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Abstract

In environments governed by the behavior of strategically interacting agents, game
theory provides a way to predict outcomes in counterfactual scenarios, such as new mar-
ket mechanisms or cybersecurity systems. Simulation-based games allow analysts to rea-
son about settings that are too complex to model analytically with sufficient fidelity. But
prior techniques for studying agent behavior in simulation-based games lack theoretical
guarantees about the strategic stability of these behaviors.

In this dissertation, I propose a way to measure the likelihood an agent could find a
beneficial strategy deviation from a proposed behavior, using a limited number of sam-
ples from a distribution over strategies, including a theoretically proven bound. This
method employs a provably conservative confidence interval estimator, along with a mul-
tiple test correction, to provide its guarantee. I show that the method can reliably find
provably stable strategy profiles in an auction game, and in a cybersecurity game from
prior literature.

I also present a method for evaluating the stability of strategy profiles learned over
a restricted set of strategies, where a strategy profile is an assignment of a strategy to
each agent in a game. This method uses reinforcement learning to challenge the learned
behavior as a test of its soundness. This study finds that a widely-used trading agent
model, the zero-intelligence trader, can be reasonably strategically stable in continuous
double auction games, but only if the strategies have their parameters calibrated for the
particular game instance.

In addition, I present new applications of empirical game-theoretic analysis (EGTA)
to a cybersecurity setting, involving defense against attacker intrusion into a computer
system. This work uses iterated deep reinforcement learning to generate more strate-
gically stable attacker and defender strategies, relative to those found in prior work. It
also offers empirical insights into how iterated deep reinforcement learning approaches
strategic equilibrium, over dozens of rounds.

xi



Chapter 1

Introduction

Many vital real-world domains of study are governed by strategic interactions among
agents. Such environments include stock markets, where traders compete to attain their
desired holdings of a stock for the best prices, and cybersecurity settings, where attackers
and defenders vie for control of computer networks. Analysts model these settings as
games and use the tools of game theory to reason about the expected outcomes of agents’
self-interested behavior.

Real-world settings often involve many agents or many possible strategies, and the
payoffs for each agent are determined by a complicated function of the agents’ chosen
strategies. In such settings, it may be that the only way to determine each agent’s pay-
off is to run a simulator of the game; such game models are known as simulation-based
games. Analysts can estimate what will happen in a simulation-based game by running a
simulator under different mappings from agents to strategies. Analysts use the observed
payoff distributions to build a model of the function from strategies to payoffs. Then an-
alysts can use standard game-theoretic methods to determine which agent behaviors are
strategically stable in the game.

An assignment of a strategy to each agent is strategically stable if it is at or near equi-
librium under some solution concept; for example, such an assignment may be called
strategically stable if no agent can increase its expected payoff by switching strategies,
while every other agent retains its current strategy. Strategically stable assignments of
strategies to agents are important in game theory, because they represent rational behav-
iors for the agents, and consequently justifiable models or predictions of how real agents
might behave in such a setting.
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One problem in simulation-based game theory is that only a limited number of strate-
gies can be explored by querying the game simulator. Current methods of empirical
game-theoretic analysis (EGTA) build a game model for a modestly-sized strategy set,
containing perhaps between 10 and 100 strategies, and search for a mapping from play-
ers to strategies that is strategically stable over that set [94], [95]. Consider a game of
interest, called the original game within a study, which may have infinitely many possi-
ble strategies; the EGTA approach would be to solve a restricted game containing only a
finite subset of these strategies. The trouble is that this approach cannot verify the re-
sulting strategies are stable in the original game, where the strategy set is not artificially
restricted to just a few options. It would be desirable to have methods for quantifying the
stability of strategies with respect to a much larger strategy space. Such methods would
help analysts to reason about whether a given strategy is a reasonable model of player
behavior in the original game.

1.1 Contributions

In this work, I present approaches for analyzing the stability of strategies in simulation-
based games, whose strategy sets may be very large or even infinite. I present methods
that allow the analyst to search for stable assignments of strategies to agents in the original
game, not merely in a restricted version of that game. I also offer a method to evaluate
the stability of an assignment of strategies to agents, with respect to deviating strategies
from a very large strategy set.

I present a statistical approach that searches for better assignments of strategies to
agents in a game, with the goal of yielding a proven stability property in cases where the
process converges within an iteration limit. When it terminates successfully, this method
provides a statistical guarantee on the stability of the resulting strategy profile, which
I call probably almost stable. This method could be especially useful in simulation-based
games for which the analyst has restricted agents to using a parameterized class of strate-
gies. The algorithm I propose can search for a strategically stable assignment of strategies
to the agents in the game, such that if the algorithm terminates successfully, it is likely
that the measure of parameter settings that are beneficial deviations from this assignment
is small, under some probability distribution over all strategies in the parameter space.

Another approach uses reinforcement learning (RL), a form of machine learning for
maximizing the rewards an agent obtains from its actions, to attempt to find a beneficial
strategy deviation against a strategy profile that is presumed to be stable. I use RL in one

2



study as a tool for evaluating the strategic stability of an assignment to agents of strategies
from a restricted class, with respect to alternative strategies from a much broader class,
such as the set of all strategies representable by a form of tabular policy. In another study,
I use RL as a strategy exploration method, while iteratively searching for a stable assign-
ment of strategies to agents in a complex game. In this work, RL is used to find strategies
that deviate beneficially from the set of strategies explored already, until RL fails to yield
a beneficial deviation, and the process converges. I present experimental evaluations of
these methods in simulation-based games representing meaningful, real-world settings,
including the continuous double auction and a cyber-defense scenario.

In one application of RL, I use RL to evaluate the strategic stability of a class of strate-
gies, specifically a widely-studied heuristic trading strategy, called Zero Intelligence, for
the continuous double auction. I consider a setting where zero-intelligence trading agents
have been calibrated to the particular game environment, such that no zero-intelligence
strategy among the instances for which simulations have been conducted is a beneficial
deviation. I then measure how much higher an expected payoff is achieved by an RL
agent, when all other agents continue to use the calibrated zero-intelligence strategies.
This method seeks to evaluate the strategic stability of an assignment of strategies to
agents, with respect to the large class of strategies that could be learned by an RL algo-
rithm. The findings suggest that zero-intelligence strategies are reasonably strategically
stable in the continuous double auction, but only if their parameters are calibrated to the
particular game instance.

My other application of RL to simulation-based games employs iterated deep RL to
seek strategically stable assignments of policies to agents, for complex games that are
played sequentially over multiple moves. Deep RL refers to RL combined with deep
neural networks, where a neural network is used as a function approximator that predicts
the value of actions or states in a game. Iterated deep RL is a process which repeatedly
(a) finds an assignment of known strategies to agents, which is strategically stable with
respect to other known strategies, and (b) uses deep RL for each agent to search for a
beneficial deviation from the current strategy assignments. I show that iterated deep RL
can consistently generate beneficially deviating strategies, in a cybersecurity game from
prior literature. Moreover, I show that iterated deep RL converges to strategies that are
stronger than those suggested in previous work for this cybersecurity game, via mostly
steady improvements that gradually diminish from round to round.

3



1.2 Related work

Many prior works have addressed problems related to those that I take on in this disser-
tation. Here I provide an overview of related works and where they stand in relation to
this work.

1.2.1 Probably almost stable profiles

The probably almost stable guarantee I propose is related to concepts introduced by
Bopardikar et al. [7]. Bopardikar et al. propose a method for learning security policies,
which are policies such that following the policy guarantees an agent will be likely to
obtain at least some minimum payoff against an opponent that selects a best-response
strategy based on a limited random search. The method proposed in that prior work is
intended for zero-sum games, where a minimax solution concept is used, and may not
apply directly to general-sum games, which are handled by my probably almost stable
method.

The algorithm I propose for searching for probably almost stable profiles is a vari-
ant of the empirical game-theoretic analysis (EGTA) process of Wellman [95]. The EGTA
method searches for stable profiles in games by finding a Nash equilibrium over a lim-
ited strategy set, then iteratively exploring new strategies that might be added to this set.
Other authors, such as Sureka and Wurman [77], have also proposed methods for iterated
better-response search, similar to my method of searching for probably almost stable pro-
files. My new methods introduce the theoretical concept of almost-stable and probably
almost stable profiles, as well as extending the basic process of EGTA or iterated better-
response search, in order to ensure the results have the desired property (if the process
terminates successfully).

1.2.2 Continuous double auction agents and reinforcement learning

The continuous double auction market simulator I use, as well as the implementation of
the zero-intelligence trading strategy, were derived from prior works by Wah et al. [89],
[90]. In those works, the strategies of zero-intelligence agents were selected from a small
set of parameter settings, and Nash equilibrium strategy profiles were found for the case
where agents were limited to those parameter choices. I extend that prior work by train-
ing agents to behave adaptively, depending on the current state of the market, using RL;
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the fitness of the trained policies can then be compared to that of zero-intelligence agents
with carefully tuned parameters.

Schvartzman and Wellman [71] previously trained reinforcement learners to trade in
the continuous double auction, against a variety of agent types from the literature. They
showed that an agent trained with RL for a particular market environment could out-
perform several previously proposed agent strategies, including some that are quite so-
phisticated. My work differs in goal from Schvartzman and Wellman: while their work
attempted to demonstrate that a reinforcement learner could outperform previously pro-
posed strategies in the continuous double auction, I measure the regret, or loss, an agent
incurs by adopting a fixed but well-calibrated zero-intelligence strategy, relative to an
agent that is free to use an adaptive strategy produced via RL. My work seeks to evaluate
the fitness of zero-intelligence for the continuous double auction, by comparing a well-
parameterized zero-intelligence agent to a learning agent from a strategy class with much
more expressive power.

1.2.3 Iterated deep reinforcement learning in cybersecurity games

Various prior works have proposed or experimented with methods for iteratively learn-
ing more strategically stable strategies in complex games. Lanctot et al. [49] introduced
Policy Space Response Oracles (PSROs), which alternate between finding an optimal pol-
icy over a limited strategy set, based on some solution concept, and using deep RL to ex-
plore new deviating strategies. My work differs from Lanctot et al. in the methods used
to control the problem of overfitting to the training opponent; in particular, my work pro-
poses pretraining a reinforcement learner to perform well against the current opponent,
then fine-tuning against a mixed strategy of previous opponents. Moreover, my work
also presents detailed results related to the dynamics of the training process, over dozens
of rounds of iterated deep RL and Nash equilibrium solving.

Wang et al. [92] applied iterated deep RL to a green security game, where rangers play
an extensive-form game against poachers. Wang et al. introduce a method for encourag-
ing the learned policies to avoid overfitting to a particular opponent, much like my ap-
proach, although the methods they propose are different. Moreover, as noted above, my
results illustrate the dynamics of changes in strategy during training over many rounds,
until convergence is reached after as many as 70 iterations; previous works have generally
performed only enough rounds of iteration to demonstrate the efficacy of the procedure,
stopping after perhaps 5–20 rounds, even if deep RL continues to learn beneficially devi-
ating strategies.
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My work on iterated RL has similarities to prior work by Schvartzman and Well-
man [71]. Their paper applied iterated RL to develop stronger trading agent strategies
for the continuous double auction. Schvartzman and Wellman did not use neural net-
works to represent their policies, instead using tabular Q-learning with tile coding. Their
procedure converged, being unable to learn another beneficial deviation, after 14 rounds,
while with the stronger learning algorithm of deep Q-networks, I observe that as many
as 70 rounds are needed in some cases for convergence. There are also considerable dif-
ferences between these works due to the difference in game environment between an
auction among many trading agents and a two-player cybersecurity game.

1.3 Outline of document

In the remainder of this dissertation, I lay out fundamental background knowledge, present
three related studies, and sum up the results obtained. Chapter 2 introduces key ideas
and notation used in the dissertation, on topics including game theory, reinforcement
learning, auction games, and attack-graph games. Chapter 3 presents a study on using
a statistical confidence bound and random strategy sampling to analyze the stability of
a strategy profile, yielding the probably almost stable guarantee mentioned above; this
work also includes applications to the first-price, sealed-bid auction and a cybersecurity
game. Chapter 4 presents work on evaluating the stability of strategy profiles using rein-
forcement learning, with an application to the continuous double auction, as well as the
zero-intelligence strategies described above; a paper on this study appeared at AAMAS
2018 [97]. Chapter 5 presents results from applying iterated deep reinforcement learning
to a cybersecurity setting, an attack-graph game. Appendix A has supplementary data
that would be useful in replicating this work in deep reinforcement learning, and also
additional figures giving a more complete picture of the experimental results across dif-
ferent environments. Finally, Chapter 6 discusses the results from the dissertation and
concludes.
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Chapter 2

Background

In this chapter, I present the foundations of this dissertation in game theory and rein-
forcement learning, including notation and core concepts. These concepts include game-
theory ideas like Nash equilibrium, regret, and empirical game-theoretic analysis (EGTA).

I go on to introduce the main application areas addressed by this work: the continuous
double auction (CDA) and the attack-graph game. Next I give a formal definition of each
of these game-theoretic domains. I also provide information on the real-world motivation
for studying these settings, as well as some conceptual description to supplement the
formal definitions and provide an easier path to understanding the various game models.

2.1 Game theory

Game theory is the study of strategic interactions among self-interested agents. By self-
interested, I mean that each agent makes an independent decision of how to act, with
the goal of optimizing its own expected outcome. As these agents interact, each agent’s
outcomes may depend on the behavior of the others, giving rise to a strategic game.

I formally describe an N-player game as G = (S, U), where S = (S1, . . . , SN) assigns
each agent i a strategy set, and U = (U1, . . . , UN) assigns each agent a utility function.
(There is an implicit agent set of players indexed by i ∈ {1, . . . , N}.)

I consider normal form games in this work. Each agent i can simultaneously, indepen-
dently select a pure strategy si ∈ Si. This results in a pure-strategy profile s = (s1, . . . , sN) ∈
S1 × · · · × SN. Alternatively, an agent i can select a mixed strategy, which is a probability
distribution over pure strategies in its strategy set, σi ∈ ∆Si . (By ∆Si , I mean the set of all
probability distributions over set Si.) When each agent selects its own mixed strategy, the
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result is a mixed-strategy profile σ = (σ1, . . . , σN) ∈ ∆S1 × · · · × ∆SN . I sometimes discuss
the other-agents profile in pure strategies, s−i, or in mixed strategies, σ−i, which indicates a
strategy for each agent except i.

The utility function of any agent i is Ui : ∏j Sj → R, which maps any pure-strategy
profile to the expected payoff for agent i when each agent selects the strategy in that
profile.

One can compute the expected payoff for any agent i of a mixed-strategy profile σ,
given the utility function Ui. This involves taking an expectation of the payoff for i, over
all pure-strategy profiles s that are played with positive probability, based on the mixed-
strategy profile σ:

Ui(σ) = ∑
s∈S1×···×SN

(
∏

j
σj(sj)

)
×Ui(s)

= Es∼σUi(s).

In practice, one can speed up this computation by summing over only those pure-strategy
profiles s that are in the support of mixed-strategy profile σ. The support of a mixed
strategy is the set of all pure strategies played with positive probability; similarly, the
support of a mixed-strategy profile is the set of all pure-strategy profiles played with
positive probability.

A deviating strategy or deviation from a baseline strategy profile σ is a mixed strategy σ′i
for some agent i that differs from the agent’s strategy under σ. Sometimes I use the term
“deviation” more narrowly, to indicate a pure strategy s′i for some agent i, such that s′i is
not in the support of the agent’s strategy in baseline strategy profile σ.

To evaluate the reasonableness of a deviation, one needs to compute the expected
value of a new pure strategy s′i for an agent i, when other agents play as in some other-
agents mixed-strategy profile σ−i. This can be done by taking the expected payoff for i
over all other-agents pure-strategy profiles in the support of σ−i:

Ui(s′i, σ−i) = ∑
s−i∈S−i

(
∏
k 6=i

σk(sk)

)
×Ui(s′i, s−i)

= Es−i∼σ−iUi(s′i, s−i).

Above, the term S−i is a shorthand for ∏j 6=i Sj. In addition, I write Ui(si, s−i) to indicate
Ui(s) where s = (si, s−i).

A strategy s′i for an agent i is called a beneficial deviation from mixed-strategy profile
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σ, if Ui(s′i, σ−i) > Ui(σ). More specifically, a strategy s′i for agent i is a best response to
other-agents profile σ−i, if s′i ∈ arg maxsi∈Si

Ui(si, σ−i).
In the special case of two-player games, I sometimes discuss zero-sum games. A zero-

sum game has payoffs that always sum to zero, both in expectation and in each real-
ized outcome. In a two-player, zero-sum game, for all pure-strategy profiles s, U1(s) =

−U2(s). Games that are not zero-sum are known as general-sum games.
The regret of a profile σ is defined as the maximum that any agent i can gain in expected

payoff by deviating unilaterally to an alternative strategy s′i. Formally, the regret of σ is

max
i∈{1,...,N}

max
si∈Si

Ui(si, σ−i)−Ui(σ).

A Nash equilibrium of a game is a profile σ where no player i can increase its expected
payoff by deviating unilaterally to any alternative strategy s′i. In other words, a profile σ

is a Nash equilibrium if and only if its regret equals zero.
I sometimes discuss the regret of an agent, which is the maximum that particular agent

i can gain in expectation by deviating unilaterally from σ to a new strategy,

max
si∈Si

Ui(si, σ−i)−Ui(σ).

In settings where there are many available strategies, perhaps infinitely many, it is
often convenient to analyze a restricted game, where only a subset of those strategies are
available. Given a base game G = (S, U), one can define a restricted game G′ = (S′, U′),
where for any agent i, S′i ⊆ Si. The derived utility function U′ is identical to the original
U, except that it is defined only over the domain where agents play strategies in S′. (The
advantage of a restricted game with a small, finite strategy set is that one can always solve
for Nash equilibria of such a game.)

In restricted games, I sometimes refer to a policy’s regret with respect to an enlarged
strategy set. For example, suppose there is a base game G = (S, U), its restricted game
G′ = (S′, U′), and a profile σ that is a Nash equilibrium in the restricted game. The
regret of σ with respect to the base game G is the maximum that any agent i could gain in
expectation by deviating to a strategy in Si. (Note that by definition, U′i (σ) = Ui(σ).)

The auction games analyzed in this work are symmetric games. By definition, in a
symmetric game, all agents i and j have the same strategy set, Si = Sj. In addition, the
expected payoff for an agent i playing any strategy s against an other-agents profile σ−i

does not depend on the agent’s identity: Ui(s, σ−i) = Uj(s, σ−i). In a sense, all agents
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share a common utility function U. Further, the payoff for an agent i against an other-
agents strategy profile σ−i does not depend on which other agents play each strategy,
but only on how many other agents play each strategy. That is, if for two other-agent
profiles σ−i and σ′−i, the count of other agents playing each mixed strategy is identical,
then U(s, σ−i) = U(s, σ′−i).

Often in symmetric games one searches for symmetric Nash equilibria. A profile σ in a
symmetric game is a symmetric profile if every agent plays the same mixed strategy: for
all agents i and j, σi = σj. A symmetric Nash equilibrium is simply a Nash equilibrium
profile σ that is symmetric.

2.2 Empirical game-theoretic analysis

Analysts sometimes study a game where, due to the game’s complexity, running a simu-
lator is the only apparent practical way to estimate the expected payoff for each agent of
a pure-strategy profile. Examples of this type of game include some stock market games,
cybersecurity games, and trading agent competitions. For instance, in a stock market,
agents place orders in the market sequentially, which interact via complicated market
rules, such that the only way to determine the outcome of multiple agents’ interacting
strategies is to enact or simulate their outcome in the market. In games like these, analysts
often use an environment simulator to determine the payoffs for interacting strategies, in
a simulation-based game approach. The payoffs of a simulation-based game can be sampled
by analysts from a noisy simulator of the underlying utility function, S : ∏i Si → RN. The
simulator takes any pure-strategy profile s and returns a real-valued payoff for each agent
i. These payoffs can be nondeterministic, being sampled from some distribution over RN

conditioned on the profile s. Naturally, there can be statistical dependencies between the
payoffs of the different agents. I do require, however, that each payoff vector be sam-
pled i.i.d. if the game is run repeatedly. The (deterministic) utility function, then, is the
expected value of each agent’s payoff from the simulator, given a strategy profile.

In the work presented in this dissertation, I search for Nash equilibria of simulation-
based games that have noisy payoff samples. The methods for finding such equilibria
are part of the field of empirical game-theoretic analysis, or EGTA [94], [95]. EGTA research
has produced many tools for analyzing simulation-based games, and here I discuss only
the components of EGTA that are most important for understanding this work. Fore-
most among the EGTA-related tools I used that are not explained below, are deviation-
preserving reduction [96], a method that makes analysis of games with many similar
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players more tractable; and EGTAOnline [12], a platform for managing EGTA experi-
ments.

As an example of EGTA in action, suppose there is a simulation-based game G =

(S, U) with 3 players, where the payoffs are accessible only by sampling a noisy simulator
S . (In practice, it might be necessary to design and program software for the payoff
simulator.) Because each agent’s strategy set Si is continuous, it may be useful to analyze
a restricted game G′ = (S′, U′) with 10 strategies per agent.

The first step in the EGTA process is to sample payoffs from simulator S for many
pure-strategy profiles s. Because the payoff samples are noisy, the analyst typically col-
lects many samples for ps ∼ S(s) ∈ RN for each profile s under study. The greater the
number of samples collected per profile, the more accurate the resulting model of the
underlying utility function is.

After collecting payoff samples for various profiles s, written as ps ∼ S(s), one can
estimate the expected payoff for each agent of profile s, by taking the sample mean p̄s.
Combining the estimated expected payoffs for many profiles, one can construct an em-
pirical game G′′ = (S′, U′′). In G′′, U′′(s) = p̄s by definition. Note that payoffs in the
empirical game are known only for that subset of profiles of the restricted game G′ where
samples have been collected already, and these payoff estimates may change as more
samples are collected.

Even if the empirical game G′′ has some missing payoffs, it is still often possible in
practice to find Nash equilibria of G′′. In such a case, the equilibrium profile must be an
equilibrium of the restricted game G′ also, in the infinite-sample limit where sampling
error vanishes. For example, if a profile s has been sampled in empirical game G′′, and
every unilateral deviation to a pure strategy from s has been sampled as well, then if none
of these deviations is beneficial in G′′, then s must be a Nash equilibrium of G′′. Thus, it
can be established that s is a Nash equilibrium of G′′, even without sampling any other
profiles of G′′. If one has collected enough samples of each such profile for the sampling
error to be small, one can be almost sure that s is an equilibrium of the restricted game G′

as well.
There are many possible methods for determining the order in which to sample dif-

ferent profiles s, but in practice I use a heuristic developed by Erik Brinkman to automate
that decision [8]. Essentially, the heuristic performs a gradually expanding search for
Nash equilibrium profiles, by sampling only those profiles that represent a unilateral de-
viation from a current candidate profile, until that candidate has been rejected for not
being an equilibrium, or confirmed as an equilibrium of the restricted game.
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For example, given a pure-strategy candidate profile s, it is necessary and sufficient
to estimate the payoff of s, and of every s′ such that for some agent i, s′i 6= si, and for all
j 6= i, s′j = sj (that is, s′ is some unilateral deviation from s).

The last stage of analyzing the restricted game G′ is to search for a Nash equilibrium
in the empirical game G′′ that has been constructed. If an equilibrium is found, that
equilibrium profile σ is returned and the procedure terminates. Otherwise, the search
policy can be used to continue exploring new profiles s of G′. In the limit where all profiles
have been explored, one is guaranteed to find some Nash equilibrium in a finite-strategy
restricted game.

A mixed strategy σi for an agent i is called an equilibrated strategy if that mixed strategy
is equal to the agent’s strategy in some Nash equilibrium σ of a game G. For example,
at the end of the EGTA process, a Nash equilibrium profile σ in the restricted game must
contain an equilibrated strategy for each agent.

2.3 Reinforcement learning

Reinforcement learning (RL) is a domain within machine learning, that considers a frame-
work in which an agent earns rewards based on its actions within an environment; the
agent seeks a mapping, from its history of actions and observations to its action set, that
maximizes the agent’s expected future rewards [78]. I use the RL framework to model
the strategic problem for each agent in a strategic setting like a stock market. (Note that
in some cases analysts treat the environment as Markovian and learn a mapping from
the current state to the action set, instead of from the history to the action set. Moreover,
RL techniques can be applied to games by treating one agent at a time as the learner and
holding the strategies of the other agents fixed during training only, or by simultaneously
training multiple learners.) Formally, in an RL problem, a single agent chooses a policy π

that maps a history of actions and observations to the next action a of the agent; the agent
obtains a reward rt at each discrete time step t based on the state-action pair (s, a) at that
time.

2.3.1 Markov decision processes

Generically, the setting for RL can be formulated as a Markov decision process (MDP),
if one assumes that the current state of the environment is fully observable by the agent.
(There are a few more assumptions built into the MDP formulation, such as memoryless-
ness, but the model is still fairly general.)
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An MDP can be written as a tuple M = (S, A, T, R, γ), with a state space S, action
space A, transition function T, reward function R, and discount factor γ.

The environment’s current status is specified by the state s ∈ S, where S is the set of
all possible states. The state evolves over discrete time steps t ∈ {1, . . . , T}, with the state
at time t written as st.

At each time step t, the agent observes the current state st and selects an action at ∈ A,
where A is the action set. This decision is based on a policy π : S → A, which the agent
must determine before the playout begins.

Given a state-action pair (s, a), the state transitions from s to s′ based on a (possibly
stochastic) transition function T : S × A → ∆S. The agent also earns a reward rt ∼
R : S × A → ∆R, where R(s, a) is a probability density over the reals with some finite
expected value.

The agent’s goal is to maximize its expected discounted return, ∑T
t=0 γtrt, where γ ∈

(0, 1] is a discount factor for future rewards. The optimal policy, π∗ : S→ A, is any policy
that maximizes this objective.

2.3.2 Q-learning

In Q-learning, a classical RL algorithm proposed by Watkins and Dayan [93], the learner
finds a value for each state-action pair called Q(s, a), such that in any state s, the optimal
policy is to play maxa Q(s, a). By definition, Q(s, a) is the expected return the agent would
earn by playing a immediately in state s and playing optimally thereafter. The Q-learner
updates its estimates for these Q-values upon any training experience tuple (s, a, r, s′), of
a prior state, action, reward, and successor state, as

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
,

where α ∈ (0, 1) is the learning rate, and γ ∈ (0, 1] is the discount factor for future
rewards. Note that Q-learning is an off-policy training method, unlike alternative RL al-
gorithms like Sarsa [78], meaning that Q-learning learns to estimate the Q-values of the
optimal policy, not the current policy being used during training.

A Q-learner acquires training data by exploring strategies adaptively. The learning
agent uses an exploration policy to select actions during training playouts, resulting in tra-
jectories of states and actions (s0, a0, r0, . . . ). An exploration policy maps the agent’s cur-
rent network and state s to a probability distribution over the next action a to take during
training. Trajectories provide the training data for updating the estimated Q-values. In
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this work, I use an ε-greedy exploration policy for Q-learning. This policy selects the best
move maxa Q(s, a) with probability (1 − ε), according to current Q-value estimates, or
selects a uniform random move otherwise.

