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Figure 0.1: Jackson Pollock No 1. Lavender Mist, 1950

“Through his drip action technique, Pollock would create layers upon
layers of paint, created in a chaotic assemblage of drips and splashes.
Physicists have studied Pollock’s canvases, such as Lavender Mist, for
fractals, which naturally occur out of chaos. Some art scientists, such as
Richard Taylor, have determined that the more chaotic Pollock’s drippings
became, the closer they resembled naturally occurring fractals, and that his
chronologically later paintings displayed these characteristics more so than
his earlier works, which were less chaotic [1].”
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ABSTRACT

Turbulent flows are characterized by chaotic variations in state variables and are commonly

found in many applications such as jet engine mixing and flow over bluff bodies. Large

Eddy Simulations (LES) of these chaotic flows have already proven to be useful to the

design process. However, LES is resource and time-intensive. Application of output-based

methods for error estimation and mesh adaptation would decrease the cost of these chaotic

simulations while still retaining their overall accuracy. However, a direct application of

unsteady adjoint-based methods is not possible due to the flows’ inherent sensitivity to

the initial conditions and the exponential growth of the corresponding adjoint solutions.

This dissertation proposes the Hyper-Reduced Order Modeling-Least Squares Shadowing

(HROM-LSS) method, which combines model reduction principles with adjoint sensitivity

techniques for chaotic flows to calculate accurate adjoints that are cheaper to solve for than

the Least Squares Shadowing (LSS) method on its own. All primal solutions are solved us-

ing the discontinuous Galerkin finite element method. Results of the HROM-LSS method

for the Kuramoto-Sivashinsky equation and the NACA 0012 airfoil at high Reynolds num-

bers show promise for this combined method and have been shown to outperform the LSS

method when calculating the effect of the discretization errors on the output. In particular,

the average CPU times for the HROM-LSS method are reduced by as much as 97.44% for

short time simulations and as much as 64% for longer simulations, making the HROM-LSS

method a more practical option to calculate adjoint for chaotic flows in order to perform

output-based error estimation for turbulent flows.

xiii



CHAPTER I

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) has evolved to become more sophisticated to solve
much more complicated problems. With the aid of increasing computational power, CFD
has allowed aeronautical engineers and scientists to simulate flow over new conceptual
aircraft configurations and to accurately predict desired outputs such as lift and drag that
would otherwise be difficult or expensive to find from experiments. This increased predic-
tion capability make it possible to design more innovative and more efficient aircrafts.

The computational power needed to perform high-fidelity CFD simulations has been
increasing for many years. Moore’s law, construed in 1965, first stated that transistors were
shrinking so quickly that every year the number of transistors that could fit onto a chip
doubled. In 1975, it was adjusted to double every two years. This prediction has been
consistent for the past 50 years. However, the reality is that the number of transistors that
can fit onto a chip is beginning to diverge away from Moore’s law and to plateau. Therefore,
computer chip manufacturers and researchers who rely on the increase in computational
power will need to become more creative in the way the computational resources are used.
More powerful algorithms and new advances in computational tools are needed to make
simulations more efficient and less computationally expensive for CFD.

One way to reduce the computational resources required to run complicated CFD simu-
lations is to analyze the effect of the errors on the simulations. This dissertation in particu-
lar focuses on the effect of the discretization errors on the output, which is quantified using
the output-based error estimation method. Output-based error estimation has been proven
to work successfully for steady and unsteady, non-chaotic cases. However, application of
output-based error estimation for turbulent flows has been limited. Understanding and be-
ing able to predict the effect of the discretization errors on the output for turbulent flows,
will allow one to provide more cost effective CFD simulations for much more complicated
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problems.
From the perspective of aerodynamics, turbulent flows are chaotic and are unique com-

pared to steady and unsteady flows, because they are characterized by chaotic variations
in state variables such as velocity and pressure. These variations stem from heavy mixing
in the flow, which is found in many different aerospace applications such as jet engine
mixing and flow over bluff bodies. In CFD, these chaotic flows can be found in numerical
simulations of airfoils at high angles of attack and at high Reynolds numbers. The instanta-
neous drag and lift for these particular cases lack patterns and show chaotic variations with
time. From the perspective of hydrodynamics, flexible hydrofoils experience complicated
behaviors due to the interactions of the hydrofoil’s natural frequencies and the fluid. A sim-
ilar behavior can occur for flexible airfoils in aerodynamics. These particular conditions
can lead to flutter when the structure reaches its natural frequencies. These instabilities at
high Reynolds numbers can lead to chaotic responses that are dominated by the natural fre-
quencies of the structure. Flutter leads to structural failure, requiring the need to accurately
predict the natural vibration frequencies and characteristics of the flexible foil. Applica-
tion of output-based error estimation for these cases in aerodynamics and hydrodynamics
can decrease the computational cost of these simulations without sacrificing accuracy by
estimating the effect of the discretization errors on the output of interest.

To simulate these chaotic flows, Large Eddy Simulations of turbulent flows are used.
Large Eddy Simulations (LES) are important due to the fidelity of information they provide
in the design process; however, traditional prediction tools in CFD do not work for LES.
This is due to the fact that turbulent flows are chaotic, meaning that they are inherently
unpredictable. Turbulent flows are computationally expensive as well, and therefore direct
numerical simulation is not a practical option for the foreseeable future. Overcoming this
high computational cost will open new opportunities to efficiently simulate turbulent flows.
This dissertation makes it possible to economically simulate turbulent flows by focusing
on the capability of calculating adjoints for chaotic flows, which are used in output-based
error estimation and mesh adaptation.

1.2 Background

Figure 1.1 shows that there are many different kinds of errors associated with the under-
standing, qualification, and quantification of a physical process. There are errors associated
with the model chosen to emulate the processes in nature. There are convergence errors
found in the process of acquiring the solution from the systems of equations found from the
governing equations. Experiments allow scientists and engineers to find data that describe
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the natural processes; however, there are errors associated with the observations that are
made to acquire these data. Then there are errors in the scientific process where the experi-
mental results and the numerical results are compared. These errors compound, demanding
the need to minimize the error throughout the entire scientific process. The main type of
error relevant to this research is the discretization errors and how it affects the outputs of
interest. Methods used in computational fluid dynamics to solve governing equations that
model natural processes include the finite difference method, the finite volume method, and
the finite element method. In finite differences, discretization errors can be demonstrated
by looking at the derivative f ′(u) at u = u∗ in Figure 1.2. To find the derivative at point
u∗, The simple approximation of f ′(u∗) can be found in different ways including the back-
ward difference, the central difference, and the forward difference as seen in Figure 1.2.
The formulae are

Forward : f ′(u∗) ≈ f(u∗ + ∆u)− f(u∗)

∆u

Backward : f ′(u∗) ≈ f(u∗)− f(u∗ −∆u)

∆u

Central : f ′(u∗) ≈ f(u∗ + ∆u)− f(u∗ −∆u)

2∆u

(1.1)

respectively. As seen in Figure 1.2, each numerical method to calculate f ′(u∗) produces
a slightly different approximation for the derivative and is each different from the actual
derivative. This error is referred to as the discretization error and is one of the main interests
of this research.

1.2.1 Error Estimation and its Application to Chaotic Systems

In this dissertation, the discretization method of interest is the discontinuous Galerkin (DG)
finite element method, which discretizes the governing solution for each element locally in
space. This method discretizes the governing equation in space by using piecewise high-
order polynomials for the approximate solution. These high-order polynomials, or basis
functions, are used to approximate the solution for each element and are discontinuous be-
tween the elements. The approximate solution is found from the summation of the state
coefficients and the corresponding polynomial basis functions. The number of high-order
polynomials associated with the solution for each element depends on the approximation
order of the method, p, where the order of the solution is defined as p+1. For this research,
high-order solutions, p > 2, are of special interest for their high accuracy and relative to
computational expenses. DG is used as well due to its ease of use with mesh adaptation
due to its ability to recover high-order convergence. Along with their ability for high-order
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Figure 1.1: Flowchart highlights the different types of errors associated with the quantifi-
cation and qualification of physical systems.
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Figure 1.2: Example of discretization errors among different finite-difference methods

approximations, DG methods are highly parallelizable and can handle complicated geome-
tries.

One particular prediction tool that can be used to understand the effects of discretiza-
tion errors in computational fluid dynamics is output-based error estimation. In this method,
one is interested in predicting how the discretization errors from the DG method affect the
output of interest such as drag, in terms of the residual of the discretized system. Typi-
cally in output-based error estimation, one is interested in the discretized error between
the coarse space solution, order pH , and the fine space solution, order ph, where typically
ph = pH + 1. This information can be used to reduce the costs of these expensive simu-
lations without sacrificing accuracy. Output-based error quantification and localization has
the ability to provide more confidence in output values computed from chaotic simulations
and to increase the efficiency of meshes through adaptation. Such adaptive capability would
make LES simulations more efficient, cheaper, and more practical for analysis and design.

There has already been much successful research in steady and unsteady adjoint cal-
culations and output-based error estimation, which rely on the linearization of the residual
and the output of interest. Its success is dependent on the calculation of derivative quan-
tities, adjoints, which are sensitivities of the outputs of interest in terms of the discretized
residual. Methods like output-based error estimation for steady and unsteady systems that
are dependent on adjoint calculations have advantages compared to other techniques [2].
First, these methods produce error estimates that can be used as confidence intervals to de-
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termine whether or not accuracy in the output has been obtained. Second, the errors can be
localized elements in a mesh such that they can be used for mesh adaptation to reduce error.
As a result, output-based methods produce better output convergence results than that of
residual-based or uniform refinement techniques for deterministic problems [2]. The goal
of the present work is to obtain similar improvements for chaotic problems.

However, application of the current traditional adjoint method for chaotic systems fails
to produce useful adjoints for output-based error estimation, hindering the application of
output-based error estimation for turbulent flows. The main goal is to study if it is possi-
ble to apply the alternative sensitivity technique, known as the Least Squares Shadowing
method by Wang et. al to output-based error estimation, and whether or not it is possible to
improve on it further. The challenge to this is the inherent nature of chaotic systems, which
are highly sensitive to their initial conditions. Over a very short period of time, a perturbed
trajectory of a chaotic system will diverge away from the original trajectory, preventing
one from using the traditional linearization techniques used for steady and unsteady flows.
Overcoming this issue will open new opportunities to efficiently simulate turbulent flows
via output-based error estimation for mesh adaption. With better prediction capabilities,
one can use output-based error estimation and mesh adaption to increase the accuracy and
efficiency of these simulations.

1.2.2 The Least Squares Shadowing Method

The Least Squares Shadowing (LSS) method provides a solution to calculating usable
chaotic adjoints that do not diverge compared to the traditional adjoint method. In order
to use the LSS method, several theories and assumptions need to be made about chaotic
systems. The first idea is ergodic theory, which states that for a chaotic system whose ini-
tial conditions are perturbed, the time average output will converge to its ensemble average
output. In other words, the initial conditions have very little influence on the long time out-
put averages. This leads to the idea that the initial conditions can be relaxed. Thus instead
of using slightly perturbed conditions to calculate the adjoint, a shadow trajectory is found
that exists very close to the reference trajectory. Note that this new shadow trajectory may
not have initial conditions that are close to the original initial conditions, but this is incon-
sequential according to ergodic theory. The LSS method thus uses ergodic theory to search
for a shadow trajectory that [2] follows the physics of the original problem. According to
the shadowing lemma, this shadow trajectory does indeed exist for a hyperbolic or quasi
hyperbolic system, which includes chaotic system’ that have positive, neutral, and nega-
tive Lyapunov exponents. Similar to eigenvalues, these exponents and their corresponding
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covariant Lyapunov vectors, which describe the direction of the distortion dictated by the
exponents, control the amount of folding and stretching that exists for a chaotic system.
This continuous stretching and folding is what gives a chaotic system its characteristic
sensitive behavior to its initial condition, also termed the butterfly effect.

Thus, for a quasi-hyperbolic chaotic system, the LSS method is a minimization problem
that searches for a shadow trajectory that stays as close as possible to the reference trajec-
tory with the constraint that the shadow trajectory is a solution to the perturbed governing
equation. This method has already proven to be accurate at calculating chaotic sensitivities.
Incorporating the LSS method in output-based error estimation will provide the ability to
predict the effect of discretization errors on outputs of interest for turbulent flows.

1.2.3 Model Reduction for Chaotic Flows

The last part of this research is the incorporation of model reduction techniques for chaotic
systems. Model reduction has already been shown to be successful for linear and nonlinear
chaotic systems at reducing the size of the states by projecting the states to a smaller sub-
space. As a result of this projection process, the states and the reduced states can be related
via a set of reduced order basis functions, Φ. Model reduction is an important part of the
present research in output-based error estimation for chaotic flows, because application of
the LSS method is computationally expensive. Applying LSS to large scale problem such as
LES incurs high computational costs due to the need to solve a large linear system in LSS.
In order to make LSS more practical, model reduction is needed. Before applying model
reduction techniques, it will be shown that it is possible to find a reduced-order model for
chaotic flows and that such a model can used with LSS to inexpensively find an adjoint. As
a result, model reduction techniques make output-based error estimation for chaotic flows
much more efficient and practical for large scale chaotic problems, such as LES.

1.3 Thesis Overview

This dissertation presents an alternative technique to calculating chaotic adjoint for
output-based error estimation. By providing this ability for computational fluid dynamics,
it will be possible to improve accuracy and decrease the computational costs associated
with simulations of complicated chaotic flows such as turbulent flows.
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The objective of this dissertation is to improve the accuracy and reduce the costs of high
fidelity chaotic simulations using output-based error estimation with least square shad-
owing, and model reduction techniques.

In achieving this goal, this dissertation makes the following contributions to the field of
computational fluid dynamics:

• Provides a way to efficiently and practically calculate accurate adjoints for chaotic
flows via the Hyper-Reduced-Order Modeling-Least Squares Shadowing method.

• Extends the nonlinear model reduction technique, the Least-Squares Petrov-Galerkin
method, to chaotic flows and shows that it is possible to find an accurate reduced
order model that can still produce accurate time-average outputs of interest over long
periods of time.

• Extends the Gauss-Newton with Approximated Tensors technique to chaotic systems
and shows that it is possible to apply this reduction technique without losing accuracy
in chaotic simulations.

• Implements the Least Squares Shadowing method using the discontinuous Galerkin
method for the 2D Navier-Stokes equations and the Kuramoto-Sivashinsky equation.

• Shows successfully the implementation of output-based error estimation for high
Reynolds number laminar flow that can be used further for mesh adaptation.

1.3.1 Organization

This dissertation provides more detailed background information and results where appli-
cable in each chapter. The organization of this work is presented in the following way:

• Chapter II presents an overview of the finite-element method, specifically the dis-
continuous Galerkin method and derives the spatial and temporal discretization in its
weak form. Included in this chapter is an explanation on how the fourth-order deriva-
tive is discretized, which is needed for the fourth order one-dimensional Kuramoto-
Sivashinsky equation.

• Chapter III introduces the traditional continuous and discrete adjoint methods and
the output-based error estimation method. The chapter explains what the adjoint is
and why it is important in error estimation.
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• Chapter IV delves into chaos and introduces the basics of chaos theory. In addition,
several tools such as ergodic theory are introduced. Three different chaotic systems
are introduced here, the Lorenz Attractor, the Kuramoto-Sivashinsky Equation, and
the pseudo chaotic Navier-Stokes equations. The traditional adjoint method from
Chapter III is applied to each of these equations to show that the method fails for
chaotic systems. This inability to find usable adjoints for chaotic systems makes it
difficult to apply output-based error estimation that would make LES cheaper to sim-
ulate.

• Chapter V introduces an alternative method for calculating adjoints, the Least
Squares Shadowing Method, which aims to numerically calculate accurate chaotic
adjoints by relaxing the initial conditions and solving for the adjoint using a shadow
trajectory that does not diverge away from the original solution. Additionally, this
chapter explains how LSS can be accurate, but expensive, for very large problems.

• Chapter VI introduces model reduction via the Least-Squares Petrov-Galerkin
method and hypothesizes that the LSS method can benefit from calculating the ad-
joint from a reduced form of the original states. Before investigating the reduced form
of the LSS method, Chapter VI investigates whether or not it is possible to find an
accurate, robust, reduced-order model for a chaotic system. Additionally, this chap-
ter introduces a method that further reduces the computational cost in calculating the
reduced-order model: the Gauss-Newton with Approximated Tensors method, which
decreases the cost of the calculation of the residuals and the Jacobian for nonlinear
problems.

• Chapter VII finally introduces the combined hyper-reduced order model-least squares
shadowing approach, which aims at reducing the cost of the original LSS method
without sacrificing accuracy.
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CHAPTER II

Discretization Methods

The objective of output-based error estimation is to accurately estimate the effects of dis-
cretization errors on scalar quantities of interest. For the implementation of output-based
error estimation for chaotic flows, the finite element method is employed to discretize the
chaotic governing equations. The finite element method is chosen over the finite difference
method and the finite volume method for its variational formulation and flexibility in intro-
ducing high-order approximation [2], which are favorable for output-based error estimation
and mesh adaptation.

Within the class of finite element methods, the discontinuous Galerkin method (DG)
has been chosen to discretize the governing equations. The motivation for DG includes:
ease of implementing high-order approximations [3, 4], suitability for error estimation [5,
6, 7], and hp-adaption [8], availability of stable viscous discretizations [9, 10, 11, 12, 13],
and a straightforward extension to variational space-time algorithms [14, 15, 16, 17, 18,
19, 20, 21, 22]. DG in particular allows for enrichment and optimization of the solution
approximation space [2].

The development of discontinuous Galerkin methods began in 1973 by Reed and Hill
in the field of neutron transport [23]. Adoption of this method in computational fluid dy-
namics occurred afterwards due to the need to find a method that could efficiently solve
complicated convection dominated problems, such as gas dynamics, modeling of shallow
water, etc. However, Cockburn et. al introduced two main issues that arose with DG [24]:
1) the occurrence of discontinuities and 2) the occurrence of complicated structures near
these discontinuities. These were addressed with the development of numerical fluxes and
slope limiters from finite volume methods for nonlinear hyperbolic equations. DG can be
considered to be a generalization of finite volume methods due to its localized nature. Cock-
burn et. al revealed some advantages that DG has over finite volume and finite difference
methods [24].

• DG’s built-in variational framework provides the ability for high-order approxima-
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tions.

• The observed order of accuracy of DG depends on the regularity of the exact solution.

• DG methods are highly parallelizable due to the discontinuous nature of the method.

• DG methods can handle complicated geometries and boundary conditions.

• DG methods can be used for mesh adaption, because refinement of the mesh does
not need to take into account of the continuity restrictions found in continuous finite
element methods.

DG has been applied to nonlinear hyperbolic problems, convection-diffusion systems,
Navier-Stokes equations, and elliptical problems. Hyperbolic problems use numerical
fluxes and elliptical problems use penalty methods to help stabilize the solution and to
enforce boundary conditions

Lastly, DG has been chosen over the continuous Galerkin method (CG), because DG
finds solutions that are inherently locally conservative to each element and provides more
stability for convection-dominated problems, albeit at the expense of more degrees of free-
dom associated with DG compared to CG [25]. In DG, communication happens between
elements while for CG, communication happens between nodes.

This chapter will first introduce the general mechanics of the discontinuous Galerkin
finite element method. Next, it will provide derivations for scalar advection, nonlinear ad-
vection (Burgers’ equation), second order diffusion, and fourth order diffusion. Addition-
ally, three unsteady solvers will be introduced: discontinuous Galerkin in time (DGTIME),
backward difference formulae (BDF), and the diagonally-implicit Runge-Kutta (DIRK)
methods.

2.1 Discontinuous Galerkin Finite Element Method

The prototypical partial differential (PDE) equation can be written as

r(u) =
∂u

∂t
+∇ · ~F = 0, (2.1)

whereu ∈ Rs is the state vector andFi is the ith component for the flux, which is dependent
on the spatial dimension, d. In the following derivation, the focus will be on unsteady
problems, where ∂u

∂t
6= 0.
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For DG methods, the state, u, can be approximated continuously on each element
in space. The continuous approximation within each element is performed by using lin-
ear combinations of basis functions. In this work, polynomial basis functions for the DG
method are chosen to approximate the solution in space. Note that continuity is not en-
forced between elements. Using basis functions allows for the state for each element to be
approximated as

u(x, y, t) ≈
N∑
m=1

Np∑
j=1

Um,j(t)φm,j(x, y) (2.2)

where

N = number of elements

Np = number of basis functions on an element for order p approximation

φm,j(x, y) = jth polynomial basis function on element m

p = order of spatial basis functions

Um,j(t) = time-varying coefficients on basis nodes

Note that the basis functions within an element have local support on that current element.
Everywhere else along space, the basis functions are zero. This can be seen in 1D in Fig-
ure 2.2. The total number of unknowns for the system isN(p+1). The objective of DG is to
solve for the coefficients Um,j(t) for a particular time t. Unlike CG methods, DG methods
solve for solution approximations that are discontinuous between elements. This adds more
spatial nodes to ultimately solve for, but has the benefit of providing convective stability
and simplifies more complicated refinement such as hanging-node mesh refinement and
local order enrichment. These comparisons between CG and DG can be seen in Figure 2.1,
where TH denotes the set of N elements in a non-overlapping tessellation of the domain.
Given the state approximation for each element in Eqn 2.2, the state coefficients are stored

x
y

TH

u(x, y)

x
y

TH

u(x, y)

Figure 2.1: Solution approximation for continuous Galerkin and discontinuous Galerkin
formulations. Note that flux terms depend on the interfaces between elements only.
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in a vector for all the elements,

U =



Uelem1

Uelem2

Uelem3

Uelem4

...

Uelemk


, Uelemk

=



U0

U1

...

Up+1


, Up+1 =


U1

...

Us

 . (2.3)

Eqn 2.3 shows that each element contains a smaller vector pertaining to the collection of
states at each basis node. Each element will consist of p+1 basis nodes. For each basis node,
the state consists of another vector that contains information about the state approximation
coefficients for the current element and the current basis node.

Before deriving the weak form of the DG method, important quantities at the inter-
face between elements need to be defined. The average and normal jump quantities at the
interfaces are defined as:

{v} =
1

2

(
v+ + v−

)
, {u} =

1

2

(
u+ + u−

)
JvK = v+~n+ + v−~n−, [u] = u+· ~n+ + u−· ~n−

(2.4)

In this work, Lagrange basis functions are used. Note that for p > 0, there are p+ 1 nodes
for each element. The formula for the Lagrange basis functions in 1D is

φi =

p+1∏
j=1,j 6=i

ξ − ξj
ξi − ξj

, (2.5)

where ξ represents a point in reference space. In DG, the weak form will be written for a
global element k, but will be evaluated using a reference element. The mapping between
the global space (x) and the reference space (ξ) is

x = xk− 1
2

+
ξ + 1

2
∆x, ξ = 2

x− xk− 1
2

∆x
− 1, (2.6)

where k − 1
2

refers to the left side of the element and k + 1
2

refers to the right side of the
element. In reference space, ξ = −1 refers to the left side of the element, and ξ = +1 refers
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Figure 2.2: 1D mesh with p = 1 basis function defined for an element k.

to the right side of the element. The 1D basis functions, original space, and the reference
space are shown in Figure 2.2 for p = 1. Again, note that the basis function is 0 everywhere
but the local element, k.

2.1.1 Weak Form

The DG methods seek the solution of the state vector, uh where h refers to a fine space
mesh. The goal is to find the state solution from the semilinear residual form of the govern-
ing equation,

R(uh, v) = 0 ∀v ∈ Vh. (2.7)

where the v are the test functions. Vh is defined as

Vh := {v ∈ L2(Ω)| v|Ωe ∈ Pp(Ωe) ∀Ωe ∈ Th}. (2.8)

Ωe refers to the non-overlapping elements in the domain, Ω, p refers to the polynomial
degree of the solution, and Th refers to the tessellation of the fine mesh. The L2(Ω) refers
to standard Lebesgue space where Ω ∈ R2. The states are defined such that

uh ∈ Vh, (2.9)
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which defines the approximation of the state solution in Eqn 2.2 when the test functions
are set to the polynomial Lagrange basis functions. Thus, given the solution approximation
in Eqn 2.2 and once the test functions have been assigned, Eqn 2.1 can be written in terms
of basis functions in the weak form. The weak form is obtained by multiplying Eqn 2.1 by
basis functions, and integrating over the domain,

Rk,i(u) =

ˆ
Ω

φk,i

[
∂u

∂t
+∇ · ~F

]
dΩ = 0. (2.10)

Integration only needs to be taken for the element that supports the basis function, φk,i
where k again refers to the current element and i refers to the basis functions in that element.
This can be simplified to

Rk,i(u) =

ˆ
Ωk

φk,i
∂u

∂t
dΩ +

ˆ
Ωk

φk,i∇ · ~F dΩ = 0. (2.11)

Integrating by parts for the spatial terms yields,

Rk,i(u) =

ˆ
Ωk

φk,i
∂u

∂t
dΩ−

ˆ
Ωk

∇φk,i· ~F dΩ +

ˆ
∂Ωk

φ+
k,iF̂ (u+,u−, ~n) ds = 0, (2.12)

where
∂Ωk = boundary of element k

k = current local element

φk,i = ith polynomial basis function for element k

~n = outward-pointing normal
~F = numerical flux

+/− = superscript referring to interior/exterior of element k

The numerical flux F̂ resolves the situation in DG where there are double values at the
interface between element k and k + 1, as seen in Figure 2.3. This numerical flux solution
appears in finite volume methods as well. Thus, techniques already exist for computing the
flux and will be explained in the next sections.

Substituting Eqn 2.2 into Eqn 2.12 gives the linear system

R(u) = M
dU

dt
+Rs = 0, (2.13)

whereM ∈ RN×N is the mass matrix andRs contains the spatial residual terms. The mass
matrix M is an element-wise block diagonal matrix where each smaller square matrix of
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Figure 2.3: Flux definition for element k.

element k,Mij , is defined mathematically as

Mi,j = Is

ˆ
Ω

φiφjdΩ, (2.14)

where Is ∈ Rs×s is the state identity matrix and i, j refers to the index of of the global
degree of freedom where 0 ≤ i, j < N . Note that the mass matrix for each element, k,
is the same, because φi is chosen to be the same basis for each element element. If the
problem is linear thenRs = AU andA is the stiffness matrix. The following sections will
go over how ~F is discretized depending on what ~F is. The ~F term in the second integral
of Eqn 2.12 is typically evaluated using quadrature.

2.1.2 Linear Scalar Advection

The linear advection term is characterized by its advection speed ~V and is written as

~F = ~V u. (2.15)

Substituting Eqn 2.15 into the the weak form, Eqn 2.12, gives

Rk,i(u) =

ˆ
Ωk

φk,i
∂u

∂t
dΩ +

ˆ
Ωk

~V · ∇φk,iu dΩ−
ˆ
∂Ωk

~V · ûφk,i ds = 0. (2.16)

The flux term, F̂ (u+, u−, ~n), for advection is computed using the upwinding method with
respect to the normal velocity . The upwinding method gives,

F̂ (u+, u−, ~n) = ~V · û =
1

2

(
~V ·u− + ~V ·u+

)
− 1

2
|~V |
(
u+ − u−

)
. (2.17)
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In 1D, Eqn 2.15 can be written with a scalar velocity as

~F = au. (2.18)

Using Eqn 2.18 in the 1D version of the weak form, Eqn 2.12, gives

Rk,i(u) =

ˆ
Ωk

φk,i
∂u

∂t
dΩ− a

ˆ
Ωk

∂φk,i
∂x

u dΩ + [φk,iaû]
x
k+1

2
x
k− 1

2
= 0. (2.19)

Substituting Eqn 2.2, which is the solution approximating u gives the discretized form of
the spatial part of the total residual,

Rk,i(U) =

p+1∑
j=1

[ˆ
Ωk

φk,iφk,j

]
︸ ︷︷ ︸

M

dUk,j
dt
−

p+1∑
j=1

[ˆ
Ωk

∂φk,i
∂x

φk,jdx

]
Uk,j + [φk,iaû]

x
k+1

2
x
k− 1

2︸ ︷︷ ︸
AU

= 0.

(2.20)
Again, this discretized residual is in the form of Eqn 2.13.

2.1.3 Nonlinear Scalar Burgers’ Equation: Scalar Conservation Law

The nonlinear scalar Burgers’ term is written as

~F =
1

2
u2 (2.21)

Substituting Eqn 2.21 into the the weak form, Eqn 2.12, gives

Rk,i (u) =

ˆ
Ωk

φk,i
∂u

∂t
dΩ +

1

2

ˆ
Ωk

∇φk,iu2 dΩ−
ˆ
∂Ωk

1

2
û2φk,i ds = 0. (2.22)

The flux term, F̂ (u+, u−, ~n), for Burgers’ equation, 1
2
û2, is solved using the Godunov

method [26, 27], which is an entropy-satisfying monotone scheme that generalizes the up-
wind method. The Godunov method computes the interface flux by solving the interface
problem, also known as the Riemann problem exactly. It assumes a piece wise constant so-
lution over each cell and is first order accurate. For this section, uL will refer to the state to
the left of the interface and uR will refer to the state to the right of the interface. Applying
the Godunov method to F̂ = f(u) gives,

F̂ =


min

u∈[uL,uR]
f(u), uL ≤ uR

max
u∈[uR,uL]

f(u), uL > uR
(2.23)
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Eqn 2.23 is valid for any scalar conservation law. For a concave or convex function,
Eqn 2.23 can be expanded and written out as

F̂ =



f(uR), if
f(uL)

∂u
,
f(uR)

∂u
≤ 0

f(uL), if
f(uL)

∂u
,
f(uR)

∂u
≥ 0

f(us), if
f(uL)

∂u
< 0 <

f(uR)

∂u
(expansion)

f(uL), if
f(uL)

∂u
≥ 0 ≥ f(uR)

∂u
and

[f ]

[u]
> 0

f(uR), if
f(uL)

∂u
≥ 0 ≥ f(uR)

∂u
and

[f ]

[u]
< 0,

(2.24)

where us is called the sonic point and refers to value of u for which the characteristic speed
is zero.

Note that for Burgers’ equation, the flux function is convex. Evaluation of the Godunov
flux applied to Burgers’ equation,

F̂B =



1

2
u2
R, if uL, uR ≤ 0

1

2
u2
L, if uL, uR ≥ 0

0, if uL < 0 < uR (expansion)

1

2
u2
L, if uL ≥ 0 ≥ uR and

1

2
(uR + uL) > 0

1

2
u2
R, if uL ≥ 0 ≥ uR and

1

2
(uR + uL) < 0

(2.25)

Eqn 2.22 can be written as Eqn 2.13 once the Godunov flux is applied.

2.1.4 Linear Scalar Second-Order Diffusion

The scalar diffusion term, which is a second order derivative, is written as

~F = ∇u, (2.26)

Instead of substituting Eqn 2.26 into the the weak form from Eqn 2.12, the governing
equation, Eqn 2.1, is first converted to a first-order system

∇u = ~σ,

∂u

∂t
−∇·~σ = 0.

(2.27)
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To find the weak form, first assume the same order p for both system in Eqn 2.27. Then dot
the first system by ~τ and multiply the second system by φ. Lastly, integrate both equations
over element k to find, ˆ

Ωk

∇u·~τ dΩ−
ˆ

Ωk

~σ·~τ dΩ = 0,

ˆ
Ωk

∂u

∂t
φ dΩ−

ˆ
Ωk

∇·~σφ dΩ = 0.

(2.28)

Integrating by parts and using + and − once again to designate the interior and exterior
element k gives,

−
ˆ

Ωk

u∇·~τdΩ +

ˆ
∂Ωk

û~τ ·~n ds−
ˆ

Ωk

~σ· τ dΩ = 0,

ˆ
Ωk

∂u

∂t
φ dΩ +

ˆ
Ωk

~σ· ∇φ+ dΩ−
ˆ
∂Ωk

φ+σ̂ ds = 0.

(2.29)

Choosing ~τ = ∇φ+ in Eqn 2.29,

−
ˆ

Ωk

u∇· (∇φ) dΩ +

ˆ
∂Ωk

û∇φ+·~n ds−
ˆ

Ωk

~σ· ∇φ+ dΩ = 0,

ˆ
Ωk

∂u

∂t
φ dΩ +

ˆ
Ωk

~σ· ∇φ+ dΩ−
ˆ
∂Ωk

φ+σ̂ ds = 0.

(2.30)

Substituting the first equation into the second equation, one obtains

Rk,i(u) =

ˆ
Ωk

∂u

∂t
φ dΩ−

ˆ
Ωk

u∇· (∇φ) dΩ +

ˆ
∂Ωk

û∇φ+·~n ds−
ˆ
∂Ωk

φ+σ̂ ds = 0.

