computation and 2 auxiliary ions at the ends),

we adjust γ4 to minimize the relative standard deviation (RSD) for the spacings of the 17

computing ions. γ4 = 4.3 is found to give a minimal RSD of only 2.3%; in comparison, a

harmonic trap gives rise to an RSD of 11.2% (see Fig. 2.1).

-80 -60 -40 -20 0 20 40 60 80

-80 -60 -40 -20 0 20 40 60 80

(a)

(b)

Figure 2.1: (a) Equilibrium positions for an anharmonic trap potential with γ4 = 4.3 and
l0 = 40 (arbitrary unit). (b) Equilibrium positions for a harmonic trap potential that can
produce the same average ion spacing. (From Ref. [1], c⃝2018 American Physical Society.)

After finding the equilibrium positions {u(0)i } along the axial z direction, we further consider

the normal modes by expanding the complete expression of the potential energy

U =
∑
i

(
−1

2
α2z

2
i +

1

4
α4z

4
i +

1

2
mω2

xx
2
i +

1

2
mω2

yy
2
i

)
+

e2

4πϵ0

∑
i<j

1

|ri − rj|
(2.6)

around the equilibrium positions x(0)i = y
(0)
i = 0, z(0)i = l0u

(0)
i . The Taylor series up to the

second order is given by:

U = U0 +
1

2

∑
i,j,α,β

∂2U

∂ri,α∂rj,β

∣∣∣∣∣
ri,α=r

(0)
i,α

×
(
ri,α − r(0)i,α

)(
rj,β − r(0)j,β

)
+ · · · (2.7)

where α, β = 1, 2, 3 correspond to the three Cartesian coordinates, while i, j = 1, 2, · · · , N

correspond to each ion. Since we are only interested in small oscillations around the equi-
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librium configuration, the quadratic term in the expansion suffices to describe the motion,

which is separable in the x, y and z directions. The nonlinear effect of the higher order

interaction is briefly discussed in Sec. 2.2.2. Here we only consider the transverse motion in

the x direction, while the modes in the y and z directions can be obtained in a similar way.

Define zij ≡ |z(0)i − z
(0)
j |. At the equilibrium positions we have

∂2U

∂x2m
= mω2

x −
e2

4πϵ0

∑
j ̸=m

1

z3mj
, (2.8)

∂2U

∂xm∂xn
=

e2

4πϵ0

1

z3mn
(m ̸= n). (2.9)

We can then diagonalize this matrix to find the normal modes of the transverse motion,

with the k-th normalized mode vector denoted by bkj (j = 1, 2, · · · , N). These modes can

be quantized to give the phonon Hamiltonian.

2.1.2 Hamiltonian and Time Evolution Operator

We start from a three-level approximation of the ion’s level structure (Fig. 1.2). Later we

will adiabatically eliminate the excited state to attain the two-level approximation. The free

Hamiltonian of this system is

H = ~
N∑
i=1

(ω01|1⟩i⟨1|+ ω0e|e⟩i⟨e|) + ~
∑
k

ωka
†
kak, (2.10)

where ~ω01 ≡ E1 − E0 is the energy difference between |0⟩ and |1⟩ (typically two hyperfine

“clock” states of the ion [29–32]) and ~ω0e ≡ Ee−E0 is the energy splitting between |0⟩ and

an excited state |e⟩. ωk is the frequency of the k-th phonon mode, with the corresponding
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annihilation (creation) operator ak (a†k).

For simplicity, let us first consider one ion, say ion j, in the chain of N ions. Suppose two

beams of laser (with frequencies and wave vectors ωi, ki, i = 1, 2) are shined on the ion

to off-resonantly couple states |0⟩ and |e⟩, and |1⟩ and |e⟩, with Rabi frequencies Ω1(t) and

Ω2(t) respectively (see Fig. 1.2). This corresponds to the following coupling Hamiltonian

H ′ =~Ω1 cos (k1 · rj − ω1t− φ1) (|0⟩j⟨e|+ |e⟩j⟨0|)

+ ~Ω2 cos (k2 · rj − ω2t− φ2) (|1⟩j⟨e|+ |e⟩j⟨1|) , (2.11)

where Ω1 and Ω2 are chosen to be real. The time dependence of the Rabi frequency has

been omitted for convenience. Following the step of Sec. 1.2.3 we define ∆ ≡ ω1−ω0e as the

single-photon detuning and δ ≡ ω1 − ω2 − ω01 as the two-photon detuning. Here we assume

|δ| ≪ ω01 so that we can neglect other two-photon processes between |0⟩ and |1⟩.

Now we perform a unitary transformation characterized by U = exp(−iH0t/~) with

H0 = ~
∑
i̸=j

(ω01|1⟩i⟨1|+ ω0e|e⟩i⟨e|) + ~
∑
k

ωka
†
kak + ~ (ω01|1⟩j⟨1|+ ω1|e⟩j⟨e|) . (2.12)

Then the Hamiltonian in the transformed frame, a.k.a. the Hamiltonian in the interaction

picture [33], is given by

HI =U
†HU + i

∂U †

∂t
U

=− ~∆|e⟩j⟨e|+
~Ω1

2

{
|e⟩j⟨0|ei[k1·rj(t)−φ1] + h.c.

}
+

~Ω2

2

{
|e⟩j⟨1|ei[k2·rj(t)−φ2+δ·t] + h.c.

}
, (2.13)
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where rj(t) is the position operator of ion j at time t, under the free evolution of the

collective phonon modes. Here we have made the rotating wave approximation (RWA) with

the requirement |δ|, |Ω1|, |Ω2| ≪ ω1, ω2.

Assume |∆| ≫ |δ|, |Ω1|, |Ω2|, γe so that the excited state can be adiabatically eliminated,

where γe is the spontaneous emission rate of the excited state. This describes a Raman

transition between the state |0⟩j and |1⟩j (see Sec. 1.2.3). The effective coupling is given by

H
(eff)
I = ~

Ω1Ω2

4∆
e−i[∆k·rj(t)−δ·t−∆φ]|0⟩j⟨1|+ h.c. (2.14)

where ∆k ≡ k1−k2, ∆φ ≡ φ1−φ2. The states |0⟩ and |1⟩ are coupled by an effective Rabi

frequency Ω
(eff)
j ≡ Ω1Ω2/2∆. Later, for simplicity, we drop the superscript and denote the

effective Rabi frequency on ion j by Ωj.

The laser also produces AC Stark shift on the two levels. By suitably choosing the relative

intensity of the two laser beams and the detuning ∆ with respect to the excited states, we

can make the shifts on the two levels nearly the same [7, 43]. We will discuss more about

this effect in Sec. 2.2.

This effective coupling depends on the relative phase of the two laser beams and therefore

the fluctuation on their paths. This problem can be solved by adding a third laser beam to

form two pairs of Raman transitions, with detuning δ = ±µ and wave vector difference ±∆k

along the x direction (see Fig. 2.2). This is known as the phase-insensitive geometry [44].

We will also briefly discuss the relevance to the phase-sensitive geometry at the end of this

subsection.

The effective Rabi frequencies of both pairs are chosen to be Ωj. Here we assume ω01 ≪

ω1, ω2, ω3, so that ∆k is nearly the same for both pairs, with a relative error of the order
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ω1

ω2 = ω1 − ω01 µ

ω3 = ω1 + ω01 µ
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Figure 2.2: (a) Schematic experimental setup. Three beams are shined on the ion, with one
beam in the direction of k1 and the other two red- and blue-detuned beams in the direction
of k2. (b) Schematic energy levels and the two pairs of Raman transitions. (From Ref. [1],
c⃝2018 American Physical Society.)

ω01/ω1. Suppose the initial phase differences for the two pairs are ∆φb ≡ φ1 − φ2 and

∆φr ≡ φ3 − φ1. Then the total interaction Hamiltonian can be written as

H
(eff)
I =

~Ωj

2

[
e−i∆k·xj(t)eiµtei∆φb + ei∆k·xj(t)e−iµtei∆φr

]
|0⟩j⟨1|+ h.c.

=
~Ωj

2

[
e−i∆k·xj(t)eiµteiφ

(m)
j eiφ

(s)
j + ei∆k·xj(t)e−iµte−iφ

(m)
j eiφ

(s)
j

]
|0⟩j⟨1|+ h.c.

= ~Ωj cos
[
µt+ φ

(m)
j −∆k · xj(t)

] (
eiφ

(s)
j |0⟩j⟨1|+ e−iφ

(s)
j |1⟩j⟨0|

)
= ~Ωj cos

[
µt+ φ

(m)
j −∆k · xj(t)

] (
σxj cosφ

(s)
j − σ

y
j sinφ

(s)
j

)
, (2.15)
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where φ(m)
j ≡ (∆φb −∆φr)/2 and φ(s)

j ≡ (∆φb +∆φr)/2 are called the motional phase and

the spin phase [44]. The subscript j is used to show that these phases pertain to ion j.

Small fluctuation in beams’ paths causes opposite changes in ∆φb and ∆φr, so φ(s)
j is robust

against fluctuation. On the other hand, φ(m)
j does change, but it can be quite stable during

one gate time. As we will show later, the gate fidelity is not sensitive to a constant φ(m)
j so

long as the phase is the same for both ions. Finally we will choose φ(m)
j = 0 and φ

(s)
j = 0,

but for the moment let us keep them in the formulae for completeness.

We further define σnj ≡ σxj cosφ
(s)
j −σ

y
j sinφ

(s)
j to simplify and drop the superscript on H(eff)

I :

HI = ~Ωj(t) cos
[
µt+ φ

(m)
j −∆k · xj(t)

]
σnj . (2.16)

As we have seen in Sec. 2.1.1, for the linear ion chain the small oscillations along x, y, z

directions are separable and the transverse motion of ion j can be quantized as

xj(t) =
∑
k

bkj

√
~

2mωk

(
ake

−iωkt + a†ke
iωkt
)
, (2.17)

where bkj (j = 1, 2, · · · , N) characterizes the k-th normalized mode vector of the collective

oscillation. The summation over k is limited to the transverse modes along the x direction.

(In Chapter 3 we will consider general 3D ion crystal, where the motions are no longer

separable in the three spatial directions. Then we need to sum over all the 3N normal

modes and project them onto the direction of ∆k.)

With the Lamb-Dicke parameter ηk ≡ ∆k
√

~/2mωk, we get

HI = ~Ωjσ
n
j cos

[
µt+ φ

(m)
j −

∑
k

ηkb
k
j

(
ake

−iωkt + a†ke
iωkt
)]
. (2.18)
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We can expand this expression according to the power of ηk:

HI =~Ωj

[
cos
(
µt+ φ

(m)
j

)
+ sin

(
µt+ φ

(m)
j

)∑
k

ηkb
k
j

(
ake

−iωkt + a†ke
iωkt
)

− 1

2
cos
(
µt+ φ

(m)
j

)
×
∑
k

∑
l

ηkηlb
k
j b
l
j

(
ake

−iωkt + a†ke
iωkt
)(

ale
−iωlt + a†l e

iωlt
)]

σnj +O(η3k). (2.19)

The zeroth order term is a single-qubit operation and commutes with other terms. So we

can drop it now and apply a single-qubit rotation after the entangling gate to compensate

its effect. Actually for the examples considered in Sec. 2.2, we will show that such a com-

pensation is unnecessary. Here we keep terms up to the second order, but we will show later

that the error in the fidelity is of the order O(η4k).

When the lasers are shined on two ions, we get the interaction-picture Hamiltonian

HI =
∑
j=j1,j2

∑
k

χj(t)ηkb
k
j

(
ake

−iωkt + a†ke
iωkt
)
σnj

− 1

2

∑
j=j1,j2

∑
k

∑
l

θj(t)ηkηlb
k
j b
l
j

(
ake

−iωkt + a†ke
iωkt
)(

ale
−iωlt + a†l e

iωlt
)
σnj , (2.20)

where the summation of j is over the two ions and

χj(t) ≡ ~Ωj sin
(
µt+ φ

(m)
j

)
, (2.21)

θj(t) ≡ ~Ωj cos
(
µt+ φ

(m)
j

)
. (2.22)
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Unitary evolution in the interaction picture is obtained by the Magnus expansion [45]

UI(τ) ≈ exp

(
i
∑
j

[ϕj(τ) + ψj(τ)]σ
n
j + i

∑
i<j

Θij(τ)σ
n
i σ

n
j

)
, (2.23)

where

ϕj(τ) = −i
∑
k

[
αkj (τ)a

†
k − α

k
j

∗
(τ)ak

]
, (2.24)

αkj (τ) = −
i

~
ηkb

k
j

∫ τ

0

χj(t)e
iωktdt, (2.25)

and

ψj(τ) =
∑
k

λkj (τ)

(
a†kak +

1

2

)
, (2.26)

λkj (τ) =
1

~
(
ηkb

k
j

)2 ∫ τ

0

θj(t)dt (2.27)

describe the coupling between the spin and phonon modes, and

Θij(τ) =
1

~2
∑
k

η2kb
k
i b
k
j

∫ τ

0

dt1

∫ t1

0

dt2 [χi(t1)χj(t2) + χj(t1)χi(t2)] sin [ωk(t1 − t2)] (2.28)

is the coupling between the two spins. Roughly speaking, the ϕj terms are displacement

operations on the phonon modes conditioned on the spin state of each ion, and the ψj terms

are single-spin rotations conditioned on the phonon numbers of each mode. We need to

suppress these terms while maintain a large spin-spin coupling to realize the entangling gate.

Here again we keep terms up to the second order in ηk and retain only diagonal terms in

ψj(τ) [Eq. (2.26)]. An error analysis will be performed in Sec. 2.2.2. In the above derivation

we have also dropped a global phase, which has no effect on the entangling gate.

If the effective Rabi frequencies of the laser beams on the two ions are always proportional,
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e.g. when the lasers come from a single beam through a beam splitter, the expression of Θij

can be simplified as

Θij(τ) =
2

~2
∑
k

η2kb
k
i b
k
j

∫ τ

0

dt1

∫ t1

0

dt2χi(t1)χj(t2) sin [ωk(t1 − t2)] . (2.29)

In this way we recover Eq. (2) of Ref. [40].

In the above derivation we assumed a phase-insensitive laser configuration. It is also pos-

sible to use the phase-sensitive geometry for the entangling gate with the spin phase being

cancelled by a Ramsey-like gate design [32, 44]. In this case, we choose ∆k to be the same

for the two Raman transitions, then instead of Eq. (2.19) we get

H ′
I =~Ωj cos

(
µt+ φ

(m)
j

)[
σnj − σ⊥

j

∑
k

ηkb
k
j

(
ake

−iωkt + a†ke
iωkt
)

− 1

2
σnj
∑
k

∑
l

ηkηlb
k
j b
l
j

(
ake

−iωkt + a†ke
iωkt
)(

ale
−iωlt + a†l e

iωlt
)]

+O(η3k) (2.30)

where σ⊥
j ≡ σxj sinφ

(s)
j + σyj cosφ

(s)
j is orthogonal to σnj ≡ σxj cosφ

(s)
j − σ

y
j sinφ

(s)
j . Also note

that here φ(s)
j is sensitive to fluctuation in the paths of the laser beams while φ(m)

j is not.

Because σ⊥
j anti-commutes with σnj , a direct Magnus expansion as before will give us infinitely

many terms even if we truncate at the first order of ηk due to the carrier term. Instead, we

can move into a new interaction picture with H ′
0 = ~Ωj cos(µt+φ

(m)
j )σnj , which will leave the

second order σnj term unchanged but turn the first order σ⊥
j term into a combination of σ⊥

j

and σz. Then similar derivation can be made, although the expressions are more complex.

Note that for previous experiments with only a few ions, usually Ωj ≪ µ is satisfied [32] so

that the correction term of σz will be small. However, for a larger ion crystal we may want

to increase the laser intensity to shorten the gate time. Actually for the example we consider
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in Sec. 2.2, Ωj is only about a factor of 3 smaller than µ, so the correction term may not

be negligible. Nevertheless, many other error analyses in Sec. 2.2 should still work for the

phase-sensitive setup.

2.1.3 XX Entangling Gate and Fidelity

If αkj (τ) = 0 [Eq. (2.25)] and λkj (τ) = 0 [Eq. (2.27)] for all the modes and both of the ions,

φ
(s)
j = 0 for both ions, and Θij = π/4 for the ion pair of interest, i and j, the time evolution

operator will be an ideal XX entangling gate. In the basis of |+⟩i|+⟩j, |+⟩i|−⟩j, |−⟩i|+⟩j

and |−⟩i|−⟩j where |±⟩ = 1√
2
(|0⟩ ± |1⟩), we have

Uideal = eiπσ
x
i σ

x
j /4 =



eiπ/4 0 0 0

0 e−iπ/4 0 0

0 0 e−iπ/4 0

0 0 0 eiπ/4


. (2.31)

The subscript ij and the dependence on τ have been dropped. This gate is equivalent to the

CNOT gate described in Sec. 1.1 up to single qubit gates, e.g.

CNOT = (I1 ⊗H2)(S1 ⊗ S2)(H1 ⊗H2)e
iπσx

i σ
x
j /4(H1 ⊗ I2) (2.32)

where we have thrown away an irrelevant global phase. Note that to compare these two

gates we need to use the same basis, say, the computational basis.

If the initial internal state is |Ψ0⟩ and the vibrational modes are in the thermal state ρth

with a temperature T , the ideal final state is Uideal|Ψ0⟩, while the actual state we get is
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ρ = trm[U |Ψ0⟩⟨Ψ0| ⊗ ρthU †] (neglecting all the other decoherence during the gate), where U

is given by Eq. (2.23) and trm means the partial trace over all the motional modes. Then we

can use average gate fidelity to characterize the similarity between U and Uideal (see Sec. 1.1).

For the moment we assume the spin phases φ(s)
j = 0 for the two ions, i.e. n̂ = x̂, σnj = σxj .

Later we will discuss the effects of nonzero spin phases in Sec. 2.2.1.

Let us express U in the above basis:

U =



eiΦ00 0 0 0

0 eiΦ01 0 0

0 0 eiΦ10 0

0 0 0 eiΦ11


, (2.33)

where Φ00 = ϕi+ψi+ϕj+ψj+Θij, Φ01 = ϕi+ψi−ϕj−ψj−Θij, Φ10 = −ϕi−ψi+ϕj+ψj−Θij,

Φ11 = −ϕi−ψi− ϕj −ψj +Θij [see Eq. (2.23) for their definitions] are the phases gained by

the |+⟩i|+⟩j, |+⟩i|−⟩j, |−⟩i|+⟩j, |−⟩i|−⟩j states, respectively. Note that they are actually

operators in the subspace of phonon modes.

Accurate up to second order diagonal terms in ηk, we have

eiΦ00 ≈eiΘij

∏
k

Dk

(
αki (τ) + αkj (τ)

){
1 + i

∑
l

[
λli(τ) + λlj(τ)

](
a†lal +

1

2

)}
, (2.34)

eiΦ01 ≈e−iΘij

∏
k

Dk

(
αki (τ)− αkj (τ)

){
1 + i

∑
l

[
λli(τ)− λlj(τ)

](
a†lal +

1

2

)}
, (2.35)

eiΦ10 ≈e−iΘij

∏
k

Dk

(
−αki (τ) + αkj (τ)

){
1− i

∑
l

[
λli(τ)− λlj(τ)

](
a†lal +

1

2

)}
, (2.36)

eiΦ11 ≈eiΘij

∏
k

Dk

(
−αki (τ)− αkj (τ)

){
1− i

∑
l

[
λli(τ) + λlj(τ)

](
a†lal +

1

2

)}
, (2.37)
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where Dk (α) ≡ exp(αa†k − α∗ak) is the displacement operator of the k-th mode.

For an arbitrary operator ρ0 (not necessarily Hermitian)

ρ0 =



ρ00,00 ρ00,01 ρ00,10 ρ00,11

ρ01,00 ρ01,01 ρ01,10 ρ01,11

ρ10,00 ρ10,01 ρ10,10 ρ10,11

ρ11,00 ρ11,01 ρ11,10 ρ11,11


, (2.38)

lengthy but straightforward calculation shows that

ρ = trm[Uρ0 ⊗ ρthU †]

≈



ρ00,00 ΓjΛje
2iΘij−iϵρ00,01 ΓiΛie

2iΘij+iϵρ00,10 Γ+Λ+ρ00,11

ΓjΛ
∗
je

−2iΘij+iϵρ01,00 ρ01,01 Γ−Λ−ρ01,10 ΓiΛie
−2iΘij−iϵρ01,11

ΓiΛ
∗
i e

−2iΘij−iϵρ10,00 Γ−Λ
∗
−ρ10,01 ρ10,10 ΓjΛje

−2iΘij+iϵρ10,11

Γ+Λ
∗
+ρ11,00 ΓiΛ

∗
i e

2iΘij+iϵρ11,01 ΓjΛ
∗
je

2iΘij−iϵρ11,10 ρ11,11


,

(2.39)

where ϵ = 2
∑

k Im(αki α
k
j
∗
),

Γi(j) = exp

[
−2
∑
k

∣∣αki(j)∣∣2 coth( ~ωk
2kBT

)]
, (2.40)

Γ± = exp

[
−2
∑
k

∣∣αki ± αkj ∣∣2 coth( ~ωk
2kBT

)]
, (2.41)

Λi(j) = 1 + i
∑
k

λki(j) coth
~ωk
2kBT

, (2.42)
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Λ± = 1 + i
∑
k

(
λki ± λkj

)
coth

~ωk
2kBT

. (2.43)

We have used the following formulae in the derivation:

D(α)D(β) = e(αβ
∗−α∗β)/2D(α + β), (2.44)

tr [D(α)ρth] = exp

[
−|α|

2

2
coth

(
~ω

2kBT

)]
, (2.45)

tr

[(
a†a+

1

2

)
ρth

]
=

1

2
coth

(
~ω

2kBT

)
. (2.46)

Now we plug Eq. (2.39) into Eq. (1.8) of average gate fidelity and we finally obtain

F ≈ 1

10

[
4 + 2Γi sin(2Θij + ϵ) + 2Γj sin(2Θij − ϵ) + Γ+ + Γ−

]
. (2.47)

λkj terms [Eq. (2.27)] appear quadratically in the fidelity, hence its contribution is O(η4k) and

is neglected. If Ω . µ, ωk and the average phonon number for a typical mode is n̄, the

error from neglecting higher order terms is of the order η4k(2n̄+ 1)2. The fact that there are

N independent transverse modes has already been included because the coefficient for each

mode is also modulated by the bkj vectors, which are normalized to 1.

