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ABSTRACT 

Occupational stress is defined as harmful physical and mental responses when job requirements 

are greater than a worker's capacity. Construction is one of the most stressful occupations because 

it involves physiologically and psychologically demanding tasks performed in a hazardous 

environment this stress can jeopardize construction safety, health, and productivity. Various 

instruments, such as surveys and interviews, have been used for measuring workers’ perceived 

mental and physical stress. However valuable, such instruments are limited by their invasiveness, 

which prevents them from being used for continuous stress monitoring. The recent advancement 

of wearable biosensors has opened a new door toward the non-invasive collection of a field 

worker’s physiological signals that can be used to assess their mental and physical status. Despite 

these advancements, challenges remain: acquiring physiological signals from wearable biosensors 

can be easily contaminated from diverse sources of signal noise. Further, the potential of these 

devices to assess field workers’ mental and physical status has not been examined in the 

naturalistic work environment. To address these issues, this research aims to propose and validate 

a comprehensive and efficient stress-measurement framework that recognizes workers mental and 
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physical stress in a naturalistic environment. The focus of this research is on two wearable 

biosensors. First, a wearable EEG headset, which is a direct measurement of brain waves with the 

minimal time lag, but it is highly vulnerable to various artifacts. Second, a very convenient 

wristband-type biosensor, which may be used as a means for assessing both mental and physical 

stress, but there is a time lag between when subjects are exposed to stressors and when their 

physiological signals change. To achieve this goal, five interrelated and interdisciplinary studies 

were performed to; 1) acquire high-quality EEG signals from the job site; 2) assess construction 

workers’ emotion by measuring the valence and arousal level by analyzing the patterns of 

construction workers’ brainwaves; 3) recognize mental stress in the field based on brain activities 

by applying supervised-learning algorithms;4) recognize real-time mental stress by applying  

Online Multi-Task Learning (OMTL) algorithms; and 5) assess workers’ mental and physical 

stress using signals collected from a wristband biosensor.  To examine the performance of the 

proposed framework, we collected physiological signals from 21 workers at five job sites. Results 

yielded a high of 80.13% mental stress-recognition accuracy using an EEG headset and 90.00% 

physical stress-recognition accuracy using a wristband sensor. These results are promising given 

that stress recognition with wired physiological devices within a controlled lab setting in the 

clinical domain has, at best, a similar level of accuracy. The proposed wearable biosensor-based, 

stress-recognition framework is expected to help us better understand workplace stressors and 

improve worker safety, health, and productivity through early detection and mitigation of stress at 

human-centered, smart and connected construction sites. 

 

 



1 

Chapter 1: 

Introduction 

1.1 Job stress at Construction Sites 

Job stress has been defined as the harmful psychological and physical response to various stressors, 

is a critical factor that adversely affects work performance such as safety, health, productivity, and 

quality (NIOSH 1999). Construction is known as one of the most stressful occupations because of 

physically and psychologically demanding tasks performed in a hazardous work environment 

(Jones and Saad 2003; Loosemore et al. 2003; Petersen and Zwerling 1998; Xiang et al. 2014). 

Workers’ excessive occupational stress has been proven to increase the likelihood of errors, 

incidents, injuries, and health problems, and is linked to stagnant/declined productivity (Abbe et 

al. 2011; Leung et al. 2008, 2015; Loosemore and Waters 2004). All of these issues are prevalent 

in the construction industry.  Further, it was reported that 68% of construction workers suffer from 

excessive stress as a result of working in the construction industry (Campbell 2006).  Because of 

long working hours, unpleasant working conditions, and heavy workloads, the adverse effects of 

fatigue can be exacerbated (Abdelhamid and Everett 2002; Hallowell and others 2010; Sluiter 

2006; Toole 2005). Therefore, a large number of construction workers suffer from significant 

levels of mental and physical stress that can increase error rates and cause unsafe actions (Sluiter 
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2006). Excessive physical stress may also cause work-related musculoskeletal disorders (WMSDs) 

and productivity loss (Hallowell and others 2010; Sluiter 2006; Toole 2005). 

A number of studies have attempted to assess individual mental stress by evaluating 

individuals’ psychological and physiological responses to various stressors. Specifically, a number 

of instruments for subjective estimations of stress (e.g., International Survey of Stress) have been 

used to measure the individual’s perceived stress (Abbe et al. 2011; Bowen et al. 2013; Goldenhar 

et al. 2003; Gutierrez and Ostermann 1999; Leung et al. 2010; Love et al. 2009; Seo and Lee 2010).  

In contrast, physiological measures for biochemical responses (e.g., stress hormones) have been 

used widely in the clinical domain as reliable markers for monitoring mental stress levels. Stress-

related hormones (e.g., cortisol and glucocorticoids) change in response to stressors , so tracking 

the changes in these hormones provides meaningful insight of individuals’ stress (Levine et al. 

2007; Ranabir and Reetu 2011; Russell et al. 2012; Sharma and Gedeon 2012).  

In addition, there has been significant research to assess worker physical stress prior to work 

through the development of subjective physical stress assessments to measure perceived fatigue 

levels (Borghini et al. 2014; De Vries et al. 2003; Dittner et al. 2004; Fang et al. 2015; Michielsen 

et al. 2003; Rosa 1995), empirical assessments (e.g., regression equations) and theoretical models 

of endurance using physiological or mechanical mechanisms (e.g., mathematical equations) along 

with simulation-based assessment of workers’ fatigue under varying degrees of work intensity (Liu 

et al. 2002; Ma et al. 2009; Manenica 1986; Perez et al. 2014; Rohmert et al. 1986; Rose et al. 

1992; Sato et al. 1984; Seo et al. 2016; Xia and Law 2008). 

1.2 Physiological Signals 

Physiological signals are defined as measurements generated by the physiological processes of 

individuals (Ritter 2009). Physiological signals can be categorized into two groups: electrical 
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physiological signals (e.g., Electrodermal activity [EDA], Electroencephalography [EEG], 

Photoplethysmography [PPG], and Electrocardiography [ECG]) and non-electrical physiological 

signals (e.g., Inertial Measurement Units [IMU] and potential of Hydrogen [pH]) (Lazakidou 

2008). Previous studies have reported changes in electrical physiological signals are highly 

associated with stress levels (Healey and Picard 2005; Hosseini and Khalilzadeh 2010; Kim et al. 

2004; de Santos Sierra et al. 2011). Among various electrical physiological signals, EEG, PPG, 

EDA, and ST are four highly informative signals that may be used as a means to assess subjects’ 

mental and physical conditions. 

EEG measures the electrical activity of the brain recorded from the scalp by EEG electrodes 

placed on the scalp (Szafir and Signorile 2011). These electrodes capture the action potential of 

the neurons in the brain, which provides rich information about the activity of the central nervous 

system. PPG represents cardiac activity by measuring the volumetric change of the heart. This 

change is calculated by measuring the light transmission and reflection of the blood pulse (Allen 

2007). The difference between the light transmitted and reflected by a PPG sensor is proportional 

to the changes of blood pulse in the arteries, which represent cardiac activity (Shelley 2007). EDA 

is a signal that can be acquired from a wristband type biosensor. EDA indicates the electrical 

properties of the skin by measuring the variation of the skin conductance (Boucsein 2012). An 

EDA sensor placed in a wristband type sensor applies a low constant voltage. Then changes in this 

voltage resulting from the activity of sweat glands is measured. ST is a signal measured by an 

infrared thermopile placed in a wristband type sensor. An infrared thermopile measures skin 

temperature by detecting its infrared energy. Higher infrared energy is proportional to a higher 

temperature. 
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1.2.1 Physiological Response and Mental Stress 

Physiological response is defined as a metric that measures the changes and reactions of 

physiological signals in response to different stressors (Hosseini and Khalilzadeh 2010; Renaud 

and Blondin 1997). When human beings are exposed to various stressors, their physiological 

signals will be affected by these stressors. As a result, we are able to recognize stress by examining 

patterns of physiological response. Due to the rich information provided by EEG signals about the 

central nervous system activities, there is a considerable amount of attention to recognize 

individuals’ stress using EEG signals (Hou et al. 2015a; Liu and Sourina 2014). In order to 

recognize different brainwave patterns under various stressors, previous researchers extracted and 

calculated different EEG signal features in time and frequency domain (Blaiech et al. 2013; 

Frantzidis et al. 2008; Huang et al. 2012; Jirayucharoensak et al. 2014; Khosrowabadi et al. 2014; 

Liu et al. 2013; Oude Bos 2006).  The EEG signal features in these domains showed a high 

potential to distinguish different EEG signal patterns while individuals are facing different 

stressors (Davidson et al. 1990; Li and Lu 2009; Louwerse and Hutchinson 2012; Xu and 

Plataniotis 2012).  In addition, by analyzing PPG signals, various responses can be extracted (e.g., 

heart rate [HR] and heart rate variability [HRV]), associated with an individual’s stress. Previous 

researchers showed higher stress usually leads to higher HR (Abbe et al. 2011). HRV is another 

parameter that can be extracted from a PPG signal to provide information about stress levels. HRV 

shows the interval between heartbeats, the variation in interbeat intervals, which shows the time 

interval between individual heartbeats (Acharya et al. 2006). Previous researchers showed that 

higher stress might lead to lower HRV (Castaldo et al. 2015; Salahuddin and Kim 2006; Tan et al. 

2011). In the case of EDA, two main physiological responses can be extracted: electrodermal level 

(EDL) and electrodermal response (EDR) (Boucsein 2012). EDL shows slow changes in EDA and 

is associated with an individual’s stress for an extended period (Braithwaite et al. 2013). On the 
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other hand, EDR is a short-term phasic component of EDA that shows rapid changes in an 

individual’s stress over a short period (Horvath 1978; Kurniawan et al. 2013; Lawler 1980; Shi et 

al. 2007a; b; Sime 1977; Villarejo et al. 2012). In addition to the metrics extracted from PPG and 

EDA signals, there are indications that an individual’s peripheral body temperature is associated 

with their stress level (Boregowda et al. 2017; Briese 1995; Kleitman and Jackson 1950; Marazziti 

et al. 1992; Oka and Oka 2007; Vinkers et al. 2010). 

1.2.2 Physiological Signals and Physical Stress 

Highly physically demanding activities increase the risk of physical stress (Hwang and Lee 2017) 

leading up the to temporary inability of a muscle to maintain its optimal performance (Chaffin 

1973; Hultman and Greenhaff 1991; Taylor and Gandevia 2008). High physical stress is closely 

associated with intense physical activities (Bogdanis 2012; Convertino et al. 1997; Ebaugh et al. 

2006) and can be understood as the body’s response to conscious (e.g., physical exertion) and 

subconscious factors (e.g., environmental factors) that are present during highly physically 

demanding activities (De Vries et al. 2003; Edwards 1981). When the body is exposed to a high 

degree of physical demand, it makes physiological adaptations (e.g., heart rate and respiration 

increase, the release of hormones, and adjustment of body temperature) to cope with these stressors. 

Without these responses, the body would not survive (Nielsen et al. 1993; Noakes 2000). Therefore, 

examining changes in physiological responses can provide useful information about individual 

physical-demand levels. The body’s physiological responses can be examined by studying the 

changes in the pattern of physiological signals. Previous researchers confirmed the potential of 

various physiological responses (e.g., heart rate, heart-rate variability, electrodermal activity, 

electrodermal response, body temperature) that are calculated from various physiological signals 

(photoplethysmography [PPG], electrodermal activity [EDA], skin temperature [ST]) to assess 
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individual physical fatigue (Acharya et al. 2006; Earnest et al. 2004; Heiden et al. 2005; Ibrahimy 

et al. 2003; Roja et al. 2006; Segerstrom and Nes 2007). 

PPG provides rich information about cardiovascular-system activity (Allen 2007) by 

measuring the blood-volume variations in vascular tissues (Saquib et al. 2015; Shelley 2007). 

When individuals experience intense physical activities, their brains innervate heart-related 

activities, which result in changes in blood volume. Previous studies have reported that there is an 

association between physical fatigue and various PPG-based metrics, such as heart rate (Caspersen 

et al. 1985; Ceesay et al. 1989; Jouven et al. 2005; Keytel et al. 2005; Livingstone et al. 1992; 

Meijer et al. 1989; Rennie et al. 2001; Spurr et al. 1988), %HRR (Bos et al. 2004; Esposito et al. 

2004; Freedson and Miller 2000; Hwang and Lee 2017; Richmond et al. 2008; Sluiter 2006), and 

heart-rate variability (Acharya et al. 2006; Aubert et al. 2003; Nakamura et al. 1993; Pichot et al. 

2000).  

Electrodermal activity (EDA) also referred to as galvanic skin response (GSR). It represents 

the skin conductance by continuous measurement of changes in the electrical properties of the skin 

(Boucsein 2012; Braithwaite et al. 2013). If the sympathetic nervous system is activated by 

physical demands or mental stress, sweat-gland activity increases, which in turn increases skin 

conductance. Despite the fact that previous researchers reported that EDA activation happens 

mostly as the result of mental stress (Critchley 2002; Horvath 1978; Kurniawan et al. 2013; Picard 

et al. 2016; Venables and Christie 2012; Villarejo et al. 2012) and cognitive load (Haapalainen et 

al. 2010; Nourbakhsh et al. 2012; Setz et al. 2010; Shi et al. 2007). 

Peripheral skin temperature (ST) is another physiological signal that can be measured using 

an infrared thermopile. ST provides valuable information on the body’s thermoregulation resulting 

from physical activity (Romanovsky 2014). ST is measured in relation to core body temperature 
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(Cheng et al. 2012; Kelly 2006; Niedermann et al. 2014), as well as ambient temperature (Elebute 

1976; Petrofsky et al. 2012; Thiele and Van Senden 1966). Both are associated with individual 

physical demand levels (Bakshi 2003; Bergh and Ekblom 1979; Galloway and Maughan 1997; 

Sumowski and Leavitt 2014). 

1.3 Challenges of Collecting Physiological Signals in the Field 

Despite the potential of physiological signals to provide rich information on construction workers’ 

mental and physical status (Ahn et al. 2019; Abdelhamid and Everett 2002; Aryal et al. 2017; Chen 

et al. 2016, 2017b; Cheng et al. 2012; Gatti et al. 2014; Ghahramani et al. 2018; Hwang et al. 2016; 

Jebelli et al. 2018b; Choi et al. 2019; Lee and Migliaccio 2018), these signals are mostly collected 

in a laboratory environment, not in everyday situations (Ritter 2009). Acquiring physiological 

signals in a controlled environment using traditional wired EEG devices leads to high-quality 

signals because of minimal movement by the subjects, high-quality wired sensors, and multiple 

sensors placed in different locations by a well-trained staff. In addition, the quality of EEG 

recordings using wearable EEG headsets in a controlled lab environment is acceptable with the 

help of a few commercially available EEG acquiring and pre-processing software (e.g., Emotiv 

Pro)  as long as the signal has not interfered with intrinsic signal artifacts (e.g., eye blinking, eye 

movement, facial muscle movement, etc.). Although the high quality of physiological signals 

collected from controlled environments broadens our understanding of the relationship between 

stress and physiological responses, its application is limited to construction sites because lab 

environments are limited to reproducing only certain work conditions and tasks in construction 

sites. 

In addition to wearable EEG headsets, recent advancements in technology, including several 

types of wearable biosensors (e.g., chest straps, wristbands, etc.), are available as a means to 
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monitor workers’ mental status. Chest strap sensors have been used mostly for monitoring the 

cardiac activity (e.g., heart rate) of construction workers (Seoane et al. 2014). Despite their success  

in monitoring workers’ cardiac activity in the field, these devices they remain  limited in their 

acquisition of electrical activity of the heart (Electrocardiography [ECG]). Quite recently, a few 

researchers attempted to assess workers’ mental stress (Hwang et al. 2018a; Jebelli et al. 2018b; e; 

Wang et al. 2019) and cognitive load (Chen et al. 2015, 2017b) based on brain waves collected 

from an EEG headset. Although the main advantage of EEG headsets is their ability to rapidly 

indicate changes in workers’ mental status (Herwig et al. 2003), the process of capturing high 

quality EEG signals in the field is more challenging compared to other physiological signals due 

to several intrinsic artifacts (e.g., eye blinking, facial muscle movement, etc.). Among different 

types of wearable biosensors, wristband-type biosensors allow us to acquire multiple physiological 

signals (e.g., PPF, EDA, and ST) without interrupting workers’ ongoing tasks. However, 

measuring physiological signals using a wristband-type biosensor at real construction sites remains 

challenging due to the large number of extrinsic signal artifacts and distortions that come from 

workers’ movement, sensor displacement, environmental noises and lower quality of sensor 

electrodes compared with wired biosensors (Hwang et al. 2016; Jebelli et al. 2017; Tamura et al. 

2014; Wei et al. 2008). To address this issue, this study proposes a framework to reduce 

physiological signal artifacts while preserving the features of the original signal by applying signal 

processing and filtering, followed by pattern recognition to assess workers’ mental stress, achieved 

with supervised learning. Then, the performance of the proposed framework will be examined 

using the physiological signals acquired in the field using a wristband-type biosensor.Limitation 

of Current Methods and Problem Statements 
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Any subjective assessment of worker mental and physical stress has two important 

limitations for the field. First, stopping workers during their tasks to have them fill out 

questionnaires interrupts their work. Second, these methods are subjective and rely on imprecise 

memory and reconstructions of the past (Larson and Csikszentmihalyi 1983). In addition, despite 

the validity of physiological measures for biochemical responses (e.g., stress hormones), this 

method is not viable for continuous stress monitoring because measuring stress-related hormones 

requires the collection of serum, saliva, urine, or hair samples. Given dynamic changes in work 

environments, continuous monitoring of stress is particularly meaningful in construction sites. 

Furthermore, analyzing collected samples require laboratory processing, which is difficult to apply 

in the field. On the other hand, the empirical estimation and theoretical models of worker stress do 

not have the limitations of subjective methods. However, they are limited to individual factors (the 

body's capabilities, age, experience, varying trades, etc.) and site conditions (temperature, 

humidity, differences from indoor to outdoor, etc.) that can affect workers’ physical demands. 

Each worker is unique with different personal characteristics (e.g., age, experience, physiological 

characteristics, gender, etc.) and therefore workers do not respond the same to a certain task. For 

instance, the same tasks that require a low physical demand (or low mental stress) for one worker 

may cause a higher physical demand (or higher mental stress) for another worker, or even for the 

same worker in a different environment (Astrand et al. 2003; Gatti et al. 2014; Mohamed and 

Alginahi 2009). As such, in order to appropriately assess each worker’s stress, rather than how 

much the task physically demands, to what extent the worker responds to the stressors is more 

important and indeed, accurately reflect workers’ mental and physical status.   
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1.4 Research Objectives and Approaches 

Given this background, the overall goal of this research is to promote safe construction sites and 

healthy and productive workers by developing measurable frameworks for continuous monitoring 

of workers’ mental and physical stress. We will do so using noninvasive, low-cost, wearable 

biosensors. It involves quantifying workers' physiological signal responses to stressors on site. The 

better understanding of the causes of stress and fatigue contributes critically to enhancing the 

safety of construction sites and improving worker health and productivity. To achieve these goals, 

outlines of the objectives of this research follow: 

1.4.1 Research Objective 1 

Investigating physiological signals can be useful in understanding human psychosocial and 

physiological aspects of work, such as mental stress, emotional exhaustion, burnout, mental fatigue, 

and physical stress. Recently, wireless, off-the-shelf wearable biosensors, lightweight and 

affordable, have become available, so that researchers can measure construction workers’ 

physiological signals in the field without interfering with their ongoing work. However, 

physiological signals can be contaminated by many sources, such as body and sensor movement, 

respiration, and muscle-movement artifacts. These artifacts are especially serious in the field 

because of the noise construction sites generate and workers’ frequent movement during physically 

demanding tasks. Further, the relatively low recording resolutions, e.g., 4-256 Hz, of wearable 

biosensors, compared to one that is wired, make the analysis of these signals more challenging. To 

address this problem, the first objective of this research is to acquire high-quality physiological 

signals in the field. 
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1.4.2 Research Objective 2 

Construction workers’ emotional states (e.g., pleasure, displeasure, excitement, relaxation) are 

known to be a critical factor affecting workers’ performance (e.g., safety, health, and productivity). 

To prevent their adverse impacts on work performance, measuring emotional states should take 

precedence to better understand how workers’ emotions vary while they are working. Among 

many methods available to measure these states, the electroencephalogram (EEG) has great 

potential for quantitative measurement and overcoming any bias from  a subjective assessment of 

emotions. While EEG-based measurement of emotion has been tested and applied in a laboratory 

environment, recent advancements in wearable EEG sensors make them portable, wireless, and 

affordable and open a door to non-intrusive measurement of emotion in the field . After looking 

into capturing and processing high-quality physiological signals in the field, this chapter 

investigates the feasibility of measuring workers’ emotions in the field using a wearable EEG 

sensor. To do this, the second objective to develop and validate a bipolar dimensional emotion 

model, which consists of two dimensions of valence (displeasure to pleasure) and arousal 

(relaxation to excitement); it was applied to quantify workers’ emotional states. 

1.4.3 Research Objective 3 

Taking into account that many construction workers suffer from excessive stress, which adversely 

impacts their safety and health, early recognition of stress is an essential step toward stress 

management. In this regard, an electroencephalogram (EEG) has been widely applied to assess 

individuals’ stress by analyzing brain waves in the clinical domains. With recent advancements in 

wearable EEG devices, the EEG’s utility can be extended to field workers, particularly by non-

invasively assessing construction workers’ stress. The third objective of this research, then, is to 
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develop a procedure to automatically recognize workers’ stress at construction sites using EEG 

signals. 

1.4.4 Research Objective 4 

Recognizing the factors that cause stress is a crucial step toward early detection of stressors. In 

this regard, several studies recognize individuals’ stress using an electroencephalogram (EEG). 

However, current EEG-based stress-recognition frameworks have several drawbacks. First, they 

are mostly designed to recognize individuals’ stress only in a controlled laboratory environment. 

Second, they do not take into account the changes in the EEG signals of different subjects under 

the same stressors. Third, most of the current stress recognition algorithms occur in an offline 

setting. To address these issues, the fourth objective of this research is to develop and validate an 

EEG-based stress recognition framework that takes into account each subject’s brainwave 

patterns to train the stress-recognition classifier and continuously update this classifier based on 

new signals in near real-time. 

1.4.5 Research Objective 5. 

In the second study, our framework achieved high mental- stress recognition based on EEG signals.  

For the third study, we examined the potential of our framework to measure workers’ mental and 

physical stress using other physiological signals collected from a convenient wristband biosensor. 

To address this problem, the fifth objective of this research is to develop a framework for 

continuous, automatic measurement of worker mental stress and physical demand by examining 

changes in workers’ physiological signals collected from a wristband biosensor. 
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1.6 Dissertation Structure 

This dissertation is the result of compiling studies to achieve the research objective mentioned. In 

terms of the organization of content, chapters 2 – 7 elaborate stand-alone studies to reach the 

aforementioned objectives. The following is an outline of the chapters of this dissertation: 

• Chapter 1 – Introduction 

Chapter 1 provides preliminary background information, clarifies the focus of the 

dissertation, specifies the research goal, and highlights a specific research methodology and its 

objectives.  

Chapter 2 –An EEG Signal-Processing Framework to Obtain High-Quality Brainwaves 

from an Off-the-shelf, Wearable EEG Device 

Capturing high-quality brainwave signals from a wearable EEG device can be very challenging on 

construction sites due to signal artifacts generated from body movement during physically 

demanding work. To address this issue, this chapter proposes an EEG signal-processing 

framework that can acquire high-quality EEG signals from construction sites using a wearable 

EEG device. Specifically, the signal-processing framework reduces noises and thereby can extract 

quality EEG signals. 

• Chapter 3 –Measurement of Workers’ Emotional State Using a Wearable EEG during 

Construction Tasks 

This chapter presents an EEG-based, emotion-measurement framework to assess construction 

workers’ emotions based on EEG signals acquired in the field. Workers’ valence and arousal levels 

were measured using a wearable EEG sensor during ongoing tasks. The validity of the EEG-based 

emotion measurement was examined by comparison with cortisol levels obtained from workers’ 

saliva samples, accepted as a reliable measure. The results demonstrate the applicability of a 
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wearable EEG sensor to measuring workers’ emotions, particularly valence levels, crucial to 

understanding workers’ emotional states. 

• Chapter 4 –Recognition of Workers’ Stress Using an EEG at Construction Sites 

To manage excessive occupational stress, recognizing workers’ stress on site is an essential step. 

This chapter applies several supervised-learning algorithms to recognize workers’ stress while they 

are working. Time and frequency domain features from EEG signals are calculated using fixed- 

and sliding-window approaches. Salivary cortisol, a stress hormone, was also collected to label 

low- or high-stress levels when they work. The results show that the fixed-window approach and 

the Gaussian Support Vector Machine (SVM) yielded the classification accuracy of 80.32%, very 

promising given the similar accuracy of stress recognition in clinical domains where extricate and 

wired EEG devices were used and the subjects engaged in minimal body movement. 

 

• Chapter 5 – A Continuously Updated, Computationally Efficient, Stress-Recognition 

Framework Using EEG by Applying Online, Multi-Task Learning Algorithms (OMTL). 

This chapter proposes a framework to recognize individuals’ stress in near real time and for new 

stressful conditions. The proposed framework extracts a broad range of EEG signal features and 

then applies different Online Multi-Task Learning (OMTL) algorithms. The proposed framework 

was applied on the EEG collected in two environments—first on that collected in a controlled lab 

environment using a wired EEG and second, on the EEG collected in the field using a wearable 

EEG device. The OMTL-Von Neuman method resulted in the best prediction accuracy on both 

datasets (71.14% on the first dataset and 77.61% on second) among all tested algorithms. 

• Chapter 6 – Wristband-type Wearable Biosensor to Assess Construction Workers’ 

Mental Stress 
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 This chapter examines the potential of other physiological signals (e.g., PPG, EDA, and ST) 

acquired from a wristband-type biosensor. This chapter proposes a framework for continuous and 

automatic measurement of worker stress by examining the changes in workers’ physiological 

signals collected from a wristband type biosensor. The framework applies various filtering 

methods to reduce physiological signal noises and extract patterns of physiological signals as 

workers experience various stress levels. Then, the framework learns these patterns by applying a 

supervised-learning algorithm. To examine the performance of the proposed framework, I 

collected physiological signals from ten construction workers in the field. The proposed 

framework resulted in a stress-prediction accuracy of 84.48% in distinguishing between low and 

high stress levels and 73.28% in distinguishing among low, medium, and high stress levels. The 

results confirmed the potential of the proposed framework for assessing workers’ stress in the field 

using other physiological signals collected from a wristband type sensor. 

• Chapter 7 –Wristband-type Wearable Biosensor to Assess Construction Workers’ 

Physical Demand 

 This chapter develops and examines a procedure for automatic predictions of demand levels based 

on physiological signals collected from workers. Workers physiological signals were captured 

using a wristband-type biosensor while they performed regular tasks in the field. Various 

physiological responses were extracted from the artifact-corrected signals. The rate of energy 

expenditure was used as a baseline to separate tasks into low, moderate, and high-intensity 

activities. Then, a supervised machine-learning model was trained by applying a Gaussian kernel-

support vector machine. The results led to a prediction accuracy of 90% in recognizing low and 

high physical-intensity levels and 87% for a more detailed low, moderate, and high physical-

intensity levels. 
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• Chapter 8 – Conclusions 

The final chapter draws conclusions and summarizes the main points of various chapters. It 

provides a brief summary of the key findings and offers an overview of the important contributions 

of this research. Chapter 8 ends with possible follow-up research that can build upon this 

dissertation. 
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Chapter 2: 

An EEG Signal-Processing Framework to Obtain High-Quality Brainwaves 

from an Off-the-Shelf, Wearable EEG device1 

2.1 Introduction 

The construction industry has one of the highest rates of workers’ psychosocial problems (EU-

OSHA 2013). A psychosocial disorder is a mental illness usually caused or influenced by life 

experiences as well as mal-adjusted cognitive and behavioral processes (Üstün and Sartorius 1995), 

such as stress, emotional exhaustion, burnout, and mental fatigue (EU-OSHA 2013). Specifically, 

stress in construction has been known as a critical psychosocial problem because construction is 

one of the most stressful occupations (Di Martino 1992; Petersen and Zwerling 1998), which 

results from physiologically and psychologically demanding tasks in a hazardous environment 

(Jones and Saad 2003; Loosemore et al. 2003; Xiang et al. 2014). High occupational stress 

increases the likelihood of errors, incidents and injuries and is linked to stagnant or declining 

productivity prevalent in the construction industry (Abbe et al. 2011; Djebarni 1996; Goldenhar et 

al. 2003; Leung et al. 2008, 2015; Loosemore et al. 2003; Love et al. 2009). In addition, emotional 

1 This chapter is Adapted from Jebelli, H., Hwang, S., and Lee, S. (2017) “An EEG Signal Processing 

Framework to Obtain High Quality Brain Waves from an Off-the-Shelf Wearable EEG Device.” Journal 

of Computing in Civil Engineering, 32(1), 04017070. 
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exhaustion—the degree to which individuals do not feel emotionally secure and relaxed—can 

cause workers’ stress and burnout in the long run due to a lack of emotional resources and energy 

from having too many things to do in a limited time e. Other psychosocial problems in construction 

sites include: burnout defined as a syndrome of emotional exhaustion, cynicism, and changes in 

personal accomplishment (Burke and Richardsen 1996; Maslach et al. 2001); and mental fatigue 

which is an exhaustion of mental and physical strength that results from bodily labor or mental 

exertion (Lewis and Wessely 1992). Burnout has been identified as a major effect of job stress 

(Cordes and Dougherty 1993; Lee and Ashforth 1993) while mental fatigue may lead to a 

significant decrease in motivation and vigilance e, as well as potential accidents and injuries 

(Swaen et al. 2003).  

As such, these psychosocial problems of construction workers may adversely affect project 

performances including productivity, quality (Abbe et al. 2011; Leung et al. 2008, 2015), and 

safety (Brewer and Clippard 2002; Maslach et al. 2001; Nyssen et al. 2003). Thus, monitoring 

workers’ psychosocial status is very helpful to avoid its negative influence on performances. 

Particularly, this monitoring can help construction project and safety managers investigate and 

manage excessive job demands or potentially hazardous working conditions that can cause serious 

psychosocial problems, which can eventually improve workers’ safety and health as well as 

productivity and work quality.  

To detect the psychosocial problems of the human subjects, several physical and 

physiological measures (i.e., biometrics) have been widely used. The use of these bio-metrics as 

an indicator of psychosocial problems include: electromyographm (EMG) illustrated as electrical 

activities produced by active muscles (Healey and Picard 2005; Luijcks et al. 2014); skin 

temperature (ST) (Reisman 1997; Zhai and Barreto 2006); electro-dermal activity (EDA) produced 
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by the activity of the sweat glands and reflecting sympathetic nervous system activity (Ferreira et 

al. 2008; Healey and Picard 2005; Labbé et al. 2007; Selye 1956); heart rate variability (HRV) 

represented as the variation between heartbeats (Acharya et al. 2006; Dishman et al. 2000; Ferreira 

et al. 2008; Niskanen et al. 2004); blood volume pulse (BVP), the change of blood flow after each 

heart beat (Healey and Picard 2005; Reisman 1997); and electroencephalogram (EEG) presenting 

the electrical activity along the scalp produced by the firing of neurons in the brain (Chen et al. 

2015, 2016; Hosseini and Khalilzadeh 2010; Hou et al. 2015; Jovanov et al. 2003; Szafir and 

Signorile 2011).  

Among them, EEG has been widely used in neuroscience, cognitive psychology, 

neurolinguistics, and psychophysiological areas to assess psychosocial status (Collerton 2015; 

Kable 2011; Wada 2015). A particular strength of EEG is that it can accurately monitor the neural 

activities and brain-wave patterns by directly capturing the response of central nervous system, 

while other biometrics (i.e., EMG, ST, EDA, HRV, and BVP) are physiological signs originated 

from peripheral nervous system activities such as sympathetic and parasympathetic activations in 

the autonomic nervous system (Zhai et al. 2005). Therefore, EEG could provide richer and more 

detailed information on psychosocial status than others. Also, according to EEG’s high temporal 

resolution, low instructive equipment, rapid indication of changes in brain activity, and capability 

to record complex electrical waveforms at the scalp during different emotions (Novák et al. 2004), 

EEG has been introduced as a very useful tool for monitoring a range of psychosocial problems 

such as stress (Goodman et al. 2013; Hou et al. 2015; Lee et al. 2014; Putman et al. 2014; Singh 

and Sharma 2015); emotional exhaustion (Blaiech et al. 2013; Eaton et al. 2014; Sokka et al. 2014); 

burnout (Broeke et al. 2013; Martinez et al. 2015; Ryu et al. 2015; Sokka et al. 2014, 2016; Tement 
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et al. 2016), and mental fatigue (Borghini et al. 2012, 2014; Charbonnier et al. 2016; Trejo et al. 

2015).  

Despite the capacity of EEG to provide rich and detailed information on psychosocial status 

of subjects, it has been applied and tested only in a controlled laboratory environment using a 

clinical EEG recording device (e.g., electrode cap), not in real workplaces like construction 

because this device typically comes with many wired nodes, which can interfere with workers’ 

ongoing work. The recent introduction of a wearable EEG device can open a new door to non-

intrusively measure field (construction) workers’ EEG because it is wireless (no hard wires), 

lightweight and affordable. However, EEG recording is highly vulnerable to various forms and 

sources of noise, which are very common and even severe in real-world work environments. 

Specifically, one of the biggest challenges is the low signal-to-noise ratio in the record of the brain 

signals. When subjects are relatively stationary, EEG artifacts (i.e., noises obscuring the signal of 

interest) are relatively small and can thus be identified and corrected (Urigüen and Garcia-Zapirain 

2015). On the other hand, when subjects in the field are frequently moving around, which is typical 

for construction workers, EEG artifacts significantly increase. 

To apply a wearable EEG device to construction workers, the first logical step should be to 

ensure that high-quality brain waves from construction workers can be obtained at the field where 

the sources of EEG artifacts are prevalent (e.g., noise from body movements). As such, I propose 

a signal-processing framework for removing the most common EEG artifacts recorded from 

workers at the real construction sites while they are performing their tasks. Then, I investigate 

whether high-quality EEG signals can be acquired from construction field workers applying the 

proposed framework to raw EEG signals recorded from a wearable EEG device. Specifically, 
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changes in brain activation in the EEG while subjects are working at real sites will be monitored 

and recorded for this purpose.  

2.2 Electroencephalography 

Electroencephalography (EEG) is a non-invasive medical imaging technique method to collect 

electrical activity of the brain. In 1875, Richard Caton discovered the electrical activity of the brain. 

Caton detected EEG from the exposed brains of rabbits and monkeys. EEG is defined as an 

alternating type of electrical activity recorded from the scalp surface (Niedermeyer and da Silva 

2005). There are two general sources for EEG to be measured. The first one is Electrocorigrom 

that is directly measured from the cortical surface (from the scalp surface non-invasively). The 

second one is Electrogram that can be used to measure EEG by inserting a depth probe directly in 

the brain tissue. Electrogram is not possible to be used in the non-clinical research area. This 

research will thus refer only to EEG measured from the scalp (i.e., Electrocorigrom). In this 

method, the voltage fluctuation generated by neurons activity located on the surface of the brain 

will be recorded (Khalil and Misulis 2006; Sanei and Chambers 2013). To collect these voltage 

fluctuations, multiple electrodes are usually placed on the scalp. 

Information that can be provided by the EEG strongly depends on the location of the brain 

that EEG electrodes were placed (Koessler et al. 2007). Particularly, the cerebral cortex area has 

the highest impact to EEG electrical activity and each region of the cerebral cortex area (e.g., 

frontal lobes, motor cortex, parietal lobe, etc. as shown in A of Figure 2.1) controls different 

function (Teplan 2002). For example, the frontal lobe controls emotions and the capacity of 

attention (Rusinov 2012). In addition, a motor cortex region is involved in controlling voluntary 

movements, which can be used to monitor the activation of the brain from workers’ physical 

movements (Rusinov 2012). Therefore, the off-the-shelf wearable devices (e.g., Emotiv EPOC+ 
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that this study used as denoted by B in Figure 2.1) have multiple electrodes (e.g., 14 scalp 

electrodes as denoted by C in Figure 2.1) to provide diverse information of EEG detected from 

different locations in the cerebral cortex area of the brain.  

 

Figure 2.1. An overview of wearable EEG: (a) the cerebral cortex of the brain; (b) an example of 

the wearable EEG device; and (c) EEG electrode placements. 

EEG is typically described in terms of a rhythmic activity. This rhythmic activity is usually 

categorized into five basic groups by their different frequency range including: delta (0.5–4 Hz), 
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2014; Jasper and Andrews 1938; Walter and Dovey 1944). Delta and theta frequency ranges are 

usually observed in infants, children, and sleeping adults. An alpha frequency range bands 

conscious thinking and subconscious mind, which promotes a feeling of deep relaxation. A beta 

frequency range is the usual walking rhythm of the brain associated with active thinking and 

attention, the beta the beta frequency range can clearly show the activation of the brain during a 

motor cortex activity (McFarland et al. 2000; Pfurtscheller and Neuper 1997). Gamma frequency 

range has a very low amplitude, and thus, the occurrence of gamma frequency range in normal 
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adults is rare. The gamma frequency range is usually observed in clinical domains to detect certain 

brain diseases. As such, our target in this research (i.e., stress) would be beta frequency bands.  

2.3 Challenges in the Use of EEG at Construction Field 

EEG signals recorded from electrodes placed on the scalp have a frequency range from 0.01 to 

100 Hz and varies from a few microvolts to approximately 100 microvolts (Nunez and Srinivasan 

2006). Because of this small amplitude, recording of any EEG is very vulnerable to various forms 

of signal artifacts which refer to signal distortions appearing within desired or pure signal 

waveforms (Teplan 2002). When subjects are relatively stationary, EEG artifacts that obscure the 

signal of interest are small in scale, and can thus be identified and corrected (Urigüen and Garcia-

Zapirain 2015). Some artifacts are extrinsic—generated from environmental or physical factors 

such as electrode popping, high impedance, movement artifacts, environmental noise, and wiring 

noise in the EEG device. On the other hand, some artifacts are intrinsic—generated within the 

body’s physiology such as eye movements, blinking, and facial muscle movement (Jung et al. 

2000; Kar et al. 2010; Shao et al. 2009; Szafir and Signorile 2011; Urigüen and Garcia-Zapirain 

2015). Although many existing EEG signal processing methods have been used in clinical domains 

such as neural science and cognitive psychology, they collected EEG signals only in a controlled 

laboratory environment using an exquisite clinical EEG recording device (e.g., wired electrode 

cap) while subjects’ are in the stationary postures to minimize extrinsic artifacts (Jahankhani et al. 

2006; Ortolani et al. 2002). However, these methods cannot be applied in the real site due to 

significant extrinsic artifacts from hardware limitations of a wearable EEG device (i.e., vulnerable 

to signal noises) and subjects’ intensive movement during working. Such methods also require 

preparation of the scalp skin such as removing the hairs and applying conductive gels, which are 

not practical to be used in the construction sites. Further, most of the existing EEG signal 
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processing methods require collecting other bio-signals such as electromyogram (EMG) and 

electrocorticogram (ECoG), in order to remove these intrinsic artifacts. Collecting other bio-

signals such as EMG and ECoG is not also practical in the field. Recently, Chen et al. (2016) 

demonstrated the capability of a EEG device for monitoring construction workers’ mental 

workloads in a controlled environment using four EEG electrodes. One of the main challenges 

they faced was dealing with the noise of EEG recording even in a controlled environment; for 

example, they mentioned that sweat as a factor that changes the conductivity of skin could show 

up intermittent slow wave artifacts on the EEG signals. In real construction sites, there are several 

factors that can more intensify artifacts in EEG signals (e.g., sweating, movement artifacts, 

environmental sounds, drifts in electrode impedance, and data aliasing), by significantly affecting 

the quality of EEG recording from construction workers. Due to these reasons, EEG has not been 

applied and tested on site.  Therefore, acquiring high-quality EEG signals by dealing with artifacts 

should take precedence so that a wearable EEG is used to explore construction workers’ 

psychosocial status.  

2.4 Research Objective and Scope 

To acquire high-quality EEG signals from real construction sites using an off-the-shelf wearable 

EEG device, this chapter proposes a signal processing framework that can remove the most 

common EEG artifacts and obtain quality brain waves from field construction workers at a real 

construction environment, one of the most noise-prone job sites for acquiring neural signals.  

In addition, one reliable way to validate the processed EEG signals is to capture the 

activation of the motor cortex area of the brain (see C in Figure 2.1) caused by body movements 

(Brown 2000; Brümmer et al. 2011; Ganguly et al. 2009; Gwin et al. 2011; Lotze et al. 1999; 

Miller et al. 2007; Rabe et al. 2008; Schneider et al. 2013; Umilta et al. 2012). This method has 
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been widely used to examine the reliability of the EEG signals in recognizing activation of the 

brain because the physical movement task is the most identifiable, visible, and easy-to-simulating 

stimulus to induce brain activations among diverse stimuli used in the EEG research field (e.g., 

emotional tasks that induce a certain emotional state such as watching a horror movie clop, 

cognitive tasks such as Stroop word-color matching test, etc.). Furthermore, the intrinsic artifacts 

(e.g., eye blinking, vertical eye movements and facial muscle movements) in the EEG signals from 

the motor cortex area are much more significant than ones from the frontal area (AF3, F7, F3, and 

FC5) (Figure 2.1). This study’s focus is thus whether the significant artifacts in the EEG signals 

from the motor cortex area can be corrected to capture the brain activation. Specifically, the EEG 

beta frequency range clearly shows the activation of the brain during motor cortex (while subjects 

are moving) (McFarland et al. 2000; Pfurtscheller and Neuper 1997). Capturing changes of the 

activation in the EEG beta frequency while a subject is working will demonstrate the potential of 

a wearable EEG device to monitor workers’ brain wave patterns at the real construction site. As 

such, I examine whether the EEG signal processed by the proposed framework can capture brain 

motor cortex area activation between working (active) and none-working (inactive) conditions. 

2.5 Proposed EEG Signal Processing Framework 

Figure 2.2 shows the overall EEG signal-processing framework that has been developed in this 

study. In this framework, the recorded data are first labeled and then cut for different experimental 

datasets, in order to match the recorded EEG signals with different tasks (Pre-Processing denoted 

by A in Figure 2.2). Then, filtering methods are used to remove extrinsic artifacts (e.g., sweating 

and drift in the electrode impedance) while intrinsic artifacts (e.g., eye movement, blinking, and 

facial muscle activity artifacts) were removed using an independent component analysis (ICA) that 

can remove intrinsic ones such as ocular and muscle artifacts from EEG signals (Artifacts Removal 
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denoted by B in Figure 2.2). After cleaning the EEG signals, mean power spectral density (PSD) 

on the beta frequency range is calculated for the electrodes near the motor cortex while the subjects 

are working (active) and not working (inactive) by measuring the strength of energy variation as a 

function of beta frequency range (Power Spectral Analysis denoted by C in Figure 2.2). This will 

provide criteria for the existence of the brain waves in the EEG signals. Artifacts removal and 

power spectral analysis steps (B and C in Figure 2.2) in this framework will be further discussed 

in the following sections.  

