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ABSTRACT

Ion trap is one of the most promising candidates for quantum computing. High-fidelity
gates have been demonstrated in small ion crystals and schemes like ion shuttling have
been proposed for larger systems. This thesis discusses the possibility of direct quantum
computing on a large ion crystal in a Paul trap, without any shuttling of the ions. We
first review a scheme to entangle two ions in a small ion crystal mediated by the collective
phonon modes and analyze the gate errors. The generalization to larger systems is divided
into three parts. (1) We present numerical methods to solve all the normal modes of the ion
crystal, including the micromotion, up to arbitrary precision. The stability of the crystal
under infinitesimal perturbation is ensured when all the normal modes have real frequencies.
For finite disturbance, direct molecular dynamics simulation will be needed; after discussing
some potential problems in the simulation, we give a rule of thumb for the ion crystal to be
stable at a given temperature. (2) We show that when designing an entangling gate between
two nearby ions, all the ions far away can be neglected, so that only a small number of
normal modes are relevant. Similarly, distant entangling gates can be applied in parallel
and the crosstalk is shown to decay cubically with the distance between these gates. (3)
Then we present numerical methods to include the solved micromotion into the design of

the entangling gates efficiently, again up to arbitrary precision. Thus we conclude that the

Xx1



design and the implementing of entangling gates are scalable in a large ion crystal. Finally
we consider a near-term application to simulate an all-to-all coupled Ising model in a small

to medium-sized ion crystal.
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Chapter 1

Introduction

Since its birth in the early 20th century, quantum mechanics has dramatically changed
various fields of natural science: from interactions of elementary particles in the microscopic
level with extraordinary precision, to a wide range of phases of matter and their transitions
in the macroscopic level. While deepening our understanding of nature, quantum mechanics
has also contributed significantly to the human society. It is the foundation of new materials
such as semiconductors and superconductors, and new technologies like laser and nuclear
magnetic resonance. Besides, quantum mechanics is fundamentally different in its conception
from classical mechanics, through the phenomena such as superposition and entanglement. It
is widely believed, although not proven yet, that this fact alone can bring out computational
power beyond any machines and protocols based on classical physics. This leads us to the

study of quantum computation.

In order to implement quantum computation, we need a physical system which supports

some basic quantum operations. These operations include [3,4]:

1. A high-fidelity universal gate set. A common choice of the universal gate set consists



of single-qubit gates H, S and T', and two-qubit controlled-NOT (CNOT) gate. (See

Sec. 1.1 for more details about these gates.)
2. High-fidelity initialization of the qubits to a certain state, say |0).

3. High-fidelity measurement of the qubits in a certain basis, say the computational basis

of |0) and |1).

Besides, the qubits must have long coherence time such that multiple quantum operations
can be performed before the information is lost. Last but not least, the realization of the
qubit register and these operations must be scalable because for realistic problems we will
need thousands to millions of high-fidelity logical qubits, each of which may require tens
of thousands of faulty physical qubits through the quantum error correction (QEC) process
(see e.g. Ref. [5]).

There are many possible candidates as the platform of quantum computing, like trapped ions
[6,7], superconducting circuits [8], NV centers 9], quantum dots [10], anyons in topological
systems [11], etc. Each system has its own advantages and disadvantages. For example,
superconducting qubits benefit from the mature micro-fabrication technology of chips for
classical computers, and they can be designed to have strong coupling with each other and
hence short gate time; in comparison, trapped ions have much longer coherence time and
gates can be realized at higher fidelity, but also much more slowly. On the other hand, qubits
based on anyons, a.k.a. topological qubits, are far more difficult to build; but once it is done,

it will have much higher fidelity and hence require much less overhead for error correction.

In this thesis we will focus on the ion trap system, describing the way to realize high-
fidelity quantum gates, the scalability, and its potential near-term applications. In particular,

we consider the possibility of quantum computing on a large ion crystal using direct laser



control. We will review a scheme for high-fidelity entangling gates in small ion crystals in
Chapter 2, and then generalize it to large crystals in Chapter 3. This generalization will
be divided into the following three parts. (1) The equilibrium configuration and all the
normal modes of the ion crystal, including the micromotion, will be solved up to arbitrary
precision. Once we find an equilibrium configuration with all the normal mode frequencies
being real, its stability under infinitesimal perturbation is guaranteed; for finite disturbance,
direct molecular dynamics simulation will be needed, and we give a rule of thumb for the
ion crystal to be stable at a given temperature. (2) We will show that the design of an
entangling gate between two nearby ions is insensitive to all the ions far away, so that
we only need to consider a small number of normal modes and thus the gate fidelity can
be optimized efficiently. Similarly, distant entangling gates can be applied in parallel and
the crosstalk is shown to decay cubically with the distance between these gates. (3) Finally
numerical methods will be presented to include the solved micromotion into the design of the
entangling gates efficiently, again up to arbitrary precision. After discussing the scalability of
the scheme, we will go back to small to medium-sized ion crystals in Chapter 4 for a potential
near-term application in quantum simulation, using many of the techniques developed in the

previous chapters.

In the remaining of this chapter, some background knowledge will be reviewed about quan-

tum computing and about the ion trap.

1.1 Basics about Quantum Computing

The contents of this section and more details can be found in many textbooks, e.g. Ref. [4].

The basic computational unit of a classical computer is a bit, a system consisting of two



distinct states which are often labelled as 0 and 1. Its counterpart in quantum computing
is a two-level system called quantum bit (qubit). Mathematically, the (pure) state of a
qubit can be represented by a normalized vector in C2, while that of n qubits by a vector
in the tensor-product space C?". It is often convenient to use Dirac notation to represent
a quantum state. For example, a qubit state can be denoted as [¢)) = «|0) + 5|1), where
|0) and |1) are the two basis vectors of C? (which is called the computational basis). The
Hermitian conjugate of a state vector [¢) is represented by reversing the bracket (¢|; and
putting the two notations together we get the regular matrix multiplication, in this case the
inner product, (¢|¢)), which is a c-number describing the projection of one state on the other.
The tensor product of two qubit states is denoted as [¢))4 ® |¢)p, where the subscripts A
and B label the two qubits; often we omit the ® symbol and the subscripts as [1)|¢) while

the labels of the qubits can be inferred from their order.

Coherent evolution of the qubit system, a.k.a. quantum gate, is described by unitary opera-
tors on the state vectors. In Dirac notation, the effect of a unitary operator U on a state |¢)
is simply denoted by Ulv). Given a basis, the unitary operator U can be represented in the
matrix form, which is often denoted by the same symbol U. Here we show some commonly

used unitary operators. For single-qubit gates, we have three Pauli operators

Hadamard gate

(1.2)



phase gate

10
S = ) (1.3)
0 1
and 7/8 gate
1 0
T = : (1.4)
0 6i7r/4

For two-qubit gates, we have the controlled-NOT (CNOT)

CNOT = (1.5)

o o O
)
o
—

As is mentioned earlier, H, S, T and CNOT form a universal gate set, which means that
an arbitrary (multi-qubit) gate can be approximated to arbitrary precision using just these
four types of gates (assuming we can apply these gates on any single qubit or any pair of
two qubits). For example, we have o, = S? and 0, = Ho,H. Actually we have S = T so
we only need H, T' and CNOT for the universal gate set. The reason why we include S in
the set is that it is relatively easy to implement H, S and CNOT fault-tolerantly, but much
more difficult for 7" gate. (See e.g. Ref. [4] for more details about fault-tolerant quantum
computing.) Hence it is preferred to compile the desired gate into H, S and CNOT, and use

T gate only when necessary.

In quantum mechanics, observables are represented by Hermitian operators A (A = AT).

The possible values of this observable is given by the eigenvalue A of A: Alyy) = Aly),



where the corresponding eigenvector |1)) describes the state of the system after the mea-
surement. For quantum computing, usually we consider measurements in the computa-
tional basis. Measurements in the other bases can be converted to the computational basis
through suitable unitary transformations. For an n-qubit state the probability to measure
|z) = |z1)|xe) -+ |2p) (x=0,1,---,2" —1 and z; - - - x,, is its binary representation) is given

by [{x|1)|?, and the classical outcome of this measurement is simply the binary string .

One special and extremely useful example of Hermitian operators is the Hamiltonian H of a
system. The eigenvalues of a time-independent Hamiltonian give the possible energy levels;
and the evolution of the system over time ¢ is governed by a unitary U = e~** if we choose
suitable units. For a time-dependent Hamiltonian H(¢), the unitary evolution becomes more
complex; and usually this is how we implement a quantum gate on the system. We will see

some examples in the later chapters.

In reality however, the qubit system is unavoidably interacting with the environment and thus
will gradually lose its coherence. Then the state of the system can in general be represented
by a density operator (density matrix) p = ). p;|1;)(t;|, which is a mixture of several pure
states (hence it is also called a mixed state) according to a classical probability distribution
{pi} with >, p; = 1. By definition, a density matrix is Hermitian and positive semi-definite,
and has a trace of 1. Accordingly, the evolution of the system is generally described by a
quantum channel, a linear map which converts one density matrix to another. A quantum
channel can always be written in the Kraus form C(p) = ), ckpc,TC where {c;} are linear
operators satisfying a normalization condition ), c,tck = I. The probability to find the

state p in the computational basis state |z) is now (z|p|z).

Since there are unavoidably errors in the preparation and the evolution of the quantum

system, it is desired to have some quantities characterizing the distance between the real



and the ideal state. One common choice in the experiment is fidelity. Suppose the ideal
state is a pure state [¢)) and the actual state we get is described by a density matrix p,
then the fidelity is defined as F' = (¢|p[¢)), the probability to find p in |¢) in a projection

measurement. More generally, for two mixed states p and o, the fidelity is defined as

F(p, o) = (uW)z. (1.6)

Note that our definition here is different from that in Ref. [4] by a square. Strictly speaking,
fidelity is not a distance measure, because it approaches 1 rather than 0 as the two states get

closer, but it is widely used in the experiments because of its clear meaning of a probability.

We can also use fidelity to characterize the difference between two quantum channels: given
an initial state |¢), the similarity between two channels C; and Cy can be described by
F(Ci(|¥) (%)), Ca(|1)(2])). This quantity, however, depends on the choice of the initial state.

For a state-independent measure, we can average over all possible pure states

F(ECo) = [ dwF (@)D Cu) D). (17)

where the integration is over the Fubini-Study measure [12]. For the purpose of quantum
computing, we are mainly interested in the closeness between a quantum channel C and an
ideal unitary operator U. In this case we have [13]

>, tuutvte(uy)) + d
d2(d + 1) ’

F(C,U) = (1.8)

where d is the dimension of the system and {U;} is an orthogonal basis for unitary operators

of dimension d with the normalization tr[U JT U] = 0;1d. For example, if we have n qubits,



then d = 2" and {U;} can be chosen as the Pauli basis {I, 0,,0,,0.}®".

As a method to characterize the gate errors, fidelity has the advantage that it is relatively easy
to measure in the experiment and also to calculate analytically. However, it underestimates
the effects of coherent errors, such as an over-rotation [14]. In this sense another measure,

diamond norm, is preferred to describe the distance between two channels [15]:

16 =Callo = | max [(As @ Za)([¥) )l (1.9)

Y)EHsQH A
(Ply=1

where Hg is the system Hilbert space which the two channels act on and H 4 is an ancilla
Hilbert space which has the same dimension as Hg; A = C; — Cy is the difference of the
two channels and 7 is the identity channel on the ancilla A; || - ||; is the trace norm, which
is defined as the sum of all the singular values of the input argument, i.e. the 1-norm of
the eigenvalues. What is special for the diamond norm is that it makes use of entanglement
between the system and the ancilla. It is usually difficult to derive an analytical expression
for the diamond norm, but given the quantum channels, it can still be computed efficiently

through semi-definite programming [16].

1.2 Ion Trap

Ions are charged microscopic particles. lons of the same species are identical and usually
have well-studied level structures. The transitions between these levels can be controlled
by laser at very high precision. In order to realize the individual control of the ions as is
required for quantum computing, we want to confine and separate the ions in space. This

is usually done with a confining electromagnetic field; the ions will then naturally form a



crystal (Wigner crystal) at low temperature due to their Coulomb repulsion. Paul trap is one
such method to capture ions with radio-frequency (RF) electric field [17]. It is popular for
quantum computing because it can produce a static crystal (with possibly small oscillations
around the equilibrium positions which will be specified below) as compared to the Penning

trap where ions are constantly rotating [18].

1.2.1 Trapping Potential and Equation of Motion

Earnshaw’s theorem tells us that a static electric field in vacuum cannot confine a charged
particle in all three directions in space (see e.g. Ref. [19]). Paul trap comes from the idea that
if the electric field is oscillating in its directions such that the ions feel alternating focusing

and defocusing forces, on average there can be a confining field in all directions.

Near the center of the trap, we can expand the electric potential to the quadratic terms [20]

1 ~
P == (aa®+ By* +72°) U + 3 (o/2* + B'y* ++'2%) U cos wyt, (1.10)

1
2
where we assume that the static and the RF fields have their principle axes aligned in the
same directions.

Suppose we have N identical ions inside the trap, and the ion has electric charge Ze where

e > 0 is the elementary charge. Let us define dimensionless parameters

4ZeU
1y = 2 (1.11)
mwrf
2Zelo!
= 2= 1.12
q sl (1.12)



We further use dimensionless time and spatial coordinates with time unit 7' = 2/w,s and

length unit L = (Z2%€?/4megmw?)/3. Then we get the dimensionless equation of motion

(EOM):
d227i r; — Qlj
e + (ay — 2q, cos 2t)x; — 42 ; ; 5= 0, (1.13)
iz (@ —2))? 4+ (v — y5)? + (2 — 7))
and similar expressions for y and z directions. Here ¢ =1, 2, --- , N corresponds to each ion.

For convenience, we can write these trapping parameters into vector forms: a = (a1, as, a3)
and ¢ = (q1, q2, q3), with the subscript 1, 2, 3 corresponding to the z, y and z directions.

Note that the divergence of the trapping electric field is zero, so > . a, =0 and ) . ¢; = 0.

If N =1 the Coulomb interaction term in the above equation is omitted and we recover the
standard form of Mathieu equation [21]|. For certain values of a; and ¢;, Mathieu equation
has quasi-periodic solutions, which means the trapping in this direction is stable. These
conditions together give the stability region of a single ion in the Paul trap. As an example we
consider a linear Paul trap with trapping parameters a = (—a, —a, 2a) and g = (¢, —¢, 0).

Its stability region is shown in Fig. 1.1

In the limit of small a and ¢, the alternating field can be approximated by a static pseudo-
potential 22|, which has the form of a harmonic trap with trapping frequencies w,, w, and
w,. To the lowest order, we have w; ~ \/m [20] with the frequency unit w,¢/2. The
equilibrium positions of the ions can then be computed by minimizing the potential energy
using for example the Newton’s method [23]. When ¢ is not a small parameter, there will
be non-negligible oscillations in ions’ equilibrium configuration at the RF frequency, a.k.a.
micromotion. We will describe how to compute these periodic trajectories as well as the

small oscillations around them in Chapter 3.

10



Figure 1.1: Stability region of a single ion in the Paul trap with trapping parameters a =
(—a, —a, 2a) and ¢ = (¢, —¢, 0). The stability region extends to the upper right direction,
but for ion trap quantum computing we are mainly interested in the region of ¢ < 1. Another
symmetric region exists for negative ¢, but a must be positive.

11



1.2.2 Cooling and Heating

A realistic ion trap has a finite potential depth, hence some cooling mechanism is needed to
reduce the kinetic energy of the ions such that they can be held in the trap. It is usually
realized by Doppler cooling through a red-detuned laser beam to a cyclic transition of the
ion [20]. Consider two levels |g) and |e) of the ion (not necessarily the qubit levels) with a
transition frequency wy = (E. — E;)/h and a laser beam with frequency w and wave vector
k in the lab frame. If the ion is moving at the velocity of v, the frequency of the laser will
be w — k - v in the frame of the ion due to the Doppler effect. The Hamiltonian of the ion

(in a rotating frame) can be written as [24]

A—-k- Q

where A = w — wy is the detuning of the laser and €2 is the Rabi frequency.

Next we include the spontaneous emission of the excited state. The evolution of the density
matrix of the ion is now governed by a master equation [25]
) i

r
p=—+IH pl+ 5 (20-pos —0r0_p—poro-), (1.15)

where T' describe the spontaneous emission rate, o, converts |g) to |e) and o_ from |e)
to |g). Strictly speaking, each transition between the two levels is accompanied with the
absorption or emission of a photon and hence an exchange of momentum between the ion
and the electromagnetic field. However, here we will assume that the Doppler cooling is a
slow process such that the internal levels of the ion can reach a stable state at each velocity,

and then the occupation of the excited state gives the rate of exchange of momentum, which

12



in turn tells us how the velocity of the ion changes. Note that this assumption is no longer
true when we consider the micromotion, which is at a frequency comparable to the absorption

and emission of the photons.

Written in the component form, the evolution of the density matrix is governed by

Pgg = 15 Pge = V5 Peg + I'pee; (1.16)
Pee = _ngge + Z§peg - Fpee7 (117)
' r Q kY
Pge = |:_§ - Z(A —k- ’U):| Pge + ZEP!]!] - ngem (118)
' r . Q RY;
peg — |i—§—|—7,<A—k’U):| pge_lipgg‘i_lgpee' (119>

As is mentioned above, we solve the stable solution for a slowly varying velocity v by setting

all the time derivatives to zero. Then we recover the Eq. (99) of Ref. [20]:

B s/2
Pee = T s+ 4(A — k- v)2/T2

(1.20)

where s = 20?2 /T2. The number of scattered photons per unit time is given by I'p... During
one cycle of absorption and emission of photons, the average momentum change of the ion
is simply hk because the spontaneous emission is random in its direction; thus we get an
effective force of hAl'p..k on the ion. In the limit of small velocity, this force can be linearized
as [20]

F(v) = Fy(1+ kk -v/I), (1.21)
where

s/2

Fy = hkl’
b="h 1+ 5+ 4A2/T?

(1.22)
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and
L 8AT
C 1+ s+4A2)T?

(1.23)

F} simply shifts the equilibrium position of the ion in the trap, while the additional velocity-
dependent term gives the damping of the ion along the direction of the laser beam (assume
A < 0). In the experiment, the direction of the laser is chosen to be at an angle to all the

three principle axes of the trap, thus the motion in all these directions can be cooled.

Doppler cooling, however, cannot lead to arbitrarily low temperature, due to the randomness
in the absorption and emission of the photons. It can be shown that the minimum tempera-
ture is of the order kgT ~ AI' [20]. To further lower the temperature, other techniques such
as sideband cooling are needed. However, as we will see in the following chapters, ground-
state cooling is not necessary for quantum gates in ion trap, although low temperature will

definitely improve the gate fidelity.

As is mentioned, the above arguments no longer hold if the micromotion is included. This
effect was studied in Refs. [25,26], and it can be understood qualitatively as follows: the
micromotion produces an additional sideband structure at the shifted frequencies of nws
(n = 0,£1,£2,---), thus if the laser frequency is close to one sideband, the detuning A
in the above equations should be replaced by the detuning to that sideband. Therefore
a blue-detuned laser beam can still lead to cooling if it is closely red-detuned to a higher
sideband, and vice versa for a red-detuned laser beam. In Chapter 3 we will consider the
simulation of the classical motion of the ions. There we will take a different approach by
modelling the scattering of the photons semiclassically using the quantum trajectory method

(see Sec. 3.1.4).

Once we get an ion crystal at low temperature, we need to turn off the cooling lasers to

14



apply the gates. During this process, however, the ions are subjected to the heating from
their environment. Typical heating sources are the electric noise on the electrodes and the
collision with background neutral atoms. Usually the electric noise is at a long wavelength
compared with the ion separations and hence it mainly heats the center-of-mass mode of the
crystal. This knowledge can help us to estimate the effect of heating on the gate performance

in Chapter 2.

The collision rate of the ions with the background gases is proportional to the pressure
of the gases, and the kinetic energy of these atoms or molecules are proportional to the
environmental temperature. Thus this heating rate can be reduced by improving the quality
of the vacuum chamber or by placing the chamber into a refrigerator: it is not a fundamental
limit for ion trap. Besides, remaining gases in the vacuum chamber are dominated by light
molecules such as hydrogen [27|. Therefore only a small fraction of their kinetic energies can
be transferred to the heavy ions (suppose we use 1"*Yb™ ions) in an elastic collision. Actually,
Ref. [27] computes the elastic collision rate to be Yeastic = 0.132/s at the pressure of 5nPa
and the temperature of 300 K, and the inelastic Langevin collision rate Yangevin = 0.006/s.
Ref. [28] observes an average lifetime of about 5 min for a 53-ion chain and in rare cases
even up to 30 min. Therefore this heating source shall not be a significant problem during
the operation of the entangling gates, which is typically of the order 107*s (see Chapter 2).
However, note that the collision rate is also proportional to the number of ions, so as we use

more and more ions it may finally become an important source of error.
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1.2.3 Raman Transition

For some ions commonly used for quantum computing such as '"*Yb™, “Be™ and *Ca™, the
qubit levels are chosen to be two hyperfine ground states [29-32|. The advantage is a very
long lifetime of the qubit, but these two levels are not directly coupled by an electric dipole
transition and furthermore the transition is not at a typical laser frequency. To control the
qubit states, we need two laser beams on the ion with a third ancilla level: this process is

known as Raman transition [24].

Let us denote the two qubit levels as |0) and |1), and the ancilla level as |e) (see Fig. 1.2).
Define the transition frequency between |0) and |1) as wo1 = (Ey — Ep)/h and similarly for
woe and wy.. These levels are coupled by two off-resonant laser beams at the frequencies of

wy and wo with the Rabi frequencies €2; and €2,.

Figure 1.2: Schematic diagram of the three levels and the two Raman beams. (From Ref. [1],
(©2018 American Physical Society.)

The Hamiltonian of the system (after rotating wave approximation) is

Q . o* .
H =hwoi |1) (1| + hwoele)(e| + i (716““\6><0| + 716’”“\0)(60

+h (726_“‘@|e><1| + fezw2t|1><e|) . (1.24)
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Define A = w; — wpe, 0 = wy — wy — wp1. Now we move to an interaction picture [33] with
Hy = h(wy — wo) 1) (1] + hwoee) (€] (1.25)
and get the interaction Hamiltonian

Q } Q .
H; = —hé|1)(1| + A (71|e) (0]e*A 4 h.c.) +h (72|e><1|e_mt + h.c.> . (1.26)

This Hamiltonian fits exactly into the framework of Ref. [34], and we can get an effective

time-independent Hamiltonian

Har == naf1) 1]+ nE 0001 el + e B2 () a1 - e
+ hr g7y (UL 0] + 2590001, (1.27)

with the relative error of the order O(6%/A?), and a time-dependent modulation of the order

O([€u)l/1A]):

K1) = 5 ()0l — 05]0) el ™) 45"

2A 5 g (eled(1le™ — Q1) ele™) . (1.28)

The complete time evolution from ¢; to t5 is governed by

Ulty, ty) = e~ () gmiHen(t2—t1) iR (01), (1.29)

Assuming |A] > [Qy], 2], 0, the error terms and the time-dependent modulation can be

neglected. The second and third terms of the above effective Hamiltonian give the AC Stark

17



shift of the levels due to the off-resonant driving [24,30]; while the first and the last terms
describe the effective coupling between the two qubit levels |0) and |1). Specifically, it is a

coupling term with detuning § (and small corrections due to the level shifts) and effective

Rabi frequency Qe = Q15/2(A — §/2) =~ Q105 /2A.
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Chapter 2

Entangling Gates in Ion Trap

In this chapter we will study how the entangling gates can be realized in ion trap with
high fidelity. It is mainly based on the author’s published paper [1]. In Sec. 2.1 we review
a commonly used scheme to realize the XX entangling gate between any pair of ions in a
small to medium-sized ion crystal. We will describe the scheme for a 1D ion chain, but the
generalization to 2D or 3D is not difficult and will be discussed further in Chapter 3. Then
in Sec. 2.2 we discuss the robustness of the gate under fluctuation in gate parameters and
estimate the errors from the approximations in the formulation and the neglected physical
effects. To give a concrete example, we optimize the gate design for several ion pairs in a
linear chain of 19 "'Yb™ ions, which is about the size of the current experimental platform

for the demonstration of a logic qubit.