2.3.3 Partially observable Markov decision processes

To study the decision of a trading agent in a repeated auction, I use a classical model that
generalizes the MDP, for the case where the agent cannot directly observe the world state
st. This model is known as the partially observable Markov decision process, or POMDP.

A POMDP incorporates all the elements of an MDP as described above, in the tuple M.
But unlike in an MDP, where the agent directly observes state st and has a policy mapping
states to actions, the agent in a POMDP observes only noisy signals of the true state. Thus,
a POMDP also includes a set Ω of possible observations and a stochastic observation
function O : S → ∆Ω. The POMDP can thus be represented with an augmented version
of the MDP tuple, as (M, Ω, O).

In a POMDP, at any time step t, the true state st is unobserved. The agent observes a
noisy signal ot ∼ O(st) and takes action at. In principle, the agent could benefit from
conditioning its action on the full history of previous actions and observations, Ht =

(o0, a0, . . . , ot). Therefore, the agent’s policy maps histories to actions, π : H → A, where
H is the set of all histories. Note that in some POMDPs, an agent that is limited to ob-
serving only a few recent states, instead of the full history, may perform arbitrarily worse
than an agent that can condition its actions on the full history, even if both agents play
optimally given their limitations.

Some agents in POMDP environments maintain a belief state, which is a probability
distribution B ∈ ∆S over the set of all underlying states S in the POMDP, representing the
agent’s belief about the true state. An agent that maintains a belief state must use some
mapping from the set of histories, to the set of distributions over states, to generate the
belief state, conditional on any history that the agent encounters.

2.3.4 Neural network methods for RL

In many realistic RL environments, the space of observation histories H is so large (pos-
sibly uncountably infinite) that a learning agent is likely to encounter many inputs Ht

exactly once over the set of all training episodes, and most possible inputs H are not en-
countered at all during training. A successful RL agent must be able to generalize from
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observation histories encountered during training, to distinct but similar observation his-
tories encountered at test time. Such generalization has been achieved in many settings
through function approximation with neural networks.

For convenience, in the discussion below in this section I treat states s as the inputs to
the neural network, instead of histories H or belief states. In settings where the learner
does not observe the true state, but must infer a belief probability distribution over possi-
ble states based on the full history, one could treat this belief as the state; the description
below would then apply as-is. In practice, an analyst might use a recurrent neural net-
work to generate a representation of the full history, in place of a belief estimate over the
underlying state; or the analyst could concatenate a few observations to produce the net-
work input, as a way to encode an important part of the history. In this work, I simply
concatenated the most recent 3 observations to produce a fixed-size input to each agent’s
network; experiments showed that this approach worked well, allowing agents to con-
sistently learn beneficial strategy deviations, although it is theoretically possible that a
recurrent network may be able to perform even better, by incorporating a representation
of the complete history.

A widely-used approach to generalization in RL is to use a parameterized policy,
called φθ, whose output is a differentiable function of its parameters, θ. In the Q-learning
setting, the parameterized function φθ predicts the Q-value of a state-action pair, Q(s, a),
or more formally, φθ(s, a) is a prediction for Q(s, a), for all states s and actions a. The rein-
forcement learner encounters episodes (st, at, rt, st+1) during training, and it updates the
parameterized function φθ by adjusting the parameters θ′ to reduce the prediction error
between φθ′(st, at) and Q̂θ(st, at), where Q̂θ(st, at) is estimated from the trajectory using
weights θ as

Q̂θ(st, at) = rt + γ max
a′

φθ(st+1, a′).

This approach has famously been implemented in deep Q-networks (DQN) [60]. During
training, updated network weights θ′ are selected by adjusting the weights via stochastic
gradient descent, toward minimizing objective J(θ′), the mean-squared error between
predicted and empirically observed Q-values:

J(θ′) = E(s,a)

[(
φθ′(s, a)− Q̂θ(s, a)

)2
]

.

I experimented with a few neural network architectures for the parameterized policy,
as applied to a cybersecurity game. Both architectures fall within the DQN framework,
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where each action a in a finite action set A is assigned an expected value φθ(s, a), condi-
tional on the vector representation of the current state s; the implicit policy represented by
the neural network is to use the action of highest expected value, or arg maxa′∈A : φθ(s, a′).

The architecture I use most in the deep RL portion of this work is the multilayer per-
ceptron. (I also experimented with a convolutional version of DQN, but found it did not
perform as well empirically in the cybersecurity game.) In a multilayer perceptron, there
is a vector of hidden nodes, each of which yields a linear function of the input vector and
a set of learned scalars, known as weights. Each hidden node’s output y is passed through
a nonlinearity, such as the rectified linear unit, max(0, y). An output node for each pos-
sible action generates a linear combination of the hidden units’ rectified outputs. Finally,
the max over output nodes is selected to choose the action to take. Networks such as the
multilayer perceptron, and more complex variants that may be easier to train in challeng-
ing settings, can be easily handled through libraries such as TensorFlow. Frameworks for
neural network training also provide efficient algorithms for updating network weights
during gradient descent, which may yield faster convergence than a naive algorithm, due
to variance reduction and careful tuning of step sizes. Reinforcement-learning specific
libraries like OpenAI Baselines [21] offer example code for popular deep RL methods,
including DQN.

2.3.5 Iterated best-response methods

One approach that has been successfully applied to searching for strong mixed strategies
in complex games with large strategy spaces is the iterated best-response method. In this
method, the analyst alternates between: (a) using some solution concept or other rule
to select a mixed-strategy profile over the strategies known so far, and (b) searching for
a pure strategy for each agent that deviates beneficially from this profile. (Recall that a
pure strategy s′i is a beneficial deviation for agent i from a mixed strategy profile σ, if it
yields a higher expected payoff for i than playing as in σi, when all other agents continue
playing as in σ−i.)

In two-player games, iterated best response is known as the double-oracle method.
(The essential concept of the double-oracle method can be easily generalized to n-player
games, although the name would no longer be appropriate.) The process begins with a
subset S′ of strategies for players 1 and 2, called S′1 and S′2, among which all expected
payoffs have been evaluated. The analyst alternates between: (a) finding a mixed Nash
equilibrium profile over the strategies in S′, and (b) using an oracle for each player to find
that player’s best-response pure strategy to the current profile. The oracle is a function
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that takes the current profile and returns the best-response pure strategy for a player, us-
ing any method. At each round, the new best response for each agent i is added to the
set S′i of strategies for that agent, and the payoff of this strategy is measured against all
opponent strategies in the selected subset S′. The process converges when each agent’s
best response is already in S′, at which point the mixed-strategy profile must be a Nash
equilibrium of the game. This approach was introduced by McMahan et al. [56], and has
been applied to many security game settings [40].

The double-oracle approach can be generalized as the Policy Space Response Oracle
(PSRO) method [49], where instead of the profile selection rule being Nash equilibrium,
any other rule can be substituted. For example, if one uses the uniform distribution over
strategies in selected subset S′, the result is the fictitious play method, which selects pure
strategies to optimize performance against the mean of previous opponents. As another
example, if one uses the most recently added strategies only, the result is the iterated
best-response method, which selects pure strategies to optimize performance against the
opponent’s previous selection. Unlike double-oracle and fictitious play, the iterated best-
response method tends to enter limit cycles in some settings, and may not converge to
a fixed point. (A classical example of this failure mode is the matching pennies game,
where iterated best response may cause both players to swap strategies forever.)

A potential problem with double-oracle strategy selection is that it may select pure
strategies that are overfit to current opponents, unless the method is modified to encour-
age generalization [49]. For example, neural networks trained in the strategy exploration
phase of the double-oracle method may not adequately exploit strategies that are not part
of the current equilibrium profile, because those strategies were not seen during training.
Lanctot et al. [49] show that neural networks trained under PSRO may have degraded
performance against opponent networks that were trained in the same fashion, but with
a different random seed, thus having only arbitrary differences from the opponents en-
countered during training. One method from prior work that could help address this
problem is opponent sampling [6], where randomly selected previous opponents are used
for training, instead of only the current best opponent. Along similar lines, Lanctot et
al. suggest using certain meta-strategy solvers such as projected replicator dynamics, which
place a lower bound on the weight of any known strategy in the opponent mixed strat-
egy used for training, and which encourage changes in mixed strategy to be small during
each training stage.
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2.3.6 Multi-agent reinforcement learning

Multi-agent reinforcement learning (MARL) refers to settings where more than one agent
is simultaneously trained to increase its expected reward in a game, and each learner’s
payoff is affected by the behavior of the others. Unlike ordinary RL settings with only
one learning agent, MARL presents each agent with a non-stationary objective function,
because whenever the other agents update their behavior, the expected reward from any
action could be changed as a result. These non-stationary rewards can cause training to
enter limit cycles, instead of converging to a local fixed point where all agents may receive
greater expected reward [4], [27].

Various approaches [4], [33] have been proposed to improve the convergence of MARL
training. Among these is Learning with Opponent Learning Awareness, or LOLA [27], in
which each agent maintains a model of its opponent’s strategy, predicts how the opponent
will update its strategy, and adjusts its own strategy to improve performance against the
predicted future opponent. This approach, a type of second-order method, may help
avoid limit cycles where both agents fail to anticipate each other’s adaptations.

2.4 Application setting: First-price sealed-bid auction

In Chapter 3, the first-price sealed-bid auction (FPSB) is used as an example game. This
section introduces key concepts of this game as background. I consider here the special
case with two agents bidding in the auction.

The FPSB auction represents a scenario where multiple bidders attempt to win a single
item, while paying as little as possible. The auction is called first-price because the winning
agent must pay the amount of its bid to the auction house. It is called sealed-bid because
all agents place their bids in one shot, with no way to observe the bids of the other agents.
The winner is the agent with the highest bid, with ties broken uniformly at random.

Formally, in the version of the two-player FPSB game considered here, each of agent
1 and agent 2 has a type vi ∈ [0, 1]. The type represents the agent’s value for the item in
the auction, also known as their maximum willingness to pay. An agent’s type is known
to the agent but hidden from the other agent. Each agent’s type is drawn i.i.d. from a
publicly known distribution, U(0, 1) (i.e., the unit uniform distribution).

Each agent simultaneously submits its bid, bi ∈ [0, 1], to the auctioneer. If the bids are
distinct, the agent of higher bid wins the item and pays its bid, earning payoff vi− bi. The
other agent does not win the item but pays nothing, earning payoff 0. If the bids tie, each
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agent earns an expected payoff of (vi − bi)/2, due to having probability 1/2 of winning
the item, otherwise getting nothing.

This work considers a commonly-studied restricted form of this game, where the only
available pure strategy is to commit to bidding a fixed fraction of one’s value. In other
words, each agent i must commit, before learning its type, to playing some factor ci ∈
[0, 1], such that its bid will be bi = civi. It is known from prior work that the unique
mixed-strategy Nash equilibrium is for each agent to play c = 1

2 [24], [42].

2.5 Application setting: Continuous double auction

A core application area of this work is the continuous double auction (CDA), a market mech-
anism that is used in substantially all financial markets, including stock markets like the
New York Stock Exchange [19], [29], and accounting for trillions of dollars in trading an-
nually [63]. This mechanism is called continuous, because a transaction is triggered at
any moment when a new, matching order arrives to the market. It is called a double
auction, because multiple trading agents compete on both the buy and sell sides of the
auction [28]. The CDA model I use is fundamentally the same as that in prior works by
Wah et al. [89], [90]

2.5.1 Market model

Agents in the CDA model considered here act only by submitting limit orders to the mar-
ket. Each limit order L has a type ψ ∈ {B, A}, where B means an order to buy, and A
means an order to sell. A limit order also has a price p ∈ J+, which must be an integer. It
also has an indicator of which agent i ∈ {1, . . . , N} placed the order. Finally, a limit order
has a timestamp t ∈ J+ indicating the time when it reached the market, which is also an
integer value, representing perhaps the millisecond in which an order arrived. (This work
allows only unit-quantity orders, which seek to trade a single share of stock.) Therefore,
any limit order can be represented as a 4-tuple L = (ψ, p, i, t).

The market keeps a limit-order book at all times, which ranks the orders of each type
in priority order. A separate rank-order list is maintained for buy and sell orders. Buy
(sell) orders are ranked primarily from high to low price (low to high price), secondarily
by time, with earlier orders first. If multiple orders have the same type, price, and arrival
time, then they are ranked arbitrarily.
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At any moment, the bid is the current price of the best buy order in the limit-order
book, and the ask is the price of the best sell order in the book. If there is no buy (sell)
order in the book, the bid (ask) is undefined.

When a new limit order arrives at the market, the market mechanism checks if the
order can transact with an order in the book. If the new order L is a buy (sell) order, the
mechanism examines the best sell (buy) order in the limit-order book; if there is none,
there will be no transaction. Otherwise, the two orders’ prices are compared. If the new
buy (sell) order’s price is at least as high (as low) as the best opposite-type order’s price
in the book, then there will be a transaction.

In case the new order does not transact, it is inserted into the limit-order book accord-
ing to its type, price, and arrival time.

If the new order does transact, then it is not inserted in the limit-order book, and its
matching order from the book is removed. The agent i of the buy order receives 1 unit of
stock from the agent j of the sell order. Simultaneously, the buyer makes a cash payment
to the seller. The value of the payment equals the price of the order that had been in the
limit-order book (not the price of the order that newly arrived).

In the CDA model considered here, there is a single security being traded, which has
an evolving fundamental value common to all agents. The fundamental value at time t, rt, is
a signal of the reward each agent will receive at the end of the game, time T, for each unit
of stock they hold in their inventory. The fundamental value evolves as a mean-reverting
random walk:

rt+1 ← max
(

0, κr̄ + (1− κ)rt + ut

)
,

where κ ∈ (0, 1) is a constant mean-reversion parameter, and ut ∼ N (0, σ2
s ) is an indepen-

dent draw from a Gaussian noise distribution. The long-run mean, r̄ is a publicly-known
constant to which the fundamental value tends to revert.

Each agent in the CDA model examined here has a type corresponding to the agent’s
private value for each unit of stock it could obtain. An agent’s type is represented as a
vector θ of length 2M, where M is the maximum number of shares an agent can own or
owe. Each agent is assigned weakly diminishing marginal returns for owning more units;
in other words, for all i > j, θi ≤ θj. Conceptually, when an agent buys one share and
goes from holding k to k + 1 shares, the agent receives an incremental value of θk+1.

At the end of the simulation, time step T, each agent receives as its reward the sum
of its cash holdings, the fundamental value of its stock inventory, and the private value
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of its stock inventory. The private value of the agent’s stock inventory, v(mi, θi), equals
0 if mi = 0. Otherwise, if mi < 0, then v(mi, θi) = ∑0

k=−mi+1−θi,k; if mi > 0, then
v(mi, θi) = ∑mi

k=1 θi,k. In summary, if agent i has accrued a net cash value ci from its
transactions, and it holds mi units of stock, the total reward earned by agent i will be
ci + rTmi + v(mi, θi). Note that ci and mi can be positive or negative.

When an agent arrives at the market at some time t in this model, the agent observes
the current fundamental value rt. Using public knowledge of the long-run mean r̄, final
time step T, and mean-reversion parameter κ, the agent can compute the expectation of
the final fundamental value as of time t:

Et(rT) =
(

1− (1− κ)T−t
)

r̄ + (1− κ)T−trt. (2.1)

The agent can then use this value as a guide for what price to demand when it places an
order.

An agent can compute the expected value of the next unit gained when it arrives at
time t. This is simply Et(rT) + θk+1, where the agent currently holds k items. Similarly,
the agent can compute the expected value of the next unit lost as Et(rt)− θk.

The surplus demanded by a buyer (seller) is defined to be the agent’s expected final
value for the next unit gained minus the order price (order price minus the agent’s ex-
pected final value for the next unit lost). For example, if a buyer has an expected final
value for the next unit gained of 105, and the buyer places an order to buy for 101, then
the buyer is demanding a surplus of 105− 101 = 4.

2.5.2 Zero-intelligence agents

The zero-intelligence (ZI) strategy has been used as a trading agent model in many prior
works. Gode and Sunder introduced the ZI strategy to show how agents using a simple
policy could rapidly converge to efficient prices in a continuous double auction [30]. Since
then, the ZI strategy has been used to model trading agent behavior by many researchers,
thanks to its ability to capture stylized facts about real market outcomes [25], [52], [58].

The zero-intelligence strategy is so called because of its simplicity: The agent simply
estimates the true value of the security being traded, then places an order that demands
a surplus drawn from some uniform distribution.

This work employs a version of the ZI strategy identical to that introduced by Wah et
al. [90] The strategy has three parameters, d, d, η ∈ (0, 1], with d ≤ d. Each time the agent
arrives at the market, it observes the current fundamental value rt and time remaining

21



(T− t), from which it computes the expected final fundamental value Et(rT), as in Equa-
tion 2.1. In the market model used here, the agent is uniformly randomly assigned to
be a buyer or seller by the market, independently each time it arrives. The agent ran-
domly samples its desired surplus g ∼ U(d, d). The agent then checks whether, if it sold
(bought) at the current bid (ask) price, it would obtain at least η fraction of its desired
surplus g; if so, the agent places a limit order at the bid (ask) price, which will transact
immediately (unless, perhaps, another agent places a same-type order in the same time
step). Otherwise, a seller (or buyer) then computes its limit-order price as p = Et(rT) + g
(or p = Et(rT)− g). The agent then places a limit order at the computed price p.

2.6 Application setting: Attack-graph games

Recent years have seen growing work on security games, which represent attackers and
defenders struggling for control of some vulnerable resource. Cybersecurity games are
a special case where the resource is a computer system, such as those represented in at-
tack graphs, a popular cybersecurity model with a broad research literature [17], [23], [46].
Attack-graph games augment an attack-graph model with action spaces and utility func-
tions for attacker and defender agents, yielding a strategic game.

This dissertation focuses on an attack-graph type from recent works in control theory
and game theory [57], [62]. Conceptually, an attack graph represents a computer system
as a set of nodes and directed links. Each node stands for a binary state variable of the
computer system, such as whether an attacker has root access to a certain computer, or
whether a particular software vulnerability has been exploited. As such, each node is
always in one of two states, active or inactive, and it can transition from one state to the
other and back via a discrete-time process.

There are two agents in an attack-graph game: the attacker and defender. The attacker
agent seeks to activate nodes designated as goal nodes, for which the attacker receives a
reward in each time step they remain active. The defender seeks to prevent the attacker
from activating goal nodes, because it suffers a penalty for each time step when they are
active. The attacker acts by “attacking,” meaning attempting to activate, nodes that are
children of active nodes in the graph; each node has a node-specific cost to attack. The
defender acts by “defending” any nodes it chooses, which causes those nodes to become
inactive, but with a node-specific cost.

The sections below provide an overview of the attack-graph game. For a complete
description of the game’s details, please refer to the paper by Nguyen et al. [62]
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2.6.1 Attack graph definition

An attack graph is a directed acyclic graph G = (V, E). Each vertex v ∈ V is endowed
with special properties. It has an initial state sv

0 ∈ {0, 1}, where 1 indicates it is active, 0
inactive. It has a type θv ∈ {∧,∨}, where ∧ means that all parents of the node must be
active before it can become active, and ∨ means that at least one parent must be active
before it can become active. Each ∧-type node is endowed with an activation probability
pv, meaning that if it is attacked when all its parents are active, it will become active with
probability pv.

Each edge e = (u, v) ∈ E can have properties as well. If the edge is directed to an ∨-
type node, it has an activation probability pe, meaning that if the attacker uses this edge
to attack child v when parent u is active, with probability pe, the child will become active.

2.6.2 Attack-graph game definition

An attack-graph game has an associated attack graph G, along with several other compo-
nents, as follows.

The game has a duration in discrete time steps of T . In each time step, attacker and
defender simultaneously take an action, and the graph transitions to a new activation
state for each node.

Some nodes v ∈ V are goal nodes, and these are endowed with a reward ra for the
attacker and penalty rd for the defender, which is accrued in each time step when they are
active.

Each node is endowed with a cost to defend cd, which the defender must pay for each
time step when it defends that node. Similarly, each ∧-type node and edge to an ∨-type
node is endowed with a cost to attack, ca.

There is an observation function O that maps the graph’s activation state St to the
defender’s noisy observation Ot. For each node v, an independent signal Ov

τ in {0, 1}
of the current activation state Sv

τ is generated, according to two fixed, publicly-known
values, Pr(o = 1 | s = 1) and Pr(o = 1 | s = 0). (The attacker gets to observe the true
activation state of each node.)

2.6.3 State updates and payoffs

An attack-graph game proceeds over a series of T time steps. At the beginning of each
time step t, the attacker observes the true activation state of all nodes Sτ, while the de-
fender observes a noisy sample Oτ of this state. Attacker and defender simultaneously
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select their actions, where the defender action is a subset of all nodes, and the attacker
action is a subset of all ∧-type nodes and edges to ∨-type nodes.

The environment transitions to new state Sτ+1, by the following rules. Any node that
was not acted on remains in the same state. Any node the defender acts on will become
inactive. A node acted on by the attacker alone might become active, if all required par-
ents had been active at the beginning of the time step (i.e, any parent for an ∨-type child,
all parents for an ∧-type child.) An ∧-type child v becomes active with probability pv. An
∨-type child has an independent probability pe of becoming active via each in-edge e that
is attacked.

The total payoff of the game for the attacker is the sum over all time steps, of the
reward for active goal nodes minus the cost of attacked nodes and edges. Likewise, the
total payoff for the defender is the sum over time steps, of the penalty for active goal
nodes minus the cost of defended nodes.
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Chapter 3

Probably Almost Stable Strategy Profiles
in Simulation-Based Games

3.1 Introduction

In studies of real-world environments with strategic agents, analysts often use game-
theoretic equilibrium to predict outcomes of agent interactions. Many such games are
intractable to solve exactly, due to factors like the large number of strategies and lack of
explicit payoff specification. Analysts may cope by considering a restricted game, where
agents are limited to a relatively small enumerated set of strategies. Payoffs over these
strategies can be estimated by simulation, inducing a restricted game model that can be
solved for equilibrium. This approach has been applied to areas including models of se-
curities markets [90], social dilemmas [50], space debris removal [45], and credit networks
[14].

Such restricted-game studies are informative, but they leave questions about the rel-
evance of solutions found with respect to the original, unrestricted game. In particular,
there has been no way to quantify the likelihood that the restricted-game results hold in
the original game, even approximately. Indeed, it is expected that the equilibria found
in the restricted games have beneficial strategy deviations in the original game. It would
be useful to have some formal characterization of stability of restricted-game solutions in
the original game, in terms of the difficulty of finding beneficial deviations.

I introduce a search algorithm for stable profiles in simulation-based games. This
algorithm guarantees that when it terminates successfully, there is high statistical confi-
dence the strategy profile returned is almost stable, meaning only a small measure of other
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strategies can be beneficial deviations. (That is, only a small fraction of trials will yield
beneficial deviations, for some stochastic strategy search function.) This is called a proba-
bly almost stable guarantee. The degree of statistical confidence and acceptable measure of
beneficial deviations can be tuned as desired.

The procedure uses iterated better-response search, also known as the double-oracle
method [56], to find beneficial deviations. Better-response dynamics, where players it-
eratively add beneficial deviations to their strategy sets, has been shown to converge
to low-regret profiles in various game types [31], [77]. The procedure also incorporates
a statistical confidence interval estimation method for determining whether the current
profile meets the stability guarantee or further search is needed. The procedure design
is completed by a multiple-test correction for avoiding excessive false positives caused
by the sequential-testing nature of the algorithm. Optionally, one can use a black-box
optimization procedure like simulated annealing with the procedure to achieve stronger
guarantees on the difficulty of finding beneficial deviations, at a cost of increased compu-
tation during strategy exploration.

These contributions are a novel algorithm for generating strategy profiles in large,
simulation-based games with a provable stability guarantee, without requiring that most
strategies be examined; and experiments demonstrating the efficacy of that algorithm. I
give a formal definition of the probably almost stable property and a simple proof of cor-
rectness. I derive the time complexity of the algorithms, in terms of the desired tightness
of its statistical guarantee. Then I evaluate the algorithm on two games: the first-price
sealed-bid auction (FPSB), and a cybersecurity game on an attack graph [67]. I show
that in both settings, the algorithm yields a high frequency of true positives (i.e., profiles
found that have acceptably low true beneficial deviation measure), while controlling false
positives in accordance with the guarantee. When I incorporate simulated annealing as
an improved strategy search method, the frequency of true positives of the new method
increases dramatically.

3.2 Related work

My approach was inspired in part by work of Bopardikar et al. [7], which defines a search
algorithm for security policies in two-player, zero-sum simultaneous games. That paper
defines a security policy as a mixed strategy and associated payoff for player 1, such that
if player 1 uses that strategy, and player 2 plays the best response it finds during a lim-
ited random search over deviating strategies, player 1 will obtain at least the given payoff
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with high probability. I follow this work in reasoning statistically from one player’s explo-
ration to derive probabilistic bounds on what the other player can find. However, since
I do not assume the game is zero-sum, I cannot (at least in this way) provide guarantees
about security value. Rather, I pursue a different probabilistic stability property.

Several works have studied sequential search procedures for Nash equilibrium (NE)
in games with many strategies. McMahan et al. [56] introduced the double-oracle method,
a procedure for iteratively solving two-player, zero-sum games with large strategy sets,
using an oracle per agent that best-responds to the equilibrium strategy of the opponent
in the current restricted game. Sureka and Wurman [77] combined best-response dynam-
ics with a tabu list to seek pure-strategy NE, for combinatorial auctions. Goldberg [31]
found theoretical convergence rates for a better-response dynamics based on randomized
local search in a load-balancing game. Schvartzman and Wellman [71] used reinforcement
learning to add better-response strategies to a restricted game, finding an NE each time
before alternating back to reinforcement learning. Jordan et al. [42] compared strategy
exploration procedures in convergence rate to low-regret profiles in the FPSB auction. Re-
cently, Lanctot et al. [49] proposed a generalized iterative method motivated by advances
in deep learning from self-play in games.

The approach I take relies heavily on a strategy exploration function, which is used
to model a game player’s effort to find a beneficial deviation from a strategic equilib-
rium over a restricted strategy set. As such, the choice of strategy exploration function
has a large effect on how meaningful the statistical guarantee will be; a stronger explo-
ration method will produce more credible evidence that a proposed strategy profile is
an approximate equilibrium. For this reason, I perform experiments with two black-box
optimization methods: both the naive method of simple random search over a bounded
strategy space, and simulated annealing, a classical method that is known to converge to a
global optimum with a sufficiently slow annealing schedule. Recent works on black-box
optimization have suggested that more complex methods (e.g., Gaussian process ban-
dits) perform better in some problem settings, depending on the number of samples al-
lowed, but with varying results across different problems [32]. I chose to proceed with
simulated annealing as a stronger strategy exploration method, as it is well-known, easy
to implement, and sufficient to produce noticeably better results than simple random
search within the general method proposed here. I believe that if a different, perhaps
stronger, black-box optimizer were substituted for simulated annealing, the results would
be broadly similar to those I obtained, as simulated annealing already performs quite well
at finding beneficial deviations in our settings.
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3.3 Problem setting

The methods shown here are presented for two-player games, with the suggestion that
the extension to n players is natural. Let G = (S, U) be a two-player general-sum normal-
form game, with strategy sets S = (S1, S2) and utility functions U = (U1, U2). Ui(s)
assigns player i a real-valued payoff for pure-strategy profile s ∈ S1 × S2.