 

 

Figure 2.2. EEG signal processing framework: (a) pre-processing and data labeling across 14 

different EEG electrodes; (b) signal artifacts removal steps to remove extrinsic and intrinsic 

artifacts; and (c) power spectra analysis. 
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2.5.1 Extrinsic Artifacts Removal 

Filtering methods are applied to remove a number of extrinsic artifacts such as sweating and drift 

in the electrode impedance. Specifically, a bandpass filter allows signals between cutoff 

frequencies (e.g., 0.5 Hz–65 Hz) to pass and prevents signals to pass at other frequencies 

(Christiano and Fitzgerald 2003). Band pass filters with a higher cutoff of 65 Hz (i.e., low pass 

filter that passes the frequencies lower than 65 Hz) and a lower cutoff of 0.5 Hz (i.e., high pass 

filter that passes the frequencies higher than 0.5 Hz) are used to remove the factors that cause rapid 

changes (i.e., the frequencies higher than 65 Hz) and slow changes (i.e., the frequencies lower than 

0.5 Hz) in the EEG. In addition, there is a noise from the electrodes’ wire generated as a result of 

the power line interference signal (Teplan 2002), which usually has a very narrow frequency range 

(e.g., 60Hz). In such a case, a notch filter is applied, which allows signals to pass within a very 

narrow band of frequencies (Teplan 2002). EEG signal baseline difference might be also caused 

by variation in temperature or bias in the EEG (Reddy and Narava 2013). To remove the effect of 

the factors that cause the baseline difference among different dataset, EEG signals are normalized. 

2.5.2 Intrinsic Artifacts Removal 

Intrinsic artifacts also have to be removed to obtain quality EEG signals. For example, ocular 

artifacts like eye movement and blinking contaminate EEG signals (Croft and Barry 2000; 

Manoilov 2006; Romero et al. 2009). In addition, another important source of the artifacts in 

recording EEG signals during movement is muscle activity. Muscle artifacts usually derive from 

head and neck muscles that become active during head movement or other motions (Gwin et al. 

2011), which are typical for construction field work. 

Such eye movement and muscle artifacts are the most difficult to deal with because their 

spectrum is similar to non-artifactual EEG components (Brown 2000). The independent 
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component analysis (ICA) method has been proposed to remove eye movement and blinking 

artifacts, as well as muscular movement in EEG signals (Comon 1994). ICA method can isolate 

both artifactual and neutrally generated EEG noises from the original EEG (Jung et al. 2000). 

Separating the artifactual EEG sources facilitates to remove these artifacts and then to extract and 

mix non-artifactual components to achieve a clean EEG signal. ICA method is widely used in EEG 

research in the clinical domain to remove ocular (including eye movement and blinking) and 

muscle artifacts (Delorme and Makeig 2004; Makeig et al. 1996; Reddy and Narava 2013; Vigário 

1997; Zhukov et al. 2000). 

ICA method assumes a set of EEG-signals from electrodes at a time instant t (Equation 1) 

to be a combination of j unknown underlying sources that are statistically independent (Equation 

2). It assumes that the mixing of the source is linear (Equation 3) and the number of underlying 

sources is smaller or equal to the number of EEG electrodes (in this chapter, i=j=14), as shown in 

following equations based on the concepts suggested by Comon (1994): 

𝐸(𝑡) = [ 𝐸1(𝑡), 𝐸2(𝑡), 𝐸3(𝑡), … . , 𝐸𝑖(𝑡)]𝑇                                                                    (1) 

𝑆(𝑡) = [ 𝑆1(𝑡), 𝑆2(𝑡), 𝑆3(𝑡), … . , 𝑆𝑗(𝑡)]𝑇                        (2) 

𝐸(𝑡) = 𝐴 𝑆(𝑡)                                                      (3) 

where 𝐸𝑖(𝑡) shows the ith EEG electrode, 𝑆𝑗(𝑡) shows the jth underlying source, and A is a 

full-rank 𝑗×i mixing matrix that defines the weight for each source contribution to the EEG signals 

at each electrode. ICA method attempts to recover the original source S(t) by analyzing E(t), so in 

order to achieve S(t) from E(t), first step is to calculate  the separating or de-mixing matrix W  

using Equation 4, as follows: 

𝑆(𝑡) = 𝑊 𝐸(𝑡).                            (4) 
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There are several approaches to find the demixing matrix and calculate independent 

components. These include Extended Infomax (Lee 1998), Pearson (Karvanen and Koivunen 

2002), Infomax (Bell and Sejnowski 1995), ERICA (Cruces et al. 2002), Fast ICA (Hyvärinen and 

Oja 2000), JADE (Cardoso 1999), FOBI (Cardoso 1999), etc. Delorme et al. (2007) compared 20 

ICA algorithms to 71 EEG channel data recorded from 14 subjects, they found that Extended 

Infomax ICA method and Fast ICA method ranked highest. Furthermore, Extended Infomax ICA 

and Fast ICA methods are most widely used in the literature. The Fast ICA method is based on 

maximizing non-Gaussianity as a measure of statistical independence based on an iterative method. 

The Extended Infomax ICA method minimizes the mutual information among different 

components by using a neural network to maximize the joint entropy out of a neural processor. 

Extended Infomax ICA switches to a different type of distribution among different sources as its 

learning rule (Bell and Sejnowski 1995; Makeig et al. 1996). Previous studies have shown that 

Extended Infomax ICA usually performs better than Fast ICA (Delorme et al. 2007). The Extended 

Infomax method has thus been implemented in the EEGLAB Tool Box that has been widely used 

for EEG signal processing (Delorme and Makeig 2004).  

Therefore, the Extended Infomax method suggested by Delorme and Makeig (2004) and 

Lee (1998) is applied according to its reliable performance to calculate independent components 

in EEG signals (Delorme et al. 2007). The EEG signals from 14 channels (14 electrodes) that 

record brain waves of different area of subjects’ brain (Figure 2.1) were decomposed into 14 

components (B in Figure 2.3). After decomposing the EEG signals into different components, 

scalp maps for each component can be drawn (C in Figure 2.3). Scalp maps of ICA components 

are investigated for each EEG dataset because EEG artifacts such as vertical eye movement, 

blinking, and muscular movement show a specific pattern in their power spectral density (PSD) 
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activities (Delorme and Makeig 2004). Components that present muscular movement, blinking, 

and vertical eye movement will be detected using the ICA component patterns introduced for these 

artifacts by Delorme and Makeig (2004) After detecting and removing the components that 

represent artifacts of interest (D in Figure 2.3), the other non-artifactual components that represent 

the real brain waves were mixed to get clean EEG signals (E in Figure 2.3). In this chapter, 

components that represent artifacts were detected and removed off-line. The bad components were 

detected and removed manually by calculating the scalp maps of ICA components, then the bad 

components were detected by comparing the scalp map of all the component with the predefined 

maps for the components that present muscular movement, blinking, and vertical eye movement 

introduced  by Delorme and Makeig (2004). 
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Figure 2.3. Schematic illustration of ICA calculation: (a) the time-series EEG data, captured by a 

wearable EEG device across 14 different electrodes placed at different area of the subjects brain; 

(b) time-series ICA components that unmixed from measured EEG signals; (c) scalp maps of ICA 

component that shows different components topographies; (d) three ICA components that show 

similar pattern in their PSD activity as artifacts of interest,  these are the detected components 

representing muscular movement, eye blinking, and vertical eye movement; and (e) artifact- 

corrected EEG signals by mixing the clean components. 
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2.5.3 Power Spectra Analysis 

The power spectral density (PSD) function shows the strength of energy variation as a function of 

frequency. In other words, it shows at which frequency the variations are strong and at which they 

are weak. The unit of PSD is energy per frequency, and the energy generated in a frequency range 

can be obtained by integrating PSD within that range. PSD is the average power distribution of 

frequency response of a random periodic signal (Stoica and Moses 1997). EEG signals recorded 

from the motor cortex area are used to validate the existence of neural signals in the recorded EEG. 

In this study, mean PSD in the beta frequency range is calculated for the electrodes near the motor 

cortex. As described before, the EEG device used in this study is capable of recording brain waves 

generated from different location of brains using 14 electrodes. Comparing the location of  these 

14 electrodes in the EEG device with the location of the electrodes in the international 10-20 

system, which is a universally accepted system to define the location of scalp electrodes in the 

context of an EEG experiment (Herwig et al. 2003), the electrodes with the label name FC5 and 

FC6 locations represent the motor cortex activity (Jurcak et al. 2007). FC5 shows the activity of 

left motor cortex area while and FC6 does right motor cortex area activity (see Figure 2.1) while 

the subjects are working (active) and not working (inactive) (the experiment protocol in detail will 

be explained in the next section). The process to extract PSD from multi-channel signals (14 

channels in this research) from different EEG electrodes (14 electrodes) is described as follows. 

After removing extrinsic and intrinsic artifacts as explained in previous sections, the cleaned 14-

channel EEG signals were divided into epochs that represented a wide stationary signal. For the 

ith epoch, the 14-channel data at different instants t form a 14×T matrix, as follows: 

 𝑆𝑖 = [ 𝑆𝑖(0), 𝑆𝑖(𝑡 = 1), 𝑆𝑖(𝑡 = 2), … . , 𝑆𝑗(𝑖 = 𝑇 − 1)]       i=1,…, N, (5) 

where T represents the number of dataset instants. A covariance matrix of the vectorized 

form of the ith epoch (𝑠𝑗 = 𝑣𝑒𝑐(𝑆𝑗)) was calculated using equation 6: 
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𝑅𝑖(𝜏) = 𝐸[( 𝑠𝑖 − 𝜇𝑖)( 𝑠𝑖 − 𝜇𝑖)
𝑇]   i=1, … , N , 𝜏 = 0, … , 𝑇 − 1,   (6) 

where 𝜇𝑖  is the mean value of the ith epoch. After calculating the covariance matrix, the 

power spectral density matrix of the ith epoch signal at any frequency ω will be calculated using 

equation 7, as follows: 

𝑃𝑖(ω) = ∑ 𝑒−𝑗ω𝜏
𝜏 𝑅𝑖(𝜏) i=1, … , N,                 (7) 

where  𝑃𝑖(ω)  is the power spectral density matrix of the ith epoch. Equation 7 is a 

calculation of the auto-correlation function of the EEG signals. In other words, the PSD is the 

Fourier transform of the auto-correlation function. The resulting dimension would be uV2 for the 

power and uV2/Hz for the power spectral density. EEG signals were analyzed off-line using a 

custom developed software based on the EEGLAB tool box (Delorme and Makeig 2004). A 

MATLAB version 8.1.0.604 program was used for all of the computations. 

2.5.4 Beta Band Mean PSD and Statistical Analysis 

After removing EEG artifacts, mean PSD of beta band is calculated by measuring the PSD on the 

frequency range 13 to 30 Hz. Mean beta PSD is measured for the electrodes located near the motor 

cortex area while the subjects are active and inactive by measuring the strength of energy variation 

as a function of beta frequency range. Activation of the motor cortex area of the brain is selected 

as the criterion to test the capability of the proposed framework in measuring brain waves infield. 

The beta frequency range is the major rhythm that appears while adults are active. The beta 

frequency range is selected since EEG in this frequency range can clearly show the activation of 

brain during a motor cortex activity (McFarland et al. 2000; Pfurtscheller and Neuper 1997). 

After calculating beta band mean PSD among all the datasets, Wilcoxon signed-rank test 

analyses were used for values of PSD to compare these in inactive (e.g., none-working) and active 

(e.g., working) conditions. For each comparison among inactive and active conditions, Wilcoxon 
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signed-rank test was conducted for mean power based on electrodes FC5 (left motor cortex area) 

and FC6 (right motor cortex area) and the means of FC5 and FC6. The alpha level for the Wilcoxon 

signed-rank test was set at 0.05. If the Wilcoxon signed-rank test result shows a significant 

difference between active and inactive conditions, it will confirm that the proposed framework can 

capture the activation of the motor cortex area of the brain and acquiring real brain waves of 

workers at the field. 

2.6 Experimental Design 

The EEG data were recorded for eight healthy male workers in the field. The field manager among 

volunteer workers recruited eight subjects after presenting the research objectives and steps. All 

subjects are males with at least 3 years of work experience, with 26 to 55 years of age (Table 2.1).  

All the data were collected from two sites, one from an on-site construction site in Detroit, and the 

other from an off-site shop (e.g., a HVAC/Sheet metal fabrication shop) in Wixom, MI, Michigan, 

during two weeks in 2016, the weeks beginning on March 18, 2016 and April 25, 2016. Data 

collection was approved by the University of Michigan Institutional Review Board. At the 

beginning of data collection, subjects were informed about the anonymity of data collection and 

participants’ rights with the written consent form and they were asked to report if they have a 

history of mental health diseases. None of them had a history of epilepsy, learning disabilities, or 

attention deficit disorder that could affect their mental health. Then, participants were instructed 

to execute experimental tasks. 
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Table 2.1. Description of Subject Information. 

Site Subject Age Gender Trade 
Experience 

Level 

On-site 

 

1 55 Male Carpenter 37 

2 45 Male Labor 25 

3 37 Male Labor 19 

Off-site 

(Shop) 

4 40 Male 
Sheet metal 

worker 
16 

5 38 Male 
Sheet metal 

worker 
18 

6 49 Male 
Sheet metal 

worker 
31 

7 26 Male 
Sheet metal 

worker 
3 

8 42 Male 
Sheet metal 

worker 
20 

 

Emotiv EPOC+ was used to record subjects’ brain waves in 14 channels (B and C in Figure 

2.1). Emotiv EPOC+ has been introduced as an affordable off-the-shelf EEG device that is capable 

of recording EEG signals in a reasonable quality (Badcock et al. 2013; Trejo et al. 2015; 

Vokorokos et al. 2012). Figure 2.4 shows the EEG data collection at the construction site. Emotiv 

EPOC+ was paired with a nearby laptop wirelessly through a USB transceiver. Data was recorded 

with sequential sampling internally at 2,048 Hz, with a rate of 128 Hz deliverable. The data-

collecting resolution was set at 14 bits with the connectivity at a 2.4 GHz band and a dynamic 

range of 8,400 µV (pp). To improve the contacts between electrodes and scalp, the felt pads used 

by the Emotiv EEG device were wetted with the solution suggested by the Emotiv. 
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Figure 2.4. EEG data collection at the construction site: (a) placement of an EEG device; (b) 

integrating an EEG device and a safety hardhat. 

Table 2.2 summarizes experimental tasks and protocols. During Tasks 1 and 2, subjects 

were asked to relax and think of nothing in particular. Then, subjects were asked to keep their eyes 

open and avoid blinking (Task 1) and to close their eyes (Task 2). During Task 3, subjects were 

told to keep blinking. Tasks 1, 2, and 3 were performed to recognize the typical pattern of artifacts 

from eye blinking and eye movement in the EEG signals so that these patterns can be used to 

develop ICA to remove intrinsic artifacts mentioned before. Task 4 is an inactive (i.e., none-

working) motor cortex area task (idling) in which subjects were asked to assume a relatively 

stationary posture with no significant movements. Task 5 is active (i.e., working) motor cortex 

movement and subjects were asked to perform their normal work involving different body part 

movements. All the tasks were video-recorded for data labeling. Data pre-processing is necessary 

to synchronize different tasks with recorded EEG data. Recorded signals were labeled using the 

video, and 3,840 data points (30 seconds of each dataset) were extracted for analysis. 

  

BA
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Table 2.2. Experimental setup and various experimental tasks. 

2.7 Results 

Table 2.3 shows the summary of mean PSD in the beta frequency range for different subjects 

across inactive and active working conditions (Tasks 4 and 5, respectively) after applying the 

proposed framework. All datasets (subjects) showed clear differences in the mean PSD of the beta 

frequency range between inactive and active conditions.  

Table 2.3. Summary of beta mean power spectral density for different subjects among active and 

inactive conditions. 

Subject Condition 
FC5 

(10 ∗ 𝑙𝑜𝑔 (
𝜇𝑉2

𝐻𝑧
)) 

FC6 

(10 ∗ 𝑙𝑜𝑔 (
𝜇𝑉2

𝐻𝑧
)) 

Average 

(10 ∗ 𝑙𝑜𝑔 (
𝜇𝑉2

𝐻𝑧
)) 

Subject 1 
Inactive 0.48 4 2.59 

Active 3.64 9.87 7.79 

Subject 2 
Inactive 5.33 2.17 4.03 

Active 11.96 16.78 15.01 

Subject 3 
Inactive -7.32 2.33 -0.23 

Active 2.57 5.82 4.49 

Subject 4 
Inactive -2.07 0.25 -0.76 

Active 6.8 6.94 6.87 

Subject 5 
Inactive 0.23 0.91 0.58 

Active 7.75 6.14 7.02 

Subject 6 
Inactive -0.5 0.83 0.21 

Active 26.27 29.32 28.06 

Subject 7 
Inactive -0.23 2.83 1.56 

Active 9.08 9.41 9.25 

Subject 8 
Inactive -7.46 1.49 -1.01 

Active 5.65 7.35 6.58 
 

Sites Number of Subjects (Datasets) Tasks 

Construction 

Site 
3 

1. Eye Open 

(Stationary) 

2. Eye Close 

(Stationary) 

3. Eye Blinking 

(Stationary) 

4. Inactive (Stationary) 

5. Active (Working) 

HVAC/Sheet metal fabrication shop 5 
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Table 2.4 summarizes mean and standard deviation (SD) of PSD for the beta frequency 

range power of FC5 (left motor cortex area) and FC6 (right motor cortex area) electrodes while 

subjects are in inactive and active conditions, and presents the results from the Wilcoxon signed-

rank test analysis. The active condition (mean= 10.63, SD= 7.19) has higher beta frequency range 

power values than the inactive one (mean= 0.87, SD=1.63) in both FC5 and FC6. The p-values in 

both FC5 and FC6 are significantly lower than the alpha level, and the results confirm a significant 

difference in beta frequency range between inactive and active conditions for both electrodes 

(Figure 2.5).  

Table 2.4. Summary results from the Wilcoxon signed-rank test analysis 

Wilcoxon signed-rank test 

parameters 

FC5 Electrode FC6 Electrode Mean FC5 and FC6 

Inactive Active Inactive Active Inactive Active 

Mean -1.44 9.21 1.85 11.45 0.87 10.63 

SD 3.96 7.02 1.14 7.51 1.633 7.19 

P(T<=t)  

two-tail 
0.014 0.008 0.014 

Alpha 0.05 0.05 0.05 

 

 

Figure 2.5. Mean and standard deviation beta frequency range power values of FC5 and FC6 

electrodes. 
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To confirm the results, I further analyze a PSD graph, as shown in Figure 2.6 that is one 

case of PSD graphs for Subject #3. A higher value of the beta frequency range frequency (13–30 

Hz) in an active condition is clearly visible than one in an inactive condition, which means that the 

motor cortex area of the subject’s brain was clearly more activated while the subject was working 

comparing the stationary condition. In addition, a clear improvement in the EEG signal stability 

has been seen after applying the proposed signal-processing framework among all the 14 EEG 

channels (Figure 2.7). 

 

Figure 2.6. Representative PSD for subject #3: (a) PSD calculated based on electrode FC5; (b) 

PSD calculated based on electrode FC6. 

 

Figure 2.7. Representative EEG signals for subject #3: (a) raw EEG signals; (b) Processed EEG 

signals. 
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2.8 Discussion 

From the results, the capability of the proposed signal-processing framework in acquiring 

high-quality EEG signals was demonstrated with significant differences in the mean PSD of the 

beta frequency range between inactive and active conditions. It is noteworthy that a large 

variability of beta frequency range power may be seen across different subjects. This variability 

has a lower range across the inactive condition (min= -1.01, max= 4.03) but has greater variability 

during the active condition (min= 4.49, max = 28.06). This divergence, especially through the 

active condition, can be related to different levels of motor cortex activation. In other words, some 

subjects had more bodily movements, which can cause higher activation levels in the motor cortex. 

For example, the mean PSD value of FC5 and FC6 electrodes in Subject #1’s active condition was 

equal to 7.79. Subject #1 is a carpenter who was mostly working in a designated area during data 

collection without much moving around. On the other hand, Subject #2, who is a laborer doing the 

tasks with much movements, showed mean PSD value of 15.01 in an active condition, which is 

higher than the value of Subject #1. This variation among different subjects shows that the 

proposed framework not only helps to get clean EEG signals, but also has a potential to identify 

different level of brain activation. This highlights the capability of recording different brain wave 

patterns in the real construction sites. This also can explain the lower variability in the values 

during the inactive condition—in which all subjects had little body movement and stayed in a 

stationary posture with low variation of motor cortex activation.  

One important concern in collecting the EEG signals in a construction field is integrating 

the EEG recording device with the safety hardhat that workers have to wear, because of a potential 

physical conflict between an EEG device and a hardhat. This may raise some problems such as 

affecting the contacts between the electrodes and scalp as well as the EEG device’s wireless 
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connection to the central computer. Thus, I compared the data recorded while subjects are wearing 

the EEG device alone and the data while EEG device are attached within the safety hardhat. Figure 

2.8 compare the beta frequency range power values for three subjects while they were wearing 

hardhat attached within an EEG device and an EEG device alone. The result is very similar in both 

cases, which confirms attaching EEG within the hardhat does not affect the quality of EEG signals. 

When the wearable EEG device was secured with the safety hardhat, the sensors delivered better 

quality EEG signals with fewer signs of electrode drift and shifting, which was identified by the 

recorded signal patterns as well as the visualized information of the contact-quality level of each 

electrode provided by data receiving software (e.g., green signal representing high quality) of the 

EEG device. This can be explained as the result of the EEG device being secured with a safety 

hardhat. The hardhat provided constant pressure to the EEG electrodes, which could improve the 

contact of the electrodes with scalp. Also, attaching the EEG device within the safety hardhat 

didn’t affect the wireless connection between EEG device and a laptop. In other words, attaching 

the EEG device within the hardhat can make the EEG device perform more like an EEG cap which 

is the best form among EEG recording devices.  
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Figure 2.8. Comparing Mean beta frequency range power values of FC5 and FC6 electrodes while 

subjects wearing hardhat integrated with EEG device and EEG device alone. 

In future research, quality EEG signals infield from the proposed signal processing 

framework will help to understand workers’ brain activities which are related to psychosocial 

health problems such as workers’ stress, emotional exhaustion, burnout, and mental fatigue. Also, 

by adopting current research efforts in the field of neural science and cognitive psychology to 

continuously measure human subjects’ emotional status and stress level using EEG signals (Coan 

et al. 2006; Hou et al. 2015; Lopez-Duran et al. 2012), workers’ emotional status and stress level 

can be monitored by continuously collecting workers’ EEG data using a wearable EEG device. 

This research result  can be used as a quantitative criterion to validate subjective and self-report 

methods suggested to measure construction workers’ emotional status and stress level (Leung et 
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al. 2010), which allows us to understand the relationship between workers’ emotional status and 

stress level and their work performance. As a result, future research efforts to address the above 

issues will eventually contribute to the reduction of health problems of construction workers as 

well as improving their safety in the construction sites. 

Toward such applications, several limitations still exist and need to be overcome. First, the 

components that represent artifacts were detected and removed off-line in this research. The bad 

components were detected and removed manually by calculating the scalp maps of ICA 

components, then the bad components was detected by comparing the scalp map of all the 

component with the predefined maps for the components that present muscular movement, 

blinking, and vertical eye movement introduced  by Delorme and Makeig (2004). We suggest 

applying an automatic artifact removal algorithm suggested by LeVan et al. (2006) for future 

research direction that requires real-time detection of the bad ICA components. Second, the EEG 

sampling rate of this study was 128 Hz, which is reasonable for studying beta frequency range 

power. For any future research studying high mental activity or brain disorders, using a higher 

sampling rate is recommended to be able to study the gamma frequency range, which is higher 

than beta frequency range. 

2.9 Conclusions 

This study proposed a systematic signal-processing framework to remove artifacts from 

EEG signals that enables to obtain high-quality brain waves from real construction sites. This study 

validated the usefulness of the framework in capturing high-quality EEG data from a field study 

by using an off-the-shelf wearable EEG device. Specifically, the results garnered from eight 

workers showed a statistically significant difference between inactive and active conditions with 

regard to the PSD values of the beta frequency range in workers’ EEG data from the electrodes 
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located in the motor cortex area of the brain, which confirms the success in acquiring real brain 

waves.  

The proposed framework is applicable to many cases where the EEG data is obtained from 

a wireless wearable EEG device in the field, by providing a standardized process of dealing with 

both intrinsic and extrinsic artifacts. Specifically, by addressing several issues in field EEG 

monitoring (e.g., significant artifacts from workers’ movement, hardware limitations of a wearable 

EEG device), the major contribution of the proposed EEG signal-processing framework in this 

research is to overcome the difficulties in field application of existing EEG signal processing 

methods used in clinical domains which require subjects’ stationary postures and exquisite EEG 

recording device. 

Acquiring high-quality EEG signals at the field highlights numerous opportunities for using 

EEG recording devices on real construction sites. For instance, workers’ psychosocial health 

problems that were listed above can be monitored. Measuring workers’ psychosocial problems can 

greatly contribute to better understanding and management of workers’ health and safety at 

construction sites. These may include the development of an EEG-based psychosocial monitoring 

system for workers’ stress, emotional exhaustion, burnout, and mental fatigue. Considering that 

reasonable EEG signals can be acquired at real construction sites, future research can attempt to 

measure workers’ characteristic psychosocial problems by using a wearable EEG device and 

applying the proposed signal-processing framework. 
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Chapter 3: 

Measurement of Workers’ Emotional State Using A Wearable EEG during 

Construction Tasks2 

3.1 Introduction 

Despite advances in technology and automation, the construction industry remains a labor-

intensive industry. Given the importance of workers to construction activities, workers’ emotional 

states (e.g., pleasure, displeasure, excitement, and relaxation) have received a great deal of 

attention due to their impact on cognitive status (e.g., attention and motivation), decision-making 

and behaviors (e.g., risk-taking behaviors affecting unsafe actions), and mental and physical health 

(e.g., stress, sleep disorder, and headache) (Ashforth and Humphrey 1995; Schwarz 2000; Leung 

et al. 2014; Tixier et al. 2014). Such impacts consequently affect work performance such as safety, 

health, quality, and productivity (Ashforth and Humphrey 1995; Leung et al. 2016). 

2 This chapter is adapted from Hwang, S., Jebelli, H., Choi, B., Choi, M., and Lee, S. (2018) “Measuring 

Workers’ Emotional State during Construction Tasks Using Wearable EEG.” Journal of Construction 

Engineering and Management, 144(7), 04018050. 
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Despite the significance of workers’ emotion in construction activities, there is a noticeable 

lack of research that investigates their emotions in the workplace. One of the main obstacles 

thwarting such an investigation is a lack of quantitative methods to measure emotions. Although 

various psychological instruments for measuring emotions have been widely used (Morris 1995; 

Wang and Cheong 2006; Leung et al. 2016), most of them are survey-based subjective self-

assessment, which suffer from a possible bias. In addition, such survey-based methods can 

interfere with workers’ ongoing work due to the time and effort required to answer the questions 

with care and precision. For this reason, they are deployed to construction sites on a limited basis, 

which makes it difficult to understand how workers’ emotions vary while they are working. 

To address such limitations, a number of studies have attempted to continuously and 

quantitatively measure human emotions by assessing human physiological responses (e.g., electro-

dermal activity (EDA), heart rate (HR), blood volume pulse (BVP), and electroencephalogram 

(EEG)) because an individual’s emotions are associated with his/her physiological activities 

(Takahashi et al. 2004; Chanel et al. 2011). Among them, EEG that captures brain waves has 

strength in measuring in emotions among others. EEG directly detects brain waves from the central 

nervous system activities (i.e., brain activities) while other responses (e.g., EDA, HR, and BVP) 

are originated from peripheral nervous system activities (Zhai et al. 2005; Chanel et al. 2011). 

Specifically, the central nervous system activities are related to diverse aspects of emotions (e.g., 

from displeasure to pleasure and from relaxation to excitement), but the peripheral nervous system 

activities are only associated with arousal and relaxation (Zhai et al. 2005; Chanel et al. 2011). 

Therefore, EEG can provide richer information on emotional states than others (Takahashi et al. 

2004; Lee and Hsieh 2014; Liu and Sourina 2014; Hou et al. 2015).  
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Notwithstanding EEG’s potentials described above, it has mostly been applied and tested in 

a controlled laboratory environment—not in the field like construction. Brain wave patterns from 

EEG sensors can be easily contaminated from diverse sources of signal noises (e.g., eye movement, 

respiration, and the use of muscles; Jung et al. 2000; Shao et al. 2009; Szafir and Signorile 2011; 

Urigüen and Garcia-Zapirain 2015), which are very common and severe at the construction site 

where workers move around a lot. Also, the hardware limitations of the traditional EEG devices 

used in a clinical setting (e.g., wired connections and exquisite equipment) makes it difficult to 

continuously and non-intrusively collect brain waves from workers engaged in their field job.  

Recently, the advancement of wearable EEG sensors, which are portable, wireless, and 

affordable, has opened a new door toward the non-intrusive collection of workers’ brain waves. 

However, these wearable EEG sensors are more vulnerable to EEG signal artifacts generated in 

the field than the ones used in a clinical setting because they typically have lower signal resolutions 

and signal-to-noise ratio (i.e., the level of a desired signal compared to the level of background 

noise). This low signal quality of wearable EEG sensors is the main obstacle to their use for field 

emotion measurement. To address an EEG artifact issue, I previously proposed and successfully 

tested an EEG signal processing framework to acquire high-quality EEG signals while workers 

perform real work tasks at the construction site using a wearable EEG sensor (Jebelli et al. 2017). 

Applying this EEG signal processing framework, I investigate the feasibility of measuring changes 

in workers’ emotional states in this chapter. To do this, I first apply a bipolar dimensional emotion 

model (i.e., a valence-arousal model) to quantify workers’ emotional state. A valence-arousal 

model represents an emotional state as two dimensions including a valence dimension from 

displeasure to pleasure and an arousal dimension from not aroused to excited state (Russell et al. 

1989; Burkhardt 2001). Based on this model, workers’ valence and arousal levels are measured 
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using processed EEG signals collected during workers’ ongoing tasks. Specifically, I apply an 

EEG-based valence-arousal calculation method that has been previously validated in a laboratory 

setting (i.e., a frontal EEG asymmetry method: Davidson et al. 1990; Blaiech et al. 2013). Then, 

the validity of the EEG-based emotion measurement is examined by comparing with cortisol levels 

obtained from workers’ saliva samples, which have been accepted as a reliable physical measure 

of emotions (Brummett et al. 2012; Het et al. 2012). I also investigate workers’ emotional states 

from several factors affecting emotions in the field, such as working hazards (e.g., hazardous work 

conditions such as working on the ladder and in a confined space) and a feeling of tiredness over 

time, which have been widely accepted to have a significant impact on emotions and common in 

construction projects (Berger 1996; Mignonac and Herrbach 2004). 

3.2 Emotion and its importance in construction 

Despite difficulty in defining and classifying emotions due to the complex nature and genesis of 

emotion (Ashforth and Humphrey 1995), it is generally accepted that an individual’s appraisal of 

some external stimulus or event is the most important factor in determining his/her emotion 

(Lazarus 1982; Eysenck and Keane 2000). This cognitive appraisal implies that individuals 

primarily evaluate whether an environmental situation is positive (e.g., beneficial and desirable), 

negative (e.g., stressful, threatening, and dangerous), or irrelevant to one’s well-being, and then 

evaluate the resources or their own ability to cope with the situation (Lazarus 1982; Eysenck and 

Keane 2000; Mignonac and Herrbach 2004).  

Due to their complexity, many researchers have tried to classify emotions from a multi-

dimensional perspective. Specifically, one’s emotions can be classified from a dimensional 

perspective based on the valence-arousal-dominance (VAD) model (i.e., a valence dimension from 

displeasure to pleasure, an arousal dimension from not aroused to an excited state, and a dominance 
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dimension from being in control to a feeling of being controlled by the emotion) (Mehrabian 1996). 

Nowadays, there is an agreement that the bipolar dimension of valence and arousal, as shown in 

Figure 3.1 (i.e., valence-arousal model), is enough to classify most emotional states (Russell et al. 

1989; Burkhardt 2001). Given measured valence and arousal dimensions, emotional states (e.g., 

fear, happiness, and relaxation) can be defined by combining these two dimensions (e.g., happiness 

with a positive valence and a slightly positive arousal: Burkhardt 2001). By mapping emotions 

onto the space of bipolar dimensions, this model can also represent the intensity of emotion. 

 

 

Figure 3.1. Valence-Arousal Model and Emotions 

Taking into account the fact that an individual’s appraisal of an external stimulus is the most 

important factor for his/her emotion, construction workers are frequently exposed to various 

external stimuli affecting emotions such as poor physical conditions (e.g., extreme outdoor 

temperatures, poor air quality, and excessive noise) and hazardous work conditions (e.g., working 
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on the ladder, in confined space, and with dangerous machinery) while performing their tasks 

(Leung et al. 2012; Leung et al. 2016). Construction workers’ emotions are also affected by their 

experience of demanding construction tasks (Leung et al. 2016). For example, stressful and 

dangerous situations as well as tiredness can cause negative valence (Berger 1996; Mignonac and 

Herrbach 2004). To sum up, construction workers experience various emotional responses in their 

workspace because they work under a continuously changing and complex environment that is 

even physically and psychologically demanding and hazardous (Leung et al. 2012 and 2014).  

Given that workers’ emotions during work have been linked with many organizational 

performances, it is important to understand their emotions at the workplace. Specifically, emotions 

strongly influence our cognitive process and decision-making abilities (Easterbrook 1959; 

Schwarz 2000; Bhandari et al. 2016). For example, high arousal can influence an individual’s 

perception on the current situation by reducing the range of cues that a person uses which further 

affects one’s subsequent behavior (Easterbrook 1959). The reduction on the range of perception 

leads to critical problems in construction sites where a failure in hazard perception can directly 

threaten workers’ safety. Furthermore, existing experimental research supports that a person’s 

emotions play an important role in determining whether decision processing will be either heuristic 

(i.e., high reliance on pre-existing knowledge structures) or systematic (i.e., analytic and cognitive 

processing with high attention to the relevant information in the present situation) which can 

change the outcome of decision making (e.g., risk-taking or protective behaviors) (Schwarz 2000; 

Kruglanski and Higgins 2013). Heuristic individual decision processing driven by emotions (e.g., 

low fear of skilled workers who are accustomed to dangerous work conditions) can also lead to 

unsafe behaviors. As such, understanding the impact of individual emotions on decision-making 
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is particularly important in construction, where a worker is constantly engaged in making a series 

of task-related improvised decisions. 

In addition, the continuous feeling of emotional stress (i.e., negative emotions) accounts for 

chronic fatigue, emotional drain, and a loss of devotion to job duties (Goliszek 1992; Leung et al. 

2012). For construction workers, emotional stress causes workers to pay less attention on work 

tasks or ignore safety guidelines, which can lead to a serious accident at the site (Alexander and 

Klein 2001; Leung et al. 2012). Moreover, this emotional stress is closely associated with many 

physical symptoms, such as gastrointestinal disorders, sleep disorders, headaches, and others, 

which can also inversely and adversely affect mental health and emotions (Leung et al. 2016). 

Given that a construction workplace has many changing emotional contexts (i.e., emotion-related 

stimuli such as different work conditions and tiredness over time) that workers experience every 

day while significantly affecting their work performances (Allcorn 1994; Bensimon 1997), 

understanding emotions in the workplace provides meaningful insights for enhancing work 

performance.  

Despite the contributions of these research efforts, they have inevitably taken into account 

only a part of a number of causes and effects of emotional changes in the workplace because the 

use of survey-based subjective measurement in these studies is hard to use continuously in the 

field, which limits continued field emotion studies and comprehensive understanding of workers’ 

emotions in numerous situations. For a more in-depth understanding of workers’ emotions, 

therefore, continuous and non-intrusive emotional state measurement in the field should take 

precedence, which is what this study aims to achieve. 
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3.3 Electroencephalogram (EEG) 

As discussed earlier, electroencephalogram (EEG) has a great potential for continuous and 

quantitative emotional state measurement. EEG is the recording of the electrical signal along the 

scalp produced by the action of neurons within the brain, which can be measured using electrodes 

attached to the scalp (Khalil and Misulis 2006; Szafir and Signorile 2011). The activation of a 

central nervous system is thus manifested in the EEG signal. This brain activation can be 

understood by EEG rhythms including delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 

(13–30 Hz), and gamma (> 30 Hz) frequency ranges (Blaiech et al. 2013; Borghini et al. 2014; 

Hou et al. 2015). Delta frequency range is predominant during deep sleep, while theta frequency 

range is related to drowsiness, creative inspiration, meditation, etc. Alpha frequency range is linked 

to relaxed states while beta frequency range is predominant during alert, active, busy states or 

anxious thinking and gamma frequency range is related with high mental activity and information 

processing (Buzsaki 2006; Szafir and Signorile 2011). 

On the other hand, the location of the brain is associated with different functions of brain. 

For example, the frontal lobe of the brain is known as an emotion control center and is home to 

the personality, while also controlling voluntary movements. A parietal lobe takes care of 

processing of nerve impulses related to senses and language functions, while a temporal lobe is a 

primary organization of sensory input (Rusinov 2012). Therefore, all the EEG devices including 

wearable EEG sensors (A in Figure 3.2) have multiple electrodes that can be attached to different 

locations of the scalp (B in Figure 3.2) to capture diverse brain activations in different regions. For 

example, brain activation by changes in emotion are mostly captured from electrodes located in 

the frontal area (e.g., AF3. AF4, F3, and F4 in B of Figure 3.2). 
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Figure 3.2. A Wearable EEG Sensor: (a) an Off-the-shelf Sensor; (b) Location of Electrodes 

As such, EEG can provide plentiful information regarding brain activities related to 

perception, cognitive thinking, emotions, and others, from different EEG rhythms collected from 

different locations of brain. Focusing on such potential, I applied a wearable EEG sensor for field 

EEG monitoring to collect high-quality EEG signals by removing signal artifacts (Jebelli et al. 

2017). Because the first step to identify brain activities is to procure high-quality EEG signals, 

which is particularly important in the context of a wearable EEG device, this previous study 

provides the necessary groundwork for this study. However, measuring emotions needs additional 

studies to interpret signal patterns through the use of relevant measurement methods and their 

validation, which this study tries to achieve. Chen et al. (2017) and Wang et al. (2017) also recently 

used a wearable EEG sensor to assess different levels of mental workload and attention of workers 

by showing different EEG signal patterns. The outcome of these research efforts can help to 

address psychological issues that regularly impact construction workers, especially those caused 

by burdensome mental workloads and attention. However, emotion is a different psychological 

aspect. While mental workloads and attention are more closely associated with cognitive thinking 
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and can be understood by individual alertness or relaxation states, understanding emotions is a far 

more complex process due to the multifaceted characteristics (e.g., valence and arousal). Therefore, 

emotional states need to be measured from multi-dimensional perspectives, which is an objective 

of this study. 

3.4 EEG-based emotion measurement process 

In this section, I describe two important elements for field workers’ emotion measurement using 

EEG signals collected from a wearable EEG sensor: removing field EEG signal artifacts and 

calculating emotional states based on the processed EEG signals.  

3.4.1 Artifacts removal using the EEG signal processing framework proposed in Chapter 2 

EEG signals can be highly contaminated by both extrinsic and intrinsic artifacts that obscure the 

signal of interest. Extrinsic artifacts are the noises generated mostly from an external source rather 

than human body physiology such as electrode popping, movement artifacts, environmental noise, 

and wiring noise in the EEG sensor. On the other hand, intrinsic artifacts are created within internal 

body changes. Eye movements and blinking and facial muscle movement are the most common 

source of intrinsic artifacts (Shao et al. 2009; Szafir and Signorile 2011; Urigüen and Garcia-

Zapirain 2015). When subjects are relatively stationary, EEG artifacts (both extrinsic and intrinsic 

ones) are relatively small in scale, and can therefore be identified and corrected (Urigüen and 

Garcia-Zapirain 2015). However, construction workers in the field are frequently moving around, 

which makes the impact of both extrinsic and intrinsic artifacts on the EEG signals too significant. 

Even worse, EEG signals from a wearable EEG sensor are prone to much more extrinsic artifacts 

due to the low resolution (e.g., 128–256 Hz) from a wireless connection of such a sensor and the 

poorer attachment between electrodes and scalp than exquisite clinical EEG devices, all of which 

makes EEG’s field use challenging. 
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In this regard, I proposed and tested an EEG signal processing framework, specifically 

designed for the field use of a wearable EEG sensor (Jebelli et al. 2017). This framework corrects 

both extrinsic and intrinsic artifacts from the raw EEG signals obtained from real construction sites 

thereby extracting only desired EEG signal (i.e., non-artifactual signal). It was demonstrated that 

this framework can acquire high-quality EEG signals while workers are performing their tasks. 

Therefore, this study applies this framework to the processing of raw EEG signals to be used to 

calculate field workers’ emotional states.  

In detail, Figure 3.3 illustrates this EEG signal processing framework (Jebelli et al. 2017). 

Firstly, appropriate filtering methods including a bandpass filter and a notch filter were suggested 

to remove the most common extrinsic artifacts from the EEG signals recorded from a wearable 

EEG. Among intrinsic EEG artifacts, muscle activity and eye movement artifacts are the most 

difficult to work with because their spectrum overlaps with an EEG activity (Brown 2000; Croft 

and Barry 2000). To deal with them, independent component analysis (ICA) method that can 

separate a signal into multiple components, is used to remove the artifactual components from the 

EEG signal (Comon 1994; Jung et al. 2000; Delorme and Makeig 2004; Chaumon et al. 2015). 

The ICA method was also used to remove eye movement and muscle activity artifacts from EEG 

signals (Jebelli et al. 2017).  
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Figure 3.3. Illustration of EEG Artifacts Removal Process: (a) Raw EEG Data from 14 Channels; 

(b) Extrinsic Artifact Removal; (c) Intrinsic Artifact Removal; (d) Corrected EEG Data 
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3.4.2 Emotional state measurement using frontal EEG asymmetry calculation 

EEG for brain signals has been effectively used to understand diverse levels of emotional states 

through significant correlation with EEG power (i.e., the amount of energy of the signal per unit 

time). Many individual-dependent emotion measurement algorithms using EEG are based upon 

the bipolar model of valence and arousal dimensions (Lewis et al. 2007; Winkler et al. 2010; 

Goodman et al. 2013; Liu and Sourina 2014). To measure valence and arousal levels and label 

emotions, features in EEG data need to be distinguished. Specifically, power spectrum features 

such as power spectral density (PSD) have been widely applied to the classification of valence and 

arousal levels according to the correlation with alpha (8–13 Hz) and/or beta (13–30 Hz) frequency 

ranges (Lewis et al. 2007; Blaiech et al. 2013; Hou et al. 2015). Other features such as statistical 

features (e.g., mean and variances) or fractal dimension features have also been used in previous 

research efforts (Takahashi et al. 2004; Liu and Sourina 2014; Hou et al. 2015). 

Among many emotion measurement algorithms that use the above features, the frontal EEG 

asymmetry (FEA) method which is based on power spectrum features has been successfully 

applied to measure an individual’s valence and arousal levels (Lewis et al. 2007; Winkler et al. 

2010; Goodman et al. 2013; Allen and Reznik 2015). The FEA method captures both the left and 

right frontal activities of the frontal lobe of the brain which is known as an emotion control center 

(Rusinov 2012). A left frontal activity is usually associated with a positive or approach-related 

emotion whereas a right frontal activity indicates a negative or withdrawal-related emotion (Lewis 

et al. 2007; Winkler et al. 2010). In this regard, the FEA method shows the degree of activation of 

the left and right area by comparing the PSD in the alpha and beta frequency range between these 

two areas, in order to indicate a pleasure state (i.e., valence) of a person (Coan et al. 2006). In 

addition, the FEA method compares the power ratio of alpha and beta frequency ranges. Since the 
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alpha frequency range is prominent in relaxed condition and beta frequency range is associated 

with an aroused state, this comparison indicates the excitation state (i.e., arousal) of a person. 

