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ABSTRACT 

 

Single-molecule fluorescence microscopy is a powerful technique that has been used 

for investigating the structural dynamics of biomolecules, and is particularly useful when 

ensemble averaging might obscure detailed information of the system under 

investigation. One application of single molecule measurement is to optimize the design 

of DNA nano-devices.  

Dynamic DNA nanotechnology has yielded nontrivial autonomous behaviours such 

as stimulus-guided locomotion, computation, and programmable molecular assembly. 

Despite these successes, DNA-based nanomachines suffer from slow kinetics, requiring 

several minutes or more to carry out a handful of operations. In this thesis, I have 

pursued the speed limit of an important class of reactions in DNA nanotechnology—

toehold exchange—through the single-molecule optimization of a novel class of DNA 

walker that undergoes cartwheeling movements over a field of complementary 

oligonucleotides. I identified the walking mechanism by single-molecule fluorescence 

resonance energy transfer (smFRET) measurement, with the stepping rate constant 

approaching 1 s-1, which is 10- to 100-fold faster than prior DNA walkers. I also used 

single-particle tracking to demonstrate movement of the walker over hundreds of 

nanometers within 10 min, in quantitative agreement with predictions from the stepping 
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kinetics. These results suggest that substantial improvements in the operating rates of 

broad classes of DNA nanomachines utilizing strand displacement are possible. 

Another application of single molecule measurements is kinetic fingerprinting 

detection. Conventional methods for detecting small quantities of nucleic acids require 

amplification by the polymerase chain reaction (PCR), which necessitates prior 

purification and introduces copying errors. While amplification-free methods do not have 

these shortcomings, they are generally orders of magnitude less sensitive and specific 

than PCR-based methods. In this thesis, I review important experimental tips and data 

analysis details to provide a practical guide to a novel amplification-free method, single-

molecule recognition through equilibrium Poisson sampling (SiMREPS), that provides 

both single-molecule sensitivity and single-base selectivity by monitoring the repetitive 

interactions of fluorescent probes with immobilized targets. In addition to demonstrating 

how this kinetic fingerprinting filters out background arising from the inevitable 

nonspecific binding of probes, yielding virtually zero background signal, I also 

investigated the detection of epigenetic mutations such as CpG methylation using 

SiMREPS. 

The analysis of single-molecule microscopy data can be very time-consuming 

because there is no sufficiently robust automatic method for selection of qualified single-

molecule fluorescence trajectories from the generally noisy and heterogeneous raw 

data, necessitating manual trace selection that can take hundreds of hours for large 

datasets. In this thesis, I discuss the innovative use of the popular convolutional neural 
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network AlexNet and the recurrent neural network Long Short-Term Memory (LSTM) to 

develop an automatic selector for single-molecule fluorescence resonance energy 

transfer (smFRET) traces. The average prediction accuracy is above 90% when tested 

on datasets from different users and experimental systems. To boost the selection 

accuracy and increase the diversity of training datasets, simulation data were included 

into the training data set and tested for selection accuracy. I expect that this new 

method will not only greatly expedite analysis of smFRET data and increase analysis 

reliability of SiMREPS data, but also introduce and validate machine learning as an 

effective tool for analysis of single-molecule microscopy data more generally. 

Together, these results provide new insights into how single molecule microscopy 

can be used to engineer dynamic behaviors of nucleic acids. 
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Chapter 1  

Progress towards Using Single Molecule Fluorescence Microscopy  

to Nanomachine Design and Diagnostic Detection 

 

1.1 Introduction 

Since the first observation of fluorescence in the 1500s, this natural wonder has 

inspired scientists to develop powerful techniques such as fluorescence spectroscopy 

and fluorescence microscopy. Among them, single molecule fluorescence microscopy 

has enabled scientists to observe the micro world with a closer look. For example, with 

assistance from single molecule fluorescence resonance energy transfer, molecular 

dynamic changes over a small distance (~7nm) can be measured. This feature can be 

used to help design and optimize complex DNA structures such as DNA tiles and DNA 

origami. Another application of single molecule microscopy is to interpret temporal 

fluorescence intensity changes of single molecule for diagnostic purposes, for instance, 

during the detection of cancer biomarkers such as microRNAs and DNA mutations.  

When conducting such experiments, data analysis is very critical. Traditional single-

molecule data analysis is time consuming and sometimes not satisfying the desired 

selectivity parameters. In addition, the inconsistency of raw data screening between 
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operators can introduce subjective biases. As a recently thriving data analysis 

technique, machine learning is well known for its capacity for handling large datasets of 

high complexity, which provides a new option for single molecule fluorescence data 

analysis. In this chapter, I introduce single molecule fluorescence microscopy, DNA 

nanotechnology, nucleic acid detection using transient binding events, and the current 

data analysis in the single molecule fluorescence field as background to my 

dissertation.  

1.2 Single Molecule Fluorescence Microscopy 

Before the 2014 Nobel Prize in chemistry drew people’s attention to super-resolved 

fluorescence microscopy, there had been remarkable growth in the use of single 

molecule fluorescence spectroscopy for the past decades. In fact, single molecule 

microscopy has begun to revolutionize the way people learn about micro biology 

systems. Methods such as reversible saturable optical fluorescence transitions 

(RESOLFT), photo activation localization microscopy (PALM) and point accumulation 

for imaging in nanoscale topography (PAINT) have broadened the power of optical 

microscopy by achieving a spatial resolution of approximately 20-30 nm1–5. Compared 

to traditional bulk ensemble assays to study complex biological systems, which usually 

read out the averaged information of the population of molecules, such a fine spatial 

resolution can reveal the heterogeneous behaviors among different molecules. This 
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unique capability makes single molecule microscopy an ideal method to study dynamic 

behaviors of nucleic acids.  

Fluorescence Resonance Energy Transfer (FRET) is a phenomenon by which non-

radiative energy transfer occurs between two fluorophore molecules, a donor and an 

acceptor. The efficiency of FRET is extremely sensitive to small distance changes, 

being inversely proportional to the 6th power of the distance between the donor and 

acceptor. Specially, the FRET efficiency is described by E = (1 + (R / R0)6)–1, where R is 

the inter-dye distance, and R0 is the Förster radius, defined as the distance at which E = 

0.5.  

Single Molecule FRET (smFRET) is one of the most widely used and versatile 

methods to study the features of individual biological molecules, especially involving 

asynchronous dynamic behaviors6. In particular, tracking the FRET efficiency in real-

time can report on the conformational dynamics of single molecules. Single-molecule 

FRET data are usually acquired using a wide-field total internal reflection fluorescence 

(TIRF) microscope, which can achieve high-throughput data sampling compared to 

confocal microscopy7,8. One advantage of smFRET is its capability of ratiometric 

measurements of the internal distance on a molecular scale, largely reducing 

systematic errors that may result from instrument noise and drift9,10. Also the 

subnanometer structural kinetic information that smFRET provides is not usually 

available through any other methods. 
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Single molecule FRET is increasingly used in studies of DNA nanotechnology, a field 

whose goal is the rational design of DNA molecular structures and dynamic devices11. 

As any engineering discipline this effort requires detailed feedback of the building 

process and products, information that smFRET can often uniquely provide. The 

dynamic information acquired using smFRET reflects a distribution of properties (rather 

than an average) because the measurement is conducted on individual molecules. This 

feature of smFRET enables the study of tiny structures associated with dynamic DNA 

devices, reporting on diverse dynamic behaviors.   

In my thesis, smFRET has been used as a tool to investigate the translocation 

mechanism of a new type of DNA walker; single particle tracking is used for lager area 

observation of the DNA walker; a kinetic fingerprinting detection method inspired by a 

super resolution imaging technique is further studied for method optimization and DNA 

methylation detection; analysis on data generated from single molecule measurement is 

studied. Overall, the single molecule microscopy is the driving force of my thesis 

research.  

1.3 DNA Nanotechnology and Nanodevices Design 

The field of DNA nanotechnology can be traced back to 1980s when people wanted 

to organize proteins in 3D crystals by using DNA as the connecting bones12. Since then, 

DNA nanotechnology has been developed as a reliable technique in control of matter on 
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the nanoscale. Besides DNA self-assembly control and design as the major interest of 

researchers13,14, using DNA to build artificial molecular motors is also an important 

application of DNA nanotechnology.  

Since the step-by-step (hand-over-hand) movement mechanism of molecular motors 

such as dynein, myosin and kinesin super families was characterized15,16, attempts to 

mimic their dynamic behaviors have been made in the form of synthetic molecular 

walkers. Several DNA-based molecular walkers have been synthesized17–23, motivated 

by a long-term goal of controlling molecular transport processes with the 

programmability and structural robustness of DNA nanotechnology. Previous studies 

have shown that DNA walkers can walk directionally along a track upon sequential 

addition of a DNA strand as chemical “fuel”19,24. In some studies, more sophisticated 

tasks are coupled to walker motion, such as templating sequential chemical reactions 

and assembling gold nanoparticles25,26. 

Despite all this progress, the DNA walkers reported so far have been constrained by 

slow translocation rates, which are typically on the order of a few nm/min17,23. By 

comparison, natural protein motors have translocation rate of ~1μm/s under saturating 

ATP conditions, a 3~4 orders of magnitude faster rate15,27. It is desirable to reduce this 

gap if synthetic DNA walkers are to serve as useful agents of molecular transport. 

Based on prior investigations, the translocation rate of many DNA walkers is believed 

to be limited by slow catalytic steps or the release of cleavage products. In contrast, the 

displacement of one strand DNA duplex by another can be catalyzed by the nucleation 
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of short single-strand overhangs, or “toeholds”, a process that can be very rapid when 

the reagents are present at high concentrations28. This process is the so-called “toehold 

exchange displacement”. Since DNA scaffolds can be used to generate local effective 

reagent concentrations in excess of 100 μM in bimolecular reactions29, a DNA walker 

using toehold exchange reactions for locomotion may be able to realize higher 

translocation rates than previously reported DNA walkers. 

In my thesis, toehold exchange displacement is used as a new translocation 

mechanism to speed up the DNA walkers’ movement. The fast movement of DNA 

walkers is achieved by allowing the DNA walkers to move along the foothold strands 

with a cartwheeling movement fashion.  

1.4 Hybridization patterns of nucleic acids: molecular kinetic fingerprints 

The detection of nucleic acid sequences with high specificity plays an important role 

in both basic biological research and diagnostics due to the fundamental roles of genetics, 

epigenetics, and gene expression in both normal physiology and pathology. For instance, 

specific mutations and aberrant methylation patterns of DNA have been linked to various 

types of cancer, showing promise for early detection of disease, monitoring of treatment 

response and relapse, and indicating whether a cancer is likely to respond to a given 

course of treatment. Expression levels of specific microRNAs (miRNAs) and long non-

coding RNAs (lncRNAs) are strongly correlated to cell differentiation states and thus of 
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interest as biomarkers of disease. MicroRNAs (miRNAs) are a class of small non-coding 

RNA molecules found in plants, animals, and some viruses. They functions in RNA 

silencing and post-transcriptional regulation of gene expression. 

To ensure adequate sensitivity for most nucleic acid analyses, samples must be 

amplified by procedures such as the polymerase chain reaction (PCR) for adequate 

specificity, sometimes following generation of cDNA by reverse transcriptase and/or the 

ligation of adapter sequences.  However, such preparative procedures introduce several 

challenges for the quantitative analysis of nucleic acids. First, DNA polymerases and 

thermal cycling can both introduce artifactual sequence changes such as base 

substitutions during the amplification process, which may result in false positives when 

attempting to detect rare single-base mutations (e.g., for liquid biopsy of cancer). 

Second, reverse transcriptases and ligases exhibit significant sequence biases, 

introducing significant artifacts such as spurious differences in expression levels and 

even the complete absence of certain sequences. Third, polymerases and ligases can 

be susceptible to inhibition by contaminants such as heparin and heme, necessitating 

additional purification steps prior to amplification. Finally, many classes of analytes are 

simply not amenable to direct amplification, including epigenetic modifications, short or 

fragmented nucleic acids, or non-nucleic acid analytes. 

Conventional methods for detecting small quantities of nucleic acids require 

amplification by the polymerase chain reaction (PCR), which requires prior purification 

and introduces copying errors. While amplification-free methods do not have these 
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shortcomings, they are generally orders of magnitude less sensitive and specific than 

PCR-based methods. To overcome these drawbacks, Johnson-Buck et al. developed a 

miRNA detection method based on kinetic fingerprinting called Single-Molecule 

Recognition by Equilibrium Poisson Sampling (SiMREPS). By monitoring transient 

binding of fluorescent probes to immobilized miRNA targets using TIRF microscopy, the 

authors demonstrate an amplification-free, zero-background, single-molecule detection 

and counting technique. In contrast to other amplification-free nucleic acid detection 

methods, whose specificity is limited by thermodynamic discrimination between true and 

spurious targets, this SiMREPS technique largely overcomes the inherent 

thermodynamic barriers through repeated kinetic sampling. Johnson-Buck et al. 

performed SiMREPS detection of five exemplary miRNAs and realized a more than 

500-fold discrimination between two members of the let-7 miRNA family differing by a 

single nucleotide, let-7a and let-7c. They further demonstrated the rapid and specific 

detection of endogenous let-7 in crude human cancer cell lysate and quantification of 

the clinically relevant miR-141 in a matrix of minimally treated human serum30.  

 Results from SiMREPS detection on miRNAs provides a firm foundation for further 

study and optimization. A 1 to 1 million specificity of wild type and mutant targets has 

been achieved from the detection of circulating tumor DNA (ctDNA) using SiMREPS31. 

Besides expanding the detectable analytes spectrum to DNAs or other targets, an 

important study direction is the measurement optimization, both in experiments and 

data analysis. In the experimental side, improving the mass transfer of analytes from 
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low concentration samples and modification of imaging surface for different types of 

analytes are of high priority. In the data analysis side, finding a new way to achieve a 

higher selectivity among similar-look traces is critical.  

In my thesis, optimization of both experiment and data analysis is explored. In 

addition, early investigation of detecting smaller scale difference (methyltation of DNA 

CpG site) among nucleic acid molecules is also tried.  

1.5 Time series data analysis in single molecule microscopy 

The output of single molecule fluorescence microscopy measurement is usually 

displayed as a time series containing information regarding the dynamics and kinetics of 

the system as intensity vs. time format traces. In daily research, a manual screening of 

traces is always needed to get a good quality dataset before the data will be used in 

further analysis. Sorting and classification of single-molecule time series data (such as 

single-molecule fluorescence resonance energy transfer data) is a critical but time-

consuming part of analyzing single-molecule measurements. This is because the large 

diversity of potential background signals makes it difficult to design simple criteria, such 

as thresholds based on intensity or noise, that would effectively remove all irrelevant 

time traces (e.g., those resulting from contaminants or nonspecific binding rather than 

analyte molecules) while retaining all or most of the relevant data for further analysis. 

Furthermore, it is often the case that only a particular time segment of each single-
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molecule trace is useful, and these regions of interest (ROIs) must typically be selected 

by hand, which slows down analysis considerably. Because the selection of ROIs is 

dependent on relatively complicated determinations – such as the absence of various 

artifacts including photobleaching, blinking, and contamination from nearby fluorescent 

materials – it is also difficult to automate this process using conventional methods. In 

short, the time series data analysis discussed here can be addressed as a sorting and 

segmentation task.   

In my thesis, the obstacles of sorting of multi-channel data (more than one signal in 

the time series data such as data from smFRET measurement) and single channel data 

generated from single molecule measurement, and the solutions using machine 

learning algorithms developed together with my collaborators are discussed.  

1.6 Machine learning and its general applications 

As a currently highly popular data analysis method, machine learning has been 

widely used in science, economics, business and other areas32–40. Machine learning 

systems are used to identify objects in images, transcribe speech into text, match news 

items, posts or products with users’ interests and select relevant results of search. 

Traditional machine learning requires careful engineering and considerable expertise to 

design a feature extractor, which can convert the raw data into suitable representations 

or features that can be easily detected or classified by the learning systems. Deep 
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learning is an advanced format of machine learning in the way that it allows a machine 

to be fed with raw data and to automatically discover the representations needed for 

detection or classification. Because of the unique non-linear modules (neural network 

layers) that can extract features at a higher and more abstract level, complex functions 

can be learned in deep learning neural networks. The key difference of deep learning 

from traditional machine learning is that the layers of features are not designed or 

engineered by human beings, but are learned from data using a general-purpose 

learning procedure. This difference makes deep learning a preferable option for 

researchers outside the statistics field and more applicable to diverse tasks. Besides the 

beating traditional machine learning in traditional fields such as image recognition and 

speech recognition41–46, deep learning has also beaten other machine learning 

algorithms at scientific research tasks such as predicting the effects of mutations in 

DNA on gene expression and disease47,48. 

The similarity of sorting traces and machine learning clustering, and the reality of no 

automated process to handle the sorting task, make single molecule trace selection an 

exciting opportunity to use machine learning. In our case, recurrent neural network 

(RNN) and Convolutional neural network (CNN) are being used. Both networks are 

deep learning networks. But since we are using these algorithms to solve a data 

analysis problem rather than developing a new algorithm, and to better reach a broader 

audience, we will use the general term machine learning in this dissertation even though 

sometimes we are referring to deep learning.  
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1.7 Overview of the dissertation 

In the following chapters, I will discuss several applications of single molecule 

fluorescence microscopy such as to study individual nanoscale devices composed of 

DNA and to develop diagnostic detection method.  

In Chapter 2, I describe the mechanistic study of a new type of autonomous DNA 

walker that uses toehold exchange displacement. By using single molecule 

fluorescence resonance energy transfer (smFRET) measurement, we are able to 

optimize the design to get the fastest DNA walker. We also demonstrate that this DNA 

walker can translocate in a much larger two dimensional area in a fast speed by single 

particle tracking observation.  

In Chapter 3, I will discuss how binding kinetic information can be used for diagnostic 

detection through single molecule measurement. By recognizing the specific binding 

kinetic patterns of different analytes, this kinetic fingerprinting method has achieved a 1 

to 100,000 selectivity. This method is discussed thoroughly from experimental execution 

to data analysis details. A practical guide of using this method is embedded in this 

chapter. One new application of this kinetic fingerprinting method to directly detect DNA 

CpG methylation is also discussed.  

In Chapter 4, a collaborator and I have developed an automatic single molecule 

traces selector by the innovative use of machine learning algorithms. Two types of 

traces are studied here: single channel traces from kinetic fingerprinting measurement 
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and double channel traces from smFRET measurements. In analyzing single channel 

traces, we show that the new machine learning method has the potential to outperform 

the current kinetic thresholding, which uses Hidden Markov Modeling (HMM). In double 

channel trace analysis of smFRET measurements, the time spent on manual trace 

selection can be considerably reduced, together with an increase of consistency and 

objectivity in raw data screening. Overall, productivity and specificity in single molecule 

data analysis can be improved by this new trace selector.  

Together, the work presented in this dissertation contributes to the 1) analytical toolkit 

of DNA nanotechnology; 2) diagnostic detection method; and 3) single molecule data 

analysis. The main aim of my thesis is to apply single molecule measurement to 

different uses such as a new characterization method for mechanistic study and 

optimization of a DNA walker, and developing a new direct detection method for 

epigenetic mutation. With improvement from data analysis, single molecule 

fluorescence microscopy promises to become an even better tool to engineer dynamic 

behaviors of nucleic acids.   
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Chapter 2: 

DNA Acrobat as A New Tool to Explore the Speed Limit of DNA Walkers1,2 

2.1 Introduction 

Dynamic DNA nanotechnology exploits the programmable reconfiguration of Watson-

Crick base pairing to carry out nontrivial autonomous functions inspired by both biology 

and macroscopic engineering, resulting in systems such as molecular 

walkers24,49,22,50,51, assembly lines52,53, computers54,55, and robots17,56,57. Unlike their 

naturally occurring counterparts, the top-down design and transparent relationship 

between sequence and function of DNA nanodevices provides rich opportunities for 

programmable specificity and dynamics. A fundamental process in nearly all such 

systems is strand displacement, the stepwise replacement of one strand of a double 

helix with another invading strand, a process often catalyzed by one or more short 

overhangs of unpaired nucleotides called toeholds58. A class of strand displacement 

reactions called toehold exchange28 involves competition between two toeholds of 

similar length, and has found widespread use in dynamic DNA nanotechnology54,57,59 

due to its robust ability to 

                                                      
1 Reproduced in part from Li, J., Johnson-Buck, A., Yang, Y. R., Shih, W. M., Yan, H., & Walter, N. G. Nature Nanotechnology 13, 

723–729. Copyright Nature Publishing Group, 2018.  
2
 Renee Yuhe Yang designed, fabricated, and characterized DNA tile samples. William M. Shih. and Alexander Johnson-Buck 

designed, fabricated, and characterized DNA origami samples. Jieming Li performed smFRET and single-particle tracking 
measurements. Alexander Johnson-Buck performed kinetic Monte Carlo modeling. Jieming Li, Alexander Johnson-Buck, and Nils 
G. Walter analyzed and interpreted the data. Jieming Li and Alexander Johnson-Buck co-wrote the paper. 
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accelerate the exchange of nearly isoenergetic DNA double helices by several orders 

of magnitude28. Indeed, toehold-mediated strand displacement reactions can have 

second-order rate constants in excess of 106 M-1s-1; thus, DNA nanomachines with local 

effective strand concentrations in the micromolar range29 may be able to execute 

individual operations in seconds or less, provided that branch migration and toehold 

dissociation are sufficiently rapid. 

Despite this theoretical rapidity, in current practice most DNA nanomachines require 

several seconds to several hours to complete a single operation52–54,60. For instance, a 

recently reported cargo-sorting DNA robot utilizing toehold exchange for locomotion was 

found to take about one step every 5 min despite an only 6-nm gap between 

neighboring footholds57, which is comparable to the reported speeds of other 

autonomous DNA walkers17,18,60. In one notable exception, a translocation rate of ~1 µm 

min-1 was achieved for DNA-functionalized nanoparticles, though this utilized a burnt-

bridge mechanism involving the degradation of complementary RNA strands by RNase 

H61. By comparison, natural protein motors have translocation rates of ~1 μm/s under 

saturating ATP conditions27,15
. We hypothesized that the sluggish performance of DNA 

nanomachines is not due to a fundamental limitation of strand displacement reactions, 

but is instead the result of designs not optimized for speed.  

To test this hypothesis, we designed a novel type of DNA walker with the express 

purpose of rapid locomotion. We then used single-molecule fluorescence resonance 

energy transfer (smFRET) to characterize its translocation mechanism and kinetics, and 

optimized its stepping rate by systematically varying the lengths of its toehold and 

branch-migration domains, resulting in stepping rate constants more than an order of 
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magnitude faster than existing DNA walkers. Following optimization of the design with 

smFRET, we used single-particle tracking to observe the movement of toehold 

exchange DNA walkers over distances as long as ~1 µm on a two-dimensional array of 

footholds. The performance of the walkers on 2D arrays is quantitatively consistent with 

predictions based on the stepping kinetics measured by smFRET on DNA tile 

substrates, demonstrating that this mechanism of locomotion is generalizable to 

different substrate types and conducive to long-range movement requiring hundreds of 

steps.  