2.1 Entanglement through Collective Phonon Modes

For a small number of ions, one scheme to realize the entangling gate, known as the Molmer-

Sorensen (MS) gate, has been proposed for two decades [35|. It utilizes a single phonon
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mode of the ion crystal, typically the center-of-mass mode, to mediate a coupling between
two ions’ internal states, which is insensitive to the phonon number. However, as the number
of ions increases, the motion of the ion crystal becomes progressively more complex and the
crosstalk among different collective modes can lead to errors in the quantum gate [36]. A
straightforward approach to suppress this crosstalk is to weaken the laser driving, but at
the cost of increasing the gate time with the number of ions. One possible solution is to use
an architecture called the quantum charge-coupled device [37-39|, where entanglements are
first generated in individual zones and are then distributed to other regions by a classical ion
shuttling technique. Such a shuttling, however, demands exquisite control of ion positions.
Here we will focus on a different approach, where all the collective modes are utilized to
perform optimized entangling gates [40|. In this way, the existence of multiple phonon
modes is no longer a source of error. One can then use amplitude or frequency modulations

to optimize the gate performance.

In this chapter we will consider a linear ion chain and utilize the normal modes in the
transverse direction. The formulation also holds for a 2D ion crystal with small correction
due to the micromotion [41]. We will consider 3D crystals in the next chapter, where the

role of micromotion is more important.

2.1.1 Equilibrium Positions and Transverse Modes

Consider N ions in a linear Paul trap along the z axis. A suitable quartic potential can be
applied in the z direction through external electrodes, making the spacings of ions nearly
uniform [42]. This can make the ion structure more stable against the zigzag shape and it

will also produce a narrower transverse phonon spectrum, allowing more efficient cooling and
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control. For typical experimental parameters, the micromotion is small and can be neglected
for 1D ion chain in a linear Paul trap. Then we can calculate the equilibrium configuration
as well as the collective oscillation modes by effectively treating the trap as a static pseudo-
potential. An estimation for the introduced error can be found in Sec. 2.2.2 and a more

general consideration of micromotion can be found in Chapter 3.

Therefore we consider the following potential energy

1 1 e?
U= w22+ Zayt S 2.1
zj: ( 5 2% + 4&421) + Z]: PP P— (2.1)

with as,ay > 0. By defining the length unit ly = (e?/4megas)'/?, dimensionless coordinate

u; = z;/lp and dimensionless potential energy V = 4wegloU/e?, we get

V= Z <——ul + ) Z _— u]| (2.2)

where v4 = a4l(2) /s is a dimensionless constant which completely determines the shape of the
equilibrium configuration. For a given number of ions and ~,, we can minimize the potential
energy to find the equilibrium positions using Newton’s method [23|, with the gradient and

the Hessian matrix of the potential energy given by

)% 3 Uy, — U
=, — — 2.3
D U, + Yaly, Z [ — u-|3 (2.3)

j#m J

0*V 2
—=—1+3 ufnjLE —_—, 24
ou?2, s ol — u,|? (24)
0*V 2

= — . 2.5



For the example we use in Sec. 2.2 (17 ions for computation and 2 auxiliary ions at the ends),
we adjust 4 to minimize the relative standard deviation (RSD) for the spacings of the 17
computing ions. 7y, = 4.3 is found to give a minimal RSD of only 2.3%; in comparison, a

harmonic trap gives rise to an RSD of 11.2% (see Fig. 2.1).
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Figure 2.1: (a) Equilibrium positions for an anharmonic trap potential with v, = 4.3 and
lo = 40 (arbitrary unit). (b) Equilibrium positions for a harmonic trap potential that can
produce the same average ion spacing. (From Ref. [1|, ©2018 American Physical Society.)

After finding the equilibrium positions {u!”} along the axial z direction, we further consider

the normal modes by expanding the complete expression of the potential energy

1 1 1
U= Z (——agz + 0442 + 2mw 7 + 2mw ) Treg 2 Z P ’r]| (2.6)
around the equilibrium positions %(0) = yZ(O) =0, zi(o = lou . The Taylor series up to the

second order is given by:

1 0’U 0 0
U= U0—|— X <ri7a—ria> (r-ﬂ—r )+ (2.7)
i 87”2 cxar] B r a—T(O) ' ’ 7P
where o, § =1, 2, 3 correspond to the three Cartesian coordinates, whilei, j =1,2, --- |, N

correspond to each ion. Since we are only interested in small oscillations around the equi-
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librium configuration, the quadratic term in the expansion suffices to describe the motion,
which is separable in the x, y and z directions. The nonlinear effect of the higher order
interaction is briefly discussed in Sec. 2.2.2. Here we only consider the transverse motion in

the x direction, while the modes in the y and z directions can be obtained in a similar way.

Define z;; = \zi(o) — z](p)\. At the equilibrium positions we have
o’U 98
@ - M 47‘(’60 Z 3 . (28)
0*U e 1
(m #n). (2.9)

(%cm@xn dmeg 23
We can then diagonalize this matrix to find the normal modes of the transverse motion,
with the k-th normalized mode vector denoted by bf (j=1,2,---, N). These modes can

be quantized to give the phonon Hamiltonian.

2.1.2 Hamiltonian and Time Evolution Operator

We start from a three-level approximation of the ion’s level structure (Fig. 1.2). Later we
will adiabatically eliminate the excited state to attain the two-level approximation. The free

Hamiltonian of this system is

N

H =0 (wo|1)i(1] + wacle)ilel) + A Y wrajax, (2.10)

i=1

where fuwg; = Ey — Ep is the energy difference between |0) and |1) (typically two hyperfine
“clock” states of the ion [29-32|) and hwp. = E. — Ej is the energy splitting between |0) and

an excited state |e). wy is the frequency of the k-th phonon mode, with the corresponding
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annihilation (creation) operator a; (al).

For simplicity, let us first consider one ion, say ion j, in the chain of N ions. Suppose two
beams of laser (with frequencies and wave vectors w;, k;, i = 1, 2) are shined on the ion
to off-resonantly couple states |0) and |e), and |1) and |e), with Rabi frequencies € (t) and

() respectively (see Fig. 1.2). This corresponds to the following coupling Hamiltonian

H' =h§); cos (ki - 7 — wit — ¢1) (10);{e| + |e);(0])

+ hy cos (ko - 1; — wat — a) ([1),(e| + |e);(1]), (2.11)

where €2y and )y are chosen to be real. The time dependence of the Rabi frequency has
been omitted for convenience. Following the step of Sec. 1.2.3 we define A = w; — wp, as the
single-photon detuning and 0 = w; — ws — wo; as the two-photon detuning. Here we assume

|0] < wo1 so that we can neglect other two-photon processes between |0) and |1).
Now we perform a unitary transformation characterized by U = exp(—iHyt/h) with
Hy=hY_ (wo|1)i{1] + woele)ife]) + B> wrafar + b (wor| 1) (1] + wile);lel) . (2.12)
i#j k
Then the Hamiltonian in the transformed frame, a.k.a. the Hamiltonian in the interaction

picture [33], is given by

out
H, =U'H P
I U U+1 ot U
Y’ tlk1-ri(t)—p1
= — hasfeel + {0l 1 e}
h$2 ;
4 T2{|e>j<1|ez[k:Q"l"j(15)—9024'5'ﬂ + h.C.}, (213)
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where r;(t) is the position operator of ion j at time ¢, under the free evolution of the
collective phonon modes. Here we have made the rotating wave approximation (RWA) with

the requirement |d], |24/, || <K wy, wo.

Assume |A| > |6], [Q41], |Qs], 7. so that the excited state can be adiabatically eliminated,
where 7, is the spontaneous emission rate of the excited state. This describes a Raman

transition between the state |0); and |1); (see Sec. 1.2.3). The effective coupling is given by

. Q2105 _, .
HI( M) _ p iA2€fz[Ak-r](t)76-thw]‘OMH + he. (2.14)

where Ak = ki — ko, Ap = 1 — 9. The states |0) and |1) are coupled by an effective Rabi
frequency QEEH) = (10, /2A. Later, for simplicity, we drop the superscript and denote the

effective Rabi frequency on ion j by €2;.

The laser also produces AC Stark shift on the two levels. By suitably choosing the relative
intensity of the two laser beams and the detuning A with respect to the excited states, we
can make the shifts on the two levels nearly the same [7,43]. We will discuss more about

this effect in Sec. 2.2.

This effective coupling depends on the relative phase of the two laser beams and therefore
the fluctuation on their paths. This problem can be solved by adding a third laser beam to
form two pairs of Raman transitions, with detuning § = 4+x and wave vector difference +Ak
along the x direction (see Fig. 2.2). This is known as the phase-insensitive geometry [44].
We will also briefly discuss the relevance to the phase-sensitive geometry at the end of this

subsection.

The effective Rabi frequencies of both pairs are chosen to be €2;. Here we assume wy <

w1, wa, w3, so that Ak is nearly the same for both pairs, with a relative error of the order
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(a)

w1

W2 = W1 —We1 — 4

w3 =w1 +wo1 — @

Figure 2.2: (a) Schematic experimental setup. Three beams are shined on the ion, with one
beam in the direction of k; and the other two red- and blue-detuned beams in the direction
of k. (b) Schematic energy levels and the two pairs of Raman transitions. (From Ref. [1],
(©2018 American Physical Society.)

wo1/wi. Suppose the initial phase differences for the two pairs are Ag, = ¢; — o and

A, = @3 — 1. Then the total interaction Hamiltonian can be written as

H} ff) — TJ [eszk:-:pJ(t)ez,utezAgob + ezAk-:p](t)efz,utezAcpr] |O>]<1| + h.c.
N e e [ R

m iol® —iol®
= h§2; cos [ut—ﬂpg )—Akmj(t)] (e 25 |0), (1| + e "% \1)j<0|)

J

= hQ; cos [ut + go§m) — Ak - xj(t)] (0;” cos gog-s) — o¥sin go(s)> , (2.15)
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where gog.m) = (Apy — Ap,)/2 and gogs) = (Apy + Ap,)/2 are called the motional phase and

the spin phase [44|. The subscript j is used to show that these phases pertain to ion j.
(s)

Small fluctuation in beams’ paths causes opposite changes in Ay, and Agp,., so ¢, is robust

against fluctuation. On the other hand, cpg»m) does change, but it can be quite stable during

one gate time. As we will show later, the gate fidelity is not sensitive to a constant gpgm) SO
long as the phase is the same for both ions. Finally we will choose go§m> =0 and gog»s) =0,
but for the moment let us keep them in the formulae for completeness.

(s)

J

(s)

J

to simplify and drop the superscript on H}eﬁ):

— Y 3
We further define o = o7 cos ;" — o] sinp

Hy = 1€,(t) cos [ut + o™ — Ak (t)] o, (2.16)

J

As we have seen in Sec. 2.1.1, for the linear ion chain the small oscillations along z, y, z

directions are separable and the transverse motion of ion j can be quantized as

h —iw w
x(t) = Z Ry Do (ake Ky ale kt) : (2.17)
k

where b;? (j=1,2,---, N) characterizes the k-th normalized mode vector of the collective

oscillation. The summation over k£ is limited to the transverse modes along the x direction.
(In Chapter 3 we will consider general 3D ion crystal, where the motions are no longer
separable in the three spatial directions. Then we need to sum over all the 3N normal

modes and project them onto the direction of Ak.)

With the Lamb-Dicke parameter n, = Ak+\/h/2mwy, we get
Hy = h{jo? cos [ut + gaém) — Z nkb;? (ake_iw’“t + alew’“t)} . (2.18)
k
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We can expand this expression according to the power of n;:

H; :FLQ] CoS (Mt+90§m)> +sin <ut+goj )anb ( zwkt+aT zwkt>

(MH«p] )

5
ZZ kT/l ( Zwkt+(l£€iwkt> (ale zwlt+aT zwlt>
k l

o +O0(ny). (2.19)

The zeroth order term is a single-qubit operation and commutes with other terms. So we
can drop it now and apply a single-qubit rotation after the entangling gate to compensate
its effect. Actually for the examples considered in Sec. 2.2, we will show that such a com-
pensation is unnecessary. Here we keep terms up to the second order, but we will show later

that the error in the fidelity is of the order O(n}).

When the lasers are shined on two ions, we get the interaction-picture Hamiltonian

= 37 STt (ae = o alet) o

j=j17j2 k
— Z ZZQ 77k771 <a e zwkt+aT zwkt) <al zwlt+aT zwzt) Ujv (22())
_‘71’]2 k

where the summation of j is over the two ions and
;(t) = K, sin (,ut n gojm)) : (2.21)
0;(t) = h cos (ut + ™). (2.22)

J
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Unitary evolution in the interaction picture is obtained by the Magnus expansion [45]

J 1<j

U (1) ~exp (z D oi(r) + () of +i > @U(T)aga;> : (2.23)

where

¢;(1) = —iz [a?(ﬂal — a;?*(T)ak] , (2.24)

?

aj(7) = —3mb; /0 x;(t)e’ dt, (2.25)

and

U;(7) = zk: X5(7) (aLak + %) : (2.26)

1 2 [T
Ni(7) = = (mb}) /0 6;(t)dt (2.27)
describe the coupling between the spin and phonon modes, and

04(r) = 5 Sttt [ s [ da bttt + s (tten)]sin s — )] (225)

is the coupling between the two spins. Roughly speaking, the ¢; terms are displacement
operations on the phonon modes conditioned on the spin state of each ion, and the 7; terms
are single-spin rotations conditioned on the phonon numbers of each mode. We need to
suppress these terms while maintain a large spin-spin coupling to realize the entangling gate.
Here again we keep terms up to the second order in 7, and retain only diagonal terms in
1;(7) [Eq. (2.26)]. An error analysis will be performed in Sec. 2.2.2. In the above derivation

we have also dropped a global phase, which has no effect on the entangling gate.

If the effective Rabi frequencies of the laser beams on the two ions are always proportional,
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e.g. when the lasers come from a single beam through a beam splitter, the expression of ©;;

can be simplified as

2 T t1 .
Oy(7) = 72 Znibfb§/0 dtl/o dtax;(t1)x;(t2) sin [wi(ts — t2)] .- (2:29)
K

In this way we recover Eq. (2) of Ref. [40].

In the above derivation we assumed a phase-insensitive laser configuration. It is also pos-
sible to use the phase-sensitive geometry for the entangling gate with the spin phase being
cancelled by a Ramsey-like gate design [32,44]. In this case, we choose Ak to be the same

for the two Raman transitions, then instead of Eq. (2.19) we get

H; =h{; cos <,ut + gog»m)) |:O';L — JjL Z nkb;? (ake_i“”“t + a,tei“”“t>
k
1 ) ) ) )
_ 50—? Z annlbfbé' (ake_“‘”“t + a;rfezwkt) (ale—zwzt + a;ezwzt) :| + 0(772) (230)
k l

(s)

J

(s)

J

where o+ ;S)

Yain o)
7 — o} sinp;”. Also note

)

— ST o Yy 3 n — 4
=ojsing;” +o0;cosp; is orthogonal to o7 = o7} cosy

that here go(s) is sensitive to fluctuation in the paths of the laser beams while <p§-m is not.

J

Because ajL anti-commutes with o7, a direct Magnus expansion as before will give us infinitely

many terms even if we truncate at the first order of 7, due to the carrier term. Instead, we

can move into a new interaction picture with Hj = hf); Cos(ut+<,p§m))a?, which will leave the
second order o7 term unchanged but turn the first order O'jJ-‘ term into a combination of O'jJ-‘
and o,. Then similar derivation can be made, although the expressions are more complex.
Note that for previous experiments with only a few ions, usually Q; < p is satisfied [32] so
that the correction term of o, will be small. However, for a larger ion crystal we may want

to increase the laser intensity to shorten the gate time. Actually for the example we consider
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in Sec. 2.2, ); is only about a factor of 3 smaller than p, so the correction term may not
be negligible. Nevertheless, many other error analyses in Sec. 2.2 should still work for the

phase-sensitive setup.

2.1.3 XX Entangling Gate and Fidelity

If o¥(7) = 0 [Eq. (2.25)] and A¥(7) = 0 [Eq. (2.27)] for all the modes and both of the ions,
gogs) = 0 for both ions, and ©,; = 7/4 for the ion pair of interest, ¢ and j, the time evolution
operator will be an ideal XX entangling gate. In the basis of [+);|+);, |+)i|—);, |—)il+);

and |—);|—); where |&) = |0) 4 |1)), we have

1
ﬁ(
ei /4 0 0 0

Uideal = eiwafzr;”/4 - . (231>

0 0 0  eim/4

The subscript 77 and the dependence on 7 have been dropped. This gate is equivalent to the

CNOT gate described in Sec. 1.1 up to single qubit gates, e.g.

CNOT = (I, ® Hy)(S1 ® So)(Hy @ Hy)e™ 714 (Hy @ I) (2.32)

where we have thrown away an irrelevant global phase. Note that to compare these two

gates we need to use the same basis, say, the computational basis.

If the initial internal state is |¥y) and the vibrational modes are in the thermal state py,

with a temperature T, the ideal final state is Uigea1|Wo), while the actual state we get is
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p = t1,[U[ W) (V| ® pi,UT] (neglecting all the other decoherence during the gate), where U
is given by Eq. (2.23) and tr,, means the partial trace over all the motional modes. Then we
can use average gate fidelity to characterize the similarity between U and Ujgea (see Sec. 1.1).

(s)

For the moment we assume the spin phases ¢, A

= 0 for the two ions, i.e. n = T, o} =oj.

Later we will discuss the effects of nonzero spin phases in Sec. 2.2.1.

Let us express U in the above basis:

el () 0 0

0 e 0 0
U= , (2.33)
0 0 ¢®0 0

0 0 0 etn

where ®oo = @i +1i+9;+1;+ 04, Por = ¢i+i—P;—1; =By, Pro = —Pi— i+ P;+1;— Oy,
Q1 = —¢i — i — ¢; —; + O, [see Eq. (2.23) for their definitions| are the phases gained by
the |[+)i|+);, [+)il—=)j, |=)il+)s, |—)i|—); states, respectively. Note that they are actually

operators in the subspace of phonon modes.

Accurate up to second order diagonal terms in 7, we have

' ~ei®i H Dy, (o (1) + {1 +1 Z )xl )+ )\l ()] (a;al + %) } : (2.34)

¢'01 e~ 19is H Dy (o (1) — oi(7)) {1 +i Z [Xi(7) = Ai(7)] (a}al + %) } 7 (2.35)
k: .

10 e 00 [ [ Di (—af(7) + of(7)) {1 —iy [N(r) = X(r)] (a}al T ) } » o (2:36)

1
2
P z@ k l l T 1
citn uHDk Fm) g1 =i [X(r) + Xy(7)] (alal+§) . (2.37)

l
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T

where Dy, (a) = exp(aa, — a*ay

For an arbitrary operator py (not necessarily Hermitian)

Po =

00,00
£01,00

£10,00

11,00

£00,01
01,01
£10,01

11,01

00,10
P01,10
£10,10

P11,10

lengthy but straightforward calculation shows that

p = tr[Upy @ prUT]

£00,00

T A5e™29u™ pgy g

Q

*  —210,;;—ie
I'iASe 010,00

L'y A% prioo

where € = 23", Im(afal”),

Lj) = exp [—22 ‘Ozf(j)}Q coth ( e
k

2kgT

Fizexp[ 22‘04 iak‘ coth( s

2kpT

[ A€ pog o1 TiNie* 5 pgg 1

01,01

I'_A* pro,m

Pi A;k 627,'@7;]' +1e

)—1—|—ZZ)\2U coth

P11,01 F
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L_A_po1,10

A* 2i0;;—ie

P00,11
Po1,11
£10,11

P11,11

P10,10

T?

P11,10

) is the displacement operator of the k-th mode.

[y Ay poo,1n

D Ae™ 295~ poy 1y

FjAje_Qie”HEPlo,n

P11,11

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



he
Ap=1+i) (A £A)coth 2kBkT' (2.43)
k

We have used the following formulae in the derivation:

D(a)D(B) = e ="A2D(a + B), (2.44)
ctDtal = o |12 o (2)]. 215
tr [(a*a + %) pth] = %coth (2Z:T) : (2.46)

Now we plug Eq. (2.39) into Eq. (1.8) of average gate fidelity and we finally obtain

1
10

Fr~ —[4+420;sin(20;; + €) 4 2T sin(20;; —e) + [, +T_]. (2.47)
A% terms [Eq. (2.27)] appear quadratically in the fidelity, hence its contribution is O(r;) and
is neglected. If Q < p, wy and the average phonon number for a typical mode is 7, the
error from neglecting higher order terms is of the order n{(2n + 1)2. The fact that there are
N independent transverse modes has already been included because the coefficient for each

mode is also modulated by the b? vectors, which are normalized to 1.

Suppose the laser intensities on the two ions are always proportional and that their phases

are locked such that gogm) = <p§-m) = 0, then we get ¢ = 0. The above expression can be
simplified as
— 1

This average gate fidelity is slightly higher than Eq. (3) of Ref. [40], where a special initial

state is used.
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Also notice that if ©;; = —7/4, the gate is close to another ideal entangling gate exp(—imofof/4),
which is different from Uiqes only by single-qubit operations. In this case the gate fidelity

can be calculated in a similar way and the final result is
— 1

From now on, by fidelity we mean the average gate fidelity if not specifically mentioned. We

will drop the overline on F for convenience.

Up to this point, our derivations are general: any methods can be used to optimize the pulse
sequence such as amplitude, frequency or phase modulations [40,46,47| and our target is a
high gate fidelity given by Eq. (2.48) or Eq. (2.49). In the following, we will focus on the

amplitude modulation method, which gives a simple analytic formula for the gate design.