(2.31)
Integrating the first term by parts gives,

Rk,i(u) =

ˆ
Ωk

∂u

∂t
φ dΩ +

ˆ
Ωk

∇u· ∇φ dΩ

−
ˆ
∂Ωk

u+∇φ+·~n ds+

ˆ
∂Ωk

û∇φ+·~n ds−
ˆ
∂Ωk

φ+σ̂ ds = 0

(2.32)

Rearrange Eqn 2.32 to find the final form

Rk,i(u) =

ˆ
Ωk

∂u

∂t
φ dΩ +

ˆ
Ωk

∇u· ∇φ dΩ

−
ˆ
∂Ωk

(
u+ − û

)
∇φ+·~n ds−

ˆ
∂Ωk

φ+ σ̂ ds = 0,

(2.33)
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where
û = {u} (2.34)

σ̂ =
(
{∇u} − ηf{~δf}

)
·~n (2.35)

~δf represents a vector field corresponding with one face that is supported by two elements
adjacent to the face. ηf is the non dimensional stabilization factor associated with a face f
and should be set such that its value is greater than or equal to the maximum number of
faces on the two adjacent elements [25]. In this research, the non dimensional stabilization
factor is set to ηf = 10. Once in the weak form, the interior penalty (IP) method is chosen
to calculate the fluxes. Known as the the poor man’s DG diffusion flux, the IP method is
defined as

~δ+
f =

1

h+
JuK, ~δ−f =

1

h−
JuK, (2.36)

where h+/h− are the lengths of the elements adjacent to the face f [25]. In 1D, the weak
form for the diffusion equation becomes Note that the interior penalty method is easy to
implement, but lacks strict bounds for the stabilization factor, ηf .

∂u

∂t
− ∂2u

∂x2
= 0 (2.37)

ˆ
Ωk

φk,i
∂u

∂t
dx+

ˆ
Ωk

∂φ

∂x

∂u

∂x
dx−

[(
u+ − û

) ∂φk,i
∂x

]x
k+1

2

x
k− 1

2

−
[
φ+
k,iσ̂
]x

k+1
2

x
k− 1

2

= 0 (2.38)

σ̂ =
1

2

(
∂u+

∂x
+
∂u−

∂x

)
− ηf

1

2

(
δ+
f + δ−f

)
(2.39)

2.1.5 Linear Scalar Fourth-Order Diffusion

Some partial differential equations such as Kuramoto-Sivashinky require the discretization
of a fourth-order derivative. These types of problems can be solved with finite-element
methods, specifically discontinuous Galerkin methods. Discontinuous Galerkin methods
allow for flexible and efficient discretizations of these more complicated problems. The
purpose of this section is to go over how to properly discretize the fourth-order term and
to define the fluxes needed in discontinuous Galerkin methods. The method is referred to
as the IPDG FEM method and was devised by Georgoulis et. al [28]. The flux term for the
fourth-order derivative term is written as

~F = ∇3u (2.40)
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where the divergence of the flux gives the fourth-order derivative. The weak form of
Eqn 2.12 applied to Eqn 2.40 gives

Rk,i(u) =

ˆ
Ωk

∂u

∂t
φ dΩ−

ˆ
Ωk

∇φk,i· ∇3u dΩ +

ˆ
∂Ωk

φk,i∇3u·~n ds = 0. (2.41)

Integrating by parts one again gives,

Rk,i(u) =

ˆ
Ωk

∂u

∂t
φ dΩ−

ˆ
Ωk

∇2φk,i· ∇2u dΩ

+

ˆ
∂Ωk

φk,i∇3u·~n ds−
ˆ
∂Ωk

∇φk,i∇2u·~n ds = 0.

(2.42)

However, Eqn 2.42 is not helpful and requires an additional step before the test functions v
can be assigned to. Georgoulis et al. provides an alternate derivation for the discretization
of the four-order derivative by first introducing a lifting operator [28],

L(v) :W := Vh +H0(Ω)2 → Vh, (2.43)

where H2
0 refers to the standard Hilbertian Sobolev space of index i = 2 of real valued

functions defined on domain Ω. The Sobolev space specifically is characterized by a norm
that is a combination of L2 norms of the function f itself and its weak derivatives up to
a given order, where the weak derivative is defined as not necessarily differentiable but
integrable. The Sobolev space becomes a Hilbertian space as well when i = 2 and is useful
due to its relationship with Fourier series. Again, h refers to the fine mesh. Lifting the test
function v to the Hilbertian Sobolev space gives,

ˆ
Ω

L(v)w dΩ =

ˆ
Γ

(JvK· {∇w} − {w} [∇v]) ds, ∀w ∈ Vh. (2.44)

Note that the states and test functions will be integrated over the entire domain Ω instead of
the element Ωk and the set of faces, Γ instead of the local faces of an element. To solve the
fourth-order derivative, a version of the interior penalty method (IPDG) is use. The IPDG
method finds the states uh ∈ Wh such that the bilinear form, B(uh, v) = 0 ∀v ∈ V , where
B :W ×W → R. The bilinear form is given by

B(w, v) =

ˆ
Ω

(
∇2
hw∇2

hv + L(w)∇2
hv +∇2wL(v)

)
dΩ +

ˆ
Γ

(σJwK· JvK + τ [∇w] [∇v]) ds

∀w, v ∈ W
(2.45)
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When w, v ∈ W , the formulation is inconsistent; however, the formulation is consistent
when uh, v ∈ V . Hence, after setting the test functions v to the polynomial Lagrange basis
functions, the bilinear form Eqn 2.45 written with the unsteady term for a general mesh
becomes

Rk,i(u) =

ˆ
Ω

∂u

∂t
φ dΩ +

ˆ
Ω

∇2u∇2φ dΩ +

ˆ
Γ

[
∇3u· JφK + {∇3φ}+ {φ}· JuK

− {∇2u}[∇φ]− {∇2φ}[∇u] + σJuKJφK + τ [∇u][∇φ]
]
ds = 0

(2.46)

where
σ =

1

{h}3
σ0 τ =

1

{h}3
τ0. (2.47)

h is the length of diameter of the element k. σ and τ are stabilization terms, similar to the
stabilization terms found for the IPDG method used to solve for the diffusion terms, where
σ0 and τ0 must be greater than zero and be sufficiently large [28].

2.2 Unsteady Solvers

Several unsteady solvers are used in this thesis: diagonally implicit Runge-Kutta methods
(DIRK), backward differentiation formulae (BDF), and the discontinuous Galerkin in time
(DGTIME) method. Extensive literature exist for BDF and DIRK schemes, which have
been used for the Kuramoto-Sivashinsky equation and the Navier-Stokes equations. In this
section, DG in time will be introduced as well, as this is used to solve the Lorenz Attractor.
Note that only the temporal discretization errors are of interest for the Lorenz Attractor,
and that only the spatial discretization errors are of interest for the Kuramoto-Sivashinsky
equation and the Navier-Stokes equations.

2.2.1 Discontinuous Galerkin in Time

To find the unsteady solution using a discontinuous Galerkin finite element temporal dis-
cretization (DGTIME), consider the discrete system of Eqn 2.13. Like in space, the tem-
poral domain is split into k, temporal elements, where each temporal element is denoted
by
[
tk− 1

2
, tk+ 1

2

]
. In space, the approximation order is designated as p. In time, the aprox-

imation order is referred to as r. Given r, the solution over a temporal element can be
approximated as

U(t) =
r∑
j=0

U jφj(t). (2.48)
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The goal of DG in time is to solve for the coefficients of this approximation. Like in space,
one multiplies Eqn 2.13 by a temporal basis function φ(t)i and integrate by parts to find a
temporal weak form,

Rk,i = −
ˆ t

k+1
2

t
k− 1

2

M
dφi

dt
U(t)dt+

[
MU (t)φi(t)

]tk+1
2

t
k− 1

2

+

ˆ t
k+1

2

t
k− 1

2

φi(t)Rs(U(t))dt = 0.

(2.49)
Once the total residual has been discretized in time for a given unsteady discretization, the
states can be solved. For this thesis, since the main focus is on nonlinear chaotic systems,
R will be nonlinear, requiring the use of a Newton-Raphson method to solve Eqn 2.49.
With this method the linear update for the ith element is given by

∂Ri

∂U j
∆U j = −Ri(U j). (2.50)

where j refers to the jth state coefficient from the temporal state approximation in Eqn 2.48.
The n+ 1 Newton update to the solution for the ith element is

U j
n+1 = U j

n + ∆U j. (2.51)

2.2.2 Backward Differentiation Formula Method

The next time marching method of interest is the nth order implicit backward difference
formula (BDF), which can be written as

R
(
U i+1

)
=
M

∆t

(
c0U

i+1 + c1U
i + c2U

i−1 + ...
)

+Rs

(
U i+1

)
= 0. (2.52)

The n+ 1 coefficients for the nth BDF scheme are presented in Table 2.1.

Table 2.1: Coefficients for nth order BDF, up until BDF3

c0 c1 c2 c3

BDF1 1 −1

BDF2 3
2
−2 1

2

BDF3 11
6
−3 3

2
−1

3

When using a BDF scheme whose order is greater than 1, BDF1 is used for the first
time step, BDF2 is used for the second time step, etc. until enough previous solutions
exist to perform the nth BDF scheme. Note that BDF1 and BDF2 is stable;however, BDF3
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and higher are unstable and do not give the correct convergence rate. Thus the BDF1 and
BDF2 time marching scheme is used to solve the Kuramoto-Sivashinsky equation. Since
Kuramoto-Sivashinsky is nonlinear, the Newton-Raphson method is used once again to
solve Eqn 2.52. The linear update is given by,

∂R (U i+1)

∂U i+1
∆U i+1 = −R

(
U i+1

)
. (2.53)

The n+ 1 Newton update to the solution for the ith + 1 temporal node is

U i+1
k+1 = U i+1

k + ∆U i+1. (2.54)

2.2.3 Diagonally-Implicit Runge Kutta Method

The last time marching method of interest is the nstage diagonally-implicit Runge-Kutta
method (DIRK), where each time step requires nstage nonlinear solves [29]. This time
scheme will be used to solve the Navier-Stokes equations. The DIRK method is character-
ized by a lower triangular matrix with at least one nonzero diagonal entry and is sometimes
referred to as semi-implicit or semi-explicit Runge-Kutta method [30]. This structure al-
lows for each stage to be calculated individually rather than simultaneously [30]. The total
residual for the nstage DIRK scheme is given in Algorithm 2.1.

Algorithm 2.1 nstage Diagonally-Implicit Runge-Kutta
Input: tn, Un

Output: tn+1, Un+1

1: t0 = tn

2: U 0 = Un

3: for i = 0, . . . nstage − 1 do
4: ti+1 = t0 + bi+1∆t
5: Si+1 = −M

∆t
U 0 +

∑i
j=0 aijRs(U

j, tj)

6: Solve:R(U i+1) = M
∆t
U i+1 + aiiRs(U

i+1, ti+1) + Si+1 = 0
7: end for
8: end for
9: Un+1 = Unstage
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To solve the Navier Stokes equations, the 3rd order DIRK3 scheme is used, where the aij
coefficients are

aij =


0.435866521508459 0 0

0.2820667393 0.435866521508459 0.0

1.2084966492 −0.6443631707 0.435866521508549,

 . (2.55)

and the bi coefficients are

bi =


0.435866521508459

0.7179332608

1.0

 . (2.56)

Note that first-order one stage DIRK scheme is the same the first order implicit backward
difference formula, BDF1.

2.3 Summary

To perform error estimation for chaotic systems, the governing equations are discretized
and solved using discontinuous Galerkin methods, which are variations of finite-element
methods. Localized to an element, DG methods have several advantages that make them
practical for output-based error estimation and eventually mesh adaption of chaotic sys-
tems: built in variational framework for high-order solutions, highly parallelizable, and not
dependent on continuity restrictions for mesh adaptation. DG will be used to discretize
the governing equations of chaotic systems where the discretized residuals will be used to
define the continuous and discrete adjoints, needed for error estimation. This chapter pre-
sented flux evaluation techniques borrowed from finite volume methods that will be needed
when solving the Kuramoto-Sivashinsky equation and the Navier-Stokes equations. In ad-
dition, unsteady methods were presented to discretize the unsteady term of the governing
equations. The next chapter will go over the fundamentals of output-based error estimation
and the overall adjoint method.
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CHAPTER III

Output-Based Error Estimation

Even with increasing computational power, the accuracy of computational fluid dynamic
simulations does not necessarily improve. Estimation of discretization errors via output-
based adaptive methods is essential for improving the accuracy and efficiency of steady and
unsteady simulations. By providing numerical error bars, these methods allow for increased
confidence in the accuracy of simulations. Output-based adaptive methods are fairly ma-
ture for steady problems [31, 32, 33, 34, 35, 36]; however, their application to unsteady
simulations has been more limited [37, 38, 19, 20, 22, 39, 40] due to challenges in imple-
mentation and computational cost associated with fine-space adjoint solutions. Success of
these methods for unsteady problems include: temporal-only error estimation and adapta-
tion [37, 38]; spatial-only error estimation and adaptation [19, 41, 42]; combined temporal
and spatial mesh refinement with a static geometry and mesh [22, 43, 40]; combined tem-
poral and dynamic spatial refinement on static geometries [44, 39]; combined temporal and
dynamic-order spatial refinement on deformable domains [45]. Additional work has been
done for space-time discontinuous Galerkin (DG) and hybridized discontinuous Galerkin
(HDG) [46, 47, 48, 49, 50] finite element discretizations using time slabs and an approxi-
mate space-time solver [51, 22, 29].

Output-based error estimation methods use adjoint solutions, which relate to residual
perturbations to output changes. Adjoint solutions are calculated for unsteady problems
by reverse time-integration and linearization about the primal solution. Figure 3.1 shows
a schematic of the adaptive process, where the unsteady simulation is run multiple times,
starting with a coarse space-time mesh that is successively improved.

However, the usual unsteady adjoint calculation fails to produce useful adjoints for
chaotic flows, preventing the successful use of output-based error estimation and mesh
adaptation for turbulent simulations like LES. This hindrance is due to the output-based
methods’ reliance on adjoints. The traditional unsteady adjoint calculation fails to produce
useful adjoints for chaotic flows, due to the high sensitivity of chaotic problems to initial
conditions. The inability to calculate useful adjoints for output-based error estimations can
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be attributed to the linear nature of the adjoint solution. Applying the linearized adjoint
equation, which will be introduced in this section, fails as the chaotic adjoint increases ex-
ponentially backwards in time. Before delving into chaos theory in order to find a solution
to calculate adjoints for chaotic flows, details of how the adjoint calculation is found tradi-
tionally for output-based methods will be shown in this chapter. The adjoint and the duality

Mesh adaptation
Error estimation

Second adaptive iteration

First adaptive iteration

Adapted solution

and error estimate

Start
saved
states

Forward solve

Adjoint solve

Forward solve

Adjoint solve

t = Tt = 0

Figure 3.1: Unsteady adaptive iterations: Schematic of an adaptive primal and adjoint so-
lution procedure for output-based unsteady simulations.

theory of a governing equation will be introduced in order to show the relationship between
the primal solution and the adjoint solution. Next, the traditional adjoint method for steady
and unsteady flows will be introduced. Adjoint methods are usually categorized into dis-
crete adjoint and continuous adjoint methods [52]. One important difference between the
two methods is that the discrete adjoint is first discretized before variations are taken, while
the continuous adjoint method is derived by first taking variations and then discretizing the
adjoint PDE. Lastly, the output-based error estimation mechanics and the adjoint-weighted
residual method will be introduced.

3.1 Duality and Analytical Adjoint Formulation

Before formulating the discrete and continuous adjoint equations, it will be shown that
for any governing equation, a dual equation, or the adjoint equation, can be found, which
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provides the linear sensitives of any objective function of interest. From this dual equation
formulation, the error estimation will be defined as well. The technique presented here is
explained in works by Giles et. al [53].

The governing equations can be written in terms of the state as

r(u) = 0, (3.1)

where perturbing the geometry or the mesh for example leads to changes in the residual- a
perturbed residual. If the residual is linear, the governing equations become,

Lu = f. (3.2)

where L is a linear differential operator. If Eqn. 3.1 is nonlinear, the governing equations
can be linearized to obtain the form of Eqn. 3.2,

r(u+ δu) = r(u) +
∂r

∂u
δu+O(δu2) = 0. (3.3)

Assuming small perturbations and rearranging the terms from the linearization gives

∂r

∂u︸︷︷︸
L

δu︸︷︷︸
u

= −r(u)︸ ︷︷ ︸
f

, (3.4)

where f = −r(u), u is the resulting linearization perturbation, and the sensitivity of r is L.
The nonlinear output can be defined as

J(u) =

ˆ
Ω

j(u)dΩ. (3.5)

If the output is nonlinear, the linearized output J(u) in Eqn. 3.5 can be defined as

J(u) = 〈g, u〉 (3.6)

where 〈· , · 〉 is the integral inner product over the domain Ω. Formulating the Lagrangian
equation in terms of a linear output gives,

L = 〈g, u〉 − 〈ψ,Lu− f〉. (3.7)

Where ψ is the Lagrange multiplier function associated with the PDE constraint. Taking
variations of u, u → u + δu and requiring the Lagrangian to be stationary with respect to
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permissible δu gives
L[u]∗ψ = J ′[u], (3.8)

where the prime denotes the Fréchét linearization with respect to the arguments in the
brackets. This can be simplified to

L∗ψ = g, (3.9)

which is called the adjoint form, or the dual form. THe linear operator L∗ is defined by the
adjoint identity,

〈ψ,Lu〉 = 〈L∗ψ, u〉 ∀ψ, u ∈ V . (3.10)

Expanding Eqn. 3.7 gives

L = 〈g, u〉 − 〈ψ,Lu〉+ 〈ψ, f〉, (3.11)

where the adjoint identity can be substituted in to find

L = 〈g, u〉 − 〈L∗ψ, u〉+ 〈ψ, f〉

= 〈v, f〉 − 〈L∗v − g, u〉.
(3.12)

Thus, the linear/linearized output for the adjoint form by definition of the Lagrangian for-
mulation is

J(ψ) = 〈ψ, f〉, (3.13)

which is the same as the linearized output from Eqn. 3.6. which shows how the adjoint
operator, L∗, is related to the linearized operator, L. Note that the outputs of Eqn. 3.6 and
Eqn. 3.13 are equivalent as long as the L∗ is the adjoint operator of the original operator L.
Note that V is the function space for the state and adjoitn approximation.

This duality analysis can also be used to show that error estimation is possible. This
form is not typically used but stresses the duality relationship that exists between the the
original operator and the adjoint operator. Let

δr(u) = r(u+ δu)− r(u), (3.14)

where
r(u+ δu) = r(u) +

∂r

∂u
δu+O(δu2). (3.15)

Assuming small perturbations,

δr(u) =
∂r

∂u
δu. (3.16)
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Note that f = δr, L = ∂r
∂u

and u = δu in the form of Eqn. 3.2. From the duality analysis, it
was seen that the following is true for the outputs,

〈g, u〉 = 〈ψ, f〉. (3.17)

Thus, as done before to find the adjoint equation, the output error is defined as,

δJ = 〈ψ, δr(u)〉. (3.18)

This formulation is referred to the adjoint-weighted residual method used to find the output
discretized error estimate, which is based on the perturbed residual; however, it gives some
insight on the relationship between the governing equation and its dual form. In the next
section, the adjoint will be defined and the discrete analysis analysis will be introduced,
which is based on an already discretized primal solution.

3.2 Discrete Adjoint Sensitivity Analysis

In contrast to the way the adjoint was found in section 3.1, the adjoint can be computed from
the discretized primal solution as well without having to discretize the adjoint solution once
it is found. Thus the discretized residual that is used to derive the discrete adjoint is

R(U ,µ) = 0, (3.19)

where U represents the discretized states from the primal solution and µ represents the
inputs of the system. The scalar output of interest is

J = J (U) . (3.20)

This output is computed from the discrete state vector. The output can be the instantaneous
lift, instantaneous drag, or as simple as the state itself at a certain time t. Besides the output,
the output sensitives are often important as well. These are as,

∂J

∂µ
∈ RN . (3.21)

The output sensitivity measures how the output changes given changes in the input param-
eters, µ. There are many different ways to find this derivative [54]:
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1. Finite difference: increment the input µ by ε to find

lim
ε→0

dJ

dµi
≈ J(µ+ εi)− J(µ)

εi
(3.22)

A finite difference is easy to implement but is expensive for a large number of inputs
as separate finite differences have to be computed for each input. It is reliable, but
for unsteady problems, this calculation will need to be made for every time step;
however, this procedure is useful for problems with a small number of inputs.

2. Tangent Linearization: One can rewrite the output, J , as N operations and use the
chain rule to differentiate the sequence

J = JN(JN−1(J0(µ))

δJ = J ′NJ
′
N−1 . . . J

′
0δµ

(3.23)

The computational cost of the forward tangent linearization is on the order of finite
difference; however, the derivatives are computed exactly without numerical approx-
imation via ε. Unlike finite differences, a tangent linearization is difficult to imple-
ment, because it requires the calculation of derivative quantities.

3. The adjoint method: One can first solve for Ψ in the expression,

dJ

dµ
= ΨT ∂R

∂µ
, (3.24)

where Ψ ∈ RN is the adjoint. Calculating sensitivities of the output with the ad-
joint method allows for sensitivity and output prediction without having to solve the
forward simulation problem each time to find the change in the output. Addition-
ally, the adjoint method is more useful compared to finite difference and tangent
linearizations for computing a large number of sensitives for one given output. With
the adjoint derivative, no forward analysis is needed every time a different input is
used. For every residual calculation there is one vector product per sensitivity. Due to
the flexibility of the adjoint, it is very useful when the forward problem is expensive
and the number of inputs is large.

For this research on chaotic flows, the adjoint method is chosen for sensitivity calculation
and error estimation due to its need to only calculate the forward problem once for any
residual perturbation due to discretization errors.

For output-based error estimation specifically, it will be shown that the discretization

31



errors are of the main interest and depend on the type of discretization and the discretization
parameters used to solve the governing equation. This information is encapsulated in the
residual. The residual takes into account how the solution state changes given a change in
the time step, or a change in the spatial discretization.

To calculate the output sensitivity, the discrete adjoint is defined as

Ψ =

(
∂J

∂R

)T
∈ RN , (3.25)

whereN refers to the total size of the discretized system and Ψ is a vector of the sensitives.
Note that the adjoint can also be used to find output sensitives. The adjoint can be found
for steady and unsteady systems. To derive the corresponding adjoint equations for the
governing equations of interest, a sensitivity analysis will be considered. The ideas from
calculating the sensitivity in Eqn. 3.21 will be used for output-based error estimation as
well.

3.2.1 Adjoint Derivation for Steady Systems

The adjoint equation can be derived from a discrete sensitivity analysisi [2, 25, 54]. Given
the inputs µ and the residual R defined in Eqn. 3.19, the following general relationship is
true for a system of size N with output J .

µ︸︷︷︸
inputs

→ R (U ,µ) = 0︸ ︷︷ ︸
N equations

→ U︸︷︷︸
state ∈RN

→ J(U)︸ ︷︷ ︸
output(scalar)

(3.26)

To begin the adjoint derivation, the effects of a small perturbation in the inputs of interest
is investigated first,

µ→ µ+ δµ. (3.27)

A small perturbation in the inputs will change the residual resulting in a perturbed residual
that is non zero,

R(U ,µ+ δµ) = R(U ,µ) +
∂R

∂µ

∣∣∣∣∣
U ,µ

δµ+O(δµ2) = δR 6= 0, (3.28)
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where δR is nonzero and refers to the residual perturbation due to the change in the inputs.
To satisfy the perturbed equation, the inputs state has to change as well,

R(U + δU ,µ+ δµ) = R(U ,µ) +
∂R

∂µ

∣∣∣∣∣
U ,µ

δµ+
∂R

∂U

∣∣∣∣∣
U ,µ

δU +O(δµ2) +O(δU 2) = 0

(3.29)
In addition, the state perturbation affects the output,

J(U + δU) = J(U) +
∂J

∂U
δU +O(δU 2). (3.30)

Assuming small perturbations, subtracting 3.28 from 3.29 gives

∂R

∂U
δU = −δR→ δU = −

[
∂R

∂U

]−1

δR. (3.31)

Substituting Eqn. 3.31 into 3.30 gives the output perturbation in terms of the residual per-
turbation,

δJ = − ∂J
∂U

[
∂R

∂U

]−1

︸ ︷︷ ︸
ΨT∈RN

δR. (3.32)

Taking the transpose and rearranging Eqn. 3.32 gives the final steady discrete adjoint equa-
tion, (

∂R

∂U

)T
Ψ +

(
∂J

∂U

)T
= 0. (3.33)

Note that the each component of the adjoint, Ψ, refers to the sensitivity of J to changes in
the corresponding residual component. Note that Eqn. 3.33 looks similar to Eqn. 3.8 and
Eqn. 3.9, which is expected since the discrete adjoint is an approximation to the continuous
adjoint. More on this relationship will be explained in section 3.2.2. Once the adjoint is
calculated from Eqn. 3.33, the sensitivities for the steady problem can be calculated from

dJ

dµ
= ΨT ∂R

∂µ

∣∣∣∣∣
U ,µ

. (3.34)

Once the adjoint has been found, no more solves are necessary to calculate the new sensi-
tivity for a new perturbations of the same output.
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3.2.2 Adjoint Consistency

In section 3.2.1, the discrete adjoint was derived. The results of this derivation show that the
discrete adjoint equation is similar to the continuous adjoint equation derived in section 3.1.
This suggests that the discrete adjoint must produce discretized solutions that approximate
the continuous adjoint. This requirement is referred to as “adjoint consistency”, which is
necessary to produce accurate adjoints and adequate convergence of the output of inter-
est. Adjoint consistency requirements have been analyzed theoretically and numerically in
works by Oliver et. al and Lu [55, 56], and have been used in multifidelity PDE-constrained
optimization by Chen et. al [57]. In its simpliest form, adjoint consistency states that the
discrete adjoint needs to satisfy the continuous adjoint equation. One can recall the DG
approximation for the states and make the connection that the discrete adjoint consists of
coefficients for the approximation of the continuous adjoints, which uses the same basis
functions as the the state.

The quantification of the error between the continuous and discrete adjoint is important
for error estimation. Adjoint consistency has an effect not only on the convergence of the
adjoint approximation but on the primal approximation as well. If the adjoint is not adjoint
consistent, the solutions of the adjoint can be oscillatory for a non chaotic problem, which
will pollute and affect the error estimate with noise, leading to incorrect areas for adaptation
in mesh adaptation. Imposing adjoint consistency for traditional adjoint problems affects
the output definition and the interior and boundary discretizations of the semi-linear form.
To determine adjoint consistency, the same principles from section 3.1 are applied to the
general semilinear form.

3.2.2.1 Discretized Adjoint Formulation

The semilinear residual form is

R(u,v) = 0, ∀v ∈ V , (3.35)

where V refers to the test space for the PDE. and the output it defined as

J(u), u ∈ U . (3.36)

The state u ∈ U is the solution of the governing equations lying the space U , which is an
infinite-dimensional space. Note, that the basis functions are chosen on the state space and
adjoint space, U = V . The dual-continuous adjoint equation is found by considering the
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variations of the Lagrangian from section 3.1. The dual equation takes the form

R′[u](v,ψ) = J ′[u](v), ∀v ∈ V . (3.37)

where ψ is introduced in the Lagrangian equation as a constraint multiplier. It is difficult
to solve most PDEs analytically, thus the DG discretization on a finite-dimensional space
Vh seeks ψh ∈ Vh such that Eqn. 3.37 is discretized as

R′h[uh](vh,ψh) = J ′h[uh](vh), ∀vh ∈Wh (3.38)

where the prime symbols refer to the Fréchét derivatives. Wh is defined as

Wh = Vh + V = {h = f + g : f ∈ Vh, g ∈ V} (3.39)

Note that Eqn. 3.38 produces the discretized adjoint and that the trial space and test space
are assumed to be the same.

3.2.2.2 Continuous Adjoint Formulation

The exact adjoint equation can be found by manipulating the weak form of Eqn. 3.35
with a different technique by looking at perturbations of u, δu. Consider an infinitesimal
state perturbation δu added to the state of the weak form of the semilinear residual. The
sensitivity of the output to the residual perturbation is defined as

δJ = J(u+ δu)− J(u) = δR(ψ) = R(u,ψ)−R(u+ δu,ψ) (3.40)

Given that R(u,ψ) = 0, the state, u, is already the solution to the weak form, R, one can
find the dual form of Eqn. 3.40 via techniques from section 3.1,

R′[u](δu,ψ) = J ′[u](δu), ∀ δu ∈ U , (3.41)

where primes denote the Fréchét derivative with respect to arguments in brackets. This
technique produces the exact adjoint, ψ.

3.2.2.3 Requirements for Adjoint Consistency

The original DG discretization is adjoint consistent if the exact adjoint, ψ, and exact so-
lution, u, from the continuous adjoint equation, Eqn. 3.41 satisfy the discrete equation,
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Eqn. 3.38, such that,
R′h[u](v,ψ) = J ′h[u](v) ∀v ∈Wh. (3.42)

If Eqn. 3.42 is not satisfied, the discretization defined by the semilinear residual, Rh, can
still be asymptotically adjoint consistent if Eqn. 3.38 holds true when h→ 0 [55],

lim
h→0

(
sup

v∈Wh,‖v‖Wh
=1

|R′h[u](v,ψ)− J ′h[u](v)|

)
= 0. (3.43)

Additionally, discretizations defined by Rh that are adjoint inconsistent can often be mod-
ified to be adjoint consistent by appending terms to the semilinear form or to the output
definition.

3.3 Unsteady Discrete Adjoint Formulation

Unsteady adjoints require additional consideration of the effect of input perturbations on
the output at different time indices. The linear adjoint equation is similar to Eqn. 3.33
except that instead of looking at the spatial residual,R refers to the total unsteady residual
consisting of residuals at different time nodes i. The inputs affect the output via,

µ︸︷︷︸
inputs

→ Ri
(
U j,µ

)
= 0︸ ︷︷ ︸

N equations

→ U j︸︷︷︸
state ∈RN

→ J(U j)︸ ︷︷ ︸
output(scalar)

, (3.44)

where j refers to the time indices in the unsteady discretization. Note that j ≤ Nt where
Nt refers to the total number of time indices. Eqn. 3.33 is applied to each time node for the
total residual to give

Nt∑
i=1

(
∂Ri

∂U j

)T
Ψi +

(
∂J

∂U j

)T
= 0. (3.45)

Backwards substitution can be used to solve for the unsteady adjoint. It is possible to use
backwards substitution due to the structure of the unsteady Jacobian matrix in the linear
adjoint equation, which can be seen in Eqn. 3.46 for BDF1 temporal discretization for the
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backwards difference method.

(
∂Ri

∂U j

)T
=



∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗


(3.46)

Each ∗ refers to one N × N block, where the ∗ on the main diagonal for BDF1 is written
as

∂R(Un+1)

∂Un+1
=
M

∆t
c0 +

∂Rs(U
n+1)

∂Un+1
, (3.47)

and the ∗ on the off diagonal for BDF1 is written as

∂R(Un+1)

∂Un+1
=
M

∆t
c1. (3.48)

Once the unsteady adjoint solution has been found, the sensitivity is calculated by

dJ

dµ
=

Nt∑
i=1

(
Ψi
)T (∂Ri

∂µ

)
. (3.49)

Note that for nonlinear problems, the states need to be saved to disk in order to calculate
the Jacobian at each time index.

The next section will go over how the continuous in time unsteady adjoint is computed
for a given output.

3.4 Unsteady Temporal Continuous Adjoints Derivation

To derive the unsteady continuous adjoint equations, consider the continuous formulation
of the governing equations,

r(u) =
du

dt
− f . (3.50)

Typically, the output is set to the instantaneous value of interest at a finite time; however,
for the purpose of output-based error estimation for chaotic flows, the time-average output
is analyzed,

J =
1

T

ˆ Tf

T0

J(u) dt. (3.51)
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To construct the continuous adjoint equations for the linearized output, variations are used.
The Lagrangian is constructed with the introduction of the Lagrange multipliers, ψ, which
were used when deriving the exact adjoint. Note that ψ depends on the computational
domain Ω. The Lagrangian L is defined and simplified as

L = J(u)−
ˆ Tf

T0

ψTr(u) dt

=
1

T

ˆ Tf

T0

J(u) dt−
ˆ
T

ψT

[
du

dt
− f

]
dt

=
1

T

ˆ Tf

T0

J(u) dt−
ˆ Tf

T0

ψT du

dt
dt+

ˆ Tf

T0

ψTfdt

(3.52)

One can integrate the third term by parts and combine like terms to obtain,

L = −
[
ψTu

]Tf
T0

+

ˆ Tf

T0

[
1

T
J(u) +

dψT

dt
u+ψTf

]
dt. (3.53)

Linearizing the Lagrangian and requiring that it be stationary with respect to permissible
state variations, δu, produces,

∂L
∂u

δu = −
[
ψT δu

]Tf
T0

+

ˆ Tf

T0

[
1

T

∂J(u)

∂u
+
dψT

dt
+ψT ∂f

∂u

]
δu dt. (3.54)

The terms multiplied by δu inside the time integral must equal to zero and form the contin-
uous adjoint equation for ψ. Taking the transpose of the equation yields,

dψ

dt
+

(
∂f

∂u

)T
ψ +

1

T

∂J

∂u

T

= 0, (3.55)

where the terminal conditions are the t = T terms

ψ

∣∣∣∣∣
t=Tf

= −∂J
∂u

T
∣∣∣∣∣
t=Tf

(3.56)

It will be shown that Eqn. 3.55 and the discrete form of the adjoint equation fail for
chaotic flows. An alternate version of the unsteady continuous adjoint equation will be
derived via the Least Squares Shadowing method, which can be compared and contrasted
to the traditional adjoint methods derived in this section.
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3.5 Output-Based Error Estimation

In computational fluid dynamics, the purpose of output-based error estimation is to quan-
tify as best as possible the discretization errors associated with a simulation on a finite-
dimensional approximation space. One can specifically consider two different levels of
discretization: the coarse space (H) and the fine space (h). One can compute a scalar output
of interest, J . Our goal is to predict the difference in outputs calculated using two different
levels of discretization; this is important in order to successfully apply mesh adaptation,
which leads to decreases in computational costs. Before analyzing the technique used to
estimate discretization errors, the characteristics of the coarse and fine spaces need to be
described in detail.