2.2 Materials and Methods 

2.2.1 Materials 

Single-stranded oligonucleotides, Cy3- and Cy5-labeled oligonucleotides, and amine-

modified oligonucleotides were purchased from IDT (Integrated DNA Technologies, 

Inc.). Dye-labeled oligonucleotides were HPLC-purified by the manufacturer. 

Streptavidin (S-888), biotinylated bovine serum albumin (bBSA, 29130), Trolox 

(218940050), and 3,4-dihydroxybenzoic acid (AC114891000) were purchased from 

Thermo Fisher Scientific. Protocatechuate 3,4-dioxygenase (PCD), tris base, acetic 

acid, EDTA, magnesium acetate, dibenzocyclooctyne-N-hydroxysuccinimidyl ester 

(761524), 11-azidoundecyltriethoxysilane (SIK4711-30), N,N-dimethylformamide (DMF), 

triethylamine (TEA), and sodium acetate (NaOAc) were purchased from Sigma-Aldrich. 

2.2.2 Design, Assembly, and Characterization of 4-Helix DNA Tiles 

The detailed sequence designs of the DNA 4-helix (4HX) tile nanostructures are 

shown in Figures A1.1, A1.2. The computer program Tiamat was used for structural 
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design and sequence generation. Oligonucleotides were purified using 6-8% denaturing 

polyacrylamide gel electrophoresis (PAGE) at room temperature. The bands 

corresponding to the correct strand length were imaged by UV lamp (254 nm) and then 

cut from the gel, chopped into small pieces, and incubated overnight in elution buffer 

(500 mM ammonium acetate, 10 mM magnesium acetate, 2 mM sodium 

ethylenediaminetetraacetic acid, pH 8.0). The DNA strands were extracted from the gel 

pieces by centrifugation using a Costar Spin X filtration device (Corning, cellulose 

acetate membrane with 0.22 µm size). The filtrate was then ethanol-precipitated, 

washed by ethanol and dried under vacuum. The DNA strands were dissolved in 

nanopure water and the concentrations of the individual purified strands were measured 

by UV absorbance at 260 nm using the extinction coefficient provided by the 

manufacturer. 

The DNA strands constituting each DNA structure were mixed in 1×TAE/Mg2+ buffer 

(40 mM Tris, 20 mM acetic acid, 2 mM EDTA and 12.5 mM magnesium acetate, pH 8.0) 

to reach a final concentration of 1 µM per strand. All samples were annealed using an 

Eppendorf Mastercycler using the following annealing protocol: heat to 90 °C, cool from 

90 °C to 72 °C over 10 min, then from 68 °C to 24 °C over 60 min, and finally holding at 

15 °C.  

The formation of the DNA structures was characterized by native PAGE. 5% Native 

PAGE gels were prepared at room temperature and run for 4 to 6 hours at a constant 

voltage of 200V. Cy3-labeled structures were visualized by UV lamp (365 nm) and then 

cut from the gel, chopped into small pieces, and incubated overnight in 1×TAE/Mg2+ 

buffer. The DNA structures were then extracted from the gel pieces by centrifugation 
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using a Costar Spin X filtration device (Corning, cellulose acetate membrane with 0.22 

µm size). For analytical native PAGE, the gel was subsequently stained with SYBR® 

Green/Gold. 

2.2.3 Design, Fabrication, and Characterization of DNA Origami 

The DNA origami structure was built on a square helical lattice using the program 

caDNAno, and staple strand sequences (Table A1.1) were designed to be 

complementary to a contiguous segment of the M13 p7308 scaffold sequence. 

Assembly was performed by combining 10 nM of the p7308 scaffold with a tenfold molar 

excess of all staple sequences in TE buffer with 10 mM MgCl2, then performing the 

following annealing protocol on a Tetrad 2 Peltier thermal cycler: heat to 80 °C, 

decrease to 60 °C over 70 min, decrease from 60 °C to 24 °C over 66 h, and then hold 

at 4 °C. Origami were purified from excess staples by 2% agarose gel electrophoresis in 

0.5X TBE + 10 mM MgCl2. The gel was scanned using a Typhoon FLA 9000 (GE 

Healthcare Life Sciences), and a scale printout was laid under the gel to permit excision 

of the origami bands. Origami structures were eluted from the gel by centrifugation for 5 

min at 5000 × g in Freeze ‘N Squeeze spin columns (Bio-Rad). Recovery was confirmed 

by again running the purified origami on a 2% agarose gel and scanning for Cy3 

fluorescence. DNA origami morphology was characterized by negative-stain 

transmission electron microscopy (TEM) using a JEOL 1400 TEM after depositing 3 µL 

of origami on a plasma-treated carbon Formvar grid (Electron Microscopy Sciences) 

and staining with a freshly prepared 2% uranyl formate solution for 0.5 min. 
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2.2.4 smFRET characterization of DNA walkers on DNA nanostructures 

Microscope slides with a flow channel were prepared using double-sided tape (3M) 

and treated with biotinylated BSA and streptavidin as described62,63 to prepare the 

surface for immobilization of biotinylated DNA nanostructures.  15 L of a 10 nM 

solution of DNA tile or origami and 10 L of a 10 nM solution of DNA walker were 

combined and incubated in dark at 37 °C for 5 minutes. This mixed sample was diluted 

to 20 pM in TA-Mg2+ (40 mM Tris, 20 mM acetic acid, and 12.5 mM magnesium acetate, 

pH 8.0) buffer, then injected into the flow chamber. After incubating for 10 minutes, TA-

Mg2+ was injected to remove excess unbound material.  

Single-molecule FRET experiments were carried out on an inverted prism-type total 

internal reflection fluorescence (TIRF) microscope with a 1.2 NA 60× water-immersion 

objective (IX71, Olympus) in a darkened room at an environmentally controlled 

temperature of 20 ± 3 °C. Fluorescence excitation was provided by a 532-nm green 

laser (CrystaLaser CL532-050-L, 50 mW, attenuated and focused to give an illumination 

intensity of ~100 W cm-2 in the sample plane); presence of an active FRET acceptor 

was confirmed at the beginning of each experiment by brief excitation with a 640-nm red 

laser (Coherent CUBE 635-25C, 25 mW). The Cy3 and Cy5 emission signals were 

separated by a dichroic mirror with a cutoff wavelength of 610 nm (Chroma) and 

projected side-by-side onto an ICCD camera chip (iPentamax HQ Gen III, Roper 

Scientific, Inc.) with a full-frame acquisition rate of 10 Hz. The Cy3 channel image was 

passed through a bandpass filter (HQ580/60m, Chroma) and the Cy5 channel was 

passed through a long-pass filter (HQ655LP, Chroma). A Newport ST-UT2 vibration 

isolation table was used in all experiments to reduce instrument interference. In all 
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smFRET measurements, an oxygen scavenger system (OSS ≡ 5 mM 3,4-

dihydroxybenzoic acid; 2 mM Trolox; and 50 nM protocatechuate dioxygenase) was 

included in the imaging buffer to retard photobleaching.29,64 

Analysis of single molecule FRET trajectories was performed with custom-written 

MATLAB scripts as previously described65, with the FRET ratio at each time point 

calculated as ICy5/(ICy5 + ICy3), where ICy5 and ICy3 are the apparent fluorescent intensities 

of Cy5 and Cy5, respectively. A given smFRET trajectory was used in subsequent 

analysis only if it (1) exhibited total fluorescence of Cy3 and Cy5 exceeding 500 

counts/frame; (2) showed clear evidence of both Cy3 + Cy5; and (3) showed no 

evidence of multiple identical fluorophores, for example, multiple photobleaching steps 

or overlapping point-spread functions in the CCD image. After trajectories met the 

criteria were selected, Hidden Markov modeling (HMM) was then applied using the QuB 

software suite (State University of New York at Buffalo) to determine the mean dwell 

times in high- and low-FRET states for each trajectory.66 The same two-state model was 

applied to all datasets. After idealization, the dwell times in the high- and low-FRET 

states (red and blue lines in Figure 2.2 f-i) were extracted from each trace, and the 

mean value of all high-FRET, low-FRET, or (high-FRET + low-FRET) dwell times were 

used to describe the mean dwell time of each molecule. These mean dwell times across 

all observed molecules are represented as box-and-whisker plots in Figure. 2.3 a,b. 

Transition occupancy density plots (TODPs), which depict the frequency of transitions 

from an initial FRET state to a different (‘final’) FRET state among all molecules 

characterized, were constructed from the idealized data as described previously65. 
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Cross-correlation between donor and acceptor fluorescence signal (Figure 2.1e) was 

calculated using the built-in MATLAB function xcorr with unbiased normalization; the 

cross-correlation signal was further normalized such that the cross-correlation 

approaches 0 at infinite time lag, and any positive or negative correlation is confined to 

the interval [-1,1]. The decay time of cross-correlation was estimated by a single 

exponential fit. 

2.2.5 Preparation and characterization of high-density Foothold-functionalized 
surfaces 

2250 mm coverslips were sonicated in a solution of 2% Alconox for 5 min and then 

rinsed 5 times with deionized water. Rinsed coverslips were incubated in heated base 

piranha solution (5%  hydrogen peroxide and 5% ammonium hydroxide, 60-70 °C) for 

40 min. Coverslips were rinsed 5 times with diH2O following once with ethanol, and 

dried under an air stream. Dry coverslips were placed into a box with ethanol-soaked 

Kimwipes (Kimberly Clark). A 2% silane solution was prepared by combining 2 L 11-

azidoundecyltriethoxysilane and 98 L ethanolic acetic acid (95% ethanol/5% aqueous 

acetic acid), and 80 L of the solution was added to the coverslip. Another coverslip 

was placed on top to form a sandwich. After a 10-min incubation, the coverslip 

sandwiches were flipped over and again incubated for 10 min. After a total 20-min 

incubation, the coverslips were rinsed with absolute ethanol twice and dried under air.  

Amine-modified oligonucleotides (F1,covalent:  5′-

CAATACCCCTACGGTCACTTCTTTTTTTTTT/3AmMO/; and F1,covalent: 5′-

/5AmMC6/TTTTTTTTTTCCCTCATTCAATACCCCTACG), were functionalized with 

DBCO as follows: 200 L of N,N-dimethylformamide (DMF) and 5 mg of DBCO-NHS 
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ester were combined to prepare a 62.5 mM solution of DBCO-NHS ester. A 20 µL 

aqueous solution of 1 mM amine-modified Foothold strand F1 or F2 was combined with 

40 µL of 62.5 mM DBCO-NHS ester, 39 µL of DMF, and 1 µL of TEA and incubated for  

2 h at room temperature. DNA was precipitated by adding 10 µL 3 M NaOAc and 200 

µL of chilled 100% ethanol to the reaction, and incubating at -20°C for 30 min. The 

precipitated DNA was pelleted by centrifugation at 20,000 × g, 4°C, for 40 min. The 

supernatant was removed, and the precipitate was rinsed with 100 µL 80% ethanol and 

spun down again for 1 minute. The supernatant was again removed, and the pellet was 

dried in vacufuge for 10 minutes. A UV spectrum was collected to measure the 

concentration of DBCO functionalized oligos. The absorbance of DBCO at 310 nm was 

used to estimate the ratio of DBCO to DNA (approximately 1:1) after subtracting the 

absorbance of the DNA at 310 nm based on its absorbance at 260 nm and the 

extinction coefficients at 260 and 310 nm predicted using the UV Spectrum application 

of IDT biophysics. 

Click conjugation of oligos to azide-functionalized coverslips was performed as 

follows. Solutions of 50 M DBCO-functionalized Foothold oligonucleotides F1 and F2 

were prepared in PBST buffer (1× PBS + 0.1% Tween-20). Equal volumes of each 50 

M oligonucleotide solution were combined, and 1 L of the mixture was spotted onto 

the 11-azidoundecyltriethoxysilane-modified coverslips. The click reaction proceeded 

overnight for more than 15 hours in a humid environment. Coverslips were rinsed 

thoroughly by ddH2O for more than 10 seconds and dried under N2.  

The density of click-conjugated oligonucleotides on coverslip surfaces was estimated 

as follows. For purposes of density characterization, only DBCO-modified F1 strands 
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were added (at 50µM) during the click conjugation. After construction of sample wells 

(see Single-particle tracking and data analysis, below), 100 µL of a mixture containing 1 

pM Cy5-labeled W8_13_8 and 1 µM (i.e., a 1-million-fold excess) of a non-fluorescent 

W8_13_8 in TA-Mg2+ buffer was added to the sample well and incubated for 10 min. The 

solution was replaced by 100 µL of OSS and the sample was imaged on the same TIRF 

microscope used for single-particle tracking, under illumination at 640 nm. The number 

of Cy5-labeled walker molecules bound within each field of view was estimated using a 

custom MATLAB script, and averaged over 23 fields of view, and multiplied by 106 to 

estimate the total number of labeled and unlabeled W8_13_8 molecules per field of view, 

N = 3.0108. For each field of view, the area is S = (262nm/pixel  512 pixels)2 = 17990 

m2.  The density of Foothold oligos is N/S = 1.67104 /m2. 

To estimate the typical distance to the nearest available Foothold of the opposite type 

(since a walker with a dissociated toehold domain can step only onto F1 if it is bound to 

F2, and vice-versa), we performed numerical simulations of the distribution of footholds 

F1 and F2 in two dimensions (Figure A1.8a), assuming an independent uniform random 

distribution of each foothold on the surface and the same density of footholds as we 

observed experimentally (1.67x104 µm-2; in the simulation, this translates to 8350 copies 

of F1 and 8350 copies of F2 in a 1000 nm x 1000 nm region). We then calculated the 

distance to the nearest F2 for each foothold F1, and plotted a histogram of these 

distances (Figure A1.8b). This simulation predicts that the mean distance to the nearest 

foothold is 5.5 nm, and >98.5 % of footholds will have at least one foothold of the 

opposite type within 13 nm. 
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2.2.6 Estimation of mean step size in 2D walking experiments 

To estimate the mean step size, we approximated the mean distance between the 

foothold’s anchor point and the distal (free) toehold of the walker as (length of walker-

foothold duplex) + (length of single-stranded linker between coverslip and walker). The 

length of the walker-foothold duplex was calculated as (number of nucleotides) x (0.33 

nm per nucleotide). The RMS end-to-end distance of the single-stranded linker (dT10 + 

any unpaired toehold nucleotides in the proximal foothold) was estimated using a freely 

jointed chain model according to the formula 𝑅𝑀𝑆𝐷 =  √𝑁𝑙, where N is the number of 

Kuhn segments and l is the persistence length67, assuming a persistence length of 1.5 

nm and a contour length of 0.56 nm per nucleotide68. The estimated step sizes of the 

two walkers used in single-particle tracking are estimated as 10.8 nm (for W6_13_6) and 

11.1 nm (for W8_13_8), which were used in generating the simulated MSD vs. time traces 

for Figure 2.4f. However, given the predicted contour length of the 10-12 nucleotide 

ssDNA linker (5.6-6.7 nm) and the predicted length of the 19-21 nucleotide dsDNA 

segment (6.3-7 nm), the maximum end-to-end distance of each walker is as large as 

12.5-13 nm. 

2.2.7 Single-particle tracking and data analysis 

A 200-µL Eppendorf micropipet tip was cut with a razor blade and attached to the F1 

and F2 modified coverslip by Epoxy (Double Bubble, Hardman Adhesives) as 

described30 to form a sample chamber with the DNA-coated region positioned 

approximately in the in the center of the chamber. The sample chamber was incubated 

with 100 L PBST buffer (1x PBS + 0.1% Tween-20) for 10 min, then for 15 min with a 

100 L mixture containing 1 pM DNA walker and 10 pM Cy3-labeled fiducial marker 
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oligo (sequence fully complementary to F1) in PBST. The walker sample was then 

removed and the chamber was rinsed 3 times before imaging.  

Single-particle tracking experiments were performed on an Olympus IX-81 objective-

type TIRF microscope equipped with a 60× oil-immersion objective (APON 60×OTIRF, 

1.49 NA) with both Cell^TIRF and z-drift control (ZDC2) modules, and an EMCCD 

camera (IXon 897, Andor, EM gain 300).  Cy5 excitation was provided by a 640-nm red 

laser (Coherent CUBE 640-100C, 100 mW) and Cy3 excitation was provided by a 532-

nm green laser (CrystaLaser CL532-150-L, 150 mW). In all single-particle tracking 

experiments, an OSS was included in the imaging buffer to retard photobleaching. The 

translocation of DNA walkers was monitored under alternating TIRF excitation at 640 

and 532 nm (time lapse interval = 30 s, exposure time = 100 ms) for 60 min. 

Analysis of single-particle tracking experiments was performed as follows. The 

ImageJ plug-in Particle Track and Analysis (PTA) was used to conduct 2-dimensional 

Gaussian fitting by the Levenberg-Marquardt method to obtain trajectories for each 

detected walker molecule.69 The search area was set to 3 pixels (= 402 nm). The net 

movement of all fiducial markers in the field of view was subtracted from walker 

trajectories using a custom Matlab script to account for x-y stage drift. A given trajectory 

was used in subsequent analysis only if it (1) lasted 10 minutes (20 frames) without 

photobleaching; (2) exhibited no sudden fluorescence intensity changes as determined 

by manual inspection of the output from PTA fitting; and (3) showed no evidence of 

multiple identical fluorophores, such as multiple photobleaching steps or overlapping 

point-spread functions in the CCD image.  
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Calculation of mean square displacement (MSD) was performed as follows. An initial 

position (x0, y0) was defined as the arithmetic mean of the first 3 position measurements 

of each trajectory. The distance of each subsequent position measurement (xi, yi) from 

initial position (x0, y0) was then calculated and squared to obtain the squared net 

displacement over time. The arithmetic mean of the squared displacement (MSD) was 

calculated for all trajectories lasting at least 10 min, and the corresponding standard 

error (SE) of the mean was calculated for each MSD value as plotted in Figure 2.4f. 

After fitting a linear function to each MSD versus time plot in OriginPro 8.0, the slope of 

the linear fit was divided by 4 to obtain the apparent 2D diffusion coefficient (D) for each 

walker, based on the 2D diffusion model 〈(𝑥(𝑡))2〉 = 4𝐷𝑡. The diffusion coefficient was 

also predicted from smFRET measurements of stepping kinetics using the 2D random 

walk model ∆𝑥2 = 4𝐷∆𝑡, in which x is the step size (assumed to be 10.9 nm) and t is 

the mean stepping lifetime of a representative (median-valued) walker.  

2.2.8 Kinetic Monte Carlo modeling of branch migration and stepping kinetics in 
3-foothold system 

Branch migration and stepping of walkers in a 3-Foothold system was numerically 

simulated at single-base resolution using a version of the Gillespie algorithm70 

implemented in MATLAB. Additional details regarding the simulations and their 

interpretation are provided in the published paper. Autocorrelation of the branch 

migration state was calculated as a function of time lag using the xcorr function in 

MATLAB, and normalized in the same manner as for cross-correlation in the smFRET 

data. 
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2.3 Results 

2.3.1 smFRET study of DNA walker’s stepping mechanism on DNA tile  

 
The DNA walker (Figure. 2.1a) was designed with speed, simplicity, and robust 

performance as the primary objectives. Thus, we intentionally avoided the need for 

strand cleavage by protein or DNA enzymes, since these pose the risk of creating 

kinetic traps for DNA walkers71 and would prevent observation of repeated stepping. 

Instead, we chose a mechanism based purely on toehold exchange, which permits the 

walker to step an indefinite number of times between two competing “foothold” DNA 

sequences, undergoing rapid sequence-guided movement over long distances while 

remaining stably bound to at least one foothold at all times. Furthermore, we chose a 

“cartwheeling” mode of locomotion so that the free toehold is always distally located and 

can pivot about its anchor point to position its free toehold near an unoccupied 

complement for rapid binding, thus yielding comparable reaction rates for each step. As 

depicted in Figure. 2.1a, the single-stranded DNA walker W undergoes head-over-heels 

movement over a surface of two different foothold sequences, F1 and F2, by toehold-

mediated strand displacement. The two foothold sequences comprise a common middle 

branch migration domain 𝑫𝑩
̅̅ ̅̅  as well as toehold domains 𝑫𝑨

̅̅ ̅̅   and 𝑫𝑪
̅̅ ̅̅  unique to each 

foothold sequence. The walker is complementary to all three domains, with nearly 

identical free energy of hybridization to 𝑫𝑨
̅̅ ̅̅   and 𝑫𝑪

̅̅ ̅̅ ; thus, in a field of both F1 and F2, the 

walker is expected to alternate between binding to each of the footholds, resulting in an 

indefinite number of steps over the field of footholds.  

To mechanistically characterize and optimize the stepping behavior of the transporter 
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Figure 2.1. Principle and mechanism of a cartwheeling DNA walker. a, Schematic showing the intended mechanism 
of locomotion. b, Schematic of smFRET measurement of stepping kinetics of a Cy5-labeled DNA walker on a 2-
Foothold DNA tile in which one foothold is labelled with Cy3. c, Rapid anti-correlated fluctuations in Cy3 (blue) and 
Cy5 (red) fluorescence intensity for a single walker-tile complex, suggesting branch migration in hybrid state S1+2. d, 
FRET ratio versus time for the trajectory shown in c. e, Cross-correlation analysis of Cy3 and Cy5 signal in c, with a 
single-exponential fit indicating an anti-correlation time constant of 11.4 ms for this trajectory. 
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, we began with a simple DNA tile system bearing two adjacent footholds for the walker 

to step between. This 2-Foothold system consists of a 4-helix DNA tile decorated with 

single-stranded DNA overhangs F1 and F2 as well as a biotin label for surface 

immobilization in TIRF measurements (Figure A1.1). The tile was assembled by thermal 

annealing of synthetic DNA oligonucleotides and characterized by native polyacrylamide 

gel electrophoresis (PAGE) (Figure A1.2, A1.3). The footholds are spaced by ~7 nm to 

match the 17-21 nucleotide length of the duplex formed by binding of the walker to a 

foothold, and equipped with (dT)3 linkers to provide conformational flexibility. The DNA 

walker Wa_b_c consists of a middle branch migration domain DB of length b (generally 13 

nucleotides) flanked by two toehold domains DA and DC (Figure A1.1) with lengths a 

and c (a = c = 5 to 8 nucleotides). The sequence of the walker was chosen to allow for 

comparison with prior studies of toehold exchange kinetics28. To permit measurement of 

stepping kinetics by single-molecule fluorescence resonance energy transfer 

(smFRET)72,73, the 5′-end of F1 is labeled with the FRET donor Cy3, and the 3′-end of 

Wa_b_c is labeled with FRET acceptor Cy5. Thus, any stepping of W between F1 and F2 

through toehold exchange is expected to give rise to a time-dependent change in FRET 

efficiency between Cy3 and Cy5 (Figure 2.1b). To reduce the likelihood of analyzing 

multiple walkers bound to one DNA tile, we combined the walker with a 1.5-fold molar 

excess of DNA tile, and our smFRET analysis filtered out complexes with >1 

photobleaching step in the donor or acceptor channel. 

First, we characterized by smFRET the behavior of a walker bearing 8-nucleotide 

toehold domains (W8_13_8). While < 30% of walkers exhibited static high- or low-FRET 

efficiency behavior, which may result from only one of the footholds being present or 
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accessible, the largest fraction of walkers (60~70%) exhibited a FRET efficiency varying 

between 0.3 and 0.7 (Figure 2.1c, 2.1d). On close inspection, this mid-FRET state 

contained rapid anti-correlated fluctuations of Cy3 and Cy5 fluorescence intensity, 

indicating rapid changes in the distance between Cy3 and Cy5 (Figure 2.1e). The cross-

correlation function between Cy3 and Cy5 decays with a time constant of 12 ± 3 ms. 

