
Preventing Capability Abuse Through Systematic Analysis
of Exposed Interfaces

by

Yuru Shao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2019

Doctoral Committee:

Professor Z. Morley Mao, Chair
Associate Professor Kira Barton
Assistant Professor Qi Alfred Chen, University of California, Irvine
Professor Atul Prakash

Yuru Shao

yurushao@umich.edu

ORCID iD: 0000-0001-9519-3930

c© Yuru Shao 2019

To my wife and my family.

ii

ACKNOWLEDGEMENTS

The past five years of my life is one of the most rewarding experiences I have ever

had. As the end of my PhD journey is getting closer, my sentiment of gratitude is growing

stronger. I would not have been able to make it without the help and support of many

individuals.

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Zhuoqing Morley Mao who has always been of tremendous help at every stage of my PhD

study. She always encourages us to aim high, start small, and keep working hard. Her

support and insightful advice have helped me overcome many challenges in my research,

and her inspiration will keep me chasing my dream. I am so fortunate to be her student,

who has developed independent research skills under her training and supervision.

I would like to express my deepest appreciation to my dissertation committee, Prof.

Atul Prakash, Prof. Kira Barton, and Prof. Qi Alfred Chen for their valuable feedback.

Their time and input are very much appreciated.

I am incredibly grateful to my collaborators. My dissertation would not have been

possible without Prof. Zhiyun Qian and Jason Ott from the University of California, River-

side. Our two-year collaboration was super enjoyable and fruitful. I also wish to thank

Prof. Dawn Tilbury, Dr. James Moyne, Ilya Kovalenko, Efe Balta, and Dr. Yassine Qam-

sane from the Mechanical Engineering department at the University of Michigan, as well

as Dr. Felipe Lopez, Dr. Zheng Zhang, and Dr. Miguel Saez, who were with the ME de-

partment. I benefited a lot from our interdisciplinary collaboration on the challenging yet

intriguing Software-Defined Control project.

iii

I would like to extend my sincere thanks to Dr. Ruowen Wang, Dr. Ahmed M. Azab,

Dr. Xun Chen, and Dr. Haining Chen, my mentors and friends at Samsung Research

America where I spent two wonderful summers. I also thank Dr. Chenguang Shen, Luis

Delgado, and Dr. Pieter Hooimeijer at Facebook. I truly enjoyed working with them on

solving real-world problems with big impact.

Special thanks go to Prof. Daniel Xiapu Luo from the Hong Kong Polytechnic Uni-

versity and Guojun Peng from Wuhan University. They enlightened me the first glance of

system security research.

I had a great pleasure of working with my fellow labmates, David Ke Hong, Shichang

Xu, Yikai Lin, Xiao Zhu, Jie You, Shengtuo Hu, Yulong Cao, Xumiao Zhang, Jiachen

Sun, Won Park, Jiwon Joung, and Can Carlak. I wish you all the best of luck in your

future endeavors. I also thank my dear friends, Dr. Yunhan Jia, Chao Kong, Dr. Zhe

Wu, Chenxiong Qian, Scott Murphy, Dr. Yuping Li, Dr. Yihua Guo, Yunchang Xiao, Xin

Huang, and many others.

And finally, last but not least, I would like to thank my family: my mother Lei Deng,

my father Hailong Shao, my brother Yuting Shao, and in particular, my lovely wife, Ming

Sun. They have been a constant source of love and understanding throughout this journey.

Go Blue!

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTER

I. Introduction . 1

1.1 Overview . 1
1.2 Contributions . 4
1.3 Outline . 4

II. Background and Related Work . 5

2.1 Capability and Capability Abuse 5
2.2 Android System Services . 6
2.3 Android Security and Application Analysis 8
2.4 Security of Industrial Control Systems 11

III. Discovering Inconsistent Security Policy Enforcement in the Android
Framework . 12

3.1 Introduction . 12
3.2 Motivation . 17

3.2.1 Inconsistent Security Enforcement 17
3.2.2 UID Check . 20
3.2.3 Package Name Check 20
3.2.4 Thread Status Check 21

v

3.3 Methodology . 21
3.3.1 Overview . 22
3.3.2 Preprocessing . 23
3.3.3 Call Graph Construction 24
3.3.4 Call Graph Annotation 26
3.3.5 Inconsistency Detection 27

3.4 Implementation . 30
3.4.1 Preprocessing . 30
3.4.2 Call Graph Construction 32
3.4.3 Inconsistency Detection 32

3.5 Results . 33
3.5.1 Tool Effectiveness . 34
3.5.2 Case Studies . 38

3.6 Discussion and Limitations . 44
3.7 Summary . 46

IV. A Lightweight Framework for Fine-Grained Control of Application
Lifecycle . 47

4.1 Introduction . 47
4.2 Motivation . 52

4.2.1 Component Lifecycle 52
4.2.2 Memory Management 52

4.3 Understanding Diehard Behaviors 53
4.3.1 Escalating Process Priority 54
4.3.2 Auto-run . 55

4.4 Fine-Grained Lifecycle Control 57
4.4.1 Application Lifecycle Graph (ALG) 57
4.4.2 Fine-grained Lifecycle Control 60

4.5 Evaluations . 66
4.5.1 ALG Accuracy . 67
4.5.2 Overhead . 67
4.5.3 API Usability . 69
4.5.4 Diehard Applications in the Wild 70

4.6 Discussion . 77
4.7 Conclusion . 79

V. Towards Secure Configurations for Real-World Programmable Logic
Controller Programs . 80

5.1 Introduction . 80
5.2 PLC and Data Access . 83

5.2.1 Programmable Logic Controller (PLC) 83
5.2.2 Data Access . 84

5.3 Threat Model . 85

vi

5.3.1 Motivating Example 86
5.4 Design and Implementation . 87

5.4.1 PLCAnalyzer Overview 88
5.4.2 Translating PLC Code 89
5.4.3 Tag Property Analysis 91
5.4.4 Taint Analysis . 91

5.5 Evaluation . 92
5.5.1 Dataset . 92
5.5.2 Results . 92
5.5.3 Add-On Instructions (AOI) 94
5.5.4 Validating Results . 95

5.6 Discussion . 97
5.7 Conclusion . 98

VI. The Misuse of Android Unix Domain Sockets and Security Implications 99

6.1 Introduction . 99
6.2 Unix Domain Sockets . 102

6.2.1 Threat Model and Assumptions 104
6.3 Design and Implementation . 105

6.3.1 Our Approach . 106
6.3.2 Implementation . 111
6.3.3 Limitations . 114

6.4 Results . 114
6.4.1 Overview . 115
6.4.2 Unix Domain Socket Usage 117
6.4.3 Peer Authentication . 120

6.5 Case Study . 122
6.5.1 Applications . 123
6.5.2 System Daemons . 125

6.6 Countermeasure Discussion . 127
6.6.1 OS-Level Solutions . 127
6.6.2 Secure IPC on Unix Domain Sockets 128

6.7 Conclusion . 130

VII. Conclusion and Future Work . 131

7.1 Lessons Learned . 131
7.2 Conclusion . 133
7.3 Future Work . 135

BIBLIOGRAPHY . 136

vii

LIST OF FIGURES

Figure

2.1 System services register themselves to Service Manager and clients call
their remote interfaces with proxies. 7

2.2 Defining service interfaces using AIDL 8
3.1 Code snippets from PowerManagerService.java. 15
3.2 A motivating example of inconsistent security enforcement. 18
3.3 Permission check is performed if the UID check fails. 20
3.4 Check to verify the caller owns a given package. 21
3.5 Kratos workflow. 22
3.6 Activity Manager Service calls Window Manager Service to do the real

work. 28
3.7 Getting Java classes from AOSP and customized frameworks. 30
4.1 Code snippet of the HummingBad malware, decompiled by JEB De-

compiler. The target of the intent object (local variable i) is set to
Se.class, meaning that the service attempts to restart itself while be-
ing killed. 48

4.2 An ALG illustration. The Android framework is represented as a special
node in the same level as apps. Edges have attributes that provide event
contexts. 58

4.3 Partial ALG: intra-app ICC graph for an app having watchdog compo-
nent. Irrelevant ALG parts are omitted. 59

4.4 Partial ALG: cross-app ICC graph capturing scheduled task and account
sync. Irrelevant ALG parts are omitted. 60

4.5 Overview of the framework. There could be multiple client apps that use
the lifecycle control APIs. 61

4.6 Hook placement options during service launching/binding ICC. The iden-
tity of the caller app is completely unavailable after the AMS calls
clearCallerIdentity(). 63

4.7 Attaching caller component information (using service as an example). . 64
4.8 Querying different levels of lifecycle graphs and detecting cycles. Certain

variable types are omitted. lms is a reference pointing to the Lifecycle
Manager Service. 66

4.9 system server CPU usage after device reboot. 67

viii

4.10 system server memory usage after device reboot. 67
4.11 system server CPU and memory usage while repeatedly launching

applications. 68
4.12 The comparison of application launch time and system boot between our

framework and AOSP. 69
4.13 Difference in ALG reading time with different numbers of applications

installed on the device. 69
4.14 The cumulative distribution of hooks’ execution time. 70
4.15 Battery life can be extended if diehard behaviors are restricted. 71
4.16 Numbers of diehard techniques used by applications from Google Play

and the third-party market. 72
4.17 Tencent message push SDK has diehard behavior that wakes up all its

services using shell command am that can bypass background execution
limitation. 75

4.18 The topmost level (i.e., cross-app ICC graph) of a real ALG
visualized by Graphviz. com.estrongs.android.app and
com.tencent.qqim are further inspected with one of their intra-app
ICC graphs. 77

5.1 An Allen-Bradley ControlLogix 5563 PLC. 85
5.2 Example ladder logic with an exposed variable CNC1Bools.0. 87
5.3 Safety-critical path illustration. 88
5.4 PLCAnalyzer analysis steps. 89
5.5 Translating PLC code into C. 90
5.6 Description of l5x grammar in Backus–Naur form. 90
5.7 Dataset overview . 93
5.8 By PLC firmware version . 94
5.9 C code converted from a real-world PLC program: global variables and

the main function. 95
5.10 C code converted from a real-world PLC program: the AS 284E AOI

function. 96
5.11 Data organization in CIP. 97
6.1 Overview of our approach to identifying potentially vulnerable apps and

system daemons. 107
6.2 A dynamically constructed socket address case. 112
6.3 com.android.internal.telephony.PhoneFactory uses a

Unix domain socket for locking. Code excerpted from AOSP 6.0.1 r10. . 118
6.4 The Kaspersky application’s service and daemon monitor each other

through a Unix domain socket. 119
6.5 KingRoot vulnerability illustration. 123
6.6 A secure way to expose system daemon functionality to applications. A

system service is added between applications and the system daemon. . . 129
6.7 Token-based secure Unix domain socket IPC. Dotted arrow lines stand

for permission-protected broadcasts. 130

ix

LIST OF TABLES

Table

1.1 Summary of dissertation work . 3
3.1 Results of the six codebases in our evaluation. We only consider services

implemented in Java. 33
3.2 Time consumed in each analysis step of Kratos (in seconds) 35
3.3 Overall results of Kratos. The numbers of exploitable inconsistencies,

true positives and false positives are concluded by manual analysis. 35
3.4 Summary of inconsistent security enforcement that can lead to security

policy violations. 39
4.1 The changes cause lifecycle fragmentation, i.e., an app’s lifecycle is in-

consistent in different Android frameworks. 49
4.2 APIs provided by our framework for fine-grained app lifecycle control.

Bundle objects are essentially key-value pairs. They are used to update
one or multiple edge/node properties at a time. 62

4.3 Percentage of applications that use each diehard technique. 72
4.4 Purposes of being diehard. 73
4.5 Third-party libraries coming with diehard behaviors, their purposes, tech-

niques they use, and whether they request sensitive permissions. 76
5.1 AOIs that can be exploited by attackers to manipulate physical output. . . 96
6.1 Unix domain socket namespaces. 103
6.2 Types of attacks by exploiting Unix domain sockets. 104
6.3 Numbers of applications/system daemons that use Unix domain sockets. 115
6.4 Libraries that use Unix domain socket. 116
6.5 SInspector results summary. 117
6.6 Code patterns for categorizing Unix domain socket usage. 117
6.7 Statistics on peer authenication checks. 120

x

ABSTRACT

Connectivity and interoperability are becoming more and more critical in today’s soft-

ware and cyber-physical systems. Different components of the system can better collabo-

rate, enabling new innovation opportunities. However, to support connectivity and inter-

operability, systems and applications have to expose certain capabilities, which inevitably

expands their attack surfaces and increases the risk of being abused. Due to the complexity

of software systems and the heterogeneity of cyber-physical systems, it is challenging to

secure their exposed interfaces and completely prevent abuses. To address the problems in

a proactive manner, in this dissertation, we demonstrate that systematic studies of exposed

interfaces and their usage in the real world, leveraging techniques such as program anal-

ysis, can reveal design-level, implementation-level, as well as configuration-level security

issues, which can help with the development of defense solutions that effectively prevent

capability abuse.

This dissertation solves four problems in this space. First, we detect inconsistent secu-

rity policy enforcement, a common implementation flaw. Focusing on the Android frame-

work, we design and build a tool that compares permissions enforced on different code

paths and identifies the paths enforcing weaker permissions. Second, we propose the Ap-

plication Lifecycle Graph (ALG), a novel modeling approach to describing system-wide

app lifecycle, to assist the detection of diehard behaviors that abuse lifecycle interfaces.

We develop a lightweight runtime framework that utilizes ALG to realize fine-grained app

lifecycle control. Third, we study real-world programmable logic controller programs for

identifying insecure configurations that can be abused by adversaries to cause safety viola-

xi

tions. Lastly, we conduct the first systematic security study on the usage of Unix domain

sockets on Android, which reveals both implementation flaws and configuration weak-

nesses.

xii

CHAPTER I

Introduction

1.1 Overview

Thanks to the advent of wireless networks, new sensing capabilities, and cheaper, more

powerful computing technologies, pervasive connectivity and interoperability have dras-

tically changed the world. We have witnessed the rise of smartphones, smart watches,

Internet-of-Things (IoT), and more recently, smart home. They have quickly become a part

of our life. Moreover, new technologies such as autonomous vehicles and smart manufac-

turing are changing the industry.

Driven by technology advancement, today’s software and cyber-physical systems are

becoming increasingly open and interconnected. For example, the emerging IoT devices

connect the cyberspace and the physical space and thus empower rich interactions between

them. Mobile devices are equipped with various sensors that bring intelligence and aware-

ness to applications. To realize such systems, connectivity and interoperability are the

essential requirements. First, to build a vital ecosystem, systems have to support the devel-

opment of applications so that they can satisfy diverse user demands. Therefore, connec-

tivity is greatly desired. Second, systems need to be extensible and customizable in order

to quickly adapt to different usage scenarios, which requires a modular design and great

interoperability between various components.

Interfacing is the key to enabling connectivity and interoperability. Systems, services,

1

and applications expose their capabilities and provide interfaces to enable rich interac-

tions. These interfaces have various forms, including inter-process communication (IPC)

endpoints, application programming interfaces (APIs), and so on. Interfaces and the capa-

bilities they expose need to be protected, but many potential problems can open doors for

capability abuse [61, 92, 80], such as the lack of strong authentication, flaws in authoriza-

tion, and sketchy, permissive policies and configurations.

It is challenging to prevent capability abuse. In general, system designers cannot antic-

ipate all abuse techniques, and loopholes could exist in design; implementation flaws are

common due to developers’ lack of security expertise; people often make incorrect or inse-

cure configurations. The complexity of modern systems and the complicated interactions

they support make things worse, not to mention the cumbersome process of developing

huge codebases which involves efforts from multiple parties. For instance, an Android

device runs code from five different sources: the Android Open Souce Project (AOSP),

device vendors such as Samsung and Huawei, hardware manufacturers (e.g., Qualcomm,

Broadcom), cellular service providers, and application developers. If any of them fails to

protect their exposed interfaces or to consider all anomaly use cases, capability abuse is

made possible.

In view of these challenges, this dissertation is dedicated to preventing capability abuse

through the studies of exposed interfaces. We demonstrate that with a security mindset, we

conduct a systematic analysis of exposed interfaces using program analysis techniques and

runtime monitoring methods, which can (1) reveal design-level, implementation-level, and

configuration-level security problems, and (2) shed light on system design improvement for

preventing capability abuse. As summarized in Table 1.1, we address four problems in this

research:

1. We investigate Android system service APIs and detect inconsistent security pol-

icy enforcement that reveals severe implementation flaws. We perform differential

analysis on code paths reaching the same privilege operations. Compared to prior

2

Table 1.1: Summary of dissertation work

Problem scope Exposed interfaces Project
Analysis that reveals
implementation flaws

System service APIs
Discovering inconsistent security policy
enforcement in the Android framework

New design that enables
fine-grained control of
application lifecycle

System service APIs,
lifecycle entry points

A lightweight framework for fine-grained
lifecycle control of Android applications

Study of insecure
configurations

Data access interfaces
Towards secure configurations for real-
world industrial controller programs

Both implementation and
configuration issues

IPC endpoints
The misuse of Android Unix domain
sockets and security implications

work, our approach requires no policy input. We overcome challenges in obtaining a

complete list of services and building a precise framework call graph, by automating

entry point generation and creating IPC shortcuts.

2. Focusing on abuses of system service APIs and lifecycle entry points, we design

a lightweight framework that provides fine-grained application lifecycle control.

To realize it without incurring perceptible overhead, we tackle challenges in pre-

cisely identifying caller components, implementing efficient, asynchronized lifecy-

cle hooks that do block normal application execution, and realizing non-disruptive

shutdown of application components.

3. With an emphasis on data access interfaces of smart industrial control systems, we

identify insecure configurations in controller programs. The challenges we man-

age to address include handling non-standard, vendor-specific program instructions,

modeling controller scan cycle, and gathering safety-critical hardware output.

4. Targeting Android’s native IPC endpoints, we find both implementation and configu-

ration issues in using Unix domain sockets among system daemons and applications.

We develop a tool that automates the discovery of vulnerable Unix domain socket

usage. We overcome challenges in recognizing socket addresses, detecting authenti-

cation checks, and performing data flow analysis on native code.

3

1.2 Contributions

To the best of our knowledge, we are the first to systematically study exposed interfaces

across software and cyber-physical systems from design, implementation, and configura-

tion perspectives. We develop techniques to (1) automate the detection of insufficiently

protected interfaces, (2) discover vulnerabilities, and (3) proactively prevent abuses. We

also propose practical design, implementation, and configuration improvements to better

protect exposed interfaces and effectively prevent capability abuse. In total, we have stud-

ied more than 25,000 Android applications, over 400 real-world PLC programs, and six

different Android framework codebases. We have discovered 11 zero-day AOSP vulnera-

bilities, eight vendor customization vulnerabilities, and more than 40 vulnerable applica-

tions. Our research has reached out to AOSP, device vendors, as well as the application

developer community. They all confirmed our research findings, acknowledged our efforts,

and provided positive responses in fixing vulnerabilities and improving the security of their

products.

1.3 Outline

The dissertation is organized as follows. Chapter II provides sufficient background and

related work of the problems we attempt to solve. Chapter III presents our study on in-

consistent security policy enforcement in the Android framework. Chapter IV describes a

lightweight framework for fine-grained control of application lifecycle. Chapter V presents

our study on access configurations of real-world programmable controller programs. Chap-

ter VI discusses the misuse of Android Unix domain sockets and security implications. We

conclude our work in Chapter VII, where we also discuss the lessons we learned and future

work directions.

4

CHAPTER II

Background and Related Work

2.1 Capability and Capability Abuse

In our definition, a capability is the ability to perform a specific operation, for example,

taking a picture, making a phone call, and modifying a system parameter. Capability abuse

is the use of a capability in an unintended way for achieving harmful or malicious goals.

Note that our definition is different from the concept of capability [79] that was initially

introduced by Dennis and Van Horn as “A capability is a token, ticket, or key that gives the

possessor permission to access an entity or object in a computer system.”

In systems and applications, capabilities are exposed to other parties’ use in the form

of interfaces, including APIs, IPC endpoints, and execution entry points. For instance,

the Android framework provides camera APIs that allow applications to take pictures and

record videos. Access control is widely adopted by modern systems, which can protect

interfaces so that processes without required privilege cannot use the capabilities exposed

by those interfaces. Security policies are used to define processes’ privileges. However,

policy configurations may have weaknesses or even errors, resulting in security violations.

Security policy violation detection and verification. Quite a few of program analysis

and verification tools have been developed to verify security properties or to detect security

vulnerabilities caused by policy violation [59, 72, 82, 88, 133]. All of them, except for

5

AutoISES [133], require developers or users to provide code-level security policies. Au-

toISES can automatically infer security specifications with the input of a security check

function list, and leverage inferred specifications to detect security violations automati-

cally. However, the inaccuracy of inferred specifications can lead to false positives, and

an incomplete list of security check functions will cause false negatives. Depending on

different implementations, identifying security check functions could be non-trivial.

Automated security policy enforcement. To date, a few automated solutions have been

proposed to address flawed security policy enforcement. Ganapathy et al. [87] presented

a technique for automatic placement of authorization hooks, and applied it to the Linux

security modules framework. Muthukumaran et al. [116] proposed an automated hook

placement approach that is motivated by an observation that the deliberate choices made

by clients for objects from server collections and for processing those objects must all be

authorized. However, these approaches are highly dependent on the platforms, meaning

that they cannot be easily adopted by other systems with a different security model.

2.2 Android System Services

System services implement the fundamental features within Android, including the dis-

play and touch screen support, telephony, and network connectivity. The number of ser-

vices has slowly increased with each version: growing from 73 in Android 4.4 to 94 for

M Preview. Most system services are implemented in Java with certain foundational ser-

vices written in native code. At runtime, system services are running in several system

processes, such as system server, mediaserver. To provide functionality to other

services and apps, each system service exposes a set of interfaces accessible from other

services and apps through remote procedure calls. For simplicity, we define users (either

another service or an app) of a system service as its clients. From a client’s perspective,

calling remote interfaces of a system service is equivalent to calling its local methods.

6

Service
Manager

WiFi Service

SMS Service

...

Client

WiFi

Service

Proxy

Register

Register

Register
Lookup

Figure 2.1: System services register themselves to Service Manager and clients call their
remote interfaces with proxies.

Figure 2.1 depicts how system services are managed and used. When the Android

runtime boots, system server registers system services to the Service Manager, which runs

in an independent process servicemanager and governs all system services. When a

client wants to call a system service, e.g., Wi-Fi Service in Figure 2.1, it first queries the

service index provided by Service Manager. If the service exists, Service Manager returns a

proxy object, Wi-Fi Service Proxy, through which the client invokes Wi-Fi Service methods.

The “contract” that both the Wi-Fi Service and the proxy agree upon is defined by Android

Interface Definition Language (AIDL). Figure 2.2 uses the Wi-Fi Service as an example

and shows how the service and its proxy use the AIDL to define consistent interfaces.

During the compiling process, a class IWifiManager is automatically gener-

ated from the corresponding AIDL file IWifiManager.aidl. It has two inner

classes, IWifiManager$Stub$Proxy and IWifiManager$Stub. All interfaces

defined in the AIDL file IWifiManager.aidl are declared in IWifiManager,

IWifiManager$Stub and IWifiManager$Stub$Proxy. The service extend-

ing IWifiManager$Stub is responsible for implementing methods defined in

IWifiManager.aidl. Clients who wish to access service functionality only need to

obtain a reference to IWifiManager and invoke IWifiManager’s method. As a re-

sult, the corresponding implementation in the service will be called. The intermediate

procedure is handled by Binder IPC [5] and completely transparent to clients and services.

7

1 // Client.java
2 public class Client {
3 IWifiManager mgr = IWifiManager.Stub.asInterface(
4 ServiceManager.getService("wifi"));
5 mgr.removeNetwork(netId);
6 mgr.disableNetwork(netId);
7 ...
8 }
9 // WifiManager.aidl

10 interface IWifiManager {
11 boolean removeNetwork(int netId);
12 boolean disableNetwork(int netId);
13 void connect();
14 void disconnect();
15 ...
16 }
17 // Decompiled from IWifiManager.class
18 public interface IWifiManager extends IInterface {
19 boolean removeNetwork(int netId);
20 boolean disableNetwork(int netId);
21 void connect();
22 void disconnect();
23 ...
24 }
25 // WifiService.java
26 public class WifiService extends IWifiManager.Stub {
27 @override
28 public boolean removeNetwork(int netId) {
29 enforceChangePermission();
30 ...
31 }
32 @override
33 public boolean disableNetwork(int netId) {
34 enforceChangePermission();
35 ...
36 }
37 ...
38 }

Figure 2.2: Defining service interfaces using AIDL

2.3 Android Security and Application Analysis

The Android platform consists of multiple layers. One of Android’s design goals is to

provide a secure platform so that “[S]ecurity-savvy developers can easily work with and

rely on flexible security controls. Developers less familiar with security practices will be

protected by safe defaults.” [8] All applications on Android run in an application sandbox.

By default, an application can only access a very limited range of resources. The use of

capabilities is regulated through a permission-based access control mechanism. Specifi-

cally, applications define the capabilities they need in their manifest files, and they have

to be granted required permissions before they can access sensitive APIs. They commu-

8

nicate with peer apps through secure, Android-specific IPCs (e.g., Binder, Intents). These

Android IPC mechanisms, as documented by Google, are the preferred IPC mechanisms

as they “allow you to verify the identity of the application connecting to your IPC and set

security policy for each IPC mechanism.” [9]

As the community continues to explore and understand Android and its ecosystem,

new attacks and innovative ways of discovering vulnerabilities are being developed. Many

of the existing works in Android security leverage static analysis and dynamic analysis

techniques to study the framework and applications.

Static analysis tools on Android. There has been significant work in using static analysis

techniques combined with call graphs to map the Android framework, understand the per-

mission specification, understand how data is disseminated within the Android framework,

and enable the functionality of gleaning information from avenues that are unassuming.

PScout [57] uses static analysis tools to enumerate all permission checks within the An-

droid framework. They are able to map all permission usages to their appropriate meth-

ods and understand the utility of permission usage within the framework. While PScout

identifies permissions, they don’t look at paths through the framework which would allow

the invocation of the permissions they discover. Static taint analysis tools such as Flow-

Droid [56], AndroidLeaks [90], DroidSafe [91], and Amandroid [141] work to understand

how, why, where, and what data travels through the Android framework as a user uses an

application in order to perform privacy leakage detection.

Android IPC and framework vulnerabilities. Android-specific IPC mechanisms, such

as Binder, Messenger, and Intents, have been thoroughly studied [76, 110, 83, 56, 90, 138].

These works aim to exploit the IPC channels in order to disclose sensitive information,

i.e., SMS messages, call history, and GPS data. In particular, Chin et al. [76] examined

inter-application interactions and identified security risks in application components. They

presented ComDroid to detect application communication vulnerabilities. There are also

works that focus on detecting implementation flaws of the Android framework. Aafer

9

et al. [54] studied the threat of hanging attribute references. Unfortunately, none of the

aforementioned works have explored traditional Linux IPCs on Android, e.g., Unix domain

sockets, as exploitable interfaces.

Security risks in customizations. Customizations to the Android framework has been

known to introduce new vulnerabilities not present in the AOSP [143]. Wu et al. dis-

covered that over 85% of pre-installed applications in stock images have more privileges

than they need. Among them, the majority are directly from vendor customizations. They

also found that many pre-installed applications and firmware are susceptible to a litany of

vulnerabilities. ADDICTED [148] is a tool for automatically detecting flaws exposed by

customized driver implementations. It performs dynamic analysis to correlate the opera-

tions on a security-sensitive device and its related Linux files.

Background application activities. Chen et al. present a study on low-level background

activities of applications by looking into CPU idle and busy time [75]. They conducted

a large-scale measurement study performing in-depth analysis of background application

activities, quantified the amount of battery drain, and developed a metric called background

to foreground correlation to measure the usefulness of background activities. [74] helps un-

derstand where and how energy drain happens in smartphones. The authors developed a hy-

brid utilization-based and finite state machine based model that accurately estimates energy

breakdown among activities and phone components. Pathak et al. perform a characteriza-

tion study of no-sleep energy bugs in smartphone applications and proposes a compile-time

solution to automatically detect no-sleep bugs [124]. To mitigate no-sleep bugs, [137] im-

plements a tool that verifies the absence of this kind of energy bugs with regard to a set of

WakeLock specific policies using a precise, inter-procedural data flow analysis framework

to enforce them. Tamer [112] is an OS mechanism that interposes on events and signals that

cause task wake-ups, and allows for their detailed monitoring, filtering, and rate-limiting. It

helps reduce battery drain in scenarios involving popular Android applications with back-

ground tasks.

10

2.4 Security of Industrial Control Systems

Industrial Control Systems (ICS) are built to electronically manage tasks efficiently

and reliably. There are several types of ICS, and the most common one is the Super-

visory Control and Data Acquisition (SCADA) system. SCADA systems are composed

of Programmable Logic Controllers (PLCs) and other commercial hardware modules that

are distributed in various locations. SCADA systems can acquire and transmit data, and

are integrated with a Human-Machine Interface (HMI) that provides centralized moni-

toring and control for numerous process inputs and outputs. State-of-the-art ICS have

adopted Ethernet-based industrial protocols, such as EtherNet/IP, to support real-time con-

trol and communications between hardware components. Moreover, industrial Internet-of-

Things (IIoT) devices have become a key enabler for emerging technologies such as cloud

manufacturing, industrial 4.0, and so on.

Safety analysis and verification of PLC code. Many prior efforts [93, 98, 121, 123,

67, 55, 62, 117, 119, 127] have been made to statically verify controller logic code us-

ing model checkers such as as UPPAAL [44] and NuSMV [26]. Further research efforts

have also been made to conduct runtime verification in an online [89, 100] or offline man-

ner [81, 122]. More recently, research [114, 95] has been done to enable symbolic execution

on PLC code.While TSV [114] conducted static symbolic execution on its temporal execu-

tion graphs, SymPLC [95] leveraged OpenPLC [27] framework and Cloud9 engine [16] to

enable dynamic analysis on PLC code.

11

CHAPTER III

Discovering Inconsistent Security Policy Enforcement in

the Android Framework

In this chapter, we investigate Android system services APIs that expose capabilities to

applications and detect inconsistent security policy enforcement, an implementation flaw

that can be exploited to launch privilege escalation attacks. Using the automated detection

tool we develop, system developers are able to identify vulnerabilities at an early stage,

proactively preventing capability abuse.