The discretization space refers to the mesh of the simulation on which the state and
adjoint are approximated in space and time. In contrast, the fine space refers to the space
that is obtained after mesh refinement or approximation order increment. Ideally, the fine
solution computed on the fine mesh would be the exact solution,U ; however, this is usually
unknown and instead represents a solution of order ph = pH + 1 and or rh = rH + 1. The
coarse space state is associated with the coarse space residual and mesh, while the fine
space state is associated with the fine space residual and mesh. These can be written as

Coarse space→ RH(UH) = 0→ UH → JH(UH),

Fine space→ Rh(Uh) = 0→ Uh → Jh(Uh).
(3.57)

The discretization error of interest is defined as

δJ ≡ Jh(Uh)− JH(UH). (3.58)

An estimate of δJ will be a function of the adjoint and the injection of the coarse space
solution into the fine space.

3.5.1 The Adjoint-Weighted Residual

It was shown in section 3.1 that given a perturbed residual equation, the corresponding
dual or adjoint equation can be found. This derivation led to the continuous error estimate
equation of the perturbed output of interest as a function of the adjoint and the perturbed
residual. However, this form is not useful for error estimation, because it requires the exact
adjoint. A better form that takes into account discretization errors given an already dis-
cretized state will be more useful. To begin, the residuals for both levels of discretization
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injection: IHh

Coarse space Fine space

UH
UH

h

Figure 3.2: Coarse space solution injected in the fine space via an injection IHh

are defined as
Rh(Uh) = 0, RH(UH) = 0. (3.59)

The discretization error can be found by looking at the coarse state injected into the fine
space,

UH
h = IHh UH , (3.60)

where IHh is the injection operator. Figure 3.2 shows how the fine space is obtained by uni-
form refinement or incrementing the approximation order of each element. That process
refers to the injection of the state from the coarse space to the fine space, where UH

h con-
tains the errors in the state between the coarse and fine spaces. This error is reflected in the
calculation of the residual of the coarse solution on the fine space

Rh(U
H
h ) 6= 0. (3.61)

This residual is referred to as the perturbed residual and contains information on the error
between the fine and coarse space solutions. The state injected from the coarse space will
usually not be a fine space solution and thus will give non-zero fine space residuals. Along
with the fine space adjoint, Ψh, the perturbation of the residual will predict how the output
will change between the two spaces. Next, the adjoint-weighted residual for output error
estimation is introduced.

The adjoint-weighted residual is found by linearizing the output J(Uh) aboutUH
h [58],

Jh(Uh) = Jh(U
H
h ) +

∂Jh
∂Uh

∣∣∣∣∣
UH

h

δU +O(δU 2), (3.62)
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where δUh = Uh−UH
h . Additionally, linearizing the fine space residual about the injected

coarse solution in the fine space gives,

Rh(Uh) = Rh(U
H
h ) +

∂Rh

∂Uh

∣∣∣∣∣
UH

h

δU +O(δU 2) = 0. (3.63)

Dropping the high order terms and rearranging Eqn. 3.63 to find δU produces

δU ≈ −

∂Rh

∂Uh

∣∣∣∣∣
UH

h

−1

Rh(U
H
h ). (3.64)

Substituting Eqn. 3.64 into Eqn. 3.62 gives

Jh(Uh)− Jh(UH
h )︸ ︷︷ ︸

δJh

= − ∂Jh
∂Uh

∣∣∣∣∣
UH

h

∂Rh

∂Uh

∣∣∣∣∣
UH

h

−1

︸ ︷︷ ︸
ΨT

h

Rh(U
H
h ) +O(δU 2). (3.65)

Dropping the higher-order terms, the discrete adjoint-weighted residual output error esti-
mate is

δJ ≈ −ΨT
hRh(U

H
h ). (3.66)

Note that this derivation assumes small perturbations in the state and residual when the
output or equations are nonlinear. For this research Ψh is calculated exactly on the fine
space to minimize additional approximations in the error estimates. The adjoint is calcu-
lated in a Galerkin variational form, which by Galerkin orthogonality means that the adjoint
weighted residual can be modified without affecting the error estimate in the following way

δJ = −δΨT
hRh(U

H
h ), (3.67)

where the difference in the fine and injected coarse adjoints in the fine space is defined as

δΨ = Ψh −ΨH
h . (3.68)

In certain cases, e.g. for viscous problems in DG, Galerkin orthogonality may not hold,

Rh(U
H
h ,Ψ

H
h ) 6= 0. (3.69)

In general, for linear inviscid problems, the fine-space residual of the injected coarse solu-
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tion weighted by the injected coarse adjoint is zero; however, when Galerkin orthogonality
does not hold, the error estimate tends to over estimate the actual discretization error. Using
δΨ leads to more accurate error estimates in these cases. The injected coarse adjoint into,
ΨH
h is calculated by first projecting the fine adjoint solution into the coarse mesh, and then

injecting the final solution back into the fine space. This is summarized with injection and
projection operators IHh and IhH ,

ΨH
h = IHh I

h
HΨh. (3.70)

Substituting Eqn. 3.70 into Eqn. 3.67 gives,

δJ =
[
(Ih − IHh IhH)Ψh

]T
Rh(U

H
h ), (3.71)

where Ih is an identity matrix whose size is that of the fine-space solution. Note that two
different methods are used for the projection matrix IhH , least-squares projection and H1

projection.H1 projection is similar to the least-squares projection, but in addition the slopes
at the basis nodes are constrained as well. For unsteady discrete error estimation, the error
estimate is written as

δJ ≈ −
Nt∑
i=1

(
Ψi
h

)T
Ri
h

(
UH
h

)
, (3.72)

where Nt is the number of time nodes andRh refers to the total fine-space residual. Due to
the Galerkin orthogonality form, the unsteady discrete error estimate can be written as

δJ ≈ −
Nt∑
i=1

(
δΨi

h

)T
Ri
h

(
UH
h

)
. (3.73)

A similar unsteady error estimate can be found from the unsteady continuous adjoint,

δJ ≈ −
ˆ Tf

T0

ψT
hR(UH

h ) dt, (3.74)

where once againRh(Uh) = 0. Again, when Galerkin orthogonality holds, the adjoint can
be modified such that the continuous error estimate can be written as

δJ ≈ −
ˆ Tf

T0

δψT
hR(UH

h ) dt, (3.75)

where δψh = ψh − ψH
h . For unsteady problems, the integral is evaluated using quadra-

ture for DGTIME and high-order multistep/multistage temporal methods. For low order
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multistep/multistage temporal methods, the integral is evaluated using the trapezoidal rule.

3.6 Summary

In this chapter, the output-based error estimation method is introduced. In order to success-
fully apply output-based error estimation to LES, the accurate calculation of the adjoint is
needed. This chapter concentrated on the traditional adjoint method and derived both the
discrete and continuous adjoint formulation for steady and unsteady systems.

Output-based error estimates rely on a perturbed residual that is calculated on a fine
space using the injected coarse solution. This non zero residual drives the error estimate,
which is calculated by the adjoint-weighted residual method. Both the discrete and contin-
uous versions of the adjoint-weighted residual method were introduced. In the next chapter,
chaos theory will be introduced and will be used to explain why the traditional adjoint and
error estimation methods fail for chaotic systems.
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CHAPTER IV

Chaotic Flows

Output-based error estimation for chaotic flows is challenging due to the unique nature of
chaotic systems and its effect on the adjoint derivative. To fully appreciate the challenges
involved in this process, this chapter introduces chaos theory and ergodic theory, which
provide some indication of a possible way to formulate an accurate chaotic adjoint for error
estimation. Next, different prototypical chaotic systems are introduced and analyzed. This
chapter then summarizes the main points of chaotic systems that are important to keep in
mind when applying output-based error estimation to chaotic systems in the next chapters.

In 1687, Issac Newton stated famously that our world is a predictable mechanical sys-
tem, a “clockwork universe” [59]. In 1814, Pierre-Simon Laplace said that “nothing would
be uncertain and the future, as the past, would be present in [our] eyes” [60]. Just like when
the world thought the earth was the center of the system, civilization lived in a world of
predictability defined by Newton and Laplace. Laplace in his essay described how Halley’s
comet of 1456 was discovered. He described how it spread terror across Europe and how
these fears were cause by “ignorance”. They were unaware that Halley’s comet followed
the laws of universe, but soon after Hally’s comet was discovered, scientists were able to
predict the comet’s next return trajectory. Laplace then describes how “the trajectory of a
simple molecule of air or vapour is regulated in a manner as certain as that of the plane-
tary orbits” and that “the only difference between them is that which is contributed by our
ignorance” [60]. He boldly stated that astronomy shows us the movement of the comets
takes place in all phenomena. As time goes on, it has been evident that his inability to truly
understand the intricacies of nature is as he said “caused by ignorance”.

It was not until 1963 that Edward Lorenz at MIT was able to clearly highlight how
predictability was not necessarily possible for all phenomena. As a meteorologist, Edward
Lorenz found that some systems behave “in an irregular, seemingly haphazard manner,
and even when observed for long periods of time, do not appear to repeat their previous
history” [61]. He found that this was the case for turbulent flows, where instantaneous flow
patterns were unpredictable but statistical behaviors of turbulence were more predictable.
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Additionally, he found it a challenge to predict extreme weather patterns such as cyclones
from a short term weather forecast. To model these unique convective weather patterns,
Edward Lorenz formulated his famous Lorenz Attractor equation, which exhibited that
small initial changes to the variables of the system led to completely different patterns and
trajectories. This idea became known as the “butterfly effect” when Lorenz famously stated
that “the flap of a butterfly’s wings might ultimately cause a tornado”. This observation that
Lorenz made in 1963 is the reason why advanced simulation techniques have been difficult
to apply to turbulent flows. This can be seen in more detail by looking at one technique,
output-based error estimation, which relies on the successful calculation of an accurate
adjoint. Applying output-based error estimation with the traditional adjoint methods from
Chapter III to Edward Lorenz’s Lorenz Attractor would fail, because of how the adjoint ψ,
behaves over long periods of time,

ψ∞ 6= lim
T→∞

ψ, (4.1)

where the goal is to calculate ψ∞. As T → ∞, the adjoint, ψ, will diverge exponentially
due to the butterfly effect, making it more difficult to find ψ∞.

This unpredictability is a driver for new updated techniques that will be able to make
chaos more “predictable” in a way such that with output based error estimation, discretiza-
tion errors can actually be quantified statistically and minimized. Quantification of dis-
cretization errors in chaotic flows can additionally be used with adaptive methods to in-
crease accuracy and predictability of the simulation. Confidence intervals can be used to
determine if the time average output of interest is within sufficient numerical accuracy,
which is essential when studying time average outputs. Even if it is not possible to accu-
rately calculate adjoints for chaotic flows, the error estimates can still be used as localized
error indicators, which pin points where the greatest errors in the simulation are located in
the mesh for adaptive methods. Overall, The application of output-based error estimations
for estimation of discretization errors of chaotic systems can help chaos be effectively more
“predictable” than without it.

4.1 Chaos Theory

Chaos is defined as aperiodic long-term behavior in a deterministic system that exhibits
sensitive dependence on its initial conditions [62]. In the next three subsections, each of
these behaviors will be defined. More details are given in Strogatz’s book.
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4.1.1 Aperiodic Long Term Random Trajectories

To describe chaos, one can begin by looking at a fluid particle in space that is influenced
by a vector field written as an ODE,

du

dt
= f(u) (4.2)

When T > 0, the particle begins to move along space with a certain undefined velocity.
This space is referred to as the phase space. The particle is referred to as the phase point at
the initial conditions and the position of the phase point will change as a function of time.
This position is referred to as the trajectory of the particle. This trajectory is the solution
of the differential equation. A collection of all the trajectories of the system is referred to
the phase portrait where all the trajectories are generated from different initial conditions.
Every phase portrait has fixed points which are the stagnation points of the system. At these
fixed points, f(ufixed) = 0 and are rare stable points where a particle would be captured
or forced into. Fixed points can be referred to as equilibrium points as well, where small
disturbances are damped out over short periods of time. The opposite of a fixed point is
an unstable point, which in a chaotic system fuels its erratic, unpredictable behavior. For a
system to be considered chaotic, the trajectories need to never reach these fixed equilibrium
points and must not settle or reach periodic behavior as T →∞.

4.1.2 Deterministic Behavior

Along with exhibiting aperiodic behavior, chaotic systems are deterministic as well. In
deterministic models, the output of interest is only determined by the given parameters
of the system and its initial conditions. This is different from stochastic models, which
contain another inherent level of randomness in time. Given the same set of parameters and
initial conditions as a chaotic system, a stochastic system will lead to a completely unique
ensemble of different output results at difference times, making stochastic systems much
more complicated to work with. Overall, chaotic systems are predictable for short periods
of time, while stochastic systems are unpredictable and random at all times. Methods and
results described in this paper will not work on non-deterministic systems since temporal
consistency -ability to reconstruct the same trajectory for a particular equation at different
times- in its ensemble results is assumed.

46



4.1.3 Sensitivity to Initial Conditions: Butterfly Effect

Along with being deterministic, chaotic systems are highly sensitivity to its initial condi-
tions. This type of indeterministic behavior in terms of its initial conditions is referred to as
the butterfly effect, which was first coined by Edward Lorenz. Overall, the trajectory of a
deterministic system exhibits indeterministic behavior as T →∞, but grows exponentially
with time. Edward Lorenz experienced this first hand when he was running his simplified
weather model in his attempt to make prediction of weather patterns more accurate. He
began by looking at how bumps in the trajectories would be followed by multiple bumps
and thought this may be used for future predictions. Simple observations like these gave
Lorenz some ideas on how one would begin to predict future behavior of chaotic systems.
In 1961, Lorenz began looking at how trajectories behaved over longer periods of time.
Instead of restarting a simulation, he retrieved the final trajectory positions from the orig-
inal simulation, by copying and pasting the numbers for the new run. He let the case run
and expected to see the trajectories emulate the future evolution of the original solutions
exactly; however, the weather diverged rapidly such that all resemblance had disappeared
completely. After ruling out a malfunction or a bug in his program, he realized that the
mysterious behavior was inherent to the model. For example, the final position of the orig-
inal run was 0.506127, but Lorenz had copied 0.506 [63]. He was three decimal places off.
However, this small, seemingly inconsequential, difference resulted in a completely differ-
ent solution. He realized that a minute perturbation in the initial conditions, like a butterfly
flapping outside in a weather simulation/system, could lead to large scale changes [63].
These minute differences lead to unpredictable behavior, which is contrary to what Laplace
and Newton had the world believe for a long time. This sensitivity to initial conditions can
be quantified mathematically by analyzing Lyapunov exponents. Define u(t = 0) as a point
on the attractor. Define one addition point, u(t = 0) + δu where δu is the chance in the
trajectory that results in a change in the initial conditions.

‖δu(t)‖ ∼ ‖δu0‖eλt (4.3)

Plotting ln ‖δu‖ versus time gives a curve that is approximately a straight line with a slope
λ, which can be seen in Figure 4.2 for the chaotic Kuramoto-Sivashinsky Equation, a fourth
order 1D PDE that will be described in more detail in the next sections.
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Figure 4.1: Reference and perturbed trajectory given a perturbed set of small change in
initial conditions.

Figure 4.2: Plot of ln ‖δu‖ vs. t where the slope refers to the largest Lyapunov exponent of
the system. ln ‖δu‖ steadies out once the fluid element reaches the bounds or the diameter
of the attractor.
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For chaotic systems, the slope is positive, which refers to the largest positive Lyapunov
exponent of the system. The plotting of ‖δu‖ is distracting from the fact that each chaotic
system can have more than one Lyapunov exponent or exactly n different Lyapunov ex-
ponents for an n-dimensional systems. Thus Figure 4.2 only shows the largest Lyapunov
exponent of the system. It is important to note that the Lyapunov exponent calculation from
Eqn 4.3 is approximate and can be calculated numerically. Figure 4.2 shows that the largest
positive Lyapunov Exponent for the chaotic Kuramoto-Sivashinsky equation is λ ≈ 0.3484.
The positive Lyapunov exponents are responsible for the system’s sensitivity to its initial
condition. The drastic weather patterns that Lorenz saw in his experiments after failing
to copy and paste the exact parameters is due to the exponential growth dictated by the
Lyapunov exponent. Because of the exponential growth, the time window for prediction is
very short, making it necessary to find some other prediction methods for when T → ∞.
A system with no positive Lyapunov exponents will result in a non chaotic system.

Lyapunov exponents can be viewed as eigenvalues and have corresponding Lyapunov
vectors, which can give more information on how the trajectories change given the mag-
nitude of the largest Lyapunov exponent. Covariant Lyapunov vectors provide information
about the local geometrical structure of the tangent space; literature shows how to find these
vectors [64]. Covariant Lyapunov Vectors can be found through the following ordinary dif-
ferential equation,

d

dt
φi(u(t)) =

∂f

∂uu(t)
·φi(t(t))− Λiφi(u(t)) (4.4)

The covariant Lyapunov vectors span both the stable and unstable manifolds and dictate the
direction of the deformation of a fluid element while each Lyapunov exponent contribute
to the total rate of deformation. Combined together, they dictate the trajectory of the flow.
Covariant Lyapunov vectors and Lyapunov exponents influence how much a fluid element
stretches and folds over time as seen in Figure 4.3. This process of stretching and folding,
similar to a piece of paper folding over and over again, the reason why chaotic systems
are sensitive to their initial conditions. This is specifically characteristic of a strange attrac-
tor, which has two main properties. First, trajectories on a strange attractor must remain
in a bounded area and separate from their neighbors exponentially. The diameter of the
bounded area of a strange attractor can be approximately calculated from Figure 4.2 when
ln ‖δu‖ levels off. The diameter for the Kuramoto-Sivashinsky equation from Figure 4.2 is
ln ‖δu‖ ≈ 4.032. The attractor stays bounded, because there is a finite number of times a
fluid particle in a chaotic system can he stretched and folded. Eventually, the distorted fluid
particle must fold back on itself. Contracting and stretching behavior in fluid mechanics is
seen through dissipation via friction. Lastly, the term “strange” when describing an attrac-
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Figure 4.3: Illustration of covariant Lyapunov vectors and Lyapunov exponents acting on a
fluid element

tor refers to the system’s fractal structure, which are complex geometric shapes with fine
structures at very small scales. If one were to zoom in on a fractal, the tiny shapes would
emulate the larger shapes and exhibit similarity, which is found in many different aspects
of nature.

4.1.4 Summary on Chaos Theory

Chaos was defined by three different characteristics: aperiodic behavior, deterministic, and
sensitivity to initial conditions. A Chaotic system must not exhibit periodic behavior, but
must be bounded. The system must as well be deterministic such that the trajectory can
be reproduced at different times eluding to the idea that randomness is minimal for short
periods of time. Lastly, a chaotic system is sensitivity to initial conditions as a result of the
influences of the Lyapunov exponents and covariant Lyapunov vectors. In the next section,
three main tools are introduced that are used to begin making error estimation possible for
chaotic flows: statistical theory, ergodic theory, and chaotic hypothesis. The assumptions
that be made from these ideas are essential to calculating accurate chaotic adjoints.

4.2 Statistical Theory and Ergodicity

Simple numerical simulations have given the scientific and mathematical community the
opportunity to begin understanding what chaos is. When a system is chaotic and becomes
unpredictable, there is a lack of information about the geometrical characteristic of the
system. In order to make sense of seemingly random behavior, statistical theory allow for
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one to distinguish different levels of complexity in the system. Statistical theory is already
being used and is the foundation of the study of turbulent flows. In statistical theory, time
averages are used, making transients of the system irrelevant. Over time, the transients
will disappear, leading to motion of a fluid particle that exists along the strange attractor.
As mentioned before, the trajectory is folded and bonded to the strange attractor [62]. In
order to obtain accurate statistics, simulations need to execute until the trajectory of the
dynamical system is on the attractor, before beginning to compute statistical quantities.

Given the choice to use statistical theory to quantify outputs of interest of a chaotic
system, it is necessary to be able to measure the dimension and other quantities of the
system. Knowing this information will allow one to have a better idea of how long the
simulation should run and what parameters to use in order to obtain accurate statistics. One
can do this with ergodic theory, which allows for one to apply predicative tools for turbulent
flows. Ergodic theory assumes the following [65]:

• For almost all initial conditions of an ergodic system, the time average of an inter-
ested variable J will reproduce the spatial average of the same interested variable J ,
meaning that the time averages are invariant (ergodic) under time evolution.

1

T

ˆ
J(x) dt =

1

X

ˆ
J(x) dx (4.5)

• In chaotic system, one only has to consider long-term behavior of a system and not
worry about transients, thus initial conditions over long periods of time have little
effect on the long term output.

• The largest Lyapunov exponent λ is independent of the initial parameters of the sys-
tem.

These assumptions of ergodicity are useful for adjoint calculations for chaotic systems
in later chapters.

4.3 Chaotic Hypothesis

Ergodic theory gives an overview of the relationship between a flow and its statistical quan-
tities [66]. With ergodic theory, more information is needed in order to have enough un-
derstanding of chaotic systems in order to propose possible solutions to error estimation of
turbulent flows. It is important to understand how chaotic flow is distributed on a smaller
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scale and how the particles in the flow behave over time. This behavior can first be de-
scribed by the zeroth law of thermodynamics, which states that a closed control system
consisting of a large number of particles will approach equilibrium, assuming at t = 0, the
control system is at non-equilibrium [66]. Here, equilibrium is defined by the state when
the time averages of the system have reached values that can be described by a probability
distribution. Another important characteristic to note is how the particles behave up until
the equilibrium point. The assumption made here is that macroscopic systems behave as
hyperbolic systems, which are defined by three subspaces: one that is exponentially con-
tracting, one that is expanding, and one which is one-dimensional and tangential to the
flow direction; or in other words, stable, neutrally stable, and unstable. (Stable manifold,
unstable manifold, neutral). These regions correspond to the negative, zero, and positive
Lyapunov exponents, which each consist of covariant Lyapunov covariant vectors. Put sim-
ply, the chaotic hypothesis says that many high-dimensional chaotic systems behave as if
they were hyperbolic or quasi-hyperbolic. Given this hypothesis, all chaotic systems in this
thesis are assumed to be hyperbolic.

4.4 Prototypical Governing Chaotic Equations

In this thesis, three different governing equations are introduced and analyzed. For cer-
tain parameters, the traditional adjoint method was implemented. The results for these are
shown to support the need to find an alternate way to calculate usable adjoints and to un-
derstand the impact of discretization errors on statistical outputs of chaotic problems. The
three systems are the Lorenz Attractor, the Kuramoto-Sivashinsky 1D partial differential
equation, and the 2D compressible Navier-Stokes equations. Each of these systems is as-
sumed to be quasi hyperbolic due to the chaotic hypothesis. Ergodic principles will be used
when analyzing the behaviors of these systems.

4.4.1 Lorenz Attractor

The first chaotic system to analyze is the Lorenz Attractor, which is the infamous set
of equations that Edward Lorenz worked on when he discovered the unpredictability of
chaotic systems [61]. Prototypical of a chaotic system, the Lorenz attractor is a simpli-
fied system that models atmospheric convection. The system is defined by three nonlinear
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Figure 4.4: Lorenz Attractor orbits solved with DG in time for rH = 1 and rh = 2 and the
corresponding norm of the adjoint for rh = 2

equations and three parameters.

du

dt
= f(u), u =

xy
z

 , f =

 σ(y − x)

x(ρ− z)− y
xy − βz

 . (4.6)

In the Lorenz Attractor, the parameter that is usually studied is ρ. Different values of ρ
gives different types of attractors.

0 ≤ ρ ≤ 1⇒ One stable fixed point attractor

1 < ρ < 24.74⇒ Two stable fixed points

24.06 < ρ < 31⇒ Quasi-hyperbolic strange attractors

31 < ρ < 99.5⇒ Non-hyperbolic quasi-attractors

(4.7)

The most studied set of parameters, σ, ρ, β, is set to 10, 28, 8
3
, respectively. It is important

to note that these parameters do give quasi-hyperbolic strange attractors. To discretize the
Lorenz Attractor in time, use a discontinuous Galerkin (DG) temporal discretization [67],
in which the temporal approximation order, r, is varied. In error estimation, the goal is to
compare temporal orders rH = 1 (coarse) and rh = 2 (fine) by integrating the system from
t = 0 to t = T , the final time. The output of interest is the mean z-coordinate,

J̄ ≡ 1

T

ˆ T

0

z dt. (4.8)

For T → ∞ and exact temporal integration, J̄ is a well-defined mean. However, for finite
T and inexact temporal integration, statistical and discretization errors pollute J̄ . In order
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to gain insight into the magnitudes of these errors numerically for the Lorenz system, T
is varied and the statistics for temporal orders r = 1 are compared with those for r = 2.
Figure 4.4 illustrates sample trajectories obtained using ∆t = .05 and T = 20, starting
with the same initial conditions. The two solutions are initially close but then drift apart.
This is expected in a chaotic system, and of interest is how the discretization error affects
the desired statistical output. Additionally, the unsteady adjoint for the Lorenz Attractor is
calculated and shown in Figure 4.4. In the graph, one can see that the norm of the adjoint
diverges backwards in time for both temporal orders, consistent with that of a chaotic sys-
tem. Over the studied time horizon, the magnitude of the norm of the adjoint reaches on
order of 1040, which makes the unsteady adjoint calculation useless for chaotic systems.

Next, understanding how the Lorenz Attractor behaves over long periods of time is
important in order to begin thinking of ways to overcome the failure of the traditional
unsteady adjoint for chaotic systems. Given the assumption that the chaotic systems of
interest are ergodic, one can analyze the statistical results of the time average output of the
chaotic system. Long integration times and high-fidelity temporal integration reduce errors
but add computational expense, hence quantifying the relative importance of each error
source is of interest in ensuring optimal-efficiency calculations.

Figure 4.5 shows a quantitative comparison of output differences for ∆t = .05 and an
ensemble of 500 different random initial conditions. A burn-time of 0.2T is used to allow
the system to settle around the attractor for each choice of initial conditions.

As expected, the statistics improve (ensemble standard deviation drops) as T increases,
but there is a persistent discrepancy between the two temporal accuracy orders and the
ensemble means converge to different values. The difference is similar for all T and larger
than the statistical errors measured by the ensemble standard deviations, which indicates
that this case warrants higher fidelity time integration in lieu of longer integration times.
For more complex simulations, we cannot afford such a detailed convergence study, and
we need to make this decision based on more efficient error estimates. Furthermore, for a
discretization of partial differential equations, numerical error arises from both spatial and
temporal discretizations, and an accurate distinction between the two is vital to efficiency
and convergence of adaptation.

4.4.2 Kuramoto-Sivashinsky

Another chaotic system is the Kuramoto-Sivashinsky (KS) 1D PDE, which was derived
to model the Belousov-Zhabotinsky reactions in three dimensional space [68]. In addition,
KS was derived to model small thermal diffusive instabilities in laminar flame fronts by
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Figure 4.5: Lorenz Attractor: ensemble statistics of outputs computed using different inte-
gration times, T , and DG-in-time integration order, r. Each ensemble contains 500 exper-
iments, and µ and σµ refer to the ensemble mean (more accurate with increasing r) and
standard deviation (smaller with increasing T ).
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Sivashinsky. In the past, KS has been used to model small perturbations from a reference
Poseuille flow of a film layer on an inclined plane. It was first dealt with by Kuramoto
et. al in 1976 when Kuramoto began investigating many different types of instability and
ordered structure that he found in equilibrium stead states [69]. The solution to KS exhibits
local stabilities that are quickly ruined by disturbances that repel and eventually produce
new localized patterns that are again stable for short periods of time. At the moment there
is no explanation for how these local structures are connected to each other (similar to
the way Lorenz tried to make sense of bumps and patterns in his weather model), making
Kuramoto-Sivashinsky a natural chaotic system to use for error estimation before dealing
with more applied problems. The KS equation for a primal scalar state u(x, t) reads

∂u

∂t
= −α∂u

∂x
− u∂u

∂x
− ∂2u

∂x2
− β∂

4u

∂x4
, (4.9)

where the role of the linear advection term ensures that the KS solutions exhibit ergodic
behavior, which is essential for error estimation [70]. Along with the advection term, KS is
characterized by a second-order unstable diffusion term, a fourth-order stabilizing viscos-
ity term, and a nonlinear burgers term. Computations have confirmed that the norm of the
diffusion term ‖∇u(t)‖2 remains bounded and that the linearly unstable modes are stabi-
lized by the strong non linear coupling of the burgers term, 1

2
‖∇u‖2.The initial conditions

consists of a delta distribution,

u(x, t = 0) = u0(x), (4.10)

u0(x) =

1, x = 1
2

0, otherwise
. (4.11)

and a burn time, tburn is used to verify that the state after the burn time is on the strange
attractor. The homogeneous Dirichlet boundary conditions are

u(x = X0, t) = u(x = Xf , t) =
∂u

∂x
(x = X0, t) =

∂u

∂x
(x = Xf , t) = 0. (4.12)

where u is the state and is referred to as the primal solution. Dirichlet boundary conditions
are required for KS to exhibit chaotic behavior. The output of interest is the spatial and
temporal average of the state,

JKS = lim
T→∞

1

T

ˆ Tf

T0

JKS(t) dt, (4.13)
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where

JKS =
1

X

ˆ Xf

X0

u(x, t) dx (4.14)

where T = Tf −T0 and X = Xf −X0. This integral is evaluated using quadrature in space
and trapezoidal time integration, since BDF2 is used for the time discretization. According
to ergodic theory,

lim
T→∞

JKS = JKS (4.15)

There are different forms of the KS equation and different researchers have quantified dif-
ferent models of KS. For this particular case, adding an advection term, allows one to use
ergodic principles to help predict how KS simulations will behave. However, an extensive
study into how the KS model behaves with different parameters is necessary. Understand-
ing how parameters affect the simulation will give different versions of the model to use
for error estimation. Unlike the Lorenz Attractor, where it is accepted that ρ = 28 gives a
quasi-hyperbolic attractor, this knowledge is unknown for KS. Thus, a mini investigation
is required before proceeding. This small study will also give an idea of how long the burn
time should be in order for the trajectory to reach the strange attractor.

4.4.2.1 Kuramoto-Sivashinsky Parameters Analysis

KS exhibits unique trajectories for different advection speed and the ”super viscosity”, (α,
β), which can be seen in x − t contour plots in Figure 4.6- 4.9 for ten different cases with
zero burn time. To simplify the process, only the advection speed and the super viscos-
ity will be analyzed in the following plots. These results provide some insight into which
trajectory would make an adequate prototype for research in error estimation. In addition,
these results help indicate what the ideal burn time (tburn) should be for each set of param-
eters. The burn time should be long enough such that the initial conditions have as little
effect on the statistical output as possible. The area where the initial conditions have the
most effect on the statistical output is seen at the beginning with large zero value regions in
the x− t contour plots. The time-average output J for all the runs is plotted in Figure 4.10,
showing how it is affected by the magnitudes of the advection speed and the super viscos-
ity. Figure 4.6 shows that with α = 1, β = 1, the trajectory is always heavily influenced by
the initial conditions in time. This type of behavior is caused by the high advection to super
viscosity ratio, which extends the time required for the trajectory to reach a steady-state
time-average output. This can be seen further in Figure 4.10 where the time-average solu-
tion for p = 2 and p = 3 differ considerably compared to the other cases. This reveals that
the trajectory is possibly not ergodic, making it a poor choice as a prototypical trajectory
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(a) α = 1, β = 1, p = 2 (b) α = 1, β = 1, p = 3 (c) α = 1, β = 1

Figure 4.6: KS: Advection speed α = 1, super viscosity rate β = 1 trajectories.

for numerical adjoint calculations.
The next set of cases investigates the effect of the super viscosity on the trajectories.

This consists of keeping α = 1 constant and varying β. This will give insight on how
the magnitude of the trajectories behaves when the super diffusive characteristics of the
system decreases. Figure 4.7 shows the trajectory for β = 0.75. The plots compared to
Figure 4.7(a) and 4.7(b) show that the trajectories expand for p = 3 and p = 2 throughout
the entire space with time starting at T = 300. The trajectories or coherent structures
appear to be given the chance to form themselves now that the influence of the fourth order
diffusion term is less than before. The minimum burn time for this case is tburn ≈ 300.
The L2 norm of the adjoint for ph = 3 and pH = 2 in Figure 4.7(c) shows that the slopes
for each of the temporal discretization do not match precisely throughout the entire time
simulation.