Due to the rapidity of these fluctuations and the fact that the apparent FRET efficiency 

occupies a continuum of values rather than discrete states, we hypothesized that these 

fluctuations are predominantly due to reversible branch migration of domain DB, with 

only transient dissociation of either toehold from its respective foothold strand.  That is, 

instead of occupying either state S1 or S2 (Figure 2.1b), the walker exists primarily in a 

hybrid dynamic equilibrium state S1+2 in which it is partially base-paired to both F1 and 

F2. This is consistent with expectations based on the local effective concentration of 250 

µM measured in a similar tile-based system29, where the equilibrium is expected to 

strongly favor hybridization of the 8-nucleotide toehold sequences. The toehold-

dissociated states S1 and S2 are not typically observed because of their low occupancy 

and short lifetimes. Changing the toehold length to 7-, 6-, or 5-nucleotides gives similar 

kinetic behavior, consistent with the presence of the same branch migration domain 

length b = 13 (Figure A1.4).  Monte Carlo simulations of branch migration within a 13-

nucleotide domain (Figure A1.5) suggest that an anti-correlation time constant of ~12 

ms will occur when the lifetime of an individual base pair step along the duplex is ~100 

µs, which is similar to previous estimates based on kinetic modeling from bulk 

fluorescence measurements74 and from three-stranded branch migration of genomic-

length DNA sequences75,76. 
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To further test our hypothesis of a hybrid S1+2 state, a third foothold strand F1′ with 

the same sequence as T1 was added to assemble a 3-Foothold DNA tile (Figure A1.1, 

A1.6). The addition of this third foothold is expected to enable the walker to occupy a 

second hybrid state S2+1′ (Figure 2.2a), resulting in a new low-FRET state in addition to 

the mid-FRET state observed for the 2-Foothold system. Indeed, most mid-FRET 

trajectories for W8_13_8 showed slow transitions to and from an additional FRET state of 

~0.3 on the 3-Foothold tile (Figure 2.2b), suggesting a new, slower process limited by 

toehold dissociation. Based on these results, we predicted that decreasing the length of 

the toehold would yield dramatically faster stepping behavior of walkers, since the rate 

of dissociation of short DNA duplexes increases exponentially with decreasing 

length77,78. Indeed, walkers with 7-, 6-, and 5-nucleotide toeholds showed two-state 

FRET behavior with much more rapid transitions between states (Figure 2.2b-i). The 

median lifetimes (calculated from the per-molecule mean of both high- and low-FRET 

state lifetimes) decrease from 31.3 s (interquartile range, or IQR, 52.1-16.5 s) for 

W8_13_8 to 1.4 s (IQR 3.7-1.1 s) for W5_13_5, yielding rate constants of stepping that range 

from 0.03 to 0.72 s-1, or 1.8 to 43 min-1 (Figure 2.3a). Given the step size of 7 nm, the 

fastest walker has an average (undirected) translocation speed of ~300 nm min-1. While 

the stepping rate increases more than an order of magnitude when the toehold length is 

decreased to 7 nucleotides, further increases are marginal, and the stepping rate of 

W5_13_5 is very similar to that of W6_13_6. In contrast, kinetic Monte Carlo simulations of 

stepping on a 3-Foothold tile predict an exponential decrease in the stepping time as a 

function of toehold length, in direct proportion to toehold dissociation rate constants 

(Figure A1.5). One possible explanation for this discrepancy is that, as toehold 
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Figure 2.2 Single-molecule FRET characterization of walkers with varying toehold lengths. a, Kinetic model of 

stepping and associated FRET transitions for Cy5-labeled DNA walker on Cy3-labeled 3-Foothold DNA tile. b-e, 

Representative single-molecule FRET trajectories of walkers with varying toehold length on a 3-Foothold DNA tile. 

Cy3 fluorescence is shown in blue, while Cy5 fluorescence is shown in red.  The elevated Cy5 signal in the first ~10 

seconds of each trace results from direct excitation at 640 nm to confirm the presence of an active acceptor on each 

walker-tile complex. f-i, Zoomed-in trajectories showing FRET transitions for 25-s segments of the molecules 

depicted in b-e. j-m, Transition occupancy density plots (TODPs) illustrating the most common FRET transitions for 

each walker. N = 87, 96, 107, and 109 for W5_13_5, W6_13_6, W7_13_7, and W8_13_8, respectively. 
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Figure 2.3  Dwell time distribution of walkers with various length of toehold and middle domain. a, Box-and-whisker 

plot of stepping kinetics in the high- and low-FRET states for walkers with varying toehold domain (DA and DC) 

lengths. b, Box-and-whisker plot for walkers with varying middle domain (DB) lengths. N = 105 and 132 for W6_6_6, 

W6_20_6. The box includes the population of all molecules from 25th percentile to 75th percentile; whiskers correspond 

to 0th and 100th percentiles, excluding outliers. Crosses denote the lower and upper bounds, inclusive of outliers. 
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nucleotides are removed from the walker, base pairs in the rigid walker-foothold duplex 

are replaced by unpaired nucleotides near the base of the foothold, which may influence 

binding and/or dissociation kinetics of toehold DA by virtue of the much smaller 

persistence length of ssDNA51. For instance, our simulations suggest that a faster 

association rate of toehold DA to F1 than F1′ (e.g., due to unintended topological 

features of the DNA tile that might position F2 at slightly different distances from F1 and 

F1′), combined with the finite time resolution of our measurements, could yield 

experimentally measured dwell times that deviate from the predicted exponential 

dependence in a way that strongly resembles our smFRET observations (Figure A1.5). 

This is because a toehold DA might dissociate from, and re-associate with, F1 several 

times before binding to F1′, giving the appearance of a single long-lived high-FRET state 

because the unbound state of the toehold is too short for us to resolve experimentally. 

Consistent with this hypothesis, smFRET measurements do reveal an increasing bias 

towards high-FRET states as toehold length decreases (Figure 2.2b-e, 2.3a), a bias that 

is intriguingly reversed when the DNA tile is replaced by a DNA origami substrate. In 

addition, as the length of toeholds decreases, the difference in apparent FRET 

efficiency between the two main states increases (Figure 2.2j-m). The observation is 

consistent with the expected decrease in the distance between the donor and acceptor 

dyes in the S1+2 state, as well as an increase in the donor-acceptor distance in the S2+1′ 

state, when a shorter toehold is present.  

To investigate the role of branch migration in the stepping kinetics of walkers with 

shorter toeholds, we performed smFRET measurements on walkers with different 

lengths of domain DB, with accompanying changes in the foothold sequences to 
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maintain complementarity with each walker. As with previous walker designs, smFRET 

transitions were observed for W6_6_6 and W6_20_6 (Figure A1.7). Kinetic Monte Carlo 

simulations predict that stepping dwell times will increase linearly in proportion to the 

length of DB, since walkers will spend a larger fraction of their time in branch migration 

intermediates from which toehold dissociation is difficult or impossible. Indeed, when the 

middle domain increases to 20 nucleotides (walker W6_20_6), the median stepping 

lifetime is 2.7 s (IQR 8.7-1.4 s), which is slightly longer than that of W6_13_6 (1.6 s, IQR 

8.7-1.1 s). However, when DB is decreased to 6 nucleotides (walker W6_6_6), the median 

stepping lifetime increases to 23.6 s (IQR 39.4-5.2) (Figure 2.3b), contrary to the 

predictions of a simple branch migration model, and again suggesting that the structural 

details of the walker-tile complex (such as the match between walker length and 

foothold spacing) may play a role. While the (dT)3 ssDNA spacers between the foothold 

strands and the tile are expected to provide sufficient flexibility to compensate for the 

difference of ±2.3 nm from the addition or subtraction of 7 nucleotides from DB, altering 

the length of the branch migration domain may still introduce an incongruity between the 

reach of the walker and the spacing between foothold strands, since the distance 

between adjacent foothold strands is fixed at ~7 nm. In any case, the lack of a positive 

correlation between the length of DB and the stepping lifetime suggests that any impact 

of branch migration upon the stepping rate for values of b between 6 and 20 nucleotides 

is overshadowed by other factors, such as toehold binding and dissociation kinetics and 

the match between walker length and foothold spacing. 
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2.3.2 Long-range walker movement on 2D foothold arrays 

Based on smFRET measurements, the DNA walker with the fastest stepping rate and 

most homogeneous behavior is W6_13_6. To test the performance of this optimized DNA 

walker as a long-distance 2D transporter, we developed a surface modification method 

that yields a high density of DNA footholds on a glass coverslip. In this method, alkyne-

functionalized F1 and F2 are attached to an azide-modified coverslip through copper-free 

click chemistry, resulting in random, high-density conjugation of the two different 

foothold strands to the surface (Figure 2.4a, b; also see section 2.2 Materials and 

Methods). Using TIRF microscopy, we measured an average oligonucleotide surface 

density of 1.67104 /m2, which is predicted to yield distances between nearest-

neighbor F1 and F2 strands varying from ~2-13 nm, assuming a completely random 

distribution of footholds on the slide surface (Figure 2.3c, Figure A1.8, and section 2.2 

Materials and Methods). This estimate should be interpreted as an upper bound on the 

average spacing between footholds, since our measurements may underestimate the 

true density if a significant fraction of probe fluorophores are photobleached prior to the 

measurement. To confirm that larger inter-foothold distances are compatible with rapid 

stepping by the walker, we repeated our smFRET measurements of stepping in a 3-

Foothold system constructed from a distinct DNA origami scaffold (Figure A1.9, Table 

A1), using a dT6 linker instead of a dT3 linker between the footholds and the origami for 

added flexibility. Despite the larger distance between adjacent foothold sites on this 

DNA origami (10.44 nm on average, assuming 0.33 nm/nucleotide) compared to the 

previous tile system (~7 nm), smFRET characterization revealed a similar stepping rate 

constant of ~0.5 s-1 (IQR 0.6-0.1 s-1) for W6_13_6 on this  
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Figure 2.4. Characterization of 2D foothold arrays and long-range walker movement. a, Schematic of F1 and F2 DNA 
conjugated to glass coverslip surface at high density via copper-free click chemistry. Surface azides are shown in 
purple and DBCO in yellow. b, Schematic of walker movement over a 2D array of footholds. c, TIRF image of 
complementary oligonucleotides bound to footholds on coverslip surface at a ratio of 1 fluorescently labelled oligo:1 
million unlabelled fluorescent oligonucleotides. d-e, TIRF image of Cy5-labeled W6_13_6 on F1 and F2 coated quartz 
slide (d) and one representative fast-moving trajectory of W6_13_6 (e). f, Mean square displacement (MSD) versus 
time plot for W6_13_6, W8_13_8, and W6_13_6 control (F1 only).  Error bars represent one standard deviation. The diffusion 
coefficients derived from linear regression fits to the MSD versus time data are 17, 2.3, and 0.33 nm2/s, respectively. 
The MSD curves predicted from the stepping kinetics measured by smFRET on DNA tiles (dotted lines in green and 
black) are also shown for comparison.  g-i, Comparison of extent of diffusion (region comprising 95% of trajectories, 
with all starting at the origin) of W6_13_6, W8_13_8 and W6_13_6 F1-only control over a 10-minute period of observation. 
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new scaffold, suggesting that the stepping rate is robust to small perturbations in 

foothold spacing. 

Next, we characterized the long-range movement of optimized walker W6_13_6 by 2-

dimensional single-particle tracking using TIRF microscopy (Figure 2.4d-e). Most of the 

molecules travel >200 nm from their starting position within 10 minutes (Figure 2.4f), 

resulting in a measured 2D diffusion coefficient of 170.5 nm2 s-1 (R2= 0.99), and some 

molecules are observed to travel nearly 1 µm before photobleaching (Figure 2.4d). In 

contrast, particle tracking of W8_13_8 indicates a much smaller diffusion coefficient of 0.7 

 0.1 nm2 s-1 (R2= 0.73) (Figure 2.4f, h), or 2.20.2 nm2 s-1 (R2= 0.89) if a single fast-

moving outlier is included (Figure A1.9), consistent with predictions based on its ~10-

fold slower stepping rate as measured by smFRET. For comparison, a random walk 

model with step sizes of 10.8 and 11.1 nm for W6_13_6 and W8_13_8, respectively (Figure 

A1.8), and stepping rates taken from smFRET measurements on 3-Foothold DNA tiles 

predicts diffusion coefficients of 18.1 nm2 s-1 and 0.99 nm2 s-1 for W6_13_6 and W8_13_8, 

respectively. This close agreement with predictions from measurements of stepping 

kinetics and foothold density suggests that the optimized walker functions as designed, 

even on a different substrate and over substantially longer distances. Moreover, a 

surface coated with only a single foothold type (F1) results in no significant diffusion of 

W6_13_6 (D ~ 0.330.20 nm2/s (R2= 0.09), standard deviations in position σx = 16.4 nm, 

σy = 15.2 nm), indicating that the observed diffusion is indeed the result of the designed 

walking mechanism involving both footholds (Figure 2.4f, i; Figure A1.12). 

 



 39 

2.4 Discussion 

We have created a new class of cartwheeling single-stranded DNA walker that 

exploits a toehold exchange mechanism to traverse arrays of specific oligonucleotide 

sequences in a cartwheeling fashion. The present walker’s directionally unbiased 

movement has useful precedents in both nature and nanotechnology. For example, the 

kinesin MCAK utilizes undirected, one-dimensional diffusion to rapidly locate the ends of 

microtubules for depolymerization, resulting in faster searching over short distances 

than would be possible with direct binding from solution16. In the field of 

nanotechnology, synthetic biochemical cascades have exploited undirected, two-way 

transport to promote reagent channeling between coupled enzymes using a swinging 

arm over short distances (~10 nm)29, and a cargo-sorting robot was recently reported to 

use unbiased diffusion to transfer payloads over distances of tens of nanometers in a 

period of hours57. It is likely that the DNA acrobat’s “cartwheeling” mode of locomotion 

plays an important role in generating rapid stepping relative to similar systems studied 

previously, since some of these employed similar domain lengths and yet still exhibited 

stepping orders of magnitude slower than our system57.  One advantage of the 

cartwheeling geometry is that rigid double-stranded segment always bridges between 

adjacent footholds, ensuring rapid toehold binding as long as there is a good match 

between walker length and foothold spacing. Secondly, Thubagere et al.57 suggest that 

their cargo-sorting robot may exhibit slow branch migration when strand displacement is 

initiated at the distal end of a foothold and proceeds toward the surface, due to the 

entropic cost of stretching the single-stranded DNA away from the surface; if this is true, 
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the DNA acrobat overcomes this issue by virtue of the fact that branch migration always 

proceeds away from the point of attachment. 

The present study of a cartwheeling DNA walker also shows that the speed and 

range of similar DNA-based systems may be improved with careful optimization. The 

fastest of our toehold exchange walkers can search among ~43 foothold sites per 

minute with a stepping distance of ~10 nm. While still much slower than many natural 

motor proteins (e.g., 0.38 µm2 s-1 for MCAK16), the stepping rate of this cartwheeling 

walker is more than an order of magnitude higher than that of other DNA-only walker 

systems. This improvement in performance was enabled by detailed single-molecule 

analysis of stepping kinetics as a function of key design parameters, an approach that is 

likely to be generalizable to many other systems in nanotechnology. While decreasing 

the toehold length from 8 to 5 nucleotides yields faster stepping rates as predicted, the 

marginal improvements in stepping rate appear to diminish below ~6 nucleotides, in 

contrast to the predictions of our kinetic modeling; indeed, a walker with a 4-nucleotide 

toehold exhibited no evidence of stepping behavior at all by smFRET (data not shown). 

These results, as well as those for the shortened walker W6_6_6, suggest that optimizing 

the mechanical properties of the system (reach of the walker, entropic tension in single-

stranded linker segments, etc.) may also be important, and could yield further 

improvements in the future. 

Finally, the present characterization of toehold exchange reactions at very high local 

effective reagent concentrations in a variety of contexts suggests that it may be 

challenging to obtain rate constants significantly faster than 1 s-1 for conventional strand 

displacement operations in DNA nanomachines. To surpass this apparent “speed limit”, 
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dynamic DNA nanotechnology may need to incorporate further innovations inspired by 

natural systems, such as more precise control of local DNA mechanics and 

conformational changes, as well as judicious coupling to (rapid) exergonic processes. 
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Chapter 3: 

Nucleic Acid Detection by Single-Molecule Kinetic Fingerprinting3, 4 

 

3.1 Introduction 

Due to limitation of using the polymerase chain reaction (PCR) amplification in most 

nucleic acid analysis, which has been introduced in Chapter 1.3, several amplification-

free methods80–82 have been pursued for the analysis of nucleic acids and other 

biomolecules, in some cases permitting the direct capture and quantitation of analytes 

from biological matrices without prior purification. However, these amplification-free 

approaches typically suffer from a different set of challenges. First, since they lack the 

geometric amplification of PCR, these methods are generally limited by finite 

thermodynamic discrimination factors between closely related sequences 83. This 

thermodynamic specificity limit is embodied by the parameter 𝑄𝑚𝑎𝑥,𝑡ℎ𝑒𝑟𝑚 = 𝑒
−𝛥𝛥𝐺𝑜

𝑅𝑇 , 

where ΔΔGo is the difference in the Gibbs free energy of hybridization of a detection 

probe to a target sequence and of the same probe to a related but spurious target 

sequence; in practice, this translates to Qmax,therm values ranging from about 20 to 

                                                      
3
 Reproduced in part from Johnson-Buck, A., Li, J., Tewari, M., & Walter, N. G. Methods, 153, 3-12. Copyright Elsevier, 2018. First 

two authors contributed equally to this work. 
4
 Alexander Johnson-Buck performed smFRET measurement of miR-16 and L858R. Jieming Li reviewed the SiMREPS methods. 

Jieming Li performed experiments on DNA methylation. Jieming Li and Alexander Johnson-Buck co-wrote the paper.  
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20,000 for single-nucleotide variants 83. In most cases, the actual single-base 

specificity realized is only 90-99%84,85. Second, since many amplification-free assays 

are surface-based, true single-molecule sensitivity becomes challenging due to the 

inability to completely suppress nonspecific binding of probes to the detection surfaces. 

To realize amplification-free biomolecule detection without being bound by 

thermodynamic limits of specificity, we developed an approach based on time-resolved 

measurement of the interaction kinetics between fluorescent probes and single 

immobilized analyte molecules 86. This approach, termed SiMREPS (single-molecule 

recognition through equilibrium Poisson sampling), exploits repeated observations of 

transient probe interactions with each surface-bound copy of the analyte to create a 

“kinetic fingerprint” that is highly characteristic of that particular analyte molecule when 

detected at the single molecule level (Figure 3.1a), and is significantly perturbed by 

even small alterations such as single-base substitutions. As a result, nonspecific binding 

of probes to the surface and to closely related sequences can be confidently screened 

out due to their distinct kinetics (Figure 3.1b, c), yielding essentially background-free 

detection of single analyte molecules after applying appropriate filters for signal-to-

noise, intensity, and probe binding and dissociation kinetics (Figure 3.1d). To facilitate 

the observation of repeated fluorescent probes binding to the same copy of analyte, the 

analyte is typically immobilized to a biotin-functionalized surface via a streptavidin 

bridge and a biotin-labeled capture probe (Figure 3.1a). While DNA oligonucleotides 

have been successfully employed as capture probes for SiMREPS, several locked 

nucleic acid (LNA) modifications are usually incorporated when the analyte is a short 
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nucleic acid such as a miRNA to permit high-affinity capture while leaving several 

unpaired nucleobases to interact with the fluorescent probe. 

 
 

Figure 3.1. Overview of the SiMREPS technique for low-background, high-specificity detection of single molecules. a, 
Schematic illustrating the experimental principles of SiMREPS. A target analyte is captured at the surface of a 
coverslip via a biotinylated capture probe.  Then, using TIRF microscopy, each copy of surface-bound analyte is 
detecting by monitoring the repeated transient binding of a fluorescent probe, which yields a distinctive kinetic 
fingerprint; b, Single movie frame from a representative field of view from SiMREPS using objective-type TIRF 
microscopy. Red squares indicate positions of binding events that were rejected as likely background binding by 
kinetic fingerprinting, and the cyan circles indicate positions of repeated binding events with kinetics that suggest the 
presence of the analyte; c, Representative fluorescence-versus-time traces observed in the presence and absence of 
a miRNA target, hsa-miR-16. The kinetics of transitions between FP-bound and FP-unbound states are analyzed to 
distinguish between true and false positives at the single-molecule level. d, Number of spots counted in positive and 
negative control experiments for miR-16 before (‘total counts’) and after (‘accepted counts’) kinetic filtering. While 
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filtering based on intensity and signal-to-noise (S/N) alone does not yield a significant difference between positive and 
negative controls (due to background binding of the probe), the application of kinetic filtering criteria (see section 
2.7.4) reduces accepted counts in the negative control to essentially zero. 
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Because the binding of fluorescent probes to a single analyte molecule can be 

modeled as a Poisson process, the number of probe binding and dissociation events 

observed for each analyte molecule (Nb+d) will increase linearly over time, with a 

coefficient of variation (C.V.) that decreases as ~
1

√𝑁𝑏+𝑑
 86. This decrease in C.V. with 

increasing observation time permits the kinetic fingerprint resulting from a single analyte 

molecule to be separated from the signals resulting from nonspecific binding to an 

arbitrarily high degree. Similarly, the lifetimes of the analyte in the probe-bound (τbound) 

and probe-unbound (τunbound) states become better separated from the background 

binding as an increasing number of probe-binding events to each analyte is observed. 

This increased confidence in the source of a given kinetic fingerprint is the core feature 

of SiMREPS, and means that probes with finite thermodynamic discrimination can be 

used to detect an analyte with arbitrarily high specificity, given an adequate number of 

binding events. In other words, the specific time evolution of the detection signal 

becomes a heretofore untapped observation parameter that serves to enhance the 

accuracy of analyte identification, in concept similar to the revolution conventional 

fluorescence microscopy experienced upon introduction of super-resolution approaches 

that observe a time series of sparse signals from single molecules to determine their 

cellular localization more accurately 87. As a proof of concept, we show that miRNAs 

such as miR-16 86 can be detected using SiMREPS with essentially zero background 

signal from surface binding of fluorescent probes if kinetic fingerprints from single 

molecules are filtered by Nb+d and τbound (Figure 3.1d). 

In this chapter, I will discuss practical considerations for the use of SiMREPS to 

detect short nucleic acid such as miRNA and DNA fragments, including guidelines for 
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instrumentation and assay design. Upon that, we demonstrate the high specificity of the 

technique through proof-of-concept measurement of the cancer point mutation EGFR 

L858R with an apparent discrimination factor of > 1,000,000. In addition, I will discuss 

the possibility of using SiMREPS to detect DNA CpG methylation. Besides analytes 

scope expanding, I will also introduce some studies on method optimization of 

SiMREPS.  