3.1 Introduction

Access control is a well-known approach to prevent activities that could lead to a secu-

rity breach. It is widely used in all modern operating systems. Linux inherits the core UNIX

security model — a form of Discretionary Access Control (DAC). To provide stronger se-

curity assurance, researchers developed Security-Enhanced Linux (SELinux) [132], which

incorporates Mandatory Access Control (MAC) into the Linux kernel. The fundamental

question that access control seeks to answer is philosophical in nature: “who” has “what

kind of access” to “what resources.” It is from this single question that access control

policies or security policies are derived.

Android OS employs a permission-based security model, which is a derivative of the

12

Access Control List (ACL) based access control mechanism [60]. In this model, an ap-

plication or a user may request access to a set of resources that are governed by a set of

permissions, exposed by the system or other applications.

Access control systems are known to be vulnerable to anomalies in security policies,

such as inconsistency [131]. However, security policies can be inconsistent not only in

their definitions but also in the ways they are enforced [133]. A significant challenge of

supporting permission-based security models, as well as other access control systems, is to

ensure that all sensitive operations on all objects are correctly protected by proper security

checks in a consistent manner. If the proper security check is missing before a sensitive

operation, an attacker with insufficient privilege may then perform the security-sensitive

operation, violating user privacy or causing damages to the system. On Linux, multiple

such examples have been discovered, which lead to unauthorized user account access [46],

permanent data loss [133], etc. More recently, on the Android platform, attacks caused

by inconsistent policy enforcement have also been found, e.g., stealthily taking pictures

in the background [73] and stealing user passwords by recording keystrokes without the

necessary permissions [148]. Therefore, to ensure a safe and secure platform for users

and developers, it is critical to develop a systematic approach to identify inconsistencies in

security policy enforcement.

To address this problem on MAC-based operating systems, Tan et al. [133] present a

tool, AutoISES, that can automatically infer security policies by statically analyzing source

code and then using those policies to detect security violations. Its effectiveness has been

demonstrated by experiments with the Linux kernel and the Xen hypervisor; however, Au-

toISES has several limitations that prevent it from being applied to the Android framework.

First, it does not take into account inter-process communication (IPC) between different

processes or threads. In Android, remote method calls across process or thread boundaries

are very common. Any static analysis that fails to consider this special feature would be

hugely incomplete. Second, the Android framework consists of conflated layers: Java and

13

C/C++, which is not currently supported by AutoISES. A fundamental limitation is that

AutoISES assumes that a complete list of security check functions are given. While in

Android, different types of security checks exist, making it extremely difficult to obtain a

comprehensive list of them.

In view of these challenges, we propose Kratos, a static analysis tool for systematically

detecting inconsistent security enforcement in the Android framework. Kratos accepts Java

class files and security enforcement checks as input, and outputs a ranked list of inconsis-

tencies. It first builds a precise call graph for the codebase analyzed. This call graph

comprises of all the execution paths available to access sensitive resources. Each node of

the call graph is then annotated with security enforcement methods that are applied to that

node. For a set of entry points, Kratos compares their sub-call graphs pairwise to identify

possible paths which can reach the same sensitive methods but enforce different security

checks (e.g., one with checks and the other without). Kratos can be applied to both the

AOSP framework and vendor-specific frameworks.

Another thread of related work focuses on automated authorization hook placement to

mediate all security-sensitive operations on shared resources. In work by Muthukumaran et

al. [116], there is an implicit assumption made by the authors: they have perfect knowledge

of which functions or pieces of code needs protection. They are able to automatically

place the policy enforcement based on metrics such as the minimum number of checks

needed. Not only do we lack this understanding, but also any understanding that might

be inferred from the Android source code is further obfuscated by uncertainties introduced

by developers. As illustrated in Figure 3.1, developers sometimes forget to apply security

enforcement and they do not necessarily know what policies should be applied.

Kratos makes no assumptions about or attempts to infer what resources or operations in

the Android framework are security-sensitive and should be protected. Instead, Kratos only

identifies where existing security policy enforcement occurs based on observed security

checks, and accurately infers security-sensitive operations by identifying inconsistency in

14

/**

 * Used by device administration to set the maximum screen off timeout.

 *

 * This method must only be called by the device administration policy manager.

 */

@Override // Binder call

public void setMaximumScreenOffTimeoutFromDeviceAdmin(int timeMs) {

 final long ident = Binder.clearCallingIdentity();

 try {

 setMaximumScreenOffTimeoutFromDeviceAdminInternal(timeMs);

 } finally {

 Binder.restoreCallingIdentity(ident);

 }

}

@Override

public boolean havePassword(int userId) throws RemoteException {

 // Do we need a permissions check here?

 return new File(getLockPasswordFilename(userId)).length() > 0;

}

@Override

public boolean havePattern(int userId) throws RemoteException {

 // Do we need a permissions check here?

 return new File(getLockPatternFilename(userId)).length() > 0;

}

They know the use of this method

should be restricted but did not

apply any security checks

Android framework developers lack knowledge of

security policies that should be enforced

Figure 3.1: Code snippets from PowerManagerService.java.

the policy enforcement across different execution paths.

To implement Kratos, we overcome several engineering challenges. First, to maximize

the completeness of our analysis, we need to cover as many system services as possible.

However, system services are scattered throughout the Android framework with some im-

plemented as private classes nested inside outer classes, making it difficult to include all

service interfaces as analysis entry points. We address this by generating code that calls ser-

vice interfaces and handles nested private services. Second, our analysis relies on a precise

Android framework call graph, which is non-trivial to build. We tackle this challenge by

resolving virtual method calls using Spark [97], a tool for performing Java points-to anal-

ysis, and applying IPC shortcuts. Third, due to the large size of the code in the Android

framework, it is non-trivial to make the analysis efficient and scalable. We achieve high ef-

ficiency and scalability by optimizing the implementation and adopting a set of heuristics.

We run Kratos on six different Android codebases, including 4 versions of Android

15

frameworks, 4.4, 5.0, 5.1, and M preview, and two customized Android versions on AT&T

HTC One and T-Mobile Samsung Galaxy Note 3 devices. After verifying the tool output

manually, we find that all six codebases fail to ensure consistent policy enforcement with

at least 16 to 50 inconsistencies discovered. For one, the number of inconsistencies are

as high as 102. From these inconsistencies, we are able to uncover 14 highly-exploitable

vulnerabilities spanning a wide range of distinct Android services on the 6 codebases; 12 of

them are found to affect at least 3 codebases at the same time; 6 vulnerabilities have been

patched in the latest or earlier releases but never been revealed to the public previously. All

these exploits can be carried out with no permission or only low-privileged permissions

(e.g., the INTERNET permission), and lead to serious security and privacy breaches such

as crashing the entire Android runtime, terminating mDNS daemon to make file sharing

and multi-player gaming unusable, and setting up a HTTP proxy to intercept all web traffic

on the device.

We have reported all of these vulnerabilities to the Android Security team. Among the

11 that we have received feedback, all were confirmed as low severity vulnerabilities. This

indicates the challenging nature of enforcing consistent policies in a complex system like

Android, and the necessity of a systematic detection tool like Kratos. Due to the lack of

an up-to-date Android malware dataset, we do not have statistics on how many of these

vulnerabilities have already been exploited by malicious applications in the wild.

The key contributions of this work are summarized as follows.

• Our work is the first to systematically uncover security enforcement inconsistencies

in the Android framework itself, compared to previous work focusing on permission

use in Android applications. We design and implement Kratos, a static analysis tool

that can effectively identify inconsistent security enforcement in both the AOSP and

customized Android. We tackle several engineering challenges, including automated

entry point generation, IPC edges connection, and parallelization to ensure accuracy

and efficiency.

16

• We evaluate our tool on four versions of the Android framework: 4.4, 5.0, 5.1, and

M preview, as well as two customized: AT&T HTC One and T-Mobile Samsung

Galaxy Note 3, and find that all codebases fail to ensure consistent policy enforce-

ment with up to 102 inconsistencies in a single codebase. Among the discovered

inconsistencies, we are able to uncover 14 highly-exploitable vulnerabilities, which

can lead to serious security and privacy breaches such as crashing the entire Android

runtime, ending phone calls, and setting up an HTTP proxy with no permissions or

only low-privileged permissions.

• Our analysis covers all application-accessible interfaces exposed by system services

implemented in Java code. Many system service interfaces are by default invisible

and undocumented for applications. Among the 14 vulnerabilities we identified, 11

of them are hidden interfaces that are rather difficult to detect. These findings suggest

useful ways to proactively prevent such security enforcement inconsistency include

reducing service interfaces and restricting the use of Java reflection (for accessing

hidden interfaces).

3.2 Motivation

In this section, we present a motivating case that demonstrates inconsistent security en-

forcement in Android’s Wi-Fi service. We also cover various types of security enforcement

adopted by the Android framework.

3.2.1 Inconsistent Security Enforcement

For convenience, we use the terms security policy enforcement and security enforcement

interchangeably in this paper. Security enforcement consists of a set of security checks.

Security check refers to a specific action which verifies whether the caller satisfies partic-

ular security requirements, e.g., holds a permission or has a specific UID. The Android

17

framework employs several types of security enforcement: permission check, UID check,

package name check, and thread status check, all explained below.

Permission checking is the most fundamental and widely used security enforcement

in Android. Each app requests a set of permissions during installation. The user must

allow all permissions requested or choose not to install the app. When an app calls

a method exposed by a system service, the service verifies that the app holds the re-

quired permission(s). If so, the app passes the permission check and continues execut-

ing. Otherwise, the service immediately throws a security exception; as a result, the

app cannot access resources guarded by the service. As shown in Figure 2.2 lines 31–

34, removeNetwork(int) invokes enforceChangePermission() to check that

the calling app has the CHANGE WIFI STATE permission. Permission checks are per-

formed immediately after the code enters the service side. This is different from other

systems such as SELinux, which places security checks right before accessing sensitive

objects [109]. We believe these different approaches present tradeoffs in balancing the

performance overhead and access control granularity.

addOrUpdateNetwork()
CHANGE_WIFI_STATE

CONNECTIVITY_INTERNAL

addOrUpdateNetwork()

processMessage()

saveNetwork()

sendMessageSynchronously()
CMD_ADD_OR_UPDATE_NETWORK

addOrUpdateNetworkNative()

WifiService

WifiStateMachine

WifiConfigStore

Application

Client

Service

getWifiStateMachineMessenger()
CHANGE_WIFI_STATE
ACCESS_WIFI_STATE

Messenger

sendMessage()
SAVE_NETWORK� �

Figure 3.2: A motivating example of inconsistent security enforcement.

18

Despite the permission check placement, we have observed inconsistent enforcement

of permissions within the same service and between services with similar functional-

ity. For example, in Figure 3.2 we detail inconsistencies within a single service, i.e.,

the Wi-Fi Service. It exposes two interfaces to clients: addOrUpdateNetwork()

and getWifiStateMachineMessenger(). Both of them can be leveraged

by apps to update Wi-Fi configurations. Though they ultimately invoke the same

underlying method WifiConfigStore.addOrUpdateNetworkNative(),

the two paths they traverse are different. The method addOrUpdateNetwork()

first calls sendMessageSynchronously(), through which it sends a

CMD ADD OR UPDATE NETWORK message to the internal Wi-Fi state machine which

is able to update Wi-Fi configurations according to current status. Meanwhile, apps can

call getWifiStateMachineMessenger() to obtain the Wi-Fi state machine’s

Messenger object, with which they are able to directly send a SAVE NETWORK

message to the Wi-Fi state machine to update configurations. Surprisingly, permission

checks differ along these two paths. addOrUpdateNetwork() checks two different

permissions, i.e., ACCESS WIFI STATE and CONNECTIVITY INTERNAL. How-

ever, only two of them are enforced in getWifiStateMachineMessenger(),

i.e., ACCESS WIFI STATE and CHANGE WIFI STATE. Considering that

CONNECTIVITY INTERNAL is a system-level permission, it is impossible for third-party

apps to acquire it. Thus, addOrUpdateNetwork() is protected from third-party

app usage. Nevertheless, this enforcement can be completely bypassed if an app devel-

oper, or malware author, uses getWifiStateMachineMessenger() instead of

addOrUpdateNetwork(). Similarly, Telephony Service and Telecom Service both

provide methods to access telephony-related functionality. While these two services are

different, they do have some overlapping functionality — they expose different methods

which provide similar underlying functionality, see §3.5 for further discussion.

In our analysis, we focus solely on system services. More specifically, we consider

19

all remote interfaces exposed by system services as application-accessible interfaces. Note

that some proxy interfaces are invisible to apps, either because the classes are excluded from

the Android SDK or because the methods are labeled with the @hide or @SystemApi

javadoc directive in the source code. However, they still exist in the runtime and apps can

access them using Java reflection techniques.

3.2.2 UID Check

Interfaces provided by a system service can be called by apps, as well as other system

services. For some sensitive operations, the system service only allows internal uses by

checking the caller’s UID. As aforementioned, service interfaces are invoked through the

Binder IPC mechanism. For each AIDL method call, the system keeps track of the original

caller’s identity in order to check it within the service side. Figure 3.3 shows a code snip-

pet extracted from the Keyguard Service. Its checkPermission() method has two

steps: First, it gets UID of the caller using Binder.getCallingUid() and verifies

that the UID is equal to SYSTEM UID. If so, the caller is the system and no further check

is required. Otherwise, the permission check is performed.

1 void checkPermission() {
2 if (Binder.getCallingUid() == Process.SYSTEM_UID)
3 return;
4 // Otherwise, explicitly check for caller permission
5 if (checkCallingOrSelfPermission(PERMISSION)
6 != PERMISSION_GRANTED) {
7 ...
8 }
9 }

Figure 3.3: Permission check is performed if the UID check fails.

3.2.3 Package Name Check

The package name check is another means to restrict the capability of apps. For in-

stance, in order to ensure that the client can only delete widgets that belong to itself, the

20

App Widget Service checks whether the caller owns the given package, by using package

name check shown in Figure 3.4.

1 public void enforceCallFromPackage(String packageName) {
2 mAppOpsManager.checkPackage(
3 Binder.getCallingUid(), packageName);
4 }

Figure 3.4: Check to verify the caller owns a given package.

3.2.4 Thread Status Check

Many malicious apps are reported to run in the background and stealthily jeopardize

the security and privacy of end users. This is seen through the myriad of research: stealing

sensitive photos [73], inferring keystrokes [144], discovering web browsing habits [99],

understanding speech through the phones gyroscope [115], etc. To mitigate this, Android

employs thread status checks, which are designed to ensure that certain sensitive operations

cannot be performed by callers running in the background. In this check, the system verifies

that the caller is running in the foreground and visible to users, and considers only the op-

erations from the foreground as performed by the user. One example of such checks in An-

droid is implemented in the Bluetooth Manager Service. It ensures that only clients running

in the foreground are able to manipulate the Bluetooth device, by checking their running

status using a dedicated method named checkIfCallerIsForegroundUser().

3.3 Methodology

In this section, we present our design of Kratos. We first give an overview of the design,

followed by the key components that achieve the design goals.

21

3.3.1 Overview

Kratos’ analysis flow consists of four phases, as shown in Figure 3.5. In the first phase,

we retrieve Java class files of the given Android framework, and process them to generate

entry points of services for further analysis. Kratos is able to analyze both AOSP and

customized Android versions. Therefore, Kratos takes Java classes as input as opposed to

Java source code, since customized Android frameworks are usually closed source. In the

next phase, Kratos constructs a precise call graph from the entry points generated from the

previous phase. Third, we annotate the framework call graph by considering different types

of security checks of interest, e.g., permission check, UID check, package name check,

and thread status check. Each node of the call graph is examined to determine which, if

any, security checks exist within it. Finally, Kratos detects inconsistencies and outputs a

prioritized list of security enforcement inconsistencies.

Preprocessing

Call Graph Annotation

Inconsistency Detection

Inconsistent
Security

Enforcement

Java
Class
Files

Call Graph Construction

Relevant
Security

Check Types

Figure 3.5: Kratos workflow.

As we have illustrated in Figure 3.2, system service interfaces with overlap

in functionality may eventually invoke the same lower-level, privileged method(s)

to complete their work. For instance, both of addOrUpdateNetwork() and

getWifiStateMachineMessenger() exposed by the Wi-Fi Service can be used to

update the configuration of the currently connected Wi-Fi network. Both methods call the

addOrUpdateNetworkNative() method from WifiConfigStore. Such behav-

22

iors are expected — while it is common that similar high-level functionality are provided

for convenience, it is not necessary for the Android framework to implement their underly-

ing functionality multiple times, hence the convergence at the lower-level method. Based

on this observation, using a call graph to represent the execution path of a service interface,

we can identify where those sensitive, or lower-level, methods are invoked by any two ser-

vices. This is what we refer to as an “overlap.” As a result, Kratos reduces the problem

of detecting security enforcement inconsistency among system service interfaces into call

graph comparisons.

3.3.2 Preprocessing

The Preprocessing step collects important information for further phases. Our analysis

emphasizes system services whose implementations are scattered throughout the Android

framework codebase. We must first obtain a comprehensive list of app-accessible system

services and their corresponding Java classes, from which we can retrieve all interfaces

they expose that could be invoked by apps.

As we mentioned in §3.2, Service Manager manages all system services. Clients are re-

quired to obtain a proxy of the system service from Service Manager in order to invoke that

service’s interfaces remotely. System services that are visible for apps should be registered

to Service Manager. In practice, besides a global service manager running in a dedicated

process (/system/bin/servicemanager), there exist a few local service managers.

System services registered to local service managers are only accessible for other services

running within the same process. Therefore, we only care about system services registered

to the global Service Manager since only these are accessible by apps. By looking into

a service’s implementation and its corresponding AIDL definition, we easily distinguish

which public methods of the service are publicly accessible AIDL methods. Although apps

can invoke system services directly via low-level Binder IPC mechanism without passing

through the AIDL interfaces, those Binder IPC endpoints that can be reached directly are

23

exactly the same as those exported via the AIDL methods.

In addition to AIDL methods, we observe another type of interface exposed by system

services that could be called by apps, i.e., unprotected broadcast receivers that are dy-

namically registered. Typically, system services dynamically register broadcast receivers

to receive asynchronous messages from within the system. To defend against broadcast

spoofing [76], either receivers should be protected by proper permissions or broadcast ac-

tions need to be protected. However, some broadcast receivers of system services are not

protected at all. That means apps can also send crafted broadcasts to trigger certain method

calls. Therefore, we also consider unprotected broadcast receivers in system services as

app-accessible service interfaces.

Currently, we do not cover those system services whose main logic and security checks

are all performed in native code, for example, the Camera Service. These native services

are small in number: only Camera Service, Media Player Service, Audio Policy Service,

Audio Flinger and Sound Trigger Hardware Service were found in the Android 5.1 source

code. While this may introduce false negatives, we believe the impact is minimal because

most system services are implemented in the Java code.

3.3.3 Call Graph Construction

A precise call graph is the foundation of discovering inconsistent security policy en-

forcements in our approach. This phase computes the call graph for the entire Android

framework. We rely on a context-insensitive call graph [94] which is light-weight and eas-

ier to build compared to a context-sensitive call graph, further discussion on the context-

sensitivity may be found in S 3.6.

To construct the call graph, we need to know, for each call-site, all of its possible tar-

gets. As is common for object-oriented languages, the target of a method call depends on

the dynamic type of the receiving object. A polymorphic method, i.e., virtual method may

have multiple implementations in descendant classes. The runtime has a dynamic dispatch

24

mechanism for identifying and invoking the correct implementation. Unfortunately, it is

impossible for static analysis to collect runtime information and identify with 100% accu-

racy the callees of a virtual method. To address this problem, we use a conservative way to

compute possible methods that might be called at a call-site. In other words, it computes

an over-estimation of the set of calls that may occur at runtime using context information.

Additionally, we connect IPC callers and callees directly to improve the precision and con-

ciseness of the call graph. This is necessary because IPCs would introduce imprecision into

our call graph. They use abstract methods to send data across process boundaries and thus

in that procedure, many levels of virtual method calls are involved.

We take advantage of the solution proposed by PScout [57] to resolve Binder IPC calls

and Message Handler IPCs. However, PScout fails to take a few special cases into account.

For example, not all system services have an AIDL file that defines their remote interfaces.

For instance, instead of using a stub class auto-generated from AIDL file, Activity Manager

Service relies on a manually implemented class, ActivityManagerNative, to define

its remote interfaces. Activity Manager Service extends ActivityManagerNative

and implements these remote interfaces. Therefore, system services like Activity Manager

Service should be handled carefully with additional logic.

Moreover, PScout does not consider another important IPC that is widely used by sys-

tem services — Messengers and State Machines. System services expose AIDL methods

that allow callers to obtain Messenger objects of their internal state machines. With a Mes-

senger, an app or a system service can send messages to the corresponding state machine.

Although in essence the communication between Messengers and State Machines is built

on top of Message Handler IPCs, we find that PScout is unable to deal with this. We

identify and connect all such senders and receivers for messages sent through Messenger

objects.

Entry points. Similar to Java programs, the Android framework has a main method

SystemServer.main(), from which system services are initialized and started. How-

25

ever, we cannot use it as the entry point. All service interfaces are likely to be called by a

client app, but the construction and initialization procedure of system services cannot cover

all remote interfaces. As a result, the framework call graph would be incomplete if we use

SystemServer.main() as our analysis entry point.

Preprocessing produces a list of app-accessible service interfaces. Since we would like

to include all of them in the call graph, one possible approach is to build call graphs from

each of the interfaces, then combine these call graphs together to form the framework’s

call graph. This is not efficient because many call-sites would be included and computed

multiple times. To cope with this problem, for each system service we construct a dummy

main method, in which we construct the service object and enumerate all its app-accessible

interfaces. The implementation details are described in §3.4.1.

3.3.4 Call Graph Annotation

This phase annotates the framework call graph with security check information. More

specifically, given the types of security checks that are of interest to Kratos, Kratos auto-

matically determines which security checks are performed by which call graph nodes, or

methods, and annotates the nodes with security enforcement information, e.g., permissions

it enforces, UIDs it checks.

Identifying permission check methods. Android permissions are represented as string

constants in the framework source code. When performing permission checks, a per-

mission string is passed as an argument to a check method. According to developer

comments in the Android source code, checkPermission in Activity Manager Ser-

vice is the only public entry point for permission checking. Therefore, methods that

eventually call checkPermission are considered as performing permission checks.

We also want to know which particular permission is checked. To achieve this, we

keep track of permission string constants passed to permission check methods. We ob-

serve that a few naming patterns can indicate whether a method is a permission check

26

method, such as checkCallingPermission, enforceAccessPermission, and

validatePermission. Their names start with “enforce”, “check” or ”validate”, and

end with “Permission.” Essentially, they are just wrappers of checkPermission, but

we can leverage such patterns to make permission check method identification faster.

Identifying other security enforcements. Apart from permission checks, Kratos can also

identify three other types of security checks automatically. For UID checks, they always

get caller’s UID using Binder.getCallingUid() and compare it with a constant

integer. We use def-use analysis [135] to track which constant value the caller’s UID is

compared with. The Android framework reserves a list of UIDs and their values are defined

in android filesystem config.h, from which we can identify the user that a given

UID represents. Package name checks are more complicated. Besides the method shown in

Figure 3.4 that uses a similar approach to permission checks, there also exist package name

checks that are conducted like UID checks. Similarly, we employ def-use analysis and

examine if the package name returned from Package Manager Service is compared with a

string. In summary, to detect package name checks, we use both approaches for identifying

permission checks and UID checks. Currently, there are no explicit hints that can instruct

us to find a good way to identify thread status checks. Fortunately, their number is small,

which allows us to identify them manually.

Annotating call graph nodes. After all security enforcement methods are identified,

Kratos iterates call graph nodes and annotates them with security checks (labels) that are

performed within. Labels are propagated toward the root of each sub-call graph with the

union operator used to merge multiple labels at a node. This annotated call graph is then

used in the next phase for detecting inconsistent security policy enforcement.

3.3.5 Inconsistency Detection

Inconsistency Detection consists of three phases. First, for every service interface

Kratos obtains its sub-call graph from the framework-wide call graph and does forward

27

WindowManagerService mService;
...
// AIDL method
public void closeSystemDialogs() {
 checkPermission();

 clearCallingIdentity();

 mService.closeSystemDialogs();

 restoreCallingIdentity();
}

...
// AIDL method
public void closeSystemDialogs() {
 doRealWork();
}

Clear original
caller's identity
and set it to system

Restore original
caller's identity

ActivityManagerService.java

WindowManagerService.java

Figure 3.6: Activity Manager Service calls Window Manager Service to do the real work.

analysis on it to determine which security checks must be passed to reach each node. Next,

Kratos compares service interfaces’ call graphs in a pairwise fashion. Those pairs invoking

the same method but with different security enforcements are considered as inconsistency

candidates. Finally, Kratos applies three heuristics to rule out false positives.

With the annotated framework call graph, it is easy to obtain the sub-call graph of

a service interface. For a sub-call graph, Kratos traverses all its nodes and summa-

rizes the set of security enforcements required to reach each node from the root, by

accumulating security enforcements along the path from the root to that node. Note

that in system services clearCallingIdentity() is frequently used to clear the

original caller’s identity, or UID, and set caller identity to the system service tem-

porarily. As Figure 3.6 depicts, after certain operations, the caller’s identity is re-

stored by calling restoreCallingIdentity(). If a method is called between

clearCallingIdentity() and restoreCallingIdentity, all security checks

are successfully passed because it appears as being called by the system service, which has

elevated privileges. Thus, it is unnecessary for Kratos to perform any analysis between the

two function calls.

After annotating sub-call graphs for service interfaces, we perform pairwise compar-

isons starting from their entry points to check if they ever invoke the same method, or

converge on the same node. If such a convergence point exists for any two service in-

terfaces, we believe they overlap in functionality and examine their paths that lead to the

28

convergence point. Specifically, we compare security enforcements along the two paths to

see if they are consistent, i.e., one path has a security check while the other does not.

3.3.5.1 Reducing False Positives

Not all methods are used to access system resources or perform sensitive operations.

If we use arbitrary convergence between call graphs to indicate they have similar func-

tionality, there would be a large number of false positives. For example, many methods

are frequently called, such as equal(), toString(), <init>(), <clinit>(), but

they are not sensitive and do not reflect the caller’s functionality. To reduce the number of

false positives, we investigate service interface call graphs, as well as the Android source,

and design three heuristic rules. FigureWe observed that sensitive, low-level methods re-

side within the service side and are not accessible to apps. The runtime does not load them

into an app’s execution environment. Therefore, we can filter out methods that appear in an

app’s runtime. To achieve this, we classify classes imported by system services into three

categories: (1) classes only used by system services, (2) classes used by both services and

apps, and (3) classes only used by apps. Methods from the last two categories are believed

to be insensitive and we discard them.

Second, we observe that many services have paired “accessor” and “mutator” meth-

ods, whose functionality is obviously different. For example, in Window Manager

Service, getAppOrientation and setAppOrientation are used to get and set

the app’s orientation, respectively. Similarly, there exist other method pairs in

which the two have opposite functionality, such as addGpsStatusListener and

removeGpsStatusListener, startBluetoothSco and stopBluetoothSco.

If such methods are found overlapping, we are confident that it is a false positive.

Third, we prioritize service interface pairs by calculating the sub-call graph similarity

score of each pair. We also group together system services providing similar functionality,

e.g., the Telephony Service and the Telecom Service. Overlapping service interfaces belong

29

to the same group have higher priority to be manually examined. The rationale behind this

is that if two services with no explicit connection (e.g., the Power Manager Service and the

SMS Service) are found overlapping, it is highly likely a false positive.

3.4 Implementation

We implement Kratos with around 15,000 lines of Java, Bash and Python. Based on

the design described in §3.3, in this section we elaborate our implementation choices of

Kratos. To ensure efficiency and scalability, we make an effort to parallelize the imple-

mentation. Our implementation the logic shown in Figure 3.5: (1) Preprocessing, (2) Call

Graph Construction, (3) Call Graph Annotation, and (4)Inconsistency Detection.

ODEX

Smali

DEX

Android
Source
Code

Stock
Android

Translating

Java
Classes

Compiling

Figure 3.7: Getting Java classes from AOSP and customized frameworks.

3.4.1 Preprocessing

In the Preprocessing step, we obtain the necessary class files for the particular Android

framework version. In the case of analyzing AOSP, it is a matter of compiling the Android

operating system from the source code and extracting the class files.

For a vendor-specific version, it takes extra effort to obtain the class files. Because

we do not have access to the source code of the customized framework, we must dump

odex files from the device image, and translate them into corresponding Java class files.

30

Figure 3.7 shows the three steps involved in this process. We use baksmali [37] to con-

vert odex into an intermediate format, smali. Then we employ smali [37] to assemble

smali files into dex, and finally use dex2jar [43] to get JAR files, i.e., Java classes.

We notice that since Android 5.0 the Dalvik runtime has been replaced by the Android

runtime (ART) [13], in which odex files are no longer available. To deal with that, Dex-

tra [17] can be used to dump dexs from ART’s oat files. Figure Once the class files

are obtained, we utilize the Soot framework [136], a Java decompiler and analysis tool,

to parse any given class and its member bodies, in order to identify which classes are

app-accessible system services. More specifically, those services are identified by looking

for invocations of publishBinderService and addService, two methods used for

registering services to the global service manager. We exclude services registered by calling

publishLocalService, as they are only available for system use. That means they are

not accessible for third-party apps. We then distinguish app-accessible interfaces exposed

by these app-accessible system services. For AIDL methods we look for their AIDL defi-

nitions, either in aidl files or in a public Java interface extending IInterface. Unpro-

tected broadcast receivers can be identified by analyzing calls of registerReceiver

and registerReceiverAsUser. If they do not have a broadcastPermission

argument (or the argument is null) and intent actions the broadcast receiver listens to are not

defined as protected-broadcast in the framework’s AndroidManifest.xml,

we consider this receiver as unprotected.

Once the identification of app-accessible system interfaces has finished, we take one

last important step. We build an artificial single entry point for further analysis that uses

Spark [97], a popular Java points-to analysis tool and call graph generator. It was designed

to start at the program’s single entry point, look for method calls there, then take all found

callees, look at what callees call, and so on. This way, it builds a precise graph of what

method is potentially called and identifies the methods which are reachable over all [31].

While the Android framework does have a static main() method in the System Server

31

class, there is no guarantee that all methods will be called from that point of origin, as that

is only responsible for instantiating system services. Thus, we must provide Spark a single

static entry point into the Android framework for each class analyzed.

We use method and class instrumentation data structures provided by Soot to dynam-

ically build “wrapper” classes with a static main method. These wrappers are a necessity

to meet Spark’s requirement of static entry points for invoking method calls of a class.