G is a simulation-based game, meaning the agents have no direct specification of U, but
rather limited access to a payoff oracle O. Upon query for a pure-strategy profile s, the
oracle responds with O(s) = (U1(s), U2(s)). The oracle may be said to simulate payoffs
from the game.

A mixed-strategy profile σ = (σ1, σ2) assigns each player a probability distribution
over its strategy set. By definition, a mixed-strategy profile σ is a Nash equilibrium of a
two-player game, if and only if for all i ∈ {1, 2}, si ∈ Si, Es−i∼σ−iUi(si, s−i) ≤ Es∼σUi(s),
where s−i is a pure strategy of the other player, and σ−i ∈ ∆S−i is the mixed strategy of
the other player. More generally, σ is called an E -Nash equilibrium, for E ≥ 0, if the most
any player can gain by unilaterally deviating is no more than E : Es−i∼σ−iUi(si, s−i) ≤
Es∼σUi(s) + E . The term E -beneficial deviation is used to mean any strategy that yields
an improved payoff of at least E , as a unilateral deviation from the current equilibrium
profile.

Assume there is an efficient means of finding a mixed-strategy Nash equilibrium
(MSNE) in restricted games with sufficiently small strategy sets—perhaps containing a
few dozen strategies per agent. It is known by Nash’s theorem that some mixed-strategy
Nash equilibrium must exist in any such game. Solvers implemented in packages such as
Gambit can find sample MSNE reliably and efficiently in many practical problems [55].

Assume the strategy sets S1 and S2 are too large to explore exhaustively, possibly
infinite. One can extract a restricted game G′ from G, written as G′ ⊂ G, by restricting
players to S′ = (S′1, S′2), where S′1 ⊆ S1 and S′2 ⊆ S2. One must similarly restrict the
utility function U′ of G′ to S′, such that U′ yields the same result as U where their domains
overlap. If restricted game G′ has |S′1| and |S′2| sufficiently small, by assumption it will be
feasible to find some MSNE of G′.

To model strategy exploration, define a probability distribution D1 over S1 and prob-
ability distribution D2 over S2. Each distribution has full support, that is, for i ∈ {1, 2}
and all s ∈ Si, Di(s) > 0. Assume that agents select strategies to evaluate by sampling
from these distributions in an i.i.d. manner. (For example, in this study, I will perform
experiments where Di is defined implicitly by either simple random search or simulated
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annealing, over continuous strategy spaces.)

3.4 Probably almost stable profile search

Suppose player 1 has found an E -MSNE, σ = (σ1, σ2), in a restricted game G′ ⊂ G. It is
possible that player 2 might, through a limited random search, find some strategy s′2 that
player 1 has not considered, from G \ G′, such that U2(σ1, s′2) > U2(σ) + E—that is, an
E -beneficial deviation for player 2. We would like to show that, if player 2 samples a pure
strategy from distribution D2, the probability of obtaining an E -beneficial deviation is no
greater than ε, with 0 < ε� 1 and E ≥ 0.

Definition 1. A strategy profile σ is ε-almost stable for player 1 with respect to D2 and E , if

Pr
(
U2(σ1, s′2) > U2(σ) + E

)
≤ ε, for s′2 ∼ D2.

Because it is not feasible to examine all strategies in the game, we must settle for a
probabilistic stability guarantee. The best that we can do is to show that profile σ is
almost stable with high probability, say at least (1− δ), with 0 < δ � 1. If a profile σ is
accepted as almost stable by a statistical test that has a false positive rate of at most δ for
any input, we say that σ is probably almost stable. Let p ≡ Pr(U2(σ1, s′2) > U2(σ) + E).

Definition 2. A strategy profile σ is probably ε-almost stable for player 1 with respect to D2, E ,
and δ if it is accepted by a statistical hypothesis test T, such that whenever p > ε,

Pr
(
T(σ) = accept

)
≤ δ,

with respect to the randomness in the statistical test.

One might like to model the opponent as drawing M i.i.d. samples from D2, seeking
a probably almost stable guarantee on the likelihood of any sample being an E -beneficial
deviation. This can be achieved by adjusting the deviation probability, as ε ← 1− (1−
ε)1/M. However, the adjustment may dramatically increase the sample complexity re-
quired to ensure the guarantee.

3.4.1 Using the Clopper-Pearson confidence interval

The Clopper-Pearson confidence interval is a classical statistical tool; the summary below
(for the upper bound only) is based on the original paper [16]. This method will be used to
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derive a bound on the probability of any sampled deviation being E -beneficial, based on
the observed frequency in a sample. The bound is conservative, even when no successes
are observed [1], [10].

Given a binomial random variable of unknown probability p, suppose one observes
X successes in N trials. The Clopper-Pearson procedure, given a desired confidence level
δ ∈ (0, 1] and sample count N, gives an upper bound p̄δ

N(X) on p, such that for any
p ∈ (0, 1], the risk of error (i.e., Pr( p̄δ

N(X) < p)) is at most δ.
For the desired δ and sample count N, and for any p, let xδ

N(p) be the greatest integer
in {−1, . . . , N − 1} such that Pr(X ≤ xδ

N(p) | p) ≤ δ. For any X ∈ {0, . . . , N − 1},
let p̄δ

N(X) be the least value p′ ∈ [0, 1] such that xδ
N(p′) = X. Define p̄δ

N(N) = 1. The
Clopper-Pearson upper bound on p is simply p̄δ

N(X).
It has been shown [16] that given δ ∈ (0, 1] and N ≥ 1, for all p ∈ [0, 1],

Pr
(

p̄δ
N(X) < p

)
≤ δ. (3.1)

In this procedure, select a sample count N as small as possible such that if no successes
are observed in N trials, the Clopper-Pearson upper bound, p̄δ

N(0), will be at most ε. As
Thulin [85] notes, in the case where X = 0 trials are successful, one can compute the
upper bound of the Clopper-Pearson interval as p̄δ

N(0) = 1− δ1/N. Rewriting to solve for
the required number of trials to guarantee p̄δ

N(0) ≤ ε, one will find:

N =

⌈
log(δ)

log(1− ε)

⌉
. (3.2)

In case fewer false negatives are desired (i.e., fewer stable profiles rejected), the pro-
cedure could be modified to select N such that one or more successes are allowed in N
trials, with the general approach being otherwise unchanged.

3.4.2 Hypothesis test for probably almost stable profiles

This section presents a simple hypothesis test for evaluating whether a mixed-strategy
profile σ = (σ1, σ2) is probably almost stable for player 1 with given parameters. (To
guarantee that neither player is likely to find an E -beneficial deviation by sampling, one
could simply run Algorithm 1 with each player in turn as focal agent.) If p > ε, (i.e.,
random draws are too likely to be E -beneficial deviations), this test will reject profile σ

with probability at least (1− δ).
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Algorithm 1 PAS-Single

Require: ε ∈ (0, 1), δ ∈ (0, 1), σ ∈ ∆S1 × ∆S′2
, D2 ∈ ∆S2 , U2 : ∆S1 × ∆S2 → R, E ≥ 0

1: N ← arg min`∈{1,... } : p̄δ
`(0) ≤ ε

2: for N trials do
3: Sample a player-2 pure strategy s2 ∼ D2
4: if U2(σ1, s2) > U2(σ) + E then
5: return (reject, s2)

6: return (accept,⊥)

In presenting Algorithm 1 the notation p̄δ
`(X) is used to mean the upper bound on p

where ` is the binomial sample count, and δ the desired confidence level. The hypothesis
will be rejected, that profile σ is probably almost stable, if a single E -beneficial deviation
is found in N trials, and otherwise the hypothesis is accepted. The algorithm also returns
the pure strategy s2 that E -beneficially deviated, or ⊥ if none was found. Note that σ ∈
∆S1 × ∆S′2

, indicating that player 2 plays a mixture of only a small (finite) subset of its full
strategy set with positive probability.

Proposition 1. For input (ε, δ, σ, D2, U2, E), if Algorithm 1 returns accept, then σ is probably
ε-almost stable at confidence level δ for distribution D2 and E .

Proof. We want to show that Pr(T(σ) = accept | p > ε) ≤ δ. Consider any σ such that
p > ε. Let T represent Algorithm 1. T(σ) = accept only if success count X = 0 in N
trials. By construction, p̄δ

N(0) ≤ ε. Thus, if T(σ) = accept and p > ε, p̄δ
N(X) < p. By the

Clopper-Pearson bound (3.1), Pr( p̄δ
N(X) < p) ≤ δ.

Proposition 1 shows that the Clopper-Pearson estimator limits the false positive rate
of Algorithm 1 to δ, even if p ≈ ε. One drawback of the estimator is that it produces a
high false negative rate when p ≈ ε. Specifically, the probability of a false negative in
Algorithm 1, when p ≤ ε, is 1− (1− p)N. This is simply the probability that at least one
sampled deviation will be E -beneficial. In the worst case where p = ε, the false negative
rate equals (1− δ). Since many profiles σ that should be accepted by Algorithm 1 have
p� ε, the false negative rate tends to be much lower than (1− δ) on average.
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3.5 Combined better-response search and sequential hy-

pothesis test

Algorithm 1 can evaluate whether a given profile σ is probably almost stable. This can
be employed within a broader method to search for such a profile. Suppose Algorithm 1
returns (reject, s2) for profile σ. One can append the pure strategy s2 that beneficially
deviates from σ to the old restricted strategy set S′, to form enlarged strategy set S′′.
Next, I query the payoff oracle O for the payoffs of every new pure strategy profile in
the enlarged restricted game G′′. I can then use a game solver to find some MSNE σ′′

of G′′. Finally, I test profile σ′′ to determine whether it is probably almost stable in original
game G.

If the new profile σ′′ is found to be probably almost stable in original game G, the pro-
cedure stops with a successful result. Otherwise, it adds the beneficially deviating pure
strategy to the restricted strategy set and repeat, until either some predetermined number
of iterations is reached, and the procedure fails, or it succeeds and terminates. Note that
this procedure cannot guarantee probably almost stable results, due to the multiple com-
parisons problem, unless the confidence level δ at each iteration is reduced compared to
Algorithm 1.

Algorithm 2 combines a better-response dynamics search for stable profiles with a
sequential hypothesis testing procedure that accounts for multiple comparisons. The goal
is to limit the familywise error rate (FWER) over all hypothesis tests in the sequence to a
given confidence level δ. This means that for any game G, initial restricted strategy set S′2,
deviation probability ε, confidence level δ, equilibrium candidate σ, distribution D2, and
deviation tolerance E , the probability of returning (accept, σ′), when the true probability
of beneficial deviation from σ′ under D2, E , is greater than ε, is at most δ.

Note that function solve(S1, S′2, U) in Algorithm 2 returns any MSNE of the restricted
game on strategy set (S1, S′2).

Algorithm 2 uses a Bonferroni correction for multiple comparisons testing, to cap the
familywise error rate at δ. K is the maximum number of strategy exploration rounds to
perform. ~α ∈ RK

+ is an α-spending vector, indicating the confidence level to be used in
each iteration, where the confidence levels sum to δ. By the union bound, the probability
of a false positive in each round k is at most αk, the probability of any false positive is at
most ∑ αk = δ. Therefore, because Algorithm 1 guarantees probably almost stable profiles
when it returns accept, it follows that Algorithm 2 does as well. (Note that the Bonferroni
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Algorithm 2 PAS-Sequential

Require: ε ∈ (0, 1), δ ∈ (0, 1), σ ∈ ∆S1 × ∆S′2
, D2 ∈ ∆S2 , U : ∆S1 × ∆S2 → R2, E ≥ 0, K ∈

{1, . . . },~α ∈ RK
+ : ∑ αk = δ, S′2 ⊂ S2

1: σ′ ← σ, the current restricted-game MSNE
2: for iteration k ∈ {1, . . . , K} do
3: Nk ← arg min`∈{1,... } : p̄αk

` (0) ≤ ε

4: s← ⊥, the E -beneficial deviation
5: for Nk trials do
6: Sample a player-2 pure strategy s2 ∼ D2
7: if U2(σ

′
1, s2) > U2(σ

′) + E then
8: s← s2
9: break

10: if s = ⊥ then
11: return (accept, σ′)
12: else
13: S′2 ← S′2 ∪ {s}
14: σ′ ← solve(S1, S′2, U), an MSNE for the new player-2 strategy set
15: return (reject, s)

correction used here is conservative, and as a result may lead to more frequent false neg-
atives than some other corrections for multiple tests; other methods, such as Dunnett’s
test, could be substituted, trading off the PAS guarantee for fewer false negatives. I use
Bonferroni here because it allows the theoretical guarantees to be as strong as possible.)
Algorithm 2 can make this further guarantee, compared to the single-round Algorithm 1,
because it uses a larger number of tests Nk per round to guarantee p̄αk

Nk
(0) ≤ ε.

Proposition 2. For any input (ε, δ, σ, D2, U, E , K,~α, S′2), if Algorithm 2 returns (accept, σ′), σ′

is probably ε-almost stable at confidence level δ for distribution D2 and E .

Proof. For each of up to K rounds of Algorithm 2, let Rk(σk) ∈ {accept, reject} be the
result of round k, on current profile σk. For any profile σ′′, let Pr(Rk(σ′′) = accept) be the
acceptance probability of the test in Algorithm 2 for round k, given αk. For any profile σ′′,
let p(σ′′) equal the E -beneficial deviation probability under distribution D2. Let us define
hypothesis test T(σ′′) as the test that, for any profile σ′′, returns accept if any round k of
Algorithm 2 returns (accept, σ′′), and reject otherwise.

We want to show that for any profile σ′′, Pr(T(σ′′) = accept | p(σ′′) > ε) ≤ δ.
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By the union bound,

Pr
(
T(σ′′) = accept

)
≤

K

∑
k=1

Pr
(

Rk(σ′′) = accept
)
.

By construction, in each round k of Algorithm 2, for any profile σ′′, if p(σ′′) > ε, then
Pr(Rk(σ′′) = accept) ≤ αk. This is because each round of Algorithm 2 essentially imple-
ments Algorithm 1 with measure tolerance ε and confidence level αk. Thus, by the union
bound, if p(σ′′) > ε, Pr(T(σ′′) = accept) ≤ ∑K

k=1 αk = δ.

Corollary 3. The probability Algorithm 2 returns a tuple (accept, σ′) such that p(σ′) > ε is at
most δ.

3.5.1 Asymptotic performance of Algorithm 1

The order of growth of time and space required by Algorithm 1 is modest. The algo-
rithm takes inputs ε, the allowed deviation probability, and δ, the confidence level; the
algorithm’s runtime can be represented by N, the worst-case sample count. The space
complexity of Algorithm 1 is constant, because the algorithm merely needs to track the
expected payoff of the best deviation found so far and how many deviations have been
sampled.

The time complexity can be conveniently expressed as a function of 1
ε , the expected

samples per E -beneficial deviation, and 1
δ , the expected trials before a false positive. Al-

gorithm 1 has runtime N that is O(1
ε ) and O(log 1

δ ). The bound for 1
δ is trivial, based

on (3.2). We can derive the bound for 1
ε by letting y = 1

ε and noting that an upper bound
on N is proportional to f (y) = −(log y−1

y )−1; we then take the derivative of f with re-
spect to y, and show that its limit is 1 as y approaches infinity. This shows that N grows
with y proportionally to a linear function in the limit. Thus, the order of growth in the
strategy count N that the analyst must sample is proportionate to the desired bound on
the number of samples an agent is expected to require to find an E -beneficial deviation,
1
ε .

For a numerical example, with ε = 0.01 and δ = 0.1, N = 230 samples are needed in
the worst case. If instead ε = 10−5, N = 230,258 samples would be needed. Note that N

ε

is roughly constant for a given δ, so the analyst’s computational needs scale evenly with
the agent’s power to explore.

34



3.5.2 Asymptotic performance of Algorithm 2

The worst-case time required to run Algorithm 2 is N × K, where N is the maximum
sample count per round, and K is the maximum round count. The time complexity of Al-
gorithm 2, like that of Algorithm 1, is O(1

ε ) and O(log 1
δ ). Moreover, the time complexity

N × K is O(K log K) with respect to the round count. To see this, observe that there is an
O(K) factor due to the K term in N × K and an O(log K) factor due to the division of δ by
K in (3.2) for finding N, when we divide the δ budget into K equal parts for the various
rounds.

For instance, if ε = 0.01, δ = 0.1, and K = 3, Algorithm 2 will require N × K = 1,017
samples in the worst case. Even if K were set as high as 1,000, the worst-case sample
count would be 917,000; with this many strategies, the bottleneck would likely be the
Nash equilibrium solver, not in our algorithm. The sample complexity N × K grows
proportionally to 1

ε .

3.6 Experiments

I perform experiments on two classes of two-player, general-sum, normal form games
from the game theory literature. I study the first-price sealed-bid auction (FPSB) and a
cybersecurity game played on an attack graph, from recent literature [62]. In the FPSB
game, I consider a parameterized strategy, where players bid a constant fraction of their
value for the item being sold. This family of strategies includes equilibria of the full game,
and has been adopted for analytical convenience in prior work on FPSB auctions [24], [69].

Each experiment begins with a restricted strategy set. I execute the single-pass Algo-
rithm 1 or sequential Algorithm 2, and analyze the results in terms of frequency of true
and false positives and negatives, as well as the acceptance rate conditional on true ben-
eficial deviation probability p (as estimated via sampling). I also repeat the sequential
experiments with both strategy exploration methods under consideration: simple ran-
dom search and simulated annealing.

I aim to test whether the Algorithms 1 and 2 empirically satisfy their theoretical guar-
antees, even for values of p ≈ ε. In addition, I aim to evaluate whether the frequency of
true positives of the algorithms are reasonably high, such that the algorithms are likely to
be useful for finding stable profiles, instead of rejecting almost all profiles due to excessive
conservatism. The results also demonstrate the performance of these algorithms when a
relatively sophisticated search process is used to seek beneficial deviating strategies.
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3.6.1 First-price sealed-bid auction game

In the two-player FPSB auction game, one item is auctioned to the higher bidder of
player 1 and player 2, and the winner pays its bid. The version of the game used here
allows each player i to choose a bid fraction ci ∈ [0, 1] (before learning the player’s value
for the item). Each player is then assigned a private value vi for the item, drawn i.i.d.
from U(0, 1), and bids civi. The higher bidder wins the item, earning utility vi(1− ci); the
other player earns zero utility.

The unique Nash equilibrium in 2-player FPSB is for player i to play the pure strategy
ci = 1

2 [24], [42]. In a restricted FPSB auction, allowing only mixed strategies over bid
factors S′ = {c1, . . . , cq}, the equilibrium solution is less simple. Also, c = 1

2 may not
necessarily be a beneficial deviation from a Nash equilibrium of such a restricted game.
This leads to interesting complications in the iterated better-response dynamics of such
restricted games.

Here I summarize analytical tools used for the FPSB auction. Suppose that player 2
plays pure strategy c2, and it is desired to evaluate the expected payoff for player 1 of
playing pure strategy c1. This utility is given by:

Ev1,v2∼U(0,1)(U1(c1, c2)) =



0 if c1 = 0
1−c1

2 else if c2 = 0
(1−c1)c1

3c2
else if c1 ≤ c2

(1− c1)
3c2

1−c2
2

6c2
1

otherwise.

(3.3)

Using this equation, one can determine whether c1 is a beneficial deviation from any finite
mixed strategy for player 2. Moreover, one can immediately give a minimal example of
a restricted game where c = 1

2 is not a beneficial deviation. Consider the restricted game
where the only legal strategy is ca = 1

3 ; in the unique Nash equilibrium, the expected
payoff is 2

9 = 24
108 . A player deviating to play cb = 1

2 would receive expected payoff 23
108 ,

which is lower.
For the experiments on the FPSB auction, I begin each restricted game with a shared

set S′ of 10 pure strategies c available for the players, selected i.i.d. from U(0, 1). One
can use (3.3) to build the payoff matrix for all pairs of pure strategies in S′. Then one
can use Gambit’s implementation of the extreme points method [54] to find MSNEs of
the resulting game, and select uniformly among them to set σ′ for the next iteration of
Algorithm 2.
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3.6.2 Cybersecurity game

I also examine an attack-graph cybersecurity game from a recent study [62]. In brief, the
game represents an adversarial but not zero-sum interaction between an attacker and a
defender, modeled using Bayesian attack graphs [57]. The defender agent in our experi-
ments varies along three parameters, adjusting how many nodes are typically defended,
and how randomly or greedily to act. The game is simulation-based, meaning that profile
payoffs are estimated by sampling the results of a simulator. This game serves as a realis-
tic application domain for the PAS algorithms, as it is a simulation-based game where it
is costly to obtain payoff samples, and where exact solutions are unknown.

3.6.3 Simulated annealing

In some experiments, I use the classical method of simulated annealing as an improved
alternative to simple random search for strategy exploration. Here I briefly describe how
the implementation of simulated annealing used here is configured.

One can model the strategy space for the deviating agent as S′2 ∈ [0, 1]d, where d = 1
for FPSB and d = 3 for the cybersecurity game. (Strategy vectors in this space can be
mapped to and from the original strategy space S2.) Some round count κ of strategies is
examined in each run of simulated annealing, using κ = 50 for FPSB, and due to compu-
tational limitations, κ = 5 in the cybersecurity game.

Each run of simulated annealing begins with an i.i.d. random sample over S′2, in the
experiments a uniform random sample; it also has an i.i.d. random seed. From there, I
employ a truncated Gaussian as the distribution for sampling a neighbor of the current
strategy vector. That is, for each dimension in d, I use an independent Gaussian draw cen-
tered on the current strategy value, with some given variance, using rejection sampling
to ensure the result is in [0, 1]. I use a variance of 0.003 for the FPSB game, 0.03 for the
cybersecurity game. (These variances were chosen by trial and error in a pilot study, with
a lower variance being used in the FPSB game because the higher round count κ allows
even low-variance samples enough time to reach good parameters. Higher variances
make it easier for simulated annealing to explore the whole space in search of a global
optimum, while lower variances are better for finely adjusting parameters near an opti-
mum. I made a modest effort to tune these parameters, trying perhaps 3–5 alternatives
before choosing the best one in each setting.)

For the temperature schedule, I anneal the temperature τ linearly over the number
of samples analyzed so far, from a maximum of 1.0 in FPSB or 15.0 in the cybersecurity
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game, to zero. At each step, I update the current strategy vector to the new one being
analyzed, if: (a) the new strategy has higher expected payoff, or (b) with probability
exp((u′ − u)/τ), where u′ is the new strategy’s expected payoff, and u is the current
strategy’s expected payoff. The procedure returns the parameters that yield the highest
expected payoff, not necessarily the final parameters settled on by the search process.

3.7 Results

3.7.1 FPSB auction

I consider the FPSB auction with 10 randomly generated initial strategies, maximum devi-
ation probability allowed ε = 0.05, and FWER δ = 0.1. I begin by considering the special
case where E = 0, so any payoff improvement is sufficient for an E -beneficial deviation.
Over these FPSB games, the mean probability of a sampled strategy being a beneficial
deviation from the initial MSNE was 10.4%, with a median of 7.4%. Therefore, in the ma-
jority of these FPSB games, the initial restricted game’s MSNE is not almost stable, where
ε = 0.05; more strategies would have to be added to the restricted game to produce an
almost-stable profile.

I used a high value of ε = 0.05 in the experiments that empirically validate the algo-
rithm’s accuracy, because a higher ε is more economical, and the value of ε should not
affect the algorithm’s correctness. But the runtime of Algorithm 2 grows only linearly in
1
ε , such that even if I had used ε = 10−4, for example, these experiments would remain
computationally feasible. Moreover, I used a low value of K = 3 because this is appeared
to be the lowest K that would clearly show the need for multiple-tests correction, and a
higher K would not yield dramatically more convincing results. The sample count N× K
required by Algorithm 2 grows as O(K log K), so a larger iteration limit like K = 10 would
be easily manageable. (Indeed, I also conducted a follow-up experiment with ε = 0.0005
and K = 12.) Higher iteration counts K might make it easier to find stable profiles in
some environments but did not appear necessary in most trials for the settings of these
experiments.

As shown in Figure 3.1, the empirical accept rate of Algorithm 1 is less than δ for all
true beneficial deviation probabilities p > ε. This is the guarantee that is ensured, when
certifying profiles as probably almost stable. The plot is based on 400 randomly-generated
FPSB games, for which the PAS-single algorithm was run 100 times per game. Overall,
the PAS-single algorithm accepted a profile as stable in 13.7% of cases, with frequencies
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FIGURE 3.1: Accept rate in FPSB of Algorithm 1 vs. probability p of beneficial
deviation. Horizontal line is δ = 0.1, vertical line ε = 0.05. Accept rate is

below δ for all p > ε.

as follows: true positive 12.6%, true negative 64.9%, false positive 1.1%, false negative
21.4%. All of our results are summarized in Table 3.1.

Next, I demonstrate the necessity of controlling for multiple comparisons. I show what
happens when running the sequential Algorithm 2 with a maximum of K = 3 iterations,
on the same FPSB game, but without adjusting the α used per iteration by a factor of 1

K
relative to the value what would be used in single-pass Algorithm 1. Specifically, let αi =

δ for all rounds, essentially repeating the single-pass Algorithm 1 up to 3 times. Figure 3.2
(left) shows that when the true beneficial deviation probability p is slightly greater than ε,
this sequential procedure will incorrectly accept the profile as almost stable, more than δ

fraction of the time. Therefore, the procedure fails to guarantee probably almost stable
results when it accepts. This procedure achieves a false positive rate of 3.5%, which is
below δ. But for p ≈ ε, the procedure fails to guarantee an acceptably low false positive
rate.

Finally, I show that Algorithm 2 with ∑ αi = δ corrects the multiple comparisons prob-
lem. Again, one can run sequential Algorithm 2 for up to K = 3 iterations, but with αi =

δ
3

in each round. Figure 3.2 (right) shows that when the true beneficial deviation probabil-
ity p is greater than ε, the accept probability is less than δ, meaning that the probably
almost stable guarantee is satisfied when Algorithm 2 accepts. The PAS-sequential pro-
cedure accepts a profile as almost stable in 40.0% of trials, much better than the 13.7%
that was achieved by PAS-single with the same ε and δ values. Overall, PAS-sequential
produces these frequencies: true positive 39.1%, true negative 24.0%, false positive 0.8%,
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FIGURE 3.2: Accept rate in FPSB of Algorithm 2 vs. probability p of finding
a beneficial deviation, with up to K = 3 rounds. Left: without multiple com-
parisons control (αi = δ). Right: with control (αi = δ

3 ). Horizontal line is
δ = 0.1; vertical line ε = 0.05.

false negative 36.1%. (These rates are computed over only the final iteration’s profile
from each trial, not including the profiles from earlier iterations within a trial.) On aver-
age, PAS-sequential terminated after 2.3 of a possible 3 iterations of strategy search, using
a median of 3 iterations.