3.2 Materials and Methods 

3.2.1 Instrumentation and sample cell design 

Since SiMREPS in its current implementation requires the presence of an excess of 

fluorescent probe in binding equilibrium with the surface-immobilized analyte, a 

microscope capable of total internal reflection fluorescence (TIRF) illumination is 

required to reject background signal from the majority of freely diffusing (non-surface-

bound) fluorescent probes. Most commonly, TIRF measurements are carried out using 

either a prism-type (P-TIRF) or objective-type (O-TIRF) illumination geometry (Figure 

3.2a, b). Excitation light is provided by a laser of appropriate wavelength (e.g., 640 nm 

for probes labeled with Cy5) and output power (typically 10-100 mW) and undergoes 

total internal reflection at the interface between the coverslip and the aqueous solution 

containing the fluorescent probe. To reliably detect single fluorescent probes with 

satisfactory signal-to-noise, an illumination intensity of ~50 W/cm2 is typically used, and 

the TIRF angle adjusted to achieve a calculated penetration depth of ~80-110 nm of the 

evanescent field. Emission light from surface- or analyte-bound fluorescent probes is 

collected through a microscope objective lens, passed through dichroic mirrors and/or  
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Figure 3.2. Overview of instrumentation and sample cells. a, Objective-type TIRF microscope. b, Prism-type TIRF 
microscope. c, Pipet tip chamber sample cell. d, 3D-printed sample cell with cylindrical reservoir and tapered conical 
base.  e, Sandwich-type sample cell for prism-TIRF measurements. f-g Scale drawings showing a top view of each 
sample cell type shown in c-e. The black-shaded region in each panel represents the surface area available for target 
capture and imaging on the coverslip or slide. Blue-shaded regions in f and g represent the plastic walls of the 
sample wells. 
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chromatic filters to remove the majority of the excitation light, and detected by a high-

sensitivity camera such as an ICCD, EMCCD, or sCMOS. In our study, an EMCCD 

camera is used in O-TIRF and an ICCD camera is used in P-TIRF. In SiMREPS 

imaging, the signal integration time (exposure time) per frame is typically 500 ms, and 

typically 1200 movie frames are acquired per field of view (FOV).  

SiMREPS is compatible with a variety of sample cell types (Figure 3.2c-h). Because the 

sample cell must be positioned between the prism and objective, P-TIRF requires thin 

flow cells that are typically constructed by sandwiching two pieces of double-sided tape 

between a coverslip and a biotin-functionalized microscope slide, with optional plastic 

tubing added for ease of sample injection (Figure 3.2e). However, with O-TIRF taller 

sample cells constructed from cut pipet tips (Figure 3.2c) or 3D-printed plastic parts 

(Figure 3.2d) attached to a biotinylated coverslip may also be used. These taller sample 

cells permit the immobilization of analyte on the imaging surface at higher densities, 

providing greater sensitivity than thin flow cells. Thus, for high-sensitivity measurements 

(LOD < 1 pM) O-TIRF is preferred over P-TIRF for SiMREPS. However, due to their 

open-top geometry, measurements that take a long time (>1 h) or using fluorescent 

probes with slow-off rates (< 2 min-1) may benefit from filling the sample chamber to the 

top with imaging solution and sealing it with parafilm to slow the influx of atmospheric 

oxygen. All the data presented here were collected by O-TIRF using sample cells 

constructed from cut pipet tips. Recently, other instrumentation has been introduced for 

super-resolution studies, including spinning disk confocal microscopes (CSU-W1, 

Yokogawa Electric) 88 and the Oxford Nanoimager 89; these may provide other options 

for SiMREPS measurements in the future.  
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3.2.2 Analyte Scope 

Since it does not require any nucleic acid-specific enzymes such as ligases or 

polymerases, SiMREPS is in principle capable of detecting any analyte that can (1) be 

immobilized at a surface, preferably via a specific interaction, and (2) remain free to 

transiently recruit fluorescent probes from solution while bound to the surface. It thus 

has a much broader scope than amplification-based approaches. To date, SiMREPS 

has been successfully applied to the identification and counting of short nucleic acids 

such as miRNAs (miR-16, miR-21, let-7a, let-7c, miR-141, cel-miR-139) 86 and ~22-160 

bp fragments of single-stranded or double-stranded DNA such as cancer-related EGFR 

mutations (see Results). Since the assay is typically performed at ambient room 

temperature, to ensure maximal sensitivity for double-stranded or highly structured 

analytes, care must be taken to fully denature and sequester any interfering secondary 

structure that might interfere with surface capture or fluorescent probe binding, e.g., by 

brief heating in an excess (e.g., 1-2 µM) of a carrier oligonucleotide or sequence-

specific oligonucleotides that prevent the formation of interfering secondary structure. In 

contrast, short nucleic acids that are difficult to detect with amplification-based 

approaches are readily detected by SiMREPS and are thus particularly strong 

candidates for the technique. Finally, owing to its high specificity, SiMREPS is capable 

of discriminating single-nucleotide variants such as let-7a and let-7c 86. 

3.2.3 Probe design 

3.2.3.1 Capture probes 

For sequence-specific capture of analytes, terminally biotin-labeled capture probes 

(CPs) are immobilized on a streptavidin-coated coverslip or microscope slide surface. 



 51 

The CPs may, in principle, comprise any type of nucleotide or modified nucleotide, 

including DNA, RNA, and other non-natural nucleic acids such as LNAs, peptide nucleic 

acids (PNAs), or unlocked nucleic acids (UNAs) 90. When using SiMREPS for miRNA 

detection, it is important to leave ~10 nucleotides unpaired for interaction with the 

fluorescent probe, necessitating the use of a relatively short capture probe (10-12 

nucleotides). We therefore typically employ CPs comprising mostly DNA nucleotides, 

but also incorporating several (4-5) LNA nucleotides to maintain a high melting 

temperature (Tm) despite the short length. Compared to natural DNA and RNA 

oligonucleotides, an LNA oligonucleotide offers substantially increased affinity for its 

complementary strand, which makes it an ideal capture probe of short RNA and DNA 

targets. The positions of LNA modifications are determined semi-empirically using the 

online Tm and self-structure prediction tools available from Exiqon 91; the goals are to 

achieve a predicted Tm (under standard conditions) > 60 °C and a self-structure score 

as low as possible, preferably < 25 °C.  LNA capture probes used in our study were 

purchased from Exiqon (now distributed by Qiagen) with HPLC purification. For 

instance, the melting temperature of the capture probe for miR16 increases from 47 C 

to 79 C when replacing 4 out of 10 DNA nucleotides with the corresponding LNA 

nucleotides. For longer targets such as genomic DNA fragments, long DNA capture 

probes with suitably large Tm values (> 60 C) have also been employed with success; 

these have the advantage of higher capture specificity than short CPs. Regardless of 

the type of CP used, the choice of capture region should be chosen such that it 

minimizes any interfering secondary structure in the CP and target. Such optimization 
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can be carried out using prediction tools such as Exiqon’s OligoAnalyzer, Integrated 

DNA Technology’s Tm prediction tool, or NUPACK92–95. 

3.2.3.2 Fluorescent probes 

To permit kinetic fingerprinting of single molecules by SiMREPS, reversible binding is 

required to allow for many cycles of binding and dissociation of the fluorescence probe 

(FP) to each copy of the target. Typically, this means that the Tm of the interaction 

between the FP and target should be comparable to the temperature at which the assay 

is conducted (usually room temperature, 20-25 °C).  The lifetime of bound state should 

be longer than the camera exposure time (in our case, 500 ms) but not so long as to 

impede the observation of enough binding events to separate the positive signal from 

background binding within a convenient sample imaging time frame (in our case, 

typically ~10 minutes). At constant temperature and ionic strength, the dissociation 

kinetics of a short oligonucleotide probe are exponentially dependent upon the length of 

the probe 96, making the choice of FP length a particularly important parameter 86. In the 

high-ionic strength buffers typically used in SiMREPS measurements of nucleic acids 

(see section3.2.6) and for observations near room temperature, the optimal length of 

FPs with ~50% GC content is typically ~9 nucleotides for RNA targets, and ~8 

nucleotides for DNA targets. Probes against sequences with high GC content can be 

designed with one or more intentional mismatches to achieve appropriate kinetics; 

alternatively, denaturants such as 5-30% formamide can be added to mildly destabilize 

the FP-target interaction. Formamide lowers the (Tm) of DNAs linearly by 2.4–

2.9C/mole of formamide depending on the (GC) composition and state of hydration 97. 

Higher observation temperatures (e.g., using a heated microscope objective and/or 
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stage) can be contemplated as another way of destabilizing FP-target interactions. If 

denaturants or higher temperatures are used, the stability of the CP-target interaction 

should be verified under the new conditions, e.g., by performing SiMREPS 

measurements after variable incubation times and determining whether there is a 

systematic decrease in detected target molecules over time. 

When choosing the binding register of the FP on the target sequence, the following 

criteria should be observed for optimal performance: 

1. GC content of the FP-target interaction should be ≤ 50%, if possible, to ensure 

rapid binding and dissociation kinetics; 

2. There should be at least 1-2 unpaired nucleotides between the binding sites of 

the CP and FP on the target in order to avoid stacking interactions between 

adjacently binding probes that will tend to lengthen the bound-state lifetime of 

the FP; 

3. It is preferable to position the fluorophore distally on the FP relative to the CP, to 

reduce the likelihood of stacking interactions between the fluorophore and the 

CP; alternatively, an additional 1-2 unpaired bases between the FP and CP can 

accommodate a proximally positioned fluorophore;  

4. If single-base discrimination is desired, note that the selectivity is higher when 

the mismatched nucleotide is near the middle of the FP than it is when 

positioned near the 3′- or 5′-end of the probe-target duplex. While mismatches 

near the end of the duplex can also provide adequate discrimination by 

SiMREPS 86, longer observation times may be necessary to achieve perfect 

kinetic discrimination. 
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Notably, the use of fluorescent probes with only 8-9 nucleotides will not provide 

sufficient specificity to uniquely identify a sequence against a background of genomic 

DNA or RNA. Additional specificity is provided by the capture probe (~10 nucleotides), 

which can be engineered to be as specific as needed, for example, by lengthening it 

upon removal of LNA moieties or increase of the assay temperature or formamide 

concentration, and the slide surface should be well passivated against nonspecific 

binding of nucleic acids. Furthermore, addition of a second fluorescent probe to create a 

FRET pair has been employed in super-resolution imaging with DNA-PAINT 98 and 

could provide additional specificity by requiring the proximity of two short (e.g., 8-10 

nucleotide) sequences to observe a positive kinetic fingerprint. The addition of a second 

fluorescent probe will slightly increase the footprint of the assay (from ~20 to ~30 

nucleotides), but this footprint will still be comparable to, or shorter than, that required 

by the majority of other nucleic acid assays based on PCR or thermodynamic binding, 

while also providing extremely high single-base discrimination power without any 

purification or enzymatic processing. Since SiMREPS has notably fewer required 

components than enzymatic assays, the choice of both probes and buffer conditions is 

particularly flexible and can be adjusted to match most specificity requirements imposed 

by a particular sample matrix.   

3.2.3.3 Auxiliary oligonucleotides 

While SiMREPS can often be performed using only the CP and FP, other 

oligonucleotides may be helpful in preventing re-hybridization of double-stranded 

targets, in preventing secondary structures in the target that could interfere with FP 
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binding, or in reducing off-target binding of the FP to the CP or spurious target 

sequences.  

1. Carrier oligonucleotide: 1-5 µM of a polythymidine oligonucleotide such as (dT)10 

can reduce sample loss due to adsorption as well as prevent re-hybridization of 

double-stranded DNA targets after denaturation. 

2. CP blocker: some combinations of CP and FP sequences will result in a large 

amount of transient FP binding to the CP, which can lead to false positives or 

false negatives; in such cases, a short oligonucleotide probe complementary to 

the CP can be added to the imaging solution at a sufficient concentration (e.g., > 

10 nM) to saturate any non-target-bound CPs at the imaging surface. 

3. Competitor oligonucleotides: to block transient binding to closely related 

sequences, short unlabeled oligonucleotides may be included in the imaging 

solution. For instance, in the detection of EGFR L858R presented in this work, an 

8-nucleotide probe complementary to the wild-type (WT) sequence – a so-called 

WT competitor – is used to reduce binding of the FP to the WT EGFR sequence. 

4. Secondary structure blockers: short (10-14 nucleotide) oligonucleotide probes 

complementary to the regions of the target that are directly adjacent to the CP 

and/or FP binding region can be useful in improving both capture efficiency and 

accessibility of the target to the FP.  These may be added either prior to surface 

capture or in the imaging buffer. 

3.2.4 Slide and sample cell preparation 

3.2.4.1 Surface functionalization 
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The objectives of surface functionalization are twofold: first, to passivate the imaging 

surface against excessive nonspecific binding of the FP and other components; and 

second, to provide an affinity tag, usually biotin, that can be used for subsequent 

immobilization of the CP. Whether glass coverslips or microscope slides are used as 

the imaging surface, a typical surface functionalization is performed as follows, based 

on a published protocol 99.  

First, the slides or coverslips (hereafter referred to as “slides”) are placed in a slide 

staining jar (Coplin-type) and sonicated for 10 min in 1M KOH.  The KOH is removed, 

and the slides are washed at least three times with deionized water.  Next, the slides 

are immersed for 20 min in an aqueous “base piranha” solution consisting of 14.3% v/v 

ammonium hydroxide and 14.3% v/v hydrogen peroxide that is heated to 60-70 °C.  The 

slides are rinsed at least three times with deionized water (optionally, if fused silica 

slides are being re-used, they may be heated for ~1 min with a propane torch at this 

step to burn off any residual microscopic contaminants).  The slides are then rinsed 

once with acetone (HPLC purity or higher). 

Next, the slides are immersed in a 2% v/v solution of (3-aminopropyl) triethoxysilane 

(ATPES) in acetone for 10 min, sonicated for 1 min, and incubated for another 10 min. 

The APTES/acetone solution is discarded and the slides are immediately rinsed 3-5 

times with deionized water, then dried completely under nitrogen flow. The slides are 

now functionalized with surface amines for further reaction with N-hydroxysuccinimidyl 

esters of polyethylene glycol (PEG) and biotin-PEG. 

To functionalize the slides with biotin-PEG and PEG, a 1:10 mixture of biotin-PEG-

succinimidyl valerate (biotin-PEG-SVA, MW ~5000, Laysan Bio, Inc.) and methoxy-
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PEG-succinimidylvalerate (mPEG-SVA, MW ~5000, Laysan Bio, Inc.) is dissolved in 

freshly prepared 0.1 M NaHCO3 to a final total PEG concentration of 21.6% w/v.  The 

mixture is briefly centrifuged (1 min at 10,000 rpm in a benchtop Eppendorf 

microcentrifuge) to remove any suspended air bubbles, and 70-80 µL of the PEG 

solution is immediately sandwiched between two slides, making sure to exclude air 

bubbles.  The slide sandwiches are kept in a humidified environment in the dark at room 

temperature for 2-3 h. The slides are then carefully disassembled, placed in a slide 

staining jar (keeping track of the orientation of the coated side) and rinsed at least three 

times with deionized water, then dried completely under nitrogen flow. 

Remaining surface amines are quenched with disulfosuccinimidyltartrate (sulfo-DST, 

Soltec Ventures) to reduce nonspecific binding of nucleic acids to the surface, as 

follows. A 10-mg portion of sulfo-DST is dissolved in 350 µL of 1 M aqueous NaHCO3, 

briefly centrifuged (1 min at 10,000 rpm in a benchtop Eppendorf microcentrifuge), and 

70-80 µL of the solution is immediately sandwiched between two slides with the PEG-

functionalized surfaces pointing inward towards the sulfo-DST solution.  The slide 

sandwiches are incubated in a humidified chamber for 30 min at room temperature, 

then rinsed thoroughly with deionized water and dried completely with nitrogen.  The 

slides are stored in the dark under air for up to 2 weeks, or in a desiccator (preferably 

under inert gas or vacuum) for several weeks. 

3.2.4.2 Sample cells 

For prism-type TIRF microscopy experiments, fluidic sample cells are constructed 

using two pieces of double-sided tape sandwiched between a quartz slide and glass 

coverslip as previously described 100 (Figure 3.2e). Optional drilling of holes in the 
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backing slide and attachment of Tygon tubing permits convenient buffer exchange, 

while use of quartz microscope slides permits them to be cleaned with detergent and re-

used 100, though cheaper borosilicate glass slides may also be used. After use, these 

slides can be disassembled and re-cleaned as follows: immerse in boiling water for 30 

min; carefully peel off any tape and adhesive with a razor blade; rub slide thoroughly 

with a thick paste of an abrasive detergent such as Alconox; then rinse thoroughly with 

deionized water and subject to the cleaning protocol in section 3.2.4.1. Note that no 

visible residue of adhesive should remain on the slide prior to beginning the protocol of 

section 3.2.4.1. 

For objective-type TIRF microscopy measurements, sample cells are constructed by 

fixing a cut 1-cm length of a pipet tip (e.g., Eppendorf brand) to a coverslip using epoxy 

adhesive (Double Bubble, Hardman Adhesives; Figure 3.2c). We have also successfully 

employed 3D-printed sample cells (Figure 3.2d) that have a smaller area of contact with 

the coverslip (~0.2 mm2) and a tapered base that permits the use of as little as 5-10 µL 

of analyte solution without sacrificing sensitivity. The custom design was prepared in 

Autodesk Fusion 360 and printed on a ProJet 3500 using the M3 Crystal resin at the 

highest print resolution of 16 µm per layer. As with the pipet tip sample cells, the 3D-

printed sample cells are attached to coverslips with epoxy adhesive, but in this case the 

attachment is performed with the aid of an electronics vise (e.g., PanaVise) to firmly 

hold the 3D-printed wells against the coverslip during the application of epoxy to prevent 

the adhesive from seeping in and clogging the small aperture between the interior of the 

sample well and the coverslip. While the sandwich-type flow cell can be used on 

objective TIRF as well, the sample cells constructed from pipet tips or tall 3D-printed 
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wells provide higher sensitivity because of a higher ratio between the volume of analyte 

solution and the contact area with the coverslip; that is, a larger fraction of the analyte 

may be captured in a small region of the imaging surface, yielding more detectable 

molecules per field of view. One drawback of the sample cells constructed from pipet 

tips and 3D-printed wells is they are both for one-time use only. Regardless of type, the 

completed sample cells may be stored in a dry, inert, dark environment for several 

weeks prior to use in SiMREPS. 

3.2.5 Surface capture of the target analyte 

The following protocol applies to all sample cell types with biotin-PEG-functionalized 

surfaces, but for the sake of clarity all solution volumes apply specifically to sample 

wells constructed from cut pipet tips, which were used to collect all data presented in 

this study. Before imaging, the slide surface is briefly washed with 100 L T50 buffer (10 

mM Tris-HCl, 50 mM NaCl, pH 8.0) followed by the addition of 40 µL of 1 mg/ml 

streptavidin to the sample well. After 10 min, the streptavidin solution is removed and 

the surface is washed three times with 100 µL of 1× PBS. The surface is then incubated 

with 40 µL of a solution containing 100 nM of the appropriate biotinylated LNA capture 

probe in 1× PBS buffer for 10 min.  The solution is removed and then the sample cell is 

washed three times with 100 µL of 1× PBS. Finally, a 100-μl portion of sample 

containing the target RNA or DNA and 2 µM carrier oligonucleotide is introduced into 

the sample chamber and incubated for 1 h to capture the analyte at the imaging 

surface. Note that double-stranded DNA samples must first be denatured by, for 

example, heating to 95 °C in the presence of 2 µM carrier oligonucleotide, then cooling 

to room temperature in a water bath for 5 min before adding to the sample cell. For 
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direct capture of analytes from crude biofluids such as cell extract or serum, a pre-

incubation step in ~2% (w/v) sodium dodecyl sulfate (SDS) and 0.16 U/µL of proteinase 

K (New England BioLabs, Inc.) is used to liberate nucleic acids from any protein binding 

partners as well as to inactivate any nucleases present in the sample 86. After the 1-h 

capture incubation, the sample solution is removed, and 1× PBS buffer is added to the 

sample cell until the imaging buffer (see section 2.6) is added. Note that, while analytes 

can be captured from crude biofluids 86, the imaging should still be performed in a 

standard imaging buffer to ensure reproducible probe binding and dissociation kinetics. 

3.2.6 Imaging 

All data discussed in this paper were collected using an Olympus IX-81 objective-type 

TIRF microscope equipped with a 60× oil-immersion objective (APON 60×OTIRF, 1.49 

NA) with both Cell^TIRF and z-drift control (ZDC2) modules, and an EMCCD camera 

(IXon 897, Andor, EM gain 300). Cy5 excitation was provided by a 640-nm red laser 

(Coherent CUBE 640-100C, 100 mW) and Cy3 excitation by a 532-nm green laser 

(CrystaLaser CL532-150mW-L). To delay the photobleaching of fluorophores and thus 

obtain more accurate measurements of the bound-state lifetime of the FP, a 25 nM 

solution of the FP is prepared in an imaging buffer containing 4× PBS, 2.5 mM 3,4-

dihydroxybenzoate, 25 nM protocatechuate dioxygenase, 1 mM Trolox (oxygen 

scavenger system, OSS 101), and added to the sample chamber for SiMREPS imaging. 

The imaging solution for EGFR L858R mutant and wild-type discrimination in this study 

also includes 100 nM of a WT competitor sequence to block FP binding to the WT 

EGFR sequence. Usually 3-5 minutes are allowed for the OSS to achieve a low steady-

state oxygen concentration before imaging. The transient binding of FP to captured 
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target molecules is monitored for 10 min under TIRF illumination, with a movie 

acquisition rate of 2 Hz and an EM gain setting of 150. All imaging is performed at a 

darkened room at an environmentally controlled temperature of 20 ± 3 °C. 

The high ionic strength of the imaging buffer promotes rapid binding of the FP to the 

target 96, allowing for many cycles of FP binding and dissociation within the 10-min 

observation period for well-optimized FP sequences. The concentration of FP in the 

imaging buffer may be adjusted, but typically is optimal in the range of 25-50 nM; lower 

concentrations will reduce the frequency of FP binding, while much higher 

concentrations will result in prohibitively high levels of background fluorescence from 

freely diffusing probes during imaging. If dissociation kinetics of the FP are relatively 

slow, for instance due to a longer or more GC-rich FP sequence, denaturants such as 

10-30% formamide can be used to decrease the duration of the bound state, albeit at 

greater risk of target dissociating from the CP during the experiment. 