Kratos automatically builds the wrapper classes by inferring important attributes of service

interfaces. Class access modifiers are one key piece of analysis. Once they are understood

by Kratos, it decides how to build a wrapper. In the best case, the service is a public class;

while in the worst case, the service is a private inner class.

3.4.2 Call Graph Construction

In this phase, we utilize Spark to generate a context-insensitive call graph that encom-

passes all app-accessible service interfaces. We use the dummy main method as the single

entry point. For Spark to generate the call graph, it must operate on one thread; thus we

are unable to parallelize this phase. It is in this phase that Java virtual method resolution

occurs, by leveraging variable-type analysis (VTA). We also enable the on-the-fly option,

because it was reported that the most effective call graph construction method proceeds

on-the-fly and builds the call graph at the same time as it computes points-to set [103].

3.4.3 Inconsistency Detection

In order to discover inconsistencies within security enforcements, we intelligently

match two call graphs of different service interfaces in a pairwise fashion. Because this

phase can run, at worst, in O(n2) time, we use a set of heuristics in order to reduce the total

number of comparisons, which is outlined in S 3.3. Once two call graphs are paired, we

look for a point of convergence — a method whereby both paths will intersect. Once we

find an intersection, we use backward analysis to identify any other services that can reach

32

the method. This allows Kratos to quickly identify additional services which may share

that path in which security circumventions occur.

To prioritize the results for manual validation, we use fast belief propagation to mea-

sure node affinity, and then calculate the sub-call graph similarity score with the Matusita

distance. Denote the final affinity score matrix as S, we have S = [I + ε2D − εA]−1

where I is the identity matrix, D is the degree matrix, A is the adjacency matrix, and

ε is a small number which we take the value of 0.02. Matusita distance d is defined as

d =
√∑n

i=1

∑n
j=1(

√
S1,ij −

√
S2,ij) where S1,ij and S2,ij are entries of S for the sub-

graphs. And the similarity score sim = 1
1+d

is then calculated.

3.5 Results

Table 3.1: Results of the six codebases in our evaluation. We only consider services imple-
mented in Java.

Codebase # Services # Service Interfaces # Class Files# AIDL Methods # Broadcast Receivers
Android 4.4 70 1,010 26 14,901
Android 5.0 89 1,483 28 33,110
Android 5.1 89 1,510 31 33,433

Android M Preview 89 1,490 31 35,431
AT&T HTC One
(Android 4.4.2) 85 1,868 35 17,879

T-Mobile Samsung Galaxy
Note 3 (Android 4.4.2) 159 2,463 64 171,306

In this section, we evaluate Kratos’ effectiveness, accuracy, and efficiency by applying

it to six different Android frameworks. We also present vulnerabilities identified using

Kratos and analyze some of them in detail. All our experiments are conducted on a desktop

machine with a 3.60GHz 8-core Intel Core i7 CPU and 16GB memory, running 64-bit

Ubuntu Linux 14.04.

Codebases. We target both AOSP Android and customized Android. Since the Android

framework is evolving, in addition to inconsistencies within a particular Android frame-

work codebase, we also track inconsistencies across different Android versions. Therefore,

33

we choose four releases, i.e., Android 4.4, 5.0, 5.1, and 6.0. Vendors and carriers often

change existing or add new code to provide a unique and differing experience. Previous

work [143, 92] reported security threats brought by such customizations. We believe that

they may also lead to more inconsistencies as different parties are involved, and their en-

gineers are likely to have a different understanding of the security policy. Specifically, we

analyze two customized Android frameworks, AT&T HTC One and T-Mobile Samsung

Galaxy Note 3, both based on Android 4.4.2.

Table 3.1 summarizes the statistics of the six Android framework codebases in our

evaluation. For the AOSP Android, the number of services increases dramatically from

version 4.4 to 5.0, then remains unchanged in 5.1 and M preview. However, as the second

column shows, the number of AIDL methods exposed by system services drops by 20 in M

preview. It is obvious that Samsung and T-Mobile customize Android much more heavily

than HTC and AT&T (mostly contributed by Samsung). Though both phones are based on

the same version of AOSP codebase, Galaxy Note 3 has 89 more system services while

HTC One only has 9 more. Moreover, customization also increases the number of service

interfaces, as well as class files.

Tool Efficiency. We measure Kratos’s efficiency and summarize the results in Table 3.2.

The Preprocessing phase only takes a few minutes. Call Graph Construction and Call Graph

Annotation are very fast, each finishing within one minute. Even though Inconsistency

Detection consumes the majority of processing time, we can analyze a framework codebase

in less than 20 minutes.

3.5.1 Tool Effectiveness

Table 3.3 summarizes our overall analysis and detection results on all six Android

framework codebases. The first column is the number of inconsistent security policy en-

forcement Kratos discovered. To evaluate true positive (TP) and false positive (FP), we

manually examine all cases of enforcement inconsistency. The numbers of true positives

34

Table 3.2: Time consumed in each analysis step of Kratos (in seconds)

Codebase Preprocessing CG Construction CG Annotation Detection
Android 4.4 95.4 23.4 8.6 470.3
Android 5.0 137.1 25.0 10.53 496.4
Android 5.1 209.0 22.2 14.6 445.9

Android M Preview 141.6 21.6 9.7 482.3
AT&T HTC One
(Android 4.4.2) 110.8 29.1 16.0 655.8

T-Mobile Samsung Galaxy
Note 3 (Android 4.4.2) 306.9 57.5 50.7 1273.7

Table 3.3: Overall results of Kratos. The numbers of exploitable inconsistencies, true
positives and false positives are concluded by manual analysis.

Codebase # Inconsistencies # TP # FP Precision # Exploitable
Android 4.4 21 16 5 76.2% 8
Android 5.0 61 50 11 82.0% 11
Android 5.1 63 49 14 77.8% 10
Android M 73 58 15 79.5% 8

AT&T HTC One
(Android 4.4.2) 29 20 9 69.0% 8

T-Mobile Samsung Galaxy
Note 3 (Android 4.4.2) 128 102 26 79.7% 10

and false positives are listed in column 2 and column 3, respectively. We also manually

validate exploitable inconsistencies for each codebase, and show the results in the last col-

umn. We consider inconsistent enforcement cases which can be exploited by a third-party

application as exploitable, as they are more likely to result in real-world attacks.

For the four AOSP codebases, Kratos reports more inconsistencies in newer versions.

There are only 21 inconsistencies in Android 4.4 framework. However, this number dras-

tically increases to 61 in the later version, Android 5.0. This is to be expected, as shown

in Table 3.3, Android 5.0 introduces 19 more system services. More interestingly, many of

the new system services seem to have similar functionality to existing ones. For example,

the RTT (round trip time) Service introduced in Android 5.0 can be used to measure the

round trip time of accessible Wi-Fi access points nearby. Incidentally, the Wi-Fi Service

also provides similar functionality. Another example is Telecom Service, whose function-

ality overlaps with Telephony Service. Meanwhile, the large number of system services

35

added by T-Mobile and Samsung undoubtedly introduce more inconsistencies.

True positive and false positive. For all codebases except the one from HTC One, Kratos

can achieve more than 75% precision. We cannot measure the false positive rate because

we do not have other sources of data with ground truth of known inconsistencies. There-

fore, it is not feasible for us to calculate the number of true negatives and false negatives.

We further analyze false positive cases and try to understand why they occur. We find

that most false positives are caused by the three limitations of Kratos. First, two service

interfaces are not equivalent in functionality, yet they invoke the same underlying sensi-

tive method, which is invoked with different arguments. Since Kratos uses path-insensitive

analysis, it cannot discern the impact differing arguments have on the execution path. For

example, Account Manager Service has two public interfaces: getAccounts() and

getAccountsForPackage(). The former can list all accounts of any type registered

on the device, while the latter returns the list of accounts that the calling packages are au-

thorized to use. They eventually call getAccountsAsUser()with different arguments,

and getAccountsForPackage() has one more security check — a UID check which

ensures that the caller is an authorized user.

The second limitation is the inaccuracy of the overlapping service interfaces reported

by Kratos. As we have mentioned in §3.3, the over-estimated call graph could introduce

false positives. Spark utilizes point-to analysis, which makes every effort to resolve virtual

method calls according to context. Nevertheless, it cannot resolve all virtual methods with

100% accuracy.

The third limitation also comes from service interfaces with similar but not equivalent

functionality. One might be more capable than the other one, and the service with more

capability is guarded by stricter security enforcement. For example, deleteHost()

and deleteAllHosts() from App Widget Service are able to delete host records.

They both call deleteHostLocked(). The difference is deleteHost() calls

deleteHostLocked() only once, while deleteAllHosts() calls it multiple times

36

in a loop. The latter appears to be more powerful, as it can delete all host records

while the former can only delete one record per call. Compared to deteleHost(),

deleteAllHosts() checks a caller’s UID. Kratos is not able to recognize method body

semantics in order to evaluate a service interface’s capability.

Not all inconsistencies are exploitable. Note that among all true inconsistency cases,

only a small portion of them (18.3%) are exploitable by a third party. The reason is three-

fold. First, they may both require system-level permissions. Our attack model assumes that

an attacker builds a third-party application and manages to have it installed on a victim’s

Android device. While it is possible for the methods to be invoked, system-level permis-

sions are inaccessible by third-party applications. Two services in the “HTC One” code

base provide telephony functionality, i.e., HtcTelephony Service and HtcTelephonyInter-

nal Service. They both expose an interface setUserDataEnabled() for enabling and

disabling cellular data connection, and both invoke Phone.setUserDataEanbled()

to finish the request. Kratos reports that permissions used in the enforcement are dif-

ferent. HtcTelephony only enforces APP SHARED, but HtcTelephonyInternal enforces

APP SHARED together with CHANGE PHONE STATE. We cannot exploit this inconsis-

tency, because APP SHARED is a system-level permission.

The second reason that an identified inconsistency is not exploitable stems from

the difficulty to construct valid arguments for calling a service interface with-

out a required permission, even though the interface has a weaker security en-

forcement than another service interface providing the same functionality. For

instance, Connectivity Service exposes isActiveNetworkMetered() and Net-

work Policy Management Service defines isNetworkMetered(NetworkState)

to allow callers to query if the active network is metered. Kratos reports that

isActiveNetworkMetered() enforces a permission ACCESS NETWORK STATE,

but isNetworkMetered(NetworkState) does not. This is a true inconsistency.

However, to invoke isNetworkMetered(NetworkState), one must obtain or in-

37

stantiate a NetworkState object, which requires the ACCESS NETWORK STATE per-

mission. In the end, the same permission is required in order to successfully invoke these

two interfaces.

Third, the existence of feature checking logics makes it difficult to reach to particular

methods. Some resources could be accessed only when a certain feature is satisfied. Some-

times, a security checking function is not directly called, and instead, an object (could

either be a flag or instance of another class) is verified where the object itself will only be

valid if a security check is passed.

Characteristics of the vulnerabilities. Interestingly, we find many vulnerabilities are

discovered only when we analyze hidden interfaces. In fact, 11 of them are exploitable

through hidden interfaces that are not directly visible to applications. Theoretically, these

hidden interfaces are not expected to be used by developers, but Android does not restrict

applications to access them through Java reflection. This finding suggests that hidden in-

terfaces are not carefully scrutinized. Perhaps disabling reflection would be one way to

reduce such attack surface. In addition, we find three vulnerabilities are discovered by an-

alyzing two different services which performed the same sensitive operation, which shows

that functionalities are sometimes redundant across services. Besides, we find four vul-

nerabilities where a system permission is bypassed, allowing a third-party application to

perform operations that are absolutely disallowed by Android.

In summary, these results demonstrate that although human efforts are indispensable,

Kratos is effective at automatically detecting a variety of inconsistent security enforcement.

Based on the cases identified, Kratos is able to uncover previously unknown vulnerabilities.

3.5.2 Case Studies

By analyzing security enforcement inconsistencies reported by Kratos, we have discov-

ered 14 vulnerabilities, summarized in Table 3.4. N/A means the vulnerability only exists

in customized Android and does not affect other frameworks.

38

Table 3.4: Summary of inconsistent security enforcement that can lead to security policy
violations.

Service1 Affected Framework Description Attack Bypassed Security
Enforcement2AT&T

HTC
T-Mobile
Samsung 4.4 5.0 5.1

M
Preview

SMS 3 3 3 3 3 7
Clear all SMS notifications
showing in the status bar

Privilege
escalation Package Name (SMS)

Wi-Fi 3 3 3 7 7 7
Set up an HTTP proxy

that works in PAC mode
Privilege
escalation CONNECTIVITY INTERNAL*

NSD 3 3 3 3 3 3
Enable/Disable mDNS
daemon with only
INTERNET permission

DoS CONNECTIVITY INTERNAL*

RTT 7 7 7 3 3 3 Crash the Android runtime Soft reboot ACCESS WIFI STATE
Wi-Fi
Scanning 7 7 7 3 3 3 Crash the Android runtime Soft reboot ACCESS WIFI STATE

GPS 3 3 3 3 3 7
(1) Send raw data to GPS’s
native interface (2) Crash
the Android runtime

Privilege
escalation,
Soft reboot

ACCESS FINE LOCATION

GPS 3 3 3 3 3 3
Get GPS providers that
meet given criteria

Privilege
escalation

ACCESS COARSE LOCATION
ACCESS FINE LOCATION

Input
Method
Management

3 3 3 3 3 3
Dismiss input method
selection dialog DoS UID (SYSTEM)

Telephony/
Telecom† 7 7 7 3 3 3

End phone calls
without any permissions

Privilege
escalation

MODIFY PHONE STATE*
CALL PHONE

Telecom 7 7 7 3 3 3
Get phone state

without any permissions
Privilege
escalation READ PHONE STATE

Activity
Manager/
Window
Manager†

3 3 3 3 3 3 Close system dialogs DoS UID (SYSTEM)

Power
Manager/
Persona
Manager†

3 3 3 3 7 7
Set maximum
screen timeout

Draining
battery UID (ADMIN, SYSTEM)

Device Info N/A 3 N/A N/A N/A N/A
Save MMS to
audit database

Privilege
escalation UID (PHONE)

Phone
Interface
Manager Ext

N/A 3 N/A N/A N/A N/A
Send raw request to radio

interface layer (RIL) Not clear MODIFY PHONE STATE*

1 Items in this column labeled with † indicate that the inconsistency occurs between two services.
2 Permissions labeled with ∗ are system permissions that cannot be used by third-party applications. Specific UIDs that can be bypassed

are parenthesized.

We have filed 8 security reports regarding these vulnerabilities to the Android secu-

rity team. All of the vulnerabilities we reported have been acknowledged and confirmed.

Among them, the mDNS daemon vulnerability was originally classified as a high severity

vulnerability, but then rated as low severity. The ones in Wi-Fi Service and Power Manager

Service had been fixed before we reported it. Note that we are very conservative about

the results, which means those confirmed in the code but have not been validated in real

devices are not counted. In this section we select several vulnerabilities shown in Table 3.4

and explain them in detail.

39

Starting/Terminating mDNS daemon (denial of service). The multicast Domain Name

System (mDNS) provides the ability to perform DNS-like operations on the local area

network in the absence of any conventional Unicast DNS server [25]. Android starts an

mDNS daemon mdnsd when the system boots up. This daemon is used and controlled

by the Network Service Discovery (NSD) service, which allows an application to identify

other devices on the local network that support the services it requests [45]. It is use-

ful for a variety of peer-to-peer applications such as file sharing and multiplayer gaming.

NSD Service exposes an interface that is able to start and terminate mdnsd. Considering

the importance of the mDNS daemon, that interface is protected by a system-level permis-

sion, CONNECTIVITY INTERNAL, which cannot be acquired by third-party applications.

Therefore, by design, all attempts made by third-party applications to start or terminate the

mDNS daemon is thwarted.

However, another interface exposed by the NSD Service, getMessenger(), could

be used to achieve the exact same functionality. By calling getMessenger(), the

caller obtains a reference of the Messenger object from NsdStateMachine that manages

the communication with mdnsd, then can send messages to it. Compared to the interface

protected by the CONNECTIVITY INTERNAL permission, this interface only checks the

INTERNET permission, which is one of the most frequently requested permissions [142].

Considering that the INTERNET permission is so commonly used and low-privilege, ap-

plications that request it do not raise a user’s attention. NsdStateMachine distinguishes

different types of incoming messages by examining their what field. A malicious appli-

cation with only INTERNET permission can easily craft a message, set its what field to

NsdManager.DISABLE, and send it to NsdStateMachine, to terminate the mDNS dae-

mon. As a result, users can no longer use applications that rely on the NSD Service.

Ending phone calls (privilege escalation). Both Telephony Service and Tele-

com Service provide a method endCall() that allows caller applications to re-

ject incoming phone calls and end ongoing phone calls. According to Android’s

40

source code, their corresponding wrappers, TelephonyManager.endCall() and

TelecomManager.endCall(), are annotated with @hide and @SystemApi, re-

spectively. That means both should only be used by the system. In fact, Telecom Ser-

vice’s endCall() indeed enforces a system permission, MODIFY PHONE STATE, en-

suring that only the system is able to use it. However, Telephony Service’s endCall()

only checks the CALL PHONE permission, which can be acquired by third-party applica-

tions. More interestingly, a component of Telephony Service registers a broadcast receiver

in which phone calls are ended when a specific broadcast comes in. Unfortunately, this

broadcast receiver is not protected at all, making it possible for an application without any

permissions to end phone calls. This inconsistent security enforcement allows an attacker

to create denial of service attacks against compromised devices. It could also be exploited

by ransomware to make victims’ phones unusable.

Dismissing SMS notifications (privilege escalation). A MessagingNotification

object instantiated in the SMS Service registers a broadcast receiver to listen to message

deleting broadcast. If such a broadcast is received, it clears all SMS notifications showing

in the status bar. Kratos reports that this receiver is not protected by any permission, and

it has similar functionality to the Notification Service. By design, notifications can only be

dismissed by their owners or the system, enforced by a package name check. However, we

can bypass this enforcement by sending the broadcast to the SMS Service. This bug only

affects Android 5.1 and earlier versions because “the MMS app no longer ships with latest

versions of the OS.”

Crashing the Android runtime (soft reboot). The Wi-Fi Scanning Service provides a

way to scan the Wi-Fi universe around the device. Similar functionality is provided by the

Wi-Fi Service as well. They both leverage the WifiNative class that is responsible for

communicating with the native binary wpa supplicant, from which Wi-Fi scanning

results can be obtained. Kratos reports that Wi-Fi Service checks ACCESS WIFI STATE

permission, while Wi-Fi Scanning Service has no permission enforcement. We attempt to

41

exploit this inconsistency to query Wi-Fi scanning reports without declaring any permis-

sions. It turns out due to implementation issues of the Wi-Fi Scanning Service, it causes a

crash of the entire Android runtime.

We further analyze the source code and crash log. In fact, we could successfully trigger

the invocation of WifiNative.startScanNative. Since we have to stop the scan-

ning before reading the results, we attempt to call WifiNative.stopScanNative, in

which a runtime exception is thrown out at line 65 of art/runtime/check jni.cc.

The exception is not handled, therefore the runtime crashes, causing a soft reboot.

Setting maximum screen timeout (draining battery). In T-Mobile Samsung Galaxy Note

3, Kratos finds two service interfaces with exactly the same name but different security

enforcement for calling setMaximumScreenOffTimeoutFromDeviceAdmin().

One is exposed by the Power Manager Service from the AOSP codebase based on which

customization was made; another is exposed by the Persona Manager Service from the

customized portion. These two methods implement the same functionality but their secu-

rity enforcement is inconsistent. The Power Manager Service does not apply any secu-

rity checks on its setMaximumScreenOffTimeoutFromDeviceAdmin(), how-

ever, Persona Manager Service checks the caller’s UID.

The name of the method implies that it should only be used by the device ad-

ministrator, but Kratos did not find any checks. We further analyze the AOSP source

code and confirm that it is a real inconsistency in security enforcement. In the com-

ments, the developer made it very clear that this method should only be called by a

device administrator (as shown in left side of Figure 3.1). But surprisingly, they did

not apply any security checks to secure it. By invoking Power Manager Service’s

setMaximumScreenOffTimeoutFromDeviceAdmin(), an application without

the proper permissions can set the screen timeout to a very large value in order to drain

the battery. Past studies [146, 69, 130] have shown that display is a major contributor to

the battery consumption of smartphone users.

42

In this case, the inconsistency occurs between two codebases — the original AOSP

code and customization code. This case also demonstrates that though customization is

often blamed for introducing more security threats, it is also possible that customizations

are more secure than AOSP.

Sending raw requests to RIL. We found two system services in the Samsung

Galaxy Note 3 that provide very similar telephony-related functionality. These

two services are implemented in two classes, PhoneInterfaceManager and

PhoneInterfaceManagerExt. Kratos reports that the application-accessible inter-

face invokeOemRilRequestRaw() exposed by PhoneInterfaceManager and another

interface sendRequestRawToRIL() exposed by PhoneInterfaceManagerExt mirror in

functionality. Specifically, they both invoke Phone.invokeOemRilRequestRaw()

to send raw requests to radio link layer (RIL). Nevertheless, their security enforce-

ment is different. invokeOemRilRequestRaw() checks the CALL PHONE permis-

sion, while sendRequestRawToRIL() has no security checks. As a result, us-

ing sendRequestRawToRIL(), an attacker can send arbitrary data to RIL with-

out requesting any permissions. Note that attackers can only control data, but can-

not alter the request type. sendRequestRawToRIL() restricts request types to

RIL REQUEST OEM HOOK RAW. We monitor all RIL requests sent by a test-phone and

confirm that this request type is used. We have not managed to craft malicious data to take

control of RIL or attack base stations, because of the difficulty involved in reverse engineer-

ing the protocol. However, we believe this unprotected service interface can be exploited

by sophisticated attackers who have more knowledge of cellular networks, especially the

use of RIL REQUEST OEM HOOK RAW request.

Our further investigation of AOSP Android 5.0 source code reveals that the

method invokeOemRilRequestRaw() is actually protected by a system permis-

sion MODIFY PHONE STATE, which is higher-privileged than CALL PHONE that this T-

Mobile Samsung phone’s invokeOemRilRequestRaw() enforces. This implies that

43

vendors/carries and Google engineers do have a different understanding of how to protect

certain sensitive operations.

3.6 Discussion and Limitations

False negatives. Similar to previous static analysis work, our approach can miss security

enforcement inconsistencies. First, Kratos is not able to deal with implicit control flow

transitions, e.g., callbacks. To address this problem, we could implement some principles

found in EdgeMiner [68] and FlowDroid [56]. Namely, their implicit control flow and con-

text/flow/lifecycle analysis principles, respectively. While this would help identify another

security check present within the Android framework, it doesn’t completely solve our false

negative problem.

Because we use heuristics to reduce computation time for identifying security enforce-

ment circumventions, there is the potential that a heuristic may rule out a true positive. As

with all heuristics, they come at the cost of introducing false negatives or false positives.

This very tradeoff is one we work hard to balance; keep the runtime fast and minimize the

false positive and false negatives. Moreover, vendors/carriers may introduce new means

for enforcing their security policies besides the four we have considered.

Kratos currently does not handle the native code (i.e., binaries compiled from C/C++

code) that comprises the lower levels of Android and some small portion of the service

codebase, leading to false negatives. To address this, additional work is needed to build

and analyze a control flow graph at the native layer, which is part of our future work.

Difficulty in verifying violations. Currently, Kratos is unable to automatically verify the

presence of a circumvention. To decide if a violation is exploitable, one needs to understand

the semantics of the code. In most cases, a review of the actual source code is the only

way to ascertain the semantics. One must know what operations are able to interact with

untrusted space and also design a feasible way to mount the attack. This is the most time-

consuming portion of Kratos.

44

Context-insensitive and path-insensitive analysis. Kratos depends on Spark to build a

context-insensitive call graph, which could introduce false negatives or positives. It is un-

derstood, through work conducted by Lhoták and Hendren [106] , that a context-insensitive

call graph may impact the call graphs accuracy. However, Lhoták and Hendren go on

to prove that the improvements context-sensitivity provide to the accuracy are minimal.

Through these findings, we justify our optimization for a context-insensitive call graph;

the memory and computational overhead of a context-aware call graph analysis does not

improve the accuracy enough relative to its costs. Path-insensitivity is not applicable here

because we are not interested in how branching affects a call chain. We are only interested

in security enforcement circumvention, which does not depend on branching. Thus, we are

able to safely ignore utilizing this analysis for our call graph.

Scalability. While we have made every effort to allow Kratos to be scalable at every facet,

there is one specific place in which we cannot run a parallelized computation — our use of

Spark. Spark has significant limitations in scalability. Because of the reliance on Spark, the

“Call Graph Construction” phase is unable to be threaded. Even in spite of this limitation,

the 3.4.2 phase completes in minimal time (see results in Table 3.2). Every other aspect of

Kratos leverages threading in an effort to reduce run time.

Native system interfaces. We also observe an interesting case where an app can get the

MAC address of a network interface card (NIC) using three different ways, guarded by

different security enforcement. The first approach is to call the Connectivity Service’s

getLinkProperties(), which checks ACCESS NETWORK STATE permission. Sec-

ond, an app can run the command line tool /system/bin/netcfg to obtain a list of

available NICs and information, including MAC addresses. This requires the app owns

INTERNET permission. However, the third approach, reading MAC address directly from

the file /sys/class/net/[nic]/address, does not require any permissions. This

motivates our future improvement of Kratos—to handle inconsistencies across different

layers of Android.

45

3.7 Summary

In this work, we propose Kratos, a static analysis tool for systematic discovering incon-

sistencies in security enforcement which can lead to security enforcement circumvention

vulnerabilities within the Android framework. We have demonstrated the effectiveness of

our approach by applying our tool to four versions of Android AOSP frameworks as well as

two customized Android versions, conservatively uncovering at least 14 highly-exploitable

vulnerabilities that can lead to security and privacy breaches such as crashing the entire

Android runtime, arbitrarily ending phone calls, and setting up an HTTP proxy with no

permissions or only low-privileged permissions. Interestingly, many of these identified in-

consistencies are caused by the use of hidden interfaces of system services. Our findings

suggest that some potentially promising directions to proactively prevent such security en-

forcement inconsistencies include reducing service interfaces and restricting the use of Java

reflection (for accessing hidden interfaces).

We have shown that security enforcement circumvention is a systemic problem in An-

droid. Our work demonstrates the benefit of an automatic tool to systematically discover

anomalies for security enforcement in large codebases such as Android. We expect Kratos

to be useful for both Android developers as well as vendors who offer customized Android

codebases.

46

CHAPTER IV

A Lightweight Framework for Fine-Grained Control of

Application Lifecycle

This chapter presents our study on diehard applications that abuse system service APIs

and lifecycle entry points. To fundamentally improve the design of Android’s application

lifecycle control, we propose a lightweight, fine-grained framework. Users, developers, and

system designer can all benefit from our framework. Developers can utilize the framework

to realize effective and efficient restrictions on diehard applications; users will get better

experiences. System designers can integrate our framework to detect and restrict diehard

applications, and the findings of this work are helpful with future API design.

4.1 Introduction

Mobile app lifecycle is dynamically managed by the system and is opaque to users. Due

to the constrained resources on mobile devices, the Android system controls each app’s

lifecycle based on their demands and task priorities. In particular, Android imposes looser

restrictions on app lifecycle and allows background execution without user awareness. On

the one hand, Android’s permissive lifecycle control gives apps more flexibility to react to

user interactions and system events timely, and thus enables rich functionalities, such as

background video recording. On the other hand, however, it also opens doors for apps to

47

directly or indirectly alter their lifecycles. In fact, apps can easily abuse their entry points

to automatically start up in the background, requiring no user interaction, and game the

lifecycle management mechanism to evade being killed.

We call app behaviors that make changes to their lifecycles for the purpose of 1) keep-

ing long-running in the background or 2) evading being killed diehard behaviors. Apps

exhibiting such diehard behaviors are thus diehard apps. Diehard apps can cause battery

drain and device performance degradation. Since they are oftentimes completely invisible

while running in the background, it is hard for normal users to be aware of their existence

and what they are actually doing. It is reported that the Amazon Shopping app operates in

the background so that it remains up to date with current offers and promotions, causing

high battery usage [42]. People also have privacy concerns on such apps, as they could

stealthily and constantly collect sensitive user data, such as geolocations [21, 30, 140].

1 // full class name: com.android.Laucher.Se
2 public class Se extends Service {
3 ...
4 // onDestroy() callback is always called by
5 // the system when a service gets killed
6 public void onDestroy() {
7 super.onDestroy();
8 ...
9 // Restart itself (the 2nd argument is the

10 // target service that will be started).
11 Intent i = new Intent(this.context, Se.class);
12 i.setFlags(268435456);
13 i.setAction("com.dai.action");
14 i.setAction("com.tdz.action");
15 this.startService(i);
16 }
17 ...
18 }

Figure 4.1: Code snippet of the HummingBad malware, decompiled by JEB Decompiler.
The target of the intent object (local variable i) is set to Se.class, meaning that the
service attempts to restart itself while being killed.

Essentially, diehard apps exploit two fundamental problems in Android app lifecycle.

48

Table 4.1: The changes cause lifecycle fragmentation, i.e., an app’s lifecycle is inconsistent
in different Android frameworks.

Android version Improvements Diehard techniques affected

Marshmallow (6.0) Doze, App Standby
Alarm Manager,
Long-lived TCP connections

Nougat (7.0)
Fixing notification bug, Doze on the go,
Background Optimization

Hiding notifications

Oreo (8.0)
Job scheduler improvements,
Background Execution Limitation

Static broadcast receivers

Pie (9.0) Background Restrictions Foreground services

First, apps can have multiple entry points that are by default accessible to other apps on

the same device. In addition to the user starting an app explicitly, the app can be launched

by the system or another app as well, requiring no user involvement. For example, the

system broadcasts signal strength changes so that apps potentially affected by weak signal

strength can take actions accordingly. A diehard app, however, can also claim to handle

the event and it will be automatically launched by the system to process signal changes.

Second, and more importantly, app lifecycle is not strictly enforced and is hard to enforce.

The lifetime of an app process is determined by the system through a combination of the

parts of the app that the system knows are running, how important these things are to the

user, and how much overall memory is available in the system [32]. Since apps are a

sophisticated interplay between custom code and the system framework, they are able to

game the system to indirectly manipulate their own lifecycle states. For instance, apps

with foreground services are believed to have higher priorities. Knowing this, diehard apps

usually start foreground services to escalate their priorities even though it is not a necessary

functionality for them. Moreover, apps can directly alter their component lifecycle. App

components implement a series of callbacks which are invoked by the system through its

lifetime, but there is no limitation on what they can do inside each callback. Malicious apps

have been exploiting the loosely enforced app lifecycle to be diehard, e.g., the notorious

HummingBad malware. As Figure 4.1 shows, when its service gets killed, it attempts

to restart the service immediately. Not all developers are well educated or are willing to

49

follow the guidelines. They get things done in ways they see fit, sometimes causing diehard

behaviors unintentionally.