Suppose the laser intensities on the two ions are always proportional and that their phases

are locked such that φ(m)
i = φ

(m)
j = 0, then we get ϵ = 0. The above expression can be

simplified as

F =
1

10
[4 + 2(Γi + Γj) sin 2Θij + Γ+ + Γ−] . (2.48)

This average gate fidelity is slightly higher than Eq. (3) of Ref. [40], where a special initial

state is used.
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Also notice that if Θij = −π/4, the gate is close to another ideal entangling gate exp(−iπσxi σxj /4),

which is different from Uideal only by single-qubit operations. In this case the gate fidelity

can be calculated in a similar way and the final result is

F =
1

10
[4− 2(Γi + Γj) sin 2Θij + Γ+ + Γ−] . (2.49)

From now on, by fidelity we mean the average gate fidelity if not specifically mentioned. We

will drop the overline on F for convenience.

Up to this point, our derivations are general: any methods can be used to optimize the pulse

sequence such as amplitude, frequency or phase modulations [40, 46, 47] and our target is a

high gate fidelity given by Eq. (2.48) or Eq. (2.49). In the following, we will focus on the

amplitude modulation method, which gives a simple analytic formula for the gate design.

In the experiment, we can set the laser beams on the two ions to be the same. We can divide

the laser sequence into nseg equal segments and in each segment let the Rabi frequency be

a constant. Define a real column vector Ω = (Ω1,Ω2, · · · ,Ωnseg)
T corresponding to the Rabi

frequency of each segment, and we get

αkj (τ) = Ak
jΩ, Θij = ΩTγ ′Ω, (2.50)

where Ak
j is a row vector whose n-th component is

Ak
j (n) = −iηkbkj

∫ nτ/nseg

(n−1)τ/nseg

sinµt · eiωktdt, (2.51)
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and γ ′ is an nseg by nseg matrix whose (p, q) component is

γ ′(p, q) =



2
∑
k

η2kb
k
i b
k
j

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ qτ/nseg

(q−1)τ/nseg

dt2 sinµt1 sinµt2 sin[ωk(t1 − t2)] (p > q)

2
∑
k

η2kb
k
i b
k
j

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ t1

(p−1)τ/nseg

dt2 sinµt1 sinµt2 sin[ωk(t1 − t2)] (p = q)

0 (p < q)

.

(2.52)

We can further define a symmetric matrix γ ≡ (γ ′+γ ′T )/2 such that Θij = ΩTγ ′Ω = ΩTγΩ.

By suitably scaling Ω, we can always set Θij = ±π/4. Then in the limit of small |αkj | (high

fidelity), the fidelity can be approximated as

F ≈ 1− 4

5

∑
k

(
|αki |2 + |αkj |2

)
coth

~ωk
2kBT

= 1− 4

5
ΩT

[∑
k

(
Ak
i

†
Ak
i +Ak

j

†
Ak
j

)
coth

~ωk
2kBT

]
Ω

≡ 1− 4

5
ΩTMΩ. (2.53)

By definition, M is a Hermitian matrix, but actually we can express it in a real symmetric

form:

ΩTMΩ =
1

2

(
ΩTMΩ+ΩTMTΩ

)
=

1

2

(
ΩTMΩ+ΩTM ∗Ω

)
= ΩTRe[M ]Ω. (2.54)

Now we want to minimize ΩTMΩ under the constraint ΩTγΩ = ±π/4. For this purpose, we

use the method of Lagrange multiplier and consider the optimization of f(Ω, λ) = ΩTMΩ−
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λ(ΩTγΩ∓ π/4):  MΩ− λγΩ = 0

ΩTγΩ = ±π/4
. (2.55)

We only need to solve this generalized eigenvalue problem and find the eigenvalue with the

smallest absolute value. The corresponding eigenvector, with suitable normalization, gives

us the optimal Ω. (See also Appendix A of Ref. [48].)

We remark that for realistic experimental parameters, the effective Rabi frequency cannot

be too large. This means that the above optimization should be performed under another

inequality constraint. This problem is generally hard to solve, so instead we use the method

described above and then discard solutions with unrealistic |Ω|.

2.2 Error Analysis for the Entangling Gate

The gate fidelity realized in the experiment is always less than 1. This is due to the approx-

imations in the formulation, imperfections in the gate design, as well as noise and errors in

the experiment. In this section we analyze these sources of errors in detail.

In order to estimate the influence of each error term, we consider a specific example of

mapping a 17-qubit surface code for quantum error correction into a linear chain of 171Yb+

ions [2,49] (see Fig. 2.3 for the mapping). For this purpose, diamond norm may be a better

measure of the gate performance, but we focus on average gate fidelity here as it is easier

to treat theoretically. We will discuss their difference in Sec. 2.2.3. For realistic parameters,

we choose ωx = ωy = 2π × 3MHz, and consider a chain of 19 ions with the two ions at the

ends only used for cooling [42]. An anharmonic potential is applied along the z axis, which

is specified by l0 = 40µm and γ4 = 4.3 (see Sec 2.1.1 for the definition). In this way the
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Figure 2.3: A 17-qubit surface code layout. The open circles represent the data qubits and
the filled circles represent the syndrome qubits. Labels 1-17 corresponds to the real order of
qubits in the 1D chain. (From Ref. [1], c⃝2018 American Physical Society.)

central 17 ions will have a nearly uniform spacing with an average of dav = 8.3µm and a

relative standard deviation of 2.3%.

Under these conditions, the spectrum of the transverse normal modes is very narrow (within

0.9% of ωx). Hence it is possible to use sideband cooling method to cool the transverse motion

down to about 0.5 phonon per mode or less: kBT = (n̄ + 1/2)~ωx = ~ωx. Doppler cooling

can also be used if the trapping can be stronger. For counter-propagating laser beams along

the ±x directions with λ = 355 nm [43], we have a detuning ∆ ≈ 2π× 33THz and ∆k = 2k.

(Actually there are two excited states with a fine-structure splitting of 2π×100THz, and the

laser detuning is specially chosen to minimize the differential AC Stark shift. We will come

back to this point when discussing the AC Stark shift; but otherwise we will just use one

value of ∆ to estimate the order of magnitude for the other error terms.) The Lamb-Dicke

parameter is then ηk ≈ 0.11 for all the transverse modes.
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2.2.1 Optimized Gate Design and Sensitivity to Tunable Parame-

ters

In order to perform the stabilizer measurement in the surface code, we need to achieve two-

qubit entangling gates between nearest neighbor qubits in Fig. 2.3, that is, ion pairs with

one, three and five ion separations in the linear chain. To find the optimal parameters for a

high-fidelity gate, we use Eqs. (2.53) and (2.55) to estimate the gate fidelity and to solve the

optimal pulse sequence. We then scan the gate time τ , detuning µ and number of segments

nseg to find a combination with the desired fidelity.

For example, Fig. 2.4 shows the gate infidelity (δF ≡ 1−F ) for the entangling gate between

ion 1 and ion 4 as a function of detuning µ for a fixed gate time τ = 300µs and three possible

segment numbers nseg = 10, 12, 14. As we can see, increasing the number of segments

0.97 0.98 0.99 1 1.01 1.02

10-5

100

Figure 2.4: Infidelity for an entangling gate between ion 1 and ion 4 as a function of the
detuning µ. Here gate time τ = 300µs and 3 segment numbers nseg = 10, 12, 14 are used.
The vertical dash-dot lines give the range of the spectrum of the transverse normal modes.
(From Ref. [1], c⃝2018 American Physical Society.)

generally reduces the gate infidelity. We also notice that there are multiple local minima in

39



the gate infidelity. Therefore, we do not attempt to find the “best” solution, but rather look

for solutions that are “good enough”. That is, the solution needs to achieve high gate fidelity

in the ideal case, and it should also be robust against errors in these control parameters,

which may arise from imperfect calibration, finite resolution or random fluctuation in the

experiment. Specifically, we perturb the gate parameters at local minima of plots similar to

Fig. 2.4 when scanning these parameters and keep the ones that are most insensitive to the

noise. We will assume that these noises are “slow” such that they stay constant during one

gate period. This assumption is reasonable because typically the high-frequency noise will

be weak in the experiment. For instance, Ref. [50] considers the influence of high-frequency

noise in a two-ion crystal and the experimental noise level is found to be about one order of

magnitude lower than what is allowed for an error of 10−4. Also note that the same technique

to optimize the gate design has been applied in Ref. [2], but the number of segments and

the gate time we use here are generally larger because of this additional requirement of

robustness.

Below we show the results for ion pairs with three typical separations. For experimentally

achievable effective Rabi frequencies, we only present solutions satisfying |Ω(t)| < 2π×1MHz

at all times.

• Ion 5 and ion 6 (separation 1):

We use nseg = 10 segments and τ = 80.4µs. Laser sequence Ω0 is optimized for

µ0 = 0.995ωx (Fig. 2.5). For the sensitivity to control parameters, in Fig. 2.6 we show

how the gate infidelity changes under a shift in detuning µ of 2π× 1 kHz, in the global

laser intensity Ω of 1%, in gate time τ of 0.4µs, as well as the effect of a nonzero φ(m).

[See Eq. (2.15) for the definition. Here the motional phase is assumed to be equal for
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both ions.] For parameters fluctuating inside these ranges, the gate infidelity is always

below 10−3.

1 2 3 4 5 6 7 8 9 10
Segments

-0.5

0

0.5

Figure 2.5: Optimized effective Rabi frequency sequence Ω0 on ion 5 and ion 6 for nseg = 10,
detuning µ0 = 0.995ωx and gate time τ = 80.4µs. Here we allow the Rabi frequency to
take negative values by adding a phase shift of π. If such a phase shift is not available, we
can look for other solutions where all the Rabi frequencies are positive. Some examples are
shown in Ref. [2]. (From Ref. [1], c⃝2018 American Physical Society.)

• Ion 1 and ion 4 (separation 3):

We use nseg = 17 segments and τ = 250µs. Laser sequence Ω0 is optimized for

µ0 = 0.997ωx (Fig. 2.7), but then for the robustness under fluctuation in detuning

(where positive and negative shifts have asymmetric effect), the gate is performed at

the detuning µ′
0 = µ0 + 2π × 0.8 kHz with a slight rescaling of the laser intensity. (See

Sec. 2.2.3 for more details about this rescaling, which aims to reduce the accumulation

of errors when multiple gates are applied.) Therefore in Fig. 2.8 the smallest infidelity

does not always appear at the center of the parameter range.

• Ion 9 and ion 14 (separation 5):
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Figure 2.6: Parameter sensitivity for the entangling gate between ion 5 and ion 6. (a)
Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in
laser intensity. Here we assume that the frequency of the noise is low so that the laser
intensities of all the segments are shifted by the same percentage. (c) Infidelity as a function
of shift in gate time τ . (d) Dependence on the motional phase φ(m). Here we consider
φ
(m)
i = φ

(m)
j between 0 and 2π. Solid blue, dashed red and dotted green curves are the

maximal infidelity for a shift of 1 kHz in detuning µ, a 1% change in Rabi frequency, and
0.4µs change in total gate time, respectively. (From Ref. [1], c⃝2018 American Physical
Society.)
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Figure 2.7: Optimized laser sequence Ω0 on ion 1 and ion 4 for nseg = 17, detuning µ0 =
0.997ωx and gate time τ = 250µs. (From Ref. [1], c⃝2018 American Physical Society.)
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Figure 2.8: Parameter sensitivity for the entangling gate between ion 1 and ion 4. (a)
Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in
Rabi frequency. We assume the laser intensities of all the segments are shifted by the same
percentage. (c) Infidelity as a function of shift in gate time τ . (d) Consider φ(m)

i = φ
(m)
j

between 0 and 2π. Solid blue, dashed red and dotted green curves are the maximal infidelity
for a shift of 1 kHz in detuning µ, a 1% change in intensity, and 0.4µs change in total gate
time, respectively. (From Ref. [1], c⃝2018 American Physical Society.)
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We use nseg = 24 segments and τ = 482µs. Laser sequence Ω0 is optimized for

µ0 = 0.997ωx (Fig. 2.9). For the robustness under fluctuation in parameters, we then

work at the detuning µ′
0 = µ0−2π×0.5 kHz. Gate infidelity under shifts in parameters

are shown in Fig. 2.10.

5 10 15 20
Segments

-0.5

0

0.5

Figure 2.9: Optimized laser sequence Ω0 on ion 9 and ion 14 for nseg = 24, detuning µ0 =
0.997ωx and gate time τ = 482µs. (From Ref. [1], c⃝2018 American Physical Society.)

As we can see in Figs. 2.6, 2.8 and 2.10, a nonzero but constant φ(m)
i = φ

(m)
j does not

influence the fidelity significantly. This justifies the use of the phase-insensitive setup, which

suppresses the fluctuation in φ(s) but allows φ(m) to change over different gates. Nevertheless,

we still need to set φ(s) = 0 initially for the desired XX entangling gate: by taking U =

exp(iπσni σ
n
j /4) in Eq. (1.8) with small spin phases φ(s)

i and φ(s)
j , we can show that it causes

an infidelity δF ≈ 2[φ
(s)2
i +φ

(s)2
j ]/5. Imbalance between φ(m)

i and φ(m)
j should also be small:

numerically we find that the infidelity scales as [φ(m)
i − φ(m)

j ]2, thus we need |φ(m)
i − φ(m)

j | <

π/100 for a gate fidelity higher than 99.9%.
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Figure 2.10: Parameter sensitivity for the entangling gate between ion 9 and ion 14. (a)
Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in
Rabi frequency. (c) Infidelity as a function of shift in gate time τ . (d) Consider φ(m)

i = φ
(m)
j

between 0 and 2π. Solid blue, dashed red and dotted green curves are the maximal infidelity
for a shift of 1 kHz in detuning µ, a 1% change in intensity, and 0.4µs change in total gate
time, respectively. (From Ref. [1], c⃝2018 American Physical Society.)

2.2.2 Approximations in the Formulae and Neglected Effects

In order to get the analytical expressions for the gate fidelity [Eqs. (2.48, 2.49, 2.53)], we

have made several approximations in the derivation and neglected some physical processes.

Some of them are covered along the derivation in Sec. 2.1: for example, to get the effective

Hamiltonian Eq. (2.14), we have applied RWA and the adiabatic elimination of the excited

state. Their influence can be estimated to be |δ|/ω01, |Ω1(2)|/ω1(2) and |Ω1(2)|2/∆2. With

the Raman transition detuned close to the motional sideband, the first term is about 10−4

while the other terms are orders of magnitude smaller. Below we address the effects of other

approximations.
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Micromotion

For the linear Paul trap, alternating potential is only applied in the x and y directions. Hence

there is no micromotion in the z direction. To the first order in trap parameter q, the effect

of the transverse micromotion is to replace ak with ak[1 − (q/2) cosωrft] when quantizing

the transverse modes [20, 51] (see Sec. 3.3 for more details), where q ≈ 2
√
2ωx/ωrf ∼ 0.1 for

the parameters we consider. The effect of the RF-frequency term is O(ηkqΩj/ωrf) on αkj and

O(η2kqΩj/ωrf) + O(η2kq
2Ωj/µ) on λkj in Eqs. (2.25, 2.27). Its influence on Θjm [Eq. (2.28)] is

more complex. By comparing terms like

∫
dt1

∫
dt2 sinµt1 sinµt2 cosωrft1 sinωk(t1 − t2) (2.56)

with the original integration of Eq. (2.28), which is O(1), we estimate the error in Θjm to be

O(q/ωrfτ) and O(q|µ−ωk|/ωrf). We also numerically evaluate these correction terms for the

three gate designs we consider in Sec. 2.2.1 and get results lower than these estimations. All

of these terms are further squared when calculating fidelity, and the dominate contribution

is estimated to be 10−6 from αkj . Nevertheless, the correction factor of [1 − (q/2) cosωrft]

can always be incorporated into the formulation if its effect is not negligible, which will be

discussed further in Sec. 3.3 for more general ion crystals and a more accurate description

of the micromotion.

Carrier term

As is mentioned after Eq. (2.19), in the derivation of the XX entangling gate, we dropped

a single-qubit rotation term. Strictly speaking this is not an error source because we can

apply an additional rotation to compensate it. However, our numerical result shows that for
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all the three gates we considered in Sec. 2.2.1, such single-qubit rotation terms are less than

10−5 and can be directly neglected. The reason is that we use multiple laser segments with

opposite phases, which largely cancels the single-qubit rotation.

Higher order terms in the Lamb-Dicke parameter

In the derivations of Eqs. (2.20, 2.23 and 2.34-2.37), we only keep zeroth and first order

terms in the Lamb-Dicke parameters and the second order diagonal terms with paired ak

and a†k of the same motional mode. Here we will show that the error in gate fidelity from

such approximations is of the order η4, and because the Lamb-Dicke parameter η always

comes with the operators ak and a†k whose magnitudes are related to the thermal motion, we

can express the error as O(η4(2n̄+ 1)2), where n̄ is the average phonon number of a typical

transverse mode.

Let us consider the derivation from Eq. (2.20) to Eq. (2.23). The higher order terms can be

divided into four classes:

1. O(η2k) off-resonant terms with unpaired ak or a†k and a single-qubit rotation, such as

η2ka
2
kσ

n
j

∫
dtΩje

−2iωkt cos(µt+ φ
(m)
j ) (2.57)

and

ηkηlaka
†
lσ

n
j

∫
dtΩje

−i(ωk−ωl)t cos(µt+ φ
(m)
j ) (2.58)

for k ̸= l, where numerical factors of the order 1 are omitted. These terms have

vanishing expectation values in a thermal state and therefore they contribute to the

gate fidelity only when pairing with another two creation or annihilation operators.
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Hence the error is O(η4k). Also notice that for the example we considered in Sec. 2.2.1,

the spectrum of the transverse modes is narrow and all the ωk’s are similar and are

also close to µ. Therefore the time integral is of the order Ωj/ωk . 1.

2. O(η3k) resonant terms with unpaired ak or a†k and a single-qubit rotation, such as

ηkηlηma
†
ka

†
lamσ

n
j

∫
dtΩje

i(ωk+ωl−ωm)t sin(µt+ φ
(m)
j ). (2.59)

We consider two possible cases here. (i) Two frequencies are the same, e.g. ωl = ωm.

Then the time integration has exactly the same form as Eq. (2.25). According to

Eq. (2.53), as we optimize the gate fidelity to higher than 99.9%, each |αkj |2 term

should be of the order 10−3 or less. Besides, the term we drop here has an additional

η2k coefficient compared with αkj . (ii) All the three frequencies are different. For a wide

spectrum, such terms become off-resonant and can be treated in a similar way as O(η2k)

terms; for a narrow spectrum we considered in Sec. 2.2.1, that is, 19 transverse modes

located within a width of about 0.9% of ωx, such a term has a shifted ωk compared with

Eq. (2.25), hence its contribution should be similar to a shifted detuning µ by the same

amount, with the additional η2k factor. To sum up, such terms have negligible effects so

long as the gate fidelity calculated by Eq. (2.53) is high at the optimized parameters and

is robust against shift in detuning. To balance the creation and annihilation operators

when taking the trace with a thermal state, this type of terms can be paired with the

first order terms as well, which, however, vanish for the optimized parameters.

3. O(η3k) off-resonant terms with unpaired ak or a†k and a two-qubit operation, such as

the time integral of the commutator between one first order term and one second order

term. To balance the creation and annihilation operators, another O(ηk) term must
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be added. So the final contribution is O(η4k).

4. O(η4k) resonant terms with a two-qubit operation, such as the time integral of the

commutator between two second order terms, or that between one first order term and

one third order term. Such terms lead to a relative error of O(η2k) in Θij of Eq. (2.28).

Whether the creation and annihilation operators are balanced or not, an error of O(η4k)

in the fidelity is resulted, because Θij is set to be π/4 in Eq. (2.48) and the error only

appears as a quadratic term.

Since only two ions appear in the Hamiltonian [Eq. (2.20)] and (σnj )
2 = I, there are no

multi-qubit operation terms. There are also terms purely in the subspace of motional states,

e.g. the commutator between two first order terms with the single-qubit rotation on the

same ion. However, such terms act as a global phase on the subspace of the ions’ internal

states and are irrelevant to the gate fidelity.

Similar arguments also apply to Eqs. (2.34-2.37): O(η2k) terms with unpaired creation or

annihilation operators or O(η3k) terms cause an error of O(η4k) in fidelity and therefore can

be neglected. In the derivation of these equations, we use the Zassenhaus Formula [45]:

eX+Y = eXeY e−
1
2
[X,Y ] × · · · (2.60)

After dropping the commutators, which are higher order terms based on the argument above,

we obtain Eqs. (2.34-2.37).
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Asymmetry in blue- and red-detuned coupling

In the derivation of Eq. (2.15), we assume the two pairs of Raman transitions on one ion

have the same effective Rabi frequency and opposite detunings (see Fig. 2.2). However, in

experiments there are always errors in these parameters, which can significantly influence

the gate fidelity. Here we discuss the influence of small asymmetry in the phase-insensitive

geometry. A similar analysis can also be applied to the phase-sensitive one.