Figure 3.4 represents the emotion measurement process using FEA calculation in this study. 

To measure valence and arousal, four channels in the frontal lobe area (i.e., electrodes AF3 and F3 

in the left area and electrodes AF4 and F4 in the right area: see B of Figure 3.2) are used. After 

removing signal artifacts using the EEG signal processing framework (B in Figure 3.4), mean PSD 

of alpha and beta frequency range are calculated for these signals. PSD measures the average 

energy distribution as a function of frequency of a signal (C in Figure 3.4) (Stoica and Moses 

1997). Here, the mean PSD is expressed as a logarithmic value (decibel) which can have either 

positive or negative value. 

 

 

Figure 3.4. Emotion Measurement Process: (a) Collecting Time-Series EEG Data; (B) Removing 

Signal Artifacts in Time-Series EEG Data; (C) Measuring Mean PSD at the Frontal Area; (D) 

Calculating Valence and Arousal Levels Using the Frontal Area Mean PSD 
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Then, the valence and arousal dimensions of emotion are calculated using the mean PSD 

and the FEA indicators, based on the below Equations 1 and 2 (D in Figure 3.4: Davidson et al. 

1990; Blaiech et al. 2013). Specifically, a positive valence is associated with relatively greater 

activation of the left frontal area whereas a negative valence is more related to relatively greater 

activation of the right frontal area. Equation 1 thus indicates a relative difference of activations 

between two areas to show the valence level. Although there is no pre-defined range of valence 

levels, more positive valence value means more pleasant emotion with more activation of a left 

area than a right one. On the other hand, Equation 2 indicates the arousal level by calculating the 

alpha/beta ratio (Lewis et al. 2007; Blaiech et al. 2013). Similarly, a greater arousal value indicates 

individual’s more aroused emotional state: 

 

𝑉𝑎𝑙𝑒𝑛𝑐𝑒 =
𝛼(𝐹4)

𝛽(𝐹4)
−

𝛼(𝐹3)

𝛽(𝐹3)
  (Equation 1) 

𝐴𝑟𝑜𝑢𝑠𝑎𝑙 =
𝛼(𝐴𝐹3+𝐴𝐹4+𝐹3+𝐹4)

𝛽(𝐴𝐹3+𝐴𝐹4+𝐹3+𝐹4)
              (Equation 2) 

Where α(i) and β(i) are correspond to the PSD of alpha and beta frequency range obtained from i-

th channel of the EEG signal. 

3.5 Field data collection 

3.5.1 Overview 

To test the feasibility of measuring construction workers’ emotional states in the field using a 

wearable EEG sensor, I collected workers’ EEG signals as well as their saliva samples for cortisol 

analysis from real construction sites. All the data including EEG data and cortisol samples were 

collected under different factors proven to affect emotions in the field, in order to confirm if 

workers’ emotions measured from EEG signals vary by such factors.  
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In this study, the factors that I consider are work conditions with different hazard levels (e.g., 

less hazardous conditions like working at ground vs. more hazardous conditions like working on 

the ladder and in a confined space), and a different feeling of tiredness over time (e.g., less hours 

worked vs. more hours worked in a row), which have been widely accepted as significant factors 

affecting workers’ emotions and prevalent at the worksite (Berger 1996; Mignonac and Herrbach 

2004; Leung et al. 2016). To collect workers’ EEG data, a wearable EEG sensor (see A in Figure 

3.2) that has 14 channels (see B in Figure 3.2) and the 256 Hz sampling rate of each channel was 

attached to the inner side of a hardhat, as shown in A and B of Figure 3.5. 

 

Figure 3.5. Subjects and Sites for Field EEG Data Collection: (a) A Subject Wearing an EEG 

Sensor; (b) A Subject Wearing an EEG Sensor with Hardhat; (c) On-site Work Conditions; (d) 

Off-site Shop Work Conditions Site information 

For data collection, three worksites were approached: two on-sites including an office 

building renovation site in Detroit, Michigan (collected on March 18–25, 2016) and a hospital 
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renovation site in Gary, Indiana (collected on February 22, 2017), and one off-site HVAC-sheet 

metal fabrication shop in Wixom, Michigan (collected on March 28–April 4, 2016). I chose two 

on-sites for an in-depth investigation of the effect of different work conditions on emotional states 

because the recruited workers on such sites were performing the same repetitive tasks in different 

conditions (e.g., working at ground, on the ladder, and in a confined space: see C in Figure 3.5). 

Additionally, I chose the off-site shop to investigate the effects of different amounts of working 

hours without resting (e.g., right after, one hour after, and two hours after the scheduled resting 

time) upon emotional states in an environment where recruited workers were performing the 

repetitive tasks at the same work location and environment (see D in Figure 3.5). 

3.5.2 Participants and procedures 

The EEG data were collected from ten healthy workers, including six workers (one carpenter, two 

electricians, and three laborers) on the two on-sites (i.e., three workers per each site) and four off-

site sheet metal workers in the off-site shop. All subjects are Caucasian males between 26 to 55 

years of age (see Table 3.1). Data collection was approved by the University of Michigan 

Institutional Review Board. The informed consent form was distributed to all the subjects before 

data collection in order for them to be informed about the anonymity of data collection and 

participants’ rights. They were asked if they had any physical and physiological (e.g., headaches, 

breathing rapidly, feeling dizzy, and feeling fatigued), cognitive (e.g., difficulty in concentration 

and poor sleep quality), and emotional problems (e.g., feeling depressed, trapped, and cynical). 

None of them reported any such problems. I also assured each participant that they could stop 

participating in the data collection if they felt uncomfortable.  

In the data collection, six subjects in the on-sites were asked to perform their work tasks 

with different work conditions including working at ground (Session #A1), working on the ladder 
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(Session #A2), and working in a confined and dimmed space (Session #A3). Also, while workers 

in the off-site shop performed their repetitive tasks, their EEG data were collected three times, 

9:30AM, 10:30AM and 11:30AM. 9:30AM is the time when they came back from 30-minutes of 

scheduled resting time between 9:00AM–9:30AM and they continue to work without resting until 

11:30AM (i.e., the time when they had a lunch). As such, these three sessions intend to capture 

workers’ emotion right after the resting time (i.e., at 9:30AM; Session #B1), one-hour after the 

resting time (i.e., one hour’s working; at 10:30AM; Session #B2), and two hours after the resting 

time (i.e., two hours’ working; at 11:30AM; Session #B3). Each worker performed the same 

physical, everyday work tasks during all his/her sessions (e.g., labors performing cleaning tasks). 

Before each session, at least 5 minutes of movement-artifacts-free EEG data were collected 

and used as a baseline to remove motion artifacts. During data collection, subjects were asked to 

remain still. Then, the EEG data during working were recorded more than 10 minutes.  

To investigate the existence of additional significant changes in work conditions that could 

potentially affect subjects’ emotional states (e.g., excessively loud noises) at the site, I video-

recorded entire workspaces during the data collection. It is noteworthy that Subject #A-1 

participated in only two sessions, neither of which was in a confined space, because there was no 

confined space in this subject’s workspace. As a result, the total number of datasets were 29 as 

shown in Table 3.1. 

On the other hand, an important concern on field data collection is subjects’ bias like the 

Hawthorn effect because workers’ awareness of being observed can modify their behavior. To 

minimize this bias, I first tried to avoid direct observation near the subjects as much as possible 

because wireless EEG data transfer of the sensor used in this study does not require continuous 

observations on subjects during the data collection. I also asked them not to deviate their routines 
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of work while focusing on their work, by clearly informing them that their anonymity was 

guaranteed and all the collected data would never be used for any performance measurement. 

I also collected subjects’ cortisol samples after each session. Cortisol is known as a stress-

related hormone and has been proven to have a relationship to emotions. Diffused from capillaries 

into tissues and found in body fluids, cortisol can be easily collected from saliva, urine, as well as 

hair (Levine et al. 2007; Russell et al. 2012). Salivary cortisol, is especially easy to collect, and 

related to acute body response to the stressors (Russell et al. 2012). Considering that a subject’s 

salivary cortisol value (µg/ml) reflects his/her acute emotional state (e.g., emotions during the past 

half an hour or less) (Russell et al. 2012), each session was designed to perform half an hour or 

one hour later of the previous session to eliminate any residual emotion. As shown in Table 3.1, I 

collected 22 salivary cortisol samples for 22 sessions out of total 29 sessions for all the subjects. I 

could not collect two salivary cortisol samples from Subject #A-1’s two sessions because of his 

reluctance to provide his cortisol samples. In addition, I decided to exclude five cortisol samples 

during the second sessions of five on-site subjects (Subjects # A-2–A-6) for this data analysis. This 

exclusion is due to the possibility that their cortisol values may reflect not only the second session 

but the first one. While these five on-subjects participated in this study, their second sessions were 

conducted less than 20 minutes after their first sessions due to their limited time for participating 

in data collection. All others followed the aforementioned protocol.  
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Table 3.1 Subject Information and Results: Valence and Arousal Levels and Cortisol Values 

Workers Subject # Age Gender Session #* 

EEG-based 

Valence 

Level* 

EEG-based 

Arousal 

Level* 

Cortisol 

[µg/dL] 

(%CV)** 

[A] 

On-site 

workers 

A-1 

(Carpenter) 
55 Male 

A1: At ground 0.055 0.974 - 

A2: On the ladder -3.239 1.594 - 

A-2 

(Laborer) 
45 Male 

A1: At ground 0.566 2.215 0.17 (1.56%) 

A2: On the ladder -2.291 -0.725 - 

A3: In confined 

space 
-1.722 0.582 0.15 (5.13%) 

A-3 

(Laborer) 
37 Male 

A1: At ground 5.472 5.748 0.19 (4.24%) 

A2: On the ladder 0.249 2.718 - 

A3: In confined 

space 
-1.017 1.993 0.14 (7.19%) 

A-4 

(Electrician) 
35 Male 

A1: At ground 4.786 -0.651 0.21 (8.00%) 

A2: On the ladder -3.068 -1.467 - 

A3: In confined 

space 
-8.197 -3.895 0.40 (7.48%) 

A-5 

(Electrician) 
27 Male 

A1: At ground -0.501 2.026 0.16 (2.77%) 

A2: On the ladder -3.580 -0.557 - 

A3: In confined 

space 
-0.824 1.878 0.16 (3.42%) 

A-6 

(Laborer) 
50 Male 

A1: At ground 0.276 2.058 0.10 (10.81%) 

A2: On the ladder -0.137 1.614 - 

A3: In confined 

space 
-0.881 1.493 0.16 (10.28%) 

[B] 

Off-site 

(shop) 

workers 

B-1 

(Sheet 

metal 

worker) 

40 Male 

B1: Right after rest 2.631 -1.005 0.31 (1.72%) 

B2: 1 hour after rest -0.781 2.042 0.41 (3.32%) 

B3: 2 hours after rest -2.409 1.789 0.58 (6.81%) 

B-2 

(Sheet 

metal 

worker) 

38 Male 

B1: Right after rest -2.010 3.046 0.08 (11.10%) 

B2: 1 hour after rest 3.488 4.649 0.10 (5.59%) 

B3: 2 hours after rest -2.157 1.590 0.09 (4.83%) 

B-3 

(Sheet 

metal 

worker) 

49 Male 

B1: Right after rest 2.915 -2.795 0.11 (0.97%) 

B2: 1 hour after rest 5.043 0.330 0.07 (9.04%) 

B3: 2 hours after rest -0.089 1.666 0.29 (7.31%) 

B-4 

(Sheet 

metal 

worker) 

26 Male 

B1: Right after rest -0.864 -0.004 0.40 (0.93%) 

B2: 1 hour after rest 3.083 -2.954 0.11 (11.12%) 

B3: 2 hours after rest -5.628 2.194 0.67 (2.06%) 

Note: *Total # of sessions (datasets) = 29; **Total # of cortisol samples = 22 
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3.6 Results 

Table 3.1 shows all the subjects’ valence and arousal levels from EEG signals as well as their 

cortisol values. To analyze cortisol values, I used a commercially available assay kit that accurately 

measures hormones. The percentage coefficient of variation (%CV) is calculated, which is defined 

as the standard deviation of multiple measurements of each sample divided by the mean of them 

when the samples are run on multiple assays. Under 15%CV is generally acceptable for a reliable 

cortisol value measurement (Luecken and Gallo 2008). 

3.6.1 Validation 

As explained earlier, previous studies on EEG-based emotion measurement have mostly been 

conducted in a controlled laboratory environment using a controlled stimulus targeting a particular 

emotional state (e.g., visual stimulus such as a response to a horror movie or pictures: Lee and 

Hsieh 2014; Hou et al. 2015). Therefore, the reliability of EEG-based emotion measurement can 

be examined by comparing target emotional states (e.g., fear from a horror scene) and detected 

emotions by EEG signals. However, a major challenge of field emotion measurement in a 

naturalistic environment using EEG is that it is very difficult to introduce stimuli that can induce 

a particular emotional state. This makes it difficult to confirm whether the detected emotional state 

by EEG is valid or not.  

An alternative is to use biochemical responses, particularly cortisol. Originally, cortisol has 

been used as a reliable marker to interpret stress because this stress-related hormone changes in 

response to stressors to cope with them (Levine et al. 2007; Russell et al. 2012; Sharma and Gedeon 

2012; Hou et al. 2015). Given that one’s emotional state is the most critical aspect of stress 

(particularly, emotional stress) (Hou et al. 2015), cortisol can provide meaningful information on 

emotional states. Specifically, previous studies have found the positive correlation of cortisol 
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values with the degree of anger, anxiety, and depression (Vedhara et al. 2003; Brummett et al. 

2012; Het et al. 2012). Such emotional states with high cortisol values (i.e., anger, anxiety, and 

depression), which are generally regarded as negative feelings, are very closely associated with 

negative valence levels even though arousal levels are either positive (e.g., angry with negative 

valence and positive arousal) or negative (e.g., depressed with negative valence and negative 

arousal), according to the valence-arousal model in Figure 3.1 (Russell et al. 1989; Burkhardt 

2001). Therefore, significant negative correlations between valence levels and cortisol values can 

demonstrate the feasibility of this study’s emotional state measurement.  

Figure 3.6 shows the relationship between valence levels and cortisol values for 22 datasets. 

As shown in this figure, the Pearson product-moment correlation coefficients (r) and p-values are 

calculated between valence levels and cortisol values. A significant negative correlation is found 

between valence and cortisol (r= -0.528, p < 0.01). Here, a higher valence level indicates more 

positive and pleasant emotions (e.g., happiness, excitement, pleasure, or satisfaction) while a 

higher cortisol value means that an individual is more likely to have negative and unpleasant 

feelings of anger, anxiety, or depression. As a result, this negative correlation demonstrates the 

feasibility of measuring emotional state measurement in the field using a wearable EEG sensor.  
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Figure 3.6. Emotional States of Valence and Cortisol Values 

3.6.2 In-depth investigation of workers’ emotions 

Based on measured emotional states of workers using EEG, I performed an in-depth investigation 

of how workers’ emotions change according to factors affecting emotions while working on 

construction sites. Firstly, Figure 3.7 summarizes the changes of both on-site and off-site workers’ 

valence and arousal levels on average. Then, as shown in Figure 3.8, emotional states under 

different work conditions and feelings of tiredness after different working hours without resting 

can be inferred when average valence and arousal levels are located at the bipolar dimensions of 

emotions.  

Workers show more positive emotions such as happiness, excitement, pleasure, or 

satisfaction in less stressful situations (e.g., working at ground and working one hour or less). On 

the other hand, workers can have negative emotions such as nervousness, stress, disappointment, 

irritation, and/or depression under more stressful situations (e.g., working on the ladder or in a 
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confined space, and working two hours in a row). Such results correspond to many previous 

theoretical and empirical evidences that measure the effect of working hazards and a feeling of 

tiredness on emotions (Berger 1996; Mignonac and Herrbach 2004; Leung et al. 2016). 

 

Figure 3.7. On-site Workers’ Emotions in Different Work Conditions and Off-site (Shop) Workers’ 

Emotions after the Different Amount of Working Hours: Valence and Arousal 
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Figure 3.8. Workers’ Bipolar Dimensions of Emotions While Working 

Between two dimensions of emotions, workers’ valence levels are more likely to be affected 

by work conditions and working hours (see Figure 7). On-site workers in less stressful work 

conditions (e.g., working at ground level) show positive valences (mean= 1.776, SD= 2.630), while 

those working in hazardous and stressful work conditions such as working on the ladder (mean= -

2.011, SD= 1.660) and in confined spaces (mean= -2.528, SD= 3.189) show negative valences. 

Also, off-site workers’ valence levels two hours after the scheduled resting time (i.e., the time 

when they continuously work during two hours without resting) are negative (mean= -2.571, SD= 

2.288), while their valence levels are positive right after their scheduled resting time when they 
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have access to refreshments (mean= 0.668, SD= 2.478). Their highest valence levels are found 

when workers perform their tasks one hour after the resting time (mean= 2.709, SD= 2.475). As 

such, it seems that such positive valences are linked to positive emotions (see Figure 3.8), even 

though the arousal level is either positive or negative unless it is an extreme value.  

To confirm the result, I perform the Kruskal–Wallis test, which is a non-parametric one-

way analysis of variance test used to assess whether different groups are same in some way, when 

the assumptions on the distribution of samples are not met with parametric tests (e.g., one-way 

ANOVA) (Hollander et al. 2013). Because of the small sample size, which makes it difficult to 

assume normal distribution of samples, the Kruskal–Wallis test is used. There are statistically 

significant differences of on-site workers’ valence levels according to different work conditions 

(H= 9.093, p= 0.011) as well as off-site workers’ valence levels according to different working 

hours (H= 6.500, p= 0.038) However, it is difficult to clearly infer an impact of work conditions 

on on-site workers’ arousal levels (H= 2.587, p= 0.274) and an impact of working hours on off-

site workers’ arousal levels (H=1.192, p= 0.552). More detailed discussion on arousal 

measurement will be discussed in the next Discussion Section. 

In addition, I further investigate the extrinsic effects of other factors possible to affect 

emotions (e.g., different ages and different work groups such as on-site workers and off-site 

workers). Firstly, the Spearman rank-order correlation, which is a non-parametric measure of 

association between two variables, is used to examine the effect of subjects’ ages on emotions 

because assumptions required for the parametric test (e.g., normality assumption) could not be 

satisfied. The results show there is no significant correlation between age and two dimensions of 

emotions (i.e., valence and arousal). Second, I examine if working in the on-site and the off-site 

affects emotions because of observed significant differences in work cultures and work 
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environments between on-site workers and off-site workers. The Kruskal–Wallis test is used to 

compare the effect of two groups on emotions, but no significant difference is found for both 

valence levels (H= 0.567, p= 0.452) and arousal levels (H= 0.002 p= 0.965). 

3.7 Discussion 

This study presented the potential of measuring and understanding construction workers’ 

emotional changes during their ongoing work in the field using a wearable EEG sensor, by showing 

significant correlations between valence levels and cortisol values in Figure 3.6 and changes of 

emotions according to work conditions and working hours in Figure 3.8. Specifically, a worker’s 

positive valence level leads to positive emotions under a less stressful situation (e.g., working at 

ground and working less than one hour). It is also clearly shown in Figure 3.8 that unsafe work 

conditions (e.g., on the ladder and in a confined space) and physically demanding working time 

(e.g., working two hours without resting) are likely to make workers fearful, frustrated, and/or 

depressed with negative valences. It is important to note that the reason for a positive valence level 

one hour after resting needs to be examined further, since it remains unclear whether a worker 

feels tired or not after continuous one-hour working. In this regard, Hwang and Lee (2017) 

investigated construction workers’ physical demands from tasks and identified that off-site metal 

sheet workers’ physical demands were not too high, which meant that they could be easily 

sustained over an hour. Moreover, I interviewed off-site subjects and found that they had a low-

pressure schedule at the time of data collection with less physical demands than usual. Therefore, 

it was likely for off-site subjects not to feel tired until one hour after resting as indicated by their 

positive valence levels.  

Between two dimensions of emotions, EEG’s capability on measuring valence levels is 

particularly important because a valence level is a more critical dimension in classifying positive 
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emotions (e.g., excitement, happiness, contentment, or satisfaction) and negative ones (e.g., fear, 

anger, frustration, or depression: see Figure 3.1). In addition, while other physiological responses 

except EEG, such as EDA, HR, and BVP, have a limited capability to measure valence levels 

(Takahashi et al. 2004; Zhai et al. 2005; Chanel et al. 2011), EEG, which can detect the central 

nervous system activities related to diverse aspects of emotions (e.g., from displeasure to pleasure 

and from relaxation to excitement), is a reliable means to measure valence levels (Lee and Hsieh 

2014; Liu and Sourina 2014; Hou et al. 2015). 

Additionally, such valence measurement is especially significant in construction workers. 

A positive valence level is associated with desired emotional states at the worksite that can lead to 

higher motivation, better attention, less stress, etc. even though arousal can be either positive or 

negative. Specifically, a slightly positive valence with a moderate level of arousal is closely 

associated with individuals’ better attention and focus as well as higher productivity 

(Chickzentmihalyi et al 1990; Grimm et al. 2007). Moreover, a valence is more closely related to 

stress than arousal (i.e., low valence is linked to high stress: Hou et al. 2015). Thus, inducing a 

positive valence can lead to less mental stress while working thereby promoting their mental and 

emotional well-being. As shown in the results, workers’ valence levels are more highly affected 

by diverse work conditions and the amount of working hours than an arousal during their ongoing 

work, which demonstrates that any corrective actions to working environment and way of working 

(e.g., modifying hazardous work conditions and frequent resting time) have a potential to induce 

desired valence levels at the worksite to promote workers’ wellness and enhance work 

performance. 

Despite EEG’s promise in field emotion measurement, it is still challenging to clearly 

identify how work conditions and working hours affect workers’ arousal levels. Previous studies 
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have identified that many factors including slight physical movements, cognitive loads, or 

momentary distracting thoughts can cause sudden and significant arousal changes as much as a 

feeling of risks from hazardous work conditions and a feeling of tiredness do (Mignonac and 

Herrbach 2004; Pho et al. 2010; Brummett et al. 2012; Het et al. 2012; Picard et al. 2016). Because 

this study was conducted in a naturalistic working environment like real construction sites, it is 

almost impossible to completely control all the factors that could affect arousal levels even though 

I tried to control them (e.g., applying the same repetitive construction tasks). Nonetheless, the 

relationship between the individual arousal level and the brain activity recorded by the EEG has 

been well described in the previous literature (Makeig and Inlow 1993; Borghini et al 2014). 

Therefore, an attempt to measure both workers’ valence and arousal levels in this study is a 

meaningful first step to better understand workers’ emotional states in the field despite the 

difficulty of controlling many emotion-related factors in a naturalistic working environment. 

Moreover, the research outcome in this study enable in-depth studies on how the emotions 

affect work performance such as safety, health, quality, and productivity. Such efforts will help to 

better understand which emotional states of workers are the most effective and need to be induced 

to achieve desired work performances, under the complex impacts of emotions on work 

performances (e.g., slightly positive emotions that lead to high motivations and productivity but 

extremely positive emotions that can cause high optimism and unsafe actions: Grimm et al. 2007). 

3.8 Conclusions 

This study investigated the feasibility of measuring construction workers’ emotions in the field, 

based on two dimensions of emotions (i.e., valence and arousal levels) and using a wearable EEG 

sensor. The results confirmed that workers emotions can be reliably measured, particularly valence 

levels, which remain crucial to understanding workers’ emotional states, through a comparison 
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with physical markers (i.e., cortisol). The results also showed how workers’ emotions change 

according to work conditions (e.g., less hazardous vs. more hazardous) and different amounts of 

working hours (e.g., less hours worked in a row vs. more hours worked in a row without resting). 

Based on the contribution of I’ previous study to collect high-quality EEG signals in the 

field (Jebelli et al. 2007), which provides the necessary groundwork, this study further interpreted 

EEG signals to measure emotional states and validated this measurement. As such, the major 

contribution of this study is to offer a means of reliable and continuous emotion measurement 

without interfering with their ongoing work using a wearable EEG sensor in the real worksite. The 

use of this measurement is expected to contribute to a more in-depth understanding of emotions in 

the demanding and hazardous construction site. 

Despite the importance of both physical and psychological aspects of human workers in a 

labor-intensive construction industry, the body of knowledge of construction management 

regarding human aspects has relied more heavily on the physical realm. This imbalance is in part 

a consequence of a lack of field measurement of psychological states of workers. By enabling 

continuous, affordable, and reliable field emotion measurement, which is crucial to psychological 

aspects known to impact attention, motivation, decision-making, behaviors, physical and mental 

health and others, the outcome of this study will lead to a comprehensive study of both physical 

and psychological aspects of construction workers. Specifically, by studying how workers’ 

emotions vary while working in real construction sites through continued emotion measurement 

while working, it can be understood which physical environments and physical works significantly 

impact workers’ emotional states. For example, poor working conditions, which generate workers’ 

significantly negative emotions, can be modified for a positive wellness culture in the workplace. 

In addition, such an understanding can provide an opportunity to find any significant relations 



98 

 

between their emotions with work performance such as safety, health, and productivity in order to 

help improve human resource management in construction projects. Based on the identification of 

such relations, future research can also be extended to design a means to avoid significantly 

negative emotions and induce workers’ desired emotional states at the demanding and hazardous 

construction site to promote mental and emotional well-being of workers and achieve desired work 

performances. 
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Chapter 4: 

Recognition of Workers’ Stress Using an EEG at Construction Sites3 

4.1 Introduction 

To date, considerable attention on individuals’ electroencephalogram (EEG) signals has been paid 

to measure and monitor workers’ mental status in the clinical domain. EEG is a noninvasive 

measurement of the brain’s electrical activity, which is generated by firing neurons in the brain 

(Jovanov et al. 2003; Szafir and Signorile 2011). EEG thus represents central nervous system 

activities along the scalp (Chen et al. 2015; Hosseini and Khalilzadeh 2010; Hou et al. 2015; 

Jovanov et al. 2003; Szafir and Signorile 2011). The advantage of EEG in recognizing individuals’ 

stress is in that it can quantify stress from brain wave patterns by overcoming the possible biases 

of survey-based psychological stress measurement methods (Larson and Csikszentmihalyi 1983). 

Further, a recently available wireless and wearable EEG device can extend EEG’s ability to non-

intrusively assess the stress levels of construction field workers. If successfully applied in the field, 

continuous and affordable workers’ stress recognition is enabled to overcome the limitations of 

3 Adapted from Jebelli, H., Hwang, S., and Lee, S. (2018) “EEG-based Workers’ Stress Recognition at 

Construction Sites.” Automation in Construction, 93, 315-324. 
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other cumbersome methods in field applications, which may interfere with workers’ ongoing work 

tasks (e.g., measuring the stress-related hormonal responses such as cortisol that require 

cumbersome hormone sample collection: Vedhara et al. 2003). 

Recently, several research efforts have enhanced the applicability of EEG devices on the 

construction site (Chen et al. 2015, 2017; Jebelli et al. 2017a, 2018b; a; Wang et al. 2017). For 

example, I’ previous research proposed an advanced signal processing framework to acquire high-

quality EEG signals from wearable EEG devices (Jebelli et al. 2017b). The use of this framework 

can overcome the major limitations associated with applying wearable EEG devices to field 

workers, including considerable signal noises (i.e., artifacts). In addition, other research efforts also 

reinforced the potential for a few features (e.g., valence, arousal, and EEG power) extracted from 

EEG signals to capture different brain wave patterns while workers were subjected to different 

stressors (Chen et al. 2017; Wang et al. 2017). The recognition of such patterns helps to understand 

workers’ psychological states such as emotional states, attention levels, and mental workloads. 

Although these features can be used as informative signal features to understand the 

aforementioned psychological states, they are not enough when it comes to stress that is a very 

complex psychological state. In other words, an extensive range of EEG signal features is required 

to detect construction workers’ stress due to complex EEG patterns from many different field 

stressors and among different subjects.  

To address this issue, the objective of this chapter is to develop a procedure to automatically 

recognize workers’ stress, which uses a comprehensive set of EEG signal features from the EEG 

signals acquired at real construction sites from a wearable EEG device. This automatic stress 

recognition is particularly important to detect and manage workers’ excessive stress on 

construction sites where workers’ stress levels can vary significantly according to with numerous 
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field stressors that change over time. To achieve this research objective, I firstly collected real 

construction workers’ EEG signals using a wearable EEG device while they were working at real 

construction sites. Workers’ salivary cortisol levels, known as a stress hormone, were measured to 

label the tasks as low or high-stress. After removing EEG signals artifacts, relevant time and 

frequency domain features in EEG signals were calculated by applying fixed length and sliding 

windowing approaches. Then, several supervised learning algorithms were applied to select the 

best classifier to recognize worker’s stress. Finally, by comparing the developed field stress 

recognition procedure with ones used in the clinical domains, the applicability of the developed 

procedure for construction workers’ stress recognition will be demonstrated. 

4.2 Stress and EEG 

Despite different stress definitions, there is an area of agreement among these definitions; stress is 

the nonspecific reaction of the body and mind to changes in demands that affect human nervous 

system (Cohen et al. 1997). Stress interrupts the normal function of the human nervous system. 

The brain reacts to these distortions by releasing a series of chemical reaction (i.e., stress hormones) 

such as cortisol to retain the normal activity of nervous systems. Particularly, a change of currents 

during activation of the brain caused by stress produces a magnetic field, and this magnetic field 

over the scalp is measurable using EEG. Because EEG signals can provide rich information about 

individuals’ mental status related stress, many attempts have been made to recognize and measure 

subjects’ stress using EEG signals, mostly in the clinical domain. For instance,  researchers in 

(Aftanas et al. 2004) showed the capability of EEG in differentiating different levels of arousal, 

which is defined as the state of being awoken and the degree of attention and closely associated 

with stress by changing under different stressors. (Kim et al. 2004) applied an audio and cognitive 

stimulus to recognize emotions related to stress (e.g., sadness, anger, and surprise) by applying a 
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machine learning algorithm using subjects’ EEG signals. They reported a prediction accuracy as 

good as 61.8%. The researchers in (Takahashi 2004) calculated six EEG features to classify five 

different emotions including stress and applied a Support Vector Machine (SVM), which resulted 

in the recognition rate of 41.7%. I in (Hosseini and Khalilzadeh 2010) used the induction visual 

images to generate two different levels of stress in a controlled environment such as calm-neutral 

and negatively-excited and obtained the accuracy of 78.3% using EEG signals with SVM classifier. 

The researchers in (Sani et al. 2014) reported the stress recognition accuracy of 83.33% using 

individuals’ EEG signals. They applied a SVM to recognize the stressed subjects in a shelter center. 

I in (Jun and Smitha 2016) and (Hou et al. 2015) recognized individuals’ stress while they induced 

mental stress by the Stroop color-word. They reported the prediction accuracies of 75% and 

85.71%, respectively. 

However, these research efforts have not been applied in the field. If applied using newly 

available wearable EEG devices, such stress recognition accuracies would not be guaranteed 

because of several hurdles in field application. These hurdles include low EEG signal quality 

caused by not only signal artifacts from workers’ movements but also the poor spatial resolution 

(i.e., wearable EEG devices normally have 7-16 electrodes compared to 32-256 electrodes placed 

in wired EEG devices used in the clinical domain) and the low temporal resolution (i.e., wearable 

EEG devices data recording rate is in the range of 128-500 Hz compared to 2-100 kHz data 

recording range for the wired EEG devices used in the clinical domain) of wearable EEG devices. 

In addition, many stressors affecting stress in the real work environment requires the use of a more 

extensive range of signal features to recognize stress. All these challenges should be resolved 

before EEG signals are used to recognize construction workers’ field stress.  
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4.3 EEG-based Field Stress Recognition Procedure 

4.3.1 Overview 

Figure 4.1 represents an overview of an EEG-based field stress recognition procedure developed 

in this study. It aims to achieve a similar accuracy of stress recognition in clinical domains 

overcoming all the hurdles discussed earlier. As the first step, EEG signals across 14 different 

channels were collected using an off-the-shelf wearable EEG device. Workers’ EEG signals were 

labeled based on their stress-related hormone (A in Figure 4.1). Then, EEG signal artifacts were 

removed by applying an EEG signal processing framework signals suggested by I’ previous work 

(Jebelli et al. 2017b) (B in Figure 4.1). After removing signal artifacts, EEG features in time and 

frequency domain were extracted (C in Figure 4.1). Features with the highest distinguishing power 

were selected among a comprehensive list of EEG features selected from the literature. Then, to 

select the best classifier to recognize workers’ stress, the performance of several supervised 

learning algorithms were evaluated to recognize workers’ stress (D in Figure 4.1). Details on each 

step will be described in the following sub-sections. 

 

Figure 4.1 An Overview of Field Stress Recognition Procedure 
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4.3.2 EEG preprocessing and artifacts removal 

Although the EEG device is designed to record brain activity, it also records electrical activity 

arising from other sources than the brain (Urigüen and Garcia-Zapirain 2015). As mentioned in 

Section 2, EEG signals contain a significant amount of extrinsic and intrinsic artifacts, which 

obscure the brain waves. The signal artifacts are significantly greater when acquiring EEG signals 

from construction workers at actual construction sites, due to workers’ extensive movements and 

existing different environmental factors (e.g., construction equipment’s noise). To solve this issue, 

I previously proposed and validated a signal processing framework suggested (Jebelli et al. 2017b) 

to remove EEG signal artifacts thereby acquiring high-quality EEG signals at construction sites.  

Below is a summary of artificial removal steps in this framework, and more information can 

be found in (Jebelli et al. 2017b). Usually, extrinsic artifacts (e.g., electrode popping, movement 

artifacts, environmental noise, and wiring noise in the EEG sensor) have different frequencies with 

brain waves. Therefore, filtering the frequencies out of the range of EEG signals will remove most 

of the extrinsic artifacts. A bandpass filter with a higher cutoff frequency of 64 Hz and a lower 

cutoff of 0.5 Hz was used to remove most of the present extrinsic artifacts that cause slow and 

rapid changes in the EEG signals. The lower cutoff frequency criterion to design the bandpass 

filter was based on the frequency range of the rhythmic brain potentials detected with surface 

electrodes placed on the head (e.g., Delta waves 0.5–4 Hz, Theta waves 4–7.5 Hz, Alpha waves 

7.5–13 Hz, Low beta waves 13–15 Hz, Beta waves 15–20 Hz, High beta waves 20–38 Hz, and 

Gamma waves 38–higher Hz) and the higher cutoff frequency was selected considering the EEG 

data recording rate (128 Hz) and Nyquist frequency, which is the highest frequency that we can 

expect to be present in the sampled data considering the recording rate.  Nyquist frequency is equal 

to the half of the sampling rate (64Hz in this research). Also, a notch filter, which filters out a very 

narrow band of frequencies from a signal (Ferree et al. 2001), was used to remove the ambient 
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electrodes’ wire noise that comes from the power line interference signal (e.g., 60 Hz). Unlike 

extrinsic signal artifacts, intrinsic signal artifacts are within the same frequency range as the EEG 

signals. To eliminate intrinsic artifacts, an independent component analysis (ICA) was applied to 

detect the artifactual components (e.g., eye movement, blinking, and muscle artifacts) existing in 

EEG recording signals (Jebelli et al. 2017b). ICA method can isolate EEG intrinsic artifacts from 

the original EEG without losing EEG signal (Jung et al. 2000) by identifying the artifactual EEG 

components in the EEG and subtracting the components that are associated to intrinsic artifacts to 

achieve a clean EEG signal. ICA method has been commonly used in EEG research in the clinical 

domain to detect and remove intrinsic EEG artifacts (Delorme and Makeig 2004; Makeig et al. 

1996; Reddy and Narava 2013; Vigário 1997; Zhukov et al. 2000). More detailed explanations 

about the pattern of artifactual components recorded by a wearable EEG device at actual 

construction sites is provided in Chapter 2 (Jebelli et al. 2017b).  

4.3.3 EEG signals feature extraction and selection 

The next step is to select useful features that can be used to recognize stress. In most of the machine 

learning algorithms, selection of relevant features is of critical importance because it affects not 

only the accuracy of classification but also the computational cost of classification algorithms. A 

feature is an informative and measurable property of the detected signals. According to the 

literature, there are two well-known feature selection methods: a correlation-based method and a 

wrapper method (Dash and Liu 1997; Hall et al. 2000). Correlation-based methods select the most 

useful features by ranking them with correlation coefficients. Wrapper methods assess subsets of 

features according to their usefulness to a given predictor (Guyon and Elisseeff 2003). Wrapper 

methods make various subsets of features and run learning algorithms, and the feature subsets that 

provide the best accuracy will be considered as the relevant features. Wrapper methods are not 
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very practical to be used on a large number of features due to high computational cost. When 

dealing with EEG signals, there are a large number of features both in time and frequency domains. 

Learning on all the possible subsets combination and comparing the accuracy requires a high 

computational cost and time. Unlike wrapper methods, correlation-based methods filter out the 

features that have the least effect on the classification. So in this chapter, I first applied the 

correlation-based method to filter out the features with least correlation to the prediction accuracy. 

Then, I examined the optimal feature subsets that maximize classification accuracy by applying a 

wrapper method. 540 features were derived from 14 EEG channels (40 features for each EEG 

channel) from the existing literature in time and frequency domains. Among all those features, 224 

features were selected using correlation-based methods. Considering the overall prediction 

accuracy and computational cost and time, the top 80 features (Table 4.1) that resulted in the 

greatest prediction accuracies were selected after applying a wrapper based methods on the 

selected 224 features. 
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Table 4.1 Time and frequency domains features, extracted from EEG signals 
 Features Equation Explanation 

T
im

e 
d
o
m

ai
n

 

Cumulative maximum 𝐶𝑚𝑎𝑥𝑖𝑗 = max (𝐸𝐸𝐺1:𝑖 ,𝑗) 
Maximum amplitude of 

channel 𝑗 up to sample 𝑖 

Cumulative minimum 𝐶𝑚𝑎𝑥𝑖𝑗 = min (𝐸𝐸𝐺1:𝑖 ,𝑗) 
Minimum amplitude of 

channel 𝑗 up to sample 𝑖 

Mean value MAV𝑗 =
∑ 𝐸𝐸𝐺𝑖𝑗

𝑁
𝑖=1

𝑁
 

Average absolute value of 

amplitude among different 

channels 

Median value 𝑀𝑒𝑑𝑗 = 𝑠𝑜𝑟𝑡(𝐸𝐸𝐺)𝑁+1
2

,𝑗
 Median of the signal among 

different EEG channels 

Smallest window elements 𝑀𝑖𝑛𝑗 = min
𝑖

𝐸𝐸𝐺𝑖𝑗 Minimum amplitude among 

different channels 

Moving median with window size k 𝑀𝑜𝑣𝑀𝑒𝑑𝑖,𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝐸𝐸𝐺𝑖:𝑖+𝑘−1 ,𝑗) 

Median of the signal of 

channel 𝑗 in a widow with size 

𝑘 samples 

Maximum-to-minimum difference 𝑀𝑎𝑥𝑀𝑖𝑛𝑗 = max
𝑖

𝐸𝐸𝐺𝑖𝑗 − min
𝑖

𝐸𝐸𝐺𝑖𝑗 

Difference between maximum 

and minimum of the EEG 

signals amplitude among 

different EEG channels 

Root-mean-square level RMS𝑗 =  √
∑ 𝐸𝐸𝐺𝑖𝑗

2𝑁
𝑖=1

𝑁
 

Norm 2 of the EEG signals 

divided by the square root of 

the number of samples among 

different EEG channels 

Peak-magnitude-to-RMS ratio 
PRMS𝑗 =  

||𝐸𝐸𝐺:,𝑗||
∞

√∑ |𝐸𝐸𝐺𝑖𝑗|
2𝑁

𝑖=1

𝑁

 Maximum of the EEG signal 

amplitude divided by the RMS𝑗 

Root-sum-of-squares level RSS𝑗 =  √∑|𝐸𝐸𝐺𝑖𝑗|
2

𝑁

𝑖=1

 

Norm of the EEG signals 

among different channels in 

each window 

Standard deviation STD𝑗 =  √
1

𝑁 − 1
∑ 𝐸𝐸𝐺𝑖𝑗

2

𝑁

𝑖=1

 

Deviation of EEG signals 

among different channels in 

each window 

Variance VAR𝑗 =  
1

𝑁 − 1
∑ 𝐸𝐸𝐺𝑖𝑗

2

𝑁

𝑖=1

 

Variance of the signal EEG 

amplitude among different 

channels 

Peak 𝑃𝑘𝑗 = max
𝑖

𝐸𝐸𝐺𝑖,𝑗 
Maximum value of EEG 

amplitude among different 

channels in time domain 

Peak location 𝐿𝑃𝑘𝑗 = arg max
𝑖

𝐸𝐸𝐺𝑖,𝑗  Location of maximum EEG 

amplitude among channels 

Peak to Peak 𝑃𝑃𝑗 = 𝐿𝑃𝑘𝑗 − arg max
𝑖,𝑖≠𝐿𝑃𝑘𝑗

𝐸𝐸𝐺𝑖,𝑗  
Time between EEG signal 

peaks between the various 

windows 

Kurtosis 
𝑘𝑗 =

1
𝑁

 ∑ (𝐸𝐸𝐺𝑖𝑗 − MAV𝑗)𝑖
4

(
1
𝑁

 ∑ (𝐸𝐸𝐺𝑖𝑗 − MAV𝑗)𝑖
2

)
2

 

 

 

Shows the sharpness of EEG 

signals peak 

Total zero cross number 𝑍𝐶𝑁𝑗 = |{𝑖|𝐸𝐸𝐺𝑖,𝑗 = 0}| 
Number of points where the 

sign of EEG amplitude changes 
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Table 4.1 (continued) 

 Features Equation Explanation 

F
re

q
u
en

cy
 D

o
m

ai
n

 

Alpha mean power 𝛼𝑗 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗, 𝑓 ∈ [8𝐻𝑧, 15𝐻𝑧]) 
Power of the EEG signal in channel 𝑗 in 

frequency domain in the interval 

[[8𝐻𝑧, 15𝐻𝑧]] 

Beta mean power 𝛽𝑗 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗 , 𝑓 ∈ [16𝐻𝑧, 31𝐻𝑧]) Power of the signal in Beta interval 

Delta mean power 𝛿𝑗 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗, 𝑓 ∈ [0𝐻𝑧, 4𝐻𝑧]) Power of the signal in Delta interval 

Theta mean power 𝜃𝑗 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗, 𝑓 ∈ [4𝐻𝑧, 7𝐻𝑧]) Power of the signal in Theta interval 

Valence 𝑉 =
𝛼(𝐹4)

𝛽(𝐹4)
−

𝛼(𝐹3)

𝛽(𝐹3)
 Level of happiness 

Arousal 𝐴 =
𝛼(𝐴𝐹3 + 𝐴𝐹4 + 𝐹3 + 𝐹4)

𝛽(𝐴𝐹3 + 𝐴𝐹4 + 𝐹3 + 𝐹4)
 Level of excitement 

Median frequency 
𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗, 𝑓 ∈ [0𝐻𝑧, 𝑀𝐸𝐷𝐹𝑗]) = 

𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺:,𝑗, 𝑓 ∈ [𝑀𝐸𝐷𝐹𝑗 , 64𝐻𝑧]) 

Half of the signal power of channel 𝑗 is 

distributed in the frequencies less than 

𝑀𝐸𝐷𝐹𝑗  

 

 

Figure 4.2 EEG windowing approaches: (a) fixed windowing approach; (b) sliding windowing 

approach 

4.3.4 EEG classification  

In this chapter, different supervised machine learning algorithms are thoroughly tested using fixed 

and sliding windowing approaches. The tested algorithms included k-Nearest Neighbors (k-NN), 
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Gaussian Discriminant Analysis (GDA), Support Vector Machine (SVM) with different similarity 

functions (linear, Gaussian, cubic, and quadratic). Additionally, I explored the Hidden Markov 

Models (HMM), decision tree, and Logistic Regression approaches for classification. However, 

their preliminary results were discouragingly lackluster and were not pursued further. 10-fold cross 

validation was utilized for the selected classifiers to validate obtained classification accuracies; 

classification was performed ten times using 90% of data for training and 10% of data for testing 

each time. 