New but ad hoc features (summarized in Table 4.1) have been introduced to Android

in an effort to limit background apps, for example, background optimization [14], Doze,

and App Standby [28]. They affect diehard behaviors to a certain extent, but unfortunately,

they cannot fundamentally solve the diehard behavior problem and they all have obvious

limitations. First, there are legitimate cases where apps need to keep running in the back-

ground, but Background Optimization and Background Execution Limitation are both too

coarse-grained, either allowing or disallowing all background activities. It is difficult to

balance the trade-off between app functionality and user experience. For end users, neither

zero control or excessively strict control is helpful. Second, apps can always find “cre-

ative” ways to bypass background restrictions. Diehard techniques evolve along with the

Android framework. For example, developers have come up with approaches to escalating

process priority so that their apps will not be killed when available memory is low. Mal-

ware variants use social engineering to bypass a battery-saving process and stay active in

the background.

We acknowledge that certain apps may have legitimate reasons for being diehard. How-

ever, they should comply with system regulations and development guidelines for providing

the best user experience. We argue that diehard behaviors violate the system’s app lifecy-

cle control and they should be better managed. Comprehensive modeling of app lifecycle

which can enable fine-grained lifecycle control is desired.

In view of this need, we make the first effort towards providing fine-grained control

of app lifecycle. In particular, we categorize diehard techniques that are used by apps to

keep long-running, from which we learn a valuable insight that diehard apps create high-

priority app components and/or develop interdependence between component callbacks,

between app components, or between other apps. The complicated app lifecycle makes it

challenging to realize reliable, systematic detection and restriction. To tackle this, we pro-

50

pose Application Lifecycle Graph (ALG), a systematic, informative, and precise description

of app lifecycle. The problem of diehard behavior detection thus can be transformed into

operations on a directed graph, i.e., the ALG. Specifically, the interdependence created by

diehard apps can be identified as cycles, and diehard behaviors are reflected on the ALG

as edges with special properties. Leveraging ALG, we develop a lightweight framework

that enables flexible and fine-grained app lifecycle enforcement at runtime. We collect

and analyze 17,598 apps from Google Play and a third-party app market. Results show

that diehard behaviors are very common among apps. To our surprise, diehard behaviors

sometimes come from third-party libraries an app integrates, making the host app a diehard

parasite.

In summary, this work makes the following contributions:

• We propose app lifecycle graph (ALG), a fine-grained, precise description of system-

wide app lifecycle. ALG allows us to transform diehard behavior detection and re-

striction problems into classic graph problems, i.e., cycle detection and edge pruning.

• Leveraging ALG, we design and implement a lightweight runtime framework for

fine-grained control of app lifecycle. This framework exposes a set of easy-to-use

APIs and therefore enables the development of new functionalities in app lifecycle

management.

• We perform the first study on diehard apps and diehard behaviors in the wild. We

find that diehard behaviors are common among apps from both Google Play and a

third-party app market. Anf interesting observation is that app developers may not

intentionally make their apps diehard, but the third-party libraries they integrate have

diehard behaviors.

51

4.2 Motivation

In this section, we identify the limitations of Android’s application lifecycle manage-

ment. We use real-world examples to demonstrate those limitations that motivate our work.

4.2.1 Component Lifecycle

Components are the essential building blocks of Android apps. There are four types

of components that can be used within an app, i.e., Activity, Service, Broadcast Receiver,

and Content Provider. Each type of component has its distinct lifecycle. A component

transitions through different lifecycle states during an app’s execution and the framework

calls its lifecycle callbacks [12] at each state change. It is the developers’ responsibility

to define how a component behaves in response to lifecycle state changes. For example,

while a Service is being created, its onCreate() is called. Developers override the

default callbacks, but there is no restriction on what they can do in each lifecycle callback.

An app’s lifecycle is far more complicated than the aggregation of all its components’

lifecycles, because there exist control flows and data flows among components.

Inter-component communications (ICCs) occur both within individual apps and be-

tween different apps. ICC relies primarily on the exchange of asynchronous messages

called Intents, which can carry extra data in the form of key-value pairs. The ICC initiator

creates an Intent instance and puts into it the target component information. ICCs enable

complicated collaborations across apps. For instance, the camera app allows users to share

photos on social media conveniently, by sending an Intent object with photo information to

the social app. If the target app is not running, the system starts it so that desired operations

can be completed. Because of this design, an app can wake up other apps through ICC.

4.2.2 Memory Management

By design, Android does not immediately kill app processes when they are switched

to the background. They are cached in the background so that they can be quickly recov-

52

ered when the user switches back. In this way, the system can speed up reopening apps

if needed, but it also easily gets into a low free memory state, where it has to shut down

certain processes in order to provide memory to processes that are more immediately serv-

ing the user [33]. If an app process gets killed, all components residing in that process are

consequently destroyed. When deciding which processes to kill, the system weighs their

relative importance to the user. For example, it more readily shuts down a process host-

ing activities that are no longer visible on screen, compared to a process hosting visible

activities. The decision of whether to terminate a process, therefore, depends on the states

of the components in that process. The system uses Activity Manager Service to track

the importance of processes and reflect their importance by setting the oom adj (latest

kernels use oom score adj) value of the process under /proc/PID/. The higher the

oom adj value is, the more likely this process gets selected by the kernel’s low memory

killer (LMK). Since a process may host multiple components at a time and priorities are

per process, the state of one single component can affect the entire process’s priority.

App components have their individual lifecycles, but the call graph of callbacks is in-

capable of describing an app’s complete lifecycle. First, in addition to component call-

backs, frequent ICCs are also part of app lifecycle. Second, an app can wake up another

app when inter-process communications (IPC) occur. In fact, fragmentation aggravates

the problem, as not all devices can be upgraded to the latest version. As of September

15th, 2018, 13 months after Android Oreo was released, 85.4% devices are still running

older versions [18]. Device vendors such as Huawei customize Android and add their own

power-saving features. However, they impose overly strict restrictions that blindly block

all app background activities.

4.3 Understanding Diehard Behaviors

A comprehensive understanding of diehard behaviors can provide us insights on design-

ing fine-grained app lifecycle control. We collect cases from popular user forums [6, 7, 4]

53

and well-known developer sites [47, 40]. We manually analyze 23 diehard apps reported

by users and thoroughly inspect the techniques discussed among developers.

A key insight we learn from the analysis of existing techniques is that diehard apps

create high-priority app components and/or develop interdependence between component

callbacks, between app components, or between other apps.

4.3.1 Escalating Process Priority

To evade being killed, apps attempt to trick the system into believing they are important

to serving the user. As a result, their process priorities will be escalated.

Foreground service. Normally, apps are put into the background when the user goes

back to the home screen or switch to another app. Android, however, allows apps to start

foreground services in which continuous tasks (e.g., music playing, file downloading) will

not be interrupted even the user is not currently using the app. Foreground services have

much higher priority and therefore they will not be easily killed. This feature has been

widely abused. Apps can simply call startForeground(int, Notification) to

turn a background service into foreground state. The system considers foreground services

to be user-aware and thus not candidates for killing even under heavy memory pressure.

Before Android N there are bugs in displaying notifications, which are exploited to start

foreground services stealthily without user awareness.

Floating view. Apps can keep a tiny, invisible floating view in the foreground, abusing the

SYSTEM ALERT WINDOW permission. It is a known problem that this permission allows

an app to draw overlays on top of other apps, and it is automatically granted for apps

installed from Google Play [86].

Native process. Apps are allowed to run native executables using

java.lang.Runtime.exec() APIs outside the app processes. Unlike app

processes in the Android runtime, native processes are out of the control of the Android

54

framework’s memory management. They by default have higher priority, especially when

they run as daemons. The native processes may not be used to perform complicated tasks

but rather to guard certain app components.

4.3.2 Auto-run

Apps utilize auto-run techniques in order to automatically start up after reboots and

restart themselves after being killed. Different from escalating process priority, auto-run

behaviors create interdependence between apps or between an app and the system. Even if

the user uses task management tools [2, 19] to kill background apps, diehard apps can still

manage to restart with auto-run.

Sticky service. A service makes itself “sticky” by returning START STICKY from its

onStartCommand() callback. A sticky service, if uses no other diehard techniques, will

be recycled by the system when available memory is low. However, the system recreates

the sticky service once it gets out of the low-memory state.

Listening to system events. The system sends out broadcasts when certain events occur.

Apps that are interested in specific events get notified if they have registered correspond-

ing broadcast receivers. For example, SIG STR is broadcasted out when signal strength

changes, and an app listening to this broadcast will be awakened. When a receiver is reg-

istered in the manifest and the app is not running, a new process will be created to handle

the broadcast. This gives the app the chances to start other components thereafter.

Watchdog. A watchdog process is used to monitor the process that needs to keep alive.

If the process being watched is dead, the watchdog restarts it immediately. Watchdog pro-

cesses are usually implemented as native processes, and there are several ways to monitor

another process’ state (i.e., running or dead). For example, the watchdog could be a native

daemon which establishes a local socket channel with the app process [129]. If the socket

55

channel is somehow broken, it means the app process is dead. In this case, the native

daemon tries to restart the app process immediately.

Abusing account synchronization. Apps are allowed to create a sync adapter component

that encapsulates the code for the tasks that transfer data between the device and a server.

Based on the scheduling and trigger provided, Android’s sync framework runs the code

in the sync adapter component (no matter the app is running or not), from which other

components of the app can be started.

Scheduled tasks. AlarmManager allows scheduling an app to be run at some specific point

in the future, even if the app is not currently running. JobScheduler first became available

in Android 5.0. Apps register jobs, specify their requirements for network and timing. The

system then schedules the jobs to execute at the appropriate times. Both AlarmManager

and JobScheduler are abused by apps to realize auto-run. Observables can also be used to

set up periodically tasks.

Cross-app wakeup. Apps developed by the same developer and apps integrating the same

SDK can work together to keep long-running. For example, all Baidu apps have the same

ShareService which periodically looks up other Baidu apps installed on the device and tries

to bind to them. Since the system starts the target app for completing inter-app ICCs, one

running Baidu app can thus wake up all other Baidu apps that are not running.

Explicitly invoking lifecycle callbacks. The system manages app component lifecycle.

Different callbacks are invoked by the framework at each stage of an app component. For

example, when the system destroys a service, onDestroy is called. The purpose is to

give apps an opportunity to save running states and die gracefully. Apps are able to over-

ride these callbacks. They can thus abuse them by explicitly calling onStart() inside

onStop() so that the component will not finish. The behavior shown in Figure 4.1 adds

an edge to the lifecycle, creating a cycle.

56

4.4 Fine-Grained Lifecycle Control

Based on the insight we learn from diehard apps and their behaviors, we believe that

in an appropriate graph representation, high-priority components can be identified as spe-

cial nodes and the interdependence can be captured as cycles. We propose the Application

Lifecycle Graph (ALG) to accurately describe apps’ lifecycles as a whole in a fine-grained

manner. Diehard behaviors are reflected on the ALG as either edges with particular prop-

erties, or cycles indicating the interdependencies between apps, app components, or com-

ponent callbacks. The benefits of ALG are two-fold. First, it can capture and record all

app and system events (i.e., edges on the graph) that affect lifecycle. Second, it allows

us to convert problems such as diehard behavior detection into graph-based problems, i.e.,

cycle detection. We design a runtime framework that utilizes ALG to dynamically track

app states and realize fine-grained lifecycle control, which overcomes limitations of static

analysis based approaches that lack efficiency, scalability, and extensibility. The frame-

work also exposes the ALG and lifecycle control capabilities as a set of APIs in order to

facilitate the development of new functionalities.

4.4.1 Application Lifecycle Graph (ALG)

ALG models lifecycles of all installed apps in three layers. From the higher level to the

lower level, they are (1) cross-app ICC graph, (2) intra-app ICC graphs, and (3) component

callback graphs. We have

ALG = (Napp, Ecross−app−icc)

where Napp is the node set and Ecross−app−icc is the edge set. Each node represents an in-

stalled app: Napp = {Gapp0...n}, Gappi,i∈[0,n] is the intra-app ICC graph of app i. Each edge

represents a cross-app ICC event. We further define Gappi = (Ncomp, Eintra−app−icc), and

Ncomp is a set of nodes representing app components: Ncomp = {Gappicomp0...m}. The edge

57

set, Eintra−app−icc, represents intra-app ICCs. Gappicompj (i ∈ [0, n], j ∈ [0,m]) is the call-

back graph of component j in app i. Nodes of a callback graph are callback methods, while

edges are call sequences of those callback methods: Gappicompj = (Ncallback, Emethod−call).

Figure 4.2 illustrates the ALG structure. The top level is a graph consisting of apps

(also the Android framework, which will be discussed in §4.4.1.1) and cross-app ICCs.

For example, app0 starts app1 with a cross-app ICC. Each app node is actually an intra-

app ICC graph, whose nodes are either app components or native binaries, and edges are

intra-app ICCs. For example, app0 has three components, among which component0 starts

component1 and component1 starts component2. Each component has a callback graph

that models its callback sequence.

app_0

Android Framework

component_0

component_1

component_2

app_1 app_2
… …

Cross-app ICC graph node

Inner-app ICC graph node

Callback graph node

Inner-app ICC

Cross-app ICC

Figure 4.2: An ALG illustration. The Android framework is represented as a special node
in the same level as apps. Edges have attributes that provide event contexts.

4.4.1.1 Abstract the Android Framework

The entire Android framework is abstracted into an app node in ALG, although the

Android framework consists of a number of different packages and system services dis-

tributed into multiple processes. The rationale behind this abstraction is that from the apps’

perspective, ICCs between the framework have no difference compared to cross-app ICCs.

Apps may interact with different system services during their lifetime. For instance, as

described in §4.3, apps register their components to the framework, and the framework will

start those registered components when required conditions are met. There are also many

58

built-in system apps that normal apps can communicate with. Aggregating framework

packages into one single node reduces graph complexity by eliminating unnecessary nodes

and edges, and significantly speeds up operations on the ALG. Meanwhile, system services

and system apps are critical to normal functioning of the system; they are out of the scope

of our fine-grained lifecycle control. This abstraction does not have a negative impact on

the precision of the ALG.

4.4.1.2 Lifecycle Event Context

Edges in ALG represent lifecycle-related events. We provide event context as edge

attributes. We consider the four categories of attributes: (1) User interaction, i.e., whether

or not an app or a component is initiated by the user is an important factor for determining

the legitimacy; (2) Frequency, i.e., the frequency of an ICC event indicates how aggressive

an app is in terms of being diehard; (3) ICC type, including app status (i.e., foreground or

background), triggering method call (e.g., startActivity, bindService); and (4)

Status, i.e., enabled or disabled, for enforcing lifecycle control policies. For example, in

Figure 4.3, ICC edges provide information on how a component is started, and what shell

command is executed to start a native component. Similarly, in Figure 4.4, cross-app ICC

edges have information on the interactions between apps and the Android framework.

DiehardService

WatchdogDaemon

Start daemon
Runtime.exec(“/path/to/daemon”)

Start service
execl(“am start …”)

WatchdogService

Start/bind service Start/bind service

Figure 4.3: Partial ALG: intra-app ICC graph for an app having watchdog component.
Irrelevant ALG parts are omitted.

59

Android Framework

JobService

DiehardService

Register
JobService

Periodically start
JobService

SyncService

DiehardService

Register
SyncService

Periodically start
SyncService

Figure 4.4: Partial ALG: cross-app ICC graph capturing scheduled task and account sync.
Irrelevant ALG parts are omitted.

4.4.2 Fine-grained Lifecycle Control

To realize fine-grained, component-level app lifecycle control, we propose a

lightweight runtime framework that builds ALG on-the-fly and exposes APIs to support

the development of new functionalities. The advantage of a runtime system is that it can

capture genuine runtime information, thus ensure accuracy, although performance over-

head is inevitable and completeness cannot be guaranteed. Pure static app code analysis

can gather relatively comprehensive app behaviors, but it is not precise due to the lack

of source code and its inherent limitations that cause over-approximation, e.g., points-to

analysis [56]. The design of the framework must satisfy the following requirements.

1. Non-blocking monitoring. To reduce app perceived delay, we must not block app

executions. This brings challenges in placing hooks in the Android framework for

collecting runtime information.

2. ALG accuracy. Our lifecycle control framework relies heavily on the ALG. An accu-

rate ALG is the foundation of new functionalities developed on it. However, there is

no existing mechanism in the Android framework to support ICC caller component

identification. In fact, very limited caller information is available, including only app

UID, PID, and package name.

60

3. Nondisruptive control. If an app or an app component is being restricted, we need to

gracefully shut it down, without causing crashes that will be perceived by the user.

Lifecycle manager

service (LMS)

Lifecycle hooks

Client

System services

… ……

ALG

Context

collector
Lifecycle control

interfaces

Async
messages

…

Figure 4.5: Overview of the framework. There could be multiple client apps that use the
lifecycle control APIs.

Figure 4.5 depicts the architecture of our proposed framework. We add a system ser-

vice, Lifecycle Manager Service (LMS), into the Android framework to maintain an ALG

at runtime. To collect runtime lifecycle information we place various hooks into existing

system services such as Activity Manager Service and Job Service. All hooks report col-

lected data to LMS, which updates the ALG accordingly. Meanwhile, LMS exposes a set

of APIs that provide the ALG and fine-grained lifecycle control capabilities to apps. We

overcome the challenge of accurately identifying the caller component of an ICC using a

Context Collector (§4.4.2.2). These interfaces enable various use cases. System-level de-

velopers (e.g., device vendors) can leverage them to restrict diehard behaviors. Developers

of task manager apps and battery saver tools can use the interfaces to better manage running

tasks and to implement more effective battery saving policies.

4.4.2.1 Lifecycle Manager Service (LMS) and Hooks

LMS works with lifecycle hooks to build and maintain the ALG. Hooks are placed into

several system services for collecting runtime app lifecycle information and controlling

lifecycle events. We choose to hook services instead of app logic for two reasons. First,

61

Table 4.2: APIs provided by our framework for fine-grained app lifecycle control. Bundle
objects are essentially key-value pairs. They are used to update one or multiple edge/node
properties at a time.

APIs Types Description
AppLifecycleGraph getLifecycleGraph() Sync Return a copy of ALG

AppCompGraph getAppCompGraph(String pkg) Sync
Return an app component graph
with given package name

CompCallbackGraph
getCompCallbackGraph(String pkg, String comp)

Sync Return callback graph of an app component

void setAppProperties(Bundle p) Async Set properties of an app node on the ALG
void setAppComponentProperties(Bundle p) Async Set properties of an app component
void setCrossAppEdgeProperties(Bundle p) Async Set properties of an cross-app ICC edge
void setIntraAppEdgeProperties(Bundle p) Async Set properties of an intra-app ICC edge

void setCompCallbackEdgeProperties(Bundle p) Async Set properties of component callback graph edge

Android adopts a client-server model where apps send their requests to handling services.

For example, ICCs are eventually executed by Activity Manager Service, which acts like a

switch that looks up the target app and component, thus connects the caller and the target.

Placing hooks in services allows us to centralize monitoring and enforcement logic so that

we can keep minimal communication channels with LMS and therefore reduce overhead.

Second, we cannot trust information coming directly from the apps, because apps have the

capability of manipulating its own memory and bypassing the hooks.

For an operation that affects app lifecycle, there could be many intermediate procedures

(i.e., method calls) between the API being called and the internal method that eventually

performs the intended operation. To balance overhead, accuracy, and extensibility, we

must carefully choose appropriate locations for installing hooks. In general, we have three

different hook placement options, as illustrated in Figure 4.6.

Close to the caller. If hooks are close to the caller, we can more easily collect the

calling app UID, PID, and package name, as they are still available until the AMS calls

clearCallerIdentity. Nonetheless, not all lifecycle-related operations can finally

reach their targets, because they could fail at any intermediate method calls. As a result,

we would collect false-positive ICCs and create ALG edges that do not really exist.

Close to the target. Lifecycle hooks can also be placed close to the target component.

In this case, we would have very accurate information about the target without additional

62

Caller

Component

Activity Manager

Service (AMS)

Start/bind service
clearCallerIdentity()

Caller context

unavailable

Target

Component

❶

❷

Start target❸

Figure 4.6: Hook placement options during service launching/binding ICC.
The identity of the caller app is completely unavailable after the AMS calls
clearCallerIdentity().

efforts. The downside is we lose the caller app and component information completely.

Somewhere in-between. Placing hooks at certain points of the intermediate method calls

allows us to balance accuracy and overhead. We can keep caller information before it gets

cleared, and reuse intermediate return values to obtain target component identity. How-

ever, this option requires efforts in understanding system services code, which may change

drastically across different Android versions. The cost of maintenance is the highest.

We choose to place lifecycle hooks close to the target, as our top goal is to ensure accu-

racy and eliminate false positives. The tradeoff is that we need to store caller information

before it is cleared. Evaluations in §4.5 show that the overhead for this tradeoff is totally

acceptable. Hooks could also be placed at both the caller side and the target side, but this

would result in higher overhead.

4.4.2.2 Identify Caller Component

In Android’s client-server model of app-framework interactions, apps are identified by

their UID, PID, or package name, which means system services see all components of an

app as a whole. The granularity of all access control mechanisms is per app, not per app

component. As for our lifecycle control framework, we aim to achieve component-level

63

granularity, and the ALG requires caller component and target component for each ICC.

Identifying the target component is trivial, but accurate identification of caller component

is challenging.

To overcome this challenge, we modify base app component classes to attach caller

component information automatically, as illustrated in Figure 4.7. Since everything from

the app side could be manipulated by the app itself, we validate received caller component

information in LMS. Specifically, all app components extend base classes from the Android

SDK, e.g., android.app.Service, android.app.Activity. We add into base

component classes a getIdentity() method that returns class full name, including the

package. Leveraging the polymorphism feature of the Java language, calling the method

on concrete sub-class instances returns specific component names. The whole process is

Base Service

(android.app.Server)

App Service

Activity Manager Service

Service launching intent

Service launching
intent with caller info

Figure 4.7: Attaching caller component information (using service as an example).

completely transparent to app and it requires no effort from app developers.

Everything coming from the app side cannot be trusted, because apps have the capa-

bility to manipulate anything in their own memory space. This means caller component

information from the client side could be manipulated if the app wants to bypass or trick

our caller identification method. To mitigate this potential problem, LMS validates caller

component information it receives. First, the caller component must belong to the caller

app, who can be identified by caller UID or package name. Second, the caller component

must have been started already.

64

4.4.2.3 Nondisruptive Control

In addition to monitoring app lifecycle and building the ALG, our framework provides

fine-grained, component-level lifecycle control. The idea is that lifecycle control policies

can be stored as ALG node and edge properties. For example, if a service component is

considered to be diehard we can simply set its enabled status to false, and let lifecycle

hooks enforce it. We cannot return an error or throw out an exception within the hooks,

because the hooks have no idea whether the caller app is able to properly handle the errors

or exceptions. To avoid crashing the caller app unexpectedly, the hooks redirect ICCs to

dummy components created by LMS. Those dummy components only execute minimal

code and exit immediately.

4.4.2.4 Asynchronous Operations

To avoid hooks blocking the execution flow of apps, it is important to reduce the running

time of hooks. Considering that hooks send ICC information to LMS and LMS takes time

to process it, we let all hooks send asynchronous messages to LMS. The caller side (i.e.,

hook points) does not have to wait for return values before proceeding. Moreover, whenever

there is an update on ALG, LMS client should be aware of it. Instead of clients keeping

polling ALG from LMS interfaces, LMS sends out a permission protected broadcast to

notify clients. The protected broadcast can only be received by apps that have been granted

the permission android.permission.LIFECYCLE_UPDATES_ACCESS, and user

consent is required to grant an app this permission.

4.4.2.5 Exposed APIs

Table 4.2 lists a set of APIs that our framework provides to clients. To protect them

from being abused, we enforce the permission android.permission.LIFECYCLE_

GRAPH_ACCESS. This permission also requires user consent in order to be granted to

an app. There are two categories of APIs according to how results get returned, i.e., syn-

65

chronous and asynchronous APIs. The principle is that reading operations are synchronous

and writing operations are asynchronous. In this way, the ALG obtained by clients are con-

sistent with the one in LMS, and updating ALG does not block the caller components. The

code snippet in Figure 4.8 shows how easy it is to use the APIs to query different levels of

graphs from ALG and detect cycles.

void detectCycles() {
// detect cycles on component callback graph
for (app : installedApps) {
for (comp : getAppComponents(app)) {
callbackGraph =

lms.getCompCallbackGraph(app, comp);
bfs(callbackGraph);

}
}
// detect cycles on inner-app ICC graph
for (app : installedApps) {
compGraph = lms.getAppCompGraphs(app);
bfs(compGraph);

}
// detect cycles on cross-app ICC graph
bfs(lms.getLifecycleGraph);

}

Figure 4.8: Querying different levels of lifecycle graphs and detecting cycles. Certain
variable types are omitted. lms is a reference pointing to the Lifecycle Manager Service.

4.5 Evaluations

We implement the proposed framework on AOSP 8.0.0 r4 codebase and install it on

a Nexus 6P Android phone with 3GB memory. In this section, we evaluate the accuracy

of our approach to building ALG and the performance of the fine-grained lifecycle control

framework. To demonstrate the usability and the capabilities of the APIs, we showcase two

example client applications. We also present our findings based on the analysis of 17,598

applications from Google Play and a third-party application market.

66

0 50 100 150 200

Time after system reboot (s)

10

20

30

40

s
y
s
te

m
_
s
e
rv

e
r

C
P

U
 %

Framework w/ ALG

AOSP

Figure 4.9: system server CPU usage after device reboot.

0 50 100 150 200

Time after system reboot (s)

8

8.5

9

s
y
s
te

m
_
s
e
rv

e
r

m
e
m

 %

Framework w/ ALG

AOSP

Figure 4.10: system server memory usage after device reboot.

4.5.1 ALG Accuracy

We use the analysis results of the applications described in §4.2 as ground truth to

evaluate ALG accuracy. Since the ALG is built from runtime information collected by

the hooks, there are no false-positive ICCs. Our hook placement strategy ensures accurate

identification of ICC target components. The only factor that could result in inaccuracy is

our caller component identification approach. In our experiments, the framework captures

149 unique ICCs and accurately identifies all of their caller components.

4.5.2 Overhead

Lifecycle hooks and LMS are integrated into the Android framework, running in the

system server process. We compare CPU and memory usages with the original AOSP

build, both have the same set of applications installed. At the very beginning of device

booting, the lifecycle control framework adds approximately 5% CPU usage, as Figure 4.9

67

[0
,5

)

[1
0,

15
)

[1
5,

20
)

[2
0,

25
)

[2
5,

30
)

[3
0,

35
)

[3
5,

40
)

[4
0,

45
)

[4
5,

50
)

[5
,1

0)

[5
0,

55
)

[5
5,

60
)

system_server CPU %

0

100

200

300

400

#
 D

a
ta

p
o
in

ts

Framework w/ ALG

AOSP

8 9 10 11 12

system_server memory %

0

0.2

0.4

0.6

0.8

1

C
D

F

Framework w/ ALG

AOSP

Figure 4.11: system server CPU and memory usage while repeatedly launching ap-
plications.

depicts. This is reasonable as the initialization of the LMS takes additional CPU times,

and the difference becomes negligible after around 100 seconds Figure 4.10 shows that the

framework imposes only 0.15% additional memory usage. Most of the additional memory

is used for storing the ALG at runtime, whose size is less than a few megabytes, depending

on the number of installed applications. This is acceptable even on low-end devices with

much less memory. We repeatedly launch an application 560 times to measure CPU and

memory usages during application launches. Results are shown in Figure 4.11. The frame-

work incurs less than 20% peak CPU usage, due to a high number of ALG updates. Still,

the memory usage difference is small.

We also evaluate application launch time and system boot time with and without the

proposed framework. We follow the official recommendation on launch time performance

measurements [23]. Results are presented in Figure 4.12(a). The median application launch

time of AOSP is 363ms, while our framework increases that by 93ms. This small change

can be barely noticed by users. We then reboot the device 100 times to measure system boot

time. Results shown in Figure 4.12(b) suggest that boot time increase is also insignificant.

The median increases from 28.345s to 30.932s. As the number of installed applications

increase, the time of reading ALG also increases, as depicted in Figure 4.13. This is be-

68

Framework w/ ALG AOSP
0.8

1

1.2

1.4

1.6

1.8

2

A
p
p
 l
a
u
n
c
h
 t
im

e
 (

s
)

(a)
Framework w/ ALG AOSP

28

30

32

34

S
y
s
te

m
 b

o
o
t
ti
m

e
 (

s
)

(b)

Figure 4.12: The comparison of application launch time and system boot between our
framework and AOSP.

10 apps 15 apps 20 apps
0

10

20

30

40

50

T
im

e
 r

e
a
d
in

g
 A

L
G

 (
m

s
)

Figure 4.13: Difference in ALG reading time with different numbers of applications in-
stalled on the device.

cause the more applications are installed, the more complex the ALG is. Figure 4.14 is

the cumulative distribution of time consumed at hooking points. 99% hooks are executed

within 2 milliseconds.

4.5.3 API Usability

We implement two example client applications that leverage lifecycle control APIs to

(1) detect and report cycles on ALG and thus detect diehard behavior and (2) restrict back-

ground ICCs that launch applications without user interactions.

69

0 1 2 3 4 5

Exec time of hooks (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 4.14: The cumulative distribution of hooks’ execution time.

Leveraging event contexts provided by ALG as edge properties, we implement an ap-

plication that demonstrates the effectiveness of fine-grained lifecycle control, also using the

interfaces provided by our framework. We enforce a policy that prevents an invisible appli-

cation component (no matter it is in the background or in the foreground) to launch inactive

components in other applications. We fully charge the device, reboot it, and leave it for five

hours without performing any operations on it. We measure battery level changes and

battery discharge rate every 10 minutes with the Battery Historian tool [15]. The results

presented in Figure 4.15 suggest that by the restriction of diehard behaviors is effective.

Battery life can be extended significantly. Similar to CPU and memory usages after reboot,

the discharge rate is higher with the framework at the very beginning due to additional

initialization efforts.

4.5.4 Diehard Applications in the Wild

To the best of our knowledge, there is no prior study on diehard applications and their

behaviors. To understand diehard behaviors in the wild, we analyze a large number of

applications downloaded from Google Play and a third-party application market1. Due

1Google Play is inaccessible for Chinese users. http://www.appchina.com/ is one of the most
popular 3rd-party markets according to Alexa Rank.