In the experiment, we can set the laser beams on the two ions to be the same. We can divide

the laser sequence into ng equal segments and in each segment let the Rabi frequency be

a constant. Define a real column vector @ = (4,9, -+, Q)" corresponding to the Rabi
frequency of each segment, and we get
af(r) = AlQ, ©;=0"YQ, (2.50)
where A;‘? is a row vector whose n-th component is
NT /Nseg '
A;“(n) = —inkbf/( o sin pt - e"“*dt, (2.51)
n—1)7/Nseg
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and v/ is an nge; by nge, matrix whose (p, ¢) component is

pT/nseg qT/nseg
2 Z nzbkbk / dt, / dts sin pty sin pts sinfwg(t — t2)]  (p > q)
(

(P=1)7/nseg / (q—1)7/nseq

! pT/nseg t1
Y (pg) =42 Z nibkbk/ dt / dty sin pty sin uts sinfwi(ty — t2)] (p = q)

(P=1)7/nseg / (p=1)7/nseg

0 (r<q)
(2.52)

\

We can further define a symmetric matrix v = (y'++'7) /2 such that ©,; = Q7v'Q = QT~Q.
By suitably scaling €2, we can always set ©;; = £7/4. Then in the limit of small |oz§?] (high
fidelity), the fidelity can be approximated as

~1_ 4 k2 huwy
F~1 5;(\0@] +\a|)coth2k T

o, Agr kT Ak kT Ak hw
~1-:0 Ek:(AZ.A + Al A)coth | ©
4
=1- 5QTMQ. (2.53)

By definition, M is a Hermitian matrix, but actually we can express it in a real symmetric

form:

Q'MQ = % (Q"MQ+Q"M"Q)
= % (Q"MQ+Q"M*Q)

= Q Re[M]92. (2.54)

Now we want to minimize Q7 M€ under the constraint Q7+ = 4+ /4. For this purpose, we

use the method of Lagrange multiplier and consider the optimization of f(£2,\) = QT MQ —
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MNQT~Q F 1/4):
MQ - )\yQ =0 255
QT'~Q =47 /4

We only need to solve this generalized eigenvalue problem and find the eigenvalue with the
smallest absolute value. The corresponding eigenvector, with suitable normalization, gives

us the optimal €. (See also Appendix A of Ref. [48].)

We remark that for realistic experimental parameters, the effective Rabi frequency cannot
be too large. This means that the above optimization should be performed under another
inequality constraint. This problem is generally hard to solve, so instead we use the method

described above and then discard solutions with unrealistic |€2].

2.2 Error Analysis for the Entangling Gate

The gate fidelity realized in the experiment is always less than 1. This is due to the approx-
imations in the formulation, imperfections in the gate design, as well as noise and errors in

the experiment. In this section we analyze these sources of errors in detail.

In order to estimate the influence of each error term, we consider a specific example of
mapping a 17-qubit surface code for quantum error correction into a linear chain of '"'Yb*
ions [2,49] (see Fig. 2.3 for the mapping). For this purpose, diamond norm may be a better
measure of the gate performance, but we focus on average gate fidelity here as it is easier
to treat theoretically. We will discuss their difference in Sec. 2.2.3. For realistic parameters,
we choose w, = w, = 27 x 3MHz, and consider a chain of 19 ions with the two ions at the
ends only used for cooling [42]. An anharmonic potential is applied along the z axis, which

is specified by Iy = 40 um and 4 = 4.3 (see Sec 2.1.1 for the definition). In this way the
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Figure 2.3: A 17-qubit surface code layout. The open circles represent the data qubits and
the filled circles represent the syndrome qubits. Labels 1-17 corresponds to the real order of
qubits in the 1D chain. (From Ref. [1], (©2018 American Physical Society.)

central 17 ions will have a nearly uniform spacing with an average of d,, = 8.3 um and a

relative standard deviation of 2.3%.

Under these conditions, the spectrum of the transverse normal modes is very narrow (within
0.9% of w,). Hence it is possible to use sideband cooling method to cool the transverse motion
down to about 0.5 phonon per mode or less: kgT = (n + 1/2)hw, = hw,. Doppler cooling
can also be used if the trapping can be stronger. For counter-propagating laser beams along
the 2 directions with A = 355 nm [43], we have a detuning A ~ 27 x 33 THz and Ak = 2k.
(Actually there are two excited states with a fine-structure splitting of 27 x 100 THz, and the
laser detuning is specially chosen to minimize the differential AC Stark shift. We will come
back to this point when discussing the AC Stark shift; but otherwise we will just use one
value of A to estimate the order of magnitude for the other error terms.) The Lamb-Dicke

parameter is then 7 =~ 0.11 for all the transverse modes.
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2.2.1 Optimized Gate Design and Sensitivity to Tunable Parame-

ters

In order to perform the stabilizer measurement in the surface code, we need to achieve two-
qubit entangling gates between nearest neighbor qubits in Fig. 2.3, that is, ion pairs with
one, three and five ion separations in the linear chain. To find the optimal parameters for a
high-fidelity gate, we use Eqgs. (2.53) and (2.55) to estimate the gate fidelity and to solve the
optimal pulse sequence. We then scan the gate time 7, detuning p and number of segments

Nseg t0 find a combination with the desired fidelity.

For example, Fig. 2.4 shows the gate infidelity (0F = 1 — F) for the entangling gate between
ion 1 and ion 4 as a function of detuning u for a fixed gate time 7 = 300 us and three possible

segment numbers ng, = 10, 12, 14. As we can see, increasing the number of segments

lo = 40 pm, ~y4 = 4.30, 7 = 300 us, pair (1, 4)
TN, e W
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Vi !/ il “l
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Figure 2.4: Infidelity for an entangling gate between ion 1 and ion 4 as a function of the
detuning p. Here gate time 7 = 300 s and 3 segment numbers ng, = 10, 12, 14 are used.

The vertical dash-dot lines give the range of the spectrum of the transverse normal modes.
(From Ref. [1], ©2018 American Physical Society.)

generally reduces the gate infidelity. We also notice that there are multiple local minima in
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the gate infidelity. Therefore, we do not attempt to find the “best” solution, but rather look
for solutions that are “good enough”. That is, the solution needs to achieve high gate fidelity
in the ideal case, and it should also be robust against errors in these control parameters,
which may arise from imperfect calibration, finite resolution or random fluctuation in the
experiment. Specifically, we perturb the gate parameters at local minima of plots similar to
Fig. 2.4 when scanning these parameters and keep the ones that are most insensitive to the
noise. We will assume that these noises are “slow” such that they stay constant during one
gate period. This assumption is reasonable because typically the high-frequency noise will
be weak in the experiment. For instance, Ref. [50] considers the influence of high-frequency
noise in a two-ion crystal and the experimental noise level is found to be about one order of
magnitude lower than what is allowed for an error of 107, Also note that the same technique
to optimize the gate design has been applied in Ref. [2]|, but the number of segments and
the gate time we use here are generally larger because of this additional requirement of

robustness.

Below we show the results for ion pairs with three typical separations. For experimentally
achievable effective Rabi frequencies, we only present solutions satisfying [€2(¢)| < 27 x 1 MHz

at all times.

e Jon 5 and ion 6 (separation 1):

We use nge = 10 segments and 7 = 80.4us. Laser sequence £2y is optimized for
o = 0.995w, (Fig. 2.5). For the sensitivity to control parameters, in Fig. 2.6 we show
how the gate infidelity changes under a shift in detuning p of 27 x 1kHz, in the global
laser intensity Q of 1%, in gate time 7 of 0.4 us, as well as the effect of a nonzero (™.

[See Eq. (2.15) for the definition. Here the motional phase is assumed to be equal for
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both ions.| For parameters fluctuating inside these ranges, the gate infidelity is always

below 1073.

Q/2m(MHz)

1 2 3 4 5 6 7 8 9 10
Segments

Figure 2.5: Optimized effective Rabi frequency sequence {2y on ion 5 and ion 6 for nge = 10,
detuning ;o = 0.995w, and gate time 7 = 80.4 us. Here we allow the Rabi frequency to
take negative values by adding a phase shift of 7. If such a phase shift is not available, we

can look for other solutions where all the Rabi frequencies are positive. Some examples are
shown in Ref. [2|. (From Ref. [1], (©2018 American Physical Society.)

e Ion 1 and ion 4 (separation 3):

We use nge = 17 segments and 7 = 250us. Laser sequence 2y is optimized for
o = 0.997w, (Fig. 2.7), but then for the robustness under fluctuation in detuning
(where positive and negative shifts have asymmetric effect), the gate is performed at
the detuning puf, = po + 27 x 0.8 kHz with a slight rescaling of the laser intensity. (See
Sec. 2.2.3 for more details about this rescaling, which aims to reduce the accumulation
of errors when multiple gates are applied.) Therefore in Fig. 2.8 the smallest infidelity

does not always appear at the center of the parameter range.

e Jon 9 and ion 14 (separation 5):
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Figure 2.6: Parameter sensitivity for the entangling gate between ion 5 and ion 6. (a)
Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in
laser intensity. Here we assume that the frequency of the noise is low so that the laser
intensities of all the segments are shifted by the same percentage. (c¢) Infidelity as a function
of shift in gate time 7. (d) Dependence on the motional phase ™. Here we consider
@Em) = gog-m) between 0 and 27. Solid blue, dashed red and dotted green curves are the
maximal infidelity for a shift of 1kHz in detuning u, a 1% change in Rabi frequency, and
0.4 us change in total gate time, respectively. (From Ref. [1], (©2018 American Physical

Society.)

5 10 15
Segments

Figure 2.7: Optimized laser sequence {2, on ion 1 and ion 4 for ng, = 17, detuning 1o =
0.997w, and gate time 7 = 250 us. (From Ref. [1], ©2018 American Physical Society.)
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Figure 2.8: Parameter sensitivity for the entangling gate between ion 1 and ion 4. (a)
Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in
Rabi frequency. We assume the laser intensities of all the segments are shifted by the same

i : e - ) . (m) _ (m)
percentage. (c) Infidelity as a function of shift in gate time 7. (d) Consider ;" = ¢;
between 0 and 27. Solid blue, dashed red and dotted green curves are the maximal infidelity
for a shift of 1kHz in detuning pu, a 1% change in intensity, and 0.4 us change in total gate
time, respectively. (From Ref. [1], (©2018 American Physical Society.)
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We use ng, = 24 segments and 7 = 482 pus. Laser sequence ) is optimized for
o = 0.997w, (Fig. 2.9). For the robustness under fluctuation in parameters, we then
work at the detuning uf, = po— 27 x 0.5 kHz. Gate infidelity under shifts in parameters

are shown in Fig. 2.10.

Q/2m(MHz)

5 10 15 20
Segments

Figure 2.9: Optimized laser sequence 2y on ion 9 and ion 14 for ne, = 24, detuning py =
0.997w, and gate time 7 = 482 us. (From Ref. [1], ©2018 American Physical Society.)

(m)

As we can see in Figs. 2.6, 2.8 and 2.10, a nonzero but constant ¢, ' = gogm) does not

influence the fidelity significantly. This justifies the use of the phase-insensitive setup, which
suppresses the fluctuation in ¢® but allows ¢™ to change over different gates. Nevertheless,

we still need to set ¢(*) = 0 initially for the desired XX entangling gate: by taking U =
(

exp(irojor /4) in Eq. (1.8) with small spin phases gpis) and gog-s), we can show that it causes

an infidelity 6F ~ 2[p\"* + 905»5)2] /5. Tmbalance between goz(m) and gog»m) should also be small:

(m) (m) (m)

numerically we find that the infidelity scales as [p;"” — ¢;"]?, thus we need o™ — o; | <

7/100 for a gate fidelity higher than 99.9%.
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Figure 2.10: Parameter sensitivity for the entangling gate between ion 9 and ion 14. (a)

Infidelity as a function of shift in detuning. (b) Infidelity as a function of relative shift in

Rabi frequency. (c) Infidelity as a function of shift in gate time 7. (d) Consider %(,m) = gog-m)

between 0 and 27. Solid blue, dashed red and dotted green curves are the maximal infidelity
for a shift of 1kHz in detuning p, a 1% change in intensity, and 0.4 us change in total gate
time, respectively. (From Ref. [1], (©2018 American Physical Society.)

2.2.2 Approximations in the Formulae and Neglected Effects

In order to get the analytical expressions for the gate fidelity [Eqs. (2.48, 2.49, 2.53)], we
have made several approximations in the derivation and neglected some physical processes.
Some of them are covered along the derivation in Sec. 2.1: for example, to get the effective
Hamiltonian Eq. (2.14), we have applied RWA and the adiabatic elimination of the excited
state. Their influence can be estimated to be [d]/wor, |Qi2)|/wie) and [Qy)|?/A%. With
the Raman transition detuned close to the motional sideband, the first term is about 10~*
while the other terms are orders of magnitude smaller. Below we address the effects of other

approximations.
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Micromotion

For the linear Paul trap, alternating potential is only applied in the x and y directions. Hence
there is no micromotion in the z direction. To the first order in trap parameter ¢, the effect
of the transverse micromotion is to replace a; with ag[l — (¢/2) coswyt] when quantizing
the transverse modes [20,51] (see Sec. 3.3 for more details), where ¢ &~ 2v/2w, /w,¢ ~ 0.1 for
the parameters we consider. The effect of the RF-frequency term is O(1,¢€2; /wys) on of and
O Jwis) + O(npg*Q /) on A% in Eqgs. (2.25, 2.27). Its influence on O, [Eq. (2.28)] is

more complex. By comparing terms like

/ dt; / dt sin pty sin pty cos wiety sinwy (t; — o) (2.56)

with the original integration of Eq. (2.28), which is O(1), we estimate the error in ©,,, to be
O(q/wrT) and O(q|p — wi|/wrt). We also numerically evaluate these correction terms for the
three gate designs we consider in Sec. 2.2.1 and get results lower than these estimations. All

of these terms are further squared when calculating fidelity, and the dominate contribution

is estimated to be 107% from o¥. Nevertheless, the correction factor of [1 — (q/2) coswyt]
can always be incorporated into the formulation if its effect is not negligible, which will be
discussed further in Sec. 3.3 for more general ion crystals and a more accurate description

of the micromotion.

Carrier term

As is mentioned after Eq. (2.19), in the derivation of the XX entangling gate, we dropped
a single-qubit rotation term. Strictly speaking this is not an error source because we can

apply an additional rotation to compensate it. However, our numerical result shows that for
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all the three gates we considered in Sec. 2.2.1, such single-qubit rotation terms are less than
1075 and can be directly neglected. The reason is that we use multiple laser segments with

opposite phases, which largely cancels the single-qubit rotation.

Higher order terms in the Lamb-Dicke parameter

In the derivations of Egs. (2.20, 2.23 and 2.34-2.37), we only keep zeroth and first order
terms in the Lamb-Dicke parameters and the second order diagonal terms with paired ay
and aL of the same motional mode. Here we will show that the error in gate fidelity from
such approximations is of the order n*, and because the Lamb-Dicke parameter n always
comes with the operators a; and aL whose magnitudes are related to the thermal motion, we
can express the error as O(n*(27 + 1)?), where 7 is the average phonon number of a typical

transverse mode.

Let us consider the derivation from Eq. (2.20) to Eq. (2.23). The higher order terms can be

divided into four classes:

1. O(n}) off-resonant terms with unpaired a;, or az and a single-qubit rotation, such as

J

nzaia? / dtQ e~k cos(ut + go(m)) (2.57)

and
J

nkmakaja]” / At e~ @Dt cos (1t 4 ™) (2.58)

for k # [, where numerical factors of the order 1 are omitted. These terms have
vanishing expectation values in a thermal state and therefore they contribute to the

gate fidelity only when pairing with another two creation or annihilation operators.
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Hence the error is O(n}). Also notice that for the example we considered in Sec. 2.2.1,
the spectrum of the transverse modes is narrow and all the w;’s are similar and are

also close to p. Therefore the time integral is of the order €;/wy < 1.

. O(n?) resonant terms with unpaired a; or a,t and a single-qubit rotation, such as

nknmma,tazrama;l/dtQjei(”’“Jr‘”lw’")t sin(ut + (,pgm)). (2.59)

We consider two possible cases here. (i) Two frequencies are the same, e.g. w; = wp,.
Then the time integration has exactly the same form as Eq. (2.25). According to
Eq. (2.53), as we optimize the gate fidelity to higher than 99.9%, each ]oz;? 2 term
should be of the order 1072 or less. Besides, the term we drop here has an additional
n? coefficient compared with a;?. (i) All the three frequencies are different. For a wide
spectrum, such terms become off-resonant and can be treated in a similar way as O(n})
terms; for a narrow spectrum we considered in Sec. 2.2.1, that is, 19 transverse modes
located within a width of about 0.9% of w,, such a term has a shifted w;, compared with
Eq. (2.25), hence its contribution should be similar to a shifted detuning u by the same
amount, with the additional 7} factor. To sum up, such terms have negligible effects so
long as the gate fidelity calculated by Eq. (2.53) is high at the optimized parameters and
is robust against shift in detuning. To balance the creation and annihilation operators

when taking the trace with a thermal state, this type of terms can be paired with the

first order terms as well, which, however, vanish for the optimized parameters.

. O(n?) off-resonant terms with unpaired aj or a,t and a two-qubit operation, such as
the time integral of the commutator between one first order term and one second order

term. To balance the creation and annihilation operators, another O(n;) term must
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be added. So the final contribution is O(1}).

4. O(n}) resonant terms with a two-qubit operation, such as the time integral of the
commutator between two second order terms, or that between one first order term and
one third order term. Such terms lead to a relative error of O(n7) in ©;; of Eq. (2.28).
Whether the creation and annihilation operators are balanced or not, an error of O(n})
in the fidelity is resulted, because ©;; is set to be m/4 in Eq. (2.48) and the error only

appears as a quadratic term.

Since only two ions appear in the Hamiltonian [Eq. (2.20)] and (0})* = I, there are no
multi-qubit operation terms. There are also terms purely in the subspace of motional states,
e.g. the commutator between two first order terms with the single-qubit rotation on the
same ion. However, such terms act as a global phase on the subspace of the ions’ internal

states and are irrelevant to the gate fidelity.

Similar arguments also apply to Egs. (2.34-2.37): O(n?) terms with unpaired creation or
annihilation operators or O(n?) terms cause an error of O(n}) in fidelity and therefore can

be neglected. In the derivation of these equations, we use the Zassenhaus Formula [45]:
XY = XY s . (2.60)

After dropping the commutators, which are higher order terms based on the argument above,

we obtain Eqs. (2.34-2.37).
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Asymmetry in blue- and red-detuned coupling

In the derivation of Eq. (2.15), we assume the two pairs of Raman transitions on one ion
have the same effective Rabi frequency and opposite detunings (see Fig. 2.2). However, in
experiments there are always errors in these parameters, which can significantly influence
the gate fidelity. Here we discuss the influence of small asymmetry in the phase-insensitive

geometry. A similar analysis can also be applied to the phase-sensitive one.

Suppose one Raman transition pair has effective Rabi frequency €2, + 6€2; and detuning
i+ op, while the other pair has effective Rabi frequency 2; — 6€2; and detuning —p + dp.
Following similar steps as in Eq. (2.15), we get the effective interaction-picture Hamiltonian

J

H; =h$Q; cos[ut + goﬁ»m) — Ak - x(t)] [a}’? cos(op -t + go(s)) — o sin(0p -t + gogs))}
J J

— ho sinfut + " — Ak - a;(1)] [of sin(dp -t + ') + o cos(Op - t + ¢<8>)} .

(2.61)

Clearly dpu produces a slow change in the rotation axis and its effect (for small oy - 7) can

(s

be bounded by that of a constant error in ¢; ). So the error from asymmetric detuning is

O(6p27?) where 7 is the gate time.

The 6€2; term corresponds to a rotation in the orthogonal direction, which oscillates at the
same frequency as the leading order term but with a phase difference of 7/2. It is more
difficult to bound this effect. So instead we tackle this problem numerically. A multiple-
phonon-mode problem is still hard to solve, even for a relatively small cutoff of phonon
numbers; but for only two ions and one phonon mode, the system can be easily solved by
standard numerical integration methods, using a Hamiltonian analogous to Eq. (2.14) with

two pairs of Raman transitions on each of the ion. Then the result can be compared with the
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method we used in Sec. 2.1. Since our purpose is just to estimate the order of magnitude,

we choose a special initial state [00)(00] ® py, to calculate fidelity.

For symmetric detunings and effective Rabi frequencies, the result is consistent with the
error analysis we made in the previous subsection, namely a discrepancy of the order n*. For
a nonzero 0€);, it turns out that the dominant source of error is the additional rotation due

to the carrier term of the Hamiltonian, i.e.,

H A — h§Yjo7; cos ut — h5QjU§J sin pt, (2.62)

where we choose gog-m) = gog-s) = 0 and du = 0 for simplicity. Originally the carrier term

almost vanishes for the optimized gate parameters; but now with the 6Q2; term, the carrier

term leads to an additional small rotation, which causes errors in the final entangling gate.

With this observation, we can now estimate the influence of asymmetric effective Rabi fre-
quencies in the gates we considered in Sec. 2.2.1. All we need to do is to numerically solve the
unitary evolution operator corresponding to the carrier term of the Hamiltonian [Eq. (2.62)],
given the pulse sequence €2 from Sec. 2.2.1. It must be a single-qubit rotation, and the
rotation angle d¢ indicates that the error in gate fidelity is of the order d¢?. Supposing the
intensities of different laser beams are proportional, we have 0Q2(t) = €Q(t) where € is a small
parameter. Plugging in the gate parameters, we need € < 0.1% for ion 5 and ion 6, € < 0.02%
for ion 1 and ion 4, and ion 9 and ion 14, to achieve a gate fidelity higher than 99.9%. Note
that the gate design is robust against global shift of the laser intensity, and our scheme does
not require the same laser driving on the two ions; it is the relative change between the two
Raman transition pairs on the same ion that causes this type of error. Usually the multiple

laser beams used in the experiment are separated from a single laser through beam splitters,
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hence it is possible to control the relative difference in their intensity and frequencies to be

small, even though the laser itself is fluctuating.

Finally, we also use this method to estimate the effect of the asymmetry in Ak, which is
about the ratio of the hyperfine splitting to the laser frequency, as is discussed in Sec. 2.1.2.

It turns out that this error is negligible for the parameters we choose.

AC Stark shift

The counter-rotating or off-resonant couplings neglected before not only introduce fluctua-
tions between the two qubit states, but also cause a shift in the energy levels, which is known
as the AC Stark shift. For '"Yb™ ions, the 355 nm laser is particularly chosen to reduce the
relative shift between the two hyperfine ground states, a.k.a. the differential AC Stark shift.
According to Ref. [43], the differential Stark shift is only about 10~ of the effective coupling
Qe between |0) and |1). However, such a relative shift in the energy levels does not corre-
spond to a shift oy in the Hamiltonian [Eq. (2.15)], to which our gate design is not sensitive;
instead it will increase the asymmetry between the two Raman transition pairs and, as we
have mentioned above, will lead to an infidelity of (5uasymT)2. A constant AC Stark shift
can be easily compensated by a corresponding shift in the driving laser’s frequencies, but in
our case the intensities of the driving laser are also varying. One possible solution is to tune
the laser frequencies for each segment accordingly. Another possibility is to use one strong
beam and one weak beam for each Raman transition, and only to adjust the weak beam
to change the effective coupling strength. For example, in Fig. 2.2 we can make the lower
beam stronger than the upper one, while still balance the effective Rabi frequencies of the
two Raman transitions. By letting the strong beam 10 times as the weak one, we can reduce

the changes in AC Stark shift to 1/10 while keeping the effective coupling unchanged.
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Spontaneous emission

So far we have not considered the spontaneous emission from the excited state. To couple
the two ground states with the off-resonant Raman transition, there is actually a small
probability of Q%(z)/ A? for the ion to be in the excited state, from which the spontaneous
emission can occur at the rate of .. This will lead to decoherence between the two qubit
states. To estimate its effect, we simply time-integrate 7.(Q? + Q32)/A? over the whole
laser sequence. For the gate design we considered in Sec. 2.2.1, the error from spontaneous
emission is thus computed to be 1073 for the longest gate time of about 500 us, if we set
Q1 = . Note that if we use one strong and one weak beams for Raman transition to
reduce the change in AC Stark shift, as described above, the spontaneous emission error will

be dominated by the stronger beam and hence will be increased.