4.3.4.1 K-Nearest Neighbors (k-NN) 

k-NN is a memory-based algorithm, which utilizes the entire database for prediction,  based 

on a similarity measure in the instance space (Altman 1992). Memory-based algorithms find a set 

of nearby data points in the instance space with similar features, known as neighbors (Daelemans 

and Van den Bosch 2005). To predict the label of a new data point, a group of nearby neighbors 

referred to as the neighborhood is formed. k-NN is based on the assumption that the nearby data 

points in the instance space have the same class (Beyer et al. 1999). 

When a new unlabeled data 𝑋𝑖 ∈ 𝑅𝑑  arrives, k-NN measures the distance,  𝑑𝐸(𝑋𝑖, 𝑍𝑗) , 

between the unlabeled target data points {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} , 𝑖 = 1,2, … , 𝑚 and labeled training 

data points {𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛} , 𝑗 = 1,2, … , 𝑛. Where n is the size of training data set and m is the 

number of unlabeled data points. 

𝑑𝐸(𝑋𝑖, 𝑍𝑗) = ‖𝑋𝑖 − 𝑍𝑗‖
2

= √(∑ (𝑥𝑖
𝑙 − 𝑧𝑗

𝑙)2)𝑑
𝑙=1                                               (Equation 1) 

After calculating the distance between unlabeled data points and training data points, the 

subset of k nearest neighbors to the unlabeled data point is defined as 𝜃𝑘(𝑋𝑖)  where 𝜃𝑘(𝑋𝑖) =

 {𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑘} ⊆  {𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛} and the class label for 𝜃𝑙, l=1,2,3,…,k defined as 𝐿(𝜃𝑙) 

and is derived from Equation 2. 
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𝐿(𝜃𝑙) = 𝑦 𝑤ℎ𝑒𝑟𝑒 𝑦 ∈ {+1 (ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠), −1(𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠)}    (2) 

Finally, the predicted label for 𝑋𝑖 is defined as the majority labels of 𝜃𝑘(𝑋𝑖) using Equation 3. 

𝐿(𝑋𝑖) = {
+1 ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑓 |𝐴+1| ≥ |𝐴−1|

−1 𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑓 |𝐴+1| < |𝐴−1|
      (3) 

Where 𝐴+1 is the set of the neighbor data points labeled as +1 (high stress), and 𝐴−1 is set of the 

neighbor data points labeled as -1 (low stress). In this research, the performance of k-NN algorithm 

was optimized by selecting the smallest k (k=100) given the highest prediction accuracy. Euclidean 

distance metric was chosen to measure the distance between unlabeled target data points 𝑋𝑖 and 

labeled training data points 𝑍𝑗. 

4.3.4.2 Gaussian Discriminant Analysis (GDA) 

GDA is a generative machine learning method that predicts the unlabeled data by modeling a 

Bernoulli probability for two classes of data (-1 indicating low stress and +1 shows high stress) 

using Equations 4 and 5. 

𝑃(𝑥|𝑦 = −1) = 𝑁(𝜇−1, Σ) =
1

(2𝜋)
𝑛
2(|Σ|)

1
2

 exp (
1

2
(𝑥 − 𝜇−1)𝑇Σ−1(𝑥 − 𝜇−1))       (4) 

𝑃(𝑥|𝑦 = +1) = 𝑁(𝜇+1, Σ) =
1

(2𝜋)
𝑛
2(|Σ|)

1
2

 exp (
1

2
(𝑥 − 𝜇+1)𝑇Σ−1(𝑥 − 𝜇+1))       (5)  

where 𝑥𝑖 is training data points and 𝑦𝑖 is the labels, 𝜇−1 𝑎𝑛𝑑 𝜇+1 are different classes mean 

values, and Σ is the covariance of 𝑁(𝜇, Σ). GDA expresses the joint likelihood of a set of data 𝑖 =

1,2, … , 𝑛 using Equation 6. 

𝑙(ɸ, 𝜇−1, 𝜇+1, Σ) = ∏ 𝑃(𝑛
𝑖=1 𝑥𝑖 , 𝑦𝑖) =  ∏ 𝑃(𝑛

𝑖=1 𝑥𝑖|𝑦𝑖)𝑃(𝑦𝑖)                                (6) 

where 𝑥𝑖 is the features for ith data point and 𝑦𝑖 represents data point class and ɸ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 is the 

parameter of Bernoulli distribution. Finally, the predicted label for 𝑋𝑖 defined as the maximize 

conditional probability of labels given data point x using Equation 7. 
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𝐿(𝑋𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=1,…,𝑚𝑃(𝑦|𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥 (
𝑃(𝑥|𝑦)𝑝(𝑦)

𝑝(𝑥)
) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃(𝑥|𝑦)𝑝(𝑦)) ==

{
+1 ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑓 𝑃(𝑦 = 1|𝑥) > 𝑃(𝑦 = −1|𝑥)

−1 𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠 𝑖𝑓 𝑃(𝑦 = 1|𝑥) < 𝑃(𝑦 = −1|𝑥)
                                                        (7) 

4.3.4.3 Support vector machine (SVM) 

SVM is a supervised learning method frequently used in machine learning and data mining (Burges 

1998). SVM has been introduced as an appropriate classifier for physiology data class actions (Liu 

et al. 2005). SVM creates hyperplanes that separate data points of a binary classification problem. 

SVM applies an iterative learning process to converge into an optimal hyperplane that maximizes 

the margin between data points of two classes by minimizing following objective function. 

min
𝑤,𝑏,𝜉

1

2
||𝑤||2+

𝐶

𝑛
∑ 𝜉𝑛

𝑖=1
𝑖

   𝑓𝑜𝑟 𝑖 = 1, … , 𝑁                                  (8) 

where 𝐶 > 0 is a user specified tuning parameter, and n is the number of training data points. In 

linear SVM, the separating hyperplane ℋ   is defined as ℋ = 𝑊𝑇𝑋 =  {𝑥| < 𝑤, 𝑥 > +𝑏 = 0} 

where w is a normal vector and 𝑤 ∈ 𝑅𝑚, 𝑏 ∈ 𝑅 and <.,.> denoting the inner product. Linear-SVM 

solve the objective function (Equation 8) by considering following constrains [𝑦𝑖(< 𝑤, 𝑥 >

+𝑏) ≥ 1 − 𝜉𝑖  , 𝑖 = 1, … , 𝑛 , 𝜉𝑖 ≥ 0].    

If the data points are not separable using linear SVM, a non-linear SVM employs a transfer 

function ɸ(𝑋), which maps the data point 𝑥𝑖 of data space to a feature space H where the separable 

hyperplane can be defined. Non linear-SVM uses a mapping function ɸ(𝑋)  to create a m-

dimensional feature space from a n-dimensional input data, in which m is greater than n. In other 

words, SVM maps data into a richer feature space, which allows for a definition of the hyperplane 

that separates the data points that are not easily separable in the input data dimension. Non-linear 

SVM solves the objective function (Equation 8) by considering the following constraints 

[s.t𝑦𝑖(∑ 𝑤𝑖
𝑚
𝑗=1 ɸ𝑗(𝑋𝑖) + 𝑤0) ≥ 1 − 𝜉𝑖, 𝑖 = 1, … , 𝑛, 𝜉𝑖 ≥ 0], where 𝑦𝑖 represent class labels, w is 
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the weigh vector, ɸ(𝑋𝑖)  is the mapping function, 𝜉𝑖  is a nonnegative slack variable that 

generalized the classifier with soft margins, 𝑤0 is constant that captures offset of data points, and 

N is training data points number. 

In this chapter, I examine both linear and non-linear SVMs. Three different mapping 

functions, including cubic polynomial: 𝐾(𝑥𝑖, 𝑥𝑗) =  (1 + 𝑥𝑖
𝑇𝑥𝑗)3 , quadratic polynomial: 

𝐾(𝑥𝑖, 𝑥𝑗) =  (1 + 𝑥𝑖
𝑇𝑥𝑗)4, and Gaussian radial basis function: 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (

−‖𝑥𝑖−𝑥𝑖‖2

2𝜎2
), were 

selected for non-linear SVM. After determining ℋ  using Equation 8 by selecting appropriate 

mapping function, unlabeled data class will be decided using decision function.  

𝐿(𝑥𝑖) = 𝑠𝑖𝑔𝑛 (𝑊𝑇ɸ(𝑥𝑖)) = {
+1 ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 
−1 𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠

                               (9) 

4.4 Field Construction Workers’ EEG Data Acquisition 

To examine the performance of the developed field stress recognition procedure, I collected EEG 

signals from three real construction sites: an office building renovation site in Detroit, Michigan 

(collected on March 18–25, 2016); a hospital renovation site in Gary, Indiana (obtained on 

February 22, 2017); and one off-site HVAC-sheet metal fabrication shop in Wixom, Michigan 

(collected on March 28–April 4, 2016) using an off-the-shelf wearable EEG device. The data 

collection protocol was approved by the University of Michigan Institutional Review Board (IRB 

Approval no. HUM00102068). 

4.4.1 Subjects and data acquisition process  

EEG signals were obtained from 11 male workers. Subjects reported no history of epilepsy, 

learning disabilities, and mental disorders. Seven subjects working at on-site construction sites 

were asked to perform the same repetitive tasks in three different conditions with varying levels 

of operating hazards (i.e., working on the ground, at the top of a ladder, and in a confined space), 
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as shown in A of Figure 4.3. Four subjects working in an off-site fabrication shop were asked to 

perform their daily tasks at different times with a varied number of working hours after resting 

(i.e., right after, and one or two hours after the scheduled resting time), which could yield different 

stress levels, as shown in B of Figure 4.3. I’ previous study showed that workers feel more negative 

emotions while working at the top of a ladder/in a confined space and continuous working without 

taking an enough break than working on the ground and working after having enough break time 

(Hwang et al. 2018).  

Using an off-the-shelf wearable EEG device (e.g., Emotiv EPOC+ that this study used as 

denoted by C in Figure 4.3), workers’ brain waves from 14 channels (D in Figure 4.3) were 

captured. Data was with a rate of 128 Hz deliverable. The data-collecting resolution was set at 14 

bits with the connectivity at a 2.4 GHz band and a dynamic range of 8,400 µV (pp). Data collection 

was approved by the University of Michigan’s Institutional Review Board. Before starting the data 

collection sessions, subjects were informed of the purpose of this study and provided with a 

comprehensive explanation of the data collection process. 

 



120 

 

 

Figure 4.3 EEG data collection in-field; (a) working in a construction site with different work 

conditions; (b) working in an off-site shop while subjects work different amounts of working hours; 

(c) wearable EEG headset (Emotiv EPOC+); (d) location of EEG electrodes 

4.4.2 Data labeling 

In order to select the appropriate labels for data (i.e., low stress and high stress), I selected two job 

site stressors: working hazards and tiredness. Working in hazardous conditions (e.g., working at 

the top of a ladder and working in a confined space) and feelings of tiredness over time (e.g., 

continuous work without taking a break time) adversely affects workers’ stress levels (Berger 1996; 

Leung et al. 2016; Mignonac and Herrbach 2004). These tasks were labeled as the tasks with 

B

C

D

A
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higher-level stress. On the other hand, working on the ground level and working right after taking 

a short break time were labeled as low stress tasks. 

In addition to these assumptions, I screened subjects’ stress by measuring their cortisol 

levels to confirm these assumptions. To screen the data and select the most appropriate datasets to 

train and test the field stress recognition procedure, I measured subjects’ cortisol levels obtained 

from their saliva samples after each session. A higher cortisol level indicates a higher stress level 

(Levine et al. 2007). Out of 11 subjects, we selected 7 who had significantly higher cortisol levels 

while working in hazardous conditions and working in a row without resting. Table 4.2 shows 

demographic characteristics of the selected seven subjects. Table 4.3 summarized the cortisol level, 

data size, and assigned labels to different datasets. One notable point is that there is not a significant 

change in the cortisol level of Subject 2, who works in a shop, while working right after the rest 

(cortisol level is 0.08 µg/dL) and 1 hour after the rest (cortisol level is 0.10 µg/dL). However, this 

subject asked to stop the experiment because of the high occupational stress this subject perceived 

after 1 hour of the break time, so that we assigned a high stress label for this data.  

Table 4.2 Subjects sample information (n=7). 

Statistical 

Parameters 

Age 

(years) 

Height 

(ft.-in.) 

Weight 

(lb) 

Working 

Experience 

(years) 

Mean 37.9 5 10 202.3 16.4 

SD 8.8 0 4 30.4 9.8 

Min value 26.0 5 3 151.0 3.0 

Max value 50.0 6 3 235.0 31.0 
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Table 4.3 Overview of participants’ data size, cortisol level, and label. 

Site Subject Session# 
Work 

Conditions 

Cortisol 

[µg/dL] 

(%CV*) 

Data size 
Label 

[128 data/second] 

On-site 

1 

1 At ground 0.21 (8.00%) 76800 Low Stress 

2 

At the top of a 

ladder and in 

confined space 

0.4 (7.48%) 76800 High Stress 

2 

1 At ground 0.16 (2.77%) 76800 Low Stress 

2 

At the top of a 

ladder and in 

confined space 

0.36 (4.12%) 76800 High Stress 

3 

1 At ground 0.10 (10.81%) 76800 Low Stress 

2 

At the top of a 

ladder and in 

confined space 

0.16 (10.28%) 76800 High Stress 

Off-site 

(Shop) 
 

1 
1 Right after rest 0.30 (1.72%) 61440 Low Stress 

2 1 hour after rest 0.40 (3.32%) 61440 High Stress 

2 
1 Right after rest 0.08 (11.09%) 61440 Low Stress 

2 1 hour after rest 0.10 (5.59%) 61440 High Stress 

3 
1 Right after rest 0.11 (0.96%) 61440 Low Stress 

2 2 hours after rest 0.28 (7.30%) 61440 High Stress 

4 
1 Right after rest 0.39 (0.93%) 61440 Low Stress 

2 2 hours after rest 0.67 (2.05%) 61440 High Stress 
Note: *CV= Percentage coefficient of variation of cortisol levels, CV lower than 15% is known as a reliable cortisol 

measurement. 

 

4.5 Results 

I applied the proposed field stress recognition procedure on the data collected from real 

construction sites after randomly dividing 90% of the data into training and 10% into testing data. 

Table 4.4 shows the classification accuracies among all the tested methods based on the fixed and 

sliding window approaches. The classification accuracies were calculated as the proportion of the 

correctly predicted results (both true high stress and low stress) among the total number of the 

tested data point. Gaussian SVM, which used the fixed window approach to extract the features as 
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learning inputs, showed the highest prediction accuracy of 80.32% among the tested supervised 

learning methods.  

Table 4.4 Classification accuracies of each tested algorithm. 

Algorithm 
Classification accuracy (%) 

Fixed Window Sliding Window 

k-NN 65.80 61.12 

GDA 74.92 69.98 

Linear SVM 75.9 69.54 

Cubic SVM 77.71 65.25 

Quadratic SVM 69.62 63.24 

Gaussian SVM 80.32 72.15 

 

A comparison of different windowing methods revealed that fixed window size showed 

better prediction accuracy among all the classification algorithms. Visualization of the trained 

SVMs provides us with intuition about the classification’s performance. Figure 4.4 visualizes the 

decision boundaries and the performance of various classification methods of a randomly selected 

subset of data after applying a dimension reduction algorithm (principal component analysis 

method (PCA)) to reduce the dimensions of the feature vector to two dimensions. The first PCA 

component captures the highest amount of the variance in the feature vector. The second PCA 

component is orthogonal to the first principal component to capture the variance in the feature 

vector that is not captured by the first principal component. We normalized all the features before 

applying the PCA. Therefore, the results are all dimensionless. In Figure 4.4, the light-gray 

background shows the area that is predicted by the classifier to be low-stress and the dark-gray 

background shows the area predicted to be high-stress. Gray triangle and white circle points show 

the actual labels of the data points. As shown in Figure 4.4, Gaussian SVM shows the best 
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distinction between low and high stress data points and better prediction performance compared 

with other algorithms. 

 

Figure 4.4 Hyperplanes and decision boundaries by applying different classifications 
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4.6 Discussion 

The results show the capability of the proposed procedure in field recognition of construction 

workers’ stress while working at real construction sites using EEG signals recorded from a 

wearable EEG device. The results of the proposed procedure are competitive with other stress 

recognition algorithms with a binary labeling setting in the clinical domain that are using a wired-

EEG device in the controlled environment while their subjects were in stationary conditions with 

the minimal body movements: 85.60%  in (Al-Shargie et al. 2017); 87.30% in (Al-shargie et al. 

2015); 80.43% in (Jie et al. 2014); and 77.90% in (Shen et al. 2007). For instance, the researchers 

in (Al-shargie et al. 2015) recorded the brain waves of 12 healthy male subjects using an exquisite 

and wired EEG device. They recognized subjects’ stress while subjects were under the stress of 

solving arithmetic problems. Subjects were asked to minimize their head movement during the 

data collection to minimize EEG signal artifacts. They reached the average classification accuracy 

of 87.30% by applying a SVM. Compared with the existing stress recognition procedures, the 

proposed stress recognition in this research provides a promising result considering that acquiring 

and processing the EEG signal was challenging from significantly moving subjects during the field 

data collection using a wearable EEG.  

Among all tested classifiers used in the field stress recognition procedure, SVM showed 

higher prediction accuracy; this can be related to the high performance of SVM to deal with 

overfitting by tolerating some misclassifications on the training dataset. In recognizing stress using 

EEG signals, due to the number of EEG channels and the complexity of EEG signals, I need to 

have a large number of features to recognize stress appropriately. As such, the increasing number 

of features increases the probability of overfitting in training process. SVMs algorithms tend to be 

resistant to the overfitting problem. This is because SVM is optimizing its parameters over the 
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training process to prevent the overfitting problem (Cawley and Talbot 2010). To decrease the 

probability of overfitting, SVM derives a generalization error bound, which depends on the SVM 

margin and is independent of the outliers and the dimensionality of feature space. As a result, it is 

expected that SVM will demonstrate reliability when dealing with large dimensions feature space 

data such as EEG signals.  

Conversely, k-NN showed the lowest prediction accuracy among all the selected methods; 

this might be related to the inductive bias of k-NN method. k-NN inductive bias corresponds to the 

underlying assumption of k-NN method that classifies each instance data point i as the class label 

of the majority of other k neighboring instances by measuring Euclidean distance. This causes a 

practical problem while dealing with EEG signals that require measuring a large number of signal 

features among different channels to represent signals patterns adequately. k-NN algorithm 

measures the distance between instances based on all features of the instance and considers the 

same weight for all the features; this becomes problematic for some data windows that only a small 

subset of the entire feature set is the discriminative features. Also, the k-NN performance is 

sensitive to noisy features. Although we removed a large number of signal artifacts, however, it is 

not possible to remove all the artifacts from EEG recording and EEG signals usually known as 

noisy signals, and there are some sources of noise that are unavoidable. 

Upon further investigation of the misclassified labels, I noticed that 71% of the misplaced 

labels occurred among low-stress level detection. In other words, the classification accuracy is 

consistently better for high-stress detection rather than low-stress detection. This can be explained 

by the better performance of selected stressors to elicit high stress (e.g., working at the top of a 

ladder in a confined space) comparing with the stressor that has been chosen to cause low-stress 

conditions (e.g., working on the ground). 
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One unanticipated finding was that the applying sliding windowing method to extract EEG 

features led to a lower stress recognition prediction accuracy compared to fixed windowing 

approach among all the selected method. Applying the sliding windowing approach to extract EEG 

features increases the size of the training set and may smooth specific features, as well as provide 

consistent feature mapping inputs between training and testing steps. On the other hand, it may 

increase the computational cost and time as well as decrease the testing accuracy as the results of 

overfitting during the training process. Also, considering that sequential EEG signals have 

different levels, applying this technique will increase the likelihood of mislabeling EEG signals. 

Several limitations still exist and need to be addressed in the future research. Different 

subjects show different brain wave patterns while facing the same stressors. These various patterns 

among different subjects adversely affect the performance of the proposed stress recognition 

procedure due to the static nature of the supervised learning algorithms used in the proposed 

procedure. To further improve the stress recognition accuracy, I suggest applying multi-

subjects/tasks learning algorithms, which optimize classifier parameters for different tasks and 

subjects. 

In addition, the recognition of varying stress levels will help to enhance the suggested 

procedure in this research. Although the Gaussian SVM classifier proposed in this research 

separated data into two classes (low stress and high stress), recognition of more classes can be 

done in future research by plugging in voting algorithms to the proposed procedure in this research 

(Hsu and Lin 2002).  

4.7 Conclusions 

This study developed and examined a field procedure to recognize construction worker’s stress at 

real construction sites by applying supervised learning algorithms stress using a broad range of 
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EEG signal features. To select the best classifier in this procedure, this study examined the 

performance of several supervised learning algorithms in recognizing worker’s stress from EEG 

signals collected at the real construction site using an off-the-shelf wearable EEG device. Notably, 

based on the results garnered from seven workers and among all tested classifiers, Gaussian SVM, 

which relies on a fixed windowing approach has the highest stress recognition accuracy. This 

accuracy of recognizing field workers’ stress level in a real construction site is very promising 

given the competitive accuracy of stress recognition in clinical domains where extricate and wired 

EEG devices were used and stressors were controlled in a laboratory setting. The proposed field 

stress recognition procedure can be used as a mean toward affordable and continuous monitoring 

of workers stress under various stressors in construction sites, which can contribute to workers’ 

stress management. It is noteworthy to mention that despite the large size of datasets (952,320 data 

points in total) and applying a validation step (10-fold cross-validation), the data was collected 

from seven subjects. To confirm the performance of the proposed framework in recognizing the 

stress level of workers with various trades, it is recommended that future studies further examine 

the performance of the proposed framework using a bigger sample size collected from more 

workers. 
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Chapter 5: 

A Continuously Updated, Computationally Efficient, Stress-Recognition 

Framework Using EEG by Applying Online, Multi-Task Learning Algorithms 

(OMTL) 4 

5.1 Introduction 

Occupational stress is defined as the harmful physical and emotional responses that happen when 

the requirements of the job are greater than workers’ capacity (Sauter et al. 1999). Numerous 

statistics and studies show that occupational stress has become the major source of stress in the U. 

S. (Sauter et al. 1999), in which 32% of workers reported extreme stress at work. Excessive job 

stress can have a detrimental impact on workers’ performance (e.g., productivity, safety, health 

and well-being) (Leung et al. 2008). In addition, recognizing workers’ stress has been known as 

one of the main challenges in the area of human factor research (Aricò et al. 2017a; Graziani et al. 

2016). 

4 This chapter is adapted from Jebelli, H., Khalili, M, and Lee, S. (2018) “A Continuously Updated, 

Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by 

Applying Online Multi-Task Learning Algorithms (OMTL).” IEEE journal of biomedical and health 

informatics, Sep (18). 



136 

 

A number of studies have been carried out to assess individuals’ stress by employing 

subjective assessment of stress (e.g., stress questionnaires (Bashir and Ismail Ramay 2010; 

Kawakami et al. 1995; Mucci et al. 2015). Though these studies were successful in capturing signs 

of stress over a long period, they interfere with time-sensitive tasks since workers have to stop 

their ongoing work to answer questionnaires. Alternatively, when workers are asked to complete 

the questionnaires after the work is completed, the method of capture is subject to high biases since 

they rely on the reconstruction of feelings in the past. (Leung et al. 2016; Morris 1995; Tsutsumi 

et al. 2018). 

Several neuroimaging approaches, e.g., magnetic resonance imaging (MRI), functional MRI 

(fMRI), positron-emission tomography (PET), single-photon-emission computed tomography 

(SPECT), and functional near-infrared spectroscopy (fNIRS), have been used to determine the 

effects of psychological stress on neural activity of the brain (Al-Shargie et al. 2017; Bremner et 

al. 1995, 2003; Rauch et al. 2000; Wang et al. 2005). Despite the potential of these methods to 

identify individuals who are at risk to develop stress-related disorders (Dedovic et al. 2009), these 

methods are not designed to assess individual’s stress continuously. 

A promising alternative to measuring stress is to utilize physiological responses. When 

individuals experience stressful conditions, the autonomic nervous system is activated, thus 

causing an imbalance between the sympathetic and parasympathetic systems. As such, 

physiological responses that are related to the nervous systems, such as electroencephalography 

(EEG), electrodermal activity (EDA), and photoplethysmograph (PPG), could be indicative of 

workers’ stress.  Among different physiological responses, electroencephalography (EEG), which 

is a method to collect electrical activity of the brain along the scalp and transmit them to an 

amplifier, can provide rich and reliable information on the factors that cause stress. Electrical 
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activity of the central nervous system elicited by stressors can be characterized by the EEG signals 

(Hou et al. 2015b; Matthews 2000; Sharma and Gedeon 2012). Particularly, continuous recording 

of EEG signals on a near real-time basis can greatly contribute to an understanding of field workers’ 

stress patterns because EEG signals are rapidly (millisecond by millisecond) responding to many 

different stressors (Ranabir and Reetu 2011). Therefore, EEG can be very useful in studying field 

stressors, developing online physiological monitoring systems, and passive brain-computer 

interfaces in the field (Aricò et al. 2017b; Ortiz-Rosario and Adeli 2013) compared with other 

physiological responses (e.g., PPG, EDA, blood pressure-volume) that have a time lag (Jebelli et 

al. 2018a). 

Previous EEG studies attempted to assess individuals’ stress by studying the changes in the 

patterns of their brainwaves while individuals were exposed to various stressors, mostly when 

subjects were in a stationary position in a controlled laboratory (Al-shargie et al. 2015; Al-Shargie 

et al. 2017; Jie et al. 2014; Shen et al. 2008). Such conditions might be problematic due to the 

difficulty of simulating all the actual real job sites stressors in a controlled environment when it 

comes to stress in the field. Also, the current stress recognition frameworks define one single 

classifier to recognize individuals’ brainwave patterns under various stressors using batch-learning 

algorithms (e.g., supervised learning methods). Applying one single classifier to recognize 

different subjects’ brainwaves increases the prediction error due to the fact that the same stressor 

may not have the same effect on different individuals’ brainwaves. Another limitation of current 

stress recognition algorithms is that the prediction usually happens in an offline setting, which 

requires storing all the data to update the classifier. This will dramatically increase computational 

time and memory usage if someone wants to update the classifier once new data arrives.  Therefore, 
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there is a limitation in the efficient recognition of multiple subjects’ stress, particularly while they 

are facing various stressors at actual job sites. 

 To address these gaps, this study proposes a new stress recognition framework featured 

with continuous updates of stress classifier, which can be gradually extended to stress recognition 

for new stressful situations that are beyond the range of pre-defined brainwave patterns for stress. 

In addition, the framework can train a specific classifier for each subject and consider the 

interaction between different classifiers to train a new EEG dataset.  As a result, it is expected that 

the stress recognition accuracy and precision would be higher as compared to previous EEG-based 

stress recognition frameworks that considered a classifier for the entire dataset (Al-shargie et al. 

2015; Al-Shargie et al. 2017; Jebelli et al. 2018b; c; Jie et al. 2014; Shen et al. 2007). Furthermore, 

since the proposed framework recognizes stress in near real-time it may be advantageous to be 

used on actual job sites, not only in a controlled environment. Also, there is no need to store the 

previous data and update the classifier on the entire dataset. This will significantly lower the 

computational time and memory usage compared with previous batch learning based stress 

recognition frameworks. The proposed framework applies Online Multi-Task Learning (OMTL) 

algorithms to recognize the pattern of subjects’ brainwaves under stressful conditions in near real-

time using a broad range of EEG signal features. The proposed framework optimizes OMTL 

parameters (e.g., learning rate and epoch) based on EEG data. Therefore, OMTL can make a new 

decision to identify stressful situations when new EEG dataset from different subjects or the same 

subject under different stressor is available.  

 To examine the performance and to show the versatility of the proposed framework, I 

applied this framework to two different datasets. The first dataset is a Dataset for Emotion Analysis 

Using Physiological Signals (DEAP) (Koelstra et al. 2012). DEAP recorded EEG signals from 32 
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subjects in a controlled laboratory environment using a traditional wired EEG device. The second 

dataset is collected by me from real construction workers using a wearable EEG headset while 

workers were working under different conditions and facing various stressors on real construction 

sites.  It is expected that this research will help to not only assess individuals’ stress in near real-

time in the controlled environment, but also recognize workers’ stress while working on real job 

sites. 

5.2 EEG-based stress recognition 

Due to the rich information provided by EEG signals about the central nervous system activities, 

there is a considerable amount of attention to recognize individuals’ stress using EEG signals (Hou 

et al. 2015a; Liu and Sourina 2014). In order to recognize different brainwave patterns under 

various stressors, previous researchers extracted and calculated different EEG signal features in 

time and frequency domain (Blaiech et al. 2013; Frantzidis et al. 2008; Huang et al. 2012; 

Jirayucharoensak et al. 2014; Khosrowabadi et al. 2014; Liu et al. 2013; Oude Bos 2006).  The 

EEG signal features in these domains showed a high potential to distinguish different EEG signal 

patterns while individuals facing different stressors (Davidson et al. 1990; Li and Lu 2009; 

Louwerse and Hutchinson 2012; Xu and Plataniotis 2012). As a result, various time-domain signal 

analysis methods (Cherubino et al. 2016; Mehrkanoon et al. 2014) and different machine learning 

methods such as neural nets (Huang et al. 2012) and supervised learning algorithms (Hou et al. 

2015b; Jebelli et al. 2018b; c; Khosrowabadi et al. 2014; Li and Lu 2009) have been applied to 

automatically recognize individuals’ stress. Some studies found that the use of neuroanatomical 

observations, such as frontal area asymmetry metrics (Allen and Reznik 2015; Goodman et al. 

2013; Lewis et al. 2007; Winkler et al. 2010), improves the stress recognition accuracy in addition 

to the time and frequency domain features (Petrantonakis and Hadjileontiadis 2012).  However, 
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most of the current research on EEG-based stress recognition is based on the EEG recorded from 

wired EEG devices while subjects are in the stationary postures. So, the performance of these 

methods has not been examined to recognize workers’ stress in actual job sites, where EEG should 

be recorded using a wearable EEG headset in which the quality of acquired EEG is lower compared 

to wire EEG devices because of the lower data recording rate and less dense electrode arrays of 

EEG device. Also, virtual stimuli (e.g., watching a different type of musical videos) were used as 

the stressors to induce different levels of stress in the controlled environment. Therefore, the 

performance of these frameworks remains unclear while dealing with real stressors at actual job 

sites. 

Recently, a few researchers have attempted to study the performance of wearable EEG 

device to assess workers’ mental status (e.g., emotions, stress, and mental tasks) (Chen et al. 2015, 

2016; Hwang et al. 2018; Jebelli et al. 2017a, 2018b; d). Their research efforts showed the 

capability of time domain, frequency domain, and related neuroanatomical features (e.g., valence 

and arousal) in measuring workers’ emotions and stress while working in different conditions. 

Chapter 2 examined the capability of a wearable EEG headset to assess valence and arousal, two 

important neuroanatomical related features. These studies reinforced the feasibility of a few EEG-

based features (e.g., EEG power, valence, and arousal levels) to distinguish various brain wave 

patterns while workers’ worker in different conditions (e.g., different work environment). Use of 

these features helps to better understand workers’ mental status such as attention levels, emotional 

states, and mental workload. However, they are not enough to find the complex patterns of the 

brain waves while workers expose to different stressors. To this end, I’ earlier work (Jebelli et al. 

2018b) developed a framework to recognize construction workers’ stress using an off-the-shelf 

wearable EEG device by applying signal processing techniques (e.g., filtering methods and 
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independent component analysis) and various supervised learning algorithms (e.g., k-Nearest 

Neighbors, Gaussian Discriminant Analysis, and Support Vector Machine). Although this 

framework resulted in a high-stress recognition prediction accuracy as good as 81%, the prediction 

is in an offline setting. Monitoring workers’ stress in the offline setting can provide worthwhile 

information regarding detecting stressors in the job sites. However, this may not be capable of 

identifying workers’ stresses under numerous stressful situations in a naturalistic environment. In 

other words, it is simply impossible to identify stress if the EEG patterns in a certain stress have 

not been observed and learned. In addition, this may not be used to monitor workers’ stress in a 

near real-time basis. Supervised learning classification algorithms are not suitable to be used in 

near real-time due to high computational cost and time of these methods in an online setting.  

5.3 Online Multi-Task Learning (OMTL) 

Batch-learning techniques (e.g., k-Nearest Neighbors, Gaussian Discriminant Analysis, and 

Support Vector Machine) train a classifier using the entire dataset considering data labels 

regardless of the origin of data points. Unlike these techniques where a single classifier is defined 

over the whole dataset, Online Multi-Task Learning (OMTL)  updates the optimal classifiers when 

new data is arriving (Saha et al. 2011). In OMTL, different data sources (e.g., different subjects 

and tasks) were named as tasks.  OMTL simultaneously learns the task interactions and the 

classification/regression parameters among different data points across various tasks. OMTL 

jointly learns the related tasks and achieves generalization over all tasks (Heskes 2000). The main 

advantages of OMTL compared with the batch learning is that the classification can be learned 

from different tasks, not only the input data points in an online setting (Pratt and Jennings 1996). 

By sharing common feature settings like parameters of Gaussian processes (Lawrence and Platt 

2004), prior distribution of Bayesian models (Yu et al. 2002, 2004), or neural structures (Baxter 
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and others 2000), OMTL reduces the risk of overfitting by providing a generalized model of a 

group of similar tasks.  

Since the performance of the OMTL depends highly on the similarity between tasks, it is 

essential to define a proper metric for measuring task relationships. Several methods and 

algorithms have been proposed to measure the task relationships. A task-clustering algorithm that 

applied K-Nearest Neighbors was introduced by (Thrun and O’Sullivan 1996). In (Bakker and 

Heskes 2003), researchers applied a common prior density function, forming a mixture distribution 

in the hierarchical model. In (Cavallanti et al. 2010), researchers have used K perceptrons, also 

known as K binary classifiers and Cav-OMTL, to learn K tasks as a fixed-task relational matrix. 

In (Dekel et al. 2007), multi-task problems were solved by applying a global loss function across 

tasks, compared to the learning options where the presentation of relatedness is restrictive and 

inflexible. In (Saha et al. 2011), researchers proposed an OMTL algorithm to learn the 

relationships adaptively from real-time streaming datasets and tested this approach on a spam 

emails classification dataset. In (Saha et al. 2011), researchers applied linear classifiers to the data 

from K different tasks to learn K weight vectors and a task-relatedness matrix at the same time. 

The learning of task relationships was framed as a Bregman divergence-minimization problem of 

a positive definite matrix. They selected the most informative examples and learned the relatedness 

matrix adaptively. Their mechanism of OMTL, while using an adaptive task relationship, 

outperformed existing online multitask learning algorithms such as Cav-OMTL (Cavallanti et al. 

2010) in both flexibility and accuracy.  

Considering multitask aspect of OMTL, it is expected that OMTL performs better on EEG-

based stress recognition compared to batch learning algorithms. OMTL considers the interaction 

between different data that comes from different subjects, which helps to train a more efficient 
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classifier for each subject and therefore, leads to better overall prediction accuracy. Besides, the 

online training and prediction aspect of OMTL makes the EEG-based stress recognition possible 

in near real-time. This will expand the application of the stress recognition outside the controlled 

lab environment, where the reconstruction of all actual job stressors is not possible. To examine 

the performance of OMTL algorithms, I adjust their parameter (e.g., Epoch) on the EEG datasets 

and apply them to recognize individuals’ stress. 

5.4 Method and Framework Development 

I propose an adaptive stress recognition framework to capture the brainwave patterns of different 

subjects while working under various stressors in near real-time. The proposed framework predicts 

the label of new upcoming data in an online setting to improve stress recognition accuracy in case 

of new stressful situations. As the first step, the framework applies different artifacts removal 

methods to remove EEG signal artifacts. Then, a broad range of EEG signals features were 

extracted to examine the EEG signal patterns in various conditions. As the last step, the Epoch 

parameter of different OMTL algorithms were adjusted based on EEG datasets and these 

algorithms were applied to classify individuals’ stress. Figure 5.1 shows the overall framework to 

assess different workers stress while working in different conditions in near real-time. Proposed 

framework in this research was modeled using a custom developed software in MATLAB. A 

MATLAB version 8.1.0.604 program was used for all of the computations. 
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Figure 5.1 An overview of real-time stress recognition framework. 

5.4.1 EEG Signal Artifacts Removal 

EEG records the electrical activity of the brain at the scalp, and ranges from 20 to 200 µV (Novák 

et al. 2004). EEG is highly subject to different sources and forms of noise (Urigüen and Garcia-

Zapirain 2015). EEG contains signal noises and artifacts mostly from two sources: intrinsic signal 

artifacts and extrinsic signal artifacts. The intrinsic signal artifact is defined as the signal noise that 

comes from the body itself such as eye blinking, vertical eye movements, and facial muscle 

movements. On the other hand, the extrinsic signal artifact comes from external factors (e.g., drift 

in the electrodes, body movement artifacts, and environment noises) or the device itself (e.g., 

wire’s line noise). Before analyzing EEG signals, it is necessary to remove signal artifacts. This 

chapter is not intended to offer a comprehensive explanation of the EEG preprocessing and 

artifacts removal process. In this chapter, I applied the EEG signal processing framework 
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explained in chapter 2. Below is a summary of artifacts removal procedures. Proposed EEG 

artifacts removal procedure is capable of reducing both intrinsic (e.g., eye movement, eye blinking, 

and facial muscle noises) and extrinsic (e.g., device wiring artifacts, electrode popping, movement 

artifacts, and environmental noise) EEG signal artifacts. First, to remove extrinsic signal artifacts, 

a bandpass filter (higher cutoff frequency of 64 Hz and a lower cutoff of 0.5 Hz) was applied to 

reduce the artifacts that cause slow and rapid changes in the EEG. Also, a notch filter was applied 

to filter out ambient electrodes’ wire noise at 60 Hz.  To reduce intrinsic signal artifacts, an 

independent component analysis (ICA) was applied to decompose raw EEG signals into different 

components and therefore identify the artifactual components (e.g., eye movement, blinking, and 

muscle artifacts). To calculate different components in EEG signals the Extended Infomax method 

was applied to decompose the original EEG recording across 14 different electrodes into 14 

components (Delorme and Makeig 2004; Lee 1998). Then, three components that represented the 

most common intrinsic signal artifacts (i.e., eye movement, eye blinking, and facial muscle noises) 

were removed. More detailed information about the artifacts removal process in the field is 

provided in Chapter 2 (Jebelli et al. 2017b). A custom developed software based on the EEGLAB 

toolbox (Delorme and Makeig 2004) was used for ICA analysis. Figure 5.2 presents the raw EEG 

signals across 14 different electrodes before and after applying this EEG signal processing 

framework (Jebelli et al. 2017b).  
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Figure 5.2 Artifacts removal: (a) Raw EEG, and; (b) Filtered EEG. 

5.4.2 Feature Extraction and Selection 

In order to characterize the EEG signal patterns while subjects’ were faced with different stressors, 

extracting the relevant features is required. An EEG feature is a measurable characteristic of the 

EEG signals in a specific number of data points called a window. To determine the optimal window 

size to train and test the classifiers, I varied the window size between 0.5 (64 data points) and 10 

seconds (1280 data points) by 0.5-second step (64 data points). The window size of 1-second 

(equal to 128 data points) was determined as the optimal window size and was selected as the 

window size to extract appropriate features in this chapter. This chapter attempts to calculate three 

categories of EEG features: time domain features, frequency domain features, and 

A
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neuroanatomical features. After extracting a broad range of EEG signal features in these three 

categories, the framework applies two feature selection algorithms (i.e., a correlation based method 

and a wrapper method (Dash and Liu 1997)) to select the most relevant features.  

5.4.2.1 Time Domain Features 

EEG recording devices capture the original EEG signals as time-series data in a time domain. Time 

domain features are amplitude related (Teplan 2002). Time domain features provide rich temporal 

details on the EEG signals. I previously explored a broad range of EEG signal features in the time 

domain in order to determine the most appropriate time domain features to recognize individuals’ 

stress (Jebelli et al. 2018b). According to Chapter 4, the selected features in the time domain are 

as following: EEG signal mean amplitude value, standard deviation, peak, cumulative maximum, 

cumulative minimum, median amplitude value, smallest element in each window, moving median 

within each window, maximum to minimum difference, root mean square level, peak magnitude 

to RMS ratio, root sum of squares level, total zero cross number, kurtosis, peak location, and peak 

to peak are the features that were extracted and selected on time-series EEG signals among 

different channels to recognize subjects’ stress. 

5.4.2.2 Frequency Domain Features 

Frequency is the measure of the number of occurrence of an event in specified time. EEG is a non-

stationary signal and captures various events that take place at the same time. If the signal is 

represented only by its time domain feature, the different events that are occurring at the same time 

cannot be captured. In order to obtain information about these events, I considered frequency 

domain features as well.   Previous researchers have found individuals’ EEG signal   frequency 

domain features are significantly correlated with their stress level  (Hosseini and Khalilzadeh 2010; 

Khosrowabadi et al. 2011; Lim and Chia 2015). I’ earlier work (Jebelli et al. 2018b) examined a 
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wide range of EEG features in the frequency domain; the researchers found that frequency domain 

features are capable of distinguishing individuals’ brainwaves while working under different 

stressors. The selected frequency domain features and their computational procedure be explained 

as follows: 

1. Delta mean power: it is defined as the power of the EEG signal in the frequency 

domain in the interval [[0.5Hz,4Hz]] across different channels and can be calculated 

as in (1).  𝛿 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈ [0.5𝐻𝑧, 4𝐻𝑧])            (1) 

2. Theta mean power: it is defined as the power of the EEG signal in the frequency 

domain in the interval [[4Hz,7Hz]] across different channels and can be calculated 

as in (2).   𝜃 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈ [4𝐻𝑧, 8𝐻𝑧])        (2) 

3. Alpha mean power: it is defined as the power of the EEG signal in the frequency 

domain in the interval [[8Hz,13Hz]] across different channels and can be calculated 

as in (3).   𝛼 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈ [8𝐻𝑧, 13𝐻𝑧])       (3) 

4. Beta mean power: is defined as the power of the EEG signal in the frequency domain 

in the interval [[13Hz,30Hz]] across different channels and can be calculated as in 

(4).    𝛽 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈ [13𝐻𝑧, 30𝐻𝑧])                             (4) 

5. Median frequency power: is defined as the frequency power in which half of the 

signal power is distributed in the lower frequencies than this frequency across 

different channels and can be calculated as in (5). 𝑀𝐸𝐷𝐹 = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈

[0𝐻𝑧, 𝑀𝐸𝐷𝐹𝑗]) = 𝑝𝑜𝑤𝑒𝑟(𝐸𝐸𝐺, 𝑓 ∈ [𝑀𝐸𝐷𝐹, 64𝐻𝑧])                                     (5) 

5.4.2.3 Neuroanatomical Features: Frontal EEG Asymmetry 

In addition to time and frequency domain features, many individual-dependent emotion 

measurement algorithms found that frontal EEG asymmetry-based features were advantageous to 
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recognize individuals’ various emotions including stress (Goodman et al. 2013; Lewis et al. 2007; 

Liu and Sourina 2014; Winkler et al. 2010). Frontal EEG asymmetry (FEA) has been considered 

one of the most important neuroanatomical features that can represent individuals’ mental status 

(e.g., emotions, and stress) (Allen and Reznik 2015; Winkler et al. 2010). FEA measures the 

dissimilarity in EEG signal power between right and left electrodes located in the frontal area of 

the brain (Allen and Reznik 2015). Valence and arousal are two important parameters that are 

highly associated with an individual’s emotional states (Bradley and Lang 1994). Arousal refers 

to a physiological activity dimension, ranging from quiet to active mood (Russell 1980). Arousal 

is linked to the excitement level of individuals (Coan and Allen 2003). Valence refers to another 

physiological activity dimension orthogonal to arousal, ranging from misery to pleasant (Russell 

et al. 1989). Equations (6) and (7) are used to calculate the arousal and valence features based on 

EEG.  
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where α(i) and β(i) correspond to the power of alpha and beta frequency band obtained from i-th 

channel of the EEG signal. 