70

0 50 100 150 200 250 300

Time after reboot (min)

80

85

90

95

100

B
a
tt
e
ry

 l
e
v
e
l

w/o restriction

w/ restrction

0 50 100 150 200 250 300

Time after reboot (min)

0

10

20

30

40

D
is

c
h
a
rg

e
 r

a
te

 (
%

/h
)

w/o restriction

w/ restriction

Figure 4.15: Battery life can be extended if diehard behaviors are restricted.

to the lack of an update-to-date Google Play dataset2, we choose to download Google

Play’s top 500 best selling free applications from each of the 29 categories3 by ourselves.

11,339 were successfully downloaded in early June of 2018. We also collect 6,259 best

selling applications from the third-party application market covering all its 15 categories,

excluding duplicated ones that also appear in Google Play. We first group applications by

their developers and then install applications in the same group altogether. We use aapt to

identify application user interfaces (i.e., Activity components), and use the command line

tool am to launch them, mimicking user interactions. Application analysis results show

that diehard behaviors are common in both Google Play applications and applications from

the third-party market. We also find diehard behaviors coming from widely used SDKs,

although some of the host applications are not intentionally diehard.

Table 4.3 lists the percentages of applications that use each diehard technique. It is

obvious that all diehard techniques except for account sync are more widely used by ap-

plications from the third-party market. Sticky service is the most prevalent among applica-

tions from both application markets. The percentages of Google Play applications having

2The popular PlayDrone application dataset [139] used in other work is very outdated (last updated in
Nov. 2014).

3The category ANDROID WEAR is excluded. Android wear applications are currently out of the scope of
our study.

71

a floating view, native process, and explicit callbacks are significantly lower than that of

applications from the third-party market. Figure 4.16 is the cumulative distribution of num-

bers of diehard techniques applications use. 38% Google Play applications have no diehard

behaviors at all, while only 17% applications from the third-party market are non-diehard.

These numbers clearly suggest that Google Play applications tend to be less aggressive in

keeping themselves long-running.

Table 4.3: Percentage of applications that use each diehard technique.

Technique 3rd-Party Market Google Play
Foreground service 16.3% 13.1%
Native process 5.6% 1.0%
Floating activity 25.2% 9.3%
Sticky service 29.3% 25.1%
System events 19.4% 18.5%
Watchdog 7.3% 2.8%
Account sync 0.3% 0.3%
Inter-app wakeup 20.1% 17.5%
Scheduled tasks 0.9% 0.7%
Explicit callbacks 5.4% 1.8%

0 1 2 3 4 5 6 7 8

Diehard techniques

0

0.2

0.4

0.6

0.8

1

C
D

F Google Play

3rd-Party Market

Figure 4.16: Numbers of diehard techniques used by applications from Google Play and
the third-party market.

72

Table 4.4: Purposes of being diehard.

Purpose # Applications
3rd-Party Market Google Play

Sensor monitoring 40 61
Ads/promotions 59 51
Push notification 1,192 124
Keyguard 84 75
Hot patching 48 39
Downloading/uploading 280 57

4.5.4.1 Purposes of Being Diehard

We investigate the purposes of applications for being diehard. By manually examining

the ALG and reversing APKs, we classify diehard behavior purposes into the six categories.

Results are summarized in Table 4.4.

Sensor monitoring. Certain applications want to constantly monitor system events and

user activities. Since Android N, most of the system broadcasts can only be received by

dynamically registered broadcast receivers. For example, applications are no longer able to

receive screen lock events with a static broadcast receiver. In order to monitor system events

and take actions accordingly, applications have to keep alive so that their dynamic receivers

are active. There are also applications constantly sensing the ambient environment, e.g.,

lighting. Other examples include fitness applications that track user activities. They need

to keep long-running in the background; otherwise, they would produce inaccurate results.

Displaying ads/promotions. A common business model for application developers is to

make profits from ads displayed inside their applications. They usually keep an ad service

running in the background to retrieve ads and show them to users. Some applications show

promotion notifications from while running in the background. Such applications would

like to be diehard so that they can maximize profits.

Push notifications. Google recommends Firebase Cloud Message (FCM) for sending push

notifications to devices from the server side. However, FCM is not available in certain re-

73

gions (e.g., China blocks Google services). The lack of OS-level message push service

leaves developers no choice but to use third-party message push SDKs, or to implement

their own message push services. One major metric for evaluating the quality of message

push services is the delivery rate. To make sure push notifications can be delivered timely

and successfully, push services have to leverage diehard techniques to keep themselves

long-running in the background. We observe applications coming with multiple push ser-

vices, all of which stay long-running in the background, creating several diehard services.

Keyguard. Non-system applications are not allowed to replace the lock screen. But appli-

cations can create UI components that look like a screen lock to users. In order to provide

self-implemented keyguard functionalities while the device is locked, applications need a

long-running service, which has to be diehard so that it can provide the required function-

alities.

Hot patching. Android allows applications to load and execute dynamically at runtime.

For example, they can download plugins in the format of dex files and load them by user

demand. This feature is also used by some applications to realize hot patching. Users do

not need to reinstall the application anymore. Instead, hot patching services can replace the

out-dated code by updating the corresponding dex file.

Downloading/uploading. Certain applications download data from or upload local updates

to their servers periodically. They use a diehard service to prevent the downloading/u-

ploading process from being accidentally terminated. In fact, the recommended approach

to downloading and uploading data is to use AsyncTask.

4.5.4.2 Third-Party Libraries

We find that applications may not intend to be diehard. Their diehard behaviors could

come from third-party libraries. A summary of third-party libraries having diehard be-

haviors is listed in Table 4.5. To our surprise, we observe dedicated libraries that im-

74

plement state-of-the-art diehard techniques and their primary goal is to keep applications

long-running. For example, a library with package name com.daemon.keepalive

is found in several high-rating applications with millions of installs such as Smart

Cooler [38], RAM Master [36], and SPARK [39]. An industry-leading Android anti-

virus service provider, Qihoo 360, offers a malware scanning library with a diehard service

com.qihoo.magic.service.KeepLiveService. This service appears in Qihoo

family applications as well as non-Qihoo applications such as Super Antivirus Cleaner [41],

which has a rating of 4.7 and more than 10 million installs. We also find an open-source

daemon library that offers out-of-the-box diehard components [20].

Tencent Xinge is one of the most popular message push SDKs. It actively queries

installed applications on the device and looks for applications that also have the same SDK

integrated, i.e., applications that also listen to the broadcast com.tencent.android.

tpush.action.SDK. If another application is found to have Xinge SDK but is not

currently alive, it tries to launch that application in various ways, one of which is presented

in Figure 4.17. The built-in command line tool, am, is called to start the target Xinge

services in other applications.

Figure 4.17: Tencent message push SDK has diehard behavior that wakes up all its services
using shell command am that can bypass background execution limitation.

Third-party libraries, in particular, those exhibiting diehard behaviors, are potentially

leaking user privacy. SDKs such as Tencent Xinge, JPush, Xiaomi Push asks for sensitive

permissions, including reading phone state, accessing WiFi/network state, accessing fine

75

location, and accessing coarse location.

Table 4.5: Third-party libraries coming with diehard behaviors, their purposes, techniques
they use, and whether they request sensitive permissions.

SDK Purpose Techniques Sensitive
Permissions

Tencent Xinge
Message push,
Notification

Native watchdog, foreground service,
sticky service, system events,
inter-app wakeup

Yes

JPush
Message push,
Notification

Foreground service, floating activity,
inter-app wakeup

Yes

iGenxin Notification
Scheduled tasks, sticky service,
foreground service, system events,
watchdog

Yes

Baidu Share Cross-app data sharing
Native watchdog, sticky service,
foreground service, system events,
inter-app wakeup

Yes

Xiaomi Push
Message push,
Notification

Sticky service, foreground service,
system events, inter-app wakeup

Yes

Eguan Monitoring
Scheduled tasks, sticky service,
foreground service, system events

No

EMChat Notification
Scheduled tasks, sticky service,
foreground service, system events,
inter-app wakeup

Yes

Jiubang Notification
Scheduled tasks, sticky service,
foreground service, system events,
watchdog

Yes

4.5.4.3 A Real-World ALG

Figure 4.18 presents a real-world ALG visualization from 10 applications. It shows the

interactions between applications and application components, as well as lifecycle events.

We find that Baidu applications perform cross-app wakeup intensively. Tencent applica-

tions tend to utilize framework services to be diehard. The ES File Explorer application

(package name com.estrong.android.app) and Tencent Input application (package

name com.tencent.qqim) have watchdog services.

76

android

com.baidu.input

bind

com.tencent.news

bind
(job)

bind
(sync)

com.tencent.qqim

bind
(job)

bind
(sync)

com.baidu.BaiduMap

com.baidu.baidutranslate

bind bindcom.baidu.searchbox

bind

com.baidu.wenku

bind start

com.baidu.browser

start

registerbind

bind

bindbindbind

bind

register
(job)

register
(sync)

com.tencent.qqlive

start

register
(job)

register
(sync)

com.estrongs.android.app

WsBackgroungService

JobSchedulerSerivce

start

QQpimAllStartUpReceiver

startbind

SyncService

FexApplication

FileScannerService

start

FileMonitorService

start LocalMService

start

bind

LocalCService

startstart

Figure 4.18: The topmost level (i.e., cross-app ICC graph) of a real ALG visualized by
Graphviz. com.estrongs.android.app and com.tencent.qqim are further in-
spected with one of their intra-app ICC graphs.

4.6 Discussion

While this work presents a fine-grained lifecycle control framework and makes the first

step toward understanding diehard behaviors, there are limitations we plan to address in

the future. First, we collected apps from Google Play and only one third-party market,

which might lead to biases in results. We plan to do a larger scale study across multiple

app markets. Second, due to the nature of runtime analysis, the framework cannot capture

potential lifecycle events that are not triggered by the user, therefore the completeness of

the ALG is not guaranteed. Third, a user study could be helpful for us to design better APIs

for empowering app developers. As the wearable platforms become increasingly popular,

we also plan to implement the framework on the Android Wear platform and investigate

diehard behaviors of wear apps.

Legitimacy of diehard behaviors. We acknowledge that apps may have legitimate reasons

for being diehard. For instance, a fitness app has to monitor user activities and locations

constantly. However, we argue that apps should more gracefully achieve long-running and

clearly indicate their background activities using Android recommended approaches, in-

stead of abusing app lifecycle or gaming the system. Our proposed framework provides

77

foundations for developing robust diehard behavior detection and restriction mechanisms.

Device vendors and developers can leverage the ALG and event contexts our framework

provides to realize a crowd-sourced tool that can identify the legitimacy of diehard behav-

iors with a large dataset.

Background-running apps on iOS. Unlike Android, background processing in iOS is

highly regulated. Long-running tasks require specific permissions to run in the background

without being shut down, and only specific app types are allowed to do so [11]. Addition-

ally, all iOS apps submitted to the App Store are manually reviewed to ensure that they

do not violate Apple’s guidelines. Developers are required to present a compelling reason

for background activities. We argue that Android cannot simply adopt the iOS approach

to restricting background executions. Android is meant to be a customizable platform and

the whole ecosystem is open. Developers are believed to be responsible and follow the

guidelines, which is unfortunately not true.

Circumventions. We place hooks into the system based on our understanding of current

system implementation. In the future, new Android APIs might be introduced that could

be abused to realize diehard behaviors and circumvent being captured by ALG. We argue

that our framework is extensible and ALG can also be extended in order to adapt to future

Android frameworks. As long as we build a runtime ALG, we can always rely on it and

upgrade the detection algorithms.

Lessons learned. Benign diehard apps call for system-level support of long-running mech-

anisms that are transparent and controllable to users. Third-party libraries should be better

inspected before being integrated, and library providers are supposed to provide config-

uration options to app developers. Nevertheless, it is challenging to prevent abuses of

legitimate functionalities, because oftentimes this is a cat-and-mouse game and API de-

signers are unaware of the potential side effects. Android API designers can leverage our

framework to fix loopholes and better manage app lifecycle.

78

4.7 Conclusion

In this paper, we present a fine-grained app lifecycle control framework that leverages

app lifecycle graph (ALG) to accurately describe app lifecycles. We overcome challenges

such as caller component identification, nondisruptive app control. App study results sug-

gest that diehard behaviors are common in apps from both Google Play and a third-party

market. Evaluations show that our framework is capable of efficiently capturing app lifecy-

cle events, imposing a negligible performance overhead. The proposed framework provides

easy-to-use APIs on which new features can be developed. It empowers device vendors

and app developers to leverage the ALG and event contexts to realize accurate detection of

diehard behaviors and component-level, fine-grained control on app lifecycle.

79

CHAPTER V

Towards Secure Configurations for Real-World

Programmable Logic Controller Programs

In this chapter, we present our study on the data access interfaces and their usage in

modern Industrial Control Systems (ICS), where we identify insecure configurations in

Programmable Logic Controller (PLC) programs that can be abused to cause safety viola-

tions. We manage to solve challenges in handling non-standard, vendor-specific program

instructions, modeling controller scan cycle, and gathering safety-critical hardware output.

This work can help ICS administrators and process engineers make secure configurations

for PLC programs and prevent abuses.

5.1 Introduction

In recent years, industrial control systems are going beyond the factory floor. They in-

corporate industrial Internet-of-things (IIoT) devices to gather richer production data from

plants, and utilize enterprise resource planning (ERP) tools to realize more intelligent deci-

sion making [147, 102]. These advancements would not be possible without the increasing

connectivity and interoperability of the industrial control systems. Heterogeneous devices

(e.g., sensors, robots, motors, and drives) are able to communicate via industrial networks

using dedicated protocols such as EtherNet/IP. Hardware tools, process controllers, and

80

software applications can interact using common languages. For example, modularized de-

vice functionalities are exposed so that they can be programmatically operated by process

controllers. Meanwhile, the adoption of big data analytics requires more and more data to

be collected from individual devices.

In support of the increasing connectivity and interoperability, not only between hard-

ware devices but also across hardware and software boundaries, industrial equipment and

software tools have to open more communication and control interfaces. As a matter

of fact, industrial standards and specifications have been developed for use in field data

retrieval and process control. The most popular ones are Open Platform Communica-

tions (OPC) [52] and MTConnect [51]. These technologies, together with modern PLCs,

have brought flexibility, reconfigurability, and reliability to industrial control systems.

Unfortunately, those interfaces that provide the unified data access and control capabili-

ties (1) inevitably expand the attack surface of industrial control systems and (2) drastically

increase the complexity of controller programs. Many people still believe in the “air gap”,

a philosophy that says we can truly isolate critical systems from the outside world, but in

reality air gaps do not work [65, 85]. This means the expanded attack surface in the indus-

trial control systems, which are oftentimes isolated from the Internet, can still be abused

and exploited by external attackers, not to mention insider adversaries. Compared to attacks

targeting on software systems that often aim to make profits or steal data, cyber attacks on

factory plants are intended to sabotage physical infrastructures. We have witnessed inci-

dents, including Stuxnet [85], German Steel Mill cyber attack [105], and Ukrainian Power

Grid attack [70], where external adversaries first managed to hack into the plants and then

manipulated critical safety parameters, such as the frequency of nuclear centrifuges [104].

The increased complexity makes process control programming more error-prone. This can

lead to anomalous automation behaviors that are difficult to debug and safety violations

that sometimes cause fatal accidents [49, 50].

In view of these problems, we need a better understanding of today’s PLC programs,

81

especially their potential security/safety loopholes resulting from insufficiently protected

data access and control interfaces. Existing work on analyzing PLC programs goes

with two major directions, both having significant limitations. First, there is existing re-

search [98, 117, 118, 63, 62] that aims to verify PLC logic statically in a formal manner,

but such static analysis techniques suffer from significant false positives due to the lack

of runtime physical contexts. Because of the condition-based programming model of PLC

programs, static analysis approaches may find potentially problematic code paths that are

never executed at runtime. For example, a piece of code leading to a safety violation is trig-

gered when the conveyor speed exceeds 20 miles per hour. However, due to the physical

constraints of the motor or the output limit of the drive, the conveyor may never go that fast.

Second, to overcome the aforementioned limitations, prior work [81, 89, 95, 100, 114, 122]

has explored the application of simulations and symbolic execution to identify safety vi-

olations. In spite of being effective in finding bugs in the internal logic of independent

PLC programs, these techniques do not take into consideration the interoperations between

PLCs and controlled devices, as well as software programs. In addition, the unavailability

of real-world PLC programs hinders the practicality of existing work.

In this work, we conduct the first analysis of real-world PLC programs to detect po-

tential safety violations caused by abuses of data access and control interfaces. Unlike

prior work that mostly uses benchmark programs, programs on educational platforms, or

experimental, software controller programs, we collect over 800 real-world PLC programs

from the industry-leading PLC vendor, Rockwell Automation. We design and implement

PLCAnalyzer, which translates Rockwell PLC programs into equivalent C code and then

performs static taint analysis. Specifically, it detects code paths that start from exposed

interfaces and eventually reach safety-critical variables, such as motor speed and drive

voltage. Results produced by PLCAnalyzer are further validated, using Rockwell PLC em-

ulators. Our findings reveal several common problems in the PLC programming paradigm.

First, exposed data access and control interfaces are insufficiently protected, due to both

82

developers’ ignorance and inadequate security mechanism of PLCs. This allows adversar-

ial to easily modify system parameters and cause safety issues. Second, add-on instruc-

tions (AOI) being widely used in the industry have direct access to hardware, but they do

not validate input at all, allowing adversaries to trigger safety violations by simply control-

ling AOI inputs.

We make the following contributions in this work:

• We study over 800 real-world PLC programs from various industries and identify

common problems that have critical safety implications. To the best of our knowl-

edge, this is the first work that uses such a practical dataset and reveals previously

overlooked, non-contrieved issues.

• We present PLCAnalyzer, a tool that automatically analyzes PLC programs for

safety-critical code paths that are reachable from exposed data access interfaces. We

identify 176 critical paths among 433 complete programs.

• We identify AOIs that have direct access to hardware but perform no input validation.

We propose and discuss defense mechanisms for preventing exposed interfaces from

being abused and exploited.

5.2 PLC and Data Access

5.2.1 Programmable Logic Controller (PLC)

The primary use of PLCs is to control a collection of processes on the factory floors

and plants. PLCs have been widely adopted as highly reliable automation controllers for

a wide range of industries [53], such as chemical, automotive, oil and gas, energy, and so

on. PLCs run the programs in an infinite loop where each iteration, namely a scan cycle,

consists of three main phases.

83

1. Input. The PLC scans inputs from external sources (e.g., RFID sensors, motors) and

buffers them in its memory as a list of variables (also called tags).

2. Execution. The PLC runs programs from beginning to the end, calculating new vari-

able values based on program logic. Variable values in the memory are updated.

3. Output. The PLC writes updated variables altogether to external sources. Then the

PLC is ready for the next cycle.

IEC 61131-3 is the de facto standard that specifies the syntax and semantics of a unified

suite of programming languages for PLCs. It defines five different programming languages,

including three graphical languages (i.e., ladder diagram, function block diagram, and se-

quential function chart) and two textual programming languages (i.e., instruction list and

structured text). However, the IEC 61131-3 specification only provides a minimum set of

functionality that can be extended to meet end-user application needs. The downside is

that each PLC vendor may implement different components of the specification or provide

different extensions. Moreover, the instruction set specified by IEC 61131-3 is entirely

optional [58]. All major PLC vendors have developed their own instruction sets. As a

result, existing work [126, 125, 114] on static code analysis of IEC 61131-3 programs are

therefore incapable of dealing with real-world PLC programs.

5.2.2 Data Access

Modern PLCs adopt tag name based memory mapping. A tag is the name for a specific

memory location, and it also has a data type assigned. Process engineers can use tag names

in their PLC programs to store and access data. In addition, tag names can also be bond to

PLC inputs and outputs, making it easier to programmatically operate external hardware.

There are two types of tags, controller tags and program tags. Controller tags are global

variables that are visible for all devices on the same network via OPC, whereas program

tags have a very limited scope that is only visible inside a PLC program. Both controller

84

tags and program tags have the an attribute that speicifies their accessibility, read-only (i.e.,

ro) or readable/writable (i.e., r/w).

OPC is a standard interface to communicate between numerous data sources, includ-

ing devices on a factory floor, laboratory equipment, test system fixtures, and databases.

To alleviate duplication efforts in developing device-specific protocols, eliminate inconsis-

tencies between devices, provide support for hardware feature changes, and avoid access

conflicts in industrial control systems, the OPC Foundation defined a set of standard inter-

faces that allow any client to access any OPC-compatible device through an OPC server.

Most suppliers of industrial data acquisition and control devices, including PLCs, are de-

signed to work with the OPC standard. The OPC Unified Architecture (UA), released in

2008, is a platform-independent service-oriented architecture that integrates all the func-

tionality of the individual OPC classic specifications into one extensible framework. OPC

UA starts providing limited security guarantees to authenticate client identify and authorize

access requests.

5.3 Threat Model

Figure 5.1: An Allen-Bradley ControlLogix 5563 PLC.

We assume that the attacker has managed to hack into an industrial control system and

85

has compromised at least one device in the control network, but he/she cannot reprogram

PLCs directly to inject malicious code that deliberately causes safety violations and phys-

ical damages. Instead, the attacker can abuse open but insufficiently protected data access

and control interfaces to alter certain PLC program variables. This threat model is more

realistic than existing work (e.g., TSV [114], SABOT [113] and the reasons are two-fold.

First, one real-world plants, new generation PLCs have a physical switch that prevents

reprogramming during operation. As Figure 5.1 shows, the switch controls three modes,

RUN, REM, and PROG. If the PLC is in the RUN mode, no changes can be made to the

programs. It is impossible to reprogram the PLC if the attacker has no physical access.

Second, PLC programs are relatively stable, and they do not need to be updated for months

or even years. Therefore, the mode will not be updated frequently, leaving attackers tiny

window for reprogramming the PLC.

5.3.1 Motivating Example

Exposed data access and control interfaces can be exploited to launch attacks. A con-

crete example from a genuine PLC program is illustrated in Figure 5.2. The controller

tag CNC1Bools.0 is set as externally readable and writable, and its value controls an-

other tag, RunPartOnCNC1. When RunPartOnCNC1 is true, ToCNC1.Bools.0

becomes true as well. There exists a data flow CNC1Bools.0 → RunPartOnCNC1

→ ToCNC1.Bools.0. Since CNC1Bools.0 is exposed and could be controlled by ad-

versaries in our threat model, the output ToCNC1.Bools.0 therefore could be indirectly

controlled by adversaries too. However, ToCNC1.Bools.0 is safety critical because it

controls the robot arm’s behaviors. If it is true the robot picks up incoming parts from

conveyor and drops them into the CNC. While the CNC is processing the current part,

ToCNC1.Bools.0 is supposed to be false, meaning that the CNC is not ready for

handling the next part. An attacker, by controlling CNC1Bools.0 exposed through the

data access interface, can trigger an overloading attack on the CNC by deliberately chang-

86

ing its value to true.

Figure 5.2: Example ladder logic with an exposed variable CNC1Bools.0.

5.4 Design and Implementation

Data access and control interfaces exposed on the control network but insufficiently

protected can be abused to (1) access confidential production data and (2) trigger control

program logic that can modify safety-critical system parameters. Compared to attacks

that directly reprogram control logic, causing safety violations through the manipulation

of tag values is much more subtle and stealthy, because there will not be visible changes

happening.

As we have described in §5.2.2, a PLC program has controller tags that are globally

visible on the control network. In this PLC programming model, there are two potential

issues:

• If a tag is only used inside a program—meaning it is supposed to be a program tag

that has limited visibility—but it is defined as a controller tag, internal program state

or production data can be leaked.

• If a controller tag’s access attribute is r/w, it is vulnerable to attacker manipula-

tion. Once an attacker-controlled value propagates to a safety-critical physical out-

87

put, safety violation can be caused.

Figure 5.3: Safety-critical path illustration.

More specifically, we consider a tag to be leaked if its value comes from production

equipment and it should be a program tag but in reality it is defined as a controller tag.

We consider a controller tag to be dangerous if it is readable and writable, and its value

eventually has an influence on any physical output. As illustrated in Figure 5.3, a critical

path is a code path along which an exposed dangerous tag finally reaches a physical output.

To automatically and accurately identify leaked tags and dangerous tags, as well as crit-

ical paths in PLC programs, we propose PLCAnalyzer, a static analysis tool that translates

PLC code into C equivalent and performs data flow analysis.

5.4.1 PLCAnalyzer Overview

The overall steps of PLCAnalyzer are shown in Figure 5.4. The PLC-C translator takes

PLC code as input and generates the corresponding C equivalent. PLC data structures

are transformed into C structs. Controller tags and program tags are converted into C

global variables and local variables, respectively. Their access properties are recorded as

well. Intra-procedural data flow analysis and inter-procedural data flow analysis as a whole

identify all leaked tags, dangerous tags, and critical paths. An analysis report is generated

at the end, which will be further examined manually.

88

PLC-C Translator

Intra-procedural
Data Flow Analysis

Inter-procedural
Data Flow Analysis

Tag/Variable
Property Analysis

Taint
Analysis

Analysis Report

Figure 5.4: PLCAnalyzer analysis steps.

Identifying leaked variables relies on the knowledge of sensitive program inputs from

controlled devices. For example, a quality control camera measures final product dimen-

sions. This information is considered as a factory secret and therefore it needs to be pro-

tected. However, if a PLC program requires dimension data from quality control camera

and the data is used somewhere else, this data could eventually flow to a global tag/variable

that is globally visible on the control network. To detect such code paths, we need a list of

sensitive inputs from controlled devices. Similarly, for detecting dangerous variables, we

need a list of outputs that are finally written to physical outputs of controlled devices and

change their physical states, such as motor speed. We obtain senstive inputs and outputs

from hardware manuals.

5.4.2 Translating PLC Code

Our study emphasis is real-world PLC code that is beyond the IEC 61131-3 standard.

Existing tools (e.g., the Matiec compiler [24]) that are built to translate and compile PLC

code complying the standard are therefore incompetent. We have implemented our own

PLC-C translator, whose workflow is illustrated in Figure 5.5. Note that the Rockwell

89

PLC code is in l5x1, a proprietary but well-documented format. Each program consists of

multiple routines, which are similar to functions in C. The main routine is the entrance of

a program, similar to the main function of a C program. After extracting tags and routines,

we leverage Instaparse to develop a parser by describing the grammar in Backus–Naur

form, as Figure 5.6 shows. The parser produces an abstract syntax tree (AST), on which

we perform a semantic analysis to translate PLC instructions into C code. We implement

the PLC-C translator in Clojure with 1,374 lines of code.

Tag &

Routine

Extraction

Routine

Parser

Semantic

Analysis

AST

Project.L5X

Translation
Routine1.c Routine2.c

…

Figure 5.5: Translating PLC code into C.

1 <S> = routine
2 routine = rung+
3 rung = (instruction | branch)+ ’;’ <newline>*
4 branch-level = ((instruction | branch) ’ ’*)+
5 branch = ’[’ (branch-level ’,’)+ branch-level ’]’
6 instruction-name = "EQU" | "XIC" | "CMP" | "XIO" | \
7 "MOV" | "XIC" | "OTL" | "OTE" | "FLL" | "NEQ" | \
8 "XIO" | "RES" | "LES" | "TON" | "CTU" | "NOP" | \
9 "SUB" | "MUL" | "ADD" | "DIV" | "BTD" | "COP" | \

10 "GSV" | "ONS" | "OTE" | "MOD" | "GEQ" | "CLR" | \
11 "OTU" | "JSR" | "OSR" | "GRT" | "AFI" | "LEQ" | \
12 "CPT" | "FOR" | "MSG" | "LBL" | "JMP" | "MID" | \
13 "SWPB" | "DELETE" | "OR" | "AND" | "SBR" | \
14 "RET" | "CONCAT"
15 instruction-arg = (tag-name | integer | float | ’?’)
16 instruction-args = instruction-arg (’,’ instruction-arg)*
17 instruction = instruction-name ’(’ instruction-args? ’)’
18 tag-name = #’[a-zA-Z_]+[0-9a-zA-Z_\[\]\.:]*’
19 integer = ’-’ ? #’[0-9]+’
20 float = #’[-+]?[0-9]*\.[0-9]+’
21 newline = <’\r’ ? ’\n’>

Figure 5.6: Description of l5x grammar in Backus–Naur form.

1l5x is short for RSLogix 5000

90

5.4.3 Tag Property Analysis

Tags are defined in a dedicated section of l5x files. Besides name, each tag has sev-

eral other attributes, including Class, TagType, DataType, and ExternalAccess.

A controller tag is considered to be exposed if its ExternalAccess attribute value is

“Read/Write.” To further unveil the potential attack surface, we analyze the scope of tags.

If a controller tag is only used by one routine, then it should be set as a local variable in

this particular routine. If a writable global tag is ever written by only one routine, it does

not have to support external access, meaning the ExternalAccess attribute can just be

“ReadOnly.” The analysis result generated in this phase will be used in the following steps

for identifying critical paths.

5.4.4 Taint Analysis

There are two types of critical paths in the data flow analysis phase, i.e., (1) intra-

procedure critical paths and (2) inter-procedure critical paths. In an intra-procedure critical

path, the starting point (use of global variables) and the ending point (the definition of a

variable) are in the same procedure, and no call instructions are in this path. To analyze

intra-procedure critical paths, PLCAnalyzer conducts data flow analysis to find all the defi-

nition dependence’s reaching definitions, and repeat this process recursively, until it finds a

use of global variables. In an inter-procedure critical path, the starting point (use of global

variables) and the ending point (the definition of a variable) are in different procedures,

and there are call instructions connecting the path. To find an inter-procedure critical path,

PLCAnalyzer uses the information retrieved from intra-procedure critical path phase, also

identifying intermediate paths from function arguments to variables definitions inside func-

tions, and then iterates through the function calling tree to find out whether the intermediate

paths can be connected and related to a global variable.

While the data flow analysis can reveal all the possible critical paths, there could be

exposed variables that indirectly influence hardware output through control flows. For

91

example, if a condition of a branch instruction is on a critical path, and the condition be-

ing checked involves an exposed variable, an attacker can control which branch the pro-

gram will go into at runtime. To capture exposed variables used in conditions on critical

paths, PLCAnalyzer applies control flow analysis to find out the conditions of entering ba-

sic blocks, and labels those variable definitions in basic blocks whose conditions are on

critical paths. Each labeled definition is also dangerous. Then PLCAnalyzer will update

the set of dangerous definitions.