Crosstalk of Laser Driving

A broad laser beam can cause unwanted transitions on the adjacent ions, while a narrow
beam can lead to fluctuation in the laser intensity felt by the target ion due to its thermal
motion. Suppose the laser beams have a Gaussian profile, that is, the intensity is proportional
to exp(—r? /20?) where o is the width of the beam. With ¢ = 2pum, when a beam is
shined on one ion, its effect on an adjacent ion is of the order exp(—d? /20?) ~ 107
(Actually the intensity of the electric field, i.e. Rabi frequency, is only the square root
of the laser power; but we get a further square when computing the fidelity.) Meanwhile,
the thermal motion perpendicular to the laser beam is dominated by that in the axial z
direction. For a harmonic trap at the temperature of 7', the axial oscillation amplitude can

be estimated to be Az ~ \/kgT /mw?. The temperature is related to the phonon number
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7 in the transverse direction by kT = hw,(n + 1/2). We can further use the Lamb-Dicke
parameter 7 = 2(2m/ )\)\/W for counter-propagating laser beams with wavelength A,
and finally we estimate the fluctuation of the laser intensity on the ion due to its thermal
motion as Az%/20% ~ (1/327%)n?(2n+1)(\/0)?(w, /w,)?. To realize a linear trap along the z
direction, we need w, /w, > 0.77TN/y/log N [42,52,53| for a harmonic trap; the estimation for
anharmonic trap is more difficult but the scaling should not be worse. Therefore the noise
on the laser intensity due to thermal motion is of the order 10~ for a chain of tens of ions;

while the gate design can tolerate a fluctuation of 1%.

Fluctuation in Trapping Potential

The trapping parameters w,,,.) are also subjected to experimental noise. It has mainly two
effects: (1) a shift in phonon mode frequencies (phonon mode dephasing), whose effect is
roughly the same as an opposite shift in detuning p and (2) small change in the equilibrium
configuration, whose effect depends on the width of each laser beam. Because we are con-
sidering a linear chain of ions, small change in the transverse potential will not change the
equilibrium positions, but only shift the transverse mode frequencies. Therefore, our exam-
ples of gate design are able to tolerate 27 x 1 kHz shift in the transverse trapping frequencies
while still maintains a fidelity of 99.9%. The weaker axial trapping is achieved by a DC field,
hence less vulnerable to fluctuations. For an estimation, we again consider a harmonic po-
tential w,. The dimension of length appears as (¢?/4megmw?)/?, hence §2/z ~ —26w. /3w..
For N ions in the linear chain, the largest change in equilibrium position is for ions on the
end, with z = Nd,, /2. Now if we want the change in the laser intensity to be less than 1% for
an ion, i.e. 1 — exp(—02?/20?) ~ §2%/20% ~ 1%, we get dw, /w, ~ 0.50/Nd,, ~ 0.5%, that

is, our gate design can tolerate a relative change of 0.5% in the axial frequency. Actually
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large shift during one gate time is not very likely; usually trapping parameters vary in a
much longer time scale and in principle we can adjust the laser beams before the experiment

to compensate such a long-term effect.

Motional Heating

We have assumed that the ion chain is sideband cooled to a low temperature before the
experiment and stays there. Now we consider the effect of heating in the motional modes,
which varies with the trap design. According to Eq. (2.55), our optimization process is
not sensitive to the phonon numbers if they stay constant. Hence the infidelity due to
the motional heating can be bounded by the “failure rate” as 0Fjeating < NI'T where N
is the number of the transverse modes in use, 7 the gate time and I' the average heating
rate. Currently it is possible to realize a heating rate around 1 phonon/s for our choice of
IIYb* jon and transverse mode frequencies around 27 x 3 MHz [32,54]. Hence the error
is bounded by ¢ Fieating < 1072 for N = 19 and 7 = 500 us, but note that this is not a
tight bound. For one thing, as is mentioned in Sec. 1.2.2, the dominant heating source
through electric noise mainly heats the center-of-mass mode of the ion crystal. Therefore
when the size of the crystal is smaller than the wavelength of the electric noise, the heating
rate may not significantly rely on the number of the ions. For another, when we conduct a
similar numerical simulation as that for the asymmetry of Raman transitions for two ions
and one motional mode, with an additional Lindblad term describing the heating, we find
that the infidelity does scale linearly with the heating rate, but the value is about 2 orders
of magnitude smaller. Meanwhile, the use of multiple segments should further reduce the
error. Therefore we believe that the motional heating is not a dominant source of error for

tens of ions.
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Nonlinear Interaction

Another effect not covered is the Kerr coupling, i.e. the dependence of one mode’s fre-
quency on the phonon number of another mode due to the nonlinearity in the Coulomb
interaction [55]. It can be calculated by expanding the Coulomb potential to the fourth
order. Numerically we find that for the ion chain we use, the largest coupling is about
0.14 Hz/phonon between a transverse mode and an axial mode, and about 0.02 Hz/phonon
between two transverse modes. The error due to a constant shift in a mode frequency wy
can be estimated by that in the detuning p, because if we apply RWA to Eq. (2.25) and
Eq. (2.28), only the difference between p and wy, influences the final fidelity [Eq. (2.48)]. Be-
cause our scheme can tolerate such a shift up to 1kHz, we conclude that the Kerr coupling

has negligible effects for the examples we are considering.

2.2.3 Coherent vs Incoherent Errors

Up to now we have been using average gate fidelity to evaluate the gate performance, be-
cause it is easier to treat theoretically and also easier to measure experimentally through
randomized benchmarking [56]. However, it is well-known that high gate fidelity does not
immediately imply a low enough error rate, or more precisely the diamond norm, which
appears in the statement of the Quantum Threshold Theorem [14,57|. In certain cases these
two measures can differ significantly, especially for coherent errors. Since we have motivated
our analysis by fault-tolerant quantum computing, it is worthwhile to discuss the relation

between our results and the diamond norm.

The error sources we considered in Sec. 2.2.2 can be divided into two classes. The effects

of the micro-motion, RWA and the higher order terms in Lamb-Dicke parameters should be
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mainly unitary because the approximations are directly made in the Hamiltonian. They are
estimated to be O(107*) or less, hence the diamond norm should be of order O(1072?). On
the other hand, spontaneous emission and other errors related to the thermal motions should

be incoherent and the diamond norm will not be very different from the infidelity [14].

The parametric shifts that we considered in Sec. 2.2.1 are generally unitary errors. For this
type of error it is known that the diamond norm D scales as v/ F [14], hence our criteria of
§F < 1073 will give a diamond norm of about 3 x 1072 in the worst case. Actually as we
have already derived the expression of the density matrix [Eq. (2.39)], we can numerically
evaluate the diamond norm using semidefinite programming [16,58]. The results for the gate
designs we considered in Sec. 2.2.1 are shown in Figs. 2.11, 2.12 and 2.13. As expected, the
diamond norms at the extreme shifts reach the order of O(1072) and are slightly above the
threshold of the surface code of about 1%, although for the small system we are considering,
it is more meaningful to compare with the pseudothreshold, which is about 8 x 10~* for
the Surface-17 code [49]. This suggests that better controls on the parameters are needed
for low enough error rates. Similarly, we expect the bounds on the asymmetry of the beam
configurations and the mismatched laser phases to be tighter, as they are also coherent errors.
Note however that diamond norm is usually a pessimistic estimation of the errors, and 99.9%
fidelity is nevertheless a good target in practice for many near-term applications of quantum

computation.

Accumulation of Gate Design Error

Another observation from Figs. 2.11, 2.12 and 2.13 is that the error from the imperfect gate
design, when there is no parametric shifts, has similar values measured by the infidelity

and the diamond norm. This suggests that this gate design error is incoherent and will

57



(a)107? b)
10
-4
10 o -4
= E10
= & =
10 10°6
10-81 0 1 10301 0 0.01
(1 — po) /2 (kHz) 582/
()10 (d)
210" :010_2
i i
~ 107 e~
10 107
04 -02 0 02 0 02 04 06 08
07 (us) Om/2m

Figure 2.11: Parameter sensitivity for the entangling gate between ion 5 and ion 6. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c) Diamond norm as a function of shift in gate time 7. (d)
Consider gogm) = gog-m) between 0 and 27. Solid blue, dashed red and dotted green curves
are the maximal diamond norm for a shift of 1kHz in detuning u, a 1% change in intensity,
and 0.4 us change in total gate time, respectively. For (a), (b) and (c), the diamond norms
below 1078 are not shown, since they are subject to numerical errors. (From Ref. [1], ©2018
American Physical Society.)
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Figure 2.12: Parameter sensitivity for the entangling gate between ion 1 and ion 4. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c) Diamond norm as a function of shift in gate time 7. (d)
Consider gogm) = gog-m) between 0 and 27. Solid blue, dashed red and dotted green curves
are the maximal diamond norm for a shift of 1kHz in detuning u, a 1% change in intensity,
and 0.4 us change in total gate time, respectively. (From Ref. [1], ©2018 American Physical
Society.)
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Figure 2.13: Parameter sensitivity for the entangling gate between ion 9 and ion 14. (a)
Diamond norm as a function of shift in detuning. (b) Diamond norm as a function of
relative shift in Rabi frequency. (c¢) Diamond norm as a function of shift in gate time 7. (d)
Consider gol(-m) = gog-m) between 0 and 27. Solid blue, dashed red and dotted green curves
are the maximal diamond norm for a shift of 1kHz in detuning u, a 1% change in intensity,

and 0.4 us change in total gate time, respectively. (From Ref. [1], (©2018 American Physical
Society.)
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scale linearly with the number of gates. It is understandable because in our derivation of
Eq. (2.39) we have traced out the phonon modes after applying the gate, and hence the
coherence is lost. In other words, we assume no memory effect of the phonon modes, namely

the Markovian approximation for the sequential application of the entangling gates.

This is a reasonable assumption because the phonon modes naturally decohere over long
evolution time. Furthermore, we will now show that even if the coherence time of the phonon
modes is longer than the separation of the gates, the gate design error still accumulates

linearly if we introduce small randomness in their separations.

In our formulation, the effect of multiple gates on the same pair of two ions can be easily
modelled as a longer pulse sequence. Suppose we have m gates starting at T3, Ts,---, T,,
respectively, with 17 < T1 + 7 <To <To+7 < --- < T, < T, + 7 where 7 is the gate time.

Then Eq. (2.25) and Eq. (2.29) should be modified to

k i k T jwit 4 k et iwit
of ==tk [ et = Tndf [ (e -

T T>

y m+T .
=g [ et (2.63)
h T,

and

2 21k1k T n
Oi =5 >IN, ( dty /T dts
1
T2+T Ti+T1 To+7 t1
/ dtl/ dt2+/ dtl/ dts
15

Tm+7 Ti+r Tm+T1 t
dtl / dtg -+ - / dtl / dt2> Xl<t1)Xj<t2) sin [wk<t1 — tz)] . (264)
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Changing the starting point of the gate within a range of 27 /w,, which is much shorter than
the gate time 7, will introduce a fully random phase factor to each term in af. This ensures
a /m scaling for each af as random walks on the complex plane, and hence the accumulated
infidelity of m gates, which is proportional to 3 [af[*(2n) + 1) [see Eq. (2.53)], will scale
as m instead of m?2. Besides, the varying starting point of the integration in af also leads to

a varying motional phase gog-m) for each gate. In Sec. 2.2.1 we optimize the gate parameters

(m

at ¢; ) = 0 for both ions, but later in Fig. 2.14 we will show that these gate designs are

robust for a nonzero motional phase.

Now we consider the ©;; term. First note that any double integrals involving two gates

k
J

will vanish in Eq. (2.64), because then these integrals have a similar form as those in «
and are suppressed by our optimization. The error from these terms will further be squared
when computing the fidelity, hence can be safely neglected. Then we are left with m double
integrals, each corresponding to an individual gate. Here a random motional phase will
also appear due the the varying starting points of the gates. Ideally each double integral
should be +7/4 and the total phase £mm /4, but the random motional phase will cause a
distribution of the integral. To suppress the accumulated error, we set the mean of this
distribution at +m/4, assuming a uniform distribution of the motional phase over [0, 27).
Then the deviation of the sum of the m gates from +mmn /4 will be O(y/m) and therefore the
infidelity will scale as m.

As an example, we plot the infidelity due to a? terms (residual coupling to the phonon

modes) in Fig. 2.14 and the value of ©;; in Fig. 2.15 as functions of the motional phase cpgm).
These plots are computed from our gate design for ion 9 and ion 14, where first we determine
the shape of the pulse sequence at the detuning py = 0.997w,., then we move to the working

point 1y, = po — 2w x 0.5kHz and rescale the pulse intensity to set ©,; = £m/4. These
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parameters are the same as those used to get Fig. 2.10. As we can see, the residual coupling
to the phonon modes is very insensitive to the motional phase. We should further rescale

the pulse sequence to move the mean of Fig. 2.15 to —1, so that the infidelity accumulates

as O(m).

%1077
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o™ /27

Figure 2.14: Infidelity due to residual coupling to the phonon modes vs. motional phase
(™ The pulse sequence is optimized for ¢™ = 0, but the infidelity is almost independent
of ™). (From Ref. [1], ©2018 American Physical Society.)

Finally we show an example of applying repeated gates by setting T; + 7 = Ty (1 =
1, 2,---, m—1). The gate infidelity due to the imperfect design vs. m is plotted in Fig. 2.16.
No clear accumulation in the gate infidelity is observed, partially because the starting point

of each gate is not randomly chosen. Nevertheless, we expect the accumulated error to be

O(m) rather than O(m?).

We should emphasize that with the existence of spontaneous emission, phonon mode de-
phasing and heating, the above formulation will finally break down as m7 goes above the
coherence time. The purpose of this discussion here is just to show that the gate design error

is not a dominant source in our scheme even if multiples gates are applied.
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Figure 2.15: X X rotation angle ©;; vs. motional phase ©(™) . The pulse sequence is chosen
such that ©,; = £7/4 at @™ = 0. A further rescaling is needed to shift the average of this
curve to —1 if we assume a uniform distribution of the motional phase over [0,27). (From
Ref. [1], ©2018 American Physical Society.)
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Figure 2.16: Total gate design infidelity vs. number of repeated gates m between ion 9 and

ion 14. Here we consider a special case where there is no interval between two adjacent gates.
(From Ref. [1], ©2018 American Physical Society.)
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2.2.4 Summary and Discussion

We summarize in Table 2.1 the requirements on the relevant parameters for a gate fidelity

higher than 99.9%, and in Table 2.2 the error from terms and effects neglected in the

Table 2.1: Restriction on fluctuations or errors in physical parameters for F > 99.9%.

Source of Error Requirement
Slow fluctuation in p |op] < 1kHz
Slow fluctuation in 10Q2/Q0| < 1%
Error in gate time 7 |07] < 0.4 ps

Detuning asymmetry in
phase-insensitive setup
Rabi frequency asymmetry
in phase-insensitive setup
Phase asymmetry
on the two ions
Nonzero *)
Laser’s phase fluctuation
during one gate time
Change in trapping
frequencies

|0 ftasym| < 10 Hz

’(SQasym/QO| < 002%

|| < /100
@) < 7/100
15| < /100

|dw.| < 1kHz
|ow, /w.| < 0.5%

derivation. As we can see, the most prominent technical challenge in realizing a high-fidelity
entangling gate is to compensate any imbalance in the two Raman transition pairs to couple
the qubit states; they require very careful control in the frequencies, intensities and beam

profiles of the laser.

In comparison, errors from spontaneous emission of the excited state, which is right at the
order of 0.1% in our examples of gate design, seems to set an ultimate limitation: we note
that the error from spontaneous emission is proportional to the effective Rabi frequency € (if
two beams of the Raman transition have the same intensity) and the total gate time 7. If one

is reduced, the other should be increased to realize the desired entangling gate and therefore
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Table 2.2: Errors from neglected terms and effects. In this table, ¢ is a parameter of the
Mathieu equation describing the Paul trap (see Sec. 1.2.1); 7. the spontaneous emission
rate of the excited state |e); 2; and €2y the Rabi frequencies corresponding to any Raman
transition pair and Qg the resulting effective coupling between |0) and |1); d,, the average
ion spacing; ¢ the width of each laser beam. See the main text for the definition of other
symbols. The last column gives an estimation of the order of magnitude based on the chosen
experimental parameters.

Source of Error Expression Value
Micromotion (NqQesr /wit ) 1076
RWA |5|/W01, |Ql(2)|/w1(2) 10_4

Adiabatic elimination
of the excited state
Spontaneous emission
of the excited state
Higher order terms in
Lamb-Dicke parameter n
Laser beams on
adjacent ions

Thermal motions 9
perpendicular to % (3)2 (%) 10~*
the laser beams ’

Q0 9)]?/A? 1077

VeT | Q)| ?/ A 1073

n*(2n + 1)? 10~

exp(—d?,/20?) 10~*
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the error does not decrease. However, what we presented in Sec. 2.2.1 are not the shortest
possible gate time and weakest possible Rabi frequency: when optimizing parameters such
as 2 and 7, we have considered the robustness against fluctuation in parameters. If these
fluctuations can be further suppressed, we can use other solutions with shorter gate time
and weaker laser intensity [2], then the infidelity from spontaneous emission can be reduced.
Also note that in the above estimation we use a detuning A corresponding to the 355 nm
laser for ''Yb* ions. The spontaneous emission error will decrease if we use larger |A| [32],

although then we will have larger differential AC Stark shift [43].

Finally, for the current example we are considering with a few tens of ions, effects of thermal
motion and heating are not dominant; but as these effects scale with the ion number N, we
will need better way to cool the ion chain and to isolate it from the environment when we

proceed to larger scale ion trap quantum computing.
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Chapter 3

Scalability of Ion Trap Quantum Computing

Although the method we studied in the previous chapter works for a multi-ion crystal, the
number of phonon modes scales linearly with the number of ions and hence it becomes more
and more difficult to suppress all the residue entanglement between the qubit states and the
phonon modes. Besides, in large ion crystals (possibly 2D or 3D) the micromotion cannot be
neglected. In this sense, it is not clear whether this approach for gate design can be applied
to a system of thousands to millions of ions. In this chapter, we will address this problem of
scalability. First we will consider numerical methods to solve ions’ (classical) motions and
examine the stability of a large crystal in Sec. 3.1. Then a scalable way to design and to
apply the entangling gates will be described in Sec. 3.2. Finally in Sec. 3.3 we include the

effect of micromotion into the gate design.
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3.1 Numerical Solution of Ions’ Classical Motions

In this section we solve the dimensionless equation of motion (EOM) of N ions in a trap

[Eq. (1.13)]:
Ris + (ay — 2, cos 2t) Ry — 4 Z Hio = 5 =0, (3.1)
7 [Zp(Rip — R;,)?|"
where ¢ = 1, 2, --- , N corresponds to each ion and o = x, y, z for the three spatial direc-
tions.

Since the potential has a period of , it is reasonable to expect a solution with 7 period [51].
In Sec. 3.1.1 we will follow the notation of Ref. [51] and describe how the periodic solutions
(equilibrium configuration of the ions) can be found accurately. Then we will review the
derivation of the EOM for small perturbations around the periodic solution in Sec. 3.1.2
following the steps of Ref. [51] and develop numerical methods to solve this equation to
arbitrary precision. After briefly discussing the stability of infinitesimal perturbation in
Sec. 3.1.3, we move on to the molecular dynamics (MD) method for large disturbance and
the phenomenon of RF heating in Sec. 3.1.4. Finally in Sec. 3.1.5 we will examine the
existence of soft modes (low-frequency modes) in large ion crystals and their influence on

the formation of the crystal and on quantum computing.

3.1.1 Periodic Crystal Solution

To find the crystal structure in the ion trap, we can time evolve the system and gradually
turn down the damping until it reaches the equilibrium distribution. For this purpose we can
apply some standard ordinary differential equation (ODE) integrators such as forward Euler,

leapfrog or Runge-Kutta methods (see e.g. Ref. [59]) to solve the Newtown’s equation of
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the N ions (molecular dynamics simulation). Because there will be nonzero damping terms,
the stability of the ODE integrator is not very important and the step size need not be
extremely small. In comparison, in Sec. 3.1.4 we will consider how to simulate these motions

more accurately to study weak heating effects when no damping term is applied.

We can start from a random initial configuration. If some symmetries or some a prior:
knowledge about the final distribution exist, then we can also choose the initial conditions
accordingly. For example, if the trapping potential along the z direction is much stronger
than that along x and y directions, then we can choose z; = 0 for all the ions, which can

speed up the convergence.

To reach the equilibrium positions from a random initial state, there must be some dissipation
in the system. In the simulation we add a —v(t)R;, term to the RHS of Eq. (3.1) and
gradually turn it down during the time of simulation. For example, we can choose ~(t) =
Yo(1 — t/T)" where T is the total evolution time; or we can use piecewise-constant ~y(t),
that is, we start from a large v and evolve the system for some hundreds of RF periods,
then we use the final state we get as the new initial state, reduce v and repeat this process.
Similar to the case of a static potential, there can be multiple local minima, i.e. multiple

equilibrium solutions. By gradually reducing the damping term it is more likely to go into a

stable solution. (See Sec. 3.1.3 for the stability of a solution.)

One problem is that sometimes by numerically evolving the system with a cooling term we
are not able to get an accurate periodic solution to Eq. (3.1): when the damping is high, the
solution we get clearly deviates from what we want; but if the damping is too low, instability
may arise due to the ODE integrator or the finite step size we use, and the accurate simulation
may be too costly (see Sec. 3.1.4 for more details about MD simulation). This motivates us

to consider a method that can iteratively increase the accuracy of a solution.
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Let us express the equilibrium solution with the period of 7 as

+0o0o
R;ra(t) = Z BQn,jaei2nt7 (32)
where j = 1, 2, --- , N labels the ions and o = z, y, z the spatial directions. To the lowest
order in a and ¢?, we have |51]
BQ,ja ~ _%BOJU' (33)

Also note that due to the time-reversal symmetry of Eq. (3.1), we have By, j, = B_oy jo =

B3, i, Therefore all the expansion coefficients are real.

For the purpose of quantum computing, we want the micromotion to be small, because we
need to focus the laser beams on each ion for their manipulation. Therefore we are mainly
interested in the small a and ¢ regime, and we can expect to truncate at some order in the

above expansion for a given precision.

If RT (t) has a period of 7, so does any function of coordinates. Therefore the last term in

Eq. (3.1) can be regarded as a driving term with a period of 7:

R7,(t) — Ry, (1) = > Dae™. (3.4)
7 {3, (B - R0]° ) o=

DI (t) =4

Then we get a recurrence relation:

(acr - 4n2)B2n,iU - QUBQTZ—2,iU - qu2n+2,io - DQn,ia‘ (35)

If we truncate at finite order of Fourier series, this is just a system of linear equations and

can be solved iteratively: we can use the old solution of {Bs, ;,} to calculate the driving
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term {Ds,, ;r } and then find the new solution of { By, ;, }. Unfortunately, numerically we find
that this method is not stable and the result will deviate further and further away from the
periodic solution. The reason is that for the leading order term By ;,, we have n = 0 and
thus the coefficient in front of it is only of the order O(a), which is a small parameter. When
computing the new solution from the odd one, we take the inverse of these small parameters

and therefore the error gets enlarged.