Figures 4.7(d) and 4.7(e) show the trajectories for α = 1, β = 0.5. One thing to notice
is that the thickness of the solution coherent structures has decreased, leading to higher
average trajectory magnitudes and higher oscillations, which could mean that the system
exhibits stronger chaotic behavior. Compared to Figure 4.6, the trajectory is able to reach
a situation where the initial conditions have little influence on the time-averaged output.
Compared to Figure 4.7(a) and 4.7(b), the trajectories span the entire one dimensional
space sooner at T ≈ 100, meaning that the minimum tburn can be set to tburn ≈ 150, lower
than before. From this we see that the lower β leads to lower super viscosity, which dilutes
the higher advection speed resulting a system that is possibly more ergodic. Figure 4.7(f)
shows that the slopes of the norm of the adjoint match closely for pH = 2 and ph = 3 than
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(a) α = 1, β = 0.75, p = 2 (b) α = 1, β = 0.75, p = 3 (c) α = 1, β = 0.75

(d) α = 1, β = 0.5, p = 2 (e) α = 1, β = 0.5, p = 3 (f) α = 1, β = 0.5

(g) α = 1, β = 0.25, p = 2 (h) α = 1, β = 0.25, p = 3 (i) α = 1, β = 0.25

Figure 4.7: KS: Advection speed α = 1, changing super viscosity rate β trajectories
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when β = 0.75.
Next, the super viscosity is further decreased to β = 0.25 to see its more extreme effect

on the trajectory. Figure 4.7(g) and 4.7(h) shows the solution for α = 1, β = 0.25. The
thickness of the coherent structures has decreased further implying the systems’ stronger
chaotic behavior and the effect of the initial conditions on the overall time-average output
is decreased further. The minimum burn time according to the results is tburn ≈ 50, mean-
ing the simulations do not have to be executed as long to reach the statistically steady-
state time-averaged outputs even though ideally T → ∞. This case shows that we have a
stronger ergodic behavior compared to when β = 0.5, 0.75. Figure 4.7(i) shows that the
norm for the adjoint is nearly the same for p = 2 and p = 3. The next set of cases to in-
vestigate involves the effect of the advection speed on the trajectories. Note that the higher
the advection speed, the more ergodic the system may be. Figure 4.8 shows a collection of
cases for varying α and constant β.

Figure 4.7(g) and 4.7(h) show the trajectories for α = 0.75 and β = 1. Compared to
Figure 4.6, the trajectories expand the entire space quickly, solidifying that along with the
advection speed, the super viscosity does have important effect on ergodicity as well. This
system’s initial conditions have less effect than even the case where α = 1 and β = 0.75

in Figure 4.7(a) and 4.7(b). This observation is shown as well in Figure 4.7(i) where the
norms of the adjoint for p = 2 and p = 3 match up better than when α = 1 and β = 0.75.

Figure 4.8(a) and 4.8(b) show results for α = 0.5. The system with these parameters
will theoretically be less ergodic. Like that in Figure 4.7(g) and 4.7(h), the initial conditions
for p = 2 and p = 3 become ”washed out” in a reasonable amount of time. The lower ad-
vection speeds do not overcome the super viscosity. For this trajectory, given how long the
zero regions exist in the x− t contour plots, the minimum burn time should be tburn ≈ 125.
From these results, decreasing the advection speed, gives a less ergodic system compared
to when α = 1. This behavior can be seen in Figure 4.8(c) where the norms of the adjoints
for the different discretization orders are more different than before. Figure 4.10 shows that
when decreasing α, the overall time-average output steadies to a value that is larger than
before, implying the less ergodic behavior.

Figure 4.8(d) and 4.8(e) shows that by further decreasing α to α = 0.25, tburn can be
set at a lower minimum tburn ≈ 100 allowing some savings in the computational costs in
creating the primal solution. Figure 4.10 shows that compared to the α = 0.5 and α = 0.75

case, the α = 0.25 trajectory reaches a steady state time-averaged solution that is most
different than the rest of the parameters tested making it possibly less ergodic than the
other cases. Figure 4.8(f) shows similar results to that of Figure 4.8(c). Overall, it appears
that decreasing α leads to higher time-average outputs.
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(a) α = 0.75, β = 1, p = 2 (b) α = 0.75, β = 1, p = 2 (c) α = 0.75, β = 1, p = 2

(d) α = 0.5, β = 1, p = 2 (e) α = 0.5, β = 1, p = 2 (f) α = 0.5, β = 1, p = 2

(g) α = 0.25, β = 1, p = 2 (h) α = 0.25, β = 1, p = 2 (i) α = 0.25, β = 1, p = 2

Figure 4.8: KS: Changing advection speed α, super viscosity rate β = 1 trajectories
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(a) α = 0.25, β = 0.25, p = 2 (b) α = 0.25, β = 0.25, p = 3 (c) α = 0.25, β = 0.25

(d) α = 0.5, β = 0.5, p = 2 (e) α = 0.5, β = 0.5, p = 3 (f) α = 0.5, β = 0.5

(g) α = 0.75, β = 0.75, p = 2 (h) α = 0.75, β = 0.75, p = 3 (i) α = 0.75, β = 0.75

Figure 4.9: KS: advection speed and super viscosity speed α
β

= 1 trajectories
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Lastly, it is important to investigate what happens when the ratio of α and β is one,
but the magnitudes of these parameters are varied. Figure 4.9(a) and 4.9(b) show results
for α = 0.25 and β = 0.25, which looks similar to the case where α = 1 and β = 1.
The trajectories or warms for both pH = 2 and ph = 3 are considerably thinner than
that of the last set of runs and the norms of the adjoints in Figure 4.9(c) are very close in
values. In Figure 4.10 the time-average output for α = 0.25 and β = 0.25 is drastically
different compared to that of α = 1 and β = 0.25 even though the thickness of the ”worms”
are similar in magnitude. It appears compared to the α = 1 and β = 0.25 case, that the
time average output for α = 0.25 and β = 0.25 is more heavily influenced by the initial
conditions, implying that is in less ergodic-there is large hump at T ≈ 80. This leads to the
conclusion that higher advection speed does lead to a more ergodic system.

Figure 4.9(d) and 4.9(e) show results for α = 0.5, β = 0.5. These results further show
that both the magnitudes of α and β, and the ratio of these parameters affect the solution
behavior. Compared Figure 4.9(a) and 4.9(b), the coherent structures are thicker and the
time-average output in Figure 4.10 is less influenced by the initial conditions, which is to
be expected with a higher advection speed. The norm of the adjoint in Figure 4.9(f) show
approximate agreement and the minimum burn time is low, but higher than when α = 0.25

and β = 0.25, tburn ≈ 75.
Figure 4.9(g) and 4.9(h) show results for α = 0.75 and β = 0.75. The coherent struc-

tures are thicker than before and the minimum burn time is higher than the last two cases.
The time average output for this case in Figure 4.10 shows that its value is not highly in-
fluenced by its initial conditions- no bump. However, 4.9(i) shows some interesting results
in the adjoint for these set of parameters. the norm of the adjoints for p = 2 and p = 3

actually diverge away from quickly. By T = 0 the magnitudes of the norm of the adjoints
differ on the order of δ‖ψ‖2 ≈ 105. This is not ideal and shows that this system is even less
ergodic than before even though α is higher now.

4.4.2.2 Summary on Kuramoto Sivashinsky Analysis

Based on the previous study, a good prototypical chaotic system is one that is at least quasi-
hyperbolic and ergodic. It is essential as well that the chosen parameters for the system
gives a heavily chaotic system and a low minimal required burn time. Over a long period
of time, the output of such system needs to reach statistically-converged time-averaged
outputs as quickly as possible. The best parameters that fulfill these requirements are when
α and the ratio of α to β is as high as possible. The case that best fulfills all of these
requirements is the one presented in Figure 4.7(g)- 4.7(i). For the rest of this paper, all
results are for α = 1, β = 0.25.
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Figure 4.10: KS: Time-average output for different KS trajectories and spatial interpolation
orders.

4.4.3 High Reynolds Number Compressible Navier-Stokes

For an application in aeronautical engineering, one can consider the compressible Navier-
Stokes equations, which govern many flow processes. These equations describe the conser-
vation of mass, momentum, and energy of a viscous fluid. For this research, only the two-
dimensional compressible Navier-Stokes equations (d = 2) are considered. The particular
case of interest is a NACA 0012 airfoil in viscous laminar flow at M = 0.2, Re = 104 at
an angle of attack of α = 8◦. Unlike the Lorenz Attractor and the Kuramoto-Sivashinsky
1D PDE, this particular simulation is not chaotic; however, it is a pseudo-periodic unsteady
case, which suffers the same issues as a chaotic case in terms of its adjoint calculations.
Meaningful adjoint calculation for chaotic flows will help rectify the issues with adjoint
calculation for this case as well.

The compressible Navier-Stokes equations are:

Conservation of mass: ∂tρ + ∂j(ρuj) = 0

Conservation of momentum: ∂t(ρui) + ∂j(ρuiuj + pδij) = ∂jτij

Conservation of energy: ∂t(ρE) + ∂j(ρujH) = ∂j(ujτij + qi)

(4.16)

where i and j index the spatial dimension, ρ is the density, ui and uj are the components of
velocity, and E is the total energy per unit mass. The viscous shear and normal stresses for
a Newtonian fluid are

τij = µ(∂iuj + ∂jui) + δijλ∂mum, (4.17)

where µ is the dynamic viscosity and λ is the bulk viscosity. The heat transfer term is
defined as

qi = κT∂iT. (4.18)
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where κT is the thermal conductivity and δij is the Kronecker delta function,

δij =

 1, if i = j

0, if i 6= j.
(4.19)

The important physical quantities for air are

Dynamics viscosity : µ = µref

(
T

Tref

)1.5(
Tref + Ts
T + Ts

)
Bulk viscosity coefficient : λ = −2

3
µ

Thermal conductivity : κT =
γµR

(γ − 1)Pr

Specific-heat ratio : γ = 1.4

Prandtl number : Pr = 0.71

Gas constant for air : R = 287.05 J/(kg·K).

(4.20)

The output of interests for the compressible Navier-Stokes case is the time average of the
drag coefficient. Figure 4.11 shows the computational mesh and a snapshot of the unsteady
flow-field for this governing equation. The boundary conditions are full-state on the farfield

Figure 4.11: NACA 0012: M = 0.2, Re = 104, α = 8◦, computational mesh and flow-field
snapshot

and adiabatic no-slip wall on the airfoil. The state is initialized to free-stream and advanced
forward for a time length T using third-order diagonally-implicit Runge-Kutta (DIRK3)
time marching with ∆t = 0.2. The farfield is approximately 100 chord lengths away from
the airfoil, and the initial solution approximation order is uniform in space at p = 1 or

65



p = 2. The free-stream state is initialized to

u =


ρ

ρu

ρv

ρE

 =


1

cos(α)

sin(α)
1

γ(γ−1)M2 + 1
2

 (4.21)

Figure 4.12 shows the time histories of the drag coefficient and the convergence of its time-
averaged value for different spatial orders p. The time simulation length for this particular
case is T = 100. As the mesh is coarsened, discretization errors become quite large, even
at moderate orders. Similarly as in the Kuramoto-Sivashinsky case, the effect of the dis-
cretization error on the output is not predictable and converges to different time-average
values. For example, p = 4 behaves as an outlier in between p = 3 and p = 5. Calcu-
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(b) Convergence of the average drag coefficient

Figure 4.12: NACA 0012: M = 0.2, Re = 104, α = 8◦, time histories and average drag
coefficient convergence for uniform order refinement. ”Under-resolved”

lation of the traditional adjoint of the pseudo chaotic Navier-Stokes equations in viscous
flow case will result in an adjoint field that deteriorates quickly and that increases expo-
nentially backwards in time given a instantaneous chaotic drag output seen in Figure 4.13.
This makes it not possible with current techniques to use output-based error estimation for
this simulation. The adjoint calculations show that at high Reynolds number, the solution is
highly sensitive to its initial condition and further calls for estimating the impact of numeri-
cal error, i.e., discretization error on statistical outputs, because of its chaotic-like behavior.
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Figure 4.13: NACA 0012, M = 0.2, Re = 2104, α = 8◦, ill-conditioning of average-drag
prediction manifests itself through an unstable adjoint; i.e. the output is highly sensitive to
initial conditions

4.5 Summary

Chapter III introduced the adjoint and went into details explaining how to traditionally
calculate both its discrete and continuous versions for both the steady and unsteady cases.
Due to the adjoints’ useful characteristic as the sensitivity that can be used for any input
perturbation, it has been used successfully for error estimation. However, for chaotic flows,
traditional adjoint calculations break down, making error estimation difficult to implement.

The purpose of this chapter was to give insight into why the unsteady traditional adjoint
breaks down and how it does so for real chaotic cases. These concepts were introduced via
chaos theory which classifies a system as chaotic if it is prone to exhibit aperiodic long term
random trajectories, is deterministic, and is highly sensitive to its initial conditions. Next,
the butterfly effect was looked at in more detail by considering the Lyapunov exponents
and the covariant Lyapunov vectors, which were shown to influence the trajectory of a
chaotic system. The system’s non predictive behavior was shown to be caused by positive
Lyapunov exponents. The Lyapunov exponent was calculated numerically by looking at
the exponential growth of a perturbed trajectory with slightly different initial conditions.
The slope of the norm of the adjoint gives the magnitude of the largest positive Lyapunov
exponent.

Several tools were introduced that could be used to analyze chaotic systems and used
to develop a new chaotic adjoint technique to replace its traditional formulation. The first

67



tool was the chaotic hypothesis, which assumes that many high-dimensional chaotic sys-
tems behave as if they were quasi-hyperbolic. This means that it can be assumed that most
chaotic systems are made of three subspaces, one that is contracting, one that is expanding,
and one that is neutral and tangential to the flow direction. By assuming most chaotic sys-
tems are hyperbolic or quasi-hyperbolic, the shadowing lemma for example, which will be
introduced in the next chapter, can be used for adjoint method development.

The last tool is statistical theory, which allows for one to make sense of seemingly
random behaviors. Without statistical theory, there is is not enough information about the
geometrical characteristic of the system in order to begin to formulate solutions. By using
statistics - i.e. studying time average outputs after running for long simulation times- one
can better distinguish different levels of complexity in the system. This is an important
concept for verification for error estimation of chaotic systems. Statistical theory leads to
the theory or ergodicity, which allows for one to assume that over long periods of time (T →
∞), certain assumptions can be made. The most important assumptions are that the initial
conditions over long periods of time have little impact on the time-average output and that
the time-average output of the system will eventually be equal to the spatial average output.
Ergodic theory along with the two previous tools described will allow for one to attempt
to provide a solution to calculating chaotic adjoints for output-based error estimation and
other applications.

Lastly, this chapter introduced three different prototypical chaotic equations that will be
used for the rest of the thesis. The three chaotic systems are the Lorenz Attractor, the one
dimensional ergodic Kuramoto-Sivashinsky system, and the pseudo-chaotic high Reynolds
number compressible Navier-Stokes equation. It was shown for all three systems that the
traditional unsteady adjoint increases exponentially backwards in time, resulting in un-
usable adjoints for output-based error estimation. The following chapters will propose a
method that can calculate accurate chaotic adjoints.
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CHAPTER V

The Least Squares Shadowing-Adjoint Weighted
Residual Method

In Chapter IV, chaos theory was introduced in order to explain why traditional unsteady
adjoint-based techniques fail for chaotic flows. When calculated backwards in time, the ad-
joints increased exponentially, making them unusable for sensitivity calculations, or error
estimation. This divergent behavior is caused by the chaotic system’s sensitivity to initial
conditions. The system was then described by its Lyapunov exponents, which is a quan-
tify that defines that rate of separation between a reference trajectory and a trajectory with
perturbed initial conditions. When perturbing the initial conditions, the new trajectory of a
chaotic system will not in general stay close to the original trajectory, as seen in Figure 4.1.
Note that a perturbed trajectory of a chaotic system will stay close to its reference trajec-
tory for a short period time before diverging away. This behavior hinders sensitivity and
error calculations based on linearization. Modifications to the traditional continuous ad-
joint method will be introduced in this chapter to enable calculation of meaningful chaotic
adjoints that can be used for output-based error estimation and mesh adaptation.

One such technique that has been studied extensively by Wang et. al, uses optimization
techniques to find an alternative perturbed trajectory that will not diverge away from the
reference trajectory [70, 71, 72, 73]. This particular technique is referred to as the Least
Squares Shadowing method and replaces the traditional adjoint method in the output-based
error estimation routine as shown in Figure 5.1. The Least Squares Shadowing method
(LSS) has been used successfully to compute adjoint sensitivities for chaotic systems. In
this paper, several assumptions and theories will reveal why LSS can be used. Next, a
derivation of the LSS method similar to that of the traditional continuous adjoint method
will be presented. Once the LSS adjoint equations have been found, the chapter will go
over how to practically implement the LSS method, which uses a technique called, the
LSS checkpoint design. The LSS checkpoint design technique solves the adjoint for nseg
time windows. The time simulation is split into nSeg time windows in order to prevent the
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Figure 5.1: Flowchart of the Least Squares Shadowing-Adjoint Weight Residual Method
for Output-Based Error Estimation.

adjoint from growing exponentially backwards in time. After the algorithms for LSS are
presented, LSS is extended to output-based error estimation to formulate the Least Squares
Shadowing-Adjoint Weighted Residual Method.

Finally, results for the implementation of LSS for the Lorenz attractor and the KS equa-
tions will be presented. LSS will be used to calculate usable adjoints to estimate temporal
error for the Lorenz attractor, and LSS will be used to calculate usable adjoints to estimate
spatial errors for the KS equations.

5.1 Shadowing Lemma

In Chapter IV, it was stated that by the first principle of ergodic theory, long time-averages
of an output do not depend on the initial conditions. This concept leads to the first idea that
the initial conditions for the perturbed trajectory can indeed be relaxed and chosen such
that the perturbed trajectory does not diverge away from the reference trajectory, assuming
such a trajectory exists. If a perturbed trajectory that does not diverge away from the ref-
erence exists, then theoretically, an accurate adjoint based on the non-diverged perturbed
trajectory can be calculated for the system. Hence the duality principles from Chapter III
can still be used, since the linearization principles can still be applied for the states and the
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Figure 5.2: Shadow trajectory u with relaxed initial conditions along with the reference and
perturbed trajectory. Dotted lines refer to the longer difference in distances (t) compared to
the full line, which refer to the shorter difference in distances (τ ).

residuals. Regardless of the initial conditions, ergodic theory states that the time-average of
the output for the perturbed trajectory and the reference trajectory will converge as t→∞.
This theory leads to the least squares principles which can be used to find the perturbed
trajectories or “shadow trajectories” that do not diverge from the reference trajectory. More
proof is needed in order to verify that such a trajectory actually exists.

In addition to ergodicity, it was shown in Chapter IV that most chaotic systems can be
treated as quasi-hyperbolic. Given ergodicity and hyperbolicity of the system,there exists
a lemma to support the existence of the shadow trajectory. If a chaotic system possesses
a hyperbolic or quasi hyperbolic strange attractor, and the system is perturbed by initial
condition or parameters,δµ, then the shadowing lemma states:

Lemma 1 For any δu > 0 there exists ε > 0, such that for every u that satisfies ‖du
dt
−

f(u;µ+ δµ)‖ < ε, 0 ≤ t ≤ T , there exists a true solution uref and a time transformation

τ(t), such that ‖uref (τ(t)) − u(t)‖ < δ, |1 − dτ
dt
| < δ and duref

dτ
− f(uref ;µ + δµ) = 0,

0 ≤ τ ≤ T .

where u refers to the shadow trajectory, uref refers to the reference trajectory, and τ refers
to the temporal reference frame of the shadowing trajectory[74]. This time transformation
pertains to the neutral Lyapunov exponent and relates the temporal reference frame of the
reference trajectory to that of the shadowing trajectory, which can be seen in Figure 5.2.
The time dilation term shown in Figure 5.2 relates the reference trajectory’s temporal frame
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to the shadow trajectory’s temporal frame. For the unperturbed trajectory, η is defined as

η =
dτ(t;µ)

dt
− 1. (5.1)

and is necessary in order to find a shadow trajectory that is as close as possible to the
reference trajectory. Overall, the shadowing lemma shows that for a hyperbolic system,
a shadow trajectory exists close to the reference trajectory and that it is possible to use
ergodic ideas to find this shadow trajectory, u. The existence of a shadow trajectory makes
it possible to calculate chaotic adjoints for output-based error estimation. The next section
goes over the formulation of the LSS primal problem.

5.2 The Least Squares Shadowing Primal Problem

To formulate the LSS method, the governing equations are presented as

du

dt
= f(u,µ), (5.2)

whereu represents the states of the system andµ represents the design parameters or inputs
of interest. The design parameter, µ, can be the advection speed, α, for the Kuramoto-
Sivashinsky problem or the thickness of an airfoil for the Navier-Stokes equations. Again,
since the application of LSS is for chaotic systems, the output of interest is a time-average,
defined as

J =
1

T

ˆ Tf

T0

J(u;µ; t) dt, (5.3)

where J is an instantaneous output, and Tf − T0 is the length of the simulation in time.
A least-squares problem is defined to find a shadow trajectory that exists very close to

the original reference trajectory while still satisfying the governing equations. Specifically,
the least squares problem looks at minimizing the L2 norm of the difference between the
reference trajectory and the shadow trajectory. This problem can be written out mathemat-
ically as

min
u

1

2

ˆ T1

T0

‖u(τ(t;µ+ δµ);µ+ δµ)− uref (t;µ)‖2dt s.t.

du(τ(t,µ+ δµ);µ+ δµ)

dt
= f(u(t,µ+ δµ);µ+ δµ) T0 < t < Tf

(5.4)
where uref is the reference trajectory, u is the shadow trajectory, and τ is the time of the
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shadow phase frame explained earlier. Note that

uref = u(τ(t;µ),µ). (5.5)

When T → ∞, the approximated shadow trajectory will converge to the exact shadow
trajectory. Hence, solutions of this least-squares shadowing problem are more accurate with
longer time simulations.

In sensitivity analysis, one is interested in how the inputs or parametersµ affect the out-
puts or states of the system. For LSS, the sensitivity of the states in terms of the parameters
is defined as

v =
∂u(τ(t;µ),µ)

∂µ
. (5.6)

The LSS equations can be rewritten in terms of v by first taking a Taylor-series expansion
of u(τ(t;µ+ δµ);µ+ δµ),

u(τ(t;µ+ δµ);µ+ δµ) = u(τ(t;µ),µ) +
∂u(τ(t;µ),µ)

∂µ
δµ+O(δµ2),

= uref (t) + v(t)δµ+O(δµ2).

(5.7)

Substituting Eqn. 5.7 into the minimization statements, Eqn. 5.4, and assuming small per-
turbations, one can obtain

min
v

1

2

ˆ T1

T0

‖vδµ‖2dt s.t.

du(τ(t,µ+ δµ);µ+ δµ)

dt
= f(u(t,µ+ δµ);µ+ δµ) T0 < t < Tf

(5.8)

The constraint of the least-squares problem can be written in terms of v. Given Eqn. 5.7 and
ignoring the higher-order terms, one can take the derivative via the chain rule and simplify

du(τ(t,µ+ δµ);µ+ δµ)

dt
=
d(uref (t) + v(t)δµ)

dt
du(τ ;µ+ δµ)

dτ

dτ(t,µ+ δµ)

dt
=
d(uref (t) + v(t)δµ)

dt

f(u(τ(t,µ+ δµ);µ+ δµ)
dτ(t,µ+ δµ)

dt
=
d(uref (t) + v(t)δµ)

dt

(5.9)
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Taking the Taylor series of f(u(τ(t,µ+ δµ);µ+ δµ) and rewriting Eqn. 5.9,[
f(u(t;µ);µ) +

∂f(u(t;µ);µ)

∂u
vδµ+

∂f(u(t;µ);µ)

∂µ
δµ

]
dτ(t,µ+ δµ)

dt
=

d(uref (t) + v(t)δµ)

dt

(5.10)

Eqn. 5.10 is a function of τ(t,µ + δµ), which represents the time dilation of the shadow
trajectory when the input µ is perturbed by δµ. Note that for the reference solution, uref ,
the the time dilation is τ(t;µ) = t. In general, the time dilation will be different for the
shadow trajectory compared to the reference trajectory, τ(t,µ+ δµ) 6= τ(t,µ). To find the
perturbed dilation, one can linearize τ(t,µ+ δµ) about µ,

τ(t,µ+ δµ) = τ(t,µ) +
∂τ(t,µ)

∂t

∂t

∂µ
δµ+O(δµ2). (5.11)

Given Eqn. 5.1 and assuming small perturbations, Eqn. 5.11 can be simplified to

η(t) =
d

dµ

(
dτ(t;µ+ δµ)

dt
− 1

)
. (5.12)

Taking the integral of both sides from µ→ µ+ δµ and solving for dτ
dt

gives,

dτ(t;µ+ δµ)

dt
= 1 + η(t)δµ (5.13)

Substituting Eqn. 5.13 into Equation 5.10, one can find,[
f(u(t;µ);µ) +

∂f(u(t;µ);µ)

∂u
vδµ+

∂f(u(t;µ);µ)

∂µ
δµ

]
[1 + η(t)δµ] =

d(uref (t) + v(t)δµ)

dt

(5.14)

Simplifying and neglecting higher-order terms produces,

f(u(t;µ);µ) + f(u(t;µ);µ)η(t)δµ+
∂f(u(t;µ);µ)

∂u
vδµ+

∂f(u(t;µ);µ)

∂µ
δµ =

d(uref (t) + v(t)δµ)

dt

(5.15)

Since duref

dt
= f(uref ,µ), Eqn. 5.15 and the original minimization problem statement can
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be written as,

min
v

1

2

ˆ Tf

T0

‖vδµ‖2dt s.t.

dv(t)

dt
δµ =

∂f(u(t;µ);µ)

∂u
vδµ+

∂f(u(t;µ);µ)

∂µ
δµ+

f(u(t;µ);µ)η(t)δµ, T0 < t < Tf

(5.16)

Dividing Eqn. 5.16 by δµ, one can obtain the modified problem statement in terms of v:

min
v

1

2

ˆ T1

T0

‖v(t)‖2dt s.t.

dv(t)

dt
=
∂f(u(t;µ);µ)

∂u
v +

∂f(u(t;µ);µ)

∂µ
+ f(u(t;µ);µ)η(t).

(5.17)

After the linearized form of the minimization problem has been found, the new governing
equations that define the original problem need to be found in the optimization process.

5.3 Karush-Kuhn-Tucker Conditions: Modified Govern-
ing Equations

Once the linearization of the problem statement has been made, the goal is to find the new
set of governing equations that encapsulates the minimization problem and the shadow tra-
jectory definition. Given the new minimization problem written in terms of v in Eqn. 5.17,
one can turn the constrained optimization problem into an unconstrained optimization prob-
lem by forming the Lagrangian,

L(v,w) = F (v) +
m∑
k=1

wT
k ck(v), (5.18)

where k refers to number of constraint equations, w refers to the Lagrange multipliers,
F (v) refers to the function to be minimized, and ck refers to the residuals of the con-
straint equations. Applying this to Eqn. 5.17 as a constrained variational problem gives the
following Lagrangian,

L(v,w) =
1

2

ˆ Tf

T0

v(t)Tv(t)+

2wT

(
dv(t)

dt
− ∂f(u(t;µ);µ)

∂u
v − ∂f(u(t;µ);µ)

∂µ
− f(u(t;µ);µ)η(t)

)
dt.

(5.19)

75



To find the KKT equations (the new governing equations for this problem), one can take
the derivatives of this equation with respect to v and w and set them to 0,

∂L(v,w)

∂w
=
dv(t)

dt
− ∂f(u(t;µ);µ)

∂u
v − ∂f(u(t;µ);µ)

∂µ
− f(u(t;µ);µ)η(t) = 0.

(5.20)
To find ∂L

∂v
, the Lagrangian needs to be manipulated more before taking the derivative.

Eqn. 5.19 can be be rewritten by integrating by parts
´ Tf
T0

2wT dv
dt
dt,

L(v,w) =
1

2

ˆ Tf

T0

v(t)Tv(t) dt+ [wTv]
Tf
T0

+

ˆ Tf

T0

−dw
T (t)

dt
v −wT ∂f(u(t;µ);µ)

∂u
v −wT ∂f(u(t;µ);µ)

∂µ
−wTf(u(t;µ);µ)η(t) dt

(5.21)
Then, taking the derivative with respect to v and setting it to 0, one can obtain (after a
transpose),

∂L(v,w)

∂v
= −dw(t)

dt
−
(
∂f(u(t;µ);µ)

∂u

)∗
w(t) + v(t) = 0, (5.22)

where (· )∗ refers to the conjugate transpose. Thus the KKT conditions are

dv(t)

dt
=
∂f(u(t;µ);µ)

∂u
v +

∂f(u(t;µ);µ)

∂µ
+ f(u(t;µ);µ)η(t), (5.23)

dw(t)

dt
= −

(
∂f(u(t;µ);µ)

∂u

)∗
w(t) + v(t). (5.24)

Here, the Karush-Kuhn-Tucker (KKT) conditions take the form of the dual/adjoint prob-
lems. Note that there is a third KKT condition equation for the time transformation; how-
ever, this term will be included in the final LSS adjoint equations in a different way. for
the time transformation term b In the next section, the adjoint equations will be found
corresponding to these KKT conditions.

5.4 Least Squares Shadowing Adjoint Equations

To find the Least Squares Shadowing adjoint equations, the concepts of duality from chap-
ter III for the continuous adjoint derivations can be used. First, the chaotic output of interest
is considered as,

J̄ =
1

T

ˆ Tf

0

J(u(t;µ+ δµ);µ+ δµ) dt. (5.25)
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Since the output is nonlinear for chaotic systems, it needs to be linearized about the ref-
erence primal trajectory before the dual equation can be found. The linearized output is
defined as,

J̄ ′[u] =
1

T

ˆ T1

T0

∂J

∂u
v dt, (5.26)

where, the prime values are the Féchét derivatives. Note that J̄ ′[u] indicates the state about
which the lienarization is performed. Next, the same procedure for the unsteady continuous
adjoint derivations can be used to find the chaotic LSS adjoint equations. First, the adjoint
Lagrangian is defined as,

Ladj ≡ J̄ ′[u]−
ˆ Tf

T0

k=m∑
k=1

ψT
k , rk(v,w) dt. (5.27)

where ψk is the adjoint and rk(v,w) is the residual of the governing equations (in our case
the KKT conditions found previously). Putting all terms in Eqns. 5.23 and 5.24 on one side,
the constraints for the adjoint Lagrangian are

rk=1 =
dv(t)

dt
− ∂f(u(t;µ);µ)

∂u
v(t)− ∂f(u(t;µ);µ)

∂µ
− f(u(t;µ);µ)η(t), (5.28)

rk=2 =
dw(t)

dt
+

(
∂f(u(t;µ);µ)

∂u

)T
w(t)− v(t). (5.29)

Substituting Eqn. 5.28 and 5.29 into Equation 5.27 gives,

Ladj =
1

T

ˆ Tf

T0

∂J

∂u
vdt

−
ˆ Tf

T0

ψT
1

[
dv(t)

dt
− ∂f(u(t;µ);µ)

∂u
v(t)

∂f(u(t;µ);µ)

∂µ
− f(u(t;µ);µ)η(t)

]
dt

−
ˆ Tf

T0

ψT
2

[
dw(t)

dt
+

(
∂f(u(t;µ);µ)

∂u

)T
w(t)− v(t)

]
dt.

(5.30)
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Integrating by parts gives,

Ladj =
1

T

ˆ Tf

T0

∂J

∂u
vdt− [ψT

1 v]
Tf
T0
− [ψT

2w]T1T0 +

ˆ Tf

T0

dψT
1

dt
vdt

−
ˆ Tf

T0

ψT
1

[
−∂f(u(t;µ);µ)

∂u
v(t)− ∂f(u(t;µ);µ)

∂µ
− f(u(t;µ);µ)η(t)

]
dt

+

ˆ Tf

T0

dψT
2

dt
wdt−

ˆ Tf

T0

ψT
2

[(
∂f(u(t;µ);µ)

∂u

)T
w(t)− v(t)

]
dt

(5.31)
Now to find the adjoint equation that governs ψ2 and ψ1, one can take variations of Ladj
with respect to v and w,

∂Ladj
∂w

= −[ψT
2 δw]

Tf
T0

+

ˆ Tf

T0

[
dψT

2

dt
−ψT

2

(
∂f

∂u

)T]
δw dt (5.32)

∂Ladj
∂v

= −[ψT
1 δv]

Tf
T0

+

ˆ Tf

T0

1

T

∂J

∂u
+
dψT

1

dt
+ψT

1

(
∂f

∂u

)
+ψT

2 dt. (5.33)

Setting these derivatives to 0 gives,

dψT
2

dt
=

(
∂f

∂u

)T
ψT

2 , (5.34)

dψT
1

dt
= −

(
∂f

∂u

)
ψT

1 −ψT
2 −

1

T

∂J

∂u
. (5.35)

Taking the transpose of both equations,

dψ2

dt
=

(
∂f

∂u

)
ψ2, (5.36)

dψ1

dt
= −

(
∂f

∂u

)T
ψ1 −ψ2 −

1

T

∂J

∂u

T

. (5.37)

In summary, the adjoint system is given by Eqn. 5.40 and Eqn. 5.41. The temporal bound-
ary conditions, which derive from the boundary terms in the integration by parts, dictate
that the equation for ψ2 is solved forward in time, whereas the equation for ψ1 is solved
backward in time. These chaotic unsteady adjoint equations look similar to the traditional
continuous unsteady adjoint equations; however, the chaotic adjoint depends on two, not
one, equations, already making it more expensive of a calculation than the traditional equa-
tion. Due to the coupled chaotic adjoint equations, a more complicated solver is used.
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5.5 Solving the Least Squares Adjoint Equations

In the previous section, the LSS adjoint equations were derived for a quasi-hyperbolic
ergodic equation. To solve for these equations, an additional tangent solver is needed before
the reverse adjoint solve can be made, complicating the process. There are two different
ways to solve the adjoint equations

1. The Full trajectory design discretizes the LSS adjoint equations directly and solves
the linear set of systems, Ax = b where x includes the the tangent, Lagrange, and
time transformation variable, η. This technique consists of finding a full trajectory at
once where the tangent ψ2 is the main constraint of the system.