5.4.3 Near Real-Time Classification 

In order to recognize individuals’ stress in near real-time, this chapter examines the performance 

of several OMTL algorithms with an adaptive task relationship matrix as a means to predict 

workers’ stress at the job site in near real-time. I applied three OMTL algorithms, which allowed 

to train and update classifiers using the correlation of the tasks through the time in an online setting. 

To compare the performance of the suggested OMTL algorithms, I compared their performance 

with a traditional OMTL algorithm called Cav-OMTL. To compare the computational cost and 
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time, I also compared the suggested OMTL algorithms with a batch learning method in an online 

setting. In this chapter, K denotes the number of tasks (different subjects and different stressful 

situations), and 𝒘𝑖 is the weight vector of a classifier of task i.  OMTL algorithms first train a 

classifier i independently from other tasks. Then, OMTL attempts to discover the correlation 

between task i and other tasks, OMTL use the information from previously trained tasks to train a 

classifier for the new task j. OMTL aims to train classifiers of different tasks by considering their 

correlations (Xue et al. 2007). The correlation between different tasks defined by a matrix called 

as interaction matrix in this chapter. Table 5.1 shows different algorithms that were tested in this 

chapter. 

Table 5.1 Algorithms to recognize individual’s stress in the real-time 

Algorithms Classifier 
Interaction 

Matrix (IM) 

Batch learning SVM No IM 

OMTL with a 

Fixed Task Relationship 
Cav-OMTL Fix IM 

OMTL with Adaptive 

Task Relationship Matrix 

OMTL-Covariance Equation (10) 

OMTL-LogDet Equation (11) 

OMTL-Vonneumann Equation (12) 

5.4.3.1 Batch Learning Algorithm in the Online Setting 

To compare the performance of OMTL algorithm with offline machine learning algorithms, I 

applied a batch learning method in the online setting. Batch learning algorithms require access to 

a considerable amount of data points and labels (for a training process) to find the optimal classifier. 

Previous research efforts examined the performance of different batch learning algorithms to 

recognize individuals’ stress (Hou et al. 2015a; Shen et al. 2008; Trejo et al. 2015). Non-linear 

Support Vector Machine (SVM) demonstrated the best performance in recognizing individuals’ 

stress using their EEG signals comparing to other batch learning methods among a large number 

of batch learning algorithms (Jebelli et al. 2018b; c). SVM is an offline method for the binary 
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classification.  SVM estimates a hyperplane in a 𝑚-dimentional space for separating data points. 

If the data points are not linearly separable, non-linear SVM algorithm can be used for classifying 

data points.  SVM algorithm finds the weight vector ( 𝒘 ) of the optimal classifier using 

(𝒙1, 𝑦1), ⋯ , (𝒙𝑛, 𝑦𝑛) which are the available training data points from different subjects. After 

finding the optimal classifier parameter 𝒘, the estimated label of data point 𝒙 is given by (8). 

𝐿(𝒙) =  {
1 𝑖𝑓 𝒘𝑇𝒙 ≥ 0

−1 𝑖𝑓 𝒘𝑇𝒙 < 0
        (8) 

In this chapter, I applied a nonlinear-SVM with the Gaussian kernel in an online setting. 

The optimal values of kernel parameter (𝜎) and the regularization parameter of the SVM (𝐶) were 

determined by examining the changes of the cross-validation accuracy as a function of these 

parameters (𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝜎 = 5.2 and 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝐶 = 1.2). Table 5.2 shows the developed algorithm to 

apply SVM in the online setting. 

Table 5.2 Batch learning algorithm in an online setting 

Algorithm  

1. Initialize 𝒘 = 𝟎1×𝑚 and 𝑡 = 1, 𝑠 = 1 

2. Receive and estimate the label of 𝒙𝑡:  𝐿(𝒙𝑡) =  𝑆𝑖𝑔𝑛(𝒘𝑇𝒙𝑡) 

3. If true label 𝑦𝑡 is available receive 𝑦𝑡 and store 𝒙𝑡, 𝑦𝑡  

𝒛𝑠 ← 𝒙𝑡 

𝑙𝑠 ← 𝑦𝑡 

else 𝑡 = 𝑡 + 1 and go to 2 

4. Find optimal SVM classifier weight 𝒘𝑛𝑒𝑤 using (𝒛1, 𝑙1) ⋯ (𝒛𝑠, 𝑙𝑠) 

5. 𝑠 = 𝑠 + 1 and 𝒘 ← 𝒘𝑛𝑒𝑤 and go to 2 

6. 𝑡 = 𝑡 + 1 and go to 2 

5.4.3.2 Online Multi-Task Learning with a Fixed Task Relationship Matrix (Cav-OMTL) 

Cav-OMTL is a traditional Online Multitask Learning algorithm developed by researchers in 

(Cavallanti et al. 2010). Cav-OMTL showed high performance in classifying different tasks in an 

online setting (Cavallanti et al. 2010). Therefore, I chose Cav-OMTL as a baseline algorithm to 
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assess the performance of proposed OMTL algorithms in this framework. Table 5.3 summarizes 

Cav-OMTL updating process. In Cav-OMTL  𝐴 ∈ 𝑅𝐾×𝐾 denotes task relationship matrix, which 

tells us how different task are related to each other.  

Table 5.3 Cav-OMTL Algorithm 

Algorithm  

1. Initialize 𝐴 and 𝒘0 = 𝟎1×𝐾𝑚 and 𝑠 = 0 and 𝑡 = 0 

2. Estimate the label of 𝒙𝑡:  𝐿(𝒙𝑡, 𝑘𝑡) =  𝑆𝑖𝑔𝑛(𝒘𝑠,𝑘𝑡

𝑇 𝒙𝑡) 

3. If true label 𝑦𝑡 is available receive 𝑦𝑡 

else 𝑡 = 𝑡 + 1 and go to 2 

4. If   𝐿(𝒙𝑡, 𝑘𝑡) ≠ 𝑦𝑡; 𝑠 = 𝑠 + 1 

Update 𝒘𝑠:  𝒘𝑠,𝑖 = 𝒘𝑠−1,𝑖 + 𝑦𝑡𝐴𝑖,𝑘𝑡

−1 𝒙𝑡  ∀𝑖 ∈ {1,2, ⋯ , 𝐾}  

5. 𝑡 = 𝑡 + 1 and go to 2 

 

5.4.3.3 Online Multi-Task Learning with Adaptive Task Relationship Matrix (OMTL) 

OMTL is an online multitask learning platform with an adaptive task relationship matrix (Saha et 

al. 2011). OMTL simultaneously updates classification parameters including weight vector (𝒘𝑠) 

and task relationship matrix (𝐴𝑠).  Table 5.4 shows the proposed OMTL algorithm in this chapter. 

In OMTL,  𝒙𝑡 ∈ 𝑅𝑚  denote data point at time 𝑡  streaming from subject 𝑘𝑡  where 𝑘𝑡 ∈

{ 1, 2, ⋯ , 𝐾 }.  Label of 𝒙𝑡 is denoted by 𝑦𝑡. If the label 𝑦𝑡 ∈ {−1(𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠), +1(ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠)} 

is known, algorithm take into account data point (𝒙𝑡, 𝑦𝑡) for updating the classifier of task 𝑘𝑡 as 

well as classifiers of other tasks. 𝒘𝑠 = [𝒘𝑠,1, 𝒘𝑠,2, ⋯ , 𝒘𝑠,𝐾]  defines as the weight vector for all 

tasks where 𝑠  is the number of updates and 𝒘𝑠,𝑖  is the weight classifier of task 𝑖 . Therefore, 

estimated label of 𝒙𝑡 after 𝑠 times of updating classifier can be calculated as follow using (9). 

𝐿(𝒙𝑡, 𝑘𝑡) = 𝑆𝑖𝑔𝑛(𝒘𝑠,𝑘𝑡

𝑇 𝒙𝑡) = {
1 𝑖𝑓 𝒘𝑠,𝑘𝑡

𝑇 𝒙𝑡 ≥ 0

−1 𝑖𝑓 𝒘𝑠,𝑘𝑡

𝑇 𝒙𝑡 < 0
        (9) 
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Table 5.4 OMTL Algorithm 

Algorithm  

1. Initialize 𝐴𝑠 =
1

𝐾
𝐼𝐾×𝐾 and 𝑤0 = 01×𝐾𝑚 and 𝑠 = 0 and 𝑡 = 0 and 𝑙 = 0 

2. Estimate the label of 𝑥𝑡:  𝐿(𝑥𝑡, 𝑘𝑡) =  𝑆𝑖𝑔𝑛(𝑤𝑠,𝑘𝑡

𝑇 𝑥𝑡) 

3. If true label 𝑦𝑡 is available receive 𝑦𝑡 

else 𝑡 = 𝑡 + 1 and go to 2 

4. If   𝐿(𝑥𝑡, 𝑘𝑡) ≠ 𝑦𝑡 

a. 𝑠 = 𝑠 + 1 

b. Update 𝑤𝑠:         𝑤𝑠,𝑖 = 𝑤𝑠−1,𝑖 + 𝑦𝑡𝐴𝑖,𝑘𝑡

−1 𝑥𝑡  ∀𝑖 ∈ {1,2, ⋯ , 𝐾} 

c. If  𝑙 ≤ 𝐸𝑝𝑜𝑐ℎ 

i. Update 𝐴𝑠 using (10), (11), and (12) 

ii. 𝒍 = 𝒍 + 𝟏 

5. 𝒕 = 𝒕 + 𝟏 and go to 2 

 

In OMTL algorithm, 𝑙 counts the number of labeled data and Epoch is a parameter that 

determines the required portion of the dataset and the number of iterations to update the 

relationship matrix.  𝐴𝑠 denotes the task relationship matrix after 𝑠 times of update. The updating 

process of the relationship matrix significantly affects the performance of OMTL. In order to 

optimize the performance of the proposed framework in this chapter, I examined various OMTL 

algorithms with different methods to update task relationship matrix. I considered the following 

three updating rules in this research: 

1. Covariance update rule:  𝐴𝑠 = 𝐶𝑜𝑣(𝑊𝑠−1)                     (10) 

2. LogDet update rule:   𝐴𝑠 = (𝐴𝑠−1
−1 + 𝜂 (𝑊𝑇

𝑠−1𝑊𝑠−1))
−1

           (11) 

3. Von-neumann update rule:  𝐴𝑠 =  exp (log (𝐴𝑠−1)  − 𝜂 W𝑠−1
T 𝑊𝑠−1)       (12) 

Where  𝑊𝑠 ∈ 𝑅𝑚×𝐾 is weight matrix whose 𝑖𝑡ℎ column is a weight vector 𝒘𝑠,𝑖 . Notice that the 

covariance of a matrix 𝑀 ∈ 𝑅𝑚×𝐾 is given by, 𝐶𝑜𝑣(𝑀)  =
1

𝑚−1
∑ (𝑀𝑖,: − 𝜇)

𝑇
(𝑀𝑖,: − 𝜇)𝑚

𝑖=1 , where 

𝑀𝑖,:  is the 𝑖𝑡ℎ  row of the matrix 𝑀  and 𝜇 =
1

𝑚
∑ 𝑀𝑖,:

𝑚
𝑖=1 . 𝜂  is called learning rate and is a user 

specific parameter. Notice that log 𝑀 and exp 𝑀 of an arbitrary matrix 𝑀 ∈ 𝑅𝐾×𝐾  is given by, 
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log 𝑀 = 𝑈𝑇 log 𝛬 𝑈  and exp(𝑀) = 𝑈𝑇 exp 𝛬 𝑈 , where 𝑀 = 𝑈𝑇𝛬𝑈  is the eigenvalue 

decomposition of 𝑀 and  log 𝛬 is a diagonal matrix whose 𝑖𝑡ℎdiagonal item is log 𝜆𝑖 where 𝜆𝑖 is 

the 𝑖𝑡ℎ eigenvalue of 𝑀. Similarly, exp 𝛬 is a diagonal matrix whose 𝑖𝑡ℎdiagonal item is exp 𝜆𝑖.  

5.5 Datasets 

I tested two EEG datasets to show the versatility of the proposed framework on predicting 

individuals’ stress both in a controlled laboratory setting while acquiring brainwaves using a 

traditional wired-EEG and at actual job sites while recording workers’ brainwaves using a 

wearable EEG device. 

5.5.1 Database for Emotion Analysis Using Physiological Signals (DEAP) 

The Database for Emotion Analysis using Physiological signals (DEAP) was used to examine the 

performance of the proposed stress recognition framework. DEAP is presented in (Koelstra et al. 

2012) , dataset for the EEG signals that are collected in a controlled laboratory setting using a 

wired-EEG device with 32 active AgCl electrodes (international 10/20system positions).  DEAP 

recorded EEG signals of 32 subjects at a sampling rate of 512 Hz while subjects were watching 40 

music videos. DEAP’s participants rated each video regarding the levels of arousal, valence, 

like/dislike, dominance, and familiarity. In this chapter, I used DEAP’s subjective rating to label 

signals as high stress and low-stress conditions. According to a bipolar dimensional emotion model 

(Russell et al. 1989). Data was labeled as high stress when subjects reported positive (high) arousal 

level and negative (low) valence level (1,966,080 data points). On the other hand, data was labeled 

as low stress when subjects perceived positive (high) arousal and positive (high) valence 

(1,966,080 data points). In order to examine the performance of the proposed online stress 

recognition framework in this research, I assumed that all the subjects’ brainwaves were recording 

and streaming simultaneously in real-time. 
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5.5.2 Construction Workers’ EEG Dataset 

In addition to DEAP dataset, I collected EEG signals using a wearable EEG device from three real 

construction sites, which is reported in  the previous chapter. The EEG signals were collected from 

7 healthy workers (Age: 37.9±8.8 years; height: 5’ 10’’±4’’ weight: 202.3±30.4 lb.; work 

experience: 16.4±9.8 years). Subjects were selected randomly from a group of workers with no 

history of depression and anxiety. In addition, workers reported no sign of physical and 

physiological disorders at the time of data collection. Workers were given enough time to 

experience the EEG headset. Also, EEG signals were collected at least two hours after workers 

started their work to eliminate possible individual biases from varying baseline stress levels among 

different subjects. Workers were given enough time to experience the EEG headset. Also, EEG 

signals were collected at least two hours after workers started their work to eliminate possible 

individual biases from varying baseline stress levels among different subjects. Workers’ 

brainwaves across 14 channels were recorded using a wearable EEG headset. As showed by A in 

Figure 5.3, Emotiv EPOC+ was selected to collect workers EEG in the field because this device 

fits into workers safety hard hat, it is an affordable device, and previous researchers confirmed the 

quality of EEG recording using this device (Barham et al. 2017; Jebelli et al. 2017b; Kotowski et 

al. 2018). Considering the EEG signal’s rhythmic frequencies and Nyquist frequency, I set the 

recording frequency to 128 HZ. Nyquist frequency is the minimum signal-recording rate, which 

should be selected as the sampling rate to collect signals without introducing errors (Eyer and 

Bartholdi 1999). Considering the capabilities of the wearable EEG headset, the data-collecting 

resolution was set at the maximum value equal to 14 bits with the connectivity at a 2.4 GHz band. 

Other settings were the defaults of the wearable EEG headset, a dynamic range of 8,400 µV (pp), 

bandwidth of 0.16 – 43Hz. In order to assess subjects’ stress levels and label the signals, subjects’ 
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cortisol samples were collected from their saliva after each session (A in Figure 5.3). Cortisol is a 

known stress hormone; it has been proven to higher cortisol is associated with higher stress. 

Working in the field with different hazard levels (working at the top of a ladder and in a 

confined space as shown in B in Figure 5.3), and working with varying levels of tiredness were (C 

in Figure 5.3) selected as the factors that affect workers stress. According to the literature, these 

factors adversely affects workers’ stress (Berger 1996; Hwang et al. 2018; Jebelli et al. 2018b; 

Leung et al. 2016; Mignonac and Herrbach 2004). To confirm the resolution of prior stress 

experience, subjects were given enough break time prior to starting a new session. At the beginning 

of each session, subjects confirmed the resolution of prior stress experience as resolved. All the 

data collection session happened between 9:00AM–11:30 AM. I labeled working on the ground 

level and working right after taking a short break time as low stress tasks (476,160 data points). 

On the other hand, working at the top of a ladder, working in a confined space, and continuous 

working for at least two hours without taking a break time were labeled as high stress level tasks 

(476,160 data points). To confirm these assumptions, subjects’ stress levels were assessed at the 

end of each session using their cortisol level. To confirm the reliability of the saliva analyses, the 

coefficient of variation (CV) was calculated. CV lower than 15% is known as a reliable cortisol 

measurement (Levine et al. 2007). According to a Wilcoxon signed-rank test there was a 

significant difference in subjects’ cortisol level while working in low and high stress level 

conditions (p-value= 0.0156 less than significant level of 0.05). Furthermore, to confirm the 

feasibility of the subjects’ cortisol levels to measure their stress, I performed a Pearson correlation 

between the workers’ cortisol values and their valence levels. Valence level was selected to 

perform the correlation test, since according to the valence-arousal model proposed in (Burkhardt 

2001; Russell et al. 1989) significant correlations between valence and cortisol levels confirms the 
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potential of EEG for identifying an individual’s emotions (i.e., stress level). This finding is 

consistent with the findings in Chapter 3. It is noteworthy to mention that to generalize the 

correlation between workers’ cortisol level and their valence levels while working in different 

conditions, future research should consider using a bigger sample size collected from more 

workers. Table 5.5 shows an overview of each participant’s data size, cortisol level, and label.    

Data collection was approved by the University of Michigan Institutional Review Board. 

 

Table 5.5 Overview of participant’s data size, control level, and label. 

Subject 
Session 

# 

Work 

Conditions 

Cortisol Level [µg/dL] 

(%CV1) 

Data size 

[data points] 
Label 

1 
1 G2 0.21 (8.00%) 76800 L5 

2 TL3 and/or CS4 0.4 (7.48%) 76800 H6 

2 
1 G 0.16 (2.77%) 76800 L 

2 TL and/or CS 0.36 (4.12%) 76800 H 

3 
1 G 0.10 (10.81%) 76800 L 

2 TL and/or CS 0.16 (10.28%) 76800 H 

4 
1 RB 0.30 (1.72%) 61440 L 

2 AB 0.40 (3.32%) 61440 H 

5 
1 RB 0.08 (11.09%) 61440 L 

2 AB 0.10 (5.59%) 61440 H 

6 
1 RB 0.11 (0.96%) 61440 L 

2 AB 0.28 (7.30%) 61440 H 

7 
1 RB 0.39 (0.93%) 61440 L 

2 AB 0.67 (2.05%) 61440 H 

Notes: 1CV= percentage coefficient of variation of cortisol levels, 2G= working on ground level, 
3TL= working at top of a ladder, 4CS= working in a confined space, 5L= low stress, 6H= high 

stress. 
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Figure 5.3 Construction workers’ dataset data collection: (a) Wearable EEG headset, location of 

electrodes, and salivary cortisol sample collection kit; (b) Working in the work area with different 

hazard levels; (c) working with different level of tiredness. 

5.6 Results 

5.6.1 Performance of the Selected Features 

Figure 5.4 visualizes features extracted from a construction workers’ EEG dataset. For 

visualization purposes, the feature vectors are reduced to two and three dimensions using t-

A EEG Headset EEG Placed in Hardhat Cortisol Collection Kit

B

C

Ground Level At Top of a Ladder Confined Area

After Resting Time One-hour after Resting Two-hour after Resting
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Distributed Stochastic Neighbor Embedding (t-SNE). T-SNE is a non-linear dimensionality 

reduction method developed to visualize high-dimensional data [64]. Despite the limitations of 

high-dimensional data visualization, a clear distinction can be seen between high stress and low-

stress conditions. Much of the seemingly overlapped actions in Figure 5.4 are in fact separated 

within the hidden dimensions. This provides preliminary evidence that the selected features are 

capable of distinguishing and detecting low-stress and high-stress conditions. Considering this 

initial separation, I’ investigated the performance of different OMTL algorithms to recognize 

subjects’ stress in the near real-time 

 

Figure 5.4 Visualization of EEG features: (a) DEAP dataset features reduced into two dimensions; 

(b) DEAP dataset features reduced into three dimensions; (c) Construction workers dataset features 

reduced into two dimensions; (d) Construction workers dataset features reduced into three 

dimensions.  
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5.6.2 Error Rates 

According to the results, the batch-learning method in an online setting showed the lowest 

prediction accuracy on both DEAP dataset (average prediction accuracy, 59.82%) and construction 

workers’ dataset (average prediction accuracy, 66.28%).  OMTL-VonNeumann demonstrated the 

best prediction accuracy on both DEAP dataset (average prediction accuracy, 71.14%) and 

construction workers’ dataset (average prediction accuracy, dataset 77.61%). Moreover, for both 

datasets, the OMTL-VonNeuman seems the most stable algorithm, with the lowest standard 

deviation when permuting data, and the smallest number of outliers. The averages, standard 

deviations, median value, interquartile range, and outliers of the prediction accuracy from 20 

random permutations over different algorithms are reported in Figure 5.5. Table 5.6 shows the 

confusion matrices of the best classifier, OMTL-VonNeumann, on DEAP dataset and construction 

workers’ dataset. 

Table 5.6 Overview of confusion matrices of the OMTL-VonNeumann 

Construction Workers’ EEG Dataset 

 Low stress High stress Recall 

Low stress 0.407 0.112 0.784 

High stress 0.117 0.363 0.756 

Precision 0.776 0.764 Accuracy: 0.776 

DEAP Dataset  

 Low stress High stress Recall 

Low stress 0.379 0.144 0.725 

High stress 0.146 0.332 0.695 

Precision 0.722 0.698 Accuracy: 0.711 

 

5.6.3 OMTL Parameter 

Figure 5.6 shows the performance of different OMTL algorithms vs. Epoch selection. All OMTL 

algorithms show that there has been a sharp rise in the prediction accuracy by increasing Epoch 



161 

 

from 5 percent to 20 percent across all three OMTL algorithms on both datasets. According to 

Figure 5.6, the maximum prediction accuracy of all three OMTL algorithms happens while Epoch 

is selected in the range of 0.65 to 0.75.  A comparison of the two datasets suggests that selecting 

Epoch parameter in the range of 0.65 to 0.75 would yield optimum prediction accuracy and is 

preferable in terms of time complexity since a large Epoch will result in higher computational time. 

In addition, the results show the optimal learning rates of   η = 3.9069 × 10−13  for OMTL 

Covariance, η = 1.1514 × 10−13 for OMTL LogDet, and η = 1.3257 × 10−12  for OMTL 

VonNeumann. 

5.6.4 Computational Complexity 

To assess the computational complexity of proposed OMTL algorithms, the computational time 

and cost (memory usage) of different algorithms were compared. As shown in Figure 5.7, a 

traditional batch learning algorithms in an online setting led to significantly higher computational 

time and memory usage compared with the proposed OMTL algorithms. All of the proposed 

OMTL algorithms present low computational complexity (average computational time equal to 1 

second and average memory usage equal to 104 Bytes). No significant differences were found in 

computational cost and time among different OMTL algorithms. 
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Figure 5.5 Prediction accuracy among different algorithms: (a) DEAP Dataset; (b) Construction 

workers dataset 

 

Figure 5.6 OMTL algorithms prediction accuracy vs. Epoch parameter selection 

 

Batch

Learning

Cav-

OMTL
OMTL

Covariance

OMTL

LogDet

OMTL

VonNeumann

BA

Batch

Learning

Cav-

OMTL
OMTL

Covariance

OMTL

LogDet

OMTL

VonNeumann

A B



163 

 

 

Figure 5.7 Different algorithms computational complexity; (a) Computational time, (b) Memory 

usage. 

5.7 Discussion 

The performance of the proposed framework was examined on the EEG signals acquired from 

controlled and real job site conditions. This study showed the potential of the proposed framework 

to be used in practice to recognize workers’ stress in the job sites (e.g., construction, mining, and 

manufacturing) in near real-time. The results suggest the higher performance (higher prediction 

accuracy and lower computational cost) of the proposed OMTL algorithms comparing with the 

traditional OMTL algorithms (Cav-OMTL), and batch learning algorithm in the online setting. 

The results of the proposed procedure are competitive with other stress recognition algorithms 

with a binary labeling setting in the clinical domain that are using a wired-EEG device in the 

controlled environment while their subjects were in stationary conditions with the minimal body 

movements: 85.60%  in (Al-Shargie et al. 2017); 87.30% in (Al-shargie et al. 2015); 80.43% in (Jie et al. 

2014); and 77.90% in . 
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Higher prediction accuracy of the proposed OMTL algorithms compared to Cav-OMTL was 

achieved since the Cav-OMTL approach seems restrictive in two respects. First, Cav-OMTL does 

not have any information about a priori relationship. Second, Cav-OMTL assumes that all the tasks 

are positively correlated. Therefore, a fixed interaction matrix may not always be the right choice 

considering the variation of EEG signal patterns among different individuals and tasks. In addition, 

a comparison of the three OMTL algorithms reveals that OMTL-Covariance led to the lowest 

stress recognition accuracy. The covariance update rule is an intuitive method and is not based on 

a divergent function. Therefore, one possible explanation for the lower performance of the 

covariance-based OMTL is the lack of a divergent function in the updating process. A divergence 

function can decrease the risk of overfitting while finding the interaction matrix and training the 

classifier. According to the results, OMTL-VonNeumann algorithms led to higher performance 

compared with OMTL-LogDet. It seems possible that this result is due to the exponential and 

logarithmic updating process of the interaction matrix, which may deal better with the EEG signal 

outliers. 

The traditional batch learning method in an online setting resulted in the lowest prediction 

accuracy. A possible explanation for this result may be the lack of adequate information to train 

batch leaning classifiers while dealing with EEG signals streaming from different subjects. The 

batch learning method is not a multi-task classifier and assigns the same classifier to different 

subjects and tasks. Assigning the same classifier to the different subject may decrease the stress 

recognition accuracy since EEG pattern varying among different individuals.   

Increasing the Epoch value led to a gradual improvement in prediction accuracy among all 

OMTL algorithms. This was consistent with the conclusion of previous works that stated an 

increase in Epoch value resulted in  higher prediction accuracy (Saha et al. 2011).  It can be concluded 
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that an Epoch equal to 0.65-0.75 was a preferable setting regarding both accuracy and time 

complexity for the EEG datasets. 

Batch learning methods in the online setting results in dramatically higher computational 

time and memory cost compare with OMTL algorithms. A possible explanation for this might be 

that batch learning method requires storing all the data points to be able to update the classifier 

while receiving new data points. This caused data storage capacity to dramatically increase after 

each iteration. Because the data storage capacity is limited, the number of updates that the 

algorithm can perform is also limited, and it wouldn’t be practical to update the classifier in the 

long run. To clarify this further, assume that data points (𝒙1, 𝑦1), ⋯ , (𝒙𝑛, 𝑦𝑛) are available and 

weight vector 𝒘 has been found using a batch learning algorithm (e.g., SVM) in the online setting. 

For using SVM in an online setting the model has to save all the data points after finding the 

classifier. Then wait until the arrival of a new data point with its label (𝒙𝑛+1, 𝑦𝑛+1). After arriving 

new data point, SVM in online setting finds new weight vector 𝒘𝑛𝑒𝑤  using data points 

(𝒙1, 𝑦1), ⋯ , (𝒙𝑛+1, 𝑦𝑛+1) and saves (𝒙1, 𝑦1), ⋯ , (𝒙𝑛+1, 𝑦𝑛+1) for the future updates. However, 

OMTL algorithms modify classifier parameters 𝒘 without saving previous data points when the 

new data point (𝒙𝑛+1, 𝑦𝑛+1) arrives. OMTL algorithms have the advantage to find new weight 

vector (𝒘𝑛𝑒𝑤) only by using (𝒙𝑛+1, 𝑦𝑛+1)  and old weight vector 𝒘. Therefore, OMTL algorithms 

remove the data points after updating the classifier as they do not need old training data points for 

the future updates.  

One unanticipated finding was the lower prediction accuracy of the DEAP dataset compared 

to the construction workers’ dataset. Considering the higher EEG recording quality in the DEAP 

dataset compared to construction workers’ dataset, it was expected that the DEAP dataset would 

lead to a higher classification accuracy. One possible explanation for this result is the selected 
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stressors to induce stress in the tested datasets; real job sites stressors have been used to induce 

stress in construction workers’ dataset (e.g., working at the top of a ladder in a confined space) in 

contrast, virtual stimuli (e.g., watching different type of musical videos) was selected as the 

stressor in DEAP dataset. Previous researchers are questioning the possibility of the virtual stimuli 

(e.g., watching the video, and listening to music) to induce stress response (Inducing Anxiety 

through Video Material), the results of this study  can imply that stressors in actual jobs site induce 

higher stress to compare to a virtual stimulus such as watching the video. One other reason for the 

lower classification accuracy of the suggested framework on the DEAP dataset can be related to 

the labeling process. In the DEAP dataset, a subjective survey was used to label the individual's 

stress. However, in the construction workers’ dataset, I labeled the data by measuring individuals’ 

stress hormone (i.e., cortisol level). There exists higher uncertainty while labeling the data using 

subjective methods as compared with labeling based on stress hormone. 

It is noteworthy to mention in this chapter an ICA method was implemented to remove 

intrinsic signal artifacts. To avoid the problem of mutual contamination between different 

components and losing non-noisy components (Urigüen and Garcia-Zapirain 2015), only the three 

most common intrinsic signal artifacts were removed. In order to be able to remove more intrinsic 

signal artifacts, it is recommended that more workers brain waves across more channels need to 

be collected in future research. Furthermore, in order to decrease the computational time of the 

preprocessing and artifacts removal steps, it is recommended that future studies consider replacing 

the ICA method with other artifacts removal algorithms with lower computational time (e.g., a 

regression-based method for intrinsic artifacts removal proposed in (Di Flumeri et al. 2016)).  

There is one caveat worth noting regarding the present study. In this chapter, OMTL 

algorithms were applied to the binary labels and individuals’ stress was labeled as low-stress and 
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high-stress. Future studies will need to be undertaken to take different stress levels into account. 

In addition, future research can apply the proposed stress recognition framework toward in-depth 

understanding of the effect of the individual factors (e.g., ages, work experiences, and physical 

health status) and organizational factors (e.g., trades, crews, and projects) on workers’ stress using 

a larger number of subjects. In addition, future research should modify the proposed stress-

recognition algorithm based on existing methods in the literature (Khalili et al. 2017a; b; c, 2018b; 

a; Zhang et al. 2018a; b) to address security and privacy concerns. 

5.8 Conclusion 

This study applied different signal processing and machine-learning techniques to develop an 

EEG-based stress recognition framework, which considers changes in brainwave patterns among 

different subjects and continuously updates the classifier in an online setting with a low 

computational cost and memory usage. This study takes into account two EEG datasets to examine 

the performance of proposed stress recognition framework both in a controlled environment using 

a traditional EEG device, and in actual job sites, using EEG signals collected from an of the shelf 

wearable EEG device. This study showed the advantage of the proposed OMTL algorithms 

compared with traditional methods (i.e., a batch learning algorithm in an online setting) by 

comparing the prediction accuracy, computational cost, and time of the proposed framework with 

traditional frameworks.  According to the results, the proposed OMTL algorithms achieved a 

higher prediction accuracy, while lowering computational cost and time. 

The present study contributes to the recognition of individuals’ stress in near real-time either 

in a controlled laboratory environment using traditional wired EEG caps or at an actual job site 

using a wearable EEG headset. This highlights the potential for numerous additional opportunities 

for using a wireless EEG recording device as a non-invasive method to continuously detect the 
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stressful moments in various stressful occupations (e.g., firefighter, construction workers, etc.) 

where it is not practical to train a stress recognition algorithm for all the possible stressors. Early 

detection of the stressors can greatly contribute to manage individuals’ stress, to prevent 

psychosocial health problems, and to improve well-being. For instance, construction workers’ 

excessive stress can have detrimental impacts on work performance including productivity, safety, 

and health (Leung et al. 2008, 2015). The proposed framework can be used to measure and characterize 

construction workers’ stress levels in the field in order to reduce workers’ injuries, accidents, and 

errors and to enhance productivity and worker satisfaction. 
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Chapter 6: 

Wristband-Type Wearable Biosensor to Assess Construction Workers’ 

Mental Stress5 

6.1 Introduction 

The construction industry is one of the largest industries in the U.S. It employs around 6.5 million 

people (CPWR 2018). In this mega-industry, 68% of its workers are suffering from excessive 

stress (Campbell 2006) due to extended exposure to stressful site situations such as poor and 

hazardous work environments and task complexity. Further, construction has approximately 

200,000 cases of worker injuries and illnesses. This amounted to about 80,000 cases of days away 

from work in 2016 (BLS 2017). In addition, it has been widely recognized that physical and 

psychological stress is strongly associated with workers’ safety behavior (Leung et al. 2015), 

which contributes to 80-90% of accidents (Heinrich et al. 1980; Lingard and Rowlinson 2005). 

Furthermore, many studies have demonstrated that occupational injuries and illness lead to 

additional stress, anxiety, or depression (Jacobsen et al. 2013). It has also been reported that 

construction workers are 1.7 times more likely than those in other industries to suffer from 

5 This chapter is adapted from Jebelli, H., Choi, B. and Lee, S. (2019) “Application of Wearable Biosensors 

to Construction Sites.  Part I: Assessing Workers’ Stress.” Journal of Construction Engineering and 

Management (under review). 
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emotional and mental disorders (Petersen and Zwerling 1998). Workers in the field reported 

having higher levels of burnout and chronic health problems compared with those in the head or 

corporate offices of the same organizations (Lingard and Francis 2004). Despite the importance of 

assessing worker stress and mitigating job stressors, excessive stress among construction workers 

has received relatively little attention. Therefore, it is essential to measure and characterize workers’ 

stress in the field, which can ultimately lead to reduced injuries, accidents, and errors and can also 

improve workers’ productivity and job satisfaction. 

Stress is defined as the body’s response to a psychological barrier (e.g., environmental 

conditions and excessive job demand) (Selye 1956). A number of studies have attempted to assess 

individual stress by evaluating individuals’ psychological and physiological responses to various 

stressors. Specifically, a number of instruments for subjective estimations of stress (e.g., 

International Survey of Stress) have been used to measure the individual’s perceived stress (Abbe 

et al. 2011; Bowen et al. 2013; Goldenhar et al. 2003; Gutierrez and Ostermann 1999; Leung et al. 

2010; Love et al. 2009; Seo and Lee 2010). However, these methods are subjective and rely on 

imprecise memory and reconstructions of the past (Larson and Csikszentmihalyi 1983).  

In contrast, physiological measures for biochemical responses (e.g., stress hormones) have 

been used widely in the clinical domain as reliable markers for monitoring stress levels. Stress-

related hormones (e.g., cortisol and glucocorticoids) change in response to stressors , so tracking 

the changes in these hormones provides meaningful insight of individuals’ stress (Levine et al. 

2007; Ranabir and Reetu 2011; Russell et al. 2012; Sharma and Gedeon 2012). Despite the validity 

of this approach, this method is not viable for continuous stress monitoring because measuring 

stress-related hormones requires the collection of serum, saliva, urine, or hair samples. Given 

dynamic changes in work environments, continuous monitoring of stress is particularly meaningful 
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in construction sites. Furthermore, analyzing collected samples require laboratory processing, 

which is difficult to apply in the field. 

To address this problem, this study aims to develop a framework for the noninvasive and non-

subjective assessment of worker stress using signals collected from a wristband type biosensor. To 

achieve this objective, workers’ physiological signals were collected using a wristband type 

biosensor. After reducing signal artifacts, a broad range of measurable properties and 

characteristics of signals (i.e., features) were extracted in time domain (e.g., heart rate, inter-beat-

interval, heart rate reserve, electrodermal level, electrodermal response etc.) and frequency domain 

(e.g., mean frequency, power spectral density, peak power, etc.). Then, a machine learning model 

is trained to recognize worker stress. Workers stress-related hormone (cortisol) levels were 

measured using their saliva samples to label data as low, moderate or high stress levels. 

Recognizing stress levels in the field will lead to the early detection of stressors, which will 

enhance construction-site safety and worker health and productivity. 

6.2 Field Stress Recognition 

6.2.1 Overview 

Figure 6.1 presents an overview of the proposed framework using physiological signals from a 

wristband type biosensor to recognize stress in the field. This framework is designed to recognize 

worker stress continuously without interrupting ongoing tasks. As the first step, the authors 

collected three physiological signals including PPG, EDA, and ST, using a wristband type 

biosensor. These signals were labeled low, moderate, and high stress based on workers stress 

hormone (i.e., cortisol) levels. After removing artifacts and enhancing the quality of the signals, 

the authors extracted patterns and characteristics of physiological signals by selecting different 

signal features. Then, by applying a supervised-learning algorithm (e.g., Gaussian SVM), a 
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machine-learning model was developed to predict workers stress by examining the changes in the 

pattern of physiological signals. More detail on each step is provided in the following sections. 

 

 

Figure 6.1 Raw (A) and filtered (B) physiological signals 

6.2.2 Capturing High-Quality Physiological Signals: Artifacts Removal 

As discussed earlier, the signals recorded using a wearable sensor include a large number of 

artifacts and noises coming from body and sensor movements, muscle activities and the device 

power line (Dosinas et al. 2017; Jebelli et al. 2018a; Lee and Chung 2009; Pantelopoulos and 

A BRaw signals Filtered signals
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Bourbakis 2010). To reduce these artifacts, the authors applied several filtering and outlier removal 

methods such as Hampel, low pass, and bandpass filters.  

The typical frequency of PPG signals is between 0.5 and 5 Hz (Bagha and Shaw 2011). So, 

a bandpass filter with a low cut-off frequency of 0.5 Hz and higher cut of the frequency of 5 Hz 

was designed to filter out the non-PPG component of the signal. EDA takes place in the low 

frequencies, within 0-0.05 Hz (Electrodermal Level [EDL]) and 0.05-1.5 Hz (Electrodermal 

Response [EDR]) (Braithwaite et al. 2013). Therefore, the authors applied a low pass filter with a 

cutoff frequency of 1.5 Hz to remove non-EDA signal components from the recorded signal. In 

addition, a notch filter centered on the power-line frequency was applied to attenuate power-line 

interference in the recorded signals. Furthermore, to remove the outliers from the physiological 

signals, a Hampel filter was applied according to a method proposed by (Allen 2009) to remove 

the spikes and replace them with a median value of the neighboring signals. A in Figure 6.2 shows 

the raw physiological signals that were collected at real construction sites. After applying the 

artifact-removal steps, the authors achieved higher quality physiological signals, shown in B in 

Figure 6.2.  

 



184 

 

 

Figure 6.2 An Overview of Proposed Framework to Recognize Worker Stress using Physiological 

Signals Acquired from a Wristband Type Biosensor 

6.2.3 Physiological Signals Pattern Recognition: Feature Extraction and Selection 

After reducing signal artifacts, the authors extracted a broad range of measurable properties of 

physiological signals (or features) in time and frequency domains. The extracted features from 

PPG signals included statistical metrics in the time domain (e.g., cumulative maximum, 

cumulative minimum, mean value, variance, median value, smallest window elements, maximum-

to-minimum difference, root-mean-squares level, peak-magnitude-to-RMS ratio, root-sum-of-

squares level, standard deviation, peak, peak location, peak to peak, kurtosis, and total zero cross 

number), PPG statistical metrics in the frequency domain (e.g., median frequency, mean frequency, 
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power spectral density, mean power of low-frequency band [0.5-1 Hz], mean power of high-

frequency band [4-5 Hz], peak power of low-frequency band [0.5-1 Hz], peak power of high-

frequency band [4-5 Hz]), heart rate (HR), inter-beat-interval (IBI), heart rate variability (HRV), 

and percentage heart rate reserve (%HRR). In addition to the extracted features from PPG, several 

features extracted from the EDA signal, included EDA statistical metrics in the time domain (e.g., 

cumulative maximum, cumulative minimum, mean value, variance, median value, smallest 

window elements, maximum-to-minimum difference, root-mean-squares level, peak-magnitude-

to-RMS ratio, root-sum-of-squares level, standard deviation, peak, peak location, peak to peak, 

kurtosis, and total zero cross number), EDA statistical metrics in the frequency domain (e.g., 

median frequency, mean frequency, power spectral density, and peak power), electrodermal level 

(EDL), and electrodermal response (EDR). Furthermore, the extracted features from ST signals in 

time and frequency domain included the average of skin temperature, variation of the skin-

temperature amplitude, and the rate of changes in skin-temperate signal amplitude in each window 

were extracted from the ST signal. Table 6.1 summarizes the extracted features from the 

physiological signals. 
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Table 6.1 Time and frequency domains features extracted from physiological signals. 
 Features Explanation 

PPG 

Statistical metrics in 

 the time domain 

Cumulative maximum, cumulative minimum, mean value, 

variance, median value, smallest window elements, 

maximum-to-minimum difference, root-mean-square 

(RMS) level, peak-magnitude-to-RMS ratio, root-sum-of-

squares level, standard deviation, variance, peak, peak 

location, peak to peak, kurtosis, total zero cross number 

Statistical metrics  

in the frequency domain 

Median frequency, mean frequency, power spectral density, 

mean power of low-frequency band (0.5-1.00 Hz), mean 

power of the high-frequency band (4.00-5.00 Hz), peak 

power of low-frequency band (0.5-1.00 Hz), peak power of 

high-frequency band (4.00-5.00 Hz) 

Heart Rate  

(HR) 
Number of heartbeats per minutes 

Inter-Beat Interval (IBI) Time intervals between heartbeats 

Heart Rate Variability 

(HRV) 
Variation in time intervals between heartbeats 

Heart Rate Reserve  

(HRR) 

Difference between resting heart rate and maximum heart 

rate 

EDA 

Statistical metrics in 

the time domain 

Cumulative maximum, cumulative minimum, mean value, 

variance, median value, smallest window elements, 

maximum-to-minimum difference, root-mean-square 

(RMS) level, peak-magnitude-to-RMS ratio, root-sum-of-

squares level, standard deviation, variance, peak, peak 

location, peak to peak, kurtosis, total zero cross number 

Statistical metrics in 

the frequency domain 

Median frequency, mean frequency, power spectral density, 

peak power 

Electrodermal Level  

(EDL) 

Tonic changing component of the EDA 

 

Electrodermal Response 

(EDR) 

Phasic short-term component of the EDA 

 

 

ST 

Statistical metrics in 

the time domain 

Average of skin temperature, Variation of the ST 

amplitude, The rate of changes in ST amplitude in each 

window 

Statistical metrics in 

the frequency domain 

Median frequency, mean frequency, Power Spectra 

Density, Peak Power 

 

To capture the patterns of the physiological signal with high granularity, a wristband type 

sensor uses a relatively high frequency to record the physiological signals (PPG at 64 Hz, EDA at 

4 Hz, and ST at 4Hz). Therefore, calculation of a feature over a single physiological signal may 
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not be informative enough. To address this problem, the authors calculated features over a block 

of continuous reading referred to as a window. To determine the optimal window size within which 

to recognize worker stress, the authors applied a cross-validation method concerning prediction 

accuracy and tested window sizes of 1 to 20 seconds, increased by a 1-second step. 