On the other hand, the “driving term” can also be expressed as [51]

Dy, (t) =4)  G(HR},(1), (3.6)
where
ij(t) = 0;j ! N (1 —dij) ! 5y 3/2
It {Zp [Rr(t) — Ry, (1)) } {Zp [R7(t) — R7,(1)] }
= f Gopije™™. (3.7)

n=—oo

With a suitable division of the Coulomb interaction term into these two alternative forms,

we get

(ay — 41%)Bayio — Qo Ban—2.i0 — Qo Bonta.io + 4 Z Gon—2m.ijBom.jo = (1 + @) Dap s, (3.8)

m?j

where the a-dependent terms on the two sides cancel each other for the accurate solution.
Their purpose is to give larger “weight” to the leading order terms in the system of linear
equations. We can now use the old solution to evaluate Gy, ;; and Dy, ;, and then calculate

the new solution iteratively. Numerically we find that o > 1 leads to convergence around the
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periodic solution, if we start from the approximate solution we found with a weak damping
term. Note that if in By, ;> we truncate at n = M, then in Gy, ;; we need to truncate at
n = £2M. Also note that such a truncation will only work for small ¢ so that the higher

order terms quickly go to zero.

3.1.2 Normal Modes

In this subsection we solve all the collective normal modes of the ion crystal. For this purpose

we consider small perturbation around the equilibrium trajectories {R7 (¢)}.

Expansion around Crystal Solution

Let us first derive the equation of motion for a small deviation. Following Ref. [51], we define

a matrix function K (t)

(R;Ta _R;U)(R?T _R;rr)

_3 [Z (Rﬂ_ _R~ )2]5/.2 (Z % j? o # T)
p\ip Jip
>, (RY,—R7,)?|-3(R},—R7,)? S
R 67 ho =7
Kigjr (1) = "R rr ) (3.9)
ko

(R, —RL,)(RE,~R}.) .
32k >, &7 —r7,)?]"” (i=jo#7)

[, (RE,—RF )?|—3(RT,—RF,)? (i )
- 3 t=70= T)
\ Zk# [ZP(R?p_Rzp)Q]WZ

where the t dependence of RT is omitted for simplicity. Small perturbation r;, around the

periodic crystal solution is then governed by

d2 Tio

dt?

+ (CLU - 2qg COS 2t>7’ig +4 Z Kig,jT(t)TjT = 0. (310)

J,T
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Because the K (t) matrix also has a period of 7, it can be expanded as

K(t) = Ky —2K5cos2t — 2K, cos4dt — - - - (3.11)

us
107

For a typical periodic solution RT , we would expect K to be of the same order as a and ¢?,
because the Coulomb interaction should on average be balanced by the external AC and DC
fields; K5 should be smaller by a factor of ¢, and K4 be even smaller. Then we can define

Aigjr = 050;0: + 4(K0>w,j7 and Qi jr = ¢o0ij05r + 4(K>) The above equation can be

io g
written in the vector form [51]:

d*r

=t (A —2Qcos2t)r =0, (3.12)
where 7 is a 3N by 1 column vector, and we have neglected higher order terms such as
K4, Kg, --- The effect of the K, term is considered in Ref. [60], but the method used there
is difficult to generalize to higher order terms. Furthermore, as we will see below, it is hard
to directly apply the method used in Refs. [51,60] for large ion crystals. Here we will tackle
this problem in a different way: we first consider how to find good approximate normal
modes, at least in the small ¢ and ¢ regime; then we describe how the accuracy of the
solution to Eq. (3.12) or more precisely Eq. (3.10) can be improved iteratively. Also note
that, although throughout this chapter we work with ideal harmonic traps, our method can

be easily generalized to anharmonic traps by absorbing the higher order forces into K () in

Eq. (3.10).
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Approximate Normal Modes

Following Ref. [51], a solution to Eq. (3.12) can be expanded as
r = Z Cs, [Cez(Qn—‘rﬁ)t + 6*6_1(2n+6)t} : (313)

n=—oo

which is correct for non-integral 5. Here Cs,, are real 3N by 1 vectors and c is a complex
number. To solve all the normal modes, we must determine all the characteristic exponents
B. An imaginary § means an exponential increase or decrease in the deviation from the

equilibrium trajectories, while all 8’s being real corresponds to oscillatory behavior.

Plug this expansion into Eq. (3.12) and define Ry, = A — (2n + 3)%. We get

RCo,—2 = R, Cop — QCo,12. (3.14)

Suppose the expansion can be truncated at some large |n|, we get two independent relations
[51]
C, = PIQCy = {Ry, — Q[Ry — Q(Rs — ---) 7' QI 'Q} ' QC, (3.15)

and

QCQ = PQCO = {Ro — Q[R,Q — Q(R,4 — e )71Q]71Q}C(]. (316)

To get a nonzero solution, we must have

and C) is the eigenvector of P, — QQP,() corresponding to the eigenvalue of 0.
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Now the remaining problem is to find all the solutions to Eq. (3.17). Given the order of
truncation, det(P, — QP;@) is just a function of 5. Therefore in principle we can solve this
problem by finding all the roots of this function numerically, as is done in Refs. [51, 60].
However, as the ion number N increases, the separation between the frequencies of the
3N normal modes is decreasing and it becomes hard to solve all of them without any a
priori knowledge about their distribution. Furthermore, we are not guaranteed that all the
characteristic exponents are real, which makes the numerical search of the solution even

more difficult.

Fortunately, in the limit of small @ and ¢, some approximations can be made. In this limit

we have

T=P-QPQ~ Ry —QR,'Q — QRZ}Q, (3.18)

where Rs, terms for n = £2, 43, --- are multiplied by higher order terms of ¢ and therefore
have been neglected. Later we will show that 3 is of the order \/m. Then we have
Ryt~ —(2+8) 2~ ~1/4and Ry~ —(—2+B3)"2~ —1/4, and we get T ~ A — 32+ Q?/2.
Therefore, to find the characteristic exponents, we only need to calculate the eigenvalues of
A+ @Q?/2 and then take the square root. Cy’s are the corresponding eigenvectors. Also note
that we have recovered the approximate solution of Mathieu equation [20] if N =1, i.e. if

there is no K matrix due to Coulomb interaction.

However, in many ion trap experiments a and ¢ are not extremely small. For example,
q ~ 0.35 in Ref. [28] and ¢ ~ 0.41 in Ref. [32]. In this regime the above approximation is not
good enough, and for some 2D or 3D ion crystals with low-frequency modes (soft modes) it
may even produce imaginary characteristic exponents when the actual oscillation is stable.

In these cases it will be necessary to include higher order expansions. Now we consider the
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following expansion for n # 0:

Ryl = [A—(@n+ 87" = (A—an® —np - 3"

4n?

n 4n? +ﬁ

where [ is roughly of the order y/a + ¢2/2. Later we will see that the error is actually
of the order O(3*), because the expression for the characteristic exponent is symmetric for
positive and negative n; since the odd order terms of 5 contain an odd power of n, they will

be cancelled in the final result.

Also we have the expansion
P~ [Ry— QR;'Q]™ = RBy' + Ry'QRI'QR, " + O(q?), (3.20)
Py~ Ry~ Q[R>—QR7IQ] ' Q= Ry — QRZIQ — QRIIQRTIQRTIQ + O(¢%).  (3.21)

Therefore

= — ~ l 2 1 L 4 2 _§ 2
T=D5 QP1Q~A+2Q +8QAQ+128Q 15} <1 8Q) (3.22)

Because Cj satisfies TCy = 0, 32 is now given by a generalized eigenvalue problem

1 1 1 3
A+ EQQ +3QAQ + m@“} C, = (1 — éQQ) Co, (3.23)

with the error of the order a® and ¢*. Note that here Cy’s are no longer orthonormal. To

describe the normal modes to the same order of approximation we must include oscillations
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at the multiples of the RF frequency, which are given by:

Cis = (Ris — QRLIQ) ' QCy, (3.24)

C.y =R;;QCx,. (3.25)

Approach the Accurate Solution

What we described above is only an approximate solution to Eq. (3.17), or equivalently
Eq. (3.12), and a generalization to higher order expansions in a and ¢ is not trivial. Further-
more, from Eq. (3.10) to Eq. (3.12) we have already ignored higher order expansions of K (¢)
[Eq. (3.11)]. Here we describe how we can reach arbitrary precision from the approximate

solution we got before. First we will solve Eq. (3.17) and then we will go back to the original

Eq. (3.10).

Let us rewrite Eq. (3.17) as

TCy=(A— M, — M_ — BQ)CO =0, (3.26)
where
My =Q{Ry— Q[Ry— Q(Rs —---)'QI'Q} 'Q (3.27)
and
M_=Q{R—Q[R4—Q(Rs—--)"'Q'Q} Q. (3.28)

T is a matrix depending on 3 (note that not only the constant 3% but also the Ry, matrices
are -dependent) and Cj is an eigenvector with the eigenvalue of 0. Now if we have an

inaccurate 3, T'(5) will not have an eigenvalue of exactly zero, but there should be one value
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close to 0 if f is close to the accurate mode frequency. Hence what we can do is to start
from our approximate 5 and compute the eigenvalue of T'(/3) with the smallest magnitude,

which we call A, using e.g. inverse iteration method [61], that is,
A= M, (8) — M_(8) - *]Co = AG,, (3.29)

or

[A = My (B) = M_(B) = (8% + A)]Cy = 0. (3.30)

Then we can update [ <« \/m and repeat this process until the value converges.
Although T involves infinite-continued matrix inversions, we can truncate at some value of
n such that the error is below the precision we set. Also note that if there are degeneracy in
the eigenvalues, the corresponding eigenvectors we find may not be orthogonal and we need

to apply Gram-Schmidt process manually.

All the above formulas are derived from Eq. (3.12), where higher order expansions of K (t)
have been neglected. For high-precision computation of the normal modes, we may need
to include their effects. The K, term is considered in Ref. [60] by two modified continued
inversions similar to Eq. (3.15) and Eq. (3.16). However, the derivation of these expressions
becomes more and more complex as we include higher and higher order terms. Here we

describe a simpler method given the above approximate solution.
In general, we can rewrite the EOM for small perturbation around the periodic solution

[Eq. (3.10)] as

d*r

s (A —2Q cos 2t — 2Q4 cos 4t — 2Qg cosb6t — - - )r =0 (3.31)
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with Qq, = 4K5,, (n > 2) from the Fourier expansion of the matrix function K (¢) [Eq. (3.11)].

Using the same expansion of Eq. (3.13), we get a general recurrence relation

Ry, Coy, = Q(Coy—2 + Copiz) + Qu(Copy + Copig) + Q6(Con—p + Conys) +- -+ (3.32)

where again Ry, = A — (2n + )2

Now we truncate these equations at +n and express them in a matrix form

R_ 5, —Q —Qy - 0 0 0 C_,,
—@Q Ry -Q -+ 0 0 0 C o2
—Qy —Q Ropig -+ 0 0 0 C oni4
=0, (3.33)
0 0 0 oo Ropy —Q  —Qu Cs, 4
0 0 0 o =Q  Ropo —Q Con2
0 0 0 e =@y —Q Ry, Con

where the expansion of (09, can be truncated at some different order m, which is not shown in
the above equation for simplicity. Again a mode frequency S should make the determinant
of this matrix equal to zero, and all the mode vectors (including the higher order expansions)
are given by the corresponding eigenvector with eigenvalue 0. Now we can simply plug in the
approximate solutions we get before and apply the iterative method to approach the exact
solution to each mode. Note that the diagonal of the above matrix has a common —3? term,
so again we can attribute the nonzero eigenvalue A to 3% by making 3 < \/m in the

iteration.
Finally, we show an example of the computed normal modes compared with the exact solution
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from molecular dynamics simulation in Fig. 3.1. Here we consider a crystal of 100 ions and

the normal modes match perfectly with the exact solutions.

3.1.3 Stability against Small Disturbance

By starting from a random initial state and gradually turn down the cooling term, usually we
can find a periodic solution where all 8’s are real. Although it might be difficult to strictly
prove the existence of periodic solutions with the same period as the periodic nonlinear
differential equation [Eq. (3.1)], numerically it seems that for typical values of a and g used
in ion trap experiments and an ion number of less than a few hundreds, we can always find

such solutions.

Suppose we have found such a solution R (¢) with a period of 7 using e.g. the method in
Sec. 3.1.1, with the characteristic exponents of all the 3N normal modes 3 being real. Since
any small perturbation r,,(¢) around the equilibrium trajectories can be decomposed into
these normal modes, we conclude that, at least to the first order, the small perturbation

does not increase with time and thus the equilibrium configuration is stable.

Since the first order perturbation shows oscillatory behavior, we must consider higher order
expansions to discuss the stability of the system, which becomes much more difficult. How-
ever, the above result also means that the system can be stabilized by introducing arbitrarily

small damping, e.g. the existence of a weak laser cooling.

Let us formulate the derivation of the normal modes again with a small constant damping

term. (It can also be taken as direction and position dependent, which does not change the
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Figure 3.1: Comparison between the computed normal modes and the exact solution from
numerical simulation. Here we consider a crystal of 100 ions with trap parameters a =
(—0.015, —0.015, 0.03) and g = (0.3, —0.3, 0). (a) Equilibrium trajectories of the 100 ions.
(b) Evolution of the x coordinate of ion 6 [colored in blue in (a)] over 1000 RF periods for
a weak excitation of 0.01 in the lowest mode with § = 0.001340. (c) Evolution of the y
coordinate of ion 1 [colored in red in (a)] over 1000 RF periods for a weak excitation of
0.01 in the highest mode with 5 = 0.3032. In both (b) and (c), the blue curve is from
direct numerical simulation using Forest-Ruth method, 1000 steps per RF period and double
precision (see Sec. 3.1.4), the red curve is computed from the normal mode expansions, and
the green curve is their difference. The equilibrium trajectories R[ (¢) at the order of O(1)
is already subtracted from these curves. Note that our computed normal modes are correct
for a wide range of spectra over two orders of magnitude.
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qualitative conclusion about the stability.) The equation of motion [Eq. (3.1)] now becomes

. . R, — R,
Riv + (a6 — 29, c0s2t)R;y + YRiy — 4 Z J

7Y (Rip = Ry)?

- =0. (3.34)

2

Again we look for solutions with period of 7. With the existence of friction, a direct molecular

dynamics simulation can quickly converge to the desired solution.

Here we assume that R;,(f) approaches the previous periodic solution RT (t) as v goes to
zero, so that for small v we can neglect their difference. This is a reasonable assumption
because this is how we find the previous periodic solution in the first place. We then linearize

the equation of motion for small perturbation around the periodic solution RT (t):
Fie + Viia + (a0 — 240 cO820)135 + 4 Kig jr(t)rjr = 0, (3.35)
7T
where K is again given by Eq. (3.9). Taking a similar expansion as Eq. (3.13)

+o0
r= Z [cei(2"+ﬂ)tC’2n + c*e_i(Q”W*)tC;n} , (3.36)

n=—oo

with 8 and C, now allowed to take complex values, we have a modified recurrence relation

QCQN—2 = IZnCQTL - Q02n+27 (337>

where R, = A— (2n+ 8)*+iv(2n+ ). As is mentioned above, v can be chosen arbitrarily

small, so we consider only first order terms in «. Then a direct observation is that by
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replacing the old solution of 8 in Sec. 3.1.2, which satisfies Eq. (3.14), with the new value

Buow = Bod + zg (3.38)

the modified recurrence relation Eq. (3.37) is automatically satisfied (up to the first order
in 7). Hence any small deviation from this periodic solution will converge back to it at the

rate of v/2.

3.1.4 Direct Molecular Dynamics Simulation and RF Heating

We have shown in the previous subsections the stability of crystal solutions under small
perturbation with arbitrarily weak damping. However, it does not exclude the possibility
of heating under finite disturbance. Actually, this phenomenon, called RF heating, is well-
known for trapped ions in a cloud state with high trap parameter ¢, and has been widely
studied experimentally and theoretically. In this subsection, we will review some previous
studies on RF heating and then examine some potential problems and improvements in its
numerical study. There are of course many other heating sources such as noise in the electric
field and collision of the trapped ions with background gases, as we discussed in Sec. 1.2.2,
but here we give special emphasis to the RF heating: these other sources are technical and
can be suppressed by e.g. cooling down the electrodes or increasing the vacuum quality;
but if a crystal with micromotion is to be heated by even an ideal RF field, this will set an

ultimate bound on the scalability of quantum computing in large ion crystals.

The study of heating in ion trap dates back to 1960s [22], although debates about its detailed
mechanism continued even in 1990s [26,62-64|. What is known is that inside the first stability

region of (single-ion) Mathieu equation (see Fig. 1.1 as an example for a linear Paul trap),
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there are some regions where two-(multiple-)ion crystal may not exist [65]; and for some
other regions the crystal and the cloud solutions are bistable even under cooling, such that
the system can stay in either state depending on the initial conditions [66]. Furthermore, the
cloud state demonstrates deterministic chaos, which is the source of its RF heating, while
the crystal state shows no visible heating in the numerical simulations; to go from the crystal
to the cloud state, a strong enough disturbance is needed [66]. In other words, the crystal
needs to melt first before it can be heated by the RF field, and this result seems to hold for
quasi-1D [67], 2D [68] and 3D [69] crystals. This is consistent with our previous result that

the crystal solution is stable under weak damping.

It is also shown that in some parameter regions the crystal solution is destabilized by non-
linear resonance [70|, which is the coupling of different oscillation modes through higher
order nonlinear interactions. The resonance condition can be written as ), mywy, = nwy
where my’s and n are all integers, which is generalized from the two-ion case of Ref. [70].
This phenomenon was first studied for a single ion in the trap where the nonlinearity arises
from the higher multipole expansions of the trapping potential [71-74]. For multiple ions,
the Coulomb interaction can supply the required nonlinearity and hence such imperfection
in the trapping potential is not necessary in the theory. We can expect a richer resonance
structure as we increase the number of ions N because the number of normal modes is 3/V.
However, we argue that this phenomenon should not be a significant problem for the stability
of the ion crystal used for quantum computing for the following reasons. (1) The resonance
conditions are fulfilled on lines of the 2D Mathieu stability region and hence it is not likely
that a chosen set of parameters sits right on them. (2) The lowest order nonlinear resonances
(small my) occur mainly for large ¢ except for n = 0 in the above resonance condition, but

the condition for n = 0 can be met even for a static potential and hence should not be related
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to RF heating. On the other hand, for the purpose of quantum computing we are mainly
interested in the small ¢ regime, so we are away from the region where low-order nonlinear
resonance (those with stronger influence) can occur. (3) If such nonlinear resonance occurs
in the system and destabilize the crystal, then we would not be able to find such a crystal
solution when we start from a random configuration and gradually reduce the damping rate.
Therefore if we can get a crystal solution in the first place, as we almost always do using the
methods described in the previous subsections for reasonable trap parameters and for ion
numbers ranging from 2 to a few hundreds, then we already know they are not affected by
the nonlinear resonance. Finally, this result of destabilization of two-ion crystal is not repro-
duced by the direct numerical simulation that will be described below. One reason is that
Ref. [70] did not report all the parameters in their simulation such as the initial conditions
and the Doppler cooling parameters, as well as the step size of the simulation; and another
possibility is that various numerical errors, as will be discussed later in this subsection, might
not be correctly treated. Nevertheless, we can conclude that nonlinear resonance is not a

significant problem in the low ¢ regime for a crystal with hundreds of ions.

To study the RF heating effect, we can directly simulate the dynamics of the ions, i.e. the
molecular dynamics (MD) method. There are several challenges in applying the MD method
to ions in a Paul trap. First, the timescale of different dynamics of the system spans several
orders of magnitude: the fastest dynamics is at the RF frequency, which is typically tens of
MHz; in comparison, the secular motions are typically at the order of 0.1-1 MHz, except for
a few soft modes (see Sec. 3.1.5 for more discussions); the RF heating can be even slower,
and to safely decide if it can be neglected or not, we may need to simulate the system up to
the time of multiple gates, so the total simulated time can be as high as tens of ms. If each

RF period is simulated by, say, 100 steps, then the total number of steps can be at the order
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of 107-108.

Second, it is well-known that the N-body problem is chaotic even without the oscillatory
fields, such that the numerical errors explode exponentially with the simulated time [75].
Arguably, small errors at each step of numerical simulation should not influence the obser-
vation of RF heating, because with the existence of Doppler cooling or electric noise, there
will always be random disturbance during the evolution. However, without ruling out the
possibility that numerical errors at each step can accumulate in a “coherent” way and lead
to a fake increase in total energy, such simulations will not be convincing. We will look into

these numerical errors later.

Third, the Coulomb interaction between the ions is long-range, so we cannot neglect the in-
teraction between far-apart ion pairs and in principle we will need to consider the interaction
between O(N?) pairs at each step. Some approximation methods such as particle-mesh al-
gorithm and particle-particle-particle-mesh algorithms [76] have been devised to bring down
the scaling to O(N log N) or even O(N). However, due to the chaotic behavior mentioned
above, here we prefer the exact algorithm. Luckily for just tens to hundreds of ions it will

not be a significant problem.

Numerical Errors in MD Simulation

There are basically three types of errors when solving ordinary differential equations (ODE)
numerically: data error, discretization error and computational error [77]. The data error
comes from the inaccurate parameters such as a and g and initial values of positions and
velocities of the ions. For the study of RF heating this is not very important because we are

looking into some general behavior which should not be too sensitive to the parameters and
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initial conditions.

The discretization error (truncation error) arises because we set a finite step length when
numerically integrating an ODE. Two common methods to mitigate this error are to reduce
the step length and to use higher order methods. For example, the widely-used 4th order
Runge-Kutta method has a local discretization error of O(A#°), while the 10th or 14th
order Runge-Kutta methods [78] (the coefficients are given by Ref. [79]) have much smaller
errors with the same step length. A problem with explicit Runge-Kutta methods is that
they are not “stable” in the sense that the amplitude of even a simple harmonic oscillator,
simulated by the Runge-Kutta method, will increase exponentially with time for a fixed step
size (of course for a fixed time we can expect convergence as we reduce the step size), which
may obscure the heating effect we want to see. To make sure we observe the true physical
evolution we have to suppress the discretization error. For any method of a given order, the
error scales polynomially with the step length. In comparison, for the chaotic system we are
considering, the error will be exponentially enlarged during the evolution time. This means
the required number of steps goes exponentially with the time interval we want to simulate,
which soon becomes intractable. On the other hand, if we choose to increase the order of
Runge-Kutta method, it only needs to scale linearly with the length of time interval, but it

is generally difficult to find all the coefficients for higher order explicit Runge-Kutta method.

The third type of error is the computational error (round-off error). It appears because we are
using finite precision date type (e.g. float or double) to approximate the intermediate results
of the calculation. It is reasonable to assume that the round-off errors at different steps
are uncorrelated, then the total effect will be like a random walk and scales as the square
root of the number of steps. Moreover, any previous errors will still be escalated in the

following evolution, so this type of error also accumulates exponentially with the evolution
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Figure 3.2: An example of 50 ions in a linear trap, with trapping parameters a = (—5.1 X
1075, —4.9 x 1075,1 x 107%) and g = (0.343,—0.343,0). The ions are initially at their
equilibrium positions with the red ion being collided by a Yb-171 atom at room temperature
T = 300K, in a random direction.

time [77]. In general, this round-off error will lead to heating in the simulation [76,80]. To
reduce the error we can use arbitrary precision libraries like GMP for C language [81]. Since
the precision of a floating-point type goes exponentially with the number of bits used to
represent it, the latter only needs to scale linearly with the time duration of the simulation.