2. The Checkpoint design divides the time simulation into nseg windows. Instead of
relaxing the initial conditions and then searching for a set of new initial conditions for
the full trajectory, the tangent and Lagrange adjoint equations are solved for different
checkpoints throughout the simulation time as shown in Figure 5.3. By minimizing
over nseg time windows, the problem has fewer variables than the full trajectory de-
sign, since the η is taken into account via projections of the tangent and Lagrange so-
lutions, making it a cheaper method to use to solve for the LSS adjoint equations [70].
This method solves a smaller adjoint system compared to the full trajectory design.

For this dissertation, the cheaper checkpoint design is used to solve the LSS adjoint
equations. The main variable of this method is the number of time segments, nseg or the
length of each time segment, Tk. The time simulation is split up such that the adjoint does
not grow exponentially within each segment and such that information of the inherent prob-
lem is not lost. By using an iterative checkpoint process [70] for each time window, it is

Figure 5.3: Least Squares Shadowing Checkpoint design for adjoint calculation.

not required to solve the tangent and the adjoint for the entire time simulation, decreasing
the overall computational time. The checkpoint design reduces the size of the KKT system
by searching for the shadow trajectory at K + 1 checkpoints, where the total number of
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time segments is nseg = K. This technique can be thought of as an iterative solve of the
following system of linear equations [70],

Ax = b, x =



Ψ2,0

Ψ2,1

...

Ψ2,K−1

Ψ1,1

...

Ψ1,K−1


(5.38)

where x starts off at the beginning as the initial guesses for the tangent and adjoint values
of the shadow trajectory. Note that the number of Ψ2 terms in x is one fewer than that
of Ψ1. Ψ2 and Ψ1 represent the adjoints for the time checkpoint nodes. Thus, the length
of x is m = N(2nseg − 1) where N is the total number of states in the system. Hence
A ∈ Rm×m and b ∈ Rm. In order to take into account the time-dilation term, η, LSS solves
for the projection of the adjoint inputs onto f(t) via

ψ = PtiΨ ≡ Ψ− ΨTf(ti)

f(ti)Tf(ti)
f(ti), (5.39)

where ti refers to the checkpoint at ti. In addition, taking into account the time dilation term
makes the LSS adjoint method, adjoint consistent [70]. Thus, the LSS adjoint equations
take its final form as

dψ2

dt
=

(
∂f

∂u

)
ψ2, (5.40)

dψ1

dt
= −

(
∂f

∂u

)T
ψ1 − Ptψ2 − β

1

T

∂J

∂u

T

. (5.41)

where β is used in an iterative solver. The initial conditions for ψ2 on each time segment is

ψ2(ti) = PtiΨ2 (5.42)

and the terminal conditions for ψ1 for each time segment is

ψ1(ti+1) = PtiΨ1 − β
J(ti+1)− J
TfTi+1fi+1

fi+1 (5.43)

Before solving Eqn. 5.38, a burn time, Tburn, is executed to ensure that the trajectory is
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on the attractor at the start of actual simulation. Note that perturbed initial conditions are
assigned before the burn time takes place. Once the burn time has been done, the pri-
mal solution for the entire simulation that spans all the time segments is needed. Once
this is found, the adjoint LSS checkpoint solver presented in Algorithm 5.1 is used. A
guess for the tangent solution and adjoint solution for each checkpoint is made and then
used to find the corresponding tangent and adjoint solutions. This process is performed
for all time segments and repeated until the tangent and adjoint solution converges via an
iterative matrix-free solver, GMRES, to a prescribed tolerance. Within the GMRES algo-
rithm, matrix vector multiplication and system solves are needed. For these calculations,
the MATVEC algorithm is presented in Algorithm 5.2 used specifically for the LSS check-
point solver.

Algorithm 5.1 Adjoint LSS Checkpoint Iterative Solver for A x = b

Input: Ψ1, Ψ1

Output: ψ1

1: Choose an iterative solver e.g. GMRES
2: To calculate Ax in interative solver, set β = 0, and perform MATVEC(Ψ2,Ψ1, β)
3: To calculate Ax− b in iterative solver, set β = 1, and perform MATVEC(Ψ2,Ψ1, β)
4: To computeAx = b, findψ2 by setting β = 1, and performing MATVEC(Ψ2,Ψ1, β)

Algorithm 5.2 Adjoint MATVEC Algorithm
Input: Ψ2, Ψ1, β
Output: Rψ2

i ,Rψ1

i

1: for t = 1, K time segments do
2: Set tangent initial conditions to ψ2(ti) = PtiΨ2

3: Set adjoint terminal conditions to ψ1(ti) = PtiΨ1 − β J(ti+1)−J
TfT

i+1fi+1
fi+1

4: Time integrate dψ2

dt
=
(
∂f
∂u

)
ψ2

5: Time integrate backwards dψ1

dt
= −

(
∂f
∂u

)T
ψ1 −ψ2 − 1

T
∂J
∂u

T

6: ComputeRψ2

i = Ψ1 − Ptiψ1(t−i )
7: ComputeRψ1

i = Ψ2 − Ptiψ2(t+i )
8: end for
9: end for

For a large number of time segments, the stiffness of Eqn. 5.38 grows and demands efficient
preconditioning strategies.
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5.6 Output-Based Error Estimation via the Adjoint-
Weighted Residual

The least-squares shadowing (LSS) approach has been used successfully to compute effi-
cient sensitivities for chaotic systems [71, 72, 70]. Once ψ1 has been found for each time
segment, the LSS method can be extended to output-based error estimation.

After the adjoint system solve, output sensitivities can be calculated fromψ1, since this
is the adjoint that weights the residual term containing ∂f

∂µ
.

Specifically,
dJ̄

dµ
=

ˆ T

0

ψT
1

∂f

∂µ
dt. (5.44)

To estimate the output error using the LSS adjoint, Eqn. 5.44 is used with a residual per-
turbation computed from two different discretization spaces. Doing so gives a perturbation
in the residual arising from the discretization error, which is weighted by the fine-space
adjoint to obtain the error estimate,

δJ̄ = −
ˆ Tf

T0

ψT
1,h

[
duH
dt
− f(uH)

]
h

dt = −
ˆ Tf

T0

ψT
1,hM

−1Rh(u
H
h ), (5.45)

whereRh(u
H
h ) is the fine-space residual vector evaluated with the coarse solution injected

into the fine space.

5.7 LSS Adjoint-Weighted Residual for Lorenz Attractor

To test the LSS method, the Lorenz attractor was chosen for to its simplicity. The primal
solution was first found by implementing a burn time of Tburn = 0.5T . DG in time was used
for the temporal discretization with a time step of ∆t = 0.05. The goal of this is exercise
is to determine the effect of discretization errors on the time-average output for the Lorenz
attractor between temporal approximation orders of rH = 1 and rh = 2. Before the burn
time, the initial conditions were chosen to be x = 1, y = 1, z = 1 and then perturbed by a
small δu, the components of which were randomly chosen from [−0.1, 0.1]. The unsteady
output of interest was the time-average of the z trajectory. Figure 5.4 shows the comparisons
of the output-based error estimates to the actual difference of the time-average outputs with
the same initial conditions. Note that only the temporal errors are being estimated in this
problem. The length of the time segments for all time simulations was set to Tk = 4, which
was found to be close to the maximum possible values for keeping the adjoint calculations
and the linearized calculations stable. If the time window were changed to be larger, the
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Figure 5.4: Lorenz attractor: temporal output based error estimation using the LSS-adjoint
weighted residual method. The points are the output based errors computed from 50 indi-
viduals runs in each ensemble. The circles are the means of the ensemble errors, and the
horizontal line segments are drawn at ± one standard deviation

adjoint would begin to increase exponentially backwards in time. Hence, the time window
is an important parameter to find reasonable chaotic adjoints. For the Lorenz Attractor,
the estimated discretization numerical error in blue under-predicts the actual error in red
especially at earlier time simulations, which is expected since the statistical errors tend to
dominate. At longer time simulations, the numerical error estimates do improve and the
statistics improve as well. It is important to note that the output-based error estimates are
more tightly clustered than the actual errors, which indicates a high level of confidence in
the output based error results, even for shorter simulations times.

The results of the output-based error estimates using LSS show promise. Implementing
this method on a more complicated chaotic system is important to see how the method
behaves for different Lyapunov exponents values and with estimation of spatial errors.
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5.8 LSS Adjoint Weighted Residual for Kuramoto-
Sivashinsky

In addition to the Lorenz Attractor, the LSS method is used to calculate chaotic adjoints
for the Kuramoto-Sivashinsky equation. Unlike the Lorenz Attractor, the KS equations is
a one-dimensional PDE, and thus the error estimates of interest can include the spatial
discretization error. For both the coarse and fine space residual, BFD2 is used with a time
step of ∆t = 0.2 to solve the PDE in time, and the spatial interpolation order is set to pH =

2 and ph = 3. Note that p = 1 does not give a chaotic system as its trajectories are under
resolved and reach a fixed point in time; the states reach a steady state solution. The burn
time for KS is set to Tburn = 500. Again, like the Lorenz attractor case, the initial conditions
are perturbed by a small random value of δu ∈ [−0.2, 0.2] at all the spatial nodes before
the burn time is implemented. Figure 5.5 shows the error estimate results for KS at T =

20, 40, 60, 80, 100, 120, 140, 160, 180 for time segments of length Tk = 5, and Figure 5.6
shows the error estimate results for KS at T = 20, 40, 60, 80, 100, 120, 140, 160, 180 for
time segments of length Tk = 4. In addition, the error estimates for both results are shown
for three different adjoint calculations, ψ, δψ, δψH1 . Note that Figure 5.5 and Figure 5.6
show similar results for Tk = 4 and Tk = 5; decreasing the length of the time window
beyond Tk = 5 has little effect on the output-based error estimates.

Originally, the error estimates using ψ were investigated for both Tk = 5 and Tk = 4,
and these are shown in red. However, the error estimates behave differently than that of
the Lorenz attractor. First, the error estimates over predict the actual errors, shown in in
blue, and begin to converge to the actual error estimate by T = 180 at a much slower
rate compared to the results of the Lorenz attractor. The average difference between the
error estimate and the actual error estimate is just above an order of magnitude larger.
Another difference between the results for KS versus those of the Lorenz attractor is that
the statistics do not improve with time. Instead, the statistics stay relatively the same with
time, which is likely due to the fact that the KS equation does not become chaotic as fast
as the Lorenz Attractor. To see if the error estimates can be improved, the error estimates
in terms of δψ were calculated in turquoise. Unfortunately, the error estimates with δψ for
Tk = 5 and Tk = 4 becomes worse, possibly due to poor projections of the fine solution
onto the coarse space. When investigating the behavior of the projection of the fine space
solution to the coarse mesh used to calculate, δψ, it was found that the projection was
of poor quality. This poor quality in the projection process is most likely due to the very
chaotic nature/lack of smoothness of the adjoint itself, making it difficult to properly negate
the influence of the coarse space adjoint.
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Figure 5.5: KS: spatial output based error estimation that uses the LSS-adjoint weighted
residual method for time segment length of Tk = 5. The points are the output based errors
computed from 10 individuals runs in each ensemble. The circles are the means of the
ensemble errors, and the horizontal line segments are drawn at ± one standard deviation

In an attempt to improve the projection process and to therefore improve the error esti-
mates, the H1 projection was used, which restricts the slopes of the coarse and fine solution
to match at the coarse basis nodes as well. H1 projection is described in Chapter III. The
results of the error estimates with the H1 projection for Tk = 5 and Tk = 4 can be seen
in both Figure 5.5 and Figure 5.5 in cyan, which on average matches the original error es-
timate in red. Using the H1 projection does improve the error estimate by a small amount
compared to the original projection, but does not improve the overall error estimate sig-
nificantly. These results suggest that the projection of a chaotic adjoint for KS does not
eliminate the undesirable error contributions. Even though the results for LSS are not as
accurate as that of the Lorenz attractor, the error estimates are reasonable. This is most
likely due to the fact that the KS equation compared to the Lorenz attractor has more larger
positive Lyapunov exponents, making it more difficult to predict the discretization errors
of KS.
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Figure 5.6: KS: spatial output based error estimation that uses the LSS-adjoint weighted
residual method for time segment length of Tk = 4. The points are the output based errors
computed from 10 individuals runs in each ensemble. The circles are the means of the
ensemble errors, and the horizontal line segments are drawn at ± one standard deviation

One observation about the implementation of the LSS method for the KS equations is
that due to the fact that the KS equations are a function of both one dimensional space
and time, the size of the system is much larger than that of the Lorenz Attractor. The fine
space adjoint is a function of N = 480 spatial nodes and T/∆t temporal nodes, which
in contrast to the Lorenz attractor is much larger and requires many more calculations
to find the adjoint. It was found that the LSS method for systems larger than the Lorenz
attractor is quite expensive. For T = 20 with Tk = 4, the LSS system has nseg = 5 time
windows. When solving the linear system of LSS, the A matrix has size 4320× 4320. The
error tolerance in GMRES was set to 10−6 preventing the need for all 4320 iterations, but
this small modification is not enough to produce efficient chaotic adjoints for much longer
time simulations. In order to implement LSS for larger systems, the LSS method needs to
be modified in order to make it more practical for more extreme simulations. In the next
chapter, reduced-order modeling will be introduced to reduce the size of the overall system,
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by reducing N spatial nodes to only nr spatial nodes where nr � N .

5.9 Summary

Chapter III introduced the traditional adjoint methods and output-based error estimation
for use with unsteady simulations, which when applied to chaotic systems, fail to produce
accurate error estimates for the purpose of mesh adaptation. Chapter IV revealed that tradi-
tional adjoint calculations for unsteady flows fail due to the “butterfly effect”, characteristic
of chaotic systems. The “butterfly effect” describes the chaotic system’s high sensitivity to
its initial conditions. Due to this behavior, the linearizations used to derive the traditional
adjoint equations fail, leading to exponentially large adjoint magnitudes when calculated
backwards in time. In this chapter, the LSS method was introduced, which provides ad-
ditional steps to the duality process. When perturbing the initial conditions of a chaotic
trajectory, the new trajectory will diverge away from the reference trajectory over a small
period of time. The rate at which the perturbed trajectory diverges is dependent on the Lya-
punov exponent of the system. However, due to the ergodic assumptions that state that the
initial conditions will have zero effect on the time-average output as T → ∞, the initial
conditions can be relaxed. Instead of restricting the initial conditions, the perturbed trajec-
tory will be restricted such that the trajectory exists very close to the original trajectory. This
perturbed trajectory will have completely different initial conditions that are not of concern,
which is again allowed under ergodic theory assumption of chaos. The LSS method is a ro-
bust method that finds this new perturbed trajectory, the “shadow trajectory”. It does so by
solving a minimization problem given the constraint of the system, the original governing
equations. In other words, the new shadow trajectory must still satisfy the original nature
of the problem stated by the governing equation. The KKT conditions were found from the
minimization problem and then the ideas of duality from section 3.1 were used to find the
modified adjoint equations. Instead of one adjoint equation, the LSS method requires that
one solves two equations, a tangent and an adjoint equation. The LSS method is simplified
by solving these two equations over short time windows via a checkpoint design method.
Given an initial guess for the shadow trajectory, the MATVEC algorithm is used to find
the new shadow trajectory. Note that the LSS problem can be seen as solving a set of linear
equations, Ax = b where the size of x is N(2nseg − 1).

Results of LSS for the Lorenz attractor and the Kuramoto-Sivashinsky equations were
presented to show how the LSS method works for output-based error estimation. The re-
sults for the Lorenz attractor showed that LSS produces accurate error estimates over long
periods of time. As the simulation times increased, the error estimates improved; this is
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due to the ergodic assumption that initial conditions have little to no effect as T → ∞.
Hence, as T → ∞, the error estimates should converge as it does for the Lorenz attractor.
The statistics do improve as well with time, which shows that the confidence in the error
estimates increase with time as well.

Lastly, the results for Kuramoto-Sivashinsky equation were shown. The KS equations
have more larger positive Lyapunov exponents, making them less suitable for error esti-
mation. The results showed that implementing LSS for KS did not produce as accurate
results compared to those of the Lorenz attractor. On average, the error estimates for KS,
were over a magnitude larger throughout time than the actual error. The statistics did not
improve and remained on average constant with time. Multiple error estimates using δψ
and δψH1 were attempted to see if the projection of the adjoint would improve the error
estimates. However, the projection was not found to improve the error estimates. The H1

projection process did not change the error estimate on average, either signaling the poor
quality of the H1 projection and/or that the adjoint is not strongly affected by its coarse
counterpart.

LSS is a robust and accurate method that works well for the Lorenz Attractor; how-
ever, application of LSS for KS and for larger problems has proven to be computational
expensive. The next chapter will go over several reduction techniques that will decrease
the size of the primal solution and hence the size of the LSS adjoint problem, decreasing
the number of iterations it takes for LSS to find the shadow trajectory and to predict error
estimates.
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CHAPTER VI

Model Reduction for Chaotic Flows

In Chapter V, the Least Squares Shadowing Adjoint-Weighted Residual (LSS) method was
introduced and implemented to calculate adjoints that do not increase in magnitude expo-
nentially backwards in time for the purpose of output-based error estimation. Implementa-
tion of LSS with output-based error estimation successfully estimated temporal discretiza-
tion errors for the Lorenz attractor, an ordinary differential equation when using DG in
time. The method implemented for the Kuramoto-Sivashinsky (KS) equation as well, a
more complicated one-dimensional PDE where the goal was to estimate the spatial dis-
cretization error only. The results for KS showed that the error estimates over predicted the
actual errors by an order of magnitude or more depending on the number of time windows
chosen. The error estimates from LSS for KS became worse as the number of time windows
decreased, i.e. as the length of each window increased. For both the Lorenz attractor and
the KS equation, the error estimates did improve with total simulation time. Furthermore,
the computational requirements for the the LSS Adjoint-Weighted Residual method are ex-
treme, making it inefficient in its present state for very large problems. Hence, this chapter
introduces model reduction techniques, which are used to reduce the computational costs
of LSS, specifically for output-based error estimation.

First, this chapter will introduce projection-based model reduction techniques. Next,
model reduction for linear problems and the Least-Squares Petrov-Galerkin (LSPG)
method for nonlinear problems will be introduced. Once the reduced-order model (ROM)
is found from the LSPG method for nonlinear chaotic systems, hyper-reduced techniques
in the Gauss Newton with Approximated Tensors (GNAT) family of methods are used
to further reduce the costs associated with the calculation of the residuals and Jacobians
of the primal system. Applying GNAT(GNAT) produces the hyper-reduced-order model
(HROM). Algorithms for all these techniques will be shown as well as results of GNAT for
chaotic systems, KS and Navier-Stokes (NS). Only reduction in space will be investigated.
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Figure 6.1: Relationship among the subspaces of the full-order model in three-dimensions.
The affine space is translated upward from the column space plane by u∗.

6.1 Projection-Based Model Reduction

Projection-based model reduction techniques have already been proven to work well for
linear and nonlinear problems where the state solution can be approximated accurately as a
member of an affine subspace whose dimension is significantly smaller than that of the full-
order primal solution [75]. The governing equations of the full-order model are represented
by a set of linear or nonlinear ODEs,

R(u) = 0. (6.1)

For a linear system, Eqn. 6.1 can be written as

R(u) = b−Au (6.2)

When reducing this system, the information associated with the space of the system needs
to be captured as best as possible. This process can be done by considering the subspaces
of the system seen in Figure 6.1. First, the information of the full-order homogeneous
system is captured by the column space, C(A), which is the span of its column vectors,
Au = 0. Note that the column space contains the origin of the system, (b = 0). To solve
the inhomogeneous system in Eqn. 6.2, bmust be in the column space ofA. This is possible
by looking to another subspace of the full-order system, the affine subspace which similar
to its column space except that the affine subspace does not contain the origin and is instead
translated by u∗ seen in Figure 6.1. u∗ is defined by b. The affine subspace is important,
because it contains the set of state solutions to Au = b or R(u) = 0 for a nonlinear
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problem. The projection to the affine subspace allows one to relate the solutions of the full-
order model and the affine subspace via a set of basis functions of the affine subspace, Φ,
that has dimensions lower than that of the full space. Note that the basis functions for the
column space is different than that of the affine subspace, which is dependent on the vector
b. Thus, the approximated state solution is represented via the projection process as

u ≈ Φur, (6.3)

where Φ ∈ RN×nr is the reduced-order basis matrix whose columns store the discrete
reduced-order basis functions that describe the affine subspace. N refers to the number
of states in the original system and nr refers to the number of states in the reduced-order
model. The reduced-order basis, Φ, contains nr linearly independent columns, and the

Figure 6.2: Relationship between the full-order solution and the reduced solution via the
reduced-order basis functions of the affine subspace. N is the number of states in the full-
order system and nr is the number of states in the reduced-order system.

reduced solution contains nr reduced states as well (ur ∈ Rnr). The relationship between
the full-order states and the reduced states can be seen with its corresponding sizes in
Figure 6.2.

Substituting Eqn. 6.3 into Eqn. 6.1 produces an overdetermined system. The dimension
of Φ is smaller than the rank of the full-order system. To work with only nr unknowns and
nr equations, one can look to the left nullspace of the system, which is perpendicular to the
column space seen in Figure 6.1. Since the column space is perpendicular, or orthogonal to
the left nullspace of the system, the orthogonality relationship can be enforced as

Γ = ϕTR(Φur) = 0, (6.4)

where ϕ ∈ RN×nr is the reduced-order basis of the left nullspace of the system, which has
dimensions of nr as well. The left nullspace reduced-order basis is chosen here to minimize
the L2 norm of the residual. In other words, Eqn. 6.4 can be written as a minimization
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statement,
Γ = min

ur
‖R(Φur)‖2. (6.5)

To distinguish between the two reduced-order bases, ϕ is referred to as the left nullspace
basis function matrix and Φ is referred to as the basis function matrix. By looking to the
left nullspace of the system, the number of inputs and equations is the same, nr. Before
going further into the different model reduction techniques for linear and nonlinear systems,
the proper orthogonal decomposition (POD) is introduced as a technique to calculate the
reduced-order basis function matrix, Φ [75, 76].

6.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a technique used to compute the basis of the
affine search subspace for the approximate solution. POD is chosen for its optimal com-
pression property, which minimizes the sum of squares distances to vector snapshots of the
available data [77, 76]. For model reduction of the primal solution, the vectors of interest
are the states of the system. The collections of states is referred to as the snapshot matrix,
S.

When calculating the POD of the state snapshot matrix, S, there are two critical param-
eters: the number of snapshots (ns) and the number of reduced-order basis functions (nr).
ns is the number of primal solutions in the snapshot matrix, S ∈ RN×ns . It is important to
note that nr ≤ ns.

To generate the snapshot matrix, S in Figure 6.3, which consists of ns primal solutions,
experimentation is generally required to determine which precomputed primal solutions to
use. Typically these primal solutions are taken from every few time steps in an unsteady
calculation. A poor set of snapshots that do not exemplify the entire solution will lead to an
ill-conditioned matrix. If there are too few snapshots, the resulting reduced solution will be
under resolved.

S = [u0,u1, ...,uns ] ∈ RN×ns , (6.6)

where ui is the primal state snapshots at time ti. To implement POD, the singular-value
decomposition of the snapshot matrix is found, S = UΣV T , and then the reduced-order
basis matrix is obtained from the first nr columns of U ,

Φ = U(:, 1 : nr) ∈ RN×nr . (6.7)

Again, experimentation for chaotic flows is required to determine the optimal value of nr
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Figure 6.3: Snapshots of states are columns of the matrix, S

in order to obtain an economical and accurate ROM. Higher nr means more information
of the full-order model is contained in the reduced-order model, but additional, it increases
the computational cost of the reduced-order model construction and use.

6.3 Linear Model Reduction

For model reduction of linear systems, the governing equations of Eqn. 6.1 can be further
linearized and used, given that only small perturbations in the flow exist. The first model
reduction technique, which is the simplest, utilizes the POD method for the basis. In com-
putational fluid dynamics, the unsteady governing equation can be represented as

M
du

dt
+Rs(u,µ) = 0 (6.8)

This can be written in the form of du
dt

= f ,

du

dt
= −M−1Rs(u,µ). (6.9)

One can linearize d(u+δu)
dt

at point (u,µ) to find

du

dt
+
d(δu)

dt
= −M−1Rs(u,µ)−M−1∂Rs

∂u

∣∣∣∣∣
u,µ

δu−M−1∂Rs

∂µ

∣∣∣∣∣
u,µ

δµ. (6.10)

Moving−M−1Rs(u,µ) to the left side and given Eqn. 6.9, the linearize equation becomes

d(δu)

dt
= −M−1∂Rs

∂u

∣∣∣∣∣
u,µ

δu−M−1∂Rs

∂µ

∣∣∣∣∣
u,µ

δµ. (6.11)
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Setting the following to new terms,

x = δu,

y = δµ,

A = −M−1∂Rs

∂u

∣∣∣∣∣
u,µ

,

B = −M−1∂Rs

∂µ

∣∣∣∣∣
u,µ

(6.12)

will give the linearization in the familiar general form represented as

dx

dt
= Ax+By. (6.13)

The reduced-order model of the system can be found by first substituting Eqn. 6.13 and
Eqn. 6.3 into Eqn. 6.4, giving the reduced set of equations,

ϕT
[
Φ
dxr
dt

= AΦxr +By

]
. (6.14)

The goal is to rewrite Eqn. 6.14 in terms of just xr and find the new matricesAr andBr,

dxr
dt

=
(
ϕTΦ

)−1
ϕTAΦ︸ ︷︷ ︸

Ar

xr +
(
ϕTΦ

)−1
ϕTB︸ ︷︷ ︸

Br

y (6.15)

dxr
dt

= Arx+Bry. (6.16)

Note that these matrices, Ar and Br, are referred to as offline matrices, because these
matrices only have to be calculated once and is used to solve the governing equation at all
time nodes. SubstitutingA andB into the reduced offline matrices gives,

Ar = −
(
ϕTΦ

)−1
ϕTM−1∂Rs

∂u

∣∣∣∣∣
u,µ

Φ

Br = −
(
ϕTΦ

)−1
ϕTM−1∂Rs

∂µ

∣∣∣∣∣
u,µ

(6.17)

For a linear system, a Galerkin projection can be used for the left nullspace basis function,
ϕ to evaluate the offline matrices:

ϕ = Φ (6.18)
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Note that since Φ is orthogonal, ΦTΦ = I , an identity matix, giving,

Ar = −ΦTM−1∂Rs

∂u

∣∣∣∣∣
u,µ

Φ,

Br = −ΦTM−1∂Rs

∂u

∣∣∣∣∣
u,µ

(6.19)

Once the basis is known, the offline matrices Ar and Br can be calculated, and the new

Figure 6.4: Galerkin Projection: Model Reduction for Linear Systems

reduced linearized equation can be solved forward in time to find the reduced states. The
relative sizes of the offline matrices can be seen in the reduced linearized system in Fig-
ure 6.4. Once the reduced states have been found, the full states can be found by multi-
plying the reduced states by the reduced-order basis matrix Φ. This technique with POD
does provide the most efficient representation of the states from the snapshot matrix and
has been shown to be as stable as the full-order model; however, application of this method
to a nonlinear system produces poor quality and inaccurate reduced-order models since the
linearized POD can be inaccurately further away from its linearization point. The nonlin-
ear evaluation of the residuals and the Jacobians is still on the order of the high fidelity
model, cancelling out the strengths of the linear model reduction technique. For a chaotic
system especially, a more robust technique that can truly eliminate the high cost of the for-
ward problem is needed; however, the POD technique can still be used for nonlinear model
reduction.

6.4 Nonlinear Model Reduction

There are numerous nonlinear techniques that can be used for model reduction of a non-
linear system. These techniques include the trajectory piecewise interpolation method
[78, 79], the dynamic mode decomposition method [80, 81, 82], the combined least-
squares Petrov-Galerkin (LSPG) and Gauss-Newton with approximated tensors (GNAT)
method [83, 77, 76], and the discrete empirical interpolation method (DEIM) [84, 85, 86].
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The trajectory piecewise interpolation method reduces the full-order model by construct-
ing a continuous piecewise model of the linear PODs within the solution space; however,
the method only produces a first-order approximation of the nonlinear problem. The dy-
namic mode decomposition method is generally more accurate than POD and evaluates the
nonlinear dynamics of the problem by approximating the Koopman operator. The Koop-
man operator is a linear operator that governs observables, e.g. Mach number at a given
point, along trajectories of a nonlinear system. Specifically, the operator lifts the dynam-
ics from the state space to the observable space, where the observables can be represented
as a linear expansion of the Koopman invariants that are part of the Koopman invariant
subspace. DEIM applies a gappy POD on the nonlinear portion of the model, where the
gappy algorithm reduces the cost of the nonlinear evaluation by sampling and interpola-
tion; however, it is more inaccurate compared to the other methods. Carlberg et. al shows
that DEIM is less accurate compared to the other methods due to nonlinear instabilities that
occur over time [83]. Of the four methods, GNAT is the most accurate and stable for long
time integrations; however, compared to the other methods, it is considerably more difficult
to implement and intrusive to the main simulation program. In addition, GNAT has high
offline costs that may not be suitable for some problems. For the purpose of output-based
error estimation for chaotic systems, accuracy of long time-averages is essential, and hence
the GNAT method is chosen to find the a reduced-order model for nonlinear chaotic sys-
tems. The reduced-order model calculated from GNAT will then be used in the reduced
form of LSS in Chapter VII.

The least-squares Petrov-Galerkin method (LSPG) builds on the linear model reduction
technique for nonlinear problems. It uses the POD method to find the basis of the affine
search subspace, Φ, for the states u and looks to the left reduced-order basisϕ to minimize
the L2 norm of the residual as seen in Eqn. 6.4. For the linear model reduction method, the
Galerkin projection was used for Φ. For the least squares Petrov-Galerkin method, a differ-
ent kind of projection that is able to encapsulate the nonlinear behaviors more accurately is
used.

6.4.1 Orthogonal Projection with Newton’s Method

After projecting the solution to a smaller affine subspace to find Φ, the reduced solution of
the nonlinear problem is found by implementing the Newton iteration method [75, 76].

Each Newton iteration, k, begins by working on Eqn. 6.4. Orthogonalizing via the left
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nullspace basis functions, ϕ ∈ RN×nr , gives

Γ ≡ ϕTR(Φur) = ϕT
[
M

d (Φur)

dt
+Rs(Φur)

]
= 0. (6.20)

Applying the Newton method to Eqn. 6.20 in terms of the reduced states, ur, gives the state
update p,

p = ui+1 − ui = −
Γ(Φuri−1

)

∇Γ(Φuri−1
)
,

= −ϕ
TR(Φur)

ϕTJΦ

(6.21)

where, i, refers to the time node. Simplifying Eqn. 6.21 gives,

ϕTJΦp = −ϕTR(Φur). (6.22)

where J is the Jacobian of the residual, R. The update for the reduced solution ur for
Newton iteration k at time node, i is

uk+1
r,i = ukr,i + αpki (6.23)

where α represents the magnitude at which p should be imposed; for this research, α is
set to 1. The Newton method gives the direction p and the update to ur. Once the Newton
method drives ‖p‖2 within a certain tolerance, ε, the full-order solution from the new re-
duced solution for the current time step can be found from Eqn. 6.3. ε is chosen to be close
to zero; in this research it was set to ε = 10−8. The next step is to choose the left nullspace
basis functions,ϕ, that will best minimize the error in the search direction for each Newton
iteration. This can be written as

p = arg min ‖Φp− J−1R‖2 (6.24)

where J−1R is the full-order search direction. Note that Eqn. 6.24 decreases monotonically
as the number of the basis functions in Φ increases [76]. The left nullspace basis function
matrix, ϕ should be chosen such that Eqn. 6.24 can be minimized correctly for the chosen
problem.