The length of the observation period for each field of view is a particularly important 

parameter, since enough time must be allowed for multiple (e.g., >10) cycles of binding 

and dissociation to each surface-bound analyte molecule, thus permitting adequate 

separation between specific and nonspecific binding signatures for zero-background 

measurements. The exact imaging time required is dependent on the kinetics of specific 

and nonspecific binding, as well as the degree of separation between signal and 

background peaks that is desired. A useful guideline for selecting a minimum 

observation time is embodied in the following relationship 86 : 

                          𝑡 ≥  2𝑠2 𝑘′𝑏𝑖𝑛𝑑+𝑘𝑑𝑖𝑠𝑠

𝑘′𝑏𝑖𝑛𝑑𝑘𝑑𝑖𝑠𝑠

(1+√𝑓)
2

(1−𝑓)2 ,    (1) 
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where t is the observation time, s is the desired number of standard deviations 

separating the signal and background peaks, 𝑘′𝑏𝑖𝑛𝑑  is the pseudo-first order binding rate 

constant for the query probe to the target, 𝑘𝑑𝑖𝑠𝑠 is the first-order dissociation rate 

constant of the query probe from the target, and 𝑓 =
〈𝑁𝑏+𝑑〉𝑛𝑜𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

〈𝑁𝑏+𝑑〉𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
 is the ratio between 

the average number of nonspecific binding and dissociation events observed per trace 

(〈𝑁𝑏+𝑑〉𝑛𝑜𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ) and the average number of specific binding and dissociation events 

observed per trace (〈𝑁𝑏+𝑑〉𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐).  For example, if a separation of s = 3 standard 

deviations is desired between signal and background, and with 𝑘′𝑏𝑖𝑛𝑑 = 5 min-1, 𝑘𝑑𝑖𝑠𝑠 = 

5 min-1, and 𝑓 =
〈𝑁𝑏+𝑑〉𝑛𝑜𝑛𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

〈𝑁𝑏+𝑑〉𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
= 0.1, the minimum observation time is 3.9 min. The 

sampling interval (exposure time per frame) should be significantly less than the smaller 

of τbound and τunbound; in the above example, significantly less than 0.2 min, e.g., ~1 s per 

frame (sampling frequency of ~1 Hz).  

3.2.7 Data analysis for kinetic fingerprinting 

All MATLAB scripts for SiMREPS data analysis are in a publicly available github 

repository (https://github.com/ajohnsonbuck/simreps-2018-08). A typical analysis of 

movies from SiMREPS experiments consists of the following steps: 1) identification of 

“candidate” regions of interest (ROIs) within the image exhibiting greater frame-to-frame 

intensity fluctuations than their surrounding pixels (Figure 3.3a, b); 2) calculating the 

frame-by-frame fluorescence intensity of each ROI (Figure 3.3c), 3) hidden Markov 

modelling (HMM) to calculate FP binding and dissociation kinetics for single-molecule 

kinetic fingerprinting (Figure 3.3d); and 4) application of filters to distinguish nonspecific  

https://github.com/ajohnsonbuck/simreps-2018-08
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Figure 3.3. Data analysis pipeline. a, Single-frame images of representative fields of view from TIRF microscopy. b, 
Intensity fluctuation maps of the fields of view shown in a. Grey circles indicate positions of local maxima in the 
fluctuation map, from which candidate ROIs are identified for further analysis by generation of intensity vs. time 
traces. c, Representative intensity vs. time traces generated from the ROIs identified in b, circled in yellow. d, HMM 
idealization (red lines) for each intensity vs. time trace. Bound and unbound-state dwell times (τbound and τunbound, 
respectively) are indicated by the orange and blue horizontal line segments above the idealization. e, Candidates in 
the positive (orange circles) and negative (blue squares) controls for miR-16 are well separated by thresholds of 

Nb+d > 20 and bound > 2.5 s (black dashed lines), permitting discrimination of specific and nonspecific binding at the 
single-molecule level. Data are pre-filtered for signal-to-noise > 2.5 and intensity > 1000. f, miR-16 standard curve. n 
= 3 replicates for blank, 2 replicates for other measurements. Error bars represent 1 standard deviation. 
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from specific binding based on signal-to-noise, intensity, and FP kinetics (Figure 3.3e). 

Prior to step 1), a software-based drift correction may be applied to compensate for 

lateral stage drift during the experiment, though this is often not necessary if the 

microscope system is sufficiently stable (e.g., < 3 pixels of drift during the 10-min 

movie). candidate region. Upon request, MATLAB scripts for all the necessary 

processing steps below can be provided. 

3.2.7.1 Identifying candidate ROIs 

For optional drift correction, a custom routine written in Matlab (available upon 

request) based on the subpixel correlation between consecutive recorded images can 

be used to compensate for any x-y stage drift that would interfere with subsequent 

intensity-versus-time analysis of candidate ROIs. After this optional step, candidate 

ROIs—generally 5-pixel×5-pixel regions with significant frame-to-frame intensity 

fluctuations—are identified as follows. Each of the N movie frames is subtracted from 

the previous frame and the absolute value taken to generate a new image of the same 

dimensions as the original, but in which each pixel value represents the absolute value 

of the intensity change from the previous frame to the current frame. This is repeated for 

all movie frames, resulting in a new image stack with (N-1) frames. Finally, the value of 

each pixel in this image stack is averaged, resulting in a single image called a 

“fluctuation map” containing the average frame-to-frame change in intensity for each 

pixel. Pixels representing local maxima within this image are selected to serve as the 

center pixel of each candidate ROI for further processing. 

3.2.7.2 Calculation of intensity-versus-time traces 
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The intensity-versus-time trace for each candidate ROI identified from the fluctuation 

map is generated as follows. Within the first frame of the original movie file, the intensity 

of all 25 pixels within the 5-pixel-×5-pixel ROI is summed to create a single fluorescence 

value, and the median intensity value of the 2-pixel-wide region surrounding the ROI is 

subtracted to find the background-subtracted intensity of this ROI within the first frame. 

This process is repeated for each frame of the movie, and the list of intensity values 

combined to create an intensity-versus-time trajectory for this ROI.  The process is 

repeated for each ROI identified from the fluctuation map, and the intensity-versus-time 

trajectories are exported as an ASCII file for import into the HMM software QuB 102.  

3.2.7.3 Hidden Markov modeling 

The traces are imported into the HMM software QuB and fit using a two-state model. 

Proper parametrization is essential for convergence of HMM fitting; that is, the 

amplitudes, standard deviations, and kinetics should be as close as possible to the 

expected behavior of the FP binding to the target, and ideally within ~1 order of 

magnitude. It is important to use the same model to fit all datasets that are to be 

compared. The HMM fitting results table from QuB is exported for further analysis of the 

intensity and kinetics in MATLAB. 

3.2.7.4 Filtering specific from nonspecific binding 

A binary classification is performed on each candidate ROI based on whether its 

intensity-versus-time trace satisfies certain criteria. The criteria are established by an 

empirical evaluation of traces collected in negative and positive control experiments—

e.g., in the absence and presence of 500 fM synthetic target nucleic acid—and chosen 

so as to reject essentially all traces in the negative controls while accepting as many 
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traces as possible in the positive controls.  Since nonspecific binding of the probe to the 

surface can vary somewhat between coverslip or slide preparations, it is generally 

advisable to establish these criteria based on several independent technical replicates, 

preferably on different days. While the specific criteria will vary depending on factors 

such as the target, FP sequence and concentration, imaging buffer, and acquisition 

temperature, in this study a candidate ROI is considered to contain a true positive 

signature of the analyte if it satisfies the following criteria: 

• Intensity difference between bound state and unbound state (∆𝐼) > 1000 counts 

for detection of miR-16, > 500 counts for detection of EGFR L858R 

• Signal-to-noise (∆𝐼/σ, where σ is the standard deviation of the intensity in the FP-

unbound state) > 2.5 for miR-16, > 2 for EGFR L858R 

• Number of FP binding and dissociation events per observation period, Nb+d ≥ 20 

• Median lifetime in the FP-bound state, τbound,median > 4 s for miR-16, > 5 s and < 

20 s for EGFR L858R 

• Median lifetime in the FP-unbound state, τunbound,median > 0 for miR-16, > 20 s and 

< 50 s for EGFR L858R 

All traces satisfying these criteria are counted as true positives, and those that do not 

are considered to show insufficient evidence to be counted as true positives. Of the 

above criteria, the most critical for rejecting false positives (as determined from negative 

control measurements) tend to be Nb+d and τbound,median. 
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3.3 Results 

3.3.1 Considerations for the use of SiMREPS to detect short nucleic acid 

In negative control measurements with imaging buffer containing the FP, but in the 

absence of the target analyte, a considerable number of FP binding events were always 

observed—typically numbering in the hundreds—suggesting that transient or long-

lasting interactions between the FP and the imaging surface were difficult to suppress 

entirely (Figure 3.1d). In a conventional analysis without kinetic fingerprinting, it would 

be necessary to subtract these counts from all measurements as background; however, 

the large standard deviation of this background (Figure 3.1d) would impose a limit of 

detection (LOD) of hundreds of captured target molecules per FOV.  

In contrast, by applying the kinetic filtering criteria as outlined in section 2.7, 

essentially all of these background counts were filtered out in the negative control 

experiments (Figure 3.1d), permitting the confident identification and counting of even 

single-digit numbers of target molecules per FOV.  This is because, through repeated 

sampling of the same surface-immobilized target molecules through multiple cycles of 

FP binding, a progressively better estimate of kinetic parameters such as Nb+d, 

τbound,median, and τunbound,median was obtained for each candidate ROI, and it became 

easier to resolve true and false positives by a binary classification based on the kinetic 

criteria outlined in section 2.7 (Figure 3.3e). The number of accepted counts (candidate 

ROIs that pass kinetic filtering) was linear within the range of approximately 1-800 

molecules per FOV, as shown by the standard curve for miR-16 (Figure 3.3f). Due to 

the essentially zero background, even 0.5 fM miR-16 yielded significant counts above 

the negative control, resulting in an LOD that was mainly limited by the capture 



 68 

efficiency of analyte on the imaging surface rather than on background binding of the 

FP or autofluorescence of the imaging surface. In terms of absolute concentration 103, 

the calculated limit of blank (LOB) of this assay is 0 (since no blank counts were 

detected), and the estimated LOD is 0.4 fM. 

If more than ~500 molecules are present in a FOV, the diffraction-limited analysis 

presented here will result in a sub-linear increase and eventually a decrease in the 

accepted counts due to the inability to resolve closely spaced molecules. If it is desired 

to extend the dynamic range beyond this ~2.5 orders of magnitude into the range of 

thousands of molecules per FOV or more, it will likely be necessary to switch to a more 

conventional quantification scheme based on fluorescence intensity, or to implement 

super-resolution methods to analyze the kinetics of FP binding with sub-pixel accuracy 

104. Indeed, one recent paper describes the use of super-resolution imaging and kinetic 

analysis of dissociation kinetics to discriminate single-nucleotide variants in DNA with 

95% accuracy 105.  

3.3.2 Highly selective detection of EGFR L858R 

We tested the ability of SiMREPS to distinguish between closely related sequences, 

using as a model of the point mutation EGFR L858R (c.2573T>G), a common driver 

mutation in non-small cell lung carcinoma. Note that the high GC content surrounding 

this mutation necessitated two design choices for the FP: the intentional introduction of 

a G-T wobble mismatch in the FP-target interaction, and the positioning of the mutation 

towards one end of the FP-target duplex to reduce the GC content slightly (Figure 3.4a). 

While considerable FP binding was observed in the presence of the wild-type (WT) 

sequence, the traces in the WT-only experiment could be distinguished from the mutant  
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Figure 3.4 Single-base selectivity of SiMREPS. a, Sequences of WT and L858R MUT targets, as well as the capture 
probe (CP), MUT fluorescent probe (FP) and WT competitor. b, Representative intensity vs. time trace from MUT-
only positive control. c, Representative intensity vs. time trace from WT-only control. d, The accepted counts after 
kinetic filtering of traces collected in the presence of 100 nM EGFR WT or 1 pM L858R MUT. The apparent 
discrimination factor between MUT and WT is 3.25 million. 
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(MUT) traces on the basis of the median bound-state lifetime (τbound,median), which was 

longer for some traces in the presence of the MUT (Figure 3.4b,c). Indeed, the number 

of accepted traces in the presence of 100 nM WT was > 30-fold lower than in the 

presence of only 1 pM MUT, despite the fact that the WT was present at a 100,000× 

higher concentration. The apparent discrimination factor of this assay is thus 

approximately 100,000 x 32.5 / 1, or 3.25 million (Figure 3.4d). This is far greater than 

the theoretical maximum for thermodynamic binding assays of any point mutation 

(Qmax,therm), and demonstrates the power of SiMREPS to discriminate between very 

closely related analytes, entirely without amplification 

3.3.3 DNA CpG methylation detection using kinetic fingerprinting 

SiMREPS has been proved to be a powerful detection technique for short nucleic 

acids such as miRNA and ctDNA31,86. The current design is able to distinguish a single 

nucleotide difference between two analyts such as miRNA let-7a and let-7c. In other 

words, SiMREPS is sensitive enough to detect the kinetic binding difference from one 

single nucleotide. A recent work from Walter’s group31 had an interesting observation 

when the researchers found out that the deaminated wild type target caused the false 

positive signals in T790 wild type detection. The true positive signal should come from 

mutant T790 (C → T mutation). From their observation, the target that has deaminated 

WT, in which case one cytosine (C) in the sequence becomes a deoxyuracil (dU), gave 

similar signal as the mutant group. But the histogram of Nb+d between mutant group and 

Deaminated group are not the same (Figure 3.5). A slight separation of the histogram 

can be seen. We suppose a more obvious separation should be seen if given a longer 

observation time (currently 10 minutes). 
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Figure 3. 5. SiMREPS detection results of wild type T790 (WT), mutant T790 (MUT) and Deaminated wild type T790 
(dU). a, Diagram showing the various Target DNA-FP combinations tested, as well as expected base-pairing 
interactions. The 3’ barcode sequence (TAGGAC) present on the S17 Target DNA is omitted for clarity. dU, deoxyuracil. 
b, Histogram of Nb+d for different combinations of FP and target DNA per 10-minute experimental observation. The 
shaded regions indicate the Nb+d distribution for all molecule candidates prior to kinetic filtering, and solid lines 
represent the distribution of candidates that pass filtering (i.e., apparently genuine target molecules). n, number of 
apparently genuine target molecules that pass filtering. Reprinted from HaywardLund_et_al_JACS2018SI. Copyright 
2018.    
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Since the separation of Nb+d histogram is an important metric in SiMREPS detection, 

this observation showed that the binding kinetics of thymine and deoxyuracil to the 

same FP are different. The only difference here in this two cases is the deoxyracil has 

an extra methyl group than thymine. This result opened the possibility of using 

SiMREPS to detect the methylated DNA and unmethylated DNA. The most important 

DNA methylation is the CpG sites. 

DNA methylation at CpG sites is associated with genomic imprinting, X-chromosome 

inactivation and the mechanism of carcinogenesis across diverse cancer types106–108. 

The detection of methylated DNA sequence in biofluids has shown great potential for 

non-invasive of cancer109,110. For instance, the CpG methylation at the vimentin and 

septin9 DNA promoter loci occurs early during the process of carcinogenesis and this 

DNA is detectable in patient blood plasma samples. However, measurement of DNA 

CpG methylation with high specificity and sensitivity has been very challenging. This is 

mostly due to the reason that methylation marks cannot be directly PCR amplified in the 

same way as mutations can, either as being read directly by sequencing methods. 

Currently, the gold standard assay is using bisulfite treatment to convert 5mC to uracil, 

followed by DNA sequencing using primers sensitive to the conversion. The problem of 

this method is that the bisulfite treatment is typically damaging or destroying 80% of the 

DNA and thus limiting the sensitivity and specificity of this method. As a single molecule 

technique, SiMREPS can meet the requirement of such high sensitivity and specificity 

without the need of bisulfite treatment. We detected the wild type T790(WT) and 

methylated T790(5mC) with same FP (Figure 3.6). The observation time was 30 

minutes to get a better separation of the histogram of Nb+d.  
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Figure 3. 6. Histogram of Nb+d for Methylated T790 (T790_5mC) and wild type T790 (T790_WT). No clear separation 
of the number of bound and unbound states between the wide type and methylated T790 under the imaging time of 
30 minutes.    
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Figure 3. 7. a, schematic of MBD binding to methylated DNA double helix. b, Native PAGE results of MBD2 
selectively binding to methylated and unmethylated DNA.   
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However, as the histogram shows, the separation between wild type and methylated 

T790 is not as good as expected, even for 30 minutes’ observation time. One possible 

reason is that in GC pairs the impact to binding kinetics from one methyl group is not as 

strong as in AT pairs because GC pairs form 3 hydrogen bonds while as AT pairs form 

2 hydrogen bonds.  

Since SiMREPS is a kinetic fingerprinting technique, any transient binding process 

should be detectable in theory. Bindings such as nucleic acids interaction, protein-

protein interaction, protein-nucleic acid interaction should all be detectable. We 

switched the fluorescence probe from short oligonucleotide to fluorophore labeled small 

protein Methyl-CpG Binding Domain (MBD). The MBDs are a family of proteins that 

show higher affinity for methylated DNA than for unmethylated DNA as in the nanomolar 

range than micromolar range. The Kd for MBD2 binding to methylated DNA is ~3nM, 

while the Kd for MBD2 binding to unmethylated DNA is > 200nM108. The non-denaturing 

PAGE result (Figure 3.7) shows that the MBD2 has a selectivity over methylated DNA 

and unmethylated DNA at an ensemble level. After successfully labeling the 

fluorophore, we think the MBD2 will be a good FP candidate for DNA CpG methylation 

detection.  

3.4 Discussion 

We here have presented a workflow for the detection of nucleic acid targets by 

single-molecule kinetic fingerprinting through SiMREPS, and shown that this method 

affords detection of single analyte molecules with essentially no background (0-1 counts 

per FOV) in negative controls, even when challenged with a large concentration of 
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closely related sequence. We further show that the single-base selectivity of the 

technique is sufficient to detect a mutation as subtle as a single T-to-G substitution with 

an apparent discrimination factor > 1 million, far in excess of any other amplification-free 

technique and comparable to the best available methods (i.e., droplet digital PCR). The 

ability of SiMREPS to accommodate very short (< 25 nt) analyte sequences, and those 

captured from crude biofluids with minimal processing, are unique advantages relative 

to most amplification-based methods. To make the technique more widely applicable 

and convenient, future improvements may include the use of techniques to improve 

mass transfer of analytes to the surface in order to increase the density of captured 

analyte, thus increasing sensitivity; modified probe or assay designs to permit more 

rapid cycling between bound and unbound states to shorten the imaging time needed to 

reach any desired level of specificity; and/or automated signal detection and counting 

algorithms. For instance, while published data here and elsewhere 86 indicate typical 

limits of detection of ~1 fM for passive analyte capture in our standard pipet-tip sample 

cells (Fig. 2c), further exploratory work suggests that attomolar detection limits may be 

achievable in the near future (data not shown); furthermore, in theory, even single-digit 

copy numbers could be detected with sufficiently high capture efficiency. Furthermore, 

there is no fundamental limit to the type of analyte that can accurately be detected and 

quantified using SiMREPS, making it a universal platform that – with further refinements 

– may transform biomarker detection just as super-resolution has conventional 

fluorescence microscopy
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Chapter 4  

Automatic Traces Selection Using Machine Learning5, 6 

4.1 Introduction 

Single-molecule fluorescence microscopy has been a powerful technique enabling 

investigation for structural dynamics of biomolecules, especially when ensemble 

averaging or lack of synchronization might shadow the detailed information of the 

system under study. One leading research direction of this field is developing new 

imaging methods to achieve higher spatial resolutions such as DNA-PAINT, STORM, 

etc.111–113 Besides the experiment techniques exploration, data analysis optimization 

takes a significant role in single-molecule fluorescence microscopy study. For instance, 

Ha’s group established a now regularly used trajectories analysis method for single-

molecule fluorescence or Förster resonance energy transfer (FRET) data using hidden 

Markov Modelling (HMM)114. Walter’s group reported a hierarchical clustering of hidden 

Markov modeling-fitted smFRET trajectories enabling rapid interpretation of complex 

single-molecule behaviors115.  

                                                      
5
 Jieming Li and Leyou Zhang initiated the idea. Leyou Zhang designed and implemented machine learning algorithms. Jieming Li 

collected training and test datasets. Jieming Li performed the validation of machine learning algorithm analysis results. Jieming Li, 
Leyou Zhang and Alexander Johnson-Buck analysed and interpreted the data.  
6
 This chapter will be rewritten into a manuscript for publication submission. 
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Through the pipeline of analyzing single-molecule measurement, sorting and 

classification of single-molecule time series data (such as smFRET data) is a critical but 

time-consuming part. There has been no automatic method that can select out the 

qualified single-molecule trajectories. This is because the broad diversity of potential 

background signals makes it difficult to design simple criteria, such as thresholds based 

on intensity or noise, that would effectively remove all irrelevant time traces (e.g., those 

resulting from contaminants or nonspecific binding rather than analyte molecules) while 

retaining all or most of the relevant data for further analysis. Furthermore, the 

heterogeneous dynamic behaviors of molecules from experiment to experiment may 

require different selection criteria such as the degree/level of anti-correlation of signals. 

In addition, it is often the case that only a particular time segment of each single-

molecule trace is useful, and these regions of interest (ROIs) must typically be selected 

by hand due to this reason, which slows down analysis considerably. Because the 

selection of ROIs is dependent on relatively complicated determinations – such as the 

absence of various artifacts including photobleaching, blinking, contamination from 

nearby fluorescent materials, inconsistency of the segment duration – it is also difficult 

to automate this process using conventional methods.  

In most cases, hundreds of hours are spent on manual selection for an operator 

before they can get an adequate number of qualified molecules for further study. A 

user’s behavior study investigation was done to researchers anomalously in Nils Walter 

Lab. (Figure 4.1) We calculated the number of saved trace segments and the 

corresponding time spent on that selection (Figure 4.1a). Among the four users 

randomly picked, the fastest user can select ~5 segments per minute, while the slowest 
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user only selects less than 1 segment per minute. If we count by the task (here as one 

dataset from one experiment condition’s measurement), even the “fastest picker” needs 

~1 hour for one task. The longest time here is more than four hours for one task. If the 

 

Figure 4.1. Users behavior investigation of 4 researchers. a, Table of segments number and time spent on selecting 
the corresponding segments. The calculation is by accumulation of time intervals from the time record of the auto-
saved segment files on data server. The dataset analyzed was randomly picked. The only criterion was to include as 
many segments as possible from one condition. b, Average number of segments can be selected by different users in 
a time unit as one minute. c, Average time needed by different users to finish one task, here as manual selection of 
data from one experiment condition. 
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data is more complex, such as molecules having more heterogeneous behaviors, the 

time spent on the human selection may be even longer. Improving the productivity of 

data analysis in smFRET is highly demanding. 

In addition to sorting smFRET traces, improving the selectivity of kinetic fingerprinting 

is another incentive. As discussed in Chapter 3, the current data analysis in SiMREPS 

kinetic fingerprinting requires Hidden Markov Modeling (HMM) fitting to recognize 

fluorescence intensity change. After HMM fitting, a kinetic thresholding is applied on 

several parameters such as minimum binding time (bound) and the number of transitions 

(Nb+d) to screen out false positive traces from non-specific binding. However, this 

method, which is referred as HMM Thresholding in later discussion, is not perfect: 1) 

The HMM fitting software QuB does not work well all the time and sometimes fails at a 

fitting. This rare mistake might happen to a few traces among hundreds of trances, so it 

is within the error tolerance for the general fitting purpose. However, for low 

concentration detection where only the single digital number of molecules can be 

detected this fitting failure reduces the specificity a lot; 2) The criteria of kinetic 

thresholding are established by empirical evaluation of traces collected in negative and 

positive control experiments. Thus, the kinetic thresholding will vary depending on 

factors such as FP sequence and concentration, imaging buffer, and acquisition 

temperature. The empirical evaluation itself might also be impacted by subjectivity from 

person to person. For example, the dashed line as indicating minimum Nb+d can be 

slightly moved to get more accepted molecule numbers or fewer (Figure 3.3e). In other 

words, the molecules at the kinetic threshold edge are hard to classify as accept or 

reject; 3) The current kinetic thresholding uses nine parameters to screen traces. They 
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are intensity difference between bound state and unbound state, signal to noise, 

number of binding and dissociation events, median lifetime in bound and unbound 

states, minimum lifetime in bound and unbound states, and maximum lifetime in bound 

and unbound states. Even though the current parameters work well to accept as many 

molecules as possible in positive groups while achieve a zero background in negative 

groups, we believe more parameters can be used to improve the performance of traces 

classification, thus improving the specificity of SiMREPS in low concentration detection. 