However, the use of arbitrary-precision data type is in general much slower than that of the

native data type of the machine such as float and double.

Now we show some numerical results to support the above analyses. Consider N = 50 '"'Yb™
ions in a linear trap with @ = (—5.1x107%, —4.9x 107, 1x107%) and g = (0.343, —0.343, 0).
At low enough temperature they will form a 1D crystal as shown in Fig. 3.2. Here we choose
wyr = 2m X 50 MHz, which gives length unit Ly &~ 0.202 gm and time unit 7y =~ 6.37ns (see

Sec. 1.2). In the following figures we use dimensionless spatial and time coordinates.

Suppose initially all the ions are in their equilibrium positions but one ion (colored in red
in Fig. 3.2) is collided by an Yb-171 atom at t = 0 at room temperature T = 300 K.
The evolution of this ion’s x coordinate is shown in Fig. 3.3 up to 1000 RF periods after

the collision. The simulations are performed using the 10th order Runge-Kutta (RK10)
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method with 100 steps per RF period, but with different numerical precisions to store the
intermediate positions and velocities in the simulation. As we can see, the number of steps
that can be simulated accurately for a given error tolerance roughly increases linearly with
the number of bits we use to store the variables. Note that this is just to show the round-off

error and that the solutions here still have large truncation errors.

In contrast, Fig. 3.4 shows the results using Runge-Kutta methods at different orders with
different step sizes when fixing the precision at 128-bit. For convergence we want high order
methods or small step sizes; but note that if we keep reducing the step size, i.e. increasing
the number of steps for a given simulation time, the result will not converge because the
round-off error will finally dominate. Therefore we shall increase the precision together with
the number of steps to verify the convergence.  According to the results in Fig. 3.3 and
Fig. 3.4, we can suppress the round-off error to negligible level for 10? ~ 10* RF periods

using reasonable computational resources, but it is very difficult for the truncation error.

Even with nonzero truncation errors, it is still possible to prove the existence of RF heating
in the simulation if we can separate the energy of the system from such errors. Actually this
problem has also been considered for the traditional MD simulations with time-independent
Hamiltonian: for these systems we want the energy to be conserved during the simulation
regardless of the truncation errors. The solution is to use numerical methods that can pre-
serve time-reversal symmetry such as leapfrog (2nd order) and Forest-Ruth (4th order, and
it further preserves symplectic symmetry) methods [80]. Due to the time-reversal symmetry
of EOM of the system [Eq. (3.1)] and the numerical method, if there is a solution with
RF heating, by reversing the final velocity of all the ions, we can get a new solution with
total energy decreasing with time. Thus we conclude that the numerical method itself does

not prefer either an increase or a decrease in the energy; the RF heating, if observed, must
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Figure 3.3: (a) z(t) for the ion being collided using RK10 method with 100 steps per RF
period. The blue, magenta, green, red and black curves are for 32-bit, 96-bit, 160-bit, 192-
bit and 384-bit precisions, respectively. We terminate each curve once they are significantly
away from the “exact” solution of 384-bit precision. (b) Deviation of each curve from the
“exact” solution. As we can see, there are noticeable computational errors at ¢t ~ 207 for
32-bit precision (float), t ~ 2857 for 96-bit precision, t ~ 6507 for 160-bit precision, and
t =~ 8397 for 192-bit precision.
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Figure 3.4: (a) x(t) for the ion being collided using 128-bit precision. The blue, magenta,
green, red, orange and black curves are for RK4 with 10 steps per period, RK4 with 100
steps per period, RK4 with 1000 steps per period, RK10 with 10 steps per period, RK10
with 100 steps per period and RK14 with 100 steps per period, respectively. We terminate
each curve once they are significantly away from the “exact” solution of RK14 with 100 steps
per period. (b) Deviation of each curve from the “exact” solution.

be intrinsic in the system and will be analogous to the increase of entropy in statistical

mechanics.

However, note that the time-reversal symmetry of these algorithms is held only in exact
arithmetic [80]; with the existence of round-off errors we may still get fake heating behavior.
For instance, we consider a chain of N = 10 '™'Yb" ions in a trap with @ = (=5x107%, =5 x
1075, 1 x 107%) and g = (0.6, —0.6, 0). Note that here we use a large ¢ just to demonstrate
the effect; this value is much larger than what is typically used in the experiment. Again we
assume all the ions are initially at their equilibrium positions but this time an initial thermal
distribution at T" = 3K for velocities. Fig. 3.5 shows the total kinetic energy of the system
(averaged over each RF period) vs. the evolution time for two Forest-Ruth simulations

using 100 steps per RF period but with 64-bit and 1024-bit precisions, respectively. The
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low-precision one shows significant heating during the simulated time, which however is not
seen in the simulation with higher precision, i.e. less round-off errors. Hence it is always
favorable, if within the reach of computational resources, to increase the numerical accuracy

and check the convergence of the simulation.

400

300

K 200

100

0 5 10 15
t/m x10%

Figure 3.5: Average kinetic energy over each RF period vs. evolution time ¢. Both curves use
Forest-Ruth method with 100 steps per RF period. The blue curve is simulated with 64-bit
precision and shows significant heating since about 80000 RF periods; the red curve uses
1024-bit precision (which has no observable difference from the 1600-bit result) and shows
no increase in energy over 150000 RF periods.

Having seen so many potential problems in studying RF heating, finally we look at an
example where we can conclude for sure the existence of this phenomenon. Let us go back
to the previous example of 50 ions as shown in Fig. 3.2 with the same initial conditions,
and evolve the system for 3000 RF periods. Fig. 3.6 shows the forward and backward
simulation of 3000 RF periods using Forest-Ruth method with 100 steps per period and
1600-bit precision. The velocities of the ions are reversed at t = 30007, which separates

the forward and the backward evolutions. The final state we get matches the initial states
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within the double precision. Thus the heating shown in the forward evolution (starting from
a randomly chosen initial state) is intrinsic in the dynamics of the system; in comparison,
the backward evolution shows damping in the energy, but it is only for the specially chosen
initial state. The round-off error here is negligible because there is no noticeable difference

in these curves compared with the 1280-bit precision result.
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Figure 3.6: Average total energy over each RF period vs. time ¢t. The blue curve is the

forward evolution and the red part is the backward evolution. Both simulations uses FR
method with 100 steps per period and 1600-bit precision.

Doppler Cooling

The simulation method described in this part is mainly based on Appendix D of Ref. [82],
with small modifications. The author of this thesis is one of the coauthor of this paper and

performed the numerical simulation of the ions’ motions.

During the storage of the ion crystal, a weak Doppler cooling beam can be turned on to

further stabilize it. Typically this beam is detuned at A = —I'/2 with a saturate intensity
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s = 1 [see the definition below Eq. (1.20)] [30] and is at an angle to all the three principle

axes of the trap, which we choose to be the [1, 1, 1] direction in the simulation.

Because the scattering rate of the photon I'p., is typically only a few MHz (e.g. for 1"'Yb™
ions) and is smaller than the RF frequency of the trap, the damping force should not be
modeled as a simple —vyv term if we include the micromotion. In some literature, e.g.
Ref. [66], this process is modelled by a velocity-dependent scattering rate of the photons,
which still does not reflect the fact that the internal states of the ions may not follow the
micromotion at the RF frequency. To describe this process in the simulation we use N
vectors in C? to represent the internal states of the ions and consider the excitation of ions
by the laser beam quantum mechanically. Then quantum trajectory [83] method can be used
to simulate the scattering process. At each step the internal state of an ion is first evolved

from |1)(t)) to |1(t + At)) under the effective Hamiltonian

A—-k-v Q )
Hy = — + 50~ ZV(I —0,). (3.39)

Then with probability (4(t + At)|(t + At)) it is renormalized to [¢h(t + At)) = |o(t +
A)/|I[D(t + At))|); otherwise a transition occurs and the ion goes back to the ground state
|Y(t + At)) = |0), together with a momentum change as the ion absorbs a photon in the
[1, 1, 1] direction and then emits one into a random direction. Note that if we include
the Doppler cooling in the simulation, the time-reversal symmetry is broken so that the
Forest-Ruth algorithm has no advantage over the Runge-Kutta algorithm; besides, since we
introduce a random force due to the scattering of photons, small numerical errors at each

step is no longer important and we can simply use double precision in the simulation.

Some numerical results are shown in Fig. 3.7. Fig. 3.7(a) uses the same trapping parameters
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and initial conditions as those in Fig. 3.2, i.e. a single collision with an Yb-171 atom at room
temperature. As we can see, the Doppler cooling is not functioning for this energetic motion
because of the large detuning due to the Doppler effect. On the other hand, if we rescale the
initial velocity so that it corresponds to a collision with Hy rather than Yb-171, the system
can be cooled by the laser beam, as is shown in Fig. 3.7(b). This observation matches well
with the experiments: the Doppler cooling parameters we choose (A = —I'/2 and s = 1) is
used for ions that are already at low temperature; at high temperature we will need larger

detuning and stronger laser beams [30].

400 1
300t 0.8
0.6

K 200t K

0.4
100t 0.2
0 ‘ ‘ ‘ ‘ 0

0 2000 4000 6000 8000 10000 0 1 2 3 4 5

t/m t/m %x10%

(a) (b)

Figure 3.7: (a) Average total energy over each RF period vs. time ¢ for the ions considered
in Fig. 3.2 with the same initial conditions. (b) Average total energy over each RF period vs.
time t for the same trapping parameters, but an initial collision with Hy instead of Yb-171.

Melting of Ion Crystals

Knowing that the ion crystal needs to melt first before it can be heated by the RF field, now
we want to estimate the temperature at which RF heating will start. Infinitely many ions

in a plasma state can form a body-centered cubic (bcc) lattice at low temperature, whose
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melting point is about [84-86]

e2

1
kgl ~ ————— 3.40
B 173 dmepaw s’ (340)

with Wigner-Seitz radius defined by 47aj, /3 = V/N. For finite ion crystals, the melting
point will be shifted due to the different crystal structure and also the existence of a surface,
but Eq. (3.40) can still be a good estimation for the order of magnitude [84]. Furthermore,
Ref. [84] shows that the same melting point also holds for ions in RF trap if the effective
temperature is correctly defined for only the secular motion (the velocity after averaging out

the micromotion).

As an example, we consider a crystal of 50 "*Yb" ions with the trapping parameters a =
(0.0099, 0.0101, —0.02) and g = (—0.15, —0.15, 0.3). Here we choose w,s = 27 x 50 MHz,
and use the closest distance between the average positions of two ions dy;, = 1.78 um to
approximate 2ays. The melting point can be estimated to be around 7. ~ 0.11 K. First we
find the equilibrium trajectories of the system using the methods in the previous subsections.
Then we set the velocities of the ions according to a Maxwell-Boltzmann distribution at a
temperature of 7" and let the system evolve for 1000 RF periods. In these and the following
simulations we use Forest-Ruth algorithm with 100 steps per RF period and double precision.
Because here we only want to study the immediate melting of the crystal, the accuracy of
the simulation need not be very high. Fig. 3.8 shows the trajectories for the last 100 of the
1000 periods for (a) T = 0.01K, (b) T"'= 0.11K and (¢) T = 1K. It is clear that when
T < T, the ions only oscillate around their equilibrium positions and thus stay in the crystal
state, while for 7' > T, they frequently change their positions and thus the crystal has melt.
The T' ~ T, case is more complex: it looks like in Fig. 3.8(b) the crystal has already melted,

but the random motions of the ions are less violent than the T" > T, case. This is probably
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because the d,,;, we use is less than the actual agy and hence our estimated T, is higher than
the real value; therefore the behavior at the melting point is still not clear. Nevertheless,
Eq. (3.40) seems to be a good estimation for the order of magnitude, and we shall be safe to
say that the ions are in the crystal state if the temperature is much lower than the estimated

transition point.

Figure 3.8: Trajectories for the last 100 RF periods during a 1000-period evolution.
There are 50 "'Yb* ions in a trap with parameters a = (0.0099, 0.0101, —0.02) and
g = (—0.15, —0.15, 0.3). The initial positions of the ions are right at their equilibrium
positions when the phase of the RF field is 0, while the initial velocities follow a Maxwell-
Boltzmann distribution with (a) 7’ = 0.01K, (b) T'=0.11K~ T, and (c) T = 1 K.

The melting points for 2D and 1D crystals are more difficult to calculate. However, we
can argue that the transition point should be higher than Eq. (3.40). The reasoning goes
as follows: in one extreme case when the crystal is about to goes into the zigzag shape,
effectively we still have a 3D crystal but with larger finite size effects, so the transition
temperature should be similar to Eq. (3.40); in the other extreme case the crystal is strongly
trapped in the transverse direction, so it takes higher energy to melt the crystal and the
transition temperature increases (actually an ion chain in 1D is not possible to melt because
the Coulomb repulsion will diverge as the ions approach each other and thus prevents the

ions from exchanging positions). Thus Eq. (3.40) gives a good estimation for the order of
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magnitude and upper bound of the melting temperature for all ion crystals. Some examples
for 2D and 1D crystals are shown in Fig. 3.9 and Fig. 3.10. In the 1D case, for T' > T, the
trajectories of the ions have started to overlap with each other even though they have not

exchanged positions; while for T' < T, the ions are clearly separated from each other.
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Figure 3.9: Trajectories (projected onto the z-y plane) for the last 100 RF periods dur-
ing a 1000-period evolution. There are 50 "'Yb™ ions in a trap with parameters a =
(—0.0099, —0.0101, 0.02) and g = (—0.15, —0.15, 0.3). The initial positions of the ions are
right at their equilibrium positions when the phase of the RF field is 0, while the initial ve-
locities follow a Maxwell-Boltzmann distribution with (a) 7= 0.007 K, (b) "= 0.066 K~ T,
and (¢) T'=0.7K.

Incidentally, in the example of Fig. 3.6, where we do observe RF heating, the initial collision
with Yb-171 at 300 K will give an effective temperature of 300/N = 6K after thermaliza-
tion, which is much higher than its melting point of about 0.1 K. On the other hand, for
the example of Fig. 3.5, the melting point computed from Eq. (3.40) is 7. ~ 0.05K. The
temperature we use is 3 K, again much higher then T,., but no heating is observed after we
suppress the round-off error. One possible reason is that the simulated evolution time is not
long enough to see significant heating; and another reason is that Eq. (3.40) is only an upper

bound for 1D case and the actual melting point may be higher. Therefore, all our results
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Figure 3.10: Trajectories (projected onto the z-z plane) for the last 100 RF periods during
a 1000-period evolution. There are 50 '"'Yb" ions in a trap with parameters a = (-2 x
1075, =3 x 1075, 5 x 107°) and g = (0.3, —0.3,0). The initial positions of the ions are right
at their equilibrium positions when the phase of the RF field is 0, while the initial velocities
follow a Maxwell-Boltzmann distribution with (a) 77 = 0.01 K, (b) T'= 0.1 K= T, and (c)
T = 1K. Axes are not to scale.

are consistent with each other.

3.1.5 Soft Modes in Large Ion Crystals

As we have already seen in Fig. 3.1, there are low-frequency normal modes in the ion crystals,
namely the soft modes. This can be a problem for quantum computing because even weak

excitation in these modes can lead to large amplitude.

In Fig. 3.11(a) we show the frequency of the lowest mode §; vs. the system size N in a
trap with @ = (—0.015, —0.015, 0.03) and g = (0.3, —0.3, 0). It seems that the soft mode
frequency is going down with IV, but there is not a clear scaling relation. These soft modes are
generally rotational modes in 2D or 3D. One example is shown in Fig. 3.11(b) for N = 100.
Note that even for a fixed N there can be multiple equilibrium configurations in the trap
and they may have different soft mode frequencies. Some high data points in Fig. 3.11 such

as that for N = 20 indicate that there are some configurations that are more “stable” than
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Figure 3.11: (a) Lowest mode frequency f; (in the unit of wy¢/2) vs. ion number N in a trap
with @ = (—0.015, —0.015, 0.03) and q = (0.3, —0.3, 0). (b) Mode vectors of each ion for
N = 100.

It is much easier to find the equilibrium positions and the corresponding mode frequencies
for ions in a static pseudo-potential. Although it is not a good approximation for large a and
q parameters, it may still help us to understand the scaling of the soft modes. In Fig. 3.12
we show the lowest mode frequency for up to N = 5000 ions in a static harmonic trap with
w; = 0.16, w, = 0.17 and w, = 0.18 [a = (0.16%, 0.17%, 0.18%) and q = (0, 0, 0)]. A rough

scaling of 3; oc N=%26 is observed.

At thermal equilibrium, we expect the energy to distribute evenly in each normal mode, thus
the energy of the soft mode will not explode even if its amplitude is large. In this sense,
the soft mode should not lead to a direct melting of the crystal, which is consistent with
our previous result of a finite melting point. However, the large amplitude does break the
small-perturbation approximation we made in Sec. 3.1.3; whether there can be long-term RF

heating effect is not clear, and need to be studied with the numerical methods we described
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Figure 3.12: Lowest mode frequency [; vs. ion number N in a static harmonic trap with
wy = 0.16, wy = 0.17 and w, = 0.18.

in Sec. 3.1.4.

On the other hand, the large amplitude of the soft mode does have an immediate consequence.
When applying quantum gates, we typically use narrow laser beams to selectively drive the
chosen ions. Now if the oscillation amplitude is large, the target ion can leave the region
of the laser beam and moreover the nearby ions may enter the region. This is probably
not a fundamental limit for ion trap quantum computing, but more sophisticated control
techniques may be needed for individual ion addressing; or we may need to cool the ion

crystal, or at least the soft mode, to very low temperature before we apply the gates.

Fortunately, once cooled to low temperature, the soft mode is not very sensitive to the other
heating sources. According to Sec. 1.2.2, one dominant heating source in ion trap is the
electric noise, and it only heats up the center-of-mass modes which are at high frequencies.

Another potential heating source is the collision with the background gases, which is esti-
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mated to be infrequent in Sec. 1.2.2; thus we may just consider a single collision. Since there
are 3N orthogonal normal modes, a random velocity kick from the collision with background
gases will have a projection of 1/ V3N on the soft mode. Therefore if the decrease of the
mode frequency is slower than 1/v/N, e.g. the N=°26 scaling we observed in Fig. 3.12, the
amplitude of the soft mode due to such a single collision will not explode in the large N

limit.

3.2 Parallel Entangling Gates in Large Crystal

In this section we examine how the entangling gates can be parallelized in a large ion crystal.
The key point in this scheme is that the influence of a locally driven ion on the other ions goes
down quickly with their distance, so that entangling gates on distant ion pairs can be applied
at the same time without much crosstalk. This fact also suggests that when designing the
entangling gate between two ions, we can neglect all the ions far away, hence the complexity

of optimizing the gate performance does not increase with the total size of the ion crystal.

This section is based on a paper that will be submitted soon [87], and the author is responsible
for all the works presented here. It is organized in the following way: first we consider an
infinite ion chain with uniform spacing for simplicity and study how the crosstalk between
two entangling gates scales with the distance. This assumption of a uniform chain is just
to simplify our derivation; neither the gate design nor their parallelization relies on it. For
realistic ion crystals the spacing is never uniform, but good approximations can be achieved
by adjusting the electric potential along the axial direction (see Sec. 2.1.1). Then in Sec. 3.2.2

we generalize the result to 2D ion crystals.
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3.2.1 Entangling Gates on Uniform Infinite Ion Chain

Consider an infinite ion chain along the z axis with uniform spacing d. The ions can be
labelled by integers with ion j located at z; = jd. Suppose the trapping potential along the
x direction is harmonic with trapping frequency w,, then the transverse oscillation modes in

this direction can be expressed as travelling waves

1 .
b= ——eh, 3.41
S = Tw (3.41)

where N is the number of ions and we will later take the limit N — oo. The mode frequencies

are

e? 1 — cos jkd
=w, |1— 3.42
W =W \/ 47T€0d3mw§ ; |j’3 ( )

:wx\/ o 21e(3) = S(kd), (3.43)

N 31002
dregd>mw?

where m and e are the mass and the charge of the ion, ( the Riemann zeta function and

S(x) = 3272, cos ja /5>

2

2, which characterize the narrowness of the spectrum of the

Let us define € = e? /dmegd>mw
transverse phonon modes. As we have seen in Chapter 2, it is typically a small parameter.

Then we can make the approximation

w ~ wy {1 —€[((3) — S(kd)]}. (3.44)
Recall that an XX entangling gate between ion ¢ and ion j takes the form [Eq. (2.31)]
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tinofof /4

Usdeal = € , while the actual gate we implement is [Eq. (2.23)]

~exp< Zgbj o —I—ZZ@,] o}’ ;‘) (3.45)

1<J

where

s [ag(f)a; - a;?*(f)ak] , (3.46)

af(T) = —ﬁnkb / S(t)erdt, (3.47)
0

and

04r) = 5 St} [t [ sttt + o st 1) 39

with x;(t) = h€;(t) sin(put + gog-m)) describing the laser sequence we apply. The v; terms in
Eq. (2.23) is not shown here because their influence to the gate fidelity is of the order O(n})

and is thus neglected in Eq. (2.53):

4 12 hwy,
le—g;(|ai| +]a|)cothm (3.49)

if we set ©;; = /4 by suitably rescaling the laser intensity.

When parallelizing multiple entangling gates, we simply turn on all the laser beams at the
same time. Suppose we want to implement two XX entangling gates between ions i; and
71, and between i, and j5. Now the ideal gate is the tensor product of the two gates:

Uideal = exp(Fimof, o, /4 £ imof 07, /4), while what we really get still takes the form of

110-]1

Eq. (3.45) with the summation indices running over iy, ji, io and js.
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From Eq. (3.49) it is clear that the intrinsic gate errors due to the residual entanglement to
the phonon modes add up together, because each a;‘? term only relies on the laser driving on
that ion. From Eq. (3.48) we can see that the two-ion rotation angle ©;,;, only depends on
the laser driving on ions 7; and j; and is not affected by the other driving on ions i, and js,
so its value stays at £m/4 as we design it; the same argument holds for ©,,;,. However, now
we have four additional crosstalk terms between 71, j; and iy, jo. Because all these Pauli X

operators commute with each other, what we get is the two original gates X X; ; o XX,
(including the intrinsic errors from the gate design) followed by an additional unitary channel

E(p) = EpE' with

E = exp [z Z Z @Tsafa;”] . (3.50)

r=i1,j1 s=iz,j2
As we have discussed in Sec. 2.2.3, for the purpose of quantum computing and in particular
quantum error correction, it is desired to characterize the error by diamond norm. The
diamond norm is generally difficult to compute, but luckily for a unitary channel £ it can
be easily bounded as [8§]

1
§Hg||<> < ‘@i1i2| + |@ilj2| + |@j1i2| + |®j1j2|‘ (351>

Two entangling gates can be parallelized if ||E||, < 1.