After extracting a broad range of features from signals, selection of the most relevant 

features is the crucial next step. This selection process not only affects the recognition accuracy of 

the model (Hall 1999) but the computational cost and time of the framework (Koller and Sahami 

1996; Zhu et al. 2007 p.). In addition, considering the noise of the physiological signals acquired 

in the field, using fewer features will reduce the risk of model overfit, if the right subset of features 

is chosen. To do so, the authors applied a backward-elimination wrapper method (Kohavi and John 

1997). This method selects the top features by removing the least significant feature at each 

iteration with regard to the prediction accuracy (Guyon and Elisseeff 2003; Mao 2004). The 

authors repeat this process until no significant improvement is observed upon removing the next 

feature (less than 0.5%). 

6.2.4 Stress Recognition Model: Classification and Validation 

To select the most appropriate supervised learning algorithm an initial analysis was conducted  on 

25 percent of the data and the performance of various supervised learning algorithms (e.g., k-

nearest neighbor, multi-layer perceptron, decision tree, and multi-class support vector machine) to 

recognize workers stress was examined. According to the results of  a preliminary analysis, the 

authors selected a nonlinear SVM with a Gaussian kernel function (Hearst et al. 1998) to gauge 

worker stress based on physiological signals. Non-linear SVM is a deterministic machine-learning 

algorithm used to find a separating hyperplane plane for a dataset that is not linearly separable. It 

does so by solving the following optimization problem in Equation 1 (Mohri et al. 2012). 
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min
𝑤,𝑏,𝜉

1

2
||𝒘||2 +

𝐶

𝑛
∑ 𝜉𝑖

𝑛

𝑖=1

 

s.t., 𝑦𝑖(𝒘𝑇𝛷(𝒙𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, … , 𝑛  (1) 

𝜉𝑖 ≥ 0 , 𝑖 = 1, … , 𝑛 

Where 𝛷(. )  is a transform kernel function that enriches the dimension of feature space, 

𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏  are the training data points, and 𝒚𝟏, 𝒚𝟐, ⋯ , 𝒚𝒏  are the labels, 𝒘 𝑎𝑛𝑑 𝒃  are the 

classifier parameters, 𝑪 is the user-specified tuning parameters, which helps diminish the effect of 

the outliers on the training classifier, and 𝝃𝒊 is the slack variable that determines the soft-margin 

hyperplane classifier. 

To find the optimal kernel function on physiological signals, the authors explored the 

performance of a number of kernel functions (e.g., trivial, quadratic, polynomial, and radial basis 

function kernels) for nonlinear SVM. After the initial results, a radial-basis function kernel that 

led to the best classification performance was chosen. By applying a radial-basis function kernel 

(Gaussian kernel), the selected features from the physiological signals were transformed to a 

higher-dimension domain. Then, optimal SVM parameters (e.g., 𝒘 and 𝑏) were calculated by 

iteratively solving equation 1. After training our SVM algorithm and determining the optimal 𝒘 

and 𝒃 values, the algorithm will predict the label of unbaled data point 𝒛 using equation 2. 

𝐿(𝒛) =  {
1 𝑖𝑓 𝒘𝑇𝛷(𝒖) + 𝑏 ≥ 0

−1 𝑖𝑓 𝒘𝑇𝛷(𝒖) + 𝑏 < 0
  (2) 

To train the model where more than two labels occurred (various levels of stress), a 

Multiclass SVM, a more general form of SVM, was applied. Multiclass SVM trains multiple one-

versus-rest classifiers and defines multiple optimum-separating hyperplanes for each pair of labels 

(Hsu and Lin 2002). A custom software written in MATLAB (version 8.1.0.604, The Math Works 

Inc., USA) is used for all calculation steps. 
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6.3 Field Data Collection 

6.3.1 Subjects and Data Collection Procedure 

To examine the performance of the proposed framework, the authors visited two construction sites 

–  an indoor construction site in Gary, Indiana, and an outdoor site in Cincinnati, Ohio. Ten healthy, 

able-bodied construction workers participated in this study (four working indoor and six outdoor). 

Subjects were selected from a wide range of ages (23 to 50 years old), work experience (1 to 25 

years), trades (two carpenters, two electricians, two ironworkers, two plumbers, and two concrete 

workers) and working environments (indoor and outdoor). Subjects reported no disabilities or 

clinical conditions that could affect their work performance. Table 6.2 summarizes subjects’ 

demographic information. The data collection procedure was approved by the Institutional Review 

Board (IRB) at the University of Michigan. 

Table 6.2 Description of Subject Information and Collected Data. 

Subject 

Index 

Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Working 

Experience 

(years) 

Trade Environment 

S1 50 186 98 25 Carpenter 
Indoor 

Construction 

Site 

S2 38 189 81 12 Carpenter 

S3 27 183 99 5 Electrician 

S4 35 183 109 13 Electrician 

S5 43 180 84 20 Ironworker 

Outdoor 

Construction 

Site 

S6 23 183 117 1 Ironworker 

S7 28 175 90 1 Plumber 

S8 40 172 65 18 Plumber 

S9 29 183 90 10 Concrete labor 

S10 37 165 83 2 Concrete labor 

Workers’ physiological signals were collected using an off-the-shelf wristband type 

biosensor (e.g., E4 wristband manufactured by Empatica Inc, Cambridge, MA, U.S.A.), which 

included a PPG sensor, an EDA sensor, and an infrared thermopile (A in Figure 6.3). The PPG 

sensor was set to acquire signals with a sampling rate of 64 Hz and an output resolution of 09 
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nW/Digit. The EDA sensor was set to collect the electrical properties of the skin with 4 Hz 

sampling frequency, 900 pSiemens resolution and the range of 0.01-10 µSiemens. An infrared 

thermopile measures skin temperature with a sampling rate of 4 Hz and accuracy of ±0.02 °C 

within normal skin temperature. Subjects were asked to wear the sensor above their dominant hand, 

except for one whose dominant hand was fully tattooed, which might have affected data-collection 

quality. Before starting the data collection, subjects learned the objectives of this research. All 

were provided with a comprehensive explanation of the data-collection steps. 1.5 hours per subject 

were collected under three different conditions, which induced different levels of stress. In the first 

condition, physiological signals were collected during break time or immediately afterward (B in 

Figure 6.3). In the second condition, subjects were asked to work at the top of a ladder (C in Figure 

6.3). In the third condition, subjects were asked to perform same tasks that they performed during 

the second condition, but at the top of a ladder and in a confined space (D in Figure 6.3).  

 

Figure 6.3 An Physiological signals collection in the field. 

Resting during the break timeA B C

D

Working at top of a ladder

Working at top of a ladder in a 

confined space

Data collection wristband

E Salivary cortisol test kit
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6.3.2 Data Labeling: Cortisol Level as a Baseline to Assess Worker Stress 

To label subjects’ physiological signals, it was hypothesized that worker stress level is low while 

they are on break, moderate while they are at the top of a ladder, and high while working at the 

top of a ladder in a confined space. To examine the labeling hypothesis, subjects’ cortisol levels 

were measured while working under different conditions. Cortisol is known as a stress hormone 

and is highly associated with an individual’s stress (Levine et al. 2007; Vedhara et al. 2003). The 

authors collected subjects’ saliva samples (E in Figure 6.3). Then, these saliva samples were sent 

to a laboratory to analyze for cortisol level. The authors conducted a Wilcoxon signed-ranked test 

to examine whether there is a significant difference in subjects’ cortisol levels while they were 

performing different tasks. According to a Wilcoxon signed-rank test, there is a significant 

difference in subjects’ cortisol levels across low, moderate and high mental-stress tasks (p-

value=0.01); as well as between low and moderate (p-value=0.03) and moderate and high stress 

levels (significance level=0.05). The results of the Wilcoxon signed-rank tests statistically support 

the labeling hypothesis (i.e., worker stress level is low while they are on break, moderate while 

they are at the top of a ladder, and high while working at the top of a ladder in a confined space). 

Figure 6.4 shows cortisol levels in three different working conditions.  
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Figure 6.4 Subjects’ cortisol level under different conditions. 

6.4 Results 

The authors applied the proposed framework to data collected from the construction sites. Figure 

6.5 shows the performance of the Gaussian kernel SVM in two dimensions for two and three 

classes. A in Figure 6.5 shows the performance of the classifier for distinguishing low and high 

stress levels after excluding data points that were corresponded to moderate stress. A randomly 

selected subset of data after applying a principal component analysis (PCA) method, a 

dimensionality reduction algorithm, to reduce the feature vector to two dimensions. These two 

unit-less dimensions are the components of a linear mapping of the entire feature vector and 

represent the highest variation of the entire dataset. B in Figure 6.5 represents the performance of 

the classifier for distinguishing low, moderate, and high stress levels. The background illustrates 

the area predicted by our classifier. The points show the actual labels of the different data points 

Low Stress Moderate Stress High Stress

High
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based on their cortisol level. According to the results, the proposed framework led to a prediction 

accuracy of 84.48% for distinguishing between low and high stress levels and 73.28% 

distinguishing among low, medium, and high stress levels.   

 

Figure 6.5 Stress-recognition classification performance in two dimensions. 

To further investigate the performance of the proposed stress-recognition framework, the 

confusion matrices for distinguishing two classes (low and high stress) and three classes (low, 

moderate, and high stress) are shown in Tables 3 and 4. Each row of confusion matrix represents 

the predicted label of each class, while each column corresponds to true condition (actual label). 

Sensitivity signifies the proportion of correct predictions of the total number of positive instances 

(number of true positive/total number of positive samples). On the other hand, specificity 

illustrates the framework’s ability to correctly predict the true negative rate (number of true 

negatives/total number of actual negatives). The results of the confusion matrices indicate the high 

performance of proposed stress recognition for different levels. 

Low and High Mental Stress 
Recognition: 84.48%

Low, Moderate, and High Mental 

Stress Recognition: 73.28%

A B
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Table 6.3 Confusion matrices for distinguishing low and high stress levels. 

Stress Levels Low High Sensitivity 

Low 0.45 0.09 0.83 

High 0.07 0.39 0.88 

Specificity 0.87 0.81 Accuracy: 0.84 

Table 6.4 Confusion matrices for distinguishing low, moderate, and high stress levels. 

Stress Levels Low Moderate High Sensitivity 

Low 0.26 0.05 0.02 0.79 

Moderate 0.07 0.24 0.07 0.63 

High 0.03 0.04 0.21 0.75 

Specificity 0.73 0.73 0.70 Accuracy: 0.73 

6.5 Discussions 

The present study developed and validated a framework to recognize worker stress using a 

noninvasive wristband type biosensor. The performance of the proposed framework is examined 

using the data collected from actual construction sites. To examine the performance of different 

physiological signals in recognizing worker stress, the authors trained and tested four different 

Gaussian kernel SVMs and each time removed the features of one physiological signal. The results 

of this study present the potential of wristband type biosensors to measure workers’ stress during 

their on-going work by providing reasonable accuracy on the stress recognition as shown in Table 

6.3 and Table 6.4. Since a wristband type biosensor can continuously collect the physiological data 

over 12 hours without interrupting workers' ongoing work, the framework proposed in this study 

allows us for noninvasive, continuous, and objective monitoring of worker stress in construction 

sites. Compared to the current approaches to measure worker stress (e.g., survey and stress 

hormone), the continuous monitoring will provide an in-depth understanding of various stressors 

in construction projects by analyzing the changes in workers’ stress during their work. 

In Figure 6.6, a comparison of four models reveals that the ST-based metrics weren’t among 

the features selected to recognize worker stress. In other words, results indicated that ST is not an 
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appropriate physiological signal with which to recognize stress. This finding is in agreement with 

(Vinkers et al. 2013) a finding that showed that peripheral body temperature measured from wrist 

skin is not significantly affected in response to stress. Turning now to the most useful feature, it 

can be seen that removing EDA-based features significantly reduced the performance of the 

framework. This finding is consistent with those of other studies suggest that together EDA 

provides essential information for the model to predict individual stress (Barreto et al. 2007; 

Masood et al. 2012; Rigas et al. 2008). 

 

Figure 6.6 Stress-recognition classification performance using different physiological signals. 

The authors further examined the performance of the proposed framework with regard to 

the window size used to extract physiological signal features. For distinguishing between low and 

high stress levels, the results reveal that the stress-prediction accuracy increased by 9.25% when 

window size increased from 5 to 6 seconds. The changes in prediction accuracy have a small 
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variation in the region of 6 to 10 seconds. The optimal window size that led to the highest 

prediction accuracy was 7 seconds. By increasing the window size to greater than 10 seconds, a 

gradual decrease of prediction accuracy was observed. The same trend is true for identifying low, 

medium, and high stress levels. Figure 6.7 shows the accuracy of the classifier with different 

window sizes. 

 

Figure 6.7 The accuracy of classifications with varying window sizes. 

Upon further investigation of the predicted classes among different subjects, the authors 

noticed the highest number of high stress level data points was predicted for subjects 6 and 7. 

Subject 6 was an ironworker, and subject 7 was a plumber; both worked in an outdoor environment. 

This finding may be explained by the fact that these subjects were relatively younger compared 

with other subjects with low work experience (1 year). This finding agrees with Humpel and Caputi 

(2001), who showed that there is a significant correlation between levels of work stress and years 

of experience. This finding shows the potential of the proposed physiological signal-based stress 
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recognition framework to identify workers stress with different characteristics (e.g., years of work 

experience, age, trades, etc.). 

A few studies, including the authors’ previous studies attempted to recognize workers 

mental status by analyzing the pattern of Electroencephalography (EEG) (Chen et al. 2017a; b; 

Hwang et al. 2018b; Jebelli et al. 2018c; b). EEG measures the electrical activity of the brain 

recorded from the scalp by EEG electrodes placed on the scalp. EEG capture the action potential 

of the neurons in the brain, which are associated with individual stress (Hosseini and Khalilzadeh 

2010; Lopez-Duran et al. 2012; Seo and Lee 2010). The results of the current study outperform 

prior studies that have recognized workers’ stress by examining  patterns of EEG while exposed 

to various stressors e. A possible explanation for this result may be the higher quality of 

physiological signals collected from a wristband type sensor compared with the brainwaves 

collected from a wearable EEG headset. Despite all physiological signals being subject to extrinsic 

signal artifacts (e.g., device wire noise, environmental noise, etc.), in addition to these extrinsic 

signal artifacts, EEG signals are sensitive to intrinsic signal artifacts (e.g., vertical eye movement, 

eye blinking, etc.) (Jebelli et al. 2017). Another reason EEG-based stress recognition has led to 

lower stress recognition accuracy is that collecting physiological signals with a wristband type 

sensor is more convenient; therefore, the size of the training dataset for examining the performance 

of the proposed framework was significantly larger compared with the dataset used for examining 

the performance of the EEG-based stress recognition in the authors’ earlier work (Jebelli et al. 

2018b; c; d; e). 

6.6 Conclusions 

This study set out to develop and validate a framework with which to recognize construction 

workers’ stress using physiological signals collected from a wristband type biosensor by applying 
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a supervised learning algorithm. The performance of the proposed framework was examined using 

physiological signals collected from ten construction workers in the field. A stress prediction 

accuracy of 84.48% was achieved for distinguishing low and high stress levels, as well as an 

accuracy of 73.28 % for distinguishing low, moderate, and high stress levels.  
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Chapter 7: 

Wristband-Type Wearable Biosensor to Assess Construction Workers’ 

Physical Demand6 

7.1 Introduction 

Construction is a $1,006.1 billion industry in the United States, employing 11 million workers 

(CPWR 2018). Construction is very labor intensive, including physically demanding and repetitive 

manual tasks (Ng and Tang 2010). Nearly 40% of the U.S. construction workforce experiences 

severe fatigue, which could result in devastating impacts on worker safety, productivity, and 

general well-being (Ricci et al. 2007). Because of long working hours, unpleasant working 

conditions, and heavy workloads, the adverse effects of fatigue can be exacerbated (Abdelhamid 

and Everett 2002; Hallowell and others 2010; Sluiter 2006; Toole 2005). Therefore, a large number 

of construction workers suffer from significant levels of fatigue that can increase error rates and 

cause unsafe actions (Sluiter 2006). Excessive fatigue may also cause work-related 

6 This chapter is adapted from Jebelli, H., Choi, B. and Lee, S. (2019) “Application of Wearable Biosensors 

to Construction Sites.  Part II: Assessing Workers’ Physical Demand.” Journal of Construction Engineering 

and Management, (accepted). 
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musculoskeletal disorders (WMSDs) and productivity loss (Hallowell and others 2010; Sluiter 

2006; Toole 2005). 

Fatigue has been defined as a decline in the ability of a person to maintain his or her normal 

level of performance (Edwards 1981). This definition is more complicated due to the various 

physiological (e.g., muscle contractile process that happens in muscle fibers) and psychological 

(e.g., neuromuscular fatigue process that happens in motor cortex area of the brain) phenomena 

contributing to it. During physical activities, fatigue is associated mainly with the intensity of tasks, 

measured as physical demands (Frone and Tidwell 2015). To prevent the potential risks of physical 

fatigue, evaluating the level and duration of high physical demands resulting from planned tasks 

should take precedence. As such, there has been significant research to assess worker fatigue prior 

to work through the development of subjective fatigue assessments to measure perceived fatigue 

levels (Arellano et al. 2015; Borghini et al. 2014; Debnath et al. 2015; Dittner et al. 2004; Fang et 

al. 2015; Lu et al. 2017; Zhang et al. 2015), empirical assessments (e.g., regression equations) and 

theoretical models of endurance using physiological or mechanical mechanisms (e.g., 

mathematical equations) along with simulation-based assessment of workers’ fatigue under 

varying degrees of work intensity (Abdous et al. 2018; Garcia 2018; Liu et al. 2002; Ma et al. 2009; 

Perez et al. 2014; Seo et al. 2015, 2016; Xia and Law 2008). 

However, any subjective assessment of worker fatigue has two important limitations for the 

field. First, these methods rely on workers’ internal perception and their previous experience and 

are subject to strong biases. Second, stopping workers during their tasks to have them fill out 

fatigue questionnaires interrupts their work. On the other hand, the empirical estimation and 

theoretical models of worker fatigue do not have the limitations of subjective methods. However, 

they are limited to individual factors (the body's capabilities, age, experience, varying trades, etc.) 
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and site conditions (temperature, humidity, differences from indoor to outdoor, etc.) that can affect 

workers’ physical demands. Each worker is unique with different personal characteristics (e.g., 

age, experience, physiological characteristics, gender, etc.) and therefore workers do not respond 

the same to a certain task. For instance, the same tasks that require a low physical demand for one 

worker may cause a higher physical demand for another worker, or even for the same worker in a 

different environment (Gatti et al. 2014; Hwang and Lee 2017; Mohamed and Alginahi 2009). As 

such, in order to appropriately assess each worker’s physical demands, rather than how much the 

task physically demands, to what extent the worker responds to the task is more important and 

indeed, accurately reflect the required physical demands for the worker.   

To address these limitations, quite recently, a few researchers have been trying to assess 

worker physical demands by examining the changes in physiological signals under various 

conditions (Aryal et al. 2017; Hwang and Lee 2017). Aryal et al. (2017) showed the potential for 

skin temperature and heart rate in measuring physical fatigue under room temperature in a 

laboratory setting. Hwang and Lee (2017) recorded heart rate with a smartwatch and showed the 

potential of measuring the percentage of heart-rate reserve (%HRR), a metric calculated from the 

heart rate, to distinguish different levels of physical demand. Although the heart rate, skin 

temperature, and percentage of HRR confirmed the potential of physiological signals to determine 

individual physical demand for relatively a long period of time from days to weeks, they are not 

enough when it comes to continuous physical demand identification of workers with different 

characteristics (e.g., work experience, physical and mental health status) while performing several 

tasks in short time interval in the field. A range of physiological signals is necessary to identify 

physical demand due to changes in physiological signals among different subjects performing 

tasks under different conditions.  
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To address this problem, this chapter aims to develop and validate an automatic and 

noninvasive method for continuous monitoring and recognition of physical demand during on-site 

work. To accomplish this, a machine-learning model is trained on various physiological signals, 

such as photoplethysmogram (PPG), electrodermal activity (EDA), and skin temperature (ST), to 

recognize physical demand. The physiological signals were acquired using a wearable, wristband-

type biosensor that is capable of acquiring a wide range on physiological signals simultaneously 

without interrupting worker ongoing task. The signal quality was improved by reducing signal 

artifacts with various filtering methods (e.g., bandpass, rolling, notch, and Hampel filter). To 

recognize the changes in physiological signals at various construction sites, a broad range of 

features in physiological signals were extracted in the time domain and frequency domain. Then, 

a Gaussian kernel support vector machine (SVM) is applied to train the machine-learning model. 

Worker energy expenditure (EE), which represents the rate of energy required to carry out a 

physical activity (Westerterp 2013), was used as a baseline to label different tasks for different 

workers as low, moderate or high physical-intensity activities. 

7.2 Method 

7.2.1 Data collection procedure and working conditions 

To measure workers’ physical demand in the field based on physiological signals from a 

wristband-type biosensor, I conducted a field data collection. Workers’ physiological signals were 

collected from 10 workers at two construction sites, including four workers (two carpenters and 

two electricians) working at an indoor construction site in Gary, Indiana, and six (two ironworkers, 

two plumbers, and two concrete workers) at an outdoor construction site in Cincinnati, Ohio. Data 

collection was approved by the University of Michigan’s Institutional Review Board. All subjects 

were informed about the data-collection procedures, and they were given enough time to get 
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familiar with the wristband-type biosensor before data collection. The subjects were told they 

could stop being a part of the data collection without offering an explanation. Also, they were 

informed that data collected did not contain personal information and will not be shared with their 

companies. None of the subjects reported any physical or physiological problems that would affect 

their work performance. Table 1 summarizes demographic information on the subjects. 

Table 7.1 Description of subject information. 

 
Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Working Experience 

(years) 

Mean 35 179.9 91.6 10.7 

SD 7.8 6.8 14.1 8 

Min value 23 165 65 1 

Max value 50 189 117 25 

 

As shown in A in Figure 7.1, an off-the-shelf wearable biosensor (E4 wristband of Empatica 

Inc, Cambridge, MA, USA) was used to collect workers’ PPG, EDA, and ST signals. These were 

obtained simultaneously at the highest recording rate (PPG at 64 Hz; EDA and ST at 4Hz) and 

highest resolution the biosensor could record (PPG at 09 nW/Digit, EDA at 900 pSiemens, and ST 

at 0.02 °C). Subjects were asked to perform daily tasks on a site while wearing a wristband-type 

biosensor. A member of the research team recorded their activities over a four-hour session. 

Subjects were video-recorded over a continuous session using a GoPro Hero+ camera (GoPro, Inc., 

San Mateo, CA, USA). The camera angle was chosen to provide a subject's full body motion from 

a third-view perspective, allowing detection of various body-part movement and type of activity 

(A in Figure 7.1). Common low-intensity activities were included but were not limited to standing 

and talking or performing light tasks with minimal body movement (B in Figure 7.1). Examples 

of common medium-intensity activities included but were not limited to: cleaning the construction 

site, finding tools, handling light material, and measuring and cutting sheets (C in Figure 7.1). 
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Examples of common high-intensity activities included handling plasterboard, installing drywall, 

and moving heavy material (D in Figure 7.1). Data labeling will be discussed in more detail in the 

next section. 

 

 

Figure 7.1 Physiological signal collection in the field to recognize worker physical demand. 

7.2.2 Workers’ Physical Demand Labeling 

Energy expenditure is defined as the required amount of energy the body needs to carry out a given 

activity (Klaman et al. 2000). It is associated with individual physical activity and demand levels 

(Dannecker et al. 2013; Pinheiro Volp et al. 2011; Plasqui et al. 2005). To understand the patterns 

of physiological signals among subjects who experienced different levels of physical demand, it 

is essential to provide data (physiological signals) with a known level of physical demand (labels). 

Therefore, to label subjects’ physical demand, I measured worker energy expenditure while 

subjects were performing various tasks. To calculate energy expenditure, I used an energy 

expenditure prediction program (EEPP), a tool developed by the University of Michigan at the 

Moderate Physical Intensity ActivitiesC

Low Physical Intensity ActivitiesBMonitoring WorkersA

High Physical Intensity ActivitiesD
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Center for Ergonomics at the University of Michigan College of Engineering (available at: 

https://c4e.engin.umich.edu/tools-services/eepp-software) to estimate the energy expenditure rates 

for different tasks based on industrial ergonomics (Alexander 1986; Section and Group 1986) and 

work physiology (Bink 1962; Bonjer 1962). EEPP estimates metabolic energy expenditure rates 

for complex tasks by breaking them down into a number of simple activities and integrating the 

energy required of each of them. EEPP has been used widely in various domains to evaluate 

physical workload for different tasks and to gauge the physical demand of subjects (Çakıt 2016; 

Chagnon 2017; Martin et al. 2018; Waters et al. 1998). 

I video recorded workers’ activities, then simulated each while performing different tasks 

in EEPP.  After that, the energy expenditure rate for different tasks (EEactive) was calculated in 

kcal/min. Resting energy expenditure (EErest) was calculated for each subject using EEPP based 

on workers’ personal characteristics (e.g., gender, height, weight, and physical form). Based on 

the subjects’ energy expenditure, physical activity was measured using the metabolic equivalent 

of task (MET), the ratio of energy expenditure during an activity to resting energy expenditure 

(MET= EEactive/EErest). MET is the energy required of a given physical activity. Based on the 

MET for different workers and tasks, workers’ activities were sorted into three classes of activity: 

low intensity (MET < 3), moderate intensity (3 < MET < 6), and high intensity (MET > 6) (U.S. 

Department of Health and Human Services 2008). Low-intensity activities included standing and 

talking with others during break and performing light tasks with minimal body movements (B in 

Figure 7.1). Medium-intensity activities included cleaning the construction site, finding tools, 

handling light material, and measuring and cutting sheets (C in Figure 7.1). High-intensity 

activities included handling the plasterboard, installing drywall, and moving heavy material (D in 

Figure 7.1). Figure 7.2 shows the subjects’ physical activity levels performing different tasks in 
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these classes. Wilcoxon-signed rank tests confirmed there is a significant difference in the subjects' 

levels of physical activity among three different classes (p-value=0.015 between low and moderate, 

and p-value=0.020 between moderate- and high physical-intensity activities; significance 

level=0.05). 

 

 

Figure 7.2 Subjects’ physical activity levels under different conditions. 

7.2.3 Physiological Signals Analysis 

Figure 7.3 shows an overview of the procedure to recognize worker physical demand based on 

physiological signals collected from a wristband-type biosensor. After such signals were collected, 

physiological signal artifacts were reduced by applying various filtering methods. After that, a 

range of physiological-signal features was extracted in the time and frequency domains. At the 

end, a supervised-learning algorithm (Gaussian kernel SVM) was trained to recognize worker 

physical demand. Detailed explanations of each step are provided in the following sections. 
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Figure 7.3 An overview of physical demand levels based identification of physiological signals. 

7.2.3.1 Artifacts Removal 

An essential step before analyzing biosignals, particularly collected from the field, is reducing 

signal artifacts (Jebelli et al. 2017, 2018c; Jebelli and Lee 2018). Although a wristband-type 

biosensor is designed to capture various biosignals, it also captures a significant amount of 

unwanted and unknown signals (e.g., noises from body and sensor movements, its power-line, and 

environmental noise) that disturb the signal of interest (Jebelli et al. 2018a; Mishra and Singla 

2013; Sweeney et al. 2012). To reduce these artifacts, I applied various filtering and outlier 

removal methods, outlined in Table 2. Details of the artifacts-removal process can be found in 

chapter 6. 
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Table 7.2 Filters applied to reduce noise and artifacts from physiological signals. 

Physiological 

Signal 

Desired Signal 

Frequency Range 

Filtering 

Methods 
Filter Design 

PPG 0.5 to 5 Hz 

Bandpass 
the low cut-off frequency of 0.5 Hz and 

higher cut of the frequency of 5 Hz 

Hampel 

An outlier detection procedure design 

based on the PPG signal medial value 

from the moving data widow described in 

(Davies and Gather 1993) 

Notch at 60-Hz 

EDA 0-0.1.5 Hz 

Low pass the low cut-off frequency of 1.5 Hz 

Hampel 

An outlier detection procedure design 

based on the EDA signal medial value 

from the moving data widow described in 

(Davies and Gather 1993) 

Notch at 60-Hz 

ST >0.05Hz 

Highpass the high cut-off frequency of 0.05 Hz 

Hampel 

An outlier detection procedure design 

based on the ST signal medial value from 

the moving data widow described in 

(Davies and Gather 1993) 

Notch at 60-Hz 

7.2.3.2 Feature Extraction and Selection  

After reducing signal artifacts, I extracted various features from physiological metrics to assess 

physical demand. A feature is defined as a measurable attribute of the input variable (Guyon and 

Elisseeff 2006). In this study, the input variables are different physiological signals, and features 

are the metrics that represent the patterns of physiological signals. To study the patterns of 

physiological signals while subjects were performing different tasks that require various physical 

demand levels, I extracted both time and frequency domains features. Time domain features are 

mostly statistical metrics related to signal amplitude. Time domain features provide rich temporal 

detail on the physiological signals (Jebelli et al. 2018b; Jerritta et al. 2011; Kim et al. 2004; Tkach 

et al. 2010). However, if the signal is represented only by its time domain features, different events 

occurring at the same time cannot be captured. In order to obtain these events, I considered 
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frequency domain features as well. After extracting a range of features, I applied a wrapper method 

(Kohavi and John 1997) to select features pertinent to physical demand. The wrapper method runs 

the learning algorithms on various subsets of features and selected one that led to the highest 

prediction accuracy. The features that resulted in the highest prediction accuracies were selected 

after applying a wrapper-based method. Selection of the relevant features are essential not only 

because they affect the time and cost of the model's prediction of physical demand (Kira and 

Rendell 1992a), but they also improve its accuracy (Kira and Rendell 1992b). Table 7.3 shows 

features extracted and selected from physiological signals in time and frequency domains. 

Table 7.3 Algorithms to recognize individual’s stress in the real-time 

Domain Signal Metrics 

Time 

Domain 

PPG 

Heart Rate (HR)*, Inter-beat-Interval (IBI), Heart Rate Variability 

(HRV)*, and Heart Rate Reserve (HRR)*, Cumulative Maximum, 

Cumulative Minimum, Mean Value*, Variance*, Median Value, 

Smallest window elements, Maximum-to-minimum difference, Root-

mean-square level, Peak-magnitude-to-RMS ratio, Root-sum-of-

squares level, Variance*, Peak*, Peak location, Peak to Peak, Kurtosis, 

Total zero cross number. 

EDA 

Electrodermal Level (EDL)*, Electrodermal Response 

(EDR), Cumulative maximum, Cumulative minimum, Mean value*, 

Variance, Median value, Smallest window elements, Maximum-to-

minimum difference, Root-mean-square level, Peak-magnitude-to-

RMS ratio, Root-sum-of-squares level, Standard deviation, Variance, 

Peak, Peak location, Peak to Peak, Kurtosis, Total zero cross number 

ST 
Average of skin temperature*, Variation of the ST amplitude*, The 

rate of changes in ST amplitude in each window* 

Frequency 

Domain 

PPG 

Median frequency*, mean frequency*, Power Spectra Density*, 

Mean Power of Low-Frequency Band (0.5-1.00 Hz)*, Mean Power of 

the High-Frequency band (4.00-5.00 Hz)*, Peak Power of Low-

Frequency Band (0.5-1.00 Hz), Peak Power of High-Frequency band 

(4.00-5.00 Hz) 

EDA 
Median frequency, mean frequency*, Power Spectra Density, Peak 

Power 

ST 
Median frequency*, mean frequency, Power Spectra Density, Peak 

Power 

*Selected features after applying a feature selection method (wrapper method). 
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7.2.3.3 Supervised Learning-based Classification 

After extracting a broad range of physiological-signal features and selecting the most relevant from 

the 40 hours of signals that were collected from 10 workers, a total of 9,216,000 data points. I 

applied various supervised-learning algorithms (e.g., k-nearest neighbor, multi-layer perceptron, 

decision tree, linear-support vector machine, non-linear-support vector machine with different 

kernel functions); all of the algorithms have been used widely in the clinical domain to assess 

individual physical status (Boostani and Moradi 2003; Patel et al. 2011; Su et al. 2007; Subasi and 

Kiymik 2010; Tapia et al. 2007; Wu et al. 2012). After an initial analysis, Gaussian kernel SVM 

led to the optimal classification performance of a 90% testing accuracy, compared with other 

supervised learning algorithms: 76% for k-NN; 71% for GDA; 81% for Linear SVM; 83% for 

Cubic SVM; and 84 % for Quadratic SVM. SVM separates data points of different classes by 

creating a hyperplane to maximize the margins between different classes (Burges 1998; Hearst et 

al. 1998). Initially, SVM is a binary (two-class) classifier. The typical technique for multi-class 

classification problem is to build a SVM classifier for any pair of the labels and select a class 

which is chosen by the majority of classifiers (Franc and Hlavác 2002). The two-class SVM is 

found by soliciting the optimization problem, 𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
||𝒘||2 +

𝐶

𝑛
∑ 𝜉𝑖

𝑛
𝑖=1 , s.t., 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 −

𝜉𝑖 , 𝑖 = 1, … , 𝑛  𝑎𝑛𝑑 𝜉𝑖 ≥ 0 , 𝑖 = 1, … , 𝑛 . Where (𝒙1, 𝑦1), (𝒙2, 𝑦2), ⋯ , (𝒙𝑛, 𝑦𝑛)  are the training 

data points and 𝐶 is the user-specified tuning parameters that moderate the effect of the outliers on 

the training classifier. 𝜉𝑖 is defined as the slack variable that determines the soft-margin hyperplane 

classifier. If the solution to the above optimization problem is (𝑤∗, 𝑏∗), then linear SVM classifier 

is 𝑓(𝑥) = (𝒘∗)𝑇𝑥 + 𝑏∗. In some cases, due to the complexity of the signal patterns, an optimum 

separable hyperplane in linear space cannot be formed. To solve this problem, a non-linear SVM 

maps the feature vector to a richer feature space using a mapping function (Cristianini et al. 2000; 
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Scholkopf and Smola 2001). If the mapping function is denoted by 𝜙(𝑥), kernel function 𝐾(𝑥, 𝑥′) 

is defined by 𝐾(𝑥, 𝑥′) = < 𝜙(𝑥), 𝜙(𝑥′) > =  𝜙(𝑥)𝑇𝜙(𝑥′) . After examining various kernel 

functions – such as the polynomial kernel, Gaussian radial basis function (RBF), Laplace RBF 

kernel, hyperbolic tangent kernel, sigmoid kernel, Bessel function of the first kernel, ANOVA 

radial-basis kernel, linear-splines kernel in one-dimension– a Gaussian radial-basis-function 

(RBF) kernel was selected as the optimal function. A Gaussian radial basis function (RBF) kernel 

is defined 𝐾(𝑥, 𝑥′) = exp(−
||𝑥−𝑥′ ||2

2𝜎2  ) where 𝜎 is a free parameter and was carefully chosen to 

maximize the accuracy. To validate the model, a 10-fold cross-validation was used to examine the 

predictive performance of the model on a new dataset. Each subjects’ dataset was performed to 

one of the 10-folds. Therefore, a 10-fold per-subject, cross-validation was used to confirm that the 

proposed model generalizes well to other subjects. To ensure the framework was independent of 

the data order, the data is permuted over each run, that is, uses a different subject each time. 

7.3 Results 

7.3.1 Classifying Low- and High-Physical Demand Levels 

To examine the performance of the proposed procedure in recognizing workers’ physical demands 

in the field, I applied the proposed procedure to the physiological signal dataset. To distinguish 

two levels of physical demands (low and high), the proposed framework led to a prediction 

accuracy of 90 percent. A in Figure 7.4 shows the performance of the framework in two dimensions 

after applying a principal-component analysis to cut the feature vector into two unitless dimensions. 

In this figure, the background shows the area that is predicted by the trained Gaussian kernel SVM 

and the data points. It illustrates the actual labels (low- or high-physical demand) of the data points. 

To examine the performance of the framework so as to recognize all relevant levels of physical 

demand within the dataset, the confusion matrix set up to recognize low and high physical demand 
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is shown in B in Figure 7.4. According to the results, the framework achieved a sensitivity of 86% 

and precision of 93% to recognize high physical demand and 87% sensitivity and 94% precision 

to recognize low physical demand. 

 

Figure 7.4 Performance of the proposed physiological signal-based, physical-demand recognition 

to classify low and high physical demand. (a) Visualization of the classifier; (b) confusion matrix 

7.3.2 Classifying Low- and High-Physical Demand Levels 

To examine the effectiveness of the proposed procedure so as to recognize different levels of 

physical demand, a multi-class SVM was trained by labeling worker activities into three classes 

(low, moderate, and high-intensity activities). The prediction accuracy of the proposed framework 

to classify these three categories was 87% (A in Figure 7.5). B in Figure 7.5 shows the confusion 

matrix of the model predicting low, moderate, and high physical demand. According to the result, 

the framework achieved 93% sensitivity and 82% precision to recognize high physical demand, 

79% sensitivity and 87% precision to recognize moderate physical demand, and 88% sensitivity 

and 93% precision to recognize high physical demand. 

 

A

True

Negative =

0.43

False

positive =

0.03

Low

Intensity

High

Intensity

L
o

w
 

In
te

n
si

ty

H
ig

h
 

In
te

n
si

ty

Target Class

P
re

d
ic

te
d
 C

la
ss

False negative 

=

0.07

True

positive =

0.47

Sensitivity = 0.87

False negative 

rate = 0.12

False positive 

rate = 0.06

Sensitivity = 0.93

precision = 0.94

False discovery = 

0.06

precision = 0.86

False omission 

rate = 0.14

Accuracy = 

0.90

Predicted Light Intensity

Predicted High Intensity

Actual Light Intensity

Actual High Intensity

1st PCA Component (unitless)

2
n

d
P

C
A

 C
o

m
p
o

n
en

t 
(u

n
it

le
ss

)

B



222 

 

 

Figure 7.5 Performance of the proposed physiological signal-based physical demand recognition 

to classify low and high physical demand. (a) Visualization of the classifier; (b) confusion matrix 

7.3.3 Optimal Window Size 

To capture the patterns of physiological signals, the signals were divided into segments of data 

that refer to the window. To determine the impact of the window size on classification accuracy, I 

trained and tested different Gaussian kernel SVMs and varied the window size each time. Figure 

7.6 shows the accuracy of the classifier with different window sizes. According to the results, the 

optimal window size was 30 seconds for distinguishing between low and high physical demand 

and 35 seconds for distinguishing between low, moderate, and high physical demand. As pointed 

out in chapter 6, the optimal window size with which to recognize worker mental stress, based on 

their physiological signals, is 7 seconds. Comparing the results shows that a longer period is 

needed to recognize physical demand.  
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Figure 7.6 The accuracy of physical-demand recognition with varying window sizes. 

7.4 Discussions 

The results of this study confirmed the potential of the proposed procedure for assessing physical 

demand in the field. These results can be compared to the findings of those of (Aryal et al. 2017), 

who achieved a recognition accuracy of 80.60%, the highest, to classify fatigue levels using heart 

rate and skin temperature in a lab environment, not at real sites. There are several possible 
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type of the data that was used to train a machine-learning model. Aryal et al. (2017) used a limited 

number of features, mostly in the time domain extracted from skin temperature and heart-rate data, 

to train a model. However, in this study, I extracted a broad range of features from EDA, PPG, and 

ST signals. In addition, in the current study I considered frequency domain features (median 
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features. Frequency-domain features provide essential information on the patterns of physiological 

signals (Kim et al. 2004), which will lead to an improvement in the prediction accuracy of the 

classifier. Besides the number and types of the extracted features, it is noteworthy that the proposed 

framework applied a feature-selection algorithm to select the most relevant features. Another 

possible explanation for better performance of the proposed framework may be due to the labeling 

process. Aryal et al. (2017) used a questionnaire (Borg’s RPE) to assess fatigue level. Subjective 

assessment of fatigue level was limited by personal sensations and affected by previous experience 

(Breukink et al. 1998; Minton and Stone 2008). In this study, physical demand was gauged using 

an energy-expenditure prediction (EEPP). Labeling worker activity based on their energy 

expenditure reduces the risk of mislabeling the data and improved the prediction accuracy of the 

model. 

Four different Gaussian kernel SVMs were trained to examine the importance of different 

physiological signals to identify physical demand levels, and each time features of one 

physiological signal were excluded. According to the results, the features that were extracted from 

the EDA signal were not among the top features to recognize physical demand. In other words, the 

results showed that EDA might not be an appropriate physiological signal for physical demand. 

There are two possible explanations. First, EDA measurement depends on the activity of the 

eccrine glands (Krapohl and Shaw 2015). Eccrine glands can be activated by the sympathetic part 

of the autonomic nervous system, which are mainly influenced by mental stress (Dawson et al. 

2007). The second possible explanation is that while one primary function of sweat glands is 

thermoregulation, keeping the body within a specific temperature range during physical activity, 

sweat glands in wrist skin are less involved in thermoregulation than in stress-related responses 

(Sano et al. 2014). According to Figure 7.7, a significant drop in the prediction accuracy of the 
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model comes from eliminating the PPG- and ST-based parameters to assess workers’ physical 

demands. These results are consistent with those of other studies and suggest that that skin 

temperature and cardiac activity can be related to various levels of physical activity (van Marken 

Lichtenbelt et al. 2006; Mikus et al. 2012). 

 

 

Figure 7.7 Classification of performance of physical-demand recognition using different 

physiological signals. 

As an example of implementation of the proposed framework in the field, I examined the 

variations in high physical demand among different subjects to assess the effect of worker 

characteristics (in particular, trades and experience) and job environment (indoor or outdoor) on 
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with the highest percentage of high physical demand. This finding was expected due to the working 

demands of ironworkers and concrete laborers, who frequently have to use muscles to lift, push, 

pull, or carry heavy objects. A comparison of the percentage of high physical demand levels of 

experienced workers (more than five years of work experience) and non-experienced group (less 

than five years of work experience) reveals that experienced workers have a lower percentage of 

high physical demand. The finding is consistent with findings of Madeleine and Madsen (2009), 

which showed more time and body movement are needed for a worker with less experience to 

perform a task. In addition, Lee et al. (2014) confirmed that novices and experienced workers adapt 

to high physical demanding activities differently.  