With the explosion of “Big Data” problems, applications of machine learning in life 

science researches are growing. Xiong H. Y. et al. developed a machine learning 

technique that scores how strongly genetic variants affect RNA splicing to facilitate 

precision medicine and whole-genome annotation48. Christiansen E.M. et al. established 

a computational machine learning approach as they call “in silico labeling” to predict 

some fluorescent labels from transmitted-light images of unlabeled fixed or live 

biological samples116. The in silico labeling can generate biological measurements that 

would be otherwise problematic or impossible to acquire. A study more related to super-

resolution imaging is from Ouyang W et al.117 In this work, they presented a 

computational strategy that uses deep learning neural networks to reconstruct super-

resolution views from sparse, rapidly acquired localization images and wide field images 

that would otherwise require 10 times more images acquisition. All those inspiring 

studies have broadened the application spectrum of machine learning in life science 

and therefore makes machine learning become a more accessible and trustworthy 

approach in data analysis.  
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The task of sorting time series data generated from single molecule measurement is 

very similar to a clustering problem in machine learning. A similar approach has been 

applied in nanopore sequencing of DNA118. In this study, the data being analyzed is 

single channel time series data from the noisy and complex electrical signals. The 

authors trained a combined neural network that has both convolutional neural network 

(CNN) layers and recurrent neural network (RNN) layers. In this way, the new network 

can translate raw electrical signal directly to the nucleotide sequence. Following the 

idea of analyzing similar-look data, we used RNN and CNN in the analysis of single 

molecule traces. The RNN network we use here is Long Short-Term Memory (LSTM) 

network, which is suitable for classifying, processing and making predictions based on 

time series data119. The CNN network we use here is AlexNet46, which is famous for its 

capability of getting extremely high accuracy of image recognition with a relatively small 

number of network layers (8 layers). For single channel data, the automatic selector 

developed here can accept more traces in positive groups than the HMM Thresholding 

method, while keeping negative control groups accepting almost zero molecules. For 

double channel data, the automatic selector’s prediction agrees 96.1% with human 

selection as the highest output. We hope this automated selector can help researchers 

improve the data analysis productivity in smFRET measurement. In the meanwhile, the 

machine learning network can be used as a model-free traces classifier in SiMREPS 

measurement to achieve a higher selectivity.  
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4.2 Materials and Methods 

Data preprocessing is essential in machine learning, which relies heavily on 

consistent training data. For double-channel data from smFRET measurement, we used 

a dataset consisting over 20,000 FRET traces by extracting from four persons’ 

experiment data. These four people might have slightly different selection criteria such 

as traces duration time/segment length and degree of anti-correlation. These data have 

been screened before to ensure that they meet criteria of total length and intensity. In 

the dataset, the ratio between human selected traces and unselected traces are close 

to 1:3. To balance the dataset, we include additional 5,000 simulated traces generated 

by HMM with kinetic constants and transition matrix set to representative experiment 

systems. For single channel data from SiMREPS measurement, data collection is 

straightforward as no human selection label is required for training. We used T790M 

detection data consisting of data from mutant DNA and wild type DNA experiments for 

training. The T790M mutation results in an amino acid substitution at position 790 in 

EGFR. All data were screened by length and intensity criteria as well.  

The recursive neural network (RNN) is feed with raw traces data as input. The 

network uses an input layer, a layer of bidirectional Long-Short Term Memory (LSTM) 

cells, a fully connected layer, and a SoftMax classification layer. For all the layers, we 

used the MATLAB(2018a)’s Neural Network package. The input layer consumes a raw 

trace as a vector of dimension [1, 𝑇] and converts it into a matrix of dimension 

[𝑛𝑑 , 𝑇/𝑛𝑑], by which each 𝑛𝑑 nearest data point is binned into one row. We found 𝑛𝑑 =

10 to produce the best training results. If 𝑛𝑑 is too small, the information of each column 

is insufficient for feature detection in the presence of noise. If 𝑛𝑑 is too large, it gives a 
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high dimensional feature space which hinders training. The matrix is feed into the LSTM 

layer, which contains 200 LSTM cells. Bidirectional LSTM is used because it enables 

later frames to influence classifying earlier frames, which is a useful ability for the 

model. For example, some traces are good initially but are bad for the rest of the 

frames. The bidirectional LSTM model will use all the information, not just the good 

initial frames, during trace segmentation for good frames. The classification and 

segmentation is completed by the fully connected layer and the SoftMax classification 

layer. Together, they take the output of LSTM layer of dimension [200, 𝑇/𝑛𝑑] as input 

and a classification label as output. If only the classification of trace is needed, only the 

last row in the input is used as the feature. Otherwise, we use every row for frame-wise 

classification. 

Aside from RNN, we deployed a convolutional neural network (CNN) for FRET traces 

classification.  Raw traces are first converted into 2-D images by plotting them as 

scatter plots with donor and acceptor intensity as x and y position respectively. The 2-D 

images represent the intensity pattern of the raw traces but lose all the time information. 

If the FRET trace represents a good trace with a correlation in donor and acceptor 

intensity, the 2-D image will have a clear slope = -1 pattern of clusters of scatter points. 

We down-sampled the 2-D scatter plots to 40 × 40 in order to reduce feature space. 

The images are fed into AlexNet, a pretrained 8-layer network, for training. Each image 

is associated with a label of either human selected or unselected. The AlexNet is easier 

to converge than a network that was built from scratch since its parameters are 

initialized during pretraining. For our dataset, we found that training the network around 

20 hours on a modern CPU is sufficient. On a GPU, we are able to achieve 
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convergence within 4 hours using NVIDIA’s TESLA V100. The scatter plot generation, 

down-sampling and network training were all implemented with MATLAB (2018a).  

4.3 Results 

4.3.1 Use machine learning to analyze single channel data from kinetic 
fingerprinting measurement 

As discussed before, the currently used HMM Thresholding is not perfect due to the 

HMM fitting failure happens every now and then. Rather than using any kinetic binding 

parameters as criteria to screen out the false positive traces, we label the traces groups 

as positive and negative based on the experiment conditions, and let the RNN network 

extract the different features among the traces and make the decision during the 

training (Figure 4.2). The only criterion is to let the network accept as many traces from 

positive groups while accepting no traces from negative groups. Here we used the data 

collected from T790M detection31. The mutant groups are labeled as “Positive” and the 

wild type groups are labeled as “Negative”. Obvious transitions can be seen in 

representative mutant traces. After training, the LSTM network makes a decision on 

each trace as accept (check mark in Figure 4.2) or reject. In the traces classification 

step, the trained LSTM can assign a score ranging from 0 to 1 to each input unlabeled 

trace. “1” as having the highest probability to be a mutant trace while “0” as having the 

least probability to be a mutant trace. In this dataset case, “0” can also be interpreted as 

traces having high similarity to traces from wild type groups. A natural threshold of the 

score is 0.5 since it’s a binary classification. So, any traces with a score higher than 0.5 

will be taken as “Accept” and any traces with a score equal to or lower than 0.5 will be 

taken as “Reject”.  
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Figure 4. 2. Schematic of training and classification using machine learning algorithm.  
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Figure 4. 3. Representative traces with high and low scores assigned by machine learning algorithm. 
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Representative traces assigned with high scores and low scores are shown in Figure 

4.3. High-score traces show clear repetitive transitions between two states and good 

signal-to-noise. Low-score traces have obvious “unacceptable” features such as more 

than two states intensity changes, non-repetitive transitions, or fast transitions indicating 

bindings not from nucleotide hybridization. The key problem in this sorting task is 

whether the network can recognize “bad features” in the traces to be excluded, or in our 

case whether the network can recognize the non-specific bindings in the mutant groups 

from true target binding, and assign a low score. To evaluate the sorting task at an 

ensemble level, the scores of all traces from training are plot into a count histogram 

(Figure 4.4a). The mutant groups have traces with both high and low scores while the 

traces in wild type groups have only low scores assigned. It means the network can find 

the non-specific binding traces or “wild type-look” traces in the mutant groups. The 

distribution of high-score traces and low-score traces are well separated and only very 

few traces have scores near the threshold edge 0.5. For that reason, the trained 

network is smart enough to easily distinguish the “good traces” and “bad traces”, and 

properly set them apart to “Accept” or “Reject” groups. In practical use, if the 

researchers want to have higher certainty for accepted traces, they can set the score 

threshold higher than 0.5 to 0.6, 0.7, or even higher, with the trade-off as reducing the 

number of accepted traces; if the researchers want to include more accepted traces 

and/or are more tolerant of false positives, they can set the score threshold lower than 

0.5. For the discussion in this thesis, the score threshold is 0.5 and traces to be 

accepted have scores higher than 0.5. 
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Rather than simply using the machine learning as a “dark box”, we tested the trained 

LSTM network on simulated data (Figure 4.4b-d) to reveal what features and 

information the network is extracting during the training. Signal-to-noise is an essential 

criterion in sorting traces. The noise level of the T790M experiment data used in training 

network is around 0.15. Not surprisingly, the trained network accepted more simulated 

traces that have similar noise level than simulated traces with higher noise level (Figure 

4.4b). The network might become sensitive to signal-to-noise when it’s far off the SNR 

of training dataset and therefore doesn’t accept traces with the high noise level. To 

examine whether the network can extract the kinetic information contained in the traces, 

we tested the trained network on simulated data that was generated from a uniform 

distribution of rate constant. If the network can get kinetic information from training 

dataset during the training process, the trained network should be able to sort out the 

simulated traces having similar kinetic information from the whole simulated traces pool. 

τbound, τunbound and Nb+d are the three most important metrics related to the kinetic binding 

process. When plotting these three parameters obtained from the simulated traces 

accepted by the trained network into the Nb+d vs. τbound chart and τunbound vs. τbound 

chart(Figure 4.4c, d), a pattern of the distribution that is similar to the distribution of the 

experiment data31 used in training can be observed. All these validations on simulated 

traces increased the reliability of using machine learning as a new tool in sorting traces 

from the kinetic fingerprinting measurement.  

To compare the performance of machine learning algorithm and HMM thresholding, 

we tested the trained LSTM network on LOD experiment data from T790M mutation 

detection31(Figure 4.5). The LOD experiment conditions are different in the  



 90 

 
Figure 4. 4. Validation of classification by the machine learning algorithm using simulated traces. a, score distribution 
from machine learning assignment; b, τbound distribution of simulated molecule traces having different noise level 

accepted by machine learning algorithm. Traces having similar noise level (0.1 and 0.2) to the traces used in training 
(0.15) are accepted more than molecule traces group with higher noise level (0.5); c, d, results plotted with different 
parameters of testing trained network on simulated traces that have a uniform distribution of kinetic binding rate 
constant.  
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Figure 4. 5. Comparison of HMM thresholding and machine learning classification. a, Accepted molecule numbers 
comparison; b, agreement comparison.  
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concentration ratio of mutant T790M and wild type T790 as 1:10k, 1:100k and 1:1M. 

Compared to HMM thresholding accepting 38.8, 29.7 and 12.7 traces as the average 

number in each movie under each ratio condition, the LSTM network accepted 66, 49 

and 23 traces respectively (Figure 4.5a). The increasing fold of the number of accepted 

traces is 1.70, 1.65 and 1.81. Under experiment conditions when no wild type (ratio 

noted as 1:0) present and no mutant (ratio noted as 0:1) present, the HMM thresholding 

accepted 38.7 and 1.1 traces as average number in each movie, while LSTM network 

accepted 77.3 and 0.125 traces respectively. Note that these two conditions experiment 

data were used in the training. So the number increasing fold of the mutant only groups 

(ratio noted as 1:0) being higher as 1.99 is not unexpected due to the reason that the 

network should have better classification performance on data it is trained with. In the 

wild type only groups, the LSTM network accepted 1 trace across 8 movies. Compared 

to 9 traces accepted by HMM thresholding from the same dataset, the machine learning 

algorithm yielded almost zero backgrounds in control groups. The traces number here 

directly stands for the number of molecules detected by kinetic fingerprinting under the 

corresponding experimental condition. Across all the experiment conditions in T790M 

LOD detection, the LSTM network accepted more molecules than HMM thresholding, 

plus yielding fewer false positive in control groups. Accordingly, using the machine 

learning algorithm in SiMREPS measurement may increase the sensitivity of detection 

at low concentration, when only very few molecules can be found on the imaging 

surface and might not pass the HMM thresholding.  

Besides the accepted molecule number comparison, the agreement between HMM 

thresholding and machine learning algorithm on classification was also investigated. 
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When plotting the accepted molecule from T790M detection mutant only groups in the 

Nb+d vs. τbound chart in the style that molecules accepted by different methods in different 

colors (Figure 4.5b), we found that the machine learning algorithm has a good 

agreement with HMM thresholding. Almost all molecules accepted by HMM thresholding 

have also been accepted by the machine learning algorithm (colored in red). Only four 

out of 116 molecules are accepted by HMM thresholding but not by the machine 

learning algorithm (colored in green). There are some molecules not accepted by HMM 

thresholding but accepted by the machine learning algorithm (colored in blue) having 

overlapping positions with red circles on that plot. We guess that these molecules got 

screened out during the HMM thresholding, even though they might have similar binding 

kinetics as the molecules passed the thresholding, as indicated by the similar Nb+d and τ

bound values on the plot. More investigation of those traces will be needed. Overall, the 

machine learning algorithm is more tolerant than HMM thresholding in molecule traces 

sorting, and it can include almost all the selected molecule traces by HMM thresholding. 

We also tested the trained network on the experiment data from T790M standard curve 

measurement31. The coefficient of determination(R2) fit on traces number from LSTM 

selection is 0.9947, while the HMM thresholding gives 0.9902.  

Although further detailed check of the disagreed traces might be needed, the current 

results of using machine learning algorithm in analyzing single channel data from 

SiMREPS measurement show that LSTM network sorting has the potential to 

outperform the current HMM thresholding, thus assisting SiMREPS measurement to 

increase detection sensitivity. 
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4.3.2 Use machine learning to analyze double channel data from single molecule 
FRET measurement 

As mentioned earlier, the current analysis of smFRET data involves manual 

selection of traces. This manual selection is time-consuming and introducing 

inconsistency over time. In most cases, researchers only include the dynamic region of 

the traces for further analysis, for example, the segment with cross-correlation between 

donor and acceptor signals. Therefore, the task for double channel data analysis has an 

extra step of segmentation in addition to the sorting. Here, we also used LSTM neural 

network for classification similar as in single channel data analysis. Since LSTM neural 

network is sensitive to information change from time point to time point, it can do 

segmentation as well. Figure 4.7 shows representative segmentation from LSTM.  

In most cases, the region selected by the network (box colored in light blue) has 

good agreement with the region selected by a human (box colored in dark blue). In 

some cases, disagreement happens because the network is susceptible to sudden 

signal changes such as fluorescence blinking, in which case the network might have 

taken as a photobleaching event. Humans are much “smarter” in those cases to skip the 

blinking part. Together with the sorting task, the highest concordance between human 

selection and machine learning algorithm achieved by LSTM network is 89.8%. Since 

there are no ground truth labels from experiments as in the single channel data 

scenario, we use the concordance to evaluate the performance of the network 

compared to human beings. The concordance is calculated as the ratio of the number of 

traces agreed on both human and algorithms (pick and drop) divided by the number of 

all traces included.  
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To increase the agreement between human selection and algorithm, or in other 

words to train the network to be more like a human, more information to be collected 

during training is needed. One very crucial criterion during human selection is the 

degree of anti-correlation between donor and acceptor signals. We creatively converted 

the 1-dimensional time series data into 2-dimensional intensity plot (Figure 4.8). Each 

trace was converted into an image with donor intensity and acceptor intensity as the 

axes. By doing this, a frame-to-frame comparison task of the time series data is 

converted into an image recognition task. As shown in the figure, the cross-correlation 

degree can be reported as the pattern of the spots on the images. In the diagonal 

direction, a slope of -1 pattern will show up if there is cross-correlation region in the 

traces. We used AlexNet, a well-known CNN network for the image classification task. 

When connecting the LSTM and AlexNet together into one big network as a traces 

selector, the highest concordance between human selection and network sorting is 

96.1%. The training and test included 9 datasets from three users, while training and 

test were on different a dataset. From the results, the use of CNN does increase the 

performance of the traces selector. The drawback of using CNN is the need of 

computing power cannot be satisfied with personal laptop or desktop. All the CNN 

trainings in this work were done on GPU at Amazon Cloud. In our user interface of the 

automatic selector being currently designed, the CNN training is disabled in default. 

Users may use the Walter lab data pre-trained AlexNet for classification purpose. The 

workflow of automatic traces selector is shown in Figure 4.8. The LSTM network is 

capable for both traces segmentation and traces classification. CNN network can be 

coupled in when computing power permits to boost the classification concordance.  
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Figure 4. 6. Representative examples of segmentation comparison between human selection (dark blue box) and 
machine learning algorithm (light blue box). a, the machine learning algorithm selects almost the same region as 
human selection; b, human selection covers more region than machine learning algorithm because the algorithm is 
sensitive to sharp signal change and sometimes may take it as an intensity blinking; c, the machine learning 
algorithm can recognize and skip the photo-bleach-like region, and selects more regions for further analysis than 
human selection; d, rare case does happen as algorithm selection and human decision are nothing in common. 
Reasons can be that the algorithm stopped before the sharp signal drop while human chooses to skip that signal-
drop region.    
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Figure 4. 7. Workflow of using machine learning to analyze double channel data. For laptop users who don’t have 
GPU installed, the dashed line pathway will be disabled in the user interface. LSTM is the main network used in both 
sorting and segmentation.  
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Figure 4. 8. Comparison between human selection and machine learning algorithm of all the traces. Each user used 
different dataset therefore having different manual selection criteria.  
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To evaluate at an ensemble level of how different human selection and algorithm 

sorting are, we plot the histogram of FRET value from 3 users’ 3 datasets in Figure 4.9. 

This type of histogram is very often used in daily smFRET data analysis after manual 

selection to get the FRET value distribution in the molecule population. The results 

suggest that for some dataset like #2 and #3 in Figure 4.9, the traces selection result 

from machine learning algorithm is indistinguishable from the human selection. While 

some dataset might involve more heterogeneous information like #1, disagreement 

between human and machine learning algorithm becomes more evident. We believe 

that increasing the training data size and data diversity would diminish this issue. 

Overall, the machine learning algorithm can sort the double channel traces from 

smFRET measurement in ~90% similarity to human selection, without the need of 

spending hundreds of hours. We also believe the optimization of network training might 

increase the concordance to better performance.  

4.4 Discussion 

In this chapter, I introduced the idea of using machine learning algorithms to assist 

data analysis in single molecule measurement. Long short-term memory (LSTM) neural 

network was used for its unique capability of analyzing time series data. In single 

channel data analysis, LSTM network can achieve a higher selectivity sensitivity than 

traditional HMM thresholding. The validation conducted by testing on simulated traces 

suggests that the LSTM network can get kinetic features from single molecule traces 

during training and recognize them during classification. In double channel data 

analysis, the LSTM network can sort traces as well as segment out the region of interest 
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(ROI). Coupling the AnexNet into LSTM network can increase the performance of the 

automated selector, although it is limited to the practical computing power. In addition to 

getting similar final results as human selection, the automated selector can finish the 

task in several minutes, saving endless hours on manual selection for researchers. We 

suppose the productivity and efficiency of data analysis in smFRET measurement can 

be massively increased with this innovative automated selector.  

For better performance of the network in sorting, we believe increasing the training 

data size to include more diverse data will be a simple but valuable way. Increasing the 

layer number of the network will theoretically increase the network’s performance. 

However, the drawback is higher demanding of computing power or time for training. 

Other machine learning or deep learning algorithms may also be good choices.  

We hope this work can contribute the data analysis tool kit in single-molecule 

measurement and introduce machine learning as a new option to solve research 

problems in biophysics field.  
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Chapter 5  

Summary and Outlook 

5.1 Summary of results 

Over the past decades, the development of single molecule fluorescence microscopy 

has enabled researchers to observe the microscopic world at unprecedentedly high 

spatial resolution. Measurement of a single molecule removes the ensemble average 

from traditional bulk observation, allowing the exploration of concealed heterogeneities 

in complex systems and the direct detection of dynamic state changes without 

synchronization. No matter what variables are measured, the time dependence of the 

parameter can generate information about many dynamic processes, such as the 

duration of excited states, local environmental fluctuations, enzymatic activity 

differences, etc. This unique feature gives an entry point to engineer dynamic behaviors 

of molecules.  

The DNA nanotechnology field is well-known for its focus and ability to assemble 

nucleic acids into nano-devices that have specific engineering functions such as 

building blocks, cargo sorting and energy transport29,120–122. The power to provide 

information of heterogeneous behaviors of molecules makes single molecule 

microscopy an ideal tool for optimization of nano-device design. Single molecule 

techniques provide an invaluable method for observing the behavior of molecules 
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individually. Apart from using single molecule microscopy to characterize self-

assembled DNA structures to optimize their design123, the temporal information 

recorded over the observation provides insightful knowledge about dynamic behaviors 

of DNA nano-devices. One example is using smFRET to characterize how DNA walkers 

translocate in the microscopic world as I described in Chapter 2.  

In Chapter 2, a new type of movement mechanism of DNA walkers was introduced. 

Our novel DNA “acrobat” is moving in cartwheeling fashion, achieved through toehold 

exchange displacement between foothold strands. The movement is completely 

autonomous, contrasting with previously reported DNA motors that require energy 

supply, which provides a new option for potential unbiased molecular transport. 

smFRET measurements were used to provide stepping information of various DNA 

walker designs. Through the interpretation of lifetime changes in different dynamic 

states, the rate-limiting step during the translocation was identified as the toehold 

association and dissociation. This mechanistic characterization in return helped modify 

the design of DNA walkers to obtain the fastest one. The fastest toehold exchange DNA 

walker is termed W6_13_6, which has a stepping rate constant approaching 1 s-1, 10- to 

100-fold faster than prior DNA walkers. Through super-resolution imaging and single 

particle tracking using TIRF microscopy, we demonstrated that this new DNA walker 

moves via the same mechanism on two-dimensional substrate surfaces. The DNA 

walker moves over hundreds of nanometers within 10 minutes, in quantitative 

agreement with the prediction from stepping kinetics measured by smFRET.  

Besides providing information on heterogeneities in the microscopic world, the high 

spatial resolution single molecule measurements can achieve make them a powerful 
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tool to find a specific type of single molecule in a pool of molecules, just like searching 

for a needle in the haystack. This idea was demonstrated by the kinetic fingerprinting 

technique- SiMREPS, a robust detection technique capable of extremely low 

concentration detection through recording the transient binding of fluorescence probes 

to target molecules. In Chapter 3, I systematically discussed matters needing attention 

during SiMREPS experiments, including fluorescent probe design, sample preparation, 

imaging conditions and data analysis. I also discussed how different experimental set-

ups might impact the measurement. In addition to improvement of the method itself, 

expanding the detectable targets spectrum also is of interest. Currently, the targets 

include miRNA and ctDNA30,31. Exploration of using SiMREPS measurement to detect 

epigenetic mutations such as CpG site methylation was explored.  