Suppose one Raman transition pair has effective Rabi frequency Ωj + δΩj and detuning

µ + δµ, while the other pair has effective Rabi frequency Ωj − δΩj and detuning −µ + δµ.

Following similar steps as in Eq. (2.15), we get the effective interaction-picture Hamiltonian

HI =~Ωj cos[µt+ φ
(m)
j −∆k · xj(t)]

[
σxj cos(δµ · t+ φ

(s)
j )− σyj sin(δµ · t+ φ

(s)
j )
]

− ~δΩj sin[µt+ φ
(m)
j −∆k · xj(t)]

[
σxj sin(δµ · t+ φ

(s)
j ) + σyj cos(δµ · t+ φ

(s)
j )
]
.

(2.61)

Clearly δµ produces a slow change in the rotation axis and its effect (for small δµ · τ) can

be bounded by that of a constant error in φ
(s)
j . So the error from asymmetric detuning is

O(δµ2τ 2) where τ is the gate time.

The δΩj term corresponds to a rotation in the orthogonal direction, which oscillates at the

same frequency as the leading order term but with a phase difference of π/2. It is more

difficult to bound this effect. So instead we tackle this problem numerically. A multiple-

phonon-mode problem is still hard to solve, even for a relatively small cutoff of phonon

numbers; but for only two ions and one phonon mode, the system can be easily solved by

standard numerical integration methods, using a Hamiltonian analogous to Eq. (2.14) with

two pairs of Raman transitions on each of the ion. Then the result can be compared with the
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method we used in Sec. 2.1. Since our purpose is just to estimate the order of magnitude,

we choose a special initial state |00⟩⟨00| ⊗ ρth to calculate fidelity.

For symmetric detunings and effective Rabi frequencies, the result is consistent with the

error analysis we made in the previous subsection, namely a discrepancy of the order η4. For

a nonzero δΩj, it turns out that the dominant source of error is the additional rotation due

to the carrier term of the Hamiltonian, i.e.,

Hcarrier
I = ~Ωjσ

x
j cosµt− ~δΩjσ

y
j sinµt, (2.62)

where we choose φ(m)
j = φ

(s)
j = 0 and δµ = 0 for simplicity. Originally the carrier term

almost vanishes for the optimized gate parameters; but now with the δΩj term, the carrier

term leads to an additional small rotation, which causes errors in the final entangling gate.

With this observation, we can now estimate the influence of asymmetric effective Rabi fre-

quencies in the gates we considered in Sec. 2.2.1. All we need to do is to numerically solve the

unitary evolution operator corresponding to the carrier term of the Hamiltonian [Eq. (2.62)],

given the pulse sequence Ω from Sec. 2.2.1. It must be a single-qubit rotation, and the

rotation angle δϕ indicates that the error in gate fidelity is of the order δϕ2. Supposing the

intensities of different laser beams are proportional, we have δΩ(t) = ϵΩ(t) where ϵ is a small

parameter. Plugging in the gate parameters, we need ϵ < 0.1% for ion 5 and ion 6, ϵ < 0.02%

for ion 1 and ion 4, and ion 9 and ion 14, to achieve a gate fidelity higher than 99.9%. Note

that the gate design is robust against global shift of the laser intensity, and our scheme does

not require the same laser driving on the two ions; it is the relative change between the two

Raman transition pairs on the same ion that causes this type of error. Usually the multiple

laser beams used in the experiment are separated from a single laser through beam splitters,
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hence it is possible to control the relative difference in their intensity and frequencies to be

small, even though the laser itself is fluctuating.

Finally, we also use this method to estimate the effect of the asymmetry in ∆k, which is

about the ratio of the hyperfine splitting to the laser frequency, as is discussed in Sec. 2.1.2.

It turns out that this error is negligible for the parameters we choose.

AC Stark shift

The counter-rotating or off-resonant couplings neglected before not only introduce fluctua-

tions between the two qubit states, but also cause a shift in the energy levels, which is known

as the AC Stark shift. For 171Yb+ ions, the 355 nm laser is particularly chosen to reduce the

relative shift between the two hyperfine ground states, a.k.a. the differential AC Stark shift.

According to Ref. [43], the differential Stark shift is only about 10−4 of the effective coupling

Ωeff between |0⟩ and |1⟩. However, such a relative shift in the energy levels does not corre-

spond to a shift δµ in the Hamiltonian [Eq. (2.15)], to which our gate design is not sensitive;

instead it will increase the asymmetry between the two Raman transition pairs and, as we

have mentioned above, will lead to an infidelity of (δµasymτ)
2. A constant AC Stark shift

can be easily compensated by a corresponding shift in the driving laser’s frequencies, but in

our case the intensities of the driving laser are also varying. One possible solution is to tune

the laser frequencies for each segment accordingly. Another possibility is to use one strong

beam and one weak beam for each Raman transition, and only to adjust the weak beam

to change the effective coupling strength. For example, in Fig. 2.2 we can make the lower

beam stronger than the upper one, while still balance the effective Rabi frequencies of the

two Raman transitions. By letting the strong beam 10 times as the weak one, we can reduce

the changes in AC Stark shift to 1/10 while keeping the effective coupling unchanged.
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Spontaneous emission

So far we have not considered the spontaneous emission from the excited state. To couple

the two ground states with the off-resonant Raman transition, there is actually a small

probability of Ω2
1(2)/∆

2 for the ion to be in the excited state, from which the spontaneous

emission can occur at the rate of γe. This will lead to decoherence between the two qubit

states. To estimate its effect, we simply time-integrate γe(Ω
2
1 + Ω2

2)/∆
2 over the whole

laser sequence. For the gate design we considered in Sec. 2.2.1, the error from spontaneous

emission is thus computed to be 10−3 for the longest gate time of about 500µs, if we set

Ω1 = Ω2. Note that if we use one strong and one weak beams for Raman transition to

reduce the change in AC Stark shift, as described above, the spontaneous emission error will

be dominated by the stronger beam and hence will be increased.

Crosstalk of Laser Driving

A broad laser beam can cause unwanted transitions on the adjacent ions, while a narrow

beam can lead to fluctuation in the laser intensity felt by the target ion due to its thermal

motion. Suppose the laser beams have a Gaussian profile, that is, the intensity is proportional

to exp(−r2⊥/2σ2) where σ is the width of the beam. With σ = 2µm, when a beam is

shined on one ion, its effect on an adjacent ion is of the order exp(−d2av/2σ2) ∼ 10−4.

(Actually the intensity of the electric field, i.e. Rabi frequency, is only the square root

of the laser power; but we get a further square when computing the fidelity.) Meanwhile,

the thermal motion perpendicular to the laser beam is dominated by that in the axial z

direction. For a harmonic trap at the temperature of T , the axial oscillation amplitude can

be estimated to be ∆z ∼
√
kBT/mω2

z . The temperature is related to the phonon number
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n̄ in the transverse direction by kBT = ~ωx(n̄ + 1/2). We can further use the Lamb-Dicke

parameter η = 2(2π/λ)
√
~/2mωx for counter-propagating laser beams with wavelength λ,

and finally we estimate the fluctuation of the laser intensity on the ion due to its thermal

motion as ∆z2/2σ2 ∼ (1/32π2)η2(2n̄+1)(λ/σ)2(ωx/ωz)
2. To realize a linear trap along the z

direction, we need ωx/ωz > 0.77N/
√
logN [42,52,53] for a harmonic trap; the estimation for

anharmonic trap is more difficult but the scaling should not be worse. Therefore the noise

on the laser intensity due to thermal motion is of the order 10−4 for a chain of tens of ions;

while the gate design can tolerate a fluctuation of 1%.

Fluctuation in Trapping Potential

The trapping parameters ωx(y,z) are also subjected to experimental noise. It has mainly two

effects: (1) a shift in phonon mode frequencies (phonon mode dephasing), whose effect is

roughly the same as an opposite shift in detuning µ and (2) small change in the equilibrium

configuration, whose effect depends on the width of each laser beam. Because we are con-

sidering a linear chain of ions, small change in the transverse potential will not change the

equilibrium positions, but only shift the transverse mode frequencies. Therefore, our exam-

ples of gate design are able to tolerate 2π×1 kHz shift in the transverse trapping frequencies

while still maintains a fidelity of 99.9%. The weaker axial trapping is achieved by a DC field,

hence less vulnerable to fluctuations. For an estimation, we again consider a harmonic po-

tential ωz. The dimension of length appears as (q2/4πϵ0mω
2
z)

1/3, hence δz/z ∼ −2δωz/3ωz.

For N ions in the linear chain, the largest change in equilibrium position is for ions on the

end, with z = Ndav/2. Now if we want the change in the laser intensity to be less than 1% for

an ion, i.e. 1 − exp(−δz2/2σ2) ≈ δz2/2σ2 ∼ 1%, we get δωz/ωz ∼ 0.5σ/Ndav ≈ 0.5%, that

is, our gate design can tolerate a relative change of 0.5% in the axial frequency. Actually
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large shift during one gate time is not very likely; usually trapping parameters vary in a

much longer time scale and in principle we can adjust the laser beams before the experiment

to compensate such a long-term effect.

Motional Heating

We have assumed that the ion chain is sideband cooled to a low temperature before the

experiment and stays there. Now we consider the effect of heating in the motional modes,

which varies with the trap design. According to Eq. (2.55), our optimization process is

not sensitive to the phonon numbers if they stay constant. Hence the infidelity due to

the motional heating can be bounded by the “failure rate” as δFheating < NΓτ where N

is the number of the transverse modes in use, τ the gate time and Γ the average heating

rate. Currently it is possible to realize a heating rate around 1 phonon/s for our choice of

171Yb+ ion and transverse mode frequencies around 2π × 3MHz [32, 54]. Hence the error

is bounded by δFheating < 10−2 for N = 19 and τ = 500µs, but note that this is not a

tight bound. For one thing, as is mentioned in Sec. 1.2.2, the dominant heating source

through electric noise mainly heats the center-of-mass mode of the ion crystal. Therefore

when the size of the crystal is smaller than the wavelength of the electric noise, the heating

rate may not significantly rely on the number of the ions. For another, when we conduct a

similar numerical simulation as that for the asymmetry of Raman transitions for two ions

and one motional mode, with an additional Lindblad term describing the heating, we find

that the infidelity does scale linearly with the heating rate, but the value is about 2 orders

of magnitude smaller. Meanwhile, the use of multiple segments should further reduce the

error. Therefore we believe that the motional heating is not a dominant source of error for

tens of ions.
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Nonlinear Interaction

Another effect not covered is the Kerr coupling, i.e. the dependence of one mode’s fre-

quency on the phonon number of another mode due to the nonlinearity in the Coulomb

interaction [55]. It can be calculated by expanding the Coulomb potential to the fourth

order. Numerically we find that for the ion chain we use, the largest coupling is about

0.14Hz/phonon between a transverse mode and an axial mode, and about 0.02Hz/phonon

between two transverse modes. The error due to a constant shift in a mode frequency ωk

can be estimated by that in the detuning µ, because if we apply RWA to Eq. (2.25) and

Eq. (2.28), only the difference between µ and ωk influences the final fidelity [Eq. (2.48)]. Be-

cause our scheme can tolerate such a shift up to 1 kHz, we conclude that the Kerr coupling

has negligible effects for the examples we are considering.

2.2.3 Coherent vs Incoherent Errors

Up to now we have been using average gate fidelity to evaluate the gate performance, be-

cause it is easier to treat theoretically and also easier to measure experimentally through

randomized benchmarking [56]. However, it is well-known that high gate fidelity does not

immediately imply a low enough error rate, or more precisely the diamond norm, which

appears in the statement of the Quantum Threshold Theorem [14,57]. In certain cases these

two measures can differ significantly, especially for coherent errors. Since we have motivated

our analysis by fault-tolerant quantum computing, it is worthwhile to discuss the relation

between our results and the diamond norm.

The error sources we considered in Sec. 2.2.2 can be divided into two classes. The effects

of the micro-motion, RWA and the higher order terms in Lamb-Dicke parameters should be
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mainly unitary because the approximations are directly made in the Hamiltonian. They are

estimated to be O(10−4) or less, hence the diamond norm should be of order O(10−2). On

the other hand, spontaneous emission and other errors related to the thermal motions should

be incoherent and the diamond norm will not be very different from the infidelity [14].

The parametric shifts that we considered in Sec. 2.2.1 are generally unitary errors. For this

type of error it is known that the diamond norm D scales as
√
δF [14], hence our criteria of

δF < 10−3 will give a diamond norm of about 3 × 10−2 in the worst case. Actually as we

have already derived the expression of the density matrix [Eq. (2.39)], we can numerically

evaluate the diamond norm using semidefinite programming [16,58]. The results for the gate

designs we considered in Sec. 2.2.1 are shown in Figs. 2.11, 2.12 and 2.13. As expected, the

diamond norms at the extreme shifts reach the order of O(10−2) and are slightly above the

threshold of the surface code of about 1%, although for the small system we are considering,

it is more meaningful to compare with the pseudothreshold, which is about 8 × 10−4 for

the Surface-17 code [49]. This suggests that better controls on the parameters are needed

for low enough error rates. Similarly, we expect the bounds on the asymmetry of the beam

configurations and the mismatched laser phases to be tighter, as they are also coherent errors.

Note however that diamond norm is usually a pessimistic estimation of the errors, and 99.9%

fidelity is nevertheless a good target in practice for many near-term applications of quantum

computation.

Accumulation of Gate Design Error

Another observation from Figs. 2.11, 2.12 and 2.13 is that the error from the imperfect gate

design, when there is no parametric shifts, has similar values measured by the infidelity

and the diamond norm. This suggests that this gate design error is incoherent and will
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Figure 2.11: Parameter sensitivity for the entangling gate between ion 5 and ion 6. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c) Diamond norm as a function of shift in gate time τ . (d)
Consider φ(m)

i = φ
(m)
j between 0 and 2π. Solid blue, dashed red and dotted green curves

are the maximal diamond norm for a shift of 1 kHz in detuning µ, a 1% change in intensity,
and 0.4µs change in total gate time, respectively. For (a), (b) and (c), the diamond norms
below 10−8 are not shown, since they are subject to numerical errors. (From Ref. [1], c⃝2018
American Physical Society.)
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Figure 2.12: Parameter sensitivity for the entangling gate between ion 1 and ion 4. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c) Diamond norm as a function of shift in gate time τ . (d)
Consider φ(m)

i = φ
(m)
j between 0 and 2π. Solid blue, dashed red and dotted green curves

are the maximal diamond norm for a shift of 1 kHz in detuning µ, a 1% change in intensity,
and 0.4µs change in total gate time, respectively. (From Ref. [1], c⃝2018 American Physical
Society.)
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Figure 2.13: Parameter sensitivity for the entangling gate between ion 9 and ion 14. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c) Diamond norm as a function of shift in gate time τ . (d)
Consider φ(m)

i = φ
(m)
j between 0 and 2π. Solid blue, dashed red and dotted green curves

are the maximal diamond norm for a shift of 1 kHz in detuning µ, a 1% change in intensity,
and 0.4µs change in total gate time, respectively. (From Ref. [1], c⃝2018 American Physical
Society.)
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scale linearly with the number of gates. It is understandable because in our derivation of

Eq. (2.39) we have traced out the phonon modes after applying the gate, and hence the

coherence is lost. In other words, we assume no memory effect of the phonon modes, namely

the Markovian approximation for the sequential application of the entangling gates.

This is a reasonable assumption because the phonon modes naturally decohere over long

evolution time. Furthermore, we will now show that even if the coherence time of the phonon

modes is longer than the separation of the gates, the gate design error still accumulates

linearly if we introduce small randomness in their separations.

In our formulation, the effect of multiple gates on the same pair of two ions can be easily

modelled as a longer pulse sequence. Suppose we have m gates starting at T1, T2, · · · , Tm

respectively, with T1 < T1 + τ ≤ T2 < T2 + τ ≤ · · · ≤ Tm < Tm + τ where τ is the gate time.

Then Eq. (2.25) and Eq. (2.29) should be modified to

αkj =−
i

~
ηkb

k
j

∫ T1+τ

T1

χj(t)e
iωktdt− i

~
ηkb

k
j

∫ T2+τ

T2

χj(t)e
iωktdt− · · ·

− i

~
ηkb

k
j

∫ Tm+τ

Tm

χj(t)e
iωktdt, (2.63)

and

Θij =
2

~2
∑
k

η2kb
k
i b
k
j

{(∫ T1+τ

T1

dt1

∫ t1

T1

dt2

+

∫ T2+τ

T2

dt1

∫ T1+τ

T1

dt2 +

∫ T2+τ

T2

dt1

∫ t1

T2

dt2

+ · · ·

+

∫ Tm+τ

Tm

dt1

∫ T1+τ

T1

dt2 + · · ·+
∫ Tm+τ

Tm

dt1

∫ t1

Tm

dt2

)
χi(t1)χj(t2) sin [ωk(t1 − t2)]

}
. (2.64)
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Changing the starting point of the gate within a range of 2π/ωx, which is much shorter than

the gate time τ , will introduce a fully random phase factor to each term in αkj . This ensures

a
√
m scaling for each αkj as random walks on the complex plane, and hence the accumulated

infidelity of m gates, which is proportional to
∑

jk |αkj |2(2nk + 1) [see Eq. (2.53)], will scale

as m instead of m2. Besides, the varying starting point of the integration in αkj also leads to

a varying motional phase φ(m)
j for each gate. In Sec. 2.2.1 we optimize the gate parameters

at φ(m)
j = 0 for both ions, but later in Fig. 2.14 we will show that these gate designs are

robust for a nonzero motional phase.

Now we consider the Θij term. First note that any double integrals involving two gates

will vanish in Eq. (2.64), because then these integrals have a similar form as those in αkj

and are suppressed by our optimization. The error from these terms will further be squared

when computing the fidelity, hence can be safely neglected. Then we are left with m double

integrals, each corresponding to an individual gate. Here a random motional phase will

also appear due the the varying starting points of the gates. Ideally each double integral

should be ±π/4 and the total phase ±mπ/4, but the random motional phase will cause a

distribution of the integral. To suppress the accumulated error, we set the mean of this

distribution at ±π/4, assuming a uniform distribution of the motional phase over [0, 2π).

Then the deviation of the sum of the m gates from ±mπ/4 will be O(
√
m) and therefore the

infidelity will scale as m.

As an example, we plot the infidelity due to αkj terms (residual coupling to the phonon

modes) in Fig. 2.14 and the value of Θij in Fig. 2.15 as functions of the motional phase φ(m)
j .

These plots are computed from our gate design for ion 9 and ion 14, where first we determine

the shape of the pulse sequence at the detuning µ0 = 0.997ωx, then we move to the working

point µ′
0 = µ0 − 2π × 0.5 kHz and rescale the pulse intensity to set Θij = ±π/4. These
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parameters are the same as those used to get Fig. 2.10. As we can see, the residual coupling

to the phonon modes is very insensitive to the motional phase. We should further rescale

the pulse sequence to move the mean of Fig. 2.15 to −1, so that the infidelity accumulates

as O(m).

0 0.5 1
4.002

4.003

4.004

4.005

4.006
10-7

Figure 2.14: Infidelity due to residual coupling to the phonon modes vs. motional phase
φ(m). The pulse sequence is optimized for φ(m) = 0, but the infidelity is almost independent
of φ(m). (From Ref. [1], c⃝2018 American Physical Society.)

Finally we show an example of applying repeated gates by setting Ti + τ = Ti+1 (i =

1, 2, · · · , m−1). The gate infidelity due to the imperfect design vs. m is plotted in Fig. 2.16.

No clear accumulation in the gate infidelity is observed, partially because the starting point

of each gate is not randomly chosen. Nevertheless, we expect the accumulated error to be

O(m) rather than O(m2).

We should emphasize that with the existence of spontaneous emission, phonon mode de-

phasing and heating, the above formulation will finally break down as mτ goes above the

coherence time. The purpose of this discussion here is just to show that the gate design error

is not a dominant source in our scheme even if multiples gates are applied.
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Figure 2.15: XX rotation angle Θij vs. motional phase φ(m). The pulse sequence is chosen
such that Θij = ±π/4 at φ(m) = 0. A further rescaling is needed to shift the average of this
curve to −1 if we assume a uniform distribution of the motional phase over [0, 2π). (From
Ref. [1], c⃝2018 American Physical Society.)
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Figure 2.16: Total gate design infidelity vs. number of repeated gates m between ion 9 and
ion 14. Here we consider a special case where there is no interval between two adjacent gates.
(From Ref. [1], c⃝2018 American Physical Society.)
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2.2.4 Summary and Discussion

We summarize in Table 2.1 the requirements on the relevant parameters for a gate fidelity

higher than 99.9%, and in Table 2.2 the error from terms and effects neglected in the

Table 2.1: Restriction on fluctuations or errors in physical parameters for F > 99.9%.
Source of Error Requirement

Slow fluctuation in µ |δµ| < 1 kHz
Slow fluctuation in Ω |δΩ/Ω0| < 1%
Error in gate time τ |δτ | < 0.4µs

Detuning asymmetry in
phase-insensitive setup |δµasym| < 10Hz

Rabi frequency asymmetry
in phase-insensitive setup |δΩasym/Ω0| < 0.02%

Phase asymmetry
on the two ions |φ(m)

asym| < π/100

Nonzero φ(s) |φ(s)| < π/100
Laser’s phase fluctuation

during one gate time |δφ| < π/100

Change in trapping
frequencies

|δωx| < 1 kHz
|δωz/ωz| < 0.5%

derivation. As we can see, the most prominent technical challenge in realizing a high-fidelity

entangling gate is to compensate any imbalance in the two Raman transition pairs to couple

the qubit states; they require very careful control in the frequencies, intensities and beam

profiles of the laser.