As PLCAnalyzer is adding new dangerous definitions during control flow analysis, it

can possibly reveal more data flow critical paths. The analyzer will repeat data flow analysis

and control flow analysis until the size of critical paths and the size of dangerous definitions

do not grow anymore. We utilize LLVM to implement the static taint analysis on the

translated C code, with around 1,000 lines of code.

5.5 Evaluation

5.5.1 Dataset

Due to the lack of a real-world PLC program dataset, prior work had to use contrived

programs to conduct evaluations. We have managed to collect the first real-world PLC

program dataset from Rockwell code repository, including over 863 user-submitted code

samples. Figure 5.7 summarizes the categories this dataset covers, including programmable

controllers (i.e., PLCs), operator interface, partner products, software, motion control, and

so on. The number of PLC programs is 458.

5.5.2 Results

Our results show that it is a common problem that PLC programs’ tags have incorrectly

configured visibility and accessibility. Among 458 PLC programs, 433 are complete and

can be successfully translated into C. We identify 176 critical paths and 1,442 exposed

92

Figure 5.7: Dataset overview

PLC tags. The numbers of critical paths, grouped by PLC firmware versions, are shown in

Figure 5.8. Add-on instructions (AOIs) are similar to software libraries that can be reused

by different programs. We find 117 out of 388 AOIs directly control hardware outputs, but

no safety violation checks are employed.

We take the program for the ArmorStart Motor Controller as an example to illustrate

the functions of PLCAnalyzer. After converting the PLC code to C code (see Figure 5.9

and Figure 5.10), we apply PLCAnalyzer and obtain the analysis report. In the C code,

there are several global variables at the beginning, translated from PLC tags. There is

also a function AS 284E AOI translated from the corresponding AOI. In the main func-

tion, global variables are initialized with default values and the AS 284E AOI function is

called in the end. Note that scaled speed, an exposed global variable is passed to the

function as the second argument. Inside the AS 284E AOI function, the second argument

Inp Scaled Speed At 400Hz, is used to compute the physical output, out speed.

Since Inp Scaled Speed At 400Hz is actually coming from the main function with

the value of scaled speed, an attacker can manipulate motor output by changing the

value of the exposed variable scaled speed. In fact, the value of out speed depends

93

1
5

.0
1

1
6

.0
0

1
6

.0
3

1
6

.0
4

1
7

.0
0

1
8

.0
0

1
8

.0
2

1
9

.0
0

1
9

.0
1

2
0

.0
1

2
0

.0
3

2
0

.0
4

2
1

.0
0

2
1

.0
3

2
3

.0
0

2
4

.0
0

2
4

.0
1

2
8

.0
0

2
8

.0
2

3
0

.0
0

Firmware Version

0

10

20

30

40

#
 C

ri
ti
c
a
l
P

a
th

s

Figure 5.8: By PLC firmware version

on two variables (line 7 and 10 in Figure 5.10), but Set SpeedOper is a local variable,

i.e., an unexposed tag, and attackers have no way to modify it. Based on the report, we can

figure out a critical path, i.e., scaled speed → Inp Scaled Speed At 400Hz →

out speed. Therefore, a potential safety violation is detected.

We model the PLC scan cycle as an iteration of an infinite loop. We define taint sources

as globally visible, writable input variables exposed to attackers, and taint sinks as state-

ments and instructions that modify the physical output. PLC programs have no pointer

ambiguity, therefore point-to analysis is not needed.

5.5.3 Add-On Instructions (AOI)

In the dataset, we observe a number of AOIs, which are similar to libraries in software

engineering. AOIs can be easily reused by other parties. Similar to importing a software

library, PLC program developers can simply import compatible AOIs into their programs.

Nevertheless, a potential problem of using AOIs is that AOIs usually take a reference to

the hardware output module and update the hardware output inside AOI logic, which is a

blackbox to PLC program developers. AOI implementations are supposed to be general,

because AOI developers have no idea of the use scenarios. As a result, it is inappropriate

94

1 int scaled_speed;
2 bool Sts_OperatorModeEnabled;
3 bool Sts_ProgramModeEnabled;
4

5 int main() {
6 Inp_AS_284E in;
7 Out_AS_284E out;
8 Sts_OperatorModeEnabled = true;
9 Sts_ProgramModeEnabled = false;

10 scaled_speed = 200;
11

12 AS_284E_AOI(&in, scaled_speed); //Speed control
13 }

Figure 5.9: C code converted from a real-world PLC program: global variables and the
main function.

to perform safety checks inside AOIs. For instance, depending on whether a motor is used

to drive a drill or a conveyor, the speed ranges that are considered to be safe are different.

Even for conveyors, in different factories or on different assembly lines, the safe speeds

differ, too.

Besides AS 284E AOI, we have identified six other AOIs whose outputs can be af-

fected by attacker controlled tag values. They are summarized in Table 5.1. We find that

the PowerFlex525 Variable Frequency Drive (VFD) has a variable Freq that controls its

speed. Three other variables that are used to calculate Freq are SpdRef, SpdScaler,

and GearRatio. An attacker can control drive speed by altering either of them, as these

three variables are globally visible and writable to all devices in the same network. VFD

speed is supposed to be within a safe range, and there would be a safety violation if it is

too high.

5.5.4 Validating Results

Compared to software programs, PLC programs control heterogeneous hardware tools

and the output is therefore highly dependent on the physical settings of a plant. Even

though we have real-world PLC programs, we still cannot run them because of the lack of

95

1 void AS_284E_AOI(Inp_AS_284E *in, int Inp_Scaled_Speed_At_400Hz) {
2 int Set_SpeedOper = 10;
3 int Set_SpeedProg = 20;
4 int out_speed = 0; // Output motor speed
5

6 if (Sts_OperatorModeEnabled) {
7 out_speed = Set_SpeedOper * 4000 / Inp_Scaled_Speed_At_400Hz;
8 }
9 if (Sts_ProgramModeEnabled) {

10 out_speed = Set_SpeedProg * 4000 / Inp_Scaled_Speed_At_400Hz;
11 }
12 }

Figure 5.10: C code converted from a real-world PLC program: the AS 284E AOI func-
tion.

Table 5.1: AOIs that can be exploited by attackers to manipulate physical output.

Target hardware Purpose Outcome
45LMS Laser
Measurement Sensor

Laser measurement
sensor configuration

Incorrect measured distance.
Changing imperial unit to metric unit.

PowerFlex525 Variable
Frequency Drive (VFD)

VFD configuration Taking over speed control.

AMCI 7662 I/O Module Analogue data conversion Modifying output data.
Mettle Toledo Scale Scale setup Causing inaccurate calibration.
MVI56-MCM Modbus master/slave setup Denial-of-service of slave devices.
1769-SM2
Multi-Drive Control

Connection configuration
for AC drives

Controlling drive output.

controlled hardware. More importantly, it is impossible for us to set up an environment

to run the programs, as we have no knowledge on what the real settings look like. PLC

program developers only submitted their programs to the repository.

To overcome this challenge and validate the critical paths PLCAnalyzer has detected,

we use Studio 5000 Logix Emulate, a commercial software product from Rockwell. From a

PLC program’s perspective, hardware input and output are also in the form of tags. Despite

that we do not have required hardware, we can create tags in the same structures of hard-

ware input and output, and these synthetic tags can be used to run the program. However,

this emulator has strict firmware version control. The only PLC versions we can emulate

are 28.00 and 28.02. We have identified four critical paths for version 28.00 and eight for

96

version 28.02: all 12 of them have been validated with the emulator.

5.6 Discussion

Limitation in the Common Industrial Protocol (CIP). Because of the limited capabilities

of PLCs, existing industrial network protocols only support coarse-grained access control

of tags. Figure 5.11 illustrates how data items are organized in CIP. On the CIP network,

each device has its unique device ID. Data types are organized into classes (i.e., Variable

Frequency Drive) that have various attributes. There could exist multiple instances (i.e.,

VFD1, VFD2) of a class. Current, CIP access control is per instance, meaning that even

if only one attribute needs to be exposed, the entire instance has to be exposed. In other

words, CIP does not support access control per object attribute, not to mention contextual

integrity.

 VFD2
SpdRef

 SpdScaler

Variable Frequency
Drive (VFD)

VFD1

Robot

Robot1

 DEV#2

DEV#4

DEV#4:VFD:VFD2:SpdRef

……

 GearRatio

Industrial network

Figure 5.11: Data organization in CIP.

Fine-grained access control. The CIP limitation calls for a context-aware, fine-grained

control framework, which is transparent to both factory floor equipment and controller

programs. As real-world PLC firmware is proprietary, we are unable to make any changes

97

to it. Existing host- and network-based access control mechanisms do not suffice for ICS

because they oftentimes overlook the underlying physical components. CPAC [84] is a

cyber-physical access-control for energy management systems, but it requires firmware

customization of controllers and is thus not practical. In contrast, we can enforce access

control rules at the network layer and leverages policies that can be physical-device specific.

We need to address challenges in efficiently intercepting and inspecting industrial network

traffic, analyzing industrial protocols, and accurately identifying objects, instances, and

attributes from packets. User-defined policies are applied at a per-packet basis at a vantage

point where traffic from all the devices goes through, e.g., the main switch. Policies should

specify which device has access to which set of program variables. For example, only the

human-machine interface can change variable PowerFlex525’s attribute GearRatio

that can change drive speed in manual operating mode.

5.7 Conclusion

In this work, we make the very first step towards detecting potential safety violations

caused by incorrect variable visibility and accessibility settings in real-world PLC pro-

grams. We design and develop PLCAnalyzer which employs control and data flow analy-

ses to find out critical paths from globally visible and accessible PLC tags to safety critical

physical outputs. However, our current prototype has limitations in finding device-specific

critical paths related to physical properties and functionality.

98

CHAPTER VI

The Misuse of Android Unix Domain Sockets and Security

Implications

This chapter presents our work on exposed native IPC endpoints in Android. We find

both implementation and configuration issues in using Unix domain sockets among system

daemons and applications. This work is the first systematic study in understanding the

security properties of the usage of Unix domain sockets for cross-layer communications

between the Java and native layers. We propose a tool called SInspector to detect potential

security vulnerabilities in using Unix domain sockets through the process of identifying

socket addresses, detecting authentication checks, and performing data flow analysis. Our

in-depth analysis reveals some serious vulnerabilities in popular applications and system

daemons, such as root privilege escalation and arbitrary file access. Based on our findings,

we propose countermeasures and improved practices for utilizing Unix domain sockets on

Android, from both implementation and SEAndroid configuration perspectives. This work

can help application and system developers secure exposed Unix domain socket interfaces.

6.1 Introduction

Inter-process communication (IPC) is one of the most fundamental features provided

by modern operating systems. IPC makes it possible for different processes to cooperate,

99

enriching the functionalities an operating system can offer to end users. In the context

of Android, one of the most popular mobile operating systems to date, to support com-

munications between different apps and interactions between different components of the

same app, it provides a set of easy-to-use, Android-specific IPC mechanisms, primarily

including Intents, Binder, and Messenger [9, 29]. However, Android IPCs are meanwhile

significant attack vectors that can be leveraged to carry out attacks such as confused deputy

and man-in-the-middle [92, 64, 76, 78].

While Android relies upon a tailored Linux environment, it still inherits a subset of tra-

ditional/native Linux IPCs (which are distinct from Android IPCs), such as signals, Netlink

sockets, and Unix domain sockets. In fact, they are heavily utilized by the native layer of

the Android runtime. Exposed Linux IPC channels, if not properly protected, could be

abused by adversaries to exploit vulnerabilities within privileged system daemons and the

kernel. Several vulnerabilities (e.g., CVE-2011-1823, CVE-2011-3918, and CVE-2015-

6841) have already been reported. Vendor customizations make things worse, as they ex-

pose additional Linux IPC channels: CVE-2013-4777 and CVE-2013-5933. Nevertheless,

the use of Linux IPCs on Android has not yet been systematically studied.

In addition to the Android system, apps also have access to the Linux IPCs imple-

mented within Android. Among them, Unix domain sockets are the only one apps can eas-

ily make use of: signals are not capable of carrying data and not suitable for bidirectional

communications; Netlink sockets are geared for communications across the kernel space

and the user space. The Android software development kit (SDK) provides developers Java

APIs for using Unix domain sockets. Meanwhile, Android’s native development kit (NDK)

also provides native APIs for accessing low-level Linux features, including Unix domain

sockets. Unix domain sockets are also known as local sockets, a term which we use inter-

changeably. They are completely different from the “local socket” in ScreenMilker [107],

which refers to a TCP socket used for local IPC instead of network communication.

Many developers use Unix domain sockets in their apps, despite the fact that Google’s

100

best practices encourage them to use Android IPCs [9]. The reason being Android IPCs are

not suited to support communications between an app’s Java and native processes/threads.

While there are APIs available in SDK, no such API exists in the native layer. As a result,

developers must resort to using Unix domain sockets to realize cross-layer IPC. Further-

more, some developers port existing Linux programs and libraries, which already utilize

Unix domain sockets, to the Android platform.

Android IPCs are well documented on the official developer website, replete with train-

ing materials and examples. This helps educate developers on best practices and secure

implementations. However, there is little documentation about Unix domain sockets, leav-

ing developers to use them as they see fit — this may result in vulnerable implementations.

Moreover, using Unix domain sockets securely requires expertise in both Linux’s and An-

droid’s security models, which developers may not have.

Motivated by the above facts, we undertake the first systematic study focusing on the

use of Unix domain sockets on Android. We present SInspector, a tool for automatically

vetting apps and system daemons with the goal of discovering potential misuse of Unix

domain sockets. Given a set of apps, SInspector first identifies ones that use Unix domain

sockets based on API signatures and permissions. SInspector then filters out apps that use

Unix domain sockets securely and thus are not vulnerable. We develop several techniques

to achieve this, such as socket address analysis and authentication check detection. For

system daemons, SInspector collects runtime information to assist static analysis. SInspec-

tor reports potentially vulnerable apps and system daemons for manual examination. We

also categorize Unix domain socket usage, any security measures employed by existing

apps and system daemons, and common mistakes made by developers. From this study,

we suggest countermeasures in regard to OS-level changes and secure Unix domain socket

IPC for both app and system developers. In this work, we do not consider network sockets,

as local IPC is not their common usage.

We find that only 26.8% apps and 15% system daemons in our dataset enforce proper

101

security checks in order to prevent attacks exploiting Unix domain socket channels. All

apps using a particular Unix domain socket namespace are vulnerable to at least DoS at-

tacks. We uncover a number of serious vulnerabilities in apps. For example, we are able to

gain root privilege by exploiting a popular root management tool, as well as grant/deny any

other app’s root access, without any user awareness. Moreover, we discover vulnerabilities

with customizations on LG phones and daemons implemented by Qualcomm. These vul-

nerabilities allow us to factory reset the device, toggle the SIM card, and modify system

date and time.

In summary, we make the following contributions in this work:

• We develop SInspector for analyzing apps and system daemons to discover poten-

tial vulnerabilities they expose through Unix domain socket channels. We overcome

challenges in identifying socket addresses, detecting authentication checks, and per-

forming data flow analysis on native code.

• Using SInspector, we perform the first study of Unix domain sockets on Android,

including the categorization of usage, existing security measures being enforced, and

common flaws and security implications. We analyze 14,644 apps and 60 system

daemons, finding that 45 apps, as well as 9 system daemons, have vulnerabilities,

some of which are very serious.

• We conduct an in-depth analysis of vulnerable apps and daemons that fail to prop-

erly protect Unix domain socket channels, and suggest countermeasures and better

practices for utilizing Unix domain sockets.

6.2 Unix Domain Sockets

As we have mentioned in §2.3, Android claims that “Developers less familiar with

security practices will be protected by safe defaults.” [8] However, Unix domain sockets

undermine this security philosophy. They are unable to achieve the same guarantees as well

102

as the Android IPCs. In particular, according to our analysis, Android APIs for using Unix

domain sockets expose unprotected socket channels by default.

A Unix domain socket is a data communications endpoint for exchanging data between

processes executing within the same host operating system. It supports the transmission of

a reliable stream of bytes (SOCK STREAM, similar to TCP). In addition, it supports ordered

and reliable transmission of datagrams (SOCK SEQPACKET), or unordered and unreliable

transmission of datagrams (SOCK DGRAM, similar to UDP).

Unix domain sockets differ from Internet sockets in that (1) rather than using an un-

derlying network protocol, all communication occurs entirely within the operating system

kernel; and (2) servers listen on addresses in Unix domain socket namespaces, instead of

IP addresses with port numbers. Traditionally, there are two Unix domain socket address

namespaces, as shown in Table 6.1.

Table 6.1: Unix domain socket namespaces.

Namespace Has socket file Security enforcement
SELinux File permission

FILESYSTEM YES YES YES
ABSTRACT NO YES N/A

FILESYSTEM. An address in this namespace is associated with a file on the filesys-

tem. When the server binds to an address (a file path), a socket file is automatically created.

Socket file permissions are enforced by Linux’s discretionary access control (DAC) system.

The server must have the privilege to create the file with the given pathname, otherwise

binding fails. Other processes who want to communicate with the server must have read-

/write privileges for the socket file. By setting permissions of the socket file properly, the

server can prevent unauthorized connections. The Android framework introduces a new

namespace called RESERVED, which is essentially a sub-namespace of FILESYSTEM.

Socket files are located in a dedicated directory, /dev/socket/, reserved for system

use.

ABSTRACT. This namespace is completely independent of the filesystem. No file per-

103

missions can be applied to sockets under this namespace. In native code, an ABSTRACT

socket address is distinguished from a FILESYSTEM socket by setting sun path[0] to

a null byte ‘\0’.

The Android framework provides APIs for using Unix domain sockets from both Java

code and native code. These APIs use ABSTRACT as the default namespace, unless de-

velopers explicitly specify a preferred namespace. All Unix domain socket addresses are

publicly accessible from file /proc/net/unix/. SELinux supports fine-grained access

control for both FILESYSTEM and ABSTRACT sockets, so does SEAndroid. Compared

to FILESYSTEM sockets, ABSTRACT sockets are less secure as DAC does not apply.

However, they are more reliable; communication over a FILESYSTEM socket could be

interrupted if the socket file is somehow deleted.

6.2.1 Threat Model and Assumptions

Unix domain sockets are designed for local communications only, which means the

client and server processes must be on the same host OS. Therefore, they are inaccessi-

ble for remote network-based attackers. Our threat model assumes a malicious app that

attempts to exploit exposed Unix domain socket channels is installed on the user device.

This is realistic since calling Unix domain socket APIs only requires the INTERNET per-

mission, which is so commonly used [3] that the attacker can easily repackage malicious

payloads into popular apps and redistribute them. The attacker may also build a standalone

exploit app which evades anti-malware products due to its perceived low privilege.

Table 6.2: Types of attacks by exploiting Unix domain sockets.

Role Prerequisite(s) Attacks

Malicous Server
1) Start running ahead of the real server
2) Client has no/weak authentication of server

Data Leakage/Injection, DoS

Malicous Client Server has no/weak authentication of client
Privilege Escalation,
Data Leakage/Injection, DoS

We summarize attacks malware can launch in Table 6.2. It is able to impersonate either

104

a client or a server to talk to the reciprocal host. A rogue Unix domain socket server could

obtain sensitive data from clients or feed clients fake data to impact client functionality. A

mock Unix domain socket client could access server data or leverage the server as a con-

fused deputy [96]. In general, we classify a Unix domain socket as vulnerable if the server

accepts valid commands through its socket channel without performing any authentication

or similarly a client connects to a server without properly authenticating the server. This

allows a nefarious user to retrieve sensitive information or access otherwise restricted re-

sources through the Unix domain socket server/client it communicates with. Moreover, an

ABSTRACT address can only be bound to by one thread/process. Apps using ABSTRACT

namespace are vulnerable to DoS because their addresses could be occupied by malware.

6.3 Design and Implementation

The goal of SInspector is to examine the use of Unix domain socket in apps and system

daemons, and identify those that are most likely vulnerable for validation. In this section,

we describe our design and implementation of SInspector.

An ideal solution is to analyze all program paths in a program starting from the point

of accepting a Unix domain socket connection, and then identify whether critical functions

(end points) can be invoked without encountering any security checks. However, it is not

practical for us to define a comprehensive list of end points and use dependencies between

entry and end points to reason whether an app is vulnerable. First of all, apps may contain

native libraries/executables, in which they make system calls to implement certain func-

tionality, but there is no mapping between Android permissions and Linux system calls.

It is imprecise to identify app behaviors based on system calls they make. Second, in our

threat model, the malware runs on the same device as the vulnerable app/system daemon

to be exploited, thus any data leaked from the target app/system daemon can possibly be a

building block for more sophisticated attacks. However, it unknown to us which end points

are potentially related to data leakage. More importantly, an incomplete list of end points

105

would result in significant false negatives.

Therefore, to evaluate which apps/system daemons are vulnerable, we choose to con-

servatively filter out apps and system daemons that are definitely not vulnerable (denoted

by Snv) — the others are considered to be potentially vulnerable (denoted by Spv) — in-

stead of directly identifying vulnerable apps. We have Spv = S − Snv, where S represents

the whole set of apps/system daemons.

6.3.1 Our Approach

Due to the different characteristics of apps and system daemons, we adopt different

techniques to analyze them. Figure 6.1 shows the modules and overall analysis steps of

SInspector. Each step rules out a subset of apps/system daemons that are not vulnerable.

6.3.1.1 App Analysis

Given a set of apps, SInspector first employs API-based Filter to filter out those not

using Unix domain sockets or having insufficient permission to use Unix domain sockets.

Then, Address Analyzer finds out Unix domain socket address(es) each app uses, and dis-

cards apps whose addresses are under protection. They are not vulnerable because proper

socket file permissions are able to prevent unauthorized accesses to a filesystem-based Unix

domain socket channel. Next, the apps left are further examined by Authentication Detec-

tor. It detects and categorizes authentication mechanisms apps implement. Those adopting

strong checks are considered to be not vulnerable. After that, Reachability Analyzer checks

whether the vulnerable code that uses Unix domain socket will be executed or not at run-

time. If not, that code is not reachable and will never be triggered, thus the app is not

vulnerable. It ends up with a relatively small set of apps that are potentially vulnerable.

Manual efforts are finally required to confirm the existence of vulnerabilities.

API-based Filter. This module filters out apps that are not in our analysis scope. For each

app, it checks (1) Android permissions the app declares, (2) Java APIs the app calls, and (3)

106

System
Daemon

AppApp

System
Daemon

App-layer
Analyzer

Native-layer
Analyzer

Connection
Tester

Reachability
Analyzer

App-layer
Detector

Native-layer
Detector Manual

Analysis

Native
code

Potentially
vulnerable
daemons

Potentially
vulnerable

apps

System
Daemons

API-based
Filter

Socket Usage
Collector

Apps

Address Analyzer Authentication
Detector

DEX
code

Figure 6.1: Overview of our approach to identifying potentially vulnerable apps and system
daemons.

Linux system calls if the app has native code. Since using Unix domain sockets requires the

INTERNET permission, apps without this permission are surely not vulnerable, neither are

apps that do not invoke related APIs or system calls. APIs called through Java reflection

are currently not considered, because (1) all socket APIs are available in Android SDK,

unlike some private or hidden APIs which can only be called via Java reflection; and (2)

Unix domain sockets just require a common, non-dangerous permission and therefore apps

have little intention to hide the relevant logic.

Address Analyzer. This module identifies socket addresses each app uses and determines

if their corresponding Unix domain socket channels are protected. Dalvik byte code and

native code are analyzed by Address Analyzer’s two submodules, App-layer Analyzer and

Native-layer Analyzer, respectively.

Being aware of Unix domain socket address(es) an app connects to and/or listens on

has two benefits. First, we can leverage addresses to determine if both client logic and

server logic present in the same app. Usually, it is much easier to craft server exploits

by replaying client behaviors, and vice versa. Second, different apps may use common

libraries that utilize Unix domain sockets to implement certain functionality. We can take

advantage of addresses to better group apps according to the libraries they use, because of

the fact that apps using the same library typically have the same Unix socket address (or

address structure). This is more reliable than identifying libraries merely based on package

names and class names, as package names and class names could be easily obfuscated by

107

tools like ProGuard [34]. Though code similarity comparison techniques are also capable

of recognizing libraries used across different apps, they are usually heavyweight.

Besides identifying addresses, Address Analyzer also evaluates whether the socket

channel on an address is secure or not. As we have mentioned in §6.2, when using

FILESYSTEM addresses, Unix domain socket servers are able to restrict client accesses

by setting proper file permissions for socket files they listen on. A socket file satisfy-

ing the following conditions has proper permissions, and therefore the app using it is

considered not vulnerable. First, it is located in the app’s private data directory, i.e.,

/data/data/app.pkg.name/. By default socket files created under this directory

can only be accessed by the app itself. Second, there is no other operation altering the

socket file’s permissions to publicly accessible. The app, as the socket file’s owner, has the

privilege to change its permissions to whatever it wants. All file operations that possibly

change the socket file’s permissions need to be examined.

Authentication Detector. The OS allows both the client and the server to get their peers’

identity information (i.e., peer credentials) once a Unix domain socket connection is estab-

lished. This module detects and categorizes authentication checks built on peer credentials.

It also consists of two submodules for processing non-native and native code separately.

Peer credentials are only available for Unix domain sockets. In our threat model, they

are absolutely reliable because they are guaranteed by the kernel and therefore cannot

be spoofed or altered by any non-root process in the user space. In Java code, apps call

Android SDK API LocalSocket.getPeerCredentails() to get a socket peer’s

credentials, containing three fields: PID, UID, and GID. While in native code, the system

call getsockopt is used to obtain the same information. Based on UID, GID and PID,

servers and clients can implement various types of peer authentication mechanisms. Au-

thentication Detector keeps track of the propagation of peer credentials in code, detects

checks built upon the credentials, and categorizes them according to the particular creden-

tial they depend on. Peer authentication checks derived from UID and GID are considered

108

to be strong, as UID and GID are assigned by the OS and cannot be spoofed. However,

authentications based on PID are relatively weak. Further analysis is unnecessary for apps

employing strong checks.

Reachability Analyzer. The presence of Unix domain socket APIs in code does not neces-

sarily mean the app actually uses Unix domain sockets at runtime. It is possible that the app

just imports a library that offers functionality implemented with Unix domain sockets, but

that part of code is never executed. To filter out such apps, Reachability Analyzer collects

all possible entry points of an app, from which it builds an inter-component control flow

graph. If Unix domain socket code cannot be reached from either of the entry points, we

believe the code will not be reached at runtime, thus the app is considered not vulnerable.

6.3.1.2 System Daemon Analysis

Several obstacles make the pure static analysis of system daemons infeasible. First,

given a factory image that contains all system files, it is difficult to extract all required data

from it due to the fact that vendors develop their own file formats and there is no universal

tool to unpack factory images. Second, different from apps, system daemons’ Unix domain

socket channels are usually enforced with specific SEAndroid policies made by Google or

vendors. In this case, evaluating the security of a Unix domain socket channel becomes

more complicated, especially for the FILESYSTEM namespace, because it is determined

by both SEAndroid and socket file permissions.

However, system daemons are suitable for dynamic analysis without worrying about

potential code coverage issues. They start automatically, serve as Unix domain socket

servers waiting for client connections, and provide no user interface. It is reasonable to as-

sume that their server logics are always running instead of being started on demand. There-

fore, instead of employing API-based Filter and Address Analyzer, SInspector collects

runtime information to find out system daemons using Unix domain socket with Socket

Usage Collector, then test all socket channels daemons expose with Connection Tester, to

109

see which ones are accessible for an unprivileged app. The native layer Authentication

Detector is reused for detecting and categorizing checks inside system daemons.

Socket Usage Collector. It is impossible for us to exploit vulnerable client logics imple-

mented inside system daemons. One prerequisite of attacking client is being able to start

running before the real server. In our threat model, however, the third-party app with only

the INTERNET permission can never run ahead of a system daemon, which is started by

the init process even before the Android runtime is initialized. Socket Usage Collector

gathers runtime information of each Unix domain socket, including address, the process

that listens on the address, protocol type (DGRAM, STREM, or SEQAPCKET), and cor-

responding system daemon.

Connection Tester. According to socket channel information collected, Connection Tester

attempts to connect to them one by one, acting like a client running as a third-party app

with INTERNET permission. If a socket channel is enforced by either file permissions

or SEAndroid policies, the connection will be denied because of insufficient privilege. A

system daemon is not vulnerable if all its socket channels are well protected.

6.3.1.3 Manual Analysis

For apps and system daemons that are most likely to be vulnerable, manual reverse en-

gineering efforts are required to investigate the existence of vulnerabilities. Various tools

are helpful for statically and dynamically reversing apps, e.g., JEB [22], the Xposed frame-

work [48], and IDA Pro. The effort needed for validating vulnerable code is supposed

to be minimal, although writing workable exploits may take longer. Message formats (or

called protocols) apps and system daemons use could be quite ad-hoc. Reverse engineering

efforts largely depend on the complexity of implementation. In order to reduce human ef-

forts, we could integrate protocol reversing techniques proposed in prior work [66, 77, 108]

into SInspector in the future.

110

6.3.2 Implementation

We implement SInspector based on two cutting-edge tools, Amandroid [141] and IDA

Pro. Both of them offer great extensibility and are friendly to plugin development. We

take advantage of Amandroid to build inter-procedural control flow graph (ICFG), inter-

procedural data flow graph (IDFG), and data dependence graph (DDG) from apps’ non-

native part for performing app-layer analysis, and leverage IDA Pro’s disassembler and

control flow analysis to build data flow analysis on native code, including apps’ ELF li-

braries/executables and system daemons. SInspector only supports 32-bit ARM binaries

for now, considering that the majority of Android devices are equipped with 32-bit ARM

architecture processors.

Analyzing Apps. API-based Filter extracts AndroidManifest.xml, decodes it, and

looks for the INTERNET permission. App code written in Java is compiled into one or

more DEX files, in which all invoked APIs are visible. Native binaries are in ELF for-

mat. IDA Pro is able to identify direct system calls represented as constant relative ad-

dresses embedded in the instructions. However, it does not resolve indirect call targets

that are stored in registers. More specifically, binaries can use the SVC instruction to do

system calls, by specifying a system call number in register R7 and then executing SVC

0. We extract the mapping between system call numbers and system call names from

arch/arm/include/asm/unistd.h found in Android kernel 3.14, and identify all

indirect system calls by inspecting R7’s values before each SVC 0 instruction.

The app-layer of Address Analyzer and Authentication Detector are implemented on

top of Amandroid. The server logic and the client logic are analyzed separately. We

first locate the method in which Unix domain socket server/client is initialized, and cre-

ate a customized entry point to it, then invoke Amandroid to build ICFG, IDFG, and

DDG from the entry point. In Java code, Unix domain socket address is represented

by the LocalSocketAddress class, whose constructors accept an address string as

the first parameter. We look at construction sites of LocalSocketAddress objects.