Notice that PAS-sequential is more successful at finding a stable profile than PAS-
single: PAS-single yielded a frequency of true positives of only 13.7%, while the 3-round
version of PAS-sequential yielded a frequency of true positives of 39.1%. This is likely be-
cause of the effect previously mentioned, where better-response dynamics tends to pro-
duce increasingly stable profiles.

Figure 3.3 shows that the probability of finding a beneficial deviation from the current
restricted-game MSNE σ empirically decreases in each round of Algorithm 2. In a typical
run, the initial strategy set does not yield an almost-stable MSNE at ε = 0.05. With each
round of the algorithm, however, the distribution of beneficial deviation probabilities
shifts to the left, as desired.

To show that Algorithm 2 is feasible with much lower ε and higher K, I ran a follow-
up experiment with ε = 0.0005, K = 12, and other settings as before. Over 400 trials, I
achieved the following frequencies: true positive 38.5%, true negative 18.7%, false pos-
itive 0.0%, false negative 42.8%. The mean rounds before termination was 10.91, of a
maximum 12 possible.

Figure 3.4 shows the acceptance rate of Algorithm 2 as a function of the true beneficial
deviation probability p, when ε = 0.0005, δ = 0.1, E = 0.0, and K = 12. Observe that, as
desired, for p > 0.0005, the acceptance rate is below 0.1. The figure is based on 400 trials.
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δ
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This experiment took considerably longer to complete than the others, due to the
larger number of candidate deviations to evaluate per round, and due to the more chal-
lenging equilibrium-finding problems, with their many similar pure strategies. Note,
however, that the asymptotic performance of Algorithms 1 and 2 is reasonably efficient
in theory, based on the rate of growth in runtime with respect to the allowed deviation
probability ε and confidence level δ. Specifically, the growth in the runtime of Algorithm 1
is linear in 1

ε and logarithmic in 1
δ . The sequential Algorithm 2 adds only an additional

K log K factor to runtime, where K is the maximum number of rounds.

ε K TP TN FP FN

FPSB/Alg. 1/rand. 0.05 - 12.6% 64.9% 1.1% 21.4%
FPSB/Alg. 2/rand. 0.05 3 39.1% 24.0% 0.8% 36.1%
FPSB/Alg. 2/rand. 5e-4 12 38.5% 18.7% 0.0% 42.8%
FPSB/Alg. 2/s. a. 0.05 4 95.5% 4.5% 0.0% 0.0%
Cyber./Alg. 2/rand. 0.05 3 26.0% 23.4% 1.0% 49.6%
Cyber./Alg. 2/s. a. 0.05 10 93.0% 1.0% 0.0% 6.0%

TABLE 3.1: Resulting frequencies of True Positive, True Negative, False Posi-
tive, and False Negative.

FPSB with simulated annealing

Here I present results for the FPSB auction, when simulated annealing over κ = 50 steps
is used instead of simple random search as the strategy exploration method. In this ex-
periment, I use a similar configuration to the above, with 10 strategies initially available,
ε = 0.05, and δ = 0.1.

However, because simulated annealing is much better at finding beneficial deviations
than simple random search, I increased the maximum strategies added, K, to 4. I also
used a nonzero E of 0.0001.

Over 400 sampled games with different, randomly-generated initial strategy sets, the
PAS-sequential procedure returned an accept result (i.e., a supposedly stable profile) in
382 cases, or with frequency 0.955. To evaluate the ground-truth likelihood that simu-
lated annealing would find an E -beneficial deviation from each returned profile, I ran 200
independent trials of simulated annealing. In every trial, the follow-up test frequency of
finding E -beneficial deviations was below δ for positive results and above δ for negative
results, yielding a frequencies of true positives of 95.5% and frequency of true negatives
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of 4.5%. These results demonstrate that in a simple domain like the two-player FPSB auc-
tion, the iterated profile search method combined with simulated annealing can perform
remarkably well. (Note that the reasons for the nearly-ideal performance include the pos-
itive E tolerance, interacting with the smooth payoff function of the FPSB game, and the
rounding of sampled strategies to 6 decimal places.)

Accounting for modeling error in distribution D2

Consider the case where the distribution D2 that an opponent will use to sample deviating
strategies is not equal to the assumed distribution, which I will call D̂2, that is used to
construct the probably almost stable guarantee. In the general case where no restriction
is placed upon the differences between D2 and D̂2, the true likelihood of a beneficial
deviation being found by sampling D2 could be arbitrarily high, such as in the case where
D2 places all probability on the set of beneficial deviations.

However, as an empirical test of the effect of error in modeling D2 with D̂2, I con-
ducted an experiment in the FPSB setting where the true D2 used to sample deviations is
the uniform distribution over parameters in R3, but the distribution D̂2 used to construct
the probably almost stable guarantee is the simulated annealing process described above.
One would expect that simulated annealing would yield a higher frequency of benefi-
cial deviations than uniform sampling (i.e., simple random search); thus, if simulated
annealing is used to find probably almost stable profiles, while the uniform distribution
is used as the ground truth distribution from which to sample, the probably almost stable
guarantee should be met even more comfortably than expected.

Indeed, the results indicate that when the true sampling distribution for strategy pa-
rameters is uniform, the outcome frequencies produced by PAS-sequential shift to: 0.995
true positive, 0.005 false positive; from 0.955 true positive, 0.045 false positive when the
true distribution is generated by simulated annealing. Over all the final profiles returned
by PAS-sequential, the mean probability of beneficial deviation by simulated annealing
was 0.022, but only 0.002 for uniform sampling. This empirically shows that in cases
where the assumed sampling distribution D̂2 has at least as high a probability of finding
beneficial deviations as the ground truth distribution D2, the PAS algorithms appear to
uphold their guarantees.
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FIGURE 3.5: Accept rate in cybersecurity game of Algorithm 2 vs. true prob-
ability p of finding a beneficial deviation, where αi = δ

3 for up to K = 3
rounds. Horizontal line is δ = 0.1; vertical line ε = 0.05. As desired, accept

rate is below δ for p > ε.

3.7.2 Cybersecurity game

In the cybersecurity game, I begin with a fixed set of 10 strategies for the attacker and 12
for the defender. The attacker plays a mixture over this strategy set, while the defender
explores randomly sampled alternative strategies. The defender’s distribution D2 may be
viewed as sampling parameterizations (a, b, c) ∈ R3 for a heuristic strategy that takes 3
parameters, where each parameter is drawn i.i.d. from U(0, 1). I verified empirically that
under the initial strategy set, the beneficial deviation probability is greater than ε = 0.05,
so the initial restricted game’s MSNE is not almost stable. As before, let δ = 0.1. Begin
again with the special case where E = 0, so all payoff improvements count as E -beneficial
deviations.

Figure 3.5 shows the accept rate of Algorithm 2 versus an estimate of the true ben-
eficial deviation probability, in the cybersecurity game. In this setting, I estimate the
true beneficial deviation probability for the final profile σ when Algorithm 2 terminates,
by randomly sampling 400 deviations from D2 and finding the sample mean payoff of
each deviation over 250 simulations. I collected data from 700 independent runs of Algo-
rithm 2, requiring about 400 hours of computation time, the majority of which was used
to estimate the true beneficial deviation probability of each terminal profile σ.

Note that as shown in Figure 3.5, for all p > ε, Algorithm 2 produces an acceptance
rate less than δ, as desired. The figure shows a less smooth curve than for FPSB, with an
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acceptance rate with p ≈ ε markedly below δ, perhaps because the estimation procedure
for p did not obtain enough samples to generate accurate estimates of the true beneficial
deviation probability. It may be that the Bonferroni correction is too conservative in this
setting, which is likely if the hypothesis tests’ ground-truth results are positively corre-
lated. In the cybersecurity game, Algorithm 2 yields frequencies of true positive 26.0%,
true negative 23.4%, false positive 1.0%, false negative 49.6%. Algorithm 2 terminated
after a mean 2.89, median 3 rounds, of up to 3 possible.

Cybersecurity game with simulated annealing

In the cybersecurity game, we test simulated annealing of κ = 5 steps as the strategy ex-
ploration method. The experiments begin with the same initial strategy set as the cyber-
security game study with simple random search. As before, we set ε = 0.05 and δ = 0.1.
We use maximum round count K = 10. Due to computational constraints, we reduce the
sample count for each payoff estimate to 100, and sample only 100 strategy deviations
via simulated annealing to estimate the ground-truth probability of beneficial deviation.
To reduce the occurrence of spurious deviations being found, due to the lower sample
count used for payoff estimation, we increase the E threshold to 1.3 in this experiment.
Each run of the experiment consumed between 40 and 120 hours on one Intel Xeon CPU,
depending on the number of rounds required.

We have performed 97 runs of Algorithm 2 in the cybersecurity environment with
simulated annealing. The mean number of stages before convergence was 4.4 out of the
maximum possible of 10. The fraction of runs that returned accept was 0.93. All accepting
runs appear to be true positives, with a mean estimated ground-truth success probabil-
ity of 0.009. However, most runs that returned reject appear to be false negatives: 0.06
fraction of all results were false negatives, and 0.01 were true negatives. (One reject run
was terminated by the server because it exceeded the allotted wall time of 100 hours, af-
ter rejecting but before the ground-truth deviation probability had been estimated. As
a result, I could not measure whether the result was a true negative or false negative.)
More encouragingly, the mean estimated ground-truth success probability of runs that
returned reject was 0.037, much higher than for the runs that returned accept. Similarly
to the FPSB environment, we observe that using a stronger strategy exploration distribu-
tion, instead of simple random search, leads to a higher frequency of true positives rate
for Algorithm 2.
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3.8 Discussion

This chapter introduced a strategic stability property called probably almost stable, and
showed it can be efficiently verified in large simulation-based games. I presented a hy-
pothesis test for the property and a sequential search method for probably almost stable
profiles. I derived the asymptotic time and space complexity of these algorithms, in terms
of the tightness of the desired statistical bounds. I empirically demonstrated the efficacy
of the new techniques in the FPSB auction and a cybersecurity game, and showed how
the frequency of true positives of results can be improved by using simulated annealing
as the strategy search method.

I stated the probably almost stable guarantee from the perspective of player 1 in a two-
player game, but the concept can be easily extended to n-player games, or to considering
all players’ deviation probabilities simultaneously. For example, for a profile σ in an n-
player game, the analyst could run Algorithm 1 independently for each player i, sampling
pure strategies from Di, and accept σ as probably almost stable only if each run of the
algorithm accepts.

The experiments used high values of ε and δ (i.e., 0.05 and 0.1), relative to what an-
alysts might want to apply in practice. For example, an analyst might consider a profile
almost stable only if p ≤ 10−4, such that even a resourceful agent would be unlikely to
find a beneficial deviation. I did not use lower ε or δ because the computational time
required increases with the number of pure strategies available (which must increase to
reduce p and ε), or with the accuracy desired in acceptance probability estimates (which
must increase as δ decreases).

The probably almost stable concept does not provide any bound on the regret of a pro-
file σ, which is the maximum any agent could gain by deviating unilaterally from σ. This
limitation is unavoidable by methods that sample payoffs for only a subset of strategies,
however, because there could exist a strategy not yet sampled with arbitrarily high payoff
for an agent i.

In future work, one could try tuning the algorithms to increase the frequency of true
positives, subject to the probably almost stable guarantee. One might alter Algorithm 1
or 2, exchanging computational time for more true positives, by setting N such that k > 0
deviations or fewer lead to acceptance. One could also tune Algorithm 2 by adjusting
the number of rounds or the confidence-spending vector~α. For any setting, there is likely
some ideal round count, such that there are enough iterations of better-response dynamics
to yield stable profiles, but the confidence budget per round αk is not too low. Moreover,
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assigning more confidence budget to later rounds (where stable profiles are more likely)
may yield more true positives than a constant budget.
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Chapter 4

Evaluating the Stability of Non-Adaptive
Trading in Continuous Double Auctions

4.1 Introduction

The continuous double auction (CDA) is the preeminent security trading mechanism,
accounting for trillions of dollars in transactions annually [63]. In a CDA, buyers and
sellers submit orders to the market, and any order that crosses the best-priced prior order
of opposite type clears, producing a trade. Due to this mechanism’s prevalence, many
prior works have attempted to characterize stylized facts of CDA market outcomes, based
on simulation or analysis of rule-based traders in action [11], [13], [43], [89]. The literature
has also seen a progression of works, each presenting a novel policy for CDA trading
agents and experimental evidence comparing it beneficially to less sophisticated policies
from earlier papers [15], [29], [71], [83], [84], [87].

Prior studies of heuristic strategies contribute to a strategic understanding of the CDA
mechanism, but basic questions remain unanswered. For instance, if one equilibrates
strategies over a class of simple heuristic policies, what is the regret of this solution—
that is, how much further gain is available by going beyond this class? In particular,
one way to refine a strategy is to condition its actions on additional features, adapting
its behavior by taking account of more state information. It would be helpful to know
whether agents can benefit significantly by adopting more complex, adaptive policies,
particularly as analysis of larger strategy spaces may be difficult or costly. Recent work
suggests the outcomes of economic simulation studies can be biased by which learning
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modality agents use, and RL is a useful tool for exploring how the learning environment
affects equilibrium results [50].

I present a systematic experimental study of the CDA, in which I derive trading poli-
cies via RL and empirical game-theoretic analysis (EGTA). This work uses as a baseline
trading heuristic the Zero Intelligence (ZI) strategy, which has minimal capacity to adapt
to market state. The version of ZI used here has a few parameters, which are tuned via
EGTA to find approximate Nash-equilibrium mixtures. Against these policies I train more
sophisticated trading policies through Q-learning [93]. I conduct a statistically rigorous
analysis of the benefit of conditioning a policy on market state, relative to using the sim-
pler baseline policy, ZI. Results suggest the equilibrated non-adaptive CDA policies leave
positive, but surprisingly modest, room for gain through conditioning on market state.

I also present the most detailed analysis to date on the nature of automatically learned
policies for trading in CDAs. For example, I use regression trees as suggested by Schvartz-
man and Wellman [71]. I then classify conditions where learned policies demand more or
less surplus from trade than the ZI mixed-strategy baseline.

Also, I present simple analytical arguments on the conditions when conditioning a
CDA trading policy on market state can be helpful. A further empirical analysis shows
that market state indicates to a trading agent, most critically, the likelihood at which an
order at some price will be executed. The most useful signals for the agent appear to be
the recent order history and the current bid and ask.

4.2 Related work

Several recent works in computational economics have employed the simple trading
strategy of Zero Intelligence (ZI) in CDA market models. A ZI trader is parameterized
with a minimum and maximum surplus to demand from each trade, and it sets each or-
der price based on a uniform random draw from this range. ZI was introduced by Gode
and Sunder [30], to demonstrate how a CDA market’s allocative efficiency approaches
its optimum, even if all traders use such a simple strategy. The ZI policy model in vari-
ous forms has been popular among experimental and analytical researchers alike, for its
simplicity and ability to capture stylized facts of real markets or fit real-world financial
data [25], [52], [58]. Several recent works have employed ZI traders in models of financial
markets or prediction markets [13], [52], [88], [90].

It is clear that ZI is not an optimal trading strategy. Cliff and Bruten [15] showed that
ZI tends to yield efficient allocations only if agents’ aggregate supply and demand curves
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have equal slopes, and the authors proposed one of many strategic improvements on ZI,
known as ZI Plus (ZIP). ZIP and other ZI successors such as GD and GDX [29], [83],
[84] and AA [20], [87] adjust the surplus demanded by the agent during a run. Studies
have shown such policies to be beneficial deviations from a single, fixed ZI policy [84],
[91]. Even stronger policies have been derived by RL, to deviate beneficially from a mixed
strategy of GDX agents [71]. These studies have the limitation that they compare a new
policy against a single, uncalibrated parameterization of ZI, which may be a straw man
form of the ZI agent. The more relevant comparison, I would argue, is to equilibrated ZI
mixtures rather than to arbitrary ZI instances.

The prior work most similar to this one is a study by Schvartzman and Wellman [71],
which used RL to derive the strongest-yet trading strategy in a particular CDA setting. In
that work, authors used Q-learning to derive a policy that deviates beneficially from other
agents using a fixed ZI strategy, and showed their learned policies also deviate success-
fully from the strategies ZIP and GDX. This work builds on the methods of Schvartzman
and Wellman [71] to serve a different goal. I employ RL in an attempt to characterize
when and how CDA traders can benefit from conditioning their actions on market state. I
compare equilibrated ZI mixed strategies to (approximate) best responses learned via RL,
to measure the strategic effectiveness of calibrated ZI relative to more complex policies.
In addition, I analyze the relative importance of features for learning proposed in prior
work, through regression over experimentally learned policies.

4.3 Research contributions

I investigate how and to what extent a trading policy in the CDA can improve by condi-
tioning on market state, relative to a calibrated non-adaptive policy. I provide insight into
the tradeoffs of using a non-adaptive policy (ZI) to model trading behavior in a CDA, and
the relative importance of features for an adaptive trading agent.

My main contributions are as follows:

• I evaluate the strategic stability of calibrated ZI policies against (approximate) best
responses from Q-learning. Some surplus is lost by playing a calibrated ZI policy
instead of adaptive policies, although the amount is small compared to the surplus
lost by using non-equilibrated ZI parameters.

• I analyze the nature of adaptive policies that outperform ZI.
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• I provide intuition for when an adaptive agent can deviate beneficially from a ZI
policy baseline, and lend insight into the trade-offs facing such an agent.

• The findings suggest equilibrating over many ZI policies yields a profile where no
alternative ZI policy can earn significantly greater surplus, but an adaptive policy
can still earn a small positive amount more. The common practice of using equili-
brated ZIs as an approximation of efficient behavior is likely acceptable.

4.4 CDA market model

This study is based on a CDA market model, similar to those of prior studies by Wah and
Wellman [89], [90]. The market has a single security and many trading agents. The secu-
rity’s value to an agent is the sum of the agent’s private value for the good (drawn from
some random distribution), and the fundamental value, which evolves by a stochastic
process. Agents trade the security with one another via the CDA mechanism, by submit-
ting limit orders to the market. Each agent can submit an order only in time steps when it
arrives at the market, as determined by a random (exponential) inter-arrival time process;
at each arrival, an agent is independently randomly assigned to buy or sell. Each agent’s
payoff from the CDA game is defined as the final fundamental value of its inventory, plus
the cumulative private value of its inventory, plus its final cash holdings.

The market model has 17 trading agents, comprising 16 background traders and one
market maker (MM). The MM maintains a ladder of buy and sell orders separated from
the expected final fundamental value by a fixed spread, updated each time it arrives. The
background traders act according to parameterized forms of the Zero Intelligence (ZI)
policy.

4.4.1 Zero Intelligence

ZI is a simple strategy for CDA trading that can converge to efficient prices and allocations
in many settings [30]. The variant of ZI employed here, introduced by Wah et al. [90], has
three parameters: d, d, and η ∈ (0, 1]. At each arrival, a ZI agent places a limit order that
demands a surplus equal to a random draw from U (d, d). The exception is if the agent
would earn at least η fraction of its randomly drawn surplus goal at the current quote; in
that case, the agent opportunistically places an executable order at the quote instead.
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4.4.2 Market model description

All 17 agents arrive at the market with independent inter-arrival times, drawn from an ex-
ponential distribution with rate λBG for background traders, λMM for the market maker.
Let λBG = 0.012 and λMM = 0.05, with a game duration of T = 2000 time steps. Hence,
each background trader arrives roughly every 83 time steps in expectation, the market
maker every 20 time steps.

The fundamental value evolves as a mean-reverting random walk with zero-mean
Gaussian noise and long-run mean µ.1 At each time step, the fundamental value is up-
dated, rt ← κµ + (1 − κ) × rt−1 + N (0, σ2

s ), where σ2
s is the shock variance to public

value, and κ is the mean reversion parameter. Throughout this study, I use κ = 0.01 and
σ2

s = 20000. Given the observed fundamental at time t, the expected terminal fundamen-
tal value is

r̂t =
(

1− (1− κ)T−t
)

µ + (1− κ)T−trt.

ZI and MM agents use this estimate in determining their order prices.
Each background trader is assigned a private value vector at initialization, which lists

the value of each additional security unit, given a current inventory. This vector has
length 20, because the agent is restricted to hold (or owe) no more than 10 units. The
vector is derived by sampling 20 values from N (0, σ2

p), where σ2
p is the private value

variance; the samples are sorted in non-increasing order, so that each agent’s demand
decreases with inventory. This study uses σ2

p = 2× 107.
When the market maker arrives, it cancels its existing orders and places a new ladder

of orders, with 100 rungs each above and below the expected final fundamental. The
ladder has orders centered around r̂t, at sell prices of r̂t + 256 + 100× i and buy prices of
r̂t − 256− 100i, for i ∈ {0, . . . , 99}.

When a background trader playing a ZI strategy arrives at the market, it cancels its
previous order and is assigned with equal probability to place a buy or sell order. Suppose
the agent has ZI parameters d, d, η. The agent computes the surplus it would obtain by
trading immediately at the quote, which for a buyer is r̂t + vi+1 − A, or for a seller is
B− (r̂t + vi), where A is the ask, B is the bid, and vi is the agent’s private value of unit i of
inventory. The agent compares this surplus to ηs, where s is a random draw from U (d, d).
If the agent can obtain enough surplus, it transacts immediately. Otherwise, it places an

1I take µ = 105. The specific level does not matter, if the evolving fundamental has negligible probability
of hitting the zero lower bound.
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order demanding the surplus goal s: either a buy order at r̂t + vi+1 − s or a sell order at
r̂t + vi + s.

Each agent earns a payoff equal to the final fundamental value of its stock inventory,
plus the cumulative private value of its stock inventory, plus its final cash holdings.

4.5 Reinforcement learning methods

To investigate how much adaptive policies can increase payoffs relative to a suitably cal-
ibrated ZI policy, as well as the nature of beneficially deviating policies, one needs a
method to search for beneficial deviations in a large search space. I tested several RL
approaches, including Sarsa [78], Sarsa-λ (i.e., with eligibility traces), and POMCP [76],
before settling on a variant of Q-learning that empirically worked well in this setting. I
found that Sarsa variants performed almost as well as Q-learning, but POMCP took much
longer to run and performed worse; there was a significant gain by using Q-learning in-
stead of an alternative. I first fix the policies of all but one agent, which converts the
trading game into a decision problem for the one strategic agent, then apply Q-learning.

Q-learning is a classical RL algorithm that provably converges to an optimal policy
in finite Markov decision processes (MDPs) with bounded rewards, assuming a suitable
learning rate sequence is used [93]. It works as follows. The learning agent progresses
through a sequence of observing states s, getting rewards r, and taking actions a. The
agent maintains an estimate of the Q-value of each state-action pair, Q(s, a), which repre-
sents the expected value of taking action a in state s and playing optimally thereafter. On
experiencing the sequence (s, a, r, s′), the agent performs a Q-learning value update,

Q(s, a)← (1− α(s, a))Q(s, a) + α(s, a)
(

r + γ max
a′

Q(s′, a′)
)

,

where α(s, a) ∈ (0, 1) is the learning rate, and γ is the discount factor for future values.
I set γ = 0.9 for learning, as a regularizer, but decay γ toward 1 as learning progresses;
these parameter values were chosen based on pilot experiments, and as suggested by
reports in the literature that similar values had worked well before. However, the results
did not appear extremely sensitive to the γ parameter setting. (The underlying game has
no discounting.) I set α(s, a) to the reciprocal of the number of (s, a) observations to this
point.

The learning agents employed in this study use the following features in their state
observations.
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• P, the profit that would be obtained by trading immediately at the current price
quote.

• V, the private value of the next unit to be traded.

• O, the Omega ratio, estimated at recent trade prices, of the price X with respect to a
threshold k defined at the next unit’s valuation,

E(X− k | X > k)Pr(X > k)
E(k− X | X < k)Pr(X < k)

.

• A, whether the action assigned to the player is buy or sell.

• D, the duration in time steps since the most recent trade.

Note that ZI agents in the market setting are randomly assigned a role of buyer or seller at
each arrival at the market, and for a fair comparison of the agent’s abilities with ZI, the RL
agents must be assigned their roles as well; therefore, A is part of the agent’s observation
space, not the action space.

To discretize the observations as is needed for Q-learning, I employ a tile coding sys-
tem with a single tiling [71], [72]. That is, I set thresholds for the numerical features (P,
O, V, and D), dividing each into three buckets, using threshold values chosen empiri-
cally in pilot simulations to provide evenly distributed observations over buckets. This
system was chosen based on pilot experiments, in which a variety of tile configurations
was used, including as many as nine buckets per feature; the setup with three buckets per
feature performed the best, based on the average payoff of the learned deviating policies.
The Q-learning training results were quite sensitive to the number of buckets used, as
using more buckets seemed to require more training steps in order to learn strong poli-
cies, due to the lower frequency of samples falling into each bucket. It is possible that a
function approximation approach, such as deep Q-networks, could outperform tile cod-
ing in this setting, but I have not investigated this question. Moreover, it is possible that
the Q-learner’s performance could be improved by including the full history of obser-
vations and actions in the agent’s input, instead of only the current observation, because
the environment is not completely memoryless. However, in this environment the benefit
of memory to a lone RL agent appears likely to be small, because the ZI agents have no
memory, and the only effect of history on their behavior is through changes in their stock
inventory.
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4.6 ZI regret study

I designed an experiment to measure the regret of equilibrated static policies (ZI) with
respect to either novel ZIs or an approximate best response over adaptive policies, de-
rived via RL. As a sanity check, I wanted to show that the automated RL process could
consistently find policies that outperformed the ZI baseline, as found in prior work [71].

With a consistently effective learning process in hand, I sought to measure the strategic
stability of equilibrated ZI mixed strategies with respect to approximate best responses
derived via Q-learning. (By an equilibrated ZI mixed strategy, I mean a probability dis-
tribution over ZI strategy parameters exhibiting negligible empirical regret, relative to a
fixed set of other ZI strategies.) I expected an arbitrarily chosen ZI pure strategy would
have high regret with respect to a Q-learner or to other ZI strategies. More important,
I hypothesized that as the set of ZI strategies is increased in size, the regret of the equi-
librated mixed strategy with respect to either other ZI policies or a Q-learner will tend
to diminish. The regret with respect to the other ZI policies necessarily approaches zero
in the limit, but I expected there would remain a small positive regret with respect to a
reinforcement learner. This regret represents the value of conditioning actions on market
state in the CDA. If the measured regret is indeed small, this is evidence supporting the
use of equilibrated ZI traders as a reasonable agent model.