Suppose we already have the design of two entangling gates with small intrinsic error d F.
(We have seen how to do this for small to medium-sized ion crystals in Chapter 2; later in
this subsection we will discuss how this can be done efficiently for large crystals.) Now we
want to study how ||€]|, scales with the distance between the two ion pairs. It suffices to

show how ©;; scales with |7 — j|.
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Analytical Result for the Scaling of Crosstalk

Before we start, note that the derivation of Eq. (3.48) assumes real mode vectors bk, while
now our mode vectors are travelling waves [Eq. (3.41)], which take complex values. For

complex mode vectors we can derive a similar expression

O =13 Zni Im{ /dtl/ dty (b0 (t) X (t2) + 057 b (t) xa(t2)] W'f(“‘t?)}, (3.52)

if we attach b? to the annihilation operator a; and bf* to a,t. With this convention, in

Eq. (3.47) the b? should also be replaced by bé‘?*, but since we will take the absolute value

when optimizing the gate fidelity, this modification does not matter.

Plugging in the travelling wave mode vectors Eq. (3.41) we get

@ij =

hle Z ne /T dt, / ' dtz{ Ixi(t1)x;(t2) + x;(t1) xi(te)] sinwg (ty — t2) cos k(z; — 2;)
k 0 0

+ [xa(t)x;(t2) — x;(t1)xi(t2)] cos wi(ty — t) sin k(z; — Zz)} (3.53)

We further replace % >, with % J dk and change the order of integration. Without loss of
generality we assume j > ¢ and define z; — z; = nd. Because we are interested in the scaling

with n, we only need to evaluate

/ d(kd)n; sinwy(t; — t2) cos nkd, (3.54)

—Tr
and

/ d(kd)n; cos wy(t — t2) sinnkd, (3.55)

—T
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while the rest part of ©;; only depends on the laser sequence on the ions but not on their
distance. Here we calculate the first term as an example, the second one can be treated

similarly.

Let us define ¢ = w,(t; —t2)[1 —€((3)] and A = ew,(t; —t2). They are functions of ¢; and ¢,
but since we are considering the scaling with n, we can treat them as constants. n; depends
on k as 1 = niw,/wy, where 1y is a constant independent of k. Hence we can approximate

M by m9 with an error of e. Then we have

/ d(kd) sinwy(t; — t3) cosnkd

:/ dx {sin ¢ cos[AS(x)] + cos ¢ sin[AS(x)]} cos nx. (3.56)
Again we consider the first term as an example, while the second term can be calculated

in the same way. Plugging in the series expansion forms cosz = Y o (—1)*2?*/(2a)! and

S(x) = > 52, cos B /3%, we get

/_7r dx cos[AS(x)| cosnx = Z (é;;(: /_ dx <)\ Z on 5x> CoS N (3.57)

Now we argue that this expression has a scaling of 1/n®. First, note that for a given «, the

integrand can be expanded into a series

Z A2 cos na H cos ﬁ] , (3.58)

{85}

with each term being a product of (2« + 1) cosine functions and the integration over their

common period; therefore the integral is nonzero only if a resonance condition n + 81 4 8, £+
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-+ & Byq = 0 is satisfied, and in such cases it can be loosely bounded by

‘/ dx cosnx H cos B;x

2a T
< / dx| cosnz| - H | cos Bx| < / dr -1 = 2. (3.59)
_ ey

Furthermore, the dominant term of Eq. (3.58) should contain one and only one 3; of the
order O(n); all the other (2a — 1) f8;’s must be bounded by constant, say, C'//2, otherwise its
coefficient will decay faster than 1/n®. Admittedly, for « of the order O(n) all the 3;’s can

be of the order O(1), but then the 1/(2a)! factor in Eq. (3.57) itself decays faster than 1/n3.

There are in total 2aC?*~! such terms in Eq. (3.58): first we choose which one of the 2« ;s
takes the order of O(n); then we assign the other (2a — 1) §;’s within [1, C'//2] and choose
their signs in the resonance condition to be positive or negative; once we determine these

values, the last one is automatically fixed from the resonance condition. Therefore finally

Eq. (3.57) is bounded by

2a02a 1)\2a 1 27Asinh \C 1

Note that X\ actually depends on ¢; and t,, but here we only consider the scaling with respect

to n. Nevertheless, for typical parameters, |A\| < ew,7 is of the order O(1).

Similar argument applies to the other terms in Eq. (3.55) and Eq. (3.56), therefore we
conclude that the crosstalk term ©;; decays with the ion spacing n = |i — j| as 1/n3. If
originally the gates are designed for two ions at a distance of m, and if the minimal distance
between the two pairs of ions is n, then the crosstalk terms will be O[(m/n)?] when the two
gates are applied simultaneously. (Note that ©;; is designed to be £7/4 when |i — j| = m.)

In other words, the error due to the parallelization of the gates is ||€]|, = O[(m/n)?].
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Numerical Results

In the above derivation, we have made several approximations to get an analytical result.
Thus it is desirable to verify the scaling numerically without these approximations at least
for some special cases. Before this, let us first consider how to design the entangling gates

efficiently in a large ion crystal.

We have proven that the distant ions have little effect on the fidelity of an entangling gate,
which suggests that when designing the gate we can ignore all the ions far away and focus
on a finite number of ions. This is verified numerically by the example shown in Fig. 3.13,
where we consider gate design in uniform ion chains with d = 8 um but varying the total
number of ions and the position of the ion pair inside the chain. The optimal gate design and
the intrinsic infidelity for these cases are almost identical as they overlap with each other in

the plot.

Now we consider the scaling of the crosstalk term |O;;| vs. the ion distance n = |i — j|. For
the convenience of numerical calculation, we consider a finite chain of N = 100 ions, again
with d = 8 um. The gate design is chosen to be the same as that in Fig. 3.13, i.e. a nearest-
neighbor ion pair, ne, = 6 segments, gate time 7 = 50 us and detuning ¢ = 1.016w,. In
Fig. 3.14 we plot |©;;| vs. n in the log-log form. ©;; is computed by applying the same laser
sequence on ion ¢ = 51 and ion j = 52, ---, 100, respectively, thus changing the value of n.
Note that when n = 1 we have |©;;] = w/4. A 1/n? scaling is clear for large n. Similarly, we
plot the scaling of entangling gates designed for ion pairs at a distance of 3 and 5 in Fig. 3.15
and observe a similar scaling of 1/n3. Also note that here we assume the same gate design
for the two parallel gates (identical laser sequence on ions i and j) only for the convenience

of evaluating ©;; [Eq. (3.48)] numerically. The derivation of the 1/n? scaling does not rely
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Figure 3.13: (a) Optimal gate infidelity vs. laser detuning p for n = 6 segments and a total
gate time 7 = 50 us. (b) Rabi frequencies for each segment when y = 1.016w, is chosen
at the minimizer of (a). The gate design is optimized through amplitude modulation, as
we described in Sec. 2.1. There are 3 curves in each plot, blue solid line for N = 50 ions
and ion pair 25 and 26, red dashed line for N = 50 ions and ion pair 10 and 11, and green
dash-dotted line for NV = 100 ions and ion pair 50 and 51. All these curves coincide within
the resolution of the figure. Here we choose an ion spacing d = 8 um, Lamb-Dicke parameter
1o = 0.1, transverse trapping frequency w, = 27 x 3 MHz and 0.5 phonon per mode.
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on this assumption and holds for parallelizing two different entangling gates.

y = —3.065x + 0.825

In [0y /(m/4)|

-12
0 1 2 3 4

Inn

Figure 3.14: Log-log plot for crosstalk term |©;;| vs. ion distance n = |i — j|. The gate
is designed for a nearest-neighbor pair of ions with 7 = 50 us, nes = 6 segments, and
i = 1.016w,. The red line is fitted from the last five data points.

Parallelize Multiple Gates

The above result can directly be applied to parallelize multiple gates. Suppose we want
to build a quantum circuit with X X entangling gates between all possible ion pairs whose
distance is less than or equal to m [see Fig. 3.16, m is of the order O(1)]. We can divide
these gates into O[m(n + m)] layers and in each layer the gates are separated by a distance
of at least n. In this way, the error per gate in each layer will be O[(m/n)?]. Hence for a
given error rate per gate €, the number of required layers will be independent of the size of

the crystal, which indicates scalability.
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Figure 3.15: |©;;| vs. n = |i — j| for (a) a gate designed for two ions at a spacing of 3

separations with 7 = 60 us, neg = 7 segments, p = 1.01403w,, (b) a gate designed for two
ions at a spacing of 5 separations with 7 = 100 s, neg = 10 segments, y = 1.01387w,. The
red lines are fitted from the last five data points in each figure.
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Figure 3.16: Partial illustration of the scheme to parallelize gates. (n + p) layers are needed
for all possible pairs of ions at a distance of p while maintaining a distance of n between any
two pairs. For p =1, 2, -+, m we need O[m(n + m)] layers in total.
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3.2.2 2D Ion Crystal

Now we generalize our results to 2D. Due to the Coulomb interaction between the ions,
a 2D ion crystal usually approximates a hexagonal lattice. Therefore here we consider a
hexagonal lattice with translational symmetry (Fig. 3.17), although the same analysis can

also be applied to other types of 2D lattices.

Let the crystal lie on the x-y plane. It can be characterized by its lattice vectors

a; = d(]_, O, 0), s = d (1 ﬁ, O> s (361)

2 2

with the corresponding reciprocal vectors

by — (1, _%, o) L b= (0, % 0) | (3.62)

The transverse oscillation modes in the z direction can be used for the entangling gates
[41], which is a natural generalization of the scheme we studied in Chapter 2. In this case
the normal modes are still travelling waves which can be characterized by the wave vector
k = k1by + kaby (kq, ko € (—7/d, 7/d]). The mode vector for this travelling wave is given
by

¥ s oc exp [i(akid + Bkad)] (3.63)
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Figure 3.17:

d(1/2,/3/2, 0).

A hexagonal lattice with lattice vectors a;

= d(1,0,0) and ay, =

for the ion at position r,3 = aa; + Bas, with the corresponding eigenfrequency

WE =

2

e 11 —cosk - rys
—w, |1-—
“ \ 47r60d3mw§(zﬁ) laay + Bas)?
o |1 e? Z/l — cos(akid + Skad)
\ dregdimw? &3 (a2 + (2 4 af)3/?
2 1— kvd kod
o, [1— — Z' cos(ald + Bhad) : (3.64)
47r60d3mw§( 5 2(02 4+ B2+ af)3/?

where >~" means that the two indices for summation cannot both be 0 at the same time.

Following the same derivation as before, to study the scaling of the crosstalk error versus

the distance on the lattice represented by na; + mas, we need to evaluate some expressions
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like

[e'S)
a=0

o e [ léz’ O costnat ). (369

24 (B2 + 72+ By

Again for a given o we can expand the integrand into series:

Z <g> cos(nzx + my) H cos(f +7,9) (3.66)
}

{8575 j=1 (532 +732' +Bj7j)3/2,

and we get two resonance conditions n+ [y £+ o, = 0and m+y; +--- £, = 0, both

of which need to be satisfied for a nonzero integral.

Without loss of generality, we can assume |n| > |m|. Consider two different cases: (1) only
In| goes to infinity and |m| stays constant. Then we go back to the previous 1D case and
the coefficient decays as 1/n?. (2) Both |n| and |m| go to infinity. Then again we argue that
for any given «, the 2a terms of {f;, 7,;} can only have one term of the order O(|n|) and
O(|m|); all the other f5,’s and 7,’s need to be bounded by constant. Otherwise the coefficient
for their product will decay faster than 1/(n?4+m?+nm)??2. If we count the number of such
terms and add all of them together, we will get a scaling of 1/(n? +m? + nm)S/ 2 that is, a

cubic decay with the distance.

Below we show some numerical results in Figs. 3.18, 3.19 and 3.20, where we design entangling
gates for different ion pairs in a 80 x 80 lattice with d = 8 um and compute crosstalk ©;;
explicitly when parallelizing two identical gates at different distances. To avoid the potential
boundary effect, in these numerical calculations we limit ourselves to the ion pairs in the

central 40 x 40 sublattice. Again we see that the slope is fairly close to —3.

Also note that this 1/distance® scaling is not special for a hexagonal lattice. In Fig. 3.21 we

see the same scaling in a square lattice. Although this type of lattice is not very realistic for
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Figure 3.18: Numerical results for 80 x 80 hexagonal lattice with ion spacing d = 8 um,
transverse trapping frequency w, = 27w x 3 MHz, Lamb-Dicke parameter n = 0.1 and temper-
ature kgT = hw,. The gate is designed for two ions in a relative position of (a). Parameters
are 7 = 60 us, nsey = 10 segments, p = 1.01378w..
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Figure 3.19: Numerical results for 80 x 80 hexagonal lattice with ion spacing d = 8 um,
transverse trapping frequency w, = 27 x 3 MHz, Lamb-Dicke parameter n = 0.1 and temper-
ature kT = hw,. The gate is designed for two ions in a relative position of (a). Parameters
are 7 = 100 pus, nsey, = 15 segments, p = 1.01015w,.
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Figure 3.20: Numerical results for 80 x 80 hexagonal lattice with ion spacing d = 8 um,
transverse trapping frequency w, = 27 x 3 MHz, Lamb-Dicke parameter n = 0.1 and temper-
ature kg1 = hw,. The gate is designed for two ions in a relative position of (a). Parameters
are 7 = 150 s, ngy = 20 segments, p = 1.00621w.,.

ion crystals, the observation of the same scaling result in 1D and different types of lattices

in 2D indicates that it is universal and can be applied to more general ion crystals.

3.3 Include Micromotion in Gate Design

In this section, we address the influence of micromotion on the gate design. In Chapter 2
this effect is neglected, because for 1D ion chain in a linear Paul trap it is possible to place
the ions in such a way that (ideally) there is no zeroth order micromotion, while the high-
frequency modulation on the normal modes is far off-resonant to the driving. However, for
larger ion crystals and in particular in 2D or 3D, micromotion can become more and more

significant. Thus it is desired to include its effect into the gate design.

It has been shown in Ref. [89] that the effect of micromotion, to the lowest order, can be
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Figure 3.21: Numerical results for 80 x 80 square lattice with ion spacing d = 8 um, transverse
trapping frequency w, = 27 x 3 MHz, Lamb-Dicke parameter n = 0.1 and temperature
kT = hw,. The gate is designed for two ions in a relative position of (a). Parameters are
T = 60 us, ngy = 10 segments, p = 1.01386w,.

compensated by a rescaling of the laser intensity depending on the micromotion amplitude.
However, this approximation may not be adequate if we want very high gate fidelity, say,
above 99.9%. In this section we extend this method to higher orders through a series ex-
pansion. Combined with the numerical solutions of micromotion and normal modes we have

found in Sec. 3.1, the error in the formulation can be systematically suppressed by including

higher and higher order terms.

3.3.1 Effects of Micromotion

Recall that, for an ion crystal without micromotion, the design of entangling gates turns into

minimizing the residual entanglement to the phonon modes [Eq. (3.47)]

i

(1) = hnkbf*/ x;(t)e™rdt, (3.67)
0
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while maintaining the desired two-qubit phase ©;; = +7/4 |Eq. (3.52)]

1 i h * * w —
k

where

() = 7, (1) sin (m + ¢;m>) . (3.60)

The advantage of the segmented amplitude modulation we considered in Sec. 2.1 is that
;(t) is now piecewise-constant and hence the above time integrations can be performed
analytically on each segment. Then this optimization problem turns into a generalized

eigenvalue problem [Eq. (2.55)], and thus can be efficiently solved.

Strictly speaking, in the above process the analytical expression for the time integral is not
necessary: once we choose a gate time 7 and the number of segments ng, we can plug in
these numbers into the lower and upper limits of the integral and evaluate it numerically.
However, for the oscillatory functions we are considering, this will require very high numerical
accuracy and usually takes long time to perform; in comparison, if we can derive an analytical
expression, the evaluation of the integral becomes much easier and thus we get a practical

algorithm to optimize the gate design.

Now we consider the influence of the micromotion on the gate performance. It appears in

three aspects:

Time-Dependent Motional Phase

Instead of staying at the equilibrium configuration which minimizes the pseudo-potential,

the ions in an RF trap are oscillating at the RF frequency in equilibrium. Intuitively, this is
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equivalent to a (classical) oscillating phase of the laser in the form of Ak- R;(t) where R;(t)
is the equilibrium trajectory of the ion j [periodic solution to Eq. (1.13)]. If we go through
the derivation of Sec. 2.1.2, this effect can mathematically be described by a time-dependent
motional phase gp§-m) for each ion as appears in Eq. (3.69) with a period of 27 /wys. Thus we

can expand this phase into Fourier series:

P ="l cos I, (3.70)
=0

where the superscript “(m)” represents “motional” and will be omitted for simplicity, while
“(1)” corresponds to the I-th order of expansion. Note that the amplitudes of these oscillating
phases depend not only on the amplitude of the micromotion but also on its projection along

the direction of the laser wave vector.

Time-Dependent Complex Normal Modes

Another effect of the micromotion is a high-frequency modulation to each normal mode,

which we have seen in Sec. 3.1.2. To begin with, we consider the lowest order approximation:
r® (1) = Cék) cos(wit + ¢) + Cék) cos|(wyf + wi)t + ¢] + C(,’Z) cos[(—wyt + wi)t + @], (3.71)

where superscript “(k)” represents the k-th normal mode, Cék) is the solution to an eigenvalue

problem (A + Q?/ 2)Cék) = ﬁ,%Cék) which gives the zeroth order normal mode, and

1
cl = —(1F 5)QC" (3.72)
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gives the first order correction. (We have recovered the units of the formulae, e.g. wy =

Brwre/2.) Higher order terms are omitted in this expression.

We can express two independent general solutions to Eq. (3.12) at this order as
®)(4) — 1 Ls O (F) it
u(t)=(1-— 5@ COS Wyt — 5&;@ sinwgt | Cy e (3.73)

and its complex conjugate u®*(t). The initial conditions are u(0) = (I — Q/ 2)Cék) and

a®(0) = —iw, (I + Q/2)CF.

Now note that the quantum operators for the small displacements around the equilibrium
trajectories 7(t) satisfy the same set of linear differential equations as u®)(t). Follow-
ing a similar derivation as Sec. IIB of Ref. [20], we find that the Wronskian determinant
u®t($)r(t) — a®i($)7(t) is a constant and should be proportional to the annihilation oper-

ator @y for the mode k. Actually, for suitably normalized u® (t), we have

7(t) = ;’/Qmwk [aku(k)(t) + alu® (1) (3.74)

with [&k, CAL;[] = 5kzl-

Using the canonical commutation relation of #(0) and p(0) = m#(0): [, (0), p;,(0)] =

1hd;;0,,, we find the correct normalization for C’ék):
(1-Q/2)) (cPe") 1+ =1, (3.75)
k

or

3 (Cgmcg’“”) ~1, (3.76)

k

122



if we approximate (I + Q/2)(I — Q/2) ~ I. This is directly satisfied by the orthonormal

condition Cék)TCO(l) = Jy; of the eigenvalue problem we solved above.

Now it is clear that the effect of micromotion is to replace the mode vector b? related to the
mode ay, in the pseudo-potential case [e.g. Eq. (3.67) and Eq. (3.68)| by a time-dependent
one

1 .
b;? ~ Cék) — (I - 5@ COS Wyt — %ﬂkQ sin U.}rft) Cék). (3.77)

This leads to a time-dependent multiplicative factor in the integration of af |[Eq. (3.67)] and
©;; |[Eq. (3.68)], but as it is a trigonometric function, an analytical expression for the integral
can still be found. Also note that our previous expression of ©;; [Eq. (2.28)] is derived for a

real mode vector; now our mode vector is complex and hence Eq. (3.68) should be used.

The same analysis also applies to higher order expansion of the normal modes. From
Sec. 3.1.2 we know that at one order higher C(()k) will be a solution to the generalized eigen-

value problem

12 1 L4 (k) _ 2 _§2 (k)
A+2Q +8QAQ+128Q}CO =31 SQ C, (3.78)

and we have C'j(g =—(1F Bk)QCék)/él and CE_L]Z) =(1F 35k/2)QZCék)/64~

To this order of approximation, the general solution can be represented as

) .
u® (t) = (I — §Q cOS Wyt — %@Q sin wyst

1 3i ,
+ —Q? cos 2wyt + —ZﬂkQZ sin 2w,st C(()k)e’“"kt (3.79)
32 64
and its complex conjugate. The initial conditions are u®(0) = (I — Q/2 + Q?/ 32)Cék) and
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™ (0) = —iwr(I +Q/2 — 5@2/32)Cék). Again we use Eq. (3.74) as the expansion for the

displacement operators. This time the normalization condition gives

Q @ (MT (k) Q _5Q% _
(1—5+§>;<00 ) >(I+§—§)— (3.80)

or
3 -1
> (crel) (l ~ gQQ) , (3.81)
k
which again is automatically satisfied by the orthonormal condition for the generalized eigen-

value problem we solved above:

cPT (1 - gcf) c) = gy. (3.82)

Based on the above results, we can make the conjecture that this process holds for any
higher order expansions and thus also for the exact result of Sec. 3.1.2. Once we get wy
and all the C'Q(ﬁ) in the expansion of the normal mode, we can write down a general solution
similar to Eq. (3.73) and Eq. (3.79). The normalization of this solution can be derived from
the commutation relation between 7 and p, and between a, and le. Then we can read the
time-dependent mode vectors from this expression and plug them into our formula for the

gate design.

Time-Dependent Modulation of Laser Intensity

The micromotion perpendicular to the direction of the laser beam also leads to a variation
in the laser intensity the ion feels during the gate. This effect will become important if the

amplitude of the micromotion is comparable to the width of the laser beam. It corresponds to
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a time-dependent effective Rabi frequency in Eq. (3.69), which oscillates at the RF frequency
(apart from other amplitude modulation we use to optimize the gate performance) and can

be expanded into Fourier series. Again they are multiplicative trigonometric functions and

k

thus we can still get analytical expressions for a;

and ©;; on each segment. We will not
consider this effect below because the coefficients of the Fourier series depend on the detailed

shape of the laser beam.

3.3.2 Numerical Calculation with Micromotion

As is mentioned above, to efficiently optimize the gate design, we want to derive analytical

expressions for Eq. (3.67) and Eq. (3.68) with piecewise constant €2;(¢) on arbitrary intervals.

Among the three effects of micromotion we described, the second and the third are not
difficult to treat because our integrand is still the product of some trigonometric function.
However, the first effect of an oscillating motional phase, even if only expanded to the
first order, will give us some terms like cos(¢™) cos wyet) whose integral only have analytical
results on an interval at a multiple of the RF period. If we are not able to get an analytical
expression, we will have to evaluate highly oscillating functions, which will be beyond our

computational power.

We will tackle this problem by a series expansion of the motional phase, such that for each
expansion term we still have an analytical expression for the integral, while the error of the
final result can be systematically improved by adding higher order terms. The pivot of our

algorithm is the following formula [90,91]

exp(ip coswt) = Jo(p) + 2 Z i" Jn () cos(nwt). (3.83)
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Note that for 0 < ¢ < v/n + 1, we have

Jn(p) ~ % (g)n (3.84)

thus the terms in the above series go to 0 quickly and we can expect a fast convergence.

Residual Coupling to Phonon Modes

k

For the residual coupling to the phonon modes o7,

we want to derive an analytical expression

for the following integral:

+oo ]
/dt Z Cégjaemwrft sin (,ut + Z <p§-l) cos Z(A)rft> ekt (3.85)
1=0

n=—0oo

where o = x, y, z corresponds to different spatial directions and C’éfl),jo is the jo component
of the k-th mode vector at the 2n-th order. Because C’;Z) goes down quickly with |n| (for

small trapping parameter ¢), we can truncate the summation over n at £n.y;.