6.4.2 Galerkin Projection

Setting the left nullspace basis function to be the reduced-order basis function matrix, Φ,
-a typical choice for linear systems- is referred to as the Galerkin projection. Eqn. 6.22 then
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becomes
ΦTJΦp = −ΦTR(Φur). (6.25)

However, the Jacobians of a nonlinear problem are not in general symmetric positive def-
inite (SPD) matrices. For Galerkin projection to work well, the Jacobians need to be SPD
matrices. When the Jacobians, J , are SPD matrices, the search direction, p is optimal in
Eqn. 6.24. In addition, Galerkin projection is a poor choice for nonlinear systems, because
it will not be able to capture the nonlinear effects for each Gauss-Newton iteration in the
orthogonal projection process used to find the search direction, p. A different type of pro-
jection of the left nullspace basis function matrix is therefore needed.

6.4.3 Least-Squares Petrov-Galerkin Projection

For the the least-squares Petrov-Galerkin (LSPG) method, the left nullspace basis function
matrix is chosen to be,

ϕ = JΦ. (6.26)

The Petrov-Galerkin projection is chosen over the Galerkin projection, because Petrov-
Galerkin projection is more accurate at capturing non-linear effects and is more stable
for unsteady non-linear model reduction performed at the discrete level [76]. Since the
projection is still based on the reduced-order basis function matrix, Φ, the fidelity of the
reduced-order model from the LSPG method is mainly dependent on one input, the number
of reduced-order basis functions, nr. Setting ϕ = JΦ and simplifying Equation 6.22 gives

ΦTJTJΦp = −ΦTJTR. (6.27)

To avoid computing JTJ , it is important to note that Eqn. 6.27 is the normal equation form
of the least-squares problem,

p = arg min
a∈Rnr

‖JΦa+R‖2, (6.28)

which can be solved using the thin QR factorization (JΦ = QJΦRJΦ). Overall, the LSPG
method refers to the use of the Petrov-Galerkin projection and the solving of the least-
squares problem for each Gauss-Newton iteration. To find the direction of the update p, the
result of the QR factorization is used,

RJΦp = −QT
JΦR. (6.29)
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6.4.4 The Gauss-Newton Method for Nonlinear Least-Squares Prob-
lems

The projection in section 6.4.3 is referred to as the Least-Squares Petrov-Galerkin projec-
tion. However, a nonlinear least-squares problem was not explicitly solved. The orthogonal
projection used to solve for the reduced states can be seen as least squares problem as well,

Γ = min
ur

‖R(u(ur))‖2 (6.30)

which is the minimization of the residual. The Gauss-Newton method is used to solve the
nonlinear least-squares problem and is defined for the minimization problem as

p = ut − ut−1 = − ∇Γ(ut−1)

∇2Γ(ut−1)
, (6.31)

where ∇2Γ is the Hessian of the residual. The search direction used in this minimization
satisfies

JΦp = −R. (6.32)

To improve the numeric conditioning of this equation, the thin QR decomposition is com-
puted for JΦ = QJΦRJΦ and then solved for pi by

RJΦp = −QT
JΦR. (6.33)

Note that this equation is the same as Eqn. 6.29, which shows that the Petrov Galerkin
projection is a optimal choice and further shows that setting ϕ = ΦJ for each Newton
iteration is the least squares problem. As a result of this relationship, the projection method
is referred to as the Least-Squares Petrov Galerkin method.

To solve Eqn. 6.33, use the Gauss-Newton iteration method similar to that in sec-
tion 6.4.1. Once p is found at Gauss-Newton iteration k, calculate the step, α; in this
research, α is set 1 for convenience. The update for the reduced solution at time i is

uk+1
r,i = ukr,i + αpki . (6.34)

where the initial conditions for the reduced state at t = 0 is

ur0 = Φ†u0, (6.35)

where (· )† refers to the Moore-Penrose pseudo-inverse of a matrix. Again, once the Gauss-
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Algorithm 6.1 Reduced-Order Modeling Using LSPG with Gauss-Newton Method
Input: Φ, u0

Output: u, ur
1: for i = 1, . . . nT − 1 do
2: k = 0
3: ui = ui−1, ur,i = Φ†ui
4: while ‖p‖2 > ε do . ε is the desired tolerance value
5: ComputeRk

i (u
k
i ) = M du

dt
+Rs

k
i (u

k
i )

6: Compute Jki (uki )Φ where Jki (uki ) =
∂Rk

i (uk
i )

∂u

7: Compute the thin QR factorization Jki (uki )Φ = QJΦ,iRJΦ,i

8: SolveRk
JΦ,ip

k
i = −QTk

JΦR
k
i

9: Set αki = 1
10: Compute uk+1

r,i = ukr,i + αki p
k
i

11: Compute uk+1
i = Φuk+1

r,i

12: k = k + 1
13: end while
14: end while
15: ui = uk+1

i

16: ur,i = uk+1
r,i

17: end for
18: end for

Newton method drives ‖p‖2 within a certain tolerance, ε, the full-order solution from the
new reduced solution for the current time step can be found from Eqn. 6.3. An overview of
LSPG with the Gauss-Newton method can be found in Algorithm 6.1.

6.4.5 Reduced-Order Model of the Kuramoto-Sivashinsky Equation

The LSPG method has been used successfully for nonlinear problems; however, there is a
dearth of literature on the application of model reduction for nonlinear chaotic problems. In
this section, the LSPG method is applied to the KS equation and the fidelity of the resulting
ROMs is investigated. Again, the main parameter of LSPG is the number of basis functions,
nr, from the reduced-order basis function matrix, Φ. This parameter is varied in order to
gain information on which value of nr gives the best ROM for KS. The resulting ROM
solutions are shown in Figure 6.5 and 6.6. The time-average output for the corresponding
results are shown in Figure 6.7. For this particular case, the simulation time was set to
T = 1000 and the burn time was set to tburn = 500. To show the effectiveness of the ROM
for KS for different values of nr, the initial conditions are the same for each result in this
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section. The simulation contains nT = 50000 temporal nodes and ns = 25000 snapshots.
The spatial interpolation order is set to p = 3 and second-order backward differencing
(BDF2) is used for the time discretization.

In Figures 6.5 and 6.6, each unique value of nr produces a ROM with significantly
different trajectories. This is to be expected due to “butterfly effect”, where any small per-
turbations can produce a different trajectory that diverges away from the original trajectory.
Here, the small perturbation is due to the number of basis functions, nr. For comparison,
the original full-order solution can be seen in Figure 6.5(a). Figures 6.5(b)- 6.6(c) show tra-
jectories for nr = 480 → 150. These produce unique trajectories compared to the original
full-order model solution; however, the thickness of the coherent structures is similar. From
T = 0 to T = 1000, the solutions continue to diverge and never reach visually periodic
behavior, signifying that these values of nr still do produce chaotic solutions. However, Fig-
ure 6.7 shows some distinctive differences among the trajectories, even though they look
similar in x − t plots. However, when the final time is set to T = 1000, the time-average
outputs reach different values for different nr. Note that as T → ∞, not all of the time-
average output histories for ROM will converge to one value. Several trajectories do attain
approximately similar time-average outputs as the full-order model. These trajectories are
for nr = 480, 375, 325. Overall, for these nr, the time-average outputs are within ±5% of
the time-average output of the full-order model. Note that in Figure 6.6(c), the maximum
magnitudes of the states begin to decrease compared to that of the full-order model.

When nr is decreased past nr = 150, the trajectories begin to change as seen in Fig-
ure 6.6(d)- 6.6(i). The maximum magnitudes of the states further decrease with decreas-
ing nr. The spaces between the maxima and the minima of the states start to increase
and some subtle periodic behavior begins to appear, which becomes even more evident by
Figure 6.5(h). As the ROM becomes more periodic, the ROM solutions begin to act less
chaotic and reach almost steady behaviors, as seen in Figure 6.6(i), where the trajectories
are unrecognizable.

This behavior can be seen as well in Figure 6.7, where for nr = 5 − 125, the time-
average output is not the same as that of the full-order model by T = 1000. Through
nr = 125, the time-average output has lost enough information such that it reaches a steady
time-average out prematurely. The non-chaotic behavior of Figure 6.6(i) is evident as the
time-average output completely flattens out earlier than the other trajectories.

The increase in the non-chaotic nature with decreasing nr affects the accuracy of the
estimated time-averaged solution. Figure 6.7 indicates that one requirement to estimate the
time-averaged solution accurately is that the ROM should also exhibit chaotic behavior,
because the time-average of nr = 5 reaches steady state quite quickly. One reason why the
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(a) primal (b) nr = 480 (c) nr = 400

(d) nr = 375 (e) nr = 350 (f) nr = 325

(g) nr = 300 (h) nr = 275 (i) nr = 250

Figure 6.5: KS: state trajectories for different values of nr.
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(a) nr = 225 (b) nr = 175 (c) nr = 150

(d) nr = 125 (e) nr = 75 (f) nr = 50

(g) nr = 25 (h) nr = 10 (i) nr = 5

Figure 6.6: KS: state trajectories for different values of nr.
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Figure 6.7: Time-average output for ROM with different values for nr

trajectory for nr = 5 may not accurately estimate the time-averaged output is that the ROM
trajectory is under resolved. In order to preserve the chaotic characteristics of the original
full-order model, more basis functions are needed.

Even though the ROMs for varying values of nr produce trajectories that do not com-
pletely emulate the original model, these ROMs are still important. The most effective
ROMs to use for error estimation is one in which nr is small enough to be efficient with-
out compromising the chaotic nature of the original problem. Based on the results of Fig-
ures 6.5, 6.6, and 6.7, it appears possible to find a working and accurate ROM for a chaotic
system given enough reduced-order basis functions.

6.5 Hyper Model Reduction via Gauss-Newton with Ap-
proximated Tensors

For nonlinear model reduction, the LSPG method was introduced and implemented to see
if it would be possible to find ROMs for chaotic systems, specifically for the KS equation.
LSPG uses model reduction techniques developed for linear problems and sets the left
nullspace basis function matrix to be ϕ = JΦ which is a more stable choice for nonlinear
systems. The ROM is found via a minimization problem– setting ϕ = JΦ allows one to
rewrite the orthogonal projection as a minimization problem– of the residual and the search
direction is used to update the initial guess for the reduced solution ur. All of these take
place for each Gauss-Newton iteration where the tolerance of the search direction is driven
to ε, set by the user. Again, the LSPG method is named accordingly due to use of the Petrov-
Galerkin projection and the solving of the least-squares problem for each Gauss-Newton
iteration.
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Next, it was shown that implementation of the LSPG method did give visually accurate
ROMs for KS when comparing trajectories and the time-average output to that of the full-
order solution. It was found that as the number of reduced-order basis functions decreased
though, the ROMs became less accurate, less chaotic, and more periodic. By single digit nr
values, the trajectory and the time-average outputs exhibited steady-state behavior, making
these unusable for further chaotic error estimation work. The best value for nr is one that is
as small as possible, yet still exhibits somewhat chaotic behaviors. By reducing the number
of basis functions as much as possible, the computational costs savings of LSS can be
reduced as well, leading to cheaper discretization error estimates for chaotic flows.

The next step for output-based error estimation for chaotic flows is to investigate
whether or not the computational costs of finding the ROM can be further reduced. It is
important to note that when finding the ROM for any nr, the calculation of the residual and
Jacobian is still dependent on the full-order model system size, N . The true savings in the
computational costs will come from decreasing the time it takes to calculate the residual
and Jacobian. This leads to the idea of decreasing the associated costs by only calculating ni
values for the residuals and the Jacobians where ni ≤ N is the number of sample nodes. By
doing this, a new hyper-reduction procedure can be put in place that produces a modified
ROM that is even cheaper than LSPG on its own. This new hyper-reduction procedure for
approximating the residuals and the Jacobians produces what is called the hyper-reduced-
order model (HROM). To achieve hyper-reduction, the Gauss-Newton with approximated
tensor quantities (GNAT) method is used; this technique introduces additional steps and ap-
proximations into the model reduction procedure for the residuals and the Jacobians [83].
For this section, we use GNAT to approximate the residuals and Jacobians by project-
ing them with the reduced-order basis matrices, ΦR and ΦJ . The orthogonal projection
method is then further expanded and manipulated to obtain the hyper-reduced-order model
(HROM). The basic principles of HROM start with the an altered version of the approxi-
mate solution defined in Equation 6.3. The next section will go over how this new HROM
is found and will compare results to its ROM counterpart.

6.5.1 Modified Projection-Based Model Reduction

To reduce the computational cost further, the full-order states are evaluated at ne nodes,
creating the restricted full-order state,

u ≈ Φur. (6.36)

Given an identity matrix Ie, where ne specified rows -calculated indirectly from a greedy
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Figure 6.8: modified stated and reduced states based on the restricted number of elements
and nodes, ne

algorithm- are kept, the altered vector or matrix with ne nodes can be found from

u = Ieu. (6.37)

ne is referred to the restricted nodes in the simulation. Note that ne ≤ N and refers to
the number of state vector indices required to reconstruct and approximate the residual
and Jacobian accurately. The relationship between the restricted full-order states and the
reduced states can be seen with its corresponding sizes in Figure 6.8. Note that how many
ne nodes to keep is dependent on the discretization method.

Another parameter of importance is the number of sample nodes ni, which is the total
number of nodes at which the residual and the Jacobian are calculated given ne state nodes.
ni is determined via a Greedy algorithm, which in addition indirectly determines the total
number of elemental nodes, nj , where elemental nodes refer to all the nodes in each element
that contain the nth

i node. Note that ni ≤ nj . In GNAT, the residual and the Jacobian
functions need to be further modified in order to take into account the overall N − ni

states that are not being calculated. These N − ni states can be referred to as “gaps”. This
modification is performed using the gappy reconstruction method [76, 77, 83]. This nodal
framework is created this way to work with existing DG solvers. More on how ni, nj, ne

are related will be explained in the next sections.

6.5.2 Greedy Algorithm for Computing Sample Nodes

Once the states have been defined mathematically, an efficient method is needed to calcu-
late the number of sample nodes, or entries (nodes) to calculate important quantities such
as the residual and the Jacobian. In total there are ni of these nodes. By not sampling at
all nodes, the computational cost of calculating a reduced-order model can be further re-
duced. Note that the number of sample nodes required for the residual and the Jacobian
is not necessarily the same as the number of nodes required for the state, due to the fact
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that the residual and Jacobian evaluations are not completely local, i.e. component-wise,
though they are element-wise compact. For this thesis, ni was chosen to be the same for the
states, the residuals, and the Jacobians. The chosen method “greedily” determines nodes
that minimize the error in the gappy reconstruction of the nonlinear function in question.
The output vector of sample node indices from the greedy algorithm is used reduce any
vector and matrix to the number of sample nodes as shown in Figure 6.9. The greedy algo-

Figure 6.9: Residual and Jacobian matrices with only ni sample nodes and nj correspond-
ing columns

rithm treats all state variables equally and avoids the need to sample indices individually.
ni refers to the number of sampled nodes from the greedy algorithm. Note that ni ≥ nr.
Once ni is found, nj can be determined. In DG, each element receives information from
elements surrounding it. nj includes all the nodes of ni and all the nodes associated with
the surrounding elements. The relationship among ni, nj , and ne can be seen in an example
mesh in Figure 6.10. The greedy algorithm is reproduced in Algorithm 6.2 from Carlberg
et. al. [83].

6.5.3 Gappy Data Reconstruction for the Residual and Jacobian

Once the greedy algorithm is used to determine both the number of sample nodes, ni,
and the number of states, nj , from elements that contain ni, the resulting data needs to be
reconstructed as a result of the missing values or “gaps”. Define

û = Iiu, (6.38)

where the permutation matrix Ii contains only ni rows pertaining to the specific samples
node chosen from the greedy algorithm. This reconstruction process is called the gappy
data reconstruction and was first introduced for image reconstruction [87]. In particular,
it is important to find a way to recreate an approximate version of the full residuals and
the Jacobians from smaller data sets, which can be viewed as data compression [76]. The
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Figure 6.10: For this 2D p = 2 mesh example, red circles refer to the ni sample nodes.
Blue and red dots together refer to the nj elemental nodes. Blue, red, and green dots to-
gether refer to the ne restricted nodes, which define Φ. Note, these choices apply to the DG
framework.

gappy data reconstruction method computes an approximation of a desired vector Λ as

Λ̃ = ΦΛΛg, (6.39)

where Λ̃ refers to the approximation of Λ. Λg is defined as,

Λg = arg min
a∈RnΛ

‖Φ̂Λa− Λ̂‖2. (6.40)

The solution to Equation 6.40 is
Λg = Φ̂+

ΛΛ̂. (6.41)

where (·)† refers to the Moore-Penrose pseudo-inverse of a matrix. Next, the non-linear
residual and Jacobian can be approximated using the gappy reconstruction method as

R̃ ≈ ΦRRg, (6.42)

J̃Φ ≈ ΦJJg, (6.43)

where ΦR and ΦJ are new reduced-order basis function matrices for the residual and Jaco-
bian, which are chosen to of accurately approximate the full residual and Jacobian values
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Algorithm 6.2 Greedy Algorithm for Gauss-Newton with Approximated Tensors Method
Input: ΦR, ΦJ , initialized vector N , ni, nRJ where nRJ ≤ ni
Output: Complete vector, N

1: na = ni − |N | . Compute the number of sample nodes needed
2: nb = 0 . Initialize counter for number of workings basis vectors used
3: nit = min(nRJ , na) . Set the number of greedy iterations to perform
4: nRHS =

⌈
nRJ

na

⌉
. Maximum number of right-hand sizes in least-squares problem

5: nRJi,min =
⌊
nRJ

nit

⌋
. Minimum number of working basis vectors per iteration

6: nai,min =
⌊
nanRHS

nRJ

⌋
. Minimum number of sample nodes to add per iteration

7: for i = 1, . . . nit do . Greedy iteration loop
8: nRJi ← nRJ,min . Number of working basis functions for i
9: if i ≤ nRJ mod nit then

10: nRJi ← nRJi + 1
11: end if
12: nai ← nai,min . Number of sample nodes to add for i
13: if (nRHS = 1 and i ≤ na mod nRJ ) then
14: nai ← nai + 1
15: end if
16: if i = 1 then
17: [R1 . . . RnRJi ]← [φ1

R . . . φ
nRJi
R ] . φiR refers to column of ΦR

18: [J1 . . . JnRJi ]← [φ1
J . . . φ

nRJi
J ] . φiJ refers to column of ΦJ

19: else
20: for j = 1, . . . , nRJi do . basis vector loop
21: α = arg min

γ∈Rnb

‖ [Zφ1
R . . . Zφ

nb
R ] γ − Zφnb+j

R ‖2 . Z is sample matrix

22: β = arg min
γ∈Rnb

‖ [Zφ1
J . . . Zφ

nb
J ] γ − Zφnb+j

J ‖2

23: Rj ← φnb+j
R − [φ1

R . . . φ
nb
R ]α

24: J j ← φnb+j
J − [φ1

J . . . φ
nb
J ] β

25: end for
26: end if
27: for j = 1, . . . , nai do . Sample node loop
28: n← arg max

l /∈N

∑nRJi

j=1

∑
i∈δ(l)

[
(Rj

i )
2 + (J ji )2

]
, . δ(l) is the DOF for node, l

29: N ← N ∪ {n} . Add new sample nodes to sample node set
30: end for
31: nj ← nj + nRJi . total number of sample nodes found
32: end for
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given the sample node solutions. The overall new approximations for these quantities are

R̃ ≈ ΦRΦ̂+
RR̂, J̃Φ ≈ ΦJΦ̂

+
J ĴΦ. (6.44)

The corresponding matrices and their sizes for the approximated residuals and Jacobians
can be seen in Figure 6.11. The approximation of the residuals and the Jacobians is a

Figure 6.11: Approximations for the residual and the Jacobian as a function of reduced-
order basis functions

function of ΦR and ΦJ , which are reduced-order basis function matrices for the residuals
and the Jacobians respectively and are similar to the reduced-order basis function for the
states, Φ. The next section will go over how ΦR and ΦJ are calculated.

6.5.4 Calculation of Reduced-order Basis Functions for the Residual
and Jacobian

Unlike the calculation of the state basis functions, Φ, there is only one critical parameter
to set for the calculation of the residual reduced-order basis matrix, ΦR, and the Jaco-
bian reduced-order basis matrix, ΦJ : the number of residual reduced-order basis functions
(columns) nRJ , which is different than ns. It is important that ni ≥ nRJ enable a unique ap-
proximation for the residuals and the Jacobians. The calculation of ΦR and ΦJ begins with
the generation of the residual and the Jacobian snapshot matrices, SR and SJ . To find the
state snapshots S, the user chooses which states at a particular time t to add; however, this
is not the case for ΦR and ΦJ . Instead, the snapshot matrix is generated during the ROM
stage where, during each Gauss-Newton iteration, the information of the residual and the
Jacobian is saved. The number of columns of the SR and SJ matrices is the total number of
Gauss-Newton iterations in the entire reduced-order model process, nST . This is necessary
in order to preserve the nonlinear behavior of governing equation. Due to large number of
Gauss-Newton iterations to find ROM, the residual and Jacobian data are saved to a file on
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disk before being called to create the snapshot matrix. SR and SJ take the form,

SR = [R0, R1, . . . , RnST−1
] ∈ RN×nST−1 , (6.45)

SJ = [J0Φp0, J1Φp1, . . . , JnST−1
ΦpnST−1

] ∈ RN×nST−1 . (6.46)

where the indices on R, J , and p refer to the corresponding Gauss-Newton iteration. Other

Figure 6.12: Snapshots for the residual and the Jacobian.

alternatives to find the SR and SJ can be found in Carlberg et. al. [76]; however, for chaotic
systems, Eqns. 6.45 and 6.45 have been found to work well. Once the snapshot matrices are
defined, POD is performed on these matrices. After performing singular value decomposi-
tion of the snapshot matrices, SR = URΣV T

R and SJ = UJΣV T
J , the residual-reduced-

order basis matrix and the Jacobian-reduced-order basis matrix are chosen as

ΦR = UR(:, 1 : nRJ) ΦJ = UJ(:, 1 : nRJ). (6.47)

6.5.5 LSPG Projection with GNAT

The addition of the GNAT algorithm to LSPG to find HROM requires additional work
offline compared to standard ROM. During the offline stage, residual and Jacobian infor-
mation is retrieved and used for each Gauss-Newton iteration of ROM. Once the residual-
reduced-order basis matrix and the Jacobian-reduced-order basis matrix are created, the
offline matrices A and B are created and are used to help approximate the residuals and
the Jacobians for each new Gauss-Newton iteration of HROM. More computational effort
is required in the offline stage, but this cost is outweighed by the cost savings associated
with the Gauss-Newton stage.A andB are first created by substituting both Eqn. 6.42 and
Eqn. 6.43 into Eqn. 6.28 to get a modified minimization problem,

p = arg min
a∈Rnr

‖ΦJΦ̂
+
J ĴΦa+ ΦRΦ̂+

RR̂‖2. (6.48)

111



C is defined as
C = ΦJΦ̂

+
J ĴΦ. (6.49)

One can then perform a QR factorization

C = QcRc, A = Rc, B = QT
c ΦRΦ̂+

R. (6.50)

We rearrange Equation 6.48 to obtain

p = arg min
a∈Rnr

‖AΦ̂Ja+BR̂‖2. (6.51)

We solve this minimization problem in the same way as we did for ROM to obtain,

RAĴΦp = −QT
AĴΦ

BR̂. (6.52)

Once again, α is set to 1 and the reduced state is updated via

uk+1
r = ukr + αkpk, (6.53)

uk+1 = Φuk+1
r , (6.54)

where the initial reduced state at t = 0 is the same as that of ROM in Eqn. 6.35. Once the
Gauss-Newton method drives ‖p‖2 to within a certain tolerance, ε, the full-order solution
from the new hyper-reduced solution for the current time step can be found from Eqn. 6.36.
Note that k refers to the kth Gauss-Newton iteration.

The online calculation of the Gauss-Newton method for HROM can be found in Algo-
rithm 6.3, which is a modified version of Algorithm 6.1. Overall, these residual and Jaco-
bian approximations eliminate the dependency of the solution procedure on N , the large
dimension of the full-order state approximation. Once these approximate substitutions are
made, the iteration process can proceed to find the HROM model of KS and NS, which is
a better candidate than ROM for use with LSS.

6.5.6 Hyper-Reduced-Order Model of the Kuramoto-Sivashinsky
Equation

Section 6.4.5 demonstrated that with the correct number of reduced-order basis functions,
nr, recovering an accurate ROM of a chaotic system is possible. It was shown that the over-
all size of the full-order system for KS can be reduced significantly; however, a minimum
number of reduced-order basis functions for the states is required. Providing fewer basis
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Algorithm 6.3 Hyper-Reduced-Order Modeling with GNAT
Input: Φ, u0,A,B
Output: u, ur

1: for t = 1, . . . nT − 1 do
2: k = 0
3: ur = 0, ut = ut−1

4: while ‖p‖2 > ε do . ε is the desired tolerance value
5: Compute R̂k

t (u
k
t )

6: Compute Ĵkt (ukt )Φ where Ĵkt (ukt ) =
∂R̂k

t (uk
t )

∂u

7: ComputeDk
t = BR̂k

t

8: Compute Ek
t = AĴkt (ukt )Φ

9: Compute the thin QR factorization Ek
t = QERE

10: SolveREp
k
t = −QT

ED
k
t

11: Compute αkt from a line search
12: Compute uk+1

r,t = ukr,t + αktp
k
t

13: Compute uk+1
t = Φuk+1

r,t

14: k = k + 1
15: end while
16: end while
17: ut = uk+1

t

18: ur,t = uk+1
r,t

19: end for
20: end for

functions than required produces a periodic system that may not be accurate enough to be
used for adjoint calculation for output-based error estimation.

It is important to remember that the process of creating the ROM, which represents the
solution for the KS equation, in Section 6.4.5, is still a function of the full-order system size,
N . As a result, calculating the residuals and the Jacobians of the ROM is still a function
of N as well. To remedy this high cost, the GNAT method shown in Algorithm 6.3 to
approximate the residual and the Jacobians. The combined GNAT method produces the
hyper-reduced-order model (HROM), which does not require the calculation of the states
at all N spatial nodes. As a result, the GNAT method introduces two additional parameters:
the number of basis functions for the residual and Jacobian, nRJ , and the number of sample
nodes, ni. Here, ni ≤ N and nRJ ≤ N . An investigation is needed into whether or not
it is possible to further approximate the states for a chaotic system; the GNAT method is
applied to KS to find HROM.

To quantify the relationship among the number of basis functions nr, the number of
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sample nodes, ni, and the number of basis functions for the residuals and the Jacobians,
nRJ , two different nr choices are investigated for various values of ni and nRJ on the same
test case from section 6.4.5, where the final simulation time was set to T = 1000. In order
to ensure that the approximated residuals and Jacobians are unique, it is important that
ni ≥ nRJ , which dictates how large nRJ can be.

First a large nr is investigated. The HROM result for nr = 175 is shown in Figure 6.13.
Each sub graph refers to HROM for a unique number of sample nodes with various corre-
sponding values of nRJ . Figure 6.13(a) and Figure 6.13(b) are the same primal and ROM
solution from section 6.4.5. Due to the requirement that ni ≥ nRJ , the minimum number
of sample nodes, ni, for nr = 175 is, ni = 380. The HROM for ni = 380, nRJ = 340

is shown in Figure 6.13(f). For nr = 175, the minimum number of basis functions for the
residuals and Jacobians was found to be nRJ ≈ 340. Figures 6.13(c), 6.13(d), 6.13(e) show
HROMs for intermediate values of the number of sample nodes and the number of basis
functions for the residuals and Jacobians. Figure 6.13 shows HROM trajectories that di-
verge away from the primal and ROM trajectories, characteristic of chaotic systems. Each
of these trajectories is unique and still exhibits chaotic behavior with time; however, to
access the validity of these HROMs, the time-average output for each of these trajectories
needs to be compared to that of the ROM. The time-average output for the nr = 175 test
case can be seen in Figure 6.14 for ni = 480, 460, 440, 420, 380. Note that ni = 480 is the
maximum number of sample nodes for a p = 3 DG discretization. More test cases than the
one shown in Figure 6.13 are shown for the time-average output in order to better under-
stand the time-average output trends. The test cases from Figure 6.14 that are not shown in
Figure 6.13 exhibit unique chaotic trajectories as well. Each subfigure in Figure 6.14 refers
to a set of trajectories for a different number of sample nodes, ni, and the corresponding
ROM for comparison. Each unique trajectory for a given ni, refers to the time-average out-
put with a different number of basis functions for the residual and the Jacobian. The number
of basis functions for the residual and Jacobian, nRJ , and the number of samples nodes, ni,
were chosen in increments of 20. The goal is to see if the trajectories with a fewer number
of sample nodes and a fewer number of basis functions for the residual and Jacobian still
produce an accurate HROM, by looking at the time-average output.

Figure 6.14(a) shows the time-average output for ni = 480 and nRJ ∈ [480, 340]. For
nr = 175 and ni = 480, the minimum number of sample nodes required to successfully
produce a HROM is ni = 340. Below ni = 340, the GNAT method fails to converge.
For ni = 480, the time-average output J of the HROMs underestimates the time-average
output of the ROM. At T = 1000, J of the ROM is within ±0.04 of the J of the HROM.
In other words, at T = 1000, the percentage error of the HROMs is about 4.4% of the
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(a) primal (b) ROM (c) ni = 480, nRJ = 480

(d) ni = 480, nRJ = 360 (e) ni = 420, nRJ = 360 (f) ni = 380, nRJ = 340

Figure 6.13: KS: Primal, ROM, and selected HROM trajectories for nr = 175

ROM. Figure 6.14(b) shows the time-average output for ni = 460 and nRJ ∈ [420, 340].
nRJ = 460 and nRJ = 440 did not converge. For ni = 460, there are fewer possible values
of nRJ that can be used in order to obtain a unique approximation for the residuals and the
Jacobians. It is interesting to note that even though nRJ = 340 is the minimum number of
basis functions for the residuals and Jacobians required for ni = 460, it closely emulates
the time-average trajectory of the ROM. At T = 1000, the time-average output of nRJ is
off by approximately 2.1%.

Figures 6.14(c), 6.14(d), and6.14(e) show similar behaviors for ni = 440, 425, 440;
however, as the number of sample nodes decreases the possible number of basis functions
for the residuals and the Jacobians decreases as well, reducing the number of possible
HROMs overall. The HROMs for ni = 440, 425, and 440 show similar levels of accuracy
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(a) ni = 480 (b) ni = 460

(c) ni = 440 (d) ni = 420

(e) ni = 400 (f) ni = 380

Figure 6.14: KS: Time-average outputs for HROM trajectories for nr = 175.

as that of Figure 6.14(a) and Figure 6.14(b).
Figure 6.14(f) shows the time-average output for ni = 380, which is approximately

the minimum number of sample nodes possible to produce a HROM for nr = 175. The
trajectory for nRJ = 340 is interesting, because even though it has the fewest number of
sample nodes for nr shown in the Figure 6.14, it emulates the ROM the best. This is most
likely do to chance and better understanding of this phenomena requires running these test
cases for much longer times.

Overall, the HROM results for nr shows that it is possible to further reduce the cost
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associated with ROM by using GNAT to approximate the residuals and the Jacobians as
shown in Figure 6.14. The smallest number of sample nodes and basis functions for the
residuals and Jacobians will give a HROM associated with the lowest computational cost.
Hence, for the nr = 175 test case, the best HROM to use for adjoint calculations for
T = 1000 is ni = 380 and nRJ = 340. However, 380 sample nodes out of the possible
N = 480 spatial nodes for p = 3, is still high. This refers to only a 20% reduction in
the number of evaluations for the residuals and Jacobians. In addition, because the number
of sample nodes is still quite high, the number of evaluated nodes, ne will be quite high
and/or equal to N . Reducing the number of sample nodes and hence the basis nodes for the
residual and the Jacobian, nRJ , even more will be more beneficial for output-based error
estimation of chaotic flows. The next test case for nr = 50, will be investigated to see if
it produces similar results as nr = 175 and requires fewer samples nodes, ni. Figure 6.15
shows sample test cases for nr = 50. Each sub graph refers to HROM as well for a unique
number of sample nodes with corresponding values of nRJ . Again, Figure 6.15(a) and Fig-
ure 6.15(b) are the same primal and ROM solution from Section 6.4.5. The requirement
that ni ≥ nRJ still applies. As a result, the minimum number of sample nodes ni is approx-
imately ni = 180, which is far lower than that of nr = 175. For nr = 50, the minimum
number of basis functions for the residuals and the Jacobians was found to be nRJ ≈ 160,
which again is far lower than that of nr = 175.

Figures 6.15(c)-6.15(e) show a HROM for ni = 480 and nRJ = 480, 320, 180. As be-
fore with the nr = 175 test case, the GNAT produces HROM trajectories that diverge away
from the corresponding ROM. Even for nRJ = 180, the HROM trajectory in Figure 6.15(e)
is still chaotic and exhibits similar coherent structures.

Figures 6.15(f)-6.15(h) show a HROM for ni = 380, which was found to be the min-
imum number of sample nodes required for nr = 175 case. The coherent structures once
again for these three trajectories are unique and chaotic. Figure 6.15(h) once again shows
the HROM for nRJ = 180, which produces similar trajectories to Figure 6.15(e).