4.6.1 Definitions

This chapter uses many standard terms from game theory, defined here for complete-
ness. A policy or pure strategy is a mapping from an agent’s set of observation states to the
(possibly stochastic) action the agent will take in each state. A mixed strategy is a proba-
bility distribution over pure strategies. A profile is an assignment of a strategy (pure or
mixed) to each agent. A symmetric profile assigns the same strategy to each agent. A Nash
equilibrium (NE) is a profile such that no agent can achieve a higher expected payoff by
unilaterally deviating from its assigned strategy to any alternative strategy. The regret of
a profile is the maximum over agents, of the maximum gain in expected payoff the agent
can obtain, by deviating to any alternative strategy. By definition, a Nash equilibrium has
zero regret.

In this work, a profile is called an equilibrium over strategy set S , if all pure strategies
played with positive probability are in S , and no agent can achieve higher expected pay-
off by deviating to a strategy in S . A profile is said to have regret x with respect to strategy
set S ′, if x is the maximum any agent gains in expectation by deviating to a strategy in S ′.
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4.6.2 Experiment design

To measure the strategic stability of calibrated ZI strategies, I began with a set of 10 ZI
policies, selected heuristically for high fitness and broad coverage of the space of viable
policies. I generated random subsets of the base strategy set, of several sizes, and used
empirical game-theoretic analysis (EGTA) to find one or more symmetric Nash equilibria
in each subset.2 Next I challenged each ZI equilibrium strategy, by training a Q-learner
against other agents playing that mixed strategy. I also challenged each distinct equilib-
rium strategy with each of the 10 pure ZI strategies, to evaluate the regret with respect to
the base strategy set.

ZI strategy set

The 10 ZI strategies (d, d, η) used in this study are as follows:

(0, 450, 0.5), (0, 600, 0.5), (90, 110, 0.5), (140, 160, 0.5),

(190, 210, 0.5), (280, 320, 0.5), (380, 420, 0.5), (380, 420, 1),

(460, 540, 0.5), (950, 1050, 0.5).

Henceforth, a pure strategy will be written as, for example, 280_320_.5. A mixed strategy
will be written as a series of ordered pairs of pure strategies and their probabilities, such
as (280_320_.5 × 0.1, 380_420_.5 × 0.9).

From this base set of 10 strategies, I randomly selected subsets of sizes two, five, or
eight. (These subset sizes were chosen, somewhat arbitrarily, to provide a representation
of diverse sizes between one and the full set of ten, without requiring as much compu-
tation time as training RL models against equilibria from all 11 possible subset sizes. I
believe the results are not sensitive to the exact subset sizes chosen.) Strategy subsets
were selected uniformly randomly, rejecting duplicates. I used 30 distinct subsets of each
size, in addition to the 10 subsets of one ZI strategy each, as well as the base set containing
all 10 strategies. Overall, I conducted parallel experiments on 101 ZI strategy sets: 10 of
size 1; 30 each of sizes 2, 5, and 8; and 1 of size 10.

2Because the games used here are finite and symmetric, symmetric NE necessarily exist. I numerically
find approximate symmetric equilibria with negligible regret.
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EGTA methods

I used the methods of EGTA to find NE over each subset of ZI strategies. The essential
EGTA process has been described at length in many earlier studies [88], [90], so this sec-
tion presents only an overview. EGTA uses simulation to estimate the expected payoff for
each agent in a strategy profile, and explores a space of profiles to identify approximate
equilibria.

To test whether a mixed-strategy profile is an equilibrium, EGTA obtains payoff sam-
ples of each pure-strategy profile in the support of the mixed strategy (called the subgame
of the support), as well as each pure-strategy profile where a single agent deviates to any
other pure strategy. For example, if the 16 players in this game play strategies A and B
with positive probability, it is necessary to sample payoffs of i ∈ {0, . . . , 16} agents play-
ing A and the rest playing B; I then compute the expected payoff of the mixed strategy.
Next, I would compute the payoffs for corresponding profiles where one agent deviates
to any other pure strategy.

The sample count required grows rapidly in the number of agents and strategies in
support. To make this process tractable, I employ the deviation-preserving reduction (DPR)
technique of Wiedenbeck and Wellman [96], approximating the game of 16 players with a
related 4-player game. I construct a reduced game’s payoff table by running simulations
of the full, 16-player game as follows. To estimate the payoff for a particular player in a
4-player reduced-game profile, I let that player control 1 agent in the 16-player simula-
tion, while each of the other 3 players in the reduced game controls 5 agents in the full
simulation.

I search for NE through a fully automated procedure that begins by testing whether
each pure strategy in self-play is an equilibrium. The process then goes on to test equi-
libria over pairs of strategies, based on beneficial deviations found from the self-play
profiles. Exploration continues, extending support size as necessary based on deviations
found outside the current support. The process completes when an approximate NE is
found with empirical regret less than a numerical tolerance, and all equilibrium candi-
dates up to a current support size have been confirmed or refuted. For a given subgame,
replicator dynamics are used [81] to search for a symmetric NE over those strategies.

Pure-strategy regret measurement

I set out to accurately measure the regret of each equilibrium found over a subset of ZI
strategies, with respect to the base strategy set. This value serves as an empirical signal
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of how strategically stable a ZI mixed strategy is, with respect to the universe of all ZI
strategies, if it is believed that the base strategy set is sufficiently large and varied.

To estimate the regret of a mixed strategy M with respect to one of the 10 ZI strategies
in the base strategy set, I run simulations where all but one agent plays a strategy sam-
pled independently from M, but one agent deviates to that pure strategy. I explored the 10
pure strategies as if they were arms of a multi-armed bandit, seeking an upper bound on
the regret with respect to the best arm. Initially, I sampled each strategy in turn, for 50,000
simulations each. Thereafter, following each batch of 2500 simulations, I sampled a boot-
strap distribution from the set of all payoffs of the current deviating strategy and selected
the pure strategy with the highest 95th percentile for the mean payoff as the deviation to
sample next. Thus, I obtained low-variance estimates for the upper confidence bound on
those pure strategies that appeared to have a significant chance of being beneficial devia-
tions. I terminated the process when either the greatest upper confidence bound became
lower than the expected payoff of the equilibrium policy, or a total of 800,000 simulations
had been taken.

This pure-strategy regret measurement procedure lets us evaluate the strategic sta-
bility of supposed NE, in case of approximation error caused by player reduction. It
is possible for a mixed strategy to be an exact Nash equilibrium in the reduced game of
the DPR approximation, but not an equilibrium in the original game, because the original
game includes payoffs where non-round numbers of agents play each strategy. The regret
measurement procedure employs the original, 16-player game, so it can sample payoffs
where any number of background traders from 0 to 16 adopts each strategy in the equi-
librium support. In this way, I empirically test whether the reduced-game NE are actual
equilibria in the original game, and if not, how large their regret may be.

Q-learning regret measurement

I aimed to measure the regret of each equilibrium over a subset of ZI strategies, against
the best adaptive policy derived in a large policy space by Q-learning. This provides a
lower bound on how much better an adaptive agent can perform in the CDA than an
agent that plays a fixed policy (ZI).

I conducted Q-learning against each equilibrium ZI strategy as described above. In
summary, I performed a single run of Q-learning against each equilibrium, of 106 play-
outs. The exploration policy was ε-greedy, with ε = 0.1. Q-learning was slightly modi-
fied, based on empirical observations of the most useful tricks in this setting: I truncated
reward observations to ±3000, used an artificial discount factor of 0.9 that decays to 1.0

58



with increasing iterations, used hand-tuned thresholds in each feature for observation
bucketing, and used early stopping. More specifically, to tune the thresholds for bucket-
ing each feature, I simply estimated the thresholds between quantiles, using a pilot run
with an equilibrium profile of ZI agents. For three buckets per dimension, I chose bound-
aries that split the training data into tertiles, or three equal-probability regions. Setting
these thresholds appropriately is vital to the training process, as training is most effective
when samples are distributed roughly evenly across buckets. To perform early stopping,
I recorded the current policy at regular intervals during the later rounds of training, then
conducted independent testing to evaluate which of the recorded policies yields the high-
est expected payoff; only this policy would be returned.

To measure the expected payoff of a policy from RL, I run the simulator with one agent
playing the learned policy, and all others playing the baseline mixed strategy. I conduct at
least 2× 105 simulations per learned policy, and use the bootstrap to derive a confidence
interval for the mean payoff. I then compare this payoff to the expected payoff of the
baseline policy.

Note that the policy space used by the Q-learner is a strict superset of the ZI policies
in the base strategy set. The Q-learner builds a table that maps each observable state to
a ZI policy selected from the base strategy set of 10. This means that the Q-learner can
in theory deviate at least as successfully against any opponent profile as the best fixed
response from the base strategy set. To see this, observe that the Q-learner could generate
a policy that maps every observation to the ZI best response. However, a Q-learner may
not always match or outperform the ZI best response, due to insufficient time to converge,
or problems converging in a POMDP.

4.7 Results

In the ZI regret study, the automated learning method consistently found policies of
greater expected value than the equilibrated ZI baselines. However, the learned poli-
cies achieved only slightly greater payoff than those ZI equilibria that were derived from
large sets of ZI pure strategies. The results suggest that there is a small but consistent
advantage to conditioning actions on state in the CDA environment, relative to playing a
well-calibrated mixed strategy of ZI policies. This benefit of an adaptive policy is small
compared to the difference in expected payoff between a well-calibrated ZI strategy and
a poorly chosen one.
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FIGURE 4.1: Regret of equilibria over ZI policy subsets. Each row comprises
equilibria over ZI policy subsets of a given size. Left: regret w.r.t. Q-learning
response; right: regret w.r.t. best-response ZI policy of full policy set. Solid

lines present row means.

4.7.1 Studying effects of ZI strategy set size

As the set of ZI strategies available to EGTA is augmented, the regret of the equilibrium
mixed strategy over that set decreases, both with respect to the base set of ZI strategies,
and to the adaptive strategy response produced by Q-learning. The regret with respect
to other ZI strategies empirically is almost always lower than the regret with respect to
adaptive strategies; or in other words, adaptive policies almost always achieve greater
benefit in deviating from the ZI baseline than an alternative ZI strategy does.

In Fig. 4.1, I present the mean regret of each ZI subset’s NE, with respect to Q-learning
(left) and with respect to the best-response ZI pure strategy (right). For example, row 5
displays a marker for each equilibrium in each of the 30 ZI strategy subsets of size 5 that
were randomly selected. In any row, each equilibrium is plotted with multiplicity equal
to the number of strategy subsets of the appropriate size in which it occurs. A line is used
to plot the mean regret of these equilibria for each strategy subset size.

Note in Fig. 4.1 how the regret of ZI equilibria grows smaller on average as the number
of strategies equilibrated over increases from 1 to 10. This trend holds for regret with
respect to Q-learning and with respect to the best-response ZI policy. The only exception
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to this trend is the small increase, from 4.4 to 4.7, in the mean regret with respect to Q-
learning, from subset size 8 to size 10; this reversal may be due to noise in payoff sampling
or the like. For a sense of scale in these payoff differences, note that in the two Nash
equilibria found over the base strategy set, the expected payoffs per background trader
were 461.8 and 462.6.

This trend of ZI equilibrium regret growing smaller with increasing ZI strategy set
size is supported by statistical hypothesis testing via the unpaired t-test. In these tests, I
count each equilibrium’s regret with a multiplicity equal to the number of strategy subsets
in which it appears, similarly to the plot in Fig. 4.1. In the case of regret with respect
to Q-learning, I find weak evidence (below statistical significance at 0.05 level) that the
regret for size-one subsets is greater than size-two (p = 0.14), and strong evidence that
regret for size-two is greater than size-five (p = 10−8), and size-five is greater than size-
eight (p = 0.02). In the case of regret with respect to ZI deviations, I find very similar
hypothesis test results.

Note that in regards to Fig. 4.1, as the subset of ZI strategies equilibrated over is aug-
mented, the regret of the ZI equilibrium with respect to the base strategy set approaches
zero. This regret must be zero when the full strategy set is included, for a Nash equilib-
rium over the base strategy set cannot have any beneficial deviations within that set. For
any subset of k strategies, drawn from a base set of N strategies, the likelihood of a zero-
regret subset being selected is simply the likelihood of drawing a superset of the support
of any Nash equilibrium of the base set. (The support of a Nash equilibrium is defined as
the set of all pure strategies it uses with positive probability.)

Finally, observe how in Fig. 4.1 the regret of ZI equilibria with respect to Q-learning
is always strictly positive, even as the number of ZI strategies equilibrated over becomes
large. Indeed, the smallest regret of a ZI equilibrium with respect to Q-learning I find is
3.0, and the smallest mean regret for a subset size is 4.4, corresponding to strategy subsets
of size 8. This suggests that there is a persistent benefit to adaptive policies, such as those
derived by RL in this study, relative to mixtures of ZI policies, even as those mixtures are
calibrated over many parameterizations.

Fig. 4.2 presents for each equilibrium the difference in regret between the response
derived by Q-learning and the pure-strategy best response from the base strategy set.
Each row corresponds to equilibria over subsets of ZI strategies of a certain size. Each
equilibrium is plotted with a multiplicity equal to the number of strategy subsets in which
it occurs.

Note that in almost all cases, the automated Q-learning procedure achieves more lift
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FIGURE 4.2: Paired difference in regret (w.r.t. Q-learning or ZI) for each equi-
librium, in ZI policy subsets of various sizes. Regret w.r.t. ZI is subtracted
from regret w.r.t. the Q-learning response. Each row comprises equilibria

over ZI policy subsets of the given size. Solid lines present row means.

in payoff over the baseline than the ZI best response. In a few cases, it does not, possibly
due to insufficient iterations for Q-learning to converge, or the instability of Q-learning
in the surface MDP of a POMDP. The increase in payoff improvement of Q-learning over
ZI ranges from 3.0 to 4.4, over the various subset sizes, as shown by the solid line. These
differences are statistically significant, based on paired t-tests, for subset sizes 1, 2, 5, and
8 (p = 0.001, 10−8, 10−11, and 10−13, respectively). It is interesting that the lift of adaptive
policies from Q-learning, relative to a non-adaptive ZI best response, appears roughly
constant, even as the number of ZI strategies used for equilibration increases. This sug-
gests a lingering benefit from conditioning actions on state, even against non-adaptive
agents with carefully tuned parameters, providing a payoff gain of approximately 3.5. (It
is conceivable that an RL-trained policy that takes the full history as input could achieve
an even higher gain, but because ZIs are memoryless, I expect that the benefit to a devi-
ating RL agent of memory—perhaps encoded by a recurrent network—would be small.)

Deviation payoffs of an example equilibrium

Here I present the range of payoffs for an agent unilaterally deviating from an equilibrium
over ZI strategies, to pure strategies in the base strategy set. I will take as an example the
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FIGURE 4.3: Empirical payoffs per deviation from an equilibrium of base
strategy set. Each column shows a deviating strategy: blue dot is sample
mean payoff, crosses are 95% bootstrap confidence interval. ZI_eq is the
equilibrium strategy (380_420_.5). QL is the learned response. Dotted line

is equilibrium payoff.

pure-strategy Nash equilibrium over the base strategy set, where all background traders
play 380_420_.5.

In Fig. 4.3, I present the empirical distribution of payoffs for each unilateral deviation
from this equilibrium profile. The crosses in each column indicate a 95% confidence in-
terval for the mean, derived via bootstrap sampling. Because more samples are automati-
cally collected for pure-strategy deviations that have higher upper confidence bounds, as
in the UCB-1 method of sampling [3], some confidence intervals are narrower than others.

Note how all ZI strategies except 380_420_.5 have sample mean payoffs lower than
the equilibrium payoff, as expected. The equilibrium action of 380_420_.5 has a mean
payoff on resampling almost exactly equal to the independent estimate for the equilib-
rium payoff, shown as ZI_eq. This indicates there have likely been enough samples col-
lected per policy that sampling error is under control.

Finally, observe that the expected payoff of the policy derived from Q-learning (QL) is
much higher than the equilibrium payoff or any pure-strategy deviation, at 468.1 over an
equilibrium payoff of 461.8. This gain from deviating to an adaptive policy, however, is
smaller than the loss that would occur by deviating to several inferior ZI pure strategies.
Thus, in this example one can see that the payoff gain from conditioning on state as this
Q-learner does is moderate, relative to the benefit of choosing a well-calibrated ZI strategy
instead of an arbitrary one.

63



Q-learning performance against ZI strategy sets

For all 20 supposed equilibria over ZI strategies, including the 10 pure strategies and 10
mixed strategies, Q-learning successfully discovered a beneficial deviation over the larger
space of adaptive policies. The most common number of training iterations for the best
policy was 106, which was the end of the training cycle. In several cases, however, an in-
termediate policy, corresponding to an earlier stopping time, produced a higher expected
payoff.

In order to confirm that a learned policy had a payoff significantly greater than the
equilibrium baseline, I played back the apparent best policy from a training run for 106

total playouts. I then took a bootstrap 95% confidence interval about the sample mean
payoff, and in each case the lower bound thus obtained was greater than the mean payoff
of the baseline profile.

Summary of effects of ZI strategy set size

In this series of experiments, the automated RL process consistently yielded a beneficial
deviation, even against ZI strategies that were equilibrated over the full base strategy set.
However, the regret of equilibrated ZI policies grew lower, as the number of strategies
used for equilibration was increased. The lift of an adaptive policy from Q-learning, rela-
tive to a ZI best response, appears to be almost constant on average, even as the strategic
stability of the baseline ZI mixed strategy is increased. This benefit from policy adapta-
tion is positive, but reasonably small, relative to the differences in payoffs between the
deviating ZI policies tested.

4.7.2 Intuition behind successful policy adaptation

In the model CDA environment, only a few aspects of market state are not known to a
background agent. In fact, the only useful aspects of state assumed to be unknown to
the agent when it arrives at the market are: (a) the pure strategy drawn by each other
agent from a publicly known symmetric mixed strategy; (b) the private value vector of
each other agent; (c) the inventory of each other agent; and (d) any orders beyond the best
bid and ask in the limit-order book. There are other unobserved aspects of state, such as
previous fundamental values and agent arrival times, but because the fundamental value
and arrival processes are memoryless, these state features are of no value in choosing an
action.
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A policy in the CDA is said to condition on state, if the probability distribution over
surplus demanded differs, based on the history of the agent’s observations and actions. If
a policy does not condition on state, the agent has the same probability distribution over
surplus demanded, regardless of the observed market state.

An agent’s observations are useful only to the extent that they provide information
about the private value vectors, inventories, or strategy assignments of other traders, or
the hidden part of the limit-order book. An agent in the model used here can benefit
through observations, only if its observations help it to predict the orders of the other
agents, which are the only environment events that affect its payoff besides the final fun-
damental value. The agent can be intuitively viewed as attempting to predict the likeli-
hood its order will transact, as a function of the surplus demanded. Many strategy pro-
posals in the literature, such as ZI Plus and GD, attempt to maximize expected revenue
based on such a belief over the demand curve. Similarly, I expected that in the analysis
of learned policies, I would find the agent to condition its actions on state in a way that
appears to demand more surplus in favorable conditions.

4.7.3 Analysis of learned policies

Let us take as a running example the pure ZI strategy equilibrium over the base strategy
set, where all agents play 380_420_.5. This example is chosen because it is an equilibrium
over all the base strategies, so a Q-learner deviating successfully from it is making an
improvement over any of its component pure strategies. Thus, it is an example of the
benefit of policy adaptation over a fixed policy.

To study the range of successful adaptive deviations from 380_420_.5, I performed 10
runs of Q-learning, selecting the best policy from each run. I analyzed the 10 resulting
policies together, to find what they have in common to explain how they improve on the
base strategies they are composed of. Note that learning was conducted on a dataset con-
taining 10 policies produced by independent training runs, where each policy comprises
54 entries, corresponding to 3 buckets along dimensions for (P, V, O), and 2 categories for
A, namely buy and sell. Thus, there were 540 total state-action pair entries to examine.
In Fig. 4.4, I present the distribution of mean surplus demanded by the adaptive agent,
over the 10 policies derived by Q-learning against 380_420_.5. Mean surplus demanded is
used to mean d+d

2 , based on the parameters d and d of a ZI action. The Q-learner tends
to demand slightly less surplus than the baseline ZI agents: 379 on average, compared to
400 for the ZI, and it demands strictly less surplus than the ZI in 56% of its arrivals. It
demands strictly more mean surplus than the others, perhaps opportunistically, in 25%
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FIGURE 4.4: Histogram of the mean surplus demanded by 10 Q-learning de-
rived policies, deviating from 380_420_.5. Each state-action pair is weighted
by the state’s occurrence frequency. The mean surplus demanded by the equi-

librium baseline policy is shown by the dotted red line.

of arrivals, and the same amount 19% of the time. (In all of these figures, I weight each
state-action pair of a learned policy by the state’s occurrence frequency.)

Machine learning for policy analysis

It has been noted that tabular policies are difficult to understand intuitively [71]. To draw
useful insights into the adaptive policies for CDA trading from Q-learning, I use machine
learning techniques that can help to summarize complicated policies.

Here I analyze the set of policies from Q-learning, against a baseline strategy with
parameters 380_420_.5, as above, but without the feature D, which did not appear useful
in a greedy feature elimination study (not shown). I use regression and classification
methods to summarize or draw insight from the set of policies learned in this setting,
over multiple independent runs of Q-learning. (The greedy feature elimination study was
conducted by training Q-learning agents, in multiple independent training runs, with
each feature in turn omitted from the inputs; the feature leading to the smallest mean
drop in performance when omitted would then be removed.)

My first effort was to predict the mean surplus demanded by the learner’s action in
a given market state, where mean surplus demanded is defined as above, d+d

2 . Market
state is determined by the four features P, V, O, and A. Recall that A, the action type in
{buy, sell}, is a binary feature, while the other features are partitioned into a low, medium,
or high bucket. I encode the binary feature as 1 for buy, 0 for sell. I encode each other
feature as 0 for low, 1 for medium, 2 for high.
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Least squares regression yields a fairly poor fit, with an MAE of 159.7. (I weight each
state-action pair according to its state’s occurrence frequency, for both learning and eval-
uation.) The learned coefficients are P = 74, O = 43, A = 29, V = 4. This agrees with
the results of the greedy feature elimination study (not shown), that P is by far the most
critical feature for learning, and O is also important. However, it suggests that V, the
private value of the next unit traded, has little linear effect on surplus demanded.

Due to the poor linear fit, I tested decision tree regression, splitting to reduce MSE,
with a maximum depth of 3. I found normalized feature importances of P = 0.58, O =

0.34, A = 0.01, V = 0.07. Again, P is the most important feature, with O second, though
now V is third. These results further support the idea that P is the most useful feature for
an adaptive agent in the CDA.

Beyond relative feature importances, these results give insight into the directional ef-
fect of each feature on surplus demanded. It appears, from the high positive coefficient in
linear regression, that a high P indicates that the agent can earn a large surplus by trading
immediately, so it may be an opportune time to demand more surplus than usual.

Similar to the decision tree regression study, I performed decision tree classification,
classifying the mean surplus demanded by each state’s action as less than, equal to, or
greater than the mean surplus demand of the equilibrium ZI (in this case, 400). Classifier
splits are chosen based on the Gini coefficient. I achieved a weighted zero-one loss of 0.34
with a decision tree of depth 3. The relative feature importances in this tree were almost
identical to those of the decision tree regressor.

A simple, depth-2 decision tree classifier predicts the adaptive agent will demand less
surplus than the baseline, if neither P nor O is high. Only with high P (immediate surplus
available) or high O (recent transaction prices) will the agent demand higher surplus than
the baseline. Deeper decision trees yield higher accuracy, but their rule sets do not appear
as interpretable in this case.

Summary of learned policy analysis

I discussed the intuition behind what market information is most useful to trading agents
in the market model used here, as well as how agents trade off between the likelihood an
order will transact and the surplus demanded. I showed that against a running example
ZI equilibrium profile, successful adaptive agents typically demand slightly less surplus
than the baseline agents, but occasionally demand much more. Adaptive agents benefit
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most from conditioning on the features P (immediate surplus available), O (signal of re-
cent transaction prices), and V (private value of next unit traded). Adaptive agents tend
to demand more surplus when P or O is high.

4.8 Conclusion

I studied the extent to which adaptive policies yield greater payoffs than non-adaptive,
ZI policies at equilibrium in the CDA. I thus addressed whether a calibrated ZI strategy
profile is a reasonable model for strategic behavior in the CDA.

The findings suggest traders can benefit from conditioning actions on state in the
CDA, even against an equilibrated ZI profile. But the size of the regret of an equilibrated
ZI profile, with respect to an adaptive deviating strategy, appears to be small, especially
when ZI is equilibrated over many parameterizations.

Further, I provided insight into how a strategy that deviates from ZI can condition on
market state to achieve greater surplus. It seems the most useful state features for adap-
tive CDA traders are the immediate surplus available, the recent history of transaction
prices (as encoded in the Omega ratio O), and the private value of the next unit traded.
These signals can help the agent to determine how to trade off the likelihood of an order
transacting against the amount of surplus requested. In particular, adaptive agents ap-
pear to benefit from demanding greater surplus when the current bid or ask is favorable,
otherwise demanding less surplus to increase the likelihood of trading at all.
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Chapter 5

Iterated Deep Reinforcement Learning in
Cybersecurity Games

5.1 Introduction

Cyber-attacks on computer systems are an increasingly serious problem for large organi-
zations. Attackers can infiltrate a system through a security vulnerability and progress
through the system, gaining new capabilities before eventually reaching target data or
services. The interaction between such an attacker and a defender seeking to protect its
system can be represented formally as an attack-graph game [47], [67].

In brief, attack-graph games represent a computer system’s attack surface as a directed
acyclic graph, where each node is a capability that an attacker could have, and each edge
is a vulnerability an attacker can use to achieve a new capability. Prior works have used
attack-graph games to study how to defend a system against attacker intrusion [22], [23],
[57], [61], [62].

Previous studies of the attack-graph game considered here have assumed the attacker
will either follow a simple fixed policy [57], such that the defender’s choice becomes an
optimal control problem; or that attacker and defender will each select strategies from a
predetermined, finite list, such that the agents might be expected to play a Nash equi-
librium strategy of the resulting game [62]. These studies leave open the possibility that
novel strategies may be beneficial deviations. If such deviations exist, then the results of
these analyses do not represent how rational agents would behave in the attack-graph
game.
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This study applies a method called double-oracle EGTA (DO-EGTA) for deriving ap-
proximate equilibrium strategies in complex games, using deep RL as an (approximate)
best-response oracle to iteratively refine an equilibrium over strategies for which payoffs
are known. This approach is a variant of the double-oracle method [40], [56] with a deep
RL oracle; it is also similar to the approach taken by Wang et al. [92] to learning strategies
for green security games. I present results of applying this iterative technique to two in-
stances of the attack-graph game studied by Nguyen et al. [62], using dozens of rounds
of deep RL per game to find an equilibrium.