In comparison, errors from spontaneous emission of the excited state, which is right at the

order of 0.1% in our examples of gate design, seems to set an ultimate limitation: we note

that the error from spontaneous emission is proportional to the effective Rabi frequency Ω (if

two beams of the Raman transition have the same intensity) and the total gate time τ . If one

is reduced, the other should be increased to realize the desired entangling gate and therefore
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Table 2.2: Errors from neglected terms and effects. In this table, q is a parameter of the
Mathieu equation describing the Paul trap (see Sec. 1.2.1); γe the spontaneous emission
rate of the excited state |e⟩; Ω1 and Ω2 the Rabi frequencies corresponding to any Raman
transition pair and Ωeff the resulting effective coupling between |0⟩ and |1⟩; dav the average
ion spacing; σ the width of each laser beam. See the main text for the definition of other
symbols. The last column gives an estimation of the order of magnitude based on the chosen
experimental parameters.

Source of Error Expression Value
Micromotion (ηqΩeff/ωrf)

2 10−6

RWA |δ|/ω01, |Ω1(2)|/ω1(2) 10−4

Adiabatic elimination
of the excited state |Ω1(2)|2/∆2 10−7

Spontaneous emission
of the excited state γeτ |Ω1(2)|2/∆2 10−3

Higher order terms in
Lamb-Dicke parameter η η4(2n̄+ 1)2 10−4

Laser beams on
adjacent ions exp(−d2av/2σ2) 10−4

Thermal motions
perpendicular to
the laser beams

η2(2n̄+1)
32π2

(
λ
σ

)2 (ωx

ωz

)2
10−4
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the error does not decrease. However, what we presented in Sec. 2.2.1 are not the shortest

possible gate time and weakest possible Rabi frequency: when optimizing parameters such

as Ω and τ , we have considered the robustness against fluctuation in parameters. If these

fluctuations can be further suppressed, we can use other solutions with shorter gate time

and weaker laser intensity [2], then the infidelity from spontaneous emission can be reduced.

Also note that in the above estimation we use a detuning ∆ corresponding to the 355 nm

laser for 171Yb+ ions. The spontaneous emission error will decrease if we use larger |∆| [32],

although then we will have larger differential AC Stark shift [43].

Finally, for the current example we are considering with a few tens of ions, effects of thermal

motion and heating are not dominant; but as these effects scale with the ion number N , we

will need better way to cool the ion chain and to isolate it from the environment when we

proceed to larger scale ion trap quantum computing.
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Chapter 3

Scalability of Ion Trap Quantum Computing

Although the method we studied in the previous chapter works for a multi-ion crystal, the

number of phonon modes scales linearly with the number of ions and hence it becomes more

and more difficult to suppress all the residue entanglement between the qubit states and the

phonon modes. Besides, in large ion crystals (possibly 2D or 3D) the micromotion cannot be

neglected. In this sense, it is not clear whether this approach for gate design can be applied

to a system of thousands to millions of ions. In this chapter, we will address this problem of

scalability. First we will consider numerical methods to solve ions’ (classical) motions and

examine the stability of a large crystal in Sec. 3.1. Then a scalable way to design and to

apply the entangling gates will be described in Sec. 3.2. Finally in Sec. 3.3 we include the

effect of micromotion into the gate design.
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3.1 Numerical Solution of Ions’ Classical Motions

In this section we solve the dimensionless equation of motion (EOM) of N ions in a trap

[Eq. (1.13)]:

R̈iσ + (aσ − 2qσ cos 2t)Riσ − 4
∑
j ̸=i

Riσ −Rjσ[∑
ρ(Riρ −Rjρ)2

] 3
2

= 0, (3.1)

where i = 1, 2, · · · , N corresponds to each ion and σ = x, y, z for the three spatial direc-

tions.

Since the potential has a period of π, it is reasonable to expect a solution with π period [51].

In Sec. 3.1.1 we will follow the notation of Ref. [51] and describe how the periodic solutions

(equilibrium configuration of the ions) can be found accurately. Then we will review the

derivation of the EOM for small perturbations around the periodic solution in Sec. 3.1.2

following the steps of Ref. [51] and develop numerical methods to solve this equation to

arbitrary precision. After briefly discussing the stability of infinitesimal perturbation in

Sec. 3.1.3, we move on to the molecular dynamics (MD) method for large disturbance and

the phenomenon of RF heating in Sec. 3.1.4. Finally in Sec. 3.1.5 we will examine the

existence of soft modes (low-frequency modes) in large ion crystals and their influence on

the formation of the crystal and on quantum computing.

3.1.1 Periodic Crystal Solution

To find the crystal structure in the ion trap, we can time evolve the system and gradually

turn down the damping until it reaches the equilibrium distribution. For this purpose we can

apply some standard ordinary differential equation (ODE) integrators such as forward Euler,

leapfrog or Runge-Kutta methods (see e.g. Ref. [59]) to solve the Newtown’s equation of
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the N ions (molecular dynamics simulation). Because there will be nonzero damping terms,

the stability of the ODE integrator is not very important and the step size need not be

extremely small. In comparison, in Sec. 3.1.4 we will consider how to simulate these motions

more accurately to study weak heating effects when no damping term is applied.

We can start from a random initial configuration. If some symmetries or some a priori

knowledge about the final distribution exist, then we can also choose the initial conditions

accordingly. For example, if the trapping potential along the z direction is much stronger

than that along x and y directions, then we can choose zi = 0 for all the ions, which can

speed up the convergence.

To reach the equilibrium positions from a random initial state, there must be some dissipation

in the system. In the simulation we add a −γ(t)Ṙiσ term to the RHS of Eq. (3.1) and

gradually turn it down during the time of simulation. For example, we can choose γ(t) =

γ0(1 − t/T )n where T is the total evolution time; or we can use piecewise-constant γ(t),

that is, we start from a large γ and evolve the system for some hundreds of RF periods,

then we use the final state we get as the new initial state, reduce γ and repeat this process.

Similar to the case of a static potential, there can be multiple local minima, i.e. multiple

equilibrium solutions. By gradually reducing the damping term it is more likely to go into a

stable solution. (See Sec. 3.1.3 for the stability of a solution.)

One problem is that sometimes by numerically evolving the system with a cooling term we

are not able to get an accurate periodic solution to Eq. (3.1): when the damping is high, the

solution we get clearly deviates from what we want; but if the damping is too low, instability

may arise due to the ODE integrator or the finite step size we use, and the accurate simulation

may be too costly (see Sec. 3.1.4 for more details about MD simulation). This motivates us

to consider a method that can iteratively increase the accuracy of a solution.
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Let us express the equilibrium solution with the period of π as

Rπ
jσ(t) =

+∞∑
n=−∞

B2n,jσe
i2nt, (3.2)

where j = 1, 2, · · · , N labels the ions and σ = x, y, z the spatial directions. To the lowest

order in a and q2, we have [51]

B2,jσ ≈ −
qσ
4
B0,jσ. (3.3)

Also note that due to the time-reversal symmetry of Eq. (3.1), we have B2n,jσ = B−2n,jσ =

B∗
2n,jσ. Therefore all the expansion coefficients are real.

For the purpose of quantum computing, we want the micromotion to be small, because we

need to focus the laser beams on each ion for their manipulation. Therefore we are mainly

interested in the small a and q regime, and we can expect to truncate at some order in the

above expansion for a given precision.

If Rπ
iσ(t) has a period of π, so does any function of coordinates. Therefore the last term in

Eq. (3.1) can be regarded as a driving term with a period of π:

Dπ
iσ(t) ≡ 4

∑
j ̸=i

Rπ
iσ(t)−Rπ

jσ(t){∑
ρ

[
Rπ
iρ(t)−Rπ

jρ(t)
]2}3/2

≡
+∞∑

n=−∞

D2n,iσe
i2nt. (3.4)

Then we get a recurrence relation:

(aσ − 4n2)B2n,iσ − qσB2n−2,iσ − qσB2n+2,iσ = D2n,iσ. (3.5)

If we truncate at finite order of Fourier series, this is just a system of linear equations and

can be solved iteratively: we can use the old solution of {B2n,iσ} to calculate the driving
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term {D2n,iσ} and then find the new solution of {B2n,iσ}. Unfortunately, numerically we find

that this method is not stable and the result will deviate further and further away from the

periodic solution. The reason is that for the leading order term B0,iσ, we have n = 0 and

thus the coefficient in front of it is only of the order O(a), which is a small parameter. When

computing the new solution from the odd one, we take the inverse of these small parameters

and therefore the error gets enlarged.

On the other hand, the “driving term” can also be expressed as [51]

Dπ
iσ(t) = 4

∑
j

Gπ
ij(t)R

π
jσ(t), (3.6)

where

Gπ
ij(t) = δij

∑
k ̸=i

1{∑
ρ

[
Rπ
iρ(t)−Rπ

kρ(t)
]2}3/2

− (1− δij)
1{∑

ρ

[
Rπ
iρ(t)−Rπ

jρ(t)
]2}3/2

≡
+∞∑

n=−∞

G2n,ije
i2nt. (3.7)

With a suitable division of the Coulomb interaction term into these two alternative forms,

we get

(aσ − 4n2)B2n,iσ − qσB2n−2,iσ − qσB2n+2,iσ + 4α
∑
m,j

G2n−2m,ijB2m,jσ = (1 + α)D2n,iσ, (3.8)

where the α-dependent terms on the two sides cancel each other for the accurate solution.

Their purpose is to give larger “weight” to the leading order terms in the system of linear

equations. We can now use the old solution to evaluate G2n,ij and D2n,iσ and then calculate

the new solution iteratively. Numerically we find that α ≥ 1 leads to convergence around the
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periodic solution, if we start from the approximate solution we found with a weak damping

term. Note that if in B2n,iσ we truncate at n = ±M , then in G2n,ij we need to truncate at

n = ±2M . Also note that such a truncation will only work for small q so that the higher

order terms quickly go to zero.

3.1.2 Normal Modes

In this subsection we solve all the collective normal modes of the ion crystal. For this purpose

we consider small perturbation around the equilibrium trajectories {Rπ
iσ(t)}.

Expansion around Crystal Solution

Let us first derive the equation of motion for a small deviation. Following Ref. [51], we define

a matrix function K(t)

Kiσ,jτ (t) =



−3 (Rπ
iσ−Rπ

jσ)(R
π
iτ−Rπ

jτ )

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]

5/2 (i ̸= j, σ ̸= τ)

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]−3(Rπ

iσ−Rπ
jσ)

2

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]

5/2 (i ̸= j, σ = τ)

3
∑

k ̸=i
(Rπ

iσ−Rπ
kσ)(R

π
iτ−Rπ

kτ )

[
∑

ρ(R
π
iρ−Rπ

kρ)
2]

5/2 (i = j, σ ̸= τ)

−
∑

k ̸=i
[
∑

ρ(R
π
iρ−Rπ

kρ)
2]−3(Rπ

iσ−Rπ
kσ)

2

[
∑

ρ(R
π
iρ−Rπ

kρ)
2]

5/2 (i = j, σ = τ)

(3.9)

where the t dependence of Rπ
iσ is omitted for simplicity. Small perturbation riα around the

periodic crystal solution is then governed by

d2riσ
dt2

+ (aσ − 2qσ cos 2t)riσ + 4
∑
j,τ

Kiσ,jτ (t)rjτ = 0. (3.10)
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Because the K(t) matrix also has a period of π, it can be expanded as

K(t) = K0 − 2K2 cos 2t− 2K4 cos 4t− · · · (3.11)

For a typical periodic solution Rπ
iσ, we would expect K0 to be of the same order as a and q2,

because the Coulomb interaction should on average be balanced by the external AC and DC

fields; K2 should be smaller by a factor of q, and K4 be even smaller. Then we can define

Aiσ,jτ = aσδijδστ + 4(K0)iσ,jτ and Qiσ,jτ = qσδijδστ + 4(K2)iσ,jτ . The above equation can be

written in the vector form [51]:

d2r

dt2
+ (A− 2Q cos 2t)r = 0, (3.12)

where r is a 3N by 1 column vector, and we have neglected higher order terms such as

K4, K6, · · · The effect of the K4 term is considered in Ref. [60], but the method used there

is difficult to generalize to higher order terms. Furthermore, as we will see below, it is hard

to directly apply the method used in Refs. [51,60] for large ion crystals. Here we will tackle

this problem in a different way: we first consider how to find good approximate normal

modes, at least in the small a and q regime; then we describe how the accuracy of the

solution to Eq. (3.12) or more precisely Eq. (3.10) can be improved iteratively. Also note

that, although throughout this chapter we work with ideal harmonic traps, our method can

be easily generalized to anharmonic traps by absorbing the higher order forces into K(t) in

Eq. (3.10).
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Approximate Normal Modes

Following Ref. [51], a solution to Eq. (3.12) can be expanded as

r =
+∞∑

n=−∞

C2n

[
cei(2n+β)t + c∗e−i(2n+β)t

]
, (3.13)

which is correct for non-integral β. Here C2n are real 3N by 1 vectors and c is a complex

number. To solve all the normal modes, we must determine all the characteristic exponents

β. An imaginary β means an exponential increase or decrease in the deviation from the

equilibrium trajectories, while all β’s being real corresponds to oscillatory behavior.

Plug this expansion into Eq. (3.12) and define R2n = A− (2n+ β)2. We get

QC2n−2 = R2nC2n −QC2n+2. (3.14)

Suppose the expansion can be truncated at some large |n|, we get two independent relations

[51]

C2 = P1QC0 ≡ {R2 −Q[R4 −Q(R6 − · · · )−1Q]−1Q}−1QC0 (3.15)

and

QC2 = P2C0 ≡ {R0 −Q[R−2 −Q(R−4 − · · · )−1Q]−1Q}C0. (3.16)

To get a nonzero solution, we must have

det(P2 −QP1Q) = 0, (3.17)

and C0 is the eigenvector of P2 −QP1Q corresponding to the eigenvalue of 0.
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Now the remaining problem is to find all the solutions to Eq. (3.17). Given the order of

truncation, det(P2 −QP1Q) is just a function of β. Therefore in principle we can solve this

problem by finding all the roots of this function numerically, as is done in Refs. [51, 60].

However, as the ion number N increases, the separation between the frequencies of the

3N normal modes is decreasing and it becomes hard to solve all of them without any a

priori knowledge about their distribution. Furthermore, we are not guaranteed that all the

characteristic exponents are real, which makes the numerical search of the solution even

more difficult.

Fortunately, in the limit of small a and q2, some approximations can be made. In this limit

we have

T ≡ P2 −QP1Q ≈ R0 −QR−1
2 Q−QR−1

−2Q, (3.18)

where R2n terms for n = ±2,±3, · · · are multiplied by higher order terms of q and therefore

have been neglected. Later we will show that β is of the order
√
a+ q2/2. Then we have

R−1
2 ≈ −(2+β)−2 ≈ −1/4 and R−1

−2 ≈ −(−2+β)−2 ≈ −1/4, and we get T ≈ A−β2+Q2/2.

Therefore, to find the characteristic exponents, we only need to calculate the eigenvalues of

A+Q2/2 and then take the square root. C0’s are the corresponding eigenvectors. Also note

that we have recovered the approximate solution of Mathieu equation [20] if N = 1, i.e. if

there is no K matrix due to Coulomb interaction.

However, in many ion trap experiments a and q are not extremely small. For example,

q ≈ 0.35 in Ref. [28] and q ≈ 0.41 in Ref. [32]. In this regime the above approximation is not

good enough, and for some 2D or 3D ion crystals with low-frequency modes (soft modes) it

may even produce imaginary characteristic exponents when the actual oscillation is stable.

In these cases it will be necessary to include higher order expansions. Now we consider the
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following expansion for n ̸= 0:

R−1
2n =

[
A− (2n+ β)2

]−1
=
(
A− 4n2 − 4nβ − β2

)−1

= − 1

4n2

(
1− β

n
− β2 − A

4n2
+
β2

n2

)
+O(β3) (3.19)

where β is roughly of the order
√
a+ q2/2. Later we will see that the error is actually

of the order O(β4), because the expression for the characteristic exponent is symmetric for

positive and negative n; since the odd order terms of β contain an odd power of n, they will

be cancelled in the final result.

Also we have the expansion

P1 ≈
[
R2 −QR−1

4 Q
]−1

= R−1
2 +R−1

2 QR−1
4 QR−1

2 +O(q4), (3.20)

P2 ≈ R0 −Q
[
R−2 −QR−1

−4Q
]−1

Q = R0 −QR−1
−2Q−QR−1

−2QR
−1
−4QR

−1
−2Q+O(q6). (3.21)

Therefore

T = P2 −QP1Q ≈ A+
1

2
Q2 +

1

8
QAQ+

1

128
Q4 − β2

(
1− 3

8
Q2

)
. (3.22)

Because C0 satisfies TC0 = 0, β2 is now given by a generalized eigenvalue problem

[
A+

1

2
Q2 +

1

8
QAQ+

1

128
Q4

]
C0 = β2

(
1− 3

8
Q2

)
C0, (3.23)

with the error of the order a2 and q4. Note that here C0’s are no longer orthonormal. To

describe the normal modes to the same order of approximation we must include oscillations
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at the multiples of the RF frequency, which are given by:

C±2 =
(
R±2 −QR−1

±4Q
)−1

QC0, (3.24)

C±4 =R
−1
±4QC±2. (3.25)

Approach the Accurate Solution

What we described above is only an approximate solution to Eq. (3.17), or equivalently

Eq. (3.12), and a generalization to higher order expansions in a and q is not trivial. Further-

more, from Eq. (3.10) to Eq. (3.12) we have already ignored higher order expansions of K(t)

[Eq. (3.11)]. Here we describe how we can reach arbitrary precision from the approximate

solution we got before. First we will solve Eq. (3.17) and then we will go back to the original

Eq. (3.10).

Let us rewrite Eq. (3.17) as

TC0 ≡ (A−M+ −M− − β2)C0 = 0, (3.26)

where

M+ = Q{R2 −Q[R4 −Q(R6 − · · · )−1Q]−1Q}−1Q (3.27)

and

M− = Q{R−2 −Q[R−4 −Q(R−6 − · · · )−1Q]−1Q}−1Q. (3.28)

T is a matrix depending on β (note that not only the constant β2 but also the R2n matrices

are β-dependent) and C0 is an eigenvector with the eigenvalue of 0. Now if we have an

inaccurate β, T (β) will not have an eigenvalue of exactly zero, but there should be one value
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close to 0 if β is close to the accurate mode frequency. Hence what we can do is to start

from our approximate β and compute the eigenvalue of T (β) with the smallest magnitude,

which we call ∆, using e.g. inverse iteration method [61], that is,

[A−M+(β)−M−(β)− β2]C0 = ∆C0, (3.29)

or

[A−M+(β)−M−(β)− (β2 +∆)]C0 = 0. (3.30)

Then we can update β ←
√
β2 +∆ and repeat this process until the value converges.

Although T involves infinite-continued matrix inversions, we can truncate at some value of

n such that the error is below the precision we set. Also note that if there are degeneracy in

the eigenvalues, the corresponding eigenvectors we find may not be orthogonal and we need

to apply Gram-Schmidt process manually.

All the above formulas are derived from Eq. (3.12), where higher order expansions of K(t)

have been neglected. For high-precision computation of the normal modes, we may need

to include their effects. The K4 term is considered in Ref. [60] by two modified continued

inversions similar to Eq. (3.15) and Eq. (3.16). However, the derivation of these expressions

becomes more and more complex as we include higher and higher order terms. Here we

describe a simpler method given the above approximate solution.

In general, we can rewrite the EOM for small perturbation around the periodic solution

[Eq. (3.10)] as

d2r

dt2
+ (A− 2Q cos 2t− 2Q4 cos 4t− 2Q6 cos 6t− · · · )r = 0 (3.31)
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with Q2n = 4K2n (n ≥ 2) from the Fourier expansion of the matrix functionK(t) [Eq. (3.11)].

Using the same expansion of Eq. (3.13), we get a general recurrence relation

R2nC2n = Q(C2n−2 +C2n+2) +Q4(C2n−4 +C2n+4) +Q6(C2n−6 +C2n+6) + · · · (3.32)

where again R2n ≡ A− (2n+ β)2.

Now we truncate these equations at ±n and express them in a matrix form



R−2n −Q −Q4 · · · 0 0 0

−Q R−2n+2 −Q · · · 0 0 0

−Q4 −Q R−2n+4 · · · 0 0 0

...
...

... . . . ...
...

...

0 0 0 · · · R2n−4 −Q −Q4

0 0 0 · · · −Q R2n−2 −Q

0 0 0 · · · −Q4 −Q R2n





C−2n

C−2n+2

C−2n+4

...

C2n−4

C2n−2

C2n



= 0, (3.33)

where the expansion of Q2n can be truncated at some different order m, which is not shown in

the above equation for simplicity. Again a mode frequency βk should make the determinant

of this matrix equal to zero, and all the mode vectors (including the higher order expansions)

are given by the corresponding eigenvector with eigenvalue 0. Now we can simply plug in the

approximate solutions we get before and apply the iterative method to approach the exact

solution to each mode. Note that the diagonal of the above matrix has a common −β2 term,

so again we can attribute the nonzero eigenvalue ∆ to β2 by making β ←
√
β2 +∆ in the

iteration.

Finally, we show an example of the computed normal modes compared with the exact solution
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from molecular dynamics simulation in Fig. 3.1. Here we consider a crystal of 100 ions and

the normal modes match perfectly with the exact solutions.