111

In some cases, constant strings are used. In other cases where an address is built from

package name, random integer, etc., we track its construction of procedure by querying

dependencies on DDG. Such an example is shown in Figure 6.2, in which we need to

apply data flow analysis to extract the address as "com.qihoo.socket"+System.

currentTimeMillis()%65535. This allows us to group apps that share the same

socket address or have the same address construction procedure.

public static String getAddr() {
 return String.format("com.qihoo.socket%x",
 Long.valueOf(System.currentTimeMillis() & 65535));
}

protected void b(…) {
 …
 String addr = getAddr();
 this.serverSock = new LocalServerSocket(addr);
 …
}

Figure 6.2: A dynamically constructed socket address case.

The app-layer Authentication Detector finds paths on ICFG from

LocalServerSocket.accept() (for server) and LocalSocket.connect()

(for client) to LocalSocket.getInputStream() or LocalSocket.

getOutputStream(). If we find that LocalSocket.getPeerCredentials()

is called along the paths, and there is control dependency between either

getInputStream()/getOutputStream() and getPeerCredentials(),

authentication happens. In order to categorize authentication checks, we look at which

fields (UID, GID or PID) are retrieved. We also define methods in Context and

PackageManager that take UID, GID, or PID as sinks, and run taint analysis to track

propagation paths. As mentioned in §6.3.1, checks relying on UID and GID are considered

strong, while others are weak.

The native-layer Address Analyzer leverages intra-procedural control flow graph (CFG)

generated by IDA Pro. Each basic block consists of a series of ARM assembly code disas-

sembled by IDA Pro’s state-of-the-art disassembling engine. We perform intra-procedural

112

data flow analysis on the CFG, following the classical static analysis approach [120]. Com-

puting data flow at the assembly level is complicated, since we have to take into consider-

ation both registers and the function stack. Unfortunately, there does not exist any robust

tools that can perform data flow analysis on ARM binaries. ARM is a load-store architec-

ture, and no instructions directly operate on values in memory. This means values must be

loaded into registers in order to operate upon them. Therefore, we need to carefully handle

all commonly used instructions that operate on registers and memory, especially load and

store (pseudo) instructions. We examine the second argument of system calls bind() and

connect(), which is an address pointing to the sockadd un structure. Unix domain

socket string is copied to the sun path field, 2 byte off the start of sockadd un. The

first byte of sun path indicates address namespace.

The native-layer Authentication Detector also performs intra-procedural data flow anal-

ysis. getsockopt has five parameters in total. Among them, the third one (option name)

and the fourth one (option value pointer) are crucial. When option name is an integer equal

to 17 (macro SO PEERCRED), the option value will be populated by peer credentials, a

structure consisting of three 4-byte integers: PID, UID, and GID. In other words, suppose

option value’s address is A, PID, UID, and GID will locate at addresses A, A+4, and A+8,

respectively. When getsockopt is called, we inspect option name and record option

value’s address on the stack A. After that, functions that access values at A, A+4, or A+8

are considered as checks.

Analyzing System Daemons. Socket Usage Collector calls a command line tool

netstat to get interested socket information. Note that the default netstat shipped

with Android has very limited capability. We choose to install busybox, which provides

a much more powerful netstat applet. Root access of the Android device is required,

otherwise netstat will not be able to find out the process that listens on a particular

socket address. We build Connection Tester into a third-party app that requests only the

INTERNET permission. Native-layer Authentication Detector is reused for analyzing sys-

113

tem daemons.

6.3.3 Limitations

One limitation of SInspector is that we have to rely on human efforts to generate ex-

ploits. Even though we can find out apps and system daemons that are highly likely to be

vulnerable, we are not able to automatically craft exploits to finally validate vulnerabilities.

SInspector may have false positives, because of our conservative strategies for filtering

out insusceptible apps and system daemons. The native-layer intra-procedural data flow

analysis is likely to miss data flows across different functions.

We may also have false negatives: (1) we cannot handle dynamically loaded code;

and (2) native executables/libraries might be packed or encrypted. They could introduce

uncaught control and data flows.

6.4 Results

We evaluate SInspector with a total number of 14,644 up-to-date Google Play appli-

cations crawled in mid-April 2016, including approximately top 340 from all 44 cate-

gories. Google has imposed restrictions to ensure that applications can only be down-

loaded through the Google Play on user devices, which makes it difficult for us to obtain

APK files. To tackle this, we crawl meta data of applications (e.g., package name, version

name) from Google Play and download corresponding APK files from ApkPure [10], a

mirror of Google Play that allows free downloading.

We also use three phones to evaluate SInspector: (1) LG G3 running Android 4.4.4,

(2) Samsung Galaxy S4 running Android 5.0.1, and (3) LG Nexus 4 running 5.1.1. All of

them are updated to the latest firmware and rooted. Most of the recently released Android

phones either are equipped with 64-bit ARM processors or cannot be rooted. They are not

suitable for our experiments because SInspector’s dynamic analysis requires root access

and the static data flow analysis can only handle 32-bit ARM binaries.

114

6.4.1 Overview

Table 6.3 shows the overall statistics on Unix domain socket usage among applications

and system daemons. Application data are from API-based Filter and daemon data come

from Socket Usage Collector. Among 14,644 applications, 3,734 (25.5%) have Unix do-

main socket related APIs or system calls in code, and the majority of them (3,689) use

ABSTRACT addresses, while only a few use FILESYSTEM and RESERVED addresses.

The sum of numbers in each address namespace may be greater than the total number, as

an application or a system daemon could use more than one namespaces.

Different from applications, most of the system daemons use RESERVED addresses.

Compared to Nexus 4 running non-customized Android, LG G3 and Galaxy S4 have more

system daemons and heavier usage of ABSTRACT addresses. This fact clearly shows that

vendor customizations inevitably expose more attack vectors.

Table 6.3: Numbers of applications/system daemons that use Unix domain sockets.

Applications # Daemons
LG G3 Galaxy S4 Nexus 4

ABSTRACT 3,689 5 8 2
FILESYSTEM 36 4 5 2
RESERVED 20 13 17 11
Total 3,734 20 27 13

6.4.1.1 Libraries

We summarize identified libraries utilizing Unix domain sockets in Table 6.4. “Single-

ton” and “Global lock” in the Usage column will be described later in §6.4.2. We observe

that 3,406 applications use an outdated Google Mobile Services (GMS) library alone and

exclude them. The outdated GMS library is potentially vulnerable to DoS and data in-

jection attacks. The latest GMS library has completely discarded Unix domain sockets,

which implies that Google may have been aware of potential problems of using Unix do-

main sockets. Except for Amazon Whisperlink and OpenVPN, all other libraries use the

115

ABSTRACT namespace, making them all vulnerable to DoS.

6.4.1.2 Tool Effectiveness and Performance

Besides applications using common libraries listed in Table 6.4, SInspector found 73

potentially vulnerable applications having no authentication or weak authentications. Ta-

ble 6.5 summarizes analysis effectiveness. After reachability analysis, SInspector finally

reported 67 applications that are most likely to be vulnerable. We manually looked at all

67 applications and confirmed that 45 are indeed vulnerable. SInspector reported 12 poten-

tially vulnerable system daemons. After manual examination, we confirmed 9 of them are

truly vulnerable. We present a case study of most critical vulnerabilities in §6.5.

Table 6.4: Libraries that use Unix domain socket.

Library # Applications
(reachable) Usage Namespace1 Auth Susceptible

attack(s)2

Baidu Push 9 (9) Singleton ABS N/A DoS
Tencent XG 11 (11) Singleton ABS N/A DoS

Umeng Message 17 (17) Singleton ABS N/A DoS
Facebook
SocketLock

13 (13) Global lock ABS N/A DoS

Yandex Metrica 95 (95) Global lock ABS N/A DoS

Facebook Stetho 97 (97)
Debugging
interface

ABS Permission DoS

Sony Liveware 8 (5) Data transfer ABS None DoS, DI, DL
Samsung SDK 12 (10) Data transfer ABS None DoS, DI, DL

QT5 10 (10)
Debugging
interface

ABS None DoS, DI, DL

Clean Master 9 (9) Data transfer ABS None DoS, DI, DL
Amazon
Whisperlink

11 (7) Data transfer FS None N/A

OpenVPN 7 (4) Cmd & control FS None N/A
1 ABS and FS in this column are short for ABSTRACT and FILESYSTEM.
2 DI and DL stand for data injection and data leakage.

All experiments are done on a machine with 3.26GHz × 8 Core i7 and 16GB of mem-

ory. The most compute-intensive module of application analysis is Reachability Analyzer.

Depending on the numbers of bytecode instructions of applications, Reachability Analyzer

116

Table 6.5: SInspector results summary.

Potentially vulnerable True positive False positive Precision
Applications 67 45 22 67.2%
LG G3 6 4 2 66.7%
Galaxy S4 5 4 1 80%
Nexus 4 1 1 0 100%

could take a few minutes to more than one hour. Other modules are pretty fast. The av-

erage time for analyzing one application is 2,502 seconds. For system daemon analysis,

IDA Pro’s disassembling process took a few seconds to a few minutes, the average time for

analyzing a system daemon is 39 seconds.

6.4.2 Unix Domain Socket Usage

Unix domain sockets provide a means to perform IPC, but it turns out the usage in the

wild is not limited to IPC. According to our experience in inspecting potentially vulnerable

applications SInspector reported, we extract code patterns for categorizing Unix domain

socket usage and summarize them in Table 6.6. We observe that Unix domain sockets

are widely used by applications to implement global locks and singleton, as well as to

implement watchdogs.

Table 6.6: Code patterns for categorizing Unix domain socket usage.

Usage Key APIs Code pattern # Applications

IPC

LocalSocketServer.<init>()
LocalSocketServer.accept()
LocalSocket.connect()
LocalSocket.getInputStream()
LocalSocket.getOutputStream()

Unix domain socket server/client
reads data from (or write data
to) the other end.

193

Singleon/
Global Lock

LocalServerSocket.<init>()
LocalSocket.bind()

Server has no reading/writing
operations after binding to
an address.

165

Watchdog LocalSocket.connect()
LocalSocket.getInputStream()

Client connects to server and
then blocks at reading. Server
also blocks at reading after
accepting client connection.

33

117

6.4.2.1 Inter-Process Communication

Not surprisingly, the prominent usage of Unix domain sockets is performing IPC. Ap-

plications are free to implement their own protocols for client/server communication. How-

ever, we do find a very unique use of Unix domain socket as an IPC mechanism. A

few video recording applications leverage Unix domain sockets to realize real-time me-

dia streaming, a feature that Android’s media recording APIs do not support. Developers

came up with a workaround, which takes advantage of an existing media recording API

setOutputFile(fd) that outputs camera and microphone data stream to a file de-

scriptor. After a Unix domain socket connection is established, the client passes its output

file descriptor to this API so that the server can read real-time camera/microphone output.

In this way, media output is converted to a stream that can be further processed in real time,

e.g., to perform live streaming.

6.4.2.2 Realizing Singleton

An ABSTRACT socket address can only be bound on by one Unix domain socket

server instance. Once an address has been taken, another server that attempts to bind on it

would fail. This feature is widely exploited to ensure that certain code will not be executed

more than once. In fact, the PhoneFactory class in AOSP “use UNIX domain socket to

prevent subsequent initialization” of the Phone instance, as Figure 6.3 shows.

105 try {
106 // use UNIX domain socket to
107 // prevent subsequent initialization
108 new LocalServerSocket("com.android.internal.telephony");
109 } catch (java.io.IOException ex) {
110 hasException = true;
111 }

Figure 6.3: com.android.internal.telephony.PhoneFactory uses a Unix
domain socket for locking. Code excerpted from AOSP 6.0.1 r10.

Baidu Push, Tencent XG, and Umeng Message are three top message push service

118

providers in China. Due to the state-level blocking of Google services, Google Cloud

Messaging (GCM) is not accessible. Therefore, applications targeting on China market

have to choose other push services. It is likely that multiple applications integrated the

same push service library co-exist on the same device. That would be less power-efficient

if they each run their own push service. They choose to share one push service instance

across multiple applications and realize that with a Unix domain socket.

6.4.2.3 Implementing Global Lock

This use case also takes advantage of the feature that ABSTRACT addresses are used

exclusively. There is demand on global locks because some resources cannot be used by

two different processes/threads simultaneously, or certain operations should be serialized

instead of parallelized. However, Android itself does not provide global locks shared be-

tween different applications. Facebook applications all have a DEX optimization service.

They will not do optimization before successfully acquiring a global lock implemented with

a Unix domain socket. This ensures that only one optimization task runs in the background,

and helps reduce the negative impact on user experience.

6.4.2.4 Implementing Watchdog

Service

Daemon

read() read()

Service

Daemon

read() read()

Service

Daemon

read() read()

(a) Service and
Daemon are
both alive.

(b) Service is dead so
Daemon’s read()

returns. Start Service.

(c) Daemon is dead so
Service’s read()

returns. Start Daemon.

Figure 6.4: The Kaspersky application’s service and daemon monitor each other through a
Unix domain socket.

Some applications have important services that are expected to always run in the back-

ground. Such “immortal” services are against Android’s memory management philosophy,

119

and therefore developers have to to find a workaround to automatically restart them, in case

they are somehow terminated. They implement a watchdog mechanism leveraging Unix

domain sockets. For example, the Kaspersky Security application starts a native daemon in

a service. The daemon and the service monitor each other mutually, through a Unix domain

socket channel. If one has died, the other will gets notified and restart it immediately, as

Figure 6.4 depicts.

6.4.3 Peer Authentication

We refine the categorization made by SInspector’s Authentication Detector module, and

classify peer authentication checks into four types: UID/GID checks, process name checks,

user name checks, and permission checks. Table 6.7 shows the numbers of applications

and system daemons adopting each type of checks. Applications and daemons tend to

use different types of authentication checks. Applications only adopt UID/GID checks

and permission checks, while system daemons use all checks except permission checks.

One possible reason is in different layers the information applications/system daemons can

obtain differs. On the application layer, applications can easily get the peer application’s

permissions with its UID. However, there are no APIs for getting the peer’s process name

or user name. On the native layer, process name and user name can be easily obtained. But

due to the lack of Android runtime context, it is infeasible to query the peer’s permissions.

Only 9 of 60 (15%) daemons employ strong checks, meaning that their security heavily

relies on the correctness of SEAndroid policies and file access permissions.

Table 6.7: Statistics on peer authenication checks.

UID/GID Process name User name Permission
#Applications 20 0 0 97

#Daemons 7 3 2 0

Process Name Checks. In native layer, getting process name with its PID is done by

reading /proc/PID/cmdline or /proc/PID/comm on the proc filesystem (procfs).

120

Process name checks compare the peer’s process name with predefined process name(s).

By default, the process name of an Android application is its package name. Therefore, the

content of the two proc files of an application process is actually the application’s package

name. Interestingly, we find that applications are able to modify their own process names at

runtime, by calling a hidden method Process.setArgV0(String s) through Java

reflection. This method is supposed to be used by the system (labeled with @hide in

source code), but it requires no permissions. This hidden method makes all process name

checks meaningless, as malicious applications can always change their process names to

legitimate ones so that they can bypass checks and send messages to the victim. For exam-

ple, the system daemon cnd on LG G3 and Galaxy S4 is used for managing Qualcomm

connectivity engine [35]. It accepts requests from clients through a Unix domain socket

and checks if the client’s process name is “android.browser”. Requests from other clients

are not legitimate and will be discarded. By changing process name to “android.browser”,

any application can send legitimate requests to cnd effortlessly.

UID/GID Checks. Android reserves UIDs less than 10,000 for privileged users. For in-

stance, the user system has 1,000 as both UID and GID. Normally, each application has

its own UID and GID, but applications from the same developer could share the same UID

and GID. These checks are handy when one wants to allow only privileged users or partic-

ular applications to communicate with it. UID/GID checks efficiently prevent unauthorized

peers, as UID and GID can never be spoofed or modified. For example, the Android Wear

application has a service called AdbHubService, which is used for remote debugging. It

starts a Unix domain socket server accepting debugging commands from ADB shell. Only

commands coming from root and system are allowed, by checking if a client’s UID is

equal to 0 or 2,000.

User Name Checks. These checks are similar to UID/GID checks, since each user also has

its unique user name that cannot be spoofed or modified. They also effectively authenticate

the peer’s identity. Samsung Galaxy S4’s RIL daemon, rild, checks client user name. A

121

list of names of privileged users is hardcoded in the binary, e.g., media, radio. User name

checks might be better than UID/GID checks because the same user may have different

UID/GID on different devices due to vendor customization.

Permission Checks. These checks enforce that only applications with specific permissions

can access the Unix domain socket channel. On the application layer, applications can

call several APIs in the Context class to check another application’s permissions. The

Facebook Stetho library checks if the peer has the DUMP permission, a system permission

that can only be acquired by system applications. It first obtains UID and PID from peer

credentials, then calls Context.checkPermission(permission, pid, uid)

to do permission checking

Token-Based Checks. Besides the aforementioned peer authentication checks, we observe

two applications adopt token-based checks. The server and the client first securely share a

small chunk of data (called token). The server compares the token of the incoming client

with its own copy so that only clients having the right token can talk to it. This type of

checks, assuming the token is shared in secure ways, can effectively prevent unauthorized

accesses. We find two applications employing two different methods to share tokens be-

tween the server and the client. The first one, Helium Backup, broadcasts the token on the

server side. The broadcast is protected by a developer-defined permission, and therefore

other applications without the required permission cannot receive the token. The second

one, OS Monitor, stores its token in a private file. Since the server and the client are both

created by the application itself, they have privileges to read the private file and extract the

token. SInspector currently cannot identify such checks. As a result, these applications

reported as potentially vulnerable are actually false positives.

6.5 Case Study

By examining the output of SInspector, we successfully discovered several high-

severity zero-day vulnerabilities affecting popular applications installed by hundreds of

122

millions of users, widely used third-party libraries, and system daemons having root priv-

ileges. These vulnerabilities can be exploited to (1) grant root access to any applications,

giving the attacker entire control of the device, (2) read and write arbitrary files, allowing

the attacker to steal user privacy and modify system settings, (3) factory reset the victim de-

vice, causing permanent data loss, and (4) change system date and time, resulting in denial

of service.

6.5.1 Applications

6.5.1.1 Data Injection in a Rooting Tool

As rooting gaining popular in the Android community, many one-click rooting tools

become available [145], which allow users to gain root access very easily. One major

rooting tool, which claims to be able to root 103,790 different models (as of May, 2016),

support a wide range of devices running Android 2.3 Gingerbread and above up to Android

6.0 Marshmallow. As well as rooting, the tool also serves as a root access management

portal, through which users can grant or deny applications’ root requests.

(3) Asking for decision
(with server socket addr)

(4) Looking up
existing policies

(1) Requesting root
(2) Starting a Unix domain
socket server listening on

a randomly generated
address: .socketXXXXX

(5) Connecting to server
and send “ALLOW”/

“DENY” (6) Root access
granted/denied

Rooting App su App requesting
root access

 Connecting to server
and send “ALLOW”

Root access
granted

Figure 6.5: KingRoot vulnerability illustration.

Once a device is successfully rooted, the rooting application installs a command line

123

tool, su, to the system partition /system/bin/su. Applications then request root ac-

cess by executing su, who starts a Unix domain socket server waiting for the rooting ap-

plication to send back user decision. The rooting application looks up existing policies. If

no corresponding policy exists, it pops up a dialog that asks the user to make a decision.

Figure 6.5 illustrates the whole process. The standard root request procedure consists of

steps (1)-(6) with solid arrow lines. By injecting an “ALLOW” string, any application can

get root access regardless what the user’s actual decision is, shown as steps (1){2}{3}.

However, the FILESYSTEM-based socket channel is publicly accessible as its file per-

missions are set to rwxrwxrwx, and there is no client authentication in su. As a result,

any application can inject arbitrary decisions before the rooting application sends out the

real decision to su. This allows a malicious application to grant or deny root access of

any other applications, as well as grant itself root privileges in order to take full control of

the device. We reported this vulnerability to the developers and they rated it as the most

severe security bug in their product to date. They fixed the vulnerability and released a new

version in 24 hours.

6.5.1.2 Privilege Escalation in ES File Explorer

ES File Explorer is a very popular file management application on Android, ac-

cumulating over 300 million installs. To perform file operations that Java layer APIs

do not efficiently support, the application starts a native process and executes a bi-

nary, libestool2.so1, which creates a Unix domain socket server listening on

an ABSTRACT address, @/data/data/com.estrongs.android.pop/files/

comm/tool_port. Moreover, if the device is rooted and the user chooses to run ES

File Explorer in root mode, it starts another libestools2.so process with root priv-

ileges, listening on another ABSTRACT address, @/data/data/com.estrongs.

android.pop/files/comm/su_port. Some low-level file operations, such as

1This binary looks like a shared library from its name, but it is essentially an ELF executable.

124

modifying file access permissions and changing file status/ownership are sent to these two

native processes to execute.

Since there is no client authentication on the server side (i.e., libestool2.so), any

application can send the native processes commands to run. We were able to read an arbi-

trary application’s private files and protected system files by exploiting this vulnerability,

after successfully reversing the communication protocol between the ES File Explorer ap-

plication and its native processes. This critical vulnerability was fixed two months after we

first reported it to the developers.

6.5.1.3 DoS VPN Applications

Multiple OpenVPN clients for Android are available. OpenVPN for Android is an open

source client that targets advanced users and offers many settings and the ability to import

profiles from files and to configure/change profiles inside the application. The client is an

ELF executable ported from the community version of OpenVPN for Linux.

OpenVPN management interface allows OpenVPN clients to be administratively con-

trolled from an external program via a TCP or Unix domain socket. Quite a few of appli-

cations making use of OpenVPN for Android utilize Unix domain sockets to communicate

with the management application. However, some of them fail to set file permissions cor-

rectly for the socket file. OpenVPN supports various client authentication mechanisms.

Surprisingly, none of these applications adopt any client authentication. Consequently,

an adversary can establish a connection to the management interface and then control the

OpenVPN client, causing deny-of-service at least.

6.5.2 System Daemons

6.5.2.1 LG AT daemon

The privileged AT Daemon, /system/bin/atd, on (at least) the LG G3 is vulnera-

ble, which allows any application with only the INTERNET permission to factory reset the

125

phone, toggle the SIM card, and more, causing permanent data loss and denial of service.

atd is a proprietary daemon developed by LG. It starts a Unix domain socket server that

performs no client authentication, listening on socket file /dev/socket/atd, whose

permissions are not correctly configured (i.e., srw-rw---- system inet). The per-

mission configuration means all users in the inet Linux group can read and write this

socket file. Android applications having the INTERNET permission all belong to the inet

group. As a result, they are able to read and write this socket file so that they can talk to the

AT daemon through this Unix domain socket channel. Commands from any applications,

if in the right format, will be processed by the daemon.

By reversing the messages atd accepts, we figured out the format and successfully

crafted commands that instruct atd to (1) perform factory reset, wiping all user data and

(2) toggle the SIM card. In fact, atd accepts a large set of commands (only a subset

were successfully reversed); reverse engineering the whole protocol would allow us to

send arbitrary SMS requests, make phone calls, get user’s geographic location, and so on.

6.5.2.2 Qualcomm Time Daemon

We first found that a LG G3 daemon /system/bin/time daemon opens a Unix

domain socket server listening on an ABSTRACT address @time genoff. This dae-

mon verifies the client’s identity. However, the verification logic is very weak. It only

checks whether the process name of the client is a constant string “comm.timeservice” and

therefore can be easily bypassed.

This vulnerability allows any application with the INTERNET permission to change

the system date and time, affording attackers to DoS services relying on exact system date

and time, e.g., validating the server certificate. /system/bin/time daemon is devel-

oped by Qualcomm, and other Android devices using Qualcomm time daemon are also

vulnerable. This vulnerability has been reported and was assigned CVE-2016-3683.

126

6.5.2.3 Bluedroid

The Android Bluetooth stack implementation is called bluedroid, which exposes a Unix

domain socket channel for controlling the A2DP protocol [1]. The ABSTRACT address,

@/data/misc/bluedroid/.a2dp ctrl, is expected to be enforced by SEAndroid.

To our surprise, we are able to connect to the server through this address and send control

commands to it on a Nexus 4. We are able to control the audio playing on a peripheral de-

vice connected to the phone through Bluetooth. Though the LG G3 and the Galaxy S4 also

expose the same channel, accesses from third-party applications always fail at connecting

stage due to insufficient permission. This case suggests that vendors may have made some

security improvements despite their tendency to introduce vulnerabilities [148].

6.6 Countermeasure Discussion

As our study suggests, the misuse of Unix domain sockets on Android has resulted in

severe vulnerabilities. We discuss possible countermeasures to minimize the problem from

two aspects: (1) OS-level mitigations and (2) better approaches to implementing secure

IPC that utilizes Unix domain sockets.

6.6.1 OS-Level Solutions

Changing the default namespace. For now, Unix domain socket channels created by

applications use the ABSTRACT namespace by default. Due to the lack of DAC, socket

channels based on ABSTRACT addresses are less secure than those based on FILESYS-

TEM addresses. Therefore, intuitive mitigation is to change the default namespace from

ABSTRACT to FILESYSTEM; or more radically, disable the use of ABSTRACT names-

pace.

More fine-grained SEAndroid policies and domain assignment. In the current SEAn-

droid model, all third-party applications, although having individual UIDs and GIDs, are

127

assigned the same domain label, i.e., untrusted app. Unix domain sockets accesses

between third-party applications are not enforceable by SEAndroid because domain-level

policies cannot tell one third-party application from another.

Therefore, we need to assign different domain labels to different third-party applica-

tions so that more fine-grained policies can be made to regulate Unix domain socket ac-

cesses. Nevertheless, this could introduce new problems: pre-defined policies would not

be able to cover applications, and making fixed policies editable at runtime may open new

attack vectors. Moreover, it would be untenable to define policies for every application;

each user may install any number of applications.

6.6.2 Secure IPC on Unix Domain Sockets

We demonstrate three scenarios where applications and system daemons require Unix

domain sockets for IPC and discuss possible solutions to their security problems.

A privileged system daemon exposes its functionality to applications. A system daemon

may need to provide diverse functionality to applications that have different privileges. For

example, the LG AT daemon may want to expose the capability of doing factory reset

to only system applications, and allow applications with location permissions to get the

user’s GPS coordinates. To achieve this, system daemons will have to enforce application

permissions themselves. Unfortunately, the lack of Android runtime context in system

daemons precludes daemons from easily obtaining the application’s permission(s).

Figure 6.6 demonstrates the proposed solution. The goal is to delegate peer authenti-

cation to the existing Android security model. Instead of letting applications and daemons

communicate directly through a Unix domain socket, a system service acts as an interme-

diary between the two. This new system service runs as the system user with UID 1000,

thus can be easily authenticated by the daemon. Applications talk to this system service

through Android Binder and their permissions are validated by the system service. In this

way, daemon functionality is indirectly exposed to applications with the help of a system

128

service.

App System Daemon
(Check sys UID)

System Service
(Check app
permission)

Binder

Unix
domain
socket

Direct access denied

Figure 6.6: A secure way to expose system daemon functionality to applications. A system
service is added between applications and the system daemon.

An application consisting of both Java and native code performs cross-layer IPC. Ap-

plications having native executables need an intra-application, cross-layer IPC. An appli-

cation creates a native process to run its executable, and uses Unix domain sockets to com-

municate with the native process from its non-native part. In this case, executables still

have the same UID as their owner applications. Therefore, it is convenient to check UID

on both client and server sides.

An application exposes interfaces to other applications. Android-specific IPCs such as

Intents are expected to be used for inter-application communications. However, applica-

tions have to choose Unix domain sockets for cross-layer IPCs. We propose a token-based

mechanism inspired by Helium described in §6.4.3, as Figure 6.7 illustrates. The client

application first sends a broadcast to the server application to request a communication to-

ken. The server responds by asking the user to allow or deny the incoming request. If the

user allows, the server application generates a one-time token for that particular client and

returns the token. After that, the client connects to the server with its token and a Unix

domain socket connection will be established. Note that the token is not meaningful to

anyone else. Even if it was stolen, the attacker would not be able to use it to talk to the

server application.

129

Client
App

Request token

Server
AppReply a token

Unix domain socket

Ask for user
decision

Figure 6.7: Token-based secure Unix domain socket IPC. Dotted arrow lines stand for
permission-protected broadcasts.

6.7 Conclusion

In this paper, we conducted the first systematic study in understanding the usage of Unix

domain sockets by both apps and system daemons as an IPC mechanism on Android, espe-

cially for cross-layer communications between the Java and the native layers. We presented

SInspector, a tool for discovering potential security vulnerabilities through the process of

identifying socket addresses, detecting authentication checks, and performing data flow

analysis on native code. We analyzed 14,644 Android apps and 60 system daemons, find-

ing that some apps, as well as certain system daemons, suffer from serious vulnerabilities,

including root privilege escalation, arbitrary file access, and factory resetting. Based on our

study, we proposed countermeasures to prevent these attacks from occurring.

130

CHAPTER VII

Conclusion and Future Work

7.1 Lessons Learned

Our work has revealed security and safety problems of exposed interfaces resulted

from design, implementation, and configuration stages. We have learned several impor-

tant lessons throughout this research. First, system designers cannot anticipate all threats

and abuses. Diehard apps are a perfect example. In addition to vulnerabilities that have

a direct impact on system security and user privacy, they should also take into account

possible abuses during the design process. Since threat models are changing over time,

they need to more proactively detect threats and learn from attacks. Second, more efforts

should be invested in order to make sure the implementation faithfully realizes the design.

We have seen that implementation flaws never be completely eliminated, because devel-

opers keep making mistakes that seem simple and avoidable. Advanced tools that detect

implementation flaws at an early stage are very helpful for preventing abuses proactively.

Third, making correct, secure configurations is challenging for developers and users. The

“security by default” principle should always be followed. Automated tools for detecting

insecure configurations and for generating secure configurations are useful, but domain

knowledge is required to build such tools.

However, there are fundamental limitations in today’s access control based protection

of exposed interfaces. The prominent one is the lack of context. For instance, a malicious

131

application can disguise as a voice recorder and provide fully-fledged recording functions.

The user, who occasionally uses the application, is highly likely to grant it microphone ac-

cess. As a result, the malicious app can then abuse the microphone access and record user

conversation stealthily at any time. There is a mismatch between user expectation and ap-

plication behaviors: users expect applications to complete specific tasks, which oftentimes

require privileges; but once access is granted, users have no control over applications’ fu-

ture use of the access.