DO-EGTA searches for a strategic equilibrium in games where there is no known
method of analytically finding a solution or provably converging to one efficiently. It
begins with a (possibly empty) set of heuristic strategies for attacker and defender, which
are adopted from prior work [62]. It alternates between (a) solving for a Nash equilibrium
over the strategies developed so far, and (b) using deep RL as a best-response oracle to
add a beneficial deviation to each agent’s strategy set, until no better deviation can be
found. DO-EGTA returns the final equilibrium mixed strategy profile as the solution of
the game.

When I began experiments with DO-EGTA, I found successive training rounds some-
times appeared unstable, in that a pure strategy would appear with high weight in one
round’s Nash equilibrium, then drop from subsequent equilibria, only to reappear later.
This instability intuitively seems harmful to the training process, as it could cause thrash-
ing, in the sense that agents in successive rounds are not being trained against known,
robust strategies that will be present in later equilibria. This and other issues of training
instability are known to occur in multi-agent reinforcement learning (MARL) settings,
due to the non-stationary training objective for each agent, and to non-transitive win-loss
relationships among pure strategies [4], [27].

In an effort to produce more stable iterative training and better final strategies, this
work introduces history-aware double-oracle EGTA (HADO-EGTA), an extension of DO-
EGTA with a modified strategy exploration function. HADO-EGTA works by training
each new RL strategy first against the current equilibrium opponent, then fine-tuning
against a mixed strategy over previous equilibrium opponents. The resulting deep neural
network (DNN) is recorded periodically during training, and the best version is selected
based on mean performance against the current and previous opponents, subject to being
a beneficial deviation against the current opponent. (Mean performance is measured for
each of several interim networks produced during training, via independent sampling of
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payoffs.) I find that HADO-EGTA tends to produce more consistent strategy improve-
ments per iteration, with stronger final mixed strategies than DO-EGTA.

I find that deep RL can successfully deviate from the best previously proposed strate-
gies for the attack-graph game, which included hand-designed applications of particle
filtering and tree search [62]. I employ deep RL instead of classical RL, such as tabular
Q-learning, because the state space of the attack-graph game environment is complex,
including attributes of many nodes in a graph, and as such does not appear to lend it-
self naturally to a tabular approach. Iterated deep RL eventually learns defender strate-
gies that appear to strike a reasonable balance between protecting the most valuable goal
nodes and avoiding costly actions. In some cases, the attacker or defender retain the most
effective of the original hand-designed strategies as some fraction of their mixed strategy,
even after many rounds of deep RL strategy addition, although they tend to favor the
more recently-developed deep RL strategies. In order to apply deep RL algorithms to
attack-graph games, this work employs a novel trick for handling combinatorial action
spaces over the graph, called greedy action set building, which I find highly effective.

One drawback of iterated deep RL methods like DO-EGTA is they can take many it-
erations to converge, and the number of iterations required both has high variance and is
and difficult to predict a priori. I report the ranges of round counts used in repeat trials of
the same game environment and algorithm, which can range from, for example, 32–82 for
the same setting with different random seeds. A related limitation is that deep RL train-
ing is itself noisy, with different random seeds sometimes causing success or failure in
training [36]; this could lead to an iterated deep RL procedure terminating, even though
the training method would have been able to learn a beneficial deviation with a different
random seed. (I discuss options for dealing with this issue in the paper, including dupli-
cate training runs with different seeds.) To provide insight into the anytime performance
of DO-EGTA (i.e., when training is stopped before convergence), I present results on the
regret of each training round’s equilibrium mixed strategy, with respect to the final mixed
strategy after training converges. These results indicate that after the first half of the total
rounds are complete, the regret of stopping training early empirically tends to be low and
decreasing.

There appears to be a dynamic between attacker and defender, where first the attacker
learns a highly beneficial deviating strategy, then the defender responds by learning a
successful counter to the new attack; this pattern is repeated occasionally as training pro-
ceeds over many rounds. Eventually, the attacker becomes unlikely to learn dramatically
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successful new attacks and simply relies on a mixed strategy over the best of the strate-
gies learned earlier. Then the defender gradually learns better responses to these known
attacks.

The key contributions of this work are:

• results from convergence to equilibrium over dozens of rounds of iterated deep RL,
in attack-graph games from prior literature;

• a trick for RL in combinatorial action spaces, called greedy action set building;

• a novel method called HADO-EGTA for iterated deep RL that fine-tunes each agent
against a mixed strategy over previous opponents, yielding stronger strategies than
the basic approach in some settings;

• empirical results on the convergence behavior and anytime performance of iterated
deep RL.

The rest of the chapter is structured as follows. First I present related work, including
papers on attack-graph games and on iteratively solving complex games. I summarize
the attack-graph game, referring to previous work for a complete description. Next I
present the method for iterative game analysis, including aspects of EGTA, double oracle,
deep Q-networks (DQN), and solving for equilibria in two-player strategic games. I also
present a novel approach to strategy exploration for iterated deep RL, called HADO-
EGTA. I show results from iteratively searching for and finding equilibria in two variants
of the attack-graph game. These results establish that the proposed methods empirically
converge reliably to more strategically stable strategies.

5.2 Game-theoretic preliminaries

The strategic interaction between attacker and defender is modeled as a two-player game
G = (S, U), where the attacker and defender simultaneously select one pure strategy each
from finite strategy sets Sa or Sd. Initially, the attacker strategy set Sa is the set of available
attacker heuristics taken from prior work [62], and similarly for the defender in Sd. When
the two players simultaneously select a strategy profile (sa, sd) ∈ Sa × Sd, rewards for
attacker and defender are stochastically sampled according to the random properties of
the game, which may be represented by the stochastic function U, as Ud : Sa × Sd → R

for defender reward, and similarly with Ua for attacker reward. These payoff samples are
generated by a game simulator.
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More generally, attacker and defender can play mixed strategies σa and σd that are prob-
ability mass functions over the players’ finite strategy sets. Players are playing a Nash
equilibrium of the game, if they play a mixed strategy profile σ = (σa, σd) such that for any
deviating strategy sa or sd, the player’s expected payoff when using that pure strategy
while the opponent plays as in σ is no better than its expected payoff under σ. That is, σ

is a Nash equilibrium if and only if Ua(sa, σd) ≤ Ua(σa, σd), for all sa ∈ Sa (and similarly
for the defender).

The regret of a mixed-strategy profile σ, or ρ(σ), is the maximum any agent i can gain
in expectation by unilaterally deviating from its mixed strategy in σ to an alternative strat-
egy si. I define the regret of a mixed strategy σi with respect to a Nash-equilibrium profile
σ∗, or ρ(σi, σ∗), as the expected payoff that agent i would lose by unilaterally deviating
from σ∗ to σi:

ρ(σi, σ∗) := Ui(σ
∗)−Ui(σi, σ∗−i).

5.3 Related work

5.3.1 Attack-graph games

Attack graphs represent a vulnerable computer system as a directed acyclic graph, where
nodes represent capabilities or privileges an attacker could have, and edges represent
exploits or other actions that could allow the attacker to escalate its capabilities. Attack
graphs were introduced by Philips and Swiler [67] and have been widely studied ever
since. Attack graphs are used in the field to model vulnerabilities of computer systems,
and automated attack-graph generation software has been produced, both academic [38],
[66], [73] and commercial [2], [39].

An attack graph has goal nodes that represent the ultimate goals of an attacker, such as
root access to a server. Other nodes in the graph might represent capabilities such as the
ability to log in to a particular server, or read or write access to a file. Examples of vul-
nerabilities that might be represented by edges in the graph include bugs in FTP or SSH
servers, buffer overflow vulnerabilities, unsafe security policies on servers or firewalls,
SQL injection, password guessing, or remote code execution [18], [47], [68].

Attack-graph games are strategic games between an attacker and defender in an attack
graph, where the attacker gains utility by activating (i.e., taking control of) nodes, for
which the defender is penalized. The game proceeds over a series of discrete time steps,
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as the attacker attempts to progress into the graph from root nodes, and the defender
attempts to stop the attacker.

Recent works [22], [23], [61] have searched for optimal attacker and defender strategies
in attack-graph games. Miehling et al. introduce the form of attack graph studied in this
work [57]. They present methods to solve for the best defense policy, formulated as an
optimal control problem, assuming that the attacker follows a known, fixed strategy.

Nguyen et al. [62] extend the problem to a two-player game, where both attacker and
defender can select among various strategies for attacking or defending graph nodes. The
authors propose several heuristic strategies, including some sophisticated ones based on
particle filtering, for the attacker and defender. They employ the methods of EGTA [95]
to estimate the payoff of all pairs of strategies in some set and solve for equilibria among
them.

I extend this work by allowing attacker and defender to use strategies beyond a hand-
designed set, including any strategy that can be found by a deep reinforcement learner. I
apply deep RL to expand the agents’ strategy sets and arrive at more stable equilibrium
behaviors.

5.3.2 Deep reinforcement learning

Deep RL has famously succeeded in learning superhuman strategies for extensive-form
strategy games like Go, chess, and shogi [74], [75], which may be seen as a development
building upon earlier successes in training neural networks with RL to play extensive-
form games like backgammon [82]. A DNN and associated learning algorithm for deep
RL known as a deep Q-network (DQN) [60] has been shown to learn strong policies
for playing Atari games using only pixel input, based on the Q-learning method [93]
of Watkins and Dayan. Deep RL has also been applied with success to problems (like the
security game shown here) that involve some or all of imperfect information, multiple
players with asymmetric roles, and non-zero-sum payoffs – from cooperative-competitive
games [79], to video games like Super Smash Bros. [26], Dota 2 [65], and Doom [48].

In the security domain, Kamra et al. [44] trained a DNN to learn policies for a zero-sum
game between a ranger and poachers, where agents could act in continuous space. Wang
et al. [92] used an iterated deep RL procedure similar to mine to develop new strategies
in a different game of rangers and poachers. And in the moving-target defense commu-
nity, Venkatesan et al. [86] demonstrated a system using reinforcement learning (without
DNNs) to determine the placement of honeypots and attack detectors, defending a simu-
lated computer system against persistent attackers.
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Since the original work on DQN, various new deep RL algorithms have also produced
solid results, such as asynchronous advantage actor critic [59], trust region policy opti-
mization [70], and Rainbow [37]. After comparing DQN and an actor-critic method, I
found that DQN is consistently successful (and competitive with alternatives) at learning
good policies in the attack-graph setting, so I proceeded with this method alone.

The problem of conducting deep RL training over combinatorial action spaces has
been addressed in some prior work, such as by He et al. [35], who trained a deep RL agent
to recommend a subset of news articles to a user from a larger candidate set. He at al.
experimented with multiple methods for handling this combinatorial problem where the
set size K to select was fixed, such as: (a) representing each news item as an embedding
vector, concatenating K vectors, and predicting the value of the set; and (b) estimating the
value of each news item independently (based on its embedding vector), and selecting
the K highest-value items.

5.3.3 Double-oracle and empirical game-theoretic methods

Several prior works have explored double-oracle methods for solving complex games.
Briefly, a double-oracle method solves a two-player game iteratively, by first solving the
game where only a finite set of strategies may be used, and then using an oracle for
each player to derive the best-response strategy against the current equilibrium oppo-
nent. Eventually, no better response will exist, and the method will have converged to an
equilibrium.

The double-oracle method was introduced by McMahan et al. [56], who applied it
to a robot path-planning game, using specialized algorithms as oracles. In the secu-
rity field, Jain et al. [40] developed a well-known application of double oracle, using
a mixed integer-linear program (MILP) to compute best responses for attacker and de-
fender agents in a checkpoint-placement game.

In the absence of an explicit game model, one can employ a simulator and learn best
responses through RL. The general method of solving game models from simulation
has been termed empirical game-theoretic analysis (EGTA) [94]. Schvartzman and Well-
man [71] combined RL with EGTA, using tabular Q-learning with tile coding to learn
better-response policies in a dynamic trading game; a similar approach using Q-learning
without DNNs was taken in another recent work [97].

Lanctot et al. [49] presented a generalized version of double-oracle, called policy-space
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response oracles (PSRO), designed for RL approaches to empirical games. They demon-
strated the effectiveness of this approach with deep RL methods on gridworld games. Re-
cently, Wang et al. [92] presented work on applying DQN as the oracle, for a zero-sum se-
curity game. They found that employing double oracle with DQN may take many rounds
and a lengthy computation time to converge, which matches my experience, based on
many more iterations of training.

5.3.4 Multi-agent reinforcement learning

The proposed training procedure for the agents’ strategies is a form of MARL, because I
concurrently train attacker and defender agents, each with its own action space and utility
function. The difficulty is that each agent’s training objective is non-stationary, which can
cause unstable training progress, or (theoretically) even an endless cycle where training
fails to converge to a fixed point [4], [27].

The DO-EGTA approach builds on the framework of double oracle, but I propose
an extension with a novel strategy exploration rule, called HADO-EGTA, that seeks to
improve training stability by yielding intermediate results that perform more strongly
against an opponent’s former strategies, than what would result from the basic double-
oracle approach of DO-EGTA. As suggested by Lanctot et al. [49], double-oracle methods
can produce DNNs that are overfit to the current opponent mixed strategy and do not suf-
ficiently exploit weaker opponents, unless the approach is modified to encourage agents
to learn strategies that generalize well.

The method of fine-tuning agents to perform well against former opponents, while de-
viating beneficially against the current opponent, is related to some techniques proposed
in recent work by others. Lanctot et al. [49] suggested new meta-strategy solvers such as
projected replicator dynamics, as extensions to iterated deep RL with double oracle. Their
projected replicator dynamics method forces each agent to include every pure strategy
trained so far in its mixed strategy with at least some minimum probability, ensuring that
during training any agent will likely observe every pure strategy of its opponent. More-
over, projected replicator dynamics forces the mixed strategy of each agent to change by
only a small step size from one round to the next, which may prevent the problem of
thrashing, in which an agent trained in one round fails to learn what the previous agent
did, due to drastic changes in the training opponent’s mixed strategy. Our approach of
first training against the current equilibrium opponent, then fine-tuning against a decay-
ing weighted average of previous equilibrium opponents, is arguably an improvement on
projected replicator dynamics, as follows. This method, like that of Lanctot et al., trains
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each agent against a wide variety of opponent pure strategies, while encouraging smooth
changes in training opponent from round to round, but also: (a) allows the current mixed
strategy to adapt arbitrarily quickly when strong new pure strategies are introduced, by
not using a limited step size; and (b) enables an agent to completely exclude weak pure
strategies from its mixed strategy. Opponent sampling [6], where training is conducted
against a randomly sampled old opponent instead of the current opponent DNN, has
been reported to speed up training of competitive agents in simulated physics games
(perhaps by providing a form of curriculum learning where neither training opponent
can improve too quickly), as well as improving the robustness of the trained agents to un-
seen opponents. The authors experiment with refining opponent sampling, by randomly
sampling opponent strategies from only the most recent fraction of training episodes,
such as the most recent half, which they find sometimes improves results. Our proposed
method differs from opponent sampling in that instead of merely training against a uni-
form distribution over previously trained opponent pure strategies, we first train against
the current equilibrium opponent in an attempt to ensure a beneficial deviation, then fine-
tune against a decaying weighted mean of previous rounds’ equilibrium opponents. Our
approach thus focuses training effort on learning to perform well against those opponent
strategies that appear most strategically stable, while ignoring irrelevant opponent strate-
gies. Wang et al. [92] propose a similar approach to encouraging generalization, in which
an agent is trained against a weighted average of the current equilibrium opponent mixed
strategy and the uniform distribution over opponent pure strategies. Foerster et al. [27]
propose Learning with Opponent Learning Awareness (LOLA), a deep RL learning rule
intended to stabilize MARL training, that models the opponent’s policy, predicts the op-
ponent’s policy update, and updates one’s own policy in anticipation of the opponent’s
update. Grnarova et al. [33] introduce a method for training the two competing policies
in a generative adversarial network (GAN), which is designed to improve training stabil-
ity, using the online learning algorithm follow the regularized leader (FTRL), and returning
a mixed strategy over the resulting networks.

In earlier work on stabilizing EGTA, Jordan et al. [42] found that augmenting the set of
available pure strategies with arbitrary beneficial deviations from the current Nash equi-
librium could lead to faster convergence to fixed points than only adding best responses.
This suggests that some objective other than maximizing payoff against the current op-
ponent’s mixed strategy could be better for training DNN policies in games.
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5.3.5 Evaluation of game-playing agents or training methods

Evaluating the quality of learned policies in games can be difficult, due to the possibil-
ity of non-transitive relationships among several agents [5], [80], also known as rock-
paper-scissors relationships. There may not exist a scalar score per agent, such that agents
with higher scores are expected to outperform agents with lower ones. Similarly, there is
no single metric that fully captures the advantages and disadvantages between training
methods for agents in games.

The comparisons made here between training procedures for deep RL policies are
focused on the performance of each at Nash equilibrium, as in the NE-regret ranking
method previously used by Jordan et al. [41]. This approach was also recently advocated
for by Balduzzi et al. [5], who argue that it is reasonable to evaluate an agent against the
Nash equilibrium opponent mixed strategy rather than against a uniform mixed strategy
over all opponents developed so far.

I also report results on round-robin tournaments among the final mixed strategies
yielded by the different training methods, as suggested as a method of evaluating trained
GANs by Olsson et al. [64]. The performance of the final mixed strategy from one training
run against mixed strategies from other training runs also offers a measure of how well a
training method generalizes to unseen opponents. It has been noted previously that deep
RL agents tend to overfit to the opponents seen in training, and perform worse during
testing even against agents generated by a different run of the same procedure [49].

All the results are reported based on multiple independent training runs for each
method and game, as Henderson et al. [36] suggest is necessary to overcome the ran-
domness inherent in deep RL training.

5.4 Game Description

Here I summarize the attack-graph game considered in this work; see the original paper
on the game [62] for a complete description.

5.4.1 Attack-graph model

The game takes place on a Bayesian attack graph, of the type defined by Miehling et al. [57].
This is a directed acyclic graph G = (V, E), where vertices v ∈ V represent capabilities
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the attacker could have, and edges e ∈ E are exploits that can be used to gain capabil-
ities. Note that when the attacker has a capability, the associated node is called active;
otherwise, nodes are called inactive.

An attack-graph game is defined by a Bayesian attack graph endowed with additional
specifications. The game evolves over a finite number of time steps T fixed in advance.
At each time step τ, the state of the graph is simply which nodes are active (i.e., attacker-
controlled), indicated by sτ(v) ∈ {0, 1}. The defender receives only a noisy observation
Oτ(v) ∈ {0, 1} of whether each node is active, based on publicly known probabilities
Pv(o = 1 | s = 1) and Pv(o = 1 | s = 0). Positive observations are known as alerts. (These
observations are generated independently.)

Attacker and defender act simultaneously at each time step τ. The defender’s action
space is the power set of nodes V, meaning the defender can choose to defend any subset
of the nodes.

The attacker action space is defined as follows. Some nodes in the graph, including all
root nodes, are called ∧-nodes (and nodes), because they can be attacked only if all their
parent nodes are active. Other nodes are called ∨-nodes (or nodes), because they can be
attacked when at least one parent is active, via any edge or edges from an active parent.
The attacker can select any or all edges from active parents to use in attacking an ∨-node.

At each time step, the game state is updated as follows. The defender’s actions over-
ride attacker actions, such that any node v that is defended will become inactive. Other-
wise, active nodes remain active; an ∧-node v that is attacked becomes active with proba-
bility P(v), and any ∨-node that is attacked becomes active with probability based on the
combination of the (independent) edge attack success probability P(e) of each incoming
edge that is attacked.

Each goal node v has an attacker reward ra(v) and defender penalty rd(v) that will be
assessed in each time step the node is active. Each item an agent can act on also has a
cost: cd(v) for all nodes defended, ca(v) for all ∧-nodes attacked, and ca(e) for all edges
to ∨-nodes attacked. There is a discount factor η ∈ (0, 1] for future rewards.

The defender’s loss at a time step is the cost of its action (total cost of nodes defended),
plus the penalty for active goal nodes after that step. The defender’s total payoff is the
negated, exponentially weighted sum of costs over time, with discount factor η. The
attacker’s total payoff is likewise the exponentially weighted sum (with discount factor
η) of payoffs over time, in this case the reward for active goal nodes, minus cost of attacks
pursued.
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5.4.2 Heuristic strategies

Prior work by Nguyen et al. [62] proposed sophisticated heuristic strategies for the attack-
graph game, some of which use a particle filtering approach to search for good actions to
take.

Attacker heuristic strategies

Several heuristic strategies were proposed for the attacker. In the uniform strategy, the
attacker selects a uniform random set of nodes and edges to attack, of a certain size.

The value propagation attacker strategy (aVP) is more complex. This attacker estimates
the value of attacking each node or edge, by propagating rewards backward from goal
nodes to their ancestors in the graph. The computation also accounts for the costs and
success probabilities of attacks. This strategy has a fixed number of items to be attacked,
and it randomly selects the nodes and edges to attack based on a softmax over the com-
puted value of each item that can be attacked.

The random walk attacker strategy (aRW) assigns a value to each node or edge differ-
ently. This method samples a random process that progresses forward from the currently
active nodes toward goal nodes. A value is assigned to each goal node based on the prob-
ability with which the random walks activate it, and the costs and rewards incurred. The
strategy uses a heuristic to select the next items to attack, based on which nodes or edges
frequently occurred in paths toward the highest-value goal nodes.

Defender heuristic strategies

Multiple defender heuristics were proposed as well, including several naive baseline
strategies. In the goal-only defender strategy, the defender defends a fixed number of
goal nodes in each time step, sampled from a softmax distribution of the sum of the de-
fender penalty for active nodes and the defender cost to defend each goal node. In the
root-only defender strategy, the defender defends a fixed number of root nodes, chosen
uniformly randomly. The min-cut defender strategy defends a fixed number of nodes in
the min-cut set of the graph (separating goal nodes from root nodes), selected uniformly
randomly. The uniform defender strategy defends a fixed number of nodes, chosen uni-
formly randomly.

More complex strategies for the defender share a Bayesian belief vector over the cur-
rent game state, where a game state is the set of active nodes. This belief vector is updated
using a particle filter, based on a fixed assumption about the attacker strategy being used.
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In the value propagation defender strategy (dVP), similarly to aVP, the defender assigns
a value to each node by propagating the penalty for active nodes and the cost of defense
backward from each goal node. The defender defends a fixed fraction of those nodes
the attacker is believed to be able to attack next, based on the defender’s belief state. A
heuristic is used to determine the set of nodes to defend, accounting for the estimated
value of each node. Because the defender can simulate attacker actions assuming an
attacker strategy of aVP or aRW, this defender strategy type is fully written as either
dVP_aVP or dVP_aRW.

In the random walk defender strategy (dRW), like in aRW, the defender simulates a series
of future attacker actions by sampling a random process. Each node is assigned a value
based on the penalty of the goal nodes activated by this process, as well as the defender
costs of blocking the attacker paths. The defender greedily adds nodes to a set to defend,
until adding another node would not increase the expected value of the defense set. As
with dVP, this defender strategy can assume the attacker uses aVP or aRW, leading to a
full name of dRW_aVP or dRW_aRW.

5.5 Methods

5.5.1 Empirical game-theoretic analysis

In a simulation-based game, no explicit formula is known for the expected payoff between
any two strategies, but one can sample payoffs from their distribution by running a game
simulator. The attack-graph game is an example of a simulation-based game.

In empirical game-theoretic analysis (EGTA) for a two-player game, the procedure begins
with a finite set of strategies for each player [95]. Next payoffs are sampled among all
pairs of strategies, in order to estimate the expected payoff of all strategy profiles. A Nash
equilibrium solver can be used to find the equilibrium solution over the game comprising
this strategy set.

The strategy set is then augmented with beneficially deviating strategies, if any can
be found. Another round of payoff samples is generated, using the new strategies, and a
new equilibrium is found. This process continues until no beneficial deviations are easily
obtained, and the process is considered to have converged.
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5.5.2 Attack-graph game instances

As in the previous work of Nguyen et al., I study attack-graph games based on two kinds
of graph topology: random graphs and separate-layers graphs. In summary, random graphs
are constructed similarly to Erdős-Rényi graphs, where the node and edge count are fixed
and edges are added uniformly randomly. Separate-layers graphs are built with a given
number of layers, where each layer has a fraction (less than one) of the node and edge
count of the previous layer, and edges exist only from nodes of one layer to the next layer.

The games used here are built on two randomly-generated graph instances, one of
them separate-layers with 29 nodes (s29), the other random with 30 nodes (r30). In game
s29, there are 3 layers, 7 goal nodes with values in [15, 45], and 89 edges. In game r30, there
are 6 goal nodes with values in [10, 20], and 100 edges. The topology of the graph in game
s29 is presented in Figure 5.1, and for game r30 in Figure 5.2. In both games, all non-root
nodes are ∨-nodes, corresponding to the 0%∧ condition from Nguyen et al. Also in both
games, the low-noise condition from Nguyen et al. is used, where active nodes have alert
probability in (0.8, 1), and inactive nodes have alert probability in (0, 0.2).

Each game proceeds over T = 10 time steps, with payoff discount factor η = 0.9.

FIGURE 5.1: Topology of the separate-layers graph from game s29. Goal
nodes are shown with dashed red outlines, non-goal nodes with solid green.

FIGURE 5.2: Topology of the random graph from game r30. Goal nodes are
shown with dashed red outlines, non-goal nodes with solid green.
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5.5.3 Heuristic strategies

In both games, I use the same set of heuristic strategies at the beginning of the iterative
best response process. For the defender, there are 50 heuristic strategies, including multi-
ple parameterizations of the general strategy types defined above. There are 4 goal only, 2
min-cut, 2 root only, 2 uniform, 4 dRW_aRW, 4 dVP_aRW, 16 dRW_aVP, and 16 dVP_aVP
strategies. For the attacker, there are 8 heuristic strategies: 2 uniform, 2 aRW, and 4 aVP.

5.5.4 Deep Q-networks

I employ the deep Q-network (DQN) deep reinforcement learning model popularized by
Mnih et al. [60], in the Double DQN variant form introduced by van Hasselt et al. [34] The
implementation is derived from the version developed by OpenAI as part of the OpenAI
Baselines library [21]. I have modified the library implementation, to tune the number of
episodes used to determine if the current DNN is better than the previous best, and to
implement HADO-EGTA pre-training and fine-tuning.

DQN works by taking as input a vector representing the agent’s current observation
of the state of the environment, filtering this vector through one or more convolutional
or linear layers and rectifier nonlinearities (ReLUs), and finally yielding a regression es-
timate of the value of taking each action in the current state. Double DQN extends DQN
by training two sets of network weights, with the goal of reducing the bias of state-action
value estimates that could result from the max operator of the DQN update step [34]. I
experimented with various architectures for the DNN, before settling on a multilayer per-
ceptron with two hidden, fully-connected layers of 256 neurons each. Other architectures
I tested in pilot experiments included two fully-connected layers of 128 neurons each; one
hidden layer of 256 neurons; and a convolutional network with two convolutional layers,
each of which used 32 or 64 filters per layer, convolved along one dimension correspond-
ing to the nodes of the attack graph. There were large differences in performance between
different network architectures, indicating that architecture selection is a vital part of hy-
perparameter tuning for DQNs in this setting. The structure of the DQN, in the example
of the attacker strategy for game r30, is shown in Figure 5.3.