3.1.3 Stability against Small Disturbance

By starting from a random initial state and gradually turn down the cooling term, usually we

can find a periodic solution where all β’s are real. Although it might be difficult to strictly

prove the existence of periodic solutions with the same period as the periodic nonlinear

differential equation [Eq. (3.1)], numerically it seems that for typical values of a and q used

in ion trap experiments and an ion number of less than a few hundreds, we can always find

such solutions.

Suppose we have found such a solution Rπ
iσ(t) with a period of π using e.g. the method in

Sec. 3.1.1, with the characteristic exponents of all the 3N normal modes βk being real. Since

any small perturbation riσ(t) around the equilibrium trajectories can be decomposed into

these normal modes, we conclude that, at least to the first order, the small perturbation

does not increase with time and thus the equilibrium configuration is stable.

Since the first order perturbation shows oscillatory behavior, we must consider higher order

expansions to discuss the stability of the system, which becomes much more difficult. How-

ever, the above result also means that the system can be stabilized by introducing arbitrarily

small damping, e.g. the existence of a weak laser cooling.

Let us formulate the derivation of the normal modes again with a small constant damping

term. (It can also be taken as direction and position dependent, which does not change the
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Figure 3.1: Comparison between the computed normal modes and the exact solution from
numerical simulation. Here we consider a crystal of 100 ions with trap parameters a =
(−0.015, −0.015, 0.03) and q = (0.3, −0.3, 0). (a) Equilibrium trajectories of the 100 ions.
(b) Evolution of the x coordinate of ion 6 [colored in blue in (a)] over 1000 RF periods for
a weak excitation of 0.01 in the lowest mode with β = 0.001340. (c) Evolution of the y
coordinate of ion 1 [colored in red in (a)] over 1000 RF periods for a weak excitation of
0.01 in the highest mode with β = 0.3032. In both (b) and (c), the blue curve is from
direct numerical simulation using Forest-Ruth method, 1000 steps per RF period and double
precision (see Sec. 3.1.4), the red curve is computed from the normal mode expansions, and
the green curve is their difference. The equilibrium trajectories Rπ

iσ(t) at the order of O(1)
is already subtracted from these curves. Note that our computed normal modes are correct
for a wide range of spectra over two orders of magnitude.
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qualitative conclusion about the stability.) The equation of motion [Eq. (3.1)] now becomes

R̈iσ + (aσ − 2qσ cos 2t)Riσ + γṘiσ − 4
∑
j ̸=i

Riσ −Rjσ[∑
ρ(Riρ −Rjρ)2

] 3
2

= 0. (3.34)

Again we look for solutions with period of π. With the existence of friction, a direct molecular

dynamics simulation can quickly converge to the desired solution.

Here we assume that Riσ(t) approaches the previous periodic solution Rπ
iσ(t) as γ goes to

zero, so that for small γ we can neglect their difference. This is a reasonable assumption

because this is how we find the previous periodic solution in the first place. We then linearize

the equation of motion for small perturbation around the periodic solution Rπ
iσ(t):

r̈iσ + γṙiσ + (aσ − 2qσ cos 2t)riσ + 4
∑
j,τ

Kiσ,jτ (t)rjτ = 0, (3.35)

where K is again given by Eq. (3.9). Taking a similar expansion as Eq. (3.13)

r =
+∞∑

n=−∞

[
cei(2n+β)tC2n + c∗e−i(2n+β

∗)tC∗
2n

]
, (3.36)

with β and C2n now allowed to take complex values, we have a modified recurrence relation

QC2n−2 = R′
2nC2n −QC2n+2, (3.37)

where R′
2n = A− (2n+β)2+ iγ(2n+β). As is mentioned above, γ can be chosen arbitrarily

small, so we consider only first order terms in γ. Then a direct observation is that by
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replacing the old solution of β in Sec. 3.1.2, which satisfies Eq. (3.14), with the new value

βnew = βold + i
γ

2
, (3.38)

the modified recurrence relation Eq. (3.37) is automatically satisfied (up to the first order

in γ). Hence any small deviation from this periodic solution will converge back to it at the

rate of γ/2.

3.1.4 Direct Molecular Dynamics Simulation and RF Heating

We have shown in the previous subsections the stability of crystal solutions under small

perturbation with arbitrarily weak damping. However, it does not exclude the possibility

of heating under finite disturbance. Actually, this phenomenon, called RF heating, is well-

known for trapped ions in a cloud state with high trap parameter q, and has been widely

studied experimentally and theoretically. In this subsection, we will review some previous

studies on RF heating and then examine some potential problems and improvements in its

numerical study. There are of course many other heating sources such as noise in the electric

field and collision of the trapped ions with background gases, as we discussed in Sec. 1.2.2,

but here we give special emphasis to the RF heating: these other sources are technical and

can be suppressed by e.g. cooling down the electrodes or increasing the vacuum quality;

but if a crystal with micromotion is to be heated by even an ideal RF field, this will set an

ultimate bound on the scalability of quantum computing in large ion crystals.

The study of heating in ion trap dates back to 1960s [22], although debates about its detailed

mechanism continued even in 1990s [26,62–64]. What is known is that inside the first stability

region of (single-ion) Mathieu equation (see Fig. 1.1 as an example for a linear Paul trap),
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there are some regions where two-(multiple-)ion crystal may not exist [65]; and for some

other regions the crystal and the cloud solutions are bistable even under cooling, such that

the system can stay in either state depending on the initial conditions [66]. Furthermore, the

cloud state demonstrates deterministic chaos, which is the source of its RF heating, while

the crystal state shows no visible heating in the numerical simulations; to go from the crystal

to the cloud state, a strong enough disturbance is needed [66]. In other words, the crystal

needs to melt first before it can be heated by the RF field, and this result seems to hold for

quasi-1D [67], 2D [68] and 3D [69] crystals. This is consistent with our previous result that

the crystal solution is stable under weak damping.

It is also shown that in some parameter regions the crystal solution is destabilized by non-

linear resonance [70], which is the coupling of different oscillation modes through higher

order nonlinear interactions. The resonance condition can be written as
∑

kmkωk = nωrf

where mk’s and n are all integers, which is generalized from the two-ion case of Ref. [70].

This phenomenon was first studied for a single ion in the trap where the nonlinearity arises

from the higher multipole expansions of the trapping potential [71–74]. For multiple ions,

the Coulomb interaction can supply the required nonlinearity and hence such imperfection

in the trapping potential is not necessary in the theory. We can expect a richer resonance

structure as we increase the number of ions N because the number of normal modes is 3N .

However, we argue that this phenomenon should not be a significant problem for the stability

of the ion crystal used for quantum computing for the following reasons. (1) The resonance

conditions are fulfilled on lines of the 2D Mathieu stability region and hence it is not likely

that a chosen set of parameters sits right on them. (2) The lowest order nonlinear resonances

(small mk) occur mainly for large q except for n = 0 in the above resonance condition, but

the condition for n = 0 can be met even for a static potential and hence should not be related
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to RF heating. On the other hand, for the purpose of quantum computing we are mainly

interested in the small q regime, so we are away from the region where low-order nonlinear

resonance (those with stronger influence) can occur. (3) If such nonlinear resonance occurs

in the system and destabilize the crystal, then we would not be able to find such a crystal

solution when we start from a random configuration and gradually reduce the damping rate.

Therefore if we can get a crystal solution in the first place, as we almost always do using the

methods described in the previous subsections for reasonable trap parameters and for ion

numbers ranging from 2 to a few hundreds, then we already know they are not affected by

the nonlinear resonance. Finally, this result of destabilization of two-ion crystal is not repro-

duced by the direct numerical simulation that will be described below. One reason is that

Ref. [70] did not report all the parameters in their simulation such as the initial conditions

and the Doppler cooling parameters, as well as the step size of the simulation; and another

possibility is that various numerical errors, as will be discussed later in this subsection, might

not be correctly treated. Nevertheless, we can conclude that nonlinear resonance is not a

significant problem in the low q regime for a crystal with hundreds of ions.

To study the RF heating effect, we can directly simulate the dynamics of the ions, i.e. the

molecular dynamics (MD) method. There are several challenges in applying the MD method

to ions in a Paul trap. First, the timescale of different dynamics of the system spans several

orders of magnitude: the fastest dynamics is at the RF frequency, which is typically tens of

MHz; in comparison, the secular motions are typically at the order of 0.1-1 MHz, except for

a few soft modes (see Sec. 3.1.5 for more discussions); the RF heating can be even slower,

and to safely decide if it can be neglected or not, we may need to simulate the system up to

the time of multiple gates, so the total simulated time can be as high as tens of ms. If each

RF period is simulated by, say, 100 steps, then the total number of steps can be at the order
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of 107-108.

Second, it is well-known that the N-body problem is chaotic even without the oscillatory

fields, such that the numerical errors explode exponentially with the simulated time [75].

Arguably, small errors at each step of numerical simulation should not influence the obser-

vation of RF heating, because with the existence of Doppler cooling or electric noise, there

will always be random disturbance during the evolution. However, without ruling out the

possibility that numerical errors at each step can accumulate in a “coherent” way and lead

to a fake increase in total energy, such simulations will not be convincing. We will look into

these numerical errors later.

Third, the Coulomb interaction between the ions is long-range, so we cannot neglect the in-

teraction between far-apart ion pairs and in principle we will need to consider the interaction

between O(N2) pairs at each step. Some approximation methods such as particle-mesh al-

gorithm and particle-particle-particle-mesh algorithms [76] have been devised to bring down

the scaling to O(N logN) or even O(N). However, due to the chaotic behavior mentioned

above, here we prefer the exact algorithm. Luckily for just tens to hundreds of ions it will

not be a significant problem.

Numerical Errors in MD Simulation

There are basically three types of errors when solving ordinary differential equations (ODE)

numerically: data error, discretization error and computational error [77]. The data error

comes from the inaccurate parameters such as a and q and initial values of positions and

velocities of the ions. For the study of RF heating this is not very important because we are

looking into some general behavior which should not be too sensitive to the parameters and
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initial conditions.

The discretization error (truncation error) arises because we set a finite step length when

numerically integrating an ODE. Two common methods to mitigate this error are to reduce

the step length and to use higher order methods. For example, the widely-used 4th order

Runge-Kutta method has a local discretization error of O(∆t5), while the 10th or 14th

order Runge-Kutta methods [78] (the coefficients are given by Ref. [79]) have much smaller

errors with the same step length. A problem with explicit Runge-Kutta methods is that

they are not “stable” in the sense that the amplitude of even a simple harmonic oscillator,

simulated by the Runge-Kutta method, will increase exponentially with time for a fixed step

size (of course for a fixed time we can expect convergence as we reduce the step size), which

may obscure the heating effect we want to see. To make sure we observe the true physical

evolution we have to suppress the discretization error. For any method of a given order, the

error scales polynomially with the step length. In comparison, for the chaotic system we are

considering, the error will be exponentially enlarged during the evolution time. This means

the required number of steps goes exponentially with the time interval we want to simulate,

which soon becomes intractable. On the other hand, if we choose to increase the order of

Runge-Kutta method, it only needs to scale linearly with the length of time interval, but it

is generally difficult to find all the coefficients for higher order explicit Runge-Kutta method.

The third type of error is the computational error (round-off error). It appears because we are

using finite precision date type (e.g. float or double) to approximate the intermediate results

of the calculation. It is reasonable to assume that the round-off errors at different steps

are uncorrelated, then the total effect will be like a random walk and scales as the square

root of the number of steps. Moreover, any previous errors will still be escalated in the

following evolution, so this type of error also accumulates exponentially with the evolution
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Figure 3.2: An example of 50 ions in a linear trap, with trapping parameters a = (−5.1 ×
10−5,−4.9 × 10−5, 1 × 10−4) and q = (0.343,−0.343, 0). The ions are initially at their
equilibrium positions with the red ion being collided by a Yb-171 atom at room temperature
T = 300K, in a random direction.

time [77]. In general, this round-off error will lead to heating in the simulation [76, 80]. To

reduce the error we can use arbitrary precision libraries like GMP for C language [81]. Since

the precision of a floating-point type goes exponentially with the number of bits used to

represent it, the latter only needs to scale linearly with the time duration of the simulation.

However, the use of arbitrary-precision data type is in general much slower than that of the

native data type of the machine such as float and double.

Now we show some numerical results to support the above analyses. Consider N = 50 171Yb+

ions in a linear trap with a = (−5.1×10−5, −4.9×10−5, 1×10−4) and q = (0.343, −0.343, 0).

At low enough temperature they will form a 1D crystal as shown in Fig. 3.2. Here we choose

ωrf = 2π × 50MHz, which gives length unit L0 ≈ 0.202µm and time unit T0 ≈ 6.37 ns (see

Sec. 1.2). In the following figures we use dimensionless spatial and time coordinates.

Suppose initially all the ions are in their equilibrium positions but one ion (colored in red

in Fig. 3.2) is collided by an Yb-171 atom at t = 0 at room temperature T = 300K.

The evolution of this ion’s x coordinate is shown in Fig. 3.3 up to 1000 RF periods after

the collision. The simulations are performed using the 10th order Runge-Kutta (RK10)
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method with 100 steps per RF period, but with different numerical precisions to store the

intermediate positions and velocities in the simulation. As we can see, the number of steps

that can be simulated accurately for a given error tolerance roughly increases linearly with

the number of bits we use to store the variables. Note that this is just to show the round-off

error and that the solutions here still have large truncation errors.

In contrast, Fig. 3.4 shows the results using Runge-Kutta methods at different orders with

different step sizes when fixing the precision at 128-bit. For convergence we want high order

methods or small step sizes; but note that if we keep reducing the step size, i.e. increasing

the number of steps for a given simulation time, the result will not converge because the

round-off error will finally dominate. Therefore we shall increase the precision together with

the number of steps to verify the convergence. According to the results in Fig. 3.3 and

Fig. 3.4, we can suppress the round-off error to negligible level for 103 ∼ 104 RF periods

using reasonable computational resources, but it is very difficult for the truncation error.

Even with nonzero truncation errors, it is still possible to prove the existence of RF heating

in the simulation if we can separate the energy of the system from such errors. Actually this

problem has also been considered for the traditional MD simulations with time-independent

Hamiltonian: for these systems we want the energy to be conserved during the simulation

regardless of the truncation errors. The solution is to use numerical methods that can pre-

serve time-reversal symmetry such as leapfrog (2nd order) and Forest-Ruth (4th order, and

it further preserves symplectic symmetry) methods [80]. Due to the time-reversal symmetry

of EOM of the system [Eq. (3.1)] and the numerical method, if there is a solution with

RF heating, by reversing the final velocity of all the ions, we can get a new solution with

total energy decreasing with time. Thus we conclude that the numerical method itself does

not prefer either an increase or a decrease in the energy; the RF heating, if observed, must
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Figure 3.3: (a) x(t) for the ion being collided using RK10 method with 100 steps per RF
period. The blue, magenta, green, red and black curves are for 32-bit, 96-bit, 160-bit, 192-
bit and 384-bit precisions, respectively. We terminate each curve once they are significantly
away from the “exact” solution of 384-bit precision. (b) Deviation of each curve from the
“exact” solution. As we can see, there are noticeable computational errors at t ≈ 20π for
32-bit precision (float), t ≈ 285π for 96-bit precision, t ≈ 650π for 160-bit precision, and
t ≈ 839π for 192-bit precision.
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Figure 3.4: (a) x(t) for the ion being collided using 128-bit precision. The blue, magenta,
green, red, orange and black curves are for RK4 with 10 steps per period, RK4 with 100
steps per period, RK4 with 1000 steps per period, RK10 with 10 steps per period, RK10
with 100 steps per period and RK14 with 100 steps per period, respectively. We terminate
each curve once they are significantly away from the “exact” solution of RK14 with 100 steps
per period. (b) Deviation of each curve from the “exact” solution.

be intrinsic in the system and will be analogous to the increase of entropy in statistical

mechanics.

However, note that the time-reversal symmetry of these algorithms is held only in exact

arithmetic [80]; with the existence of round-off errors we may still get fake heating behavior.

For instance, we consider a chain of N = 10 171Yb+ ions in a trap with a = (−5×10−5, −5×

10−5, 1× 10−4) and q = (0.6, −0.6, 0). Note that here we use a large q just to demonstrate

the effect; this value is much larger than what is typically used in the experiment. Again we

assume all the ions are initially at their equilibrium positions but this time an initial thermal

distribution at T = 3K for velocities. Fig. 3.5 shows the total kinetic energy of the system

(averaged over each RF period) vs. the evolution time for two Forest-Ruth simulations

using 100 steps per RF period but with 64-bit and 1024-bit precisions, respectively. The
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low-precision one shows significant heating during the simulated time, which however is not

seen in the simulation with higher precision, i.e. less round-off errors. Hence it is always

favorable, if within the reach of computational resources, to increase the numerical accuracy

and check the convergence of the simulation.
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Figure 3.5: Average kinetic energy over each RF period vs. evolution time t. Both curves use
Forest-Ruth method with 100 steps per RF period. The blue curve is simulated with 64-bit
precision and shows significant heating since about 80000 RF periods; the red curve uses
1024-bit precision (which has no observable difference from the 1600-bit result) and shows
no increase in energy over 150000 RF periods.

Having seen so many potential problems in studying RF heating, finally we look at an

example where we can conclude for sure the existence of this phenomenon. Let us go back

to the previous example of 50 ions as shown in Fig. 3.2 with the same initial conditions,

and evolve the system for 3000 RF periods. Fig. 3.6 shows the forward and backward

simulation of 3000 RF periods using Forest-Ruth method with 100 steps per period and

1600-bit precision. The velocities of the ions are reversed at t = 3000π, which separates

the forward and the backward evolutions. The final state we get matches the initial states
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within the double precision. Thus the heating shown in the forward evolution (starting from

a randomly chosen initial state) is intrinsic in the dynamics of the system; in comparison,

the backward evolution shows damping in the energy, but it is only for the specially chosen

initial state. The round-off error here is negligible because there is no noticeable difference

in these curves compared with the 1280-bit precision result.
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Figure 3.6: Average total energy over each RF period vs. time t. The blue curve is the
forward evolution and the red part is the backward evolution. Both simulations uses FR
method with 100 steps per period and 1600-bit precision.

Doppler Cooling

The simulation method described in this part is mainly based on Appendix D of Ref. [82],

with small modifications. The author of this thesis is one of the coauthor of this paper and

performed the numerical simulation of the ions’ motions.

During the storage of the ion crystal, a weak Doppler cooling beam can be turned on to

further stabilize it. Typically this beam is detuned at ∆ = −Γ/2 with a saturate intensity
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s = 1 [see the definition below Eq. (1.20)] [30] and is at an angle to all the three principle

axes of the trap, which we choose to be the [1, 1, 1] direction in the simulation.

Because the scattering rate of the photon Γρee is typically only a few MHz (e.g. for 171Yb+

ions) and is smaller than the RF frequency of the trap, the damping force should not be

modeled as a simple −γv term if we include the micromotion. In some literature, e.g.

Ref. [66], this process is modelled by a velocity-dependent scattering rate of the photons,

which still does not reflect the fact that the internal states of the ions may not follow the

micromotion at the RF frequency. To describe this process in the simulation we use N

vectors in C2 to represent the internal states of the ions and consider the excitation of ions

by the laser beam quantum mechanically. Then quantum trajectory [83] method can be used

to simulate the scattering process. At each step the internal state of an ion is first evolved

from |ψ(t)⟩ to |ψ̃(t+∆t)⟩ under the effective Hamiltonian

Heff =
∆− k · v

2
σz +

Ω

2
σx −

i

4
γ(I − σz). (3.39)

Then with probability ⟨ψ̃(t + ∆t)|ψ̃(t + ∆t)⟩ it is renormalized to |ψ(t + ∆t)⟩ = |ψ̃(t +

∆t)⟩/∥|ψ̃(t+∆t)⟩∥; otherwise a transition occurs and the ion goes back to the ground state

|ψ(t + ∆t)⟩ = |0⟩, together with a momentum change as the ion absorbs a photon in the

[1, 1, 1] direction and then emits one into a random direction. Note that if we include

the Doppler cooling in the simulation, the time-reversal symmetry is broken so that the

Forest-Ruth algorithm has no advantage over the Runge-Kutta algorithm; besides, since we

introduce a random force due to the scattering of photons, small numerical errors at each

step is no longer important and we can simply use double precision in the simulation.

Some numerical results are shown in Fig. 3.7. Fig. 3.7(a) uses the same trapping parameters
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and initial conditions as those in Fig. 3.2, i.e. a single collision with an Yb-171 atom at room

temperature. As we can see, the Doppler cooling is not functioning for this energetic motion

because of the large detuning due to the Doppler effect. On the other hand, if we rescale the

initial velocity so that it corresponds to a collision with H2 rather than Yb-171, the system

can be cooled by the laser beam, as is shown in Fig. 3.7(b). This observation matches well

with the experiments: the Doppler cooling parameters we choose (∆ = −Γ/2 and s = 1) is

used for ions that are already at low temperature; at high temperature we will need larger

detuning and stronger laser beams [30].
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Figure 3.7: (a) Average total energy over each RF period vs. time t for the ions considered
in Fig. 3.2 with the same initial conditions. (b) Average total energy over each RF period vs.
time t for the same trapping parameters, but an initial collision with H2 instead of Yb-171.

Melting of Ion Crystals

Knowing that the ion crystal needs to melt first before it can be heated by the RF field, now

we want to estimate the temperature at which RF heating will start. Infinitely many ions

in a plasma state can form a body-centered cubic (bcc) lattice at low temperature, whose
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melting point is about [84–86]

kBT ≈
1

173

e2

4πϵ0aWS

, (3.40)

with Wigner-Seitz radius defined by 4πa3WS/3 = V/N . For finite ion crystals, the melting

point will be shifted due to the different crystal structure and also the existence of a surface,

but Eq. (3.40) can still be a good estimation for the order of magnitude [84]. Furthermore,

Ref. [84] shows that the same melting point also holds for ions in RF trap if the effective

temperature is correctly defined for only the secular motion (the velocity after averaging out

the micromotion).