 

Figure 7.8 The percentages of data points predicted as high physical demand in different trades 

and in non-experienced and experienced workers. 
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Although this study has successfully demonstrated the application of the proposed 

framework to the physical demands of workers with different characteristics (e.g., years of work 

experience and trades), the reader should bear in mind that the primary objective of this chapter 

was to develop a physical demand identification framework, not provide a detailed investigation 

of changes in workers’ physical demands while they perform different tasks. As such, future 

research should perform a more detailed comparison of different trades using a more extensive 

database. The present study, along with chapter 6, confirmed the potential of physiological signals 

from a wristband-type biosensor to identify worker stress and physical-demand levels. However, 

more research on this topic needs to be undertaken before the association between worker physical 

and mental stress is more clearly understood. In addition, it is expected that future research will 

reach a higher physical- demand prediction accuracy by training the proposed framework on a 

dataset with a larger number of subjects with more diverse personal characteristics (e.g., age, work 

experience, and physical health), as well as considering organizational factors (e.g., crew, trade, 

and site conditions). Further research should investigate the performance of deep learning-based 

algorithms for improving the prediction accuracy of physiological signal-based recognition of 

physical demand. In future research, the use of an enhanced feature vector could be a means of 

achieving higher prediction accuracy. 

7.5 Conclusions 

The purpose of this study was to develop an automatic framework that could recognize 

construction workers' physical demand levels using physiological signals from a wristband-type 

biosensor while performing various tasks at construction sites. To examine the performance of the 

proposed framework, 40 hours of physiological signals were collected from 10 construction 

workers at two sites. This study has shown that the framework achieves an accuracy of 90% for 
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physical demand recognition in distinguishing low and high levels, and an accuracy of 87% for 

distinguishing low, moderate, and high levels. Chapter 6 examines the potential of physiological 

signals collected from a wristband-type biosensor to assess worker mental stress. Taken together, 

these results indicate the potential physiological signals collected from a wristband-type to assess 

worker stress and physical demand levels. The proposed physiological signals-based physical 

demand recognition framework has the following two major contributions: (1) considering 

workers’ personal characteristics to identify their physical demand and (2) providing a method for 

continuous and noninvasive measurement of workers physical demands that can be used in the 

field. The proposed framework can be used as a means for early detection of stressors in the field, 

which will result in safer construction sites and healthier and more productive workers. It is 

recommended that further research should be undertaken to examine more closely the links 

between stress and physical demand.  
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Chapter 8: 

Conclusions 

8.1 Summary 

Construction is one of the most stressful occupations because it involves physiologically and 

psychologically demanding tasks performed in a hazardous environment. High occupational stress 

significantly affects one’s cognitive state, e.g., affecting attention and motivation, decision making, 

and risky or risk-avoidance behaviors. Such outcomes increase the likelihood of errors, incidents, 

and injuries, and are linked to stagnant and decreased productivity. Various survey instruments for 

measuring workers’ subjective assessments of mental and physical stress have been used, e.g., a 

perceived stress scale and a fatigue severity scale. Using these methods, we can document the 

subjects’ overall stress. However, they have several key limitations. They are subjective, invasive, 

and cannot be used for continuous stress monitoring. 

To address these problems, this research aims to promote safe construction sites and healthy and 

productive workers by developing measurable frameworks for continuous monitoring of workers’ 

mental and physical stress using noninvasive, low-cost, wearable biosensors. Considering this 

research goal, this research had five objectives: (1) to achieve high-quality physiological signals 

in the field; (2) to develop and validate a bipolar emotion model to quantify workers’ emotional 
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states; (3) to develop a procedure to automatically recognize workers’ stress in construction sites 

using EEG signals; (4) to develop and validate an EEG-based, stress-recognition framework that 

takes into account each subject’s brainwave patterns to train the stress-recognition classifier and 

continuously update this classifier based on new input signals in near real-time; and (5) to develop 

a framework for worker’s mental stress and physical-demand recognition using physiological 

signals collected from a wristband type biosensor. To achieve these objectives, this research 

focuses on evaluating the psychological and physical well-being of construction workers through 

the application of novel signal-processing, machine-learning, and computational methods for 

exploring and analyzing physiological signal patterns in the field by conducting three inter-related 

studies, summarized below: 

8.1.1 Capturing high-quality physiological signals in the field: 

Chapter 2 introduced a signal-processing framework that reduces interference by movements and 

environmental factors, as well as a worker’s physiological processes and physical activities, e.g., 

eye movement, blinking, and facial muscle activity. Filtering methods, e.g., bandpass filter, 

Hampel filter, and rolling filter, were used to removed extrinsic artifacts, while intrinsic artifacts 

were removed using an independent component analysis (ICA). This framework is validated by 

examining whether the brain activation (particularly by body movements) can be identified using 

the processed EEG signal applied to eight field workers’ under working (i.e., active) and non-

working (i.e., inactive) conditions. Specifically, mean power spectral density (PSD) of the EEG 

beta frequency range is calculated from electrodes near the motor cortex of the brain that controls 

voluntary movements. A significant difference in mean PSD in the beta frequency range between 

active and inactive conditions demonstrates that the processed EEG signal, based on the proposed 

framework, captures brain activation. The results show the potential of the proposed signal-
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processing framework to monitor workers’ brain-wave patterns in the field with a wearable EEG 

device, which opens the door to assessing workers’ psychosocial status in construction so that any 

psychosocial problems of workers can be investigated. This framework allowed us to achieve high-

quality physiological signals from wearable, wireless biosensors in the field. After testing it on 

workers at four different sites, the performance of the proposed frameworks was confirmed to 

produce high-quality signals, even in noisy environments. 

8.1.2 Assessing workers’ mental status in the field based on their EEG signals 

Chapters 3 – 5 developed a framework to recognize worker stress in an offline setting and in real 

time by applying multiple advanced signal-processing and machine-learning algorithms.  Chapter 

4 devised a way to apply supervised learning techniques, e.g., K-nearest neighbors, Gaussian 

discriminant analysis, and Support Vector Machines, to recognize worker stress facing various 

stressors in the field in the offline setting. Chapter 5 adapted online multi-task learning (OMTL) 

to interpret EEG data to measure stress in real time and for new stressful conditions. OMTL does 

not rely on predefined datasets or situations but adapts to new data in real time. For analyzing 

worker EEG activity, especially when their jobs put them in unexpected scenarios in real time, this 

is crucial. To examine these frameworks, brain waves of 11 workers were collected at four 

construction sites using an off-the-shelf wearable EEG. The results indicated that the proposed 

framework could identify stressful responses to workplace stimuli within an accuracy of 80.32% 

in offline, and 77.61% in real-time, settings. These results are competitive with other stress-

recognition algorithms, even those in the clinical domain, that use a wired EEG device in a 

controlled environment. Chapters 3 – 5 contribute to the body of knowledge on in-depth studies 

for understanding workers’ mental status in the field by providing a means to continuously and 

non-intrusively measure workers’ emotions and stress while they are working. The proposed 
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stress-recognition framework continuously updates its classifier and therefore contributes to stress 

recognition for new stressful situations beyond the range of pre-defined conditions in near real-

time, both in a controlled lab environment and at real job sites. In addition, the results demonstrate 

that the proposed field-stress recognition procedure can be used for the early detection of workers’ 

stress, which can contribute to improving workers’ safety, health, wellbeing, and productivity. 

8.1.3 Assessing workers’ mental and physical stress using other physiological signals 

collected from a wristband-type biosensor 

Chapters 6 and 7 develop a framework for continuous and automatic measurement of worker 

mental stress and physical demand by examining the changes in workers’ physiological signals 

collected from a wristband biosensor. These frameworks apply various filtering methods to reduce 

physiological signal noises and extract the patterns of physiological signals as workers experience 

various stress levels. Then, the frameworks learn these patterns by applying a supervised-learning 

algorithm. To examine the performance of the proposed framework, physiological signals were 

collected from 10 construction workers in the field. The proposed framework resulted in a stress-

prediction accuracy of 84.48% distinguishing between low and high stress levels, 73.28% 

distinguishing among low, medium, and high stress levels and a physical-demand prediction 

accuracy of 90% recognizing low and high physical-intensity levels and 87% for low, moderate, 

and high physical-intensity levels. The results confirmed the potential of the proposed framework 

for assessing workers’ stress and physical demand in the field. This study contributes to the body 

of knowledge on the in-depth understanding of construction workers’ stress and physical demand 

on construction sites by developing a noninvasive means for continuous monitoring and assessing 

workers’ stress using a convenient wristband biosensor. The proposed stress-recognition 

framework is expected to enhance workers’ health, safety, and productivity through early detection 

of occupational stressors on actual sites. 
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8.2 Contribution and Potential Applications 

The results of this study contributes significantly to the current body of the literature. First, it 

confirms the potential of using physiological signals of construction workers acquired from off-

the-shelf, wearable biosensors to gauge worker’s mental and physical stress. Second, the findings 

from this study provides new insights on construction worker safety and health through the 

noninvasive monitoring of worker stress. Furthermore, this study has practical implications as well. 

For instance, the proposed stress-recognition framework can be integrated with a collective sensing 

approach for the automatic and early detection of the stressors at construction sites. Also, findings 

from this study pave new directions for better management of different tasks. For example, by 

monitoring multiple workers’ stress levels in the field, tasks with a high potential for stress can be 

detected and eventually corrected. Another practical application of the proposed frameworks in 

this dissertation is for the continuous monitoring of individual workers’ mental and physical status 

and provide informative feedback (using their smartphone, smartwatch, or wearable sensor) when 

they are experiencing high mental or physical stress. Thereby, this research can contribute to 

enhancing worker health, safety, and productivity. 

8.3 Directions for Future Research 

This dissertation proposed frameworks to acquire high-quality physiological signals using 

wearable biosensors at construction sites and to recognize workers’ mental and physical status in 

the field. However, future research will be required to improve these frameworks and to explore 

other possibilities in greater details. It is expected that this dissertation will open several future 

research directions, as discussed below. 
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8.3.1 Further improving the quality of the physiological signal at construction sites. 

This dissertation dealt with several intrinsic (e.g., vertical eye movement, eye blinking) and 

extrinsic (e.g., movement, respiration, and use of muscles) signal artifacts that adversely affect the 

quality of the signal. However, future research is needed in this area to further improve the quality 

of physiological signals recorded in the field. For instance, it is recommended that future 

researchers apply a Dependent Component Analysis (DPA) method to find the correlation between 

various intrinsic signal artifacts in EEG recording. Moreover, as shown in Figure 8.1, there other 

sources of signal artifacts (e.g., respiration artifacts) that need to be considered when acquiring 

physiological signals. Therefore, further research should be pursued to investigate the effects of 

other intrinsic and extrinsic signal artifacts on physiological signals. 

 

Figure 8.1 The effects of respiration noise on EDA recording, adapted from (Boucsein 2012) 

8.3.2 Further improving the classification accuracy 

Future studies could improve the classification accuracy of the proposed frameworks by advancing 

the feature engineering step. For instance, future studies can examine the performance of more 

efficient feature extraction methods (e.g., autoencoder) to learn the patterns of physiological 

signals when subjects are exposed to stressors. In addition, there is abundant room for further 

Respiration Noise
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progress in determining the performance of the proposed stress recognition framework by 

integrating EEG and other physiological signals collected from a wristband-type biosensor (e.g., 

PPG, EDA, and ST). 

8.3.3 Exploring the effects of individual and organizational factors on workers’ mental and 

physical stress.  

Continuous measurement of workers’ mental and physical stress in the field can provide ample 

opportunities to reveal how workers’ mental and physical status varies in the workplace. 

Specifically, the future research directions can be extended to in-depth investigations of how other 

individual factors (e.g., age, training and experience, and physical health status) and organizational 

factors (e.g., trades, crews, and projects) affect workers’ mental and physical states with the larger 

number of subjects. It has been widely studied that combined effects of factors affecting human 

psychological states can be not merely additive, but also synergistic (i.e., more than additive) or 

antagonistic (i.e., less than additive) (Evans and English 2002; Sexton and Hattis 2007). Under 

numerous factors affecting emotions pervasive in construction sites, the interaction effects of such 

factors on emotions can be further studied in the field. In addition, continued measurement of 

emotions is expected to gradually minimize subjects’ bias, like the Hawthorne effect, if subjects 

become accustomed to the long-term measurement, which helps to overcome subjects’ possible 

bias caused by single emotional state measurement in this study. Also, future research should 

further examine the potential of the proposed stress-recognition frameworks to distinguish 

occupational stress and personal stress. 

8.3.4 Linking the changes in the physiological signals to occupational health and job 

This dissertation formed a basis for understanding workers’ mental and physical status under 

various conditions based on their physiological signals. However, further efforts are needed to link 
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the changes in these signals with job hazards. To what extent are changes in these signals related 

to occupational hazards? What is the relationship between physical and mental status? What about 

dehydration and heat stress?  How can these sensors work together as a unit to detect and localize 

occupational and health hazards and inform workers and infrastructure users? 

8.4 Concluding Remark 

In summary, this dissertation involves quantifying workers' physiological signal responses to 

stressors on site. It is expected that a better understanding of the causes of mental and physical 

stress contributes critically to enhancing the safety of construction sites and improving worker 

health and productivity. 
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APPENDICES 

Appendix A – EEG-based Workers’ Stress Recognition by Applying Neural Network7 

A.1. Overview 

A large number of construction workers are struggling with high stress associated with their 

perilous job sites. Excessive occupational stress can cause serious job difficulties by negatively 

impacting workers’ productivity, safety, and health. The first step to decrease the adverse 

outcomes of this work-related stress is to measure workers’ stress and detect the factors causing 

stress among workers. Various self-assessment instruments (e.g., a stress assessment questionnaire) 

have been used to assess workers’ perceived stress. However, these methods are compromised by 

several drawbacks that limit their use in the field. Firstly, these methods interrupt workers ongoing 

tasks. Secondly, these methods are subject to a high degree of bias, which can lead to inconsistent 

results. I’ earlier work attempted to address the limitations of these subjective methods by applying 

different machine learning methods (e.g., Supervised Learning algorithms) to identify the pattern 

of workers’ brain waves that is acquired from a wearable Electroencephalography (EEG) device, 

7 This appendix is adapted from Jebelli, H., Khalili, M., and Lee, S. (2019) “Mobile EEG-based Workers’ 

Stress Recognition by Applying Neural Network.” In Advances in Informatics and Computing in Civil and 

Construction Engineering, Springer, 173-180. 
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while exposed to different stressors. This research thus attempts to improve the stress recognition 

accuracy of the previous algorithms by developing an EEG-based stress recognition framework by 

applying two Learning Neural Networks (DNN) structures: a convolutional learning neural 

network (CNN) and a Fully Connected Neural Network. Results of the optimum DNN 

configuration yielded a maximum of 86.62% accuracy using EEG signals in recognizing workers’ 

stress, which is at least six percent more accurate when compared with previous handcraft feature-

based stress recognition methods. Detecting workers’ stress with a high accuracy in the field will 

lead to enhancing workers’ safety, productivity, and health by early detection and mitigation of 

stressors at construction sites. 

A.2. Introduction 

With 68% of construction workers suffering from high mental stress as a result of working in the 

industry, construction work is one of the most stressful occupations (Campbell 2006). Workplace 

stress is strongly associated with workers’  productivity, health, and safety behavior (Leung et al. 

2015). Therefore, it is critical to measure and characterize construction workers’ stress levels in 

the field, which can not only reduce their injuries, accidents, and errors but also improve their 

productivity and job satisfaction. 

Various instruments to measure workers’ stress have been used, but they either rely on 

imprecise memory and reconstruction of feelings in the past (e.g., stress assessment questionnaires) 

(Mucci et al. 2015) or interfere with workers’ ongoing work (e.g., biochemical measurement), 

which limits their use in the field.  One of the most reliable ways to assess stress is to examine the 

reflection of various stressors on brain activity (Al-shargie et al. 2015; Goodman et al. 2013). To 

measure this reflection, an Electroencephalogram (EEG) has frequently been used in clinical 

diagnosis and biomedical research (Al-shargie et al. 2015; Al-Shargie et al. 2017; Goodman et al. 
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2013; Hou et al. 2015). In spite of the fact that EEG holds promise as a means to assess individuals’ 

stress in the clinical domain, using traditional EEG devices to assess construction workers’ EEG 

signals while working on a construction site is impractical due to the wired connections and 

complicated settings of these devices. 

Due to recent technological advancements, wearable and wireless biosensors are readily 

available and have demonstrated a great potential to be used at construction sites to improve 

workers’ safety (Choi et al. 2019; Fardhosseini et al. n.d.; Fardhosseini and Esmaeili 2016; 

Habibnezhad et al. 2016; Lucky Agung Pratama et al. 2018; Ryu et al. 2018) , well-being, and 

health (Baghdadi et al. 2018; Hwang et al. 2016, 2018; Jebelli et al. 2014, 2015, 2016, 2017a, 

2018b, d, a; c; Kim et al. 2018; Nouredanesh et al. 2016; Yang et al. 2015). Wearable technology 

offers a less invasive method for assessing construction workers’ stress using their EEG signals, 

which remain independent of workers’ imprecise memories. Quite recently, I’ applied different 

signal processing and machine-learning techniques (e.g., Supervised Learning algorithms) to 

recognize construction workers’ stress by extracting a handcraft feature from EEG (Jebelli et al. 

2018c).  This research seeks to improve the stress recognition accuracy of the current frameworks 

by proposing a Deep Learning based stress recognition.  In this research, I examine two classes of 

Neural Network (NN) architectures models. First, a convolutional neural network (CNN) was 

trained to recognize workers stress based on their EEG signals. CNN was selected due to its high 

performance in Deep Learning based classification task. Then, I developed a Fully Connected 

Neural Network, based on the EEG signals that were collected at real construction sites.  

To examine the performance of the proposed Deep Learning based stress recognition 

framework, I collected EEG signals from 10 construction workers while performing different tasks 

in the field. Workers’ stress-related hormone (cortisol), which is a reliable method to assess human 
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stress (Levine et al. 2007), was measured using a saliva sample. Workers’ cortisol level was used 

to label different construction tasks as low or high stress. Recognizing workers’ stress with high 

accuracy is expected to improve the conditions of construction sites and workers’ well-being 

through the detection and mitigation of the stressors at construction sites. 

A.3. EEG-based Stress Recognition by Applying Learning 

Figure A.1 illustrates the overview of the proposed framework to recognize workers’ stress using 

their brain waves. As the first step, the workers’ brain waves were collected from 14 different 

locations of their scalp using a wearable EEG headset, which was fit into their safety hard hat. As 

mentioned earlier, workers’ cortisol level was measured as a ground truth to be used to label 

workers’ stress. Then, as the second step, a signal processing framework that was proposed in 

Chapter 2 was applied to enhance the quality of the EEG signal by reducing signal noises and 

artifacts. As the last step, two DNN structures (a Fully Connected Neural Network and a 

Convolutional Neural Network) were applied to recognize workers’ stress. 

 

Figure A.2 The Overview of a Neural Network (DNN)-based stress recognition framework using 

the EEG signals collected in the field. 
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A.3.1 EEG Signal Pre-processing: Artifacts Removal 

A large number of external and internal sources can contaminate the quality of EEG signals 

(Urigüen and Garcia-Zapirain 2015). In this regard, EEG signal artifacts can be divided into two 

groups: intrinsic signals artifacts, that come from the body itself (e.g., vertical eye movement, eye 

blinking) (Urigüen and Garcia-Zapirain 2015), and extrinsic signal artifacts, that come from 

external factors (e.g., movement, respiration, and use of muscles) (Jung et al. 1997; Kar et al. 2010; 

Shao et al. 2009).  EEG signal artifacts are more significant while collecting data at construction 

sites, due to the noisy sites environment and frequent body movement of the workers.  Therefore, 

it is essential to reduce EEG signal artifacts before analyzing data. To reduce EEG signal artifacts, 

I previously developed an EEG signal processing framework, which acquires high-quality EEG 

signals by removing the most common EEG signal artifacts from the EEG recorded using a 

wearable EEG device at the construction site (Jebelli et al. 2017b). The proposed framework in I’ 

former work, reduces both extrinsic and intrinsic artifacts in EEG signals. To reduce extrinsic 

artifacts from the EEG signals recorded in the real construction sites a 60 Hz low-pass filter, a 0.5 

Hz high-pass filter, and a notch filter with the cutoff frequency of 60 Hz were applied. To reduce 

intrinsic artifacts, I applied an independent component analysis (ICA). ICA is a computational 

method that has been commonly used in EEG research to remove intrinsic signal artifacts 

(Delorme and Makeig 2004; Vigário 1997; Zhukov et al. 2000).  ICA detects and removes the 

artifactual components from the EEG signal (Comon 1994) by separating the original signal into 

multiple components (Jung et al. 1997). 

A.3.2 Fully Connected Neural Network 

A Fully Connected Neural networks can be interpreted as a complex function which gets an input 

data, 𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑚] (e.g., EEG signals across different channels) and predicts the label of the 
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data as an output (e.g., different stress levels). Network layers and neurons make the structure of 

a Fully Connected Neural networks. The first hidden layer comprises of 𝑛 neurons and 𝑛 hidden 

variables (𝑦1, 𝑦2, ⋯ , 𝑦𝑛). Each edge between neuron 𝑥𝑖 and 𝑦𝑗 is associated with a weight value 

represented by 𝛼𝑖𝑗. The hidden variables (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) are calculated based on equation 1.  

𝑦𝑗 = 𝑓(∑ 𝛼𝑖𝑗𝑥𝑖
𝑚
𝑖=1 ) 𝑗 = 1,2, ⋯ , 𝑛, 𝑖 = 1,2, ⋯ , 𝑚           (1) 

Where 𝑓(. ) is an arbitrary function and usually is taken to be the sigmoid function. Similarly, 

the second hidden layer has 𝑟 neurons and 𝑟 hidden variables (𝑧1, 𝑧2, ⋯ , 𝑧𝑟). Let 𝛽𝑖𝑗 denote the 

weight value between neuron 𝑦𝑖 and 𝑧𝑗 . Then, hidden variables of the second hidden layer are 

calculated using equation 2. 

 𝑧𝑗 = 𝑓(∑ 𝛽𝑖𝑗𝑦𝑖
𝑛
𝑖=1 )𝑗 = 1,2, ⋯ , 𝑟                                (2) 

Finally, the output 𝑢, which represents the predicted label (low or high stress) is calculated 

using equation 4. 

 𝑢 = 𝑓(∑ 𝛾𝑖𝑧𝑖
𝑟
𝑖=1 )               (3) 

Where, 𝛾𝑖 is the weight value of neuron 𝑧𝑖 and output 𝑢. After observing output 𝑢, if 𝑢 ≥ 0, 

we predict the label of the input data as 1 (high stress), otherwise the predicted label is −1 (low 

stress). In other words, the predicted label is 𝑠𝑖𝑔𝑛(𝑢). For training a neural network,  I applied a 

backpropagation algorithm (Hecht-Nielsen 1992) to find optimal weight values 𝛼𝑖𝑗  and 𝛽𝑖𝑗  and 𝛾𝑖 

based on the training data.  Fully Connected Neural Network in this research was modeled off-line 

using a custom developed software based on the Neural Network Toolbox provided by MATLAB. 

A MATLAB version 8.1.0.604 program was used for all of the computations. 

A.3.3 Convolutional Neural Network 

In addition to a Fully Connected Neural Network, I explored the capability of a Convolutional 

Neural Networks (CNN) to recognize workers’ stress using their EEG signals. Convolutional and 
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pooling layers are two essential types of layers that create the structure of a CNN. Convolutional 

layers extract the patterns of different blocks of the data around each window of the input signal. 

Then, pooling layers aim to reduce the risk of model overfitting and the computational cost and 

time of the model by decreasing the spatial size of the output of convolutional layers. Each 

convolution layer calculates the convolution of its input with a bunch of filters. Each filter defined 

as a 𝑝 × 𝑞 matrix. The convolution between input signal 𝐼 and filter 𝐹 is calculated using equation 

4. 

𝑂[𝑚, 𝑛] = (𝐼 ∗ 𝐹)[𝑚, 𝑛] = ∑ ∑ 𝐼[𝑚 − 𝑖, 𝑛 − 𝑗] ⋅ 𝐹[𝑖, 𝑗]q
𝑗=1

p
𝑖=1        (4) 

Where, 𝑂 is the convolution of 𝐼 and F.  I is the input signals (different EEG channels) and 

F is a filter. Notice that if 𝑚 − 𝑖 ≤ 0 or 𝑛 − 𝑗 ≤ 0, then 𝐼[𝑚 − 𝑖, 𝑛 − 𝑗] =  0.  

To learn complex EEG signal patterns, four blocks of the consecutive convolutional and 

pooling layers were used. Then, to classify the learned patterns, a softmax layer was added after 

convolutional and pooling layers. A fully connected network was used as the classification layer. 

The fully connected neural network tries to find the best classifier using extracted features by 

convolutional and pooling layers. In other words, convolutional and pooling layers helps classifier 

to extract features from neighboring pixels.  On the contrary, the softmax layer considers input 

data (all EGG channels) without emphasis on the patterns existing among neighbor pixels and data 

points.  Figure A.2 shows the architecture of the developed CNN in this research. The network 

was modeled off-line using a custom developed software based on an open source library (Keras-

toolbox) provided by Python. A Python version 2.7.11 program was used for all of the 

computations. 
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Figure A.3 Convolutional Neural Network Architecture to Recognize Construction Workers’ 

Stress Level based on Their EEG Signals. 

A.4. Experimental Setting 

To examine the performance of the proposed Learning-based stress recognition framework to 

recognize workers’ stress while exposed to different stressors at actual construction sites, I’ visited 

four different construction sites and recorded 10 construction workers’ brain waves using a 

wearable EEG headset. Subjects reported no mental disorders or history of epilepsy that could 

affect their brain waves. Subjects’ were asked to perform same tasks under low stress conditions 

(e.g., working on the ground level and working right after taking a break) (A in Figure A.3) and 

high stress conditions (e.g., working at the top of a ladder, working in confined space, and 

continuous work without taking a break) (B in Figure A.3). Before starting the data collection, all 
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the subjects were informed of the purpose and procedure of the data collection. Workers’ brain 

waves were collected across 14 different channels using a wearable EEG headset (C in Figure A.3). 

The data collection rate was set at 128 data per second, with the recording resolution of 14 bits 

with the connectivity at a 2.4 GHz band a dynamic range of 8,400 µV (peak to peak). Subjects’ 

actual stress was determined by measuring their cortisol level. Cortisol is known as stress hormone 

and is highly associated with subjects’ stress (Russell et al. 2012).  In this study subjects’ cortisol 

level was measured using the saliva sample (D in Figure A.3). Subjects’ cortisol level was used as 

a baseline to label their stress level as low or high while working in different conditions. 

 

Figure A.4 EEG data collection in field: (a) Low stress experimental tasks (e.g., working on the 

ground level and working right after break); (b) High stress experimental tasks (e.g., working at 

top of a ladder, working in a confined space, and working in dangerous environment); (c) Wearable 

EEG headset fit into worker’s safety hardhat; (d) Salivary cortisol samples kit. 

A B

C D
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A.5. Results and Findings 

I applied two proposed learning neural network on the data collected at actual construction sites. 

The result of this study shows that the proposed Fully Connected Neural Network led to an overall 

prediction accuracy of 86.62%. On the other hand, the Convolutional Neural Network model led 

to an overall prediction accuracy of 64.20%. 

Figure A.4 shows the stress recognition accuracy of the model under different network 

structures (different number of layers and neuron in the model). According to A in Figure A.4, a 

network with two hidden layers is preferable and will lead to the highest prediction accuracy and 

lowest computation cost as well. The result of optimizing the number of neurons in each layer 

show that selection of 83 neurons in the first layer and 23 neurons in the second layer will lead to 

the optimum network structure (B in Figure A.4). 

The present finding is promising, considering that highest EEG-based stress recognition 

prediction accuracy using supervised learning algorithms is around 80.00% by applying Gaussian 

Kernel Support Vector Machine (SVM) (Jebelli et al. 2018c). Also, the proposed learning-based 

stress recognition does not have the limitation of supervised learning algorithms (e.g., SVM and 

logistic regression), which are fundamentally a binary classifier and have not been standardized 

for dealing with multi-class problems, to identify multiclass classification (identifying different 

stress levels). 
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Figure A.5 Optimizing the architecture of Fully Connected Neural Network: (a) optimizing the 

number of layers in the network; (b) optimizing the number of neurons in each layer 

To further investigate the classification performance, the confusion matrices for training and 

testing steps of the proposed network are shown in Table A.1. In this table, each row represents 

actual labels (stress level) while each column corresponds to predicted labels. In addition to 

classifier accuracy, Table A.1 shows two critical parameters to further examine the performance 

of the classifier; accuracy and recall.  Precision is defined as the ratio of the number of correct 
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prediction to the total number of instances classified as positive (high stress) or negative (low 

stress). The recall represents the ratio of the number of correct predictions (correct high or low 

stress) to the total number of instances (total high stress or low stress). Both “high stress” and “low 

stress” labels achieved relatively high recall and precision, which shows the high performance of 

the performance in detecting both low stress and high stress conditions. 

Table A.1 Confusion matrices of training and testing steps. 

Training  Low Stress High Stress Recall 

Low Stress 2670 320 0.893 

High Stress 270 2740 0.91 

Precision  0.90 0.89 Accuracy: 0.90 

Testing  Low Stress High Stress Recall 

Low Stress 580 70 0.89 

High Stress 100 540 0.84 

Precision  0.85 0.88 Accuracy: 0.87 

 

A.6. Conclusion 

This study was undertaken to develop an EEG-based stress recognition framework by applying 

deep learning algorithms to recognize construction workers’ stress while performing different 

tasks at actual construction sites. This study showed the capability of a Fully Connected Neural 

Network to recognize workers stress with high accuracy. According to the results, the optimum 

network configuration to recognize construction workers’ stress requires two hidden layers, 83 

neurons in the first hidden layer and 23 neurons in the second hidden layer. Also, the proposed 

DNN based stress recognition eased the need for feature extraction and feature engineering, one 

the most time-consuming steps in the Supervised Learning algorithms. Besides, multi DNN based 

stress recognition is expected to be the ultimate classifier to recognize workers’ stress with high 

accuracy, particularly while dealing with different levels of stress, where most of the supervised 
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learning algorithms are limited to a binary classification setting. This study will serve as a basis 

for future studies to accurately identify different workers’ stress levels using their brain waves in 

the field. 

A.7. References 

Al-shargie, F., Tang, T. B., Badruddin, N., and Kiguchi, M. (2015). “Mental Stress Quantification 

Using EEG Signals.” International Conference for Innovation in Biomedical Engineering 

and Life Sciences, Springer, 15–19. 

Al-Shargie, F., Tang, T. B., and Kiguchi, M. (2017). “Assessment of mental stress effects on 

prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study.” 

Biomedical Optics Express, 8(5), 2583–2598. 

Baghdadi, A., Megahed, F. M., Esfahani, E. T., and Cavuoto, L. A. (2018). “A machine learning 

approach to detect changes in gait parameters following a fatiguing occupational task.” 

Ergonomics, 1–14. 

Campbell, F. (2006). “Occupational stress in the construction industry.” Berkshire, UK: Chartered 

Institute of Building. 

Choi, B., Jebelli, H., and Lee, S. (2019). “Feasibility analysis of electrodermal activity (EDA) 

acquired from wearable sensors to assess construction workers’ perceived risk.” Safety 

Science, 115, 110–120. 

Comon, P. (1994). “Independent component analysis, a new concept?” Signal processing, 36(3), 

287–314. 

Delorme, A., and Makeig, S. (2004). “EEGLAB: an open source toolbox for analysis of single-

trial EEG dynamics including independent component analysis.” Journal of neuroscience 

methods, 134(1), 9–21. 

Fardhosseini, M. S., and Esmaeili, B. (2016). “The impact of the legalization of recreational 

marijuana on construction safety.” Construction Research Congress 2016, 2972–2983. 

Fardhosseini, M. S., Esmaeili, B., and Wood, R. (2015). “A Strategic Safety-Risk Management 

Plan for Recovery after Disaster Operations. 

Goodman, R. N., Rietschel, J. C., Lo, L.-C., Costanzo, M. E., and Hatfield, B. D. (2013). “Stress, 

emotion regulation and cognitive performance: The predictive contributions of trait and 



262 

 

state relative frontal EEG alpha asymmetry.” International Journal of Psychophysiology, 

87(2), 115–123. 

Habibnezhad, M., Fardhosseini, S., Vahed, A. M., Esmaeili, B., and Dodd, M. D. (2016). “The 

relationship between construction workers’ risk perception and eye movement in hazard 

identification.” Construction Research Congress 2016, 2984–2994. 

Hecht-Nielsen, R. (1992). “Theory of the backpropagation neural network.” Neural networks for 

perception, Elsevier, 65–93. 

Hou, X., Liu, Y., Sourina, O., Tan, Y. R. E., Wang, L., and Mueller-Wittig, W. (2015). “EEG 

based stress monitoring.” Systems, Man, and Cybernetics, IEEE, Kowloon, China, 3110–

3115. 

Hwang, S., Jebelli, H., Choi, B., Choi, M., and Lee, S. (2018). “Measuring Workers’ Emotional 

State during Construction Tasks Using Wearable EEG.” Journal of Construction 

Engineering and Management, 144(7), 04018050. 

Hwang, S., Seo, J., Jebelli, H., and Lee, S. (2016). “Feasibility analysis of heart rate monitoring of 

construction workers using a photoplethysmography (PPG) sensor embedded in a 

wristband-type activity tracker.” Automation in Construction. 

Jebelli, H., Ahn, C. R., and Stentz, T. L. (2014). “The validation of gait-stability metrics to assess 

construction workers’ fall risk.” Computing in Civil and Building Engineering (2014), 

997–1004. 

Jebelli, H., Ahn, C. R., and Stentz, T. L. (2015). “Comprehensive Fall-Risk Assessment of 

Construction Workers Using Inertial Measurement Units: Validation of the Gait-Stability 

Metric to Assess the Fall Risk of Iron Workers.” Journal of Computing in Civil Engineering, 

30(3), 04015034. 

Jebelli, H., Ahn, C. R., and Stentz, T. L. (2016). “Fall risk analysis of construction workers using 

inertial measurement units: Validating the usefulness of the postural stability metrics in 

construction.” Safety Science, 84, 161–170. 

Jebelli, H., Choi, B., Kim, H., and Lee, S. (2018a). “Feasibility Study of a Wristband-Type 

Wearable Sensor to Understand Construction Workers’ Physical and Mental Status.” 

Construction Research Congress 2018, ASCE, Reston, VA, 367–377. 



263 

 

Jebelli, H., Hwang, S., and Lee, S. (2017a). “Feasibility of Field Measurement of Construction 

Workers’ Valence Using a Wearable EEG Device.” Computing in Civil Engineering 2017, 

ASCE, Reston, VA, 99–106. 

Jebelli, H., Hwang, S., and Lee, S. (2017b). “EEG Signal-Processing Framework to Obtain High-

Quality Brain Waves from an Off-the-Shelf Wearable EEG Device.” Journal of Computing 

in Civil Engineering, 32(1), 04017070. 

Jebelli, H., Hwang, S., and Lee, S. (2018b). “EEG-based Workers’ Stress Recognition at 

Construction Sites.” Automation in Construction, 93, 315–324. 

Jebelli, H., Khalili, M. M., Hwang, S., and Lee, S. (2018c). “A Supervised Learning-based 

Construction Workers’ Stress Recognition Using a Wearable Electroencephalography 

(EEG) Device.” Construction Research Congress 2018. 

Jebelli, H., Yang, K., Khalili, M. M., Ahn, C. R., and Stentz, T. (2018d). “Assessing the Effects 

of Tool-Loading Formation on Construction Workers’ Postural Stability.” Construction 

Research Congress 2018, 292–302. 

Jung, T. P., Makeig, S., Stensmo, M., and Sejnowski, T. J. (1997). “Estimating alertness from the 

EEG power spectrum.” IEEE transactions on biomedical engineering, 44(1), 60–69. 

Kar, S., Bhagat, M., and Routray, A. (2010). “EEG signal analysis for the assessment and 

quantification of driver’s fatigue.” Transportation research part F: traffic psychology and 

behaviour, 13(5), 297–306. 

Kim, H., Ahn, C. R., Stentz, T. L., and Jebelli, H. (2018). “Assessing the effects of slippery steel 

beam coatings to ironworkers’ gait stability.” Applied Ergonomics, 68, 72–79. 

Leung, M. Y., Liang, Q., and Olomolaiye, P. (2015). “Impact of job stressors and stress on the 

safety behavior and accidents of construction workers.” Journal of Management in 

Engineering, 32(1), 04015019. 

Levine, A., Zagoory-Sharon, O., Feldman, R., Lewis, J. G., and Weller, A. (2007). “Measuring 

cortisol in human psychobiological studies.” Physiology & behavior, 90(1), 43–53. 

Lucky Agung Pratama, & Mohammad Sadra Fardhosseini, and Ken-Yu Lin. (2018). “An 

Overview of Generating VR Models for Disaster Zone Reconstruction Using Drone 

Footage.” The University of Auckland, New Zealand, 336–344. 



264 

 

Mucci, N., Giorgi, G., Cupelli, V., Gioffrè, P. A., Rosati, M. V., Tomei, F., Tomei, G., Breso-

Esteve, E., and Arcangeli, G. (2015). “Work-related stress assessment in a population of 

Italian workers. The Stress Questionnaire.” Science of the Total Environment, 502, 673–

679. 

Nouredanesh, M., Kukreja, S. L., and Tung, J. (2016). “Detection of compensatory balance 

responses using wearable electromyography sensors for fall-risk assessment.” Engineering 

in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International 

Conference of the, IEEE, 1680–1683. 

Ryu, J., Seo, J., Jebelli, H., and Lee, S. (2018). “Automated Action Recognition Using an 

Accelerometer-Embedded Wristband-Type Activity Tracker.” Journal of Construction 

Engineering and Management, 145(1), 04018114. 

Shao, S. Y., Shen, K. Q., Ong, C. J., Wilder-Smith, E. P., and Li, X. P. (2009). “Automatic EEG 

artifact removal: a weighted support vector machine approach with error correction.” IEEE 

Transactions on Biomedical Engineering, 56(2), 336–344. 

Urigüen, J. A., and Garcia-Zapirain, B. (2015). “EEG artifact removal-state-of-the-art and 

guidelines.” Journal of Neural Engineering, 12(3), 031001. 

Vigário, R. N. (1997). “Extraction of ocular artefacts from EEG using independent component 

analysis.” Electroencephalography and clinical neurophysiology, 103(3), 395–404. 

Yang, K., Jebelli, H., Ahn, C., and Vuran, M. (2015). “Threshold-Based Approach to Detect Near-

Miss Falls of Iron Workers Using Inertial Measurement Units.” Computing in Civil 

Engineering 2015, ASCE, 148–155. 

Zhukov, L., Weinstein, D., and Johnson, C. (2000). “Independent component analysis for EEG 

source localization.” IEEE Engineering in Medicine and Biology Magazine, 19(3), 87–96. 

 

 

 

 

 

 



265 

 

 

 

Appendix B – Wearable Electromyography (EMG) to Assess Workers’ Local Muscle 

Fatigue8 

B.1. Overview 

Due to the labor-intensive nature of construction tasks, a large number of construction workers 

frequently suffer from excessive muscle fatigue. Workers’ muscle fatigue can adversely affect 

their productivity, safety, and well-being. Several attempts have been made to assess workers’ 

fatigue using subjective methods (e.g., fatigue questionnaire). Despite, the success of subjective 

methods in assessing workers’ fatigue in a long period, these methods have limited utility on 

construction sites. For instance, these methods interrupt workers’ ongoing tasks. These methods 

are also subject to high biases. To address these issues, this study aims to examine the feasibility 

of a wearable Electromyography (EMG) sensor to measure the electrical impulses produced by 

workers’ muscles as a means to continuously evaluate workers muscle fatigue without interfering 

with their ongoing tasks. EMG signals were acquired from eight subjects while lifting a concrete 

block using their upper limbs (i.e., elbow and shoulder muscles). As the first step, filtering methods 

                                                 
8 This appendix is adapted from Jebelli, H. and Lee, S. (2019) “Feasibility of Wearable Electromyography 

(EMG) to Assess Construction Workers’ Muscle Fatigue.” In Advances in Informatics and Computing in 

Civil and Construction Engineering, Springer, 181-187. 
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(e.g., bandpass filter, rolling filter, and Hampel filter) were applied to reduce EMG signal artifacts. 

After removing signal artifacts, to examine the potential of EMG in measuring workers’ muscle 

fatigue, various EMG signal metrics were calculated in time domain (e.g., Signal Mean Absolute 

Value (MAV) and Root Mean Square (RMS)) and frequency domain (e.g., Median Frequency 

(MDF) and Mean Frequency (MEF)) . Subjects’ perceived muscle exertion (Borg CR-10 scale) 

was used as a baseline to compare the muscle exertion identified by EMG signals. Results show a 

significant difference in EMG parameters while subjects were exerting different fatigue levels. 

Results confirm the feasibility of the wearable EMG to evaluate workers’ muscle fatigue as means 

for assessing their physical stress on construction sites. 

B.2. Introduction 

Construction is one of the most labor-intensive occupations in which workers are repetitively 

performing physically demanding tasks (Ng and Tang 2010). As a result, construction workers 

often suffer from a significant level of muscle fatigue that adversely affects their productivity, 

safety, and health (Kajimoto 2008). Workers’ fatigue has been introduced as one of the major 

factors that increase workers’ error rate and lead to unsafe work actions (Slack et al. 2009). Also, 

Workers’ fatigue adversely affects their alertness, reaction time, mental acuity and disposition 

(Bowen et al. 2013). For these reasons, it is essential to mitigate the factors and tasks associated 

with workers’ muscle exertion. The first step toward mitigating fatigue in the workplace is to 

evaluate muscle exertion. Evaluating the level of workers’ muscle fatigue in planned tasks before 

engaging in these tasks can greatly contribute to identifying the tasks that may lead to muscle 

exertion. Then, adjusting the scheduled tasks and actions before severe fatigue takes place will 

enhance workers’ safety, productivity, and well-being.  
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 Previous research efforts have attempted to assess workers’ muscle fatigue using subjective 

assessment (e.g., fatigue questionnaires) (Conrad and Kellar-Guenther 2006; Sadeghniiat-

Haghighi and Yazdi 2015). However, interrupting workers’ ongoing work to complete 

questionnaires interferes with time-sensitive tasks. Also, such methods are subjective and therefore 

include high biases. In addition to subjective assessment of physical fatigue, theoretical models of 

physiological or mechanical mechanisms (e.g., mathematical models) have been developed to 

assess workers’ muscle fatigue (Liu et al. 2002; Ma et al. 2009). Despite their potential to evaluate 

workers’ muscle fatigue, these mathematical models are limited in the context of construction tasks 

that have time-varying force exertions and irregular pauses and short breaks (Ma et al. 2009). 

Therefore, there is a definite need for a measurable and noninvasive method that can continuously 

measure construction workers’ muscle fatigue. 

In recent decades, one well-known method for measuring human beings’ muscle fatigue is 

the use of electromyography (EMG), which is the measurement of the electrical impulses produced 

by the muscle during its contraction (Reaz et al. 2006). The EMG signal has been used widely in 

the clinical domain for the diagnosis of muscle fatigue (Cifrek et al. 2009; Katsis et al. 2004; 

McDonald et al. 2017) and nerve disorders (Okazaki et al. 2017; Visser et al. 2008). However, the 

EMG signal acquired in the clinical domain is based on invasive methods, either by inserting a 

needle directly into the muscle through the skin or by measuring surface EMG using wired 

electrodes placed on the skin.  Despite the high quality of the EMG signals recorded using these 

methods, the use of these methods to measure muscle activity is impractical at construction sites 

due to their invasive experimental settings. However, with recent advancement in sensing 

technologies, wearable and portable sensors are available and contributed to enhancing job site 

conditions (Baghdadi et al. 2018; Hwang et al. 2016, 2018; Jebelli et al. 2014, 2015, 2016, 2017a; 
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b, 2018b, d, a; c; Kim et al. 2018; Nouredanesh and Tung 2015; Yang et al. 2015). In this regard, 

a wearable EMG can open a new door toward a noninvasive and continuous measurement of 

workers’ muscle activity. 