In all single molecule experiments, the data analysis process is always of great 

importance to extract the enormous information collected during observation. The 

manual selection of traces after smFRET measurement is usually time consuming. To 

improve the productivity of research efforts, machine learning algorithms were 

introduced in Chapter 4. Our RNN and CNN coupled neural network yields a 96% 

concordance with human selection, without the need for hundreds of hours devoted to 

manual selection. In a similar application of machine learning to analyze single-channel 

data from SiMREPS measurements, the network outperformed current HMM 

thresholding in a test on T790M LOD experimental data. This improvement of data 

analysis may help SiMREPS measurements achieve a higher detection sensitivity. In 

general, the application of machine learning algorithm to single molecule data analysis 

introduces new options and opportunities for researchers.  
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Taken together, the above work shows how single molecule fluorescence microscopy 

is powerful and robust in both characterizing DNA nano-devices and diagnostic 

detection of nucleic acids. Common between these applications is the dynamic 

information collected through single molecule measurement. To better analyze the 

dynamic information, machine learning algorithms were introduced to the single 

molecule field. 

5.2 Outlook 

The new type of autonomous DNA walker presented in Chapter 2 suggests that 

substantial improvements in the operating rates of broad classes of DNA nanomachines 

utilizing strand displacement are possible. Further optimizing the mechanical properties 

of the system may also be possible, such as the reach of the walker, entropic tension in 

single-stranded linker segments, etc. To surpass the current “speed limit”, dynamic DNA 

nanotechnology may need to incorporate further innovations such as more precise 

control of local DNA mechanics and energy transduction. The ultimate goal of 

developing DNA walkers is to mimic natural biomotor transportation phenomenon in 

more controllable fashion. Besides molecular transport, other tasks such as sorting and 

target searching are also promising directions. Random walk as a classical model is 

widely used in computer science algorithms for searching tasks. The toehold exchange 

DNA walker developed here utilizes a random walk mechanism. An attempt to achieve 

a goal searching task using this DNA walker was made in my research. In the single 

particle tracking on 2D surface experiment, we attached a Cy5 fluorophore dye on some 

foothold strands and a Cy3 fluorophore dye on the DNA walker strand. When the DNA 
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walker finds the Cy5 labeled foothold, a FRET signal should be measurable due to 

energy transfer. However, the observation of success in this goal search task yielded 

inconclusive results because of limits in the experimental conditions: the leakage of Cy3 

signal obscured the FRET signal. If some optimization of the experiments can be 

achieved, the searching capability of this random DNA walker should be demonstrable. 

Once the goal searching and fluorescence resonance energy transfer can be realized, 

molecular transport using this DNA walker can be attempted124. For example, instead of 

labeling with a fluorophore dye, molecules that need to be transported can be attached 

to the DNA walker, such as coenzyme cargos. Similar autonomous DNA walkers using 

a different strand displacement mechanism may also be considered. If needed, coupling 

energy to speed up the toehold exchange DNA walker can also be explored, such as 

introducing polymerase reaction.125 Although the translocation system may become 

more complex and as a result harder to control, coupling energy will earn the potential 

velocity increment and greater controllability in moving directions. Another interesting 

direction to explore is changing the experimental temperature. All the smFRET 

measurement and single particle tracking in chapter 2 were conducted under room 

temperature. The locomotion speed of the DNA walkers correlated to the kinetic binding 

information may vary at different experimental temperatures126–128. Higher experimental 

temperature may lead to faster stepping rate since the rate-limiting step during toehold 

exchange displacement is the strands binding.  

The discussion in Chapter 3 suggests a further optimization of the SiMREPS method 

itself can be achieved from multiple directions. Increase of mass transfer of targets in 

solution to the imaging surface would push the detection concentration limit of 
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SiMREPS to a lower level. An adjustment of the imaging buffer to include formamide 

would change the binding kinetics of nucleic acids. Formamide presence should 

decrease the hybridization stability of fluorescent probes and targets, thus shortening 

the binding cycle time. This adjustment would make the detection of longer sequences 

by SiMREPS possible. The current length of the fluorescence probe is 8-9 nucleotides. 

A greater length of the binding region on the target would increase the selectivity in 

detecting genomic mutations. Furthermore, expanding the binding pairs from nucleic 

acid-nucleic acid to other molecules will massively broaden the analyte spectrum, such 

as protein-protein binding, where the fluorescence probe and target will be, for example, 

both proteins. The CpG methylation detection discussed in Chapter 3 offers the option 

of using nucleic acid-protein binding pairs in SiMREPS, thus pushing the detection limit 

from single nucleotide to single functional group differences. Due to the significant role 

CpG methylation plays in epigenetic gene regulation129,130, various detection methods 

have been developed131. Most of these methods focus on the fraction of methylation in 

the gene sample at a bulk level. The precise position of the CpG methylation in the 

sequence is of great importance to understand the gene regulation process. This type of 

high sequence specificity can be achieved during SiMREPS detection through careful 

sequence design of capture probe and fluorescence probe, making SiMREPS a 

promising detection tool for CpG methylation.  

The use of machine learning in single-molecule data analysis discussed in Chapter 4 

was considered as a new approach to reduce the human subjectivity introduced during 

the analysis. More and diverse training datasets should be included to build the network 

to be more “intelligent” and even less biased. The usual concern of using machine 
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learning algorithm in practice is the abstract and sometimes unknown features that the 

network is learning. More investigation into the features detected by our algorithm will 

be beneficial to the whole single molecule science community. Ideally, time series data 

from any other experimental measurements that contains special pattern of transitions 

should be handleable by our machine learning algorithm. Application of machine 

learning to other types of single molecule datasets is therefore very promising. 

The power of a technique becomes unlimited when people think creatively about how 

to use it. Determine the problem and invent the approaches to solve it is what scientists 

have been doing. My journey has just begun.  
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Figure A1.1. Design of cartwheeling walker and DNA tile. a, 2-Foothold system foothold strands F1 and F2 are 5ʹ and 
3ʹ extensions of ssDNA strands within the 4-helix tile (grey cylinders). b, 3-Foothold system with F1ʹ having same 
sequence as F1. c, The walker W is a single-stranded DNA oligonucleotide comprising a 13-nucleotide branch migration 
domain DB (coloured black) flanked by two 5- to 8-nucleotide toehold domains DA (coloured red) and DC (coloured 
orange) with distinct sequences. 
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Figure A1. 2. 5% Native PAGE characterization of 2-Foothold and 3-Foothold DNA tile systems. a, 5% native PAGE 
with SYBR Green stain of different tile constructs used in the paper. b, Fluorescence gel characterization of Cy3-
labeled tile. The number above each lane (6, 13, 20) represents the number of nucleotides in the middle domain (𝑫𝑩

̅̅ ̅̅ ) 
of each foothold strand. 
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Figure A1. 3. DNA sequence design for 4HX tile with 2-Foothold. a, The structure incorporates two ssDNAs as the 
two footholds, F1 (5’-CAATACCCCTACGGTCACTTC) and F2 (CCCTCATTCAATACCCCTACG-3’). The distance 
between 2 footholds are designed to be 7 nm and facing the same side of 4HX tile.  b, Computer modelling (Tiamat) 
of DNA nanostructure and the detailed sequence and labelling strategy of T1 and T2. Cy3 dye is labelled at 5’ of F1 
with 2 T bases as spacer. For both F1 and F2, A single-stranded 3T spacer was added between the foothold and the 
tile to allow for flexibility. 
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Figure A1. 4. Evidence of rapid FRET dynamics for W5_13_5, W6_13_6, W7_13_7 on 2-Foothold DNA tile. Rapid anti-
correlated fluctuations in Cy3 (blue) and Cy5 (red) fluorescence intensity for a single walker-tile complex, suggestive 
of branch migration in hybrid state S1+2.   
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Figure A1. 5. Monte Carlo simulation of cartwheeling DNA walkers in a 3-foothold system. a, Scheme for kinetic 
modelling of 3-foothold system (b = 13 nucleotides in the depicted scheme). See Supplementary Note 1 for details 
regarding the model. b, (top) Representative portion of a simulated trajectory of W8_13_8 in a 3-foothold system, 
zoomed in to show the rapid fluctuations among branch migration states. State values in this plot are binned to a time 
resolution of 16 ms to match the time resolution of donor-acceptor anticorrelation measurements (see Fig. 1, main 
text). (bottom) Exponential fit to the normalized autocorrelation function of the time-binned trajectory shown at the top. 
The lifetime of the exponential fit is 12.1 ms (95% confidence interval: [9.6, 14.6 ms]). c, Representative state vs. time 
trajectories for simulated walkers with b = 13 and toehold length a varying from 5 to 8 nucleotides. Rapid fluctuations 
among branch migration intermediates are punctuated by rare toehold dissociation and stepping events, which 
become more frequent as a decreases. d, Mean stepping dwell time of simulated trajectories (black filled circles) with 
b = 13 and varying a, as compared to the experimentally determined values (red squares) and simulated trajectories 
incorporating a toehold length-dependent bias towards one FRET state (blue diamonds). e, Simulated trajectory of 
W5_13_5 with a 10-fold bias towards binding one foothold (black), along with a time-binned version of the same 
trajectory (red). The time binning in the red trajectory is 100 ms, to match the time resolution of smFRET 
measurements. f, Mean stepping dwell time of simulated trajectories with varying b and constant a (=6). The trend is 
well fit by a linear function (R2 > 0.99). 
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Figure A1. 6. DNA sequence design for 4HX tile with 3-Foothold. a, The structure incorporates 3 ssDNAs as the 
three footholds, F1, F1’ (5’-CAATACCCCTACGGTCACTTC) and F2 (CCCTCATTCAATACCCCTACG-3’). The 
distance between each two footholds are designed to be 7 m and facing the same side of 4HX tile.  b, Computer 
modelling (Tiamat) of DNA nanostructure and the designed sequence of footholds F1, F1’ and F2. Cy3 dye is labelled 
at 5’ of F1 with 2 T bases as spacer. For all three footholds, a single-stranded 3T spacer was added between the 
foothold and the tile to induce flexibility.  
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Figure A1. 7. Single-molecule FRET characterization of W6_20_6 and W6_6_6 on 3-Foothold DNA tile. Representative 
smFRET trajectories of W6_20_6 and W6_6_6 on 3-Foothold DNA tile are shown with Cy3 fluorescence in blue and Cy5 
fluorescence in red. Zoomed-in trajectories (upper-right corner of each panel) show FRET transitions for 25-s 
segments in greater detail. Transition occupancy density plots (TODPs, lower-right corner of each panel) show the 
most frequently observed FRET transitions across all molecules. 
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Figure A1. 8. Simulated distributions and distances to nearest neighbour footholds on 2D surfaces. a, Representative 
200 nm × 200 nm region showing randomly distributed footholds F1 and F2. b, Histogram of predicted distances to 
nearest-neighbour footholds of the opposite type within a (1000 nm)2 region containing 8350 randomly distributed 
copies each of F1 and F2. Foothold positions are assumed to be independent of all other footholds. 

 
 

a b 
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Figure A1. 9. Single-molecule FRET characterization of W6_13_6 on 3-Foothold DNA origami. a, caDNAno scaffold 
routing diagram for 3-Foothold DNA origami, showing positions of footholds and biotins used for anchoring to the 
imaging surface for TIRF. b, Cartoon schematics of 3-Foothold DNA origami, including a side view of foothold and 
biotin positions (top) and a perspective view of the underlying nanostructure (bottom). The distance between adjacent 
footholds is predicted to be ~10.5 nm. c, TEM characterization of 3-Foothold DNA origami. d, A representative 
single-molecule FRET trajectory of W6_13_6 on 3-Foothold DNA origami. Cy3 fluorescence is shown in blue, while 
Cy5 fluorescence is shown in red. e, Zoomed-in trajectories showing FRET transitions for 25-s segments in d. f, 
Transition occupancy density plots (TODPs) illustrating the most common FRET transitions. g, Box-and-whisker plot 
of stepping kinetics in the high- and low-FRET states for W6_13_6 on 3-Foothold DNA Origami. 
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Figure A1. 10. Representative 2D particle tracking trajectories of W6_13_6 on surface coated with F1 and F2. One 
frame was acquired every 30 s. 
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Figure A1. 11. MSD comparison for W8_13_8. a, Square displacement for all trajectories (353 molecules). The 
extremely fast-moving outlier trajectory is highlighted in red. b, MSD comparison between all trajectories (n = 353 
trajectories, yellow line), without the single fast-moving trajectory (n = 352 trajectories, blue line) and without the 
second fastest moving trajectory (n=351 trajectories, grey line). Dotted lines indicate linear regression fits to the data, 
resulting in calculated 2D diffusion coefficient estimates of 2.2 nm2/s (yellow line),  0.7 nm2/s (blue line), and 0.5 
nm2/s (grey line). Thus, removal of one very unusual out of 352 trajectories reduces the apparent diffusion 
coefficient >3-fold, and the second fastest trajectory shouldn’t be count as an outlier. c, Square displacement for 
fastest moving outlier (red in a) removed trajectories. d, Square displacement for second fastest moving outlier (blue 
in a and c) removed trajectories. 
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Figure A1. 12. Position distribution of W6_13_6 on a surface bearing only one foothold type (F1) during 10 min of 
single-particle tracking. No walking is expected to occur on this control surface. a, 2D histogram showing the 
distribution of apparent x-y positions of all walkers (n=107) relative to their starting positions (0,0) over 10 min of 
observation. b, c, Histograms of walker coordinates in the x-(b) and y-(c)directions. The standard deviations of these 
coordinates (σx = 16.4 nm, σy = 15.2 nm) represent the approximate precision of localization in particle tracking 
experiments. 
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Table A1. 1. Staple sequences for the 3-Foothold DNA origami design 