In addition to specific defense and mitigation solutions for the concrete problems we

have studied, we discuss generic design, implementation, and configuration improvements

that can better prevent exposed interfaces from capability abuse.

• Design: mandatory access control could be applied to mobile and safety-critical

cyber-physical systems. Discretionary access control lets users manage the content

they own. Besides Linux file permissions, it is also good to let users of an online

social network choose who accesses their data. However, mobile systems having

abundant user privacy and safety-critical systems such as ICS require more rigor-

ous control instead of flexibility. For instance, iOS leverages the TrustedBSD MAC

framework to run applications in sandboxes. Android, however, only applies the SE-

Android MAC framework in the kernel, leaving the middleware layer less strictly

protected.

• Implementation: centralized security enforcement can be better than distributed

checks. To regulate accesses to capabilities and sensitive resources, there are in gen-

eral two strategies to implement enforcement: (1) centralized enforcement that ex-

amines all incoming access requests, and (2) distributed checks placed behind each

exposed interface. We believe that centralized enforcement is more reliable and the

implementation is less error-prone. Due to a large number of exposed interfaces,

placing distributed checks requires much more developer efforts and security exper-

tise. Nevertheless, the trade-off is efficiency. Distributed checks, if implemented

132

correctly, can reject unauthorized accesses much earlier. In contrast, the execution

has to reach the centralized enforcement before being granted or denied. Many CPU

times will be wasted if the access is eventually denied.

• Configuration: context can be used as a new dimension for access control. Prior

work [101] has proposed to enforce contexts as execution paths at inter-procedure

control and data flow levels. Our lightweight application lifecycle control framework

also provides fine-grained event contexts. However, additional context information

brings more complexity to policy making. Keeping users in the loop is not the op-

timal choice, because normal users may have difficulties in understanding contexts

and making a wise decision. We believe that for a system that supports fine-grained

contexts, machine learning techniques could be helpful to come up with customized

policies for individual users.

7.2 Conclusion

This dissertation is dedicated to studying exposed system interfaces that can lead to

abuses of system capabilities. In addition to systematically discovering vulnerabilities,

this study helps understand the root causes in system design and implementation phases,

and proposes mitigation solutions that are fundamental to preventing capability abuses.

We have addresses four problems in this dissertation, spanning from popular smartphone

systems that have complicated software stack to industrial control systems where rich in-

teractions between software and physical parts exist.

First, we detect inconsistencies in access control policy enforcement in the Android

framework. We design and build a tool that compares permissions enforced on different

code paths and identifies the paths enforcing weaker or no permissions. Our methodol-

ogy does not require security policies, which are non-trivial to learn, and it targets only

on the enforcement. We have conservatively discovered at least 14 inconsistent security

133

enforcement cases—all officially confirmed—that can lead to security check circumven-

tion vulnerabilities across important and popular services such as the SMS service and the

Wi-Fi service, incurring impacts such as privilege escalation, denial of service, and soft re-

boot. Our findings also provide useful insights on how to proactively prevent such security

enforcement inconsistency within Android.

Second, we propose the Application Lifecycle Graph (ALG), a novel modeling ap-

proach to describing system-wide app lifecycle. We develop a lightweight runtime frame-

work that utilizes ALG to realize fine-grained app lifecycle control, with a focus on restrict-

ing diehard apps that abuse entry points to automatically start up and game the priority-

based memory management mechanism to evade being killed. The framework exposes

APIs that provide ALG information and lifecycle control capabilities to developers and

device vendors, empowering them to leverage the framework to implement rich function-

alities. Evaluation results show that the proposed framework is competent and incurs low

performance overhead. It introduces 4.5MB additional memory usage on average, and

approximately 5% and 0.2% CPU usage during system booting and at idle state.

Third, we study real-world programmable logic controller programs for identifying in-

secure configurations that can lead to critical security and safety violations. Our results

show that it is common that PLC programs’ tags have incorrectly configured visibility and

accessibility. Among 433 complete programs, we identify 176 critical paths. Add-on in-

structions (AOIs) are similar to software libraries that can be reused by different programs.

We find 117 out of 388 AOIs directly control hardware outputs, but no safety violation

checks are employed. For example, conveyor speed can be changed externally by exploit-

ing an AOI.

Lastly, we conduct the first systematic study in understanding the security properties

of the usage of Unix domain sockets by both Android apps and system daemons as IPC

channels, especially for cross-layer communications between the Java and the native lay-

ers. Our in-depth analysis revealed some serious vulnerabilities in popular apps and system

134

daemons, such as root privilege escalation and arbitrary file access. Based on our findings,

we propose countermeasures and improved practices for securely using Unix domain sock-

ets on Android.

7.3 Future Work

A number of future directions are worth exploring. We summarize them as follows.

• Automated approaches to security policy enforcement. As the complexity of a system

grows, it becomes more error-prone for developers to manually add security checks.

Since humans tend to make mistakes, no matter how competent they are, automated

approaches may be more favorable. Recent research has proposed to use deep learn-

ing to automate vulnerability detection in source code [128] and triage bugs [111], as

well as apply neural machine translation to learning bug-fixing patches [134]. More

research effort is desired in order to enable bug-free security enforcement with auto-

mated tools.

• Connected and autonomous vehicle (CAV) security. Security of CAVs is a growing

concern, first, due to the increased exposure of the functionality to the potential at-

tackers; second, due to the reliance of car functionalities on diverse CAV systems;

third, due to the interaction of a single vehicle with myriads of other smart systems

in an urban traffic infrastructure [71]. A systematic security study on CAV systems,

especially the interfaces exposed by different system components, is required to un-

derstand potential security and safety threats and to improve CAV security.

• Critical infrastructure security. Critical infrastructure describes the physical and cy-

ber systems and assets that are vital to nations and people. Their incapacity or de-

struction would have a debilitating impact on the physical or economic security or

public health or safety. There are much work can be done to understand what inter-

faces are exposed to attackers and what the security implications are.

135

BIBLIOGRAPHY

136

BIBLIOGRAPHY

[1] Advanced audio distribution profile (a2dp). https://developer.
bluetooth.org/TechnologyOverview/Pages/A2DP.aspx.

[2] Advanced task manager. https://play.google.com/store/apps/
details?id=mobi.infolife.taskmanager.

[3] An Analysis of Android App Permissions. http://www.pewinternet.org/
2015/11/10/an-analysis-of-android-app-permissions/.

[4] Android authority forums. https://www.androidauthority.com/
community/.

[5] Android Binder. https://www.nds.rub.de/media/attachments/
files/2012/03/binder.pdf.

[6] Android forums. https://androidforums.com/.

[7] Android forums at androidcentral. https://forums.androidcentral.
com/.

[8] Android Security Overview. https://source.android.com/security/.

[9] Android Security Tips: Using Interprocess Communication. http://
developer.android.com/training/articles/security-tips.
html#IPC.

[10] ApkPure website. https://apkpure.com/.

[11] App programming guide for ios — background execution. https://goo.gl/
jryM9q.

[12] Application fundamentals. https://developer.android.com/guide/
components/fundamentals.html.

[13] ART and Dalvik. https://source.android.com/devices/tech/
dalvik/.

[14] Background optimizations. https://developer.android.com/topic/
performance/background-optimization.html.

[15] Battery historian. https://github.com/google/battery-historian.

137

https://developer.bluetooth.org/TechnologyOverview/Pages/A2DP.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/A2DP.aspx
https://play.google.com/store/apps/details?id=mobi.infolife.taskmanager
https://play.google.com/store/apps/details?id=mobi.infolife.taskmanager
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
https://www.androidauthority.com/community/
https://www.androidauthority.com/community/
https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
https://androidforums.com/
https://forums.androidcentral.com/
https://forums.androidcentral.com/
https://source.android.com/security/
http://developer.android.com/training/articles/security-tips.html#IPC
http://developer.android.com/training/articles/security-tips.html#IPC
http://developer.android.com/training/articles/security-tips.html#IPC
https://apkpure.com/
https://goo.gl/jryM9q
https://goo.gl/jryM9q
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://developer.android.com/topic/performance/background-optimization.html
https://developer.android.com/topic/performance/background-optimization.html
https://github.com/google/battery-historian

[16] Cloud9 - automated software testing at scale. http://cloud9.epfl.ch/.

[17] Dextra - A tool for DEX and OAT dumping, decompilation. http://
newandroidbook.com/tools/dextra.html.

[18] Distribution dashboards. https://developer.android.com/about/
dashboards/.

[19] Es task manager (task killer). https://play.google.com/store/apps/
details?id=com.estrongs.android.taskmanager.

[20] Hello daemon. https://github.com/xingda920813/HelloDaemon.

[21] How to turn off smartphone apps that track you
in the background. http://www.ibtimes.com/
how-turn-smartphone-apps-track-you-background-1657868.

[22] Jeb decompiler by pnf software. https://www.pnfsoftware.com/.

[23] Launch-time performance. https://developer.android.com/topic/
performance/launch-time.html.

[24] Matiec - iec 61131-3 compiler. https://bitbucket.org/mjsousa/
matiec.

[25] Multicast DNS. https://tools.ietf.org/html/rfc6762.

[26] Nusmv: a new symbolic model checker. http://nusmv.fbk.eu/.

[27] Openplc project. http://www.openplcproject.com/.

[28] Optimizing for doze and app standby. https://developer.android.com/
training/monitoring-device-state/doze-standby.html.

[29] Platform Security Architecture. https://
source.android.com/security/index.html#
android-platform-security-architecture.

[30] Privacy issues: Data abuse on certain mobile apps uncovered. https://www.
sciencedaily.com/releases/2012/07/120705133714.htm.

[31] Problem in Making Call Flow Graph from Class or Java files. https:
//mailman.cs.mcgill.ca/pipermail/soot-list/2014-May/
006815.html.

[32] Processes and application life cycle. https://developer.android.com/
guide/topics/processes/process-lifecycle.html.

[33] Processes and threads. https://developer.android.com/guide/
components/processes-and-threads.html.

138

http://cloud9.epfl.ch/
http://newandroidbook.com/tools/dextra.html
http://newandroidbook.com/tools/dextra.html
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://play.google.com/store/apps/details?id=com.estrongs.android.taskmanager
https://play.google.com/store/apps/details?id=com.estrongs.android.taskmanager
https://github.com/xingda920813/HelloDaemon
http://www.ibtimes.com/how-turn-smartphone-apps-track-you-background-1657868
http://www.ibtimes.com/how-turn-smartphone-apps-track-you-background-1657868
https://www.pnfsoftware.com/
https://developer.android.com/topic/performance/launch-time.html
https://developer.android.com/topic/performance/launch-time.html
https://bitbucket.org/mjsousa/matiec
https://bitbucket.org/mjsousa/matiec
https://tools.ietf.org/html/rfc6762
http://nusmv.fbk.eu/
http://www.openplcproject.com/
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://source.android.com/security/index.html#android-platform-security-architecture
https://source.android.com/security/index.html#android-platform-security-architecture
https://source.android.com/security/index.html#android-platform-security-architecture
https://www.sciencedaily.com/releases/2012/07/120705133714.htm
https://www.sciencedaily.com/releases/2012/07/120705133714.htm
https://mailman.cs.mcgill.ca/pipermail/soot-list/2014-May/006815.html
https://mailman.cs.mcgill.ca/pipermail/soot-list/2014-May/006815.html
https://mailman.cs.mcgill.ca/pipermail/soot-list/2014-May/006815.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html

[34] ProGuard. http://proguard.sourceforge.net/.

[35] Qualcomm cne to boost snapdragon in carrier wi-
fi. https://rethinkresearch.biz/articles/
qualcomm-cne-to-boost-snapdragon-in-carrier-wi-fi/.

[36] Ram master – memory optimizer. https://play.google.com/store/
apps/details?id=com.speedbooster.optimizer.

[37] Smali An assembler/disassembler for Android’s dex format. https://code.
google.com/p/smali/.

[38] Smart cooler. https://play.google.com/store/apps/details?id=
com.cooler.smartcooler.

[39] Spark – live random chat. https://play.google.com/store/apps/
details?id=com.video.chat.spark.

[40] Stack overflow android questions. https://stackoverflow.com/
questions/tagged/android.

[41] Super antivirus cleaner & booster. https://play.google.com/store/
apps/details?id=com.oneapp.max.

[42] These 5 apps are killing your battery. https://www.androidpit.com/
battery-draining-apps.

[43] Tools to work with android .dex and java .class files. https://github.com/
pxb1988/dex2jar.

[44] Uppaal home. http://www.uppaal.org/.

[45] Using Network Service Discovery. http://developer.android.com/
training/connect-devices-wirelessly/nsd.html.

[46] Vulnerability summary CVE-2006-1856. http://nvd.nist.gov/nvd.cfm?
cvename=CVE-2006-1856.

[47] Xda developers. https://forum.xda-developers.com/android/
software.

[48] Xposed development tutorial. https://github.com/rovo89/
XposedBridge/wiki/Development-tutorial.

[49] Industrial control systems killed once and will again, experts warn. https://
www.wired.com/2008/04/industrial-cont/, 2008.

[50] Rogue robot blamed for gruesome death of human factory worker it ‘trapped
and crushed in freak safety failure’. https://www.mirror.co.uk/news/
world-news/rogue-robot-blamed-gruesome-death-10026757,
2017.

139

http://proguard.sourceforge.net/
https://rethinkresearch.biz/articles/qualcomm-cne-to-boost-snapdragon-in-carrier-wi-fi/
https://rethinkresearch.biz/articles/qualcomm-cne-to-boost-snapdragon-in-carrier-wi-fi/
https://play.google.com/store/apps/details?id=com.speedbooster.optimizer
https://play.google.com/store/apps/details?id=com.speedbooster.optimizer
https://code.google.com/p/smali/
https://code.google.com/p/smali/
https://play.google.com/store/apps/details?id=com.cooler.smartcooler
https://play.google.com/store/apps/details?id=com.cooler.smartcooler
https://play.google.com/store/apps/details?id=com.video.chat.spark
https://play.google.com/store/apps/details?id=com.video.chat.spark
https://stackoverflow.com/questions/tagged/android
https://stackoverflow.com/questions/tagged/android
https://play.google.com/store/apps/details?id=com.oneapp.max
https://play.google.com/store/apps/details?id=com.oneapp.max
https://www.androidpit.com/battery-draining-apps
https://www.androidpit.com/battery-draining-apps
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
http://www.uppaal.org/
http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://developer.android.com/training/connect-devices-wirelessly/nsd.html
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-1856
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-1856
https://forum.xda-developers.com/android/software
https://forum.xda-developers.com/android/software
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://www.wired.com/2008/04/industrial-cont/
https://www.wired.com/2008/04/industrial-cont/
https://www.mirror.co.uk/news/world-news/rogue-robot-blamed-gruesome-death-10026757
https://www.mirror.co.uk/news/world-news/rogue-robot-blamed-gruesome-death-10026757

[51] Mtconnect. https://en.wikipedia.org/wiki/MTConnect, 2018.

[52] Open platform communications. https://en.wikipedia.org/wiki/
Open_Platform_Communications, 2018.

[53] Industries. https://www.rockwellautomation.com/en_NA/
industries/overview.page, 2019.

[54] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou, W. Du,
and M. Grace. Hare hunting in the wild android: A study on the threat of hanging
attribute references. In Proc. of ACM CCS, 2015.

[55] A. Aiken, M. Fähndrich, and Z. Su. Detecting races in relay ladder logic programs.
In Tools and Algorithms for the Construction and Analysis of Systems, 1998.

[56] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In Proc. of ACM PLDI, 2014.

[57] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the android
permission specification. In Proc. of ACM CCS, 2012.

[58] R. Automation. Logix5000 controllers iec 61131-3 compliance. Rockwell Automa-
tion Publication, 1756.

[59] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In Proc. of ACM POPL, 2002.

[60] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji. A methodology
for empirical analysis of permission-based security models and its application to
android. In Proc. of ACM CCS, 2010.

[61] A. Barth, J. Weinberger, and D. Song. Cross-origin javascript capability leaks: De-
tection, exploitation, and defense. In USENIX security symposium, pages 187–198,
2009.

[62] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A. Weigl. Regression Verification
for Programmable Logic Controller Software. In Formal Methods and Software
Engineering, 2015.

[63] S. Biallas, J. Brauer, and S. Kowalewski. Arcade.plc: A verification platform for
programmable logic controllers. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, 2012.

[64] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. To-
wards taming privilege-escalation attacks on android. In Proc. of ISOC NDSS, 2012.

[65] E. Byres. The air gap: Scada’s enduring security myth. Communications of the
ACM, 56(8):29–31, 2013.

140

https://en.wikipedia.org/wiki/MTConnect
https://en.wikipedia.org/wiki/Open_Platform_Communications
https://en.wikipedia.org/wiki/Open_Platform_Communications
 https://www.rockwellautomation.com/en_NA/industries/overview.page
 https://www.rockwellautomation.com/en_NA/industries/overview.page

[66] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic extraction of
protocol message format using dynamic binary analysis. In Proc. of ACM CCS,
2007.

[67] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen. Towards the auto-
matic verification of plc programs written in instruction list. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics, 02 2000.

[68] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and Y. Chen.
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the
Android Framework. In Proc. of ISOC NDSS, 2015.

[69] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In
Proc. USENIX ATC, 2010.

[70] D. U. Case. Analysis of the cyber attack on the ukrainian power grid. Electricity
Information Sharing and Analysis Center (E-ISAC), 2016.

[71] A. Chattopadhyay and K.-Y. Lam. Autonomous vehicle: Security by design. arXiv
preprint arXiv:1810.00545, 2018.

[72] H. Chen and D. Wagner. MOPS: an infrastructure for examining security properties
of software. In Proc. of ACM CCS, 2002.

[73] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without actually seeing
it: Ui state inference and novel android attacks. In Proc. of USENIX Security, 2014.

[74] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smart-
phone energy drain in the wild: Analysis and implications. In Proc. of the ACM
SIGMETRICS, 2015.

[75] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
background activities in the wild: Origin, energy drain, and optimization. In Proc.
of the ACM MobiCom, 2015.

[76] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in Android. In Proc. of ACM MobiSys, 2011.

[77] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol reverse engi-
neering from network traces. In Proc. of USENIX Security, 2007.

[78] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation attacks
on android. In Information Security, pages 346–360. Springer, 2010.

[79] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143–155, 1966.

141

[80] W. Diao, X. Liu, Z. Zhou, and K. Zhang. Your voice assistant is mine: How to abuse
speakers to steal information and control your phone. In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices, pages 63–74.
ACM, 2014.

[81] J. Dzinic and C. Yao. Simulation-based Verification of PLC Programs Master of
Science Thesis in Production Engineering. Master’s thesis, Chalmers University of
Technology, Sweden, 2013.

[82] A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of authorization hook
placement for the Linux security modules framework. In Proc. of ACM CCS, 2002.

[83] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: an information-flow tracking system for real-
time privacy monitoring on smartphones. In Proc. of USENIX OSDI, 2010.

[84] S. Etigowni et al. Cpac: securing critical infrastructure with cyber-physical access
control. In ACSAC, pages 139–152. ACM, 2016.

[85] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. White paper, Syman-
tec Corp., Security Response, 5(6):29, 2011.

[86] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak and dagger: From two
permissions to complete control of the ui feedback loop. In Proc. of the IEEE S&P,
2017.

[87] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authorization hooks in
the Linux security modules framework. In Proc. of ACM CCS, 2005.

[88] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer overrun detection
using linear programming and static analysis. In Proc. of ACM CCS, 2003.

[89] L. Garcia, S. Zonouz, D. Wei, and L. P. de Aguiar. Detecting plc control corruption
via on-device runtime verification. In 2016 Resilience Week (RWS), Aug 2016.

[90] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: automatically de-
tecting potential privacy leaks in android applications on a large scale. Springer,
2012.

[91] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.
Information-flow Analysis of Android Applications in DroidSafe. In Proc. of ISOC
NDSS, 2015.

[92] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection of Capability
Leaks in Stock Android Smartphones. In Proc. of ISOC NDSS, 2012.

[93] J. F. Groote, S. F. M. van Vlijmen, and J. W. C. Koorn. The safety guaranteeing sys-
tem at station hoorn-kersenboogerd. In Computer Assurance, 1995. COMPASS ’95.
Systems Integrity, Software Safety and Process Security. Proceedings of the Tenth
Annual Conference on, Jun 1995.

142

[94] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph construction in object-
oriented languages. In Proc. of ACM OOPSLA, 1997.

[95] S. Guo, M. Wu, and C. Wang. Symbolic Execution of Programmable Logic Con-
troller Code. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017), Sep 2017.

[96] N. Hardy. The Confused Deputy:(or why capabilities might have been invented).
ACM SIGOPS, 1988.

[97] L. Hendren. Scaling Java points-to analysis using Spark. In Proc. of Compiler
Construction, 12th International Conference, volume 2622 of LNCS, 2003.

[98] R. Huuck. Semantics and analysis of instruction list programs. Electronic Notes in
Theoretical Computer Science, 115:3–18, 2005.

[99] S. Jana and V. Shmatikov. Memento: Learning secrets from process footprints. In
IEEE Symposium on Security and Privacy, 2012.

[100] H. Janicke, A. Nicholson, S. Webber, and A. Cau. Runtime-monitoring for industrial
control systems. Electronics, 4(4):995–1017, dec 2015.

[101] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, A. Prakash,
and S. J. Unviersity. Contexiot: Towards providing contextual integrity to appified
iot platforms. In NDSS, 2017.

[102] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, and
S. Do Noh. Smart manufacturing: Past research, present findings, and future di-
rections. International Journal of Precision Engineering and Manufacturing-Green
Technology, 3(1):111–128, 2016.

[103] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework for Java pro-
gram analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), 2011.

[104] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy,
9(3):49–51, 2011.

[105] R. M. Lee, M. J. Assante, and T. Conway. German steel mill cyber attack. Industrial
Control Systems, 30:62, 2014.

[106] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it worth it? In
Compiler Construction, pages 47–64. Springer, 2006.

[107] C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang. Screenmilker: How to milk your android
screen for secrets. In Proc. of ISOC NDSS, 2014.

[108] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In Proc. of ISOC NDSS, 2008.

143

[109] P. Loscocco. Integrating flexible support for security policies into the Linux operat-
ing system. In Proc. of the USENIX ATC, 2001.

[110] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps for
component hijacking vulnerabilities. In Proc. of ACM CCS, 2012.

[111] S. Mani, A. Sankaran, and R. Aralikatte. Deeptriage: Exploring the effectiveness of
deep learning for bug triaging. In Proceedings of the ACM India Joint International
Conference on Data Science and Management of Data, pages 171–179. ACM, 2019.

[112] M. Martins, J. Cappos, and R. Fonseca. Selectively taming background android apps
to improve battery lifetime. In USENIX Annual Technical Conference, 2015.

[113] S. McLaughlin and P. McDaniel. Sabot: specification-based payload generation for
programmable logic controllers. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 439–449. ACM, 2012.

[114] S. McLaughlin, S. Zonouz, D. Pohly, and P. McDaniel. umia. In Proceedings of the
2014 Network and Distributed System Security Symposium (NDSS’14), Feb 2014.

[115] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone: Recognizing speech from
gyroscope signals. In USENIX Security Symposium, 2014.

[116] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging ”choice” to automate
authorization hook placement. In Proc. of ACM CCS, 2012.

[117] J. Nellen, E. Ábrahám, and B. Wolters. A cegar tool for the reachability analysis of
plc-controlled plants using hybrid automata. In Formalisms for Reuse and Systems
Integration, 2015.

[118] J. Nellen, K. Driessen, M. Neuhäußer, E. Ábrahám, and B. Wolters. Two cegar-based
approaches for the safety verification of plc-controlled plants. Information Systems
Frontiers, 18(5):927–952, 2016.

[119] Nellen, Johanna and Driessen, Kai and Neuhäuβer, Martin and Ábrahám, Erika and
Wolters, Benedikt. Two cegar-based approaches for the safety verification of plc-
controlled plants. Information Systems Frontiers, 18(5):927–952, Oct. 2016.

[120] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer,
2015.

[121] S. Ould Biha. A formal semantics of plc programs in coq. In Proceedings of the 2011
IEEE 35th Annual Computer Software and Applications Conference, COMPSAC
’11, 2011.

[122] S. C. Park, C. M. Park, G.-N. Wang, J. Kwak, and S. Yeo. Plcstudio: Simulation
based plc code verification. 2008 Winter Simulation Conference, pages 222–228,
2008.

144

[123] T. Park and P. I. Barton. Formal verification of sequence controllers. Computers &
Chemical Engineering, 23(11):1783–1793, 2000.

[124] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my phone awake?
characterizing and detecting no-sleep energy bugs in smartphone apps. In Proc. of
the ACM MobiSys, 2012.

[125] H. Prähofer, F. Angerer, R. Ramler, and F. Grillenberger. Static code analysis of iec
61131-3 programs: Comprehensive tool support and experiences from large-scale
industrial application. IEEE Transactions on Industrial Informatics, 13(1):37–47,
2017.

[126] H. Prähofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger. Opportuni-
ties and challenges of static code analysis of iec 61131-3 programs. In ETFA, pages
1–8, 2012.

[127] J.-M. Roussel and B. Denis. Safety properties verification of ladder diagram pro-
grams. Journal Européen des Systèmes Automatisés (JESA), 36(7):pp. 905–917,
June 2002.

[128] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood,
and M. McConley. Automated vulnerability detection in source code using deep
representation learning. In 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 757–762. IEEE, 2018.

[129] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The misuse of android unix domain
sockets and security implications. In Proc. of the ACM CCS, 2016.

[130] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user activity
patterns to guide power optimizations for mobile architectures. In Proc. IEEE/ACM
MICRO, 2009.

[131] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the incoherencies in web
browser access control policies. In Proc. of IEEE Symposium on Security and Pri-
vacy, 2010.

[132] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux security
module. NAI Labs Report, 1(43):139, 2001.

[133] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Automatically Infer-
ring Security Specification and Detecting Violations. In Proc. of USENIX Security,
2008.

[134] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk. An
empirical investigation into learning bug-fixing patches in the wild via neural ma-
chine translation. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, pages 832–837, 2018.

145

[135] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, And Tools
(2nd Edition). Addison Wesley, 2006.

[136] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a
Java bytecode optimization framework. In Proceedings of the 1999 conference of the
Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

[137] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal. Towards verifying android apps for
the absence of no-sleep energy bugs. In Proc. of USENIX HotPower, 2012.

[138] T. Vennon. Android malware. A study of known and potential malware threats.
SMobile Global Threat Centre, 2010.

[139] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google play. In Proc.
of ACM SIGMETRICS, 2014.

[140] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis of current
android malware. In In Proc. of DIMVA, 2017.

[141] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps. In Proc. of the
ACM CCS, 2014.

[142] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and K. Beznosov.
Android Permissions Remystified: A Field Study on Contextual Integrity. In Proc.
of USENIX Security, 2015.

[143] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor customiza-
tions on android security. In Proc. of ACM CCS, 2013.

[144] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs on smartphone touch-
screens using on-board motion sensors. In Proc. of ACM WiSec, 2012.

[145] H. Zhang, D. She, and Z. Qian. Android root and its providers: A double-edged
sword. In Proc. of ACM CCS, 2015.

[146] L. Zhang, B. Tiwana, R. Dick, and Z. M. Mao. Accurate Online Power Estimation
and Automatic Battery Behavior Based Power Model Generation for Smartphones.
In Proc. of ACM CODES+ISSS, 2010.

[147] K. Zhou, T. Liu, and L. Zhou. Industry 4.0: Towards future industrial opportunities
and challenges. In Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th
International Conference on, pages 2147–2152. IEEE, 2015.

[148] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of fragmentation:
Security hazards in android device driver customizations. In Proc. of IEEE S&P,
2014.

146

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Overview
	Contributions
	Outline

	Background and Related Work
	Capability and Capability Abuse
	Android System Services
	Android Security and Application Analysis
	Security of Industrial Control Systems

	Discovering Inconsistent Security Policy Enforcement in the Android Framework
	Introduction
	Motivation
	Inconsistent Security Enforcement
	UID Check
	Package Name Check
	Thread Status Check

	Methodology
	Overview
	Preprocessing
	Call Graph Construction
	Call Graph Annotation
	Inconsistency Detection
	Reducing False Positives

	Implementation
	Preprocessing
	Call Graph Construction
	Inconsistency Detection

	Results
	Tool Effectiveness
	Case Studies

	Discussion and Limitations
	Summary

	A Lightweight Framework for Fine-Grained Control of Application Lifecycle
	Introduction
	Motivation
	Component Lifecycle
	Memory Management

	Understanding Diehard Behaviors
	Escalating Process Priority
	Auto-run

	Fine-Grained Lifecycle Control
	Application Lifecycle Graph (ALG)
	Abstract the Android Framework
	Lifecycle Event Context

	Fine-grained Lifecycle Control
	Lifecycle Manager Service (LMS) and Hooks
	Identify Caller Component
	Nondisruptive Control
	Asynchronous Operations
	Exposed APIs

	Evaluations
	ALG Accuracy
	Overhead
	API Usability
	Diehard Applications in the Wild
	Purposes of Being Diehard
	Third-Party Libraries
	A Real-World ALG

	Discussion
	Conclusion

	Towards Secure Configurations for Real-World Programmable Logic Controller Programs
	Introduction
	PLC and Data Access
	Programmable Logic Controller (PLC)
	Data Access

	Threat Model
	Motivating Example

	Design and Implementation
	PLCAnalyzer Overview
	Translating PLC Code
	Tag Property Analysis
	Taint Analysis

	Evaluation
	Dataset
	Results
	Add-On Instructions (AOI)
	Validating Results

	Discussion
	Conclusion

	The Misuse of Android Unix Domain Sockets and Security Implications
	Introduction
	Unix Domain Sockets
	Threat Model and Assumptions

	Design and Implementation
	Our Approach
	App Analysis
	System Daemon Analysis
	Manual Analysis

	Implementation
	Limitations

	Results
	Overview
	Libraries
	Tool Effectiveness and Performance

	Unix Domain Socket Usage
	Inter-Process Communication
	Realizing Singleton
	Implementing Global Lock
	Implementing Watchdog

	Peer Authentication

	Case Study
	Applications
	Data Injection in a Rooting Tool
	Privilege Escalation in ES File Explorer
	DoS VPN Applications

	System Daemons
	LG AT daemon
	Qualcomm Time Daemon
	Bluedroid

	Countermeasure Discussion
	OS-Level Solutions
	Secure IPC on Unix Domain Sockets

	Conclusion

	Conclusion and Future Work
	Lessons Learned
	Conclusion
	Future Work

	BIBLIOGRAPHY