As an example, we consider a crystal of 50 171Yb+ ions with the trapping parameters a =

(0.0099, 0.0101, −0.02) and q = (−0.15, −0.15, 0.3). Here we choose ωrf = 2π × 50MHz,

and use the closest distance between the average positions of two ions dmin = 1.78µm to

approximate 2aWS. The melting point can be estimated to be around Tc ∼ 0.11K. First we

find the equilibrium trajectories of the system using the methods in the previous subsections.

Then we set the velocities of the ions according to a Maxwell-Boltzmann distribution at a

temperature of T and let the system evolve for 1000 RF periods. In these and the following

simulations we use Forest-Ruth algorithm with 100 steps per RF period and double precision.

Because here we only want to study the immediate melting of the crystal, the accuracy of

the simulation need not be very high. Fig. 3.8 shows the trajectories for the last 100 of the

1000 periods for (a) T = 0.01K, (b) T = 0.11K and (c) T = 1K. It is clear that when

T ≪ Tc the ions only oscillate around their equilibrium positions and thus stay in the crystal

state, while for T ≫ Tc they frequently change their positions and thus the crystal has melt.

The T ≈ Tc case is more complex: it looks like in Fig. 3.8(b) the crystal has already melted,

but the random motions of the ions are less violent than the T ≫ Tc case. This is probably
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because the dmin we use is less than the actual aSW and hence our estimated Tc is higher than

the real value; therefore the behavior at the melting point is still not clear. Nevertheless,

Eq. (3.40) seems to be a good estimation for the order of magnitude, and we shall be safe to

say that the ions are in the crystal state if the temperature is much lower than the estimated

transition point.
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Figure 3.8: Trajectories for the last 100 RF periods during a 1000-period evolution.
There are 50 171Yb+ ions in a trap with parameters a = (0.0099, 0.0101, −0.02) and
q = (−0.15, −0.15, 0.3). The initial positions of the ions are right at their equilibrium
positions when the phase of the RF field is 0, while the initial velocities follow a Maxwell-
Boltzmann distribution with (a) T = 0.01K, (b) T = 0.11K≈ Tc and (c) T = 1K.

The melting points for 2D and 1D crystals are more difficult to calculate. However, we

can argue that the transition point should be higher than Eq. (3.40). The reasoning goes

as follows: in one extreme case when the crystal is about to goes into the zigzag shape,

effectively we still have a 3D crystal but with larger finite size effects, so the transition

temperature should be similar to Eq. (3.40); in the other extreme case the crystal is strongly

trapped in the transverse direction, so it takes higher energy to melt the crystal and the

transition temperature increases (actually an ion chain in 1D is not possible to melt because

the Coulomb repulsion will diverge as the ions approach each other and thus prevents the

ions from exchanging positions). Thus Eq. (3.40) gives a good estimation for the order of
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magnitude and upper bound of the melting temperature for all ion crystals. Some examples

for 2D and 1D crystals are shown in Fig. 3.9 and Fig. 3.10. In the 1D case, for T ≫ Tc the

trajectories of the ions have started to overlap with each other even though they have not

exchanged positions; while for T . Tc the ions are clearly separated from each other.
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Figure 3.9: Trajectories (projected onto the x-y plane) for the last 100 RF periods dur-
ing a 1000-period evolution. There are 50 171Yb+ ions in a trap with parameters a =
(−0.0099, −0.0101, 0.02) and q = (−0.15, −0.15, 0.3). The initial positions of the ions are
right at their equilibrium positions when the phase of the RF field is 0, while the initial ve-
locities follow a Maxwell-Boltzmann distribution with (a) T = 0.007K, (b) T = 0.066K≈ Tc
and (c) T = 0.7K.

Incidentally, in the example of Fig. 3.6, where we do observe RF heating, the initial collision

with Yb-171 at 300K will give an effective temperature of 300/N = 6K after thermaliza-

tion, which is much higher than its melting point of about 0.1K. On the other hand, for

the example of Fig. 3.5, the melting point computed from Eq. (3.40) is Tc ≈ 0.05K. The

temperature we use is 3K, again much higher then Tc, but no heating is observed after we

suppress the round-off error. One possible reason is that the simulated evolution time is not

long enough to see significant heating; and another reason is that Eq. (3.40) is only an upper

bound for 1D case and the actual melting point may be higher. Therefore, all our results
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Figure 3.10: Trajectories (projected onto the z-x plane) for the last 100 RF periods during
a 1000-period evolution. There are 50 171Yb+ ions in a trap with parameters a = (−2 ×
10−5, −3× 10−5, 5× 10−5) and q = (0.3,−0.3, 0). The initial positions of the ions are right
at their equilibrium positions when the phase of the RF field is 0, while the initial velocities
follow a Maxwell-Boltzmann distribution with (a) T = 0.01K, (b) T = 0.1K≈ Tc and (c)
T = 1K. Axes are not to scale.

are consistent with each other.

3.1.5 Soft Modes in Large Ion Crystals

As we have already seen in Fig. 3.1, there are low-frequency normal modes in the ion crystals,

namely the soft modes. This can be a problem for quantum computing because even weak

excitation in these modes can lead to large amplitude.

In Fig. 3.11(a) we show the frequency of the lowest mode β1 vs. the system size N in a

trap with a = (−0.015, −0.015, 0.03) and q = (0.3, −0.3, 0). It seems that the soft mode

frequency is going down withN , but there is not a clear scaling relation. These soft modes are

generally rotational modes in 2D or 3D. One example is shown in Fig. 3.11(b) for N = 100.

Note that even for a fixed N there can be multiple equilibrium configurations in the trap

and they may have different soft mode frequencies. Some high data points in Fig. 3.11 such

as that for N = 20 indicate that there are some configurations that are more “stable” than
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the others.

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5
10-3

(a)

-20

-10

20 20

0

10

0

20

0
-20

-20

(b)

Figure 3.11: (a) Lowest mode frequency β1 (in the unit of ωrf/2) vs. ion number N in a trap
with a = (−0.015, −0.015, 0.03) and q = (0.3, −0.3, 0). (b) Mode vectors of each ion for
N = 100.

It is much easier to find the equilibrium positions and the corresponding mode frequencies

for ions in a static pseudo-potential. Although it is not a good approximation for large a and

q parameters, it may still help us to understand the scaling of the soft modes. In Fig. 3.12

we show the lowest mode frequency for up to N = 5000 ions in a static harmonic trap with

ωx = 0.16, ωy = 0.17 and ωz = 0.18 [a = (0.162, 0.172, 0.182) and q = (0, 0, 0)]. A rough

scaling of β1 ∝ N−0.26 is observed.

At thermal equilibrium, we expect the energy to distribute evenly in each normal mode, thus

the energy of the soft mode will not explode even if its amplitude is large. In this sense,

the soft mode should not lead to a direct melting of the crystal, which is consistent with

our previous result of a finite melting point. However, the large amplitude does break the

small-perturbation approximation we made in Sec. 3.1.3; whether there can be long-term RF

heating effect is not clear, and need to be studied with the numerical methods we described
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Figure 3.12: Lowest mode frequency β1 vs. ion number N in a static harmonic trap with
ωx = 0.16, ωy = 0.17 and ωz = 0.18.

in Sec. 3.1.4.

On the other hand, the large amplitude of the soft mode does have an immediate consequence.

When applying quantum gates, we typically use narrow laser beams to selectively drive the

chosen ions. Now if the oscillation amplitude is large, the target ion can leave the region

of the laser beam and moreover the nearby ions may enter the region. This is probably

not a fundamental limit for ion trap quantum computing, but more sophisticated control

techniques may be needed for individual ion addressing; or we may need to cool the ion

crystal, or at least the soft mode, to very low temperature before we apply the gates.

Fortunately, once cooled to low temperature, the soft mode is not very sensitive to the other

heating sources. According to Sec. 1.2.2, one dominant heating source in ion trap is the

electric noise, and it only heats up the center-of-mass modes which are at high frequencies.

Another potential heating source is the collision with the background gases, which is esti-
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mated to be infrequent in Sec. 1.2.2; thus we may just consider a single collision. Since there

are 3N orthogonal normal modes, a random velocity kick from the collision with background

gases will have a projection of 1/
√
3N on the soft mode. Therefore if the decrease of the

mode frequency is slower than 1/
√
N , e.g. the N−0.26 scaling we observed in Fig. 3.12, the

amplitude of the soft mode due to such a single collision will not explode in the large N

limit.

3.2 Parallel Entangling Gates in Large Crystal

In this section we examine how the entangling gates can be parallelized in a large ion crystal.

The key point in this scheme is that the influence of a locally driven ion on the other ions goes

down quickly with their distance, so that entangling gates on distant ion pairs can be applied

at the same time without much crosstalk. This fact also suggests that when designing the

entangling gate between two ions, we can neglect all the ions far away, hence the complexity

of optimizing the gate performance does not increase with the total size of the ion crystal.

This section is based on a paper that will be submitted soon [87], and the author is responsible

for all the works presented here. It is organized in the following way: first we consider an

infinite ion chain with uniform spacing for simplicity and study how the crosstalk between

two entangling gates scales with the distance. This assumption of a uniform chain is just

to simplify our derivation; neither the gate design nor their parallelization relies on it. For

realistic ion crystals the spacing is never uniform, but good approximations can be achieved

by adjusting the electric potential along the axial direction (see Sec. 2.1.1). Then in Sec. 3.2.2

we generalize the result to 2D ion crystals.
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3.2.1 Entangling Gates on Uniform Infinite Ion Chain

Consider an infinite ion chain along the z axis with uniform spacing d. The ions can be

labelled by integers with ion j located at zj = jd. Suppose the trapping potential along the

x direction is harmonic with trapping frequency ωx, then the transverse oscillation modes in

this direction can be expressed as travelling waves

bkj =
1√
N
eikzj , (3.41)

where N is the number of ions and we will later take the limit N →∞. The mode frequencies

are

ωk =ωx

√
1− e2

4πϵ0d3mω2
x

∑
j ̸=0

1− cos jkd

|j|3
(3.42)

=ωx

√
1− e2

4πϵ0d3mω2
x

2 [ζ(3)− S(kd)], (3.43)

where m and e are the mass and the charge of the ion, ζ the Riemann zeta function and

S(x) ≡
∑∞

j=1 cos jx/j
3.

Let us define ϵ = e2/4πϵ0d
3mω2

x, which characterize the narrowness of the spectrum of the

transverse phonon modes. As we have seen in Chapter 2, it is typically a small parameter.

Then we can make the approximation

ωk ≈ ωx {1− ϵ [ζ(3)− S(kd)]} . (3.44)

Recall that an XX entangling gate between ion i and ion j takes the form [Eq. (2.31)]
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Uideal = e±iπσ
x
i σ

x
j /4, while the actual gate we implement is [Eq. (2.23)]

UI(τ) ≈ exp

(
i
∑
j

ϕj(τ)σ
n
j + i

∑
i<j

Θij(τ)σ
n
i σ

n
j

)
, (3.45)

where

ϕj(τ) = −i
∑
k

[
αkj (τ)a

†
k − α

k
j

∗
(τ)ak

]
, (3.46)

αkj (τ) = −
i

~
ηkb

k
j

∫ τ

0

χj(t)e
iωktdt, (3.47)

and

Θij(τ) =
1

~2
∑
k

η2kb
k
i b
k
j

∫ τ

0

dt1

∫ t1

0

dt2 [χi(t1)χj(t2) + χj(t1)χi(t2)] sin [ωk(t1 − t2)] , (3.48)

with χj(t) ≡ ~Ωj(t) sin(µt + φ
(m)
j ) describing the laser sequence we apply. The ψj terms in

Eq. (2.23) is not shown here because their influence to the gate fidelity is of the order O(η4k)

and is thus neglected in Eq. (2.53):

F ≈ 1− 4

5

∑
k

(
|αki |2 + |αkj |2

)
coth

~ωk
2kBT

, (3.49)

if we set Θij = ±π/4 by suitably rescaling the laser intensity.

When parallelizing multiple entangling gates, we simply turn on all the laser beams at the

same time. Suppose we want to implement two XX entangling gates between ions i1 and

j1, and between i2 and j2. Now the ideal gate is the tensor product of the two gates:

Uideal = exp(±iπσxi1σ
x
j1
/4 ± iπσxi2σ

x
j2
/4), while what we really get still takes the form of

Eq. (3.45) with the summation indices running over i1, j1, i2 and j2.
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From Eq. (3.49) it is clear that the intrinsic gate errors due to the residual entanglement to

the phonon modes add up together, because each αkj term only relies on the laser driving on

that ion. From Eq. (3.48) we can see that the two-ion rotation angle Θi1j1 only depends on

the laser driving on ions i1 and j1 and is not affected by the other driving on ions i2 and j2,

so its value stays at ±π/4 as we design it; the same argument holds for Θi2j2 . However, now

we have four additional crosstalk terms between i1, j1 and i2, j2. Because all these Pauli X

operators commute with each other, what we get is the two original gates XXi1j1 ◦XXi2j2

(including the intrinsic errors from the gate design) followed by an additional unitary channel

E(ρ) = EρE† with

E = exp

[
i
∑
r=i1,j1

∑
s=i2,j2

Θrsσ
x
rσ

x
s

]
. (3.50)

As we have discussed in Sec. 2.2.3, for the purpose of quantum computing and in particular

quantum error correction, it is desired to characterize the error by diamond norm. The

diamond norm is generally difficult to compute, but luckily for a unitary channel E it can

be easily bounded as [88]

1

2
∥E∥⋄ ≤ |Θi1i2 |+ |Θi1j2 |+ |Θj1i2 |+ |Θj1j2|. (3.51)

Two entangling gates can be parallelized if ∥E∥⋄ ≪ 1.

Suppose we already have the design of two entangling gates with small intrinsic error δF .

(We have seen how to do this for small to medium-sized ion crystals in Chapter 2; later in

this subsection we will discuss how this can be done efficiently for large crystals.) Now we

want to study how ∥E∥⋄ scales with the distance between the two ion pairs. It suffices to

show how Θij scales with |i− j|.
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Analytical Result for the Scaling of Crosstalk

Before we start, note that the derivation of Eq. (3.48) assumes real mode vectors bkj ; while

now our mode vectors are travelling waves [Eq. (3.41)], which take complex values. For

complex mode vectors we can derive a similar expression

Θij =
1

~2
∑
k

η2k · Im

{∫ τ

0

dt1

∫ t1

0

dt2
[
bk∗i b

k
jχi(t1)χj(t2) + bk∗j b

k
i χj(t1)χi(t2)

]
eiωk(t1−t2)

}
, (3.52)

if we attach bkj to the annihilation operator ak and bk∗j to a†k. With this convention, in

Eq. (3.47) the bkj should also be replaced by bk∗j , but since we will take the absolute value

when optimizing the gate fidelity, this modification does not matter.

Plugging in the travelling wave mode vectors Eq. (3.41) we get

Θij =
1

~2N
∑
k

η2k

∫ τ

0

dt1

∫ t1

0

dt2

{
[χi(t1)χj(t2) + χj(t1)χi(t2)] sinωk(t1 − t2) cos k(zj − zi)

+ [χi(t1)χj(t2)− χj(t1)χi(t2)] cosωk(t1 − t2) sin k(zj − zi)
}
. (3.53)

We further replace 1
N

∑
k with d

2π

∫
dk and change the order of integration. Without loss of

generality we assume j > i and define zj − zi = nd. Because we are interested in the scaling

with n, we only need to evaluate

∫ π

−π
d(kd)η2k sinωk(t1 − t2) cosnkd, (3.54)

and ∫ π

−π
d(kd)η2k cosωk(t1 − t2) sinnkd, (3.55)
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while the rest part of Θij only depends on the laser sequence on the ions but not on their

distance. Here we calculate the first term as an example, the second one can be treated

similarly.

Let us define ϕ = ωx(t1− t2)[1− ϵζ(3)] and λ = ϵωx(t1− t2). They are functions of t1 and t2,

but since we are considering the scaling with n, we can treat them as constants. ηk depends

on k as η2k = η20ωx/ωk, where η0 is a constant independent of k. Hence we can approximate

ηk by η0 with an error of ϵ. Then we have

∫ π

−π
d(kd) sinωk(t1 − t2) cosnkd

=

∫ π

−π
dx {sinϕ cos[λS(x)] + cosϕ sin[λS(x)]} cosnx. (3.56)

Again we consider the first term as an example, while the second term can be calculated

in the same way. Plugging in the series expansion forms cosx =
∑∞

α=0(−1)αx2α/(2α)! and

S(x) =
∑∞

β=1 cos βx/β
3, we get

∫ π

−π
dx cos[λS(x)] cosnx =

∞∑
α=0

(−1)α

(2α)!

∫ π

−π
dx

(
λ

∞∑
β=1

cos βx

β3

)2α

cosnx. (3.57)

Now we argue that this expression has a scaling of 1/n3. First, note that for a given α, the

integrand can be expanded into a series

∑
{βj}

λ2α cosnx
2α∏
j=1

cos βjx

β3
j

, (3.58)

with each term being a product of (2α + 1) cosine functions and the integration over their

common period; therefore the integral is nonzero only if a resonance condition n±β1±β2±
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· · · ± β2α = 0 is satisfied, and in such cases it can be loosely bounded by

∣∣∣∣∣
∫ π

−π
dx cosnx

2α∏
j=1

cos βjx

∣∣∣∣∣ ≤
∫ π

−π
dx| cosnx| ·

2α∏
j=1

| cos βjx| ≤
∫ π

−π
dx · 1 = 2π. (3.59)

Furthermore, the dominant term of Eq. (3.58) should contain one and only one βj of the

order O(n); all the other (2α− 1) βj’s must be bounded by constant, say, C/2, otherwise its

coefficient will decay faster than 1/n3. Admittedly, for α of the order O(n) all the βj’s can

be of the order O(1), but then the 1/(2α)! factor in Eq. (3.57) itself decays faster than 1/n3.

There are in total 2αC2α−1 such terms in Eq. (3.58): first we choose which one of the 2α βj’s

takes the order of O(n); then we assign the other (2α − 1) βj’s within [1, C/2] and choose

their signs in the resonance condition to be positive or negative; once we determine these

values, the last one is automatically fixed from the resonance condition. Therefore finally

Eq. (3.57) is bounded by

2π
∞∑
α=1

2αC2α−1λ2α

(2α)!

1

n3
=

2πλ sinhλC

n3
∝ 1

n3
. (3.60)

Note that λ actually depends on t1 and t2, but here we only consider the scaling with respect

to n. Nevertheless, for typical parameters, |λ| ≤ ϵωxτ is of the order O(1).

Similar argument applies to the other terms in Eq. (3.55) and Eq. (3.56), therefore we

conclude that the crosstalk term Θij decays with the ion spacing n = |i − j| as 1/n3. If

originally the gates are designed for two ions at a distance of m, and if the minimal distance

between the two pairs of ions is n, then the crosstalk terms will be O[(m/n)3] when the two

gates are applied simultaneously. (Note that Θij is designed to be ±π/4 when |i− j| = m.)

In other words, the error due to the parallelization of the gates is ∥E∥⋄ = O[(m/n)3].
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Numerical Results

In the above derivation, we have made several approximations to get an analytical result.

Thus it is desirable to verify the scaling numerically without these approximations at least

for some special cases. Before this, let us first consider how to design the entangling gates

efficiently in a large ion crystal.

We have proven that the distant ions have little effect on the fidelity of an entangling gate,

which suggests that when designing the gate we can ignore all the ions far away and focus

on a finite number of ions. This is verified numerically by the example shown in Fig. 3.13,

where we consider gate design in uniform ion chains with d = 8µm but varying the total

number of ions and the position of the ion pair inside the chain. The optimal gate design and

the intrinsic infidelity for these cases are almost identical as they overlap with each other in

the plot.

Now we consider the scaling of the crosstalk term |Θij| vs. the ion distance n = |i− j|. For

the convenience of numerical calculation, we consider a finite chain of N = 100 ions, again

with d = 8µm. The gate design is chosen to be the same as that in Fig. 3.13, i.e. a nearest-

neighbor ion pair, nseg = 6 segments, gate time τ = 50µs and detuning µ = 1.016ωx. In

Fig. 3.14 we plot |Θij| vs. n in the log-log form. Θij is computed by applying the same laser

sequence on ion i = 51 and ion j = 52, · · · , 100, respectively, thus changing the value of n.

Note that when n = 1 we have |Θij| = π/4. A 1/n3 scaling is clear for large n. Similarly, we

plot the scaling of entangling gates designed for ion pairs at a distance of 3 and 5 in Fig. 3.15

and observe a similar scaling of 1/n3. Also note that here we assume the same gate design

for the two parallel gates (identical laser sequence on ions i and j) only for the convenience

of evaluating Θij [Eq. (3.48)] numerically. The derivation of the 1/n3 scaling does not rely
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Figure 3.13: (a) Optimal gate infidelity vs. laser detuning µ for n = 6 segments and a total
gate time τ = 50µs. (b) Rabi frequencies for each segment when µ = 1.016ωx is chosen
at the minimizer of (a). The gate design is optimized through amplitude modulation, as
we described in Sec. 2.1. There are 3 curves in each plot, blue solid line for N = 50 ions
and ion pair 25 and 26, red dashed line for N = 50 ions and ion pair 10 and 11, and green
dash-dotted line for N = 100 ions and ion pair 50 and 51. All these curves coincide within
the resolution of the figure. Here we choose an ion spacing d = 8µm, Lamb-Dicke parameter
η0 = 0.1, transverse trapping frequency ωx = 2π × 3MHz and 0.5 phonon per mode.
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on this assumption and holds for parallelizing two different entangling gates.
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Figure 3.14: Log-log plot for crosstalk term |Θij| vs. ion distance n = |i − j|. The gate
is designed for a nearest-neighbor pair of ions with τ = 50µs, nseg = 6 segments, and
µ = 1.016ωx. The red line is fitted from the last five data points.