Figure 6.15(i) shows a HROM for the minimum possible number of sample nodes and
reduced-order basis functions for the residual and the Jacobians. With only ni = 180, which
is a 62.5% reduction in spatial nodes to evaluate, the HROM trajectory in Figure 6.15(i) is
still chaotic and exhibits similar coherent structures as its corresponding ni = 480 case.
Compared to the other HROM in Figure 6.15, Figure 6.15(i) produces a HROM that re-
quires the least amount of computational cost to evaluate the residuals and Jacobians,
making it an ideal case for adjoint calculations, assuming that its time-average output is
relatively accurate compared to that of the ROM.

Figures 6.16 and 6.17 show the time-average outputs for different numbers of sample
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(a) primal (b) ROM (c) ni = 480, nRJ = 480

(d) ni = 480, nRJ = 320 (e) ni = 480, nRJ = 180 (f) ni = 380, nRJ = 360

(g) ni = 380, nRJ = 260 (h) ni = 380, nRJ = 180 (i) ni = 180, nRJ = 160

Figure 6.15: KS: Primal, ROM, and selected HROM trajectories for nr = 50.
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(a) ni = 480 (b) ni = 460

(c) ni = 440 (d) ni = 420

(e) ni = 400 (f) ni = 380

(g) ni = 360 (h) ni = 340

Figure 6.16: KS: Time-average outputs, J , for nr = 50 and ni ∈ [480, 340].
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(a) ni = 320 (b) ni = 300

(c) ni = 280 (d) ni = 260

(e) ni = 240 (f) ni = 220

(g) ni = 200 (h) ni = 180

Figure 6.17: KS: Time-average outputs, J , for nr = 50 and ni ∈ [320, 180].

120



nodes, ni ∈ [480, 180] and reduced basis functions for the residuals and Jacobians. Once
again, the trajectories are found for ni and nRJ in intervals of 20. One difference to highlight
between the nr = 175 and nr = 50 test case is that the number of possible HROMs is
greater for nr = 175. For nr = 50, the number of sample nodes ni can be as low as
ni = 180 meaning that for the ni = 480 case, twice as many HROMs can be found.

Figures 6.17(g) and 6.17(h) show the minimum case of ni = 200 and ni = 180. For
a small number of sample nodes, the time-average output still emulates the output of the
ROM case. For a corresponding smaller number of reduced-order basis functions for the
residuals and Jacobians, the time-average output agrees well at T = 1000. It is important to
note that as the number of sample nodes decreases, the number of possible HROMs with the
corresponding reduced basis functions for residuals and Jacobians decreases as well such
that by the time ni = 180, only three HROMs converge for this setup, when nRJ = 180 and
nRJ = 160 in Figure 6.17(h). For all sample nodes in Figures 6.16 and 6.17, the HROMs
at T = 1000 are within 2.4% compared to that of the ROM.

Overall, these results show that the higher the number of basis functions, nr, the higher
the minimum number of sample nodes and reduced basis functions for the residuals and
Jacobians is needed, nRJ ∝ nr. Higher nr will produce an overall more computationally
expensive HROM. Note that based on the results for HROM, the minimum number of
sample nodes needs to be at least half of the total number of spatial nodes for nr < 175

for KS. If the number of sample nodes is approximately less than half of the number of
total spatial nodes, GNAT will either not converge or the HROM will be unresolved. How-
ever, this guideline on how many sample nodes should be used is not necessarily true for
other governing equations. When analyzing the time-average output J of the HROMs com-
pared to the corresponding ROM, it is found that the HROM is able to emulate the ROM’s
time-average output even though the trajectories themselves may diverge away from the
ROM completely. To minimize the computational cost associated with finding a HROM, the
smallest possible ni and nRJ are ideal. However, this isn’t necessarily true for nr. Hence,
it is overall not difficult to find a HROM that reduces the overall size of the system. nr has
a greater impact on the accuracy than ni and nRJ of the HROM compared to the primal
solution. The ROM for nr = 175 is more accurate than the nr = 50 case compared to
the primal solution; however, significant cost savings can be found by using nr = 50. If
some accuracy can be sacrificed, then the HROM corresponding to nr = 50, ni = 180, and
nRJ = 160 for T = 1000 for example would be an acceptable model to use to reduce the
overall cost of LSS. The cost savings of using a HROM is even more apparent for a larger
system such as the Navier-Stokes equations.
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6.6 Summary

Chapter V introduced the LSS method, an alternative algorithm for the calculation of
chaotic adjoints. Results from Chapter V for the Lorenz attractor and KS showed that the
LSS method can produce accurate adjoints for output-based error estimation. However, the
LSS method solves a minimization problem that requires a linear solver such as GMRES
to solve a LSS system of size N(2nseg − 1), which is expensive for N or nr. This cost is
tractable for a simple system such as the Lorenz attractor, but it is quite expensive for a
large system, such as the 2D Navier-Stokes equations.

Due to the expensive nature of LSS, model reduction was introduced to reduce the
overall size of the system from N to nr, where nr is the number of basis functions of the
state. The idea is that by reducing the overall size of the system to nr without sacrificing
too much on the overall accuracy of the model, the reduced system can be used instead of
the full-order model in the LSS method, such that the LSS method solves a linear system
of size nr(2nseg − 1) instead of N(2nseg − 1). In this chapter, several model reduction
techniques were introduced for this purpose.

The technique chosen for the model reduction of nonlinear system was the Least-
Squares Petrov-Galerkin (LSPG) technique which is a modified version of the linear model
reduction technique. By looking at the affine subspace, the solution can be reduced to size
nr via a set of basis functions in matrix form, Φ. Model reduction in general utilizes the
POD method to solve for Φ given a state snapshot matrix and looks to the left nullspace
of the system in order to reduce the set of residual equations via orthogonality and a pro-
jection onto a test space, ϕ. LSPG is unique in that the test functions are set to the Jaco-
bian multiplied by the reduced-order basis function matrix, JΦ. For nonlinear cases, the
Petrov-Galerkin projection, ϕ = JΦ, is used instead of the Galerkin projection, ϕ = Φ

to improve stability. In addition, setting the test function to ϕ = JΦ captures information
on the nonlinearity of the system since for each Gauss-Newton iteration used to solve the
reduced system in the minimization problem, JΦ changes.

Implementing the LSPG technique produces a ROM. It was shown through the ROM
of KS that the accuracy of the ROM can be assessed by looking at the time-average outputs
J , which showed that the accuracy of J is highly dependent on nr. Higher nr gives a
more accurate ROM, but will produce an overall more expensive system to solve. Lower
nr produces a less accurate ROM, but will produce an overall less expensive system to
solve. However, there is a minimum number of nr that is required before the ROM fails
and instead produces a non-chaotic periodic system.

ROM can be used with LSS directly; however, the ROM is not truly independent of the
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full-order model size, N . LSS requires the calculation of residuals and Jacobians which
still depend on N . In order to further reduce the computational costs associated with the
reduced model, the GNAT method was introduced which uses the greedy algorithm to
select the ni nodes at which to calculate the residuals and the Jacobians. As a result of
the GNAT method, the residuals and the Jacobians are functions of ni, nj, ne nodes, whose
relationship is dependent on the choice of discretization for the primal solution. The gappy
algorithm requires the creation of the snapshot matrix for the residuals and the Jacobians
and then performs POD for both to produce ΦR and ΦJ , which have nRJ basis functions.
The combined GNAT method produces the HROM method which is a more efficient model
to use than ROM for LSS.

Given that ni ≥ nRJ is required to produce unique approximated residuals and Jaco-
bians, the GNAT method was shown to be able to produce many HROMs for KS. As the
number of sample nodes decreased, the number of possible basis functions, nRJ , decreased
as well. It was shown that given ni and nRJ , as long as the HROM converges, the HROM
is accurate and emulates the ROM of the chaotic system. Note that from the results, higher
nr requires more nRJ but is again limited by the number of sample nodes. Thus, nRJ is
proportionally related to nr, nRJ ∝ nr. For comparison to the full-order solution, the ac-
curacy of HROM is more strongly affected by the number of basis functions of the states
nr, which was seen with the creation of the ROM as well. Thus the minimum ni and nRJ
is ideal for a given nr.

The next chapter will go over how to use the HROM with LSS and show with results
that using HROM instead of the full-order model can reduce the overall computational cost
of LSS, making the GNAT method useful for the modified reduced LSS approach.
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CHAPTER VII

Error Estimation Using Hyper-Reduced Order
Modeling-Least Squares Shadowing

In this chapter, the LSS method, the model reduction techniques, and the output-based er-
ror estimation method will be combined to calculate usable adjoints in order to estimate
the effect of discretization errors on the output. This combined method will be referred to
as the HROM-LSS method. An overview of how these methods are used in relationship
to each other is shown in a flowchart in Figure 7.1. This new procedure can be compared
with the original LSS method in Figure 5.1. In Chapter V, the Least Squares Shadowing
(LSS) method was introduced as an alternative way to calculate adjoints for chaotic flows.
Instead of using the traditional adjoint method from Chapter III, the LSS method is used
to find the shadow trajectory that is designed to stay close to the reference trajectory. The
LSS method finds this new trajectory by relaxing the initial conditions and solving an op-
timization problem. The results of LSS for the Lorenz attractor and the KS equation show
promise. However, despite the level of accuracy LSS is able to produce, the LSS optimiza-
tion routine is expensive and requires up to N(2nseg − 1) iterations of the GMRES linear
solver when using a checkpoint design to find the tangent and adjoint values for each of
the time windows. This makes the LSS method a costly method to use for larger problems
such as the Navier-Stokes equations, compared to the traditional adjoint method.

To remedy the high cost associated with LSS, model reduction techniques were in-
troduced in order to decrease the overall size of the primal problem. The reduced primal
solution was found by looking to the associated affine subspace of the system. There, the
basis functions, were found to map the full-order solution to the reduced solution. It was
shown in Chapter VI, that model reduction principles can be applied to chaotic systems and
can produce reduced-order models whose time-average values converge to the time-average
values of the primal solution, as long as enough basis functions are used.

Despite the success of ROM, the residual and the Jacobian for each Gauss-Newton
iteration of the model reduction procedure is still dependent on N spatial nodes, which
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Figure 7.1: HROM-LSS flowchart: discretization error estimates are found by first solving
the primal solution in both the coarse and fine space. The ROM is found from the snapshots
of the fine-space solution. POD is performed to find the basis functions. The basis functions
are used to find the reduced-order model. From the reduced-order model, the residual and
Jacobian snapshots are found. POD is performed as well to find the basis functions for the
residuals and the Jacobians. The new basis functions are used to find the HROM, which
is then used in the reduced form of the LSS equations. The adjoints are then used to find
the error estimates via the adjoint weighted-residual in the output-based error estimation
method. The four main tuning parameters of this combined method are the number of basis
functions nr, the number of basis functions for the residuals and the Jacobians, nRJ , the
number of sample nodes, ni, and finally the number of time windows, nseg.
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can be cumbersome for large chaotic problems. To truly reduce the computational cost
associated with the primal solution, Chapter VI introduces a technique to reduce the number
of evaluations of the residual and Jacobian from N nodes to ni sample nodes.

By reducing the size of the primal solution to nr and by reducing the number of nodes
needed to calculate the residuals and Jacobians to ni via the GNAT method, the number of
iterations required to find the shadow trajectory via LSS is nr(2nneg − 1) where nr � N .
Due to only ni nodes being calculated to find the residuals and the Jacobians, the time it
takes to perform an individual GMRES iteration in LSS is reduced as well.

In this chapter, it will be shown how the LSS equations will be converted into its re-
duced form using the same projection-based and hyper-model reduction techniques from
Chapter VI such that it can accommodate the newly developed HROM solution. It will be
shown how the gappy algorithm is used to reduce the LSS equations as well. Once the
reduced LSS equations are found, the shadow trajectory based on the hyper-reduced or-
der model will be calculated. Next, the modified output-based error estimation procedure
that is used to calculate the effect of the discretization error estimate on the output will be
shown. Finally, results for this combined HROM-LSS method will be shown for KS and
the Navier-Stokes equations.

7.1 Reduced Form of the Least Squares Shadowing Equa-
tions

In order to use the HROM found from GNAT (Chapter VI), the original LSS equations
from Chapter V need to be converted into corresponding reduced form. In Chapter VI, the
full-order solution is related to its orthogonal left nullspace via test functions, ϕ. The same
principles are applied to the LSS adjoint equations and its initial and terminal conditions
to find the reduced tangent (ψ2) and reduced Lagrange (ψ1) equations. First, one needs to
apply projection based model reduction techniques to the original governing equation in
order to define the initial and terminal conditions for the reduced LSS adjoint equations.
The original governing equations multiplied by the transpose of the test functions give,

ϕT
[
d(Φur)

dt
= f(Φur)

]
, (7.1)
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where its reduced form becomes

dur
dt

=
[
ϕTΦ

]−1
ϕTf(Φur)︸ ︷︷ ︸
fr

. (7.2)

Next, the same procedure is used to find the reduced form of the LSS adjoint equations;
however it is not obvious as to how the full adjoints is related to the reduced adjoints. Given
the linear equation from Chapter III,

Lu = f , (7.3)

it can be shown that after substituting Eqn. 6.3 and multiplying the linear system by test
function ϕ, the linear equation becomes

ϕT [LΦur = f ] . (7.4)

Formulating the Lagrangian equation gives,

Lr = 〈g,Φur〉 − 〈ψr,ϕTL (Φur − f)〉, (7.5)

where g is a function used to calculate the linearized output, 〈g,Φur〉. Taking variations of
ur, ur → ur + δur, requiring the Lagrangian to be stationary with respect to permissible
δur, and integrating by parts gives the reduced adjoint equations,

ϕT [L∗Φψr = g] , (7.6)

where L∗ is adjoint operator defined after integrating the Lagrangian equation by parts. the
When comparing the dual reduced adjoint with the full adjoint equation from Chapter III it
can be seen that that the following is true,

ψ = Φψr. (7.7)

where Φ is the reduced order basis matrix from the reduced state. This approximation of
the full adjoint solution as a function of its reduced adjoint solution can be used for the both
the tangent and Lagrange solutions in the LSS adjoint equations. By substituting Eqn. 7.7
into the LSS adjoint equations and performing a projection using a test function, ϕ, one
can find that

ϕT
[
dΦψ2,r

dt
=

(
∂f

∂u
(Φur)

)
Φψ2,r

]
, (7.8)
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ϕT

[
dΦψ1,r

dt
= −

(
∂f

∂u
(Φur)

)T
Φψ1,r −Φψ2,r −

1

T

∂J

∂u

T
]
, (7.9)

where Eqn. 6.3 is used to substitute for the full-order states. Using the same linear model
reduction technique from Chapter VI, the LSS adjoint equations can be rewritten as

dψ2,r

dt
=
[
ϕTΦ

]−1
ϕT
(
∂f

∂u
(Φur)

)
Φ︸ ︷︷ ︸(

∂f
∂u

)
r

ψ2,r, (7.10)

dψ1,r

dt
=−

[
ϕTΦ

]−1
ϕT
(
∂f

∂u
(Φur)

)T
Φ︸ ︷︷ ︸(

∂f
∂u

T
)
r

ψ1,r −
[
ϕTΦ

]−1
ϕTΦ︸ ︷︷ ︸

Cr

ψ2,r

−
[
ϕTΦ

]−1
ϕT

1

T

∂J

∂u

T

︸ ︷︷ ︸(
1
T
∂J
∂u

T
)
r

,

(7.11)

where ψ2,r refers to the reduced tangent solution and ψ1,r refers to the reduced adjoint
solution. The goal is to write the tangent equation and Lagrange equation in terms of known
quantities. Like the full-order residual and Jacobian, calculating f(Φur) is expensive since
it is dependent on N spatial nodes. In order to reduce the costs of calculating fr and ∂fr

∂ur
,

the GNAT method is used. First, only ni nodes are evaluated from the greedy algorithm.
The reduced terms are then approximated using the gappy reconstruction procedure from
GNAT to find,

f̃ ≈ ΦfΦ̂
+
f f̂ , (7.12)

where (̂· ) refers to the ni rows retained from the greedy algorithm seen in Eqn. 6.38. f̂ is
calculated from the known spatial residual and the inverse of the mass matrix used in the
DG discretization,

f̂ = −M̂−1Rs. (7.13)

To calculate the approximation for f , the reduced-order basis matrix, Φf , is required; how-
ever, instead of creating a snapshot matrix for f and then performing POD on it, the
reduced-order basis matrix for f can be said to be approximately the same as ΦR, the
reduced-order basis matrix for the residual. The main difference between the two would be
the mass matrix, but nonlinearity of the problem will still be preserved, which is what is
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most important. For this dissertation the following relationship will be assumed,

Φf ≈ ΦR (7.14)

and will be shown to provide accurate results in the error estimation process. Substituting
the approximation of the full-order f found in Eqn. 7.12 into fr from Eqn. 7.2 gives the
final form for reduced f ,

fr = AM̂−1Rs, A = −
[
ϕTΦ

]−1
ϕTΦRΦ̂+

R. (7.15)

where A is an offline matrix, calculated before the LSS routine takes place. Note that (· )†

is the Moore-Penrose pseudo inverse and that the approximation for fr is mainly used
to calculate the initial and terminal conditions of LSS. Next, the derivative of f need to
defined for both the tangent and Lagrange equation. From Eqn. 7.11, the reduced derivative
of f is defined as (

∂f

∂u

)
r

=
[
ϕTΦ

]−1
ϕT

∂f (Φur)

∂u
Φ. (7.16)

As with the fr case, the GNAT procedure is used to find
(
∂f
∂u

)
r

using the greedy and gappy
algorithm,

∂̃f

∂u
≈ Φ ∂f

∂u
Φ̂+

∂f
∂u

∂̂f

∂u
, (7.17)

where
∂̂f

∂u
= −M̂−1Js, Js =

∂Rs

∂u
. (7.18)

Since the GNAT procedure is used, Φ is used instead of Φ in the gappy approximations.
To calculate the approximation for ∂f

∂u
, the reduced-order basis matrix, Φ ∂f

∂u
is required;

however, again, instead of creating a snapshot matrix for ∂f
∂u

and then performing POD on
it, the reduced-order basis matrix for ∂f

∂u
can be said to be approximately the same as ΦJ , the

reduced-order basis matrix for the Jacobian. Like the reduced-order basis function matrix
for f , the main difference between the two would be the mass matrix, but nonlinearity of
the problem will still be preserved. As a result,

Φ̂ ∂f
∂u

= ΦJ . (7.19)

Substituting Eqn. 7.18 into Eqn. 7.16 gives the final reduced form of ∂f
∂u

,(
∂f

∂u

)
r

= BM̂−1JsΦ B =
[
ϕTΦ

]−1
ϕTΦJΦ̂

+
J , (7.20)
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where B is the second offline matrix that needs to be calculated before the LSS routine
takes place. The same procedure can be used to define

(
∂f
∂u

T
)
r
,

(
∂f

∂u

T)
r

= B
(
M̂−1Js

)T
Φ B =

[
ϕTΦ

]−1
ϕTΦJΦ̂

+
J , (7.21)

After finding approximations for the reduced f and its derivative, a choice needs to be
made about what type of projection to use for ϕ. For model reduction of nonlinear systems
in Chapter VI, it was shown that the Least-Squares Petrov-Galerkin projection was the best
choice due to its ability to retain information of the nonlinearity of the problem. However,
due to the fact that the LSS adjoints equations are linear, the Galerkin projection is adequate
and used,

ϕ = Φ. (7.22)

Since Φ is orthogonal, many terms simplify and Cr becomes an identity matrix. The re-
duced LSS equations have the final form,

dψ2,r

dt
=
[
BM̂−1JsΦ

]
ψ2,r, (7.23)

dψ1,r

dt
= −

[
B
(
M̂−1Js

)T
Φ

]
ψ1,r −ψ2,r −

1

T
ΦT ∂J

∂u

T

. (7.24)

The reduced LSS equations’ relative sizes and structure can be seen in Figure 7.2. As with

(a) Structure for the reduced tangent equation for ψ2.

(b) Structure for the reduced Lagrange equation for ψ1.

Figure 7.2: Vectors and matrices for the reduced Least Squares Shadowing equations that
show how the reduced states and full-order vectors relate to each other.
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the full-order LSS adjoint equations in Chapter V, the reduced LSS adjoint equations need
to take into account the dilation term as well, by looking at the projections of the tangent and
Lagrange adjoint states. This projection process also ensures that the adjoints are adjoint
consistent.

The final form of the reduced LSS equations for the checkpoint design with the dilation
term taken into account is

dψ2,r

dt
=
[
BM̂−1JsΦ

]
ψ2,r, (7.25)

dψ1,r

dt
= −

[
B
(
M̂−1Js

)T
Φ

]
ψ1,r − Ptψ2,r − β

1

T
ΦT ∂J

∂u

T

. (7.26)

These reduced LSS equations are solved with the same iterative checkpoint process out-
lined in Chapter VI. A guess for the reduced tangent solution and reduced adjoint solution
for each check point is made. Once again, GMRES is chosen as the iterative solver to find
the desired reduced-adjoint solution.

7.2 Output-Based Error Estimation via the Adjoint-
Weighted Residual

After solving the reduced-adjoint LSS equations via the iterative checkpoint method, output
sensitives can be calculated fromψ1,r, since this is the adjoint that weights the residual term
with ∂f

∂µ
. Specifically,

∂J̄

∂µ
=

ˆ Tf

T0

ψT
1r

∂fr
∂µ

dt. (7.27)

To estimate the output error using the adjoint from HROM-LSS, one can apply Eqn. 7.27
as in the LSS case, using a residual perturbation computed from two different discretization
spaces: a coarse one with spatial order pH , and a fine one with spatial order ph = pH + 1.
The primal solution of order pH is injected into the fine space. Given the perturbation in
the residual, the error estimate is

δJ̄ = −
ˆ Tf

T0

ψT
1r,h

ΦT

[
duH
dt
− f(uH)

]
h

dt = −
ˆ Tf

T0

ψT
1r,h

ΦTM−1R(uHh ), (7.28)

where ψ1r,h is the vector of all of the ψh unknowns and Rh(u
H
h ) is the order ph residual

vector evaluated with the order pH injected solution. To perform error estimation given
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δψ1r,h ,

δJ̄ = −
ˆ Tf

T0

δψT
1r,h

ΦT

[
duH
dt
− f(uH)

]
h

dt = −
ˆ Tf

T0

δψT
1r,h

ΦTM−1R(uHh ), (7.29)

where the reduced δψ1r,h is defined from Chapter III as

δψ1r,h = ΦT
[
Ih − IHh IhH

]
Φψ1r,h , (7.30)

where Ih is the identity matrix of the fine space, IHh is the projection permutation matrix,
and IhH is the injection permutation matrix. Eqn. 7.30 takes into account of the non-zero
coarse adjoint. Results for the error estimate using ψ1r,h , δψ1r,h , and δψH1

1r,h
will be shown

in the next section.

7.3 Results for HROM-LSS for Kuramoto-Sivashinsky

In this section, several different results relating the four main parameters of HROM-LSS
will be presented. For all the results presented for KS, the burn time is the same as in the
LSS case, tburn = 500. The spatial order for the coarse space is pH = 2 and the spatial order
for the fine space is ph = 3. Each graph will have three different types of error estimates
corresponding to different forms of the adjoints that are used, ψ1r,h shown in red, δψ1r,h

shown in turquoise, and δψH1
1r,h

shown in cyan. The actual error is shown in blue. The goal
is find error estimates that are close to the mean error and that fall within ± one standard
deviation of the actual error.

The first set of results consists of the error estimates versus the number of basis func-
tions, nr, of the states for time simulations, T = [20, 120]. Note that these results reflect
the change in the number of basis functions for the residuals and the Jacobians, nRJ , given
the simulation time, T . The number of sample nodes is set to ni = 480. These results are
shown in Figure 7.3. The shaded blue region in Figure 7.3 represents the ± one standard
deviation of the actual error, and the bold blue line refers to the mean actual area. The best
parameters are chosen for each simulation time and are presented in Figure 7.4.

The second set of results will show how decreasing the number of sample nodes from
ni = 480 to ni = 200 affects the error estimates overall. The results are shown in Figure 7.5.
The primal solution, the HROM solution, and the corresponding adjoint are shown as well
for one test case for each time simulation.

Lastly, the results of HROM-LSS are compared to that of LSS for KS. It is shown that
HROM-LSS is a more efficient method that is able to retain/improve accuracy compared to
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LSS.

7.3.1 HROM-LSS Error Estimate for ni = 480 and Varied nr

Figure 7.3 presents results for an ensemble of approximately ten cases with randomly cho-
sen perturbed initial conditions for each unique nr. The goal of these results is to understand
the relationship between the output error estimate and the number of basis functions, nr.

Figure 7.3(a) shows results for the simulation time of T = 20 for nr = 5, 10, 15, 20.
When the number of basis functions is set to nr = 5, the number of basis functions for the
residuals and Jacobians is set to nRJ = 50. The full adjoint error estimate, ψ1r,h , overesti-
mates the actual error by approximately three orders of magnitude. When the influence of
the coarse space adjoint is taken away by projecting the fine adjoint onto the coarse space,
δψ1r,h , the error estimates improve significantly and produce results that are within an or-
der magnitude of the actual error estimate. The error estimate that use the adjoint with H1

projection,δψH1
1r,h

further decrease the error estimates and produce similar results as that of
the original projected adjoint, δψ1r,h . Next, the number of basis functions, nr is decreased
to nr = 10 to see if the error estimate improves. For nr = 10, the number of basis func-
tions for the residuals and the Jacobians is set to nRJ = 30. As found in Chapter VI, the
higher the number of basis functions, nr, the more basis functions for the residuals and the
Jacobians, nRJ are needed. The full adjoint error estimation shown in red decreases and the
mean error of the projected adjoint matches up well with the mean actual error. This trend
is seen as well when nr is increased to nr = 15 and nr = 20. The number of basis functions
for the residuals and the Jacobians respectively are set to nRJ = 50 and nRJ = 60. The
error estimates for the projected adjoint for nr = 15 and nr = 20 stay relatively constant
while the full adjoint error estimate continues to decrease, which shows that if the number
of basis functions, nr increases, the full adjoint error estimate may match the actual error.
However, increasing nr and nRJ leads to a more expensive model, and hence, based on this
small test case, the best HROM to use to estimate the effect of discretization errors on the
output for T = 10 is one that has parameters set to nr = 10, nRJ = 30. Note that the
statistics become worse for the full adjoint with increasing nr while the statistics are better
when the error estimates are calculated with δψ1r,h .

Figure 7.3(b) shows results for simulation time of T = 40 for nr = 10, 20, 30, 40, 50.
When the number of basis functions is set to nr = 10, the number of basis functions for the
residuals and Jacobians is set to nRJ = 60. The error estimates for nr = 10 when using the
full adjoint, once again overestimate the actual error just under three orders of magnitude.
However, the projected adjoint error estimates under predicts the actual errors. Again, the
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(a) T = 20 (b) T = 40

(c) T = 60 (d) T = 80

(e) T = 100 (f) T = 120

Figure 7.3: KS: relationship between error estimates and reduced basis functions nr for
time simulation T = [20, 120].
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goal is to see if increasing nr will improve the error estimates. Next, the number of basis
functions is set to nr = 20, where the number of basis functions for the residuals and the
Jacobians is set to n8J = 60 as well. The full adjoint error estimate for nr = 20 increases
slightly, giving a worse error estimate; however, the projected adjoint error estimate for both
types of projections improves. Next, results are shown for nr = 30, 40, 50, where nRJ =

80, 85, 100 respectively. By n = 50, the projected adjoint error estimate matches that of
the mean actual error, showing that increasing nr has an influential effect on the accuracy
of the error estimates. The full adjoint error estimate improves as well with increasing nr,
but at a much slower rate. Based on this test case, the best set of parameters for T = 40

that can be used for error estimate is nr = 20 and nRJ = 60. Any more and the HROM
becomes overly expensive to use. Note that there is no clear trend on how the statistics for
T = 40 behave.

Figure 7.3(c) shows results for the simulation time of T = 60 for nr =

15, 20, 25, 30, 35. When the number of basis functions is set to nr = 15, the number of
basis functions for the residuals and Jacobians is set to nRJ = 70. Again, the full adjoint
error estimate over estimates the actual error by three orders of magnitude. The error esti-
mate with the projected adjoint underestimates the actual error by a small amount. The full
adjoint error estimate continues to over estimate the actual error for nr = 20, 25, 30, 35.
The corresponding number of reduced-order basis functions for the residual and the Jaco-
bian is nRJ = 50, 60, 70, 80. It can be seen based on the trends for the projected adjoint
error estimate, that nRJ is unnecessarily large for nr = 15. By nr = 25, the projected
error estimate shown in turquoise is able to estimate the mean of the actual error. However,
by nr = 35, the error estimate for the projected adjoint becomes slightly worse than be-
fore. More basis functions will improve the accuracy of the HROM, but it is possible that
it doesn’t necessarily improve the error estimates. More of this behavior will be seen in
longer time simulations. The H1 projected adjoint error estimate continues to under pre-
dict the actual error as before. Based on this test case, the best error set of parameters for
T = 60 that can be used for error estimation is nr = 25 and nRJ = 60. Again, any more
and the HROM becomes more expensive to use and more inaccurate, possibly due to the
adjoint becoming less smooth with more basis functions. Smoother adjoints produce better
projections for projected adjoint error estimates. Note that there is no clear trend on how
the statistics for T = 60 behave.

Figure 7.3(d) shows results for the simulation time for T = 80 for nr =

10, 20, 30, 40, 60. When the number of basis functions is set to nr = 10, the number of
basis functions for the residuals and Jacobians is set to nRJ = 40. Again, the full ad-
joint error estimate over predicts the actual error by over three orders of magnitude. The
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error estimate for the projected adjoint just slightly under estimates the actual error. For
nr = 20, 30, 40, the corresponding number of basis functions for the residuals and the Ja-
cobians is set to nRJ = 80, 80, 90. For these basis functions, the error estimate for the full
adjoint becomes slightly more accurate, while the projected error estimate closely resem-
bles the actual estimates quite well. However, by nr = 40 and nr = 80, an interesting
trend begins. At nr = 80, the number of basis functions for the residuals and Jacobians
is set to nRJ = 160, which is quite high and more than needed to find the error estimate
compared to previous time simulations. Due to this high value, convergence should not be
an issue. However, between nr = 40 and nr = 60, the error estimates for the projected
adjoint and H1 projected adjoint become worse and begin to diverge away from the actual
error, while the full adjoint error estimate continues to improve. These results show that
there is an indeed a maximum number of basis functions nr that will give accurate error
estimates when using the projected adjoint, but that increasing nr will improve the error
estimates for the full adjoint. However, increasing nr does again lead to a more expensive
model. Based on this test case, the best set of parameters for T = 80 is one that gives error
estimates with the fewest number of basis functions despite the fact that the error estimate
for the full adjoint improves with more basis functions. The parameters that match this are
nr = 20 and nRJ = 80. Note that there is no clear trend on how the statistics for T = 80

behave; however, the statistics at nr = 60 are quite better than those at nr = 20.
Figure 7.3(e) shows results for the simulation time for T = 100 for nr = 20, 30, 40, 50.

When the number of basis functions is set to nr = 20, the number of basis functions for
the residuals and Jacobian is set to nRJ = 100. The full adjoint error estimate over pre-
dicts the actual error by just over two orders of magnitude showing that the error estima-
tions are improving for the full adjoint with longer time simulations. The projected adjoint
error estimation just slightly under predicts the error at nr = 20. For nr = 30, 40, 50,
the corresponding number of basis functions for the residuals and the Jacobians is set to
nRJ = 100, 100, 120, respectively. As the number of basis functions nr increases, the full
adjoint error estimation improves and seems to approach the actual error estimation. In
order to see if this trend continues, more cases with higher reduced-order basis functions
are needed. The projected adjoint error estimates on the other hand begin to decrease in
accuracy between nr = 40 and nr = 50. This could be due to the nr = 50 case not hav-
ing enough reduced-order basis functions for the residuals and Jacobian, but based on the
results of Chapter VI, which shows that nRJ has a small effect on accuracy and more in-
fluence on convergence, it is more likely that the projected adjoint error estimates decrease
in accuracy when too many basis functions, nr are used. These results are similar to those
seen for T = 60 and T = 100 as well. Based on this test case, the optimal set of parameters
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for T = 100 that can be used for error estimation is nr = 20 and nRJ = 100. Again, any
more and the HROM becomes more expensive to use then is needed, and possibly more in-
accurate. Note that there is no clear trend to how the statistics for T = 60 behave; however,
the standard deviations for all the error estimates for nr = 50 decrease. Figure 7.3(f) shows
results for the simulation time for T = 120 for nr = 20, 40, 60, 80. When the number of ba-
sis functions is set to nr = 20, the number of basis functions for the residuals and Jacobian
is set to nRJ = 110. The full adjoint error estimates over predict the actual errors, but do
so only over one order of magnitude, an improvement from the previous time simulations.
However, when the number of basis functions is increased to nr = 40, 80, the full adjoint
error estimates increases, which seems to be contrary to results from earlier time simula-
tions. Note that the corresponding number of reduced basis functions for the residual and
the Jacobian is set to nRJ = 120 and nr = 160, respectively. The projected adjoint error
estimation for nr = 20 underestimates the actual estimate error, but does more so than pre-
vious time simulations by under an order of magnitude. More basis functions are needed to
improve the projected error estimates. When nr = 40, the projected error estimates do not
improve. But when nr = 80, the projected error estimates improve significantly, producing
results similar in accuracy as those of previous time simulations. This leads to a conclusion
for T = 120, that more basis functions and hence more basis functions for the residuals and
Jacobians are now needed to acquire accuracy in projected adjoint error estimates. To see
if the projected adjoint error estimates can be improved further, more basis functions need
to be executed with more basis functions for the residuals and the Jacobians. However, the
full adjoint error estimates do not improve with more basis functions. Based on this test
case, the best error set of parameters for T = 120 that can be used for error estimation is
nr = 80 and nRJ = 160. Any less, and the error estimates are not accurate enough. Note
that there is no clear trend on how the statistics for T = 120 behave.