Despite the potential of a wearable EMG to collect workers’ muscle activity while 

performing different tasks, the feasibility of a wearable EMG to measure workers’ muscle fatigue 

has not been tested. To address this issue, this study tests the feasibility of a wearable 

Electromyography (EMG) sensor to measure the electrical impulses produced by workers’ muscles 

as a means of continuously evaluating their muscle exertion and recovery without interfering with 

their ongoing tasks. To this end, we conducted an experiment to collect EMG signals of eight 

subjects’ upper limb muscles (e.g., bicep and shoulder muscle) while they were experiencing 

different fatigue levels. We applied various filtering methods (e.g., a bandpass filter, a rolling filter, 

and a Hampel filter) to reduce EMG signal artifacts. Then the feasibility of a wearable EMG in 

distinguishing different levels of muscle fatigue was examined by comparing various metrics (e.g., 

signal Mean Absolute Value (MAV), Root Mean Square (RMS), Mean Frequency (MNF), and 

Median Frequency (MDF)) that were calculated based on the EMG signal. The Borg Rate of 

Perceived Exertion (RPE) scale, which is a well-known method to evaluate perceived muscle 

exertion, was used as a baseline to measure subjects’ muscle fatigue level. Lastly, the feasibility 

of a wearable EMG sensor in measuring workers’ muscle fatigue was examined by comparing the 

EMG-based metrics for different levels of muscle exertion. 

B.3. Surface EMG to Measure Workers’ Muscle Fatigue 

Surface Electromyography (EMG) is a noninvasive method that provides useful information about 

the early manifestation of muscle fatigue by measuring the electrical activity of the muscle (Reaz 

et al. 2006). Even though raw EMG signals offers valuable information about the muscle activity, 
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these signals need to be processed to measure muscle fatigue level. EMG signals are informative 

only if they can be quantified. Several studies have illustrated that there exists a significant 

relationship between EMG parameters (e.g., mean signal amplitude, root mean square, signal 

variance, mean power frequency, and median power frequency)  and muscle fatigue (Cifrek et al. 

2009; De Luca 1993; Katsis et al. 2004; McDonald et al. 2017). 

In this section, we explain two essential steps to examine the feasibility of measuring 

construction workers’ muscle fatigue using a wearable EMG sensor. Before analyzing the signal, 

one essential step is to reduce signal noises and signal artifacts. After reducing signal artifacts, to 

examine the feasibility of a wearable EMG to distinguish different muscle fatigue levels, we 

extracted different metrics based on the EMG signals.  

B.4. Artifacts Removal 

EMG signal quality can be adversely affected by different sources and forms of signal artifacts. 

The recorded EMG signal contains a component that shows the electrical response of the muscle 

activity (desired signal) as well as various noise components that come from sources other than 

muscle activity (undesired signals) (Reaz et al. 2006). Ambient noise, motion artifacts, electrical 

noise from power lines, and inherent instability of the EMG signal are main noise sources (De 

Luca et al. 2010; Nouredanesh et al. 2016). We applied different filtering methods (e.g., a bandpass 

filter, a rolling filter, a Hampel filter and a notch filter) to remove noises from the EMG signals. 

To remove ambient noise that comes from external electromagnetic sources (e.g., device wire 

noise), we applied a notch filter with a cutoff frequency of 60 Hz, which was recommended by 

previous researchers as an appropriate cutoff frequency to remove this type of noise (Hogan 1976). 

To remove signal outliers a Hampel filter was applied, Hampel filter has been introduced as a 

useful method to remove EMG signal outliers (Marateb et al. 2012). A bandpass filter with the 



270 

 

lower cutoff frequency of (0.5 HZ) and higher cutoff frequency of 250 Hz was applied to reduce 

other external signal artifacts (e.g., motion artifacts, ambient noise, and inherent instability of the 

EMG signals) (Merletti and Di Torino 1999). To smooth the signal and to avoid aliasing in the 

data, a rolling filter was applied (De Luca et al. 2010).  Figure 9.5 shows the raw EMG signals and 

the filtered EMG signals. 

 

A

B
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Figure B.1 EMG signal artifacts removal: (a) Raw EMG signals recorded from a worker’s bicep 

muscle (Channel 1) and shoulder muscle (Channel 2); (b) Filtered EMG signals 

 

B.5. EMG-based Metrics 

Signal Mean Absolute Value (MAV), Root Mean Square (RMS), Mean Frequency (MEF), and 

Median Frequency (MDF) were calculated as the metrics to examine the potential of EMG in 

measuring workers’ muscle fatigue. All of these metrics have been used widely in the clinical 

domain to assess muscle fatigue. EMG amplitude related parameters in the time domain (e.g., 

MAV and RMS) have been introduced as the informative metrics to evaluate muscle fatigue and 

estimate the endurance time (McCrary et al. 2017; Tkach et al. 2010). In addition, to the parameters 

that are calculated in the time domain, previous researchers found that changes in EMG signal 

patterns in frequency domain also are significantly associated with a decline in muscle force from 

the fresh state and therefore, it has a high potential to be used to measure muscle fatigue (Mannion 

et al. 1996; McDonald et al. 2017).  Table B.1 shows the extracted parameters based on EMG 

signal in time and frequency domains. In this research, we extracted different EMG signal 

parameters from a block of 500 consecutive data point (1 second) since A single EMG data point 

is not informative to Due to the high temporal resolution of EMG recording (500 data point in a 

second). 
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Table B.1 Extracted EMG signal metrics in time and frequency domain. 

Domain Parameters Equation Explanation 

Time 

Domain 

Mean Absolute Value 

(MAV) 𝑀𝐴𝑉 =
∑ |𝐸𝑀𝐺𝑖|

𝑁
𝑖=1

𝑁
 

Average absolute value 

of EMG amplitude 

Root Mean Square 

Level (RMS) 𝑅𝑀𝑆 =  √
∑ 𝐸𝑀𝐺2𝑁

𝑖=1

𝑁
 

Norm 2 of the EMG 

amplitude divided by the 

square root of the 

number of samples 

Frequency 

Domain 

Average Frequency 

(MEF) 

𝑝𝑜𝑤𝑒𝑟(𝐸𝑀𝐺, 𝑓
∈ [0𝐻𝑧, 250𝐻𝑧]) 

Power of the EMG 

the signal in the 

frequency domain in the 

interval [[0𝐻𝑧, 250𝐻𝑧]] 

Median Frequency 

(MDF) 

𝑝𝑜𝑤𝑒𝑟(𝐸𝑀𝐺, 𝑓
∈ [0𝐻𝑧, 𝑀𝐷𝐹])
= 

𝑝𝑜𝑤𝑒𝑟(𝐸𝑀𝐺, 𝑓
∈ [𝑀𝐷𝐹, 250𝐻𝑧]) 

Half of the signal power 

is distributed in the 

frequencies less than 

𝑀𝐷𝐹 

 

B.6. Experimental Setting 

To examine the feasibility of the EMG-based parameters in measuring workers’ muscle fatigue, 

we conducted an experiment and measured the electrical activity of eight healthy subjects while 

performing tasks with different fatigue level.  Subjects were asked to use their upper limbs (i.e., 

elbow and shoulder muscles) and perform two tasks. In Task 1, subjects were asked to use their 

shoulder muscle (shoulder flexions from 0° to 120°) to lift a concrete brick that weighed 30 percent 

of their maximum shoulder muscle strength (a in Figure B.1).  In Task 2, subjects were asked to 

lift a concert brick that weighted 30 percent of their maximum bicep muscle strength using their 

bicep muscle (b in Figure B.1).  Subjects’ maximum muscle strength of elbow and shoulder muscle 

was measured using a hand-held manual muscle tester (e.g., JTECH Commander Muscle Tester). 

Also, subjects were asked to maintain a constant lifting speed to prevent accelerations in lifting 

and to minimize variations in forces during different tasks.  
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EMG signals were acquired from subjects’ bicep and shoulder muscles across two channels 

using a wearable EMG device (C and D in Figure B.2). EMG electrodes were placed parallel with 

the muscle fiber between the motor point and the tendinous insertion, near the center of the muscle. 

A reference electrode was placed far away from the bicep and shoulder muscles at an electrically 

neutral point of the body (E in Figure B.2). The Borg Rate of Perceived Exertion scale (Borg 1982), 

which assesses perceived exertion of the subjects was used as a baseline to assess subjects’ 

perceived exertion (Borg 1982). Subjects were asked to rate their upper body muscles (shoulder 

muscle in Task 1 and bicep muscle in Task 9.2) fatigue level every 15 seconds. According to 

subjects’ perceived exertion, the recorded EMG signals were divided into: Low Fatigue Level 

(RPE scale between 0 to 2), Moderate Fatigue Level (RPE scale between 3 to 4), High Fatigue 

Level (RPE scale between 5 to 7), and Extremely High Fatigue Level (RPE scale between 8 to 10) 

(Borg 1982). 
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Figure B.2 EMG signal artifacts removal: (a) Raw EMG signals recorded from a worker’s bicep 

muscle (Channel 1) and shoulder muscle (Channel 2); (b) Filtered EMG signals 

B.7. Results and Findings 

Figure B.3 and B.4 show the calculated EMG-based metrics values for bicep and shoulder muscles 

while subjects’ were performed the experiment tasks under different fatigue levels.  Results 

indicated a clear difference in MAB, RMS, MEF and MDF values while subjects were perceiving 

different fatigue levels for both bicep and shoulder muscles. Results show higher MAB, RMS 

values while subjects experienced higher muscle fatigue level (higher Borg scale rate) compared 

to the situation with less muscle fatigue (lower Borg scale rate). Higher MAB and RMS values 

A B

C D E

Channel 1

Channel 2

Reference

Electrode
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show higher muscle exertion (Dideriksen et al. 2010). This confirms the feasibility of the extracted 

metrics in the time domain to measure workers’ upper limb muscle fatigue. 

In addition, there was a clear difference in the metrics that were calculated in the frequency 

domain (MEF and MDF) among different fatigue levels. The results of this study are in accordance 

with the previous studies in the clinical domains that stated a lower MEF and MDF values shows 

greater muscle fatigue level (Allison and Fujiwara 2002). Furthermore, the values of MEF and 

MDF are consistent, and both illustrated that subjects’ experience higher muscle fatigue while they 

keep lifting the concert bricks continuously. In comparison of time and frequency domain metrics, 

the metrics that were calculated in the frequency domain led to a higher performance in 

distinguishing different levels of fatigue; this can be related to less sensitivity of these metrics to 

the signal noise as well as data aliasing (Watanabe and Akima 2010).  

 

Figure B.3 The values of MAV, RMS, MEF, and MDF for bicep muscle. 
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Figure B.4 The values of MAV, RMS, MEF, and MDF for shoulder muscle. 

B.8. Conclusion 

The present study was designed to determine the feasibility of a wearable EMG sensor to measure 

construction workers’ upper limb muscle fatigue. The results of this study show the feasibility of 

the wearable EMG to evaluate workers’ muscle fatigue, which can result in measuring physical 

stress at construction sites. The results showed that higher muscle fatigue level leads to higher 

MAB and RMS values and Lower MEF and MDF values. These finding may be used to improve 

construction workers’ productivity, safety, and well-being by developing an automatic and 

mountainous framework to measure workers’ muscle fatigue based on their EMG signal. It is 

recommended that further research be undertaken to validate the use of current metrics in this 
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study in measuring construction workers’ fatigue through additional experiments with a larger 

number of subjects on different muscle groups. 
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Appendix C – Physiology-based Dynamic Muscle Fatigue Model for Construction 

Tasks9 

 

C.1. Introduction 

Construction is labor intensive, involving repetitive material or tool handling tasks that are 

physically demanding (Ng and Tang 2010). Many construction workers thus suffer from a 

significant level of muscle fatigue that can cause diverse detrimental impacts on their safety, health, 

and productivity. Specifically, it is widely recognized that excessive muscle fatigue can result in 

more than an increase of human errors and unsafe acts; it also decreases the quality of work and 

worker satisfaction (Eklund 1997; Huang and Hinze 2006; Kajimoto 2007; Slack et al. 2009; 

Bowen et al. 2017). Also, in the long term, work-related musculoskeletal disorders (WMSDs) and 

chronic fatigue have been reported as an adverse health outcome from consistent and excessive 

muscle fatigue (Bültmann et al., 2002; Åkerstedt et al. 2004; Iridiastadi & Nussbaum 2006; Shen 

et al. 2006; Ricci et al. 2007; Pierce 2016). 

                                                 
9 This appendix is adapted from Jebelli, H., Seo, J., Hwang, S., and Lee, S. (2018) “Physiology-based 

Dynamic Muscle Fatigue Model for Upper Limbs during Construction Tasks.” International Journal of 

Industrial Ergonomics (in review). 
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In this regard, evaluating the level of muscle fatigue in planned tasks (i.e., prior to work) 

can greatly contribute to workers’ safety and health by taking proper preventive actions before 

severe fatigue takes place. Focusing on this research need, considerable research efforts have 

previously tried to estimate individual muscle fatigue using surveys, instruments, and 

mathematical models (Studer et al. 1999; Iridiastadi and Nussbaum 2006; Xia and Frew Law 2008; 

Ma et al. 2009; Debold 2012; Karatzaferi and Chase 2013). Although they contributed to 

quantifying human muscle fatigue based on laboratory experiments or an in-depth examination of 

mechanical and metabolic mechanisms related to muscle fatigue during muscle contraction, they 

do not take into account irregularly varying muscle activation as well as fatigue recovery from 

frequent idling/resting periods during a task. They are therefore especially limited in the context 

of construction tasks that involve varying force exertion levels and intermittent idling/resting 

periods.  

In an effort to address these issues, this study proposes a novel physiology-based muscle 

fatigue model that takes into account the fundamental fatigue process in a human body. It estimates 

the level of muscle fatigue over time by representing and quantifying physiological mechanisms 

of dynamic muscle fatigue generation and recovery during construction tasks. Specifically, a 

System Dynamics (SD) model, which is a differential equation-based continuous simulation, is 

used to represent localized muscle responses to fatigue over time caused by varying workloads of 

construction tasks. In this study, the modeling focus is the upper limbs including elbows and 

shoulders because upper limbs are less fatigue resistant than lower limbs (Van Hall et al. 2003; 

Smoliga 2007), and many construction tasks include high levels of material and tool handling that 

uses upper limbs. To develop the model, the fatigue responses of upper limbs are modeled based 

on fundamental mechanisms of the accumulation and clearance of intramuscular metabolites 
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during physical exertion and the effects of the metabolites on muscle contractile processes. To 

refine and validate the model, we will use laboratory experimental data from real construction 

workers who heavily use their upper limbs. Specifically, parameters for elbow and shoulder muscle 

fatigue models are firstly determined using a part of experimental data. Then, we validate 

developed models (i.e., elbow and shoulder models) by comparing the output of the developed 

model with remaining experimental data. 

 

C.2. Importance and Challenge of Evaluating Localized Muscle Fatigue in Construction 

Occupational fatigue is one of the most common workplace hazards, which may lead to workers’ 

safety and health issues (Sadeghniiat-Haghighi and Yazdi 2015). In particular, workers performing 

demanding physical activities normally suffer from physical fatigue. From a physiological 

perspective, physical fatigue is associated with impaired muscle function, such as an inability of 

the muscles to maintain the required level of force (Edwards 1981), a reduction in force-generating 

capacity of the muscles (Chalder et al. 1993) or a decrease in muscle capacity to perform physical 

activities (Friedman et al. 2007). That is why physical fatigue has been often denoted by ‘muscle 

fatigue’ (Abd-Elfattah et al. 2015). Workers’ muscle fatigue can cause more devastating impacts 

on construction due to its involvement of heavy workloads, awkward working postures, or 

prolonged working hours (Abdelhamid and Everett 2002; Sluiter et al. 2003; Toole 2005; 

Hallowell 2010). For instance, WMSDs in construction yield 34.6% of all non-fatal occupational 

injuries and illness (BLS 2016) and 29% of compensation claims (Albers et al. 2006). Thus, 

managing workers’ muscle fatigue is extremely important to improve workers’ safety and health 

in construction.   
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As the first step to manage workers’ muscle fatigue, identifying physically demanding tasks 

by fatigue measurement is of importance. Previous research efforts on fatigue measurement in 

occupational settings have focused on post-work evaluation because of the difficulty of muscle 

fatigue measurement during performing tasks. One of the widely used methods for real-time 

measurement is surface electromyography (sEMG), which estimates the level of fatigue by 

analyzing the EMG signals from surface electrodes on muscles (Vøllestad 1997). However, 

attaching surface electrodes on muscles could interfere with ongoing work, and the misplacement 

of electrodes due to workers’ movement may hinder the use of sEMG in occupational settings. 

Post-work evaluation of fatigue measurement relies on subjective survey or quantification by using 

fatigue scales and questionnaires (Sadeghniiat-Haghighi and Yazdi 2015). These methods are 

useful to identify specific tasks and causes of muscle fatigue in a given workplace setting. However, 

the use of these methods is still challenging in construction as construction tasks are not 

standardized, and thus physical demands from work could vary depending on projects. As a result, 

problematic tasks could be different from one project to another. To address this issue, Seo et al. 

(2016) emphasized the need for evaluating muscle fatigue prior to work for construction tasks. 

They proposed a simulation-based approach to predict muscle fatigue from the planned 

construction operations. Considering varying work demands from construction tasks, effective 

strategies to manage muscle fatigue can be devised from its evaluation prior to work, which can 

include redesigning workplaces and tasks, ensuring proper workload distribution based on each 

individual’s capacity, and providing proper work/rest schedules (Seo et al. 2016).  

There have been significant research efforts to quantitatively assess muscle fatigue prior to 

work, through a model-based estimation (Vøllestad 1997; Perez et al. 2014). Existing muscle 

fatigue models can be classified into empirical and theoretical models (Xia and Frey Law 2008). 
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Empirical models have estimated endurance times under diverse work intensities using regression 

equations that were derived from laboratory experiments. However, these models are applicable 

only to specific conditions where the models were developed, such as static exertions (i.e., 

isometric muscle contraction) (Sato et al. 1984; Manenica 1986; Rohmert et al. 1986; Rose et al. 

1992; Rose et al. 2000), intermittent static exertions (Hagberg 1981; Iridiastadi and Nussbaum 

2006), or dynamic force exertions with cyclic changes (i.e., continuous isotonic contraction) 

(Hagberg 1981) at a specific body segment. Therefore, they are not flexible enough to represent 

the dynamics of muscle fatigue (e.g., irregularly varying muscle activation and contraction) that 

result from diverse construction tasks. On the other hand, theoretical muscle fatigue models that 

mathematically represent physiological or mechanical mechanisms of fatigue can be applicable to 

more complex tasks (Liu et al. 2002; Xia and Frey Law 2008; Ma et al. 2009). However, these 

models are limited in the feasibility of their application to real conditions because of limited use 

of the model (e.g., only for static exertion) (Liu et al. 2002), complex data input (e.g., joint torque, 

angle, and velocity) (Xia and Frey Law 2008), and lack of consideration of recovery from fatigue 

and validation (Ma et al. 2009). As a result, they are also not suitable for representing the dynamics 

of localized muscle fatigue that involve varying force exertion levels and intermittent idling/rest 

periods, which are prevalent in construction tasks. To better estimate muscle fatigue in dynamic 

occupational tasks, a new modeling approach, particularly the representation of the dynamics of 

muscle fatigue from a physiological perspective, is thus needed to incorporate mechanisms of 

muscle fatigue generation and recovery over time during construction tasks with varying physical 

demands, which is the aim of this study.  By doing so, the proposed modeling approach in this 

study can be used for better understanding of workers’ physiological muscle responses to diverse 

construction tasks thereby measuring workers’ muscle fatigue prior to work.  
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C.3. Development of System Dynamics-based Muscle Fatigue Model 

Based on the fundamental muscle fatigue mechanisms specified in the literature, this study models 

dynamic muscle fatigue mechanisms using System Dynamics (SD). An SD model can provide an 

analytic solution for complex, nonlinear, and dynamic systems by understanding interactions 

among system variables (Sterman 2000; Williams 2002). As a result, SD has been applied to 

understand complex physiological and biological systems (e.g., energy metabolism) in the human 

body, where interactions among different variables (e.g., fatigue substances and the level of muscle 

exertion) are important (Abdel-Hamid 2002; Homer et al. 2006; Karanfil and Barlas 2008; Owen 

and Griffiths 2013; Tedeschi et al. 2013). SD can thus be very effective on representing 

physiological responses of dynamic muscle fatigue generation and recovery in the human body 

that continuously interact with one another forming feedbacks (i.e., an output of a system passes 

back through as an input cyclically). Since SD consists of a causal loop diagram based on a cause-

and-effect relationship among variables and a stock-and-flow diagram based on multiple 

differential equations, SD enables not only to continuously capture the level of the physiological 

variables (e.g., fatigue substance and the level of muscle exertion) over time but also to understand 

the core process on how these variables change. Focusing on these capabilities of SD, the proposed 

model aims to represent dynamic feedback processes of muscle fatigue generation and recovery. 

Also, the model aims to evaluate the level of muscle fatigue by predicting both reduced muscle 

capacity due to the accumulation of fatigue substances and endurance time during diverse and 

varying workloads such as construction tasks. 

Figure C.1 shows a core structure of the dynamic muscle fatigue model. This model aims to 

simulate the underlying mechanism of how the muscle forces are reduced as muscles become 

fatigued as well as how the muscle forces  recover over time during idling or resting (i.e., muscle 

fatigue generation and recovery mechanisms). In particular, this model focuses on metabolic 
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muscle fatigue due to the accumulation of metabolic by-products that has been known as a major 

cause of muscle fatigue during intense exercise (Layzer 1990). Physically demanding tasks with 

heavy workloads that exceed the aerobic capacity of the muscles cause the accumulation of 

intramuscular metabolites (e.g., inorganic acids and phosphate) in an anaerobic state that reduces 

muscle force production in muscle fibers (Kent-Braun 1999; Cairns 2006). As a response of 

forceful exertion, the cardiovascular system increases heart rates to deliver blood to the exercising 

muscles, not only providing oxygen and substrates, but also removing metabolites (Christensen 

1986). As a result, metabolic concentrations diffused out of the muscle, returning muscle force to 

normal (Layzer 1990).  

In a muscle fatigue generation and recovery process, the proposed model represents a 

muscle fatigue from accumulation and diffusion of intramuscular metabolites as a stock (a box 

variable in Figure C.1), called ‘Fatigue in pH.’ The changes in the amount of ‘Fatigue in pH’ are 

influenced by ‘Fatigue Production Rate’ (inflow into the stock in Figure C.1) and ‘Fatigue 

Diffusion Rate’ (outflow of the stock in Figure C.1) during force exertions and idling/resting 

periods reflecting the metabolic mechanisms of muscle fatigue. The level of muscle fatigue from 

accumulated fatigue substances is represented as potential of hydrogen (pH) in the model as fatigue 

substances has linear relationship with change of pH. Usually, the acidosis in human muscle fibers 

without fatigue is pH 7.0 and the largest acidosis level when fully fatigued is around pH 6.2 (Cairns 

2006). Thus, the value of ‘Fatigue in pH’ ranges from 7.0 (no fatigued) to 6.2 (fully fatigued) in 

the model. On the other hand, this ‘Fatigue in pH’ would determine the decline or recovery of 

worker’s maximum ability for muscles to contract, which is represented as ‘Exertable Maximum 

Force’ (A in Figure C.1).  The value of ‘Exertable Maximum Force’ is a percentage of an 

individual’s maximum voluntary contraction (MVC) of muscles (i.e., %MVC). 
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Figure C.1 SD-based Muscle Fatigue Model 

During the work tasks, the high level of work intensity (i.e., ‘Force Exertion’ which is the 

input value representing workloads in the model) increases the level of muscle contraction, which 

can be represented as the number of motor units to be activated (MA) among total available motor 

units (M0) (i.e., ‘Level of Motor Unit Activation (MA/ M0)’) (Xia and Frey Law 2008). It is known 

that the rate of accumulation of fatigue (i.e., ‘Production Rate’) is linearly correlated with the 

intensity of force exertions (i.e., ‘Force Exertion’) and the level of motor unit activation (Sjøgaard 

et al. 1988), through increase of an anaerobic breakdown of glycogen by activated motor units (B 

in Figure C.1) (Westerblad et al. 2002). During idling/resting periods, fatigue substances diffuse 

out of the muscle by changing the level of ‘Fatigue in pH’, contributing to the recovery from 

muscle fatigue (C in Figure C.1). It was found that reduced muscle strength can be recovered in 

5–10 minutes up to about 90%MVC while more than 30 minutes are additionally required to be 

fully recovered (Lind 1959). Also, the recovery rate under 90%MVC is about 16 times higher than 

the rate over 90%MVC (Seo et al. 2016). Based on this evidence, the production and diffusion of 

‘Fatigue in pH’ can be expressed by the following equations: 

A

B
C
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𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑖𝑛 𝑝𝐻(𝑡) = ∫ [𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝑠) − 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝑠)]𝑑𝑠    (𝑝𝐻: 7.0 − 6.2)
𝑡

0
   (1) 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝑡) =  𝑀𝑜𝑡𝑜𝑟 𝑈𝑛𝑖𝑡 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 (𝑀𝑎/𝑀𝑜)(𝑡) ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡      (2) 

 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝑡) (𝑤ℎ𝑒𝑛 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑀𝑜𝑡𝑜𝑟 𝑈𝑛𝑖𝑡 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑀𝑎/𝑀𝑜) = 0) = 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  (𝐸𝑥𝑒𝑟𝑡𝑎𝑏𝑙𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑜𝑟𝑐𝑒 (%𝑀𝑉𝐶) < 0.9) 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡/16  (𝐸𝑥𝑒𝑟𝑡𝑎𝑏𝑙𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑜𝑟𝑐𝑒 (%𝑀𝑉𝐶) > 0.9)                                        (3) 

 

It is noteworthy that ‘Production Coefficient’ and ‘Diffusion Coefficient’ have not been 

fully identified. To address this issue, empirical data from laboratory experiment will be used to 

calibrate coefficients, which will be described later. In this model, a major input variable is ‘Force 

Exertion’ that represents the individual physical demands of tasks from workloads with a variable 

unit of %MVC (i.e., percentage of individual’s maximum voluntary contraction (MVC)), while a 

major output variable is ‘Exertable Maximum Force’ that represents resultant change in muscle 

strength from fatigue with a variable unit of %MVC (Vøllestad 1997). In the model, the level of 

‘Exertable Maximum Force’ from muscle fatigue is determined by empirical evidence from 

previous research (A in Figure C.1 and Equation 4: Cairns 2006), which found a relationship 

between the level of intramuscular pH and peak tetanic force of body parts (i.e., exertable 

maximum force):  

 

𝐸𝑥𝑒𝑟𝑡𝑎𝑏𝑙𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐹𝑜𝑟𝑐𝑒= 

 − 1.333 + 0.333 ∗ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒  (𝑝𝐻) (𝑝𝐻 > 6.7) 

 − 19.2 + 3 ∗ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝐻)  (𝑝𝐻 > 6.6)   

 − 9.3 + 1.5 ∗ 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑆𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝐻)  (𝑝𝐻 > 6.2)    (4) 

 

Based on the identified exertable maximum force of body parts, muscles’ maximum 

endurance time (MET), which is related to the fatigue failure (i.e., the accidental failure of muscle 
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contraction), can be predicted based on a workers’ muscle capability. Specifically, as shown in 

Figure C.2, MET is determined as the simulation time when muscle capability (i.e., ‘Exertable 

Maximum Force’ in Figure C.1) is lower than physical demands of tasks (i.e., ‘Force Exertion’ in 

Figure C.1). The developed model, which provides a comprehensive understanding of muscle 

fatigue, can also provide recognition of muscle endurance time related to fatigue failure in 

demanding construction work. In addition, the use of diverse dynamic input values for work 

intensity (‘Force Exertion’ in Figure C.1) enables the model to represent a worker’s muscle fatigue 

according to varying forces and intermittent idling/resting periods, which are very common in 

construction tasks.  

 

 

Figure C.2 SD-based Muscle Fatigue Model 
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C.4. Laboratory Experiment 

To refine and validate the dynamic fatigue model developed for upper limbs, we performed 

laboratory experiments. Specifically, the extent to which subjects’ physical capacities (i.e., muscle 

strength and endurance time) of upper limbs (i.e., elbow and shoulder) can vary by muscle fatigue 

generation and recovery is a major concern. Since the allowable physical limits have been well 

established for each demographic category (e.g., gender, age, height, and weight) (Chaffin et al. 

2006), the experiments will focus on change in allowable endurance and strength induced by 

varying workloads (e.g., varying forces and intermittent rest periods). 

To do this, we recruited 15 healthy subjects within ages between 22 and 35 years (see Table 

C.1). For this study, we recruited only male subjects because most of production work in 

construction is performed by male workers. Data collection was approved by the University of 

Michigan Institutional Review Board. The informed consent form was distributed to all the 

subjects before data collection in order for them to be informed about the anonymity of data 

collection and participants’ rights. As shown in Table C.2, each subject performed six endurance 

tasks (i.e., two protocols for elbow and shoulder tasks and three tasks per each elbow or shoulder 

protocol) with randomly assigned task orders. All tasks were performed for elbow and shoulder 

flexions from 0° to 120°. Before performing each task, the subject’s maximum muscle strength of 

elbow and shoulder flexion was measured using an off-the-shelf hand-held manual muscle tester 

(e.g., JTECH Commander Muscle Tester) following the procedure described by Hagberg (1981) 

and Mital et al. (2000). In addition, they were asked to maintain a constant lifting speed (i.e., two 

seconds for each lifting cycle) to minimize variations in forces due to accelerations. During six 

tasks, endurance time for each task was measured when the subject could not maintain the force 

level. 
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Table C.1 Description of Subject Information 

Subject # Age Weight  (kg) Height (cm) 
Maximum Muscle Strength 

Elbow (N) Shoulder (N) 

1 25 75 180 221 159 

2 28 70 178 135 120 

3 35 80 180 127 106 

4 30 70 170 140 119 

5 25 65 173 111 88 

6 22 65 170 102 90 

7 28 70 178 116 111 

8 27 80 180 137 102 

9 24 98 170 128 98 

10 27 75 179 120 89 

11 30 70 177 165 111 

12 37 86 168 210 151 

13 32 70 175 118 67 

14 30 55 160 83 89 

15 27 89 192 196 178 

Mean 28.46 74.50 175.33 140.59 112.00 

SD 3.89 10.38 7.08 40.08 30.12 

Min 22 55 160 83 67 

Max 37 98 192 221 178 

Median 28 70 177 128 106 

Table C.2 Experimental Protocols 

Protocols Tasks* Purposes 

Protocol #1: 

Elbow Tasks 

Task#1: Continuous lifting a 2.72kg (6lb) block 
Parameter 

setting 

Task#2: Continuous lifting a 5.44kg (12lb) block 
Parameter 

setting 

Task#3: Mixing 3 cycles of lifting a 2.72kg (6lb) block and 3 

cycles of lifting a 5.44kg (12lb) block 

(a few seconds of resting when changing blocks) 

Validation 

Protocol #2: 

Shoulder Tasks 

Task#1: Continuous lifting a 2.72kg (6lb) block 
Parameter 

setting 

Task#2: Continuous lifting a 5.44kg (12lb) block 
Parameter 

setting 

Task#3: Mixing 3 cycles of lifting a 2.72kg (6lb) block and 3 

cycles of lifting a 5.44kg (12lb) block 

(a few seconds of resting when changing blocks) 

Validation 

* Each lifting cycle for all the tasks is two seconds 
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Figure C.3 Laboratory Experiments: (a) Protocol #1 for Elbow; and (b) Protocol #2 for Shoulder 

In detail, both elbow tasks (i.e., Protocol #1) and shoulder tasks (i.e., Protocol #2) as shown 

in Figure C.3 consist of three tasks including continuous lifting a 2.72kg (6lb) block (Task #1), 

continuous lifting a 5.44kg (12lb) block (Task #2), and mixing 3 cycles of lifting a 2.72kg (6lb) 

block and 3 cycles of lifting a 5.44kg (12lb) block (Task #3). In Task #3, a few seconds of pauses 

exist when subjects change the block. Task #1 (15–40%MVC of force exertion among different 

subjects) and #2 (30–80%MVC of force exertion among different subjects) are designed to 

determine model parameters (e.g., Production and Diffusion Coefficients) to reflect diverse levels 

of force exertions while Task # 3 that includes varying forces and short breaks is designed to 

validate the dynamic muscle fatigue generation and recovery model. Table C.3 shows the results 

(i.e., muscles’ maximum endurance time: MET) for all experimental tasks. All loaded weights are 

considered relatively based on the subjects’ maximum muscle strength and measured as a ratio, 

which is defined as %MVC. For example, if the subject’s maximum muscle strength to lift using 

A B
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their arm is 267N, then 2.72kg (6lb) weight, which is 26.7N, would be 10%MVC. Since the 

individual difference on muscle capability will significantly affect the time to fatigue, the use of 

relative ratio considering individual capability is better on estimating fatigue than the use of 

absolute value of weight. Also, the previous studies measured the time for fatigue when a subject 

voluntarily gives up their loaded weight, and such time was defined as a maximum endurance time 

(MET). %MVC and MET have been widely used in numerous muscle fatigue estimation models. 
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Table C.3 Experimental Results 

Protocol Subject 

Task #1  Task #2 Task #3 

Force 

Exertion 

(%MVC) 

MET* 

(Min.) 

Force 

Exertion 

(%MVC) 

MET* 

(Min.) 

Force 

Exertion 

(%MVC) 

MET* 

(Min.) 

#1: Elbow 

#1 12% 6.0 24% 1.9 12–24% 6.3 

#2 20% 4.5 40% 1.5 20–40% 2.5 

#3 21% 3.6 42% 1.1 21–42% 2.3 

#4 19% 5.5 38% 1.5 19–38% 3.3 

#5 24% 2.0 48% 1.0 24–48% 1.4 

#6 26% 3.3 52% 1.0 26–52% 1.5 

#7 23% 2.1 46% 0.8 23–46% 1.5 

#8 20% 3.3 40% 0.9 20–40% 2.1 

#9 21% 4.7 42% 1.0 21–42% 2.1 

#10 22% 2.4 44% 1.0 22–44% 1.8 

#11 16% 5.0 32% 1.8 16–32% 2.1 

#12 13% 5.3 26% 2.5 13–26% 4.8 

#13 23% 2.7 46% 1.1 23–46% 1.3 

#14 32% 1.9 64% 0.8 32–64% 0.9 

#15 14% 7.5 28% 2.3 14–28% 3.5 

#1: 

Shoulder 

#1 17% 3.3 34% 2.0 17–34% 2.2 

#2 22% 1.2 44% 0.7 22–44% 1.3 

#3 25% 0.9 50% 0.8 25–50% 1.0 

#4 22% 3.1 44% 0.8 22–44% 2.5 

#5 30% 1.0 60% 0.6 30–60% 1.0 

#6 29% 2.8 58% 1.3 29–58% 1.7 

#7 24% 1.2 48% 0.8 24–48% 1.2 

#8 26% 1.1 52% 0.7 26–52% 1.3 

#9 27% 0.8 54% 0.7 27–54% 1.1 

#10 30% 0.8 60% 0.5 30–60% 0.9 

#11 24% 2.3 48% 2.3 24–48% 2.0 

#12 18% 3.0 36% 3.0 18–36% 3.6 

#13 40% 0.6 80% 0.3 40–80% 0.8 

#14 30% 2.1 60% 1.0 30–60% 1.7 

#15 15% 4.4 30% 4.4 15–30% 2.5 

C.5. Model Calibration and Validation 

As mentioned earlier, quantitative equations between physiological variables in the developed 

model need to be further refined (e.g., Production and Diffusion Coefficients in the model). This 

is because previous models for muscle fatigue have produced variable results (Hagberg 1981; Sato 

et al. 1984; Manenica1986; Rose et al. 1992, 2000; Ma et al. 2009; Seo et al. 2016), which makes 
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it difficult to determine accurate single values of coefficients. Also, according to differences of 

muscle fiber composition in body parts thereby varying fatigue substance accumulation and 

diffusion rates of body parts (Van Hall et al. 2003), model parameters for elbow and shoulder tasks 

need to be customized.  

To do this, we firstly pre-defined the range of the Production Coefficient and the Diffusion 

Coefficient to -0.008 ~ -0.018 and -0.0004 ~ 0.0005, respectively, by comparing the model’s 

results and various previous models (Hagberg 1981; Sato et al. 1984; Manenica1986; Rose et al. 

1992, 2000; Ma et al. 2009; Seo et al. 2016). Then, based on experiment data in Tasks #1 and #2 

for both elbow and shoulder tasks, we finally set the exact values of the Production Coefficient 

and the Diffusion Coefficient so that results (i.e., METs from diverse force exertion levels) 

between the proposed model and the experiment is the most similar as shown in Figure C.4. For 

this comparison, normalized root mean square deviation (NRMSD) and Pearson product-moment 

correlation coefficients (r) are used because of their wide usage (Ma et al. 2009; Ji et al. 2014). As 

shown in Figure C.4, the coefficients for the elbow and shoulder models, which produce the most 

similar behaviors between the model behavior and the experimental data (i.e., the lowest NRMSD 

and the highest correlation coefficients), are determined as -0.014 of Production Coefficient and -

0.0005 of Diffusion Coefficient for the elbow model (Figure C.4a), and -0.018 of Production 

Coefficient and -0.0005 of Diffusion Coefficient for the shoulder model (Figure C.4b). 
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Figure C.4 Model Parameter Setting: (a) Elbow Model; and (b) Shoulder Model 

Using the refined elbow and shoulder models, we tested the developed models (both elbow 

and shoulder models) by comparing the models’ results with the experiment data of Task #3. Task 

#3 is very useful for validating the developed dynamic muscle fatigue generation and recovery 
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model because this task includes varying forces and intermittent pauses. Figure C.5 shows 

validation results when incorporating input values of varying workloads in Task #3 into both the 

elbow and shoulder models. Validation will be achieved by means of statistical comparison using 

NRMSDs and the Pearson product-moment correlation coefficients (r) between both METs from 

the proposed model and the experiment data.  

As shown in Figure C.5a, NRMSDs between METs measured from the model and the 

experiment shows 0.136. It is widely accepted that NRMSDs of less than 0.2 are considered 

acceptable and less than 0.1 can denote excellence (Hargreaves et al. 2013; Ji et al. 2014). Also, 

the Pearson product-moment correlation coefficients (r) and p-values are calculated between 

METs of the model and the experiment data, and a significant correlation is found (r:= 0.933, p < 

0.001). For the shoulder model in Figure C.5b, a significant correlation between METs of the 

model and the experiment is also found (r: 0.700, p: 0.004). However, NRMSDs is a little bit 

higher than the above thresholds (MRMSDs for the shoulder model: 0.247). One notable point is 

that estimating shoulder muscle fatigue is more difficult than elbow’s one because the anatomical 

structure of shoulder is much more complex than one in the elbow and hand (Ma et al. 2009), 

which can be an evidence of highly variable experiment data of shoulder tasks and would be the 

major cause of higher NRMSDs than expected (see Figure C.4b and Figure C.5b). Taking into 

account such a reason, both the developed elbow and shoulder models are useful to not only 

understand muscle fatigue generation and the recovery process but also to estimate the muscle 

fatigue level and muscles’ endurance time from construction tasks with varying workloads. 

 



299 

 

 

Figure C.5 Model Parameter Setting: (a) Elbow Model; and (b) Shoulder Model 

C.6. Discussion 

Understanding fatigue generation and its underlying mechanism are challenging because various 

physiological variables in fatigue generation and recovery are closely interrelated (e.g., feedback 

process) as well as these variables are dynamic (i.e., change over time). By modeling the 

relationships among such variables using the causal-loop-diagram and stock-and-flow diagram in 
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SD based on the fundamental physiological mechanism, the proposed model enables us to 

understand dynamic muscle fatigue mechanisms. Also, by determining quantitative equations 

using experiment data, the model also enables reliable estimation of the level of workers’ muscle 

fatigue in occupational settings prior to work. Most existing models provide the level of muscle 

fatigue only as a form of an endurance time (i.e., MET), which can be inefficient in understanding 

how this value is produced during the construction works. On the other hand, the developed model 

based on causal relationship among variables shows the process of muscle fatigue generation and 

recovery that can vary according to different workloads and idling/resting time during tasks. This 

understanding is beneficial for construction managers to design work guidelines for diverse 

construction tasks with varying force exertions as well as intermittent rest periods which are very 

common in construction tasks, in order to encourage a proper way of work manners. Specifically, 

various appropriate interventions to manage excessive muscle fatigue can be introduced by the 

simulation results, which include ensuring proper workload distribution based on each individual’s 

capacity, and providing proper work/rest schedules, and education and training workers how to 

deal with expected fatigue prior to work. These managerial efforts can be helpful in minimizing 

workers’ muscle fatigue without sacrificing productivity. In addition, the efforts to reduce workers’ 

muscle fatigue can enhance work performance with regard to health and safety.  

Further, the model can be applied to real-world construction work with accurate input values 

of actual workloads (%MVC) of diverse construction tasks. In this case, diverse biomechanical 

analysis tools (e.g., 3D SSPP) can be integrated to measure varying physical demands of a certain 

body part from workloads and then convert them into %MVC (i.e., ‘Force Exertion ’ in Figure 1) 

based on each subject’s physical capability (Garg et al. 1980; Chaffin et al. 2006). The use of more 

accurate input for actual workloads in diverse construction tasks enhance the applicability of the 
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developed model in practice, in order to improve work performance with regard to health and 

safety of workers and consequently sustained long-term productivity. 

Since it is recognized that metabolic factors contribute about 80% of muscle fatigue (Kent-

Braun 1999), this research mainly focuses on metabolic mechanisms in muscle fatigue, especially 

anaerobic metabolism for physically demanding construction work. Further, additional 

contributors can be considered and added into the core structures of the model. For example, the 

central fatigue (i.e., central nervous system fatigue), which is caused by an impaired central 

nervous system (e.g., brain and spinal cord), neurochemical changes (e.g., serotonin and 

dopamine), or lack of motivation during prolonged exercise, can be incorporated even though its 

underlying mechanisms of central fatigue and its effectiveness is still controversial. In addition, 

the model can be customized for other body parts (e.g., back and hip) because muscle endurance 

varies with the fiber type composition of the muscle groups according to the metabolic differences 

between fibers. Based on such physiological differences between body parts, this further 

customization can be applied to the developed model by adjusting model parameters (e.g., 

‘Production Coefficient’ or “Diffusion Coefficient’ of fatigue in Figure 1).  

C.7. Conclusion 

We proposed the SD model to estimate the level of workers’ muscle fatigue prior to work and 

understand its underlying mechanisms in occupational settings for construction tasks. Through 

model refinement and validation through a laboratory experiment, we demonstrated the 

applicability of the proposed model to evaluate workers’ muscle fatigue under construction tasks 

with varying workloads prior to work. With the comprehensive understanding of the physiological 

mechanisms of muscle fatigue, the proposed model is expected to provide a test tool for estimating 

a worker’s muscle fatigue level under heavy and varying workloads. This estimation can help to 
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design appropriate interventions (e.g., redesign work schedule or proper workload distribution) 

prior to work execution, and thus can reduce undesirable results from muscle fatigue. Further, the 

physiology-based muscle fatigue modeling approach advanced in this research can be extended to 

other major body parts (e.g., back and lower limbs) and light work (i.e., aerobic) as well as diverse 

injury-prone construction tasks, which will be highly impactful for creating proper preventive 

actions before serious fatigue takes place. 
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