Parallelize Multiple Gates

The above result can directly be applied to parallelize multiple gates. Suppose we want

to build a quantum circuit with XX entangling gates between all possible ion pairs whose

distance is less than or equal to m [see Fig. 3.16, m is of the order O(1)]. We can divide

these gates into O[m(n+m)] layers and in each layer the gates are separated by a distance

of at least n. In this way, the error per gate in each layer will be O[(m/n)3]. Hence for a

given error rate per gate ϵ, the number of required layers will be independent of the size of

the crystal, which indicates scalability.
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Figure 3.15: |Θij| vs. n = |i − j| for (a) a gate designed for two ions at a spacing of 3
separations with τ = 60µs, nseg = 7 segments, µ = 1.01403ωx, (b) a gate designed for two
ions at a spacing of 5 separations with τ = 100µs, nseg = 10 segments, µ = 1.01387ωx. The
red lines are fitted from the last five data points in each figure.
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Figure 3.16: Partial illustration of the scheme to parallelize gates. (n+ p) layers are needed
for all possible pairs of ions at a distance of p while maintaining a distance of n between any
two pairs. For p = 1, 2, · · · , m we need O[m(n+m)] layers in total.
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3.2.2 2D Ion Crystal

Now we generalize our results to 2D. Due to the Coulomb interaction between the ions,

a 2D ion crystal usually approximates a hexagonal lattice. Therefore here we consider a

hexagonal lattice with translational symmetry (Fig. 3.17), although the same analysis can

also be applied to other types of 2D lattices.

Let the crystal lie on the x-y plane. It can be characterized by its lattice vectors

a1 = d (1, 0, 0) , a2 = d

(
1

2
,

√
3

2
, 0

)
, (3.61)

with the corresponding reciprocal vectors

b1 =

(
1, − 1√

3
, 0

)
, b2 =

(
0,

2√
3
, 0

)
. (3.62)

The transverse oscillation modes in the z direction can be used for the entangling gates

[41], which is a natural generalization of the scheme we studied in Chapter 2. In this case

the normal modes are still travelling waves which can be characterized by the wave vector

k = k1b1 + k2b2 (k1, k2 ∈ (−π/d, π/d]). The mode vector for this travelling wave is given

by

zkαβ ∝ exp [i(αk1d+ βk2d)] (3.63)
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Figure 3.17: A hexagonal lattice with lattice vectors a1 = d(1, 0, 0) and a2 =
d(1/2,

√
3/2, 0).

for the ion at position rαβ = αa1 + βa2, with the corresponding eigenfrequency

ωk =ωz

√√√√1− e2

4πϵ0d3mω2
z

∑
(α,β)

′1− cosk · rαβ
|αa1 + βa2|3

=ωz

√√√√1− e2

4πϵ0d3mω2
z

∑
(α,β)

′1− cos(αk1d+ βk2d)

(α2 + β2 + αβ)3/2

≈ωz

1− e2

4πϵ0d3mω2
z

∑
(α,β)

′1− cos(αk1d+ βk2d)

2(α2 + β2 + αβ)3/2

 , (3.64)

where
∑′ means that the two indices for summation cannot both be 0 at the same time.

Following the same derivation as before, to study the scaling of the crosstalk error versus

the distance on the lattice represented by na1 +ma2, we need to evaluate some expressions

115



like
∞∑
α=0

(−1)α

(2α)!

∫ π

−π
dx

∫ π

−π
dy

[
λ

2

∑
β,γ

′ cos(βx+ γy)

(β2 + γ2 + βγ)3/2

]2α
cos(nx+my). (3.65)

Again for a given α we can expand the integrand into series:

∑
{βj , γj}

(
λ

2

)2α

cos(nx+my)
2α∏
j=1

cos(βjx+ γjy)

(β2
j + γ2j + βjγj)3/2

, (3.66)

and we get two resonance conditions n±β1± · · ·±β2α = 0 and m± γ1± · · ·± γ2α = 0, both

of which need to be satisfied for a nonzero integral.

Without loss of generality, we can assume |n| ≥ |m|. Consider two different cases: (1) only

|n| goes to infinity and |m| stays constant. Then we go back to the previous 1D case and

the coefficient decays as 1/n3. (2) Both |n| and |m| go to infinity. Then again we argue that

for any given α, the 2α terms of {βj, γj} can only have one term of the order O(|n|) and

O(|m|); all the other βj’s and γj’s need to be bounded by constant. Otherwise the coefficient

for their product will decay faster than 1/(n2+m2+nm)3/2. If we count the number of such

terms and add all of them together, we will get a scaling of 1/(n2 +m2 + nm)3/2, that is, a

cubic decay with the distance.

Below we show some numerical results in Figs. 3.18, 3.19 and 3.20, where we design entangling

gates for different ion pairs in a 80 × 80 lattice with d = 8µm and compute crosstalk Θij

explicitly when parallelizing two identical gates at different distances. To avoid the potential

boundary effect, in these numerical calculations we limit ourselves to the ion pairs in the

central 40× 40 sublattice. Again we see that the slope is fairly close to −3.

Also note that this 1/distance3 scaling is not special for a hexagonal lattice. In Fig. 3.21 we

see the same scaling in a square lattice. Although this type of lattice is not very realistic for
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Figure 3.18: Numerical results for 80 × 80 hexagonal lattice with ion spacing d = 8µm,
transverse trapping frequency ωz = 2π×3MHz, Lamb-Dicke parameter η = 0.1 and temper-
ature kBT = ~ωz. The gate is designed for two ions in a relative position of (a). Parameters
are τ = 60µs, nseg = 10 segments, µ = 1.01378ωz.
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Figure 3.19: Numerical results for 80 × 80 hexagonal lattice with ion spacing d = 8µm,
transverse trapping frequency ωz = 2π×3MHz, Lamb-Dicke parameter η = 0.1 and temper-
ature kBT = ~ωz. The gate is designed for two ions in a relative position of (a). Parameters
are τ = 100µs, nseg = 15 segments, µ = 1.01015ωz.
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Figure 3.20: Numerical results for 80 × 80 hexagonal lattice with ion spacing d = 8µm,
transverse trapping frequency ωz = 2π×3MHz, Lamb-Dicke parameter η = 0.1 and temper-
ature kBT = ~ωz. The gate is designed for two ions in a relative position of (a). Parameters
are τ = 150µs, nseg = 20 segments, µ = 1.00621ωz.

ion crystals, the observation of the same scaling result in 1D and different types of lattices

in 2D indicates that it is universal and can be applied to more general ion crystals.

3.3 Include Micromotion in Gate Design

In this section, we address the influence of micromotion on the gate design. In Chapter 2

this effect is neglected, because for 1D ion chain in a linear Paul trap it is possible to place

the ions in such a way that (ideally) there is no zeroth order micromotion, while the high-

frequency modulation on the normal modes is far off-resonant to the driving. However, for

larger ion crystals and in particular in 2D or 3D, micromotion can become more and more

significant. Thus it is desired to include its effect into the gate design.

It has been shown in Ref. [89] that the effect of micromotion, to the lowest order, can be

118



(a)

-1 0 1 2 3 4 5
-15

-10

-5

0

5

(b)

Figure 3.21: Numerical results for 80×80 square lattice with ion spacing d = 8µm, transverse
trapping frequency ωz = 2π × 3MHz, Lamb-Dicke parameter η = 0.1 and temperature
kBT = ~ωz. The gate is designed for two ions in a relative position of (a). Parameters are
τ = 60µs, nseg = 10 segments, µ = 1.01386ωz.

compensated by a rescaling of the laser intensity depending on the micromotion amplitude.

However, this approximation may not be adequate if we want very high gate fidelity, say,

above 99.9%. In this section we extend this method to higher orders through a series ex-

pansion. Combined with the numerical solutions of micromotion and normal modes we have

found in Sec. 3.1, the error in the formulation can be systematically suppressed by including

higher and higher order terms.

3.3.1 Effects of Micromotion

Recall that, for an ion crystal without micromotion, the design of entangling gates turns into

minimizing the residual entanglement to the phonon modes [Eq. (3.47)]

αkj (τ) = −
i

~
ηkb

k∗
j

∫ τ

0

χj(t)e
iωktdt, (3.67)
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while maintaining the desired two-qubit phase Θij = ±π/4 [Eq. (3.52)]

Θij =
1

~2
∑
k

η2k · Im

{∫ τ

0

dt1

∫ t1

0

dt2
[
bk∗i b

k
jχi(t1)χj(t2) + bk∗j b

k
i χj(t1)χi(t2)

]
eiωk(t1−t2)

}
, (3.68)

where

χj(t) ≡ ~Ωj(t) sin
(
µt+ φ

(m)
j

)
. (3.69)

The advantage of the segmented amplitude modulation we considered in Sec. 2.1 is that

Ωj(t) is now piecewise-constant and hence the above time integrations can be performed

analytically on each segment. Then this optimization problem turns into a generalized

eigenvalue problem [Eq. (2.55)], and thus can be efficiently solved.

Strictly speaking, in the above process the analytical expression for the time integral is not

necessary: once we choose a gate time τ and the number of segments nseg, we can plug in

these numbers into the lower and upper limits of the integral and evaluate it numerically.

However, for the oscillatory functions we are considering, this will require very high numerical

accuracy and usually takes long time to perform; in comparison, if we can derive an analytical

expression, the evaluation of the integral becomes much easier and thus we get a practical

algorithm to optimize the gate design.

Now we consider the influence of the micromotion on the gate performance. It appears in

three aspects:

Time-Dependent Motional Phase

Instead of staying at the equilibrium configuration which minimizes the pseudo-potential,

the ions in an RF trap are oscillating at the RF frequency in equilibrium. Intuitively, this is
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equivalent to a (classical) oscillating phase of the laser in the form of ∆k ·Rj(t) where Rj(t)

is the equilibrium trajectory of the ion j [periodic solution to Eq. (1.13)]. If we go through

the derivation of Sec. 2.1.2, this effect can mathematically be described by a time-dependent

motional phase φ(m)
j for each ion as appears in Eq. (3.69) with a period of 2π/ωrf . Thus we

can expand this phase into Fourier series:

φ
(m)
j =

∞∑
l=0

φ
(l)
j cos lωrft, (3.70)

where the superscript “(m)” represents “motional” and will be omitted for simplicity, while

“(l)” corresponds to the l-th order of expansion. Note that the amplitudes of these oscillating

phases depend not only on the amplitude of the micromotion but also on its projection along

the direction of the laser wave vector.

Time-Dependent Complex Normal Modes

Another effect of the micromotion is a high-frequency modulation to each normal mode,

which we have seen in Sec. 3.1.2. To begin with, we consider the lowest order approximation:

r(k)(t) = C
(k)
0 cos(ωkt+ ϕ) +C

(k)
2 cos[(ωrf + ωk)t+ ϕ] +C

(k)
−2 cos[(−ωrf + ωk)t+ ϕ], (3.71)

where superscript “(k)” represents the k-th normal mode, C(k)
0 is the solution to an eigenvalue

problem (A+Q2/2)C
(k)
0 = β2

kC
(k)
0 which gives the zeroth order normal mode, and

C
(k)
±2 = −1

4
(1∓ βk)QC(k)

0 (3.72)
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gives the first order correction. (We have recovered the units of the formulae, e.g. ωk =

βkωrf/2.) Higher order terms are omitted in this expression.

We can express two independent general solutions to Eq. (3.12) at this order as

u(k)(t) =

(
I − 1

2
Q cosωrft−

i

2
βkQ sinωrft

)
C

(k)
0 e−iωkt (3.73)

and its complex conjugate u(k)∗(t). The initial conditions are u(k)(0) = (I − Q/2)C(k)
0 and

u̇(k)(0) = −iωk(I +Q/2)C
(k)
0 .

Now note that the quantum operators for the small displacements around the equilibrium

trajectories r̂(t) satisfy the same set of linear differential equations as u(k)(t). Follow-

ing a similar derivation as Sec. IIB of Ref. [20], we find that the Wronskian determinant

u(k)†(t) ˙̂r(t)− u̇(k)†(t)r̂(t) is a constant and should be proportional to the annihilation oper-

ator âk for the mode k. Actually, for suitably normalized u(k)(t), we have

r̂(t) =
∑
k

√
~

2mωk

[
âku

(k)(t) + â†ku
(k)∗(t)

]
(3.74)

with [âk, â
†
l ] = δkl.

Using the canonical commutation relation of r̂(0) and p̂(0) = m ˙̂r(0): [r̂iσ(0), p̂jρ(0)] =

i~δijδσρ, we find the correct normalization for C
(k)
0 :

(I −Q/2)
∑
k

(
C

(k)
0 C

(k)T
0

)
(I +Q/2) = I, (3.75)

or ∑
k

(
C

(k)
0 C

(k)T
0

)
= I, (3.76)
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if we approximate (I + Q/2)(I − Q/2) ≈ I. This is directly satisfied by the orthonormal

condition C
(k)T
0 C

(l)
0 = δkl of the eigenvalue problem we solved above.

Now it is clear that the effect of micromotion is to replace the mode vector bkj related to the

mode âk in the pseudo-potential case [e.g. Eq. (3.67) and Eq. (3.68)] by a time-dependent

one

bkj ∼ C
(k)
0 →

(
I − 1

2
Q cosωrft−

i

2
βkQ sinωrft

)
C

(k)
0 . (3.77)

This leads to a time-dependent multiplicative factor in the integration of αkj [Eq. (3.67)] and

Θij [Eq. (3.68)], but as it is a trigonometric function, an analytical expression for the integral

can still be found. Also note that our previous expression of Θij [Eq. (2.28)] is derived for a

real mode vector; now our mode vector is complex and hence Eq. (3.68) should be used.

The same analysis also applies to higher order expansion of the normal modes. From

Sec. 3.1.2 we know that at one order higher C(k)
0 will be a solution to the generalized eigen-

value problem

[
A+

1

2
Q2 +

1

8
QAQ+

1

128
Q4

]
C

(k)
0 = β2

(
1− 3

8
Q2

)
C

(k)
0 (3.78)

and we have C
(k)
±2 = −(1∓ βk)QC(k)

0 /4 and C
(k)
±4 = (1∓ 3βk/2)Q

2C
(k)
0 /64.

To this order of approximation, the general solution can be represented as

u(k)(t) =

(
I − 1

2
Q cosωrft−

i

2
βkQ sinωrft

+
1

32
Q2 cos 2ωrft+

3i

64
βkQ

2 sin 2ωrft

)
C

(k)
0 e−iωkt (3.79)

and its complex conjugate. The initial conditions are u(k)(0) = (I −Q/2 +Q2/32)C
(k)
0 and
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u̇(k)(0) = −iωk(I + Q/2 − 5Q2/32)C
(k)
0 . Again we use Eq. (3.74) as the expansion for the

displacement operators. This time the normalization condition gives

(
I − Q

2
+
Q2

32

)∑
k

(
C

(k)T
0 C

(k)
0

)(
I +

Q

2
− 5Q2

32

)
= I (3.80)

or ∑
k

(
C

(k)T
0 C

(k)
0

)
=

(
I − 3

8
Q2

)−1

, (3.81)

which again is automatically satisfied by the orthonormal condition for the generalized eigen-

value problem we solved above:

C
(k)T
0

(
I − 3

8
Q2

)
C

(l)
0 = δkl. (3.82)

Based on the above results, we can make the conjecture that this process holds for any

higher order expansions and thus also for the exact result of Sec. 3.1.2. Once we get ωk

and all the C
(k)
2n in the expansion of the normal mode, we can write down a general solution

similar to Eq. (3.73) and Eq. (3.79). The normalization of this solution can be derived from

the commutation relation between r̂ and p̂, and between âk and â†l . Then we can read the

time-dependent mode vectors from this expression and plug them into our formula for the

gate design.

Time-Dependent Modulation of Laser Intensity

The micromotion perpendicular to the direction of the laser beam also leads to a variation

in the laser intensity the ion feels during the gate. This effect will become important if the

amplitude of the micromotion is comparable to the width of the laser beam. It corresponds to
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a time-dependent effective Rabi frequency in Eq. (3.69), which oscillates at the RF frequency

(apart from other amplitude modulation we use to optimize the gate performance) and can

be expanded into Fourier series. Again they are multiplicative trigonometric functions and

thus we can still get analytical expressions for αkj and Θij on each segment. We will not

consider this effect below because the coefficients of the Fourier series depend on the detailed

shape of the laser beam.

3.3.2 Numerical Calculation with Micromotion

As is mentioned above, to efficiently optimize the gate design, we want to derive analytical

expressions for Eq. (3.67) and Eq. (3.68) with piecewise constant Ωj(t) on arbitrary intervals.

Among the three effects of micromotion we described, the second and the third are not

difficult to treat because our integrand is still the product of some trigonometric function.

However, the first effect of an oscillating motional phase, even if only expanded to the

first order, will give us some terms like cos(φ(1) cosωrft) whose integral only have analytical

results on an interval at a multiple of the RF period. If we are not able to get an analytical

expression, we will have to evaluate highly oscillating functions, which will be beyond our

computational power.

We will tackle this problem by a series expansion of the motional phase, such that for each

expansion term we still have an analytical expression for the integral, while the error of the

final result can be systematically improved by adding higher order terms. The pivot of our

algorithm is the following formula [90,91]

exp(iφ cosωt) = J0(φ) + 2
∞∑
n=1

inJn(φ) cos(nωt). (3.83)
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Note that for 0 < φ≪
√
n+ 1, we have

Jn(φ) ∼
1

n!

(φ
2

)n
, (3.84)

thus the terms in the above series go to 0 quickly and we can expect a fast convergence.

Residual Coupling to Phonon Modes

For the residual coupling to the phonon modes αkj , we want to derive an analytical expression

for the following integral:

∫
dt

+∞∑
n=−∞

C
(k)
2n,jσe

inωrf t sin

(
µt+

∞∑
l=0

φ
(l)
j cos lωrft

)
eiωkt (3.85)

where σ = x, y, z corresponds to different spatial directions and C
(k)
2n,jσ is the jσ component

of the k-th mode vector at the 2n-th order. Because C
(k)
2n goes down quickly with |n| (for

small trapping parameter q), we can truncate the summation over n at ±ncut.

Furthermore, we can regard nωrf + ωk as a new variable ω in the above expression; once we

get an analytical result as a function of ω, we can plug in the value of nωrf + ωk to compute

the value for any order n. Therefore we only need to consider

∫
dt sin

(
µt+

∞∑
l=0

φ
(l)
j cos lωrft

)
eiωt

=
1

2i

∫
dt

[
ei(µt+φ

(0)
j )

∞∏
l=1

eiφ
(l)
j cos lωrf t − c.c.

]
eiωt. (3.86)

We can expand exp(iφ
(l)
j cos lωrft) into cosine functions using Eq. (3.83). Suppose the
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φ
(1)
j , φ

(2)
j , · · · terms are expanded to the order of n1, n2, · · · , respectively, then we need

to compute ∫
dtei(µt+φ

(0)
j )eiωt cos(n1ωrft) cos(n2ωrft) · · · (3.87)

with the coefficient of this term given by
∏

l 2i
nlJnl

(φ
(l)
j ). Then we sum over all possible

combinations of {n1, n2, · · · } to get the total integral.

The other half of Eq. (3.86) about the complex conjugate can be computed similarly. The

result will be to replace µ and φ(0)
j in Eq. (3.87) with −µ and −φ(0)

j , and to take the complex

conjugate of the corresponding coefficients.

It seems that the number of terms we need to evaluate is large, so that even if we have an

analytical expression for Eq. (3.87) and the evaluation of a single term is fast, the total time

cost may still be high. Luckily, in the small q regime the micromotion amplitude goes down

quickly with the order of expansion, so φ(l)
j will be close to 0 for large l. From Eq. (3.84),

we know that these terms are vanishingly small except for nl = 0; but if nl = 0, we have

cos(nlωrft) = 1 so that we can truncate at l ≤ L for some small L in Eq. (3.87). Even for

the remaining φ(l)
j terms, the corresponding coefficient Jnl

(φ
(l)
j ) will be vanishingly small for

large nl, so usually the number of terms we need to evaluate is small. Note that all the

truncations described above can be determined according to a chosen error tolerance, say,

10−8, and the precision can be systematically improved by including higher order terms.

What remains to be done is to evaluate Eq. (3.87) for up to L cosine functions. For a given

L, an analytical expression for the integral is possible, but it can become more and more

complex as L increases and it can be difficult for coding. Therefore we split each cosine

function into two exponential functions using cos x = (eix + e−ix)/2. In this way, Eq. (3.87)

turns into 2L integrals of exponential functions, whose analytical expressions are easy to get.
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This is easy to program using depth-first search. Since the truncation L is typically small

and we do not need to do the splitting for the l-th term if nl = 0, this method gives a good

balance between the cost of programming time and that of the running time.

Two-Qubit Rotation Angle

For the two-qubit rotation angle Θij, we want to derive an analytical expression for

∫
dt1

∫
dt2

+∞∑
n,m=−∞

C
(k)
2n,iρe

inωrf t1C
(k)
2m,jσe

−imωrf t2 sin

(
µt1 +

∞∑
l1=0

φ
(l1)
i cos l1ωrft1

)

× sin

(
µt2 +

∞∑
l2=0

φ
(l2)
j cos l2ωrft2

)
eiωk(t1−t2) (3.88)

for one term in Eq. (3.68) and the other term can be gotten by an exchange of i and j.