The DNN is trained by playing many games against a fixed opponent. Episodes con-
sisting of the current observation, the action taken, the reward, and the next observation
are added to a replay memory. Batches of episodes are sampled uniformly from the replay
memory to update the DNN’s weights. Weights in the DNN are updated to reduce the
error between the DNN’s estimate of the value of taking the given action in the current
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FIGURE 5.3: Architecture of the deep Q-network used in this study. The input
and output dimensions shown are for the attacker DNN in game r30.

state, and the observed value. The agent explores during training by selecting actions
with an ε-greedy policy, taking the action estimated to have the highest value with prob-
ability (1− ε), otherwise taking a uniform random action.

Additional details of the network architecture and training hyperparameters used are
presented in Table A.1 in Appendix A.

5.5.5 Game representation for deep RL

One key challenge in this work was the design of an effective representation of the game’s
observation and action spaces for deep RL. The game has partial observability for the de-
fender, because the defender does not directly observe which nodes are active, so the
defender should have the ability to condition its actions on the history of previous ob-
servations, not only the current observation. The action space is huge for attacker and
defender, because the defender can choose to defend any subset of the nodes, leading to
229 possible actions in game s29, and the attacker can choose to attack any subset of the
∧-nodes and edges to ∨-nodes for which the parents are active.

A key technique to make the exponential action space tractable is to let each deep RL
agent add items to be attacked or defended, one at a time, to an attack set or defense set.
Taking the defender DNN for example, initially in each time step the defense set is empty,
and the defender DNN can either add one node to the set or pass. Eventually, when
the defender DNN passes, the game proceeds with the defender acting on whichever
nodes were in the defense set. Thus, a deep RL agent’s DNN may be called multiple
times during one time step, to determine the set of items to be acted on, depending on
the DNN’s outputs. (Note that the heuristic attacker and defender agents, unlike the
deep RL agents, select their sets to act on all at once, instead of one item at a time.) Our

84



method differs from those proposed by He et al., as it allows for interactions between the
values of items to include in the subset (unlike the approach that learns an independent
value per item), while also scaling up better to large sets than the approach that takes a
concatenation of the selected subset as input.

To encourage deep RL agents’ DNNs to add appropriate items to their sets, I impose
rules that cause undesirable actions to be treated as a pass. The defender DNN’s action is
counted as a pass, whenever it selects a node that is already present in the defense set. The
attacker DNN’s action is counted as a pass, whenever it selects a node or edge already
in the attack set, and whenever it selects a node or edge whose preconditions are not
satisfied. And to encourage agents’ DNNs to add items to their sets greedily, beginning
with the most valuable, I randomly force the DNN to pass with probability 0.1 in each
update where at least one item is already in the action set. (The parameter value of 0.1
was selected based on intuition, without experiments testing alternative values; it might
be possible to achieve better performance by tuning this value better, or by decaying it
toward 0 during training.)

The action selection procedure of the deep RL defender is presented more formally as
Algorithm 3. Here the current defender DNN input vector is defObs, the defender DNN
is φdef , rand() samples independent draws from U(0, 1), and the returned defenseSet is the
set of nodes to defend. The defender DNN’s choice n can represent a node to add to the
defense set, or pass.

Algorithm 3 Deep RL defender’s greedy action set building

Require: defObs
defenseSet← ∅
do

n← φdef (defObs, defenseSet)
isDup← n ∈ defenseSet
if ¬isDup∧ n 6= pass then

defenseSet← defenseSet + {n}
while ¬isDup∧ n 6= pass∧ rand() > 0.1
return defenseSet

Algorithm 4 shows the procedure for generating the deep RL attacker’s action. The
attacker DNN φatt selects one choice at a time x based on the current attacker DNN input
vector attObs. This selection can represent pass, or an ∧-node or edge to ∨-node, to add
to the attackSet. The choice is legal only if it is to pass, or if any parent nodes sufficient for
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the attack, called pre(x), are in the active node set A (i.e., the set of nodes controlled by
attacker).

Algorithm 4 Deep RL attacker’s greedy action set building

Require: attObs
attackSet← ∅
do

x ← φatt(attObs, attackSet)
isDup← x ∈ attackSet
isLegal← x = pass∨ pre(x) ⊆ A
if ¬isDup∧ isLegal∧ x 6= pass then

attackSet← attackSet + {x}
while ¬isDup∧ isLegal∧ x 6= pass∧ rand() > 0.1
return attackSet

The input vector for the attacker DNN includes only information from the current
observation of the attacker. The attacker can see which nodes are active, so it may have
less need than the defender to condition its actions on additional game history. For each
node, an observation bit indicates whether that node is active or not. For each ∧-node and
edge to ∨-node, one bit indicates whether the item is reasonable to attack, in the sense
that its preconditions are active but the target is not. Another bit indicates whether that
item is currently in the attack set or not. Finally, one vector element indicates how many
time steps are left in the game. In total, the attacker DNN input vector has 234 elements
in game s29 and 241 in game r30. The attacker DNN’s input vector is summarized in
Table 5.1, where N is the node count, N∧ is the ∧-node count, and E∨ is the edge to ∨-
node count.

(Note that heuristic attacker and defender agents in the attack-graph game are allowed
unlimited memory of the game’s history, but the input vectors are limited to a fixed his-
tory depth for the DNN attacker and defender. I fix the history length so it can be used as
input to a DQN; if a recurrent network were used instead, the full history could be used
by the learning agents.)

The defender DNN’s input vector includes information from the defender’s most re-
cent 3 observations, filling in with zeros if fewer than 3 exist. (I chose to use a fixed input
depth of 3 observations, based on pilot experiments showing that this was sufficient to
consistently learn beneficially deviating strategies. It is possible that a different observa-
tion depth might yield similar or better performance, or that still better outcomes could
be produced by a recurrent network that represents the full history of the game.) For each
node and each time step, a bit indicates whether an attacker alert was observed, and with
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Attacker Defender

Feature Entry count Feature Entry count

isActive N hadAlert hN
canAttack N∧ + E∨ wasDefended hN

inAttackSet N∧ + E∨ inDefenseSet N
timeStepsLeft 1 timeStepsLeft N

TABLE 5.1: Input vectors for attacker and defender DNN agents, with the
number of entries in each.

another bit whether the node was defended. Another bit shows whether each node is
currently in the defense set. Finally, a vector element for each node indicates how many
time steps are left in the simulation (repeating by the number of nodes for symmetry, in
case convolutional layers are used, convolving over the N nodes). The defender DNN’s
input vector has length 232 in game s29 and 240 in game r30. Table 5.1 summarizes the
defender DNN’s input vector, where h is the history length, which is set to 3.

The action space of the attacker DNN has one action for each ∧-node and each edge
to an ∨-node, plus one action to pass. This sums to 103 actions in game s29 (which has 13
∧-nodes and 89 edges to ∨-nodes) and 106 actions in game r30 (which has 5 ∧-nodes and
100 edges to ∨-nodes). The defender action space has one action per node to defend and
one to pass. This leads to 30 actions in game s29 and 31 actions in game r30.

The implementation of the attack-graph game logic is based directly on the code from
Nguyen et al. [62] The game code is in Java, and the deep learning code uses Python, so
the Py4J library is used for accessing Java Virtual Machine objects from Python, bridging
between the learning library and game logic. I have implemented an OpenAI Gym en-
vironment [9] as a wrapper around each version of the attack-graph game, which allows
the game to be used easily for training and testing by existing deep RL code.

5.5.6 DO-EGTA

In the double-oracle approach to solving two-player games, the procedure alternates be-
tween solving for an equilibrium over the strategies for which payoffs are known, and
attempting to find beneficially deviating strategies from the current equilibrium. This
method theoretically converges to an equilibrium over all possible strategies.

Each round of DO-EGTA begins with computing a Nash equilibrium over the cur-
rently strategy set for attacker and defender. This includes all heuristic strategies, along
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with any beneficially deviating DQN strategies that have been learned. I use the Gam-
bit library [55] of game solvers to search for Nash equilibria. I find that for two-player,
general-sum games like ours, the linear complementarity method known as gambit-lcp runs
faster than alternatives; this method is based on the Lemke-Howson algorithm [51]. When
the algorithm produces more than one Nash equilibrium, the method simply proceeds
with the first equilibrium returned.

I use DQN to search for a beneficial deviation for the attacker and defender. The
iterated best response process is considered to have converged when there is a round of
training in which both the attacker and defender fail to generate a beneficial deviation in
the number of training steps allowed.

In DO-EGTA, I train the DNNs for 700,000 time steps (but 1,000,000 for the defender
in game r30), with a learning rate of 5× 10−5 and an artificial discount factor on future
rewards of 0.99. During training, I anneal the exploration rate ε linearly from 1 to 0.03
over the first half of DO-EGTA training steps, holding it constant at 0.03 afterward.

Pilot experiments showed that the hyper-parameters used here—including number of
training steps, learning rate, and exploration schedule—consistently produce beneficial
deviations. Moreover, I have successfully generated 20 or more rounds of beneficial de-
viations in each game. Based on that experience, this procedure does not appear prone
toward false-positive convergence. Note that the final payoff achieved by deep RL train-
ing is sensitive to the choice of random seeds [36].

One could easily reduce the likelihood of spurious convergence of this double-oracle
method, by requiring multiple trials of DQN to fail (perhaps 3–5) for attacker and de-
fender in the same round, before considering the method converged. In other words,
instead of stopping after a training round in which both attacker and defender training
produce strategies that are not beneficial deviations, one could repeat both attacker and
defender training in such cases, up to some maximum count such as 3 attempts each,
stopping only if these repeated attempts all fail to yield a beneficial deviation.

Definition of DO-EGTA

Here I formally define the double oracle EGTA (DO-EGTA) procedure. Let the set of initial
heuristic strategies for attacker and defender, which could be empty, be SH = (SH

a , SH
d ).

In each round t = (0, 1, . . .) of the iterative procedure, the current strategy sets are Sa,t and
Sd,t. Let σt = (σa,t, σd,t) be any mixed-Nash equilibrium over these strategy sets under the
game’s utility function U = (Ua, Ud). Let g() be any deep RL algorithm, such as DQN,
that can optimize over an objective function like Ua against an opponent mixed strategy
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like σd,t, returning a new pure strategy such as δa,t. Let ν() be a Nash equilibrium solver,
which returns any mixed-Nash equilibrium, given a utility function and finite strategy
sets. Note that the utility function U() may not be analytically defined; DO-EGTA re-
quires only a simulation-based means of sampling payoffs for any strategy profile. Then
the DO-EGTA procedure is shown in algorithm 5.

Algorithm 5 DO-EGTA iterated deep RL method

Require: U, SH, g(), ν()
t← 0; Sa,t ← SH

a ; Sd,t ← SH
d

σt ← ν(U, Sa,t, Sd,t)
do

t← t + 1
δa,t ← g(Ua, σd,t−1); δd,t ← g(Ud, σa,t−1)
if Ua(δa,t, σd,t−1) > Ua(σa,t−1, σd,t−1) then

Sa,t ← Sa,t−1 + {δa,t}
if Ud(δd,t, σa,t−1) > Ua(σd,t−1, σa,t−1) then

Sd,t ← Sd,t−1 + {δd,t}
σt ← ν(U, Sa,t, Sd,t)

while Sa,t 6= Sa,t−1 ∨ Sd,t 6= Sd,t−1
return σt, Sa,t, Sd,t

Note that algorithm 5 is a variation of PSROs [49], as well as the double-oracle method.
Distinguishing features of DO-EGTA are: (a) it begins with a set of heuristic strategies SH,
instead of random strategies; (b) if a proposed new strategy δa,t or δd,t is not a beneficial
deviation, it is not added to the game’s strategy set; and (c) payoffs from the players’
utility functions U may be sampled from a simulator, rather than computed analytically.

5.5.7 HADO-EGTA

History-aware double-oracle EGTA (HADO-EGTA) is a DO-EGTA variant with a new
strategy exploration procedure. Recall that DO-EGTA strategy exploration simply seeks a
best response for each agent i to the current equilibrium opponent mixed strategy σ−i,t−1:

δi,t := arg max
si

Ui(si, σ−i,t−1).

Instead, HADO-EGTA balances deviating beneficially against the current equilibrium op-
ponent, with exploiting previous opponents. HADO-EGTA pre-trains each DNN strategy
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against the current equilibrium opponent, then fine-tunes the DNN against a mixed strat-
egy over current and previous opponents. During fine-tuning, interim DNN weights are
periodically recorded, and the weights are selected that yield the highest payoff against a
mixed strategy over current and previous opponents, subject to being a beneficial devia-
tion against the current opponent. More specifically, I record the current DNN weights at
4 time points: at the end of pre-training, and after 1

3 , 2
3 , and all fine-tuning training steps

are complete. The expected payoff of each recorded network is estimated based on an
independent sample of game outcomes against either the current equilibrium opponent
or a mixed strategy over current and previous opponents.

HADO-EGTA begins by training against the current equilibrium opponent, rather
than against the mixed strategy over past equilibrium opponents, because it is of pri-
mary importance that the resulting strategy be a beneficial deviation from the current
equilibrium; if the result is not a beneficial deviation from the current equilibrium, the
result is not useful, even if it performs well against non-equilibrium opponent strategies.

+0 vs. cur

+2 vs. cur

+0 vs. old

+2 v
s. 

old

FIGURE 5.4: Conceptual diagram of HADO-EGTA. Solid contours show pay-
off w.r.t. current opponent, dashed contours w.r.t. old opponents. Blue pen-
tagons show HADO-EGTA pre-training (or DO-EGTA training), producing
result in red square. Green diamonds show interim results of HADO-EGTA

fine-tuning, with selected result in red circle.

Figure 5.4 shows a diagram of the intuition behind HADO-EGTA strategy exploration.
In HADO-EGTA pre-training (or DO-EGTA), a network is trained to maximize payoff
against the current equilibrium opponent, shown as training the blue pentagon to find
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the optimum of the solid contour lines. Observe that it may be possible to increase pay-
offs against previous opponents, indicated by dashed contour lines, while maintaining
a beneficial deviation against the current opponent (i.e., staying within the bold, solid
contour). HADO-EGTA fine-tunes the strategy to maximize payoff against previous op-
ponents, and returns a strategy that deviates beneficially against the current opponent
while also exploiting old opponents, represented in the figure by the highlighted green
diamond.

More formally, the HADO-EGTA strategy exploration procedure, written as h(), takes
as input: an agent’s utility function such as Ua; a count of DNNs to record κ ∈ {2, . . .};
a decay factor γ ∈ (0, 1] for weighting old opponents; a weighting α ∈ [0, 1] between
payoffs against the current and old opponents; and the history of opponent equilibrium
strategies (σd,0, . . . , σd,t−1). It also requires a deep RL method for pre-training like the g()
of algorithm 5, and a deep RL fine-tuning method, called g′(), that proceeds for a limited
number of steps from a pre-trained DNN. This complete HADO-EGTA procedure h() can
take the place of g() as the strategy-exploration routine in the DO-EGTA algorithm.

I present HADO-EGTA from the attacker’s perspective as Algorithm 6. For each agent
i, HADO-EGTA strategy exploration seeks a beneficial deviation that also exploits old
opponents:

δi,t := arg max
si

αUi(si, σ−i,t−1) + (1− α)Ui(si, σ−i),

s.t. Ui(si, σ−i,t−1) > Ui(σt−1).

The defender’s strategy exploration procedure is analogous to Algorithm 6. Note that if
no interim DNN is a beneficial deviation, the procedure returns null, and no new strategy
will be added to the agent’s strategy set in the current iteration.

Note that depending on the parameter settings, HADO-EGTA allows considerable
choice of which opponents a strategy is fine-tuned against. HADO-EGTA can fine-tune
against a uniform mixed strategy over all previous opponent equilibrium strategies, like
in fictitious play, if γ = 1. Or HADO-EGTA can fine-tune against only the current equi-
librium opponent, like in the double-oracle method, if γ ≈ 0.

Moreover, adjusting α allows a user to make HADO-EGTA favor more beneficial devi-
ations against the current opponent, or more exploitation of previous opponents. HADO-
EGTA can select only for maximal payoff against the current opponent if α = 1, while still
reaping the benefits of multiple interim strategy options δk

a,t. Or HADO-EGTA can select
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Algorithm 6 HADO-EGTA attacker strategy exploration rule

Require: Ua, κ, γ, α, g(), g′(), (σd,0, . . . , σd,t−1)

σd ←
(

∑t−1
ψ=0 γt−1−ψ

)−1
∑t−1

ψ=0 γt−1−ψσd,ψ

k← 0
δk

a,t ← g(Ua, σd,t−1)
while k < κ do

k← k + 1
δk

a,t ← g′(Ua, σd, δk−1
a,t )

δ∗a,t ← arg max
δk′

a,t
αUa(δk′

a,t, σd,t−1) + (1− α)Ua(δk′
a,t, σd),

s.t. Ua(δk′
a,t, σd,t−1) > Ua(σa,t−1, σd,t−1) [or ∅ if none].

return δ∗a,t

for the strategy that best exploits previous opponents, subject to being a beneficial devia-
tion against the current opponent, if α = 0.

In the experiments with HADO-EGTA, I used κ = 4 strategies to select among, includ-
ing the pre-trained strategy. I discounted old strategies with factor γ = 0.7. I set α = 2

7 .
(This makes the total weight of the current opponent equal 1

2 in the limit as round count
approaches infinity, or 2

7 × 1 + 5
7 ×

3
10 .)

In HADO-EGTA, I pre-train the DNNs for 700,000 steps against the current equilib-
rium opponent (but 1,000,000 for the defender in game r30), before fine-tuning for 400,000
against a mixed strategy over previous equilibrium opponents, recording κ = 4 interim
strategies to select from (including the pre-trained strategy). For the exploration rate in
HADO-EGTA, I linearly anneal ε from 1.0 to 0.03 over the first half of pre-training steps,
then hold it at 0.03 for the remainder of pre-training. I then linearly anneal ε from 0.3 to
0.03 over the first half of fine-tuning steps, holding it at 0.03 for the remainder of fine-
tuning.

5.6 Results

5.6.1 Effectiveness of deep RL oracles

I find that DQN consistently learns beneficial deviations from the current strategies’ Nash
equilibrium over many rounds of DO-EGTA, only at times failing to generate beneficial
deviations after several rounds of training have already been completed. In all, I have
conducted 2 runs of HADO-EGTA and 3 of DO-EGTA in each environment (s29 or r30), of
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which 9 runs have converged, after between 21 and 70 rounds. The remaining run has an
elapsed round count of 82.

Figure 5.5 shows the expected payoffs for attacker and defender equilibrium strategies
and learned deviations, in an example run of DO-EGTA in game r30. Here one can see
that the defender fails to deviate beneficially in rounds (16, 19, 23), while the attacker fails
in seven of the later rounds. Moreover, the largest deviation gains tend to occur in earlier
training rounds, such as the attacker gain of 73 in round 0. In this run of DO-EGTA,
the process converges after round 23, when neither training process learns a beneficial
deviation. (Additional plots of payoffs before and after DNN training, including both
games and both training methods, are shown in Appendix A, Figures A.5 and A.6.)
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FIGURE 5.5: Expected payoff of attacker and defender, before and after learn-
ing a new DNN, in each training round. Results are for game r30, in a single
example run of DO-EGTA. Circles indicate rounds with no beneficial devia-

tion. (Deviation payoffs based on fixed opponent mixed strategy.)

Trends in deviation gains from round to round are easier to see in a plot of the differ-
ence between the equilibrium payoff and the payoff of the learned deviating strategy,
as shown for game r30 in figure 5.6. The figure shows the mean payoff gain of each
round, over multiple independent runs of DO-EGTA, with standard error of the mean
confidence intervals. (Note that in cases where no beneficial deviation was learned, the
deviation gain is shown as zero.) This figure more plainly shows that in game r30, devia-
tion gains tend to become smaller as more training rounds are completed, but with large
variations from one round to the next. Figure 5.6 also suggests there may be a lagged
cross-correlation between the deviation gains for attacker and defender. A positive lagged
cross-correlation between gains might be caused by a process where, if either player hap-
pens to learn a highly successful new strategy, this gives the opponent an opportunity to
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achieve a large gain by learning a counter-strategy during the next few training rounds.
(Additional plots of gains from DNN training, including both games and both training
methods, are shown in Appendix A, Figures A.1 and A.2.)
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FIGURE 5.6: Payoff gain for new learned strategy, relative to current equi-
librium. Results are the mean over all 5 DO-EGTA runs for game r30, shown
with standard error of the mean. Green stars show when runs converged, red

crosses when runs were stopped early.

One clear result in Figure 5.5 is that the trend in deviation gains from deep RL is
not smooth or monotonic. Indeed, the attacker and defender deviation gains seem to be
small in most rounds, but with occasional very large gains, even (but infrequently) in
later rounds of training.

The anytime performance of DO-EGTA is important, because iterated deep RL takes a
long time even with parallelism within each round, the number of rounds to convergence
is hard to predict, and the noisy nature of deep RL training can lead to spurious conver-
gence when beneficial deviation is still likely. Figure 5.7 shows the regret of each training
round’s current equilibrium strategy for attacker and defender, relative to the final equi-
librium strategies from converged training. The results shown are mean regrets over two
runs of DO-EGTA, in game r30, shown with standard error of the mean confidence inter-
vals. Observe that after about half of the rounds in a typical run have completed (i.e., after
round 11), regrets generally decrease over time for each agent and remain lower than the
worst regrets of the early rounds. This suggests that there are only mild risks of high
regret, in case training stops a few rounds too early due to spurious convergence or time
constraints.
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FIGURE 5.7: Regret of current equilibrium strategy, relative to the run’s final
equilibrium. Results shown are means over independent runs of DO-EGTA

in game r30. Shading depicts standard error of the mean.

Figure 5.8 presents the learning curve of an example run of DO-EGTA for each of 21
rounds of training in game r30. Each curve has been normalized as the current gain rela-
tive to the previous round’s equilibrium expected payoff. Observe that most of the curves
showing large gains over the equilibrium payoff are in earlier rounds, which are mapped
to purple colors. Even in later training rounds (which are mapped to yellow), the learner
steadily improves in expected payoff, especially over the first half of training, before lev-
eling off at a payoff above the equilibrium payoff until the last round. (Appendix A
presents learning curves for both training methods and both games, in Figures A.3 and
A.4.)

As other researchers have noted [36], the performance of deep RL is noisy and sensi-
tive to arbitrary variations, such as the choice of random seed. I have observed in pilot
tests with different random seeds that the DQN implementation used here occasionally
achieves very different payoffs from one run to the next, although in many cases payoffs
are similar across runs. Another factor that could contribute to non-smooth changes in
deviation gain from round to round, is the change in the equilibrium opponent between
rounds. When a new strategy is added to a game, it can cause large changes in which
other strategies have high weight at Nash equilibrium, leading to a new equilibrium that
may be much easier or harder for DQN to exploit. It is possible that the large variation in
deviation gain from one round to another is caused by changes in the composition of the
Nash equilibria.
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FIGURE 5.8: Defender’s learning curve for each round of DO-EGTA training,
in an example run for game r30. Curves are shown as gain relative to previous
equilibrium. Color map goes from purple in early rounds to yellow in later

ones.

5.6.2 HADO-EGTA improvement over DO-EGTA

The principal approach I take to compare the performance of the HADO-EGTA and DO-
EGTA methods is to evaluate the strategic stability of each beneficially deviating DNN
produced by a run of either method. As suggested in recent work by Balduzzi et al. [5],
the best way to evaluate the quality of a strategy in an unsolved game may be to test
the performance of that strategy against other agents playing a Nash equilibrium mixed
strategy. Following on this lead, I take the union over all beneficially deviating DNNs
produced by all runs of HADO-EGTA and DO-EGTA in an environment (e.g., r30 or s29),
along with all the heuristic strategies, and find Nash equilibria of the resulting combined
game. One can then measure the quality of any strategy by measuring its regret with
respect to the Nash equilibria of the combined game—that is, how much lower the strat-
egy’s expected payoff is than the equilibrium strategy’s, when the opposing agent uses
its equilibrium strategy. The combined games contain many more strategies than the fi-
nal games from individual runs: in setting s29, 179 attacker and 333 defender strategies,
vs. 30–50 and 82–122 in individual runs’ final games; in setting r30, 109 attacker and 182
defender strategies, vs. 23–35 and 67–89.

As shown in Figure 5.9, HADO-EGTA produces DNNs with lower regret on average,
with respect to Nash equilibria of the combined game, compared to DO-EGTA. Figure 5.9
shows results from the 2 runs of HADO-EGTA and 3 of DO-EGTA carried out in each set-
ting, r30 or s29. In the combined games, I found 4 Nash equilibria in setting r30 and 1 in s29.
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Each HADO-EGTA column has 2 markers per equilibrium, each DO-EGTA column 3 per
equilibrium. Across all equilibria, almost all HADO-EGTA runs produced mean regret
below any corresponding DO-EGTA run. The magnitude of the HADO-EGTA improve-
ment ranges from roughly a factor of 0.25 to 0.5 for a given condition, taking the mean
over results for attacker or defender, in setting r30 or s29. Note that the combined games
we analyze here for r30 contain all DNN strategies, but for s29 contain only DNN strate-
gies up to round 73 in the single DO-EGTA run that has not completed. Runs included in
this analysis have either converged or completed at least 82 rounds.

When one examines the regret of DNNs relative to the training round in which they
are produced, it appears that DNNs trained by both DO-EGTA and HADO-EGTA tend to
have lower regret, with respect to the combined game, in later training rounds. However,
as shown in the appendix in Figures A.9 and A.10, HADO-EGTA produces DNNs whose
regrets decrease more rapidly during the initial training rounds, and remain lower late
in training; in contrast, DO-EGTA produces DNNs whose regrets decrease slowly from
round to round, in spite of beginning on par with HADO-EGTA. This result makes sense,
considering that during early training rounds, there is little history of opponents for
HADO-EGTA to train against, so HADO-EGTA should perform similarly to DO-EGTA
at first.

Def.
DO

Def.
HADO

Att.
DO

Att.
HADO

0

2

4

6

8

10

12

14

M
ea

n 
re

gr
et

DO
HADO

Def.
DO

Def.
HADO

Att.
DO

Att.
HADO

0

10

20

30

40

50

60

M
ea

n 
re

gr
et

DO
HADO

FIGURE 5.9: Mean regret of all beneficially deviating DNNs trained, with
respect to Nash equilibria of the combined game, from runs of HADO-EGTA
or DO-EGTA. Left: setting r30; right: setting s29. Each marker is based on one
run, taking regret w.r.t. to one Nash equilibrium. Bars show median result

for each condition.
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A distinct approach I take to comparing HADO-EGTA and DO-EGTA performance is
to conduct a tournament between the final equilibrium mixed strategies from all con-
verged runs. In the tournament, for a given environment (e.g., r30 or s29), each final
HADO-EGTA or DO-EGTA equilibrium mixed strategy will meet each final equilibrium
mixed strategy of the opposing agent type. For any pair of converged runs, where one is
HADO-EGTA and the other DO-EGTA, a run is considered the clear winner if it outper-
forms the other run in each of 8 payoff comparisons. Specifically, for some run A to win
over run B: for both attacker and defender, each run must achieve lower payoff against
A than against B; and A must yield higher payoff than B against each opposing run.