Furthermore, we can regard nwy + w; as a new variable w in the above expression; once we
) k )
get an analytical result as a function of w, we can plug in the value of nw.¢ + wy to compute

the value for any order n. Therefore we only need to consider

/dt sin (ut + Z c,pgl) cOS lwrft> et
1=0

! dt [ei(“t“";m) H ¢i#y coslunst _ c.c.] et (3.86)

21
=1

@

We can expand exp(ip;’ coslwyt) into cosine functions using Eq. (3.83). Suppose the
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gog»l), gogz), .-+ terms are expanded to the order of ny, ng, - -, respectively, then we need

to compute

/ dteint+e)) gt cos(nywist) cos(ngwyet) - - - (3.87)

with the coefficient of this term given by [], 2™ Jnl(cp§-l)). Then we sum over all possible

combinations of {n, ng, ---} to get the total integral.

The other half of Eq. (3.86) about the complex conjugate can be computed similarly. The
result will be to replace p and <p§0) in Eq. (3.87) with —u and —<p§0), and to take the complex

conjugate of the corresponding coefficients.

It seems that the number of terms we need to evaluate is large, so that even if we have an
analytical expression for Eq. (3.87) and the evaluation of a single term is fast, the total time
cost may still be high. Luckily, in the small ¢ regime the micromotion amplitude goes down
quickly with the order of expansion, so gpgl) will be close to 0 for large I. From Eq. (3.84),
we know that these terms are vanishingly small except for n; = 0; but if n, = 0, we have

cos(mwyt) = 1 so that we can truncate at [ < L for some small L in Eq. (3.87). Even for

the remaining goﬁo terms, the corresponding coefficient Jnl(wgl)) will be vanishingly small for
large n;, so usually the number of terms we need to evaluate is small. Note that all the
truncations described above can be determined according to a chosen error tolerance, say,

1078, and the precision can be systematically improved by including higher order terms.

What remains to be done is to evaluate Eq. (3.87) for up to L cosine functions. For a given
L, an analytical expression for the integral is possible, but it can become more and more
complex as L increases and it can be difficult for coding. Therefore we split each cosine
function into two exponential functions using cosz = (e + e~*)/2. In this way, Eq. (3.87)

turns into 2% integrals of exponential functions, whose analytical expressions are easy to get.
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This is easy to program using depth-first search. Since the truncation L is typically small
and we do not need to do the splitting for the I-th term if n; = 0, this method gives a good

balance between the cost of programming time and that of the running time.

Two-Qubit Rotation Angle

For the two-qubit rotation angle ©;;, we want to derive an analytical expression for

—+00 OO
/dtl /dtg Z Cégipeinwrfh Céfz,jge_imwrftz sin (Mtl + Z sz(h) coS llwrft1>

n,m=—00 11=0

X sin (/qu + Z c,py?) cos lgwrft2> eir(ti=t2) (3.88)

lo=0
for one term in Eq. (3.68) and the other term can be gotten by an exchange of i and j.

Recall that to get the v matrix in Eq. (2.55), we need two types of integral limits:

pT/nseg qT/nseg pT/nseg t1
/ dtl / dtQ and / dtl / dtg (389)
(P—1)7/seg (q=1)T/nseg (P—1)T/nseg (P—1)T/nseg

For the first type, the integrations over ¢; and ¢, are separable and are exactly what we have

solved for ozf above. Therefore we only need to consider the second type.

Following the previous steps for 04;?, let us define new variables w; = wy, + nwys and wy = wy, +

muwyt, split the sine function into two exponential functions, and expand exp(:i:igoy) cos lwst)
using Eq. (3.84). What remains to be solved is
©) ©) =2 e
/dt1 /dtgei’(“t““%‘ ) eFilitzte; ) giwits g—iwats H COS Ny, Wyt H COS My, Witts. (3.90)
L=1 l=1
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Again we truncate at large values of Ly, Ly and n;,, m;, in the expansions and express the
cosine functions as two exponential functions, then analytical formulae for these integrals

) (0)
Filut24¢57) take opposite

. . . , (0)
are easy to derive. One thing to note is that when eFilti+0”) and e
signs, the result we get may have an w; —ws in the denominator, thus the expression becomes
undefined in the special case w; = wy. Actually there is no problem here because in this case

the numerator will also be 0. What we need to do is to rewrite the expression in the form of

a sinc function to avoid numerical problems in coding.

Numerical Results

As a simple example, we consider an entangling gate for two ions in the 100-ion crystal
shown in Fig. 3.1(a) and make a similar plot as Fig. 2.4 by scanning the detuning of the
laser. To be specific, we consider 100 '"Yb™ ions in a trap with trapping parameters a =
(—0.015, —0.015, 0.03) and g = (0.3, —0.3, 0), and an RF frequency w,; = 27 x 50 MHz. The
two ions we consider are indicated in red in Fig. 3.22, which shows the equilibrium trajectories
of the ions. Counter-propagating laser beams with a wavelength around A = 355nm are
applied in the z direction to form a phase-insensitive geometry (see Chapter 2), and the
ions are cooled to the Dopper temperature kgT = hI'/2 with the spontaneous emission rate
[’ = 27 x 20 MHz for '™ YDb" ions. Suppose we use ng, = 15 segments for a total gate time
7 = 300 pus. The optimal gate infidelity is shown in Fig. 3.23 as we scan the laser detuning
p. This is only a rough scan and we have not optimized the choice of ng, and 7; but as
we can see, high gate fidelity of 99.9% is still possible when we consider the micromotion.
In Fig. 3.23(b) we show a comparison for different truncations of the micromotion. The
computation for an expansion to higher order (truncated at L = 5 for the equilibrium

trajectories and ney, = 5 for the high-frequency modulation of the normal modes) is about
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Figure 3.22: Equilibrium trajectories of the ions in the trap. The two ions on which we apply
the entangling gate are colored in red.

50 times slower than the lower order one (L = 1 and ne, = 1); but clearly this time cost
is worth it because the gate infidelity can differ by one order of magnitude. We expect the

difference to be more significant for ions with larger micromotion amplitudes.

Note that for this example the micromotion along the z direction is much smaller than in
other directions, so we could have gotten much faster convergence had we applied the laser
beams in the z direction; but here we just want large micromotion to demonstrate the idea.
Also note that the timing of the algorithm scales linearly with the number of ions (number of
normal modes) and linearly with the number of segments (because the most time-consuming
part of the algorithm is the p = ¢ double integral of the two-qubit rotation angle); and the
scan of the gate parameters can be performed in parallel. Therefore even though the design
of the gate with micromotion is much slower than that without micromotion, we can still

expect it to work for hundreds of ions and hundreds of pulse segments.
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Figure 3.23: (a) Optimal gate infidelity 6 F for a scan of the laser detuning p over the whole
spectrum of the normal modes of the crystal. Note that the resolution of this plot is not
enough to show all the structures of the curve. (b) A zoomed-in scan for a small range of
frequencies at the high-frequency end. (We avoid the use of the low-frequency end, which
may be sensitive to the soft modes, even though it seems to have higher fidelity.) The blue
curve is optimized for ions’ motions truncated at L = 5 for the equilibrium trajectories and
at Ny = 5 for the high-frequency modulation of the normal modes. The red curve is what
we would have gotten using the same optimized laser sequence if we truncated at L = 1 and
Necut = 1.
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Chapter 4

Simple Application in Medium-Sized Ion Crystal

Having seen how the basic quantum operations can be realized in a general ion crystal, let
us consider a simple application in a medium-sized crystal with tens of ions: the quantum
simulation of Ising model with arbitrary all-to-all coupling. First we will review the previous
work on analogue simulation of the Ising model with arbitrary coupling. After showing some
disadvantages of this scheme, we then move on to a proposal using digital simulation. Many

of the formulas and techniques used here are directly generalized from the previous chapters.

4.1 Quantum Simulation of Ising Model in Ion Trap

4.1.1 Ising Model

An Ising model is described by the Hamiltonian

H=Y ho!+Y Jjolol. (4.1)
i ij
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Its classical version (0f = £1) was invented by Wilhelm Lenz in 1920 to study magnetism
and was first solved in 1D by Ernst Ising in 1924 [92]. In two or higher dimensions, the Ising
model shows an order-disorder phase transition as the temperature changes, which has been

widely studied both analytically [93,94] and numerically [95-97].

Its quantum counterpart, the quantum Ising model, is also one of the simplest spin models
that show non-trivial properties of quantum magnetism such as phase transition [98] and
spin glass phase [99]. Thus it is considered as one of the best candidates to demonstrate
the idea of quantum simulation [100]. Several experiments have been conducted for small
to medium-sized systems [28,101-104] using trapped ions, which provide strong flexibility in

the coupling strength between the spins.

4.1.2 Analogue Simulation

Here we briefly review the scheme of Ref. [105], where an Ising model with arbitrary all-to-all

coupling is simulated by the effective Hamiltonian of the system.

To start with, we go back to the laser beam scheme in Chapter 2 with the unitary time
evolution described by Eq. (2.23). For fast two-qubit entangling gates, we apply strong laser
driving on the two ions with small detuning to the phonon modes, which can lead to strong
entanglement between the qubit states and the phonon states; then we optimize the gate
parameters such that at certain gate time 7, the two-qubit phase ©;; is at the desired value

of +7/4 while the residual entanglement to the phonon modes is minimized.

This time, let us consider weak laser beams on all the ions at the same time, with large
detuning such that all the phonon modes are only weakly excited. In this limit the ¢; and

¢, terms in Eq. (2.23) can be regarded as small perturbations, while ©;; is governed by a
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linear term in the evolution time, i.e. the evolution under a constant Hamiltonian. More
rigorously, we assume §2; < pu, nkb;?Qj & | — wg|, then the unitary evolution is effectively

governed by a time-independent Hamiltonian [101]

Heff = Z Jijo—fo—;:7 (42)
1<J
where
Jii = Q . 4.3

This interaction is usually fitted by a power law: J;; = Jo/|i — j|* with 0 < o < 3 for a 1D
chain [104]. The additional terms in Eq. (2.23) act as small fluctuations around exp(—iHgt)
at the order of O(nb5€; /|1 — wg|), which does not increase with the evolution time. Be-
sides, there is a carrier term, which we compensated by single-qubit gates when designing

entangling gates, at the order of O(€2;/pu).

If we apply laser beams with multiple frequency components (because for all-to-all coupling
there are N(IN — 1)/2 independent parameters, it should suffice to use N frequencies with

adjustable intensity on each of the N ions), the coupling strength is given by [105]

b bkwk

=Y 0 QaFy 4.4
- Z Fijn (4.4)

n

ZQZ Q

where €2;,, describes the intensity of the laser beam whose detuning is 1, on the ion ¢. By
solving these N(N — 1)/2 equations for {2;,,} we get the required laser beams to simulate

this Ising model.

Let us now estimate the influence of the leading order error terms on the quantum simulation.

Usually in this type of experiments, we prepare an initial state, apply the Hamiltonian
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for certain time and then make measurements of the final states [100]. Ideally we want a
unitary evolution exp(—iHgt), while the error terms will change the probability distribution
of measuring the final states. This can be characterized by the fidelity between the ideal
and the real final states, which can be computed in the same way as Chapter 2: we have an
infidelity of Y7 (nx + 1/2)|mb5/ (1t — wi)|* from the entanglement to the phonon modes,
assuming a phonon number of ny, in the k-th mode, and an additional infidelity of 3. [€;/u[?

from the carrier terms.

However, in many cases we do not want to simulate a constant Hamiltonian, but vary the
parameters adiabatically. This is used, for example, to find the ground state of a final Hamil-
tonian, from an initial Hamiltonian whose ground state is easy to compute and to prepare.
In this situation, the errors are more difficult to bound even if the adiabatic condition is
satisfied. The reason is that, for adiabatic evolution, we do not care about the intermediate
Hamiltonian so long as the change is slow compared with the gap of the Hamiltonian; but to
evaluate the errors in the unitary evolution, we must know the detailed form of parameters
such as €, ,(t) and ,(t) so that we can integrate the whole process, and usually we cannot

get an analytical result.

Another disadvantage of this scheme is that the coupling strength between different ions
is low, thus it will be sensitive to other noise and errors in the experiment. Suppose we
can tolerate an error of ¢, and we assume ground-state cooling for all the phonon modes
to minimize the error. Here we consider two limits: (1) if the laser beams are detuned
close to a single motional sideband, say, mode k, our estimation of infidelity requires that
kb /(1 — w)|* S e Then the coupling between ions 7 and j is of the order J;; <

ewp(p — w) /(1 4+ wi) ~ €lp — wi|. To neglect the effect of all the other phonon modes,

|t — wg| needs to be much smaller than the detuning to the other modes. For a 1D or

135



2D ion crystal which is used for this type of experiments, the spectrum of the transverse
modes is typically already very small, and to be far detuned to all the other (N — 1) modes
we need a further factor of 1/N. Actually, Ref. [105] estimates the coupling strength for
nearest neighbor ion pairs to be 10-10> Hz for a chain of tens of ions. (2) In the other limit,
we assume |p — wg| is large for all the modes. Then we can replace wy by their average w
because the spectral is narrow. However, note that in Eq. (4.3) we have the summation of
bfb? over k, which vanishes due to the orthogonality of the normal modes. Therefore for the
leading order term we must expand wy around @ to the first order. Actually, the wy in the
numerator of Eq. (4.3) cancels that in the 77, thus the only k-dependent part is the p? — w?
term in the denominator. We can bound the coupling as

bkbk
Jij ~Q; Z il 2w6wk

Z |1726kbk9 Q. |2w2‘6wk‘
T (w2 (ptw)?

Z|n2bkkaQ| 20026
S22 T —op oy

2
Z(ﬁbfﬁi)Q 3 b\ " 2026
—~\p—o —~\p-—w ) (p+)?

20%6
< _ 45

with dwy, = wi, —w and 0 defined as the whole range of the spectrum. In the above derivation
from the third to the fourth line we have applied the Cauchy-Schwarz inequality. Again we
see that the coupling is bounded by the error tolerance times the range of the spectrum,
which is small for typical experiments. For example, if we consider a trap with transverse

trapping frequency of several MHz and a phonon mode spectrum of about 1% the width
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(see the example we considered in Chapter 2), and if we want the error to be less than 1%,
the largest coupling strength we can get is only of the order 102 Hz. Furthermore, in this
regime we approach the J;; ~ 1/]i — j|* scaling and thus are not able to arbitrarily control

the coupling strength.

4.1.3 Digital Simulation

Another way to approximately simulate the Hamiltonian is to apply quantum gates that
correspond to the unitary evolution of the system at a series of discrete time points, a.k.a.

digital quantum simulation [100].

This method is very similar to the design of an entangling gate between two ions. The basic
idea is still to minimize the residual entanglement to the phonon modes af [Eq. (2.25)] while
setting ©;; = J;;0t at small gate time 0t for all the ion pairs [Eq. (2.28)]. Then by repeatedly
applying this quantum gate we simulate the evolution under the Hamiltonian ), i Jijoio;.
To realize arbitrary coupling among N ions, which corresponds to O(N?) degrees of freedom,
we can apply O(N) segmented pulses to the N ions. Note that if we have a lower bound
on the length of each segment, here the total gate time will scale as O(N). In comparison,
if we apply the entangling gates between any two ions one after another, the timing will
be O(N?). (We can use the method of Sec. 3.2 to parallelize some gates, but here we want
arbitrary coupling between the ions and thus the distance between an ion pair on which we
appliy the gate can be as large as N. Then the scheme of Sec. 3.2 does not work.) It is

difficult to completely suppress the residual coupling to the phonon modes, so instead we

consider the following optimization problem, which is a natural generalization of what we
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have solved for the gate design in Sec. 2.1.3:

N
hw
min E Qr A*T AF coth b Q,;
@ = ! zk: Lo 2kgT

st. QIy0IQ =g, -0t (i <) (4.6)

where €; is a column vector for the pulse sequence on ion i, and J is a real symmetric
matrix describing the Ising coupling between the ions. A¥ (row vector) and 47 (matrix) are
defined in Eq. (2.51) and Eq. (2.52) (after symmetrization). Note that the original Eq. (2.52)
is derived for same laser sequence on both ions, and here we need a small modification for

different €; and €2;, which corresponds to the symmetrization of the v matrix.

This problem of quadratic optimization with quadratic equality constraints is in general
NP-hard, but for small to medium-sized system it is still possible to find good numerical
solutions, and in most cases we do not need to find the global minimum, but only some
“good enough” solutions with infidelity below certain error tolerance. The similar technique
has recently also been used to design parallel gates [106]. Note that different from what
we considered in Sec. 3.2, this scheme is difficult to generalize to large crystals due to the

difficulty in solving the parameters.

As an example, let us consider a linear chain of N ions with a uniform spacing of d =
8 pm. Similar to Sec. 2.2 we assume a transverse trapping frequency w, = 27 x 3 MHz, a
temperature of kgT' = hw, and Lamb-Dicke parameters 7 ~ 0.11. Numerically we find that
Ngeg = 2N segments and gate time 7 = 35N us seem to work well for randomly generated
Jot matrices whose entries are sampled uniformly from [—1, 1], with an error around or
less than 0.2% per ion. Note that both the achieved phase Jdt and the error from residual

phonon excitation scale as |[€2]?, so a simple rescaling of the laser intensity will not reduce
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the gate error because then we need to repeat the gate for more times to reach a targeted

two-qubit phase.

In Fig. 4.1 we show the time it takes for MATLAB to solve this optimization problem with
different system sizes N = 10, 15, 20, 25, 30. It seems to follow a power law ¢t oc N°. This
suggests that first designing the laser sequence on a classical computer and then performing
the quantum simulation on the ion trap system should be faster than a direct classical
simulation of the Ising model for large N, which requires an exponential scaling. However,
note that for larger systems it becomes difficult for MATLAB to find a solution to the
quadratic constraints in Eq. (4.6), which is required to start the optimization process; so the

N scaling may not work for larger N.
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Figure 4.1: Log-log plot for the time ¢ to find a local minimum of Eq. (4.6) vs. the system
size N. For each N we randomly generate five J matrices, whose entries are uniformly
sampled between [—1, 1], to estimate the average timing and the error bar.

Unfortunately, the effective coupling strength here goes down as 1/NN because the gate time 7
we use is proportional to V. Because the analogue simulation in Sec. 4.1.2 also has a similar

problem, it seems this scaling is inevitable if we want arbitrary all-to-all coupling between
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the ions. Nevertheless, the digital method should be less vulnerable to errors compared with
the analogue simulation because the carrier term and the coupling to the phonon modes are

already suppressed in the gate design.

After finding a good solution with small errors, we can use it to simulate an Ising model
with arbitrary connectivity by rescaling the laser intensity to match different evolution time,
or by repeatedly applying the gates. As is mentioned in the previous subsection, we may
also want to vary the Hamiltonian adiabatically. For example we may want to simulate the

following Hamiltonian

H(t) = aft) (Z hio? + ) Jij0f0f> + B(t)hg Z oZ, (4.7)

1<j

with a(0) =0, a(T) =1, 5(0) = 1, B(T') = 0 where T is the total evolution time. At t =10
the ions can be prepared in [¢)g) = |00---0), the ground state of H(0) (hy < 0). Then if
a(t) and B(t) changes slowly enough, the system will adiabatically go to the ground state of
H(T) after the evolution. To demonstrate the idea of digital simulation, we simply assume
a(t) and S(t) are linear in time. Let us first consider a simple way of discretization using

piecewise-constant «(t) and [5(t) with M steps

U = B =1-— (m=1,2,---, M), (4.8)

m
M

SE

and apply a series of gates to the system (see e.g. [100])

) = 67iﬂmH26t€fiamH15t|wmil> (4.9)

where 6t = T/M, H, = Y, hiof + 3, _; Jijofof and H, = hg )_; 0f. In the limit of large M,

i<j
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we expect the discretization error on the final state to be O(1/M), hence O(1/M?) on the
fidelity. Note that at each step the two single-qubit rotation terms can be combined into a

single rotation for further simplification.

However, this is not the best way for discretization. Without adding more gates, we can

apply second order Trotter expansion [4,107,108] to reduce the discretization error:

M-1
U(O,T) :e—iH(tM)(St/Z [H e—z’H(tj)dt] e—z’H(tO)ét/z +O((5t2)
j=1
[M—1
— o tHz0t/2 H e—zﬂjHzét/26—z‘ajHwéte—zﬂszétﬂ] e_inétm—l—O(étQ)
L j=1
[M—1

:efiHISt/Z H eiﬁj+1/2Hzét€iasz5t] 671B1/2H26t_'_0<5t2> (4.1())
L j=1

where we have used the linearity of a(t) and (t) to combine terms, and [ [ means multiplying
the operators one by one on the left. The first evolution under H, can be removed because
the initial state is an eigenstate. Now the error on the final state is O(1/M?) and then the
infidelity is O(1/M*). Even higher order Trotter expansions can also be applied to further

reduce the discretization error or the required number of steps for a given error tolerance.

141



Chapter 5

Outlook

Based on what we have seen in this thesis, there seems to be no fundamental limit in
conducting quantum computing directly on a large ion crystal. We discuss how high-fidelity
entangling gates can be designed in a small ion crystal in Chapter 2. Then in Chapter 3, we
show that large ion crystals can still be stable in the RF trap and the motions of the ions
can be accurately computed, thus allowing for high-fidelity gate design. Next we show that
the crosstalk of the driving on different ions decays cubically with their distance. Therefore,
when designing entangling gates for nearby ions in a large crystal, we can ignore all the ions
far away and effectively work with a small to medium-sized ion crystal, where the previous
scheme can work. Furthermore, these entangling gates can be applied in parallel, which may

greatly reduce the circuit depth.

However, many technical problems do exist and may require huge amount of efforts to solve.
In Chapter 2 we see that sophisticated control in laser intensity and detuning is needed to
improve the gate fidelity; in Chapter 3 the micromotion and soft normal modes arise and
require more advanced methods for individual ion addressing. Moreover, even though the

effect of micromotion can be included into the gate design using the theoretically computed
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phonon modes in the crystal with the corresponding micromotion patterns, what we have not
discussed is how sensitive these modes are to the experimental noise and imperfections. How
much will the crystal structure and the normal modes change if the RF voltage undergoes,
say, 1% variation? Is the gate design robust against these types of fluctuation? Can we
calibrate the phonon modes and micromotions in experiments? These may be the topics for

future studies.

Finally we briefly mention one possible direction to solve the problem of micromotion. As is
mentioned in Chapter 3, the existence of micromotion will increase the time cost in designing
the high-fidelity gate (although still within reach), and the large micromotion of the ions
in their equilibrium configuration may cause difficulty in focusing the laser beams on them.
Now if we use a pulsed laser with a repetition rate equal to the RF frequency, then the ion
will be at the same position every time a pulse arrives. In this sense, the micromotion will
have no effect on the gate apart from a constant Doppler shift due to the velocity of the ion
at the time of the pulse. Currently pulsed laser is already utilized in the experiment of ion
trap quantum computing to generate a frequency comb and produce the desired detuning
for the Raman transition [29,30]. If the repetition rate of the laser can be synchronized with
the RF field, we would expect a great simplification in the design and the implementing of

entangling gates in a large ion crystal.
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