Name Sequence (5′→3′) 
Oligo0 AGGTTTAGTACCGCCATGAGTTTCGTCACCAGTTTTCCAATC 
Oligo1 GTATAAACAGTTAATGTGCGAATAATAATTTTTTTTCCAATC 
Oligo2 CAGGAGGTTGAGGCAGAGGGAGTTAAAGGCCGTTTTCCAATC 
Oligo3 TTCATCGGCATTTTCGTACACTAAAACACTCATTTTCCAATC 
Oligo4 TTATTCATTAAAGGTGATGAACGGTGTACAGATTTTCCAATC 
Oligo5 TACGCAGTATGTTAGCTCATTGTGAATTACCTTTTTCCAATC 
Oligo6 GATAACCCACAAGAATGAGGCATAGTAAGAGCTTTTCCAATC 
Oligo7 GTTACAAAATAAACAGAGTTCAGAAAACGAGATTTTCCAATC 
Oligo8 TAGCAAGCAAATCAGATACCTTTAATTGCTCCTTTTCCAATC 
Oligo9 ATCAACAATAGATAAGCATTTCGCAAATGGTCTTTTCCAATC 
Oligo10 TAAAGCCAACGCTCAATTATGACCCTGTAATATTTTCCAATC 
Oligo11 CAAGACAAAGAACGCGAATGCCGGAGAGGGTATTTTCCAATC 
Oligo12 CTGTAAATCGTCGCTATAAACGTTAATATTTTTTTTCCAATC 
Oligo13 ATTGCTTTGAATACCATGGGATAGGTCACGTTTTTTCCAATC 
Oligo14 TTCATCAATATAATCCGTGCGGGCCTCTTCGCTTTTCCAATC 
Oligo15 TCAATAGATAATACATTGGCTAGTACCCGTATTTTTCCAATC 
Oligo16 CACCGCCTGCAACAGTCCGCTTTCCAGTCGGGTTTTCCAATC 
Oligo17 AGGGACATTCTGGCCACAGCAGGCGAAAATCCTTTTCCAATC 
Oligo18 TACAAACTACAACGCCTATCACCGTACTCAGGTTATCCATTC 
Oligo19 TTCACGTTGAAAATCTTTGAGTAACAGTGCCCTTATCCATTC 
Oligo20 CTTTTGCGGGATCGTCCCGCCGCCAGCATTGATTATCCATTC 
Oligo21 TCTTTGACCCCCAGCGCAGACTGTAGCGCGTTTTATCCATTC 
Oligo22 CCAGGCGCATAGGCTGTAAATATTGACGGAAATTATCCATTC 
Oligo23 TATGCGATTTTAAGAAGATTAAGACTCCTTATTTATCCATTC 
Oligo24 AACACTATCATAACCCGCGCTAATATCAGAGATTATCCATTC 
Oligo25 ATGACCATAAATCAAAAGAGCCTAATTTGCCATTATCCATTC 
Oligo26 TTTTGATAAGAGGTCATCATTACCGCGCCCAATTATCCATTC 
Oligo27 AATAACCTGTTTAGCTCAGAACGCGCCTGTTTTTATCCATTC 
Oligo28 CTTTTGCGGGAGAAGCCAAATTCTTACCAGTATTATCCATTC 
Oligo29 GCTATTTTTGAGAGATGATGCAAATCCAATCGTTATCCATTC 
Oligo30 GTTAAAATTCGCATTAGTGAATAACCTTGCTTTTATCCATTC 
Oligo31 GGTGTAGATGGGCGCAATAACGGATTCGCCTGTTATCCATTC 
Oligo32 TATTACGCCAGCTGGCTATCAGATGATGGCAATTATCCATTC 
Oligo33 AAGGATCCCCGGGTACTAATAGATTAGAGCCGTTATCCATTC 
Oligo34 AAACCTGTCGTGCCAGAGGCGGTCAGTATTAATTATCCATTC 
Oligo35 TGTTTGATGGTGGTTCCACGACCAGTAATAAATTATCCATTC 
Oligo36 CCCTCAGAACCGCCACAAGCCCAATAGGAACCTTTTCATACC 
Oligo37 GGAACCTATTATTCTGAGTGAGAATAGAAAGGTTTTCATACC 
Oligo38 TTGATATTCACAAACAATAACCGATATATTCGTTTTCATACC 
Oligo39 TTAGCGTTTGCCATCTGCACCAACCTAAAACGTTTTCATACC 
Oligo40 CGACTTGAGCCATTTGAACCGAACTGACCAACTTTTCATACC 
Oligo41 ATACATAAAGGTGGCATGGGCTTGAGATGGTTTTTTCATACC 
Oligo42 AATAAGAGCAAGAAACAATGCAGATACATAACTTTTCATACC 
Oligo43 CAATCCAAATAAGAAAATTCATTGAATCCCCCTTTTCATACC 
Oligo44 CGGTATTCTAAGAACGAAGCAAACTCCAACAGTTTTCATACC 
Oligo45 ATAATATCCCATCCTAGAACGAGTAGATTTAGTTTTCATACC 
Oligo46 GAGAATCGCCATATTTGCATAAAGCTAAATCGTTTTCATACC 
Oligo47 ATATATTTTAGTTAATTATGATATTCAACCGTTTTTCATACC 
Oligo48 TTAGAATCCTTGAAAAAGGAAGATTGTATAAGTTTTCATACC 
Oligo49 CAGAGGCGAATTATTCTCCGTGGGAACAAACGTTTTCATACC 
Oligo50 TACTTCTGAATAATGGCAGGCTGCGCAACTGTTTTTCATACC 
Oligo51 TATTAGACTTTACAAACGAGGCAAGTCCGCTATTTTCATACC 
Oligo52 AGCAGCAAATGAAAAATAACTCACATTAATTGTTTTCATACC 
Oligo53 TTCTGACCTGAAAGCGGTTGCAGCAAGCGGTCTTTTCATACC 
Oligo54 CATGTACCGTAACACCCCTCAGAACCGCCATTTTCATCAC 
Oligo55 AACAACTAAAGGAATCCCCCTGCCTATTTCTTTTCATCAC 
Oligo56 GTCGCTGAGGCTTGCGTCAGACGATTGGCCTTTTCATCAC 
Oligo57 AAAGAGGCAAAAGAAGTCATAGCCCCCTTATTTTCATCAC 
Oligo58 TTTGAAAGAGGACAGAATTATCACCGTCACTTTTCATCAC 
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Oligo59 TAATTTCAACTTTAAAAACGTAGAAAATACTTTTCATCAC 
Oligo60 GCCAAAAGGAATTACTGAGTTAAGCCCAATTTTTCATCAC 
Oligo61 TCAAATGCTTTAAACCCATATTATTTATCCTTTTCATCAC 
Oligo62 GTCAGGATTAGAGAGTATAGAAGGCTTATCTTTTCATCAC 
Oligo63 TTTGACCATTAGATATCCTGAACAAGAAAATTTTCATCAC 
Oligo64 GTTGTACCAAAAACACAGTAGGGCTTAATTTTTTCATCAC 
Oligo65 TCTAGCTGATAAATTAGAAAACTTTTTCAATTTTCATCAC 
Oligo66 CAAATATTTAAATTGTTAATTAATTTTCCCTTTTCATCAC 
Oligo67 GCGGATTGACCGTAAAGTTACAAAATCGCGTTTTCATCAC 
Oligo68 TGGGAAGGGCGATCGTGATTGTTTGGATTATTTTCATCAC 
Oligo69 GCGACCGTATACGCATTGAGGATTTAGAAGTTTTCATCAC 
Oligo70 CGTTGCGCTCACTGCGCCACGCTGAGAGCCTTTTCATCAC 
Oligo71 CACGCTGGTTTGCCCACAGAGATAGAACCCTTTTCATCAC 
Oligo72 ATAAGTGCCGTCGAGAGCGTAACGATCTAAAGTTTTCTACAC 
Oligo73 GATGATACAGGAGTGTTTGTATCGGTTTATCATTTTCTACAC 
Oligo74 CCTCAGAGCCACCACCAGGGTAGCAACGGCTATTTTCTACAC 
Oligo75 AGCAGCACCGTAATCAAGATTTGTATCATCGCTTTTCTACAC 
Oligo76 GCGCCAAAGACAAAAGAACCGGATATTCATTATTTTCTACAC 
Oligo77 AAACCGAGGAAACGCAAGAAAAATCTACGTTATTTTCTACAC 
Oligo78 ACGGGAGAATTAACTGAGCGAGAGGCTTTTGCTTTTCTACAC 
Oligo79 GCTACAATTTTATCCTGAAGCAAAGCGGATTGTTTTCTACAC 
Oligo80 CGCACTCATCGAGAACAATATAATGCTGTAGCTTTTCTACAC 
Oligo81 AGTAATTCTGTCCAGATGGCATCAATTCTACTTTTTCTACAC 
Oligo82 GAATCATAATTACTAGGAACCCTCATATATTTTTTTCTACAC 
Oligo83 TTTTAACCTCCGGCTTTCTGGAGCAAACAAGATTTTCTACAC 
Oligo84 TGAATTACCTTTTTTAAATAGGAACGCCATCATTTTCTACAC 
Oligo85 CGTCAGATGAATATACCGACGACAGTATCGGCTTTTCTACAC 
Oligo86 AACAAAGAAACCACCATGGGTAACGCCAGGGTTTTTCTACAC 
Oligo87 AGGAATTGAGGAAGGTGTTTCCTGTGTGAAATTTTTCTACAC 
Oligo88 CATTAAAAATACCGAAGAGGCGGTTTGCGTATTTTTCTACAC 
Oligo89 CTCAATCGTCTGAAATGAATAGCCCGAGATAGTTTTCTACAC 
Oligo90 TTTTGTCGTCTTTCCCTCAGTACCAGGCGGTTATCTTCCA 
Oligo91 GCTTGCTTTCGAGGTTCATACATGGCTTTTTTATCTTCCA 
Oligo92 CAGAGGCTTTGAGGACCTCAGAACCGCCACTTATCTTCCA 
Oligo93 CTGATAAATTGTGTCAATGAAACCATCGATTTATCTTCCA 
Oligo94 CCCAAATCAACGTAATCATATGGTTTACCATTATCTTCCA 
Oligo95 ATAAAACGAACTAACAAAGTTACCAGAAGGTTATCTTCCA 
Oligo96 AAAAGAAGTTTTGCCAGGGAAGCGCATTAGTTATCTTCCA 
Oligo97 CATCAAAAAGATTAAGCTATTTTGCACCCATTATCTTCCA 
Oligo98 TCAACATGTTTTAAATATTAAACCAAGTACTTATCTTCCA 
Oligo99 AATAGTAGTAGCATTACCGACAAAAGGTAATTATCTTCCA 
Oligo100 TAAATGCAATGCCTGTAAGAATAAACACCGTTATCTTCCA 
Oligo101 GAATCGATGAACGGTTCTGAGAGACTACCTTTATCTTCCA 
Oligo102 AAAATAATTCGCGTCTTTAACAATTTCATTTTATCTTCCA 
Oligo103 CTCAGGAAGATCGCAGATTTTCAGGTTTAATTATCTTCCA 
Oligo104 TTTCCCAGTCACGACATTATCATTTTGCGGTTATCTTCCA 
Oligo105 TGTTATCCGCTCACAAAATCAACAGTTGAATTATCTTCCA 
Oligo106 TGGGCGCCAGGGTGGGCCCTAAAACATCGCTTATCTTCCA 
Oligo107 GGTTGAGTGTTGTTCACCTACATTTTGACGTTATCTTCCA 
Oligo108 GATTAGCGGGGTTTTGAGACGTTAGTAAATGATTTTACCCAT 
Oligo109 ACCGTTCCAGTAAGCGGAATTTCTTAAACAGCTTTTACCCAT 
Oligo110 CCCTCAGAGCCGCCACCTAAAGACTTTTTCATTTTTACCCAT 
Oligo111 GGCCGGAAACGTCACCGAAATCCGCGACCTGCTTTTACCCAT 
Oligo112 ACAATCAATAGAAAATCAAAGCTGCTCATTCATTTTACCCAT 
Oligo113 AAGCAGATAGCCGAACGGAACAACATTATTACTTTTACCCAT 
Oligo114 AGAATAACATAAAAACAGAGGGGGTAATAGTATTTTACCCAT 
Oligo115 TAAATCAAGATTAGTTGAGGAAGCCCGAAAGATTTTACCCAT 
Oligo116 TCATTCCAAGAACGGGTATGCAACTAAAGTACTTTTACCCAT 
Oligo117 TAAGAGAATATAAAGTAACATCCAATAAATCATTTTACCCAT 
Oligo118 TAAATAAGGCGTTAAAAGTAATGTGTAGGTAATTTTACCCAT 
Oligo119 TTATCAAAATCATAGGAATCGTAAAACTAGCATTTTACCCAT 
Oligo120 AACAAAATTAATTACATGGCCTTCCTGTAGCCTTTTACCCAT 
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Oligo121 ATAAAGAAATTGCGTACTCCAGCCAGCTTTCCTTTTACCCAT 
Oligo122 TAAAAGTTTGAGTAACGTTGTAAAACGACGGCTTTTACCCAT 
Oligo123 TATCTGGTCAGTTGGCATTCCACACAACATACTTTTACCCAT 
Oligo124 AATGCGCGAACTGATATTTTTCTTTTCACCAGTTTTACCCAT 
Oligo125 AAACGCTCATGGAAATCAGTTTGGAACAAGAGTTTTACCCAT 
Oligo126 ATTTTCTGTATGGGATTCAAGAGAAGGATTAGTTTACTCACT 
Oligo127 TTGATACCGATAGTTGCGCAGTCTCTGAATTTTTTACTCACT 
Oligo128 GAGGAAGTTTCCATTAACCACCGGAACCGCCTTTTACTCACT 
Oligo129 TCCATGTTACTTAGCCCCATTACCATTAGCAATTTACTCACT 
Oligo130 GTGAATAAGGCTTGCCATAAGTTTATTTTGTCTTTACTCACT 
Oligo131 AGGTAGAAAGATTCATCCTTTTTAAGAAAAGTTTTACTCACT 
Oligo132 AAATGTTTAGACTGGAAGCAGCCTTTACAGAGTTTACTCACT 
Oligo133 CTTCAAATATCGCGTTGGAGGTTTTGAAGCCTTTTACTCACT 
Oligo134 GGTGTCTGGAAGTTTCCGGCTGTCTTTCCTTATTTACTCACT 
Oligo135 TACAGGCAAGGCAAAGATTTTCGAGCCAGTAATTTACTCACT 
Oligo136 AGATTCAAAAGGGTGAAATACCGACCGTGTGATTTACTCACT 
Oligo137 TGTCAATCATATGTACAGAGTCAATAGTGAATTTTACTCACT 
Oligo138 AGCTTTCATCAACATTAAACAAACATCAAGAATTTACTCACT 
Oligo139 GGCACCGCTTCTGGTGTGCACGTAAAACAGAATTTACTCACT 
Oligo140 CAGTGCCAAGCTTGCACGAACGTTATTAATTTTTTACTCACT 
Oligo141 GAGCCGGAAGCATAAATCAAACCCTCAATCAATTTACTCACT 
Oligo142 TGAGACGGGCAACAGCATGGCTATTAGTCTTTTTTACTCACT 
Oligo143 TCCACTATTAAAGAACGCCATTGCAACAGGAATTTACTCACT 
Oligo144 AGAGGCTGAGACTCCTTTGCTAAACAACTT 
Oligo145 AGCCAGAATGGAAAGCGCCGACAATGACAA 
Oligo146 ACCGGAACCAGAGCCAACGGGTAAAATACG 
Oligo147 AAATCACCAGTAGCAGGAACGAGGCGCAGA 
Oligo148 CAAAGACACCACGGACTGACGAGAAACACC 
Oligo149 CTATCTTACCGAAGCCAGTTGAGATTTAGG 
Oligo150 GTCAAAAATGAAAATTAGCGTCCAATACTG 
Oligo151 ACCTCCCGACTTGCGTTAATTCGAGCTTCA 
Oligo152 AAACCAATCAATAATATTCCATATAACAGT 
Oligo153 AATTTAGGCAGAGGCAATTAGCAAAATTAA 
Oligo154 AATTTAATGGTTTGAGAAAGGCCGGAGACA 
Oligo155 ATTAAGACGCTGAGACCCGGTTGATAATCA 
Oligo156 CAAAAGAAGATGATGAAATGTGAGCGAGTA 
Oligo157 CATATCAAAATTATTCCGGAAACCAGGCAA 
Oligo158 ATTAAATCCTTTGCCTGCCTGCAGGTCGAC 
Oligo159 GCTGAACCTCAAATAGTGTAAAGCCTGGGG 
Oligo160 AGACAATATTTTTGATGATTGCCCTTCACC 
Oligo161 ACAATATTACCGCCAGTGGACTCATATCCA 
Oligo162 CATTTTCAGGGATAGCCCTCAGAGCCACCACC 
Oligo163 TCAACAGTTTCAGCGGAAACATGAAAGTATTA 
Oligo164 CAACCATCGCCCACGCAATAAATCCTCATTAA 
Oligo165 TAATGCCACTACGAAGTTTCATAATCAAAATC 
Oligo166 CGGTCAATCATAAGGGGGAATTAGAGCCAGCA 
Oligo167 AGAACGAGTAGTAAATACATATAAAAGAAACG 
Oligo168 AATACCACATTCAACTAATGAAATAGCAATAG 
Oligo169 CGGAATCGTCATAAATCGATTTTTTGTTTAAC 
Oligo170 AAGCGAACCAGACCGGCGAGGCGTTTTAGCGA 
Oligo171 TGATTCCCAATTCTGCATTTACGAGCATGTAG 
Oligo172 GCAATAAAGCCTCAGAAACAACGCCAACATGT 
Oligo173 GTCAAATCACCATCAATTCATCTTCTGACCTA 
Oligo174 GAAAAGCCCCAAAAACCATAGCGATAGCTTAG 
Oligo175 ACAACCCGTCGGATTCATTTCAATTACCTGAG 
Oligo176 AGCGCCATTCGCCATTAAGGGTTAGAACCTAC 
Oligo177 TCTAGACCTTTGATAGCAATTCGACAACTCGT 
Oligo178 TGCCTAATGAGTGAGCTCTAAAGCATCACCTT 
Oligo179 GCCTGGCCCTGAGAGATAAGAATACGTGGCAC 
Oligo180 AGCCCGGAATAGGTGTGTAGCATTCCACAGTTTCACTACT 
Oligo181 AACGGGGTCAGTGCCCCAAAAAAAAGGCTCTTTCACTACT 
Oligo182 GAACCACCACCAGAGACCCTCAGCAGCGAATTTCACTACT 



 125 

Oligo183 GTTTGCCTTTAGCGTATTATACCAAGCGCGTTTCACTACT 
Oligo184 TTGAGGGAGGGAAGGGCTGACCTTCATCAATTTCACTACT 
Oligo185 CAAAAGAACTGGCATCTGGCTCATTATACCTTTCACTACT 
Oligo186 TCAGAGGGTAATTGATCGTTTACCAGACGATTTCACTACT 
Oligo187 AACGAGCGTCTTTCCAATCAGGTCTTTACCTTTCACTACT 
Oligo188 TTTTCATCGTAGGAATTTTTGCGGATGGCTTTTCACTACT 
Oligo189 CATGTTCAGCTAATGATATTTTCATTTGGGTTTCACTACT 
Oligo190 ATCATATGCGTTATACTTTATTTCAACGCATTTCACTACT 
Oligo191 CTATATGTAAATGCTCTACAAAGGCTATCATTTCACTACT 
Oligo192 AATCAATATATGTGAAATTTTTGTTAAATCTTTCACTACT 
Oligo193 ACATCGGGAGAAACATCGTAACCGTGCATCTTTCACTACT 
Oligo194 CATCATATTCCTGATGAAAGGGGGATGTGCTTTCACTACT 
Oligo195 AGGAGCACTAACAACCGAGCTCGAATTCGTTTTCACTACT 
Oligo196 GATAAAACAGAGGTGCTGCATTAATGAATCTTTCACTACT 
Oligo197 CAGATTCACCAGTCACGAAATCGGCAAAATTTTCACTACT 
Oligo198 ACAGCCCTCATAGTTAGGGTTGATATAAGTATTTTTTAACCC 
Oligo199 CAAAAGGAGCCTTTAAACTGGTAATAAGTTTTTTTTTAACCC 
Oligo200 AGACAGCATCGGAACGCTCAGAGCCGCCACCATTTTTAACCC 
Oligo201 AAACAAAGTACAACGGGTAGCGACAGAATCAATTTTTAACCC 
Oligo202 GAGTAATCTTGACAAGGGCGACATTCAACCGATTTTTAACCC 
Oligo203 AGTCAGGACGTTGGGAATAATAACGGAATACCTTTTTAACCC 
Oligo204 CGATAAAAACCAAAATAACACCCTGAACAAAGTTTTTAACCC 
Oligo205 CTGACTATTATAGTCAGAATCTTACCAACGCTTTTTTAACCC 
Oligo206 TAGAGCTTAATTGCTGAAGCAAGCCGTTTTTATTTTTAACCC 
Oligo207 GCGCGAGCTGAAAAGGCGACGACAATAAACAATTTTTAACCC 
Oligo208 AGGATAAAAATTTTTAAAAAAGCCTGTTTAGTTTTTTAACCC 
Oligo209 GGTCATTGCCTGAGAGAGGTTGGGTTATATAATTTTTAACCC 
Oligo210 AGCTCATTTTTTAACCATGGAAACAGTACATATTTTTAACCC 
Oligo211 TGCCAGTTTGAGGGGAAGTAACAGTACCTTTTTTTTTAACCC 
Oligo212 TGCAAGGCGATTAAGTGAAGGAGCGGAATTATTTTTTAACCC 
Oligo213 AATCATGGTCATAGCTTATCTAAAATATCTTTTTTTTAACCC 
Oligo214 GGCCAACGCGCGGGGACGAACCACCAGCAGAATTTTTAACCC 
Oligo215 CCCTTATAAATCAAAAGGATTATTTACATTGGTTTTTAACCC 
Oligo228 ATTACGCCTGAGGGGACGACGACAGGAACAAAGGTGACTGCTTCTAC 
Oligo229 GGGAAGGGAGATCGCACTCCAGCCGAGCGAGTGGGACGCTCATTTTCA 
Oligo230 CGCCATTTTCTGGTGCCGGAAACCTGTAGCACAAGACCATGCTTTG 
Oligo231 ACTAGCATAGCCCCAAAAACAGGAAACGCCATCCATCGTTTTCTATC 
Oligo232 AACAAGAGATATTTAAATTGTAAATGTTAAATTCGGGACAAGTCTCTC 
Oligo233 CCTGTGTGTACGAGCCGGAAGCATGTTTTTCT 
Oligo234 ATGGTCATACGACGTTGTAAAACGTCTTCGCTACGACGGCCCCTAAT 
Oligo235 CTCGAATGGTGCCTAATGAGTGAGAGGCGG 
Oligo236 ATCCCCGGCTTGCATGCCTGCAGGCAACTGTTAGCCTGCACAGACAGC 
Oligo237 TAGTACCCTTGCGTTGCGCTCACTAGCTGCAT 
Oligo238 CCGTATAGATAGCGAGGCAAGTAGGCAAAGACTACATGTATCTCGA 
Oligo239 AATCACCAAAAAACATTATGACCCAGCTAAAT 
Oligo240 AGGCCGGAGTTCTAGCTGATAAATATCGTAAAGAGAGTGACAGATGT 
Oligo241 TCAAAAGGAGAAGCCTTTATTTCAAAATTA 
Oligo242 ATGTGTAGTAGCTATTTTTGAGAGCTGGAGCAACCTGGCCTGCGTATC 
Oligo243 ACACAACAAAATTGTTTCCACATACGACAAAC 
Oligo244 CCAGGGTGAAAGTGTAAAGCCTGGTCGTAATCCTGCTTCCCTACGCT 
Oligo245 TTTGCGTATTGGGCGGTTGCAGCAAGCGGTGTTGAGTGTTGTTCC 
Oligo246 GCGCGGGGAGCTAACTCACATTAAGTATAAGGCAAATTCAGATGACTC 
Oligo247 TAATGAATCGGCCAACCAGCAGGCGAAAATCCCCTTATAAATCAAAAG 
Oligo248 TCGTGCCGCCCGCTTTCCAGTCGCTAGCGAGTGCAGAAAGGCTGTC 
Oligo249 CGGTTGTAGAAACCTGCAAATGGTCAATAACCGAAGGCACATACATTT 
Oligo250 GAGCATAATGTAATACTTTTGCGGGGTGAGAAGCCGCCCAACTGAGG 
Oligo251 AGCAATAAAGCCTCACATTTGGGGCGCGAGATTAAACGGGTAAAA 
Oligo252 AGAATTAGCAACGCAAGGATAAAACCTGAGTAGGTGCATAAACGCAAC 
Oligo253 CATACAGGCAAGGCAAAATTCTACTAATAGTAAGGACTAAAGACTTTT 
Oligo254 CTGATTGCCCTTCACCCCACTATTAAAGAACG 
Oligo255 TAACGCCATATCATAACCCTCGTTAAAACGAGAGGTCTGGACGCTACA 
Oligo256 AACTAATGCAGATACACTCCAACTTATGTGTACGGCGGATTGACCGTA 
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Oligo257 AGGAATAAAACCAAAATAGCGAGAATCCCCTCGATGTTAGTTCGTC 
Oligo258 TCATCAGTTGAGATTTAAGAGTTGTGGACTAGAACAACCCGTCGGATT 
Oligo259 TTACAGGTAAGTTTTGCCAGAGGGCCAATACTGGATACTCTTGGTTC 
Oligo260 AACGGAACAACATTACCCGCTTGATATGAACAGCTTTCATCAACA 
Oligo261 GTTAATAATGAATAAGGCTTGCCCACAAAGCTCCATGGGCGTCCCTAC 
Oligo262 GGGAAGAAAAATCTACACCTGTGCGGAGCAAGCAAAAATAATTCGCGT 
Oligo263 ACCAGTCAACGAGTAGTAAATTGAACCGGATAGTGGTGATGGCAGA 
Oligo264 AGAACTGGCTCATTATTCCCAGGACCACGATTCAGCTCATTTTTTAAC 
Oligo265 AATGACCATATAGTCAGAAGCAAAATGGCTTAAAGCCTGGGTTAAAAA 
Oligo266 CAGTTCAGTACCAGACGACGATAACCACATTC 
Oligo267 CTCAAATAGATTAAGAGGAAGCTGCTCCTTTCAATTCTGTAGCACG 
Oligo268 TATTCATTGAGGCTTTTGCAAAAGAGAAAGAT 
Oligo269 GCGGAATCATCGCGTTTTAATTCGCCAACAGGGGCGGATGATTAGTG 
Oligo270 ATAGCGTGGTAATAGTAAAATGAACGAACT 
Oligo271 GCTCATTCCAGACGGTCAATCATACTTAGCCGTTGATTATGGAATCGA 
Oligo272 TCAACGTATGACGAGAAACACCAGAGGACGTT 
Oligo273 TATTCATCAACTTTGAAAGAGGTGTGTCGAGCTACGTCAATGAACC 
Oligo274 CTTGACAAGGGCTTGAGATGGTTTCGATTTTA 
Oligo275 GAGCTTAATTAAATATGCAACTAAACAAGAGTGCCTGGCCCTGAGAGA 
Oligo276 TTGATAAGTTTCATTCCATATAGAGATAGGCCACGCTGGTTTGCCC 
Oligo277 TCAGGATTTCTGCGAACGAGTAGAGCAAAATCTGTTTGATGGTGGTT 
Oligo278 GAACGAGGACCTAAAACGAAAGAGGCCACTACTGTTTAGCTATATTTT 
Oligo279 AATCCGCAAACACTCATCTTTGAAGTTTCCCTGAAAAGGTGGCATC 
Oligo312 ATGGGATACGTGCATCTGCCAGTTAGCTGGCG 
Oligo313 CTCCGTGGTATCGGCCTCAGGACGATCGGT 
Oligo314_T2 TTAAATGTAGCTTTCCGGCACCGCCGCCATTCttttttCCCTCATTCAATACCCCTACG 
Oligo315 CTGGCCTTGGTTGATAATCAGAAAGTCAATCA 
Oligo316 CAATAGGAGATTGTATAAGCAAAATCGATG 
Oligo317 AAAGGGGGCAGGGTTTTCCCAGTCAGCTGTTT 
Oligo318_T1' CAATACCCCTACGGTCACTTCttttttGCGGGCCACGGCCAGTGCCAAGGTACCGAG 
Oligo319 AGGCTGCGTCGACTCTAGACCTTTCGCATGGC 
Oligo320_T1_Cy3 /5Cy3/CAATACCCCTACGGTCACTTCttttttTATGTACCAATATGATATTCAACCGACAGTCA 
Oligo321 AACGGTATAATGCCGGAGAGGGGTAAAGAT 
Oligo324 GGAAGCAGTTTTTAACCCAGGCTTGTTTGTCGTATGTGGAACGGCCT 
Oligo325 CATCCGCCGAGTCATCTGAATTTGCGTGCTACAGAATTGAAGCGTAG 
Oligo326 TGGGCGGCTCGATTCCATAATCAAGACAGCCTTTCTGCACCACTAAT 
Oligo327 TACTCAAAGTTGCGTTTATGCACCGGTTCATTGACGTAGCCCTCAGT 
Oligo328 GCCGTCGTTGTAGCGTCCAGACCTCCAACCGGTATAGGAAAGTTAAT 
Oligo329 GAGTATCCGCTGTCTGTGCAGGCTGACGAACTAACATCGAATTAGGG 
Oligo330 TCACTCTCGTAGGGACGCCCATGGTCGAGATACATGTAGTGAACCAA 
Oligo331 AGCATAGAGATACGCAGGCCAGGTTCTGCCATCACCACTAACATCTG 
Oligo332 CAGTCACCTACACATAAGTTGGAGACACCTAGGGAGCACGGCCATAC 
Oligo333 CAAGCGGGTGAAAATGAGCGTCCCCTAGTCCACAACTCTTGTAGAAG 
Oligo334 AACGATGGCTTGCTCCGCACAGGTCAAAGCATGGTCTTGTTTCATAT 
Oligo335 AGGTCAGGGAGAGACTTGTCCCGAAATCGTGGTCCTGGGAGATAGAA 
Oligo348 TTTTGCGGGCGGATTGCATCAAAAGCTTTAAATTTTGTGATGAA 
Oligo349 CCTTTAATCCGAAAGACTTCAAATGTCATAAATTTTGAATGGAT 
Oligo350 GCAAACTAGCTTCAAAGCGAACTAGACTGGTTTTGGGTTAAA 
Oligo351 CCATGTTAAGGGAACCGAACTGACTACCCAAATTTTTGGAAGAT 
Oligo352 TGATAAATACAGATGAACGGTGTAAGAGTAATTTTTAGTGAGTA 
Oligo353 AGTTTGGAAGTACGGTGTCTGGAAGAGGTCATTTTTGGTATGAA 
Oligo354 AATAGCCCACAGTTGATTCCCAATAGAGAGTATTTTGATTGGAA 
Oligo355 GAAATCGTTTAGTTTGACCATTGACCGGAATTTTAGTAGTGA 
Oligo356 TACGTAATGCAAAAGAATACACTAGACCTGCTTTTTGTGTAGAA 
Oligo357 TCATGAGGACCCCCAGCGATTATATCATCGCCTTTTATGGGTAA 
Oligo360 TTTTGCGGGCGGATTGCATCAAAAGCTTTAAA 
Oligo361 CCTTTAATCCGAAAGACTTCAAATGTCATAAA 
Oligo362 GCAAACTAGCTTCAAAGCGAACTAGACTGG 
Oligo363 CCATGTTAAGGGAACCGAACTGACTACCCAAA 
Oligo364 TGATAAATACAGATGAACGGTGTAAGAGTAAT 
Oligo365 AGTTTGGAAGTACGGTGTCTGGAAGAGGTCATttttt/3bio/ 
Oligo366 AATAGCCCACAGTTGATTCCCAATAGAGAGTAttttt/3bio/ 
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Oligo367 GAAATCGTTTAGTTTGACCATTGACCGGAAttttt/3bio/ 
Oligo368 TACGTAATGCAAAAGAATACACTAGACCTGCTttttt/3bio/ 
Oligo369 TCATGAGGACCCCCAGCGATTATATCATCGCCttttt/3bio/ 
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