Figure 7.4 shows the collective results from Figure 7.3 and results for longer simulation
times, T = 140, 160, 180, 200. As seen in Figure 7.3, the projected error estimates estimate
the actual errors well for each sub figure between T = 20 and T = 120. However, by
T = 140, it is more difficult and a challenge to find the right number of basis functions and
the right number of basis functions for the residuals and the Jacobians that would produce
as accurate error estimates. Note that the mean projected error estimates are still within
one order of magnitude of the mean actual error. This behavior can be a result of the KS
equation becoming chaotic at a slower rate than the Lorenz attractor. In Chapter IV, it was
seen that the adjoint even for the most chaotic case when the advection speed was set to
α = 1 and the super viscosity speed was set to ν = 0.25 grew exponentially backwards
slower than that of the Lorenz attractor. This can be reflected in the results where one can
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Figure 7.4: KS: LSS results for full adjoint error estimation, projected adjoint error esti-
mation, and H1 projected error estimation. The number of basis functions and number of
basis functions for the residuals and the Jacobians is based on the results from Figure 7.3.
The number sample nodes for all of these simulations is ni = 480. The full adjoint error
estimate over predicts the actual error for T = [20, 200]. The projected adjoint error esti-
mation performs better when the influence of the coarse adjoint is taken away from the fine
space adjoint. However, by T = 140, the projected adjoint error estimates become worse,
but still within reasonable values. Note that KS adjoints increase exponential backwards in
time at a slower rate than those of the Lorenz attractor. For the KS equation, the system
does not become chaotic until T ≈ 100. This could be the reason why it is more difficult to
find accurate error estimates after T ≈ 100.
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see that the error estimates for the projected adjoint begin to diverge. It is important to note
as well, that the full adjoint error estimates become more accurate by T = 200. It it possible
that with longer time simulations, the full adjoint error estimations will converge with that
of the actual error. However, with the projected adjoint error estimation, the error estimates
are obtained faster for shorter periods of time, making the use of projected adjoints for error
estimation more efficient for larger chaotic systems.

7.3.2 HROM-LSS Error Estimate and Adjoint Results for ni = 200

In section 7.3.1, results were shown for HROM-LSS for when the number of sample nodes
is set to ni = 480. The next step is to see if similar results can be found when the com-
putational costs of the HROM-LSS model is reduced even further by changing the number
of sample nodes from ni = 480 to ni = 200. Note that from Chapter VI, reducing the
number of sample nodes decreases the number of allowable reduced basis functions for the
residuals and the Jacobians, nRJ .

Figure 7.5 shows the results for the same parameters as that of Figure 7.4 except that
the number of sample nodes is changed form ni = 480 to ni = 200. The purpose in
lowering the number of sample nodes is to determine whether or not it is possible to
obtain the same level of accuracy as the ni = 480 case with fewer number of sample
nodes. If it is possible to obtain the same level of accuracy, then less computational ex-
pense is needed, making the output-based error estimation method for chaotic systems
overall more efficient than without the implementation of the GNAT method. The corre-
sponding number of basis functions and reduced basis functions for the residuals and the
Jacobians for each of the time simulations, T , are nr = 5, 20, 15, 20, 30, 40, 45, 50, 55 and
nRJ = 50, 60, 70, 80, 100, 120, 150, 160, 180. Similar results as for ni = 480 are obtained
for ni = 200. The trends for the full adjoint error estimate, the projected adjoint error es-
timate, and the H1 projected error estimate are very similar. The growing error in the error
estimate for T = 140, 160, 180 exists as well for the projected adjoint error estimate for
ni = 200, leading to the conclusion that more basis functions or basis residual and Jaco-
bian basis functions may be required to improve the accuracy of the error estimates for the
projected adjoint error estimate. Overall, reducing the number of sample nodes does not
affect the accuracy of the error estimation.

The primal trajectory, HROM trajectory, and the corresponding adjoint for one test case
from each time simulation for ni = 200 can be seen in Figures 7.6, 7.7, 7.8, 7.9 for T =

[20, 180]. The full adjoint was found from Eqn. 7.7. These figures show a comparison of the
primal solution to the adjoint solution where regions of zero adjoint indicate areas where
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Figure 7.5: KS: LSS results for full adjoint error estimation, projected adjoint error estima-
tion, and H1 projected error estimation for ni = 200 nodes. The full adjoint error estimate
over predicts the actual error for T = [20, 180]. The projected adjoint error estimation per-
forms better when the influence of the coarse adjoint is taken away from the fine space
adjoint. However, by T = 140, the projected adjoint error estimates become worse as the
ni = 480 case, but still within reasonable values. Note that for the KS equation, the system
does not become chaotic until T ≈ 100. Even with fewer sample nodes, the error esti-
mates are still recoverable compared to the ni = 480 case. However, these results are less
computationally expensive, making these results ideal. Note that this plot lacks results for
T = 200 case. This is due to that for the T = 200, more sample nodes are required due to
T = 200 needing more basis functions, nr, with smaller number of sample nodes ni.
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(a) T = 20 primal (b) T = 20 HROM (c) T = 20 adjoint

(d) T = 40 primal (e) T = 40 HROM (f) T = 40 adjoint

(g) T = 60 primal (h) T = 60 HROM (i) T = 60 adjoint

(j) T = 80 primal (k) T = 80 HROM (l) T = 80 adjoint

Figure 7.6: KS: Example of primal, HROM, and approximate adjoint, ψ1, trajectories for
one test case with ni = 200 sample nodes for T = 20, 40, 60, 80.
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(a) T = 100 primal (b) T = 100 HROM (c) T = 100 adjoint

(d) T = 120 primal (e) T = 120 HROM (f) T = 120 adjoint

Figure 7.7: KS: Example of primal, HROM, and adjoint, approximate ψ1, trajectories for
one test case with ni = 200 sample nodes for T = 100, 120.
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(a) T = 140 primal (b) T = 140 HROM (c) T = 140 adjoint

Figure 7.8: KS: Example of primal, HROM, and approximate adjoint, ψ1, trajectories for
one test case with ni = 200 sample nodes for T = 140.
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(a) T = 180 primal (b) T = 180 HROM (c) T = 180 adjoint

Figure 7.9: KS: Example of primal, HROM, and approximate adjoint, ψ1, trajectories for
one test case with ni = 200 sample nodes for T = 160.
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the residuals have no effect on the time-average output. Areas of non-zero adjoint indicate
areas where residuals do have an effect on the adjoint. For mesh adaptation, these non-zero
adjoint areas refer to regions where mesh refinement should take place. The adjoint results
show that regions where there is non-zero influence of the residual on the time-average
output, occur more during the middle of the time simulation. The adjoints for T = [20, 180],
are close to zero at the initial and final time of the simulation. The adjoint solutions share
a few qualities with their corresponding HROM solution, such as the slightly unresolved
presence of coherent structures. Note that with an increasing number of basis functions,
nr, the coherent structures in the adjoint solution will become more apparent with higher
resolution.

7.3.3 Comparison of HROM-LSS with LSS for Kuramoto-
Sivashinsky

From Chapter V, it was seen that the full adjoint, the projected adjoint, and theH1 projected
adjoint gave error estimates that did not give as accurate results compared to that of the
Lorenz attractor. The projected adjoint actually contributed to error estimates that were
far worse compared to the simpler full adjoint. It was revealed that the projection process
itself was inaccurate and difficult to fine possibly due to non-smooth/chaotic nature of the
adjoint itself, increasing the overall error estimate instead of decreasing it. Another possible
reason why the error estimates became worse, was that the coarse space adjoint is different
enough than the find space adjoint. This behavior would be reflected in the error estimate.
In order to remedy this problem, the H1 projection was used as well, which projected the
fine space adjoint given additional constraints on the slopes of the adjoint at the basis nodes
for each element. This improved the error estimate, but gave error estimates that were on
average similar to the error estimate of the full adjoint; with longer time periods, the H1

projected adjoint performed better than the other error estimate. This behavior is due to
the possibility that the coarse adjoint is relatively close to zero already. The results of LSS
for the KS equations were not ideal. This is most likely due to the KS equations having
a larger number of positive Lyapunov exponents compared to the Lorenz attractor case,
making it more difficult to quantify the effect of discretization errors on the output for error
estimation and mesh adaptation.

The next step that was taken was to reduce the LSS equations and use the HROM found
from the GNAT method for error estimation with the goal of reducing the cost of LSS,
while still obtaining the same level of accuracy from the KS results from Chapter V. The
main difference between the results of HROM-LSS and the results of the LSS method is
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the computational cost associated with the GMRES linear solver.
The full adjoint error estimates for LSS and HROM-LSS methods are similar. The er-

ror estimates for HROM-LSS and LSS with Tk = 5 are approximately on the order of 101,
while the error estimates for HROM-LSS and LSS with Tk = 4 hover at approximately
on the order of 100. It is promising that one is able to obtain the same results with fewer
GMRES iterations, with less time needed to complete each GMRES iteration. The pro-
jected adjoint error estimates are plotted as well for HROM-LSS, which show some stark
differences in behavior compared to that of the full LSS. Instead of increasing in value by
almost an order of magnitude, the projected error estimates actually decrease by just un-
der three orders of magnitude. Their accuracy improved greatly, especially at earlier time
simulations. This is very different from the LSS results which showed that projecting the
fine chaotic space adjoint on the coarse mesh actually increases the error estimate. This
leads to the possibility that model reduction does more than reduce the states needed to
solve the governing equations and the computational costs associated with calculating for
its adjoints; model reduction for KS acts as a smoother such that the fine space adjoint is
itself less oscillatory, allowing for the projection of the fine space adjoint onto the coarse
mesh to be more accurate than before. This leads to a significant decrease in the error es-
timate and more accuracy. Hence, model reduction for the calculation of chaotic adjoints
has two purposes: to reduce the computational cost of a large chaotic system to solve the
adjoint equations and to produce smoother adjoints on the affine space that leads to increase
accuracy of the adjoint and error estimation.

The H1 projected adjoint produced results similar to the original projected adjoint for
KS; however, it underestimated the actual error, but still produced more accurate results
than that of the full adjoint. Hence, it can be concluded that the best error estimates for a
chaotic system are found via model reduction and with a projected adjoint, ψ1r,h .

Compared to the reduced LSS case with ni = 480, the results for the error estimates
were found to be very similar. However, the main interest of reducing ni is the effect it
has on the time it takes to complete the simulation to find the adjoint. Figure 7.10 shows
the average CPU time in seconds it takes to complete the adjoint calculation for LSS and
HROM-LSS for each time simulation and the average number of total GMRES iterations
it takes to complete the same adjoint calculation for LSS and HROM-LSS. The red data
refers to the full LSS calculation, the blue line refers to the reduced LSS calculation with
ni = 480 sample nodes, and the black line refers to the reduced LSS calculation with
ni = 200 sample nodes. These results show that the HROM-LSS requires fewer GMRES
iterations and less time to find the adjoint for a chaotic system, which happens in this case to
be more accurate as well. However, on average the time it takes to complete the simulation
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(a) Time to complete simulation for T (b) Number of GMRES iterations for T

(c) Percentage change in time for HROM-LSS to
complete simulation compared to LSS

(d) Percentage change in the number of GMRES iter-
ations for HROM-LSS compared to LSS

Figure 7.10: KS: Comparison of the LSS method for Tk = 5 to the HROM-LSS method
based on the results for ni = 480, 200 for number average time to complete simulation and
average number of GMRES iterations needed. Ran on Intel (R) Xeon (R) CPU X5450 @
2.67 GHz
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and the average number of GMRES iterations required for ni = 200 is only slightly less
and/or the same as the ni = 480 cases, which seems counter intuitive. If less than half of
the nodes are retained, the time it takes to complete the simulation should be significantly
less; however, this is not necessarily the case especially and is mostly due to KS not being a
large enough system to see a significant difference when decreasing the number of sample
nodes.

Additionally, Figure 7.10 shows the percentage reduction in CPU time and the percent-
age reduction in number of GMRES iterations for HROM-LSS in comparison to LSS. Note
that for ni = 480 and ni = 200, the percentage reduction in CPU time and number of GM-
RES iterations are similar. For T = 20, HROM-LSS calculated the error estimates 97.44%

faster than LSS. For T = 60, HROM-LSS calculated the error estimates 84.6% faster than
LSS. For T = 120, HROM-LSS calculated the error estimates 70.6% faster than LSS. For
Kuramoto-Sivashinsky equation, this percentage reduction in CPU time for longer time
simulations follows the following quadratic trend,

y = 0.00067T 2 − 0.33T + 100, (7.31)

which was found found by fitting a quadratic equation to the HROM-LSS results for
ni = 200 in Figure 7.10(c). For longer simulation times beyond T = 180, the percentage
reduction in time to completion for HROM-LSS and percentage reduction in the number
of GMRES converge to a approximately 65%.

To further show that HROM-LSS is a more economical method than LSS, the estimated

(a) Percentage change in the number of GMRES iter-
ations for HROM-LSS compared to LSS

(b) Percentage change in the number of GMRES iter-
ations for HROM-LSS compared to LSS

Figure 7.11: KS: The estimated memory requirement for the LSS and the general HROM-
LSS method.
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memory requirement in MB is shown in Figure 7.11(a) for time simulations, T = [20, 180].
The estimated memory required to execute these techniques were found by comparing the
size of the linear system of LSS. Since HROM-LSS creates overall a smaller system based
on the number of basis functions, nr, where nr < N , the memory requirement for HROM-
LSS is less than that of LSS. This can be seen in Figure 7.11(b), where by T = 180,
the memory requirement for HROM-LSS is reduced by approximately 98.5% compared to
LSS.

Overall for KS, HROM-LSS is computationally cheaper and more accurate when using
the projected adjoint error estimate compared to LSS. In the next section, the HROM-LSS
results for the Navier-Stokes equations are presented.

7.4 HROM-LSS results for Navier-Stokes Equations

Chapter IV introduced the Navier-Stokes equations, which are the governing equations of
aerodynamics. It was shown that the Navier-Stokes equations for laminar flow at Reynolds
number of Re = 104, produce interesting results for the adjoint when applying the tra-
ditional adjoint equation. Even though this flow is not chaotic, this simulation produces
adjoints that suffer the same behavior as that of chaotic flows: the adjoint for the Navier-
Stokes equations increases exponentially backwards in time, making it difficult to perform
output-based error estimation and mesh adaption for high Reynolds number flows. Hence
the GNAT method was used to find a HROM of same test case in Chapter IV and used with
reduced LSS to calculate usable chaotic adjoints. DIRK3 was used advance the solution
forward in time. The initial conditions for these each state components were perturbed by
δu = ±[0.1, 0.1, 0.1, 0.1] before the burn time was executed. The coarse space interpola-
tion order was set to pH = 1 and the fine space interpolation order was set to ph = 2. The
number of sample nodes was set to ni = 500 out of the possible N = 3198 spatial nodes,
which is approximately 15%, significantly lower than the KS case. The error estimate re-
sults for the Navier-Stokes equation are shown in Figure 7.12 The results from Figure 7.12
show only the error estimates for the full adjoint and the projected adjoint. (The H1 pro-
jection error estimate was not calculated for the Navier-Stokes equations test case). Note
that each test case for a simulation time, T , has a unique number of reduced basis functions
and corresponding reduced basis functions for the residuals and the Jacobians. Unlike the
KS case, the Navier-Stokes equations GNAT parameters are more sensitive to the perturbed
conditions.

The actual error estimates are shown in blue, which compared to that of the KS case,
show very low standard deviations. This is mostly likely due to Navier-Stokes case not
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Figure 7.12: 2D Navier-Stokes error estimate and actual error results for T = [20, 100]

being chaotic. The full adjoint error estimates are shown in red and overestimate the actual
error by approximately an order to two orders of magnitude, which is about two orders
of magnitude less than that of the KS case. The projected error estimate is shown in light
blue, which exhibits improvement in its estimates compared to that of the full adjoint. For
T = 20, 40, the projected error estimate stays relatively close to the actual error estimate;
however, the error estimates for T = 60 and T = 80 exhibit greater discrepancy within
reason between the actual and estimated error. For these particular cases, more reduced
basis functions and reduced basis functions for the residuals and Jacobians are needed.
However, by T = 100, the error estimate for the full adjoint is more accurate.

These results were obtained with far fewer number of GMRES iterations compared
to if error estimates were found with LSS. Note that the number of spatial nodes for the
Navier-Stokes equations case is N = 3198.

7.5 Summary

In this chapter, the HROM-LSS method was presented, which combines the LSS tech-
nique and the GNAT method in order to calculate usable and accurate adjoints, efficiently.
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HROM-LSS first reduces the LSS adjoint equations using model reduction techniques and
the GNAT method presented in Chapter VI. Once the LSS adjoint equations were reduced,
the HROM found from the GNAT technique was used instead of the primal solution to cal-
culate adjoints for chaotic systems. The HROM-LSS technique is a function of four main
parameters, the number of time windows, nseg, the number of basis functions, nr, the num-
ber of basis functions for the residuals and the Jacobians, nRJ , and the number of sample
nodes ni. In order to reduce the computational costs resulting from the adjoint calculation,
it is ideal to keep these parameters as low as possible without sacrificing the fidelity of the
problem.

This chapter presented results for the HROM-LSS technique applied to the Kuramoto-
Sivashinsky equation. From Chapter V, it was found that the LSS method over- predicted
the actual error estimates by two orders of magnitude, which was not as accurate as that
of the Lorenz attractor. The computational cost of the system was dictated by the size
of the LSS linear solver system, N(2nseg − 1), which is quite high. On the contrary, it
was found that the HROM-LSS method not only reduced the high computational cost of
calculating the error estimates, but increased their accuracy as well. The error estimates
that produced the most accurate results were based on the projected adjoint calculation.
This increased accuracy is most likely due to the smoothing of the full adjoint as a result
of the model reduction. As a result of the smoothing of the full adjoint, the projection of
the fine adjoint to the coarse space was done more accurately than without the addition of
the model reduction techniques. This regularization of the full adjoint is another possible
reason why model reduction is a good addition to the adjoint calculation process for chaotic
flows.

To reduce the size of the system further, the number of sample nodes was increased
from ni = 480 to ni = 200, which produced results that were very similar to those of
the nr = 480 case, showing promise in the inclusion of the GNAT method in this com-
bined process. The full adjoint trajectories were presented as well with their corresponding
primal and HROM solutions in order to show the regions in space and time, where the
residuals will affect the time-average output the most. In addition, the adjoint trajectories
show where the residual has the most influence on the output, useful for mesh adaptation.
Overall, the HROM-LSS method is able to retain the accuracy and even improve the error
estimates while reducing the high computational costs associated with LSS, making it a
more practical method to use for high fidelity methods such as LES.

To further see the effect of HROM-LSS, the method was implemented for the Navier-
Stokes equations. Even though this Navier-Stokes case is not chaotic, its high Reynolds
number and high angle of attack produces adjoints using the traditional adjoint sensitivity

151



technique that increase exponentially backwards in time. Thus HROM-LSS would be a
good technique to try for the Navier-Stokes equations. The results of this implementation
were shown to be promising. The statistics of the error estimates for the Navier-Stokes
equations behave differently as a result of the governing equations not being chaotic, but the
error estimates based on the projected adjoint were able to predict the actual adjoint fairly
well, within one order of magnitude. The number of sample nodes used was ni = 500,
which is proportionally much less than that of the KS equation. The number of sample
nodes was about 15% of the total spatial nodes for the Navier-Stokes case, while the most
reduced version of the KS results had about 42% of the total spatial nodes. Still, the HROM-
LSS technique was able to produce accurate error estimates with many spatial nodes not
being used in the calculations.

Overall, by using HROM-LSS, which reduces the LSS adjoint equations and uses
model reduction techniques to reduce the primal solutions to nr spatial nodes, one is able
to overcome the butterfly effect and calculate usable and accurate adjoints compared to the
traditional unsteady adjoint method and at lower computational costs compared to LSS.
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CHAPTER VIII

Conclusions

8.1 Summary

This dissertation provides a new combined approach that allows one to quantify the effects
of discretization errors on outputs of chaotic flows. Previous research in the field of compu-
tational fluid dynamics has shown success of the prediction of discretization errors through
the use of output-based error estimation for steady and unsteady flows. In this research, the
governing equations are solved using the discontinuous Galerkin finite element method.
The output-based error estimation technique has been successful in predicting where the
discretization errors occur in time and space, allowing for the use of mesh adaptation. As
a result, output-based error estimation and mesh adaptation address some of the obsta-
cles faced in computational fluid dynamics and high fidelity simulations. The success of
output-based error estimation comes from the successful calculation of the adjoint, which
is a sensitivity of the output of interest in terms of the discretized residual. The sensitivity
of the output in terms of the residual, makes the adjoint a useful quantity to understand
the errors associated with discretizations of governing equations. To calculate the adjoint,
the linearization of the output and the residual are used to produced the dual, adjoint equa-
tion. This, combined with vast research in output-error estimation, has become a reliable
technique. However, this is not the case for chaotic systems.

It was shown in Chapter IV that chaotic systems are unique compared to general un-
steady flows. These systems are characterized by their Lyapunov exponents and corre-
sponding covariant Lyapunov vectors which dictate the degree of divergence and separation
of two close trajectories. This effect is commonly known as the butterfly effect and makes
it difficult to use the traditional technique of adjoint calculations to find the dual equation
that will work for chaotic systems. As a result, the adjoint increases backwards in time.
Using these exponentially large adjoint values leads to unusable error estimates for mesh
adaption. In computational fluid dynamics, providing this ability for output-based error esti-
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mation to work for chaotic systems is important, because it has many different applications
that would be helpful. One major area that this research can benefit is in Large Eddy Sim-
ulation research, which is characterized by high computational costs and chaotic behaviors
in its variables of interest. LES is known for high simulation costs and thus output-based
error estimation would be greatly advantageous in reducing the computational time.

Chapter V introduced the Least Squares Shadowing method, which is an alternative to
the traditional adjoint calculation. It was shown that by relaxing the initial conditions, a
shadow trajectory could be found that stays close to the reference trajectory, allowing for
one ideas from the traditional adjoint method to be used. The results of this method showed
promise and was able to produce usable adjoints for error estimation. However, LSS has
high computational costs due to its linear iterative solver used in its optimization process.

Chapter VI introduced model reduction techniques in an attempt to reduce the com-
putational costs of LSS. The results of this chapter showed that is is possible to find a
reduced order model and a hyper reduced order model when using the Gauss-Newton with
Approximated Tensors technique to approximate the residual and Jacobian for a chaotic
system.

Lastly, Chapter VII showed how the LSS adjoint equations are reduced further with
hyper-reduction in the HROM-LSS method. The results of HROM-LSS for the KS equa-
tion and the Navier-Stokes equations showed that the method was able to reduce the com-
putational cost of calculating the adjoint, while still retaining/improving the accuracy of
the error estimate. For a time simulation of T = 20, the HROM-LSS method reduced the
CPU time by 97.44% compared to LSS. For a time simulation of T = 60, the HROM-LSS
method reduced the CPU time by 84.6% compared to LSS. By T = 180, the HROM-LSS
method reduced the CPU time by 64% compared to LSS. As T → ∞, the percentage re-
duction in the CPU time plateaus to approximately 60%. HROM-LSS, with the projected
adjoint error estimation, was able to predict the discretization output error well, within an
order of magnitude of the actual output error between interpolation orders, pH = 2 and
ph = 3.

8.2 Research Contributions

The major contributions of this dissertation are:

• Implementation of the Least Squares Shadowing Method with the discontinuous
Galerkin method.

• Extension of the Least-Squares Petrov-Galerkin method and the Gauss-Newton with
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Approximated Tensors technique to chaotic systems, specifically, the Kuramoto-
Sivashinsky equation and the two-dimensional Navier-Stokes equations.

• Development of the Hyper-Reduced-Order Modeling-Least Squares Shadowing
technique which performed as well as the Least Squares Shadowing method at cal-
culating adjoints for chaotic flows, but with less computational resources.

8.3 Future Work

The HROM-LSS method has shown promise for output-based error estimation of chaotic
flows. However, based on the results of this method, additional research in areas of mesh
adaptation, model reduction, and Least Squares Shadowing will only improve the method
further.

• Space-Time Least-Squares Petrov-Galerkin

Least-Squares Petrov-Galerkin and GNAT reduces the size of the system in space.
However, in this dissertation, temporal reduction has not been mentioned. For un-
steady problems, many time discretization methods are expensive, especially DG in
time. To reduce the computational costs further, the LSPG in time technique can be
implemented as well in time, reducing the overall costs further. (This method tempo-
ral reduction method is referred to the ST-LSPG method [88]).

• Mesh Adaptation

Along with estimating the output error, the results of this dissertation can be used
for mesh adaptation. However, work is needed to figure out how to successfully in-
corporate the ideas of reduced-order modeling with mesh adaption. For example, it
is unclear if the same reduced-order basis function matrix, Φ, can be used after one
iteration of adaptation. Overall, incorporation of mesh adaptation with HROM-LSS
will further improve the capabilities of the chaotic simulations.

• Finding a Preconditioner with HROM-LSS Properties for LSS

The results from Chapter VII showed that the projected adjoint error estimates accu-
rately predicted the effect of the discretization errors on the output compared to the
full adjoint error estimate. It was shown that the projection of the fine space adjoint
in the coarse space performed better for HROM-LSS than for LSS. This leads to the
possibility that the adjoint from HROM-LSS is regularized so that the adjoint itself
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has more favorable properties than before. Applying model reduction techniques in
general may improve the distribution of the Lyapunov exponents, resulting in a more
manageable system. This similar behavior can be seen with preconditioners for sys-
tems with high condition numbers which are used to transform the system to have
better spectral properties. In general, by using a preconditioner, the iterative solver
can converge quickly than without it. It may be possible to obtain similar and/or im-
proved results compared to that of Chapter VI by finding a preconditioner, M , that
has the same properties as HROM-LSS,

M−1Ax = M−1b. (8.1)

Solving 8.1 will theoretically give the same answer as the full order LSS equation in
Eqn. 5.38, but at a higher convergence rate. Finding and using a preconditioner M
that exhibits the same properties of the model reduction performed in this dissertation
would provide an alternative, non-intrusive/offline way to reduce the computational
costs of LSS. This would simplify the HROM-LSS technique and make it easier to
apply output-based error estimation to more complicated problems.

• Application of Model Reduction Techniques to the Full Trajectory Design of the
Least Squares Shadowing Problem

It was shown in Chapter V that there are two different ways to solve for the LSS
adjoint equations: the full trajectory design method and the checkpoint design. In
this dissertation, model reduction techniques were applied to the checkpoint design
to solve for the LSS adjoint equations. Originally the LSS checkpoint design was
used to solve for the full LSS adjoints equation due to the checkpoint design having
fewer variables to solve than the full trajectory design. However, applying model
reduction techniques directly to the adjoint equations of the full trajectory design
could be potentially simpler to implement than the checkpoint design.

To apply model reduction techniques to the full trajectory design, the adjoint equa-
tions would have to rederived to take into account of the time transformation. Before
the time transformation for the checkpoint design was taken into account by using
projection operators. The KKT conditions from Chapter V with the time transforma-
tion term form the following system,

dv(t)

dt
=
∂f(u(t;µ);µ)

∂u
v +

∂f(u(t;µ);µ)

∂µ
+ f(u(t;µ);µ)η(t), (8.2)
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dw(t)

dt
= −

(
∂f(u(t;µ);µ)

∂u

)∗
w(t) + v(t), (8.3)

α2η = −〈f ,w〉. (8.4)

These adjoint equations can be directly discretized with the discontinuous Galerkin
to find the linear system,

Ax = b, x =



ψ2,0

ψ2,1

ψ2,m

η1

ηm

ψ1,1

ψ1,m


, (8.5)

where the reduced x can be found from the affine subspace ofA such that

x ≈ Φxxr. (8.6)

The linear model reduction techniques from section 6.3 can be used to reduce the
linear system by looking at the left nullspace,

ϕT [Ax = b] . (8.7)

Since this is a linear problem, Galerkin projection can be used. However, it is unclear
what Φx should be for the full trajectory design. Based on the relationship of the full
adjoint to its reduced adjoints, Φx may be a function of Φ. Thus, the full forward
problem simulation is still needed to find to find Φ. More research into what can be
used for Φx is need.

• Output-Based Error Estimation for Turbulent Flows

The Navier-Stokes equations in this dissertation are laminar and not chaotic. The next
step would be to implement the HROM-LSS method for a turbulent chaotic case to
see if the method can be translated from the laminar to a truly turbulent case.

• Output-Based Error Estimation for 3D Chaotic Flows

Due to the promising results for the two-dimensional Navier-Stokes results, the

157



HROM-LSS can be applied to the laminar three-dimensional Navier-Stokes equa-
tions as well.
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[8] Houston, P., Senior, B., and Süli, E., “hp-Discontinuous Galerkin finite element meth-
ods for hyperbolic problems: error analysis and adaptivity,” International Journal for
Numerical Methods in Fluids, Vol. 40, No. 1-2, 2002, pp. 153–169.

[9] Bassi, F. and Rebay, S., “GMRES discontinuous Galerkin solution of the compressible
Navier-Stokes equations,” Discontinuous Galerkin Methods, Springer, 2000, pp. 197–
208.

[10] Bassi, F. and Rebay, S., “Numerical evaluation of two discontinuous Galerkin meth-
ods for the compressible Navier–Stokes equations,” International Journal for Numer-
ical Methods in Fluids, Vol. 40, No. 1-2, 2002, pp. 197–207.

159

www.wikiart.org/en/jackson-pollock/number-1-lavender-mist-1950-1
www.wikiart.org/en/jackson-pollock/number-1-lavender-mist-1950-1


[11] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified analysis of dis-
continuous Galerkin methods for elliptic problems,” SIAM journal on numerical anal-
ysis, Vol. 39, No. 5, 2002, pp. 1749–1779.
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and Standard DG Methods for Target-Based hp-adaptive Simulation of Compressible
Flow,” Computers & Fluids, Vol. 98, 2014, pp. 3–16.

162



[50] Dahm, J. P. and Fidkowski, K. J., “Error Estimation and Adaptation in Hybridized
Discontinous Galerkin Methods,” AIAA Paper 2014–0078, 2014.

[51] Fidkowski, K. J., “Output Error Estimation Strategies for Discontinuous Galerkin
Discretizations of Unsteady Convection-Dominated Flows,” International Journal for
Numerical Methods in Engineering, Vol. 88, No. 12, 2011, pp. 1297–1322.

[52] Anderson, W. K. and Venkatakrishnan, V., “Aerodynamic design optimization on un-
structured grids with a continuous adjoint formulation,” Computers & Fluids, Vol. 28,
No. 4-5, 1999, pp. 443–480.

[53] Giles, M. B. and Pierce, N. A., “Analytic adjoint solutions for the quasi-one-
dimensional Euler equations,” Journal of Fluid Mechanics, Vol. 426, 2001, pp. 327–
345.

[54] Fidkowski, K., “AE 623 Classnotes: Adjoint Sensitivity Analysis,” 2013, pp. 1–3.

[55] Oliver, T. A. and Darmofal, D. L., “Analysis of dual consistency for discontinu-
ous Galerkin discretizations of source terms,” SIAM Journal on Numerical Analysis,
Vol. 47, No. 5, 2009, pp. 3507–3525.

[56] Lu, J., An a posteriori error control framework for adaptive precision optimization
using discontinuous Galerkin finite element method, Ph.D. thesis, Massachusetts In-
stitute of Technology, 2005.

[57] Chen, G. and Fidkowski, K., “Output-based mesh adaptation for multifidelity PDE-
constrained optimization,” Journal of Computational Physics, 2018.

[58] Dahm, J., “Toward Accurate, Efficient, and Robust Hybridized Discontinuous
Galerkin Methods,” 2017.

[59] Dolnick, E., The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth
of the Modern World, P.S., HarperCollins, 2012.

[60] Laplace, P. and Dale, A., Pierre-Simon Laplace Philosophical Essay on Probabilities:
Translated from the fifth French edition of 1825 With Notes by the Translator, Sources
in the History of Mathematics and Physical Sciences, Springer New York, 1998.

[61] Lorenz, E. N., “Deterministic nonperiodic flow,” Journal of the atmospheric sciences,
Vol. 20, No. 2, 1963, pp. 130–141.

[62] Strogatz, S. H., Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering, CRC Press, 2018.

[63] Gleick, J., Chaos: Making a New Science, A Penguin Book: Science, Penguin, 1988.
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