For the tournament approach to analysis, I have 8 pairs of converged runs to use,
comprising 2 runs each of DO-EGTA and HADO-EGTA in setting s29, as well as all 3
DO-EGTA and two HADO-EGTA runs in setting r30. The HADO-EGTA run is the clear
winner in 2 pairs from setting s29 and in 1 of the 6 pairs from setting r30, with all 8 payoff
comparisons being in favor of the HADO-EGTA mixed strategies. The other 2 matched
pairs from setting s29 have HADO-EGTA superior in (4, 6) of 8 payoff comparisons. In
the other 5 matched pairs from setting r30, HADO-EGTA is superior in only (3, 5, 6, 7, 7) of
8 payoff comparisons respectively, meaning neither equilibrium is clearly stronger. In all,
the tournament results constitute modest evidence that HADO-EGTA produces stronger
mixed strategies upon convergence than DO-EGTA.

An ancillary finding is that on average, the mixed-strategy Nash equilibria produced
during HADO-EGTA training tend to have smaller support than those of DO-EGTA. For
example, in setting r30, the mean defender equilibrium strategy support size from HADO-
EGTA runs is 4.29, compared to 5.53 from DO-EGTA. As one might expect, there is an
increasing trend over successive training rounds in the support size of equilibria, as more
high-quality strategies are added to the strategy set. However, for a given round in-
dex, HADO-EGTA equilibria tend to have smaller support than those of DO-EGTA, and
among runs with similar overall round count, HADO-EGTA runs have lower mean equi-
librium support size. This trend could possibly be explained by the way HADO-EGTA
trains DNNs against not just the current equilibrium opponent mixed strategy, but also
against other opponent strategies. As a result, perhaps when a DNN trained by HADO-
EGTA is present at equilibrium, these other opponent strategies are prevented from be-
ing in the equilibrium support, because that DNN is able to exploit their weaknesses.
Thus, I consider the smaller support of HADO-EGTA equilibria an encouraging sign,
that HADO-EGTA is successful at producing DNNs that perform well against a variety
of opponent strategies.
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Analyzing causes of HADO-EGTA gains

I have shown supporting evidence that HADO-EGTA tends to yield more strategically
stable results than DO-EGTA, both in terms of the resulting DNNs’ regret with respect to
the combined game, and in terms of the final equilibrium mixed strategies’ performance
in a tournament. Here I consider possible causes of any gains of HADO-EGTA relative
to DO-EGTA, and I attempt to determine which explanations are better supported by the
evidence.

There are multiple methodological differences between HADO-EGTA and DO-EGTA
that could contribute to performance gains of HADO-EGTA:

1. Each round of HADO-EGTA in these experiments adds 400,000 training steps in the
retraining phase, to the 700,000 or 1,000,000 training steps used by DO-EGTA.

2. Each round of HADO-EGTA in these experiments selects the best DNN among 4
intermediate training outputs, while DO-EGTA must use the DNN from the end of
training.

3. HADO-EGTA fine-tunes each DNN against opponents from equilibria of previous
rounds, while DO-EGTA trains only against the current round’s equilibrium oppo-
nent.

It is important to consider all of these possible explanations, not only Item 3, to provide a
clear picture of how HADO-EGTA works without bias in favor of the rationale that moti-
vated the HADO-EGTA approach [53]. In any case, a future researcher could incorporate
some of these aspects of HADO-EGTA into the basic DO-EGTA method, such as by in-
creasing the length of each round’s training phase as in Item 1, or by recording several
interim training outputs and selecting the best as in Item 2.

The strongest method for distinguishing between these possible causes of HADO-
EGTA improvements might be an ablation study, but the time and computation require-
ments of re-running DO-EGTA and HADO-EGTA under various ablations are too great
for such an analysis to be included here. Instead, I present an analysis based on data that
were collected during the DO-EGTA and HADO-EGTA runs already performed.

To evaluate Item 1, the effect of additional training steps, one can examine whether the
expected payoff of the DNN being trained continues to increase substantially in the final
steps of DO-EGTA training; if not, it would seem less likely that additional training is a
main cause of HADO-EGTA improvements. (Admittedly, it is possible that if the learning
rate were annealed toward zero more slowly, as is typical for longer training runs, then
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larger gains might have been produced in late training steps.) To this end, I examined
3 DO-EGTA training runs for each environment (i.e., s29 or r30) and measured the mean
difference in payoff over all rounds between the DNN after the end of training and the
DNN after only a 0.9-factor of training steps were complete. On average, the gain in
payoff for the fully-trained DNN was 3.6 in setting s29, and 0.5 in setting r30. The fraction
of rounds in which the fully-trained DNN had higher payoff was 0.64 in setting s29, and
0.57 in setting r30. Thus, the gains in payoff over the last steps of DO-EGTA training
were small in magnitude and not consistently positive. It is possible, but not assured,
that these gains could have been improved with a different learning rate schedule. These
results tend to counter the possibility that Item 1, the additional training steps in each
round of HADO-EGTA, is a primary reason for the better performance of HADO-EGTA.

To investigate the impact of Item 2, the selection among 4 interim DNNs by HADO-
EGTA, I take two approaches: I measure how much worse each DNN produced by DO-
EGTA performs, relative to the best interim performance achieved during its training, as
an estimate of how much better performance could have been if training had stopped
early at the optimal point. I also check how often HADO-EGTA selects DNNs other than
the final one produced during a training round.

Results show that the mean difference in expected payoff between the DNN after all
DO-EGTA training steps, and the best interim DNN during the corresponding round of
DO-EGTA training, is 3.37 for r30 and 8.66 for s29. These gains are fairly modest, indicating
that the reduction in performance due to sub-optimal stopping time cannot fully account
for the poorer performance of DO-EGTA, relative to HADO-EGTA. Moreover, these es-
timates of the loss due to selecting the final DNN from training instead of stopping ear-
lier are probably exaggerated, because the payoff estimates recorded during training are
based on few sample runs, leading to noisy values and the possibility of bias when taking
the maximum.

In the analysis of HADO-EGTA fine-tuning, I find that the final DNN produced in a
training run is selected in 0.63 fraction of cases for setting s29, and 0.55 for setting r30.
Thus, slightly more than half the time, the DNN produced at the end of fine-tuning is
selected. The average increase in expected payoff against the current equilibrium oppo-
nent, between the selected DNN and the final fine-tuned one, is 4.61 in setting s29 and
1.51 in setting r30. This means that in cases where HADO-EGTA does not select the final
DNN from fine-tuning, the selected network has only slightly better performance against
the current equilibrium opponent. (Of course, the selected network might have markedly
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better performance against other opponent strategies.) Hence, the evidence does not sup-
port the idea that HADO-EGTA achieves better results than DO-EGTA primarily because
HADO-EGTA selects the best among several interim DNNs.

In summary, these analyses provide some evidence that neither Item 1, the extended
training period of HADO-EGTA, nor Item 2, the DNN selection component of HADO-
EGTA, can fully account for the improved performance of HADO-EGTA relative to DO-
EGTA. It appears that the final training steps of each round of DO-EGTA training tend
to produce only modest increases in expected payoff. If DO-EGTA training were stopped
early in each round at the optimal step, it seems there would typically be only a small
increase in the expected payoff of the resulting DNN. HADO-EGTA selects the final fine-
tuned DNN the majority of the time. And when HADO-EGTA selects an earlier DNN,
that DNN’s gain in expected payoff against the current equilibrium opponent, relative
to the fully fine-tuned DNN, tends to be small. This leaves the remaining explanation,
Item 3, that it is fine-tuning against previous rounds’ equilibrium opponents that largely
accounts for the improved performance of HADO-EGTA relative to DO-EGTA.

5.6.3 Evolution of equilibrium mixed strategies

The training method used here progresses from an initial equilibrium over only heuristic
strategies, through equilibria that can include all beneficially deviating DQN strategies
learned so far. I find that as the training round increases, both attacker and defender tend
to weight the heuristic strategies less in the equilibrium mixed strategy, and they place
increasing weight on the most recently learned DNNs. This suggests progress is made in
each training round toward generating more strategically stable strategies.

One can see a fuller picture of how equilibrium behavior changes from round to
round, by looking at a heat map, which plots the weight of each DNN in each round’s
equilibrium. In figure 5.10, for each of 22 training rounds of an example run of DO-EGTA
in game r30, I plot the weight in the Nash equilibrium of each defender DNN strategy
learned so far, as well as of all heuristic strategies combined (shown as DNN 0). By defi-
nition, the full weight of 1 will be on heuristic strategies in round 0. After a later round n,
weight of 1 can be spread across heuristics and any DNN up to n. (Heat maps showing
attacker and defender mixed strategies for game r30, under DO-EGTA or HADO-EGTA
training, are shown in Appendix A, in figures A.7 and A.8.)

In a case where the agent learns dramatically better strategies in each round, one
would see almost all weight along the main diagonal of the heat map, where the newest
DQN strategies appear. In contrast, if learning plateaued, one would see little weight
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FIGURE 5.10: Heat map of the mixed strategy of the defender after each
round of training, as a mixed strategy over DNNs learned in previous rounds,

for a single example run of DO-EGTA. Results are for game r30.

on the main diagonal beyond a certain vertical line, and weight would remain on the
most successful DNNs or heuristics from earlier rounds. Figure 5.10 seems to show that
the defender in game r30 was learning successfully until about round 15, placing a great
deal of weight at equilibrium on the newest DNNs, although with some weight also on
heuristic strategies. After round 16, the defender began using the epoch 15 DNN heavily
at equilibrium, and not placing as much weight on new DNNs. This pattern is typical of
DO-EGTA training runs. One could learn more about the nature of the round-15 defender
DNN strategy by observing its actions in sample game playouts and comparing them to
those of other strategies, but I have not conducted this analysis.

I find that when the Nash equilibria contain heuristic strategies, they almost exclu-
sively contain the more sophisticated heuristics previously found to be successful by
Nguyen et al. [62], not the naive baselines. In fact, only one equilibrium that was found,
over 57 rounds in these two games, included a naive baseline heuristic strategy. Specifi-
cally, one equilibrium in game s29 included the attacker’s uniform strategy, with a weight
of 0.02. This confirms that the complex strategies previously proposed are more strategi-
cally stable than the naive baseline strategies. The superiority of the sophisticated heuris-
tics to simple baseline strategies makes it more noteworthy that DQN consistently gener-
ates beneficial deviations from the heuristics and has greater weight in Nash equilibria.

Only a few distinct heuristic strategies were present in any of the equilibria. In game
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s29, I found for the attacker 1 aRW and 3 aVP strategies in some equilibrium, and for
the defender, 5 dRW_aRW and 6 dRW_aVP parameterizations. In game r30, I found for
the attacker 1 aRW and 2 aVP strategies in some equilibrium, and for the defender, 5
dRW_aRW and 2 dRW_aVP parameterizations.

5.6.4 Time requirements of DO-EGTA

I developed a completely automated system to run iterated deep RL experiments, so no
time is wasted between the completion of one stage and the beginning of the next. This
system runs several steps during each round, including: (1) calling gambit-lcp to find a
Nash equilibrium over the current strategy set; (2) training a DQN defender and attacker
to seek beneficial deviations; (3) sampling the new defender’s and attacker’s expected
payoff; (4) for any player’s DNN that deviated beneficially, sampling the payoff of that
DNN against all opponent strategies. The system stops when both attacker and defender
DQNs fail to deviate beneficially in the same round.

The most time-consuming parts of this system are training the attacker and defender
DNNs, and sampling the payoff of a new DNN against all opponents. Because the num-
ber of opponents increase in each round, sampling the payoff against all opponents takes
an increasing amount of time in later rounds.

I ran the experiments shown in this work on servers running Intel Xeon CPUs with
2.0–3.7 GHz clock speed, at least 4 GB RAM available, and using either Ubuntu 16 or
CentOS 7. The DNNs were trained with CPU only, using TensorFlow version 1.5. I be-
lieve that training on GPU might have sped up the process only slightly, because a key
bottleneck was in running the Java game simulator to sample training episodes, which is
CPU-bound. I have not, however, tested training on GPU to evaluate possible gains in
training speed. This problem could be fixed by running the game simulator on multiple
processes in parallel, asynchronously from the DNN updates.

In my experience, DQN training takes 6–12 hours for the defender and 13–21 hours
for the attacker (simultaneously), depending on how long the opponent’s mixed strategy
takes to generate moves. Computing the payoffs of the new attacker and defender DNNs
against all opponent strategies requires about 6–15 hours, with an increasing trend as the
number of learned strategies rises. I sample the payoff of 400 random games, for each
pair of a new DQN strategy and an opponent strategy, to find the sample mean payoffs
with sufficiently low standard error.
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In total, each round of DO-EGTA takes about 21–32 hours, depending on the equilib-
rium mixed strategies, which server is used, and resource contention with other exper-
iments. Therefore, a complete run of 20–30 rounds might require about 25–40 days to
complete, assuming iteration times increase as strategies are added.

The HADO-EGTA method requires more time per iteration than DO-EGTA (unless
pre-training iterations are decreased), because it adds a fine-tuning step, and another step
for evaluating the payoff of several learned DNNs to select the best one. In this study,
each iteration of HADO-EGTA took from 21–51 hours, compared to 21–32 hours for DO-
EGTA. In addition, HADO-EGTA tends to require more rounds before converging, due
to increased training effort per round and the multiple opportunities to find a beneficial
deviation within each training round. A complete run of HADO-EGTA might be expected
to take about 30% more days than a run of DO-EGTA.

There are several opportunities to reduce the time per training round. One could
use an asynchronous training algorithm like asynchronous advantage actor-critic [59] in-
stead of DQN, allowing one to more easily parallelize the generation of game simulation
episodes. And one could parallelize the generation of payoff samples for new strategies
against all opponents, running multiple copies of the simulator in different processes. If
one could parallelize the generation of training game episodes, one might then take better
advantage of faster GPU updates to the DNN being trained.

5.7 Discussion

Based on the experience in this study, DO-EGTA consistently finds strategic equilibria
of complex cybersecurity games, with greater stability than equilibria over previously-
developed heuristics alone. This study applies such techniques to a dynamic attack-graph
game and finds that deep RL can repeatedly learn new attack and defense strategies that
deviate beneficially from equilibria over the set of strategies developed previously. Be-
cause the learning method searches over a larger strategy space than prior work, I expect
that the solutions found represent more accurate models of rational attacker and defender
behavior.

The experimental results indicate that the history-aware method, HADO-EGTA, tends
to produce more strategically stable strategies than the naive approach, DO-EGTA. How-
ever, there are multiple possible explanations for why HADO-EGTA performs better,
which could be the subject of future work. The strongest method for distinguishing be-
tween these possible causes of HADO-EGTA improvements might be an ablation study.
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One could run DO-EGTA with an increased number of training steps to match those of
HADO-EGTA, eliminating the difference in training time per round. Another experiment
could run HADO-EGTA with κ = 2, such that there was only one fine-tuned DNN to
select, reducing the difference in the number of DNNs available to select from per round.
Finally, an experiment could run HADO-EGTA with γ ≈ 0, such that the opponent for
fine-tuning was approximately the same as the pre-training opponent, eliminating the dif-
ference in training opponents. The difficulty with this approach is that it would be com-
putationally expensive and require a long time to run such experiments, each of which is
inherently impossible to parallelize due to the sequential nature of HADO-EGTA.

There seems to be a trade-off in game-theoretic analysis between the expressive power
of the agents’ strategy sets and the computation required to complete the study. The time
and computation needed to simulate all pairs of heuristic strategies in this study was just
a small fraction of what was needed to train attacker and defender DQNs for 20 or more
rounds. The payoff gains achieved by the DQN agents are considerable, but it is desirable
to increase the parallelism of the pipeline to reduce the start-to-finish time required. I
hope that by generating training episodes on multiple threads in parallel, I could reduce
the time per round to less than one day.

One difficulty with iterated deep RL methods such as DO-EGTA is that it is difficult
to predict how many rounds will be required for convergence a priori, and this round
count sometimes has high variance between runs. Fortunately, the anytime performance
appears to be fairly good after the first half of the expected run count has been completed,
in that the current equilibrium strategies empirically tend to have low regret with respect
to the final equilibrium after training converges. Another difficulty is that deep RL some-
times fails to learn effectively with some random seems, which could lead to spurious
convergence. This problem could be remedied by requiring multiple failures of deep RL
(with different random seeds) before considering a run converged, but in the experience
of this study, spurious convergence was not a problem, with good hyperparameters for
the DNNs and training algorithm.

There are many challenges to applying these methods to cybersecurity domains in
general, such as designing a suitable input representation for the DNN, designing the
mapping from DNN output to game actions, tuning hyperparameters of the DNN and
training procedure, and adjusting the size of the game itself to suit limitations of current
deep RL. (For example, it may be too difficult for DQN to learn a game with millions
of state elements or actions.) Designing the DNN’s input representation requires both
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providing sufficient information for the DNN to make good decisions, and not giving ir-
relevant inputs or using intractably many input dimensions. More concretely, this chapter
dealt with DNN inputs and outputs that map to nodes on a graph by omitting the graph’s
structure from the input, such that a distinct DNN must be trained for each graph, and by
training the DNN to output one node or edge to add to an action set, instead of indicating
an entire set of items on which to act. Despite these challenges in application, deep RL is
a powerful tool for discovering strong strategies or evaluating weaknesses in hand-coded
ones, with great potential to improve the analysis of cybersecurity games.
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Chapter 6

Conclusion

In this dissertation, I have addressed the problem of how to validate or improve the qual-
ity of strategies and equilibria produced in studies of strategic games. This work is rele-
vant to many real-world domains that are modeled as games in the literature, and I have
demonstrated applications to financial markets and cybersecurity settings. The tools of
game theory and reinforcement learning are widely used to analyze how self-interested
agents might behave in such domains. But in sufficiently complex games, there may be
no known (practical) way to analytically find optimal, rational strategies for agents to use.
The tools of simulation-based game theory, including empirical game-theoretic analysis,
as well as strategy exploration methods like deep reinforcement learning, have been used
successfully in prior work to find strong strategies in many diverse games. My work in
this dissertation offers new methods for evaluating the stability of strategy profiles, or
for searching for more strategically stable strategy profiles, with applicability to complex,
simulation-based games.

6.1 Discussion

Chapter 3 concerns the problem, in games with intractably large (or infinite) strategy
sets, of evaluating the strategic stability of a profile. Often in studies of simulation-based
games with large strategy sets, analysts will find a profile that is known to be a Nash
equilibrium over a restricted game, where only small, finite subset of strategies is allowed.
But the question remains, how robust this profile might be to an agent that deviates by
playing an alternative strategy outside the known subset. I presented a statistical method,
which samples strategies from a probability distribution over the game’s full strategy set
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and checks whether each is a beneficial deviation. If any sampled strategy is a beneficial
deviation, it can be added to the set of known strategies, a new Nash equilibrium found,
and the process repeated until no deviation is found or a maximum number of trials have
elapsed. I showed that when this procedure converges successfully, it yields a theoretical
guarantee on the probability of an opponent finding a beneficial deviation using the given
probability distribution, and I demonstrated the efficacy of the procedure in an auction
game and a cybersecurity game.

In Chapter 4 I presented a method for evaluating the strategic stability of profiles that
fall within a restricted subset of a simulation-based game, using reinforcement learning
to measure how much better a deviating strategy from the unrestricted game can per-
form. In cases where an analyst studies a game by finding a Nash equilibrium over a
restricted, finite subset of strategies, my method challenges this equilibrium by automat-
ically learning beneficially deviating strategies within a much larger strategy space. If
the best deviating strategies produce only a small gain in payoff relative to the equilibria
of the restricted strategy set, one may conclude that the original equilibria are reasonably
strategically stable. I presented an application of this method to a simulated trading agent
game, where equilibria had been found among a finite set of parameterizations of a sim-
ple trading agent design. Results indicated that a widely studied trading agent design,
known as the zero-intelligence trader, can be reasonably stable, when its parameters are
chosen through an equilibration process to be well-suited to the particular game instance.

The work in Chapter 5 presents an application of iterated deep reinforcement learning
to a cybersecurity scenario, known as an attack-graph game. Prior works have proposed
strategies and solution methods for attack-graph games, which are widely used to model
the interaction between a defender and an attacker trying to progressively gain control of
a computer system. My approach uses deep RL as a better-response oracle, in a proce-
dure similar to the double-oracle method or policy space response oracles, which can it-
eratively learn stronger mixed strategies in a complex game. I demonstrated the progress
of this method in two versions of the attack-graph game, over dozens of rounds of strat-
egy learning. I also proposed a more sophisticated strategy exploration method, taking
advantage of the history of opponent strategies during training, which empirically tends
to produce better-performing final mixed strategies, more consistent improvements from
learning, and sparser equilibrium mixed strategies. Both our basic method and our more
complex method consistently produce beneficially deviating strategies in the first several
rounds of training, and steadily converge to more stable equilibrium profiles over many
training rounds.
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6.2 Future work

There are many questions and problems raised by this work that would be interesting to
pursue in the future. Regarding the work of Chapter 3 on probably almost stable profiles,
it would be desirable to experiment with more powerful search algorithms, instead of
simple random search or a brief run of simulated annealing. For example, one could try
other black-box optimization algorithms from recent literature, or even deep RL, as the
search algorithm for beneficially deviating policies. One challenge with such experiments
is that they will likely be computationally demanding, considering that the policy search
method must run many times at each stage of our algorithm. It is likely that careful
tuning of the problem size and other parameters would be necessary to render such an
experiment feasible, if many trials are to be conducted, especially if experiments are run
in simulation-based games with costly payoff samples.

Respecting Chapter 4 on the stability of equilibrated zero-intelligence strategy pro-
files, future work could use deep RL, instead of tabular Q-learning, in an attempt to
produce larger payoff gains against other agents using zero-intelligence strategies. It is
conceivable with an appropriate DNN architecture, and a suitable input representation
of market state, deep RL could learn to achieve meaningfully better performance than
zero-intelligence traders in our market model, even if the zero-intelligence traders had
been equilibrated over many parameterized forms. A study investigating this possibil-
ity could add to our understanding of the continuous double auction and the nature of
rational trading strategies.

Chapter 5 raises many questions for future work. Deep RL successfully learned new
strategies that beneficially deviated from equilibria over hand-coded ones, but the nature
of these strategies remains opaque. It would be good to understand the behavior of these
learned strategies better, along several dimensions, including why they produce higher
payoffs, how they represent information about the game state, what their goals are, and
what weaknesses they have. It would also be interesting to more thoroughly investigate
the performance of my proposed methods for learning stronger mixed strategies, which
have been shown to work in an attack-graph game, but have not been subjected to a
full ablation study or to comparisons with alternative approaches on a broad variety of
games. Such thorough evaluation is currently computationally expensive for deep RL,
particularly for the kind of iterated deep RL that was performed here. One would need
considerable resources to experiment on ablated versions of an algorithm, or duplicated
runs across many game types, over dozens of rounds of iterated deep RL.

109



Appendix

110



Appendix A

Supplemental Data on Deep
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A.1 Deep RL hyperparameters

r30 attacker inputs 241
r30 defender inputs 240
s29 attacker inputs 234
s29 defender inputs 232

hidden layers 2 FC layers, size 256
activations ReLU per hidden layer

r30 attacker outputs 106
r30 defender outputs 31
s29 attacker outputs 103
s29 defender outputs 30

learning rate 5× 10−5

training discount factor 0.99
batch size 32

ε in DO-EGTA linear 1.0 to 0.03
in first half, then 0.03

ε in HADO-EGTA pre. linear 1.0 to 0.03
in first half, then 0.03

ε in HADO-EGTA fine. linear 0.3 to 0.03
in first half, then 0.03

train steps in DO-EGTA 700k (1m for r30 defender)
train steps in HADO-EGTA pre. 700k (1m for r30 defender)
train steps in HADO-EGTA fine. 400k

κ in HADO-EGTA 4
γ in HADO-EGTA 0.7
α in HADO-EGTA 2

7

DQN options no prioritized replay;
no param noise

TABLE A.1: Deep RL hyperparameters
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A.2 Payoff gains from deep RL by round
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FIGURE A.1: Payoff gain for new learned strategy, relative to the current
equilibrium. Results shown are means over independent runs of DO-EGTA
(4) or HADO-EGTA (2) in game s29. Shading depicts standard error of the
mean. Green stars show when runs converged, red crosses when they were

stopped early.
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FIGURE A.2: Payoff gain for new learned strategy, relative to the current
equilibrium. Results shown are means over independent runs of DO-EGTA
(5) or HADO-EGTA (2) in game r30. Shading depicts standard error of the
mean. Green stars show when runs converged, red crosses when they were

stopped early.
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A.3 Example learning curves of DO-EGTA runs
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FIGURE A.3: Learning curve of each round of DO-EGTA training, for de-
fender (left) or attacker (right), in an example run for game s29. Curves are
shown as gain relative to previous equilibrium. Color map goes from purple

in early rounds to yellow in later ones.
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FIGURE A.4: Learning curve of each round of DO-EGTA training, for de-
fender (left) or attacker (right), in an example run for game r30. Curves are
shown as gain relative to previous equilibrium. Color map goes from purple

in early rounds to yellow in later ones.
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A.4 Payoffs of equilibria and deviations
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FIGURE A.5: Expected payoff of each equilibrium mixed strategy, and each
agent’s corresponding deep RL deviating strategy, in game s29. Circles indi-
cate rounds with no beneficial deviation. Results are for one example run of

DO-EGTA or HADO-EGTA.
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FIGURE A.6: Expected payoff of each equilibrium mixed strategy, and each
agent’s corresponding deep RL deviating strategy, in game r30. Circles indi-
cate rounds with no beneficial deviation. Results are for one example run of

DO-EGTA or HADO-EGTA.
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A.5 Equilibrium strategies by round
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FIGURE A.7: Heat map of the equilibrium attacker mixed strategy by round.
Results are for a single run of DO-EGTA or HADO-EGTA, in game r30. Net-

work column 0 represents heuristic strategies.
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FIGURE A.8: Heat map of the equilibrium defender mixed strategy by round.
Results are for a single run of DO-EGTA or HADO-EGTA, in game r30. Net-

work column 0 represents heuristic strategies.
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A.6 DNN regrets by round
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FIGURE A.9: Mean over training runs of DO-EGTA or HADO-EGTA, of the
regret of each round’s DNNs, with respect to a Nash equilibrium of the com-
bined game for s29. Gaps appear where no beneficially deviating network

was produced. Error bars show standard error of the mean.
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FIGURE A.10: Mean over training runs of DO-EGTA or HADO-EGTA, of
the regret of each round’s DNNs, with respect to a Nash equilibrium of the
combined game for r30. Gaps appear where no beneficially deviating network

was produced. Error bars show standard error of the mean.
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