Recall that to get the γ matrix in Eq. (2.55), we need two types of integral limits:

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ qτ/nseg

(q−1)τ/nseg

dt2 and

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ t1

(p−1)τ/nseg

dt2. (3.89)

For the first type, the integrations over t1 and t2 are separable and are exactly what we have

solved for αkj above. Therefore we only need to consider the second type.

Following the previous steps for αkj , let us define new variables ω1 = ωk+nωrf and ω2 = ωk+

mωrf , split the sine function into two exponential functions, and expand exp(±iφ(l)
j cos lωrft)

using Eq. (3.84). What remains to be solved is

∫
dt1

∫
dt2e

±i(µt1+φ(0)
i )e±i(µt2+φ

(0)
j )eiω1t1e−iω2t2

L1∏
l1=1

cosnl1ωrft1

L2∏
l2=1

cosml2ωrft2. (3.90)
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Again we truncate at large values of L1, L2 and nl1 , ml2 in the expansions and express the

cosine functions as two exponential functions, then analytical formulae for these integrals

are easy to derive. One thing to note is that when e±i(µt1+φ
(0)
i ) and e±i(µt2+φ

(0)
j ) take opposite

signs, the result we get may have an ω1−ω2 in the denominator, thus the expression becomes

undefined in the special case ω1 = ω2. Actually there is no problem here because in this case

the numerator will also be 0. What we need to do is to rewrite the expression in the form of

a sinc function to avoid numerical problems in coding.

Numerical Results

As a simple example, we consider an entangling gate for two ions in the 100-ion crystal

shown in Fig. 3.1(a) and make a similar plot as Fig. 2.4 by scanning the detuning of the

laser. To be specific, we consider 100 171Yb+ ions in a trap with trapping parameters a =

(−0.015, −0.015, 0.03) and q = (0.3, −0.3, 0), and an RF frequency ωrf = 2π×50MHz. The

two ions we consider are indicated in red in Fig. 3.22, which shows the equilibrium trajectories

of the ions. Counter-propagating laser beams with a wavelength around λ = 355 nm are

applied in the x direction to form a phase-insensitive geometry (see Chapter 2), and the

ions are cooled to the Dopper temperature kBT = ~Γ/2 with the spontaneous emission rate

Γ = 2π × 20MHz for 171Yb+ ions. Suppose we use nseg = 15 segments for a total gate time

τ = 300µs. The optimal gate infidelity is shown in Fig. 3.23 as we scan the laser detuning

µ. This is only a rough scan and we have not optimized the choice of nseg and τ ; but as

we can see, high gate fidelity of 99.9% is still possible when we consider the micromotion.

In Fig. 3.23(b) we show a comparison for different truncations of the micromotion. The

computation for an expansion to higher order (truncated at L = 5 for the equilibrium

trajectories and ncut = 5 for the high-frequency modulation of the normal modes) is about
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Figure 3.22: Equilibrium trajectories of the ions in the trap. The two ions on which we apply
the entangling gate are colored in red.

50 times slower than the lower order one (L = 1 and ncut = 1); but clearly this time cost

is worth it because the gate infidelity can differ by one order of magnitude. We expect the

difference to be more significant for ions with larger micromotion amplitudes.

Note that for this example the micromotion along the z direction is much smaller than in

other directions, so we could have gotten much faster convergence had we applied the laser

beams in the z direction; but here we just want large micromotion to demonstrate the idea.

Also note that the timing of the algorithm scales linearly with the number of ions (number of

normal modes) and linearly with the number of segments (because the most time-consuming

part of the algorithm is the p = q double integral of the two-qubit rotation angle); and the

scan of the gate parameters can be performed in parallel. Therefore even though the design

of the gate with micromotion is much slower than that without micromotion, we can still

expect it to work for hundreds of ions and hundreds of pulse segments.
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Figure 3.23: (a) Optimal gate infidelity δF for a scan of the laser detuning µ over the whole
spectrum of the normal modes of the crystal. Note that the resolution of this plot is not
enough to show all the structures of the curve. (b) A zoomed-in scan for a small range of
frequencies at the high-frequency end. (We avoid the use of the low-frequency end, which
may be sensitive to the soft modes, even though it seems to have higher fidelity.) The blue
curve is optimized for ions’ motions truncated at L = 5 for the equilibrium trajectories and
at ncut = 5 for the high-frequency modulation of the normal modes. The red curve is what
we would have gotten using the same optimized laser sequence if we truncated at L = 1 and
ncut = 1.
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Chapter 4

Simple Application in Medium-Sized Ion Crystal

Having seen how the basic quantum operations can be realized in a general ion crystal, let

us consider a simple application in a medium-sized crystal with tens of ions: the quantum

simulation of Ising model with arbitrary all-to-all coupling. First we will review the previous

work on analogue simulation of the Ising model with arbitrary coupling. After showing some

disadvantages of this scheme, we then move on to a proposal using digital simulation. Many

of the formulas and techniques used here are directly generalized from the previous chapters.

4.1 Quantum Simulation of Ising Model in Ion Trap

4.1.1 Ising Model

An Ising model is described by the Hamiltonian

H =
∑
i

hiσ
x
i +

∑
i,j

Jijσ
x
i σ

x
j . (4.1)
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Its classical version (σxi = ±1) was invented by Wilhelm Lenz in 1920 to study magnetism

and was first solved in 1D by Ernst Ising in 1924 [92]. In two or higher dimensions, the Ising

model shows an order-disorder phase transition as the temperature changes, which has been

widely studied both analytically [93,94] and numerically [95–97].

Its quantum counterpart, the quantum Ising model, is also one of the simplest spin models

that show non-trivial properties of quantum magnetism such as phase transition [98] and

spin glass phase [99]. Thus it is considered as one of the best candidates to demonstrate

the idea of quantum simulation [100]. Several experiments have been conducted for small

to medium-sized systems [28,101–104] using trapped ions, which provide strong flexibility in

the coupling strength between the spins.

4.1.2 Analogue Simulation

Here we briefly review the scheme of Ref. [105], where an Ising model with arbitrary all-to-all

coupling is simulated by the effective Hamiltonian of the system.

To start with, we go back to the laser beam scheme in Chapter 2 with the unitary time

evolution described by Eq. (2.23). For fast two-qubit entangling gates, we apply strong laser

driving on the two ions with small detuning to the phonon modes, which can lead to strong

entanglement between the qubit states and the phonon states; then we optimize the gate

parameters such that at certain gate time τ , the two-qubit phase Θij is at the desired value

of ±π/4 while the residual entanglement to the phonon modes is minimized.

This time, let us consider weak laser beams on all the ions at the same time, with large

detuning such that all the phonon modes are only weakly excited. In this limit the ϕj and

ψj terms in Eq. (2.23) can be regarded as small perturbations, while Θij is governed by a
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linear term in the evolution time, i.e. the evolution under a constant Hamiltonian. More

rigorously, we assume Ωj ≪ µ, ηkbkjΩj ≪ |µ − ωk|, then the unitary evolution is effectively

governed by a time-independent Hamiltonian [101]

Heff =
∑
i<j

Jijσ
x
i σ

x
j , (4.2)

where

Jij = ΩiΩj

N∑
k=1

η2kb
k
i b
k
jωk

µ2 − ω2
k

. (4.3)

This interaction is usually fitted by a power law: Jij ≈ J0/|i− j|α with 0 < α < 3 for a 1D

chain [104]. The additional terms in Eq. (2.23) act as small fluctuations around exp(−iHefft)

at the order of O(ηkbkjΩj/|µ − ωk|), which does not increase with the evolution time. Be-

sides, there is a carrier term, which we compensated by single-qubit gates when designing

entangling gates, at the order of O(Ωj/µ).

If we apply laser beams with multiple frequency components (because for all-to-all coupling

there are N(N − 1)/2 independent parameters, it should suffice to use N frequencies with

adjustable intensity on each of the N ions), the coupling strength is given by [105]

Jij =
N∑
n=1

Ωi,nΩj,n

N∑
k=1

η2kb
k
i b
k
jωk

µ2
n − ω2

k

≡
N∑
n=1

Ωi,nΩj,nFi,j,n (4.4)

where Ωi,n describes the intensity of the laser beam whose detuning is µn on the ion i. By

solving these N(N − 1)/2 equations for {Ωi,n} we get the required laser beams to simulate

this Ising model.

Let us now estimate the influence of the leading order error terms on the quantum simulation.

Usually in this type of experiments, we prepare an initial state, apply the Hamiltonian

134



for certain time and then make measurements of the final states [100]. Ideally we want a

unitary evolution exp(−iHefft), while the error terms will change the probability distribution

of measuring the final states. This can be characterized by the fidelity between the ideal

and the real final states, which can be computed in the same way as Chapter 2: we have an

infidelity of
∑

jk(nk + 1/2)|ηkbkjΩj/(µ− ωk)|2 from the entanglement to the phonon modes,

assuming a phonon number of nk in the k-th mode, and an additional infidelity of
∑

j |Ωj/µ|2

from the carrier terms.

However, in many cases we do not want to simulate a constant Hamiltonian, but vary the

parameters adiabatically. This is used, for example, to find the ground state of a final Hamil-

tonian, from an initial Hamiltonian whose ground state is easy to compute and to prepare.

In this situation, the errors are more difficult to bound even if the adiabatic condition is

satisfied. The reason is that, for adiabatic evolution, we do not care about the intermediate

Hamiltonian so long as the change is slow compared with the gap of the Hamiltonian; but to

evaluate the errors in the unitary evolution, we must know the detailed form of parameters

such as Ωi,n(t) and µn(t) so that we can integrate the whole process, and usually we cannot

get an analytical result.

Another disadvantage of this scheme is that the coupling strength between different ions

is low, thus it will be sensitive to other noise and errors in the experiment. Suppose we

can tolerate an error of ϵ, and we assume ground-state cooling for all the phonon modes

to minimize the error. Here we consider two limits: (1) if the laser beams are detuned

close to a single motional sideband, say, mode k, our estimation of infidelity requires that

|ηkbkjΩj/(µ − ωk)|2 . ϵ. Then the coupling between ions i and j is of the order Jij .

ϵωk(µ − ωk)/(µ + ωk) ∼ ϵ|µ − ωk|. To neglect the effect of all the other phonon modes,

|µ − ωk| needs to be much smaller than the detuning to the other modes. For a 1D or
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2D ion crystal which is used for this type of experiments, the spectrum of the transverse

modes is typically already very small, and to be far detuned to all the other (N − 1) modes

we need a further factor of 1/N . Actually, Ref. [105] estimates the coupling strength for

nearest neighbor ion pairs to be 10-102 Hz for a chain of tens of ions. (2) In the other limit,

we assume |µ − ωk| is large for all the modes. Then we can replace ωk by their average ω̄

because the spectral is narrow. However, note that in Eq. (4.3) we have the summation of

bki b
k
j over k, which vanishes due to the orthogonality of the normal modes. Therefore for the

leading order term we must expand ωk around ω̄ to the first order. Actually, the ωk in the

numerator of Eq. (4.3) cancels that in the η2k, thus the only k-dependent part is the µ2 − ω2
k

term in the denominator. We can bound the coupling as

Jij ∼ΩiΩj

∑
k

bki b
k
j η̄

2ω̄

(µ2 − ω̄2)2
2ω̄δωk

≤
∑
k

|η̄2bki bkjΩiΩj|
(µ− ω̄)2

2ω̄2|δωk|
(µ+ ω̄)2

≤
∑
k

|η̄2bki bkjΩiΩj|
(µ− ω̄)2

2ω̄2δ

(µ+ ω̄)2

≤

√√√√∑
k

(
η̄bkiΩi

µ− ω̄

)2

√√√√∑
k

(
η̄bkjΩj

µ− ω̄

)2
2ω̄2δ

(µ+ ω̄)2

.ϵ 2ω̄2δ

(µ+ ω̄)2
(4.5)

with δωk ≡ ωk− ω̄ and δ defined as the whole range of the spectrum. In the above derivation

from the third to the fourth line we have applied the Cauchy-Schwarz inequality. Again we

see that the coupling is bounded by the error tolerance times the range of the spectrum,

which is small for typical experiments. For example, if we consider a trap with transverse

trapping frequency of several MHz and a phonon mode spectrum of about 1% the width
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(see the example we considered in Chapter 2), and if we want the error to be less than 1%,

the largest coupling strength we can get is only of the order 102 Hz. Furthermore, in this

regime we approach the Jij ∼ 1/|i − j|3 scaling and thus are not able to arbitrarily control

the coupling strength.

4.1.3 Digital Simulation

Another way to approximately simulate the Hamiltonian is to apply quantum gates that

correspond to the unitary evolution of the system at a series of discrete time points, a.k.a.

digital quantum simulation [100].

This method is very similar to the design of an entangling gate between two ions. The basic

idea is still to minimize the residual entanglement to the phonon modes αkj [Eq. (2.25)] while

setting Θij = Jijδt at small gate time δt for all the ion pairs [Eq. (2.28)]. Then by repeatedly

applying this quantum gate we simulate the evolution under the Hamiltonian
∑

i<j Jijσ
x
i σ

x
j .

To realize arbitrary coupling among N ions, which corresponds to O(N2) degrees of freedom,

we can apply O(N) segmented pulses to the N ions. Note that if we have a lower bound

on the length of each segment, here the total gate time will scale as O(N). In comparison,

if we apply the entangling gates between any two ions one after another, the timing will

be O(N2). (We can use the method of Sec. 3.2 to parallelize some gates, but here we want

arbitrary coupling between the ions and thus the distance between an ion pair on which we

appliy the gate can be as large as N . Then the scheme of Sec. 3.2 does not work.) It is

difficult to completely suppress the residual coupling to the phonon modes, so instead we

consider the following optimization problem, which is a natural generalization of what we
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have solved for the gate design in Sec. 2.1.3:

min
{Ωi}

N∑
i=1

ΩT
i

[∑
k

Ak
i

†
Ak
i coth

~ωk
2kBT

]
Ωi

s.t. ΩT
i γ

(i,j)Ωj = Jij · δt (i < j) (4.6)

where Ωi is a column vector for the pulse sequence on ion i, and J is a real symmetric

matrix describing the Ising coupling between the ions. Ak
i (row vector) and γ(i,j) (matrix) are

defined in Eq. (2.51) and Eq. (2.52) (after symmetrization). Note that the original Eq. (2.52)

is derived for same laser sequence on both ions, and here we need a small modification for

different Ωi and Ωj, which corresponds to the symmetrization of the γ(i,j) matrix.

This problem of quadratic optimization with quadratic equality constraints is in general

NP-hard, but for small to medium-sized system it is still possible to find good numerical

solutions, and in most cases we do not need to find the global minimum, but only some

“good enough” solutions with infidelity below certain error tolerance. The similar technique

has recently also been used to design parallel gates [106]. Note that different from what

we considered in Sec. 3.2, this scheme is difficult to generalize to large crystals due to the

difficulty in solving the parameters.

As an example, let us consider a linear chain of N ions with a uniform spacing of d =

8µm. Similar to Sec. 2.2 we assume a transverse trapping frequency ωx = 2π × 3MHz, a

temperature of kBT = ~ωx and Lamb-Dicke parameters ηk ≈ 0.11. Numerically we find that

nseg = 2N segments and gate time τ = 35N µs seem to work well for randomly generated

Jδt matrices whose entries are sampled uniformly from [−1, 1], with an error around or

less than 0.2% per ion. Note that both the achieved phase Jδt and the error from residual

phonon excitation scale as |Ω|2, so a simple rescaling of the laser intensity will not reduce
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the gate error because then we need to repeat the gate for more times to reach a targeted

two-qubit phase.

In Fig. 4.1 we show the time it takes for MATLAB to solve this optimization problem with

different system sizes N = 10, 15, 20, 25, 30. It seems to follow a power law t ∝ N6. This

suggests that first designing the laser sequence on a classical computer and then performing

the quantum simulation on the ion trap system should be faster than a direct classical

simulation of the Ising model for large N , which requires an exponential scaling. However,

note that for larger systems it becomes difficult for MATLAB to find a solution to the

quadratic constraints in Eq. (4.6), which is required to start the optimization process; so the

N6 scaling may not work for larger N .

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

2

4

6

8

10

Figure 4.1: Log-log plot for the time t to find a local minimum of Eq. (4.6) vs. the system
size N . For each N we randomly generate five J matrices, whose entries are uniformly
sampled between [−1, 1], to estimate the average timing and the error bar.

Unfortunately, the effective coupling strength here goes down as 1/N because the gate time τ

we use is proportional to N . Because the analogue simulation in Sec. 4.1.2 also has a similar

problem, it seems this scaling is inevitable if we want arbitrary all-to-all coupling between
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the ions. Nevertheless, the digital method should be less vulnerable to errors compared with

the analogue simulation because the carrier term and the coupling to the phonon modes are

already suppressed in the gate design.

After finding a good solution with small errors, we can use it to simulate an Ising model

with arbitrary connectivity by rescaling the laser intensity to match different evolution time,

or by repeatedly applying the gates. As is mentioned in the previous subsection, we may

also want to vary the Hamiltonian adiabatically. For example we may want to simulate the

following Hamiltonian

H(t) = α(t)

(∑
i

hiσ
x
i +

∑
i<j

Jijσ
x
i σ

x
j

)
+ β(t)h0

∑
i

σzi , (4.7)

with α(0) = 0, α(T ) = 1, β(0) = 1, β(T ) = 0 where T is the total evolution time. At t = 0

the ions can be prepared in |ψ0⟩ = |00 · · · 0⟩, the ground state of H(0) (h0 < 0). Then if

α(t) and β(t) changes slowly enough, the system will adiabatically go to the ground state of

H(T ) after the evolution. To demonstrate the idea of digital simulation, we simply assume

α(t) and β(t) are linear in time. Let us first consider a simple way of discretization using

piecewise-constant α(t) and β(t) with M steps

αm =
m

M
, βm = 1− m

M
(m = 1, 2, · · · , M), (4.8)

and apply a series of gates to the system (see e.g. [100])

|ψm⟩ = e−iβmHzδte−iαmHxδt|ψm−1⟩ (4.9)

where δt = T/M , Hx =
∑

i hiσ
x
i +
∑

i<j Jijσ
x
i σ

x
j and Hz = h0

∑
i σ

z
i . In the limit of large M ,
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we expect the discretization error on the final state to be O(1/M), hence O(1/M2) on the

fidelity. Note that at each step the two single-qubit rotation terms can be combined into a

single rotation for further simplification.

However, this is not the best way for discretization. Without adding more gates, we can

apply second order Trotter expansion [4, 107,108] to reduce the discretization error:

U(0, T ) =e−iH(tM )δt/2

[
M−1∏
j=1

e−iH(tj)δt

]
e−iH(t0)δt/2 +O(δt2)

=e−iHxδt/2

[
M−1∏
j=1

e−iβjHzδt/2e−iαjHxδte−iβjHzδt/2

]
e−iHzδt/2 +O(δt2)

=e−iHxδt/2

[
M−1∏
j=1

e−iβj+1/2Hzδte−iαjHxδt

]
e−iβ1/2Hzδt +O(δt2) (4.10)

where we have used the linearity of α(t) and β(t) to combine terms, and
∏

means multiplying

the operators one by one on the left. The first evolution under Hz can be removed because

the initial state is an eigenstate. Now the error on the final state is O(1/M2) and then the

infidelity is O(1/M4). Even higher order Trotter expansions can also be applied to further

reduce the discretization error or the required number of steps for a given error tolerance.
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Chapter 5

Outlook

Based on what we have seen in this thesis, there seems to be no fundamental limit in

conducting quantum computing directly on a large ion crystal. We discuss how high-fidelity

entangling gates can be designed in a small ion crystal in Chapter 2. Then in Chapter 3, we

show that large ion crystals can still be stable in the RF trap and the motions of the ions

can be accurately computed, thus allowing for high-fidelity gate design. Next we show that

the crosstalk of the driving on different ions decays cubically with their distance. Therefore,

when designing entangling gates for nearby ions in a large crystal, we can ignore all the ions

far away and effectively work with a small to medium-sized ion crystal, where the previous

scheme can work. Furthermore, these entangling gates can be applied in parallel, which may

greatly reduce the circuit depth.

However, many technical problems do exist and may require huge amount of efforts to solve.

In Chapter 2 we see that sophisticated control in laser intensity and detuning is needed to

improve the gate fidelity; in Chapter 3 the micromotion and soft normal modes arise and

require more advanced methods for individual ion addressing. Moreover, even though the

effect of micromotion can be included into the gate design using the theoretically computed
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phonon modes in the crystal with the corresponding micromotion patterns, what we have not

discussed is how sensitive these modes are to the experimental noise and imperfections. How

much will the crystal structure and the normal modes change if the RF voltage undergoes,

say, 1% variation? Is the gate design robust against these types of fluctuation? Can we

calibrate the phonon modes and micromotions in experiments? These may be the topics for

future studies.

Finally we briefly mention one possible direction to solve the problem of micromotion. As is

mentioned in Chapter 3, the existence of micromotion will increase the time cost in designing

the high-fidelity gate (although still within reach), and the large micromotion of the ions

in their equilibrium configuration may cause difficulty in focusing the laser beams on them.

Now if we use a pulsed laser with a repetition rate equal to the RF frequency, then the ion

will be at the same position every time a pulse arrives. In this sense, the micromotion will

have no effect on the gate apart from a constant Doppler shift due to the velocity of the ion

at the time of the pulse. Currently pulsed laser is already utilized in the experiment of ion

trap quantum computing to generate a frequency comb and produce the desired detuning

for the Raman transition [29,30]. If the repetition rate of the laser can be synchronized with

the RF field, we would expect a great simplification in the design and the implementing of

entangling gates in a large ion crystal.
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